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Abstract. Background : Measuring and understanding Technical Debt
(TD) is quite complex since there are a number of different definitions
and techniques that have been proposed in the last few years and it is
not clear which ones should be used in which conditions. The approaches
proposed are almost never based on the existing ones and their validation
is often performed in a very limited number of projects. For this reasons,
practitioners are confused and find difficult to apply such approaches in
their projects.

Goals: This paper investigates the available techniques for evaluating
TD using automated tools aiming at helping practitioners and researcher
in understanding the available options and apply them correctly.

Method : The study has been performed as a Systematic Literature
Review (SLR) applied to 835 studies obtained from the three largest
digital libraries and databases.

Results: After applying all filtering stages, 38 papers out of 835 have
been selected and analyzed in depth. Almost all of them propose novel
approaches to measure TD using different criteria and they do not extend
or validate existing approaches.

Conclusions: The area is not mature and it lacks independent eval-
uations of the models proposed. Authors focus on proposing new
approaches and no consolidation can be identified. Moreover, almost all
the approaches proposed are automated only partially and through pro-
totype tools designed just to support the studies analyzed in the paper
in which the approach is proposed and rarely maintained. These facts
makes difficult the application of such methods by practitioners.
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1 Introduction

TD is one of the most recent concepts that has been introduced in software
engineering. It acknowledges the trade-off between code quality and the need
to meet market expectations (e.g., low costs, short time-to-market, etc.). This
is a typical situation for startup companies that have strict requirements to
produce a Minimum Viable Product (MVP) to test the market and get funding
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to survive. In such contexts, the sub-optimal decisions that decrease the quality
of the system leading to the creation of strategic TD [72] could be a key strategy
to achieve success. In any case, companies should understand that such sub-
optimal decisions require additional effort to fix the product in the long run
[20,21]. However, creating TD could be a valuable strategy to push products
on the market knowing that the debt needs to be payed (with interests) in the
future.

This phenomenon was originally described by Ward Cunningham in 1992 [22]
introducing the concept of TD. There are many more sources of TD that have
been investigated recently that involve communication, collaboration among
team members, documentation, and individual attitudes [37,72].

Since TD is a way of measuring the effort needed to achieve top quality in a
software system compared to the current status, it is of paramount importance
being able of measuring (or estimating) it. The importance of such an activity is
proved by the simple fact that most of the software projects have some TD [25].
Being able to estimate TD allows development teams and managers to plan the
work properly.

It may also happen that TD is too high to be payed [18], requiring different
approaches to address it (e.g., rewriting the system). However, knowing that
and how the system reached that condition could help in the identification of
mistakes and improve the development process.

Frequent changes of software artifacts (mainly in the source code) without
corresponding quality assurance measures quickly leads to a decrease in soft-
ware quality, with an increase in the costs for further development and evolution
due to the increase TD [19]. Moreover, the evaluation of TD should be per-
formed automatically to avoid increasing the load of the developers and being
able to monitor that continuously during any phase of the development. This
is particularly useful in conjunction with the usage of Agile approaches since
their delivery-oriented nature and continuous adaptation to the needs of the
customer can be more prone to generate TD compared to traditional software
development. However, they are also more prone to pay TD through the a proper
implementation of refactoring.

For all these reasons, being able of measuring TD automatically is of
paramount importance to support the daily work of developers. There are many
different approaches to TD in literature and this paper provides an extensive
analysis pointing out the current status of the research extending the work the
same authors in [33]. In this paper, we have enhanced the analysis including a
wider number of primary studies.

The paper is organized as follows: Sect. 2 describes the adopted methodology;
Sect. 3 discusses the findings; Sect. 4 investigates the related work; Sect. 5 ana-
lyzes the threats to validity; finally, Sect. 6 draws the conclusions and introduces
future work.
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2 Methodology

The protocol adopted for this Systematic Literature Review (SLR) is the one
introduced by Kitchenham and Charters [34] for performing such reviews in the
software engineering area.

The main goal of this work is to review the existing studies and highlight
the aspects related to TD measurement, therefore we have defined the following
research questions:

– RQ1: Which are the existing techniques for measuring TD?
– RQ2: Which are the tools that support the automation of the measurement

of TD?
– RQ3: Are there any empirical studies able to demonstrate the usefulness of

the identified techniques?
– RQ4: Are there any empirical studies able to demonstrate the usefulness of

the tools identified?

To answer the research questions, we have searched for papers using the three
largest digital libraries: ACM Digital Library, IEEE Xplore, and Google Scholar.

Since only studies focusing on TD as main topic are interesting for our pur-
pose, we suppose that their title or abstract include the key words technical debt
measurement. Consequently, we used appropriate queries for each library:

– ACM Digital Library:(+technical +debt +measurement) OR recordAbstract:
(+technical +debt +measurement)

– IEEE Xplore: ((“Document Title”:technical debt measurement) OR
“Abstract”: technical debt measurement)

– Google Scholar: “technical debt measurement”

The data have been extracted in two stages: in August 2018, when the initial
version of the study started and in September 2019 to extend the study with the
latest research available.

Only certain papers should be included to the final result: containing
abstracts, considering TD as a main topic, written in English. No year con-
straint was specified, since we aimed at collecting all appropriate data despite
of the date.

Many publications found in the digital libraries were not appropriate for
our study since we were interested in primary studies published in referred
workshops, conferences, and journals. Therefore, we excluded documents such
as: summaries of workshops, tutorials, introductory descriptions of conferences,
research plans, presentations, not primary studies, and technical reports. There-
fore, we excluded all the documents that were not proper research papers.

Finally, we manually excluded all the papers not related to our research
that passed the previous filters but still included in the list. The selection was
performed after reading the entire content of the papers.



An Analysis of Automated Technical Debt Measurement 253

3 Results

We found 1,063 papers distributed as follows: ACM Digital Library (211), IEEE
Xplore (317), and Google Scholar (535).

As expected, there was a significant overlap in the papers found in the dif-
ferent libraries. Therefore, the first step was merging the results and removing
duplicates. Finally, at the end of the process, we selected 46 papers. The overall
selection process is summarized in Fig. 1 (the numbers on the arrows show the
amount of papers that passed each phase):

Fig. 1. Steps of the selection process.

– Step 1: Merging All Papers from Data Sources. The initial list included
1,063 papers but many duplicates were present. The identification of the
duplicates was performed manually to avoid problems with minor character
differences in the titles and in the author names. At the end, we had a list of
835 unique papers.

– Step 2: Applying Exclusion Criteria. At this stage, we applied the exclu-
sion criteria resulting in a selection of 524 papers. At this stage we still kept
in the list the secondary studies.

– Step 3: Excluding not Primary Studies. At this stage, we identified the
secondary studies (e.g., systematic reviews, systematic mappings, etc.) that
were removed from the list and analyzed in Sect. 4. The secondary studies
identified are 10 and the list is reduced to 452 papers.

– Step 4: Considering Studies Related to Measurement of TD. Reading
the title and the abstract of the 452 papers, we identified the studies related
to the measurement of TD. We identified 38 papers distributed between 2011
and 2019 as described in Fig. 2.

– Step 5: Quality Assessment. We read the 77 papers identified and we
excluded 39 of them since they were not dealing with the measurement of the
technical debt even if from the title or the abstract they appeared appropriate
for our investigation.

3.1 RQ1: Which Are the Existing Techniques for Measuring TD

The identified studies have been analyzed in terms of proposed techniques, their
requirements about input data needed for the calculation of TD, the resulting
information, advantages and disadvantages of the approach. Table 5 summarises
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Fig. 2. Distribution of papers related to TD measurement over the years.

Table 1. Input of TD measurement techniques.

Technique (method)
Target
quality
level

Debt-
estimating
model

Number of
should-fix
violations

The hours
to fix each
violation

The cost
of labor

Source
code

Output data
from static

code analyzers

Candidate
cloud-based
mobile service

Past changes
in the history
of the system

Developer
activity data

SQALE � � - - - - - - - -
CAST - - � � � - - - - -
SIG � - - - � � - - - -
A benchmarking-based model � - - - � � � - - -
A fluctuation-based
modelling approach

- - - - - - - � - -

Breaking Point for TD - - � � � - - - � -
LOC and Fan-In to Quantify
the Interest of SATD

- - - - - � - - - -

A framework for design level TD - - - - - � - - - -
A framework for estimating
interest on TD

- - - - - - - - - �

Modularity metrics for ATD - - - - - � - - � -
Detecting and quantifying SATD - - - - - � - - - -
Pre-trained word embedding word2vec model - - - - - � - - - -
Code metrics for TD - - - - - � - - - -
Convolutional Neural Network - - - - - � - - - -

the techniques identified while Table 1 compares the input required by the dif-
ferent techniques and Table 2 the output generated.

Letouzey [40] proposed a method for TD evaluation named Software Quality
Assessment Based on Lifecycle Expectations (SQALE), which is described as an
answer to the need for an objective and standardized open-source method with
low false positives. At the official website of the method1, there is a list of several
tools able to analyze the code written in different languages.

The method defines how to formulate and organize non-functional require-
ments that can affect code quality defining a herarchical structure of character-
istics and sub-characteristics similar to the ISO quality model. SQALE has been
developed to be automated and considers several properties of the code but two
main aspects are not taken into account. The first one is that non-conformities

1 http://www.sqale.org/.

http://www.sqale.org/
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for business or operations are not considered important by any index of SQALE
(considering version 1.0 [41]). The second one is that there is no definition of the
level of implementation of the requirements.

CAST [23] presents a formula with flexible parameters to measure TD. That
flexibility implies the possibility of adjusting the parameters to the specificity of
a particular organization. The approach defines five Health Factors that have a
different impact on the overall TD: Changeability (30%), Transferability (40%),
Robustness (18%), Security (7%), Performance Efficiency (5%).

Violations in each area are rated according to their severity and a formula
is applied for calculating the final value of the debt. The approach has been
evaluated on 745 business applications containing more than 10 KLOC using
the CAST proprietary Application Intelligence Platform.

The SIG/TUViT approach [52] is based on a sound and quantitative app-
roach for measuring software quality from source code. Moreover, the estimation
of TD is based on empirical data using a model that is quite simple.

Mayr et al. [49] define a model that provides a combination of the benefits of
the flexible approaches to quality changes and the simplicity of the SIG model.
The approach requires only information from static code analysis. The output
is simple as well, being the hours of work required to pay the debt.

Skourletopoulos et al. [68] developed a fluctuation-based modelling approach
to TD. It measures the amount of profit not earned due to the under-usage of a
given service and considering the probability of over-usage of the selected service
that would lead to accumulated TD. The hypothesis is that service capacity
affects to service choice, which is made with respect to the predicted fluctuations
in the number of users over some time and the way TD is gradually paid off.
Consequently, formulas for predicting appearance of TD were developed, as well
as tools for validating them.

Chatzigeorgiou et al. [18] provide an estimation of a breaking point, that is
when debt becomes too large to be paid off. The source code is initially assessed
by fitness function based on the Entity Placement metric quantifying coupling
and cohesion. The approach is based on the identification of the best design for
a system. The cost of reaching that best system with necessary refactorings is
calculated as well as number of versions leading to the breaking point. However,
the authors point out some issues to be considered:

– only coupling and cohesion dimensions exist for the method, but TD has
many other aspects

– maintenance effort means not just adding lines of code, but deleting and
modifying them

– future maintenance effort cannot be predicted solely on the basis of past
maintenance tasks

Kamei et al. [32] propose measuring the self-admitted TD interest with code
metrics like LOC (because it well correlates with code complexity metrics) and
Fan-In (showing how much one piece of code affects another one). They have
validated the approach on the Apache JMeter project.
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Marinescu [46] proposes a framework exploring TD symptoms at design level.
The construction of such framework includes four steps:

1. definition of the principles for finding design defects
2. identification of a set of relevant design defects
3. estimation of the impact of each defect
4. the overall design quality is calculated

The framework also includes:

– a coarse-grain approach to monitor the evolution of TD over time
– a more detailed approach that enables locating and understanding individual

flaws, which can lead to a systematic refactoring

The approach has been applied in a case study including 63 releases of two
well known Eclipse projects (JDT and EMF). However, the conclusions of the
case study cannot be generalized, considering the restricted number of systems
analyzed and the limited number of design flaws that were included in the actual
instantiation of the framework.

In the framework proposed by Singh et al. [66], TD estimation is based on
measures of code maintainability obtained via static analysis and interest estima-
tion based on activity data obtained by monitoring developer actions in the IDE.
Main contribution of the framework is the integration of a developer activity data
with code metrics and to improve the understanding of developer comprehension
effort resulting in an improved accuracy of the estimation.

Although the Architectural Technical Debt (ATD) is difficult to measure, the
Average Number of Modified Components per Commit (ANMCC) is a metric
proposed in [43]. However, commit records may not exist anymore, therefore the
authors suggest to use Index of Package Changing Impact (IPCI) and Index of
Package Goal Focus (IPGF) instead of ANMCC. The advantage of using such
two new metrics is the possibility of obtaining them directly from the source
code. Then validation of correlation of that metrics with ANMCC is performed.
However, the weakness of whole study is relying only on results of projects
developed in C#.

Martini et al. [47] conducted a multiple embedded case study in seven sites
at five large companies to investigate the current causes for the accumulation of
Architectural TD (ATD). The authors investigated two research questions: (i)
factors cause the accumulation of ATD, and (ii) current trends in practice in the
accumulation and recovery of ATD over time. The authors provided a taxonomy
of causes and their influence in the accumulation of ATD.

Maldonado et al. [45] examined code comments to identify and evaluate Self-
admitted Architectural Debt (SATD). The strength of the approach is the usage
of heuristics to eliminate comments which are not likely to affect TD. In addition,
the method classify comments to different types of SATD.

Besker et al. [12] show critical results for SATD management, such as the
fact that monitoring and evaluating ATD using accurate metrics is a key issue
and it is not fully supported by any currently available tool.
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Table 2. Output of TD measurement techniques.

Technique

(method)

Design

symptoms

of TD

Remediation

cost

Non-

remediation

cost

Relative

amount of

TD

Breaking

point

Number of

comments

SQALE � − − − − −
CAST − � − − − −
SIG − � � − − −
A benchmarking-based model − � − − − −
A fluctuation-based

modelling approach

− − − � − −

Breaking Point for TD − � � − � −
LOC and Fan-In to Quantify

the Interest of SATD

− − � − − −

A framework for design level

TD

� − − − − −

A framework for estimating

interest on TD

− − � − − −

Modularity metrics for ATD − − − � − −
Detecting and quantifying

SATD

− − − − − �

Code metrics for TD − − − � − �
Convolutional Neural

Network

− − − � − �

Pre-trained word embedding

word2vec model

− − − − − �

Flisar and Podgorelec [26] developed a new SATD identification method
which takes advantage of a large corpus of unlabeled code comments. The pro-
posed feature enhancement method was used with the three most common fea-
ture selection methods (CHI, IG, and MI) and three well-known text classifica-
tion algorithms (NB, SVM, and ME). It was tested on ten open source projects
achieving 82% of correct predictions of SATD. The proposed method seems to
be a good candidate to be adopted in practice.

Lenarduzzi et al. [38] applied the SZZ algorithm to label the fault-inducing
commits and used 8 machine Learning techniques: Linear Regression, Random
Forest, Gradient Boost, Extra Trees, Decision Trees, Bagging, AdaBoost, and
SVM to show that the accuracy of TD can be improved. Authors found that
among the 202 violations defined for Java by SonarQube, only 26 have a relatively
low fault-proneness.

Pecorelli et al. [56] have reported on a large-scale empirical comparison
between five different balancing techniques for ML-based code smell detection.
The results suggest that ML models relying on SMOTE (Synthetic Minority
Over-sampling Technique) realize the best performance. However, its training
phase is not always feasible in practice. Furthermore, avoiding balancing does
not dramatically impact the performance. Existing data balancing techniques
are therefore inadequate for code smell detection. This hinders the feasibility of
the current ML-based approaches.
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Capitan and Vogel-Heuser [16] proposed metrics for identifying TD which
based on IEC 61311-3 programming languages and adapted for the languages
and cycle processing (Halstead’s and McCabe’s as examples).

Kumar et al. [35] proposed a novel approach for identifying TD in service
composition in SaaS cloud. The approach combines time series forecasting and a
newly proposed TD model to estimate the future debt and utility in the service
composition. Through a real world case study, they demonstrate that the app-
roach can successfully identify both the good and bad debts, while producing
satisfactory accuracy on estimating the TD in the service composition in SaaS
cloud.

Ciolkowski et al. [19] developed a prototype and a prediction model for fore-
casting potential savings based on proposed refactoring of key drivers of TD
identified by the machine-learning model.

Verdecchia et al. [76] presented a novel approach to identify ATD of Android
apps based on architectural guidelines extraction and modeling, architecture
reverse engineering, and compliance checking.

Lavazza et al. [36] proposed a formal and executable model that supports the
simulation of various scenarios in time-boxed software development and main-
tenance processes. The model is usable to show the effects that TD have on
relevant issues such as productivity and quality, depending on how TD is man-
aged, with special reference on how much effort is dedicated to TD repayment
and when such effort is allocated.

TD visualizations were designed to improve stakeholder communication to
support the business decision-making process at different levels of the orga-
nization. [53] concluded that the TD visualization contributes to improve the
communication in the decision-making processes associated with the software
lifecycle.

[61] addresses the problem of SATD (Self-Admitted Technical Debt) classi-
fication using a Convolutional Neural Network, which takes as input the source
code comments and predicts as output whether the comment is a SATD com-
ment or not.

Tsintzira et al. [74] used an established method for quantifying TD, namely
FITTED, to measure the TD of an industrial software product and compare it
to the perception of the software engineers.

3.2 RQ2: Which Are the Tools that Support the Automation of the
Measurement of TD?

TD measurement techniques often require a large number of input data that
require a large amount of effort to be extracted. Therefore, tools are of paramount
importance to support development teams in the integration of TD measurement
in their daily work. Table 3 provides a summary of the available tools and the
methodology they implement.

SonarQube [27] implements the SQALE method of TD evaluation. It is used
for continuous inspection of code quality to perform automatic reviews with



An Analysis of Automated Technical Debt Measurement 259

Table 3. Tools able to support the automation of the measurement of TD.

Technique (method) Ref Tool Tool URL Open

source

SQALE [40] SonarQube https://www.sonarqube.org/ Yes

MIND https://sourceforge.net/

projects/mindyourdebt/

Yes

FindBugs http://findbugs.sourceforge.

net/

Yes

Breaking Point for TD [18] JCaliper http://se.uom.gr/index.php/

projects/jcaliper/

Yes

A framework for design level TD [46] inFusion https://chocolatey.org/

packages/infusion/

No

A framework for estimating interest

on TD

[66] Blaze monitoring tool https://sites.google.com/

site/blazedemosite/home/

about

No

A framework for the prioritization of

technical

[2] Tracy − No

A tool for auto identification and

interactive monitoring of the

evolution TD

[50] VisminerTD https://visminer.github.io No

A tool for managing TD [55] DeepSourse https://deepsource.io/ Yes

A tool to prevent mostly invisible

technical debt

[7] Debtgrep − No

A tool for automatic architectural

smells detection for C/C++ projects

[13] Arcan tool http://www.essere.disco.

unimib.it/wiki/arcan/

Yes

A tool calculates the presence of a

set of code smells and calculates an

Intensity index

[38] JCodeOdor http://www.essere.disco.

unimib.it/jcodeodor/

Yes

A tool for detecting code smells from

Java code and prioritizing technical

debt based on the smells

[38] JSpiRIT − No

A domain specific static code

analysis tool

[14] PLC software − No

A Tool for the strategic planning of

TD in Agile Software Projects

[19] ProDebt − No

A programming environment [70] EXA2PRO − No

Modularity metrics for ATD [43] TortoiseSVN https://tortoisesvn.net/ Yes

LOC and Fan-In to Quantify the

Interest of SATD

[32] Understand https://scitools.com/ No

JDeodorant https://github.com/

tsantalis/JDeodorant

Yes

Detecting and quantifying SATD [45] SLOCCount https://www.dwheeler.com/

sloccount/sloccount.html

Yes

static analysis of code to detect bugs, code smells and security vulnerabilities in
several programming languages.

MIND (ManagIng techNical Debt) is an open source tool which is, to the best
of our knowledge, the first tool supporting the quantification and visualization
of the interest [24]. Basically, it is a plug-in for SonarQube. MIND uses a few
metrics to count the interest:

– Defect Proneness
– Maximum Defects per 100 LOC Touched
– Extra Defect Proneness
– Maximum Extra Defects per 100 LOC Touched

https://www.sonarqube.org/
https://sourceforge.net/projects/mindyourdebt/
https://sourceforge.net/projects/mindyourdebt/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://se.uom.gr/index.php/projects/jcaliper/
http://se.uom.gr/index.php/projects/jcaliper/
https://chocolatey.org/packages/infusion/
https://chocolatey.org/packages/infusion/
https://sites.google.com/site/blazedemosite/home/about
https://sites.google.com/site/blazedemosite/home/about
https://sites.google.com/site/blazedemosite/home/about
https://visminer.github.io
https://deepsource.io/
http://www.essere.disco.unimib.it/wiki/arcan/
http://www.essere.disco.unimib.it/wiki/arcan/
http://www.essere.disco.unimib.it/jcodeodor/
http://www.essere.disco.unimib.it/jcodeodor/
https://tortoisesvn.net/
https://scitools.com/
https://github.com/tsantalis/JDeodorant
https://github.com/tsantalis/JDeodorant
https://www.dwheeler.com/sloccount/sloccount.html
https://www.dwheeler.com/sloccount/sloccount.html
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– Relative Extra Defect Proneness
– Average Relative Extra Defect Proneness
– Violation Density
– Linkage
– Estimation Error

JCaliper [18] was designed to find the placement of entities that minimizes
the Entity Placement metric as a search-space exploration problem. It automat-
ically extracts the number, type and sequence of refactoring activities required
to obtain the design without TD.

Blaze is a monitoring tool [69] recording temporal sequence of developer
actions, including code navigation actions and edit actions. The log produced
is subsequently analysed to figure out class relationships and effort spent by a
developer to understand program elements.

TortoiseSVN allows extracting commit records from standard SVN servers
and any code repositories supporting Subversion, such as GitHub. That records
are used by Li et al. [43] to perform ANMCC metric checking.

JDeodorant [73] is used in [32] for performing source code parsing. In partic-
ular, the ability to extract a comment and map it to its corresponding method
is interesting. Later in the paper, to calculate the interest that is incurred over
time, 16 code metrics were extracted using the Understand tool [1]. JDeodorant
[73] is also used in [45] to parse the source code and extract the code comments.
However, before that, the SLOCCount tool [77] is applied to calculate SLOC in
Java files.

EXA2PRO [70] is a programming environment which integrates a set of tools
and methodologies that allow to systematically address many exascale comput-
ing challenges, including performance, portability, programmability, abstraction
and reusability, fault tolerance, and TD.

[60] presented a process framework for managing TD in commercial soft-
ware product development. The framework integrates processes required for TD
management with existing software quality management processes prescribed by
the project management body of knowledge (PMBOK) (https://www.pmi.org/
pmbok-guide-standards), and organizes the different processes for TD manage-
ment in three steps: (1) make TD visible, (2) perform cost-benefit analysis, and
(3) control TD. To implement the processes, they introduced a new artifact, the
TD register, which stores the principal and the associated interest estimated for
the TD related to an asset.

[7] introduced debtgrep, a tool to prevent from growing dependency viola-
tions, violation of naming conventions, usage of deprecated API’s, and other
kinds of mostly invisible TD. They provide some specific examples of use cases
for debtgrep.

[67] introduced a tool used for extracting coupling and cohesion metrics at
package level to study their impact on TD. The dataset of their study consisted
of approximately 1,200 software packages.

[19] introduced the ProDebt tool, a methodology and a software tool to sup-
port the strategic planning of TD in the context of agile software development.

https://www.pmi.org/pmbok-guide-standards
https://www.pmi.org/pmbok-guide-standards
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[6] proposed a new index for the evaluation of architectural issues as Archi-
tectural Smells (AS) and developed a tool to detect AS in Java projects. They
focused on AS based on dependency issues, since components that are highly
coupled and with a high number of dependencies cost more to maintain and can
be considered more critical.

[13] introduces an open source tool for automatic architectural smells detec-
tion for C/C++ projects, by creating an abstraction of the project and defining
the concept of dependency between elements belonging to the project in order
to identify architectural smells.

[48] developed a holistic framework for the semi-automated identification and
estimation of ATD in the form of non-modularized components.

[14] presented a static code analysis tool and its usage for identification of TD
in IEC 61131-3. The tool supports both bottom-up (study the metric values at
individual module and convention violations) as well as top-down analysis (study
the call graphs). In addition, the authors provide an extra analysis (horizontally)
by making a comparison on the metric results between different demonstrators.

[2] presented Tracy, a decision-making framework that prioritizes TD con-
sidering how IT assets support a company’s business processes, thus providing
a new perspective on TD management.

[50] presented VisminerTD, a tool that allows the automatic identification
and interactive monitoring of the evolution of TD items by combining soft-
ware metrics, code comment analysis, and information visualization. The results
provided evidence on the use of the proposed tool, indicating (i) that it can be
useful in supporting TD identification and TD monitoring activities and (ii) that
it can bring gains in terms of comprehensiveness and efficacy when evaluating
the desirable time to identify and monitor different types of debt.

[71] found that the tools used cannot help in identifying many important TD
types, involving humans is necessary. Tools could help to identify TD faster or
more accurately however, project priorities and current development activities
are important to be considered together, along with the values of principal and
interest, when deciding to provide a comprehensive evaluation of TD and pay it
off.

3.3 RQ3: Are There Any Empirical Studies Able to Demonstrate
the Usefulness of the Identified Techniques?

The empirical studies performed to validate the identified techniques are sum-
marized in Table 4.

[28] assessed three methods [23,40,46] to find out if they effectively describe
the relationship between the quality of the system and the level of TD.

Izurieta et al. [31] uses Nugroho et al. [52] to exemplify the methodology.
A Benchmarking-based Model of Mayr et al. [49] is closely related to their

earlier work on benchmarking-oriented quality assessments. Also it calculates
the remediation cost in a way similar to the approach of CAST [23].
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Table 4. Identified techniques and the related empirical studies.

Technique (method) Based on Ref Empirical study

SQALE Previous version [40] [41] [28]

CAST − [23] [28]

SIG SIG quality model [30] [52] [31]

A Benchmarking-based Model Benchmarking-oriented
method [29], CAST [23]

[49] [49]

A Fluctuation-Based Modelling
Approach

− [68] [68]

Breaking Point for TD CAST [23], previous
version [4]

[18] [18]

LOC and Fan-In to Quantify the
Interest of SATD

− [32] −

A framework for design level TD − [46] [28,46]

A framework for estimating interest
on TD

SIG [52] [66] [65]

Modularity metrics for ATD − [43] [43]

Detecting and quantifying SATD Previous version [59] [45] −
Convolutional Neural Network − [61] −
Pre-trained word embedding word2vec
model

− [26] −

A Prodebt Method for the strategic
planning of TD in Agile Software
Projects

− [19] −

Relevant code structure metrics in the framework for estimating interest on
TD [66] were selected in such a way that related to maintainability and TD in
[52]. Similar to the prior work, static code metrics are used.

[39] conducted an empirical study on 21 well-known mature open-source
projects to confirm the hypothesis about the fault-proneness of the SonarQube
violations.

[78] selected four different TD identification techniques (code smells, auto-
matic static analysis (ASA) issues, grime buildup, and modularity violations)
and applied them to 13 versions of the Apache Hadoop open source software
project. The authros showed that different TD techniques are loosely coupled
and therefore indicate problems in different locations of the source code. More-
over, their proxy interest indicators (change and defect-proneness) correlate with
only a small subset of TD indicators.

[64] surveyed empirical research work in the arising topic of SATD after 2014
and until the compilation of this survey in July of 2018. They compiled the
tools and datasets that can be used as a foundation to motivate and facilitate
the submission of novel and improved approaches for managing and ultimately,
repaying SATD. Simultaneously, authors observed a lack of studies focusing on
the repayment and management of SATD, which is of critical importance.
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3.4 RQ4: Are There Any Empirical Studies Able to Demonstrate
the Usefulness of the Tools Identified?

In [54], TD was measured using two static code analysis tools (Findbugs [8] and
SonarQube [27]). The goal was evaluating if the code produced with the Test
Driven Development approach has a lower TD than code produced using other
techniques. This two tools are widely used in the community for measuring TD.

Other studies tested SonarQube: [44] use it for measuring TD in a particle
tracker system; [51] use it for several calculation of TD in the software supply
chain; [15] describes a case study in Ericsson, where they had to observe TD
measurement tools to use them for evaluation system creation based on ISO
standard 15939:2007.

4 Related Work

Investigating the different approaches for measuring TD could be valuable to
practitioners and researchers to provide a better understanding of the field and
identify research gaps. However, we were not able to identify any secondary study
related to the research questions we listed in Sect. 2. Instead, several others deal
with TD in general.

The systematic mapping study of Li et al. [42] was initiated to find and
analyze publications between 1992 and 2013 of TD and its management. After
the selection of 92 studies authors classified 10 TD definition, identified 8 TD
management activities, and collected 29 tools for the latter.

Another systematic mapping study of TD definitions, Poliakov [58] has per-
formed full review of 159 papers. 107 definitions were separated into keywords.
Consequently, the main achievement of the research is built keyword map, sup-
plemented by synonyms and types of TD.

Another literature review has been done by Alves et al. [3] based on three
research questions. They evaluated 100 studies of 2010–2014 and proposed ini-
tial taxonomy of TD types, list of indicators for identifying TD, and existing
management strategies.

There is a study considering another aspect of the phenomenon. Ribeiro
et al. [62] state that the evaluation of appropriate time to pay TD and applying
an effective decision-making criteria are an important management goals. Con-
sequently, authors identified 14 such criteria for development teams. Also the
results showed gaps where further research can be performed.

Recently, Behutiye et al. [9] considered a narrow field of study related to TD,
which means that they synthesized the state of the art of TD and its causes,
consequences, and management strategies only in the context of agile software
development (ASD). In particular, after processing systematic literature review
38 primary studies, out of 346 studies, were identified and analyzed. Then five
research areas of interest related to the literature of TD in ASD, as well as 12
strategies for managing it have been found. Authors identified eight categories
regarding the causes and five categories regarding the consequences of incurring
TD in ASD.
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In the case of work performed by Besker et al. [11] ATD is considered as
affecting to system success and able to cause expensive repercussions, so the
goal is to create new knowledge with interest in ATD. Research efforts should
be synthesized and compiled for that. The main contributing outcome of the
paper is a presentation of a novel descriptive model, providing comprehensive
interpretation of ATD phenomenon.

Finally, the last related work focuses on a specific view of TD. Employ-
ing a method for syntactic literature review and applying it to seven digital
library studies sources Ampatzoglou et al. (2016) [5] analyzed financial aspect
of TD. Authors conclude that the communication between technical managers
and project managers is beneficial, because a vocabulary will be provided, and
high-quality goals will be set up. In order to achieve this, they introduced a
glossary of terms and a classification scheme for financial approaches.

[63] investigates current state of TD based on 13 secondary studies, dated
from 2012 to March 2018, the work shows several interesting conclusions such
as coverage of areas (code, test, process, etc.).

[75] investigated the state-of-the-art and examined the major contributions
that have been made in the field of TD estimation and forecasting. The authors
stated that already existing methods and tools for TD estimation have not
reached a satisfactory level of maturity yet, while there is still a large volume
of potential metrics and techniques that have not been used and that could
potentially increase the completeness of the TD estimation concept. In addition,
although there has been extensive research with respect to predicting the evo-
lution of individual software features, quality attributes, and quality properties
that are directly or indirectly related to the TD of a software project, no concrete
contributions exist in the related literature regarding TD forecasting.

[48] proposed a Strategic Adoption Model for Tracking Technical Debt
(SAMTTD) aimed at helping companies to assess their TD management process
and make decisions on its improvement.

[10] performed a systematic mapping study to identify and analyzed the
empirical studies about TD between 2014 and 2017. The authors presented the
most common indicators to identify and evaluate TD and identified thirteen
types of TD. They identified forty-eight tools from the selected empirical studies
and found that in some empirical studies, there are more than three tools used
to investigate TD. Others develop new tools and compared their results to open
tools; Also they paid special attention to SATD throughout the code comments
and smells as the most applied as indicators of TD.

5 Threats to Validity

The main threats to validity identified are the following:

– Although the applied guideline [34] recommends to consider about seven dig-
ital libraries for performing an exhaustive search, in our case only three have
been chosen. The reason of it is that other sources contain very few unique
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papers compared to the ACM and IEEE digital libraries. Moreover, to avoid
missing important papers we used Google Scholar that index almost every-
thing.

– Constructing appropriate search string is a tricky task, since the title of some
studies we are interested in does not include our key words, we decided to
extend the search to the abstracts. Since we are interested in studies focusing
on TD, we suppose that the key word is mentioned in the abstract.

– A way of automatically merging the outcome lists from that libraries is risky,
since even a single different symbol in title might affect the result. For that
reason, duplicates were identified and eliminated manually during the creation
of a merged list.

– It may happen that some information has not been considered in our study
since some papers could have been accidentally skipped or not present at the
time of the query (September 2019).

6 Conclusions and Future Work

TD is a widely used buzzword but having a clear understanding of the avail-
able approaches and tools is quite difficult due to the large amount of material
spread across a number of sources. This paper aimed at providing to researchers
and practitioners an overview of the state of the art about TD focusing on the
automated approaches.

According to the review, the research area is new and very active but still not
mature. There is a constant presence of new approaches and tools that are not
based on the outcomes of previous studies and researchers focus on validating
their own approaches without any independent assessments. Moreover, such val-
idations are frequently not replicable due to the usage of proprietary datasets.
Therefore, additional effort is needed to identify cross-validated approaches with
clear indications about their applicability. This is very important especially for
practitioners since it is difficult for them to identify the models to apply in their
specific contexts.

The study has also pointed out that where tools are available to support some
specific approaches, they are often difficult to use requiring a complex setup and
providing a limited support for the wide range of programming languages used
in real projects. Moreover, most of the available tools are not able to measure
or estimate the overall TD. They usually focus on the remediation costs and do
not take into consideration the related interests (often named non-remediation
costs) that are often very important for planning the development process and
keep the debt under control over the entire lifecycle of a product.
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Appendix

Table 5. Techniques with input, output, and calculation.

Technique Input Calculation Output Ref

SQALE 1. Target quality level

(a list of nonfunc-

tional requirements

that define right code)

2. Debt-estimating

model (associate each

requirement with

remediation function

turning number of

noncompliances into a

remediation cost)

Run the code through the analysis tools

and use remediation functions to work out

remediation costs for each element.

TD is the sum of remediation costs for all

noncompliances. This debt is called the

SQALE quality index (SQI)

Design symptoms of

TD (Pyramid - an

indicator to

represent the

specific distribution

of TD for eight

characteristics)

[41]

CAST 1. Number of should-

fix violations in an

application

2. The hours to fix

each violation

3. The cost of labor

((
∑

high-severity violations) x

(percentage to be fixed) x (average hours

needed to fix) x ($ per hour)) + ((
∑

medium-severity violations) x (percentage

to be fixed) x (average hours needed to

fix) x ($ per hour)) + ((
∑

low-severity

violations) x (percentage to be fixed) x

(average hours needed to fix) x ($ per

hour))

Remediation Cost [23]

SIG 1. Source code

2. Target quality level

3. The cost of labor

For the extraction of measurement values

from source code, the Software Analysis

Toolkit of SIG is used.

RE = RF * (SS * TF) * RA

ME =
MF ∗ (SS ∗ (1 + r)t ∗ TF )

2(QualityLevel−3)/2

1. Remediation Cost

2. Non-remediation

Cost

[52]

A

Benchmarking-

based

Model

1. Static code analyz-

ers output data (refer-

ence projects)

2. Source code

3. Target quality level

4. The cost of labor

Tool support is available [57] that facili-

tates triggering code analysis tools as well

as building the benchmark database and

benchmark suite

1. the target quality level is specified

2. # of maximum allowed violations is cal-

culated

3. # of violations to be fixed is calculated

4. # of violations to be fixed * the

estimated effort for fixing * an hourly cost

rate

Remediation Cost [49]

A Fluctuation-

based

Modelling

Approach

Candidate

cloud-based mobile

service

Quantifying the TD during the first year

TD1 = 12∗[ppm∗(Umax−Ucurr)−Cu/m∗
(Umax − Ucurr)] = 12 ∗ (Umax − Ucurr) ∗
(ppm − Cu/m)

from the second and onwards

TDi = 12 ∗ [Ki−2 ∗ [Umax − Li−2] −
Mi−2 ∗ [Umax − Li−2]] =

12 ∗ (Umax − Li−2) ∗ (Ki−2 − Mi−2), i >

1

Relative amount of

TD

[68]

Breaking

Point for TD

1. Number of should-

fix violations in an

application

2. The hours to fix

each violation

3. The cost of labor

4. Past changes in the

history of the system

(LOC)

TD-Principal is calculated as a function of

first 3 input variables.

Interest = addedLOC ∗ (1 −
FitnessV alue(optimum)

FitnessV alue(actual)
)

versions =
Principal($)

Interest($)

1. Remediation Cost

2. Non-remediation

Cost

3. Breaking point

[18]

(continued)



An Analysis of Automated Technical Debt Measurement 267

Table 5. (continued)

Technique Input Calculation Output Ref

LOC and

Fan-In to

Quantify the

Interest of

SATD

Source code 1. Extracting comments and mapping them

to its corresponding methods

2. Determination of the change over time in

these SATD methods

3. Determining metrics measuring interest

4. Calculating the interest per SATD

instance

Non-remediation

Cost

[32]

A framework

for design

level TD

Source code 1. Select a set of relevant design flaws

2. Define rules for the detection of each

design flaw

3. Measure the negative influence of each

detected flaw instance

FlawImpactScore(FIS)flaw instance =

Iflaw type ∗ Gflaw type ∗ Sflaw instance

4. Compute an overall score

DebtSymptomsIndex =∑
FISflaw instance

KLOC

Design symptoms of

TD

[46]

A framework

for estimating

interest on TD

Developer activity

data

1. Establishing sessions

2. Calculate metrics related to comprehen-

sion effort within a session

3. Interest(I) = Icurrent − Iideal

Static metrics show presence of TD in

classes Comprehension effort metrics

quantify effort to comprehend the classes

Non-remediation

Cost

[66]

Modularity

metrics for

ATD

Past changes in the

history of the system

(commit records)

or

Source code

1. Parse the commit records to extract

needed data items for ANMCC calculation

2. Filtering out data in commit records

3. ANMCC = (
∑h

j=1 NMC(k + j))/h

A higher ANMCC entails potential increase

in ATD

or

1. Code map generation (XML)

2. Code map parsing

3. Modularity metrics calculation

A higher IPCI or IPGF indicate less ATD

Relative amount of

TD

[43]

Detecting and

quantifying

SATD

Source code 1. Project Data Extraction (release used,

the number of classes, the total source lines

of code, the total extracted comments and

the number of contributors)

2. Parsing the source code and extracting

the code comments

3. Filtering comments

4. Manual classification into five different

types of SATD

# of comments

(number of

individual line,

block, and Javadoc

comments)

[45]

Pre-trained

word

embedding

word2vec

model

Source code The framework is composed of three

separated phases: The word embedding

phase, the model training phase, and the

prediction phase. In the word embedding

phase, a word2vec model is built to

support the feature enhancement method

for the model training phase. In the model

training phase, the SATD classifier is built

within the next four steps: Comments’

prepossessing, feature selection, feature

enhancement, and classifier training. In

the prediction phase, the built SATD

classification model can be used to

perform a SATD prediction upon new,

previously unseen code comments

# of SATD

comments

[26]

(continued)
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Table 5. (continued)

Technique Input Calculation Output Ref

Code metrics

for Technical

Debt

Source code 1. Parsing the source code and extracting

the code metrics

2. Based on source code metrics evaluate

existence of TD

Using the metrics

and proposed in the

work rules it could

be identified

presence or absence

of TD

[17]

Convolution

Neural

Network

Set of source code

comments and their

corresponding

SATD/non-SATD

labels

The approach includes four main phases:

Model Training, SATD Prediction, Key

Phrase Extraction, and SATD Pattern

Identification.

1. The trained model is used to predict

the SATD/non-SATD label given an unseen

source code comment (prediction phase).

2. The trained model is de-convolutioned

to extract SATD-indicating key phrases in

the input code comments that contribute

most to the model’s classification decisions,

which in turn are summarized into a set of

intuitive SATD patterns.

# of comments that

are SATD and

not-SATD

[61]

A Prodebt

method for the

strategic

planning of

TD

Source code 1. Based on coding effort and changes to the

source code Productivity are measuring by

P =
CodingOutput

EffortInvested
2. A function introduced f : q −→ P , where

q is the vector of metrics in the quality

model

3. Applied machine learning (a random for-

est algorithm) to approximate f

4. The saved effort/Approximated TD

ex = eo(1 − Po

Px
)

Using the

productivity

approximator f

they computed

productivity for a

hypothetical quality

level, obtained by

modifying one

quality

metric/percent and

keeping all other

quality metrics at

the same level

[19]
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Sṕınola, R.O.: VisminerTD: a tool for automatic identification and interactive
monitoring of the evolution of technical debt items. J. Brazil. Comput. Soc. 25(1),
2 (2019)

51. Monteith, J.Y., McGregor, J.D.: Exploring software supply chains from a technical
debt perspective. In: Proceedings of the 4th International Workshop on Managing
Technical Debt, pp. 32–38. IEEE Press (2013)

52. Nugroho, A., Visser, J., Kuipers, T.: An empirical model of technical debt and
interest. In: Proceedings of the 2nd Workshop on Managing Technical Debt, pp.
1–8. ACM (2011)
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