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Abstract. Multidimensional scaling (MDS) is one of the most popular
methods for a visual representation of multidimensional data. A novel
geometric interpretation of the stress function and multidimensional scal-
ing in general (Geometric MDS) has been proposed. Following this inter-
pretation, the step size and direction forward the minimum of the stress
function are found analytically for a separate point without reference to
the analytical expression of the stress function, numerical evaluation of
its derivatives and the linear search. It is proved theoretically that the
direction coincides with the steepest descent direction, and the analyti-
cally found step size guarantees the decrease of stress in this direction.
A strategy of application of the discovered option to minimize the stress
function is presented and examined. It is compared with SMACOF ver-
sion of MDS. The novel geometric approach will allow developing a new
class of algorithms to minimize MDS stress, including global optimiza-
tion and high-performance computing.
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1 Introduction

Recent approaches to minimize the stress in multidimensional scaling (MDS)
suggest wide possibilities for dimensionality reduction [1,2]. Recently, it finds
applications of various nature: face recognition [3], analysis of regional economic
development [4], image graininess characterization [5].

Suppose, we have a set X = {Xi = (xi1, . . . , xin), i = 1, . . . , m} of n-
dimensional data points (observations) Xi ∈ R

n, n � 3.
Dimensionality reduction and visualization requires estimating the coordi-

nates of new points Yi = (yi1, . . . , yid), i = 1, . . . ,m, in a lower-dimensional
space (d < n) by holding proximities δij between multidimensional points Xi

and Xj , i, j = 1, . . . , m, as much as possible. Proximity δij can be measured e.g.
by the distance between Xi and Xj .
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The input data for MDS consists of the symmetric m × m matrix D =
{dij , i, j = 1, . . . ,m} of proximities between pairs of points Xi and Xj . If the
Minkowski distance is used as the proximity, then

dij =

(
n∑

k=1

|xik − xjk|q
) 1

q

, 1 � i, j � m. (1)

If q = 1, then (1) defines the city-block or Manhattan distance. If q = 2, (1)
becomes the Euclidean distance.

MDS finds the coordinates of new points Yi representing Xi in a lower-
dimensional space R

d by minimizing the multimodal stress function. Consider
the raw stress function [6]:

S(Y1, . . . , Ym) =
m∑
i=1

m∑
j=i+1

(dij − d∗
ij)

2, (2)

where d∗
ij is the Euclidean distance between points Yi and Yj in a lower dimen-

sional space. In (2), other proximities may be used as well. The MDS-based
dimensionality reduction optimization problem may be formulated as follows:

min
Y1,...,Ym∈Rd

S(Y1, . . . , Ym). (3)

In case 1 � d < n, the stress function has many local minima, often. The
optimization problem (3) can be solved using well-known descent methods, e.g.
Quasi-Newton or conjugate gradient methods [7]. However, these algorithms
cannot guarantee to find a global minimum.

Various attempts to find the global minimum are suggested. However, they
are computational expensive and do not guarantee to find the global minimum,
too. This lead to the conclusion that the classical approaches [8–10] to minimize
the stress reached their limits in this sense. New viewpoint to the problem is
necessary, including its formulation and ways of solving.

In this paper, a novel geometric interpretation of the stress function and
multidimensional scaling has been proposed. It will allow developing a new class
of algorithms to minimize MDS stress, including global optimization and high-
performance computing. Denote this approach by Geometric MDS.

2 The Geometric Approach – Geometric MDS

A new approach, Geometric MDS, has been developed to minimize the stress
function (2). Suppose, we have m×m matrix D = {dij , i, j = 1, . . . ,m} of prox-
imities (e.g. distances) between n-dimensional points Xi = (xi1, . . . , xin), i =
1, . . . ,m. We aim to find two-dimensional points Yi = (yi1, ..., yid), i = 1, . . . ,m
by solving (3).

At first, let’s have some initial configuration of points Y1, . . . , Ym. Then, let’s
optimize the position of the particular point Yj when the position of remaining
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Fig. 1. An example of a single step of geometric method.

points Y1, . . . , Yj−1, Yj+1, . . . , Ym is fixed. In this case, we tend to minimize S(·)
in (3) by minimizing the so-called local stress function S∗(·) depending on Yj ,
only:

S∗(Yj) =
m∑
i=1
i�=j

⎛
⎝dij −

√√√√ d∑
k=1

(yik − yjk)
2

⎞
⎠

2

. (4)

Figure 1 illustrates an example, where m = 5, d = 2. The location of points
Y1, . . . , Ym and proximities dij , i, j = 1, . . . , m between points X1, . . . , Xm are
chosen such for better illustration of the idea. Position of point Y1 is optimized.
Y1 is denoted by Yj in Fig. 1 seeking for the better correspondence with notations
in (4). In the centre of each circle, we have a corresponding point Yi. Radius of
the i-th circle is equal to the proximity dij between the points Xi and Xj in
n-dimensional space. Point Aij lies on the line between Yi and Yj , i �= j, i.e.
vectors

−−−→
YiAij and

−−−→
AijYj are collinear. Denote a new position of Yj by Y ∗

j . Let
Y ∗
j be chosen so that

(a) vectors
−−−→
YiA

∗
ij and

−−−−→
A∗

ijY
∗
j are collinear, i �= j, (5)

(b) Y ∗
j =

1
m − 1

m∑
i=1
i�=j

Aij . (6)

We will analyse the value of the local stress function S∗(Y ∗
j ) and compare it

with the value S∗(Yj). According to (6), Y ∗
j is an average point of the points Aij

over i = 1 . . . m, i �= j. According to (5), when we make a step from Yj to Y ∗
j ,

we get new intersection points A∗
ij on circles that correspond to Yj , and these

points are on the line between Yi and Y ∗
j .
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Proposition 1. The gradient of local stress function S∗(·) is as follows:

∇S∗|Yj
=

(
2

m∑
i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk) , k = 1, . . . , d

)
.

The proof follows from (4) by differentiating S∗(·).
Proposition 2. The step direction from Yj to Y ∗

j corresponds to the anti-
gradient of the function S∗(·) at the point Yj:

Y ∗
j = Yj − 1

2(m − 1)
∇S∗|Yj

. (7)

Proof

Y ∗
j − Yj =

(
1

m − 1

m∑
i=1
i�=j

(
dij (yjk − yik)√∑d

l=1 (yil − yjl)
2

+ yik − yjk

)
, k = 1, . . . , d

)

=
(

− 1
2(m − 1)

2
m∑
i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk) , k = 1, . . . , d

)

= − ∇S∗|Yj

2(m − 1)
. �

Proposition 3. Size of a step from Yj to Y ∗
j is equal to

||∇S∗|Yj
||

2(m − 1)
=

1
m − 1

√√√√√√ d∑
k=1

⎛
⎜⎝ m∑

i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk)

⎞
⎟⎠

2

.

Proposition 4. Let Yj does not match to any local extreme point of the function
S∗(·). If Y ∗

j is chosen by (6), then a single step from Yj to Y ∗
j reduces a local

stress S∗(·):
S∗(Y ∗

j ) < S∗(Yj).

Proof. Let’s have following functions:

S∗(Yj) =
m∑
i=1
i�=j

d2(Aij , Yj), (8)

S∗
A(Y ∗

j ) =
m∑
i=1
i�=j

d2(Aij , Y
∗
j ), S∗(Y ∗

j ) =
m∑
i=1
i�=j

d2(A∗
ij , Y

∗
j ). (9)

where d(· , ·) is the Euclidean distance between two points.
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Figure 1 illustrates a case, where position of point Yj is optimized to Y ∗
j .

It is enough to show that

S∗(Y ∗
j ) < S∗

A(Y ∗
j ) < S∗(Yj).

Firstly, we show that S∗
A(Y ∗

j ) < S∗(Yj). Define Aij = (aij1, . . . , aijd). From
(8), it follows that the gradient of S∗(Yj) is equal to

∇S∗(Yj) =
( m∑

i=1
i�=j

2(aijk − yjk), k = 1, . . . , d
)
.

At the local minimum Yj of function S∗(Yj), the condition ∇S∗(Yj) =
(0, . . . , 0) is valid, and then we have a unique solution of Yj :

(m − 1)yjk −
m∑
i=1
i�=j

aijk = 0, k = 1, . . . , d =⇒ (m − 1)Yj −
m∑
i=1
i�=j

Aij = 0.

We see that the solution is defined as Y ∗
j , which is given in (6). Such Y ∗

j

corresponds to minimized local stress S∗
A(Y ∗

j ). Therefore, S∗
A(Y ∗

j ) < S∗(Yj).
For the proof that S∗(Y ∗

j ) < S∗
A(Y ∗

j ), it is enough to show that

d(Y ∗
j , A∗

ij) < d(Y ∗
j , Aij), i = 1, . . . ,m, i �= j.

Using the triangle inequality, we have a valid condition

d(Y ∗
i , Y ∗

j ) = d(Y ∗
i , A∗

ij) + d(A∗
ij , Y

∗
j ) < d(Y ∗

i , Aij) + d(Aij , Y
∗
j ).

Since the radius of the i-th circle satisfies condition d(Y ∗
i , A∗

ij) = d(Y ∗
i , Aij),

then d(Y ∗
j , A∗

ij) < d(Y ∗
j , Aij). �

Proposition 5. The value of the local stress function S∗(·) (4) will converge to
a local minimum when repeating steps (7) and Yj := Y ∗

j .

Proposition 6. Let Yj does not match to any local extreme point of the function
S∗(·). Movement of any projected point by the geometric method reduces the
stress (2) of MDS: if Y ∗

j is chosen by (6), then the stress function S(·), defined
by (2), decreases:

S(Y1, . . . , Yj−1, Y
∗
j , Yj+1, . . . , Ym) < S(Y1, . . . , Yj−1, Yj , Yj+1, . . . , Ym).

Proof. Before the step from Yj to Y ∗
j , we have following stress function

S(Y1, . . . , Yj−1, Yj , Yj+1, . . . , Ym) = S∗(Yj) +
m∑
i=1
i�=j

m∑
k=i+1
k �=j

(dik − d∗
ik)

2.

Since S∗(Y ∗
j ) < S∗(Yj) and

∑m
i=1
i�=j

∑m
k=i+1
k �=j

(dik − d∗
ik)

2 remain constant after the

step, the stress function S(·) is reduced after the step. �
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3 Multimodality of the Local Stress Function
of Geometric MDS

Proposition 7. Function f(δ) = S∗
(
Yj − δ

∇S∗|Yj

||∇S∗|Yj
||
)
is not unimodal, where

δ is a step size.

Proof. Consider a dataset X of six five-dimensional points and their Euclidean
distances as proximities:

X1 = (3.142, 2.718, 1.618, 1.202, 0.2078), X2 = (16.462, 2.718, 1.618, 1.202,
0.2078), X3 = (3.142, 7.648, 1.618, 1.202, 0.2078), X4 = (3.142, 2.718, 4.818,
1.202, 0.2078), X5 = (3.142, 2.718, 1.618, 4.952, 0.2078), X6 = (3.142, 2.718,
1.618, 1.202, 4.0278).

Let the values of Y (d = 2) be such:
Y1 = (18.723,−1.880), Y2 = (19.025, 6.247), Y3 = (12.147, 11.208), Y4 =

(11.338, 2.585), Y5 = (3.909, 3.546), Y6 = (10.560,−4.654). Consider point Y1

for its moving to a new position Y ∗
1 according to the anti-gradient direction by

(7). See Fig. 2 for details. The local stress function reaches its two different local
minima depending on the step δ. �

Fig. 2. Example of the anti-gradient search

4 Experiments with Geometric MDS

Simple realizations of Geometric MDS are based on fixing some initial positions
of points Yi = (yi1, . . . , yid), i = 1, . . . ,m (at random, using principal component
analysis, etc.), and further changing the positions of Yj (once by (7) or multistep
descent by several steps using (7)) in consecutive order from j = 1 to j = m
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many times till some stop condition is met: e.g. number of runs from j = 1 to
j = m reaches some limit or the decrease of stress function S(·) becomes less
than some small constant after two consecutive runs.

In the experiments, minimization of stress S(·) was performed by consecu-
tive one-step (not multistep) changing of positions of points Y1, . . . , Ym many
times. 1000 random sets X of 30 points (m = 30) were generated inside the 4-
dimensional unit hypercube (n = 4) and represented in d = 2 and d = 3 spaces.
For comparison, the same data sets were analysed by multidimensional scaling
based on stress S(·) minimization using majorization (SMACOF) that is realized
in R [11,12]. Both Geometric MDS and SMACOF used the same initial values
of points Y1, . . . , Ym obtained by Torgerson Scaling [13] realized in R [14].

When d = 2, Geometric MDS and SMACOF gave the same results (stress
values) in 997 cases, however the average value of S(·) is obtained a bit better
by Geometric MDS and equals 13.7570 as compared with 13.7613 by SMACOF.
When d = 3, Geometric MDS gave the same results in 922 cases. Average values
of S(·) are almost the same: 2.9789 (Geometric MDS) and 2.9787 (SMACOF).
These preliminary results are very promising, because the evaluated efficiency of
the Geometric MDS and the SMACOF is the same, however Geometric MDS is
much easier realizable and interpreted.

5 Conclusions

A novel geometric interpretation of the stress function and multidimensional
scaling in general (Geometric MDS) has been proposed. Following this interpre-
tation, the step size and direction forward the minimum of the stress function
are found analytically for a separate point in a projected space without refer-
ence to the analytical expression of the stress function, numerical evaluation of
its derivatives and the linear search. It is proved theoretically that the direction
coincides with the steepest descent direction, and the analytically found step
size guarantees the decrease of stress in this direction.

The discovered option to minimize the stress function was examined on the
simple realization of the Geometric MDS. According to the experiments, the
realization of Geometric MDS gives very similar results as SMACOF [11]. The
results are a bit better often.

In fact, the proposed algorithm is some version of the coordinate-wise descent
using d-coordinate blocks. For the objective functions with curved valleys, the
convergence of those algorithms normally is slow. However, the geometric app-
roach guarantees the decrease of stress in every step, where the direction and
size of the step is determined analytically. In the realisation of Geometric MDS,
one step of descent is done only for a separate block taking into account that
the most decrease in stress is in the first steps, usually. Despite the fact that the
Geometric MDS uses the simplest stress function, there is no need for its normal-
ization depending on the number m of data points and the scale of proximities
dij . These are the reasons that a good performance of the proposed algorithm
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can be expected as compared with other (e.g. majorization) algorithms. More-
over, more sophisticated realizations of ideas presented in this paper should be
developed.
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