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Abstract. The paper is devoted to consideration of multidimensional
optimization problems with multiextremal objective functions over
search domains determined by constraints, which form a special type
of domain boundaries called computable ones, which, in general case,
are non-linear and multiextremal. The regions of this class can be very
complicated, in particular, non-convex, non-simply connected, and even
disconnected. For solving such problems, a new global optimization tech-
nique based on the adaptive nested scheme developed recently for uncon-
strained optimization is proposed. The novelty consists in combination of
the adaptive scheme with a technique for reducing the constraints to an
explicit form of feasible subregions in internal subproblems of the nested
scheme that allows one to evaluate the objective function at the feasible
points only. For efficiency estimation of the proposed adaptive nested
algorithm in comparison with the classical nested optimization and the
penalty function method, a representative numerical experiment on the
test classes of multidimensional multiextremal functions has been carried
out. The results of the experiment demonstrate a significant advantage
of the adaptive scheme over its competitors.

Keywords: Multiextremal optimization · Dimensionality reduction ·
Computable boundaries

1 Introduction

Many important applied problems of decision making can be stated as problems
of searching the global minimum of a multidimensional multiextremal function
subject to complicated constraints [1,6,13,22,28,33,38]. The property of mul-
tiextremality generates significant complexity of these problems because ana-
lytical methods are not almost applicable to solve them and numerical algo-
rithms in general case require essential computational expenditures. This feature
is explained by the fact that the global minimizer is an integral characteristic
of the objective function, i.e., in order to confirm that a point is the global
minimizer, it is necessary to compare the objective function value at this point
with function values at all points in the region of the search. As a consequence,
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the global optimization method is obliged to build in the search domain a grid
of trial points (the term trial means the evaluation of objective function value at
a point). Such the grids can be simple enough, for example, regular rectangular
or random Monte-Carlo ones [39], but efficient methods build non-uniform grids
which adapt to the behavior of the objective function placing trials densely in
subregions with low function values and rarely in subdomains where the func-
tion has high values. For essentially multiextremal functions like Lipschitzian
ones the number of grid nodes grows exponentially when increasing the prob-
lem dimension. Just this circumstance explains the high complexity of global
optimization problems.

As the main approaches to designing efficient and theoretically substantiated
methods one can consider the paradigm of component methods and the idea of
reducing the dimensionality of optimization problems.

The component methods [4,21,23,27,28,30] partition the search region into
several subdomains and introduce a criterion that evaluates numerically each
subdomain from the point of view of its efficiency for search continuation and
after that a new iteration is executed in the subdomain with the best criterion
value. The methods of this class differ in the strategies of partitioning and criteria
of efficiency of subdomains.

The algorithms based on the idea of dimensionality reduction can be divided
into two groups. The methods of the first group replace the multidimensional
problem with an equivalent univariate one applying a continuous mapping of the
multidimensional search domain onto a subregion of the real axis by means of
the Peano space-filling curves, or evolvents [3,14,24–26,32,36].

The second group of optimization algorithms is based on the known scheme
of nested optimization [4]. According to this approach the initial multidimen-
sional problems is reduced to a family one-dimensional subproblems connected
recursively [5,9–12,17,18,29,34,36]. In the paper [9], a generalization of the clas-
sical scheme called adaptive nested optimization has been proposed and the
research [18] has demonstrated that this version of the nested scheme in combi-
nation with information-statistic algorithm of univariate global search has the
high efficiency being better significantly than the classical prototype and one of
the most qualitative popular method DIRECT [21].

For solving relatively simple problems of global optimization characterized
by a small number of local optima with regions of attraction being large enough,
a so called multi-start approach [2,5,35] can be used when a local optimization
method is launched from several starting points. This approach is clear geomet-
rically, but, unfortunately, the methods of this type are semiheuristical and are
not efficient for complicated multiextremal problems.

Another challenge in global optimization refers to problems with compli-
cated constraints. The traditional way to solve such the problems consists in
transforming the constrained problem to an equivalent problem either without
constraints or, as a rule, in a simple region like a box.

There exist two main approaches in this way. The first transformation is clas-
sical in optimization and is connected with the penalty function method [7,20,37].
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This method is sufficiently universal but it requires a tuning of its parameters
(penalty constant, equalizing coefficients for constraints). In many cases this tun-
ing is not simple and a wrong choice of parameters does not allow obtaining the
correct solution of the constrained problem. For example, if the penalty constant
is small the solution of the unconstrained problem can differ significantly from the
solution of the initial problem. At the same time, if the penalty constant is too
large then it worsens substantially the properties of the objective function in the
transformed problem, in particular, the Lipschitz constant can increase essentially.

The second approach is based on building the so called index function [36]
that contains no tuning parameters but generates, in general case, a discon-
tinuous objective function in the transformed problem and requires, as a con-
sequence, application of special global optimization techniques oriented at this
class of functions.

When solving the transformed problem in the framework of both the
approaches (penalty and index methods), the optimization algorithm places trial
points not only in the feasible domain of the constrained problem but out of it
as well.

In this paper we consider the approach which allows one to avoid performing
trials at non-feasible points and does not include any tuning parameters. The
core of this approach is the nested optimization scheme applied to multiextremal
optimization in domains with special type of constraints, namely, in domains
with computable boundaries. These domains can be very complicated, in par-
ticular, non-convex, non-simply connected, and even disconnected domains. An
algorithm for Lipschitzian optimization on the base of classical nested scheme
for domains with computable boundaries has been described in the paper [16].
In the present paper we propose its generalization that applies the more efficient
recursive technique of global search in the framework of the adaptive nested
optimization [9]. To demonstrate the advantages of the proposed constraint sat-
isfaction approach the results of comparison with the penalty function method
are given on two known test classes that are classical for estimating the efficiency
of global optimization algorithms.

The rest of the paper is organized as follows. Section 2 contains statement of
the multiextremal constrained problem to be studied and description of a gener-
alization of the adaptive nested scheme for the case of computable boundaries.
Section 3 is devoted to computational testing the proposed technique in com-
parison with the classical nested scheme and the method of penalty functions.
Section 4 concludes the paper.

2 Nested Optimization and Computable Boundaries

The optimization problem under consideration is formulated in the following way.
It is required to find the least value (global minimum) and its coordinates (global
minimizer) of an objective function f(x) in a domain D of the N -dimensional
Euclidean space R

N . This problem will be denoted as

f(x) → min, x = (x1, . . . , xN ) ∈ D ⊆ R
N . (1)
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The feasible domain D is supposed to be given by constraints-inequalities

D = {x ∈ X : hs(x) ≤ 0, 1 ≤ s ≤ q}, (2)

where the region X is determined by simple coordinate constraints as

X = {x ∈ R
N : aj ≤ x ≤ bj , 1 ≤ j ≤ N}. (3)

The objective function f(x) and constraints hs(x), 1 ≤ s ≤ q, are supposed to
satisfy in the domain X the Lipschitz condition

|hs(x′) − hs(x′′)| ≤ Ls‖x′ − x′′‖, x′, x′′ ∈ X, 1 ≤ s ≤ q + 1, (4)

where the function hq+1(x) = f(x), Ls > 0 is a finite value called the Lipschitz
constant of the function hs(x), 1 ≤ s ≤ q+1, and ‖·‖ denotes the Euclidean norm
in R

N . In general case, the objective function and constraints of the problem
(1)–(2) are multiextremal and non-smooth.

If the problem (1) does not contain constraints (2) (q = 0), i.e., D = X,
for solving such the problem the known nested scheme of dimensionality reduc-
tion [4,36] can be applied. For example, it can be done if the constrained prob-
lem (1) has been transformed to the unconstrained one in the framework of the
penalty function method [7,20,37]. According to this method, instead of the
problem (1)–(2), the problem

F (x) → min, x ∈ X ⊆ R
N , (5)

is considered with the “penalized” objective function

F (x) = f(x) + PH(x), (6)

where P > 0 is the penalty constant and H(x) is the penalty function such that
H(x) = 0, if x ∈ D, and H(x) > 0, if x /∈ D. If to choose the penalty function as

H(x) = max{0, h1(x), . . . , hq(x)}, (7)

then F (x) meets the Lipschitz condition under requirements (4).
In its original classical form the nested optimization scheme was oriented

at unconstrained optimization, or more detailed, at solving problems (1) when
constraints of the type (2) are absent, i.e., D = X. In this situation there takes
place [4] the relation

min
x∈X

f(x) = min
x1∈X1

min
x2∈X2

· · · min
xN∈XN

f(x1, . . . , xN ). (8)

where Xi is a line segment [ai, bi], 1 ≤ i ≤ N .
This approach can be generalized (see, for example, [16]) to the case with

continuous constraints (2) that allows one to present (8) for the domain D in
the form

min
x∈D

f(x) = min
x1∈Λ1

min
x2∈Λ2(ξ1)

· · · min
xN∈ΛN (ξN−1)

f(x1, . . . , xN ), (9)



116 V. Gergel et al.

where ξs = (x1, . . . , xs), 1 ≤ s ≤ N , and the region Λs(ξs−1) is the projection of
the set

Ωs(ξs) = {ξs ∈ R
s : (ξs, xs+1, . . . , xN ) ∈ D}, (10)

onto the coordinate axis xs.
Now the nested optimization scheme applied for the case (9) can be described

as follows.
Let us introduce a family of reduced function fs(ξs), 1 ≤ s ≤ N , in the

following manner:

fs−1(ξs−1) = min
xs∈Λs(ξs−1)

fs(ξ), 2 ≤ s ≤ N, (11)

fN (x) ≡ f(x). (12)

Then, the solving the multidimensional problem (1) can be substituted with
searching for the global minimum of the univariate function f1(x1) in the domain
Λ1, as according to (9)–(11)

min
x∈D

f(x) = min
x1∈Λ1

f1(x1). (13)

But any evaluation of the function f1(x1) at a chosen point x1 requires
solving the problem

f2(x1, x2) → min, x2 ∈ Λ2(x1), (14)

which is one-dimensional because the coordinate x1 is fixed.
The necessity of evaluation of the function f2(x1, x2) generates solving the

problem of minimization of the function f3(ξ2, x3) in the domain Λ3(ξ2), and
this problem is univariate as well, because the vector ξ2 is fixed.

This recursive procedure is in progress until we reach the level N where it is
required to solve problem

fN (ξN−1, xN ) → min, xN ∈ ΛN (ξN−1) (15)

This problem is univariate too because the vector ξN−1 has been given at
previous levels and is fixed for the problem (15). Moreover, in this problem
an evaluation of the objective function consists in computation of the value
f(ξN−1, xN ) of the function f(x) from the original problem (1).

The approach of reducing the multidimensional problem (1) to solving the
family of one-dimensional subproblems

fs(ξs−1, xs) → min, xs ∈ Λs(ξs−1), 1 ≤ s ≤ N, (16)

in accordance of the above procedure is called the nested scheme of dimension-
ality reduction or the nested scheme of optimization.

The structure of domains Λs(ξs−1) depends on the properties and complexity
of the constraints hs(x) from (2). For example, if all the functions hs(x) are
convex, then the domain is a convex set, and any projection Λs(ξs−1) is a single
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interval of the axis xs. In general case, when the constraints hs(x) are continuous,
the domain Λs(ξs−1) is a union of closed intervals, i.e.,

Λs(ξs−1) = ∪M
m=1[a

m
s , bm

s ], 1 ≤ s ≤ N, (17)

where the end points am
s , bm

s of intervals and even the number of interval M can
depend on the vector ξs−1.

If all the end points am
s , bm

s and all numbers M can be given explicitly (for
example, as analytical expressions or by means of a computational procedure) in
all the subtasks (16) then the domain D is called as the domain with computable
boundaries. These domains can have very complicated structure, in particular,
can be non-convex and even disconnected.

As an example, let us consider a 2-dimensional domain (2) determined by
the following constraints:

h1(x1, x2) = 1 − (x2 − 0.5(u1(x1) + u2(x1)))2

0.25(u1(x1) − u2(x1))2
, (18)

h2(x1, x2) = 0.04 − (x1 − 0.6)2 − (x2 − 0.59)2, (19)
h3(x1, x2) = x2 − u3(x1), (20)

where

u1(x1) = −0.05 cos(40x1) − 0.1x1 + 0.15,

u2(x1) = −0.05 cos(45x1) + 0.1x1 − 0.22,

u3(x1) = 0.1 sin(50x1) + 0.5x1 + 0.6,

and coordinate constraints (3), 0 ≤ x1, x2 ≤ 1. For this domain

Λ1 = [0, 1], (21)

Λ2(x1) =

{
∪3

m=1 [am
2 , bm

2 ], |x1 − 0.6| ≤ 0.2,

∪2
m=1 [αm

2 , βm
2 ], otherwise,

(22)

where

a1
2 = α1

2 = 0,

a2
2 = α2

2 = u2(x1),

a3
2 = 0.59 +

√
0.04 − (x1 − 0.6)2,

b12 = β1
2 = u1(x1),

b22 = 0.59 −
√

0.04 − (x1 − 0.6)2,

b32 = β2
2 = min{u3(x1), 1}.

The domain D corresponding to these constraints is shown in Fig. 1, where
inaccessible part is dark. The domain consists of two disconnected parts and
inside the upper part there is a removed circle. Moreover, the boundaries have
complicated “oscillating” structure.

The nested optimization scheme in combination with univariate global search
methods providing optimization on several intervals like characteristical algo-
rithms [19] allows one to execute trials in the feasible domain only and not
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to spend resources to evaluate the objective function at inaccessible points as
opposed to penalty function or index methods.

In present paper we propose to apply the adaptive nested scheme to solv-
ing problems with computable boundaries in combination with information-
statistical univariate algorithm of global search [36] adapted to optimization
in the domain of type (17). In the adaptive scheme all one-dimensional sub-
problems (16) are considered in dynamics simultaneously and to each of them
a numerical value called the characteristic of the subproblem is assigned. The
characteristic depends on the domain (17) and values of the subproblem objec-
tive function. The iteration of the multidimensional search consists in the choice
of the subproblem with the best characteristic and executing a new trial in it.
Such organization allows one to take into account the full information about the
multidimensional problem obtained in the course of optimization and to focus
on the most perspective subproblems. The effectiveness of the new proposed
adaptive nested technique is demonstrated in the next section on the base of
representative experiment on test classes of multiextremal problems in domains
with computable boundaries of complicated structure.

3 Numerical Experiments

The efficiency estimation of different approaches to solving constrained global
optimization problems was executed experimentally on two test classes of mul-
tiextremal functions which are often used for testing the global search algo-
rithms [9,10,18,32,36]. The first class GLOB2 included 2-dimensional functions

f(x1, x2) = −
{( 7∑

i=1

7∑
j=1

uij(x1, x2)
)2

+
( 7∑

i=1

7∑
j=1

vij(x1, x2)
)2

} 1
2

(23)

where

uij(x1, x2) = αij sin(πix1) sin(πjx2) + βij cos(πix2) cos(πjx2),
vij(x1, x2) = γij sin(πix1) sin(πjx2) − δij cos(πix2) cos(πjx2),

and the parameters aij , βij , γij , δij , 1 ≤ i, j ≤ 7, are the independent random
numbers, distributed uniformly over the interval [−1, 1]. The functions (23) were
considered in the box X = {x ∈ R

2 : 0 ≤ x1, x2 ≤ 1}.
The multiextremal class GKLS [8] was chosen as the second class of objective

functions in the problem (1). The functions were taken from the hard GKLS
subclass of the dimension 3 and for them X = {x ∈ R

3 : −1 ≤ x1, x2, x3 ≤ 1}.
For building constraints (2) for both GLOB2 and GKLS the idea close to

making constraints in the EMMENTAL GKLS [31] was used. Namely, in the
domain X several random points were generated which are considered as centers
of spheres with random radii. The hyperparallelepiped X without internal parts
of the generated spheres was considered as the feasible domain D. Such way
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allows one to form complicated domains with computable boundaries because
the information about centers and radii of spheres enables to build explicitly the
regions (17) in univariate subproblems of the nested scheme.
Three methods were compared in experiments:

– CNS-CB Classical nested scheme with computable boundaries;
– ANS-CB Adaptive nested scheme with computable boundaries;
– ANS-PF Adaptive nested scheme combined with penalty function method.

In all three methods for solving univariate problems (16) the information-
statistical Global Search Algorithm (GSA) was used.

An example of comparative behavior of the methods taking computable
boundaries into account (ANS-CB) and applying penalty function approach (5),
(6) (ANS-PF) is presented in Fig. 1 for a function from class GLOB2 and con-
straints (18)–(20). The pictures contain level curves of the function, points of
trials, and the infeasible part X \ D is dark.

Fig. 1. Distribution of trials by ANS-CB (the left panel) and by ANS-PF (the right
panel).

Comparison of the algorithms on the test classes was carried out according to
the method of operational characteristics introduced in [15]. In the framework of
this method a set of test problems is taken, the problems of the set are solved by
an optimization algorithm with different parameters and two criteria are used for
evaluating the algorithm’s quality: average number K of trials executed (search
spending) and number Δ of problems solved successfully (search reliability).
For launches of the algorithm with different parameters we obtain several pairs
(K̃, Δ̃). The set of these pairs on the plane (K,Δ) is called the operational
characteristic of the algorithm.
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Fig. 2. Operational characteristics on 2-dimensional class GLOB2
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Fig. 3. Operational characteristics on 3-dimensional class GKLS

Figure 2 shows the operational characteristics (from left to right) of ANS-
CB, CNS-CB and 3 operational characteristics of ANS-PF for different values of
penalty factor P from (6) on the class (23) with 100 test problems. The axis K
is presented in the logarithmic scale.

As it follows from the results presented in Fig. 2 the adaptive and classi-
cal schemes using the computable boundaries approach excel significantly the
version with the penalty function method. With the value of penalty constant
P = 100 the algorithm with transformation to the penalized function (6) did
not provide solving all test problems and spent considerably more trials.

As the functions of the test class are very complicated, attempts to enlarge the
penalty constant have demonstrated one of the drawbacks of the penalty function
method for Lipschitzian optimization problems, namely, such the enlargement
leads to increasing the Lipschitz constant for the function (6) and, as a conse-
quence, to the growth of the trial number. Moreover, the adaptive nested scheme
is better than its classical prototype CNS-CB.

The experiment with 100 3-dimensional functions from the class GKLS has
shown even more advantage of the computable boundaries approach over the
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penalty function technique. Figure 3 presents the operational characteristic for
ANS-CB (the left plot) and the operational characteristic for ANS-PF (the right
plot) with the penalty constant P = 100.

The algorithm ANS-CB has solved all the test problems for about 12000
objective function evaluations and its rival ANS-PF having spent 30000 trials
could not find all the global minima.

4 Conclusion

In the paper the multidimensional global optimization problems with non-linear
and multiextremal objective functions and constraints generating domains with
computable boundaries have been considered. The domains of this type can have
a complicated structure, in particular, can be non-convex and disconnected. For
solving the problems under consideration a new global optimization algorithm
based on the adaptive nested scheme has been proposed. The algorithm reduces
the initial multidimensional problem to a family of univariate subproblems in
which the domains of one-dimensional optimization can be presented as systems
of closed intervals with explicitly given boundary points. For solving univari-
ate subproblems a modification of the information-statistic algorithm of global
search is used which execute iteration within the feasible intervals only. It pro-
vides evaluation of multidimensional objective function in the accessible domain
only and distinguishes the proposed method from known approaches to solv-
ing global constrained optimization such as penalty function and index methods
which can carry out iterations at infeasible points.

The more economical behavior of the new method has been confirmed in the
experiment where the proposed adaptive nested algorithm was compared with
the classical nested scheme and adaptive scheme combined with penalty func-
tion method. The results of the experiment have demonstrated the significant
advantage of the suggested adaptive scheme over its opponents.

As continuation of the research it is interesting to evaluate the efficiency of
the new adaptive scheme via comparison with the global optimization methods
of different nature, for example, with some component methods of DIRECT-
type. Moreover, it would be perspective to develop a parallel version of the
algorithm and to study its effectiveness of parallelizing on various computational
architectures.
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