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Abstract. We consider one of the classes of hybrid systems, heteroge-
neous discrete systems (HDSs). The mathematical model of an HDS is a
two-level model, where the lower level represents descriptions of homo-
geneous discrete processes at separate stages and the upper (discrete)
level connects these descriptions into a single process and controls the
functioning of the entire system to ensure a minimum of functionality.
In addition, each homogeneous subsystem has its own goal. A method of
the approximate synthesis of optimal control is constructed on the basis
of Krotov-type sufficient optimality conditions obtained for such a model
in two forms. A theorem on the convergence of the method with respect
to a function is proved, and an illustrative example is given.

Keywords: Heterogeneous discrete system · Intermediate criteria ·
Approximate synthesis · Optimal control

1 Introduction

The direct use of the optimal control theory’s theoretical results is associated
with insurmountable difficulties regarding the solvability of practical problems
in analytical form. Therefore, theoretical results have always been accompanied
by the construction and development of various iterative methods. It is nearly
impossible to track the many works that represent various scientific schools and
areas. Therefore, generalization and analogs of Krotov’s sufficient optimality
conditions [1] in two forms will be used substantially in this paper. Some insight
into this field is given via an overview [2] and several publications [3–5].

The approach that is proposed in [6] is based on an interpretation of the
abstract model of multi-step controlled processes [7] as a discrete-continuous
system and extended to heterogeneous discrete systems (HDS) [8]. This method
has essentially allowed the decomposition of the inhomogeneous system into
homogeneous subsystems by constructing a two-level hierarchical model and
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generalizing optimality conditions and optimization algorithms that were devel-
oped for homogeneous systems. This refers to systems with a fixed structure that
are studied within the classical theory of optimal control.

Notably, with this approach, all homogeneous subsystems are linked by a
common goal and represented by a function in the model. However, each homo-
geneous subsystem can also have its own goal. Such a generalization of the HDS
model was carried out in [11], where sufficient conditions for optimal control in
two forms were obtained.

In this paper a method of approximate synthesis of optimal control is con-
structed, and an illustrative example is considered.

Previously, the authors proposed a more sophisticated improvement method
[12] for another class of heterogeneous systems, discrete-continuous systems, that
requires searching for a global extremum in control variables at both levels of
the hierarchical model. For the class of heterogeneous discrete systems consid-
ered in the present paper, the derivation of its analogue is not possible due to
the structural features of the discrete models and the construction of sufficient
optimality conditions.

2 Heterogeneous Discrete Processes with Intermediate
Criteria

Let us consider a two-level model where the lower level consists of discrete
dynamic systems of homogeneous structure. A discrete model of general form
appears on the top level.

x(k + 1) = f(k, x(k), u(k)),
k ∈ K = {kI , kI + 1, ..., kF }, u ∈ U(k, x), (1)

where k is the number of the step, x and u are respectively variables of state
and control of arbitrary nature (possibly different) for different k, and U(k, x)
is the set given for each k and x. On some subset K′ ⊂ K, kF /∈ K′, u(k) is
interpreted as a pair

(
uv(k),md(k)

)
, where md(k) is a process (xd(k, t), ud(k, t)),

t ∈ T(k, z(k)), md(k) ∈ Dd (k, z(k)), and Dd is the set of admissible processes
md, complying with the system

xd(k, t + 1) = fd
(
k, z, t, xd(k, t), ud(k, t)

)
,

t ∈ T = {tI(z), tI(z) + 1, . . . tF (z)},
(2)

xd ∈ Xd(k, z, t), ud ∈ Ud
(
k, z, t, xd

)
, z = (k, x, uv) .

For this system an intermediate goal is defined on the set T in the form of a
functional that needs to be minimized:

Ik =
∑

T(z)\tF (z)

fk(t, xd(k, t), ud(k, t)) → inf .

Here Xd(k, z, t), Ud
(
k, z, t, xd

)
are given sets for each t, z, and xd. The right-

hand side operator of the 1 is the following on the set K′:

f (k, x, u) = θ
(
z, γd(z)

)
, γd =

(
tI , x

d
I , tF , xd

F

) ∈ Γd(k, z),



74 O. Danilenko and I. Rasina

Γd(z) = {γd : tI = τ(k, z), tF = ϑ(k, z),

xd
I = ξ(k, z), xd

F ∈ Γd
F (k, z)}.

On the set D of the processes

m =
(
x(k), u(k), xd(k, t), ud(k, t)

)
,

satisfying 1, 2, the optimal control problem on minimization of a terminal func-
tional I = F (x (kF )) is considered. Here kI = 0, kF , x (kI) are fixed and
x(k) ∈ X(k).

3 Sufficient Optimality Conditions

The following theorems are valid [11]:

Theorem 1. Let there be a sequence of processes {ms} ⊂ D and functions
ϕ, ϕd such that:

(1) R (k, xs (k) , us (k)) → μ (k) , k ∈ K;
(2) Rd

(
zs, t, x

d
s (t) , ud

s (t)
) − μd (zs, t) → 0, k ∈ K′, t ∈ T (zs);

(3) Gd
(
zs, γ

d
s

) − ld (zs) → 0, k ∈ K′;
(4) G (xs (tF )) → l.

Then the sequence {ms} is a minimizing sequence for I on the set D.

Theorem 2. For each element m ∈ D and any functionals ϕ, ϕd the estimate is

I(m) − inf
D

I ≤ Δ = I(m) − l.

Let there be two processes mI ∈ D and mII ∈ E and functionals ϕ and ϕd

such that L
(
mII

)
< L

(
mI

)
= I

(
mI

)
, and mII ∈ D.

Then I(mII) < I(mI).

Here:
L = G (x (kF )) −

∑

K\K′\kF

R(k, x(k), u(k))

+
∑

K′

(
Gd(z) −

∑

T(z)\tF

Rd(z, t, xd(k, t), ud(k, t))
)
,

G (x) = F (x(kF )) + ϕ (kF , x) − ϕ (kI , x (kI)) ,

R (k, x, u) = ϕ (k + 1, f (k, x, u)) − ϕ (k, x) ,

Gd
(
k, z, γd

)
= −ϕ

(
k + 1, θ

(
k, z, γd

))
+ ϕ (k, x (k))

+ϕd
(
k, z, tF , xd

F

) − ϕd
(
k, z, tI , x

d
I

)
,

Rd
(
k, z, t, xd, ud

)
= ϕd(k, z, t + 1, fd

(
k, z, t, xd, ud

)
)

− fk(t, xd(k, t), ud(k, t)) − ϕd(k, z, t, xd),
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μd (k, z, t) = sup {Rd
(
k, z, t, xd, ud

)
: xd ∈ Xd(k, z, t), ud ∈ Ud

(
k, z, t, xd

)},

ld (k, z) = inf {Gd
(
k, z, γd

)
: (γd) ∈ Γd(k, z), xd ∈ Xd(k, z, tF )},

μ (k) =
{

sup{R (k, x, u) : x ∈ X(k), u ∈ U (k, x)}, t ∈ K\K′,
− inf{ld (z) : x ∈ X (k) , uv ∈ Uv (k, x)}, k ∈ K′,

l = inf{G (x) : x ∈ Γ ∩ X (kF )}.

Here ϕ (k, x) is an arbitrary functional and ϕd(k, z, t, xd) is an arbitrary para-
metric family of functionals with parameters k and z.

We note that L(m) and I(m) coincide for m ∈ D.
Theorem 1 allows us to reduce the solution of the optimal control problem

posed to an extremum study of the constructions R, G and Rd, Gd by the
arguments for each k and t, respectively. Theorem 2 indicates a way to construct
improvement methods. One of the variants of these methods is implemented
below.

4 Sufficient Conditions in the Bellman Form

One of the possible ways to set a pair (ϕ, ϕ̃d) is to require fulfillment of condition
inf

{mu}
L = 0 for any mx. Here mu = (u(k), uv(k), ud(k, t)) is a set of control

functions from the sets U, Uv, and Ud, respectively, mx = (x(k), x̃d(k, t)) is a
set of state variables of upper and lower levels. Such a requirement leads directly
to concrete optimality conditions of the Bellman type that can also be used
to construct effective iterations of process improvement. Let Γd

F (z) = R
n(k),

θ
(
z, γd

)
= θ

(
z, xd

F

)
. There are no other restrictions on the state variables.

The following recurrent chain is obtained with respect to the Krotov-Bellman
functionals ϕ and ϕd (z) of two levels:

ϕ (k, x) = sup
u∈U(k,x)

ϕ (k + 1, f (k, x (k) , u)) , k ∈ K\K′\kF ,

ϕ (kF , x) = −F (x) ,

ϕd(k, t) = sup
ud∈Ud(z,t,xd)

(
ϕd

(
k, t + 1, fd

(
k, t, xd (k, t) , ud

))
(3)

− fk(t, xd(k, t), ud(k, t))
)
,

ϕd
(
z, tF , xd

F

)
= ϕ

(
k + 1, θ

(
z, xd

F

))
,

ϕ (k, x) = sup
uv∈Uv(t,x)

ϕd (z, τ (z) , ξ (z)) , k ∈ K′,

which is resolved in the order from kF to kI . Suppose that a solution to this
chain

(
ϕ (k, x (k)) , ϕd

(
z, t, xd

))
exists and, moreover, that there are controls

corresponding to this solution ũ (k, x) , ũv (k, x) , ũd
(
z, t, xd

)
, obtained from



76 O. Danilenko and I. Rasina

the maximum operations in 3. Substituting the found controls in the right parts
of the given discrete formulas, we obtain

x (k + 1) = f (k, x (t) , ũ (k, x (t))) , x (kI) = xI , k ∈ K\K′\kF ,

x (k + 1) = θ
(
k, x (k) , ũv (k, x (k)) , γd (z̃)

)
,

xd(k, t + 1) = fd
(
k, x (k) , ũv (k, x (k)) , t, xd, ũd

(
z̃(k), t, xd

))
,

tI = τ (z̃(k)) , xd (tI) = ξ (z̃(k)) , z̃(k) = (k, x (k) , ũv (k, x (k)))

for k ∈ K′. The solution of this chain is

(x (k) , u (k))∗ , k ∈ K\K′,
(
x (k) , û (k) , xd (k, t) , ud (k, t)

)
∗ , k ∈ K′, t ∈ T (z∗(k)) .

If this solution exists, it sets the optimal heterogeneous discrete process m∗. We
note that the functional ϕd(z, t, xd) in this case can be considered independent
of x, because it “serves” a family of problems for different initial conditions.

The first variant of these conditions is obtained in [8,11].

5 The Approximate Synthesis of Optimal Control

Suppose that X(k) = R
m(k), Xd(z, t) = R

n(k), xd
I = ξ (z), kI , xI , kF , tI(k), tF (k)

are given, xd
F ∈ R

n(k), and lower-level systems do not depend on control uv.
We will develop the method based on the principles of expansion [9] and

localization [10]. The task of improvement is to build an operator η(m), η : D →
D, such that I(η(m)) ≤ I(m). For some given initial element, such an operator
generates improving, specifically a minimizing sequence {ms} : ms+1 = η(ms).

According to the localization principle, the task of improving an element mI

resolves itself into the problem of the minimum of the intermediary functional

Iα(m) = αI(m) + (1 − α)J(mI,m), α ∈ [0, 1], (4)

where J(mI,m) is the functional of a metric type. By varying α from 0 to 1, we
can achieve the necessary degree of proximity mα to mI and effectively use the
approximations of the constructions of sufficient conditions in the neighbourhood
of mI. As a result, we obtain an algorithm with the parameter α, which is a
regulator configurable for a specific application. This parameter is chosen so
that the difference I(mI)− I(mα) is the largest; then the corresponding element
mα is taken as mII. We consider the intermediary functional of the form

Iα = αI + (1 − α)

⎛

⎝
∑

K\K′\kF

1
2
|Δu (k) |2 +

∑

K′

∑

T(z)\tF

1
2
|Δud (k, t) |2

⎞

⎠ ,

where α ∈ [0, 1],Δu = u − uI, Δud = ud − udI.
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According to said extension principle for the given element mI ∈ D, we need
to find an element mII ∈ D for which Iα(mII) = Lα

(
mII

)
< Iα(mI) = Lα

(
mI

)
,

or Lα

(
mII

) − Lα

(
mI

)
< 0. We consider the increment of the functional Lα(m):

ΔLα ≈ GT
xF

ΔxF +
1
2
ΔxT

F GT
xF xF

ΔxF

−
∑

K\K′\kF

(
RT

x Δx + RT
u Δu +

1
2
ΔuTRuuΔu

+
1
2
ΔxTRxxΔx + ΔuTRuxΔx

)
+

∑

K′\kF

(
GdT

xd
F
Δxd

F + GdT
x Δx

+
1
2
ΔxdT

F GdT
xd
F xd

F
Δxd

F +
1
2
ΔxTGdT

xxΔx + ΔxdT
F GdT

xd
F xΔx

)

−
∑

T(z)\tF

(
RdT

xd Δxd + RdT
x Δx + RdT

ud Δud +
1
2
ΔudTRd

ududΔud

+
1
2
ΔxdTRd

xdxdΔxd + ΔxTRd
xxdΔxd + ΔxTRd

xudΔud + ΔudTRd
udxdΔxd

)
,

where Δu = u − uI, Δx = x − xI, Δud = ud − udI, Δxd = xd − xdI, Δxd
F =

xd
F − xdI

F , and xF = x(kF ). Here the functions R, G, Rd, and Gd are defined
for the functional Iα, and their first and second derivatives are calculated at
u = uI(k), x = xI(k), xd = xdI(k, t), and ud = udI(k, t). We suppose that
matrices Ruu and Rd

udud are negative definite (this can always be achieved by
choosing a parameter α [10]). We find Δu,Δud such that

∑

K\K′\kF

,
∑

T(z)\tF

reach

their respective maximum values. It is easy to see that

Δu = −(Ruu)−1(Ru + RuxΔx(k)),

Δud = −(Rd
udud)−1(Rd

ud + Rd
udxΔx(k) + Rd

udxdΔxd(k, t)).

We substitute the found formulas for the control increments into the formula for
the increment of the functional ΔLα. Then we perform the necessary transfor-
mations and denote the result by ΔMα. We obtain

ΔMα ≈ GT
x Δx +

1
2
ΔxTGxxΔx −

∑

K\K′\kF

(
(Rx − RxuR−1

uuRT
u )Δx

+
1
2
ΔxT

(
Rxx − RxuR−1

uuRT
xu

)
Δx − 1

2
RT

u R−1
uuRu

)

+
∑

K′\kF

(
GdT

xd
F
Δxd

F +
1
2
ΔxdT

F Gd
xd
F xd

F
Δxd

F + GdT
x Δx +

1
2
ΔxTGd

xxΔx

+ΔxdT
F Gd

xd
F xΔx

)
−

∑

T(z)\tF

(
Rd

xd − Rd
xdud(Rd

udud)−1RdT
ud

)
Δxd
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+
1
2
ΔxdT

(
Rd

xdxd − Rd
xdud(Rd

udud)−1RdT
xdud

)
Δxd

+
(
RdT

x − Rd
xud(Rd

udud)−1Rd
ud

)
Δx +

1
2
ΔxT

(
Rd

xx − Rd
xud(Rd

udud)−1RdTxud

)
Δx

+
(

ΔxT
(
Rd

xxd − Rd
xud(Rd

udud)−1RdT
xdud

)
Δxd − 1

2
RdT

ud (Rd
udud)−1Rd

ud)
)

.

We define the functions ϕ,ϕd as ϕ = ψT (k) x (k) + 1
2ΔxT (k) σ (k) Δx (k) ,

ϕd = λT (k, t) x(k) + ψdT (k, t) xd (k, t) +
1
2
ΔxdT (k, t) σd (k, t) Δxd (k, t)

+ΔxT (k) Λ (k, t) Δxd (k, t) +
1
2
ΔxT (k) S (k, t) Δx (k) ,

where ψ,ψd, λ are vector functions and σ, σd, S, Λ are matrices, and so that
the increment of the functional ΔMα does not depend on Δx, ΔxF , Δxd, Δxd

F .
The last requirement will be achieved if

Rx − RxuR−1
uuRT

u = 0,

Rxx − RxuR−1
uuRT

xu = 0,

Rd
x − Rd

xud

(
Rd

udud

)−1
RdT

ud = 0,

Rd
xd − Rd

xdud(Rd
udud)−1RdT

ud = 0,

Rd
xdxd − Rxdud(Rd

udud)−1RT
xdud = 0,

Rd
xx − Rxud(Rd

udud)−1RT
xud = 0,

Rd
xxd − Rxud(Rd

udud)−1RT
xdud = 0,

Gx = 0, Gd
x = 0, Gd

xd
F

= 0, Gxx = 0, Gd
xd
F xd

F
= 0, Gd

xd
F x = 0, Gd

xx = 0.

Transformation of these conditions leads to a Cauchy problem for HDS with
respect to ψ, ψd, λ, σ, σd, S, and Λ, with initial conditions on the right end:

ψ(kF ) = −αFx, σ(kF ) = −αFxx,

ψ(k) = Hx − (
fT

x σ (k + 1) fu + Hxu

) (
fT

u σ (k + 1) fu + Huu

)−1
Hu,

σ(k) = fT
x σ (k + 1) fx + Hxx

− (
fT

x σ (k + 1) fu + Hxu

) (
fT

u σ (k + 1) fu + Huu

)−1

(
fT

x σ (k + 1) fu + Hxu

)T
, k ∈ K\K′\kF ,

ψ(k) = Hx + ξTx Hxd + ξTx ψd(k, tI) + λ(tI) − λ(tF ), k ∈ K′,

σ (k) = θTx σ (k + 1) θx + Hxx + ξTx θxd(tI)σ(k + 1)θx + θTx σ(k + 1)θxd(tI)ξx

+ ξTx θTxd(tI)σ (k + 1) θxd(tI)ξx + ξTx σd (k, tI) ξx + S (k, tI)
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+ ξxxψd(tI) + ξT
x σd(k, tI)ξx + ξTx Λ(tI), k ∈ K′,

ψd = Hd
xd−

(
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

) (
fdT

ud σd (k, t + 1) fd
ud + Hd

udud

)−1
Hd

ud ,

ψd (k, tF ) = Hxd
F
,

λ(k, t) = λ(k, t + 1) + Hd
x − (Λ(k, t + 1)fd

ud + fdT
x σd(k, t + 1)fd

ud + Hd
xud)

(
fdT

ud σ (k, t + 1) fd
ud + Hd

udud

)−1
Hd

ud , λ(k, tF ) = 0,

σd(k, t) = fdT
xd σd (k, t + 1) fd

xd + Hd
xdxd − (

fdT
xd σd (k, t + 1) fd

ud + Hd
xdud

)

(
fdT

ud σ (k, t + 1) fd
ud + Hd

udud

)−1 (
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

)T
,

σd (k, tF ) = θTxd
F
σ (k + 1) θxd

F
+ Hxd

F xd
F
,

Λ (k, t) = fdT
x Λ (k, t + 1) fd

xd + Hd
xxd −

(
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

)

(
fdT

ud σd (k + 1) fd
ud + Hd

udud

)−1 (
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

)T
,

Λ (k, tF ) = θTx σ (k + 1) θxd + Hxxd ,

S(k, t) = S(k, t+1)+ fdT
x ΛdT(k, t+1)+Λ(k, t+1)fd

x +Hd
xx + fdT

x σd(k, t+1)fd
x

−
(
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

) (
fdT

ud σd (k + 1) fd
ud + Hd

udud

)−1

((
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

))T

, S (k, tF ) = 0,

where

H = ψT (k + 1) f(k, x(k), u(k)) − 1
2

(1 − α) |Δu (k) |2, k ∈ K\K′\kF

and
H = ψT (k + 1) θ (k, x (k) , xc

I , x
c
F ) k ∈ K′,

Hd = ψdT(k, t + 1)fd(k, t, x(k), xd, ud) − fk(t, xd, ud) − 1
2

(1 − α) |Δud (k) |2,

x (kI) = xI , x (kF ) = xF , xd (k, tI) = xd
I , xd (k, tF ) = xd

F .
Wherein

Δu (k) = − (
fT

u σ (k + 1) fu + Huu

)−1
(
Hu +

(
fT

x σ (k + 1) fu + Hxu

)T
Δx(k)

)
,

Δud (k, t) = −(Hd
udud)−1

(
Hd

ud + (ΛT fd
ud + Hd

xud)TΔx(k)

+
(
σdfd

ud + Hd
xdud

)T
Δxd(k, t)

)
.

We note that the formulas obtained for the control increments of the upper
and lower levels depend on the state increments of the same levels. The method
then gives a solution to the problem in the form of approximately optimal linear
synthesis.
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6 Iterative Procedure

Based on the formulas obtained, we can formulate the following iterative
procedure:

1. We calculate the initial HDS from left to right for u = us(k), ud = ud
s(k, t)

with the given initial conditions to obtain the corresponding trajectory
(xs(k), xd

s(k, t)).
2. We resolve the HDS from right to left with respect to ψ (k), ψd (k, t), λ(k, t),

σ(k), σd(k, t), Λ(k, t), and S(k, t).
3. We find Δu, Δud and new controls u = us(k) + Δu, ud = ud

s(k, t) + Δud.
4. With the controls found and the initial condition x(kI) = xI , we calculate

the initial HDS from left to right. This defines a new element ms+1.

The iteration process ends when |Is+1 − Is| ≈ 0 with a specified accuracy.

Theorem 3. Suppose that the indicated iteration procedure is developed for a
given HDS and the functional I is bounded from below. Then it generates an
improving sequence of elements {ms} ∈ D, convergent in terms of the functional,
i.e., there is a number I∗ such that I∗ ≤ I(ms), I(ms) → I∗.

Proof. The proof follows directly from the monotonicity property with respect
to the functional of the improvement operator under consideration. Thus, we
obtain a monotonic numerical sequence

{Is} = {I(ms)}, Is+1 ≤ Is,

bounded from below, which according to the well-known analysis theorem con-
verges to a certain limit: Is → I∗.

Remark 1. The equations for the matrices σ, σd are analogs of the matrix Riccati
equations and can therefore have singular points. Points k∗ ∈ K, t∗ ∈ T(k) are
called singular if there are changes in the sign of definiteness of matrices Ruu,
Rd

udud . In these cases, by analogy with homogeneous discrete processes, singular
points can be shifted to the points kI , tI(k) due to the special choice of the
parameter α, and we can find the control increments by the modified formulas
[13]. In the particular case when the discrete process of the lower level does not
depend on x and ud, these formulas have the simplest form:

Ruu(kI)Δu(kI) = 0, Rd
udud(k, tI)Δud(k, tI) = 0.

The last equalities are systems of linear homogeneous algebraic equations
with degenerate matrices Ruu(kI), Rd

udud(k, tI) and therefore always have non-
zero solutions.

Remark 2. If σ = 0, σd = 0, Λ = 0 in the resulting algorithm, then we obtain
the first-order improvement method. In this case, the formulas Δu, Δud will still
depend on the state increments. Consequently, the resulting solution, as before,
is an approximate synthesis of optimal control.
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7 Example

We illustrate the work of the method with an example. Let the HDS be given:

xd(t + 1) = −2xd(t) + (ud
1 − 1)2, xd(0) = 1, t = 0, 1, 2, 3,

I0 =
1
2
(xd(t))2 +

1
3
(ud

1)
3,

xd(t + 1) = (t − ud
2)

2, t = 4, 5, 6, I1 =
1
2
(xd)2 + ud

2,

I = xd(7) → min .

Fig. 1. Control variables in different iterations

It is easy to see that K = 0, 1, 2. Since xd is a linking variable in the two
periods under consideration, we can write the process of the upper level in terms
of this variable:

x(0) = xd(0, 0), x(1) = xd(0, 4), x(2) = xd(1, 7), xd(1, 4) = x(1).

Then θ = xd(0, 4), ξ = x(1), I = x(2).
Since at both stages the process of the lower level does not depend on the

state variables of the upper level, then λ(0, t) = λ(1, t) = 0, Λ(0, t) = Λ(1, t) =
0, S(0, t) = S(1, t) = 0.

We obtain

ψ(2) = −α, σ(2) = 0, ψ(1) = ψ(2) + ψd(1, 4), σ(1) = 2σd(1, 4)

Hd(0, t) = ψd(0, t+1)(−2xd +(ud
1 −1)2)− 1

2
(xd(t))2 − 1

3
(ud

1)
3 − 1

2
(1−α)(Δud

1)
2,
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Hd(1, t) = ψd(1, t + 1)(t − ud
2)

2 − 1
2
(xd)2 − ud

2 − 1
2
(1 − α)(Δud

2)
2,

ψd(0, t) = −2ψd(0, t + 1) − xd − 4σd(0, t + 1)(1 − ud
1)(4(ud

1 − 1)2)σd(0, t + 1)

+ 2ψd(0, t+1)−2ud
1 − (1−α))−1(2ψd(0, t+1)(ud

1 −1)− (ud
1)

2), ψd(0, 4) = ψ(2),

σd(0, t) = 4σd(0, t + 1) − 1 − (4σd(0, t + 1)(1 − ud
1))

2)(4(ud
1 − 1)2)σd(0, t + 1)

+ 2ψd(0, t + 1) − 2ud
1 − (1 − α))−1,

ψd(1, t) = −xd, ψd(1, 7) = 0, σd(1, t) = −1, σd(1, 7) = 0,

Δud
1 = (2ψd(0, t + 1) − 2ud

1 − (1 − α))−1(2ψd(0, t + 1)(ud
1 − 1) − (ud

1)
2

+ 2σd(0, t + 1)(ud
1 − 1)Δxd(0, t),

Δud
2 = −(2ψd(1, t + 1) − (1 − α))−1(2ψd(1, t + 1)(t − ud

2) + 1).

Fig. 2. State variables in different iterations

Numerical experiments show that the improvement of the functional does not
depend significantly on the choice of the parameter α and occurs in almost one
iteration. The result of calculations is shown for α = 0.76 and u(t) = 1, t = 0, .., 6.
The functional value is improved from 25 to 0.64 in one iteration. Initial and
resulting controls and states are shown in Figs. 1 and 2.

For comparison, calculations using the gradient method were also performed.
The result is obtained in six iterations, while the value of the functional is 2.87.
This indicates the efficiency of the proposed method.

8 Conclusion

This paper considers HDS with intermediate criteria. On the basis of an ana-
logue of Krotov’s sufficient optimality conditions, a method for the approximate
synthesis of optimal control is constructed, its algorithm formulated, and an
illustrative example given to demonstrate the efficiency of the proposed method.
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