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Abstract. The paper considers global optimization problems with a
black-box objective function satisfying the Lipschitz condition. Efficient
algorithms for this class of problems require reliable estimates of the Lips-
chitz constant to be introduced. Various approaches have been proposed
to take into account both global and local properties of the objective
function. In particular, algorithms using local estimates of the Lipschitz
constant have shown their potential. The new approach presented in this
paper is based on simultaneous use of two estimates: one is substantially
larger than the other. The larger estimate ensures global convergence
and the smaller one reduces the total number of trials needed to find
the global optimizer. Results of numerical experiments on the random
sample of multidimensional functions demonstrate the efficiency of the
approach proposed by the authors.
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1 Introduction

The paper considers global optimization problems of the form

ϕ(y∗) = min {ϕ(y) : y ∈ D}, (1)

D =
{
y ∈ RN : ai ≤ yi ≤ bi, ai, bi ∈ R, 1 ≤ i ≤ N

}
, (2)

where the objective function is a black-box function and it is assumed to satisfy
the Lipschitz condition

|ϕ(y1) − ϕ(y2)| ≤ L ‖y1 − y2‖ , y1, y2 ∈ D,
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with the constant L, L < ∞, unknown a priori.
The assumption of the objective function to be Lipschitzian is typical of

many approaches to the development of the global optimization algorithms
[3,11,12,17]. Moreover, the adaptive estimate of the unknown Lipschitz con-
stant, based on the obtained search information, is one of the most important
problems being solved in these algorithms. The value of the Lipschitz constant
affects essentially the convergence rate of the global optimization algorithms.
Therefore, the issue of its correct estimate is so important. The underestima-
tion of the real value of this constant may result in losing the convergence of
the algorithm to the global solution. At the same time, if the value of the con-
stant estimate for the objective function is too large and does not match its
real behavior, this will slow down the convergence of the algorithm to the global
minimizer.

Several typical methods of adaptive estimation of the Lipschitz constant are
known:

– global estimation of the constant L in the whole search domain D [7,12,17].
– local estimations of the constants Li in different subdomains Di of the search

domain D [9,10,15].
– the choice of the estimates of the constant L from a set of possible values

[4,8,13].

Each of the above approaches has its own advantages and disadvantages.
For example, the use of the global estimate over the whole search domain can
slow down the convergence of the algorithm to the global minimizer. The use
of the local estimates to accelerate the convergence of the method requires an
adequate adjustment of the algorithm parameters in order to preserve the global
convergence.

In the present work, we consider a new algorithm that uses two global esti-
mates of the Lipschitz constant. One of the two estimates is much greater than
the other one. The larger estimate ensures global convergence and the smaller
one reduces the total number of trials needed to find the global optimizer. The
choice of one of the two estimates in the algorithm is performed adaptively during
the search phase.

A rigorous substantiation of the proposed approach goes beyond the present
initial publication and will be done in the forthcoming works. Here we present the
results of numerical experiments that clearly demonstrate the efficiency of the
new algorithm. Several hundred multiextremal test problems of various dimen-
sionalities have been solved in the course of numerical experiments.

2 Global Search Algorithm and Dimensionality
Reduction

The adaptation of the efficient algorithms that solve one-dimensional problems
to solve multidimensional problems is a typical method to construct global opti-
mization algorithms, see, for example, the diagonal partitions method in [13] or
the simplicial partitions method in [18].
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In this paper, we follow the approach based on the idea of reducing the dimen-
sion with the use of the Peano-Hilbert curves [16,17], which continuously and
unambiguously map the unit interval [0, 1] onto the N -dimensional cube D from
(2). By using this kind of mapping, it is possible to reduce the multidimensional
problem (1) to a univariate problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]},

where the function ϕ(y(x)) will satisfy a uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N

with the Hölder constant H linked to the Lipschitz constant L by the relation
H = 2L

√
N + 3 and y(x) is a Peano-Hilbert curve from [0, 1] onto D. Note that

theoretically the Peano-Hilbert curve y(x) is defined as a limit object. Therefore,
in practical implementation, only some approximation to the true space-filling
curve can be constructed. Some methods for constructing this type of approxi-
mations (called evolvents) are considered in [16,17]. In this case, the accuracy
of the evolvent approximation to the true curve y(x) depends on the density of
the evolvent m (which is a parameter for constructing the evolvent) and is of
the order of 2−m for each coordinate.

Let us call the process of computing a function value (including the con-
struction of the image y = y(x)) as a trial, and the pair {x, z = ϕ(y(x))} as the
outcome of the trial.

The Divide-The-Best global search algorithm used in this paper (according
to [17]) can be formulated as follows. The first two trials are executed at the
points y0 = y(0), y1 = y(1). The choice of the point yk+1, k ≥ 1, for the next
(k + 1)th trial is defined by the following rules.

1. Renumber the preimages of all the points yi = y(xi) from the trials already
performed by subscripts in the increasing order of their coordinates, i.e.

0 = x0 < x1 < · · · < xk = 1, (3)

and associate these with the values zi = ϕ(y(xi)), 0 ≤ i ≤ k, computed at
these points.

2. Compute the maximum absolute value of the first divided differences

M = max
1≤i≤k

|zi − zi−1|
Δi

,

where Δi = (xi − xi−1)
1/N and let

μ =
{

1, if M = 0,
M, if M �= 0.

(4)

3. For each interval (xi−1, xi), 1 ≤ i ≤ k, calculate the value R(i) called the
characteristic of the interval

R(i) = Δi +
(zi − zi−1)2

r2μ2Δi
− 2

zi + zi−1 − 2z∗

rμ
, (5)
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where
z∗ = min

0≤i≤k
zi (6)

and the real number r > 1 is a reliability parameter of the algorithm.
4. Select the interval (xt−1, xt) corresponding to the maximum characteristic

R(t) = max
1≤i≤k

R(i). (7)

5. Carry out the next trial at the point xk+1 ∈ (xt−1, xt) calculated using the
following formula

xk+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[ |zt − zt−1|
μ

]N

. (8)

The algorithm terminates if the condition Δt < ε is satisfied where t is from
(7), and ε > 0 is the predefined accuracy.

The theory of convergence of this algorithm is provided in [17]. The algorithm
can be efficiently parallelized for shared and distributed memory [6] and for
accelerators [1].

3 Algorithm with Dual Lipschitz Constant Estimates

The global search algorithm presented in the previous section is intended for
solving the multiextremal problems, in which the objective function satisfies the
Lipschitz condition. It is not necessary to define the value of the constant for
the algorithm convergence. The estimation of the constant is performed in the
course of global search based on available search information. According to the
theorem from [17], the sequence of the trial points {yk} will converge to the
global minimizer y∗ if the condition

rμ > 23−1/NL
√

N + 3 (9)

is satisfied. Thus, an appropriate choice of the parameter r from (5) allows using
the value (rμ)/(23−1/N

√
N + 3) as an estimate of the Lipschitz constant for the

objective function ϕ(y).
Satisfying the condition (9) will be guaranteed if we choose a large enough

value of the parameter r. However, in this case the method will perform a large
number of trials until the stop condition is satisfied. The choice of a small value
of the parameter r (that corresponds to the lower estimate of the Lipschitz
constant) would considerably reduce the number of trials but may violate the
convergence to the global extremum.

An approach, in which two estimates of the Lipschitz constant are used in
the rules of the algorithm, seems quite promising. This approach implies the use
in the algorithm of two parameters rglob and rloc, where rglob > rloc > 1. When
using the parameter rloc we shall deal with the smaller estimate of the Lipschitz
constant, and using the parameter rglob will correspond to the larger one.
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The rules of the algorithm with two estimates of the Lipschitz constant repro-
duce the ones of the global search algorithm completely except Rule 3 (the
computation of the characteristic) and Rule 4 (search for the interval with the
maximum characteristic).

The new rule for calculating the characteristic R(i) of the interval (xi−1, xi)
will consist of the following operations:

– Calculate the value Rglob(i) corresponding to the larger estimate of the Lip-
schitz constant

Rglob(i) = Δi +
(zi − zi−1)2

r2globμ
2Δi

− 2
zi + zi−1 − 2z∗

rglobμ
.

– Calculate the value Rloc(i) corresponding to the smaller estimate of the Lip-
schitz constant

Rloc(i) = Δi +
(zi − zi−1)2

r2locμ
2Δi

− 2
zi + zi−1 − 2z∗

rlocμ
.

– Determine the characteristic R(i) as

R(i) = max{ρRloc(i), Rglob(i)},where ρ =
(

1 − 1/rglob
1 − 1/rloc

)2

, (10)

The new rules for finding the interval with the maximum characteristic will
be as follows:

– Select the interval (xt−1, xt) corresponding to the maximum characteristic
R(t) = max1≤i≤k R(i).

– Fix the value r = rloc if ρRloc(t) > Rglob(t), otherwise fix r = rglob.
– Use this value of r in Rule 5 of the algorithm in the computing of the next

trial point.

This method for computing the characteristic can be substantiated as follows.
Each search iteration will yield an interval with the current minimum value z∗

from (6) at one of its boundaries. In the final phase of the search, this interval
will correspond to the interval containing the global minimum, i.e. it will be the
best one in terms of conducting further trials within it.

Let the current minimum value of z∗ from (6) be achieved at the left point
of the ith interval, i.e. z∗ = zi−1. As proven in [17], according to the rule (5) the
following inequality will be true:

R(i) ≥ Δi (1 − 1/r)2 .

Therefore, for the estimates of the characteristics Rloc(i) and Rglob(i) calculated
with different parameters rloc and rglob, the following relation will hold:

Δi (1 − 1/rglob)
2

> Δi (1 − 1/rloc)
2
.
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Thus, when choosing the largest of the characteristics in accordance with

R(i) = max{Rloc(i), Rglob(i)}

the characteristic Rglob(i) corresponding to the higher estimate of the Lipschitz
constant will be chosen; the lower estimate (which speeds up the process of
refining the current solution) will not be used. However, if we multiply the lower
estimate for the characteristic Rloc(i) by the coefficient ρ in accordance with
(10), then such lower estimates will be equal, thus the choice of the characteristic
Rloc(i) corresponding to the lower estimate of the Lipschitz constant will become
more likely.

4 Numerical Experiments

A numerical comparison of the algorithms was carried out by solving several
series of problems generated by the GKLS generator [5]. This generator of mul-
tiextremal functions is widely used to compare global optimization methods
(see, for example, [2,13,14]). In this study, six series each containing 100 prob-
lems of dimensions N = 3, 4, 5 were solved. For each dimension, Simple and
Hard problems were generated, differing in the size of the attraction regions for
local extremums and global extremum. The problem was considered solved if
the method conducted the trial at a point that was in the δ-neighborhood of the
global minimizer y∗, i.e.

∥
∥yk − y∗∥∥ < δ ‖b − a‖, where a and b are the boundaries

of the search domain D.
Each series of problems has been solved by the original global search algo-

rithm (GSA) and by the method with two estimates of the Lipschitz constant
(GSA-DL). The evolvent constructed using the parameter m = 10 was used for
the dimensionality reduction in both algorithms. The relative accuracy of the
solution search was δ = 0.01. The maximum allowable number of iterations per
problem was Kmax = 106.

The averaged numbers of iterations performed by the algorithms are pre-
sented in Table 1. For the GSA method the values of the parameter r = 4.8
when solving the problems of the Simple class and r = 5.6 when solving the
problems of the Hard class were used. These values are the minimum ones (with
the accuracy 0.1), at which all problems have been solved successfully. When
solving the problems from the above classes by the GSA-DL method, the value
of the parameter r specified above was selected for the upper estimate of the
Lipschitz constant, i.e. the value rglob = r was set, which was complemented by
the values rloc = 1.8, rloc = 2.1 and rloc = 2.4. The number of unsolved problems
is specified in brackets.
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Table 1. Average number of iterations

N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard

AGS 2444 5345 28415 77470 25220(1) 126138(4)

AGS-DL, rloc = 1.8 1372 2632 13273 37715 12702 94296(1)

AGS-DL, rloc = 2.1 1502 2805 14826 38843 15213 90792(2)

AGS-DL, rloc = 2.4 1567 2868 19447 40342 18239 106438(2)

(a) (b)

Fig. 1. Operational characteristics for GKLS Simple (a) and Hard (b) classes, N = 4.

(a) (b)

Fig. 2. Operational characteristics for GKLS Simple (a) and Hard (b) classes, N = 5.

The advantages of the GSA-DL algorithm over its prototype are also con-
firmed by the operational characteristics of the algorithms as well. Assume a
series of test problems to be solved. The results of solving the series can be pre-
sented by a function p(k) featuring the fraction of the total number of problems
solved in k iterations. Such a function will be called the operational characteristic
of the algorithm.

The operational characteristics for the GSA and GSA-DL methods obtained
when solving the Simple and Hard problem series with the dimensionalities
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N = 4 and N = 5 are presented in Figs. 1 and 2, respectively. The values of the
parameters r used for estimating the Lipschitz constant are given in the figures.

The lower curves in Figs. 1 and 2 feature the characteristics of the GSA
method whereas the upper ones, those of the GSA-DL. Such relative positions
of the curves show the algorithm with two estimates of the Lipschitz constant
is much faster on average when solving the problem series than the algorithm
using a single estimate of the constant. Note that to solve problems of all classes
(except for the Hard class at N = 5) the GSA-DL method requires about half as
many trials as the GSA. The deterioration of the results in the case of the Hard
class at N = 5 is explained by the complexity of this class’ functions, which
have a large attraction region of local minima and a narrow attraction region
of the global minimum. To correctly solve such problems, the GSA-DL method
often uses a higher estimate of the Lipschitz constant, thus reducing the speed
difference of the GSA and GSA-DL algorithms.
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