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Abstract. The research is aimed at coping with the inherent computa-
tional intensity of Bayesian multi-objective optimization algorithms. We
propose the implementation which is based on the rectangular partition
of the feasible region and circumvents much of computational burden
typical for the traditional implementations of Bayesian algorithms. The
included results of the solution of testing and practical problems illus-
trate the performance of the proposed algorithm.
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1 Introduction

Applied optimization problems, especially those in engineering design, frequently
are multi-objective and non-convex. The class of non-convex objective functions
is non-homogeneous from the point of view of design of optimization algorithms.
We address the black-box problems differently from the problems, where objec-
tive functions and constraints are described by mathematical formulas. Methods
for the latter problems generalize classical mathematical programming meth-
ods [8,10]. Metaheuristic methods are popular for black-box problems [5]. How-
ever, the metaheuristic methods frequently are not appropriate for the expensive
black-box problems because of the limited budget of the computations of the
objective functions.

The optimization of expensive black-box objective functions can be consid-
ered as a sequence of decisions under uncertainty, and the ideas of the theory of
rational decision making seem most appropriate for the development of the corre-
sponding algorithms. Gaussian random fields (GRF) normally are used as models
representing uncertainty about aimed objective functions. Bayesian algorithms
are designed maximizing a criterion of average utility with respect to the random
field chosen for a model. The most frequently used criteria are: the maximum
average improvement and the maximum improvement probability. The research
and applications of the single-objective Bayesian methods is booming during
last years. The Bayesian approach has recently extended to multi-objective opti-
mization. The idea of the maximization of the multi-objective improvement
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probability is implemented in [17]. A popular alternative method is based on
the reduction to single objective optimization where the hyper-volume of a sub-
region of the objective space, bounded by the approximation of the Pareto front,
is maximized; see e.g. [6,7]. For the relevant single-objective black-box optimiza-
tion methods we refer to [11–14].

The inherent computational burden of Bayesian multi-objective algorithms
bounds their application area similarly to the single-objective case. In the present
paper we propose coping with such a challenge by the implementation based on
the rectangular partition of the feasible region. We merge the ideas of [17] (where
the multi-objective P-algorithm was proposed), and of [3] (where the partition
based single-objective P-algorithm was implemented). The developed algorithm
was applied to the optimization of a biochemical process modeling of which is
computationally extremely intensive.

2 The Proposed Algorithm

A black-box multi-objective minimization problem is considered

min F (x), x ∈ A ⊂ R
d, F (x) = (f1(x), . . . , fm(x))T ; (1)

we assume that A is of simple structure, e.g., a hyper-rectangular. We assume
that objective functions are computationally expensive.

We start from a brief introduction of the original single-objective (m = 1)
P-algorithm. For a review of related methods we refer to [15]. A GRF ξ(x),
x ∈ A, is accepted for a model of an objective function. The results of k function
evaluations yi = f(xi), i = 1, . . . , k, are available and can be taken into account
for planning a current evaluation point. The P-algorithm selects for the evalua-
tion of the objective function the point of maximum of conditional improvement
probability

xk+1 = arg max
x∈A

P{ξ(x) < yok | ξ(xi) = yi, i = 1, . . . , k}, (2)

where yok = min{y1, . . . , yk} − εk, εk > 0 is an improvement threshold.
A generalization of the P-algorithm to the multi-objective case was proposed

in [17]. A vector valued GRF Ξ(x) = (ξ1(x), . . . , ξm(x))T , m > 1, x ∈ A, is
accepted for a model of objective functions. Let Yi = F (xi), i = 1, . . . , k, denote
the vectors of objective function values evaluated in previous iterations, and Yok

be a reference point. The P-algorithm computes a current vector of the objectives
at the point

xk+1 = arg max
x∈A

P{Ξ(x) < Yok |Ξ(xi) = Yi, i = 1, . . . , k}. (3)

The main disadvantage of the standard implementation of the multi-objective
P-algorithm is its computational burden where the maximization problem (3) is
multimodal, and the computation of P(·) involves inverting large ill conditioned
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matrices. The computational burden in a single-objective case can be substan-
tially reduced by the partition based implementation as shown in [3]. We will
generalise that implementation, in the present paper, for the multi-objective
case.

Let the feasible region A be a hyper-rectangle. The algorithm is designed as a
sequence of subdivisions by means of the bisection. The selected hyper-rectangle is
bisected by a hyper-plane orthogonal to its longest edges. The values of F (x) are
computed at 2d−1 intersection points. A hyper-rectangle is selected for the sub-
division according to a criterion which is an approximation of (3). The criterion
of a hyper-rectangle is computed as the conditional improvement probability at
its center xc. The computational complexity for that probability is defined by the
complexity of the computations of the conditional mean μ(xc | ·) and conditional
variance σ2(xc | ·) of Ξ(xc). We approximate the conditional probability in (3) by
restricting information used in the definition of μ(xc | ·) and σ2(xc | ·) with func-
tion values at the vertices of the considered rectangle. Thus the computational
complexity of μ(·) and σ(·) in the proposed implementation is lower than in the
standard implementation thanks to the restriction of the involved information.
Further, the expressions of μ(·) and σ(·) are replaced with their asymptotic expres-
sions obtained by shrinking the hyper-rectangle to a point [3]:

μ(xc | · ) ∼ 1
|I|

∑

i∈I

Yi, σ2(xc | · ) ∼ V, (4)

where I denotes the set of indices of the vertices, and V denotes the hyper-
volume of the considered hyper-rectangle. These simplifications imply the fol-
lowing expression of the selection criterion

V

|| ∑
i∈I

Yi − Yok|| .

The high asymptotic convergence of the bi-objective version of that algorithm
is proved in [4]. The partition of the feasible region at the initial iterations is
quite uniform, thus it is rational with respect to the modest information about
the considered objective functions at the initial iterations [16]. The accumulated
information guides the selection of hyper-rectangles at later iterations towards
the set of efficient decisions. The computational complexity of the proposed algo-
rithm at a current iteration t can be evaluate similarly to the single-objective
optimization algorithm [20] since the same operations are performed to man-
age the accumulated data. Thus the computational complexity of iteration t is
T (n) = O(n × m × log(n × m)), where n is the number of evaluations of F (x)
made at previous iterations. The complexity of computations at a current t itera-
tion of the standard implementation of Bayesian algorithms, e.g. of the algorithm
of average improvement, is much higher than T (n) (here t = n). The iteration t
includes inverting of, generally speaking, m n × n matrices the time-complexity
of which is O(m × n3). Moreover, the inverting of the considered matrices is chal-
lenging since their condition numbers typically are very large. The other serious
computational complexity of a standard implementation is the maximization of
the average improvement which is a non-convex optimization problem.
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3 Comparison with the Standard Implementation of the
P-Algorithm

The proposed algorithm is a simplified version of its predecessor, i.e., of the
standard implementation of the P-algorithm. It is interesting to compare their
performance. The standard implementation is described in detail in [17] where
several test problems are solved to illustrate its performance. We use the same
test problems.

A non-convex problem, proposed in [9], is quite frequently used for testing
multi-objective algorithms; see e.g., [5]. The objective functions are

f1(x) = 1 − e− ∑d
i=1(xi−1/

√
d)2 ,

f2(x) = 1 − e− ∑d
i=1(xi+1/

√
d)2 , (5)

d = 2, and the feasible region is A : −4 ≤ x1, x2 ≤ 4. The next test problem
is composed of two Shekel functions which are frequently used for testing of
single-objective global optimization algorithms:

f1(x) = − 0.1
(0.1 + (x1 − 0.1)2 + 2(x2 − 0.1)2)

− 0.1
(0.14 + 20((x1 − 0.45)2 + (x2 − 0.55)2))

,

f2(x) = − 0.1
(0.15 + 40((x1 − 0.55)2 + (x2 − 0.45)2)

− 0.1
(0.1 + (x1 − 0.3)2 + (x2 − 0.95)2)

. (6)

The visualization of these test problems including graphs of the Pareto fronts
and sets of Pareto optimal decisions is presented, e.g. in [5,10].

Several metrics are used for the quantitative assessment of the precision of a
Pareto set approximation. For the comparison of the proposed implementation
of the P-algorithm with the standard one we apply the metrics which were used
in recent publications related to the standard implementation. The generational
distance (GD) is used to estimate the distance between the found approxima-
tion and the true Pareto front [5]. GD is computed as the maximum of distances
between the found non-dominated solutions and their closest neighbors from the
Pareto set. The epsilon indicator (EI) is a metric suggested in [21] which inte-
grates measures of the approximation precision and spread: it is the min max
distance between the Pareto front and the set of the found non-dominated solu-
tions

EI = max
1≤i≤K

min
1≤j≤N

||Zi − F ∗
j ||, (7)

where F ∗
j , j = 1, . . . , N , are the non-dominated solutions found by the considered

algorithm, and {Zi, i = 1, . . . ,K} is the set of points well representing the Pareto
set, i.e. Zi are sufficiently densely and uniformly distributed over the Pareto set.
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The algorithms were stopped after 100 computations of F (x). Although the
P-algorithm theoretically is deterministic, its version implemented in [17] is ran-
domised because of a stochastic maximization method used for (3). Therefore,
test problem were solved 100 times. We present the mean values and standard
deviations of the considered metrics from [10] in two columns of Table 1. The
proposed algorithm is deterministic; thus its results occupy single column for
each test problem. The results of the proposed algorithm for the test problem
(5) are even better than the results of the standard version of the P-algorithm.
However, the standard version outperforms the proposed algorithm in solving
(6). The set of optimal decisions of the latter problem consists of three disjoint
subsets, and the diameter of one of subsets is relatively small. A considerable
number of partitions of the feasible region was needed to indicate the latter
subset. The experimentally measured solution time was 8.6 ms for the proposed
algorithm, and 3.9 s for the algorithm of [17].

Table 1. Performance criteria of the standard and partition based implementations of
the P-algorithm for Problems (5) and (6)

Implementation Standard Partition based

Problem Problem (5) Problem (6) Problem (5) Problem (6)

NN 9.87 1.4 15.7 2.0 27 18

GD 0.015 0.0061 0.070 0.051 0.015 0.21

EI 0.20 0.034 0.13 0.053 0.092 0.25

4 Performance Evaluation on a Real World Problem

Quite many optimization problems in biotechnology can be characterized as
black-box expensive ones. For example, optimal design of bio-sensors and bio-
reactors requires solving optimization problems the objective functions of which
are defined by computer models of high complexity [1,2]. The micro bio-reactors
are computationally modeled by a two-compartment model based on reaction-
diffusion equations containing a nonlinear term related to the Michaelis-Menten
enzyme kinetics; we refer to [1,2] for the description and substantiation of the
model. The computation of one objective function value of such problems take
up to 10 min, and for some special cases possibly more. However, we are opti-
mistic about these challenges since the problems in question are low dimensional.

We consider an optimization problem related to the optimal design of a micro
bio-reactor, which well represents real world problems for which the proposed
algorithm is potentially appropriate. Specific technical aspects of the computer
model of the micro bio-reactor, and the substantiation of the objective functions
are addressed in [18].
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Fig. 1. Pareto front of the set of objec-
tive vectors computed by the proposed and
genetic algorithms. (Color figure online)

Optimal design of a micro bio-
reactor is formulated as a three-
objective optimization problem of
four variables. The objectives are: the
time of the reactions; the amount
of the substrate per volume unite
converted to the product; the total
amount of the enzyme used per vol-
ume unit of the reactor; first and third
objectives are minimized, and the sec-
ond one is maximized. The variables
are: two constructive parameters of
a bio-reactor, and the concentrations
of the enzyme and of the substrate.
The computation time depends on
the parameters of the bio-reactor; the
average time of computation of a sin-

gle value of the first objective function is 4.32 min (a computer with Intel Xeon
X5650 2.66 GHz processor was used). A long reaction time means that the bio-
reactor with such parameters is not appropriate; correspondingly, the simulation
was interrupted if it exceeded 10 min.

We demonstrate the performance of the proposed algorithm under the con-
ditions typical to a real world applications. The following optimization problem
is considered where F (x) is available as a function in C:

min
x∈A

F (x), F (x) = (f1(x), f2(x), f3(x))T ,

A = {x : −4 ≤ x1, x2 ≤ −3, −8 ≤ x3 ≤ −4, −5 ≤ x4 ≤ −1}. (8)

We focus here on black-box optimization without discussing its applied aspects.
The problem will be presented from the point of view of applied optimal designed
in the next paper co-authored with experts in biotechnology. The proposed algo-
rithm was applied to the solution of (8) with the predefined budget of evaluations
of F (x) equal to 1000; the solution time was 72 h and 14 min. The genetic algo-
rithm (GA) from the MATLAB Optimization Toolbox was also applied to the
solution of the considered problem. The following parameters of GA were chosen:
the population size was 50, the crossover fraction was 0.8, Pareto fraction was
0.35, and the other parameters were chosen as predefined in the Optimization
Toolbox. The termination condition of GA was the same: budget of the objec-
tive function evaluations equal to 1000. GA is a randomized algorithm, thus
results of a single run are not sufficiently reliable from the point of view of sta-
tistical testing. Indeed, the use of real world problems with expensive objective
functions for testing randomised algorithms is challenging especially where the
experimentation time is limited.

The Pareto front approximation computed by the proposed algorithm con-
sisted of 124 vectors, and the approximation computed by GA consisted of 15
vectors. None vector of the of first approximation was dominated by a vector of
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the second approximation. Only four vectors of the second approximation were
not dominated by the vectors of the first approximation. The hypervolume indi-
cators of both approximations were equal to 42.3 and 12.4 correspondingly. Thus
the proposed algorithm clearly outperforms GA. The non-dominated vectors (in
the commonly used physical units) of the union of both approximations are pre-
sented in Fig. 1 where circles denote the points of the first approximation, and
the red rectangles denote the points of the second one. This figure shows only
a general shape of the Pareto front. User oriented interfaces and visualization
methods are available to experts in biotechnology to aid selecting an appropriate
Pareto optimal decision; the advantages of visualising not only Pareto optimal
solutions but also Pareto optimal decisions are argued in [18].

The performance of the proposed method is appropriate for low dimensional
black-box expensive problems. Extensions to higher dimensionality can be chal-
lenging because of large number of computations of the objective function values
(2d−1) at a current iteration. We plan the investigation of the simplicial parti-
tion based Bayesian algorithms to cope with that challenge; note that such a
partition proved efficient in Lipschitzian optimization [11]. The hybridization
of the proposed global search algorithm with a local one seems promising. The
good performance of hybrids of the single-objective Bayesian algorithms with
local ones [19,20] gives hope that similar synergy of the global and local search
strategies will be achieved also in the multi-objective case.

5 Conclusions

A rectangular partition based implementation of a Bayesian multi-objective
method is proposed where the typical for Bayesian algorithms inherent com-
putational burden is avoided. The proposed algorithm is appropriate for solv-
ing practical problems characterized as expensive black-box problems of modest
dimensionality. The prospective directions of further research are: increasing
dimensionality of efficiently solvable problems, and studying efficiency of other
partition strategies.
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rectangular partition based global optimization algorithm. J. Global Optim. 71,
165–191 (2018)
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tion and decision visualization of batch stirred tank reactor based on spherical
catalyst particles. Nonlinear Anal. Model. Control 24(6), 1019–1033 (2019)
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