
Enterprise Security with Endpoint Agents

Kevin Foltz(B) and William R. Simpson

Institute for Defense Analyses, Alexandria, VA 22311, USA
{kfoltz,rsimpson}@ida.org

Abstract. Enterprise security is complicated by the use of mobile devices. These
devices roam outside the protections of the enterprise core network. They operate
closer to threats while simultaneously being farther from the enterprise, which
makes compromise more likely and response more difficult. This paper describes
an approach using software agents installed on endpoint devices to maintain secu-
rity of these devices and their associated enterprise. These agents monitor local
activity, prevent harmful behavior, allow remote management, and report back to
the enterprise. The challenge in this environment is the security of the agents and
their communication with the enterprise. This work presents an agent architecture
that operates within a high-security Enterprise Level Security (ELS) architecture
that preserves end-to-end integrity, encryption, and accountability. This archi-
tecture uses secure hardware for sensitive key operations and device attestation.
Software agents leverage this hardware security to provide services consistent
with the ELS framework. Additional agents leverage this baseline security to pro-
vide additional features and functions. This enables an enterprise to manage and
secure all endpoint device agents and their communications with other enterprise
services.

Keywords: Enterprise · Software agent · System design · Confidentiality ·
Integrity · Application security · Security · End-to-End encryption ·Mobile
device management · Host based security

1 Introduction

Defense of an enterprise and its information against external attacks has moved from the
central network to the edge devices. Networkmonitoring provides a centralized approach
where all communications canbe intercepted, recorded, and analyzed formalicious intent
and modified as needed. However, this is complicated by current threats and operational
practices.

Network monitoring can provide important insights about lower layer resources
and communications but, with widespread encrypted hypertext transfer protocol secure
(HTTPS) and similar protocols, it does not have access to the higher layer content. Web
application firewalls (WAFs) attempt to bridge this gap by decrypting content for the
server, analyzing andmodifying it for security, and passing the clean content to the server.
The WAF may even open files and execute code to determine if certain content presents
a danger to the receiver. This approach catches many attacks that network monitoring

© Springer Nature Switzerland AG 2020
J. Filipe et al. (Eds.): ICEIS 2019, LNBIP 378, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-40783-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40783-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-40783-4_1


2 K. Foltz and W. R. Simpson

and pattern-based detection miss, but it breaks the end-to-end security model, introduces
latency in communications, and does not stop all attacks.

Widespread encrypted HTTPS traffic requires a network scanner to act as a central
point of decryption. This can be accomplished by sharing server private keys with net-
work appliances on the wire, but such an approach violates end-to-end security by break-
ing every secure connection within the enterprise. In addition, these network appliances
provide central points of attack that enable access to all traffic and allow an attacker to
impersonate any entity within the enterprise. Such a network-based approach has critical
security flaws.

Moving the defense to the edge of the network offers several advantages. There is no
need to break end-to-end secure connections. There is no central point of attack that can
compromise all connections and impersonate any entity. The defense tools can operate
at the endpoint to detect malicious behavior as it happens and directly respond instead of
trying to predict it before it happens based on network traffic and then trying to respond
remotely after the damage is done.

The edge defense model does have some drawbacks. The distributed nature of the
defense introduces the challenge of coordination and correlation of data. End-to-end
security requires new approaches to decrypt data for analysis. Also, software agents at
the endpoints, which are often lightweight applications, must perform secure operations
and initiate secure communication channels.

Endpoint agent architecture design has seen some work with varying goals. (Wang
et al. 2003) describe an agent architecture that preserves battery life of mobile devices.
(Assink 2016) describes the potential benefits of using agents for Internet of Things
(IoT) applications. (Berkovits et al. 1998) and (Varadharajan and Foster 2003) examine
security of agents that migrate between different hosts. (Liu and Wang 2003) describe a
secure agent architecture for sensor networks. (Šimo et al. 2009) describe a secure agent
architecture for mobile agents with similar security goals. However, its agents operate
with their own software-based private keys, so the agent code itself must be carefully
protected.

There is a lot of work in the area of mobile agent computing, where agents move
from device to device. However, our interest is in monitoring the device itself using
agents, not doing computations that move agents across devices.

This paper presents a method for enabling distributed endpoint-based defense
while preserving end-to-end integrity, encryption, and authentication of communica-
tions across the enterprise. This agent architecture extends (Foltz and Simpson 2019),
and it is part of a larger effort to secure information sharing for the United States Air
Force (Foltz and Simpson 2017).

2 Enterprise Level Security Baseline

This work uses as a starting point the Enterprise Level Security (ELS) model. ELS
is designed for high assurance information systems subject to constant sophisticated
attacks (Trias et al. 2016). It then addresses the challenge of integrating endpoint device
agents into such an architecture while adhering to and working with the existing ELS
concepts, components, and protocols. This section provides an overview of ELS and the
integration challenges for agent-based security.



Enterprise Security with Endpoint Agents 3

2.1 ELS Overview

The core of ELS is identity management and access control. The goal is to uniquely
identify every entity in the enterprise, human and non-human, and use these identities
with strong authentication methods to initiate communication. For interactions where
data or services are requested, access is determined by data providers using rules based
on attributes stored in an Enterprise Attribute System (EAS).

The data owner or service provider is part of the enterprise and is responsible for
setting access rules. This preserves some degree of autonomy for the data owners and
supports scalability through its distributed architecture. These rules are compared against
attributes collected from across the enterprise to compute which entities have access to
which resources. This information is provided on-demand to requesters in the form of
a secure access token. Requesters must authenticate to the token server to receive an
access token, and this token is time-limited and tied to the requester’s identity and the
target resource.

Requesters then authenticate to the target resource and provide the token for access.
The token is checked for validity using a server handler. This handler code is provided by
the enterprise to all entities using access controls, and it parses the token and conducts
security checks in a standardized way. A token that is valid and contains the proper
identity and access information provides a requester access to data or services at the
provider.

2.2 ELS Design and Implementation

ELS starts with high level goals and design philosophies, which are successively refined
into specific methods and implementation details for the core security functions (Foltz
and Simpson 2016b). Some of the highest level tenets include the following:

• The enemy is present: We cannot assume that any defense or boundary will keep
attackers out of our systems.Wemust assume that any component can be compromised
and plan accordingly. This drives the approach of a distributed architecture instead of
a centralized approach.

• Simplicity: Complexity is the enemy of security, and the simpler a security function
is, the easier it is to implement correctly and securely.

• Extensibility: A point solution may be effective now, but enterprises change over
time, and we need to plan for this change in our initial design. Although this may
contradict simplicity at times, it actually makes things simpler in the longer term by
forcing us to find solutions that match the level of abstraction of the problems instead
of over-constraining our solutions.

These tenets guide the development of basic concepts for ELS design. These include
a number of items related to identity:

• Authentication is implemented by a verifiable identity claims-based process. This is
required to address the tenet that the enemy is present, and serves to distinguish valid
entities from attackers.



4 K. Foltz and W. R. Simpson

• The verification of identity is by proof of ownership of the private key associated
with an identity claim. This elaborates on the authentication process by requiring
cryptographic key operations to verify identity.

• Active entities act on their own behalf. This prevents the many vulnerabilities asso-
ciated with impersonation and proxies, and provides a baseline for non-repudiation
and strong attribution to assist forensics and accountability.

These concepts are further refined into specific requirements. For identity, each entity
is issued an X.509 certificate that is tied to a public/private key pair. The distinguished
name (DN) in the certificate is used as a unique identifier for each entity in the enterprise.
These X.509 certificates are signed by a certificate authority (CA) that is part of a public
key infrastructure (PKI). This PKI includes root CAs, issuing CAs, online certificate
status protocol (OCSP) responders for validity checks, and certificate revocation lists
(CRLs) for offline use. All entities are vetted thoroughly before they are assigned a
certificate and key pair. All private keys are stored in hardware to prevent duplication
and to provide accountability.

Communication uses transport layer security (TLS)withHTTPS aswell as other pro-
tocols that integrate TLS, such as secure lightweight directory access protocol (LDAPS).
The PKI credentials are used within TLS to provide a secure, authenticated communi-
cation channel for entities within the enterprise. The use of TLS is restricted further
by security concerns. For example, the zero-round-trip-time handshakes of TLS v1.3
are generally not permitted, and cipher suites are carefully selected for desired security
properties.

Access to resources is generally provided by a token from a security token server
(STS). This access token is formatted according to the security assertion markup lan-
guage (SAML) version 2.0. This provides fields for the identity, attribute values, valid-
ity time window, target resource, and digital signature. It also provides the option for
encryption of tokens, as well as other security options. The SAML standard allows
many options, but the tokens allowed in ELS are restricted to access tokens of a par-
ticular form, which differs from many non-ELS implementations where SAML tokens
are used primarily for single sign-on (SSO). These restrictions prevent attacks such as
SAML wrapping that exploit the wide degree of freedom available in the standard. This
is consistent with the tenets of simplicity and extensibility by using only what we need
while conforming to a broader standard that permits later changes.

The standards mentioned here, including PKI, TLS, and SAML, are not fundamental
to the ELS concepts, but they are the currently adopted implementation choices, so
integration with ELS must use these particular choices in addition to conforming to the
overall architectural goals.

2.3 Agent Security Challenges

The ELS model starts with the premise that security is between authenticated active
endpoints. However, in reality endpoints are one of the most vulnerable areas of any
information system. As a result, ELS requires strong guarantees that the endpoints have
not been compromised. For example, a stolen smart card credential compromises an indi-
vidual, but such a problem is often quickly reported by the personwho lost the credential.



Enterprise Security with Endpoint Agents 5

A compromised device can monitor user activity and act as the user surreptitiously over
long periods of time with no obvious signs to the user. A systematic approach is required
to monitor devices for such compromise and malicious behavior. An agent is placed on
the device for this purpose.

In addition, the ELS infrastructure includes other types of agents, such as logging
and monitoring agents and endpoint device management agents.

The primary challenges for agents in a secure environment are as follows:

• Establishing secure agent communication with external entities.
• Tying agent communication to its host device.

The first challenge requires that all endpoints use the same ELS methods to commu-
nicatewhether they are a person, server, or other active entity in the enterprise. The agent,
as the initiator of communication with a central server, gateway, or collection system,
qualifies as such an active entity. It must be secured at a level comparable to a user with
a hardware-based PKI credential or a server with a key pair stored in hardware. This
is challenging because agents operate differently than normal users, servers, or other
active entities.

The second challenge relates to the separate methods of authenticating endpoint
requesters and the devices themselves. Users, for example, can use smart cards, and
servers can use hardware security modules (HSMs) to authenticate from different under-
lying hardware platforms or even virtual machines. However, hardware authentication
must be through a different means, as it must be tied to the hardware platform itself.
The challenge for an agent is to tie the agent to its digital identity, and then tie its digital
identity to a hardware-based device identity.

3 Endpoint Agent Architecture Security Fundamentals

This section establishes the baseline conditions for secure agents. This relies on agents
that communicate security information between the device and central servers. The
following section builds on this baseline to provide additional agents with additional
functionality.

3.1 Endpoint Device Agents

With the move from desktops and laptops to mobile devices like phones and tablets,
the edge of the enterprise has changed. Gone are the days where employees log in
from an enterprise machine on an enterprise network in an enterprise building. Current
users can come from personal mobile devices in public spaces through a commercial
cellular network. Thismotivates our first use case of endpoint devicemanagement. These
endpoints may be mobile devices or more traditional laptops, desktops, and servers.
Agents for device management must have a software component for the agent code,
but they must also leverage a hardware key store on the device. Unlike standard ELS
authentication, where the keys are tied only to the user or other entity using the device,
agent authentication must be tied to the user and the device hardware.



6 K. Foltz and W. R. Simpson

Such an agent need not and should not have any embedded security information for
authentication, because such information could be easily duplicated or extracted. The
agent is similar to a web browser on a desktop. The browser does not itself authenti-
cate to servers. It provides the means for a user to authenticate and request or provide
content. The agent is similar in nature. It relies on existing device keys and certificates
to authenticate and communicate securely. The source of the agent keys must be the
device hardware rather than a portable or external key store, because such agents speak
for the device itself and not for some other entity like a person or server that can migrate
from device to device. The agent provides the communication channel for the device
hardware to communicate security information.

This introduces some complications. First, the agent is a piece of software that is
separate from its hardware-based keys. Hence, any agent, real or malicious, that gains
access to the real agent’s keys can act as that real agent. There are a number of attacks
possible between a software instance and the hardware keys it uses. This is similar to the
challenge of securing keys in the cloud, which has a similar key and software separation
issue. The agent, and endpoint security in general, must rely on the device to monitor
itself, including the software on it, because the agent cannot be trusted by itself.

Secure key storage and use (SKSU) on a device, such as a TPM, has the capability
to perform attestations, and such an attestation is required to ensure that the device is
running the proper agent and other software. The attestation is a report that lists the state
of hardware and software on the device and provides a signature using a key associated
with the particular SKSU module on the device. The SKSU hardware module serves as
the root of trust for all device-based communications, as indicated in Fig. 1 (Foltz and
Simpson 2019). The SKSUmust itself be trusted as a starting point. From there, security
for the device and its software functionality can be provided using attestation reports.

Fig. 1. Using the hardware based SKSU as a root of trust for the device.

The attestation report must cover the hardware, operating system, any virtualization
or containerization, and the applications and agents installed on the device. For an
agent to communicate securely, it must first produce an attestation report that shows
that the device is running as intended at the current time with no malicious entities or



Enterprise Security with Endpoint Agents 7

configuration modifications. Typically, this is implemented as a white list of approved
software.

The agent invokes the TPM to produce an attestation report with the required param-
eters. The TPM is an implementation detail that is not important, and it can cause its
own problems. The goal is not a separate module that does key operations, but instead an
integrated key management capability that is part of the device hardware. For example,
a TPM that can easily be removed from a device is not an effective SKSU. Such a hard-
ware element could be placed into a different device that is valid, and a fake hardware
element could replace it in the original device.Whenever needed, the TPM output can be
captured from the valid device and provided by a compromised device through the fake
TPM. This allows the compromised device to look like it is still in a valid configuration.
The key problem here is the ability to separate the keys from the device. The keys must
be embedded in the device hardware in a way that makes it difficult to extract.

In Fig. 2 (Foltz and Simpson 2019), the elements contained within the attestation
report are highlighted. They include the full set of components that can affect the agent,
which is running as an app in a container in this case. In this case, the containerization
and containers are trusted to isolate the apps within their containers sufficiently well that
any other apps or containers are allowed to operate on the device. Other apps outside
the container need not be validated, and other containers need not be validated. This
might be the case for a phone with separate work and personal spaces. However, if the
containerization or containers had known vulnerabilities or insufficient protections and
isolation capabilities, then the attestation report would have to include the other compo-
nents as well. In general, the attestation report must include all elements of the device
and its software that could negatively affect the agent’s ability to securely communicate
with an external entity. This includes modification of the agent as well as attacks that
leverage the valid agent’s ability to authenticate to external entities.

The trust starts at the bottom with hardware and works its way up the stack. The
SKSU validates that the device hardware is operating correctly. It then validates that
the operating system is correct. This may include such checks as whether the OS is
“rooted,” which version is installed, and whether the software is installed properly, such
as checking a hash of the executable against a known value. The containerization and
applications, including the agent itself, can then be validated in a similar manner.

With a trusted SKSU, and a valid agent running with other valid applications in
a valid container in a valid containerization method on a valid operating system on
valid hardware, a high degree of trust can be established in the agent functionality.
In particular, there is a high degree of trust that a private key operation for the agent
was actually initiated by the agent itself. This is required, because there is no external
method, such as a PIN or biometric information, to validate the agent’s request at the
SKSU. The SKSU, in combination with the full validated software stack, is required to
secure the private key use by the agent. Without such validation it may be possible for
another entity to use the key, which would prevent proper authentication of the agent to
the central server.

The agent, with its attestation report, communicates with the external entity, which
is often an aggregation point for many device agents. After authentication, the agent



8 K. Foltz and W. R. Simpson

may send a SAML token to the external endpoint for access, in accordance with stan-
dard ELS rules for access. A simpler alternative is to have the agent use identity-based
authentication. In this case, the server maintains an access control list (ACL) of the
known deployed device agents. This reduces the need for a SAML token but eliminates
the efficiency that ELS provides for managing access control rules for large groups.

Fig. 2. Extending trust to other hardware and software using a trusted attestation report.

The external entity must be configured to expect and then validate an attestation
report for an agent request. The agent’s credential is stored on the TPM or other SKSU
module. Such a credential alone is not sufficient for ELS authentication, because rogue
softwaremay have compromised the device and used the agent key. To secure against this
attack, the attestation report validates that the proper software is installed and running
at the time of the communication with the agent.

The SKSU module itself may be compromised, which would allow an attacker
to generate valid attestation reports for a compromised device. This is addressed by
choosing hardware devices that protect against such attacks. Such hardware is becoming
a standard part of mobile phones, and keys generated on such devices are very difficult
to extract (Apple 2018; Trusted Computing Group 2016).

The full secure communication sequence from agent to external entity is shown in
Fig. 3 (Foltz and Simpson 2019). The steps are as follows:

(1) The agent requests an attestation report from the SKSU module.
(2) The SKSU module validates the hardware.
(3) The SKSUmodule validates the operating systemversion, configuration, and hash.
(4) The SKSU module validates the containerization mechanism or other isolation

mechanism(s), if applicable.
(5) The SKSU module validates the container or other isolation unit where the agent

is located, if applicable.
(6) The SKSU validates other applications in the same container as the agent.



Enterprise Security with Endpoint Agents 9

(7) The SKSU validates the agent itself.
(8) The SKSU provides the attestation report to the agent.
(9) The agent initiates a secure connection to the external entity and validates the

external entity credentials.
(10) The external entity requests authentication of the agent.
(11) The agent requests a private key operation for the agent key stored in the SKSU.
(12) The SKSU returns the results of the private key operation.
(13) The agent uses the private key operation to authenticate to the external entity and

provides the attestation report through the secure connection.

Fig. 3. Agent communication security flows.

The external entity must validate that the attestation report has a valid signature from
a trusted source and that the items listed for the device conform to a valid configuration
of the device. At this point, the agent has successfully authenticated to the external entity
using the device key in the SKSU and by leveraging the SKSU and its internal key as a
root of trust.

The external entity may then request an access token, or it may check the identity
of the agent against an ACL for authorization. This process proceeds similar to normal
ELS SAML requests. The only difference is that authentication to the token server also
uses the flows above to use the SKSU and its attestation report for authentication.

The actions described in this section are often integrated with a mobile device man-
ager (MDM) or unified endpoint manager (UEM). Such a system includes a central
control panel and agents that reside on each endpoint device. The agents communicate
with the MDM or UEM control panel and either provide data from the device or apply
commands to the device. The agents leverage operating system interfaces to apply remote
operations to the device. These may or may not require user acceptance or confirmation.



10 K. Foltz and W. R. Simpson

4 Endpoint Functionality Agents

This section discusses the agents on the endpoints that provide additional functionality.
These leverage the security provided by the basic management agents in Sect. 3 and
include added functionality through additional agents. Unlike the agents that help to
secure the device, the agents in this section rely on that security and build on it.

4.1 Monitoring Agents

With the end-to-end security of ELS it is not possible to directly monitor the content
of communication between endpoints. This information must be collected from the
endpoints using agents. These monitoring agents operate on servers as well as user
devices. Themonitoring agents watch for potentiallymalicious inputs and outputs, much
like a network-based monitoring system does. However, the monitoring agents only
process a single device’s communications. This can help performance by distributing
the load across all enterprise devices. With this distributed approach, the endpoints
must share some data with a central entity to enable cross-device correlations. The
agent is responsible for communicating with the central aggregator and sending relevant
data periodically or upon request. The agent also responds to configuration changes
pushed from the central aggregator in response to changing monitoring needs. Such
communications may be sent using the endpoint device management agents.

The monitoring agents process security sensitive information related to device, oper-
ating system, or application anomalies and compromises, and they initiate the transmis-
sion of this as active entities, so theymust be authenticatedmuch like the endpoint device
management agents. The monitoring agent keys are stored in the TPM and used to ini-
tiate TLS connections to central servers. The agent authenticates using its key, which is
coupled to an endpoint device management agent’s attestation report that certifies the
operational state of the device. Because monitoring agents and endpoint device man-
agement agents are both part of the standard ELS infrastructure, such attestation reports
can be shared among the backend servers through a standard interface.

With a TPM attestation report from the endpoint device management system, the
device’s state is established as “clean.” Such a clean device can then be trusted to authen-
ticate and provide proper information from all of the agents covered by the attestation
report, including themonitoring agent. Themonitoring agent then provides further infor-
mation about potentially malicious activity on the device itself. This information can
include details of malicious operating system configuration changes, such as rooting, or
malicious or anomalous application activities, such as accessing or requesting resources
that are restricted.

4.2 Log Aggregation Agents

Log aggregation agents periodically assemble the relevant log content from the device,
whichmay includemonitoring logs, browser history, key usage, location history, network
utilization rates, or other information as configured by the enterprise. They then send
this information to an aggregator, which may further aggregate it at the enterprise level.
The log information from a single device is packaged as a signed message that can be



Enterprise Security with Endpoint Agents 11

passed throughmultiple aggregatorswithout loss of security properties. The intermediate
aggregators are not active entities because they do not modify the data packages. They
only provide performance benefits, such as load balancing or aggregation of data packets.

Log records can come directly from the hardware. These are often handled and made
available through the operating system. To ensure the log content was generated by the
hardware itself, an attestation report is a natural security measure. This log attestation
report is simply a digital signature that only the hardware can generate. Log records
can also come from the operating system, which is often tightly coupled with a SKSU
module—again, the attestation report is a natural choice for security.

Application-layer logging is more challenging. The application may not have direct
control of the log files it generates. The operating system may interfere with the log
file management, make log files available to other applications, or directly modify log
files. The operating system could also act on behalf of the application when requesting
logging related activities. Again, the attestation report for the software on the device
provides a method to secure against a modified or compromised operating system. The
system attestation report combined with the log attestation report provides the needed
security for transferring the log record to the central aggregator.

The log aggregator has a unique position. It is a passive entity with respect to the
content of the log records. These are signed by the log aggregation agents on individual
devices, so such content cannot be modified by the aggregator. However, the aggregator
does have an important active role to play in validating the integrity of the signature. The
aggregator must validate the attestation report for the device that signed the log record. A
bad attestation report implies that the signature cannot be trusted, and the log aggregator
is the point where this is checked. The log aggregator signs valid log records and refuses
to sign invalid log records. The aggregator serves as an active entity in providing its own
validation but a passive entity with respect to the signed log record content. Each log
record is treated as a blob with no internal structure. This permits the use of encryption
on log records without affecting the aggregators.

The central aggregator need not be a central point of failure for log record security.
Confidentiality is difficult to provide due to the nature of the aggregator, but integrity is
often more important for log-related applications. The signatures from the device-based
keys and certificates, combined with a validation of their attestation reports, provides a
high level of integrity for such records. For aggregation functions, it may be necessary
to strip the signatures and use the raw data for further processing. In this case, there is
no direct method to validate the processed data, but because all original data is signed,
it is possible to independently validate such computations. Thus, the central aggregator
is a single point of aggregation, but it is not a single point of integrity vulnerability due
to the device signatures for individual records.

4.3 Service Desk Agents

Another type of agent is installed for the enterprise service desk. Such an agent provides
remote access and capabilities for a service desk person or automated service. The
service desk agent provides a higher degree of access than other agents. The service
desk operators often need to explore and experiment in order to troubleshoot an issue,
which requires privileged access to many functions on the device. The service desk



12 K. Foltz and W. R. Simpson

agent, as a highly capable agent, introduces a potentially dangerous interface into the
device and a tempting target of attack.

The security goals are slightly different for the service desk agents than for other
agents. For other agents, the goal is strong validation ofwhat comes out of the agents. Log
recordsmust be validated, andmonitoring informationmust be accurate. Even attestation
reports themselves must be protected. Although it is not feasible to modify the contents
of an attestation report, blocking its transmission or invalidating the signature on a report
with valid data could cause confusion or incorrect behavior.

For the service desk agent, the goal is strong validation of what goes into the device.
It is important to prevent intruders from using the service desk agent as an attack vector
into the machine. A command to reconfigure the device, if not properly validated, could
put the device into an insecure state. Although such a change should be detected by the
next attestation report, there is a window of opportunity for an attacker to have remote
access to a device. Other agents must provide security in order for external entities to
accept them and provide services. The service desk agent must strongly validate all
incoming requests in order to protect the device’s hardware, software, and data from
malicious external entities.

The attestation reports collected by the endpoint device management system identify
devices that are out of compliance. Agents will not be able to authenticate to external
servers under these conditions, just as for any other agent on the compromised device.
However, a service desk agent on an out-of-compliance device can potentially open the
door for attackers, so a stronger response is required. Instead of just denying the service
desk agent external access, the agent must be locked down or disabled until the device is
brought into compliance. In order to shorten the window of opportunity for an attacker,
periodic heartbeat messages can be employed by the endpoint devicemanagement agent.

The security for a service desk agent-based attackhas two levels. Thefirst is the ability
of themobile devicemanagement agent to lock the device until it comes into compliance.
This could be a simple as preventing network communications, which forces a user to
return the device for physical inspection and fixes. It could also remotely reset the device
to factory settings. This is a very flexible and targeted response.

In situations where the attack quickly compromises the service desk agent and then
the endpoint management agent, or in cases where the endpoint management agent is tar-
geted in order to open up service desk agent interfaces, such a response is inadequate. In
this case, the second level of security is the requirement by enterprise external resources
of a valid attestation report from the device. After such a compromise, the attacker may
control the device, but it will not be able to connect it to any other enterprise resources.
This effectively isolates the device from the enterprise. This response is blunter and less
effective at preventing data loss. It serves as a back-up when it is not possible to stop
an attack from compromising the device. This aligns with the tenet that the enemy is
among us, and the general assumption that no element is completely safe, and we must
operate even when things fail.

4.4 Import and Mediation Agents

Import agents are used to refresh data in reference stores and mediate their content for
compatibility with other information. The agents pull data through a guard for integrity



Enterprise Security with Endpoint Agents 13

and accuracy checking. Guarded and filtered inputs are aggregated. Because numerous
errors and inconsistencies may exist, the guard checks for formatting errors, discrepan-
cies between data bases, incorrect or missing data, illogical data, and other undesirable
conditions. Handling of discrepancies from sources depends upon the nature of the
discrepancy, and corrections may be required before the data can be imported.

Import and mediation agents handle sensitive personal data that is used across the
enterprise for security decisions, so they also have special responses beyond a normal
agent. Any attestation report anomaly related to the import and mediation agent must
lead to failure of authentication and disabling of these agents, much like the service desk
agents. However, the data managed by these agents must also be rolled back to a prior
known good state, because data modifications made from an import and mediation agent
on a non-compliant device could have widespread lasting effects on the entire enterprise.

4.5 Self-help Agents

Self-help agents are provided on the standard desktop and provide the user with a tool
to examine configuration and software conflicts. They also allow support personnel at
the enterprise service desk to take over the desktop or device for diagnosis and repair
of common software problems. This agent combines the capabilities of the endpoint
device management agent, service desk agent, and monitoring agent. It is more common
on desktops and laptops thanmobile devices, but the capability can apply to any endpoint
device.

Security of self-help agents has different goals and threats for different activities.
Providing a user information from a static file requires very little associated security. In
many cases, this may be enough to solve a problem. In other cases, the self-help agent
scans the device, operating system, applications, or configurations in order to make an
assessment and suggest remediation options. Because this agent has access to potentially
sensitive system information, it must be included in the attestation report generated by
the endpoint device management agent. This ensures that the self-help agent has not
been corrupted to provide sensitive data to an unauthorized entity.

A self-help agent that not only assesses a situation but also takes action to correct
it often has privileged device access. The attestation report that validates the self-help
agent can also provide protection against malicious modifications by validating the
self-help agent software. When the self-help agent allows remote administration of the
device, it must include the protections provided by the service desk agent. This includes
strong authentication of all incoming requests before taking corresponding actions on
the device.

4.6 Embedded Agents

The embedded agent is for middleware, such as Java, .NET, or messaging systems, and
it monitors the performance associated with application resources. This is a low level
agent that is specific to its middleware. It provides information about the middleware
that an application uses. This is above the layer of the operating system and below the
layer of the application. It may be important for diagnosing middleware issues that do
not show up in the application or operating system. For example, an application could be



14 K. Foltz and W. R. Simpson

running slowly but only using 40% of the available CPU despite havingmultiple threads.
An embedded Java agent could resolve whether the Java virtual machine is limiting the
CPU resources to the application or the OS is limiting the Java virtual machine.

The embedded agent should be configured to provide performance, connectivity,
and anomaly data to the log file for its associated middleware. It is unaware of some
of the events transpiring within the application that is built on the middleware. It can
be configured to provide alerts to users or administrators. The native device’s alerting
system can be used for user alerts, but administrator alerts rely on approaches similar to
the monitoring agent and log agent. It may be possible to integrate the embedded agent
with monitoring and logging agents.

4.7 Other Agents

The preceding descriptions of agents focused on enterprise agents. These are installed
on devices as part of normal enterprise operations in order to conform to enterprise rules
for security and functionality. In addition, there may be other application specific agents
that are desired for subgroups of the enterprise or individuals within the enterprise. These
may or may not have enterprise approval or support.

Such agents can operate like the monitoring or logging agents. They ultimately
rely on device hardware key storage, the operating system, and the MDM system to
bootstrap the security of their communications. They require an attestation report, a
hardware-based authentication key, and possibly an access token, much like any other
active entity in the enterprise.

The response to an attestation report showing an out-of-compliance device depends
on the function of the agent. In many cases, the response is to prevent such agents from
authenticating to external servers. This is a simple and effective way to prevent the
device from providing bad data or invoking sensitive enterprise services. In other cases,
a honeypot approach could provide more information about the anomaly. For example,
a simple bit flip in a data item would invalidate a digital signature, but it might be
caused by inconsistent hardware, a software bug, or other mistakes instead of malicious
activity. By accepting and recording such attestation reports in a honeypot, it is possible
to perform forensics that might help to resolve mistakes while also blocking malicious
activity. In addition, if it does end up being malicious, the normal systems are protected,
and forensics can focus on the attack mechanics to better stop future attacks.

5 Conclusions

Moving from a centralized network-based securitymodel to a distributed endpoint-based
model provides many benefits for the current enterprise information sharing network
dominated bymobile devices. However, the endpoint-basedmodel requires careful plan-
ning to preserve existing security properties within an enterprise while adding additional
functionality.

This paper explores the use of agents within the ELS model. ELS adheres to high
level design principles, which are further refined to concepts and requirements. The use
of agents is designed to adhere to the design principles, concepts, and requirements



Enterprise Security with Endpoint Agents 15

to provide their functionality. The first agent must establish that the device is clean.
This endpoint management agent ties directly with the operating system and hardware
components. It collects attestation reports, generated by trusted device hardware, and
provides them to the enterprise while adhering to ELS rules for communication. The
agent software itself cannot be guaranteed to be genuine, so the software agent’s role is
only to request and provide the attestation report, which is a self-validating record based
on the SKSU signature.

Other agents leverage the fact that the device is secure to provide their functionality.
Building on this secure base, they can provide additional data, perform computations,
or enable remote access to device functions. Using such an approach, the end-to-end
security between all active endpoints is preserved, and network-based monitoring is
performed on the devices.

This provides a way to extend the enterprise footprint onto mobile devices outside
the enterprise while maintaining security comparable to internal networks.

This work is part of a body of work for high-assurance enterprise computing using
web services (Foltz and Simpson 2016a, c; Simpson and Foltz 2016).

6 Extensions

Other tools or applications that use agents may use the same process to provide secure
device-based communication. For example, in addition to an MDM, it is possible to
use a mobile application manager (MAM) from a different vendor. The MAM has a
lower level of control than the MDM due to the restricted operating system interfaces.
However, it would use the same basic communication methods with external servers and
internal operating system components and hardware elements.

Many mobile device applications have tight ties to external servers and serve mainly
as a user interface to web APIs. Such applications function much like agents because
they are lightweight and communicate with a central server. As such, the architecture
described in this paper also serves as a blueprint for such applications.

References

Apple. iOS Security, iOS 12.1, November 2018. https://www.apple.com/business/site/docs/iOS_
Security_Guide.pdf

Assink, A.: The Potential of Agent Architectures (2016). https://dzone.com/articles/the-potential-
of-agent-architectures

Berkovits, S., Guttman, J.D., Swarup, V.: Authentication for mobile agents. In: Vigna, G. (ed.)
Mobile Agents and Security. LNCS, vol. 1419, pp. 114–136. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-68671-1_7

Foltz, K., Simpson, W.: Secure endpoint device agent architecture. In: Proceedings of 21st Inter-
national Conference on Enterprise Information Systems (ICEIS 2019), Heraklion, Greece, 3–5
May 2019

Foltz, K., Simpson, W.: Enterprise level security with homomorphic encryption. In: Proceedings
of 19th International Conference on Enterprise Information Systems (ICEIS 2017), Porto,
Portugal, 26–29 April 2017

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://dzone.com/articles/the-potential-of-agent-architectures
https://doi.org/10.1007/3-540-68671-1_7


16 K. Foltz and W. R. Simpson

Foltz, K., Simpson, W.R.: The virtual application data center. In: Proceedings of Information
Security Solutions Europe (ISSE 2016), Paris, France (2016a)

Foltz, K., Simpson, W.R.: Enterprise level security – basic security model. In: Proceedings of
the 7th International Multi-Conference on Complexity, Informatics, and Cybernetics: (IMCIC
2016). Orlando, FL (2016b)

Foltz, K., Simpson, W.R.: Federation for a secure enterprise. In: Proceedings of the Twenty-first
International Command and Control Research and Technology Symposium (ICCRTS 2016).
London, UK (2016c)

Liu, Z., Wang, Y.: A secure agent architecture for sensor networks. In: Proceedings of the
International Conference on Artificial Intelligence, IC-AI 2003, Las Vegas, Nevada 2003

Šimo, B., Balogh, Z., Habala, O., Budinská, I., Hluchý, L.: Architecture of the Secure Agent
Infrastructure for Management of Crisis Situations. Institute of Informatics, Slovak Academy
of Sciences, Dúbravská cesta 9, 845 07 Bratislava, Slovakia (2009) http://www.secricom.eu/
images/articles/UISAV_simo_final.pdf

Simpson,W.R.: Enterprise Level Security – Securing Information Systems in an UncertainWorld,
p. 397. CRC Press, Boca Raton (2016)

Trias, E.D., et al.: Enterprise level security. In: Proceedings of the 35th MILCOM Confer-
ence, pp. 31–36 (2016). https://doi.org/10.1109/milcom.2016.7795297. http://ieeexplore.ieee.
org/document/7795297/

Trusted Computing Group. TPM 2.0 Library Specification, 29 September 2016. https://
trustedcomputinggroup.org/resource/tpm-library-specification/

Varadharajan, V., Foster, D.: A security architecture for mobile agent based applications. World
Wide Web 6, 93 (2003). https://doi.org/10.1023/A:1022360516731

Wang, A.I., Sørensen, C.-F., Indal, E.: A Mobile Agent Architecture for Heterogeneous Devices.
Department of Computer and Information Science, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway (2003). https://pdfs.semanticscholar.org/874b/
20fbd73f5c598c8032db0c6c9e5708bc7cec.pdf?_ga=2.107853322.929957899.1544120432-
1559163387.1544120432

http://www.secricom.eu/images/articles/UISAV_simo_final.pdf
https://doi.org/10.1109/milcom.2016.7795297
http://ieeexplore.ieee.org/document/7795297/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1023/A:1022360516731
https://pdfs.semanticscholar.org/874b/20fbd73f5c598c8032db0c6c9e5708bc7cec.pdf%3f_ga%3d2.107853322.929957899.1544120432-1559163387.1544120432

	Enterprise Security with Endpoint Agents
	1 Introduction
	2 Enterprise Level Security Baseline
	2.1 ELS Overview
	2.2 ELS Design and Implementation
	2.3 Agent Security Challenges

	3 Endpoint Agent Architecture Security Fundamentals
	3.1 Endpoint Device Agents

	4 Endpoint Functionality Agents
	4.1 Monitoring Agents
	4.2 Log Aggregation Agents
	4.3 Service Desk Agents
	4.4 Import and Mediation Agents
	4.5 Self-help Agents
	4.6 Embedded Agents
	4.7 Other Agents

	5 Conclusions
	6 Extensions
	References




