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Preface

This volume, edited by Yaroslav D. Sergeyev and Dmitri E. Kvasov, contains selected
peer-reviewed papers from the Third Triennial International Conference and Summer
School on Numerical Computations: Theory and Algorithms (NUMTA 2019) held in
Le Castella – Isola Capo Rizzuto (Crotone), Italy, during June 15–21, 2019.
The NUMTA 2019 conference has continued the previous successful editions of
NUMTA that took place in 2013 and 2016 in Italy in the beautiful Calabria region.

NUMTA 2019 was organized by the University of Calabria, Department of Com-
puter Engineering, Modeling, Electronics and Systems Science, Italy, in cooperation
with the Society for Industrial and Applied Mathematics (SIAM), USA. This edition
had the high patronage of the municipality of Crotone – the city of Pythagoras and his
followers, the Pythagoreans. In fact, Pythagoras established the first Pythagorean
community in this city in the 6th century B.C. It was a very special feeling for the
participants of NUMTA 2019 to visit these holy, for any mathematician, places with a
conference dedicated to numerical mathematics.

The goal of the NUMTA series of conferences is to create a multidisciplinary round
table for an open discussion on numerical modeling nature by using traditional and
emerging computational paradigms. Participants of the NUMTA 2019 conference
discussed multiple aspects of numerical computations and modeling starting from
foundations and philosophy of mathematics and computer science to advanced
numerical techniques. New technological challenges and fundamental ideas from
theoretical computer science, machine learning, linguistic, logic, set theory, and phi-
losophy met the requirements, as well as fresh, new applications from physics,
chemistry, biology, and economy.

Researchers from both theoretical and applied sciences were invited to use this
excellent opportunity to exchange ideas with leading scientists from different research
fields. Papers discussing new computational paradigms, relations with foundations of
mathematics, and their impact on natural sciences were particularly solicited. Special
attention during the conference was dedicated to numerical optimization techniques
and a variety of issues related to the theory and practice of the usage of infinities and
infinitesimals in numerical computations. In particular, there were a substantial number
of talks dedicated to a new promising methodology allowing one to execute numerical
computations with finite, infinite, and infinitesimal numbers on a new type of a
computational device – the Infinity Computer patented in the EU, Russia, and the USA.

This edition of the NUMTA conference was dedicated to the 80th birthday of
Professor Roman Strongin. For the past 50 years Roman Strongin has been a leader and
an innovator in Global Optimization, an important field of Numerical Analysis having
numerous real-life applications. His book on Global Optimization, published in 1978,
was one of the first in the world on this subject. Now it is a classic and has been used by
many as their first introduction and continued inspiration for Global Optimization.
Since that time, Roman has published numerous books and more than 400 papers in



several scientific fields and has been rewarded with many national and international
honors including the President of the Russian Federation Prize. For decades Roman
served as Dean, First Vice-Rector, and Rector of the famous Lobachevsky State
University of Nizhny Novgorod. Since 2008 he has been President of this university.
He is also Chairman of the Council of Presidents of Russian Universities,
Vice-President of the Union of the Rectors of Russian Universities, and Chairman
of the Public Chamber of the Nizhny Novgorod Region.

We are proud to inform you that 200 researchers from the following 30 countries
participated at the NUMTA 2019 conference: Argentina, Bulgaria, Canada, China,
Czech Republic, Estonia, Finland, France, Germany, Greece, India, Iran, Italy, Japan,
Kazakhstan, Latvia, Lithuania, the Netherlands, Philippines, Portugal, Romania,
Russia, Saudi Arabia, South Korea, Spain, Switzerland, Thailand, Ukraine, the UK,
and the USA.

The following plenary lecturers shared their achievements with the NUMTA 2019
participants:

• Louis D’Alotto, USA: “Infinite games on finite graphs using Grossone”
• Renato De Leone, Italy: “Recent advances on the use of Grossone in optimization

and regularization problems”
• Kalyanmoy Deb, USA: “Karush-Kuhn-Tucker proximity measure for convergence

of real-parameter single and multi-criterion optimization”
• Luca Formaggia, Italy: “Numerical modeling of flow in fractured porous media and

fault reactivation”
• Jan Hesthaven, Switzerland: “Precision algorithms”
• Francesca Mazzia, Italy: “Numerical differentiation on the Infinity Computer and

applications for solving ODEs and approximating functions”
• Michael Vrahatis, Greece: “Generalizations of the intermediate value theorem for

approximations of fixed points and zeroes of continuous functions”
• Anatoly Zhigljavsky, UK: “Uniformly distributed sequences and space-filling”

Moreover, the following tutorials were presented during the conference:

• Roberto Natalini, Italy: “Vector kinetic approximations to fluid-dynamics
equations”

• Yaroslav Sergeyev, Italy and Russia: “Grossone-based Infinity Computing with
numerical infinities and infinitesimals”

• Vassili Toropov, UK: “Design optimization techniques for industrial applications:
Challenges and progress”

These proceedings of NUMTA 2019 consist of two volumes: Part I and Part II. The
book you have in your hands is the second part containing peer-reviewed papers
chosen from the general stream, plenary lectures, and small special sessions of
NUMTA 2019. Papers carefully selected from big special streams and sessions held
during the conference have been collected in the Part I of the NUMTA 2019
proceedings.
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This volume contains 19 long papers and 32 short papers that were accepted for
publication after a thorough peer review process (required up to three review rounds for
some manuscripts) by the members of the NUMTA 2019 Program Committee and
independent reviewers. This volume also contains the paper of the winner (Lorenzo
Fiaschi, Pisa, Italy) of the Springer Young Researcher Prize for the best NUMTA 2019
presentation made by a young scientist. The support of the Springer LNCS editorial
staff and the sponsorship of the Young Researcher Prize by Springer are greatly
appreciated.

The editors express their gratitude to institutions that have offered their generous
support to the international conference NUMTA 2019. This support was essential for
the success of this event:

– University of Calabria (Italy)
– Department of Computer Engineering, Modeling, Electronics and Systems Science

of the University of Calabria (Italy)
– Italian National Group for Scientific Computation of the National Institute for

Advanced Mathematics F. Severi (Italy)
– Institute of High Performance Computing and Networking of the National Research

Council (Italy)
– International Association for Mathematics and Computers in Simulation
– International Society of Global Optimization

The editors thank all the participants for their dedication to the success of NUMTA
2019 and are grateful to the reviewers for their valuable work. Many thanks go to Maria
Chiara Nasso from the University of Calabria, Italy, for her kind support in the tech-
nical editing of this volume.

The next Triennial International Conference and Summer School NUMTA
“Numerical Computations: Theory and Algorithms” will take place in 2022 in Italy.
The editors of this volume, who are chairs of the NUMTA Scientific and Organizing
Committees, respectively, invite all the participants of NUMTA 2019, and readers of
this book, to submit their high-quality results to the next edition of this wonderful
event.

October 2019 Yaroslav D. Sergeyev
Dmitri E. Kvasov
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Numerical Algorithms for the Parametric
Continuation of Stiff ODEs Deriving
from the Modeling of Combustion

with Detailed Chemical Mechanisms
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Abstract. The use of detailed chemical mechanisms is becoming increas-
ingly necessary during the actual transition of energy production from
fossil to renewable fuels. Indeed, the modern renewable fuels are charac-
terized by a composition more complex than traditional fossil fuels due to
the variability of the properties of the primary source, i.e. biomass. The
parametric continuation can be a formidable tool to study the behavior of
these new fuels allowing to promptly assess equilibrium conditions vary-
ing the main operative parameters. However, parametric continuation is
a very computationally demanding procedure, both for the number of ele-
mentary operations needed and for the memory requirements. Actually,
only very recently some approaches that allow affording this computation
with chemical mechanisms composed of hundreds of chemical species and
thousands of reactions have been proposed [1,2,37]. Starting from the pro-
cedure presented in [1], this paper illustrates further improvements of key
steps that usually represents a bottleneck for the effective computation of
parametric continuations and for the identification of bifurcation points.

Keywords: Bifurcation of combustion systems · Parametric
continuation · Detailed mechanisms

Nomenclature

α continuation parameter
λ eigenvalues
f right-hand side of system given by Eqs. (1–2)

Jf Jacobian matrix
x state vector
ψ test functions
ρ density, kg m−3

τ residence time, s
a real part of eigenvalues
b complex part of eigenvalues
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cp constant pressure specific heat, J kg−1 K−1

h mass specific enthalpy, J kg−1

Ns number of chemical species
Nnz number of non zero element in a matrix

r net production rate, kmol s−1

T temperature, K
t time, s

V volume of the reactor, m3

W molecular weight, kg kmol−1

Y mass fraction

Subscripts

F Fold Bifurcation
f feed conditions
H Hopf Bifurcation
j species index

1 Introduction

The increasing energy needs and the current environmental challenges (such
as actions to contrast the climate change and reduce pollutant emissions) are
driving the growth of the demand for low-carbon (alternative to petroleum)
fuels [10]. Bio-fuels are one of the most promising low-carbon energy source,
but many aspects of these fuels must be deepened ranging from the economic
and environmental impact of their production (f.i. the annual greenhouse gas
reductions that can be obtained depends on how they are produced) [10,44] and
combustion aspects such as ignition, oxidation, and pollutant emissions [44].
Computer simulations and chemical kinetic studies alongside experiments are
fundamental tools to carry out investigations on these combustion aspects [44].

Particularly, the studies of the combustion processes in a Perfectly Stirred
Reactor (PSR) are important topics in chemical kinetic because they are frequently
employed to develop reliable kinetics mechanisms or model fuels (e.g. [23,30,43]),
and to validate reduced kinetic mechanisms (e.g. [3,20,24–27,37,42]). The bifurca-
tion analysis and the parametric continuation technique are the tools of choice for
studying the dynamical behavior of these chemical reactive systems because they
permit to understand the phenomenology of combustion chemistry and to iden-
tify reactor instabilities, multiple steady-states and optimum operating conditions
[20,22].

These analysis tools are very popular since the pioneering work of Uppal,
Ray and Poore [40,41]. Consequently, they are widely discussed in the scientific
literature [5,14,15,21,35] and several parametric continuation and bifurcation
analysis software are available such as AUTO [9] and MATCONT [8].
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However, despite the popularity, these tools are rarely applied to systems
involving large detailed chemical mechanisms (consisting of hundreds of species
and thousands of reactions) because of the computational complexity and effort
that arise in these models [1,22]. Indeed, in the past, complete bifurcation anal-
yses (both bifurcation curves and bifurcation points are computed) have been
successfully conducted only for some elementary fuels like hydrogen [17,31] or
methane (31 species and 177 reactions) [32,33] by using ad-hoc software for ther-
modynamic, transport and kinetic data. Only in the past few years, some signif-
icant progress have been made. Shan and Lu [36] presented a bifurcation analy-
sis tool based on computer code that automatically generate mechanism-specific
subroutines for analytical Jacobian evaluation from mechanisms described in
CHEMKIN format, and its application to the bifurcation analysis of methane
(53 species and 325 reactions), DME (55 species and 290 reactions) combustion
in PSR [36,37]. Acampora and coworkers developed a very efficient parametric
continuation and bifurcation analysis module (rely on the fully numerical eval-
uation of the Jacobians) able to compute one-parameter bifurcation curves and
identifying Fold and Hopf bifurcation points starting from a classical predictor-
corrector continuation algorithm [1,4]. Some basic elements of this module have
been specifically designed to overcome the difficulties in dealing with reaction
mechanisms with several hundreds of species and thousands of chemical reactions
[1]. Cantera [13] libraries have been integrated into the module for the manage-
ment of kinetic, thermodynamic and transport data. The algorithm was applied
to the study of methane (53 species and 325 reactions), Jet-A (482 species and
19,072 reactions) [1] and n-dodecane (451 species and 17,848) [3] combustion
in a PSR. Kooshkbaghy et al. [20] have obtained a tool able to compute both
one-parameter and two-parameter bifurcation curves by coupling AUTO-07p [9]
and Chemkin [18]. It was used to the study of n-heptane oxidation describer by
using a reduced mechanism consisting of 149 species in 669 reactions.

Despite, all of these significant achievements, there are also still aspects that
must be deepened in this topic. Particularly, the detection of bifurcation points
appears to be crucial. Therefore, the present work discusses possible improve-
ments on the formulation of the test functions for the identification of saddle-
node bifurcation points starting from the approach proposed in [1,4], Then, the
proposed tool was applied to the complete bifurcation analysis of three different
reaction mechanisms, with increasing number of species and reactions in order
to illustrate the improvements suggested.

2 Mathematical Problem Setup

The problem that must be faced in this paper consists of the complete bifurca-
tion analysis of a combustion process (modelled by using large detailed reaction
mechanisms) in a PSR. The governing equations of an unsteady adiabatic con-
stant pressure and constant volume PSR can be written as [11]:
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dYj

dt
=

Yj,f − Yj

τ
+

Wjrj
ρV

, j = 1, 2, . . . , Ns (1)

dT

dt
=

Ns∑

j=1

(
Yj,f (hj,f − hj)

cpτ
− hjWjrj

ρV cp

)
(2)

The system of Eqs. 1–2 can be recast in the form:

dx
dt

= f(x, α) (3)

where x = [Y1, . . . , YNs
, T ] is the state vector, f is the right-hand side of the

system given by Eqs. (1–2) and α is a system parameter (e.g. residence time,
pressure, temperature of feeding reactant mixture, etc.).

The bifurcation analysis of the system Eq. (3) consists of determining the
steady state solutions (equilibrium points or simply the equilibria) as function of
the parameter α and locating the bifurcation points, i.e. the equilibria in which
qualitative changes in the dynamics of the system occur (for further details
see [21]).

Computing equilibria is equivalent to find the curve, called equilibrium curve,
implicitly defined by:

�(X) = 0, � : R
n+1 → R

n (4)

with n = NS + 1, X = (x, α) and �(X) = f(x, α).
The Eq. (4) is an example of an algebraic continuation problem. Its numerical

solution is a sequence of points:

X1,X2, . . . , (5)

approximating the equilibrium curve with desired accuracy [21]. This sequence
starts from a known equilibrium point that can be found at some fixed parameter
value by numerical integration. This continuation problem is solved by adopting
the predictor-corrector (PCM) method introduced in [1,4]:

Xi
predictor−−−−−−→ X̃i+1

corrector−−−−−−→ Xi+1

However, Eq. (4) does not define a well-posed mathematical problem because
the number of equations is lower than the number of the unknowns. Therefore,
an extra scalar equation is appended to the system (4) in order to obtain a
well-posed problem:

F (X) =

[
� (X)
p (X)

]
= 0 (6)

p represents the equation of a hyperplane passing through X̃i+1 that is orthog-
onal to the normalized vector vi tangent to the equilibrium curve in the point
Xi [19,21]:

〈X − X̃i+1,vi〉 = 0 (7)
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Locating the bifurcation points is addressed by studying the eigenvalues λ =
a + ib of the Jacobian matrix:

Jf =
∂f(x, α)

∂x
(8)

For system (3) only two different bifurcations can be detected: the Fold bifur-
cation also knows as Saddle-Node bifurcation or Turning Point, associated with
the existence of a null eigenvalue and the Hopf (also known as Andronov-Hopf )
bifurcation, corresponding to the presence of a pair of purely imaginary eigen-
values [21].

The ordinary approach adopted to detect these bifurcations is based on the
monitoring of two functions, one for Fold and one for Hopf bifurcation [35], called
test functions (ψ), defined in such a way as to change sign across the bifurcation
point [14].

3 Test Functions

The choice of the test functions is the main topic of this work. They can be
simply formulated based on the definition of the bifurcation points [21,35] to be
zero when:

– a real eigenvalue is zero - Fold:

ψF (X) =
n∏

i=1

(λi(X)) (9)

– a pair of eigenvalues is purely complex - Hopf:

ψH(X) =
∏

1≤i≤j≤n

(λi(X) + λj(X)) (10)

To avoid to directly deal with the eigenvalues of the Jacobian matrix Eq. (8),
these functions are usually rewritten by considering that the product of the eigen-
values of a matrix is equal to its determinant [12] and the Stéphanos theorem [21]:

ψF (X) = det(Jf (X)) (11)
ψH(X) = det(2Jf (X) � I) (12)

where I is the identity matrix and � is the symbol of the bialternate matrix
product (for further details see [14]).
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This form of the test functions Eqs. (11)–(12) is popular but it is not imme-
diately suitable for the problem at hand. Indeed, as it is discussed in [1], two
issues can arise when large reaction mechanisms are adopted. First of all, in
both test functions the determinant may be too large to be represented by
conventional floating-point values (overflow). Furthermore, the test function
Eq. (12) introduces a limit on the number of species in the reaction mechanism
because the resulting matrix of the bialternate product, a square matrix with
size m = 1

2n(n − 1) and Nnz = O(n3) nonzero elements [14] (n = Ns + 1), may
require more memory than available to be stored. For instance, using Matlab in
a 64-bit system environment, (8 + 8)Nnz + 8(m + 1) bytes are needed to store
this matrix in memory as sparse while only 8n2 bytes are required to store the
matrix Jf in memory as dense.

Despite the first issue can be faced by rescaling the elements of the Jacobian
matrix, the most effective approach to overcome both issues is to introduce new
test functions.

The test function for the fold bifurcation Eq. (11) can be rewritten by con-
sidering the LUP decomposition of the Jacobian matrix Jf = P−1LU, as:

ψF (X) = (−1)s
n∏

i=1

uii (13)

Indeed, it results that:

– det
(
P−1

)
= (−1)s, where s is the number of row permutations performed

during LUP factorization;
– det(L) = 1 if the Doolittle’s factorization algorithm [34] is adopted;
– det(U) =

∏n
i=1 uii, being det(U) a upper triangular matrix (uii are the diag-

onal elements of the matrix U).

Since a bifurcation point is detected if:

ψ(Xi)ψ(Xi+1) < 0 (14)

only the sign of the test function is important. To locate the bifurcation point
with the desired accuracy, the procedure suggested in [1] is considered. Therefore,
the test function Eq. (13) can be modified as suggested in [2,35]:

ψF (X) = (−1)s
n∏

i=1

sign(uii) (15)

The procedure to compute this test function is described in Algorithm 1. The
pseudocode is written by following the conventions reported in [6]. The matrix
operations are not explicitly described by for cycles but they have interpretations
similar to those in Matlab.
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Algorithm 1. Test function for Fold bifurcations based on LUP decomposition
1: procedure sgndetLUP(A)
2: n ← rows[A]
3: sgndet ← 1
4: for i ← 1 to n − 1 do
5: cp ← 1
6: ndx ← findmax(abs(A[i..n, i]))
7: if ndx �= 1 then
8: cp ← −1
9: pivot ← A[i, i..n]

10: A[i, i..n] ← A[ndx + (i − 1), i..n]
11: A[ndx + (i − 1), i..n] ← pivot
12: end if
13: j ← i + 1
14: AV ← A[j..n, i]/A[i, i]
15: A[j..n, j..n] ← A[j..n, j..n] − AV · A[i, j..n]
16: sgndet ← sgndet · cp· sgn(A[i, i])
17: end for
18: sgndet ← sgndet· sgn(A[n, n])
19: return sgndet
20: end procedure

In the Algorithm 1, findmax, abs and sgn are the functions used to find the
index of the greatest values in a vector, the absolute value and the sign function,
respectively.

As suggested by [16] to mitigate the memory requirements of the test func-
tions for computing Hopf bifurcations (Eq. 12), it is possible to exploit the spar-
sity pattern of the bialternate product matrix. The pattern of the bialternate
product matrix obtained by considering the reduction of Jf to Hessenberg form
appears particularly interesting to this purpose (see Fig. 1) [16].

The structure in Fig. 1 is exploited to compute directly the sign of the deter-
minant of the bialternate product matrix in Eq. (12) without needing to store
in memory the whole matrix. The procedure here proposed is described in
Algorithm 2, where the functions hess, sqrt and findmin are used for: com-
puting the Hessenberg form of the input matrix, for computing the square root
and for finding the index of the lowest value in a vector, respectively. nzsdH
finds the row index of the non-zero element below the first sub-diagonal of the
bialternate product matrix (see Fig. 1). From the pattern in Fig. 1 it is deduced
that the index of the row containing this element of the matrix follows the
numerical sequence defined in [38] (2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16 . . . ).
perseq(i, p) is a procedure based on the numerical sequence defined in [39] that
returns the element i-th of the simple periodic sequence with period p (formula
x = 1 + mod(i, p)). The function bprod2AI is described in the Algorithm 3.
In the Algorithm 3, the function round rounds to nearest decimal or integer
and the function times performs the element-wise multiplication (Hadamard
product).
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Algorithm 2. Test function for Hopf bifurcations based on LUP decomposition
1: procedure sgndetBaLUP(A)
2: H ← hess(A)

3: nH ← rows[H]
4: nBH ← nH · (nH − 1)/2

5: Ak ← bprod2AI(H, 1, 1..nBH)
6: nzv ← nzsdH(〈1, 2, . . . , nBH − 1〉)
7: maxd ← findmin(abs(nzv − nBH))

8: Mnr ← nzv[maxd] − maxd
9: Allocate rectangular matrix M of size Mnr × nBH
10: nrr ← 0

11: nfr ← 1

12: ndxnz old ← 0
13: sgndet ← 1
14: for k ← 1 to nBH − 1 do

15: cp ← 1

16: ndxbnda ← max(〈k + 1, ndxnza old+ 1〉)
17: nzr ← min(〈nzv[k], nBH〉)
18: ndxbndb ← max(〈k + 1, nzr〉)
19: if ndxbnda ≤ ndxbndb then

20: Akadd ← bprod2AI(H,ndxbnda : ndxbndb, k : nBH)

21: nr ad ← rows[Akadd]
22: vec ← 〈nfr − nrr, . . . , nfr + nr ad − 1〉
23: nfr ← nfr + nr ad
24: insrows ← perseq(vec[nrr + 1..length(vec)] − 1,Mnr)

25: subM [insrows, k..nBH] = Akadd
26: nrr ← nrr + nr ad

27: ndxnza old ← ndxbndb
28: else

29: vec ← 〈nfr − nrr, . . . , nfr − 1〉
30: end if
31: actrows ← perseq(vec − 1,Mnr)

32: Ap ← 〈Ak[1],M [actrows, k]〉
33: ndxp ← findmax(abs(Ap))

34: if ndxp �= 1 then
35: cp ← −1
36: pivot ← Ak

37: Ak ← M [actrows[ndxp − 1], k..nBH]

38: M [actrows[ndxp − 1], k..nBH] ← pivot
39: end if

40: if Ak[1] �= 0 then
41: MM ← M [actrows, k]/Ak[1]

42: ndxnz ← findnonzero(Ak)

43: M [actrows, k + ndxnz − 1] ← M [actrows, k + ndxnz − 1] − MM ·
Ak[1..length(Ak), ndxnz]

44: end if

45: sgndet ← sgndet · cp· sgn(Ak[1])
46: Ak ← M [actrows[1], k + 1..length(M)]

47: nrr ← nrr − 1
48: end for

49: sgndet ← sgndet· sgn(Ak)

50: return sgndet
51: end procedure
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Fig. 1. Sparsity pattern in the bialternate product matrix produced by the Hessenberg
form of a dense square matrix of dimension n = 10.

Algorithm 3. Compute the bialternate matrix product 2A � I

1: procedure bprod2AI(H, r, c)
2: A ← 2 · H
3: Define I Identity matrix of the same size of A
4: i ← round(sqrt(2 · r) + 1)
5: k ← r − times((i − 2), (i − 1)/2)
6: j ← round(sqrt(2 · c) + 1)
7: l ← c − times((j − 2), (j − 1)/2)
8: crc ← (times(A[i, j], I[k, l]) − times(A[i, l], I[k, j]) + times(I[i, j], A[k, l]) −

times(I[i, l], A[k, j]))/2
9: end procedure

The proposed method reduces drastically the memory requirement of the
test function Eq. 12. For example, a Jacobian matrix of size 812 leads to a mem-
ory requirement to store the result of the bialternate product of about 8 GB
(storing it as a sparse matrix) while it requires only 2 GB if the test function
Eq. 12 is computed by using the Algorithm 2. Despite this remarkable result,
this approach is not effective in terms of CPU cost.

To find a computationally attractive algorithm in terms of computational
cost for chemical systems involving large detailed reaction mechanisms, it is
needed to exploit the eigenvalues. Therefore, a different Hopf test function can
be defined as done in [1]:

ψH(X) =
∏

1≤i≤j≤n

sign(λi(X) + λj(X)) (16)

The test function Eq. 16 force to compute the eigenvalues of the Jacobian
matrix but it has low memory requirements (only the vector containing the
eigenvalues must be stored in addition to the Jacobian matrix) and it has
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better performance in terms of CPU cost as shown in [1]. In Fig. 2 is reported
a comparison between the Algorithm 2 and the test function Eq. 16. The tests
are conducted on random generated dense matrices in Matlab computing envi-
ronment by adopting a laptop PC with an Intel i7-8550U with 16 GB of RAM
memory. All the results are obtained by averaging the results coming from 10
runs of the code in the same conditions.
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Fig. 2. CPU times (in seconds) required for computing Hopf test function by using
Algorithm 2 and Eq. 16.

The results reported in Fig. 2 clearly show that the function based on Eq. 16
increase significantly the performance of the bifurcation analysis. A further
advantage of this approach is that the same eigenvalues can be promptly adopted
for the location of the Fold bifurcations [1]:

ψF (X) =
n∏

i=1

sign(λi(X)) (17)

4 Study Case

This study case consists in the computation and analysis of the equilibrium
curve, the stability of equilibrium points and the bifurcation behavior of a stoi-
chiometric premixed n-heptane/air mixture in PSR (Eqs. 1 and 2). This case was
similar to that studied by Kooshkbaghi et al. [20] but in their paper the authors
performed the location of bifurcation point only by using a reduced reaction
mechanism. Therefore, the purpose of this study is to demonstrate the ability of
the algorithm to deal with a reaction mechanism with hundreds of species and
thousands of reactions.
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The chemical kinetic mechanism for the study of the oxidation of n-heptane in
flow reactors, shock tubes and rapid compression machines developed by Curran
et al. [7,28,29] (Version 3) is used in order to stress the method in conditions
relevant for practical applications. This mechanism consists of 654 species and
2827 reactions.

The residence time is chosen as the bifurcation parameter. The reactor oper-
ates at 1013250 Pa (10 atm) and it is fed with a fuel-air mixture at 700 K. Air
is defined as 21% O2 and 79% N2. The complete analysis is obtained in about
31 min of execution time on the same laptop described in the previous paragraph
and the results are reported in Fig. 3.
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Fig. 3. Reactor temperature versus residence time. The dashed lines identify the unsta-
ble branches. The plot on the right is a magnification of the region of first ignition.

The bifurcation diagram in figure Fig. 3 shows three stable branches: a weakly
or non-reacting branch, a cool flame branch, and a strongly burning branch. The
cool flame branch is typical of hydrocarbons displaying multi-stage ignitions and
the Negative Temperature Coefficient (NTC) regime [20]. This branch is broken
by an unstable branch between two Hopf bifurcations revealing the existence of
oscillatory states. Similar results are reported in [20] for the pressure of 101325
Pa (1 atm).

5 Conclusions

This work deepens some aspects of locating the bifurcation points in systems
of equations arising from the adoption of large, detailed chemical mechanisms.
It introduces a new algorithm able to reduce the memory requirement of the
bialternate product matrix by exploiting the sparse structure of this matrix.
However, it is shown that the execution time of this algorithm is not affordable
when it is adopted repetitively in the analysis of equilibrium points. Instead, by
dealing with the direct evaluation of eigenvalues when a large detailed reaction
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mechanism is considered becomes effective both in terms of computational effort
and memory requirements. Finally, the bifurcation analysis method proposed is
used to study the bifurcation behavior of a n-heptane/air mixture in a PSR with
an entire detailed mechanism, demonstrating the effectiveness of the approach.
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Abstract. This paper investigates the dynamics of the hybrid evolution-
ary optimization algorithm, Differential Evolution-Simulated Annealing
(DESA) algorithm with the binomial crossover and SA-like selection
operators. A detailed mathematical framework of the operators of the
DESA/rand/1/bin algorithm is provided to characterize the behavior
of the DESA-population system. In DESA, the SA-like selection opera-
tion provides a nonzero probability of accepting a deteriorated solution
that decreases with a sufficient number of generations. This paper shows
that the system defined by the DESA-population is stable. Moreover, the
DESA-population system time constant, learning and momentum rates
are dependent on the value of the crossover constant and the probability
of accepting deterioration in the quality of the objective function.

Keywords: Differential evolution - simulated annealing · Stability
analysis · Lyapunov’s theorem

1 Introduction

Differential Evolution (DE) [1] is one of the best genetic types of Evolutionary
Algorithms (EAs) [2,3] for solving problems with the real-valued variables from
diverse areas of science and technology, engineering, and economic [4]. From a
theoretical point of view, the combination of the search properties of stochastic
algorithms in the development of a hybrid algorithm that is equally applicable
and has searching ability and power to reach the optimal solution is of impor-
tance to many in the growing population of machine-learning researchers. Also,
the analysis of increasingly many areas of application generate data requires
theory and robust methods that consistently find the optimal fit to the data.
Furthermore, there is also a great need for methods that can run with min-
imal need for manual human input. Only a number of theoretical studies on
the DE-population include time complexity [5], dynamical behavior [6–10] and
convergence properties [11–14].

Whether or not an annealed version of DE or a combination of Simulated
Annealing (SA) [15] and DE is of practical use can contribute to the growth of
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DE algorithm [16]. Indeed, developing the DESA algorithm [17] for fitting high-
dimensional functions was a worthy topic for several reasons. Despite already
promising results, DE is still in its infancy and can most probably be improved.
Hence, theoretical analysis of DE and its hybrid is also necessary to understand
its search process, to detect the allowable ranges of its control parameters, and to
find problem classes in which a given set of parameters will perform successfully
or will fail [4].

There is therefore a need for methods that robustly obtain the optimal fit
to the data. Stochastic nature-inspired meta-heuristics optimization algorithms
[1,18–21] have been the interest of a community of engineers due to their sim-
plicity and adaptability in solving real-life problems. On the other hand, deter-
ministic mathematical programming methods [22–26] are actively studied in the
academe due to their interesting theoretical convergence properties. In a study
done in [24], results show that both stochastic nature-inspired meta-heuristics
and deterministic global optimization methods are competitive and surpass each
other in dependence on the available budget of function evaluations.

Theoretical analysis of the EA and its convergence analysis has been an
important research topic in the evolutionary community. Markovian stochastic
process [27–31] and global random search [32,33] are two theoretical frameworks
that have been used to model the evolutionary process. Despite some theoretical
analysis of the DE behavior, the theory of DE is still behind the empirical studies.

In this paper, we investigate the stability of the DESA algorithm, a DE based
algorithm with the SA-like selection operator. Section 2 gives a detailed algorith-
mic framework of the binomial crossover and SA-like selection components of the
DESA algorithm. Section 3 provides the computations of the mean and variance
of the DESA-population as it goes through a number of mutations, crossovers
and selections. Section 4 shows that the system defined by the DESA-population
is stable. We also establish that an estimate of the DESA-population system time
constant can be expressed as γ−1

β . Finally, the learning rate and momentum rate
of DESA is compared with those of the classical DE algorithm.

2 The DESA Algorithm

Differential Evolution-Simulated Annealing (DESA) optimization algorithm [17]
was developed as an optimization algorithm for high dimensional functions. The
combination is done by incorporating a SA-like selection criterion in a DE frame-
work to form the DESA algorithm. DESA has been used in several applications
[34–36]. The objective function to be minimized is f(�x), �x = (x1, . . . , xD) ∈ RD

with D number of parameters, and the feasible solution Φ = ΠD
j=1[xjmin

, xjmax
],

where xjmin
and xjmax

are the lower and upper bounds of the parameter values,
respectively.
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2.1 The Implementation of the DESA Algorithms

The mathematical framework of the DESA algorithm are detailed as follows:

(1) Initialization: Generate an initial population denoted by �x(0) = (xi,j,0) for
i = 1, . . . , Np individuals; j = 1, . . . , D parameters; and, let the number of
generation g ← 0. This initial population is generated by assigning random
values in the search space to the variables of every solution.

(2) Reproduction: Generate a trial population �y(g) from the current popula-
tion �x(g).

(a) Mutation: Generate a mutant population from �x(g) by a mutation oper-
ator, denoted by �v(g). The binomial mutation operator, DE/rand/1/bin,
is given by

�v(g) = xr1 + F (xr2 − xr3) (1)

where F ∈ [0, 2], a constant; while xr1, xr2 and xr3 are distinct and
randomly chosen from the current population �x(g) = (xi,j,g), for i =
1, . . . , Np individuals, and j = 1, . . . , D parameters.

(b) Crossover : Generate a trial population �y(g) from �x(g) and �v(g) by a
crossover operator, denoted by �u(g). Let �y(g) ← �u(g). The crossover
operator is given by,

�ui,g =
{

�vi,g = xr1 + F (xr2 − xr3) if rand(0, 1) ≤ CR,
�xi,g otherwise (2)

where F ∈ [0, 2], and CR ∈ [0, 1].
For the binomial crossover we let �ui,g = binomial crossover(�vi,g, �xi,g), for
i = 1, . . . , NP .

(3) Selection: Generate a new population �z(g) from �y(g) by a selection oper-
ator, denoted by �xi,g+1. Let �z(g) ← �xi,g+1. The SA-like selection operator
is implemented as

�xi,g+1 =

⎧⎨
⎩

�ui,g if f(�ui,g) < f(�xi,g)
or [f(�ui,g) ≥ f(�xi,g)] ∧ [rand(0, 1) ≤ βi,g];

�xi,g otherwise
(3)

where

βi,g = exp
[
−f(�ui,g) − f(�xi,g)

kT

]
(4)

is expected to attain a smaller value in (0, 1). T > 0 starts high and kT
gradually decreases according to the parameter 0 < k < 1. For the SA-like
selection we let �xi,g+1 = SA-like selection(�ui,g, �xi,g), for i = 1, . . . , NP .

(4) Termination: If the termination condition is satisfied, then stop; else, let
g + 1 ← g and �x(g) ← �z(g); then go to Step 2.
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2.2 The Binomial Crossover Operator of DESA Algorithm

For the DESA algorithm, we use the DE/rand/1/bin [16] mutation. Let xr1, xr2

and xr3 be three trial solutions picked-up randomly from population xri, i =
1, . . . , Np. Here, we assume that the trial solutions are drawn with replacement
such that xr1, xr2, and xr3 are independent of each other. Thus, P [(xri = xl) ∩
(xrj = xk)] = P (xri = xl)P (xrj = xk) where i, j = 1, 2, 3 and k, l = 1, . . . , Np
and i �= j. Hence, from the DE/rand/1/bin mutation operator in (1), DESA
may choose �vi,g with probability (wp) CR. Consequently, we have

�ui,g =
{

�vi,g = xi + F (xj − xk) if rand(0, 1) ≤ CR, wp CR
�xi,g otherwise, wp 1-CR.

(5)

2.3 The SA-like Selection Operator of DESA Algorithm

With the SA-like selection of DESA algorithm, we now compute the expected
value of the trial solution um corresponding to the target solution xm. Using
(3), let α be equal to the true probability of the event that f(�um) <
f(�xm) which is mutually exclusive from the event that f(�um) ≥ f(�xm).
with probability equal to 1 − α. Also, P (rand[0, 1] < β) = β. Hence,
P [f(�um) ≥ f(�xm) ∩ (rand[0, 1] < β)] = (1 − α)β. So, the probabilities to the
mutually exclusive and exhaustive events as follows:

�xi,g+1 =

⎧⎨
⎩

�ui,g if f(�ui,g) < f(�xi,g) wp α
or f(�ui,g) ≥ f(�xi,g) ∧ rand[0, 1] ≤ βi, wp (1 − α)β

�xi,g otherwise, wp 1 − [α + β − αβ].
(6)

If the trial vector �ui,g has the lower value of the fitness function f , it will sur-
vive to the population of the next generation; otherwise, it is subjected to the
Metropolis Criterion as done in SA [15].

DESA algorithm incorporates a typical SA-like selection mechanism that
conditionally accepts an inferior solution to the next generation. When β = 0,
(6) assumes the DE selection process such that

�xi,g+1 =
{

�ui,g wp α
�xi,g otherwise, wp 1 − α.

(7)

By the independence of the binomial crossover and SA-like selection operators
of DESA, we have the following probability assignments:

�xi,g+1 =
{

�ui,g wp (α + β − αβ)CR
�xi,g wp 1 − (α + β − αβ)CR.

(8)

For ease of notation, let γβ = (α + β − αβ)CR denotes the probability of
accepting poor solutions in DESA where β is non-zero. Thus,

�xi,g+1 =
{

�ui,g wp γβ

�xi,g wp 1 − γβ .
(9)
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2.4 The Mean and Variance of the DESA-population

The mean or the expected value of the mth individual in the next DESA-
population, denoted as E(xm,g+1)DESA, is computed as

E [(xm,g+1)DESA] = (1 − γβ)xm + γβμx (10)

where μx = 1
Np

∑Np
m=1 xm, the mean of the current population with m =

1, . . . , Np. Similarly, E(x2
m,g+1)DESA is given by

E
[
(x2

m,g+1)DESA

]
= (1 − γβ)x2

m + γβ

[
(2F 2 + 1)σ2

x + μ2
x

]
. (11)

Therefore, the variance of the DESA-population is given by

V ar(xm,g+1)DESA = γβ(1 − γβ)(xm − μx)2 + γβ

[
(2F 2 + 1)σ2

x

]
. (12)

Again, with β = 0, the probabilities to events of the DESA-population in (6)
becomes a classical DE-population. Hence, we have

E(xm,g+1)DE = (1 − γ0)xm + γ0μx, (13)

E(x2
m,g+1)DE = (1 − γ0)x2

m + γ0(2F 2 + 1)V ar(x) + γ0μ
2
x, (14)

and
V ar(xm,g+1)DE = γ0(1 − γ0)(xm − μx)2 + γ0(2F 2 + 1)σ2

x (15)

where γ0 = αCR.

In DESA, the probability of accepting a set of bad solution, β, decreases expo-
nentially with the badness of the move, which is the amount f(g +1)−f(g). For
some sufficient number of generations, or when xm = xgmax

for m = 1, 2, . . . , Np,
or x1 = . . . = xm = μx, then σ2

x = 0, the DESA algorithm converges to the opti-
mal solution. Hence, f(xm) − f(xj) becomes negligible ∀m, j ∈ {1, . . . , Np}.
DESA-population attains convergence to the optimal solution.

3 Stability Analysis of the DESA Population System

For this section, we show the stability of the DESA population system as shown
in [8,9]. In order to validate the analysis, we make certain assumptions, which
are enumerated below:

(i) The objective function f(x) is assumed to be of class C2, derivatives f (1),
f (2), . . . , f (k) exist and are continuous [37]. In addition, let f(x) be Lipschitz
continuous [38], and unimodal in the region of interest.

(ii) The population of Np individual trial solutions are located very close to each
other. That is, the parameter vectors gather in a compact cluster around the
global optimum during the later stages of the search and especially when
the scaling factor F = 0.5 [39,40].
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(iii) Dynamics is modeled assuming the vectors as search-agents moving in con-
tinuous time.

(iv) Assume that the mutation and crossover of DESA occur in unit time to
give rise to offsprings. In the SA-like selection of individuals, �xm is replaced
by �um if the f(�um) < f(�xm) or f(�um) ≥ f(�xm) ∧ rand[0, 1] < β.

Theorem 1 Velocity of an individual point, Xm, in DESA system. If
DESA-population may be modeled as a continuous-time dynamic system, then
the expected value of the velocity of an individual point on the fitness landscape
may be given as:

E

(
dxm

dt

)
= −k

8
γβ

{
(2F 2 + 1)σ2

x + (μx − xm)2
}

f ′(xm) +
1
2
γβ(μx − xm) (16)

where γβ = (α + β − αβ)CR, α = P [f(�um) < f(�xm)], β = P [rand(0, 1) ≤ β],
0 < CR < 1 is a crossover constant operator, μx and σ2

x are the mean and
variance of xm,m = 1, 2, ..., Np, respectively.

Proof. Let us assume that mutation and crossover occur in unit time to give
rise to offspring. In DESA’s selection, xm is replaced by �um if f(�xm) > f(�um)
or [f(�xm) ≤ f(�um) ∧ rand[0, 1] < β]. This decision making is performed using
Heaviside’s unit step function [41], which is defined as follows:

u(p) =
{

1 p ≥ 0
0 otherwise.

(17)

Hence,
dxm

dt
= u

[
−f ′(xm)

dxm

dt

]
(um − xm). (18)

Now, we replace the unit step function by logistic function: u(p) =
limk→∞ 1

1+e−kp . For the analysis, take a reasonable value of k to get an approxi-
mate value of u(p) which is given by u(p) ≈ 1

1+e−kp . Now, with a very small value
of p and by neglecting higher order terms, we obtain e−kp ≈ 1 − kp. Therefore,

u(p) ≈ 1
1 + e−kp

≈ 1
2 − kp

=
1
2

(
1 − kp

2

)−1

. (19)

Also implying that,

u(p) ≈ 1
2

+
k

4
p. (20)

Now, the DESA-population has a small divergence [8]. Therefore, um − xm is
not very large, and as

∣∣dxm

dt

∣∣ is either 0 or |um − xm|. This ensures that
∣∣dxm

dt

∣∣ is
small. Also, we have assumed that fitness landscape has a moderate slope. That
is, f ′(xm) is also small which in turn suggests that

∣∣f ′(xm)dxm

dt

∣∣ is small. Thus,
from (18) we get, dxm

dt =
[
1
2 − k

4f ′(xm)
]
(um − xm). Hence,

dxm

dt
=

1
2 (um − xm)

1 + k
4f ′(xm)(um − xm)

. (21)
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Since
∣∣k
4f ′(xm)(um − xm)

∣∣ is small, we have

[
1 +

k

4
f ′(xm)(um − xm)

]−1

≈ 1 − k

4
f ′(xm)(um − xm). (22)

From (21) we get

dxm

dt
= −k

8
(um − xm)2f ′(xm) +

(um − xm)
2

. (23)

Now, um is a random variable. Therefore, dxm

dt which is a function of um is also
a random variable. So, we may compute its expected value as follows:

E(
dxm

dt
) = −k

8
f ′(xm)E(um − xm)2 +

1
2
E(um − xm). (24)

This implies that

E(
dxm

dt
) = −k

8
f ′(xm)

[
E(u2

m) + x2
m − 2xmE(um)

]
+

1
2

[E(um) − xm] . (25)

Now, substitute the values of E(um) and E(u2
m) from (10) and (11), respectively.

Then, set μx = 1
Np

∑NP
m=1 xm and σ2

x = V ar(x) to obtain the expression for the
expected value given in (16). This completes the proof.

Theorem 2 Velocity of the Centroid of DESA system. Let μx =
1

Np

∑Np
m=1 xm denotes the centroid of all points of the current population, μf ′ =

1
Np

∑Np
m=1 f ′(xm) be the average slope of the fitness landscape, and εm = μx−xm

denotes the deviation of an individual from this centroid. Then, the expected
velocity of the centroid of the population is given by

E

(
dμx

dt

)
= −k

8
γβ(2F 2 + 1)σ2

xμf ′ − k

8
γβ

(
1

Np

Np∑
m=1

ε2mf ′(μx + εm)

)
(26)

Proof. Since,

μx =
1

Np

Np∑
i=1

xi =
1

Np

Np∑
m=1

xm, (27)

we may now solve for dμx

dt as follows:

dμx

dt
=

d

dt

(
1

Np

Np∑
m=1

xm

)
=

1
Np

Np∑
m=1

dxm

dt
. (28)

Getting expected value of its derivative with respect to time t (generation g)
gives

E

(
dμx

dt

)
= E

(
1

Np

Np∑
m=1

dxm

dt

)
=

1
Np

Np∑
m=1

E

(
dxm

dt

)
. (29)
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Substituting the value of E
(

dxm

dt

)
from (16), we obtain

E

(
dμx

dt

)
=

1
Np

Np∑
m=1

(
−k

8
γβ

{
(2F 2 + 1)σ2

x + ε2
}

f ′(xm) +
1
2
γβ · ε

)
(30)

where εm = μx − xm denotes the deviation of an individual from the centroid.
Hence,

E

(
dμx

dt

)
= −k

8
γβ

(
1

Np

Np∑
m=1

f ′(xm)
[
(2F 2 + 1)σ2

x + ε2
])

+ 0 (31)

since the sum of all deviations from the mean is zero. Hence,

E

(
dμx

dt

)
= −k

8
γβ · fμ′

[
(2F 2 + 1)σ2

x

] − k

8
γβ

(
1

Np

Np∑
m=1

ε2f ′(xm)

)
(32)

where fμ′ = 1
Np

∑Np
m=1 f ′(xm). Resetting xm = μx −εm gives the desired expres-

sion in (26). This completes the proof.

As done in [8], to study the stability of DESA algorithm, we model DESA
algorithm as an autonomous control system. Here, each population member xm

is a state variable of the control system. For the DESA-population, the expected
value of the velocity of an individual point on the fitness landscape is given
in (16).

Assuming the DESA-population to be concentrated into a small neigh-
borhood around an optimum in a flatter portion of the function, we have
|f ′(xm)| � 1. Hence, the equation can be written as,

E

(
dxm

dt

)
=

1
2
γβ(μx − xm) for m = 1, 2, . . . , Np. (33)

Using (27) we now rewrite the above expectation as

E

(
dxm

dt

)
=

1
2
γβ

(
1

Np

Np∑
i=1

xi − xm

)
for i = 1, 2, . . . , Np. (34)

Hence, (34) represents Np number of simultaneous equations:

E

(
dx1

dt

)
=

1
2
γβ

(
1

Np

Np∑
i=1

xi − x1

)
; (35)

...

E

(
dxNp

dt

)
=

1
2
γβ

(
1

Np

Np∑
i=1

xi − x2

)
for i = 1, 2, . . . , Np. (36)
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So, we may now represent them using this matrix notation:
⎡
⎢⎢⎢⎢⎣

E
(

dx1
dt

)
E

(
dx2
dt

)
...

E
(

dxNp

dt

)

⎤
⎥⎥⎥⎥⎦ =

1
2
γβ

⎡
⎢⎢⎢⎣

1
Np − 1 1

Np . . . 1
Np

1
Np

1
Np − 1 . . . 1

Np
...

...
. . .

...
1

Np
1

Np . . . 1
Np − 1

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

x1

x2

...
xNp

⎤
⎥⎥⎥⎦ (37)

The above matrix equation is of the form
[
E

(
d�x
dt

)]
= A [�x], where �x =

[x1, x2, . . . , xNp]
T is the set of state variables and

A =
1
2
γβ

⎡
⎢⎢⎢⎣

1
Np − 1 1

Np . . . 1
Np

1
Np

1
Np − 1 . . . 1

Np
...

...
. . .

...
1

Np
1

Np . . . 1
Np − 1

⎤
⎥⎥⎥⎦ . (38)

The eigenvalues of the system-matrix A are those of λ satifying det [λI − A] = 0,
where I is the identity matrix of order Np. Now, det [λI − A] = 0 implies that

det

⎡
⎢⎢⎢⎢⎣

2
γβ

λ − 1
Np + 1 − 1

Np . . . − 1
Np

− 1
Np

2
γβ

λ − 1
Np + 1 . . . − 1

Np

...
...

. . .
...

− 1
Np − 1

Np . . . 2
γβ

λ − 1
Np + 1

⎤
⎥⎥⎥⎥⎦ = 0. (39)

After doing simple algebraic operations on the rows of the determinant in LHS
of (39) we get,

λ
(
λ +

γβ

2

)Np−1

= 0, (40)

which is the characteristic equation of matrix A. Hence, we get the system eigen-
values as: λ = 0,−γβ

2 , . . . ,−γβ

2 . Since one eigenvalue is zero, the system is not
asymptotically stable and must have a DC component in the output.

Theorem 3. The DESA-population dynamics system is asymptotically stable.

Proof. Recall that in the SA-like selection in DESA algorithm, γβ = (α + β −
αβ)CR > 0 since the probability of accepting bad solutions β is greater than
zero. Now, in (40), λ + γβ

2 = 0. This implies that γβ = −2λ > 0, only if λ < 0.
Hence, we may argue that the system eigenvalues: λ < 0,−γβ

2 , . . . ,−γβ

2 satisfy
(40). This completes the proof.

Theorem 4. The DESA-population system,

E

(
dxm

dt

)
=

1
2
γβ

(
1

Np

Np∑
i=1

xi − xm

)
for i = 1, 2, . . . , Np, (41)

is stable in the sense of Lyapunov.
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Proof. We are assuming the DESA-population is located very close to optima.
So, (41) holds true in such a region where the value of the gradient is negli-
gibly small. Hence, a condition for an equilibrium point is E

(
dxm

dt

)
= 0 [42].

We consider the case where the DESA-population is confined within a small
neighborhood of an isolated optimum and over the entire population value of
the gradient is minimal. In this case, the preferred equilibrium point should be
the optimum itself. With time there is no change in values of state variables
after they hit the optimum. Now, since E

(
dxm

dt

)
= 0, then xm = 1

Np

∑Np
j=1 xj =

μx for j = 1, . . . , Np. This completes the proof.

This is possible only if all of the state variables are equal in value. In case of a
smooth, unimodal fitness landscape, the solution vectors generally crowd into a
small neighborhood surrounding the optimum. Thus, during the later stages of
the search, the equilibrium point xe is identical to the optimum, and population
members are expected not to change any further, and thus this point should
satisfy the condition x1 = . . . = xNp = xe.

Now, we examine the stability of the solution vectors very near to such an
optimum point of the search space. First, we define the Lyapunov’s Energy func-
tion V as follows:

V (x1, . . . , xNp, t) =
Np∑
i=1

(xi − μx)2. (42)

Observe that V , the sum of the squared differences of each individual from
the centroid, is always positive except the equilibrium, where it becomes zero.
V is positive definite with respect to equilibrium [42]. In addition, we note that
V = Np(σ2

x). Differentiating (42) with respect to time and getting expectations,
we get

E

(
dV

dt

)
= 2

Np∑
m=1

(xm − μx)
[
E

(
dxm

dt

)
− E

(
dμx

dt

)]
(43)

From (25) we get, E
(

dxm

dt

)
= 1

2γβ (μx − xm) and

E

(
dμx

dt

)
= E

[
d

dt

(
1

Np

Np∑
i=1

xi

)]
=

1
Np

E

(
Np∑
i=1

dxi

dt

)
= 0. (44)

Putting these expected values in (43), we get

E

(
dV

dt

)
= μV ′ = −γβ

Np∑
i=1

(xi − μx)2 . (45)

It is clear that μV ′ = 0 when x1 = x2 = . . . = xNp = xe and is negative other-
wise, since γβ > 0. Hence, μV ′ is a negative definite with respect to equilibrium
point. Therefore, V is positive definite and μV ′ is negative definite, satisfying
Lyapunov’s stability theorem.
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Theorem 5. An estimate of the system time-constant of DESA is γ−1
β .

Proof. Using determinant of the population system in (39) the Lyapunov’s
energy function in (42) is written as V

−μV ′ = 1
γβ

where V
−μV ′ is the average

value of time rate of change of energy function. Let μV denotes the average of
the energy function, V , when the process be carried out repeatedly for same
initial conditions and parameter values. Similarly, the time rate of change of
the average is denoted as μV ′ . We assume that the runs of the algorithm that
the process is time invariant. Hence, −E(μV ′)μV = γ−1

β which implies that

μV = V0 exp
(
−t γ−1

β

)
where V0 is the initial value of V. Now, define a time-

constant for the system as the time interval in which the energy function reduces
to e−1 part of its initial value. Denoting this time-constant by T and putting
μV = e−1V0, and t = T in (45) gives time-constant T = γ−1

β .

4 The Learning Rate and Momentum
of DESA-population

From (16) we may write,

E

(
dxm

dt

)
= −ηDESAf ′(xm) + τDESA, (46)

where ηDESA = k
8γβ

[
(2F 2 + 1)V ar(x) + (μx − xm)2

]
and τDESA = 1

2γβ(μx −
xm). The classical gradient descent search algorithm is given by the following
continuous-time dynamics in single dimension [43]:

dθ

dt
= −ηG + τ (47)

where η is the learning rate and τ is the momentum.

E

(
dμx

dt

)
= −k

8
γβ(2F 2 + 1)V ar(x)f ′

av − γβ

(
1
N

Np∑
m=1

ε2mf(μx + εm)

)
(48)

The resemblance of (46) and (47) suggests that, the dynamics of DESA uses
some kind of estimation for the gradient of the objective function, f ′(xm). In
Eq. (48), −ηDESAf ′(xm) term on the RHS is responsible for moving along the
direction of the negative gradient, whereas τDESA represents a component of
velocity of a trial solution towards the centroid of the population. Clearly, this
individual xm is very near to an optimum, when f ′(xm) → 0,

E

(
dxm

dt

)
≈ τDESA =

1
2
γβ(μx − xm). (49)

Now, if the population converges towards the optimum, (μx −xm) tends to zero
and E

(
dxm

dt

) → 0. Thus, once reaching the optimum, the average velocity of the
population members approaches zero, V ar(x) → 0, μx − xm → 0, and εm → 0.
We get E

(
dxm

dt

) → 0 in (49), and E
(

dμx

dt

)
→ 0.
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4.1 Comparison of Learning Rate and Momentum Rate of de
and DESA

We compare the classical DE and DESA algorithms with respect to the learning
rate η and the momentum rate τ .

We compute the relative difference of DE and DESA as:
∣∣∣ηDE−ηDESA

ηDE

∣∣∣. With
γβ = (α + β − αβ)CR. The learning rates are given by

ηDESA =
k

8
(α + β − αβ)CR

[
(2F 2 + 1)V ar(x) + (μx − xm)2

]
(50)

and
ηDE =

k

8
CR

[
(2F 2 + 1)V ar(x) + (μx − xm)2

]
, (51)

respectively. Hence,
∣∣∣∣ηDE − ηDESA

ηDE

∣∣∣∣ =
∣∣∣∣CR − (α + β − αβ)CR

CR

∣∣∣∣ = (1 − α)(1 − β).

Thus, the relative difference in learning rate of DE and DESA approaches 0, if
either α or β approaches 1. It approaches 1, otherwise.

Similarly, we compute the relative difference in momentum rates of DE and
DESA as

∣∣∣∣τDE − τDESA

τDE

∣∣∣∣ =
∣∣∣∣
1
2CR(μx − xm) − 1

2 (α + β − αβ)CR(μx − xm)
1
2CR(μx − xm)

∣∣∣∣ . (52)

Therefore, the relative difference (change) in momentum rates is also (1 − α)
(1 − β) which also approaches 0, if either α or β approaches 1. It approaches 1,
otherwise.

4.2 On the Stability of DESA in the Sense of Lyapunov

Lyapunov stability analysis is based on the idea that if the total energy in the
system continually decreases, then the system will asymptotically reach the zero
energy state associated with an equilibrium point of the system. A system is
said to be asymptotically stable if all the states approach the equilibrium state
with time [4].

It can be noted that the centroid (μx) of the population system does not
change with time since

E

(
dμx

dt

)
= E

(
d

dt

(
1

Np

Np∑
i=1

xi

))
=

1
Np

E

(
Np∑
i=1

dxi

dt

)
= 0. (53)

The condition for equilibrium is x1 = . . . = xNp = xe, where xe the equilibrium
position is. If all population members are equal, then xi = μx, i = 1, . . . , Np
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of the population. Hence, xe ≡ μx. Initially, the population spread within a
small region around the optima. So, the centroid was also very close to the
actual optima. Lyapunov’s function, in this case, is directly proportional to the
population variance. With time, the initially dispersed populations gather at
the center of the system, and eventually, population variance diminishes to 0,
which leads to convergence of the population system. Average velocity of mth

population member is E
(

dxm

dt

)
= 1

2γβ(μx − xm) and the average acceleration

is 1
2γβ

(
dμx

dt − dxm

dt

)
= − 1

2γβ
dxm

dt . So, acceleration is directly proportional to
velocity, and the negative sign indicates that it acts in opposite direction.

5 Conclusions

From mathematical framework of the operators of the DESA/rand/1/bin algo-
rithm, we described the characteristics of the DESA-population as it goes
through mutation and selection operators. This allows a comparison of the char-
acteristics and convergence of the classical DE and its hybrid DESA. An analysis
using basic concepts and interpretations of nonlinear control theory, showed that
the DESA-population dynamics system is asymptotically stable. The dynamics
of DE and DESA uses some kind of estimation for the gradient of the objective
function. The SA-like selection operator of DESA increased its learning rates
and momentum, which results to convergence faster than the classical DE. In
addition, the time-constant of DESA algorithm is given by γβ

−1.
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Abstract. Many real-world problems have complicated objective functions
whose optimization requires sophisticated sequential decision-making strategies.
Modelling human function learning has been the subject of intense research in cog-
nitive sciences. The topic is relevant in black-box optimization where information
about the objective and/or constraints is not available and must be learned through
function evaluations. The Gaussian Process based Bayesian learning paradigm
is central in the development of active learning approaches balancing explo-
ration/exploitation in uncertain conditions towards effective generalization in large
decision spaces. In this paper we focus on Bayesian Optimization and analyse
experimentally how it compares to humans while searching for the maximum of
an unknown 2D function. A set of controlled experiments with 53 subjects confirm
that Gaussian Processes provide a general model to explain different patterns of
learning enabled search and optimization in humans.

Keywords: Bayesian Optimization · Cognitive models · Search strategy

1 Introduction

We consider as a reference problem the black-box optimization problem: the objective
function and/or constraints are analytically unknown and evaluating the function might
be very expensive and noisy. In black-box situations as we cannot assume any prior
knowledge about the objective function f (x), any functional form is a priori admissible
and the value of the function at a point says nothing about the value at other points, as
postulated by the No Free Lunch theorems (Adam et al. 2019). The only way to develop
a problem specific algorithm is through a sample of function evaluations.

An algorithm fitting for such applications should have global properties and be sam-
ple efficient, because the cost of function evaluations is the dominating cost. This prob-
lem has been addressed in several fields under different names, including active learning
(Kruschke et al. 2008), Bayesian Optimization (Jones et al. 1998), (Zhigljavsky and
Zilinskas 2007), (Candelieri et al. 2018), optimal search, optimal experimental design,
hyperparameter optimization (Eggensperger et al. 2019) and others.

Efficient sampling is active sampling in which a surrogated model of the objective
function is built upon the observations already performed and the next sampled point is
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chosen on the basis of its informative value: this choice brings up the so called “explo-
ration vs exploitation dilemma”, where exploration means devoting resources to know
more about possible solutions while exploitation devotes resources to improve on solu-
tions already identified in previous phases. The search for the new point must strike an
effective balance between the needs of exploration and exploitation.

To do this, the surrogatemodelmust sum up our a priori beliefs: theGaussian Process
(GP) is the best probabilistic framework to update our beliefs as new data arrives and
provide an estimate of the expected value of the objective function and the uncertainty
in this estimate.

Psychologists have extensively studied how humans balance exploration and
exploitation (Krusche et al. 2008), (Mehlhorn et al. 2015), with a recent attention on
the links between modern machine learning algorithms and psychological processes.
(Gershman 2018; Schulz et al. 2017; (Gopnik et al. 2017). Psychological research has
mostly focused on how people learn functions according to a protocol in which an input
is presented to participants and they are asked to predict the corresponding output value.
Then they observe the true output value (usually noisy) in order to improve their own
“predictive model”. Through this outcome feedback, people are thought to adjust their
internal representation of the underlying function. The pioneering work of (Wilson et al.
2014) demonstrated that humans use both random and directed exploration. The issue
of GP regression, kernel composition for different degrees of smoothness and safe opti-
mization in their relation to cognition is also studied in a recent survey by (Shultz et al.
2018). Directed exploration is realized by adding uncertainty bonuses (Auer et al. 2002).
to estimated values obtaining the upper confidence bound (UCB) algorithm (Srinivas
et al. 2010). In (Wu et al. 2018) the human search strategy is analysed for rewards under
limited search horizons, concluding that GP offers the best model for generalization and
UCB the best solution of the exploration/exploitation dilemma.

This paper considers optimization, a task related with function learning, but with its
own specific features. Contrary to function learning, optimization is not yet widely con-
sidered in the literature; as a reference, in (Borji and Itti 2013) a simple 1-D optimization
problem has been considered. Specifically, the aim of this paper is how humans choose
the next x to be queried when attempting to locate the maximum of an unknown 2D
function. We’ll focus on the questions: do humans follow a Bayesian approach, and if
so, how do humans balance between exploration and exploitation during optimization?
Which space representation do they use? Can GPs offer a unifying theory of human
function optimization?

The structure of the paper is as follows: Sect. 2 outlines the methodological back-
ground of GP based optimization linking them to the issue of learning including the
temporal trade-off over uncertain rewards (this is also a central topic in cognitive sci-
ence). Section 3 is devoted to the experimental set-up and Sect. 4 reports the experimental
results on how humans behave in black-box Bayesian Optimization (BO).

2 Methodological Background

This section provides the underlying methodological framework of the study.
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2.1 Gaussian Processes

GPs are a powerful non-parametric model for implementing both regression and classifi-
cation. Oneway to interpret a GP is as a distribution over functions, with inference taking
place directly in the space of functions (Williams and Rasmussen 2006). AGP, therefore,
is a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP is completely specified by its mean function μ(x) and covariance
function cov

(
f (x), f

(
x ′)) = k

(
x, x ′):

μ(x) = E[ f (x)]

cov
(
f (x), f

(
x ′)) = k

(
x, x ′) = E

[
( f (x) − μ(x))

(
f
(
x ′) − μ

(
x ′))]

and will be denoted by: f (x) ∼ GP
(
μ(x), k

(
x, x ′)).

Usually, for notational simplicity we will take the prior of the mean function to be
zero, although this is not necessary. The covariance function assumes a critical role int
the GP modelling, as it specifies the distribution over functions, depending on a sample
X1:n with f (X1:n) ∼ N (0,K(X1:n, X1:n)).

We usually have access only to noisy function values, denoted by y = f (x) + ε.
Assuming additive independent identically distributed Gaussian noise ε with variance
λ2, cov y = (y1, . . . , yn) = K(X1:n, X1:n) + λ2 I .

Therefore, the predictive equations for GP regression, that are μ(x) and k
(
x, x ′),

can be easily updated, by conditioning the joint Gaussian prior distribution on the
observations:

μ(x) = E[ f (x)|D1:n, x] = k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
y

σ 2(x) = k(x, x) − k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
k(X1:n, x)

The covariance function is the crucial ingredient in a GP predictor, as it encodes
assumptions about the function to approximate: function evaluations that are near to a
given point should be informative about the prediction at that point. Under the GP view
it is the covariance function that defines nearness or similarity. Examples of covariance
(aka kernel) functions:

Squared Exponential (SE) kernel:

kSE
(
x, x ′) = e

−‖x−x ′‖2

2�2

with � known as characteristic length-scale.
Exponential kernel:

kExp
(
x, x ′) = e−|x−x ′|

�

Power Exponential kernel:

kPowExp
(
x, x ′) = e

−
( |x−x ′|

�

)p
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Matérn kernels:

kMat
(
x, x ′) = 21−ν

�(ν)

(∣∣x − x ′∣∣√2ν

�

)ν

Kν

(∣∣x − x ′∣∣√2ν

�

)

With two hyperparameters ν and �, and where Kν is a modified Bessel function, that
is a product of an exponential and a polynomial of order r . The most widely adopted
versions, specifically in the Machine Learning community, are ν = 3/2 and ν = 5/2.

2.2 GP-Based Optimization

The acquisition function is the mechanism to implement the trade-off between explo-
ration and exploitation in BO. More precisely, any acquisition function aims to guide
the search of the optimum towards points with potential low values of objective function
either because the prediction of f (x), based on the probabilistic surrogate model, is low
or the uncertainty, also based on the same model, is high (or both). Indeed, exploiting
means to consider the area providing more chance to improve the current solution (with
respect to the current surrogate model), while exploring means to move towards less
explored regions of the search space where predictions based on the surrogate model are
more uncertain, with higher variance.

Probability of Improvement (PI) was the first acquisition function proposed in the
literature (Kushner 1964):

P I (x) = P
(
f (x) ≤ f

(
x+)) = �

(
f
(
x+) − μ(x)

σ (x)

)

.

where f
(
x+)

is the best value of the objective function observed so far, μ(x) and σ(x)
are mean and standard deviation of the probabilistic surrogate model, such as a GP, and
�(·) is the normal distribution function. The next point to evaluate is chosen according
to:

xn+1 = argmax
x∈X

P I (x)

Expected Improvement (EI) was initially proposed in (Mockus et al. 1978) and then
made popular in (Jones et al. 1998). It measures the expectation of the improvement on
f (x) with respect to the predictive distribution of the probabilistic surrogate model.

E I (x) =
{(

f
(
x+) − μ(x)

)
�(Z) + σ(x)φ(Z) i f σ(x) > 0
0 i f σ(x) = 0

,

where φ(Z) and �(Z) are the probability distribution and the cumulative distribution
of the standardized normal, respectively, where

Z =
{

f (x+)−μ(x)
σ (x) i f σ(x) > 0

0 i f σ(x) = 0
.
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The EI is made up of 2 terms: the first is increased by decreasing the predictive mean;
the second by increasing the predictive uncertainty. The next point to evaluate is chosen
according to:

xn+1 = argmax
x∈X

E I (x)

Upper/Lower Confidence Bound, where Upper and Lower are used, respectively,
for maximization and minimization problems, is an acquisition function that manages
exploration-exploitation by being optimistic in the face of uncertainty.

In the case of a minimization problem, LCB (Lower Confidence Bound) is given by:

LCB(x) = μ(x) − ξσ (x)

while in the case of a maximization problem the UCB acquisition function is used:

UCB(x) = μ(x) + ξσ (x)

where ξ ≥ 0 is the parameter to manage the trade-off between exploration and exploita-
tion (ξ = 0 is for pure exploitation; on the contrary, higher values of ξ emphasizes
exploration by inflating the model uncertainty). In (Srinivas et al. 2010), a policy is
provided for updating the value of ξ along function evaluations, with also a proof of
convergence of such a policy.

In the case of a minimization problem the next point is chosen as

xn+1 = argmin
x∈X

LCB(x)

while, in the case of a maximization problem the next point is selected as

xn+1 = argmax
x∈X

UCB(x)

2.3 Bayesian Optimization

The following algorithm summarizes a general BayesianOptimization processwhere the
acquisition function, whichever it is, is denoted by α(x, D1:n). This function is generally
maximized, but in the case of α = LCB.

With respect to the probabilistic surrogate model, the summarized algorithm does
not specify the probabilistic surrogate model, as well as the kernel in the case of a GP.
This is basically done in order to maintain the algorithm as general as possible.

In this study we have used a GP as a surrogate probabilistic model, considering
all the five different kernels presented in the previous section, and the three different
acquisition functions previously described.
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3 Experimental Setup

3.1 Test Function as a “Task”

In this study, we have selected the Styblinski-Tang test function, as defined in https://
www.sfu.ca/~ssurjano/optimization.html.

f (x) = 1

2

d∑

i=1

(
x4i − 16x2i + 5xi

)

where d is the number of dimensions (d = 2, in this study) and f (x) is minimized in
the hypercube xi ∈ [−5; 5]∀i = 1, . . . , d.

Since the optimization performed by humans was defined as a black-box maximiza-
tion task, this means that the optimization problem considered is:

max
x∈[−5;5]d

− f (x)

3.2 Experiment: Optimization by Humans

3.2.1 Participants Fifty-three participants (14 female),with an average age of 26 (stan-
dard deviation: 5.82) were recruited. The experiment took around 15 min to complete
the task, on average. The experimental procedure is defined in the following.

3.2.2 Procedure In order to conduct the test, each one of the participants was sat in
front of a personal computer, asked to play for a game with the following rules:

• In front of the player there is a white panel: the goal of the game is to click on it and
find a point with maximum score, within 15 clicks

• Everytime the player clicks on the panel a score is shown for that selected point: higher
the score, better the choice. Points are also colored according to the associated score,
providing a visual feedback about the distribution of the scores collected so far.

https://www.sfu.ca/%7essurjano/optimization.html
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Fig. 1. An example of a game play

Figure 1 shows a frame of the game, with points selected by one of the participants.
For each player, at each iteration, a GP is fitted on the observed points and the GP

next point is compared, via Euclidean distance, to the choice made by the player.
To fit the GP the five kernels described in Sect. 2.1 have been considered, along with

the three acquisition functions: PI, EI and UCB.
The two strategies, human player and BO, are considered compliant, pointwise, if

the distance between the point chosen by the human player and the algorithmic player
is less than a given “threshold”. The specific procedure is summarized in the following
pseudo-code.
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Finally, for a given kernel k, the search strategy of the participant p is compliant to
the most frequent acquisition function in the series s p,k = {

s p,k,n
}
n=1:N .

According to the mentioned procedure, the following figures summarize the main
results of the study (Figs. 2, 3, 4, 5 and 6).

Fig. 2. Number of human players whose strategy is compliant with respect to kernel type and
acquisition functions, with “threshold” set to 0.10, and β = 1 in UCB
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Fig. 3. Number of human players whose strategy is compliant with respect to kernel type and
acquisition functions, with “threshold” set to 0.15, and β = 1 in UCB

Fig. 4. Number of human players whose strategy is compliant with respect to kernel type and
acquisition functions, with “threshold” set to 0.15, and β = 0.5 in UCB

Fig. 5. Number of human players whose strategy is compliant with respect to kernel type and
acquisition functions, with “threshold” set to 0.15, and β = 0 in UCB
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Fig. 6. Number of players, depending on the number of clicks, whose strategy is compliant with
respect to anyone of the BO implementations considered (i.e., pair “kernel type – acquisition
function”). This figure refers to threshold = 0.10 (left) and threshold = 0.15 (right)

4 Conclusions

In conclusion, 40 out of 53 participants (75%) shown search patterns compliant with
Bayesian Optimization. This percentage is increasing with the number of iterations (i.e.,
clicks) and the “threshold” value. Also interesting is the analysis of which space model,
that is kernel, andwhich exploitation-exploration balance, that is the acquisition function,
are implied by human search. Contrary to previous results, kernel is not a major factor
in determining compliance, while acquisition functions, and specifically the balancing
parameter β in UCB, are the main determinants.
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Abstract. In this paper we propose a new syntactical representation of
C.S. Peirce’s diagrammatic systems for propositional and predicate logic.
In particular, we use the categorical notion of generic figures to represent
the syntax of the diagrammatic language as a category of functors from
a suitable, simple category into the category of sets, highlighting the
relational nature of Peirce’s diagrammatic logic.

1 Introduction

In this paper we present a new syntactical representation of the Alpha and
Beta Existential Graphs (from now on denoted by EGα and EGβ) – introduced
by C.S. Peirce towards the end of the 19th century – which are diagrammatic
systems that have been proven to be equivalent to propositional and predicate
logic respectively.

These are representations of the syntax and semantics for propositional and
predicate logic solely based on simple diagrams and some basic topological rela-
tions that such diagrams entail. For too long these graphs have been considered
just a curious variation of the standard linear notation in logic. The renewed
interest in diagrammatic reasoning via category theory, however (see the work
in diagrammatic quantum computation done by Coecke [5], Spivak’s wiring dia-
grams [11] and Ahti Pietarinen’s diagrammatic proof analysis [8]), motivated
us to look deeper into the structure of Peirce’s graphs, and we believe that the
categorical notion of generic figures developed by Reyes [10] is especially apt for
highlighting some interesting characteristics of these logical systems.

Among other things, category theory is a powerful and efficient framework to
model logic. At a very basic level, categorical logic is based on the idea that, in
a suitable category, objects can model propositions, whereas morphisms model
proofs. In our work we study a variation on this theme, as we aim to model
propositions as functors from a suitable “base” category into the category of
sets. In this way, some of the lurking problems that arise when trying to formal-
ize in a rigorous way Peirce’s Existential Graphs are solved in a single stroke
by introducing an intuitively structured category that “generates” the graphs.
In some sense, ours is a hybrid model that aims to build a link between the
categorical and the classical approaches to logic.
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The aim of this paper is modest, as we are only concerned, at this level, to
represent the syntax of these systems in a categorical framework. This, however,
is meant to be the first of a series of papers with a much broader scope, in which
a thorough investigation of the inference rules and the semantics of the graphs
will be provided in terms of this very general framework.

In order to keep the paper self-contained, in Sect. 2 below we present a brief
introduction to the syntax of EGα and EGα. In Sect. 3 we provide the necessary
basic categorical background needed to introduce the notion of generic figures,
and in Sect. 4 we present a full account of the syntax of such systems in terms
of functor categories.

2 Peirce’s Existential Graphs

In this section we introduce Peirce’s diagrammatic syntax for formal logic that he
named Existential Graphs. Peirce himself developed three increasingly sophisti-
cated levels of the graphs, which he denoted alpha, beta and gamma. The alpha
level (EGα) corresponds to classical propositional logic, the beta level (EGβ) to
first-order predicate logic, and the gamma level (EGγ) to modal and higher-order
logics. We summarize here only the basic syntax of Peirce’s EGα and EGβ .

2.1 Existential Graphs: Alpha

We now discuss the basic elements of Peirce’s Existential Graphs and present a
schematic introduction for those unfamiliar with the graphs, following the basic
outline presented in [2] and using some of that material in a slightly modified
form. Besides the rigorous mathematical presentation in [1], detailed but more
accessible treatments may be found in [12]. A categorical approach to the graphs
can be found in [3] and [4].

Every EGα graph is understood by Peirce to represent a propositional asser-
tion according to a syntax consisting of three types of elements: the Sheet of
Assertion, characters and seps (or cuts). An EGα graph is composed of char-
acters and seps “scribed” on the Sheet of Assertion. The syntactical relations
among these elements may be described as follows:

– The blank sheet (called the Sheet of Assertion or SA) is both the site on which
graphs are scribed and is itself a graph (called the empty graph).

– A character is any reproducible image (an iterable symbol, typically letters of
the Roman alphabet) scribed on part of the SA.

– Characters may be enclosed, along with a local area surrounding them (a
neighborhood on the SA) that may or may not include other characters, by a
closed curve called a sep (or cut). These curves are usually drawn as ovals or
circles. These seps may not intersect characters, nor may they intersect one
another. They may, however, be nested with any number of characters and
seps scribed in the areas or enclosures they distinguish.
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The class of EGα graphs may be characterized through the following recursive
definition:

The sheet of assertion is a graph

The sep is a graph

Every character is a graph

If α and β are graphs, then αβ is a graph

If γ is a graph, then γ is a graph

A B

G G′

G G′

Let us first notice that the EGα graphs constructed in this way separate regions
in the sheet of assertion into evenly and oddly enclosed areas, as the following
picture shows.

Cuts (seps)

Even areas

Odd areas

We omit a detailed discussion of Peirce’s transformation rules for EGα. A full
treatment of these rules may be found in [12]. As a reminder to the reader,
examples of all of the rules are provided in an informal, iconic way below.
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1. Write Odd (WO)

2. Erase Even (EE)

3. De/Iterate (DE/IT)

4. Double Cut Write/Erase (WR/ER)

G G

G G′

G

G

G′

G′′

G′

G′

G′

G′

G′

G′′G′′

G

G′

G

G′

The correspondence between EGα and the classical propositional calculus (with
seps interpreted as the negation of their contents and the inscription of multiple
(sub)graphs on the same area as the logical conjunction of those (sub)graphs)
has been exhaustively investigated by Zeman [16] and more recently in a much
broader context in [1]. The iconic quality of Peirce’s calculus does indeed possess,
as shown by several authors, including the knot theorist Kauffman [7], a truly
topological nature. The derivation rules themselves may be characterized in a
combinatorial-topological nature, in such a way that the dual nature of a graph
as equally syntactical and semantical emerges naturally. In fact, two of the three
basic elements of the EGα syntax, the Sheet of Assertion and the seps, are
defined topologically. This feature induces several of the aspects of the EGα

system that distinguish it from the more common linear notation, such as the
obviation of axioms of commutativity.

Example 1. Here below is a proof of the classical modus ponens in Peirce’s
style: from A and A → B we can infer B.

BAA DE BA DC BA

B

EE
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2.2 Existential Graphs: Beta

In order to extend diagrammatic propositional calculus to predicate logic, Peirce
introduced what he called the line of identity. Essentially, the line of identity
is an existential quantifier that augments the language of EGα to generate a
complete and sound first order logic (without free variables). We refer to the
excellent work by Dau [6] for details. In what follows we only sketch the main
traits of the system, in order to offer the reader an idea of what the graphs
in EGβ look like (the structure of their syntax) along with a flavor of their
interpretation (their semantics).
First, we assert the existence of an object by drawing a dot on the SA.

A line of identity asserts the equality of all the points on the line.

To express that an object has a certain property P , write the predicate symbol
next to the object:

P

To express that two objects are not the same (notice that the cut is still inter-
preted as a negation, as in EGα):

The following examples should help the reader to clarify the interpretation of
the EGβ graphs.

Example 2. The graphs below represent the classical Aristotelean square of
opposition. The translation into the classic linear notation of the graphs, starting
from the top left in the counterclockwise direction, is the following:

– ∀x(B(x) → A(x)): every B is A;
– ∀x(B(x) → ¬A(x)): no B is A;
– ∃x(B(x) ∧ A(x)): some B is A;
– ∃x(B(x) ∧ ¬A(x)): some B is not A.
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AB

AB

AB

AB

Example 3. The graph below encloses the property (i.e. the unary relation) “is
a woman” together with its single hook within a cut. The same line of identity is
connected to the first hook of the triadic relation “gives”. Thus, the graph may
be understood to assert that someone who is not a woman gives something to
someone.

is a woman

gives

3 Presheaf Categories and Their Generic Figures

In this section we present a brief outline of the mathematics needed to represent
the Existential Graphs in a categorical fashion. This presentation follows that
given in [2], Appendix A.

3.1 Category Theory: Basic Notions

A mathematical category consists of a class of objects together with morphisms or
arrows between objects subject to axioms of identity (every object is equipped
with an identity morphism that composes inertly), composition (head-to-tail
morphisms compose to a unique morphism) and associativity (paths of mor-
phisms compose uniquely). For a comprehensive introduction and details filling
out this rough characterization, see [9].
A bit more formally, a category C consists of

– a collection of objects Ob(C) and
– a collection of arrows Ar(C) between objects
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subject to the following axioms:

– (A1) Axiom of Composition: Given any two arrows ordered such that the
target of one is the source of the other, the composition of the first followed
by the second exists in the category as a unique and definite arrow.

A
f ��

g◦f

���
��

��
��

��
��

��
��

� B

g

��
C

– (A2) Axiom of Associativity: Given any three arrows ordered such that the
target of the first is the source of the second and the target of the second is
the source of the third, the composite of the first two arrows composed with
the third is the same as the first arrow composed with the composite of the
second and third.

B
g ��

����
���

���
���

���
���

���
���

���
�� C

h

���
��

��
��

��
��

��
��

�

A

f

������������������

h◦(g◦f)=(h◦g)◦f
��

������������������������������
D

– (A3) Axiom of Identity: There exists at least one arrow from any object into
itself, called the identity arrow.

Example 4. A few example of categories (objects and arrows):

– Set (sets and functions)
– Mon (monoids and monoid homomorphisms)
– Grp (groups and group homomorphisms)
– Vectk (vector spaces over a field k, and linear maps)
– Pos (partially ordered sets and monotone functions)
– Top (topological spaces and continuous functions).

3.2 Functors Between Categories

Categories may be related to one another via mappings called functors, which
may be understood at a first approach on analogy with functions between sets.

Given two categories C and D, a functor is in the first place a map F from
objects of C into objects of D and from arrows of C into arrows of D, that is,
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roughly, a function from the set of the objects of C to the set of the objects of D
together with a function from the set of arrows of C to the set of arrows of D.1

The condition that this map has to satisfy is that (a) relations linking arrows
to their source and target objects are preserved and (b) composition relations
between arrows are preserved across the mapping.

This amounts to saying that, if

A
f �� B

is an arrow in C, then

F (A)
F (f) �� F (B)

is an arrow in D.
Furthermore, the following diagram must commute in D for all suitable objects
A, B and C and arrows f , g and g ◦ f in C:

F (A)
F (f) ��

F (g◦f)

���
��

��
��

��
��

��
��

��
F (B)

F (g)

��
F (C)

Finally, identity arrows must “track” with their objects across the mapping.
Formally, for any object A in C,

F (IdA) = IdF (A)

Such a mapping F is called a covariant functor. There is a dual notion of con-
travariant functor, which, essentially, instead of “preserving” arrows it “reverses”
them. That is, F : C −→ D is said to be contravariant if, given two object A and
B in C we have that2

(F : A −→ B) ⇒ F (f) : F (B) −→ F (A)

1 This formulation only causes difficulties in the (not infrequent) cases when the
objects and/or arrows of either C or D cannot be gathered into a set, for instance
when one of these is the category Set of sets and functions. The ensuing problems
and the various strategies for resolving them are readily located in the standard
literature on categories.

2 Contravariant functors also reverse the direction of composition.
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3.3 Presheaf Categories and Generic Figures

The approach we follow in this paper was introduced in the book Generic Figures
and their Glueings by Reyes et al. [10]. In a nutshell, the main idea is to consider
classes of structures, defined set-theoretically yet intuitively pictured as types
of diagrams (sets, bisets, directed graphs, etc.) and, given that each element in
the class is itself built up from determinate kinds of ingredients (set-elements
represented as dots or points, pairs of such points, vertices and arrows, etc.) a
category of generic figures may be defined in which those very ingredients are
the objects. Such a construction is very general, and lends itself to application
to a large class of diagrammatic structures. In fact, in Sect. 4 we will apply this
notion to EGα and EGβ . Here below we outline the steps of this approach.

Given a (small) category C, a functor F from Cop into Set, the category of
sets and functions, is a presheaf. Here, Cop represents the category generated by
reversing all the arrows in C while preserving objects, identity morphisms and
composition of morphisms. Schematically, a morphism f : A → B in C becomes
a morphism f ′ : B → A in Cop. A natural transformation from one such functor
F to another F ′ is then a family of functions in Set that maps one presheaf into
another.

More generally, given any two categories C and D, the functor category DC

is defined as follows:

– The objects of DC are all functors C → D.
– The arrows of DC are all natural transformations between functors C → D.

Natural transformations are morphisms between functors: given two functors
F ∈ DC and G ∈ DC , a natural transformation between F and G is a family of
morphisms ηO parametrized by the objects O ∈ C such that the following dia-
gram commutes for any two objects A and B that are connected by a morphism
f in C:

F (A)
F (f) ��

ηA

��

F (B)

ηB

��
G(A)

G(f) �� G(B)

In the case of the functor category of all presheaves over C, the collection of all
functors Cop → Set may be taken to be the objects of the new category SetCop

,
the morphisms of which are all the natural transformations between these func-
tors. Each functor may be associated with an identity natural transformation.
Also, natural transformations compose in the appropriate way and this compo-
sition is associative, so the axioms of a category are satisfied. Such a category is
called a presheaf category. For details, see [10] and [9] ch. 2.
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Example: The Category SetC
o p

of Directed Graphs

Example 5. Consider the category C consisting of exactly two objects V and A
and two non-identity arrows s, t : V → A. This category is pictured here, with
the identity arrows on V and A not shown:

V
s ��

t
�� A

Contravariant functors from C into Set may be thought of as directed graphs.
Given such a functor D: Cop → Set, where D(V ) is the set of graph vertices
and D(A) is the set of graph arrows, D(s) and D(t) are then two functions
D(A) → D(V ) assigning a source-vertex and a target-vertex, respectively, to
each arrow, that is, each element of D(A).

The example above illustrates clearly how the structural properties of a given
class of diagrams are completely recast into the structure of Cop: an arbitrary
directed graph G can be encoded/reconstructed by the data provided by a unique
associated functor G : Cop → Set. Notice that the structure of Cop in this case
is very simple, since it has only two objects and two arrows. This motivates the
following definition:

Definition 1. Given a class of structures F whose elements are in one-to-one
correspondence with the elements of the collection of functors from Cop into Set,
we call generic figures the elements of Cop.

4 Existential Graphs as Functor Categories

At this point we are in the position to represent EGα and EGβ in terms of their
generic figures. We will proceed in steps. We first look at EGα∗ , defined as the
unlabeled version of EGα, then we consider EGβ+ , defined as EGβ without the
cuts, and finally we will present the generic figures for the full EGβ system. We
will use the italic fonts to refer to the categorical version of each of these systems
(so, for instance, we use EGα∗ to denote the category of functors correspondent
to the collection of graphs EGα).

4.1 EGα�

The iconic syntax of Peirce’s EGα∗ is given by the class of contravariant functors
from the category pictured below, which we notate A∗, into the category FinSet
of finite sets and functions between these.3 We denote such a functor category
by EGα� .

A1
�� A2

�� A3 . . .

3 Restriction: for some n, F (An) = ∅.
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Notice how the complexity of the nesting of the cuts is represented in an entirely
straightforward and natural way by functors from the category of the ordered
natural numbers into FinSet.

A few examples of cuts-only graphs are given below:

As indicated in the footnote on the previous page, we do require F (Ai) to be
definitively equal to the empty set for i greater or equal to a given, finite n. It
is only natural to conceive a system in which such a restriction is dropped, and
therefore study graphs with infinite depth, so to speak. The notion of grossone
– a groundbreaking idea developed by Sergeyev (see for instance [13], [14] and
[15]) – provides a fundamentally finer structure underlying the infinite, discrete
nature of the natural numbers, and we believe that representing graphs of infinite
depth in such a framework will set the basis for a progressive research program.
Needless to say, a category that captures the nature of grossone would need to be
defined, and functors from such a category into the category of sets investigated.

4.2 EGα

In order to add labeled variables to EGα� , we need to add the generic figures
correspondent to tokens and types of variables, along with their structural (syn-
tactical) relations with the cuts. Here the iconic syntax is given by the category
of contravariant functors from the category pictured below, which we notate A,
into the category FinSet of finite sets and functions between these. We indicate
such a functor category by EGα.

A1
��

��

A2
��

��

A3

��

�� . . .

V0 V1 V2 V3 . . .

T

		���������������������



													

�� ��














�����������������������

Examples of objects of EGα (expressed diagrammatically):

A B A X Y X

(A,B,C,D) (A,B,C,D,X, Y, Z)
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Some readers may find the appearance of the letters at the bottom of each graph
not very elegant: we could get rid of them to the cost of adding some conditions
on the arrows, which we prefer not to do.

4.3 EGβ+

We define EGβ+ following the same reasoning outlined in the previous sections for
EGα and EGα∗ , Peirce’s EGβ+ is the given by the class of contravariant functors
from the category pictured below, which we notate B+, into the category FinSet
of finite sets and functions between these. We call this functor category EGβ+ .

R1

R2

R3

...

Rn

L

T1

T2

T3

...

Tn

More precisely, the category B+ consists of objects and morphisms specified as
follows:

– Objects: {Ti}i∈N, {Ri}i∈N, L
– Morphisms:

• identities;
• a collection of morphisms {ti}i∈N where

ti : Ti −→ Ri

• for each i ∈ N a collection of morphisms {rj
i }j=0,1,...,i where

rj
i : L −→ Ri

Formally, then, a EGβ+ graph is a functor G : B+
op −→ FinSet such that there

is some n such that for all m > n G(Tm) = ∅. This latter condition simply
ensures for the sake of tidiness that every graph has a maximal relation arity.

Example 6. The graph below represents the same situation illustrated in
Example 3 but without the cut. Itmay be read as saying that someonewho is awoman
gives something to someone. Without cuts and, in particular, without nested cuts,
neither negation nor universal quantification may be expressed in the reduced
system.
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is a woman

gives

For the sake of clarity, here below we present an example in which the corre-
spondence between a given graph and the correspondent functor is illustrated in
detail.

Example 7. Consider the diagram below, which represents a functor from B+

into FinSet.

R1

R2

R3

L

l1
l2
l3
l4
l5

α1

α2

β

γ

A

B

C

T1

T2

T3

The ovals above each of the category objects represent the sets to which the
functor G sends those objects. All objects that are not shown, such as T4 are
understood to be sent to the empty set. For instance, G(R1) is the two-element set
containing α1 and α2. The three functions G(t1), G(t2) and G(t3) are completely
determined since their codomains are singletons (the reader should keep in mind
the contravariance of the functor).

We may stipulate that the remaining functions are defined as follows (the
functions are listed in the top row and their argument in the leftmost column):

G(r11) G(r12) G(r22) G(r13) G(r23) G(r33)
α1 l1
α2 l5
β l4 l5
γ l1 l2 l3
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The resulting beta graph may then be pictured as below:

A

C

B

A

4.4 EGβ

Finally, the full-fledged EGβ system is given by the class of contravariant functors
from the category pictured below, which we notate B, into the category FinSet
of finite sets and functions between these. We call this functor category EGβ .

R0
1

R0
2

R0
3

.

.

.

R0
n

L0

R1
1

R1
2

R1
3

.

.

.

R1
n

T1

T2

T3
.
.
.

Tn

L1

IL1 IL1
R2

1

R2
2

R2
3

.

.

.

R2
n

L2

A1 A2 . . .

. . .

Without specifying all the details, we note only that this category is constructed
by, roughly speaking, gluing copies of B+ below each object of A∗, with one
additional copy added at the beginning of the sequence. The objects labeled
ILn represent “lines-in”, that is, lines of identity that extend across a cut and
are glued to lines of identity on the area of that cut, functioning in this respect
like “soldering points”. In this way, the structures presented at the beta level by
lines of identity and n-ary relations are embedded in the nested cut structures
formalized at the alpha level.
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Example 8. The diagram below presents the graph discussed in Example 7 with
two cuts added to it. For the sake of brevity, we omit the details describing the
structure of its associated functor. The attentive reader should at this point be
able to construct this functor as a useful exercise.

A

C

B

A

5 Conclusion

We have shown how the generic figures approach within categories of presheaf
functors provides an appropriate mathematical setting for representing the dia-
grammatic syntax of Peirce’s Existential Graphs. The same general mathemati-
cal setting captures the relevant syntactical structure of diagrams in both alpha
and beta systems, the only difference being the complexity of the base category
over which the presheafs are constructed. We remarked above that the grossone
research program might find interesting possibilities for syntactical representa-
tion in proximity to Peirce’s alpha system (with the controlled lifting of the
restriction on finite nesting of cuts). This suggests one possible path for future
research that may very well find additional, perhaps fruitful, connections between
the grossone program and Peirce’s logic. Another potential line of development
would examine the semantics for Peirce’s graphs and aim to formulate Peirce’s
transformation rules in the generic figures framework. Finally, the generic fig-
ures approach suggests itself as a natural medium for rigorously formulating a
variety of otherwise quite different diagrammatic systems. Perhaps the basis for
a general theory of diagrammatic representation may eventually be worked out
on this categorical mathematical terrain.
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Abstract. This paper addresses the problem of solving a constrained
global optimization problem using a modification of the DIRECT method
that incorporates the filter methodology to simultaneously minimize the
objective function and the constraints violation. Thus, in the “Selection”
step of the herein proposed DIRECT-filter algorithm, the hyperrectan-
gles are classified in four categories and subsequently handled separately.
The new algorithm also imposes upper bounds on the objective func-
tion and constraints violation aiming to discard some hyperrectangles
from the process of identifying the potentially optimal ones. A heuristic
to avoid the exploration of the hyperrectangles that have been mostly
divided is also implemented. Preliminary numerical experiments are car-
ried out to show the effectiveness of the imposed upper bounds on the
objective and violation as well as the goodness of the heuristic.

Keywords: Global optimization · DIRECT · Filter method · Heuristic

1 Introduction

The paper aims to address the use of the filter methodology [8] combined with
a DIRECT-type method [12] to globally solve non-smooth and non-convex con-
strained optimization problems. The constrained global optimization (CGO)
problem has the form:

min
x∈Ω

f(x)

subject to h(x) = 0
g(x) ≤ 0,

(1)

where f : R
n → R, h : R

n → R
m and g : R

n → R
p are nonlinear continu-

ous functions and Ω = {x ∈ R
n : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}.

Since convexity is not assumed, many local minima may exist in the feasible
region, although we require only a global solution. For non-smooth problems,
the derivative-free methods are the most appropriate. Popular methods to solve
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problem (1) combine a penalty term, which depends on a constraint violation
measure, with the objective function to give the so-called penalty function. The
penalty term aims to penalize f whenever an approximation point is found that
is infeasible. Penalty functions within a DIRECT-type framework are proposed
in [5,21]. An auxiliary function that combines in a special manner information on
the objective and constraints is presented in [11]. Other techniques that involve
the handling of the objective function and constraints violation separately can
be found in [3,4,13].

This paper addresses the exploration of the DIRECT method in order to solve
CGO problems. It uses the filter methodology [8] to handle the constraints. The
objective function and the constraints violation measure are separately handled
and both simultaneously minimized. The main differences relative to the work
reported in [3] are the following:

1. four categories of hyperrectangles (according to the violation measure and
the non-dominance vs dominance feature of their center points) are defined
instead of three;

2. upper bounds on the objective and violation values are imposed during the
selection step in order to reduce the number of explored hyperrectangles;

3. a heuristic is used to prevent the mostly divided hyperrectangles to be selected
and identified as potentially optimal.

The paper is organized as follows. Section 2 briefly presents some ideas and
the main steps of the DIRECT method. Section 3 describes the proposed exten-
sion to handle CGO problems, in particular, the use of a filter method to classify
each hyperrectangle according to its non-dominance/dominance feature and con-
straints violation magnitude. Further, the strategy that imposes upper bounds
on f and violation values, as well as the heuristic are exposed. Finally, Sect. 4
contains the results of our preliminary numerical experiments and we conclude
the paper with the Sect. 5.

2 Features About DIRECT Method

The DIRECT (DIviding RECTangles) algorithm, originally proposed to solve
bound constrained global optimization problems, assumes that the objective
function, f , is a continuous function and creates finer and finer partitions of the
hyperrectangles generated from the set Ω [6,7,12]. The algorithm is a modifica-
tion of the standard Lipschitzian approach, in which f is assumed to satisfy the
Lipschitz condition

|f(x1) − f(x2)| ≤ K‖x1 − x2‖ for all x1, x2 ∈ Ω,

where the Lipschitz constant K > 0 is viewed as a weighting parameter that
indicates how much emphasis to place on global versus local search.

DIRECT is a deterministic and derivative-free method that is able to explore
optimal regions aiming to converge to the global optimum and at the same time
avoiding being trapped in a local optimum.
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DIRECT is described by six main steps: “Initialization”, “Selection”, “Sam-
pling”, “Division”, “Iteration” and “Termination” [9,10,12].

The “Selection” step serves the purpose of identifying the set of indices of
hyperrectangles that are the most promising, denoted by potentially optimal
hyperrectangles (POH), based on the current partition of Ω. In the “Sampling”
steps, the set of dimensions with the maximum size in each POH is identified
to define points where the objective function is evaluated. For the “Division”
step, DIRECT uses two measures: (i) the size of the hyperrectangle to favor
the global search feature of the algorithm; (ii) the value of the hyperrectangle
to give preference to the local search feature. The value corresponds to the
objective function value alone at the center, for bound constrained problems
(and to the objective function and constraint violation values, when problem (1)
is addressed).

For further details on the original DIRECT and other recent interesting mod-
ifications, we refer the reader to [14–20,22].

3 DIRECT-Filter Method

In this section, we reveal how the DIRECT algorithm is extended to incorporate
the filter methodology in order to minimize both the objective function and
constraints violation. First, we briefly present the filter methodology and the
proposed extensions to be incorporated in the main steps of DIRECT. Second,
the strategy that uses the upper bounds on objective and violation values and
the heuristic to avoid the selection of the mostly divided hyperrectangles are
presented.

3.1 Filter Methodology

Based on the filter methodology [1,8], the problem (1) is reformulated into the
following bound constrained bi-objective optimization problem:

min
x∈Ω

(θ(x), f(x)) , (2)

where θ(x) = ‖h(x)‖1 +‖g(x)+‖1 is a non-negative function to measure equality
and inequality constraints violation, and g+ ∈ R

p is defined componentwise by
max{0, gi}, i = 1, . . . , p. A point x is feasible when θ(x) = 0 and is infeasible
when θ(x) > 0. While minimizing the constraints violation, θ, and the objective
function, f , the filter method builds a region of dominated points that will not
be accepted as new approximations to the solution. The concept of dominance
arises from the multi-objective optimization area:

Definition 1. A point x, or the corresponding pair (θ(x), f(x)), is said to dom-
inate y, or the corresponding pair (θ(y), f(y)), denoted by x ≺ y, if and only
if

θ(x) ≤ θ(y) and f(x) ≤ f(y),

with at least one inequality being strict.
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The filter F contains a finite set of pairs (θ(x), f(x)), none of which is dominated
by any of the others, and the corresponding points x are known as the non-
dominated points [8].

Let x(k) be a trial point (approximation to the optimal solution of the CGO
problem (1)) and Fk be the filter, at iteration k, of the algorithm. To avoid the
acceptance of the trial point, or the corresponding pair (θ(x(k)), f(x(k))), that
is arbitrary close to the boundary of the filter, the conditions of acceptability
define an envelope around the filter and are as follows:

θ(x(k)) ≤ (1 − γ)θ(xl) or f(x(k)) ≤ f(xl) − γθ(xl) (3)

for all points xl that correspond to pairs (θ(xl), f(xl)) in the filter Fk, where
γ ∈ (0, 1) is fixed. When the point is acceptable to the filter, the filter is updated
and whenever a point is added to the filter, all the dominated points are removed
from the filter.

We note that the filter contains only infeasible points. However, the feasible
point with the least function value, denoted by fbest, is saved and is used to filter
other feasible points.

3.2 Identifying POH in the DIRECT-Filter Method

In the context of solving a CGO problem, the herein proposed algorithm defines
two separate regions within the usually called infeasible region. One is denoted
by “infeasible” region (identified by I) and contains hyperrectangles with center
points cj that satisfy θ(cj) > θfeas, for a sufficiently small positive tolerance
θfeas. The other is called “feasible-band” region (identified by FB) and con-
tains the hyperrectangles with center points that satisfy 0 < θ(cj) ≤ θfeas. On
the other hand, the herein coined “feasible” region (identified with F ) contains
hyperrectangles with θ(cj) = 0.

When applying a DIRECT-type method, in the partition of {Hi : i ∈ Ik}
of iteration k, using the filter methodology and the three regions above defined,
the identification of POH (in the “Selection” step) is implemented separately for
the following four sets of indices:

– the set I
FB/ND+b
k , contains indices of hyperrectangles with center points in

the “feasible-band” region that are non-dominated (FB/ND), appended with
the index of the hyperrectangle that corresponds to fbest (+b);

– the set I
FB/D+F\b
k contains the indices of hyperrectangles with center points

in the “feasible-band” region that are dominated (FB/D), appended with the
indices of the hyperrectangles with centers in the region F except b (+F \b);

– the set I
I/ND
k contains the indices of hyperrectangles with non-dominated

center points that are in the “infeasible” region (I/ND);
– the set I

I/D
k contains the indices of hyperrectangles with dominated center

points that belong to the “infeasible” region (I/D).

As usual, the hyperrectangles are organized by groups of the same size. The
proposed strategy aims to identify, from each hull, indices of promising hyper-
rectangles, in terms of the
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– optimality measure f , when the indices for exploration belong to the sets
IFB/ND+b and IFB/D+F\b;

– feasibility measure θ, when the indices belong to the sets II/ND and II/D.

Thus, in this filter-type method context, the algorithm identifies POH with
respect to (w.r.t.) f , using the following definition [12]:

Definition 2. Given the partition {Hi : i ∈ I} of Ω, let ε be a positive constant
and let fmin be the current best function value among center points in the regions
“feasible” and “feasible-band”. A hyperrectangle j is said to be potentially optimal
w.r.t. f if there exists some rate-of-change constant K̂ > 0 such that

f(cj) − K̂dj ≤ f(ci) − K̂di, for all i ∈ I

f(cj) − K̂dj ≤ fmin − ε|fmin| (4)

where cj is the center, dj is a measure of the size of the hyperrectangle j (for
instance, the distance from cj to its vertices) and I is IFB/ND+b or IFB/D+F\b.

The value of fmin coincides with fbest if there are center points with θ = 0;
otherwise fmin is set to the least function value of the center points in the region
FB/ND.

On the other hand, for the remaining sets of indices (hyperrectangles) where
θ is used to define the hull, the algorithm identifies POH w.r.t θ, by adopting
the following definition [3,4]:

Definition 3. Given the partition {Hi : i ∈ I} of Ω, let ε be a positive constant.
A hyperrectangle j is said to be potentially optimal w.r.t. the function θ if there
exists some constant K̂ > 0 such that

θ(cj) − K̂dj ≤ θ(ci) − K̂di, for all i ∈ I

θ(cj) − K̂dj ≤ θmin − εθmin (5)

where θmin > 0 is the θ value that corresponds to fmin if the “feasible-band”
region is non-empty; otherwise is the least value of θ reached by a point in the
“infeasible” region. The set I is II/ND or II/D.

3.3 Objective and Violation Upper Bounds

We now show how upper bounds on objective function and constraints violation,
denoted by fU and θU respectively, are imposed in a way that hyperrectangles
with f and/or θ values greater than the corresponding upper bounds are not
considered in the “Selection” step to identify POH. The bounds fU and θU

are defined at each iteration and depend on the information available at that
moment.

Thus, the bound on f to apply to the set IFB/D+F\b is defined by

fU
FB = fFB + βf |fFB | with fFB = max{fFB/ND

max , fbest},
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where f
FB/ND
max - directly identified from the filter F - is the f value of the center

of the hyperrectangle with the lowest θ value among the hyperrectangles with
center in the region FB/ND, and βf ≥ 0 is a constant factor.

On the other hand, the bound on f to apply to the set II/D is defined by

fU
I = fI + βf |fI |

where fI - directly identified from the filter - is the f value of the center of the
hyperrectangle with the lowest θ value among the hyperrectangles with center
in the region I/ND. This θ value will be denoted by θmin > θfeas.

Moreover, θU is computed using θmin as follows:

θU = θmin + βθθmin

where βθ > 0 is a constant factor. This upper bound on θ is applied only to the
sets II/ND and II/D, since the other two are naturally bounded by θfeas.

From hereafter, we denote the basic DIRECT-filter method (as described in the
previous subsection) by “DIRECT-f” and the variant that incorporates the upper
bounds on f and θ (as reported here in this subsection) by “UB-DIRECT-f”.

3.4 Heuristic

Besides using the above described upper bounds, the “UB-DIRECT-f” algorithm
can be enhanced with a heuristic that aims to avoid identifying POH among
those hyperrectangles that were mostly divided [17].

The heuristic is applied only to the two sets of indices IFB/D+F\b and II/D.
Thus, hyperrectangles with indices based on size that are larger than 	ib/4
 are
discarded, where 	t
 gives the greatest integer less than or equal to t, and ib is
the index based on the size of the hyperrectangle that corresponds to

– fmin, when the hull from the set IFB/D+F\b is explored;
– θmin, when the hull from the set II/D is explored.

(We note that the larger the size, the smaller is the index based on size.)
This heuristic runs for a cycle of 10 iterations and aims to potentiate the

exploration of hyperrectangles of larger sizes in order to identify POH. With this
selection, global information during the search is reinforced and the likelihood is
that fmin and/or θmin may be improved. This cycle of iterations is implemented
every 10 iterations of the original “UB-DIRECT-f”. While the heuristic is active,
the upper bounds on f and θ are disabled. This variant is denoted by “UB-
DIRECT-f+Heur” in the subsequent tables of results.
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4 Numerical Experiments

During the preliminary numerical experiments, a set of benchmark problems is
used. The MATLAB R© (MATLAB is a registered trademark of the MathWorks,
Inc.) programming language is used to code the algorithm and the tested prob-
lems.

Unless otherwise stated, the stopping conditions for the algorithm are the
following. We consider that a good approximate solution x(k), at iteration k, is
found, if the conditions

θ(x(k)) ≤ η1 and perror ≡
∣
∣f(x(k)) − f∗∣∣

max{1, |f∗|} ≤ η2 (6)

are satisfied, for sufficiently small tolerances η1, η2 > 0, where f∗ is the best
known solution to the problem. However, if conditions (6) are not satisfied, the
algorithm runs until a maximum number of function evaluations, nfemax, is
reached.

The parameter values for the algorithm are set as follows: γ = 1E−05,
θfeas = 1E−04, ε = 1E−04, βf = 1.1, βθ = 1E+04, η1 = 1E−04, η2 = 1E−04
and nfemax = 1E+06. (We note that a smaller value of βf was also tested but
the reported choice gave better results specially for the larger problems.)

Our goal is to reveal the effectiveness of the proposed objective function and
constraint violation upper bounds in reducing the computational burden without
affecting the robustness of the DIRECT-filter method.

Table 1 presents a comparison of our solutions with others reported in the
literature, when solving the problem “Gomez #3” [11], with global optimum
value f∗ = −0.9711, occurring at (0.109,−0.623):

min
x∈Ω

(

4 − 2.1x2
1 + x4

1
3

)

x2
1 + x1x2 + (−4 + 4x2

2)x
2
2

subject to − sin(4πx1) + 2 sin2(2πx2) ≤ 0

with Ω = {x ∈ R
2 : −1 ≤ xi ≤ 1, i = 1, 2}. The solutions reported in the

table have 1% and 0.01% error relative to the known global solution. The results
are compared to those available in [11] and to another filter-based DIRECT
algorithm (in [3]). We can see that the implementation of the upper bounds on
f and θ as well as the heuristic make the DIRECT-filter method more efficient.

To compare the results to those in [21] (variants DIRECT-GLc and DIRECT-
GLce), problem “T1” (with several instances depending on n) is used:

min
x∈Ω

∑n
i=1 xi

subject to
∑n

i=1 x2
i ≤ 6

with Ω = {x ∈ R
n : −1 ≤ xi ≤ 1, i = 1, . . . , n}. The algorithms stop with the

condition perror ≤ 1E−04 alone (or a maximum of 1E+06 function evaluations).
See Table 2. Although we are not yet able to achieve convergence before 1E+06
function evaluations on the larger instances, n = 5 and n = 6 of the problem
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Table 1. Comparison results when solving problem “Gomez #3”.

Algorithm perror f(x(k)) θ(x(k)) k nfe f∗

“DIRECT-f” 1% −0.961782 0.00E+00 9 185 −0.9711

“UB-DIRECT-f” −0.961782 0.00E+00 9 225

“UB-DIRECT-f+Heur” −0.961782 0.00E+00 10 149

In [3] – – 9 219

In [11] – – – 89

“DIRECT-f” 0.01% −0.971006 6.00E−05 17 615

“UB-DIRECT-f” −0.971006 6.00E−05 17 683

“UB-DIRECT-f+Heur” −0.971041 3.17E−05 18 555

In [3] – – 18 733

In [11] – – – 513

“T1”, the results obtained by “UB-DIRECT-f+Heur” for the other instances
outperform the others in comparison.

To analyze the quality of the obtained solutions we use problem “5” (available
in [2]):

min
x∈Ω

x3

subject to 30x1 − 6x2
1 − x3 = −250

20x2 − 12x2
2 − x3 = −300

0.5(x1 + x2)2 − x3 = −150

with Ω = {x ∈ R
3 : 0 ≤ x1 ≤ 9.422, 0 ≤ x2 ≤ 5.903, 0 ≤ x3 ≤ 267.42} and

problem “8” [2]:
min
x∈Ω

x4
1 − 14x2

1 + 24x1 − x2
2

subject to x2 − x2
1 − 2x1 ≤ −2

−x1 + x2 ≤ 8

with Ω = {x ∈ R
2 : −8 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10} and stop the algorithm

after kmax = 20 iterations and then after kmax = 50 iterations. The results are
compared to those obtained previously in [3], and are shown in Table 3. On the
other hand, to analyze the gain in efficiency of the present algorithm variants,
Table 4 reports the best f and θ values obtained by the algorithms when the
stopping conditions in (6) are used. The gain in quality and efficiency of the
proposed DIRECT-filter method, in particular when the upper bounds on f
and θ, and the heuristic are implemented, have been once more demonstrated
with the problems “5” and “8”. The results reported in [3] and those obtained
by variants DIRECT-GLc and DIRECT-GLce in [21] are also used in the
comparison.

Figures 1(a), (b) and (c) show the center points generated by the three
variants of the DIRECT-filter method when solving the problem “8”. Feasible
points are marked with ‘+’ (blue) and infeasible points with ‘×’ (red). It can be
seen that the variant “UB-DIRECT-f+Heur” is more effective in reaching the
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Table 2. Comparison results when solving problem “T1”.

Algorithm f(x(k)) θ(x(k)) k nfe f∗

n = 2 “DIRECT-f” −3.464106 9.29E−05 14 1395 −3.4641

“UB-DIRECT-f” −3.464106 9.29E−05 14 893

“UB-DIRECT-f+Heur” −3.464106 5.72E−05 13 335

DIRECT-GLc – – – 1373

DIRECT-GLce – – – 2933

n = 3 “DIRECT-f” −4.242443 0.00E+00 28 16885 −4.2426

“UB-DIRECT-f” −4.242443 0.00E+00 35 37977

“UB-DIRECT-f+Heur” −4.242443 9.17E−05 29 3233

DIRECT-GLc – – – 26643

DIRECT-GLce – – – 8297

n = 4 “DIRECT-f” −4.898847 0.00E+00 42 151753 −4.899

“UB-DIRECT-f” −4.898847 3.42E−05 39 78859

“UB-DIRECT-f+Heur” −4.898440 3.30E−05 51 36219

DIRECT-GLc – – – 192951

DIRECT-GLce – – – 47431

n = 5 “DIRECT-f” (−5.470982) (6.65E−05) (61) >1E+06 −5.4772

“UB-DIRECT-f” (−5.470711) (0.00E+00) (63) >1E+06

“UB-DIRECT-f+Heur” (−5.474293) (1.00E−04) (117) >1E+06

DIRECT-GLc – – – 253805

DIRECT-GLce – – – 78257

n = 6 “DIRECT-f” (−5.991770) (0.00E+00) (45) >1E+06 −6.0000

“UB-DIRECT-f” (−5.996647) (0.00E+00) (50) >1E+06

“UB-DIRECT-f+Heur” (−5.988112) (0.00E+00) (79) >1E+06

DIRECT-GLc – – – 239697

DIRECT-GLce – – – 135843

In parentheses, the achieved values when the algorithm stops due to nfe > 1E+06

solution. The points cluster around the global solution, being “UB-DIRECT-
f+Heur” the one that concentrates the search the most. Figure 1(d) shows the
pairs (θ, f) corresponding to the center points of all the hyperrectangles gen-
erated by variant “UB-DIRECT-f+Heur”. Dominated points are marked with
‘circle’ (red) and non-dominated points (or filter points) are marked with ‘full
circle’ (blue). The smaller plot shows an overview of the filter points.
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Table 3. Quality of the results when solving problems “5” and “8”.

Prob. Algorithm k = kmax

∣
∣f(x(k))− f∗∣

∣ θ(x(k)) nfe f∗

“5” “DIRECT-f” 20 2.512E−04 5.92E−03 471 201.16

“UB-DIRECT-f” 2.512E−04 5.92E−03 471

“UB-DIRECT-f+Heur” 2.512E−04 5.92E−03 379

In [3] 2.512E−04 5.92E−03 (471)

“DIRECT-f” 50 6.819E−04 9.44E−05 3307

“UB-DIRECT-f” 6.819E−04 9.44E−05 2653

“UB-DIRECT-f+Heur” 6.819E−04 9.44E−05 2167

In [3] 6.819E−04 9.55E−05 (2827)

“8” “DIRECT-f” 20 9.756E−04 0.00E+00 881 −118.70

“UB-DIRECT-f” 9.756E−04 0.00E+00 873

“UB-DIRECT-f+Heur” 7.611E−02 5.08E−05 587

In [3] 5.372E−02 0.00E+00 (717)

“DIRECT-f” 50 3.724E−03 9.85E−05 3363

“UB-DIRECT-f” 3.724E−03 9.85E−05 2715

“UB-DIRECT-f+Heur” 2.993E−03 9.82E−05 1971

In [3] 3.623E−03 9.62E−05 (3333)

In parentheses, values computed for the comparison, but not reported in [3]

Table 4. Efficiency when solving problems “5” and “8”.

Prob. Algorithm k f(x(k)) θ(x(k)) nfe f∗

“5” “DIRECT-f” 30 201.159343 7.83E−05 1015 201.16

“UB-DIRECT-f” 30 201.159343 7.83E−05 883

“UB-DIRECT-f+Heur” 30 201.159343 7.83E−05 769

In [3] 30 201.159343 7.83E−05 1009

DIRECT-GLc – 201.1593 – 819

DIRECT-GLce – 201.1593 – 819

“8” “DIRECT-f” 19 −118.700976 0.00E+00 823 −118.70

“UB-DIRECT-f” 19 −118.700976 0.00E+00 797

“UB-DIRECT-f+Heur” 23 −118.692210 0.00E+00 689

In [3] 23 −118.700976 0.00E+00 881

DIRECT-GLc – −118.6892 – 1197

DIRECT-GLce – −118.6898 – 1947
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(b) “UB-DIRECT-f” center points

x
1

-8 -6 -4 -2 0 2 4 6 8 10

x 2

0

1

2

3

4

5

6

7

8

9

10

(c) “UB-DIRECT-f+Heur” center points
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Fig. 1. Plots of center points in problem “8”: ‘+’ (blue) - feasible points and ‘×’
(red) - infeasible points; ‘circle’ (red) - dominated points and ‘full circle’ (blue) - non-
dominated points (Color figure online)

5 Conclusions

In this paper, we present an extension of the DIRECT method for solving equal-
ity and inequality constrained global optimization problems. The extension inte-
grates the filter methodology into the DIRECT and aims to minimize both
the objective function and the constraints violation simultaneously. The use of
the filter method allows the classification of the hyperrectangles, through the
objective and violation values of their center points, in four categories. Features
like non-dominance/dominance and almost feasible/infeasibility are used to clas-
sify and separately handle the hyperrectangles. Furthermore, upper bounds on
the objective function and on the constraints violation are imposed to identify
the hyperrectangles that should be avoided from the process of selecting the
most promising hyperrectangles. Furthermore, a heuristic that avoids the iden-
tification of potentially optimal hyperrectangles, among those that were mostly
divided, has been cyclically (every 10 iterations) implemented.
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Preliminary numerical experiments show that the quality and the efficiency
of the proposed DIRECT-filter method have been improved when the objective
and constraints violation upper bounds are introduced, and in particular, when
the heuristic is activated. The comparison carried out with other DIRECT-type
methods is encouraging for the smaller dimensional problems.

Future work will be directed to generate upper bounds based on information
gathered from the objective and violation values from each category, resorting
to the average and standard deviation of those values. Issues related to the
extension of the heuristic to avoid exploring hyperrectangles with the larger sizes,
while focusing on hyperrectangles with very small violation and lower objective
values, will require further work.
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Abstract. We consider one of the classes of hybrid systems, heteroge-
neous discrete systems (HDSs). The mathematical model of an HDS is a
two-level model, where the lower level represents descriptions of homo-
geneous discrete processes at separate stages and the upper (discrete)
level connects these descriptions into a single process and controls the
functioning of the entire system to ensure a minimum of functionality.
In addition, each homogeneous subsystem has its own goal. A method of
the approximate synthesis of optimal control is constructed on the basis
of Krotov-type sufficient optimality conditions obtained for such a model
in two forms. A theorem on the convergence of the method with respect
to a function is proved, and an illustrative example is given.

Keywords: Heterogeneous discrete system · Intermediate criteria ·
Approximate synthesis · Optimal control

1 Introduction

The direct use of the optimal control theory’s theoretical results is associated
with insurmountable difficulties regarding the solvability of practical problems
in analytical form. Therefore, theoretical results have always been accompanied
by the construction and development of various iterative methods. It is nearly
impossible to track the many works that represent various scientific schools and
areas. Therefore, generalization and analogs of Krotov’s sufficient optimality
conditions [1] in two forms will be used substantially in this paper. Some insight
into this field is given via an overview [2] and several publications [3–5].

The approach that is proposed in [6] is based on an interpretation of the
abstract model of multi-step controlled processes [7] as a discrete-continuous
system and extended to heterogeneous discrete systems (HDS) [8]. This method
has essentially allowed the decomposition of the inhomogeneous system into
homogeneous subsystems by constructing a two-level hierarchical model and
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generalizing optimality conditions and optimization algorithms that were devel-
oped for homogeneous systems. This refers to systems with a fixed structure that
are studied within the classical theory of optimal control.

Notably, with this approach, all homogeneous subsystems are linked by a
common goal and represented by a function in the model. However, each homo-
geneous subsystem can also have its own goal. Such a generalization of the HDS
model was carried out in [11], where sufficient conditions for optimal control in
two forms were obtained.

In this paper a method of approximate synthesis of optimal control is con-
structed, and an illustrative example is considered.

Previously, the authors proposed a more sophisticated improvement method
[12] for another class of heterogeneous systems, discrete-continuous systems, that
requires searching for a global extremum in control variables at both levels of
the hierarchical model. For the class of heterogeneous discrete systems consid-
ered in the present paper, the derivation of its analogue is not possible due to
the structural features of the discrete models and the construction of sufficient
optimality conditions.

2 Heterogeneous Discrete Processes with Intermediate
Criteria

Let us consider a two-level model where the lower level consists of discrete
dynamic systems of homogeneous structure. A discrete model of general form
appears on the top level.

x(k + 1) = f(k, x(k), u(k)),
k ∈ K = {kI , kI + 1, ..., kF }, u ∈ U(k, x), (1)

where k is the number of the step, x and u are respectively variables of state
and control of arbitrary nature (possibly different) for different k, and U(k, x)
is the set given for each k and x. On some subset K′ ⊂ K, kF /∈ K′, u(k) is
interpreted as a pair

(
uv(k),md(k)

)
, where md(k) is a process (xd(k, t), ud(k, t)),

t ∈ T(k, z(k)), md(k) ∈ Dd (k, z(k)), and Dd is the set of admissible processes
md, complying with the system

xd(k, t + 1) = fd
(
k, z, t, xd(k, t), ud(k, t)

)
,

t ∈ T = {tI(z), tI(z) + 1, . . . tF (z)},
(2)

xd ∈ Xd(k, z, t), ud ∈ Ud
(
k, z, t, xd

)
, z = (k, x, uv) .

For this system an intermediate goal is defined on the set T in the form of a
functional that needs to be minimized:

Ik =
∑

T(z)\tF (z)

fk(t, xd(k, t), ud(k, t)) → inf .

Here Xd(k, z, t), Ud
(
k, z, t, xd

)
are given sets for each t, z, and xd. The right-

hand side operator of the 1 is the following on the set K′:

f (k, x, u) = θ
(
z, γd(z)

)
, γd =

(
tI , x

d
I , tF , xd

F

) ∈ Γd(k, z),
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Γd(z) = {γd : tI = τ(k, z), tF = ϑ(k, z),

xd
I = ξ(k, z), xd

F ∈ Γd
F (k, z)}.

On the set D of the processes

m =
(
x(k), u(k), xd(k, t), ud(k, t)

)
,

satisfying 1, 2, the optimal control problem on minimization of a terminal func-
tional I = F (x (kF )) is considered. Here kI = 0, kF , x (kI) are fixed and
x(k) ∈ X(k).

3 Sufficient Optimality Conditions

The following theorems are valid [11]:

Theorem 1. Let there be a sequence of processes {ms} ⊂ D and functions
ϕ, ϕd such that:

(1) R (k, xs (k) , us (k)) → μ (k) , k ∈ K;
(2) Rd

(
zs, t, x

d
s (t) , ud

s (t)
) − μd (zs, t) → 0, k ∈ K′, t ∈ T (zs);

(3) Gd
(
zs, γ

d
s

) − ld (zs) → 0, k ∈ K′;
(4) G (xs (tF )) → l.

Then the sequence {ms} is a minimizing sequence for I on the set D.

Theorem 2. For each element m ∈ D and any functionals ϕ, ϕd the estimate is

I(m) − inf
D

I ≤ Δ = I(m) − l.

Let there be two processes mI ∈ D and mII ∈ E and functionals ϕ and ϕd

such that L
(
mII

)
< L

(
mI

)
= I

(
mI

)
, and mII ∈ D.

Then I(mII) < I(mI).

Here:
L = G (x (kF )) −

∑

K\K′\kF

R(k, x(k), u(k))

+
∑

K′

(
Gd(z) −

∑

T(z)\tF

Rd(z, t, xd(k, t), ud(k, t))
)
,

G (x) = F (x(kF )) + ϕ (kF , x) − ϕ (kI , x (kI)) ,

R (k, x, u) = ϕ (k + 1, f (k, x, u)) − ϕ (k, x) ,

Gd
(
k, z, γd

)
= −ϕ

(
k + 1, θ

(
k, z, γd

))
+ ϕ (k, x (k))

+ϕd
(
k, z, tF , xd

F

) − ϕd
(
k, z, tI , x

d
I

)
,

Rd
(
k, z, t, xd, ud

)
= ϕd(k, z, t + 1, fd

(
k, z, t, xd, ud

)
)

− fk(t, xd(k, t), ud(k, t)) − ϕd(k, z, t, xd),
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μd (k, z, t) = sup {Rd
(
k, z, t, xd, ud

)
: xd ∈ Xd(k, z, t), ud ∈ Ud

(
k, z, t, xd

)},

ld (k, z) = inf {Gd
(
k, z, γd

)
: (γd) ∈ Γd(k, z), xd ∈ Xd(k, z, tF )},

μ (k) =
{

sup{R (k, x, u) : x ∈ X(k), u ∈ U (k, x)}, t ∈ K\K′,
− inf{ld (z) : x ∈ X (k) , uv ∈ Uv (k, x)}, k ∈ K′,

l = inf{G (x) : x ∈ Γ ∩ X (kF )}.

Here ϕ (k, x) is an arbitrary functional and ϕd(k, z, t, xd) is an arbitrary para-
metric family of functionals with parameters k and z.

We note that L(m) and I(m) coincide for m ∈ D.
Theorem 1 allows us to reduce the solution of the optimal control problem

posed to an extremum study of the constructions R, G and Rd, Gd by the
arguments for each k and t, respectively. Theorem 2 indicates a way to construct
improvement methods. One of the variants of these methods is implemented
below.

4 Sufficient Conditions in the Bellman Form

One of the possible ways to set a pair (ϕ, ϕ̃d) is to require fulfillment of condition
inf

{mu}
L = 0 for any mx. Here mu = (u(k), uv(k), ud(k, t)) is a set of control

functions from the sets U, Uv, and Ud, respectively, mx = (x(k), x̃d(k, t)) is a
set of state variables of upper and lower levels. Such a requirement leads directly
to concrete optimality conditions of the Bellman type that can also be used
to construct effective iterations of process improvement. Let Γd

F (z) = R
n(k),

θ
(
z, γd

)
= θ

(
z, xd

F

)
. There are no other restrictions on the state variables.

The following recurrent chain is obtained with respect to the Krotov-Bellman
functionals ϕ and ϕd (z) of two levels:

ϕ (k, x) = sup
u∈U(k,x)

ϕ (k + 1, f (k, x (k) , u)) , k ∈ K\K′\kF ,

ϕ (kF , x) = −F (x) ,

ϕd(k, t) = sup
ud∈Ud(z,t,xd)

(
ϕd

(
k, t + 1, fd

(
k, t, xd (k, t) , ud

))
(3)

− fk(t, xd(k, t), ud(k, t))
)
,

ϕd
(
z, tF , xd

F

)
= ϕ

(
k + 1, θ

(
z, xd

F

))
,

ϕ (k, x) = sup
uv∈Uv(t,x)

ϕd (z, τ (z) , ξ (z)) , k ∈ K′,

which is resolved in the order from kF to kI . Suppose that a solution to this
chain

(
ϕ (k, x (k)) , ϕd

(
z, t, xd

))
exists and, moreover, that there are controls

corresponding to this solution ũ (k, x) , ũv (k, x) , ũd
(
z, t, xd

)
, obtained from
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the maximum operations in 3. Substituting the found controls in the right parts
of the given discrete formulas, we obtain

x (k + 1) = f (k, x (t) , ũ (k, x (t))) , x (kI) = xI , k ∈ K\K′\kF ,

x (k + 1) = θ
(
k, x (k) , ũv (k, x (k)) , γd (z̃)

)
,

xd(k, t + 1) = fd
(
k, x (k) , ũv (k, x (k)) , t, xd, ũd

(
z̃(k), t, xd

))
,

tI = τ (z̃(k)) , xd (tI) = ξ (z̃(k)) , z̃(k) = (k, x (k) , ũv (k, x (k)))

for k ∈ K′. The solution of this chain is

(x (k) , u (k))∗ , k ∈ K\K′,
(
x (k) , û (k) , xd (k, t) , ud (k, t)

)
∗ , k ∈ K′, t ∈ T (z∗(k)) .

If this solution exists, it sets the optimal heterogeneous discrete process m∗. We
note that the functional ϕd(z, t, xd) in this case can be considered independent
of x, because it “serves” a family of problems for different initial conditions.

The first variant of these conditions is obtained in [8,11].

5 The Approximate Synthesis of Optimal Control

Suppose that X(k) = R
m(k), Xd(z, t) = R

n(k), xd
I = ξ (z), kI , xI , kF , tI(k), tF (k)

are given, xd
F ∈ R

n(k), and lower-level systems do not depend on control uv.
We will develop the method based on the principles of expansion [9] and

localization [10]. The task of improvement is to build an operator η(m), η : D →
D, such that I(η(m)) ≤ I(m). For some given initial element, such an operator
generates improving, specifically a minimizing sequence {ms} : ms+1 = η(ms).

According to the localization principle, the task of improving an element mI

resolves itself into the problem of the minimum of the intermediary functional

Iα(m) = αI(m) + (1 − α)J(mI,m), α ∈ [0, 1], (4)

where J(mI,m) is the functional of a metric type. By varying α from 0 to 1, we
can achieve the necessary degree of proximity mα to mI and effectively use the
approximations of the constructions of sufficient conditions in the neighbourhood
of mI. As a result, we obtain an algorithm with the parameter α, which is a
regulator configurable for a specific application. This parameter is chosen so
that the difference I(mI)− I(mα) is the largest; then the corresponding element
mα is taken as mII. We consider the intermediary functional of the form

Iα = αI + (1 − α)

⎛

⎝
∑

K\K′\kF

1
2
|Δu (k) |2 +

∑

K′

∑

T(z)\tF

1
2
|Δud (k, t) |2

⎞

⎠ ,

where α ∈ [0, 1],Δu = u − uI, Δud = ud − udI.
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According to said extension principle for the given element mI ∈ D, we need
to find an element mII ∈ D for which Iα(mII) = Lα

(
mII

)
< Iα(mI) = Lα

(
mI

)
,

or Lα

(
mII

) − Lα

(
mI

)
< 0. We consider the increment of the functional Lα(m):

ΔLα ≈ GT
xF

ΔxF +
1
2
ΔxT

F GT
xF xF

ΔxF

−
∑

K\K′\kF

(
RT

x Δx + RT
u Δu +

1
2
ΔuTRuuΔu

+
1
2
ΔxTRxxΔx + ΔuTRuxΔx

)
+

∑

K′\kF

(
GdT

xd
F
Δxd

F + GdT
x Δx

+
1
2
ΔxdT

F GdT
xd
F xd

F
Δxd

F +
1
2
ΔxTGdT

xxΔx + ΔxdT
F GdT

xd
F xΔx

)

−
∑

T(z)\tF

(
RdT

xd Δxd + RdT
x Δx + RdT

ud Δud +
1
2
ΔudTRd

ududΔud

+
1
2
ΔxdTRd

xdxdΔxd + ΔxTRd
xxdΔxd + ΔxTRd

xudΔud + ΔudTRd
udxdΔxd

)
,

where Δu = u − uI, Δx = x − xI, Δud = ud − udI, Δxd = xd − xdI, Δxd
F =

xd
F − xdI

F , and xF = x(kF ). Here the functions R, G, Rd, and Gd are defined
for the functional Iα, and their first and second derivatives are calculated at
u = uI(k), x = xI(k), xd = xdI(k, t), and ud = udI(k, t). We suppose that
matrices Ruu and Rd

udud are negative definite (this can always be achieved by
choosing a parameter α [10]). We find Δu,Δud such that

∑

K\K′\kF

,
∑

T(z)\tF

reach

their respective maximum values. It is easy to see that

Δu = −(Ruu)−1(Ru + RuxΔx(k)),

Δud = −(Rd
udud)−1(Rd

ud + Rd
udxΔx(k) + Rd

udxdΔxd(k, t)).

We substitute the found formulas for the control increments into the formula for
the increment of the functional ΔLα. Then we perform the necessary transfor-
mations and denote the result by ΔMα. We obtain

ΔMα ≈ GT
x Δx +

1
2
ΔxTGxxΔx −

∑

K\K′\kF

(
(Rx − RxuR−1

uuRT
u )Δx

+
1
2
ΔxT

(
Rxx − RxuR−1

uuRT
xu

)
Δx − 1

2
RT

u R−1
uuRu

)

+
∑

K′\kF

(
GdT

xd
F
Δxd

F +
1
2
ΔxdT

F Gd
xd
F xd

F
Δxd

F + GdT
x Δx +

1
2
ΔxTGd

xxΔx

+ΔxdT
F Gd

xd
F xΔx

)
−

∑

T(z)\tF

(
Rd

xd − Rd
xdud(Rd

udud)−1RdT
ud

)
Δxd
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+
1
2
ΔxdT

(
Rd

xdxd − Rd
xdud(Rd

udud)−1RdT
xdud

)
Δxd

+
(
RdT

x − Rd
xud(Rd

udud)−1Rd
ud

)
Δx +

1
2
ΔxT

(
Rd

xx − Rd
xud(Rd

udud)−1RdTxud

)
Δx

+
(

ΔxT
(
Rd

xxd − Rd
xud(Rd

udud)−1RdT
xdud

)
Δxd − 1

2
RdT

ud (Rd
udud)−1Rd

ud)
)

.

We define the functions ϕ,ϕd as ϕ = ψT (k) x (k) + 1
2ΔxT (k) σ (k) Δx (k) ,

ϕd = λT (k, t) x(k) + ψdT (k, t) xd (k, t) +
1
2
ΔxdT (k, t) σd (k, t) Δxd (k, t)

+ΔxT (k) Λ (k, t) Δxd (k, t) +
1
2
ΔxT (k) S (k, t) Δx (k) ,

where ψ,ψd, λ are vector functions and σ, σd, S, Λ are matrices, and so that
the increment of the functional ΔMα does not depend on Δx, ΔxF , Δxd, Δxd

F .
The last requirement will be achieved if

Rx − RxuR−1
uuRT

u = 0,

Rxx − RxuR−1
uuRT

xu = 0,

Rd
x − Rd

xud

(
Rd

udud

)−1
RdT

ud = 0,

Rd
xd − Rd

xdud(Rd
udud)−1RdT

ud = 0,

Rd
xdxd − Rxdud(Rd

udud)−1RT
xdud = 0,

Rd
xx − Rxud(Rd

udud)−1RT
xud = 0,

Rd
xxd − Rxud(Rd

udud)−1RT
xdud = 0,

Gx = 0, Gd
x = 0, Gd

xd
F

= 0, Gxx = 0, Gd
xd
F xd

F
= 0, Gd

xd
F x = 0, Gd

xx = 0.

Transformation of these conditions leads to a Cauchy problem for HDS with
respect to ψ, ψd, λ, σ, σd, S, and Λ, with initial conditions on the right end:

ψ(kF ) = −αFx, σ(kF ) = −αFxx,

ψ(k) = Hx − (
fT

x σ (k + 1) fu + Hxu

) (
fT

u σ (k + 1) fu + Huu

)−1
Hu,

σ(k) = fT
x σ (k + 1) fx + Hxx

− (
fT

x σ (k + 1) fu + Hxu

) (
fT

u σ (k + 1) fu + Huu

)−1

(
fT

x σ (k + 1) fu + Hxu

)T
, k ∈ K\K′\kF ,

ψ(k) = Hx + ξTx Hxd + ξTx ψd(k, tI) + λ(tI) − λ(tF ), k ∈ K′,

σ (k) = θTx σ (k + 1) θx + Hxx + ξTx θxd(tI)σ(k + 1)θx + θTx σ(k + 1)θxd(tI)ξx

+ ξTx θTxd(tI)σ (k + 1) θxd(tI)ξx + ξTx σd (k, tI) ξx + S (k, tI)
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+ ξxxψd(tI) + ξT
x σd(k, tI)ξx + ξTx Λ(tI), k ∈ K′,

ψd = Hd
xd−

(
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

) (
fdT

ud σd (k, t + 1) fd
ud + Hd

udud

)−1
Hd

ud ,

ψd (k, tF ) = Hxd
F
,

λ(k, t) = λ(k, t + 1) + Hd
x − (Λ(k, t + 1)fd

ud + fdT
x σd(k, t + 1)fd

ud + Hd
xud)

(
fdT

ud σ (k, t + 1) fd
ud + Hd

udud

)−1
Hd

ud , λ(k, tF ) = 0,

σd(k, t) = fdT
xd σd (k, t + 1) fd

xd + Hd
xdxd − (

fdT
xd σd (k, t + 1) fd

ud + Hd
xdud

)

(
fdT

ud σ (k, t + 1) fd
ud + Hd

udud

)−1 (
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

)T
,

σd (k, tF ) = θTxd
F
σ (k + 1) θxd

F
+ Hxd

F xd
F
,

Λ (k, t) = fdT
x Λ (k, t + 1) fd

xd + Hd
xxd −

(
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

)

(
fdT

ud σd (k + 1) fd
ud + Hd

udud

)−1 (
fdT

xd σd (k, t + 1) fd
ud + Hd

xdud

)T
,

Λ (k, tF ) = θTx σ (k + 1) θxd + Hxxd ,

S(k, t) = S(k, t+1)+ fdT
x ΛdT(k, t+1)+Λ(k, t+1)fd

x +Hd
xx + fdT

x σd(k, t+1)fd
x

−
(
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

) (
fdT

ud σd (k + 1) fd
ud + Hd

udud

)−1

((
f

dT
x Λ (k, t + 1) fd

ud + Hd
xud

))T

, S (k, tF ) = 0,

where

H = ψT (k + 1) f(k, x(k), u(k)) − 1
2

(1 − α) |Δu (k) |2, k ∈ K\K′\kF

and
H = ψT (k + 1) θ (k, x (k) , xc

I , x
c
F ) k ∈ K′,

Hd = ψdT(k, t + 1)fd(k, t, x(k), xd, ud) − fk(t, xd, ud) − 1
2

(1 − α) |Δud (k) |2,

x (kI) = xI , x (kF ) = xF , xd (k, tI) = xd
I , xd (k, tF ) = xd

F .
Wherein

Δu (k) = − (
fT

u σ (k + 1) fu + Huu

)−1
(
Hu +

(
fT

x σ (k + 1) fu + Hxu

)T
Δx(k)

)
,

Δud (k, t) = −(Hd
udud)−1

(
Hd

ud + (ΛT fd
ud + Hd

xud)TΔx(k)

+
(
σdfd

ud + Hd
xdud

)T
Δxd(k, t)

)
.

We note that the formulas obtained for the control increments of the upper
and lower levels depend on the state increments of the same levels. The method
then gives a solution to the problem in the form of approximately optimal linear
synthesis.
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6 Iterative Procedure

Based on the formulas obtained, we can formulate the following iterative
procedure:

1. We calculate the initial HDS from left to right for u = us(k), ud = ud
s(k, t)

with the given initial conditions to obtain the corresponding trajectory
(xs(k), xd

s(k, t)).
2. We resolve the HDS from right to left with respect to ψ (k), ψd (k, t), λ(k, t),

σ(k), σd(k, t), Λ(k, t), and S(k, t).
3. We find Δu, Δud and new controls u = us(k) + Δu, ud = ud

s(k, t) + Δud.
4. With the controls found and the initial condition x(kI) = xI , we calculate

the initial HDS from left to right. This defines a new element ms+1.

The iteration process ends when |Is+1 − Is| ≈ 0 with a specified accuracy.

Theorem 3. Suppose that the indicated iteration procedure is developed for a
given HDS and the functional I is bounded from below. Then it generates an
improving sequence of elements {ms} ∈ D, convergent in terms of the functional,
i.e., there is a number I∗ such that I∗ ≤ I(ms), I(ms) → I∗.

Proof. The proof follows directly from the monotonicity property with respect
to the functional of the improvement operator under consideration. Thus, we
obtain a monotonic numerical sequence

{Is} = {I(ms)}, Is+1 ≤ Is,

bounded from below, which according to the well-known analysis theorem con-
verges to a certain limit: Is → I∗.

Remark 1. The equations for the matrices σ, σd are analogs of the matrix Riccati
equations and can therefore have singular points. Points k∗ ∈ K, t∗ ∈ T(k) are
called singular if there are changes in the sign of definiteness of matrices Ruu,
Rd

udud . In these cases, by analogy with homogeneous discrete processes, singular
points can be shifted to the points kI , tI(k) due to the special choice of the
parameter α, and we can find the control increments by the modified formulas
[13]. In the particular case when the discrete process of the lower level does not
depend on x and ud, these formulas have the simplest form:

Ruu(kI)Δu(kI) = 0, Rd
udud(k, tI)Δud(k, tI) = 0.

The last equalities are systems of linear homogeneous algebraic equations
with degenerate matrices Ruu(kI), Rd

udud(k, tI) and therefore always have non-
zero solutions.

Remark 2. If σ = 0, σd = 0, Λ = 0 in the resulting algorithm, then we obtain
the first-order improvement method. In this case, the formulas Δu, Δud will still
depend on the state increments. Consequently, the resulting solution, as before,
is an approximate synthesis of optimal control.
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7 Example

We illustrate the work of the method with an example. Let the HDS be given:

xd(t + 1) = −2xd(t) + (ud
1 − 1)2, xd(0) = 1, t = 0, 1, 2, 3,

I0 =
1
2
(xd(t))2 +

1
3
(ud

1)
3,

xd(t + 1) = (t − ud
2)

2, t = 4, 5, 6, I1 =
1
2
(xd)2 + ud

2,

I = xd(7) → min .

Fig. 1. Control variables in different iterations

It is easy to see that K = 0, 1, 2. Since xd is a linking variable in the two
periods under consideration, we can write the process of the upper level in terms
of this variable:

x(0) = xd(0, 0), x(1) = xd(0, 4), x(2) = xd(1, 7), xd(1, 4) = x(1).

Then θ = xd(0, 4), ξ = x(1), I = x(2).
Since at both stages the process of the lower level does not depend on the

state variables of the upper level, then λ(0, t) = λ(1, t) = 0, Λ(0, t) = Λ(1, t) =
0, S(0, t) = S(1, t) = 0.

We obtain

ψ(2) = −α, σ(2) = 0, ψ(1) = ψ(2) + ψd(1, 4), σ(1) = 2σd(1, 4)

Hd(0, t) = ψd(0, t+1)(−2xd +(ud
1 −1)2)− 1

2
(xd(t))2 − 1

3
(ud

1)
3 − 1

2
(1−α)(Δud

1)
2,



82 O. Danilenko and I. Rasina

Hd(1, t) = ψd(1, t + 1)(t − ud
2)

2 − 1
2
(xd)2 − ud

2 − 1
2
(1 − α)(Δud

2)
2,

ψd(0, t) = −2ψd(0, t + 1) − xd − 4σd(0, t + 1)(1 − ud
1)(4(ud

1 − 1)2)σd(0, t + 1)

+ 2ψd(0, t+1)−2ud
1 − (1−α))−1(2ψd(0, t+1)(ud

1 −1)− (ud
1)

2), ψd(0, 4) = ψ(2),

σd(0, t) = 4σd(0, t + 1) − 1 − (4σd(0, t + 1)(1 − ud
1))

2)(4(ud
1 − 1)2)σd(0, t + 1)

+ 2ψd(0, t + 1) − 2ud
1 − (1 − α))−1,

ψd(1, t) = −xd, ψd(1, 7) = 0, σd(1, t) = −1, σd(1, 7) = 0,

Δud
1 = (2ψd(0, t + 1) − 2ud

1 − (1 − α))−1(2ψd(0, t + 1)(ud
1 − 1) − (ud

1)
2

+ 2σd(0, t + 1)(ud
1 − 1)Δxd(0, t),

Δud
2 = −(2ψd(1, t + 1) − (1 − α))−1(2ψd(1, t + 1)(t − ud

2) + 1).

Fig. 2. State variables in different iterations

Numerical experiments show that the improvement of the functional does not
depend significantly on the choice of the parameter α and occurs in almost one
iteration. The result of calculations is shown for α = 0.76 and u(t) = 1, t = 0, .., 6.
The functional value is improved from 25 to 0.64 in one iteration. Initial and
resulting controls and states are shown in Figs. 1 and 2.

For comparison, calculations using the gradient method were also performed.
The result is obtained in six iterations, while the value of the functional is 2.87.
This indicates the efficiency of the proposed method.

8 Conclusion

This paper considers HDS with intermediate criteria. On the basis of an ana-
logue of Krotov’s sufficient optimality conditions, a method for the approximate
synthesis of optimal control is constructed, its algorithm formulated, and an
illustrative example given to demonstrate the efficiency of the proposed method.
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Modelling Climate Changes with Stationary
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Abstract. Climate is changing; many studies of time series confirm this sentence,
but this does not imply that the past is no more representative of the future, and
then that “stationarity is dead”.

In fact, “stationarity” and “change” are not mutually exclusive. As examples:
(1) according to Newton’s first law, without an external force, the position of
a body in motion changes in time but the velocity is unchanged; (2) according
to Newton’s second law, a constant force implies a constant acceleration and a
changing velocity.

Consequently, “non-stationarity” is not synonymous with change; change is
a general notion applicable everywhere, including the real (material) world, while
stationarity and non-stationarity only regard the adopted models. Thus, stationary
models can be also adopted for environmental changes.

With this aim, in this work Authors show some numerical experiments con-
cerning rainfall processes. In detail, a Neymann Scott Rectangular Pulse model
(NRSP), with some changing temporal scenarios for its parameters, is adopted,
and the derived Annual Maximum Rainfall (AMR) time series are investigated
for several temporal resolutions (sub-hourly and hourly scales). The goal is to
analyze if there are some particular scales in which the assumed temporal changes
in parameters could be “hidden” when AMR series (which are nowadays more
available and longer than high-resolution continuous time series for many sites in
the world) are studied, and then stationary models for Extreme Value distributions
could be adopted.

The results confirm what is obtained from analysis of AMR series in some
parts of Italy, for which it is not essential to remove the hypothesis of stationary
parameters: significant trends could not appear only from the observed AMR
data, as a relevant rate of outlier events also occurred in the central part of the last
century.

Keywords: Rainfall processes · Climate changes · Stationary models

1 Introduction

Climate changes are widely described in many technical reports and scientific papers
(e.g. [1, 2]). Concerning Europe, and in particular Italy, the report of the European
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Environmental Agency (EEA) [3] and the publication of the Italian Institute for Envi-
ronmental Protection and Research (ISPRA) [4] can be mentioned. In these reports,
projections of future climate were derived by four Regional Climate Models (RCMs),
named as ALADIN, GUF, CMCC, LMD. For each RCM, four scenarios of Representa-
tive Concentration Pathways (RCPs) of total radiative forcing (i.e., cumulative measure
of human emissions of greenhouse gasses from all sources expressed in W/m2) were
used as input: RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. Moreover, an ensemble mean
projection from all the RCMs was also derived for each RCP. Focusing the attention
on RCP 4.5 (intermediate emissions) and RCP 8.5 (high emissions), with respect to the
reference period 1971–2000, the results of the simulations related to a future period until
2090 for Italy are:

• a decrease of annual precipitation. In details, the ensemblemean of reduction is 13mm
for RCP 4.5 and 71 mm for RCP 8.5;

• a modest increase for the annual maximum daily rainfall. The ensemble mean is, for
both RCP 4.5 and RCP 8.5, up to 5–7 mm;

• a significant increase for the waiting time between two consecutive rainfall events.
The ensemble mean is up to 8 days for RCP 4.5, and up to 16 days for RCP 8.5.

However, RCMs usually underestimate intensity of extreme rainfall, due to struc-
ture of the adopted numerical schemes and to their temporal and spatial resolutions.
Concerning these last aspects, spatial resolutions between 10 and 30 km, typically used
in RCMs for climate change studies, are still too coarse to well reproduce sub-daily
localized heavy precipitation events [5, 6].

Moreover, from analysis of some time series in southern Italy, related to Annual
Maximum Rainfall (AMR) for daily and sub-daily resolutions, significant trends do not
appear from the observed data, as a relevant number of heavy events also occurred in
the central part of the last century [7].

Consequently, the contrast between the perception of climate changes by people (also
supported by RCMs projections) and the evidence from some time data series implies a
more in-depth analysis of rainfall processes, mainly for extremes from high-resolution
data. In this context, only an analysis of observed records may not be sufficient, as high-
resolution rainfall data usually present a very short sample size; this aspect, together
with the need to obtain perturbed time series which are representative of future rainfall
fields, makes preferable the use of stochastic rainfall generators.

In this paper, a modified version of the Neymann Scott Rectangular Pulse (NSRP,
[8–10]) was implemented (Sect. 2.1), in which:

• the parameters were estimated by considering the AMR time series at sub-daily dura-
tions, that are usually more lengthy with respect to high-resolution continuous time
series. Moreover, with this choice, a better reconstruction of AMR time series can be
obtained, which are of main interest in this study;

• a simple goniometric scheme was introduced for the mean value of inter-arrivals
between two consecutive storms, in order to better reproduce seasonality and annual
precipitation, without over parameterizing the model by using monthly or seasonal
parameter sets.
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Once the NSRP model has been calibrated, some parameters trends were hypoth-
esized, which provided compatible results with RCM scenarios in terms of variation
for maximum daily rainfall and cumulative annual precipitation. Time series of Viterbo
raingauge (central Italy) were used as case study (Sect. 2.2). The obtained results are
discussed in Sect. 3.

2 Methods and Materials

2.1 Brief Overview of NSRP Model

The single-site Neymann Scott Rectangular Pulses (NSRP, [8–10]) model presents a
flexible structure, in which the meaning of model parameters is strictly related to the
underlying physical features observed in rainfall events. In details, the basic formulation
is:

1. it is assumed that the inter-arrivals Ts between the origins of two consecutive storms
are independent and identically distributed, and follow an exponential distribution:

PTS (tS) = 1 − e−λtS , (1)

where 1/λ represents the mean value for inter-arrivals;
2. for each origin, a number M of rain cells (also named bursts) is associated. M is

usually considered asGeometric or Poisson distributed. In the following, a geometric
distribution is assumed and, with the aim of having at least one burst for a storm, the
random variable C =M − 1 is used, with E[C] = θ − 1, so that E[M] = θ and:

PC (c) = 1

θ
·
(
1 − 1

θ

)c

(2)

3. the starting time of each rain cell Tc, measured from the origin of the associated
storm, is exponentially distributed with parameter β:

PTc (τc) = 1 − e−βτc (3)

4. a rectangular pulse is then related to each burst, with an Intensity I and a duration
D, which are both exponential distributed with parameters η and ξ , respectively:

PI (i) = 1 − e−ηi (4)

PD(d) = 1 − e−ξd (5)
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5. the total precipitation intensity at time t, Y (t), is then calculated as sum of the
intensities related to the active bursts at time t:

Y (t) =
∫ +∞

0
It−u(u)dM(t − u), (6)

where It−u(u) is the intensity of a single rectangular pulse at time u and M(t) is
the counting process of the burst occurrences. Then, the aggregated process, i.e. the
rainfall height H(τ )

j cumulated on the temporal τ - resolution and related to the time
interval j is:

H(τ )
j =

∫ jτ

(j−1)τ
Y (t)dt (7)

Therefore, the basic version of a NSRP model has 5 parameters that can be esti-
mated by minimizing an objective function, evaluated as sum of residuals (normalized
or not) between the considered (by users) statistical properties of the observed data at
chosen resolutions and their theoretical expressions. The statistical properties are typi-
cally referred to high-resolution continuous time series (e.g. 5-min rainfall time series),
for example: mean, variance, k-lag autocorrelation for H(τ )

j at several values of τ [11].
However, the sample size of these datasets is usually short (at most 15–20 years of

records) and then not very suitable for obtaining robust estimations, even more so when
a specific 5-parameter set is considered for each month or season, in order to take into
account the seasonality of the process.

To overcome this problem, in thisworkAuthors considered statistical properties from
the annual maximum time series of rainfall heights at hourly and sub-hourly resolutions,
which are usually longer than continuous series. This choice also allows for a better
reproduction of extreme events, which are generally underestimated if continuous time
series are used for model calibration [12].

Moreover, due to the fact that the information about the seasonality of the rainfall
process during the year is lost with the use of Block Maxima (BM) series, a very simple
schematization was introduced for modelling the seasonality. In detail, with the goal to
not over parameterize the model (i.e. introducing monthly or seasonal parameter sets),
if no specific information can be derived from BM series, the following goniometric
function was introduced for the mean value of the inter-arrivals between two consecutive
storm origins (i.e. 1/λ):

1

λ(t)
= 1

λmin
+ A · (1 + cos(ϕ(t))), (8)

where 1/λmin is the assumed minimum value of mean waiting time between two storms,
A is the difference (1/λ − 1/λmin), with λ from Eq. (1), and

ϕ(t) = 2π t

Ty
+ π, (9)

in which Ty is the total number of minutes in one year, and 0 ≤ t ≤ Ty . With adoption
of Eq. (8), Authors hypothesize that the mean waiting time assumes the minimum value
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(1/λmin) when t is very close to 0 and Ty (i.e. in the winter period), the maximum value
during summer season, and the mean value along the whole interval [0; Ty] is equal to
1/λ.

The use of this goniometric function only introduces onemore parameter, λmin, with
respect to the basic formulation for NSRP, and it also allows for a better reconstruction of
the annual precipitation, as explained in Sect. 3.1. In the following, the standard model
version (without goniometric function) is indicated as NSRP1, while the version with
Eq. (8) is NSRP2.

Once the model calibration was completed, some parameters trends were hypothe-
sized, from which Authors considered those that provided compatible results with RCM
scenarios, in terms of variation for maximum daily rainfall and annual precipitation.
In this paper, as a representative example, Authors discussed the obtained outcomes
(Sect. 3.2) for the following scenario, which is characterized by:

• a linear increasing trend of 50% in 100 years concerning Intensity of Bursts;
• a linear decreasing trend of 25% in 100 years concerning Duration of Bursts;
• a linear increasing trend of 50% in 100 years concerning the mean waiting time
between two consecutive storms.

2.2 The Case Study of Viterbo Raingauge

Authors focused attention on Viterbo rain gauge (central Italy), characterized by aMean
Annual Precipitation (MAP) equal to 746 mm. The analyzed data, provided by ‘Agenzia
Regionale di Protezione Civile – Centro Funzionale Regionale’ of Lazio region, were: (i)
Annual Maximum Rainfall (AMR) series related to sub-daily durations (1–24 h), with
a sample size N = 71 years; (ii) continuous high-resolution (5-min) rainfall series from
1994 to 2015, from which the AMR series related to 5, 15 and 30 min were obtained,
with N = 22 years.

As explained in Sect. 2.1, because of the relatively short sample size for the continu-
ous rainfall series, Authors preferred to calibrate (Sect. 3) the model by using the longer
hourly AMR series, in order to better reproduce the extreme rainfall events, which are of
main interest for specific topics, like analysis of induced events (floods and landslides)
and related strategies of disaster risk reduction. However, the statistics of sub-hourly
AMR data (derived from continuous series) were considered in the validation step.

3 Results and Discussion

3.1 Calibration of NSRP Models Without Parameter Trend

The calibration for NSRP1 and NSRP2 was carried out by optimizing with respect
to the mean sample values of hourly AMR series (1–24 h) and annual precipitation.
According with [11, 13], the ranges of variation for the 5 parameters related to NSRP1
were: [0.002 h−1; 0.01 h−1] for λ; [2, 10] for θ ; [0.02 h−1; 0.5 h−1] for β; [0.05 h/mm;
0.2 h/mm] for η and [1 h−1; 10 h−1] for ξ . Moreover, the range [2 days; 5 days] was
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adopted for 1/λmin , introduced in NSRP2 (see Eq. 8). For each hypothesized parameter
set, concerning both NSRP1 and NSRP2, a single 500-year realization of continuous 1-
min rainfall heights was generated with the usual Monte Carlo technique [14], according
to the property of ergodicity [15, 16] related to a stationary process.

The calibration results are reported in Table 1. From Table 2 (where there are also
indicated the mean values for 5, 15 and 30-min AMR series, not adopted for calibra-
tion), it is clear that there is not a significant difference between NSRP1 and NRSP2 in
terms of mean values for AMR (there is in general a slight overestimation from NSRP2
when sample data are compared). The more noticeable difference is concerned with the
reconstruction of MAP: NSRP1 provided a value of 552.0 mm, while 739.3 mm (closer
to the sample value of 746 mm) were obtained from NSRP2, which is clearly preferable
for the successive elaborations.

Table 1. NSRP calibration results

(h) (-)
11/β 
(h)

1/  
(mm/h)

1/  
(h) (h) 

NSRP1 model 214.5 5.7 11.9 14.2 0.16NSRP2 model 72.0

Table 2. NSRP performances, in terms of reconstruction of mean values for Annual Maximum
Rainfall (AMR) and Mean Annual Precipitation (MAP)

5-min 
AMR
(mm)

15-min 
AMR
(mm)

30-min 
AMR
(mm)

1-h
AMR
(mm)

3-h
AMR
(mm)

NSRP1 model 6.9 17.6 26.9 32.9 38.2
NSRP2 model 7.1 18.3 28.5 35.4 41.1
Sample data 8.3 15.7 22.1 31.0 40.3

6-h
AMR
(mm)

12-h
AMR
(mm)

24-h
AMR
(mm)

MAP 
(mm)

NSRP1 model 44.4 53.3 64.0 552.0
NSRP2 model 47.9 60.2 72.8 739.3
Sample data 47.3 55.6 65.5 746.0

In Fig. 1, the comparison among Amount-Duration-Frequency (ADF) curves
obtained from the sample AMR series and those derived from the simulated contin-
uous NSRP2 process is illustrated. For values of return period from 10 to 1000 years, we
can observe at most a difference of about±2.5 mm for longer durations, ranging from−
2% to 4%with respect to sample data. Consequently, the proposed calibration for NSRP,
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carried out by considering sample statistics from observed AMR series, seems useful in
order to reproduce extreme rainfall events along several sub-daily durations.

Fig. 1. Comparison among ADF curves obtained from NSRP2 model and sample data analysis

3.2 Results from the Assumed Parameter Trends

Starting from the hypothesized scenario described in Sect. 2.1 for parameter trends, 500
realizations, each one concerning 101 years of continuous 1-min rainfall heights, were
generated with the usualMonte Carlo technique [14]. Obviously, the first generated year,
denoted as “0”, has all the features of the calibrated stationary process in Sect. 3.1.

Focusing onAnnual Precipitation (AP) and annualmaximum24-h rainfall height, the
temporal evolution of their mean values (calculated for each year from the correspondent
500 realizations) is compatible with RCM projections, reported in Sect. 1. In fact (see
also Table 3):

• a mean reduction of 82.5 mm in 100 years is obtained for AP (well-matched with
71 mm in 90 years from RCP 8.5);

• there is a slight increase for 24-h AMR, of about 4 mm in 100 years (the ensemble
mean is, for both RCP 4.5 and RCP 8.5, up to 5–7 mm in 90 years, related to daily
duration).

Moreover, interesting comments can bemade from analysis of temporal evolution for
the generated distributions regarding AMR series at sub-hourly and hourly time scales.
A specific AMR distribution, related to a fixed year, is obviously derived from the



Modelling Climate Changes with Stationary Models 91

Table 3. Evolution of mean values for Annual Maximum Rainfall (AMR) and Mean Annual
Precipitation (MAP): from now (t0) to 25 (t25), 50 (t50), 75 (t75) and 100 (t100) years

5-min 
AMR
(mm)

15-min 
AMR
(mm)

30-min 
AMR
(mm)

1-h
AMR
(mm)

3-h
AMR
(mm)

t0 7.1 18.3 28.5 35.4 41.1
t25 7.8 19.9 30.7 37.5 43.4
t50 8.4 20.8 31.0 36.9 43.2
t75 9.0 22.5 33.1 38.6 44.3
t100 9.7 23.5 33.4 37.9 44.0

6-h
AMR
(mm)

12-h
AMR
(mm)

24-h
AMR
(mm)

MAP 
(mm)

t0 47.9 60.2 72.8 739.3
t25 50.8 61.4 74.8 732.6
t50 51.0 61.6 74.9 700.8
t75 51.8 62.7 75.3 687.0
t100 51.5 63.1 76.7 656.8

correspondent 500 annual extremes associated to the generated realizations. From Fig. 2
it is clear that there is a significant difference among AMR distributions (represented in
EV1 probabilistic plots, [14]) at higher resolutions (5–15 min); from Table 3 it can be
noted that there is an increase in mean values of about 37% (5-min AMR), 28% (15-min
AMR) and 17% (30-min AMR) in 100 years.

These differences are less and less evident for hourly time scales (Fig. 3); the increase
in mean values is at most about 5–7% in 100 years (Table 3).

These results can be easily justified from the assumed trend scenario:

• an increase in burst intensity induces a clear increase in rainfall height for finer time
scales (5–30 min), which are less influenced by a contemporary reduction of burst
duration;

• on the contrary, for coarser resolutions (from 1 h), the simultaneous presence of an
increase for intensity and a reduction in duration for bursts produces a sort of balance
for rainfall heights, and then it is not possible to highlight a significant trend for AMR
series;

• the increase of mean waiting time between two consecutive storms mainly influences
the reduction of annual precipitation, as expected from RCM projections.

Such considerations are also confirmed by Figs. 4 and 5. For finer time scales (5
and 15 min), the temporal evolutions of 2.5%, 97.5% quantiles and mean value (derived
from all the 500 realizations) clearly show an increasing trend more significant than
those associated to the coarser ones (1–24 h), for which the temporal slopes could be
also considered as horizontal.
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Fig. 2. Evolution of distributions for 5-min AMR (top) and 15-min AMR (bottom): from now
(t0) to 25 (t25), 50 (t50), 75 (t75) and 100 (t100) years.
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Fig. 3. Evolution of distributions for 1-h AMR (top) and 24-h AMR (bottom): from now (t0) to
25 (t25), 50 (t50), 75 (t75) and 100 (t100) years.



94 D. L. De Luca et al.

Fig. 4. Temporal evolution of mean, 2.5% and 97.5% quantiles for 5-min AMR (top) and 15-min
AMR (bottom), from Monte Carlo simulation carried out for the adopted NSRP2 with parameter
trend.

Consequently, from the exposed numerical experiments it could be affirmed that
adoption of stationary models for rainfall extreme value distributions still remains as a
valid tool, when the specific time scale is such as to “hide” climatic change effects which
are more evident at finer resolutions. Obviously, this is also confirmed by preliminary
data analysis ofmanyAMRseries, forwhich a relevant rate of outlier events also occurred
in the last century.
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Fig. 5. Temporal evolution of mean, 2.5% and 97.5% quantiles for 1-h AMR (top) and 24-h AMR
(bottom), from Monte Carlo simulation carried out for the adopted NSRP2 with parameter trend.

4 Conclusions

From the proposed numerical experiments, the obtained results can clearly constitute
an interesting contribution for discussion about climate change effects on several time
resolutions for rainfall time series. As well-known by preliminary analysis of many
observed AnnualMaximumRainfall (AMR) time series, significant trends do not appear
from the sample data at specific resolutions in someparts of Italy [7], and this is confirmed
by simulations carried out in this work, although some parameter trends were imposed
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for the continuous process, which induce a more evident non-stationary behavior only
for very high-resolution AMR series.

Consequently, stationary models can still remain a valid tool for estimation of design
extremes also in a changing climate, mainly for coarser scales, which are not so influ-
enced by potential trends in bursts intensity, duration, and number of occurrences for
the continuous process.
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Abstract. Properties of operators of generalized attenuated ray trans-
forms (ART) are investigated. Starting with Radon transform in the
mathematical model of computer tomography, attenuated ray transform
in emission tomography and longitudinal ray transform in tensor tomogra-
phy, we come to the operators of ART of order k over symmetric m-tensor
fields, depending on spatial and temporal variables. The operators of ART
of order k over tensor fields contain complex-valued absorption, different
weights, and depend on time. Connections between ART of various orders
are established by means of application of linear part of transport equa-
tion. This connections lead to the inhomogeneous k-th order differential
equations for the ART of order k over symmetric m-tensor field. The right
hand parts of such equations are m-homogeneous polynomials contain-
ing the components of the tensor field as the coefficients. The polynomial
variables are the components ξj of direction vector ξ participating in dif-
ferential part of transport equation. Uniqueness theorems of boundary-
value and initial boundary-value problems for the obtained equations are
proved, with significant application of Gauss-Ostrogradsky theorem. The
connections of specified operators with integral geometry of tensor fields,
emission tomography, photometry and wave optics allow to treat the prob-
lem of inversion of the ART of order k as the inverse problem of determin-
ing the right hand part of certain differential equation.

Keywords: Tensor tomography · Attenuated ray transform ·
Transport equation · Boundary-value problem · Uniqueness theorem

1 Preliminaries
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is the problem of emission computer tomography, and the second is the problem
of integral geometry, consisting in reconstruction of a tensor field by its known
longitudinal ray transform.

A progress of emission tomography in biology and medicine diagnostics is
well known [1,2]. In contradistinction to the transmission computer tomography,
a setting of emission tomography problem contains, in general, two unknown
functions that should be reconstructed. First function (absorption coefficient)
is responsible for a medium absorption, and the second describes a distribution
of internal sources, which radiation is fixed by detectors. A purpose is to find
distribution of internal sources f and/or absorption coefficient ε by given values
of attenuated ray transform

I =
∫

L

f(q) exp
{

−
∫

L(q)

ε(p) dp
}

dq, (1)

where L(q) is a segment of straight line L between point q and detector. At the
most part of settings of emission tomography problem the absorption coefficient
supposed to be known. Later a phenomenon of absorption arises in the models
of vector tomography [3–8]. The authors of listed articles develop as approaches
to some aspects of applications of vector tomography, so investigate certain the-
oretical questions.

Tensor tomography has traditional applications to the problems of photoe-
lasticity and fiber optics [9,10], new approaches and achievements in diffrac-
tive tomography of strains [11], polarization tomography of quantum radiation
[12], diffusion MRI-tomography and cross-polarization optic coherent tomogra-
phy [13–16]. A success of tensor tomography in studying of anisotropic objects
and materials in physics, geophysics, biology and medicine makes a deep impres-
sion and closely connected with progress in integral geometry of tensor fields,
wherein many types of ray transforms are suggested and investigated [17,18]
as in 2D-case [19–22] so in case of arbitrary dimension of Euclidean space and
Riemannian surface or manifold [23,24].

Initial data for well-known problem of integral geometry for tensor fields
represent, in particular, the longitudinal ray transform

Pw(x, ξ) =

∞∫

−∞
wi1...im(x − sξ)ξi1 . . . ξimds, (2)

where wi1...im(x) is a symmetric tensor field of rank m (m-tensor field), ξ is a
unit direction vector, |ξ| = 1, for a straight line L along which the integration
is carried out. Here and below the Einstein rule consisting in that by repeating
super- and subscripts in a monomial a summation from 1 to n is meant (n is a
dimension of Euclidean space). The purpose of this integral geometry problem
is to find tensor field w by given values of the longitudinal ray transform (2).

The operators of generalized ART for tensor fields are defined and studied
in the article. A generalization of the operators of attenuated ray transform
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for tensor fields is implemented in three directions. At first, the attenuation
function exp

{− ∫
L(q)

ε(p) dp
}

becomes complex-valued similar to those arising in

inverse scattering problem at Rytov’s approach [25,26], and then within diffrac-
tion tomography, see [2] for instance. Secondly we take into account a concept of
generalized ray transform of tensor fields (integral moments of generalized ten-
sor fields) considered in [17,18]. A third direction of generalization is connected
with settings of dynamic tomography and consists in consideration of depending
upon a time internal sources [27–29].

We would like to point out some connections between partial cases of genera-
lized ART for tensor fields and certain tomography problems, photometry, and
wave optics.

Let rectangular Cartesian coordinates system be given in Euclidean space R3

with inner product 〈x, y〉 of elements x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. Let
in R3 a bounded convex domain D, with smooth boundary ∂D, be given. The
domain D contains distribution f(x), x ∈ D, of sources of monochromatic scalar
wave field. Usage of a notion of the optical system which is mathematical formal-
ization of device like a camera [30] leads to a formulation of direct problem of
wave optics consisting in solving the boundary-value problem for the Helmholtz
equation satisfying to discontinuous boundary conditions of Kirchhoff [31] and
to radiation condition of Sommerfeld on the infinity.

An application of the Green’s function for a half-space gives a solution of
direct problem in a form of Kirchhoff integral [31]. Usually in optics the Fraun-
hofer approach is exploited [32] allowing to simplify a solution of direct problem
significantly. The obtained approximate solution can be represented as the con-
volution ũδ ∗ Δ with known kernel Δ. Function ũδ is known as the ideal wave
image [33],

ũδ(x, ξ) =

∞∫

0

seiksf(x − sξ)ds, (3)

where k is wave number, k = const. A similar setting of direct problem with
incoherent sources in a medium with constant absorption coefficient ε > 0 leads
to so called notion of ideal photometric image,

uδ(x, ξ) =

∞∫

0

e−εsf(x − sξ)ds. (4)

The inverse problems of wave optics and photometry are formulated as a prob-
lem of determination of a function f which describes distributions of sources of
monochromatic wave field or distributions of incoherent sources.

The attenuated ray transform (ART) of order k for m-tensor fields, k,m is
integer, k,m ≥ 0, is defined by a formula

uk
m(x, ξ) =

∞∫

0

sk exp
{

−
s∫

0

(
ε(x − σξ, ξ) + iρ(x − σξ, ξ)

)
dσ

}

×wi1...im(x − sξ)ξi1 . . . ξimds.

(5)
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Functions ε ≥ 0, ρ, and symmetric m-tensor field w = wi1...im (i.e. every com-
ponent of w) are finite and bounded.

The attenuated ray transform u0
0(x, ξ) of order 0 for scalar fields at ρ ≡ 0 and

ε = const may be treated as ideal photometric image (4), and for order k = 1 and
rank m = 0 the operator u1

0(x, ξ) coincides with ideal wave transform (3). The
generalized ART for scalar fields is connected with tomographic transforms also,
see [2]. Thus at k,m = 0, ρ ≡ 0 and ε ≡ 0, the operator (5) describes fan-beam
(in R2) or cone-beam (in R3) transforms. The same operator with limits from
−∞ to +∞ is ray transform defined in the space Rn of any dimension n ≥ 2;
for n = 2 this operator may be treated as the Radon transform. At k,m = 0,
ρ ≡ 0, n ≥ 2 the operator (5) is standard attenuated ray transform. For ρ ≡ 0,
ε ≡ 0, k = 0, m integer, m ≥ 1, n ≥ 2, we obtain well-known longitudinal
ray transform for tensor fields [18]. Besides, if k ≥ 1 then we have integral
k-moments of generalized tensor fields. Thus we make sure that, at first, the
operators of ART of order k for m-tensor fields are connected with tomographic
transforms. Secondly, settings of inverse problems consisting in determination
of m-tensor field w by its known ART of order k arise naturally. At last, the
notion has an obvious potential to further generalizations and new settings of
inverse problems. For example we may consider the Riemannian domain instead
of Euclidean space.

The formula (5) defines the stationary ART of order k for m-tensor fields. We
assume now that a symmetric tensor field w depends and of time also. A speed
of propagation of perturbation is equal, for simplicity, to unit. Then a function
uk

m(t, x, ξ) of a form

uk
m(t, x, ξ) =

∞∫

0

sk exp
{

−
s∫

0

(
ε(x − σξ, ξ) + iρ(x − σξ, ξ)

)
dσ

}

×wi1...im(t − s, x − sξ)ξi1 . . . ξimds

(6)

is called the non-stationary ART of order k for m-tensor fields.
First section of the paper contains certain connections between generalized

ART for tensor fields of different orders. We obtain differential equations which
solutions are the ART of order k for m-tensor fields. Differential equations of
the first order coincides with stationary and non-stationary transport equations
with right-hand part of the form wi1...im(t− s, x− sξ)ξi1 . . . ξim , complex-valued
absorption coefficient, and without integral part, describing the scattering [34].
Next section is devoted to a proof of uniqueness theorems for the boundary-value
and initial boundary-value problems for obtained equations.

2 Main Equations

At first we derive the equations which solutions are the ART of order k for
m-tensor fields. It should be remarked that all constructions are valid and for
the space R2 of dimension 2.
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We denote a set of pairs (x, ξ) as SR = R3×R3 = {(x, ξ) |x, ξ ∈ R3, |ξ| = 1}.
The set of pairs (x, ξ) ∈ SR with fixed x is denoted as S2

x. A set given in D
symmetric m-tensor fields w(x) = (wi1...im(x)), i1, . . . , im = 1, 2, 3, is designated
by Sm(D). Below we often omit the letter “D” in the designation Sm(D) = Sm.
The scalar product in Sm is defined by the formula

〈u(x), v(x)〉 = ui1...im(x)vi1...im(x). (7)

We recall that in Euclidean spaces with rectangular Cartesian coordinate system
there is no difference between contravariant and covariant components of tensors.
Below the covariant components of tensors are used usually.

An operator H, acting on differentiable on SR functions ψ(x, ξ), is defined
by relation

(Hψ)(x, ξ) =
d

dτ
ψ(x + τξ, ξ)

∣∣∣
τ=0

. (8)

In particular the function ψ may be depending on x only, but Hψ depends on
the pair (x, ψ) always. In Cartesian coordinates the operator is represented as

(Hψ)(x, ξ) =
d

dτ
ψ(x + τξ, ξ)

∣∣∣
τ=0

= ξ1
∂ψ

∂x1
+ ξ2

∂ψ

∂x2
+ ξ3

∂ψ

∂x3
, (9)

and hence
(Hψ)(x, ξ) = 〈ξ ,∇ψ〉 = div(ψξ). (10)

Remark 1. For differentiability of a function ψ(x, ξ) on SR its differentiability
upon coordinates of spatial variables x ∈ R3 is enough.

We use a short transcription 〈w, ξm〉 for a sum wi1...imξi1 . . . ξim , and deno-
tation α(x, ξ) = ε(x, ξ) + iρ(x, ξ) below.

Lemma 1. Let ε(x, ξ) ≥ 0, ρ(x, ξ) be the elements of C1(SR), the components
wi1...im , i1, . . . , im = 1, 2, 3, of a finite symmetric m-tensor field w(x) be the
elements of C1(R3), m integer, m ≥ 0. Then for integer k, k ≥ 1, the formula

(
(H + α)uk

m

)
(x, ξ) = k uk−1

m (x, ξ) (11)

is valid with uk
m determined by (5).

Proof. We set a designation f(x) := wi1...im(x) for a fixed indexes i1, . . . , im,
and prove relation (11) for the function f . For this purpose we change the sum
〈w(x − sξ), ξm〉 in uk

m(x, ξ) by f(x − sξ). Taking in account this replacement we
prove the relation (11) directly. By definition (8)

(Huk
m)(x, ξ) =

d

dτ
uk

m(x + τξ, ξ)
∣∣
τ=0

=

∞∫

0

sk d

dτ
exp

{
−

s∫

0

α(x + (τ − σ)ξ, ξ)dσ
}∣∣∣

τ=0
f(x − sξ)ds

+

∞∫

0

sk exp
{

−
s∫

0

α(x − σξ, ξ)dσ
}( d

dτ
f(x + (τ − s)ξ)

)∣∣∣
τ=0

ds.
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For fixed point x and unit vector ξ the functions f(x + vξ) and α(x + vξ, ξ) can
be treated as functions depending on a real variable v only,

f(x + vξ) = ϕ(v), α(x + vξ, ξ) = ψ(v).

Then

d

dτ
ϕ(τ − s) = − d

ds
ϕ(τ − s),

d

dτ
ψ(τ − σ) = − d

dσ
ψ(τ − σ),

and hence

(Huk
m)(x, ξ) =

∞∫

0

skϕ(−s) exp
{

−
s∫

0

ψ(−σ)dσ
} s∫

0

d

dσ
ψ(τ − σ)dσ

∣∣∣
τ=0

ds

−
∞∫

0

sk exp
{

−
s∫

0

ψ(−σ)dσ
}(dϕ(τ − s)

ds

)∣∣∣
τ=0

ds.

Passing to the limit at τ → 0 and integrating by parts the second term of
right-hand part, we obtain

(Huk
m)(x, ξ) =

∞∫

0

sk exp
{

−
s∫

0

ψ(−σ)dσ
}

ψ(−s)
(
ψ(−s) − ψ(0)

)
ds

− sk exp
{

−
s∫

0

ψ(−σ)dσ
}
ϕ(−s)

∣∣∣∞
s=0

+ k

∞∫

0

sk−1 exp
{

−
s∫

0

ψ(−σ)dσ
}

ϕ(−s)ds

−
∞∫

0

sk exp
{

−
s∫

0

ψ(−σ)dσ
}

ϕ(−s)
( d

ds

s∫

0

ψ(−σ)dσ
)
ds.

(12)

As the function f(x) is finite, sk = 0 at k ≥ 1, s = 0, then the second term
at s → ∞, and at s = 0 vanishes. The third term on the right is equal to
kuk−1

m (x, ξ) according to (5). Summing up the first and the last items we obtain
−α(x, ξ)uk

m(x, ξ). Thus

(Huk
m)(x, ξ) = kuk−1

m (x, ξ) − α(x, ξ)uk
m(x, ξ),

and the formula (11) for the component wi1...im(x) of m-tensor field w(x) is
proved. We take into account now the linearity property

∞∫

0

sk exp
{

−
s∫

0

α(x − σξ, ξ)dσ
}

〈w(x − sξ) , ξm〉ds

=
〈
ξm ,

∞∫

0

sk exp
{

−
s∫

0

α(x − σξ, ξ)dσ
}

w(x − sξ)ds
〉 (13)



Differential Equations for Generalized ART 103

of inner product and remind that Einstein rule works here again. We prove the
lemma for each component wi1...im of m-tensor field w. Consequently as (13)
fulfilled so (11) is proved for the tensor field w.

Lemma 2. For ε ≥ 0, ρ ∈ C1(SR), wi1...im ∈ C1(R3), suppose that symmetric
m-tensor field w is finite, m ≥ 0. Then for k = 0 the formula

(
(H + α)u0

m

)
(x, ξ) = 〈w(x), ξm〉 (14)

is valid.

Proof. Coming back to the proof of Lemma 1 we obtain the formula (12) for
the fixed component wi1...im =: f of the field w. As k = 0 then the third
term vanishes, and the second at s = 0 is equal to ϕ(0) = f(x). The first and
the last terms give −α(x, ξ)u0

m(x, ξ). Accordingly Hu0
m(x, ξ) = wi1...im(x) −

α(x, ξ)u0
m(x, ξ). Turning to (13) and taking it into account, we come to the

statement of Lemma 2.

An operator Lk : Ck(SR) → C(SR) is defined by relations

(L1ψ)(x, ξ) =
(
(H + α)ψ

)
(x, ξ),

(Lkψ)(x, ξ) =
1

k − 1
(H + α)(Lk−1ψ)(x, ξ),

for k integer, k > 1.

Theorem 1. For ε, ρ ∈ Ck+1(SR), w ∈ Ck+1(Sk), suppose that ε is non-
negative, w is finite symmetric m-tensor field. Then for integer k,m (k,m ≥ 0),
the formula

(Lk+1u
k
m)(x, ξ) =

〈
w(x), ξm

〉
(15)

is valid with uk
m(x, ξ) defined by (5).

Proof. Under assumption of Lemma 1, we act on the both parts of (11) (k − 1)
times by the operator (H+α). The formula (H+α)kuk

m(x, ξ) = k!u0
m(x, ξ) arises

as a result. Applying the operator H + α once more and using Lemma 2, we get
the statement of the theorem.

Thus we have a differential equation (15), connecting ART of order k for
m-tensor fields uk

m with symmetric m-tensor fields.
We consider non-stationary case now.

Lemma 3. For functions ε, ρ ∈ C1(SR), symmetric m-tensor field w(t, x) ∈
C1(R × Sm), suppose that ε is non-negative, w is finite. Then for uk

m(t, x, ξ)
determined by the formula (6), k,m ≥ 0, the relations

( ∂

∂t
+ H + α

)
uk

m = k uk−1
m , k ≥ 1 , (16)

( ∂

∂t
+ H + α

)
u0

m =
〈
w, ξm

〉
(17)

are valid.
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Proof. As it was done above, we choose one of the components wi1...im(t, x)
of symmetric m-tensor field w(t, x), with fixed indexes i1, . . . , im, and prove
formulas (16), (17) for this any component wi1...im(t, x) of w, denoted by
(a function) f(t, x). We fix also new designation vk(t, x, ξ) for non-stationary
ART of order k, acting on the function f .

For calculation of derivative
∂vk

∂t
(t, x, ξ) we need to find

∂f(t − s, x − sξ)
∂t

only, as merely function f depends on t,

∂vk

∂t
=

∞∫

0

sk exp
{

−
s∫

0

α(x − σξ, ξ)dσ
}∂f(t − s, x − sξ)

∂t
ds. (18)

We calculate a total derivative
df

ds
at first,

df

ds
=

〈
∂f(t − s, x − sξ)

∂(x − sξ)
,

∂(x − sξ)
∂s

〉
+

∂f(t − s, x − sξ)
∂(t − s)

∂(t − s)
∂s

.

With usage of
∂f(θ, y)

∂y
= ∇yf(θ, y)

for y = x − sξ, θ = t − s, and
∂y

∂s
= −ξ the derivative can be represented in a

form
df

ds
= 〈∇yf(θ, y) ,−ξ〉 +

∂f(θ, y)
∂θ

∂θ

∂s
.

Next step consists in calculation of a result of the operator H action on the
function f ,

Hf ≡ df(θ, y + τξ)
dτ

∣∣∣
τ=0

=
〈

∂f(θ, y + τξ)
∂(y + τξ)

,
∂(y + τξ)

∂τ

〉 ∣∣∣
τ=0

= 〈∇yf(θ, y) , ξ〉.

Noting that
∂θ

∂s
= −∂θ

∂t
, we obtain

∂f(θ, y)
∂t

= −df(θ, y + τξ)
dτ

∣∣∣
τ=0

− df(θ, y)
ds

.

This implies

∂vk

∂t
(t, x, ξ) = −

∞∫

0

sk exp
{
−

s∫

0

α(x − σξ, ξ)dσ
}df(t − s, x + (τ − s)ξ)

dτ

∣∣∣
τ=0

ds

−
∞∫

0

sk exp
{
−

s∫

0

α(x − σξ, ξ)dσ
}(df(t − s, x − sξ)

ds

)
ds.
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Based on the definition of operator H, we integrate the second term to the
right-hand part of the last expression,

(∂vk

∂t
+Hvk

)
(t, x, ξ) =

∞∫

0

sk d

dτ
exp

{
−

s∫

0

α(x + (τ − σ)ξ, ξ)dσ
}∣∣∣

τ=0

× f(t − s, x − sξ)ds

− sk exp
{

−
s∫

0

α(x − σξ, ξ)dσ
}

f(t − s, x − sξ)
∣∣∣∞
s=0

+

∞∫

0

f(t − s, x − sξ)
d

ds

(
sk exp

{
−

s∫

0

α(x − σξ, ξ)dσ
})

ds.

We refer now to the reasonings and calculations similar to those in the proofs
of Lemmas 1 (see (12), (13) as samples) and 2. As it was done above, taking
into account distinctions in final results depending on the k ≥ 1 or k = 0, we
obtain the statement of Lemma 3 for the non-stationary ART vk of order k for
the function f := wi1...im i.e. for a fixed component of the field w. A choice of
the component was arbitrary so the result is valid for every component. Now
we consider the expression 〈w, ξm〉 (a linear combination of components) and,
accordingly, the ART uk

m. Taking into account the property (13), we obtain the
Eqs. (16) and (17).

We define an operator Lt
k : Ck(R × SR) → C(R × SR) by induction on m,

(Lt
1ψ)(t, x, ξ) =

(( ∂

∂t
+ H + α

)
ψ

)
(t, x, ξ),

(Lt
kψ)(t, x, ξ) =

( ∂

∂t
+ H + α

)
(Lt

k−1ψ)(t, x, ξ), k > 1.

Theorem 2. For ε, ρ ∈ Ck+1(SR), w ∈ Ck+1(R × Sm), suppose that ε is non-
negative, w is finite m-tensor field. Then

(Lt
k+1u

k
m)(t, x, ξ) =

〈
w(t, x), ξm

〉
. (19)

Proof. The proof of formulated theorem is based just on the same reasons as
Theorem 1. We use Lemma 3 significantly.

3 Uniqueness Theorems

We prove uniqueness theorems for boundary-value and initial boundary-value
problems of the Eqs. (15) and (19), respectively. We remind that D is a bounded
convex domain in R3 with smooth boundary ∂D.

Theorem 3. For given functions ε, ρ ∈ Ck(D × S2
x), ε(x, ξ) ≥ 0 at x ∈ D,

ξ ∈ S2
x, a function ϕ(x, ξ) ∈ Ck+1(D×S2

x), x ∈ D, satisfies in D to the Eq. (15)
with zero right-hand part,

1
k!

(H + α)k+1ϕ ≡ Lk+1ϕ = 0, (20)
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and boundary-value conditions

ϕ(x, ξ) = (Hϕ)(x, ξ) = · · · = (Hkϕ)(x, ξ) = 0, x ∈ ∂D, 〈nx, ξ〉 < 0, (21)

where nx is outer normal to the surface ∂D at the point x. Then ϕ(x, ξ) = 0 for
all x ∈ D, ξ ∈ S2

x.

Proof. We prove the theorem for k = 0 at first. Then (20) looks like (H+α)ϕ = 0.
As the coefficient α(x, ξ) = ε(x, ξ) + iρ(x, ξ) in (21) is complex-valued, then the
function ϕ(x, ξ) is complex-valued also, and thus it can be represented in a form
ϕ = ϕ1 + iϕ2. Let’s write (H + α)ϕ in more details,

(H + ε + iρ)(ϕ1 + iϕ2) = (Hϕ1 + εϕ1 − ρϕ2) + i(Hϕ2 + εϕ2 + ρϕ1) = 0,

and multiple it on ϕ̄ = ϕ1 − iϕ2. Here the designations ϕ̄ for complex conjugate
and |ϕ| for modulus of complex-valued function ϕ are used. Then

Re {ϕ̄(H + ᾱ)ϕ} =
1
2
H(|ϕ|2) + ε|ϕ|2 = 0.

After integration of last equation over D and unit sphere S2
x, we get

1
2

∫

D

∫

S2
x

H(|ϕ|2)dxdλx(ξ) +
∫

D

∫

S2
x

ε|ϕ|2dxdλx(ξ) = 0,

where dλx(ξ) is angular measure on S2
x, x ∈ D.

As H(|ϕ|2) = div(|ϕ|2ξ) (see (10)), then Gauss-Ostrogradsky formula can be
applied to the first integral of last expression. We have as a result

1
2

∫

∂D

∫

S2
x

〈nx, ξ〉|ϕ|2dsdλx(ξ) +
∫

D

∫

S2
x

ε|ϕ|2dλx(ξ)dx = 0. (22)

The condition (21), for k = 0, implies ϕ(x, ξ) vanishes at 〈nx, ξ〉 < 0, x ∈ ∂D.
Hence the first integral at the left-hand part of (22) is equal to zero. Hereof
and from nonnegativity of ε(x, ξ) it follows that (22) is performed if and only if
ϕ(x, ξ) = 0 for all x ∈ D, ξ ∈ S2

x. We proved the theorem for k = 0.
We assume now that the theorem is true for some j = k−1, j ≥ 1, and prove

it for j = k (namely for the equation of order k +1). Let’s consider the equation

Lk+1ϕ =
1
k!

(H + α)k+1ϕ =
1
k

(H + α)(Lkϕ) = 0,

and denote Lkϕ as A + iB. Then

1
k

(H + α)(A + iB) =
1
k

(HA + εA − ρB) +
i
k

(HB + εB + ρA) = 0.

Let’s multiply obtained expression on complex conjugate Lkϕ to Lkϕ. The mul-
tiplication is possible by virtue induction assumption, so

(A − iB)
1
k

(H + α)(A + iB) =
1
k

(
AHA + BHB + εA2 + εB2

)

+
i
k

(
AHB − BHA + ρA2 + ρB2

)
= 0.
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Hence

Re
{(Lkϕ

)
1
k (H + α)(Lkϕ)

}
=

1
2k

H(A2 + B2) +
1
k

ε(A2 + B2)

=
1
2k

H
(∣∣Lkϕ

∣∣2) +
1
k

ε
∣∣Lkϕ

∣∣2 = 0.

After integration of last expression over D and S2
x, x ∈ D, and application of

Gauss-Ostrogradsky formula we obtain expression of a form (22), where instead
of |ϕ|2 the term |Ljϕ|2 appears. The term contains degrees Hjϕ of the operator
H no more then k, so at x ∈ ∂D, 〈nx, ξ〉 < 0, it follows that Lkϕ = 0. We can
conclude now, as in the case for k = 0, that ϕ(x, ξ) = 0 for all x ∈ D, ξ ∈ S2

x.
The theorem is proved.

Theorem 4. For ε, ρ ∈ Ck(D × S2
x), x ∈ D, ε(x, ξ) ≥ 0 at x ∈ D, ξ ∈ S2

x. If
ϕ(t, x, ξ) ∈ Ck+1(R+ × D × S2

x) satisfies the equation

1
k!

( ∂

∂t
+ H + α

)k+1

ϕ ≡ Lt
k+1ϕ = 0 (23)

in D, initial conditions

ϕ(0, x, ξ) =
∂ϕ

∂t
(0, x, ξ) = . . . =

∂kϕ

∂tk
(0, x, ξ) = 0, (24)

and, for x ∈ ∂D, 〈nx, ξ〉 < 0, t ≥ 0, boundary conditions

ϕ(t, x, ξ) = (Hϕ)(t, x, ξ) = . . . = (Hkϕ)(t, x, ξ) = 0, (25)

where nx is outer normal to the surface ∂D at the point x, then ϕ(t, x, ξ) = 0
for t > 0, x ∈ D, ξ ∈ S2

x.

Proof. We check a rightness of the theorem for k = 0 at first, i.e. for the equation
of the first order.

Considering ϕ = ϕ1 + iϕ2 and multiplying both parts of the equality

( ∂

∂t
+ H + α

)(
ϕ1 + iϕ2

)
= 0

on ϕ = ϕ1 − iϕ2, we obtain

1
2

∂

∂t
|ϕ|2 +

1
2
H(|ϕ|2) + ε|ϕ|2 = 0.

We integrate obtained expression by t from 0 until T ∈ (0,∞), domain D and
sphere S2

x, then use Gauss-Ostrogradsky formula,

1
2

∫

D

∫

S2
x

(
|ϕ(T, x, ξ)|2 − |ϕ(0, x, ξ)|2

)
dλx(ξ)dx
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+
1
2

T∫

0

∫

∂D

∫

S2
x

〈nx, ξ〉|ϕ|2dλx(ξ)dSdt +

T∫

0

∫

D

∫

S2
x

ε|ϕ|2dλx(ξ)dxdt = 0.

Taking into account arbitrariness of T , the initial (24) and boundary (25) condi-
tions (for k = 0), we make sure that the last formula is correct if ϕ(t, x, ξ) = 0
for t ∈ (0,∞), x ∈ D, ξ ∈ S2

x.
Remaining part of proof of this theorem is quite similar to the proof of the

second part of the Theorem 3.

4 Conclusion

In the article the generalized attenuated ray transforms (ART) for tensor fields
are considered and investigated. The transforms are connected with attenuated
ray transform arising in emission tomography problem and some ray trans-
forms of the other types. The generalization is implemented in three directions.
Namely, a function of attenuation exp{− ∫

L(x)

ε(y) dy} becomes complex-valued,

the weight have more general form, and mathematical model contains internal
sources (in scalar case) or symmetric tensor fields depending on time.

The generalization of ART operator leads to stationary uk
m(x, ξ) and non-

stationary uk
m(t, x, ξ) ART of order k for m-tensor fields. They may be treated

as the integral moments of a source distribution f or of a symmetric tensor field
w with components wi1...im with a weight generated by exponential function.
Connections between ART of different orders are established. Differential equa-
tions which solutions are the generalized ART-operators of order k for m-tensor
fields are derived. In particular, for 0-tensor field (scalar field) the differential
equations of the first order coincide with stationary and non-stationary trans-
port equations with complex-valued absorption coefficient, but without integral
part responsible for the scattering phenomenon [34]. Uniqueness theorems for
boundary-valued problems in stationary case, and initial boundary-value prob-
lems in non-stationary case are proved.

There exist close connections of ART of order k for m-tensor fields with
different problems of integral geometry, tomography and optics. According to
optical terminology it can be seen easily that u1

0(x, ξ) for ε ≡ 0 and ρ(x, ξ) =
const is the ideal wave image, and u0

0(x, ξ) for ρ ≡ 0 and ε = const is the ideal
photometric image [30,31,33]. Concerning notions and terms of computerized
tomography the operator (5), for m = 0, ρ = 0, ε = 0, may be treated as
fan-beam or cone-beam transforms, and as well as well-known Radon or ray
transforms. In more complicated mathematical models, for example in emission
tomography, the operator (5) is standard attenuated ray transform, and certain
natural generalization of the integrand leads to a notion of longitudinal ray
transform of symmetric tensor fields [18] and to integral moments of generalized
tensor fields [17].
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We make sure that introduced in the article notion of ART of order k is
connected in its partial cases with various transforms of tomographic types.
So it arises naturally settings of inverse problems of determination of a scalar,
vector or tensor fields by its known generalized ART of order k. This inverse
problem can be treated and as the inverse problem for generalized transport
equation by determining of its right-hand part. Considered in the article notions
may be treated as the first step of investigations towards this direction, and
have good potential for further generalization and settings of inverse problems.
In particular, the generalized ART of order k can be extended in natural way
onto the case of Riemannian metric, including stationary and non-stationary

settings. The operator H then turns into the operator H = ξj ∂

∂xj
− Γj

klξ
kξl ∂

∂ξj

known in differential geometry as geodesic vector field, and as before the differ-
ential equations can contain or not contain the variable t. This way leads to the
construction and subsequent investigations of mathematical models for dynamic
refractive tensor tomography.
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Abstract. The paper is devoted to consideration of multidimensional
optimization problems with multiextremal objective functions over
search domains determined by constraints, which form a special type
of domain boundaries called computable ones, which, in general case,
are non-linear and multiextremal. The regions of this class can be very
complicated, in particular, non-convex, non-simply connected, and even
disconnected. For solving such problems, a new global optimization tech-
nique based on the adaptive nested scheme developed recently for uncon-
strained optimization is proposed. The novelty consists in combination of
the adaptive scheme with a technique for reducing the constraints to an
explicit form of feasible subregions in internal subproblems of the nested
scheme that allows one to evaluate the objective function at the feasible
points only. For efficiency estimation of the proposed adaptive nested
algorithm in comparison with the classical nested optimization and the
penalty function method, a representative numerical experiment on the
test classes of multidimensional multiextremal functions has been carried
out. The results of the experiment demonstrate a significant advantage
of the adaptive scheme over its competitors.

Keywords: Multiextremal optimization · Dimensionality reduction ·
Computable boundaries

1 Introduction

Many important applied problems of decision making can be stated as problems
of searching the global minimum of a multidimensional multiextremal function
subject to complicated constraints [1,6,13,22,28,33,38]. The property of mul-
tiextremality generates significant complexity of these problems because ana-
lytical methods are not almost applicable to solve them and numerical algo-
rithms in general case require essential computational expenditures. This feature
is explained by the fact that the global minimizer is an integral characteristic
of the objective function, i.e., in order to confirm that a point is the global
minimizer, it is necessary to compare the objective function value at this point
with function values at all points in the region of the search. As a consequence,
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the global optimization method is obliged to build in the search domain a grid
of trial points (the term trial means the evaluation of objective function value at
a point). Such the grids can be simple enough, for example, regular rectangular
or random Monte-Carlo ones [39], but efficient methods build non-uniform grids
which adapt to the behavior of the objective function placing trials densely in
subregions with low function values and rarely in subdomains where the func-
tion has high values. For essentially multiextremal functions like Lipschitzian
ones the number of grid nodes grows exponentially when increasing the prob-
lem dimension. Just this circumstance explains the high complexity of global
optimization problems.

As the main approaches to designing efficient and theoretically substantiated
methods one can consider the paradigm of component methods and the idea of
reducing the dimensionality of optimization problems.

The component methods [4,21,23,27,28,30] partition the search region into
several subdomains and introduce a criterion that evaluates numerically each
subdomain from the point of view of its efficiency for search continuation and
after that a new iteration is executed in the subdomain with the best criterion
value. The methods of this class differ in the strategies of partitioning and criteria
of efficiency of subdomains.

The algorithms based on the idea of dimensionality reduction can be divided
into two groups. The methods of the first group replace the multidimensional
problem with an equivalent univariate one applying a continuous mapping of the
multidimensional search domain onto a subregion of the real axis by means of
the Peano space-filling curves, or evolvents [3,14,24–26,32,36].

The second group of optimization algorithms is based on the known scheme
of nested optimization [4]. According to this approach the initial multidimen-
sional problems is reduced to a family one-dimensional subproblems connected
recursively [5,9–12,17,18,29,34,36]. In the paper [9], a generalization of the clas-
sical scheme called adaptive nested optimization has been proposed and the
research [18] has demonstrated that this version of the nested scheme in combi-
nation with information-statistic algorithm of univariate global search has the
high efficiency being better significantly than the classical prototype and one of
the most qualitative popular method DIRECT [21].

For solving relatively simple problems of global optimization characterized
by a small number of local optima with regions of attraction being large enough,
a so called multi-start approach [2,5,35] can be used when a local optimization
method is launched from several starting points. This approach is clear geomet-
rically, but, unfortunately, the methods of this type are semiheuristical and are
not efficient for complicated multiextremal problems.

Another challenge in global optimization refers to problems with compli-
cated constraints. The traditional way to solve such the problems consists in
transforming the constrained problem to an equivalent problem either without
constraints or, as a rule, in a simple region like a box.

There exist two main approaches in this way. The first transformation is clas-
sical in optimization and is connected with the penalty function method [7,20,37].
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This method is sufficiently universal but it requires a tuning of its parameters
(penalty constant, equalizing coefficients for constraints). In many cases this tun-
ing is not simple and a wrong choice of parameters does not allow obtaining the
correct solution of the constrained problem. For example, if the penalty constant
is small the solution of the unconstrained problem can differ significantly from the
solution of the initial problem. At the same time, if the penalty constant is too
large then it worsens substantially the properties of the objective function in the
transformed problem, in particular, the Lipschitz constant can increase essentially.

The second approach is based on building the so called index function [36]
that contains no tuning parameters but generates, in general case, a discon-
tinuous objective function in the transformed problem and requires, as a con-
sequence, application of special global optimization techniques oriented at this
class of functions.

When solving the transformed problem in the framework of both the
approaches (penalty and index methods), the optimization algorithm places trial
points not only in the feasible domain of the constrained problem but out of it
as well.

In this paper we consider the approach which allows one to avoid performing
trials at non-feasible points and does not include any tuning parameters. The
core of this approach is the nested optimization scheme applied to multiextremal
optimization in domains with special type of constraints, namely, in domains
with computable boundaries. These domains can be very complicated, in par-
ticular, non-convex, non-simply connected, and even disconnected domains. An
algorithm for Lipschitzian optimization on the base of classical nested scheme
for domains with computable boundaries has been described in the paper [16].
In the present paper we propose its generalization that applies the more efficient
recursive technique of global search in the framework of the adaptive nested
optimization [9]. To demonstrate the advantages of the proposed constraint sat-
isfaction approach the results of comparison with the penalty function method
are given on two known test classes that are classical for estimating the efficiency
of global optimization algorithms.

The rest of the paper is organized as follows. Section 2 contains statement of
the multiextremal constrained problem to be studied and description of a gener-
alization of the adaptive nested scheme for the case of computable boundaries.
Section 3 is devoted to computational testing the proposed technique in com-
parison with the classical nested scheme and the method of penalty functions.
Section 4 concludes the paper.

2 Nested Optimization and Computable Boundaries

The optimization problem under consideration is formulated in the following way.
It is required to find the least value (global minimum) and its coordinates (global
minimizer) of an objective function f(x) in a domain D of the N -dimensional
Euclidean space R

N . This problem will be denoted as

f(x) → min, x = (x1, . . . , xN ) ∈ D ⊆ R
N . (1)
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The feasible domain D is supposed to be given by constraints-inequalities

D = {x ∈ X : hs(x) ≤ 0, 1 ≤ s ≤ q}, (2)

where the region X is determined by simple coordinate constraints as

X = {x ∈ R
N : aj ≤ x ≤ bj , 1 ≤ j ≤ N}. (3)

The objective function f(x) and constraints hs(x), 1 ≤ s ≤ q, are supposed to
satisfy in the domain X the Lipschitz condition

|hs(x′) − hs(x′′)| ≤ Ls‖x′ − x′′‖, x′, x′′ ∈ X, 1 ≤ s ≤ q + 1, (4)

where the function hq+1(x) = f(x), Ls > 0 is a finite value called the Lipschitz
constant of the function hs(x), 1 ≤ s ≤ q+1, and ‖·‖ denotes the Euclidean norm
in R

N . In general case, the objective function and constraints of the problem
(1)–(2) are multiextremal and non-smooth.

If the problem (1) does not contain constraints (2) (q = 0), i.e., D = X,
for solving such the problem the known nested scheme of dimensionality reduc-
tion [4,36] can be applied. For example, it can be done if the constrained prob-
lem (1) has been transformed to the unconstrained one in the framework of the
penalty function method [7,20,37]. According to this method, instead of the
problem (1)–(2), the problem

F (x) → min, x ∈ X ⊆ R
N , (5)

is considered with the “penalized” objective function

F (x) = f(x) + PH(x), (6)

where P > 0 is the penalty constant and H(x) is the penalty function such that
H(x) = 0, if x ∈ D, and H(x) > 0, if x /∈ D. If to choose the penalty function as

H(x) = max{0, h1(x), . . . , hq(x)}, (7)

then F (x) meets the Lipschitz condition under requirements (4).
In its original classical form the nested optimization scheme was oriented

at unconstrained optimization, or more detailed, at solving problems (1) when
constraints of the type (2) are absent, i.e., D = X. In this situation there takes
place [4] the relation

min
x∈X

f(x) = min
x1∈X1

min
x2∈X2

· · · min
xN∈XN

f(x1, . . . , xN ). (8)

where Xi is a line segment [ai, bi], 1 ≤ i ≤ N .
This approach can be generalized (see, for example, [16]) to the case with

continuous constraints (2) that allows one to present (8) for the domain D in
the form

min
x∈D

f(x) = min
x1∈Λ1

min
x2∈Λ2(ξ1)

· · · min
xN∈ΛN (ξN−1)

f(x1, . . . , xN ), (9)
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where ξs = (x1, . . . , xs), 1 ≤ s ≤ N , and the region Λs(ξs−1) is the projection of
the set

Ωs(ξs) = {ξs ∈ R
s : (ξs, xs+1, . . . , xN ) ∈ D}, (10)

onto the coordinate axis xs.
Now the nested optimization scheme applied for the case (9) can be described

as follows.
Let us introduce a family of reduced function fs(ξs), 1 ≤ s ≤ N , in the

following manner:

fs−1(ξs−1) = min
xs∈Λs(ξs−1)

fs(ξ), 2 ≤ s ≤ N, (11)

fN (x) ≡ f(x). (12)

Then, the solving the multidimensional problem (1) can be substituted with
searching for the global minimum of the univariate function f1(x1) in the domain
Λ1, as according to (9)–(11)

min
x∈D

f(x) = min
x1∈Λ1

f1(x1). (13)

But any evaluation of the function f1(x1) at a chosen point x1 requires
solving the problem

f2(x1, x2) → min, x2 ∈ Λ2(x1), (14)

which is one-dimensional because the coordinate x1 is fixed.
The necessity of evaluation of the function f2(x1, x2) generates solving the

problem of minimization of the function f3(ξ2, x3) in the domain Λ3(ξ2), and
this problem is univariate as well, because the vector ξ2 is fixed.

This recursive procedure is in progress until we reach the level N where it is
required to solve problem

fN (ξN−1, xN ) → min, xN ∈ ΛN (ξN−1) (15)

This problem is univariate too because the vector ξN−1 has been given at
previous levels and is fixed for the problem (15). Moreover, in this problem
an evaluation of the objective function consists in computation of the value
f(ξN−1, xN ) of the function f(x) from the original problem (1).

The approach of reducing the multidimensional problem (1) to solving the
family of one-dimensional subproblems

fs(ξs−1, xs) → min, xs ∈ Λs(ξs−1), 1 ≤ s ≤ N, (16)

in accordance of the above procedure is called the nested scheme of dimension-
ality reduction or the nested scheme of optimization.

The structure of domains Λs(ξs−1) depends on the properties and complexity
of the constraints hs(x) from (2). For example, if all the functions hs(x) are
convex, then the domain is a convex set, and any projection Λs(ξs−1) is a single
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interval of the axis xs. In general case, when the constraints hs(x) are continuous,
the domain Λs(ξs−1) is a union of closed intervals, i.e.,

Λs(ξs−1) = ∪M
m=1[a

m
s , bm

s ], 1 ≤ s ≤ N, (17)

where the end points am
s , bm

s of intervals and even the number of interval M can
depend on the vector ξs−1.

If all the end points am
s , bm

s and all numbers M can be given explicitly (for
example, as analytical expressions or by means of a computational procedure) in
all the subtasks (16) then the domain D is called as the domain with computable
boundaries. These domains can have very complicated structure, in particular,
can be non-convex and even disconnected.

As an example, let us consider a 2-dimensional domain (2) determined by
the following constraints:

h1(x1, x2) = 1 − (x2 − 0.5(u1(x1) + u2(x1)))2

0.25(u1(x1) − u2(x1))2
, (18)

h2(x1, x2) = 0.04 − (x1 − 0.6)2 − (x2 − 0.59)2, (19)
h3(x1, x2) = x2 − u3(x1), (20)

where

u1(x1) = −0.05 cos(40x1) − 0.1x1 + 0.15,

u2(x1) = −0.05 cos(45x1) + 0.1x1 − 0.22,

u3(x1) = 0.1 sin(50x1) + 0.5x1 + 0.6,

and coordinate constraints (3), 0 ≤ x1, x2 ≤ 1. For this domain

Λ1 = [0, 1], (21)

Λ2(x1) =

{
∪3

m=1 [am
2 , bm

2 ], |x1 − 0.6| ≤ 0.2,

∪2
m=1 [αm

2 , βm
2 ], otherwise,

(22)

where

a1
2 = α1

2 = 0,

a2
2 = α2

2 = u2(x1),

a3
2 = 0.59 +

√
0.04 − (x1 − 0.6)2,

b12 = β1
2 = u1(x1),

b22 = 0.59 −
√

0.04 − (x1 − 0.6)2,

b32 = β2
2 = min{u3(x1), 1}.

The domain D corresponding to these constraints is shown in Fig. 1, where
inaccessible part is dark. The domain consists of two disconnected parts and
inside the upper part there is a removed circle. Moreover, the boundaries have
complicated “oscillating” structure.

The nested optimization scheme in combination with univariate global search
methods providing optimization on several intervals like characteristical algo-
rithms [19] allows one to execute trials in the feasible domain only and not
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to spend resources to evaluate the objective function at inaccessible points as
opposed to penalty function or index methods.

In present paper we propose to apply the adaptive nested scheme to solv-
ing problems with computable boundaries in combination with information-
statistical univariate algorithm of global search [36] adapted to optimization
in the domain of type (17). In the adaptive scheme all one-dimensional sub-
problems (16) are considered in dynamics simultaneously and to each of them
a numerical value called the characteristic of the subproblem is assigned. The
characteristic depends on the domain (17) and values of the subproblem objec-
tive function. The iteration of the multidimensional search consists in the choice
of the subproblem with the best characteristic and executing a new trial in it.
Such organization allows one to take into account the full information about the
multidimensional problem obtained in the course of optimization and to focus
on the most perspective subproblems. The effectiveness of the new proposed
adaptive nested technique is demonstrated in the next section on the base of
representative experiment on test classes of multiextremal problems in domains
with computable boundaries of complicated structure.

3 Numerical Experiments

The efficiency estimation of different approaches to solving constrained global
optimization problems was executed experimentally on two test classes of mul-
tiextremal functions which are often used for testing the global search algo-
rithms [9,10,18,32,36]. The first class GLOB2 included 2-dimensional functions

f(x1, x2) = −
{( 7∑

i=1

7∑
j=1

uij(x1, x2)
)2

+
( 7∑

i=1

7∑
j=1

vij(x1, x2)
)2

} 1
2

(23)

where

uij(x1, x2) = αij sin(πix1) sin(πjx2) + βij cos(πix2) cos(πjx2),
vij(x1, x2) = γij sin(πix1) sin(πjx2) − δij cos(πix2) cos(πjx2),

and the parameters aij , βij , γij , δij , 1 ≤ i, j ≤ 7, are the independent random
numbers, distributed uniformly over the interval [−1, 1]. The functions (23) were
considered in the box X = {x ∈ R

2 : 0 ≤ x1, x2 ≤ 1}.
The multiextremal class GKLS [8] was chosen as the second class of objective

functions in the problem (1). The functions were taken from the hard GKLS
subclass of the dimension 3 and for them X = {x ∈ R

3 : −1 ≤ x1, x2, x3 ≤ 1}.
For building constraints (2) for both GLOB2 and GKLS the idea close to

making constraints in the EMMENTAL GKLS [31] was used. Namely, in the
domain X several random points were generated which are considered as centers
of spheres with random radii. The hyperparallelepiped X without internal parts
of the generated spheres was considered as the feasible domain D. Such way



Multiextremal Optimization in Regions with Computable Boundaries 119

allows one to form complicated domains with computable boundaries because
the information about centers and radii of spheres enables to build explicitly the
regions (17) in univariate subproblems of the nested scheme.
Three methods were compared in experiments:

– CNS-CB Classical nested scheme with computable boundaries;
– ANS-CB Adaptive nested scheme with computable boundaries;
– ANS-PF Adaptive nested scheme combined with penalty function method.

In all three methods for solving univariate problems (16) the information-
statistical Global Search Algorithm (GSA) was used.

An example of comparative behavior of the methods taking computable
boundaries into account (ANS-CB) and applying penalty function approach (5),
(6) (ANS-PF) is presented in Fig. 1 for a function from class GLOB2 and con-
straints (18)–(20). The pictures contain level curves of the function, points of
trials, and the infeasible part X \ D is dark.

Fig. 1. Distribution of trials by ANS-CB (the left panel) and by ANS-PF (the right
panel).

Comparison of the algorithms on the test classes was carried out according to
the method of operational characteristics introduced in [15]. In the framework of
this method a set of test problems is taken, the problems of the set are solved by
an optimization algorithm with different parameters and two criteria are used for
evaluating the algorithm’s quality: average number K of trials executed (search
spending) and number Δ of problems solved successfully (search reliability).
For launches of the algorithm with different parameters we obtain several pairs
(K̃, Δ̃). The set of these pairs on the plane (K,Δ) is called the operational
characteristic of the algorithm.
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Fig. 2. Operational characteristics on 2-dimensional class GLOB2
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Fig. 3. Operational characteristics on 3-dimensional class GKLS

Figure 2 shows the operational characteristics (from left to right) of ANS-
CB, CNS-CB and 3 operational characteristics of ANS-PF for different values of
penalty factor P from (6) on the class (23) with 100 test problems. The axis K
is presented in the logarithmic scale.

As it follows from the results presented in Fig. 2 the adaptive and classi-
cal schemes using the computable boundaries approach excel significantly the
version with the penalty function method. With the value of penalty constant
P = 100 the algorithm with transformation to the penalized function (6) did
not provide solving all test problems and spent considerably more trials.

As the functions of the test class are very complicated, attempts to enlarge the
penalty constant have demonstrated one of the drawbacks of the penalty function
method for Lipschitzian optimization problems, namely, such the enlargement
leads to increasing the Lipschitz constant for the function (6) and, as a conse-
quence, to the growth of the trial number. Moreover, the adaptive nested scheme
is better than its classical prototype CNS-CB.

The experiment with 100 3-dimensional functions from the class GKLS has
shown even more advantage of the computable boundaries approach over the
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penalty function technique. Figure 3 presents the operational characteristic for
ANS-CB (the left plot) and the operational characteristic for ANS-PF (the right
plot) with the penalty constant P = 100.

The algorithm ANS-CB has solved all the test problems for about 12000
objective function evaluations and its rival ANS-PF having spent 30000 trials
could not find all the global minima.

4 Conclusion

In the paper the multidimensional global optimization problems with non-linear
and multiextremal objective functions and constraints generating domains with
computable boundaries have been considered. The domains of this type can have
a complicated structure, in particular, can be non-convex and disconnected. For
solving the problems under consideration a new global optimization algorithm
based on the adaptive nested scheme has been proposed. The algorithm reduces
the initial multidimensional problem to a family of univariate subproblems in
which the domains of one-dimensional optimization can be presented as systems
of closed intervals with explicitly given boundary points. For solving univari-
ate subproblems a modification of the information-statistic algorithm of global
search is used which execute iteration within the feasible intervals only. It pro-
vides evaluation of multidimensional objective function in the accessible domain
only and distinguishes the proposed method from known approaches to solv-
ing global constrained optimization such as penalty function and index methods
which can carry out iterations at infeasible points.

The more economical behavior of the new method has been confirmed in the
experiment where the proposed adaptive nested algorithm was compared with
the classical nested scheme and adaptive scheme combined with penalty func-
tion method. The results of the experiment have demonstrated the significant
advantage of the suggested adaptive scheme over its opponents.

As continuation of the research it is interesting to evaluate the efficiency of
the new adaptive scheme via comparison with the global optimization methods
of different nature, for example, with some component methods of DIRECT-
type. Moreover, it would be perspective to develop a parallel version of the
algorithm and to study its effectiveness of parallelizing on various computational
architectures.

Acknowledgements. The research of the first author has been supported by the Rus-
sian Science Foundation, project No 16-11-10150 “Novel efficient methods and software
tools for timeconsuming decision make problems using superior-performance supercom-
puters.”

References

1. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve
an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002)



122 V. Gergel et al.

2. Boender, C.G.E., Rinnooy Kan, A.H.G.: Bayesian stopping rules for multistart
global optimization methods. Math. Program. 37(1), 59–80 (1987)

3. Butz, A.R.: Space-filling curves and mathematical programming. Inf. Control 12,
314–330 (1968)

4. Carr, C.R., Howe, C.W.: Quantitative Decision Procedures in Management and
Economic: Deterministic Theory and Applications. McGraw-Hill, New York (1964)

5. Dam, E.R., Husslage, B., Hertog, D.: One-dimensional nested maximin designs. J.
Global Optim. 46, 287–306 (2010)

6. Famularo, D., Pugliese, P., Sergeyev, Y.D.: A global optimization technique for
checking parametric robustness. Automatica 35, 1605–1611 (1999)

7. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. Wiley, New York (1968)

8. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of
classes of test functions with known local and global minima for global optimiza-
tion. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

9. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme
for multidimensional global search. J. Global Optim. 66, 35–51 (2016)

10. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of
global optimization. Procedia Comput. Sci. 51, 865–874 (2015)

11. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Adaptive dimensionality reduction in
multiobjective optimization with multiextremal criteria. In: Nicosia, G., Pardalos,
P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) Machine Learning, Optimization,
and Data Science. LNCS, vol. 11331, pp. 129–140. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-13709-0 11

12. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Parallel dimensionality reduction for
multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2019. LNCS,
vol. 11657, pp. 166–178. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-25636-4 13

13. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of sur-
face defects of cold-rolling sheets based on method of localities. Int. Rev. Autom.
Control 8, 51–55 (2015)

14. Goertzel, B.: Global optimization with space-filling curves. Appl. Math. Lett. 12,
133–135 (1999)

15. Grishagin, V.A.: Operating characteristics of some global search algorithms. In:
Problems of Stochastic Search, vol. 7, pp. 198–206. Zinatne, Riga (1978). (in Rus-
sian)

16. Grishagin, V.A., Israfilov, R.A.: Multidimensional constrained global optimization
in domains with computable boundaries. In: CEUR Workshop Proceedings, vol.
1513, pp. 75–84 (2015)

17. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimiza-
tion scheme. In: AIP Conference Proceedings, vol. 1738, p. 400010 (2016)

18. Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Convergence conditions and
numerical comparison of global optimization methods based on dimensionality
reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)

19. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms
for solving problems of global optimization. J. Global Optim. 10, 185–206 (1997)

20. Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming.
Math. Program. 17(1), 251–269 (1979)

21. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A.,
Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Kluwer Aca-
demic Publishers, Dordrecht (2001)

https://doi.org/10.1007/978-3-030-13709-0_11
https://doi.org/10.1007/978-3-030-13709-0_11
https://doi.org/10.1007/978-3-030-25636-4_13
https://doi.org/10.1007/978-3-030-25636-4_13


Multiextremal Optimization in Regions with Computable Boundaries 123

22. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning
fuzzy power-system stabilizers in multi-machine systems by global optimization
algorithms based on efficient domain partitions. Electric. Power Syst. Res. 78,
1217–1229 (2008)

23. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies
for diagonal GO methods. Numer. Math. 94, 93–106 (2003)

24. Lera, D., Sergeyev, Y.D.: Lipschitz and Hölder global optimization using space-
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Abstract. We consider discrete-time systems of bilinear type for the
case when interval bounds on the coefficients of the system are imposed,
additive input terms are restricted by integral non-quadratic constraints,
and initial states belong to given sets, which are assumed to be paral-
lelepipeds. An approach for estimating the reachable sets is presented. It
is based on considering reachable sets in the “extended” space and con-
structing external and internal estimates of them in the form of polytopes
of some special shape. The specific cross-sections of these polytopes pro-
vide the parallelepiped-valued or parallelotope-valued estimates of the
reachable sets in the “initial” space. Evolution of the estimates in the
“extended” space is determined by recurrence relations. All the esti-
mates can be calculated by explicit formulas. The main attention is paid
to internal estimates. Illustrative examples are presented.

Keywords: Discrete-time systems · Reachable sets · Integral
constraints · Uncertain matrices · Polyhedral estimates ·
Parallelepipeds · Parallelotopes

1 Introduction

The reachability problem may be considered as one of the fundamental problems
of the mathematical control theory [19–21]. Exact calculation of reachable sets
is as a rule a very complicated problem, therefore different numerical methods
were developed for their approximations, in particular using polytopes with a
large number of vertices or unions of a large number of points (see, for example,
[1,2,7,26,27]; here and below we cite for instances only some of numerous pub-
lications; see references therein too). But the methods meant for constructing
approximations as accurate as possible can require much calculations, especially
for large dimensional systems. Another approach is based on estimates of sets
by domains of some fixed shape such as ellipsoids, parallelepipeds, and some
others [3,5,6,9–16,19–21,24]. Its main advantage is that it enables to calculate
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approximate solutions using relatively simple tools in opposite to the mentioned
above methods for obtaining the most accurate approximations. More accurate
approximations can be obtained by using parametric families of fixed shape esti-
mates similarly to [20,21]. The interval analysis methods based on subpavings
of interval vectors [9] serve the same aim, but can require much computations
and memory for high-dimensional systems.

Fair techniques for constructing effective fixed shape estimates were devel-
oped for linear systems with hard bounds on controls. It is also important
to study linear systems under integral constraints and moreover to study the
systems with uncertain coefficients (matrices). This leads to bilinearity and
additional difficulties caused by nonlinearity (specifically reachable sets can be
non-convex). Some approaches to investigation and approximation of reach-
able sets for systems with integral constraints and different impulsive systems,
for bilinear systems, and for some combinations of such types can be found,
for instance, in [1,2,6–8,11,12,18,19,21,26], in [3,10,13,14,21,22,24,25], and in
[5,15,16] respectively.

The paper develops research [11] to the more complicated case of systems with
uncertain matrices. The first such extensions are given in [15,16]. There, in [15], a
family of external estimates for reachable sets of the systems under consideration
is proposed, and, in [16], another family of external estimates is constructed,
which can provide more accurate estimates. The last mentioned estimates [16] are
obtained by two ways: using considerations in the initial space just like [15] and
using considerations in an “extended” space. This paper presents an approach for
two-sided estimation of the reachable sets based on considering reachable sets in
the “extended” space and constructing external and internal estimates for them
in the form of polytopes of some special shape. The specific cross-sections of these
polytopes provide the parallelepiped-valued or parallelotope-valued estimates of
the reachable sets in the initial space. The main attention is paid to the internal
estimates. Note that the task of constructing internal estimates is usually more
difficult than the task for external ones. We construct new (in comparison with
[13]) primary internal estimates in R

n for the result of multiplying a parallelotope
by an interval matrix, then construct primary internal estimates for results of two
operations with sets in R

n+1, and then derive systems of recurrence relations for
calculating parametric families of internal estimates of the reachable sets in the
“extended” space and in the initial one. For completeness of description of the
unified technique for both-sided estimation of the reachable sets we also briefly
recall the way of construction of the external estimates from [16]. Calculation of
both external and internal estimates, first, provide more information about the
exact reachable sets and, second, can provide some insight into a quality of the
estimates by comparing them. Illustrative examples are presented.

The following notation is used below: Rn is the n-dimensional vector space; �
is the transposition symbol; ‖x‖2 = (x�x)1/2, ‖x‖∞ = max1≤i≤n |xi| are vector
norms for x = (x1, . . . , xn)� ∈ R

n; ei = (0, . . . , 0, 1, 0, . . . , 0)� is the unit vector
oriented along the axis xi (the unit stands at position i); e = (1, 1, . . . , 1)�;
R

n×m is the space of real n×m-matrices A = {aj
i} = {aj} with elements aj

i and
columns aj ; 0 is the zero matrix (vector); I is the identity matrix; AbsA = {|aj

i |}
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for A = {aj
i} ∈ R

n×m; diag π, diag {πi} are the diagonal matrix A with ai
i = πi

(πi are the components of the vector π); det A is the determinant of A ∈ R
n×n;

‖A‖ = max1≤i≤n

∑m
j=1 |aj

i | is the matrix norm for A ∈ R
n×m induced by the

vector norm ‖x‖∞; co Q is the convex hull of a set Q ⊂ R
n; ρ(l|Q) = sup{l�x|x ∈

Q} is the support function of Q ⊂ R
n, vol Q is the volume of Q ⊂ R

n; and the
notation k = 1, . . . , N is used instead of k = 1, 2, . . . , N for brevity.

2 Problem Formulation

We consider a system (with states x ∈ R
n)

x[j] = A[j]x[j−1] + B[j]u[j] + v[j], j = 1, . . . , N ; (1)

x[0] ∈ X0 ⊂ R
n;

N∑

j=1

‖u[j]‖∞ ≤ μ0; (2)

u[j] ∈ K[j] ⊆ R
r, j = 1, . . . , N, (3)

where terms v[j] ∈ R
n and matrices B[j] ∈ R

n×r (r ≤ n) are given. The initial
state x[0] = x0 ∈ R

n and the inputs (controls/disturbances) u[j] ∈ R
r are

unknown but satisfy constraints (2)–(3). Here X0 is a given convex compact set,
μ0 > 0, K[j] ⊆ R

r are convex closed cones in R
r. Matrices A[j] ∈ R

n×n are also
unknown but subjected to constraints of an interval type

A[j] ∈ A[j] = {A ∈ R
n×n |A[j] ≤ A ≤ A[j]}

= {A |Abs (A − Ã[j]) ≤ Â[j]}, j = 1, . . . , N,
(4)

where Ã[j] = (A[j] + A[j])/2, Â[j] = (A[j] − A[j])/2. Here and below, matrix
and vector inequalities and also the operations of maximum and minimum are
understood elementwise.

Let us start with some definitions.
The reachable set X [k] for the system (1)–(4) at time k ∈ {1, . . . , N} is a

set of all points x ∈ R
n for each of which there exists a triple {x[0], u[·], A[·]}

that satisfies (2)–(4) and generates a solution x[·] of (1) that satisfies x[k] = x.
Set-valued map X [k], as a function of k, defines a so-called trajectory tube X [·].

By a parallelepiped P(p, P , π) ⊂ R
n we mean a set such that P =

P(p, P , π) = {x ∈ R
n|x = p + Pdiag π ξ, ‖ξ‖∞ ≤ 1}, where p ∈ R

n;
P = {pi} ∈ R

n×n is such that det P �= 0, ‖pi‖2 = 1 (the normality condi-
tion ‖pi‖2 = 1 may be omitted to simplify formulas); π ∈ R

n, π ≥ 0. It may
be said that p determines the center of the parallelepiped, P is the orientation
matrix, pi are the “directions”, and πi are the values of its “semi-axes” Fig. 1(a).

By a parallelotope P[p, P̄ ] ⊂ R
n we mean a set P = P[p, P̄ ] = {x| x =

p + P̄ ξ, ‖ξ‖∞ ≤ 1}, where p ∈ R
n and P̄ = {p̄i} ∈ R

n×m, m ≤ n. We call a
parallelotope P nondegenerate if m = n and det P̄ �= 0.

Each parallelepiped P(p, P , π) is a parallelotope P[p, P̄ ] with P̄ = P diag π.
Each nondegenerate parallelotope is a parallelepiped with P = P̄ , π = e.
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Fig. 1. Forms of polyhedral estimates: (a) parallelepiped in R
3, (b) Π -polytope in R

3

Let us introduce the following sets, which will be used below:

R[j] = C ∩ K[j], C = P(0, I, e) ⊂ R
r, (5)

where C is the unit cube with the center at origin.
We consider the system under the following assumption.

Assumption 1. The initial set X0 is a parallelepiped X0 = P0 = P(p0, P0, π0) ⊂
R

n, and all the sets R[j] defined in (5) are parallelepipeds in R
r.

Exact computing the reachable sets X [k] can be rather cumbersome especially
for systems with uncertain matrices because X [k] may be nonconvex in this case.
We will look for external parallelepiped-valued and internal parallelotope-valued
estimates for X [k].

We call P external (internal) estimate for Q ⊂ R
n if Q ⊆ P (P ⊆ Q). The

estimate P for Q ⊂ R
n is called tight (in direction l) [21] if Q ⊆ P (P ⊆ Q)

and there exists l ∈ R
n such that ρ(±l|P ) = ρ(±l|Q). We call a parallelepiped

P+
V (Q) = P (p+, V, π+) touching external estimate for Q, denoting it by P+

V (Q),
if it is tight estimate in n specified directions li = (V −1)�ei, i = 1, . . . , n.

Thus we consider the following problem.

Problem 1. Find some external parallelepiped-valued estimates P+[k] =
P(p+[k], P+[k], π+[k]) and internal parallelotope-valued ones P−[k] =
P[p−[k], P̄−[k]] for the reachable sets X [k]: P−[k] ⊆ X [k] ⊆ P+[k] , k =
1, . . . , N . Moreover introduce some families of such estimates P±[k].

To investigate the reachable sets X [k] it is useful to introduce reachable sets
Z[k] of states z = {x, μ} = (x�, μ)� ∈ R

n+1 for system (1), (3), (4), (6)–(8):

μ[j] = μ[j−1] − ‖u[j]‖∞, j = 1, . . . , N ; (6)

μ[j] ≥ 0, j = 1, . . . , N ; (7)

z[0] = {x[0], μ[0]} ∈ Z0 = X0 × [0, μ0] (8)
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in the “extended” space, where μ corresponds to a current stock of u and state
constraints (7) are imposed on μ[j] instead of integral constraints (4) on u[·].
The reachable sets Z[k] are defined in the standard way (in short, the sets of all
states z[k] that are possible under given constraints).

We will look for external and internal estimates Π ±[k] for Z[k] in the form of
polytopes Π = Π ({Pb, 0}, {Pt, μt}) ⊂ R

n+1 of some specific form (we call them
Π -polytopes), which are defined by their “lower” and “upper” cross-sections
through the operation of convex hull, Fig. 1(b) where the both mentioned cross-
sections are either the parallelepipeds with the identical orientation matrices
or the identical parallelotopes (then we also say that the Π -polytope is a Π -
cylinder):

Π = Π ({Pb, 0}, {Pt, μt}) = co ({Pb, 0} ∪ {Pt, μt}), μt ≥ 0,

Pb = P (pb, P, πb), Pt = P (pt, P, πt),

or Pb = Pt = P[pt, P̄ t].

(9)

Problem 2. Find some external and internal estimates Π ±[k] for Z[k]: Π −[k] ⊆
Z[k] ⊆ Π+[k], k = 1, . . . , N . Introduce some families of such estimates Π ±[k].

We will find estimates P±[k] for X [k] using estimates Π ±[k] for Z[k].
We call both estimates P±[k] and Π ±[k] polyhedral estimates for brevity.

3 Auxiliary Results

It is convenient to represent the reachable sets Z[k] of the system (1), (3),
(4), (6)–(8) in the form of the union of their μ-cross-sections X (μ, k): Z[k] =⋃

0≤μ≤μt[k]{X (μ, k), μ}.
The sets Z[k] (unlike X [k]) satisfy the semigroup property (for the definitions

see, for example, [10,20,21]) and therefore satisfy some recurrence relations.

Theorem 1 (See [16]). Let Z[k] be the reachable sets for the system (1), (3),
(4), (6)–(8) with the initial set Z0 = X0 × [0, μ0]. Then we have μt[k] = μ0,
k = 1, . . . , N , and Z[k] satisfy the following recurrence relations:

Z[k] = (A[k] ⊗ Z[k−1] +© v[k]) � B[k]R[k], k = 1, . . . , N ; Z[0] = X0 × [0, μ0],

and we have X [k] =
⋃{X (μ, k)| 0 ≤ μ ≤ μ0} = X (0, k), k = 1, . . . , N .

Here are involved the following operations with the sets of the form Z =⋃
0≤μ≤μt{X (μ), μ} ⊆ R

n+1:

Z +© v =
⋃

0≤μ≤μt

{X (μ) + v, μ}, ∀v ∈ R
n;

A ⊗ Z =
⋃

0≤μ≤μt

{A ◦ X (μ), μ};

Z � R = Z̃ =
⋃

0≤μ≤μt

{X̃ (μ), μ}, X̃ (μ) =
⋃

μ≤ζ≤μt

(X (ζ) + (ζ − μ)R), ∀R ⊂ R
n,

(10)
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which in their turn involve the results of set operations in R
n such as the

Minkowski sum X 1+X 2 = {y| y = x1+x2, xk ∈ X k} and multiplying a set X by an
interval matrix A = {A|A ≤ A ≤ A}: A◦X = {y ∈ R

n| y = Ax, A ∈ A, x ∈ X}.
In (10), the first two operations act on the each cross-section independently, the
last one combines operations of Minkowski sum and union over cross-sections.

To construct polyhedral estimates for Z[k] we use properties of operations
with sets and primary polyhedral estimates for the results of set operations.

The touching external parallelepiped-valued estimates P+
V (Q) with a given

orientation matrix V can be calculated by known explicit formulas for the cases
when Q is a sum or union of two parallelotopes (Q = P1 +P2 or Q = P1 ∪P2),
and also for Q = A ◦ P , where A is an interval matrix and P is a parallelepiped
or a parallelotope (see [10,13,16]). For the reader’s convenience, let us recall
these primary estimates.

The affine transformation of a parallelepiped and of a parallelotope is a par-
allelotope: AP[p, P̄ ] + a = P[Ap + a,AP̄ ] for A ∈ R

n×r, p ∈ R
r, P̄ ∈ R

r×r,
a ∈ R

n; AP(p, P , π) = P(Ap,AP, π) if detA �= 0.
For further it is useful to bear in mind the equivalent representation of the

parallelepiped P = P(p, P , π): P = P (P, γ(−), γ(+)) = {x | γ(−) ≤ P−1x ≤
γ(+)}, where γ

(±)
i = ±ρ(±(P−1)�ei|P ), i = 1, . . . , n, and we have the following

interconnections: γ(±) = P−1p ± π; p = P (γ(−) + γ(+))/2, π = (γ(+) − γ(−))/2.
The touching external estimate for a bounded set Q ⊂ R

n with a given
orientation matrix V is determined by the formula P+

V (Q) = P (V, γ(−), γ(+)),
γ
(±)
i = ±ρ(±V −1�ei|Q).

The support functions of a parallelepiped and a parallelotope are deter-
mined by formulas ρ(l|P(p, P, π)) = l�p + Abs (l�P )π, ρ(l|P[p, P̄ ]) = l�p +
Abs (l�P̄ )e.

The touching estimates for the sum of two parallelepipeds can be
found by the explicit formula P+

V (
∑2

k=1 P(pk, P k, πk)) = P(
∑2

k=1 pk, V,
∑2

k=1(Abs (V −1P k))πk). For the sum of two parallelotopes we have
P+

V (
∑2

k=1 P[pk, P̄ k]) = P[
∑2

k=1 pk, V diag (
∑2

k=1 Abs (V −1P̄ k)e)] .
The estimates P+

V (P1 ∪ P2) for the union of two parallelotopes Pk =
P[pk, P̄ k] are determined by the formula

P+
V (P1 ∪ P2) = P (V, γ+(−), γ+(+)), γ+(±) = ± max

1≤k≤2
{±V −1pk + Abs (V −1P̄ k)e}.

For calculating touching external estimate P+
P+(Q) for Q = A◦P , where A is

an interval matrix and P is a parallelepiped, we can use each of two expressions

ρ(l|Q) = max
x∈E(P)

{l�Ãx + (Abs l)�Â(Abs x)},

ρ(l|Q) = max
A∈E(A)

{l�Ap + (Abs (l�AP ))π},

where E(P) and E(A) denote sets of all vertices of P and A (i.e., the set of
points p +

∑m
i=1 piπiξi with ξi ∈ {−1, 1} and the set of matrices with elements

aj
i ∈ {aj

i , a
j
i}).
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To construct external estimates Π+[k] for the reachable sets Z[k] we use
primary polyhedral estimates for the results of set operations Π � P and A⊗Π
from (10), where Π = Π ({Pb, 0}, {Pt, μt}) is a Π -polytope defined in (9).

External estimates Π+
V (Π � P) = Π ({P+b, 0}, {P+t, μ+t}), where P is a

paralelotope, can be found [11,16] by formulas

P+t = P+
V (Pt), μ+t = μt, P+b = P+

V (Pb ∪ P+
V (Pt + μtP )), (11)

and all its μ-cross-sections turn out to be touching estimates for μ-cross-sections
of the set Z = Π �P.

External estimates Π+
V (A ⊗ Π ) = Π ({P+b, 0}, {P+t, μ+t}), where A is an

interval matrix, can be found [16] by formulas

P+t = P+
V (A ◦ Pt), μ+t = μt, P+b = P+

V (A ◦ Pb). (12)

Here the orientation matrix V appears as a parameter, which determines the
parametric families of the estimates.

Now let us consider ways for constructing primary internal polyhedral esti-
mates.

Introduce the following set of matrices (where ‖Γ‖ = max1≤α≤r

∑n
β=1 |γβ

α|):

Gr×n = {Γ = {γβ
α} ∈ R

r×n | ‖Γ‖ ≤ 1}.

Let Pk = P[pk, P̄ k], k = 1, 2, P̄ 1 ∈ R
n×n, P̄ 2 ∈ R

n×r. Internal estimates for
the sum of parallelotopes Q = P1 + P2 can be found similarly to [13] in the
form of a parallelotope

P− = P−
Γ 1,Γ 2(P1 + P2) = P[p1+p2, P̄ 1Γ 1+P̄ 2Γ 2], (13)

where Γ 1 ∈ Gn×n, Γ 2 ∈ Gr×n. Matrices Γ 1, Γ 2 serve as admissible parameters.
Let’s pass to the new results concerning ways of constructing internal esti-

mates for A ◦ P and Π � P, A ⊗ Π .
First we present a parametric family of internal estimates for Q = A ◦ P .

Proposition 1. Let A = {A|Abs (A − Ã) ≤ Â} and P = P[p, P̄ ] with P̄ ∈
R

n×n. Let J = {j1, . . . , jn} be an arbitrary permutation for {1, . . . , n} and Γ 1, Γ 2

be arbitrary matrices such that Γ 1, Γ 2 ∈ Gn×n. Then the parallelotope

P− = P−
J,Γ 1,Γ 2(A ◦ P ) = P[Ãp, ÃP̄Γ 1 + (diag ν)Γ 2],

νi = âji
i ηji , i = 1, . . . , n, η = max{0,Abs p−Abs (P̄Γ 1) e},

(14)

is an internal estimate for A ◦ P , i.e., P− ⊆ A ◦ P .

Proof. To prove the inclusion P− ⊆ A ◦ P , let us make sure that for any y ∈
P− (i.e., y = p− + P̄−ξ, ‖ξ‖∞ ≤ 1) we can find A ∈ A (i.e., A = Ã + ΔA,
Abs (ΔA) ≤ Â) and x ∈ P (i.e., x = p + P̄ ζ, ‖ζ‖∞ ≤ 1), such that y = Ax, i.e.,

Ãp + (ÃP̄Γ 1 + (diag ν)Γ 2)ξ = Ãp + ÃP̄ ζ + ΔA(p + P̄ζ). (15)
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Set ζ = Γ 1ξ. Then we have ‖ζ‖∞ ≤ ‖Γ 1‖ ‖ξ‖∞ ≤ 1. Set ΔA = (diag δ)D , where
D = {ej1 · · · ejn}� is the matrix obtained by permuting rows of the identity
matrix according to the permutation J , and components of the vector δ are
calculated as follows. If νi = 0 for some i, then set δi = 0. If νi > 0, then ηji > 0
due to (14), and |pji | > eji�Abs (P̄Γ 1)e. Then eji�(p + P̄Γ 1ξ) �= 0 and we set
δi = νi ei�Γ 2ξ/(eji�(p + P̄Γ 1ξ)). The equality (15) is provided. It remains to
check the inequalities |δi| ≤ âji

i , which ensure Abs (ΔA) ≤ Â. They are evident
for indices i such that νi = 0. For the rest ones (i.e., for i such that νi > 0), we
have |δi| ≤ âji

i ηji ei�(Abs Γ 2)e/(|pji |− eji�(Abs (P̄Γ 1))e) ≤ âji
i ei�(Abs Γ 2)e ≤

âji
i because ‖Γ 2‖ ≤ 1. ��

Remark 1. Under conditions of Proposition 1, we can choose Γ 2 ∈ Gn×n such
that

ei�Γ 2 = βi ei�ÃP̄Γ 1, βi = (ei�Abs (ÃP̄Γ 1) e)−1, i ∈ I∗, (16)

where I∗ = {i ∈ {1, . . . , n} | ei�Abs (ÃP̄Γ 1) e �= 0}. If we also put

ei�Γ 2 = 0 = βi ei�ÃP̄Γ 1, βi = 0, i ∈ I∗∗ = {1, . . . , n}\I∗, (17)

then we obtain P− = P[Ãp, (I + diag ν diag β) ÃP̄Γ 1], which is the same esti-
mate as in [13, Theorem 3.3]. If in addition the parallelotope P is nondegenerate,
det Ã �= 0, and detΓ 1 �= 0, then the above parallelotope P− turns out to be non-
degenerate.

Remark 2. It is not difficult to provide examples, where P is a degenerate paral-
lelotope and, under some conditions, matrices Γ 2 ∈ Gn×n with (16) but without
zero row vectors from (17) can give nondegenerate estimates P− ⊆ A ◦ P .

Example 1. Let us consider a simplest example, where n = 2, Ã = I, P̄ =
[

1 0
0 0

]

,

Γ 1 = I, Γ 2 =
[

1 0
γ1
2 γ2

2

]

∈ Gn×n. In this case, ÃP̄Γ 1 = P̄ , (Abs (ÃP̄Γ 1)) e =

(Abs (P̄Γ 1)) e = e1, η = max{0,Abs p−e1} = (max{0, |p1|−1}, |p2|)�. Let P̄ (1)−

and P̄ (2)− correspond to J (1) = {1, 2} and J (2) = {2, 1} according to (14), where
we have ν = ν(1) = (â1

1 · max{0, |p1| − 1}, â2
2 · |p2|)� and ν = ν(2) = (â2

1 · |p2|, â1
2 ·

max{0, |p1| − 1})� respectively. We obtain det P̄ (1)− = (1 + â1
1 max{0, |p1| −

1}) · â2
2 |p2| γ2

2 , det P̄ (2)− = (1 + â2
1 |p2|) · â1

2 max{0, |p1| − 1} γ2
2 . The estimates

P− = P[p−, P̄−] with maximal volumes correspond to the ones with maximal
absolute value of det P̄−. Maximal values of both |det P̄ (1)−| and |det P̄ (2)−|
under the above Γ 2 ∈ Gn×n are obtained at Γ 2 with γ2

2 ∈ {1,−1}, γ1
2 = 0.

Thus such choice of Γ 2 together with J (1) under conditions â2
2 > 0, |p2| > 0 and

together with J (2) under the conditions â1
2 > 0, |p1| > 1 generates nondegenerate

estimates, while the estimates from Remark 1 are degenerate because det P̄ = 0.

Remark 3. Let det P̄ �= 0, det Ã �= 0, and Â has the unique nonzero ele-
ment aj∗

i∗ . Let Γ 1 satisfies Γ 1 ∈ Gn×n, det Γ 1 �= 0 (in particular, Γ 1 = I)
and Γ 2 be determined by (16), where I∗ = {1, . . . , n}. Then the parallelotope
P[Ãp,diag (e + aj∗

i∗ ηj∗βi∗ei∗) ÃP̄Γ 1] is a solution of the optimization problem
volP−

J,Γ 1,Γ 2(A ◦ P ) → maxJ .
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Remark 4. The estimates from Proposition 1 possess the peculiarity that we
have ν = η = 0 in (14) if P contains 0. In this case it may be useful to apply the
estimates P−

A(A ◦ P ) of the form P−
A(A ◦ P ) = AP = P[Ap,AP̄ ] with A ∈ A,

which were called simple in [13]. Recall that volume-maximal simple estimates
can be found among those that correspond to vertices of A: maxA∈A vol (AP) =
maxA∈E(A) vol (AP) = maxA∈E(A) |det A| · vol P [13].

To construct estimates Π −[k] ⊆ Z[k] we use primary Π -cylinder-valued esti-
mates for the results of set operations Π � P and A⊗Π , where Π is a Π -cylinder.

Proposition 2. Let Π = Π ({Pb, 0}, {Pt, μt}) be a Π -cylinder with Pb = Pt

and P = P[p, P̄ ] be a parallelotope with P̄ ∈ R
n×r and 0 ∈ P . Then an arbitrary

Π -cylinder Π − = Π ({P−b,0}, {P−t,μ−t}) with μ−t = μt − h, 0 ≤ h ≤ μt,
P−b = P−t⊆Pt + hP serves as an internal estimate for Π � P. In particular,
Π -cylinders

Π− = Π−
h,Γ1,Γ2(Π � P) = Π ({P−b,0}, {P−t,μ−t}),

μ−t = μt−h, P−b = P−t = P−
Γ1,Γ2(Pt + hP ) = P[pt + h p, P̄ tΓ 1 + hP̄Γ 2]

(18)
are internal estimates for Π �P whatever are admissible parameters 0 ≤ h ≤ μt,
Γ 1 ∈ Gn×n, and Γ 2 ∈ Gr×n.

Proposition 3. Let Π = Π ({Pb, 0}, {Pt, μt}) be a Π -cylinder and A be an
iterval matrix. Then an arbitrary Π -cylinder Π − = Π ({P−b,0}, {P−t,μ−t})
with μ−t = μt, P−b=P−t⊆A ◦ Pt serves as an internal estimate for A ⊗ Π . In
particular, Π -cylinders

Π − = Π−
J,Γ 1,Γ 2(A ⊗ Π ) = Π ({P−b,0}, {P−t,μ−t}),

μ−t = μt, P−b = P−t = P−
J,Γ 1,Γ 2(A ◦ Pt)

(19)

are internal estimates for A ⊗ Π whatever are admissible parameters J (which
is an arbitrary permutation of {1, . . . , n}), Γ 1, Γ 2 ∈ Gn×n.

Proof. Both propositions follow from the definition of Π -cylinder and properties
of the used primary estimates in R

n that were described above. ��

4 Polyhedral Estimates for Reachable Sets

First we recall the way of constructing external estimates for the reachable sets
Z[k] and X [k].

Theorem 2 (See [16]). Let Z[k] be the reachable sets of the system (1), (3),
(4), (6)–(8) under Assumption 1. Let Π -polytopes Π+[k] satisfy the relations

Π 1+[k] = Π+
P+[k]

(A[k] ⊗ Π+[k−1]) +© v[k], k = 1, . . . , N ; Π+[0] = P0 × [0, μ0];

Π+[k] = Π+
P+[k]

(Π 1+[k] � B[k]R[k]), k = 1, . . . , N,

(20)
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where formulas (11) and (12) are applied. Then Z[k] ⊆ Π+[k], k = 1, . . . , N ,
whatever are nonsingular orientation matrices P+[k] ∈ R

n×n, k = 1, . . . , N , and
parallelepipeds P+[k] = P+b[k] that coincide with the “lower” cross-sections of
Π+[k] are external estimates for the reachable sets X [k] of the system (1)–(4):
X [k] ⊆ P+[k], k = 1, . . . , N .

Remark 5. Theorem 2 describes the parametric family of estimates, where the
function P+[·], which determines a dynamics of orientation matrices of cross-
sections, serves as a parameter of the family. Under the condition det Ã[j] �= 0,
j = 1, . . . , N , we can construct the tubes for which the orientation matrices
satisfy

P+[k] = Ã[k]P+[k−1], k = 1, . . . , N ; P+[0] = P, (21)

where P is an arbitrary nonsingular matrix (recall that for the case Â[k] ≡ 0
the corresponding estimates P+[k] turn out to be touching [16, Remark 7]). The
choice of constant orientation matrices P+[k] ≡ P can lead to much more con-
servative estimates due to the well-known in interval analysis “wrapping effect”.

Now we present the technique for constructing internal estimates for the
reachable sets Z[k] and X [k].

Let us introduce the following family of tubes Π −[·] that satisfy the relations

Π 1−[k] = Π−
J[k],Γ 1[k],Γ 2[k](A[k] ⊗ Π −[k−1]) +© v[k], k = 1, . . . , N ;

Π −[k] = Π−
h[k],Γ 3[k],Γ 4[k](Π

1−[k] � B[k]R[k]), k = 1, . . . , N ;

Π −[0] = P0 × [0, μ0] = Π ({P0, 0},{P0, μ0}),

(22)

where the admissible parameters satisfy the conditions

h[j] ≥ 0,
N∑

j=1

h[j] ≤ μ0, Γ 1[j], Γ 2[j], Γ 3[j] ∈ Gn×n, Γ 4[j] ∈ Gr×n, (23)

J [j] are arbitrary permutations of {1, . . . , n}, and formulas (18), (19) are used.

Theorem 3. Let Z[k] be the reachable sets of the system (1), (3), (4), (6)–
(8) under Assumption 1. Then Π -cylinders Π −[k] that satisfy (22) are internal
estimates for Z[k]: Π −[k] ⊆ Z[k], k=1, . . . , N , whatever are the above-mentioned
admissible parameters satisfying (23), and parallellotopes P−[k] = P−b[k] that
coincide with the cross-sections of Π -cylinders Π −[k] are internal estimates for
the reachable sets X [k] of the system (1)–(4): P−[k] ⊆ X [k], k = 1, . . . , N .

Proof. The proof is obtained by using Theorem 1 and Propositions 2 and 3. ��
As a result, we obtain the following explicit formulas for constructing the

parametric family of internal estimates the reachable sets X [k].
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Fig. 2. External and internal estimates for X [N ] in Example 2 with K[j] ≡ (−∞, ∞):
(a) case (i), (b) case (ii); external and internal estimates for X [·]: (c),(d) case (ii)

Corollary 1. Let X [k] be the reachable sets of the system (1)–(4) under
Assumption 1. Let h[·] and Γ 1[·], Γ 2[·], Γ 3[·], Γ 4[·] be parameters satisfying
conditions (23) and parallelotopes P−[k] be constructed by the following formu-
las:

P1−[k] = P−
J[k],Γ 1[k],Γ 2[k](A[k] ◦ P−[k−1]) + v[k], k = 1, . . . , N ; P−[0] = P0;

P−[k] = P−
Γ 3[k],Γ 4[k](P1−[k] + h[k]B[k]R[k]), k = 1, . . . , N,

(24)
where primary estimates (13) and (14) are used. Then P−[k] are internal esti-
mates for X [k]: P−[k] ⊆ X [k], k = 1, . . . , N .

Introducing the families of estimates instead of single ones, we can estimate
reachable sets more accurately in the form of intersections of several external
estimates and unions of several internal ones.

Example 2. For illustration, we present simulation results for discrete-time sys-
tems which can be obtained by discretization of impulsive differential ones

considered on a time interval [0, θ]. Let Ã[j] ≡ I + hN ·
[

0 1
−1.5 0

]

, Â[j] ≡ 0
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Fig. 3. External and internal estimates for X [N ] in Example 2 with K[j] ≡ [0, ∞): (a)
case (i), (b) case (ii)

(case (i), the system is linear) or Â[j] ≡ hN ·
[

0 0
0.1 0

]

(case (ii), the system turns

out to be bilinear), hN = θN−1, θ = 2.5, N = 100, B[j] ≡ (0, 1)�, v[j] ≡ 0,
P0 = P((1.5, 0.5)�, I, (0.2, 0.5)�), μ0 = 1, K[j] ≡ (−∞,∞) or K[j] ≡ [0,∞).

First we consider the case with K[j] ≡ (−∞,∞). Figure 2(a) and 2(b) show
X0 (“small parallelepiped”) and several external and internal estimates P+[N ]
and P−[N ] for the reachable set X [N ] for cases (i) and (ii) respectively. External
estimates are calculated by (20), (21), where the matrices P are taken as orthog-

onal ones of the form P =
[
cos ϕ − sin ϕ
sinϕ cos ϕ

]

with ϕi = 0.5(i−1)π/nϕ, i = 1, . . . , nϕ,

nϕ = 9. Internal estimates are calculated due to (24), where Γ 1[k] ≡ Γ 3[k] ≡ I;
Γ 2[k] and Γ 4[k] are calculated according to (16) and similarly to [13, Sec. 4]
respectively; J [k] are found by maximization of volP−

J[k],I,Γ 2[k](A[k]◦P−[k − 1])
under fixed Γ 2[k]; h[·] are taken as h[j] ≡ μ0/N and as several random realiza-
tions of h[·] satisfying (23). The external estimates for the case (i) in Fig. 2(a)
are touching; in aggregate, they “outline” X [N ]. Both external and internal
estimates for the case (ii) in Fig. 2(b) (when the system is bilinear) as expected
turned out to be larger than for the case (i), this is consistent with the fact that
reachable sets for systems with uncertain matrices should be larger. Figure 2(d)
presents one of the corresponding tubes P−[·] for the case (ii) (drawing is car-
ried out one time per each 2 stages k). Figure 2(c) shows both some external and
internal polyhedral tubes, namely P+[·] that correspond to P = P0 and P−[·]
presented in Fig. 2(d).

Figure 3(a) and 3(b) are obtained for the case with the cone constraint
K[j] ≡ [0,∞) (i.e., only nonnegative values of u[j] are allowed) and are simi-
lar to Fig. 2(a) and 2(b). Here both external and internal estimates for X [N ] are
smaller than for the case K[j] ≡ (−∞,∞).
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5 Conclusion

The techniques for constructing external parallelepiped-valued and internal
parallelotope-valued estimates for the reachable sets of discrete-time systems
with uncertain matrices and integral non-quadratic constraints on additive terms
are presented. They are based on constructing estimates for the reachable sets
in the “extended” space in the form of polytopes of some special shape. Evolu-
tion of the last mentioned estimates is determined by the recurrence relations.
Although the described estimates can turn out to be rather rough, we can easily
calculate them by explicit formulas and they can give the useful information
about the system while it is difficult to calculate the reachable sets exactly. The
proposed estimates in the “extended” space can be modified to obtain estimates
for reachable sets under state constraints and, in particular, for information
sets similarly to [11], where external estimates were constructed for the case of
linear systems. The proposed estimates can be used for constructing estimates
of reachable sets for impulsive differential systems similarly to [12]. Models of
linear impulsive differential systems, for which considerations under uncertain
matrices is also of importance, arise (including linearization) in many applied
areas, for example, space navigation, automation, biomedical issues, problems
in economics, investment problems, and others (see, for example, [17, Sec. 3], [4,
Sec. 4.4, Ch. 6], [21, p. 253], [19, Ch. 1], [23] and references therein).
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Birkhäuser, Boston (1997)

21. Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes: Theory
and Computation. Birkhäuser, Basel (2014)
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Abstract. The aim of this paper is to solve numerically a class of prob-
lems on conservation laws, modelled by hyperbolic partial differential
equations. In this paper, primary focus is over the idea of fuzzy logic-
based operators for the simulation of problems related to hyperbolic con-
servation laws. Present approach considers a novel computational proce-
dure which relies on using some operators from fuzzy logic to reconstruct
several higher-order numerical methods known as the flux-limited meth-
ods. Further optimization of the flux limiters is discussed. The approach
ensures better convergence of the approximation and preserves the basic
properties of the solution of the problem under consideration. The new
limiters are further applied to several real-life problems like the advec-
tion problem to demonstrate that the optimized schemes ensure better
results. Simulation results are included wherever required.

Keywords: Conservation laws · Flux limiters · Fuzzy logic

1 Introduction

Conservation laws can also be stated as the fundamental laws of nature, they
have various applications in real life and they are an interesting topic of research
in multiple fields like Biology, Physics, Geology, Chemistry, and many engineer-
ing sciences like astronomy, civil, electrical to name a few. The simulation of
the partial differential equations associated with conservation laws has been a
popular branch of computational mathematics. It is well known that numeri-
cally solving hyperbolic system of conservation laws is a difficult task due to the
possible interaction between the shock and rarefaction waves, the undesirable
propagation of discontinuities and the main difficulty is the evolution of discon-
tinuities after some time no matter how smooth our initial condition is. For any
numerical method, the essential requirements for the convergence of the approx-
imate solution to the real solution are the preservation of basic properties and
the efficiency of the procedure in reducing the rounding and systematic errors.
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There are different methods in the literature [1–3] to control these undesirable
obstacles, which also ensure the essential requirements stated above.

The central theme of this work is to resolve the two contradictory but nec-
essary needs for numerical methods, one is to attain high order accuracy and
the other is to reduce non-physical oscillations near the discontinuities. High-
resolution methods are significant for hyperbolic conservation laws because they
provide better results as compared to the first generation methods [3] which
are in general, least concerned with the type of initial solution. Another cat-
egory of methods involves TVD (Total variation diminishing) methods which
are one of the most important tools in the development of numerical methods
for problems in computational fluid dynamics. A lot of effective methods have
been approached from classical methods like the first generation methods to the
advanced methods like the essentially non oscillatory/weighted essentially non-
oscillatory (ENO/WENO) methods [4,5], the flux limited methods [5]. These
methods have been regarded as successful in simulating the conservation laws.
But, the design of some high order methods requires expert knowledge and the
coding of such methods is also a tedious task. To ease this coding process one
can somehow take the help of operators from the fuzzy logic branch. This work
presents a unique combination of two entirely different subjects namely Fuzzy
Mathematics and the Computational Fluid Dynamics. The main concern among
various robust methods is modern HR (High resolution) methods which blend
two or more first-generation methods to produce some new schemes which give a
more stable and high order accurate output. Flux limited methods are the ones
belonging in this category. Flux limiters play an important role in switching
up efficiently from smooth regions to the region having discontinuities. Thus,
limiters help in providing a high-resolution approximation to the system. This
work provides a clear observation of the effect of these limiters in the light of
fuzzy expert rules, applied to a Fuzzy inference system to the same setup of flux
limiters based upon their behaviour with respect to different solution parts and
regenerated them in fuzzy logic. Apart from that, hedges provide better opti-
mization to the existing limiters, and the new limiters obtained after optimizing
the limiters with the aid of modifiers are able to provide even better results for
the problems in conservation laws.

The construction of new and more efficient numerical methods for Hyperbolic
conservation laws using a few tools from fuzzy is explored, these techniques can
be considered as an easier analogue of the flux-limited methods and also this sort
of application has not been used much in the literature, therefore there is not
much theory developed in the context of this application. The main objective of
this paper is to design new computational methods in an autonomous way. In
upcoming sections, a brief review of the concepts used in this paper from fuzzy
logic, namely: fuzzy sets, fuzzy inference system and fuzzy modifiers is given.
Later in the same section, a summarized mathematical background on hyperbolic
conservation laws is written, specifically flux limiters. Then in the third section,
the experimental part is disclosed where reconstruction of the limiters in fuzzy
logic using a built-in Matlab toolbox can be seen, followed by the optimization
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of limiters. After that, approximation of some popular test cases on advection
equation based on square pulse test and a combination of sine wave and square
pulse using the new optimized limiters are presented. The paper ends with a
summary where the final conclusions and the benefits of this new approach are
discussed.

2 Preliminaries

2.1 Fuzzy Logic Concepts Required for This Work

Fuzzy logic serves as an important concept in various real-life applications. It
permits to control various complex processes based upon a few rules where a
knowledge base is created which give the idea about the behavior of the system
so considered. Fuzzy logic aims to generalize the concept of classical logic for
reasoning under certainty.

Fuzzy Sets. Just like the classical set theory, fuzzy sets are studied in fuzzy
logic. Fuzzy sets can be considered as the extension of classical sets. It can be
best understood in the context of set membership. Unlike Classical sets known
as crisp sets in fuzzy logic, fuzzy sets talk about the degree of compatibility of
each member of the set with the set itself. The main idea is, in fuzzy one takes
membership values which may lie in the interval [0, 1] but in case of classical
sets, it was either 0 or 1 based upon whether the element belongs to the set or
not. A fuzzy set is defined as follows:

Definition 1. Fuzzy Set: Let U be the universe of discourse and K ⊆ U then the
fuzzy set K is the collection of ordered pairs (x, μ(x)), where μ(x) is the degree
of compatibility of the element x.

K = {(x, μ(x))|x ∈ U}
In crisp sets, the total number of elements in the set gives the cardinality of the
set, but in case of fuzzy logic, we have a different approach. The cardinality of
a fuzzy set K denoted by card(K) is:

card(K) =
∑

μ(xi)

Just like the classical sets, the mathematical and logical operations can be car-
ried out in fuzzy theory also. These operations enable us to put these sets into
practical use. For detailed theory refer [6]. Although, there are many fuzzy sets
in the fuzzy logic theory the ones we need in our work are: Singleton fuzzy sets,
triangular fuzzy sets, trapezoidal fuzzy sets, as shown in the Fig. 1. Here, we
need to mark that the interval [0, 1] is the main reason for making us capable of
building the foundation of approximate reasoning and fuzzy control.

Some standard fuzzy sets to be used in this work are the triangular fuzzy set,
the trapezoidal fuzzy set, and the singleton fuzzy set (see Fig. 1). Additionally,
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Fig. 1. Some standard fuzzy sets: Singleton(leftmost), triangular(middle), trape-
zoidal(right)

in order to adapt the fuzzy sets, we can use fuzzy modifiers, also known as fuzzy
hedges, which are indeed a powerful adaption tool resulting in a change in the
shapes of original fuzzy sets. These operators modify the membership values
related to the fuzzy set, due to which its geometry gets altered.

Hedges/Modifiers: Another important concept which is to be considered from
fuzzy systems are the “hedges”, or modifier of fuzzy values. These operations
are used in an effort to get closer to the natural human language, and they help
in the generation of fuzzy statements with some mathematical calculations. As
such, the initial definition of modifiers and corresponding algebra upon them will
be quite a subjective process and may vary from project to project. Nonetheless,
the system ultimately derived operates with the same formality as the classic
theory of logic. These are special terms aimed to make modifications in fuzzy
theory. Hedges modify the meaning of existing data by changing the membership
values corresponding to the relevant fuzzy sets.

Consider a fuzzy set A = {(x, μ(x)) | x ∈ K} corresponding to a crisp set
K lying in some universe U, for such case some popular modifiers are defined as
follows: (see figure for their geometric representation)

– Concentration operator:

CON(A) = {(x, (μ(x))n)) | x ∈ U}
– Dilation operator:

DILT (A) = {(x, n
√

(μ(x))) | x ∈ U}

– Contrast operator: CONT (A) =

{
2(μ(x))n μ(x) ≤ 0.5
1 − 2(1 − μ(x))n else

In this work, some standard modifiers are used, namely: the contrast operator,
dilation operator, and the concentration operator. This work modifies the exist-
ing limiters [7] using these tools and molds them into more efficient limiters. The
results obtained by doing such a thing is shown in the third section of the paper.
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Fuzzy Inference System (FIS): It is a system based upon the popular “Input-
processing-Output” theory. One has to provide some crisp data as input to this
inference system, which is then fuzzified i.e, changed into the equivalent fuzzy set
using the fuzzifiers. This fuzzified data is then evaluated based upon some fuzzy
rules, which ultimately infer something in terms of fuzzy. This fuzzy output is
then translated to the crisp set by the aid of defuzzifier. This is how a fuzzy
inference system works. There are various fuzzy inference systems available in
fuzzy systems and the most popular ones are the Mamdani and the Sugeno
FIS [8]. In this work, Mamdani FIS is used (see Fig. 2 for fuzzy inference system).
It is an expert system based on fuzzy logic. The fuzzy rules to be used in this
system are decided on the basis of the behavior of the limiter to be reconstructed
with respect to various solution areas. In short, fuzzy rules are extracted from a
given data which is considered at the very initial stage. The good thing about
using fuzzy inference system is that one does not need to seriously code up the
things to produce results because the fuzzy rule base consisting of a few three to
four fuzzy rules is serving our goal. Therefore, a better approximation is obtained
without messy coding work which saves both the time and money and hence this
new approach to reconstruct the limiters via inference system seems easier and
doing optimization is also quite handy in this place. In a way, the fuzzy theory
provides yet another way to carry out the study based upon interpolation in
a nice way. Specifically, it provides the optimization tools for the hyperbolic
partial differential equations. Fuzzy systems, mainly fuzzy logic and fuzzy set
theory, gives a rich and clear version addition to standard logic. The mathematics
generated by these theories is consistent, and fuzzy logic may be considered as a
generalization of classical logic. The applications which may be generated from or
adapted to fuzzy logic are quite wide-ranging, and they provide the opportunity
for modeling of situations which are inherently imprecisely defined, despite the
concerns of classical logicians. The important and nice thing is any systems may
be re-modeled, and even replicated with the help of fuzzy systems, not the least
of which is human reasoning itself.

Fig. 2. Fuzzy inference system
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2.2 Concepts Required from Hyperbolic Conservation Laws

High Resolution Methods: High-resolution methods are basically the non-
linear methods which are more solution sensitive as they take into account the
flux/solution gradients. Such methods are also known commonly as high resolu-
tion or TVD (Total Variation Diminishing) methods. In such methods, nonlinear
stability conditions are enforced which help in reducing the spurious oscillations
but they sometimes lead to clipping errors (a form of distortion that limits a
wavefront once it exceeds a threshold) at the solution extrema.

Here main concern is flux-limited methods for scalar conservation laws. Flux
limited methods are based upon first-generation methods, they are basically the
adaptive linear combination of two first-generation methods. For scalar conser-
vation laws such methods are defined as follows:

Consider the computational domain IR × IR+
0 covered uniformly by the cells

[xi−1/2, xi+1/2]× [tn, tn+1], where xj = j �x and tn = n� t being the space size
and the time step respectively. Over these cells, the unknown u(x, t) is given by
the cell averages

Un
j =

1
�x

∫ xi+1/2

xi−1/2

u(x, tn)dx

Then, the general form of numerical scheme by taking forward difference in time
and central difference in space reads as

un+1
j = un

j − λ(Fn
j+ 1

2
− Fn

j− 1
2
),

where
Fn
j+ 1

2
= F

(l)

j+ 1
2

+ φn
j+ 1

2
(F (h)

j+ 1
2

− F
(l)

j+ 1
2
)

here F
(l)

j+ 1
2

and F
(h)

j+ 1
2

are the conservative flux terms (edge fluxes for the jth

cell) which are selected from non adaptive (first generation schemes) having
complimentary properties (l means low precision and h means high precision)
and φn

j+ 1
2

is the main adaptive parameter for such adaptive schemes which is
commonly known as Flux Limiter.

In high-resolution numerical schemes, flux limiters are mainly employed to
deal with the spurious oscillations (wiggles) that would otherwise arise in non-
adaptive methods with high order schemes due to some problems like shocks,
contact discontinuities or quick changes in the solution domain. More impor-
tantly, the proper use of flux limiters with an appropriate high-resolution scheme
leads to total variation diminishing solutions.

Till now, various flux limiters have become a part of the theory but no
single limiter can serve all the problems, each limiter is applied according to the
demand of the problem we want to work with some of the popular examples of
flux limiters are discussed here (see Fig. 3):
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Fig. 3. Red line indicates classical limiters (Color figure online)

The minmod limiter selects the values with smaller modulus, else returns 0
and in MC limiter, we compare the second-order central difference with twice
the forward and twice the backward differences. Minmod scheme gives quite dis-
sipative output at the discontinuous parts, so this superbee limiter takes higher
modulus near the discontinuities. The expressions for Minmod, superbee and the
MC limiter are given by:

– Minmod limiter: φmm(r) = max[0,min(1, r)]
– Monotonized Central(MC) limiter:

φmc(r) = max[0,min(2r, 0.5(1 + r), 2)]

– Superbee Limiter: φsb(r) = max[0,max(min(2r, 1)),min(r, 2)]
where ‘r’ is the smoothness measure, also called the slope gradient and mm,
mc and sb are just the notations for respective limiters.

3 Experiments: New Approach to Flux Limiters

High-resolution schemes can be approached via fuzzy logic as well, in fact, the
study of flux limiters becomes easier in this manner, especially for the coding part
as already mentioned earlier in the aim of this paper, the focus is on constructing
the flux limiters by using fuzzy logic.

3.1 Reconstruction of Flux Limiters in Fuzzy Logic

In this fuzzy limiter reconstruction, as an abstract view, the purpose here is
to determine the value of flux limiter φ in the range [0, 2], this limiter depends
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upon the smoothness parameter, i.e., the flux gradient ‘r’ which is treated as
smoothness measure in this work. In order to model a solution to the problem
in conservation laws with the aid of fuzzy inference the following set of rules are
obeyed:

1. First of all select the input and output parameters. Fix the domains for each
of the category as input and output domain.

2. Next, select the inference mechanism among the standard fuzzy inferences
available to in system, depending upon the need of the problem.

3. After that choose a defuzzification method, as the data so obtained is still in
the form of fuzzy sets which needs to be defuzzified.

4. Define a knowledge base, consisting of a set of rules based upon the type of
initial data provided in the problem.

Here recreation of the flux limiters is explored with the aid of fuzzy toolbox
which is nothing but the coded form of FIS (fuzzy inference system) in Matlab.
In this FIS, one provides the smoothness of the initial data as an input parameter
and then give the limiter value as output. The knowledge base consists of the
set of if-then rules, which are based upon the classic limiter setup as available
in the literature. This theory can be concluded in the following points:

– A flux limiter takes initial data type features as input unit and returns a
suitable limiter value as output unit. So, here look for an ideal output limiter
for corresponding characteristic input situations.

– For fuzzy flux limiter, as a first step, one has to choose the input and output
parameters (known as linguistic variables) and determine their respective
domains.

– Then partition the variables by defining some terms with their membership
functions.

– After that final and important step is to specify the knowledge base (if-then
type of rules).

Demonstrating the Reconstruction of the Minmod Limiter: Minmod
limiter is supposed to be the simplest limiter among the family of flux limiters
in computational fluid dynamics. The functioning of minmod function can be
explained in three parts, the two regions where the limiters are constant with
functional values 0 and 1, and the intermediate part where it seems like a straight
line passing through the origin. The main rule is to use the high order scheme at
the smooth regions and the lower first-order monotone scheme at the problematic
parts pertaining to discontinuous solution features. So, as far as the smoothness
measure is concerned, lookup for the subset [−1, 2] of the real line as the working
domain. Then the rule base to be used in order to reconstruct the minmod scheme
is selected.

Also, ‘min’ operator is taken as the implication operator, for aggregation the
‘max’ operator is used and ‘centroid method’ is selected for defuzzification of
the fuzzified output (Fuzzy toolbox is a graphical user interface, there one can
select from the available options according to the demand of the problem, see
Fig. 4).
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– Classify the input variable “datatype” as “type1” and “type2” for the
extremum and smooth initial profiles respectively, similarly classify the out-
put parameter “limiter” as “upwind” and “laxwend” for the upwind and lax
wendroff schemes respectively (see Fig. 5)
Taking ‘datatype’ as the input variable with linguistic terms ‘type1’ and
‘type2’ as the trapezoidal functions.

– Taking ‘limiter’ as the output variable with terms ‘upwind’ and ‘laxwend’
as singleton membership functions (see Fig. 6).

– Then the knowledge base consists of the rules which says the input variable
is ‘type1’ then the output value will be ‘upwind’ and if the input is ‘type2’
then the output will be ‘laxwend’ (see Fig. 7).

• If smoothness is type1 then flux is upwind.
• If smoothness is type2 then flux is laxwend.

– Then the FIS so obtained is analogous to Minmod scheme from computa-
tional fluid dynamics to that in fuzzy logic (see Fig. 8).

This reconstruction of minmod limiter only requires two rules in the rule base,
but in general, there may be more than two rules in the rule base for other
limiters. Like while reconstructing the superbee limiter one has to use three
rules, for superbee the range is [0, 2] for the output variable and select [−1, 3] as
the domain of the input variable and the three key features are: superbee limiter
takes either three functional values namely 0, 1, 2 (remaining constant at these
values) and in the connecting parts it is a straight line, so one can use the rule
base which allows using three linguistic terms for the output variable and three
linguistic terms namely extremum, smooth and excursive for the input variable.

Fig. 4. Creating environment for FIS
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Fig. 5. Input variables

Fig. 6. Output variables
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Fig. 7. Rules insertion

Fig. 8. The analogous minmod limiter
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Hence, under the same implication, aggregation, and the centroid defuzzification
method, one can reconstruct the superbee or any other limiter in fuzzy logic.
Now the next section uses hedges to improve these analogous limiters so obtained
using this FIS technique. Then optimization of these limiters by considering
suitable modifiers at various portions of these limiters is discussed. One should
observe that until now, this work has not used any serious coding skills as such
to carry out these limiters using FIS. However, after getting the limiters, it will
switch again to the coding part to see the effect of these newly obtained limiters
on various class of problems in conservation laws.

3.2 Optimization of Flux Limiters

This part emphasizes on parameter tuning with the help of fuzzy modifiers.
Apart from reconstructing the flux limiters, some improvisations using the mod-
ifiers are also implemented. For doing so, systematically consider the combina-
tions of the standard dilation, contrast, and the concentration operators. This
section is focusing on the MC limiter and minmod limiter only although these
operators can be implemented on any flux limiter if it suits the problem so con-
sidered. This section systematically imposes the standard operators to the input
parameters, here only a finite number of values for n are taken, which are used
in the membership value of the operators, but one can further extend this set to
obtain, even more, results (see Fig. 9) for the following optimized limiters:
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Optimized Minmod limiter

Fig. 9. Newly obtained optimized limiters
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1. Optimized MC limiter 1 obtained by applying concentration operator with
n = 8 to the extremum part.

2. Optimized MC limiter 2 by applying concentration operator with n = 6 to
the extremum part and the dilation operator with n = 8 to sharp regions.

3. Optimized Minmod limiter by applying n = 2 to the extremum and the
dilation operator with n = 8 to smooth regions.

Further, in order to examine the new limiters, the linear advection equation is
considered, which is the benchmark problem to check some new scheme or some-
thing, it is the first test problem which flashes into mind. Here some experiments
based on these optimized limiters are applied to the standard model problem in
computational fluid dynamics, the linear advection problem.

3.3 Application of Optimized Limiters to Real Life Problem

The Advection Problem: The advection equation in one space dimension is
of the form:

∂u

∂t
+ a

∂u

∂x
= 0 (1)

here, u := (x, t) is some scalar field, x ∈ IR and t ∈ IR+ are the space and time
components respectively. Here, ‘a’ is a nonzero constant (in most cases we refer
‘a’ as some velocity vector field.)

We will work with the Eq. (1) with the conditions

u(x, 0) = f(x) (2)

where f is some conserved quantity [9,10].

Note: Here, the numerical scheme is obtained by taking forward difference in
time and a central difference in space which is written as:
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here
φ = max(0,min(min(0.5(1 + r), 2), 2r)/((1 − 3r)8 + 3r)).

Also, F (l) and F (h) are the Upwind scheme and the Lax Wendroff schemes
respectively. We are taking time step �t = 0.0025 and space size �x = 0.01 and
checking the results over varying points (200, 400, 600, 800), taking the speed of
advection a = 1.0. Here, two test cases have been considered, the square pulse
test, and the combination of a sine wave and square pulse (see Fig. 10, 11). It is
interesting to note that we get better result as compared to the existing minmod
limiter for both tests. On same lines, many other robust limiters can be used to
approximate the numerical solutions for the problems in conservation laws.
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Fig. 10. Results for the optimized Minmod limiter for square pulse initial conditions,
leftmost figure in bottom row shows the zoomed view of circled part in the correspond-
ing right image

Fig. 11. Results for the optimized Minmod limiter for combined initial conditions, left-
most figure in bottom row shows the zoomed view of circled part in the corresponding
right image



Indulgence of Fuzzy Logic in Flux Limiters 153

4 Summary

In this work, a novel approach to study flux limiters methods using fuzzy logic
theory is described. In the test cases like the two discussed in section four namely
the square pulse test and the mixed case, the modified limiters are able to approx-
imate the solution in a nice way resulting in even much better results. The main
advantage of doing so can be the easy interpretation of flux limiters. Using fuzzy
toolbox the modification of flux limiters becomes easier. This approach can be
beneficial in providing more efficient numerical methods for solving various prob-
lems arising in the computational fluid dynamics.
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Abstract. In this paper, we consider a non-cooperative 2-player zero-sum
interval-valued 2-tuple fuzzy linguistic (IVTFL) matrix game and develop a
methodology to evaluate its saddle point and optimal interval-valued linguis-
tic value of the game. In this direction, we have constructed an auxiliary pair
of interval-valued linguistic linear programming (IVLLP) problem that is fur-
ther transformed into conventional interval linear programming (ILP) problem to
obtain optimal strategy sets of both players as the region that is not only com-
pletely feasible but also totally optimal. The proposed method is illustrated via
a hypothetical example to show its applicability in the real world. To validate
the suggested solution scheme, the transformed ILP problems are solved using
best-worst case (BWC) approach, enhanced-interval linear programming (EILP)
method and linguistic linear programming (LLP) technique of solving interval
linguistic matrix game problems and lastly the obtained results are compared.

Keywords: 2-tuple fuzzy linguistic model · Interval-valued 2-tuple fuzzy
linguistic model · Interval linear programming · Interval-valued linguistic linear
programming · Matrix game problem

1 Introduction

Non-cooperative game theory in its classical set up was introduced by Von-Neumann
and Morgenstern [6] in 1944. It asserts that every player is exposed to the game’s pre-
cisely known information. The prevailing knowledge of the game permits each player
to furnish appropriate evaluations to their utility functions corresponding to different
pair of strategies. The postulations made for the exact payoffs can be considered as
the stringent ideology in the real world scenario which involves uncertain and ambigu-
ous information. Imprecision and uncertainty have been incorporated in game theory
by using various frameworks like fuzzy, stochastic etc. Several researchers have con-
tributed significantly in enhancing the literature of fuzzy games [17–19] and stochastic
games [21,22]. However, in the world of uncertainties, it is also challenging for players
to express payoffs in terms of membership functions in fuzzy environment or prob-
ability distribution functions in stochastic environment. To facilitate the players with
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effortless choice of payoffs, a new version of matrix games under uncertainty is pro-
posed by Arfi [23,24] based on linguistic fuzzy logic. To annex a new dimension to
the matrix game problems under linguistic environment, Singh et al. [2] defined matrix
games with linguistic information and proposed a linguistic linear programming (LLP)
approach to solve such class of games. Singh et al. [3] further extended the matrix games
to interval-valued 2-tuple fuzzy linguistic framework to increase the level of uncertainty
in game problems and adopted LLP approach to solve it. The authors formulated a pair
of auxiliary LLP problems to obtain the linguistic lower and upper bounds of interval
linguistic value of the game.

In this study, we extend the work of solving interval linguistic matrix game (ILG)
problems one step forward. Here, we propose a mechanism to compare IVTFL variables
using the bounds of the intervals and subsequently, define interval linguistic lower value
(ILLV) and interval linguistic upper value (ILUV) of the matrix game by introducing the
concept of max-min and min-max principle. In the absence of pure strategies, we sug-
gest IVLLP formulation to obtain the interval linguistic value of game with the optimal
strategies of both players by transforming it to conventional ILP problem. To validate
the proposed methodology, Best Worst Case (BWC) method [20], Enhanced Interval
Linear Programming (EILP) method [25] and Linguistic Linear Programming (LLP)
method [3] are adopted to solve the transformed ILP problems and provide a compar-
ative analysis. The duality principle of IVLLP is also taken into consideration in order
to prove the equality of ILLV and ILUV of the game for player I and II, respectively.

The remaining paper unfolds as follows. In subsequent section, the fundamentals
of subscript symmetric linguistic variables are elucidated with matrix games under lin-
guistic framework. Section 3 explains a new approach to compare two IVTFL variables
based on the end point approach. In Sect. 4, a zero sum interval-valued 2-tuple fuzzy lin-
guistic matrix game is defined with its interval linguistic lower and upper values using
max-min principle. Section 5 discusses interval-valued linguistic linear programming
approach to solve the game in absence of pure strategies with a hypothetical illustra-
tion. The paper concludes in Sect. 6.

2 Preliminaries

In this section, we review the fundamentals of subscript symmetric linguistic variables
followed by the foundations of matrix games with linguistic information.

2.1 Subscript-Symmetric Linguistic Computational Model

Definition 1 [5]. Let LT =
{
�−g, . . . , �0, . . . , �g

}
be a finite and totally ordered prede-

fined linguistic term set with the following properties.

(i) The set LT is ordered i.e. �i > � j if and only if i > j,
(ii) Negation of any linguistic variable �i ∈ LT is given as �−i.

The 2-tuple linguistic computational model, defined by Herrera and Martinez [1]
can be easily enhanced to the above defined subscript symmetric linguistic term set LT.
Extending the notion of operators Δ and Δ−1, formalized by Herrera and Martinez [1]
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to set LT, the translation function converting a numerical value to a 2-tuple linguistic
variables can be stipulated as follows.

Definition 2. Let LT = {�i | i= −g, . . . ,0, . . . ,g} be a finite set of linguistic terms hav-
ing cardinality 2g+ 1 and let β ∈ [−g,g] be a value that represents the outcome of a
symbolic aggregation operation. The 2-tuple linguistic variable that depicts the identical
information to β is defined in the following aspect.

Δ : [−g,g] → LT× [−0.5,0.5]

Δ(β ) = (�i,α) with

{
�i, i= round(β ),
α = β − i, α ∈ [−0.5,0.5] .

where round(.) is the usual round operation, �i being the linguistic term closest to β ,
and α is the symbolic translation.

Clearly, it has been observed that the aforementioned function Δ is a bijection [1]
and hence, its inverse is given by,

Δ−1 : LT× [−0.5,0.5] → [−g,g] as Δ−1(�i,α) = i+α = β .

Furthermore, Herrera and Martinez [1] have expressed the comparison of 2-tuple
linguistic information by using conventional lexicographic ordering. On the similar
grounds we can propose the following definition stating the ranking order.

Definition 3. Let (�i, αi) and (� j, α j) be 2-tuple linguistic variables using the term set
LT. Then,

(i) If i < j then (�i, αi) < (� j, α j).
(ii) If i= j, i.e., �i = � j, then

(a) if αi = α j, then (�i, αi) = (� j, α j), that is, (�i, αi) and (� j, α j) express the
identical information;

(b) if αi > α j, then (�i, αi) > (� j, α j);
(c) if αi < α j, then (�i, αi) < (� j, α j).

The literature concerning operators for the set of 2-tuple linguistic variables is vast
and extensive. Here, we recall the weighted average operator defined in [4] after extend-
ing it to subscript symmetric linguistic term set LT.

Definition 4. Let {(�ri ,αri), ri ∈ {−g, . . . ,0, . . . ,g}, i = 1, . . . ,q} be a set of 2-tuple
linguistic variables and w = (w1, . . . ,wq)T be the weight vector satisfying 0 ≤ wi ≤
1, i= 1, . . . ,q, ∑q

i=1wi = 1. Then, the weighted average operator is defined as

LWA[(�ri ,αri) : i= 1, . . . ,q] = (�r1 ,αr1)w1 ⊕ (�r2 ,αr2)w2 ⊕ . . .⊕ (�rq ,αrq)wq

= Δ
( q

∑
i=1

wiΔ−1(�ri ,αri)
)
.
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Consequently,

Δ−1(
q⊕

i=1

(�ri ,αri)wi
)
=

q

∑
i=1

wiΔ−1(�ri ,αri).

To extend the degree of uncertainty, an interval-valued 2-tuple linguistic variable [7]
can also be defined as follows in frame of aforementioned linguistic term set LT.

Definition 5. Let LT = {�−g, . . . ,0, . . . , �g} be a predefined linguistic term set. Then, an

interval-valued 2-tuple linguistic variable is defined as [(�(L)i ,α(L)),(�(U)
i ,α(U))] where

�
(L)
i , �

(U)
i ∈ LT with �

(L)
i ≤ �

(U)
i and α(L),α(U) are the symbolic translations.

In literature, Singh et al. [2,3] have introduced matrix games with 2-tuple linguistic
and interval-valued 2-tuple linguistic information based on the set of predefined lin-
guistic term, �i, i = 0,1, . . . ,g. In that paper, authors have defined a methodology for
solving two players constant-sum linguistic matrix games primarily based on 2-tuple
linguistic and interval-valued 2-tuple linguistic information. Authors also proposed an
LLP approach to solve such class of games to evaluate optimal mixed strategies with
linguistic value of the game. For thorough study of the methodology, one may refer to
the paper [2,3].

2.2 Zero-Sum Linguistic Matrix Game

The matrix game problem where the sum of the payoffs corresponding to any given set
of strategies is zero is termed as two players zero-sum game [26]. A zero-sum game is
a particular case of the constant sum game and has subjected to several findings both in
the fuzzy as well as conventional set up. However, the game problems with linguistic
payoff matrices are pristine and required to be explored.

In the present subsection, we review the basic terminologies and notations related
to the zero-sum matrix games within a 2-tuple linguistic framework. The following
definitions are taken from [2] and can be easily extended to the subscript symmetric
linguistic term set, LT as mentioned above.

Definition 6. A two-player zero-sum linguistic game G̃ is defined by a quadruplet
(Sn,Sm, LT, Ã), where Sn and Sm are the strategy sets of player I and II, LT =
{�−g, . . . , �0, �1, . . . , �g}, with cardinality 2g+1, is a subscript symmetric linguistic term
set for both the players, Ã is the linguistic payoff matrix of player I against player II,
and neg(Ã) is the payoff matrix for player II.

Since the lexicographic ordering is available in the 2-tuple linguistic variables, one
can easily extend the notion of the value of the game to the linguistic matrix game G̃.

Definition 7. A matrix game G̃ with payoff matrix Ã= [ãi j]n×m has the linguistic lower
value and the linguistic upper value defined as,

ṽ− = max
i=1,...,n

min
j=1,...,m

ãi j, ṽ+ = min
j=1,...,m

max
i=1,...,n

ãi j.
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Here, it is considered that ṽ− (player I gain floor) is the minimum linguistic payoff that
player I is assured to receive while ṽ+ (player II loss ceiling) is the maximum linguistic
loss of player II. The value of the game G̃ exists if and only if ṽ− = ṽ+. The strategies
i∗ and j∗, yielding the payoff ãi∗ j∗ = ṽ− = ṽ+, are optimal for player I and player II,
respectively. The pair (i∗, j∗) is also known as the saddle point of the game G̃.

In the case, where solution set of the game G̃ does not possess pure strategies. We
define the solution set as mixed strategies.

Definition 8. A mixed strategy is an ordered pair of vectors (x,y) ∈ Sn ×Sm, where

Sn = {(x1, . . . ,xn) : xi ≥ 0, i= 1 . . . ,n, ∑n
i=1 xi = 1};

Sm = {(y1, . . . ,ym) : y j ≥ 0, j = 1, . . . ,m, ∑m
j=1 y j = 1}.

Here, xi is the probability of choosing strategy i by player I and y j is the probability of
selecting strategy j by player II.

In the subsequent section, we define the comparison of linguistic intervals to pro-
pose the interval linguistic lower and upper values using max-min principle.

3 Comparison of Interval-Valued 2-Tuple Fuzzy Linguistic
Variables

In literature, Zhang [7] defined the comparison of interval-valued 2-tuple linguistic vari-
ables using score and accuracy values. It gives a total ordering of the linguistic intervals
that does not show analogy with classical numeric intervals [8–16].

So, in this study, we present a new comparison scheme of interval-valued 2-tuple
linguistic variables. The approach involves the bounds of the intervals that allows to
define a partial ordering of the linguistic intervals. Here, we consider the following
cases to encompass all possible pair of intervals.

(I) Case of Disjoint Intervals: Let μ̃ = [(�i(L) ,αi(L) ),(�i(U) ,αi(U) )], ν̃ = [(� j(L) ,
α j(L) ),(� j(U) ,α j(U) )] be two disjoint IVTFL variables. Then

μ̃ < ν̃ iff (�i(U) ,αi(U) ) < (� j(L) ,α j(L) ).

(II) Case of Nested Intervals : Let μ̃ = [(�i(L) ,αi(L) ),(�i(U) ,αi(U) )], ν̃ = [(� j(L) ,α j(L) ),
(� j(U) ,α j(U) )] be the two IVTFL variables such that one of the following cases
occur :

(i) If i(L) ≤ j(L) < j(U) ≤ i(U) ⇒ (�i(L) ,αi(L) ) ≤ (� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤
(�i(U) ,αi(U) ).

(ii) If i(L) = j(L) = j(U) = i(U) ⇒ αi(L) ≤ α j(L) < α j(U) ≤ αi(U) such that (�i(L) ,αi(L) )≤
(� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤ (�i(U) ,αi(U) ).

(iii) If i(L) = j(L) < j(U) < i(U) ⇒ αi(L) ≤ α j(L) < α j(U) ≤ αi(U) such that (�i(L) ,αi(L) )≤
(� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤ (�i(U) ,αi(U) ).
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(iv) If i(L) = j(L) = j(U) < i(U) ⇒ αi(L) ≤ α j(L) < α j(U) ≤ αi(U) such that (�i(L) ,αi(L) )≤
(� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤ (�i(U) ,αi(U) ).

(v) If i(L) ≤ j(L) = j(U) ≤ i(U) ⇒ αi(L) ≤ α j(L) < α j(U) ≤ αi(U) such that (�i(L) ,αi(L) )≤
(� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤ (�i(U) ,αi(U) ).

(vi) If i(L) ≤ j(L) < j(U) = i(U) ⇒ αi(L) ≤ α j(L) < α j(U) ≤ αi(U) such that (�i(L) ,αi(L) )≤
(� j(L) ,α j(L) ) < (� j(U) ,α j(U) ) ≤ (�i(U) ,αi(U) ).

All above cases infer that the linguistic interval ν̃ is contained in μ̃, denoted as
ν̃ ⊂ μ̃. It demonstrates the inclusion property of linguistic intervals i.e. the inter-
val ν̃ is nested within μ̃ and cannot be ordered in respect of values.

(III) Case of Overlapped Intervals: Let μ̃ = [(�i(L) ,αi(L) ),(�i(U) ,αi(U) )], ν̃ =
[(� j(L) ,α j(L) ),(� j(U) ,α j(U) )] be two overlapping IVTFL variables such that

(�i(L) ,αi(L) ) ≤ (� j(L) ,α j(L) ) < (�i(U) ,αi(U) ) ≤ (� j(U) ,α j(U) ),

then μ̃ < ν̃ .

For instance, consider the predefined linguistic term set LT = {�−2 : Very Bad (VB),
�−1 : Bad (B), �0 : Medium (M), �1 : Good (G), �2 : Very Good (VG)}. Suppose S =
{μ̃1 = [(�−2,0),(�0,0)], μ̃2 = [(�−2,0.8),(�−1,0.23)], μ̃3 = [(�0,0.05),(�2,−0.5)], μ̃4 =
[(�−1,0),(�1,0)]} be a set of IVTFL variables using the predefined linguistic term set
LT. Here, μ1 and μ2 are nested linguistic intervals whereas interval μ1 is disjoint with
μ3 and overlapping with μ4, comparing which we obtain that μ1 < μ3, μ1 < μ4 but μ1

and μ2 can not be compared. Only the inclusion property can be discussed i.e. μ2 ⊂ μ1.
On the similar grounds, the other pair of intervals can be compared.

In literature, Singh et al. [3] adopted the matrices formulated using lower bounds
and upper bounds of the payoff intervals to define interval-valued linguistic (IVL) value
of the game. However, the authors suggested linguistic linear programming approach
to solve interval-valued linguistic matrix game in case of mixed strategies. Unlike the
existing solution scheme, here in this work, using the comparison of linguistic inter-
vals defined in the preceding section, the value of the interval fuzzy linguistic game
is defined in the light of min-max principle and subsequently, interval linguistic linear
programming problem approach is proposed to solve such games.

4 A Zero-Sum Interval-Valued Linguistic Matrix Game

Definition 9. A two-player zero-sum interval-valued linguistic matrix game G̃Int is
characterized by a quadruplet (Sn,Sm,LT, ÃInt), where Sn, Sm are strategy sets for
player I and II respectively and LT = {�−g, . . . , �0, . . . , �g} is the predefined subscript-

symmetric linguistic term set. The matrix ÃInt =
(
[ã(L)i j , ã(U)

i j ]
)

n×m
; i = 1, . . .n, j =

1, . . . ,m is the interval-valued linguistic payoff matrix of player I in defiance of player

II whereas negÃInt =
(
[neg(ã(U)

i j ),neg(ã(L)i j )]
)

n×m
depicts the payoff matrix of player II

such that the payoffs of two players sum up to (�0,0).
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Since the comparison of IVTFL variables are proposed in the preceding section, the
IVL value of the game can be defined as follows.

Definition 10. For a given IVL matrix game G̃Int with payoff matrix ÃInt , the interval-
valued linguistic lower value, ṽ−

Int and interval-valued linguistic upper value, ṽ+Int of the
game is defined as,

ṽ−
Int = max

i=1,...,n
min

j=1,...,m
[ã(L)i j , ã(U)

i j ],

ṽ+Int = min
j=1,...,m

max
i=1,...,n

[ã(L)i j , ã(U)
i j ].

The IVL value, ṽInt of the game exists when ṽ−
Int = ṽ+Int = ṽInt .

The strategy set (i∗, j∗) for which these values are equal is called the saddle point
of the game and i∗, j∗ are optimal strategies of players I and II respectively.

For any IVL matrix game, the following inequality holds.

Theorem 1. Suppose ṽ−
Int = [ṽ−(L), ṽ−(U)] and ṽ+Int = [ṽ+(L), ṽ+(U)] be the interval-

valued linguistic lower and upper values of an interval linguistic matrix game G̃Int such
that both values exist. Then, ṽ−

Int ≤ ṽ+Int .

Proof. We are given that ṽ−
Int and ṽ+Int both exist, so for some column j and fixed row i,

we have,

min
j=1,...,m

[ã(L)i j , ã(U)
i j ] ≤ [ã(L)i j , ã(U)

i j ],

By taking max over i= 1, . . . ,n on both sides, we obtain,

ṽ−
Int ≡ max

i=1,...,n
min

j=1,...,m
[ã(L)i j , ã(U)

i j ] ≤ max
i=1,...,n

[ã(L)i j , ã(U)
i j ]

⇒ ṽ−
Int ≤ max

i=1,...,n
[ã(L)i j , ã(U)

i j ].

Since the above inequality holds for any j. Hence, we obtain the following
inequality.

ṽ−
Int ≤ min

j=1,...,m
max

i=1,...,n
[ã(L)i j , ã(U)

i j ]

Hence, ṽ−
Int ≤ ṽ+Int .

Now, we exemplify the above theory using an illustration.

Example 1. Two firms need to introduce a number of essentially equivalent new prod-
ucts. In the next two months, the companies are planning to launch the products.
The payoffs are the companies’ share, which it will acquire taking into account the
months during which production takes place. The payoffs of the companies appear in
the form of IVTFL variables from the set of predefined linguistic terms, LT = {�−2 :
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Very Low (VL), �−1 : Low (L), �0 : Fair (F), �1 : Good (G), �2 : Very Good (VG).}. The
interval linguistic payoff matrix for player I is given as.

Ã=
[

VL [(VL,0.2),(L,0.4561)]
[(G,0.4),VG] G

]

Here,

ṽ−
Int = max

i=1,2
min
j=1,2

{
[ã(L)i j , ã(U)

i j ]
}

= max{min{VL, [(VL,0.2),(L,0.4561)]},min{[(G,0.4),VG)],G}}
= max{VL,G} = G.

Also, ṽ+Int = min
j=1,2

max
i=1,2

{
[ã(L)i j , ã(U)

i j ]
}

= min{max{VL, [(G,0.4),VG)]},max{[(VL,0.2),(L,0.4561)],G}}
= min{[(G,0.4),VG],G} = G.

Here, (2,2) is the saddle point and ṽInt = G is the interval-valued linguistic value of
the matrix games. This shows that in order to maximize the profit both the firms should
launch their products in the second month simultaneously.

In the above example, if we replace the entry [ã(L)11 , ã(U)
11 ] as [F,G] and [ã(L)21 , ã(U)

21 ] as
VL, then ṽ−

Int = [(VL,0.2),(L,0.4561)], and ṽ+Int = [F,G], it depicts the absence of pure
strategies. The validity of Theorem 1 can also be deduced from the example as in case
of pure strategy, the equality holds whereas in another case, ṽ−

Int < ṽ+Int .

To evaluate the strategy sets and optimal value of the game in absence of pure strat-
egy, here we define the interval-valued linguistic linear programming approach to solve
such games.

5 Interval-Valued Linguistic Linear Programming Approach to
Solve Interval Linguistic Matrix Games

Suppose, we have the interval linguistic payoff matrix ÃInt using the predefined linguis-
tic term set LT = {�−g, . . . , �0, . . . , �g} as follows.

ÃInt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[ã(L)11 , ã(U)
11 ] [ã(L)12 , ã(U)

12 ] . . . [ã(L)1m , ã(U)
1m ]

[ã(L)21 , ã(U)
21 ] [ã(L)22 , ã(U)

22 ] . . . [ã(L)2m , ã(U)
2m ]

...
. . .

...
...

[ã(L)n1 , ã(U)
n1 ] [ã(L)n2 , ã(U)

n2 ] . . . [ã(L)nm , ã(U)
nm ]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where [ã(L)i j , ã(U)
i j ] is the payoff of player I on selecting ith strategy when player II selects

the jth strategy.
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Here, we may assume that each entries of the interval linguistic payoff matrix

is either [ã(L)i j , ã(U)
i j ] < 0 or [ã(L)i j , ã(U)

i j ] > 0. Let Sn = {X= (x1,x2, . . . ,xn) |xi ≥ 0,

∑n
i=1 xi = 1} and Sm =

{
Y= (y1,y2, . . . ,ym) | y j ≥ 0, ∑m

j=1 y j = 1
}

be the mixed

strategy set for player I and II, respectively. Then, the expected payoff of player I when
player II selects jth strategy, is taken as the weighted average of the interval-valued

linguistic variables in the jth column i.e. [ã(L)1 j , ã(U)
1 j ]x1 ⊕ . . .⊕ [ã(L)n j , ã(U)

n j ]xn.
Hence, the required IVLLP problem for player I is given as.

max ṽ−
Int (IVLLP1)

subject to

[ã(L)11 , ã(U)
11 ]x1 ⊕ . . .⊕ [ã(L)n1 , ã(U)

n1 ]xn ≥ ṽ−
Int

[ã(L)12 , ã(U)
12 ]x1 ⊕ . . .⊕ [ã(L)n2 , ã(U)

n2 ]xn ≥ ṽ−
Int

...

[ã(L)1m , ã(U)
1m ]x1 ⊕ . . .⊕ [ã(L)nm , ã(U)

nm ]xn ≥ ṽ−
Int

x1 + x2 + . . .+ xn = 1

x1, x2, . . . ,xn ≥ 0.

Using the monotonicity of Δ−1 operator, the inequality constraints of above IVLLP
model can be rewritten as follows,

Δ−1([ã(L)11 , ã(U)
11 ])x1 ⊕ . . .⊕Δ−1([ã(L)n1 , ã(U)

n1 ])xn ≥ Δ−1(ṽ−
Int)

Δ−1([ã(L)12 , ã(U)
12 ])x1 ⊕ . . .⊕Δ−1([ã(L)n2 , ã(U)

n2 ])xn ≥ Δ−1(ṽ−
Int)

...

Δ−1([ã(L)1m , ã(U)
1m ])x1 ⊕ . . .⊕Δ−1([ã(L)nm , ã(U)

nm ])xn ≥ Δ−1(ṽ−
Int)

and the objective function max ṽ−
Int ≡ max Δ−1(ṽ−

Int).
By taking Δ−1([ã(L)i j , ã(U)

i j ]) = [a(L)i j ,a(U)
i j ], i= 1, . . . ,n, j= 1, . . . ,m, and Δ−1(ṽ−

Int)=
vInt , the constraints of model IVLLP1 is given as.

[a(L)11 ,a(U)
11 ]x1 + . . .+[a(L)n1 ,a(U)

n1 ]xn ≥ vInt

[a(L)12 ,a(U)
12 ]x1 + . . .+[a(L)n2 ,a(U)

n2 ]xn ≥ vInt
...

[a(L)1m ,a(U)
1m ]x1 + . . .+[a(L)nm ,a(U)

nm ]xn ≥ vInt
x1 + x2 + . . .+ xn = 1

x1, x2, . . . ,xn ≥ 0.
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Here, we assume that 0 /∈ Δ−1(ṽ−
Int) = vInt .

We set, Xi =
xi
vInt

, i= 1, . . .n, andVInt =
1
vInt

=
[

1

v(U) ,
1

v(L)

]
. Hence, by making the

above substitutions, the model IVLLP1 is transformed into standard ILP problem for
player I, given below.

min VInt = X1 +X2 + . . .+Xn (ILP1)

subject to

[a(L)11 ,a(U)
11 ]X1 + . . .+[a(L)n1 ,a(U)

n1 ]Xn ≥ [1,1]

[a(L)12 ,a(U)
12 ]X1 + . . .+[a(L)n2 ,a(U)

n2 ]Xn ≥ [1,1]
...

[a(L)1m ,a(U)
1m ]X1 + . . .+[a(L)nm ,a(U)

nm ]Xn ≥ [1,1]
X1, X2, . . . ,Xn ≥ 0.

Analogously, we can formulate an IVLLP problem for player II.

min ṽ+Int (IVLLP2)

subject to

[ã(L)11 , ã(U)
11 ]y1 ⊕ . . .⊕ [ã(L)1m , ã(U)

1m ]ym ≤ ṽ+Int

[ã(L)21 , ã(U)
21 ]y1 ⊕⊕ . . .⊕ [ã(L)2m , ã(U)

2m ]ym ≤ ṽ+Int
...

[ã(L)n1 , ã(U)
n1 ]y1 ⊕ . . .⊕ [ã(L)nm , ã(U)

nm ]ym ≤ ṽ+Int
y1 + y2 + . . .+ ym = 1

y1,y2, . . . ,ym ≥ 0.

Recall 0 /∈ vInt = Δ−1(ṽ−
Int). If vInt is the value of the interval linguistic game then

vInt = Δ−1(ṽ+Int).

By taking Yj =
y j
vInt

, j = 1, . . . ,m, and as earlier we discussed that Δ−1([ã(L)i j ,

ã(U)
i j ]) = [a(L)i j ,a(U)

i j ], the corresponding model IVLLP2 reduces to the following stan-
dard ILP problem for player II.

max VInt = Y1 +Y2 + . . .+Ym (ILP2)

subject to

[a(L)11 ,a(U)
11 ]Y1 . . .+[a(L)1m ,a(U)

1m ]Ym ≤ [1,1]

[a(L)21 ,a(U)
21 ]Y1 + . . .+[a(L)2m ,a(U)

2m ]Ym ≤ [1,1]

...

[a(L)n1 ,a(U)
n1 ]Y1 + . . .+[a(L)nm ,a(U)

nm ]Ym ≤ [1,1]

Y1,Y2, . . . ,Ym ≥ 0.
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Here, models ILP1 and ILP2 can be solved using any existing methods for solving
interval linear programming problems to obtain the optimal mixed strategies X∗

Int ∈
Sn and Y∗

Int ∈ Sm along with the interval linguistic value of the game V ∗
Int . It is also

noteworthy that both models ILP1 and ILP2 form a primal-dual interval linear programs
in the crisp set-up.

Example 2. Consider the zero-sum IVTFL matrix game with interval payoffs defined
from the predefined subscript symmetric linguistic term set LT = {�−3 : Very Low(VL),
�−2 : Low(L), �−1 : Moderately Low(ML), �0 : Average(Avg), �1 : Moderately High
(MH), �2 : High(H), �3 : Very High(VH)} with payoff matrix,

ÃInt =

⎛

⎜
⎝

[(VL,0.2),(L,0)] [(H,−0.2),(VH,−0.3)] [(MH,0.3),(H,0.2)] [(ML,−0.13),(Avg,0)]
[(VH,0),(VH,0)] [(H,0),(VH,−0.2)] [(L,−0.4),(ML,0)] [(MH,0),(H,−0.2)]

[(MH,−0.28),(MH,−0.28)] [(L,0),(ML,0)] [(VH,0),(VH,0)] [(VH,0),(VH,0)]

⎞

⎟
⎠

Let player I’s mixed strategies be given as x(L) = (x(L)1 ,x(L)2 ,x(L)3 ), x(L)i ≥ 0, i =
1, . . . ,3, ∑3

i=1 x
(L)
i = 1, and x(U) = (x(U)

1 ,x(U)
2 ,x(U)

3 ), x(U)
i ≥ 0, i= 1, . . . ,3, ∑3

i=1 x
(U)
i =

1 for the given interval payoff matrix, ÃInt . Additionally, player II’s mixed strategies

are defined as y(L) = (y(L)1 , y(L)2 ,y(L)3 ,y(L)4 ), y(L)j ≥ 0, j = 1, . . . ,4, ∑4
j=1 y

(L)
j = 1, and

y(U) = (y(U)
1 ,y(U)

2 ,y(U)
3 , y(U)

4 ,y(U)
5 ), y(U)

j ≥ 0, j = 1, . . . ,5, ∑5
j=1 y

(U)
j = 1.

In view of the proposed methodology, we formulate models (IVLLP1 and IVLLP2)
that is further converted into standard ILP problems to obtain optimal strategy set for
player I and II, respectively.

Method 1: Best-Worst Method

For Player I:

Best-sub model

min V−(U) = X1 +X2 +X3

subject to

−2.8X1 +3X2 +2.4X3 ≥ 1,

1.8X1 +2X2 −2X3 ≥ 1,

1.3X1 −2.4X2 +3X3 ≥ 1,

−1.13X1 +X2 +3X3 ≥ 1,

X1,X2,X3 ≥ 0.

Worst-sub model

min V−(L) = X1 +X2 +X3

subject to

−2X1 +3X2 +3X3 ≥ 1,

2.7X1 +2.8X2 −X3 ≥ 1,

2.2X1 −X2 +3X3 ≥ 1,

0X1 +1.8X2 +3X3 ≥ 1,

X1,X2,X3 ≥ 0.

Solving these two problems, we obtain the optimal strategy of player I as x1 =
[0.3146,0.3685], x2 = [0.3149,0.3289], x3 = [0.3149,0.3575] with interval-valued lin-
guistic lower value of the game given as, v−

Int = [(�1,−0.33),(�1,0.43)].
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For Player II:

Best-sub model

max V+(U) = Y1 +Y2 +Y3 +Y4

subject to

−2.8Y1 +1.8Y2 +1.3Y3 −1.13Y4 ≤ 1,

3Y1 +2Y2 −2.4Y3 +Y4 ≤ 1,

2.4Y1 −2Y2 +3Y3 +3Y4 ≤ 1,

Y1,Y2,Y3,Y4 ≥ 0.

Worst-sub model

max V+(L) = Y1 +Y2 +Y3 +Y4

subject to

−2Y1 +2.7Y2 +2.2Y3 +0Y4 ≤ 1,

3Y1 +2.8Y2 −1Y3 +1.8Y4 ≤ 1,

3Y1 −1Y2 +3Y3 +3Y4 ≤ 1,

Y1,Y2,Y3,Y4 ≥ 0.

For player II, the optimal strategy set is y1 = [0.2077,0.2288], y2 = [0.4004,0.4422],
y3 = [0.3484,0.3718], y4 = 0 with interval-valued linguistic upper value of the game,
v+Int = [(�1,−0.33),(�1,0.43)].

Method 2: Enhanced Interval-Valued Linear Programming Method

For Player I:

Sub-problem I

min V−(U) = XU
1 +XU

2 +XU
3

subject to

−2XU
1 +3XU

2 +2.4XU
3 ≥ 1,

1.8XU
1 +2XU

2 −XU
3 ≥ 1,

1.3XU
1 −XU

2 +3XU
3 ≥ 1,

0XU
1 +XU

2 +3XU
3 ≥ 1,

XU
1 ,XU

2 ,XU
3 ≥ 0.

Sub-problem II

min V−(L) = XL
1 +XL

2 +XL
3

subject to

−2.8XL
1 +3XL

2 +3XL
3 ≥ 1,

2.7XL
1 +2.8XL

2 −2XL
3 ≥ 1,

2.2XL
1 −2.4XL

2 +3XL
3 ≥ 1,

−1.13XL
1 +1.8XL

2 +3XL
3 ≥ 1,

XL
1 ,XL

2 ,XL
3 ≥ 0.

For Player II:

Sub-problem I

max V+(U) = YU
1 +YU

2 +YU
3 +YU

4

subject to

−2YU
1 +1.8YU

2 +1.3YU
3 ≤ 1,

3YU
1 +2YU

2 −YU
3 +YU

4 ≤ 1,

2.4YU
1 −YU

2 +3YL
3 +3YL

4 ≤ 1,

YU
1 ,YU

2 ,YU
3 ,YU

4 ≥ 0.

Sub-problem II

max V+(L) = YL
1 +YL

2 +YL
3 +YL

4

subject to

−2.8YL
1 +2.7YL

2 +2.2YL
3 −1.13YL

4 ≤ 1,

3YL
1 +2.8YL

2 −2.4YL
3 −1.8YL

4 ≤ 1,

3YL
1 −2YL

2 +3YL
3 +3YU

4 ≤ 1,

YL
1 ,YL

2 ,YL
3 ,YL

4 ≥ 0.

Solving the above models, the optimal strategies of player I and II are eval-
uated as x1 = [0.3008,0.3395], x2 = [0.2726,0.3201], x3 = [0.2813,0.3196] and
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y1 = [0.1455,0.235], y2 = [0.3478,0.4462], y3 = [0.3102,0.3589], y4 = 0 respectively
with vInt = [(�1,−0.06),(�1,−0.03)].

Method 3: Linguistic Linear Programming (LLP) Method

We split our matrix ÃInt into linguistic lower matrix and linguistic upper matrix to obtain
interval linguistic lower and upper values of the interval linguistic matrix game. The
mathematical formulation for this problem is similar to that of BWC.

The optimal strategies of both players and value of the game using various existing
methodologies to solve ILP problems, are tabulated below.

For Player I:

Method x̃1 x̃2 x̃3 Optimal value

BWC [0.3146,0.3685] [0.3149,0.3289] [0.3149,0.3575] [(�1,−0.33),(�1,0.43)]

EILP [0.3008,0.3395] [0.2726,0.3201] [0.2813,0.3196] [(�1,−0.06),(�1,−0.03)]

LLP [0.3146,0.3685] [0.3149,0.3289] [0.3149,0.3575] [(�1,−0.33),(�1,0.43)]

For Player II:

Method ỹ1 ỹ2 ỹ3 ỹ4 Optimal value

BWC [0.2077,0.2288] [0.4004,0.4422] [0.3484,0.3718] 0 [(�1,−0.33),(�1,0.43)]

EILP [0.1455,0.235] [0.3478,0.4462] [0.3102,0.3589] 0 [(�1,−0.06),(�1,−0.03)]

LLP [0.2077,0.2288] [0.4004,0.4422] [0.3484,0.3718] 0 [(�1,−0.33),(�1,0.43)]

Here, the solution region obtained using EILP method is completely optimal and
feasible. However, BWC and LLP approach provides a solution region which is com-
pletely optimal but may not be feasible. This is because it incorporates some infeasible
points within the solution set.

6 Conclusion

In this paper, we have studied the 2-player zero sum interval-valued linguistic matrix
game problems. We proposed a new methodology for comparing two IVTFL variables
and subsequently, put forward the concept of max-min principle for defining the lower
and upper value of the interval linguistic game problem. However, in the absence of
pure strategies, we designed a new approach for evaluating the optimal strategies and
value of the game. We envision that the proposed method can easily be applied to
large scale interval linguistic game problems, manufacturing companies, large scale
decision-making problems where the existing players (or decision makers) have con-
flicting objectives.
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Abstract. An efficient guaranteed method for the computation of the
integral of a nonlinear continuous function between two interval end-
points is proposed. This computation can be of interest for the compu-
tation of global optimization problems where such integrals occur like in
robotics. The method results in the computation of the minimum and
maximum of these integrals and provides the endpoints at stake. The
complexity of the resulting algorithms is discussed, it depends on the
number of roots of the function to be integrated. The computation is
illustrated on several examples.

Keywords: Integral · Set-membership computation · Interval methods

1 Introduction

Numerical integration is one of the fundamental tools of scientific computation.
It occurs in many domains and providing a reliable result to such problem is
important. We can cite, for example, the computation of a validated simulation
of ODEs [2,9] or for global optimization with continuous objective function [6].
It has applications in robotics as well [3,12].

The numerical computation of integrals has been intensively studied and the
same happened for a validated computation. In [1], the validated computation
of an integral where both endpoints are reals is considered using quadrature (see
also [5]). In [11], the problem is tackled for piece-wise analytic functions.

For integrals where uncertainties happen in the endpoints defining them or
if one wants to produce a set of possible integrals for which the endpoints take
their value in an interval, there is fewer studies. We can nonetheless cite [4]. In
there, the notion of integrals with intervals is defined and a formulation of the
problem when the two interval endpoints are disjoint is given.

A simple algorithm in the general case remains to be defined, and it is the
purpose of the present work. The subject of this work will not be to treat directly
the guaranteed numerical computation of integrals where the endpoints are real
even if it is mandatory when extending to set of endpoints. Indeed, a study of
the general case with interval endpoints provides a decomposition of the problem
that make the previous case appearing. Then any method for this matter can be
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used in order to produce eventually the computation of an integral with unknown
endpoints. We already mentioned (linear) quadrature and the interested reader
to this particular point can read, for example, [10].

Our work makes use of interval analysis and the analysis of the roots of the
function we integrate. It then requires the function to be analytic in the gen-
eral case or make use of the computation when endpoints are known exactly to
detect the parts where the integral is positive and the ones where it is negative.
Our work is presented as follows: the next section provides the mathematical
background for the understanding of this work, Sect. 3 is dedicated to the main
result that is the computation of an integral with interval endpoints, some exper-
iments make possible discussion on the presented method and the complexity of
its associated algorithms in Sect. 4 before we conclude.

2 The Interval Integrals

In this Section, we recall the notions on interval analysis required in the follow-
ing of the article and introduce the interval integral, an integral with interval
endpoints.

2.1 Interval Analysis

Interval analysis [8] is well suited when dealing with computation involving
sets of values or when handling uncertainties. Its goal is to produce an outer-
approximation of a desired computation in a sound manner. We denotes hereafter
an interval with brackets: [x] = [x, x] with x � x the lower and upper bounds of
the interval. Any interval lies in the set of intervals IR = {[x] = [x, x] | x, x ∈
R, x � x}. For higher dimensions, we deal with Cartesian product of intervals
[x] ∈ IR

n which are named boxes.
As depicted in the fundamental theorem of interval analysis (see [7]),

the evaluation of an arithmetic expression using intervals leads to an outer-
approximation of the resulting set of values for this expression whatever the
values considered in the intervals. This result can be extended to functions deal-
ing with intervals we then call interval function or interval extension of a function
thenceforth they verify the fundamental theorem.

We can cite classical ways to design such interval extension like the natural
extension [8] which replaces the operations on reals by their interval counterparts
using interval arithmetic or the mean value extension [8] which linearizes the
function around its mean value. Such interval extension can easily be designed
to produce a validated computation of integrals.

2.2 Validated Computation of Integrals

A simple way to produce an interval extension of the integral of a function is to
extend the composite midpoint rule to the intervals. Using

∫ b

a

f(x)dx ∈ wid([a, b]) [f ] ([a, b]) (1)
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with [f ] : IR → IR an interval extension of the function f and wid([a, b]) = b−a
is the width of the interval [a, b], one can cut the interval [a, b] into n intervals
and the computation of

∫ b

a
f(x)dx can be then

∫ b

a

f(x)dx ∈ wid([a, b])
n

n∑
k=1

[f ]
([

a + (k − 1)
b − a

n
, a + k

b − a

n

])
(2)

2.3 Integrals with Interval Endpoints

We denote an integral with interval endpoints as an interval integral and it is
defined as follows:

Definition 1 (Interval integral). Let f : R → R, a continuous function and
[x1], [x2] ∈ IR two intervals. The interval integral of f with [x1] and [x2] as
endpoints is denoted

∫ [x2]

[x1]
f(x)dx and corresponds to the set

∫ [x2]

[x1]

f(x)dx =
{∫ x2

x1

f(x)dx

∣∣∣∣ x1 ∈ [x1] , x2 ∈ [x2]
}

. (3)

This set considers all the integrals with the endpoints taken in the intervals [x1]
and [x2]. The following property is useful to decompose the computation of an
interval integral.

Property 1. For an interval [x1] =
[
x1, x1

]
and x̃1 ∈ [x1], an integral interval

can be subdivided as follows
∫ [x2]

[x1]

f(x)dx =
∫ [x2]

[x1,x̃1]
f(x)dx

⋃ ∫ [x2]

[x̃1,x1]

f(x)dx (4)

and the same subdivision applies for [x2].

How to handle this set to produce an outer approximation using interval analysis
is discussed in the next section.

3 Main Result

When dealing with the computation of the set in Eq. (3), three cases can occur
whether the intervals [x1] and [x2] are disjoint, intersect or one is included. In
the following, each case is discussed.
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3.1 The Interval Endpoints Are Disjoint

The first case occurs when the two interval endpoints do not intersect. In the
following, we will consider, without loss of generality, that for the computation
of the integral

∫ [x2]

[x1]
f(x)dx, the endpoints [x1] and [x2] respect the constraint

x1 < x2. If not, we just have to consider the computation of − ∫ [x1]

[x2]
and the

constraint still apply for x2 < x1. Using this assumption, the considered integrals
are always with the first endpoint being smaller than the second endpoint and
the integral cannot go backward.

As introduced in [4], An interval integral as defined in Definition 1 where the
endpoints are disjoint can be decomposed as follows

∫ [x2]

[x1]

f(x)dx =
∫ x1

[x1]

f(x)dx +
∫ x2

x1

f(x)dx +
∫ [x2]

x2

f(x)dx (5)

where 2 subcases of interval integrals appear and a more classical integral with
real endpoints. Using Eq. (5), we can compute the minimum using

min
∫ [x2]

[x1]

f(x)dx = min
∫ x1

[x1]

f(x)dx +
∫ x2

x1

f(x)dx + min
∫ [x2]

x2

f(x)dx (6)

and

max
∫ [x2]

[x1]

f(x)dx = max
∫ x1

[x1]

f(x)dx +
∫ x2

x1

f(x)dx + max
∫ [x2]

x2

f(x)dx (7)

for the maximum since the minimum (or maximum) operator can be here dis-
tributed. Then computing the interval integral requires the computation of each
integral in the right hand side of this equation, in particular the two interval
integrals occurring.

Computing
∫ x

[x]
f(x)dx

To produce the minimum and the maximum of this integral, we have to consider
the parts where sub-integrals are positive and parts where they are negative.
The change between positiveness and negativeness of the integral occurs at x
being a root of x (such that f(x) = 0). Computing the minimum and maximum
then requires to produce the set of roots

X ∗ = {x ∈ [x] : f(x) = 0} (8)

The integral has to reach the endpoint x then all candidates to be minimum and
maximum are the integrals

{∫ x

x∗
f(x)dx|x∗ ∈ X ∗

}
(9)

If the set of roots is finite, we end up with a finite number of candidates to
minimum and maximum when the general set contains an infinite number of



Set-Membership Computation of Integrals with Uncertain Endpoints 173

integrals. Figure 1 illustrates an example of this computation where the set from
Eq. (9) consists in 4 candidates. The sign of the integral starting at each x∗ ∈ X ∗

dictates if the candidate is a minimum or a maximum (in Fig. 1, candidate 2
and 4 are candidates to be the minimum and candidates 1 and 3 can only be
maximum).

x1

x1

f(x) x∗
3x∗

2x∗
1

Candidates :
1
2
3
4

Fig. 1. Example of computation of
∫ x

[x]
f(x)dx for X ∗ = {x∗

1, x
∗
2, x

∗
3} (blue: maximum;

red: minimum). (Color figure online)

Computing
∫ [x]

x
f(x)dx

In the case of the interval integral having only the endpoint as an interval, a
dual method is applied from the previous example since the Second Fundamental
Theorem of Calculus can be applied

∫ [x]

x

f(x)dx = −
∫ x

[x]

f(x)dx (10)

and then it is the sign of integral prior to the endpoint x∗ that defines the sub-
integral to be candidate to minimum or maximum. Figure 2 provides an example
of the computation of the minimum and the maximum.

The intervals 1 and 3 are candidates to be minimum and the intervals 2 and
4 to be maximum.

3.2 The Interval Endpoints Overlap

This case occurs when x1 � x2 � x1 � x2. More interval integrals have to be
considered since the interval integral can be backward with x1 > x2, x1 ∈ [x1],
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x2

f(x) x∗
3x∗

2x∗
1

Candidates :

1
2
3

x2

4

Fig. 2. Example of computation of
∫ [x2]

x2
f(x)dx for X ∗

2 = {x∗
1, x

∗
2, x

∗
3}.

x2 ∈ [x2]. The set of integrals the interval integral defines can be subdivided
(using Eq. (4)) since

∫ [x2]

[x1]

f(x)dx =
∫ [x2]

[x1,x2]
f(x)dx

⋃ ∫ [x2]

[x2,x1]
f(x)dx (11)

=
∫ [x2]

[x1,x2]
f(x)dx

⋃ ∫ [x2,x1]

[x2,x1]
f(x)dx

⋃∫ [x1,x2]

[x2,x1]
f(x)dx. (12)

The first and the last interval integrals in Eq. (12) are of the same type as the
one where endpoints are disjoint except that the integral can be equal to 0 when
taking the same value for both endpoints.

Computing
∫ [x]

[x]
f(x)dx

We now discuss the middle interval integral occurring in the decomposition of
Eq. (12). It is the case where both endpoints take their value in the same interval:

∫ [x]

[x]

f(x)dx =
{∫ x2

x1

f(x)dx| x1, x2 ∈ [x]
}

. (13)

The minimum and maximum will also be determined using the set of endpoints
X ∗ = {x ∈ [x] | f(x) = 0}. We have also to make the distinction between value
in X ∗ for which f ′(x) > 0 or f ′(x) < 0. Then the computation of the minimum
and maximum is stated by the following theorem.
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Theorem 1. Let f : R → R be a differentiable function. For [x] = [x, x] an
interval in IR, we define

Imax =
∫ X ∗

−∪{x}

X ∗
+∪{x}

f(x)dx, (14)

Imin =
∫ X ∗

+∪{x}

X ∗
−∪{x}

f(x)dx (15)

using the sets

X ∗
− = {x ∈ [x] : f(x) = 0, f ′(x) < 0} (16)

X ∗
+ = {x ∈ [x] : f(x) = 0, f ′(x) > 0} . (17)

The minimum and the maximum of the set (13) can be defined by

∫ [x]

[x]

f(x)dx = [−max(−Imin, Imax),max(−Imin, Imax)] (18)

3.3 The Starting Endpoint Is Included in the Ending Endpoint

When [x1] ⊆ [x2], we have x2 � x1 � x1 � x2 and the same decomposition as
in Sect. 3.2 follows:

∫ [x2]

[x1]

f(x)dx =
∫ [x2,x1]

[x1]

f(x)dx
⋃ ∫ [x1,x2]

[x1]

f(x)dx (19)

=
∫ [x2,x1]

[x1]

f(x)dx
⋃ ∫ [x1]

[x1]

f(x)dx
⋃ ∫ [x1,x2]

[x1]

f(x)dx (20)

so we go back to the already treated kind of interval integral that occurred in
the previous cases.

Eventually, the computation of any interval integral only depends on the
computation of the particular interval integrals

∫ x

[x]

f(x)dx (21)

∫ [x]

x

f(x)dx (22)

∫ [x]

[x]

f(x)dx. (23)

An implementation of the computation of those interval integrals is introduced
in the next section.
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4 Experiments

An implementation of the computation of the bounds of the set defined in
Eqs. (21)–(23) is introduced using interval analysis [7] and tested on several
examples.

4.1 Algorithms

We now introduce the algorithms that have been implemented in order to com-
pute an interval outer approximation of an interval integral.

Algorithm for the Computation of
∫ x

[x]
f(x)dx

The first algorithm treats the problem of computing
∫ x

[x]
f(x)dx (see

Algorithm 1).

Algorithm 1. Compute Integral1 compute an outer approximation of
the integral of

∫ x

[x]
f(x)dx

Input: [x] an interval
Input: f the function we want the integral

Output: the interval [If ] ⊃
{∫ x

x
f(x)dx : x ∈ [x]

}

1 lcandidates ← ∅
2 X ∗ ← {x ∈ [x] : f(x) = 0}
3 [Icurrent] ← compute integral(f , x, x∗

1)
4 lcandidates ← {[Icurrent]}
5 for i ← 1 to |X ∗| − 1 do
6 [Icurrent] ← compute integral(f , x∗

i , x
∗
i+1)

7 foreach candidate ∈ lcandidates do
8 candidate ← candidate + [Icurrent]

9 lcandidates ← {lcandidates, [Icurrent]}
10 [Icurrent] ← compute integral(f , x∗

|X∗|, x)

11 foreach candidate ∈ lcandidates do
12 candidate ← candidate + [Icurrent]

13 lcandidates ← {lcandidates, [Icurrent]}
14 [Imin] ← min(lcandidates)
15 [Imax] ← max(lcandidates)

16 return
[
IminImax

]

The first step is to compute the set of roots X ∗ = {x ∈ [x] : f(x) = 0}
(Line 2). Then the set of candidates is computed incrementally over the inter-
val [x] by computing each integral between two contiguous roots in the set X ∗.
Indeed, as we can see in Fig. 1, each integral between two elements of X ∗ is the
beginning of a candidate to be the minimum or the maximum so the algorithm
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needs to compute this integral, add it to the list of candidates and add it to the
existing candidates. This is done in Lines 5 to 9. After that the integral from the
last element of X ∗ and the upper bound of [x] is added (Lines 10 to 12). The
minimum and the maximum is one of these candidates.

Algorithm for the Computation of
∫ [x]

x
f(x)dx

The algorithm for the computation of
∫ [x]

x
f(x)dx is somehow the same as the pre-

vious one (see Algorithm 2). The difference is now that each couple of contiguous
points in the set X ∗ is the end of a candidate. The integrals are then computed
from the end to the beginning of the set X ∗, added to the current existing candi-
dates, and added to the list of candidates (Lines 5 to 9). Eventually the integral
from the lower bound of [x] to the first element of X ∗ is computed, added to the
existing candidates and added to the list (Line 10 to 12).

Algorithm 2. Compute Integral2 compute an outer approximation of
the integral of

∫ [x]

x
f(x)dx

Input: [x] an interval
Input: f the function we want the integral

Output: the interval [If ] ⊃
{∫ x

x
f(x)dx : x ∈ [x]

}

1 lcandidates ← ∅
2 X ∗ ← {x ∈ [x] : f(x) = 0}
3 [Icurrent] ← compute integral(f , x∗

|X∗|, x)

4 lcandidates ← {[Icurrent]}
5 for i ← |X ∗| downto x∗

1 + 1 do
6 [Icurrent] ← compute integral(f , x∗

i−1, x
∗
i )

7 foreach candidate ∈ lcandidates do
8 candidate ← candidate + [Icurrent]

9 lcandidates ← {lcandidates, [Icurrent]}
10 [Icurrent] ← compute integral(f , x, x∗

1)
11 foreach candidate ∈ lcandidates do
12 candidate ← candidate + [Icurrent]

13 lcandidates ← {lcandidates, [Icurrent]}
14 [Imin] ← min(lcandidates)
15 [Imax] ← max(lcandidates)

16 return
[
IminImax

]

Algorithm for the Computation
∫ [x]

[x]
f(x)dx

We now introduce Algorithm 3 to compute an interval integral with the same
interval endpoints. As described in Theorem1, every pair of elements in X ∗ can
be the candidate to be a minimum or a maximum. In Algorithm 3, we start by
computing the integral from the lower bound of [x] to the first element of X ∗

(Line 3). Then all the other integrals between two elements of X ∗ are computed
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Algorithm 3. Compute Integral3 compute an outer approximation of
the integral of

∫ [x]

[x]
f(x)dx

Input: [x] an interval
Input: f the function we want the integral

Output: the interval [If ] ⊃
{∫ x2

x1
f(x)dx : x1, x2 ∈ [x]

}

1 lcandidates ← ∅
2 X ∗ ← {x ∈ [x] : f(x) = 0}
3 [Icurrent] ← compute integral(f , x, x∗

1)
4 lcandidates ← {[Icurrent]}
5 for i ← 1 to |X ∗| − 1 do
6 [Icurrent] ← compute integral(f , x∗

i , x
∗
i+1)

7 foreach candidate from last iteration ∈ lcandidates do
8 lcandidates ← {lcandidates, candidate + [Icurrent]}
9 lcandidates ← {lcandidates, [Icurrent]}

10 [Icurrent] ← compute integral(f , x∗
|X∗|, x)

11 foreach candidate from last iteration (Line 5) ∈ lcandidates do
12 lcandidates ← {lcandidates, candidate + [Icurrent]}
13 lcandidates ← {lcandidates, [Icurrent]}
14 [Imin] ← − max(− min(lcandidates),max(lcandidates))
15 [Imax] ← max(− min(lcandidates),max(lcandidates))

16 return
[
IminImax

]

and added to the list of candidates (Line 5). The condition in the foreach loop
(Lines 7 and 11) means that the computation between two contiguous elements
x∗

i and x∗
i−1 can only be added to integrals where the endpoint is x∗

i . Only the
candidates from the previous iteration fulfill this requirement.

The three algorithms that have been introduced can be used to compute the
result of any interval integration discussed in Sect. 3. For example, we can use
Algorithms 1 and 2 to compute the case where [x1] and [x2] do not intersect (see
Algorithm 4). It simply corresponds to the decomposition given in Eq. (5).

Complexity
The complexity of Algorithms 1 and 2 is linear on the arity of the set X ∗.
Since Algorithm 4 has no loop and simply uses Algorithms 1 and 2, it has the
same complexity. Now for the case of the algorithm used for the computation of∫ [x]

[x]
f(x)dx, we have more candidates to assume and the complexity is then fac-

torial on the arity of the set X ∗ which corresponds to the number of candidates
we need to compute.
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Algorithm 4. Compute Integral disjoint compute an outer approxi-
mation of the integral of

{∫ x2

x1
f(x)dx : x1 ∈ [x1] , x2 ∈ [x2]

}

Input: [x1], [x2] two interval endpoints such that [x1] ∩ [x2] = ∅
Input: f the function we want the integral

Output: the interval [If ] ⊃
{∫ x2

x1
f(x)dx : x1 ∈ [x1] , x2 ∈ [x2]

}

1 lcandidates ← ∅
/* Computation of

∫ x1
[x1]

f(x)dx */

2 [Imin] ← min(compute integral1(f , [x1]))
3 [Imax] ← max(compute integral1(f , [x1]))

/* Computation of
∫ x2
x1

f(x)dx */

4 [I] ← compute integral(f , x1, x2)
5 [Imin] ← [Imin] + [I]
6 [Imax] ← [Imax] + [I]

/* Computation of
∫ [x2]

x2
f(x)dx */

7 [I] ←(compute integral2(f , [x2]))
8 [Imin] ← [Imin] + [I]
9 [Imax] ← [Imax] + [I]

10 return
[
IminImax

]

4.2 Examples

We now apply the previous algorithms in several cases using an implementation
in C++ of them. When the computation of an integral with real endpoints is
required, we simply use an interval version of the composite midpoint rule (see
Sect. 2.2).

Example 1. The first example, from [4], is as follows: compute

∫ [0,1]

0

dx

1 + x2
. (24)

The result is then
[∫ 0

0

dx

1 + x2
,

∫ 1

0

dx

1 + x2

]
⊂ [0, 0.78543] (25)

which is compatible with the exact result that is
[
0, π

4

]
.

Example 2. A second example illustrates the complexity over the number of
elements in X ∗ = {x ∈ [x] | f(x) = 0}. We want to compute the interval integral

∫ [α,1]

α

sin
(

1
x

)
dx, α > 0. (26)

The arity of X ∗ increases with α → 0.
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Table 1. Results for the computation of the interval integral from Eq. (26).

α |X ∗| Minimum Maximum Computation time

10−1 3
∫ 1
0.1592 sin

( 1
x

)
dx = 0.4815

∫ 1
0.3183 sin

( 1
x

)
dx = 0.57774 0.198216

10−2 49 0.4815 0.57774 0.212816

10−3 547 0.4815 0.57774 0.228498

10−4 5640 0.4815 0.57774 0.492445

In Table 1 are represented the result of the computation of the interval inte-
gral in Eq. (26) for different values of the parameter α.

Example 3. The last example is the computation of the interval integral

∫ [0,5]

[0,5]

x sin x dx (27)

In the interval [0, 5], two roots occur: 0 and π and the computation gives the
results: [∫ 5

3.14133

x sinx dx,

∫ 3.14133

5

x sin x dx

]
⊂ [−5.518, 5.52] . (28)

Here since π is not representable, the method guarantees that the endpoints for
the minimum are in the interval [3.14133, 5].

5 Conclusion

In this work, we introduced algorithms for the computation of interval integrals,
integrals with unknown endpoints for which their value is taken in an interval.
These algorithm make use of interval analysis and the guaranteed computation
of integrals with known endpoints to produce the minimum and the maximum of
the corresponding set of integral the interval integral defines. These algorithms
are simple to apply the moment we can compute the set of roots of the function:
the value that make the function at stake in the integral equal to zero. The
algorithms in the worst case scenario then have a factorial complexity on the
number of the roots.

These algorithms can be embedded in any resolution of problems where inter-
val integrals occur such as robotics problem like the optimal control problem.
Future work will be to apply this method to such problems.
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Abstract. Epidemic processes on networks have been thoroughly inves-
tigated in different research fields including physics, biology, computer
science and medicine. Within this research area, a challenge is the defi-
nition of curing strategies able to suppress the epidemic spreading while
exploiting a minimal quantity of curing resources. In this paper, we model
the network under analysis as a directed graph where a virus spreads
from node to node with different spreading and curing rates. Specifi-
cally, we adopt an approximation of the Susceptible-Infected-Susceptible
(SIS) epidemic model, the N-Intertwined Mean Field Approximation
(NIMFA). In order to control the diffusion of the virus while limiting
the total cost needed for curing the whole network, we formalize the
problem of finding an Optimal Curing Policy (OCP) as a constrained
optimization problem and propose a genetic algorithm (GA) to solve it.
Differently from a previous work where we proposed a GA for solving the
OCP problem on undirected networks, here we consider the formulation
of the optimization problem for directed weighted networks and extend
the GA method to deal with not symmetric adjacency matrices that are
not diagonally symmetrizable.

Keywords: Epidemic spreading · NIMFA model · Directed networks ·
Genetic algorithms

1 Introduction

The spread and the permanence of viruses, both biological and digital, over a
network represent a threat for society and organizations. Digital viruses mainly
use the Internet as diffusion media and usually spread over telecommunication
networks and social networks, while biological viruses propagate over contact
networks of living beings through contacts. The first epidemic model emulating
the diffusion of a virus between individuals of a population dates back to 1926
with the Kermack-McKendrick epidemic model [10] describing the interactions
between individuals in susceptible, infected and immune states. In these last
years, spreading processes continued to receive attention from researchers work-
ing in different research fields [12]. The most common applications of epidemic
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Y. D. Sergeyev and D. E. Kvasov (Eds.): NUMTA 2019, LNCS 11974, pp. 182–194, 2020.
https://doi.org/10.1007/978-3-030-40616-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40616-5_14&domain=pdf
http://orcid.org/0000-0001-7297-7126
http://orcid.org/0000-0001-5420-9959
https://doi.org/10.1007/978-3-030-40616-5_14


Epidemic Spreading Curing Strategy Over Directed Networks 183

models include information diffusion on social networks like Facebook or Twit-
ter, diffusion of viruses in computer networks, propagation of infectious diseases
in contact networks.

Independently of the kind of network where the epidemic spreads, the viral
process can be formalized using the same network-based theoretical model. In
fact, the entities experiencing the infection and their relationships can be formal-
ized with a graph G = (V,E) with |V | nodes representing the entities involved
and |E| edges denoting the propagation of the virus from an infected node to a
susceptible neighbor. In this context, to arrest the diffusion of a virus and make
its pervasiveness as low as possible, the optimal distribution of resources (eg.
medicines, medical staff, etc.) is fundamental. Thus, the development of poli-
cies aiming at controlling the spreading process with a fixed budget, referred as
Optimal Curing Policy (OCP) is of paramount importance for public health and
network security domains.

When the network resources are limited and the evolution of an epidemic
has to be controlled, optimization techniques are usually adopted: distribute
vaccines or antidotes by minimizing the costs for the medical cures [1,20,21],
find the minimum number of nodes to protect with vaccines or the minimum
number of links to remove [2,12], identify influential spreaders for maximizing
the diffusion of information are just some examples. All these applications have
in common the availability of a restricted budget and the need of methods able
to provide fast and effective solutions.

In [17], we proposed a genetic algorithm, namely OCPGA, finding a minimal-
cost curing strategy making the network virus-free in an undirected network
where the virus spreads with a Susceptible-Infected-Susceptible (SIS) model. Due
to the complexity of the model for large networks, we exploited one of its approx-
imations, the heterogeneous version of the N-Intertwined Mean-Field Approxi-
mation (NIMFA) [24,25], where nodes have their own curing rates and the virus
spreads to their neighbors with different infection rates.

In this paper, we propose to solve the optimization problem for directed
weighted networks. Specifically, we extend the OCPGA method to deal with
adjacency matrices that are not diagonally symmetrizable. The method, named
D-OCPGA (Directed OCPGA) is validated through a comparison with the exact
semidefinite programming solver SDPT3 [23]. By testing the two algorithms
over both real-world and synthetic networks, we find that D-OCPGA is able to
outperform SDPT3 in terms of total curing cost needed to make the network
virus-free.

The paper is organized as follows. Section 2 describes the most relevant works
on epidemic spreading in networks, and on genetic algorithms in combination
with epidemic spreading. Section 3 introduces the OCP constrained minimization
problem. Section 4 describes D-OCPGA, the genetic algorithm we propose for
solving the OCP problem. In Sect. 5, we present the results of the performance
comparison between D-OCPGA and SDPT3 over real-world and synthetically
generated networks. Finally, in Sect. 6, we draw the main conclusions.
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2 Related Work

Epidemic spreading and infectious diseases have been studied in different
research fields including physics, mathematics, computer science and epidemi-
ology. A description of the state of the art on disease spreading models can be
found in [12,15]. Pastor-Satorras and Vespignani [16] analyzed epidemic spread-
ing on scale-free networks, Newman [11] on random graphs, Wang et al. [27] in
contact networks.

In [1], Borgs et al. studied the problem of how to distribute antidotes to
control the spread of an epidemic on a finite graph. Gourdin et al. [5] studied how
to minimize the cost for curing a network when there is a given level of infection.
Prakash et al. [19] analyzed the problem of properly distributing resources to
nodes for minimizing the rate at which nodes infect each other.

In [20,21], Preciado et al. optimized the distribution of curing resources for
controlling and protecting arbitrary networks from the diffusion of a virus by
modifying the infection rates of the nodes.

Zhai et al. [28] analyzed several algorithms for epidemic evolution by propos-
ing a framework for controlling the epidemic spread in broadcast networks.

More recently, Ottaviano et al. [13], focused on epidemic processes on net-
works organized in communities by studying an optimal policy for curing these
types of network structures.

Regarding epidemic spreading and the use of genetic algorithms, so far, a few
number of works have been proposed. Lahiri and Cebrian [7] proposed a genetic
algorithm diffusion model (GADM) for static and dynamic social networks.
Specifically, the authors defined a GA paired with specific forms of Holland’s
synthetic hyperplane-defined objective functions as a general diffusion model.
GADM generates a spatially distributed population of chromosomes encoded
with binary strings by exploiting the one-point crossover as genetic operator.

Liao et al. [9] focused on infectious diseases modeled through a stochas-
tic ripple-spreading process emulating the effect of random mobility and con-
tacts between individuals on the diffusion of a virus between them. The authors
adopted a GA to tune the several parameters of the model.

Parousis-Orthodoxou and Vlachos [14], harnessed a GA for optimizing the
distribution of vaccines on a SIR (Susceptible-Infected-Recovered) model. The
objective function is the number of vaccines needed to have a minimal percentage
of infected nodes, taking into account both the cost of the vaccine and the cost
for the treatments.

Our work distinguishes from the work by Parousis-Orthodoxou and Vlachos
for the model adopted, the SIS, for the spreading and curing rates that are
nodal and link-dependent, respectively, and for the genetic operators employed.
In addition, our scheme looks for an optimal curing strategy that is able to cure
all the nodes (i.e., having all the nodes healthy).

In [2], Concatto et al. proposed a GA for minimizing the viral process of an
infection by removing edges from the network graph. Here, the authors focused
on the Min-SEIS-Cluster problem in which the SIS model is extended with the
exposed (E) state, and nodes are organized in clusters where the epidemic spreads



Epidemic Spreading Curing Strategy Over Directed Networks 185

at a higher rate. Analogously to [14], this algorithm aims at minimizing the
infected nodes while D-OCPGA completely cures the whole network with the
applied curing policy.

3 The Optimal Curing Policy (OCP) Problem

The diffusion of a virus over a population of individuals is usually modeled
through three different disease stages: susceptible (S), i.e. an individual can
contract the infection, infectious (I), i.e. the infection has been contracted, and
recovered (R), i.e. the individual recovered from the disease.

The Susceptible-Infected-Susceptible (SIS) is a type of epidemic model where
an individual can pass from the state S to the state I and again to the state S.
The states are modeled through a Bernoulli random variable Xi ∈ {0, 1} which
is Xi = 0 when the node is healthy and Xi = 1 when the node is infected [13].
The probability for a node of being in the infected state is vi(t) = Pr[Xi(t) = 1],
while the node is in the healthy state with probability 1− vi(t). To solve the SIS
model, we need to compute vi(t) for each node.

In the homogeneous setting, each node is cured with the same curing rate δ
and the infection rate β is the same for each link. In this situation, the effective
infection rate is defined as τ = β/δ. In the heterogeneous case, on the contrary,
the curing rate is node-specific thus each node i is recovered at rate δi, and
also the infection rate is link-specific (i.e. βij can be different for each couple of
connected nodes i and j).

In a network with N nodes, the SIS model can be described through a
continuous Markov chain with 2N states, corresponding to all the combinations
of infected nodes [25]. After a certain time, the network converges to an absorbing
state where the virus disappears. Moreover, the process is characterized by a
phase transition τc, named epidemic threshold, a critical value for which if τ > τc,
the infection becomes persistent, while if τ < τc, the virus extinguishes.

For networks with a high number of nodes, the exact solution of the Marko-
vian chain can be obtained by solving a system of linear differential equations,
whose number increases exponentially with the network size. Consequently,
approximate models have been proposed [22,25], such as the N-Intertwined
Mean-Field Approximation (NIMFA), which substitutes the original 2N lin-
ear differential equations with N non-linear differential equations.

In NIMFA, the probability of infection for a node i, vi(t), is modeled as:

dvi(t)
dt

=
N∑

j=1

βijvj(t) −
N∑

j=1

βijvi(t)vj(t) − δivi(t). (1)

which can be rewritten as

dV (t)
dt

= ĀV (t) + F (V ) (2)
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where V (t) is the vector V (t) = (v1(t), v2(t), ..., vN (t)), Ā is the matrix

Ā =

⎡

⎢⎢⎢⎢⎢⎢⎣

δ1 β12 . . . β1N

β21 δ2
. .
. .
. .

βN1 . . . βNN−1 δN

⎤

⎥⎥⎥⎥⎥⎥⎦
(3)

and F (V ) is the column vector having as i-th element

−
N∑

j=1

βijvi(t)vj(t) (4)

In the heterogeneous setting, Ottaviano et al. [13] derived the epidemic threshold
by relying on the work of Lajmanovich and Yorke [8]. By defining

r(Ā) = max1≤j≤NRe(λj(Ā)) (5)

where Re(λj(Ā)) is the real part of the eigenvalues of Ā, if r(Ā) ≤ 0, then the
virus dies out and this condition identifies the epidemic threshold.

Specifically, Ottaviano et al. [13] formalized the problem of suppressing
the viral diffusion on a weighted network with a proper assignment of curing
resources as follows. Let δi be the curing rate of node i and ci the correspond-
ing cost for recovering this node. The objective is to minimize the total cost for
curing the network while making the infectious process die out. The total cost
is defined as

U(Δ) =
N∑

i=1

ciδi (6)

where Δ = (δ1, δ2, ..., δN ) is the vector of the curing rates for each node to
determine, knowing the cost ci of the curing resources for a node i.

When the network is undirected and weighted, the adjacency matrix A =
(βij) is symmetric (βij = βji) and, consequently, the values of the eigenvalues
are real. In [13], Theorem 2.1 states that if λmax(A − diag(Δ)) ≤ 0 the viral
infection is suppressed and all nodes are healthy. Thus, the epidemic threshold
for the considered network is determined by the largest eigenvalue of A−diag(Δ).

However, for directed graphs, the weighted adjacency matrix A is not sym-
metric (βij �= βji). Thus, for an arbitrary, strongly connected, directed weighted
graph having a not symmetrizable1 matrix A, instead of A, its Hermitian part
H = (A + AT )/2 needs to be considered, in this case obtaining only a subopti-
mal solution. In fact, it has been shown that λmax(A − diag(Δ)) ≤ λmax(H −
diag(Δ)), thus the feasible region of the optimization problem using the Hermi-
tian part of the matrix A, which is the region where λmax(H − diag(Δ)) ≤ 0,

1 A matrix A is symmetrizable if there exists an invertible diagonal matrix D and
symmetric matrix S such that A = DS.
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is a subset of the feasible region of the original problem using A. This means
that the optimal cost function value of the former problem is an upper bound of
the original problem, thus, though the epidemic will go towards extinction, more
effort will be necessary. The cost-optimal allocation of curing resources can thus
be formulated as follows.

Problem Optimal Curing Policy (OCP ). Let G = (V,E) be an undirected
weighted graph with adjacency matrix A where the elements are not symmetric
(aij �= βji), thus meaning that node i can infect node j with rate βij while node
j can infect i with a different rate βji. Let H be the Hermitian part of A, and
ci > 0, i = 1, . . . N the cost coefficients. The OCP problem can be formalized as
the following nonlinear constrained optimization problem:

minimize U(Δ)
subject to λmax(H − diag(Δ)) ≤ 0

Δ ≥ 0

where Δ ≥ 0 is the curing vector to find.
Reformulated as a semidefinite programming problem (SDP ) [26], solvable

through an SDP solver like SDPT3 [23], the OCP problem is:

minimize U(Δ)
subject to diag(Δ) − H ≥ 0

Δ ≥ 0

Since diag(Δ) ≥ 0 and the inequality sign in diag(Δ) − H ≥ 0, being
diag(Δ) − H a matrix, means that it is semidefinite positive2.

4 D-OCPGA: A Constrained Genetic Algorithm Solving
the OCP Problem

We propose an extension of the constrained genetic algorithm OCPGA, which
minimizes the total curing cost U(Δ) by evolving a population of individuals.
Each individual is represented by a vector Δ = (δ1, δ2, ..., δN ), where δi is the
curing rate for each node of the network assuming values in the interval [xl

i, x
u
i ] =

[0, 1]. As the OCP formulation states, we need to check if a possible solution
has the real part of the largest eigenvalue of H − diag(Δ) positive and the
components δi fall within the bounds so that xl

i ≤ δi ≤ xu
i .

D-OCPGA receives in input the matrix A = (βij) of the spreading rates, the
vector of curing costs C = (c1, c2, ..., cN ) and the number T of iterations, then
it performs the following steps:

1. compute diag(Δ), the diagonal matrix of the vector of curing costs;
2. compute H, the Hermitian part of the not symmetrizable matrix A;
2 A semidefinite positive matrix A ∈ RN×N is a symmetric matrix such that xTAx ≥ 0

for all the x ∈ RN . Equivalently, all the eigenvalues of A are nonnegative.
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3. compute the real part of the largest eigenvalue λmax of H − diag(Δ);
4. for T iterations, run by using U(Δ) as fitness function to minimize subject

to λmax ≤ 0 and Δ ≥ 0, applying crossover and mutation operators;

In output, the algorithm provides Δ∗ = (δ∗
1 , δ

∗
2 , ..., δ

∗
N ), a curing vector having

the lowest fitness function.
As crossover operator, we adopted the simulated binary crossover (SBX)

proposed by Deb in [3]. As underlined by Deb, this crossover is able to manage
the distance of the children from the parents generating feasible solutions. The
spread of children is tuned using a distribution index ηc which is able to explore
contiguous regions if the diversity among parents is sufficient. It exploits the
diversity between the parents to drive the search towards certain regions. The
SBX operator generates the children solutions s(1) and s(2) from the two feasible
parents x(1) and x(2) as

s(1) = 0.5
[
(x(1) + x(2) − β̄[x(2) + x(1)]

]
(7)

s(2) = 0.5
[
(x(1) + x(2) + β̄[x(2) + x(1)]

]
(8)

where

β̄ =
{

(αu)1/(ηc+1) if u ≤ 1/α
( 1
2−αu )1/(ηc+1) otherwise (9)

with α = 2 − β−(ηc+1), u assumes a random number in the interval [0, 1], ηc, if
small, generates children solutions distant from the parents while for large values
allows neighbor children and

β = 1 +
2

s(2) − s(1)
min[(x(1) − xl), (xu − x(2))]

This formulation guarantees that the children solutions fall within the fixed
range [xl, xu].

As mutation operator, since the problem is constrained, we selected the muta-
tion feasible from the Global Optimization Toolbox of Matlab. This operator gen-
erates feasible mutants by choosing random directions that satisfy the bounds
and the linear constraints.

5 Experimental Evaluation

In this section, we detail the experiments performed to test the effectiveness
of D-OCPGA. We tested the algorithm both on real-world and synthetic net-
works whose topological characteristics are summarized in Table 1. Specifically,
we compared the performance of D-OCPGA with those found by the SDPT3
solver.

D-OCPGA has been implemented in Matlab v2015b. To run SDPT3, we
used the CV X package which helps in specifying constraints and objectives
and thus solving convex programs [6] by using the standard Matlab expression
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syntax. The genetic parameters have been set using a trial-and-error procedure
on the benchmark datasets. We fixed crossover fraction to 0.9, mutation rate
to 0.2, population size and number of generations to 1000 for networks with a
number of nodes lower than 128, and to 2000 for the other networks. Finally, as
suggested in [3], ηc = 1.

The infection spreading rates of each node, have been obtained by randomly
generating rates in the range [0, 1] and then by multiplying them for 10−3. The
spreading rates βij for each link have been fixed by generating random values in
the range [0, 10−3]. The following subsections detail the features of the dataset
used and the results of the experimentation.

5.1 Datasets

Real-World Networks

– Internet Backbones. From the repository Internet Topology Zoo3, we
selected 5 Internet Backbone networks, namely Bell South, OTEGlobe, ITC
Deltacom, ION, and US Carrier with different features in terms of number
of nodes, average clustering coefficient and density. Each node which cor-
responds to a BGP (Border Gateway Protocol) router is usually connected
to one or two routers. Such bidirectional networks are of particular inter-
est for analyzing the OCP problem since are often subject to attacks like
blackholing or traffic redirection that provoke instability.

– Friendship Networks. Friendship networks are examples of social net-
works composed by several ego networks (one central node directly con-
nected to other alters/friends forming a star topology) connected between
them through common friends. These networks are usually characterized
by the spreading of fake news/comments to friends. We start analyzing two
types of Facebook friendship networks, the Ego 3980 and the Ego 686 4, rep-
resenting the egos (i.e., social profiles) of two Facebook users. Since Facebook
friendships are bidirectional, we also analyze three unidirectional friendship
networks taken from the KONECT repository5, namely the HighSchool and
the Residence Hall. The HighSchool network contains self-declared friend-
ships between boys in a small highschool in Illinois in two different time
steps, for this reason we consider two snapshots of the network, the High-
School 1 and the HighSchool 2. Similarly, the Residence Hall contains self-
declared friendship data between residents of a residence hall located on the
Australian National University campus.

3 http://www.topology-zoo.org/.
4 https://snap.standford.edu/data/egonets-Facebook.html.
5 http://konect.uni-koblenz.de.

http://www.topology-zoo.org/
https://snap.standford.edu/data/egonets-Facebook.html
http://konect.uni-koblenz.de
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Table 1. Features of the topologies considered in terms of number of nodes (N),
average degree (<k>), average clustering coefficient (<C>) and density (D). For the
synthetic networks, the measures refer to an average over 10 network samples of the
same network class.

Network type Network name N <k> <C> D

Backbone Bell South 51 1.294 0.081 0.052

OTE Globe 93 1.108 0.011 0.024

ITC Deltacom 113 1.425 0.053 0.025

ION 125 1.168 0.006 0.019

US Carrier 158 1.196 0.002 0.015

Friendship Facebook Ego 3980 52 5.625 0.462 0.11

Facebook Ego 686 168 19.714 0.534 0.118

HighSchool 1 73 3.328 0.353 0.046

HighSchool 2 73 3.602 0.312 0.05

Residence Hall 217 12.314 0.379 0.057

Synthetic Erdős-Rényi 128 5.23 0.054 0.041

Watts-Strogatz 128 6 0.109 0.047

Bárabasi-Albert 128 3.954 0.132 0.031

Synthetic Networks

– Erdős-Rényi random networks. These networks are generated from an
initial set of N isolated nodes that are then connected between them with
a probability pc. Since a threshold for the connectivity of Erdős-Rényi net-
works is pc ≈ ln(N)/N for large N , here, we set pc = 2 ln(N)/N to be
sure to obtain a connected bidirectional graph. Erdős-Rényi networks are
usually adopted for modeling with a good accuracy peer-to-peer and ad-hoc
networks.

– Watts-Strogatz small-world networks. Watts-Strogatz networks are
highly organized in clusters with nodes easily reachable in few hops by the
other nodes. These networks can be created from an initial ring lattice of
N nodes where each node is afterward linked to k nodes by rewiring each
edge with probability p. In our simulations, we generate bidirectional Watts-
Strogatz networks setting k = 6 and p = 0.5. Watts-Strogatz networks are
commonly exploited to model Bluetooth or Wi-Fi contact networks.

– Bárabasi-Albert power law networks. These networks well model social
networks, the Internet and the World Wide Web. The main characteristic
of such kind of networks is the so-called preferential attachment feature,
i.e. nodes prefer to connect to high-degree nodes. Starting from m0 nodes,
Bárabasi-Albert networks can be generated as follows. At every time step, a
new node is connected to m ≤ m0 nodes with a probability proportional to
the degree of the existing nodes. Here we set m0 = 5 and m = 2 to obtain
bidirectional Bárabasi-Albert networks.
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Table 2. Performance comparison between SDPT3 and D-OCPGA values of objective
function and number of generations of D-OCPGA needed to equal SDPT3 for equal
costs (e) and random costs (r).

Network U(Δ)eSDPT3 U(Δ)eD-OCPGA #Gene U(Δ)rSDPT3 U(Δ)rD-OCPGA #Genr

Bell South 0.065 0.029 48.1 0.031 0.015 31.5

OTEGlobe 0.095 0.031 22.7 0.037 0.011 17

ITC Deltacom 0.16 0.074 25.2 0.066 0.036 33.8

ION 0.153 0.055 26 0.063 0.024 28.9

US Carrier 0.174 0.075 85.2 0.078 0.023 23.3

Ego 3980 0.144 0.113 160.4 0.065 0.049 80.5

Ego 686 1.678 1.329 150.3 0.788 0.624 120.9

High School 1 0.124 0.08 156.1 0.05 0.032 64.1

High School 2 0.134 0.086 48.3 0.05 0.033 124.2

Residence Hall 1.34 1.257 202.3 0.591 0.499 185.4

Erdős-Rényi 0.622 0.539 244.3 0.256 0.244 64.6

Watts-Strogatz 0.385 0.291 181.1 0.165 0.131 80.1

Bárabasi-Albert 0.247 0.165 54.3 0.107 0.077 276.9

5.2 Results

Table 2 shows the results obtained by the comparison between D-OCPGA with
the classical SDPT3 solver applied to the semidefinite programming based ver-
sion of the OCP problem. Besides the value of the objective function obtained
by the two methods, we also specify the number of iterations necessary to D-
OCPGA to obtain values of the objective function lower than those obtained by
SDPT3. For D-OCPGA, the method has been executed 10 times over a partic-
ular network and the average values of the results have been indicated. For the
synthetic networks, each result refers to the mean values over 10 different graph
realizations of a network type.

We considered both the situation in which all the nodes have equal unitary
costs and the setting in which each node has its own curing cost (i.e. we assign
random costs to nodes). Observe that, for the bidirectional networks, in order
to make them asymmetric, we fixed different spreading rates for each given link.

For the first group of real-world networks, the Internet Backbones, D-
OCPGA is always able to outperform SDPT3. This holds both with unitary
costs and random costs. It is worth noting that when the curing costs are ran-
dom, since δi ≤ 1, the objective function values U(Δ) are lower. D-OCPGA
shows to be much more effective than SDPT3 especially in the unitary costs
case. On the US Carrier network, for example, the total curing cost for SDPT3 is
0.174 and for D-OCPGA is 0.075, while for random costs, SDPT3 obtains 0.078
and D-OCPGA 0.023. Observe that very few generations of GA are required to
achieve SDPT3 values. For the OTE Globe network, for example, on average 22
generations are required for the unitary costs and 17 generations for the random
costs over the 1000 generations we fixed.

For the real-world friendship networks, we found similar results. On the Ego
3980, for instance, D-OCPGA outperforms SDPT3 obtaining a fitness value
of 0.113 instead of 0.144, when unitary costs are considered, and 0.049 instead
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of 0.065 with random costs. On the Ego 686 with equal costs, the difference
between D-OCPGA and SPDT3 performance is even more marked. It is inter-
esting the epidemic behavior of the HighSchool dataset over the two timestamps
of friendship networks, HighSchool 1 and HighSchool 2. Note that for a given
optimization method, the values of the objective function are similar. For D-
OCPGA with unitary costs, for example, HighSchool 1 achieves a total curing
cost of 0.08 and HighSchool 2 of 0.086. A similar behavior can be observed for
the random costs. We thus conclude that the epidemic processes over the two
network timestamps are similar. Overall, comparing all the friendship networks
to the Internet Backbones, we observe that the number of generations of D-
OCPGA required to outperform SDPT3 are higher. This is probably due to
the higher average degree of the networks that facilitates the diffusion of the
epidemic thus complicating the search of an optimal curing strategy. Finally,
over the synthetic networks, D-OCPGA again outperforms SDPT3 in all the
network scenarios.

6 Conclusion

The D-OCPGA method has been proposed as a constrained genetic algorithm
able to find an Optimal Curing Policy (OCP) in directed networks subject to a
virus spreading modeled as Susceptible-Infected-Susceptible (SIS) epidemic pro-
cess. As in [17], where we proposed a GA method for undirected networks solving
the OCP problem, the method exploits the N-Intertwined Mean-Field Approxi-
mation (NIMFA) of the SIS spreading process to find curing rates for the nodes
that minimize the cost needed for completely curing the network. Specifically,
we extended the GA method to deal with not symmetric adjacency matrices.
A thorough experimentation on both real-world and synthetic networks demon-
strated that D-OCPGA finds solutions whose curing cost is lower than that
obtained by the SDPT3 solver over the semidefinite programming formulation
of the OCP problem. In [18] a self-adaptive SBX crossover operator [4] has been
investigated for the OCPGA method and showed to obtain better results than
the SBX crossover. Future work will experiment this crossover operator also
for directed networks, will concentrate on the effect of different strategies for
setting the initial population, different mutation operators and the extension of
the method to networks organized in communities.
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Abstract. Unmanned aerial vehicles (UAV) faces localization chal-
lenges in satellite navigation systems denied environments. Images taken
from on-board cameras can be used to compare against orthophotograph-
ical map to support visual localization algorithms. Image similarity esti-
mation can be achieved calculating various similarity metrics. Pearson
correlation was found to be the best choice for evaluating areal images
similarity in our experiments. Still is not robust against image displace-
ment caused by aircraft frame movement. We propose a new architecture
of triplet neural network to learn image similarity measure. The proposed
architecture incorporates VGG16 network base layers. Top layer struc-
ture, loss function and performance metrics being suggested by authors.
Images were matched to the maps from satellite photo. The matching
results from proposed neural network architecture were compared and
evaluated against Pearson correlation.

Keywords: Image similarity · Triplet loss · Neural networks · UAV
localization

1 Introduction

Unmanned aerial vehicles (UAV) faces localization challenges in satellite naviga-
tion systems denied environments. Conventional autopilot systems fail to navi-
gate safely if the GPS signal is lost, jammed or unavailable. UAV should estimate
its position without the need for external signals. Visual odometry, Simultaneous
Localization and Mapping (SLAM), or map-based localization techniques can be
used to process aerial imagery from a downward looking camera on-board UAV
may be used to solve the pose estimation problem. Visual odometry and SLAM
has shown astonishing results while performing flights in indoors or near-ground
altitudes (<100 m). While Visual odometry and SLAM methods do not require
an apriori known map of the environment (map-less methods), these algorithms
are prone to errors over long distance flights (>1 km). The accuracy of these
c© Springer Nature Switzerland AG 2020
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methods for low-altitude flights (>100 m) is not well studied since the GPS sig-
nal is usually available in this altitude and the problem of signal jamming and
spoofing is receiving attention only in recent years. Map-based techniques can
reduce the errors for long distance flights compared to map-less systems. Map-
based techniques takes an image from on-board camera and compares against
orthophotographical map to search for the most similar location on map and
localize the UAV.

Similarity between two images represented as a numerical sequence can be
calculated using a similarity function that quantifies the similarity between the
images. Usually, image is represented as a vectors of numerical values, each
value representing the intensity of a pixel (1). Therefore similarity function can
be defined trough a distance metric (lower the distance grater the similarity).

x = x1, x2, ..., xN , (1)

where N is the dimension of a vector x and x1 to xN represents different pixels
of the image.

There are various distance based similarity metrics, such as Euclidean dis-
tance [5], Pearson correlation [5], Root mean squares [5], Pattern intensity [3],
RBF kernel [6] or Mutual information [7].

Image similarity estimation becomes more difficult as images are represented
as multiple matrices (a tensor). Colored images are often represented via three
or four different matrices (channels). Therefore, images usually are converted to
grey scale and transformed to vectors, before calculating distance based similar-
ity. Some information is inevitably lost during the process.

In our previous works it was shown [14], that Pearson correlation is not
robust against image displacement caused by aircraft frame movement. The 5◦

error of aircraft heading angle change causes 35% decreased in correlation mea-
sure compared to the image with no rotational error. On the other hand, as
image resolution is usually high, the distance-based metrics (e.g. Mean squares)
struggle from the Curse of dimensionality. In our experiments, to get reliable
correlation measure, high resolution images were downsized to 150 × 150 pixels.
High resolution is defined by the capability of on board camera. It ranges from
640 × 480 pixels of some global shutter or thermal cameras, up to 4K to 8K for
general use cameras.

Therefore, to be able to compare two high resolution images that could be
rotated more than 5◦ or taken at different time, we build and train a model
which is able to learn image similarity metric. The learning can be formulated in
terms of ranking similarity learning. In ranking similarity learning, the goal is to
learn a distance function d such that for any triplet of an images (ima, imp, imn)
it obeys (2):

d(ima, imp) > d(ima, imn), (2)

where ima denotes an anchor image, imp an positive image (similar to the
anchor), and imn represents a negative (or different) image.
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Recently, many deep neural networks were developed (e.g. AlexNet [17],
Resnet [11], Inception [23]) for image classification task, one of classical net-
works is VGG16 [3]. Therefore, we used pre-trained lower layers of this network
as feature extractor for the similarity learning. We make an assumption that if
these classifiers have good discriminate properties, they should embed images in
space where similar images are close to each other. This property should hold
for images on which these networks were not yet trained. As experiments of
this paper showed this assumption is valid and a simple network build on these
features can be used as the similarity metric.

The paper structure is as follows: we present current state of similarity learn-
ing in Sect. 2, proposed deep neural network architecture is presented in Sect. 3,
experiment results are shown in Sect. 4, conclusions were drawn in Sect. 5.

2 Related Works

Finding similarity between two images is a relevant task in image registration,
image mosaicing, template matching, map-based robot localization, and other
applications. This task extends beyond of image classification task and deals
with a set of very similar images, otherwise often considered to be of the same
class. Some examples are: search-by-example technique - used by many search
engines to find very similar images; face recognition - most prominent example
being Google’s FaceNet [21]; landmark recognition - ability to identify current
geographical position based of surroundings; in this paper examined - aerial
images similarity.

Image similarity estimation can be achieved by calculating Pearson correla-
tion, Mean squares, Pattern intensity or Mutual information, or other similarity
metrics. To increase the accuracy of chosen metric some image prepossessing
techniques, often including dimensionality reduction, can be used. The simplest
techniques are images resizing and conversion to a lower dimensionality space
(e.g. RGB to 8 bit gray scale color conversion). Advanced techniques uses feature
extraction methods such as SIFT [18] or HOG [8].

One common approach to the problem is the category-level image similarity.
It extends a classification algorithm and considers tho images with the proba-
bility of belonging to the same class to be similar [10,24].

With invention of Convolutional Neural Networks and hardware availability
to evaluate deep models in a feasible amount of time lots of Deep Learning
techniques emerged for image manipulation. A lot of these techniques emerged
from ImageNet challenges [9].

Our proposed method requires images to be represented as visual embed-
dings. Visual embedding is a high-dimensional vector representation of an image
which captures semantic similarity. This technique calculates the similarity in
a semantic feature space instead of pixel (color) intensity space. This way, the
problem of high dimensionality is solved by letting a neural network to find the
feature space for image similarity calculation.

The embeddings are produced by deep neural networks in the intermediate lay-
ers. No hand tuning or hand-crafted metrics are required, model learns these rep-
resentations by minimizing the loss function by examples from the training data.
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Andreeva et al. [1] used VGG16 from FC6 layer (only top model removed)
to get the embeddings. And technique called Locality-sensitive hashing (LSH)
to get similarities between embeddings. Other widely used deep neural network
architectures to get the embeddings are Inception [23], AlexNet [17], ResNet
[12]. It is a similar approach to ones used with textual data, to transform it to
k-dimensional space and capture semantic similarity, e.g. word2vec [19], fasttext
[4], glove [20]. The choice of neural network model has no fundamental difference
from implementation or model usage perspectives. These model are often trained
using transfer learning. This way, initial weights are taken from a pretrained
model, most often on ImageNet dataset. Additional layers are added and trained
based on custom loss function. The pre-trained layers are frozen and their weights
are not changed, only the added layers are trained.

Two main types of neural networks architectures for similarity learning are
Siamese neural networks [16] and, in this paper discussed, triplet neural net-
works. Both of these architectures build two or three neural networks witch the
same weights and optimize it’s loss function to put similar images close to each
other in the embeddings space, though triplet neural networks utilizes additional
negative (non-similar) example to boost the embedding performance.

Triplet loss was used by Google scientists to create a cutting edge face recog-
nition algorithm - FaceNet [21], at the time of publication it reduced the error
rate of face recognition in comparison to the best published result by 30% on
Labeled Faces in the Wild (LFW) [13] and YouTube Faces DB dataset [27]. While
working on neural network that can easily detect failure in Telecom Operators
networks Marc-Olivier Arsenault defined the triplet loss function (5) that pre-
vents loss from going below zero [2]. This improved performance of his model on
his dataset, compared to loss function defined by FaceNet paper [21]. Histogram
loss was proposed by Ustinova and Lempitsky [25] and showed that such oper-
ations can be performed in a simple and piecewise-differentiable manner using
1D histograms with soft assignment operations.

Going deeper into triplet learning process observation can be made, that by
reusing an already good classifier (e.g. VGG16 or AlexNet) to find the similarity
between very similar images (that is the name fine grained similarity), only
edge case examples from the training data can be used to increase networks
performance and save some computational resources.

3 Network Architecture

A triplet-based general network architecture is shown in the Fig. 1. This network
takes a triplet (Anchor image, Positive image, Negative image) or in a short form
(ima, imp, imn) as an input, which are fed independently into three identical
deep neural networks f(.) with shared architecture and parameters. The deep
neural network consist of all layers taken from pre-trained VGG16 without very
last layer and the proposed custom trainable layers (see Fig. 1). The network
f(.) computes the embedding of an image imi : f(imi) ∈ (R)d, where d is
the dimension of the feature embedding. After application of the deep neural
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network on a triplet of images, the embeddings (f(ima
i ), f(imp

i ), f(imn
i )) are

retrieved from output of the neural network. To effectively train the top layer of
the network triplet, the loss function from Eq. (5) is used.

Anchor
Image

Positive
Image

Negative
Image

Pre-trained
Deep NN 
(VGG16)

Custom
Trainable
Layers

Triplet
Loss

Fig. 1. General model.

Four configurations of the general model by including different number of
VGG16 network layers were implemented. First configuration has all VGG16
layers except the last one (Output layer). This configuration is called Mod-
elNN or ModelNN(0). The second configuration does not contain 4 top layers
of VGG16 network - ModelNN(-4). And similarly ModelNN(-8) is VGG16 net-
work without 8 top layers. Lastly, ModelNN(-12) has only 6 bottom layers of
the VGG16 network. ModelNN(-12) is a network that has the lowest number of
VGG16 layers and gives good classification results for image triplets.

Detailed model network ModelNN(-8) architecture is presented in the Fig. 2.
All the VGG16 layers of the model network uses original weights, since modifica-
tion of these weights reduced overall accuracy of the similarity estimates. This is
most likely caused due to the small size of the dataset used for training and high
number of trainable variables in VGG16. This leads to a very fast over-fitting
of the model network. The custom layers of the model consists of one fully con-
nected layer of sizes 28 × 28 × 1 and a flatten layer to get vector for the triplet
loss calculation. The fully connected layer size changes depending on the output
of the last VGG16 layer. As lower layers of VGG16 network have larger output
dimensions, therefore by omitting more VGG16 layers, we get more learnable
weights in ModelNN custom layers.
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Fig. 2. The model network ModelNN(-8) architecture.

3.1 Triplet Loss Function

To be able to learn similarity metric in this research we looked for effective loss
function. A one of the most popular triplet loss function (3) is presented bellow [26]:

loss =
Ntr∑

i=1

max(d(fa
i , fp

i ) − d(fa
i , fn

i ) + margin, 0), (3)

where d is some distance metric such that d(fa
i , fp

i ) < d(fa
i , fn

i ), triplet
(fa

i , fp
i , fn

i ) consist of an anchor image, a positive image and a negative image,
respectively and Ntr is a number of triplets. margin > 0 is a gap parameter
that regularizes the gap between the distance of the two image pairs: (fa

i , fp
i )

and (fa
i , fn

i ).
Closely related to the Eq. (3) is an Eq. (4) [21]. The Eq. (4) uses squared

Euclidean distance as distance metric and α > 0 as margin between two pairs of
images and sum absolute values. This triplet loss function was successfully used
for training deep neural networks for face verification and recognition.

loss =
Ntr∑

i=1

[||fa
i − fp

i ||22 − ||fa
i − fn

i ||22 + α
]
+

, (4)

where triplet (fa
i , fp

i , fn
i ) consist of an anchor image, a positive image, and a

negative image respectively, α is some small positive number (e.g. e = 10−6)
and Ntr is a number of triplets.

Histogram loss was proposed by Ustinova and Lempitsky [25] and showed
that such operations can be performed in a simple and piecewise-differentiable
manner using 1D histograms with soft assignment operations.
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This paper uses triplet modified loss function [2]:

loss = −
Ntr∑

i=1

[
ln(−

∑N
j=1(f

a
ij − fp

ij)
2

β
+ 1 + ε) + ln(−N − ∑N

j=1(f
a
ij − fn

ij)
2

β
+ 1 + ε)

]
,

(5)
where fa

ij is ModelNN output for an anchor image, fp
ij and fn

ij are ModelNN
outputs for positive and negative image respectably. N is output vectors dimen-
sion, Ntr is a number of triplets in the training batch, ε is some small positive
number (e.g. e = 10−6). The loss function is equal to 0 when both positive and
negative images are at the maximum distance. The loss (5) can be averaged over
number of triplet to keep its value not depended on the Ntr.

To measure the similarity between some two images im1 and im2, we use
modified loss function (5). Instead of Eq. (6) can be used standard Euclidean
distance, but our similarity metrics gives lower values of the distances.

sim(im1, im2) = −ln(−
∑N

j=1(f1j − f2j)2

β
+ 1 + ε), (6)

where f1j = f(im1)j , f2j = f(im2)j , N is number of dimensions and j ∈ [1..N ].

4 Experiments

The triplet network is implemented using Tensorflow 1.3.1 framework, Python
3.7 and a NVIDIA GeForce RTX 2080 Ti Graphics Card was used to train the
network.

4.1 Image Dataset for Training and Testing the Neural Network

For this research special Aerial Imagery dataset [15] was used, which consists of
113474 images captured from the different UAV flights in a robotics simulator.
All images are of 640×480 resolution and are rectified to do not contain camera
distortion. For this experiment, a special subset of the dataset was created.
It was created by performing flights and recording aerial images on two maps
simultaneously, which were created a few years apart. The subset contains 1188 of
image triplets (anchor image(ima), positive image(imp), negative image(imn))
for training and 105 image triplets for validation (e.g. Fig. 3) and 64 for the
testing. The anchor and positive images are aerial images of the same place but
at a different time, the negative images are of randomly selected regions from
the map that was used to create the anchor images. The input dimensions for
the VGG16 network are 224 × 224, therefore the triplets images are resized to
the input dimensions. In case of K-fold cross validation, the test and training
datasets parts were joined before performing the cross validation splitting.
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anchor image positive image negative image

Fig. 3. Example of a triplet of images.

4.2 Accuracy Measure

The goal of ranking similarity learning is to learn the distance function d
such that for any triplet of images (ima, imp, imn) it obeys d(ima, imp) >
d(ima, imn). Accuracy metric (7) from the evaluation of binary classifiers can
be used to evaluate the accuracy of ModelNN.

accuracy =
∑

True positive +
∑

True negative∑
Total population

. (7)

As it is very rare to d(ima, imp) be equal to d(ima, imn) we can assume that∑
True positive is equal to

∑
True negative. Therefore, we can count only

True positive triplets and divide by total number of triplets Ntr in the training
dataset. The final Eq. (8) is used to evaluate the accuracy of the ModelNN.

accuracy =

∑
d(ima,imp)>d(ima,imn) 1

Ntr
. (8)

4.3 Pearson Correlation as Similarity Metric

In this research, Pearson correlation is used as a baseline, since it was the most
suitable similarity metric found for calculating similarity of UAV images in our
previous research [14]. Using Pearson correlation as the classifier on all training
dataset (Fig. 4), an accuracy of 0.884 was achieved. Repeating the experiment
on images transformed to gray scale, the accuracy slightly increased to 0.888.
This result show that Pearson correlations struggle from the Curse of dimension-
ality, and lowering the dimensions of the images gives better results. A triplet
(ima, imp, imn) is considered a true positive in Eq. (8) if pearson(ima, imp) >
person(ima, imn).

4.4 Learning Metric on Full VGG16 Model

Grid search with K-fold cross validation of 4 folds was used to tune hyper-
parameters to improve the model performance.
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Fig. 4. Pearson correlation: blue points are representing correlation between ima and
imp images, orange points are representing correlation between ima and imn images.
(Color figure online)

Table 1. Dependency of ModelNN(0) average accuracy (in %) on number of epochs
and batch size.

Batch size 1 4 16 50

3 99.7 (0.21) 99.92 (0.13) 99.78 (0.25) 100.0 (0.0)

6 99.25 (0.43) 99.92 (0.13) 99.92 (0.13) 99.92 (0.13)

12 98.22 (1.03) 99.85 (0.26) 99.92 (0.13) 99.92 (0.13)

24 96.48 (1.36) 98.98 (0.62) 99.92 (0.13) 99.92 (0.13)

48 96.2 (0.69) 99.12 (0.69) 100.0 (0.0) 99.92 (0.13)

96 90.82 (3.24) 98.4 (0.82) 99.78 (0.25) 100.0 (0.0)

Table 1 depicts iterations and batch size influence on accuracy of full VGG16
model with custom top layers or ModelNN(0). Standard deviation of the accu-
racy is presented in the parentheses. The table shows that ModelNN(0) accuracy
on the test dataset increases with increasing number of the epochs, and decreases
with increasing batch size. ModelNN(0) has only 49 trainable parameters, as
number of images is greater than 1000, this avoids over-fitting the neural net-
work and achieved high accuracy shows that ModelNN(0) learns to discriminate
similar images from not one. Nevertheless, we can observe signs of over-fitting
when we pass 16 epochs of training (e.g. batch size 48). Therefore, we suggest
to train the ModelNN for 16 epochs.

Figure 5 presents a triplet of images with wrong classification due to over-
trained ModelNN(0).

Looking at similarity metric distribution over image triplet (Fig. 6) we can
observe that ModelNN(0) can learn to separate positive images from negative
ones. The Fig. 6 has 4 different regions, this is because we used 4 folds cross
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anchor image positive image negative image

Fig. 5. Example of false positive classification of images with over-trained network.

validation and trained 4 different networks. From right side of the figure we can
conclude that, similar images in our dataset have very low distance (or high
similarity) values (6). Assumption can be made that two images are similar if
the similarity value is lower than 0.5, we get accuracy of 98%.

Fig. 6. K-fold cross-validation ModelNN(0) trained with 16 epochs.

4.5 VGG16 Depth Influence

Relation between different modifications of the ModelNN(k) and number of
training epochs is presented in Table 2. Number of omitted layers k is shown
in the first column of the Table 2. All experiment were run using cross validation
of 4 folds. The result shows that ModelNN with lower number of VGG16 layers
tend to learn slower, and to achieve same accuracy need more training epochs.
Therefore, we suggest to use ModelNN(0) or ModelNN(−4) configuration for
image similarity estimation.

As Fig. 6 shows, similarity values sim(ima, imp) and sim(ima, imn) are quite
well separate from each other. Table 3 shows that the same tendency is applicable
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Table 2. Average accuracy dependency on number of layers and epochs. Batch size is
equal to 48

ModelNN(k) 1 4 16 50

0 96.2 (0.69) 99.12 (0.69) 100.0 (0.0) 99.92 (0.13)

−4 96.18 (3.01) 99.45 (0.79) 100.0 (0.0) 99.92 (0.13)

−8 88.88 (8.21) 99.12 (0.88) 99.52 (0.82) 99.92 (0.13)

−12 79.7 (9.12) 91.38 (10.45) 99.2 (0.67) 100.0 (0.0)

to other ModelNN configurations. Min-max of the similarity values for similar
images are presented in each odd row of the Table 3 and the values for not similar
images are in each even row.

Table 3. Dependency of min and max similarity (6) values on number of layers and
epochs. The batch size is 48.

ModelNN(k) 1 4 16 50

0 0.0–0.99 0.0–1.25 0.0–0.77 0.0–0.8

0.13–2.75 0.16–5.11 0.46–7.4 0.45–10.09

−4 0.01–0.92 −0.0–0.94 0.0–0.53 0.0–0.68

0.34–2.24 0.27–4.18 0.62–13.82 0.51–13.82

−8 0.1–0.78 0.0–0.84 0.0–0.88 0.0–0.57

0.25–1.21 0.2–2.57 0.15–4.27 0.23–5.05

−12 0.21–0.75 0.12–0.69 0.03–1.41 0.01–0.8

0.37–0.97 0.2–1.7 0.28–3.0 0.41–2.94

5 Conclusions

This paper presents an investigation of image similarity metric learning to esti-
mate image similarity of aerial images from UAV flights. We developed ModelNN
neural network based on VGG16 with additional custom layer and a modified
triple loss function. ModelNN was able to learn image similarity with the accu-
racy greater than 99%. All configurations of ModelNN with different VGG16
depth were able to learn images similarity, but ModelNN with smaller number
of VGG16 layers requires higher number of training epochs. Therefore, we rec-
ommend to use ModelNN(0) for image similarity estimation, as it is the most
accurate and can be trained quickly.

We proposed the similarity metric based on the image embeddings from Mod-
elNN, and if the similarity value sim(imi, imj) <= 0.5, we can confidently state
that images are similar. From the similarity function properties, it follows that
the images are getting more similar when sim(imi, imj) is getting closer to 0.
The similarity of value 2 and higher can be used as a threshold to confidently
reject the hypothesis that images are similar.
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6 Future Works

If the future we are planing to investigate how affine transformations can influ-
ence our ModelNN performance. More complicated custom layer architecture
may be required. Another approach is to use one of the deterministic optimiza-
tion methods to optimize triplet loss function, as proposed, e.g., in [22].
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Abstract. The purpose of this paper is to analyze a geometrical case study as a
sample of an intended methodology based on invariant theory’s strategies, which
have been developed particularly throughout the nineteenth century as one of the
cornerstones of mathematics [15, p. 41], and whose resolution was reached by
means of a combination of different disciplines: graph theory, mechanics and
group theory, among others.

This case study presents the “perfect squared rectangle problem”, that is an
exhaustive classification of the dissection of a rectangle into a finite number of
unequal squares. Despite its simplicity, in both description and mathematical res-
olution, it provides plausible elements of generalization from “the ‘applied field’
of mathematics” [8, p. 658], as a special case of applied mathematical toolkit [1,
p. 715], related to the practice of invariant strategies that remain fixed through
changes.

Keywords: Invariants · Graph theory · Geometry

1 Introduction

One of the cornerstones of mathematics is invariance, i.e. patterns of regularity that
characterize permanent situations when a transformation occurs, stable properties of
objects that remain constant despite changes in the system to which they belong. Objects
and their properties may be invariant under specific changes that occur in the object
or with the object. Therefore, an invariant relationship remains stable or unchanged
regardless of the occurrence of other changes. When talking about identity, congruence,
isomorphism, cycles, constancy, symmetry or periodicity, we refer to a situation in which
a particular property remains permanent despite changes, either during the transition
from one situation to the next, or during the process of transformation between two
components of it. Invariance holds over a range of changes, and it is recognized as an
intrinsic feature, a common property.

Thus, given a domain of mathematical objects and after applying some transforma-
tion on them, it turns out that some of the properties remain invariant. Turning our focus
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back on such invariance producing transformations, these become entities of another
level, susceptible of constituting a new field of study.

The advantage of knowing many invariant functions is that we can use them to com-
pletely characterize equivalent objects from different domains. Two objects are equiva-
lent if they can be transformed into each other by means of making a suitable change in
the mapping that connects them. Equivalence makes both objects indistinguishable. If
we can determine completely the equivalent indistinguishable objects of some domain
among the invariants functions, these invariants form the basic building blocks, which
can be used to construct some kind of objects of mathematical interest. Conversely, and
equally important, two equivalent objects must necessarily have the same invariants.

This is the sense in which it is characterized, within a specific domain, the “funda-
mental equivalence problem”, i.e. to determine whether two mathematical objects can
be transformed into each other by a suitable change of some kind. Therefore, a solution
to this problem will allow the characterization of all the equivalent entities, as long as
two objects can be identified under a specific transformation. The characterization of
this class of objects can generate a new theory in mathematics.

Therefore, our aim is set at characterizing a methodology that not only involves devel-
oping a variety of techniques that will allow one to handle some or all of the problems of
specific kinds in a wide variety of mathematical contexts, but also generating a strategy
that allows the emergence of the totality of objects of a certain type. This is where the
notion of invariance is relevant, since the construction of invariants and their description
are used to characterize the equivalent objects and then completely solve the equivalent
problem. Such equivalent objects brings to the discovery of indistinguishabilities, which,
once they are fully determined and defined, can conform accepted theories.

The work of many mathematicians includes the determination of the totality of
objects that meet specific conditions, a characterization of all the elements within a class
that need to be defined. For instance, the search for symmetries of a geometric object
ended by describing the notion of “group”, which in turn allowed the classification of
differential equations and variational problems. The search for invariants was influential
in the process of developing the notion of group.

In the following sections, we will establish how different ways of understanding
the notion of invariance have led to characterize the indistinguishability of objects in
different areas of mathematics. In the case of geometry, where we will mainly focus,
the search for invariants was the crucial step to find indistinguishabilities. That is to say,
some type of equivalence that would allow us to characterize the type of geometry one
was working with, and, consequently, the theory that came along with it. Therefore, it is
worth emphasizing the heuristic and creative aspects that drive the search for invariants,
and not just their justificatory processes, which must then be put into action to convert the
findings into thoroughly consolidated results within some appropriate deductive system.

In this paper, the search for invariants will be analyzed from a methodological point
of view, in order to characterize strategies present in mathematics since its inception.
The history of Western mathematics has a long tradition, originated in Greece, on a
top-down methodological characterization, described from theories conformed by true,
evident, eternal and immutable basic elements: Elements of Euclid is a tangible sample
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of such top-down style. From such theories, applications can be built in various fields,
internal as well as external to mathematics.

The Euclidean top-down style has been used in several domains: in logic for example
(Aristotle’s syllogistic), in probability (Suppes’ axioms for propensities and foundations
of objective probability [16]), in foundations of mathematics (Russell and Whitehead’s
Principia Mathematica), in biology (Woodger’s axiomatic methodology [23]), in psy-
chology (Hull’s principles of behavior as well as Rottmayer’s formal theory of per-
ception), in physics (McKinsey, Sugar and Suppes’ axiomatics foundations of classical
particle mechanics); even in philosophy, as it was the case with Spinoza’s ethics, written
following traditional axiomatic schemes.

But also, and especially in Modernity, many other mathematical developments
respect a bottom-up methodology, where it is the practice itself that leads to the gen-
eration of theories. Mathematicians such as Lagrange, Gauss, Laplace and Euler show
mathematical developments arising from the interaction with empirical problems from
other disciplines than the so-called “pure mathematics”, which have usually received
the label of “mixed” or “applied” mathematics.

This bottom-up style, even at the dawn of the nineteenth century, has been nourished
by another cognitive strategy that we will refer to as “transductive methodology” [18–
21], which will take a central role in this work. Our main objective will be to determine
how this type of methodology is implemented in a good number of applied mathemat-
ics developments. The intended methodology is based on invariant theory’s strategies,
and have been developed particularly throughout the nineteenth century as one of the
cornerstones of mathematics:

“[Invariant theory] has had as deep and lasting influence on the development of
mathematics, to the point that seldom in history has an international community
of scholars [from England, Germany, France, Italy and America] felt so united lay
a common scientific ideal” [15, p. 41].

Consequently, in section two of the article, we develop the transductive method-
ological proposal, for which we introduce a brief historical overview of the notion of
invariance in mathematics, which will allow us to understand how this transductive style
is typical in a great number of applied mathematics related works. Next, in section three,
we analyze a geometric case study based on the proposed methodology, which highlights
the importance of invariants in applied mathematics.

This case study has its origin in geometry, and presents the “perfect squared rectan-
gle” problem, that is an exhaustive classification of the dissection of a rectangle into a
finite number of unequal squares. Despite its simplicity, in both description and math-
ematical resolution, it provides plausible elements of generalization from “the ‘applied
field’ of mathematics” [8, p. 658], as a special case of applied mathematical toolkit [1,
p. 715], related to the practice of invariant strategies that remain fixed through changes.

2 Invariant Transductive Methodology: A Proposal

For the purpose of introducing our proposal, which is based on the theory of invariants,
as we mentioned in the introduction, we carry out a historical outline of the emergence of
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such theoretical developments. We will concentrate on an analysis of different invariance
principles that were adopted effectively by several geometers, mainly in the nineteenth
century. This condensed journey will allow us to appreciate the relevance of problem
solving strategies that rely on the search for patterns of regularity, and their applications
in other domains different from those from which they arose.

Within the great variety of instances of the notion of invariance in mathematics,
there is a case that should be highlighted and that owes its beginnings to quadratic
binary forms1 and to the problem of representing integers by them (as well as a to a type
of indistinguishability based on the use of the discriminant to match equivalent forms):
the classical invariant theory.

The roots of invariant theory can be traced back at least to Lagrange in 1788,
on the one hand, and to Gauss in 1801, on the other. In the case of Carl Friedrich
Gauss (1777–1855), his Disquisitione arithmeticae of 1801, at the turn of nineteenth
century, had observed a special case of algebraic invariance, the discriminant of a
binary quadratic form. Indeed, given a quadratic binary form f with integer coefficients
f (x, y) = ax2 + 2bxy + cy2 with a, b, c ∈ Z, an homogeneous polynomial of
degree 2 (quadratic) in 2 (binary) unknowns, let T be a (non-singular2) linear transforma-
tion affecting f , that is T (x ′, y′) = (mx ′ + ny′, m′x ′ + n′y′) with m, n, m′, n′ ∈ Z .
Due to the application of T to f , Gauss get a new binary quadratic form:

f (T (x ′, y′)) = Ax ′2 + 2Bx ′y′ + Cy′2 where

A = am2 + 2bmm
′ + cm′2, B = amn + b(mn

′ + nm
′
) + cm

′
n

′
, C =

an2 + 2bnn
′ + cn

′2. Gauss observed that the discriminant b2 − 4ac of the original
form f satisfied the following relation to the discriminant of the transformed form:
B2 − 4AC = �2 . (b2 − 4ac). Hence, the discriminant of the original form f was
altered uniformly by a factor, which depends on the coefficients m, n, m

′
, n

′
included

in the transformation T . More precisely, a factor that is equal up to a power (2) of

the determinant of the linear transformation T , that is
(
mn

′ − nm
′)2

. In brief, the

discriminant b2 − 4ac is an invariant of the binary form f , under a non-singular linear
transformation T .

Now, regarding Joseph-Louis Lagrange (1736–1813), in his 1788 two-volume book
Mécanique analytique, he worked on a specific physical problem concerning the motion
of various kinds of bodies representing kinetic energy. This representation was realized
by a reduction from a quadratic form to a sum of squares; in other words, by some linear
substitution that then allowed a diagonalization of the quadratic form, via what we now
call an orthogonal transformation.

Lagrange found that the coefficients of the transformation satisfied some vanish-
ing conditions, which remain permanent through the algebraic operations. This aspect
caught Boole’s attention. Working now on Lagrange ideas, George Boole (1815–1864)
isolated the phenomenon of invariance while working on the resolution of the general

1 The word “quadratic” refers here to the degree of homogeneity of the variables of the form (so
each term of the form has degree two); whereas the adjective “binary” indicates the number of
variables involved in the form.

2 This means that the determinant � is non zero: � = mn
′ − m

′
n �= 0.
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problem of determining algebraic relationships among the coefficients of homogeneous
polynomials of degree n in m unknowns, which remain invariant under a non-singular
linear transformation. Boole eliminated the restrictions that Gauss imposed on the coef-
ficients. More precisely, Boole called invariant any expression in the coefficients of
a binary form, which varies only in a factor depending on the linear transformation.
However, if the expression not only involves the coefficients but also the variables of
the form, it is called a covariant. After that, two British algebraists, Arthur Cayley and
James Joseph Sylvester, carried out the study of invariants and covariants.

Before discussing the work of these two English mathematicians, the following
observation should be made regarding Boole’s methodological work: his main goal was
not the finding of invariants. This task ended up being a consequence of his greater
concern for solving the equivalence problem, an indistinguishability problem. In order
to solve the equivalence problem between two n-ary forms, in his two first papers [2, 3]
Boole proceeded by setting to zero one particular invariant: the discriminant.

To understand this procedure, let us consider a very simple situation, the discrimi-
nant of the following quadratic polynomial (in one variable): p(x) = x2 + 2bx + c
with b, c ∈ �. Nowadays, the simplest method to acquire the discriminant consists in
applying Bhaskara’s formula, with discriminant D = b2 − c, which, in this case has
three possibilities: D > 0 (two different real roots of the equation), D = 0 (double equal
real root), and D < 0 (two different conjugate complex roots). However, what Boole
noticed is that having a double root is invariant under translation, that is, if we consider
the polynomial p(x + d) = (x + d)2 + 2b(x + d) + c where d is constant, then its
corresponding discriminant D

′ = b2 − c would be the same as D.
Here, we are looking for an invariant whose vanishing expresses the condition that

if the polynomial p has a double root, so does the polynomial p’, result of the translation
due to a change of variables T (x) = x

′ = x + d. However, the way Boole solved
this problem in a general style implied the utilization of partial derivatives to eliminate
the variables from the given polynomial. Again, using a very simple case, the one we
saw previously from Gauss, but now without the restrictions over the variables and
parameters, let f (x, y) = ax2 + 2bxy + cy2 with a, b, c ∈ �. We now calculate
the partial derivatives of f with respect to x and y, and equating them to zero, we obtain:
∂ f
∂x (x, y) = 2ax + 2bx = 0 and ∂ f

∂y (x, y) = 2bx + 2cy = 0. The elimination

of x and y from these equations yielded the expression D( f ) = b2 − ac, which was
the relation he was looking for between the coefficients of f. If we now apply a linear
transformation T as before (but now under �), we obtain the transformed binary form
g(x

′
, y

′
) = Ax ′2 + 2Bx

′
y

′ + Cy′2 with A, B, C ∈ �. Calculating the corresponding
partial derivatives of g relative to x and y, we find that its discriminant is a multiple of the
previously discriminant D(f), altered by a factor which depends only on the coefficients
included in the linear transformation, by elimination of the variables: D’(g) = k.D(f).

What Boole ends up achieving is a method of elimination, that, eventually but not
primarily, works by capturing one type of invariance as well as covariance. More pre-
cisely, this method, among equations in partial derivatives or differentials of the forms,
instead of allowing to capture invariants, what is actually allowed is the application of
his method to obtain substitutions that transform a pair of forms into an equivalent pair of
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forms. His goal, then, was to produce “important step[s] in the theory of the linear trans-
formation of functions of two variables” [4, p. 98]. Nevertheless, who took over the task
that Boole initiated is Cayley, taking it one step further: it aims at the isolation of many
types of invariance (and covariance), that is, it is oriented towards the independence of
a theory of invariants. As Paul R. Wolfson says:

“Cayley [had discovered] that there were invariants (and covariants) other than
those defines by Boole [that led Cayley] to refer to this property as ‘the character-
istic property’. By focusing on expressions that satisfy the ‘characteristic property’,
Cayley was shifting the direction of research. Even though Boole had shown that
his D enjoyed this property, he had not highlighted it as the defining relation of
an invariant. Indeed, he would have seen no need to do so, for he was considering
only D and related functions, anyway. Rather than study functions with a certain
property, Boole had employed the relation to obtain the proportions” [22, p. 44].

Moreover, in later works [4, p. 95] to his classic articles of 1841 and 1842 [2,
3], Boole himself recognized that Cayley had detected other invariants in addition to
the discriminants of n-ary forms, what Boole called ‘constant functions’: “There exist
other functions than D(f) [f n-ary form; D discriminant] possessing those [invariance]
properties which I had regarded as peculiar to it” [4, p. 95]. Wolfson says: “After that, the
hunt was on, not merely for new invariants, but for what we would now call generators
and relations in the ring of invariants” [22, p. 44]. Then he declares:

“By contrast to Boole’s direct attack on the equivalence problem, (…) his prin-
cipal aims in (1841b and 1842) had been, first to determine when two pairs of
forms are equivalent, and second, if they are indeed equivalent, to determine those
substitutions which take the first pair to the second (…) Cayley shifted attention
to the production and study of the invariants (and covariants) themselves.” [22,
p. 45]

Note that, while Boole dealt with the fundamental problem of equivalence (i.e.,
to determine whether two pairs of forms can be transformed into each other, that is,
one replaceable by the other, by a suitable change of variables), Cayley focused on the
study of invariants and covariants. Thus, the equivalence problem and the invariance
search are two sides of the same coin, that is, the search for an intelligible and complete
characterization of mathematical theory. This is the kind of indistinguishability that
invariant properties can preserve. In the situation we explained ut supra, where D’ =
k.D, two homogeneous functions become similar functions, as their discriminants are
equal up to a power of a constant.

In 1846, Arthur Cayley (1821–1895) published a paper where his ideas about invari-
ance were very clear. His purpose was, in his own words: “(…) to find all derivatives
[i.e., invariants] of any number of functions, which have the property of preserving their
form unaltered after any linear transformation of the variables” [6, p. 104]. The project
began by a quest to find all invariants of any number of forms; but then he moved on
to looking for what we now call the “generator and relations in the rings of invariants”
[22, p. 44], as we said ut supra.
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Arthur Cayley has employed a calculational oriented methodology: he intended and
achieved to formulate several efficient algorithms for explicitly exhibiting invariants and
covariants. However, this project finally stumbled upon many technical difficulties. The
methods employed were based on what was then called the symbolic or umbral notation
(umbrae, “shadows” of specifiable coefficients). Above all, it seemed impossible to
convey any sense of the subject in nontechnical terms.

By 1850, Cayley met James Joseph Sylvester (1819–1897), when both of them, due
to different motives, were initiating a career in law, besides their formation in mathemat-
ics. Sylvester brought new perspectives on the incipient theory of invariants. They both
contributed to its inception, applying similar calculational techniques. Is worth noting
that this theory too was the joint work of mathematicians from several countries. In Eng-
land, besides those two just named, there were others: Young, Turnbull, and Salmon. In
France: Hermite, Jordan, Laguerre. In Italy: Capelli, Brioschi, Trudi. In Germany: Aron-
hold, Clebsch, Gordan, Grassmann, Lie, Study. In America: Glenn, Dickson, Bell and
later Weyl. Karen Hunger Parshall gave a very precise characterization of the cooperative
work done by Cayley and Sylvester:

“Each of [the] texts [from Cayley and Sylvester] read, in a real sense, like a
cookbook for the proper preparation of invariants and covariants. In the absence
both of the necessary theoretical underpinnings and of a sufficiently general nota-
tion, the British school’s techniques did not lend themselves to proving existence
theorems (…) This is not to say that the non-symbolic approach of Cayley and
Sylvester did not have spectacular successes. It enabled its adherents to calculate
the invariants and covariants for binary forms up to the eighth degree and to deter-
mine the syzygies, or dependences, between them. They catalogued their results
in massive tables, the very construction of which generated important discoveries
in combinatorics and in the theory of symmetric forms” [13, p. 186].

The problem with this extreme technical style is the loss of intelligibility of mathe-
matical expressions. If what is spoken here refers to the semantic content of the theories,
Hermann Weyl (1885–1955), in his book The Classical Groups sought to highlight this
aspect about invariants applied to geometry. There, Weyl indicated that the computation
needs to express the “geometric facts”, that is, facts about space that are independent
of the choice of a coordinate system. There was a search for a translation of invariant
algebraic equations expressed in terms of tensors into geometric facts, which could cap-
ture irreducible components under changes of coordinates. This task–one of the great
advances in mathematics of all times, according to Gian-Carlo Rota [15] - involves the
understanding of the indistinguishable ideas behind technical theory. It was discovered
around the turn of twentieth century almost simultaneously by Issai Schur and Alfred
Young. It is important to note that the emphasis on a theoretical description of invari-
ance that shows the indistinguishabilities of each theory, was previously carried out
successfully by the German school; especially in the field of geometry, by Felix Klein
(1849–1925), and in the constitution of Modern Algebra, by David Hilbert (1862–1943).

An important observation deserves to be brought up: while Boole, in his investi-
gations put the emphasis on the set of transformations or substitutions that can pro-
duce equivalences between two pairs of n-ary forms, the theory of algebraic invariants
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cultivated in England, especially by Cayley and Sylvester, explored those relations or
properties that remain permanent under a set of transformations. Another point in this
brief summary of ours should be directed toward developments involved in geometry
research. In this sense, both the problem of equivalence treated by Boole and the theory
of invariants from the English school of thought point towards geometry–with the works
of Felix Klein and Hilbert-, where either the invariant properties or the set of transfor-
mations may be taken to characterize the geometry. The foregoing notes had consisted
of a condensed summary of the classical theories of invariants.

Next, we will turn to specific cases where we will not refer to “theories” of invariance,
but to ways of applying invariance without constituting theories in the style just described.
These cases are Peacock’s algebra and, finally, the projective geometry of Poncelet.

George Peacock formulated in 1830 a general principle that became influential
in the later nineteenth and early twentieth centuries. He called it the Principle of the
Permanence of Equivalent Forms, and stated it as follows:

“(…) If we discover an equivalent form in Arithmetical Algebra or any other
subordinate science, when the symbols are general in form though specific in their
nature, the same must be an equivalent form, when the symbols are general in their
nature as well in their form” [14, p. 104].

An important feature of this principle was the origin of its ideas. In this regard,
Peacock believed and defended the idea that algebra was a pure science, unlike what other
prevailing approaches about the role of algebra in Cambridge society, like Peacock’s
Trinity College colleague and friend William Whewell, who throughout the 1820’s did
not consider the study of abstract algebra as an independent discipline.

Peacock’s defense was supported by the introduction of the aforementioned princi-
ple, which was based on Peacock’s philosophy of what he called “suggestion”. Kevin
Lambert argues that Peacock came about his principle through a historical investigation,
an interpretation of his philosophy of suggestion taken from Natural History. Indeed,
the Cambridge Philosophical Society, with researchers as John Stevens, Edward Daniel
Clarke and Adam Sedgwick, professors of mineralogy and geology respectively oriented
this society’s goal to introduce “subjects of natural history to (…) Cambridge students”
[10 p. 282]. In this context and under the influence of natural history, Peacock initiated
research on the history of arithmetic, defending in several texts an empirical foundation
for symbolic algebra.

He had the idea from a prior practice, an ancient and universal practical reasoning
that transcended culture, a science of “suggestion” that ruled his search for the origins of
algebraic thought. In other words, “practice suggests the abstract system”. In this sense,
by applying an ethnographic investigation, he found that, since the beginning of times,
the practical problem of counting objects existed. These first practices of counting would
suggest numeral language, that in turn would suggest new practices of calculation, and
therefore, new symbols for those practices. Consequently, it would be a shift from the
operations themselves. In this manner, the development of counting, the first stage of
Peacock’s history, would suggest arithmetic. Arithmetic is the science of suggestion for
arithmetical algebra, which in turn acts as the science of suggestion for symbolic algebra,
the last stage.
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Here we find a process of abstraction that has to do with Peacock’s idea of “sug-
gestion”. First, we have a suggestive discipline, e.g. arithmetical algebra, helping in
the development of another branch of science, e.g. symbolical algebra. Thus, symbolic
algebra is suggested or derived from some extensions we make over the properties of the
operations from the former discipline. This process of abstraction operates as a heuristic
strategy, where we take the rules of operation of arithmetic as conjectures or suggestions
for developing an unrestricted symbolical algebra. Either Peacock’s Treatise of 1830
or his Report to the BAAS in 1833 were texts that he wrote stripped of any reference
to the historical developments of 1820s. These former papers were his philosophical
justification not only for his principle of permanence of forms, but also for his project
of a narrative structure for a story of the progress of algebraic reasoning, starting from
counting objects and finishing with the emergence of symbolic algebra.

Jean Victor Poncelet was a mathematician who made a serious attempt to justify the
introduction of imaginary, singular or improper points into his formulation of synthetic
projective geometry. Due to this lack of meaning of this employed symbolism, there
was a possibility to introduce a principle that could extend the scope of the theoretical
statements about entities and contexts not previously addressed, since they are considered
non real elements and prohibited methodologies, respectively, by the standard norms of
the mathematics of that time.

Regarding this matter, Poncelet distinguished three types of correlation between
two figures when one of them is obtained from the other by what he called a “general
correlation”: (1) a direct correlation, if the figures involved are composed of the same
number of parts similarly placed, (2) an indirect or inverse correlation, when the parts
of the correlative figures are in different order, differently placed, though the general
relations remain the same, and (3) an ideal correlation, when certain distances and
points cease to exist in a geometrical manner.

For each type of correlation, there must be an invariance of certain abstract relations
stipulated in the initial conditions for the configuration, so that each figure in the series of
figures obtained by gradual transformations must be an instance of these relations. This
is what Poncelet called the “Principle of continuity or permanence of the mathematical
relations”.

We can see that for Poncelet, the geometric diagrams, which supposedly constitute
the subject matter of geometry, were not necessarily real or actual configurations, with
real existence, limited by visual perception or imagination. These figures are variable
entities, abstract signs that could assume different values subject to certain rules of
combination, and also could be left uninterpreted, as indeterminate magnitudes. In the
case of ideal transformations, they could assume infinitely small or great values; they
could be imaginary elements, improper points, things that could not be visualized (at
least in a standard description).

Although Poncelet “would hardly have assented to the view that the task of the
pure geometer is the exploration of the mutual interrelation of signs governed by speci-
fied rules of operation, irrespective of the ‘interpretations’ or ‘meaning’ which may be
assigned to them” [12, p. 206], nonetheless, he understood that this use of the principle
of continuity gave rise to an advance in the legitimate study of the relations between
the transformed and the original figures, as legitimate as any deductive demonstrative
procedure.
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The work style, both of Peacock based on his notion of suggestion, and of Poncelet
applying a questioned principle on ideal entities, are usually acceptable in the context
of discovery. The main reason behind this lies in the type of argumentation implicit in
these principles of permanence and continuity. Indeed, as it was stated in the introduction
(Sect. 1), we can distinguish at least three types of argumentative inferences that configure
work methodologies: top-down (deductive reasoning that goes from generic to generic,
or applies generic to particular), bottom-up (reasoning which infers from particular to
generic), and what we called “transductive” reasoning (which infers from particular to
particular). This last term was coined by Gammerman, Vovk, and Vapnik [9] and applies
to processes that try to match a current particular case with a familiar similar one, in
order to transfer properties from one to the other, the known and familiar case to the
unknown and problematic case that is sought to be solved.

By adopting a transductive inference, an analogy is constructed, described through
a function from a domain A (the problem to be solved) to an image B (another problem
already solved previously). This analogy allows us to explore how the problem A might
be by comparing it with problem B, and how it might work if it were like the analogical
problem B. Since we know a solution of B, all we have to do is transfer it to A. Therefore,
the analogy must reflect the invariant structure that A has in terms of some invariance
present in problem B and similar to that of A.

Thusly, we can portray the characteristics of the starting set A in terms of some
already-formed and known set B with which we are familiar. In doing so, imagining
some aspect or property of the domain A in terms of something else, we are able to
think about the original problem from their transductive model. This allows solving the
initial problem in terms of a solution that is already known in the analogous previously
solved problem. The evocation of the familiar and known in advance problem B, leads
to solving problem A, given the similarity between A and B. In this way, there is a
connection–once unthinkable and surprising- between A and B, in making the terms
from A to the analogical model B, and vice versa as the analogical terms fit back to
problem A.

The advantage that problem A acquires when interacting with problem B consists in
the creation of a new cognitive scheme to characterize A in terms of B, embedding A
into B and redirecting A to the solution of B, which is based on its latent invariants, to
finish capturing the invariants in A that allow its solution.

In the next section, we developed a case study that similarly connects a problem A
of a geometric nature with another problem B belonging to the field of graph theory.
In turn, B is analogically linked to a third problem C related to electrical circuits. The
analogy between the three problems leads to solve A in terms of B first, and then in terms
of C, allowing a characterization of the solution of A and A itself in physical terms.

3 The Perfect Squared Rectangle Problem: A Case Study

In this section, we put into practice the constructed and adopted transductive method-
ology so as to allow analogical transferences of invariant structures between any two
domains.
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The problem to be solved is centered on the analysis of geometric tessellations
through graph theory and planar electrical networks. A tessellation consists in a refine-
ment of a specific surface by a set of pieces assembled together such that they are all
together without spaces in between or causing overlaps. In our case, we consider flat tiles
and, within those, flat geometric shapes. More precisely, we deal with “perfect squared
rectangles”. A rectangle is said to be squared into a finite number n of figures if it is
tiled into n squares of sizes s1, s2,…, sn, all integer numbers, being n the order of the
tiling. A squared rectangle is called perfect if the squares in the tiling are all of different
sizes, and it is called simple if no square of the same size is repeated. Thus, the “perfect
squared rectangle” problem (to which we will refer as problem A and will be the one we
will deal with from here onward) is as follows: given a rectangle, is it possible to tile its
surface with different squares? Are there perfect rectangles of all order, or what orders
are there? And, are these unique, under such conditions?

This type of problem goes back at least to 1902, when Ernest H. Dudeney published
in a magazine the solution to the puzzle concerning Lady Isabel’s rectangular casquet
with a square lid, which contained in this lid, a pattern of subdivisions into a rectangle
and a number of squares, all of different sizes. The puzzle was designed to answer how
many different squares there were on the lid, what those sizes were, and how the squares
and the rectangle must fit together.

The following year, Max Dehn [7] proved that a rectangle can be squared if and
only its sides are commensurable (using counting numbers), i.e. if the sides are integral
multiples of each other. Therefore, solutions should be presented with integer lengths.
In 1925, Moroń [11] found the 32 by 33 simple perfect rectangle of order 9, the first
one published. In 1940, two important papers were published: on the one hand, R.
Sprague proved that each rectangle with commensurable sides has a perfect squaring,
and has infinitely many totally distinct perfect squarings. On the other hand, Leonard
Brooks, Cedric Smith, Arthur Stone and William Thomas Tutte [5], in their attempt
to demonstrate the uniqueness of the dissection of a square into smaller squares, all
unequal, i.e. the Lusin’s conjecture, came to work with perfect rectangles:

“After some practice we found that the construction of such rectangles was not
difficult. Our method was to draw a rectangle dissected into smaller rectangles,
and to pretend that these rectangles were badly drawn squares. On this assumption
the relative sizes of the squares could be found by solving algebraic equations
describing how the squares had to fit together (…) We amassed quite a respectable
catalogue of perfect rectangles (…) Alas, no perfect square made its way into our
catalogue” [17, pp. 2–3].

Thanks to this last work, the above-mentioned problem ends up being solved by
graph theory and electrical networks. Below, we present a particular rectangle (Fig. 1)
different from the one studied by Brooks et al., as a generalizable case, which allows us
to appreciate the herein proposed transductive methodology.

The idea is to establish a correspondence between the original problem A and two
equivalent problems: B represents the analogy in terms of graph theory, and C represents
the translation from A to the field of electrical networks. This produces the parallelism
inserted in Table 1:
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Table 1. Three analogical problems.

Problem A Problem B Problem C

Geometry Graph Theory Electrical Networks

Squared rectangle Connected planar graph Electric circuit

[Figure 1] [Figure 2] [Figure 3]

Horizontal line segments Vertices (nodes) Terminals (dots)

Squares (that have two
horizontal lines as boundaries)

Edges Wiresa (lines connecting two
of the dots)

Side-length of the square (that
the lines represent)

The length of the lines
connecting two nodes

Current in a wire

a Assuming that the wires have electrical resistance of value 1, then Ohm’s law implies that the
value of the wire will be equal to the intensity of the current flowing through it.

Brooks et al. explain it so:

“The horizontal lines in the squared rectangle correspond to the terminals of the
network, and the squares correspond to the wires joining them. The current in a
wire is measured by the side-length of the corresponding square, and its direction
is downward in the rectangle. The top edge of the squared rectangle corresponds
to the positive pole, the terminal at which current enters the network. The bottom
edge likewise corresponds to the negative pole, the terminal from which the current
leaves” [17, pp. 3–4].

Figure 1 describes a tessellation of a squared rectangle: the variables x1 to x9 represent
the side-lengths of the squares inside the rectangle. Linear relationships between the
variables are established. The horizontal relationships represent the first law of Kirchhoff
(the sum of the values of the wires that fit into a node is equal to the sum of the values of the
wires that leave it): x2 = x4 + x5, x6 = x3 + x5, x1 + x4 = x7 + x8, x9 = x6 + x8.
On the other hand, Kirchhoff’s second law states that the sum of the currents for the

Fig. 1. Perfect squared rectangle.
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Fig. 2. Graph theoretical interpretation.

Fig. 3. Electrical interpretation.

entire circuit has to be zero. Referring to the Figs. 1, 2 and 3, the following equations
are constructed: x1 = x2 + x4, x7 = x8 + x9, x4 + x8 = x5 + x6, x3 = x2 + x5.
The results obtained are: x1 = 15, x2 = 8, x3 = 9, x4 = 7, x5 = 1, x6 = 10, x7 =
18, x8 = 4, x9 = 14, as shown in Fig. 1, finally producing a squared perfect rectangle
of dimensions 32 by 33.

4 Conclusion

Brooks, Smith, Stone and Tutte’s paper succeeded in separating the topological part of
the problem, related to the theory of linear graphs, from the metrical part, associated to
the theory of current flow in electrical circuits.

Consequently, the analyzed case offers an example of an invariant structure under-
lying the three representations, which these authors knew how to recognize, beyond
expressing it in other terms. The characteristics of the problem help to understand how
the detection of an analogy can contribute to the configuration of a pattern of regularity
that, when applied correctly, can solve the posed problem. The discovery of the electrical
analogy allowed Kirchhoff’s laws to be applied, and this, in turn, allowed these authors
to solve the dimensions of the sides of the squares inside the rectangle, and many other
problems.
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Abstract. Generalizations of the traditional intermediate value theo-
rem are presented. The obtained generalized theorems are particular
useful for the existence of solutions of systems of nonlinear equations
in several variables as well as for the existence of fixed points of con-
tinuous functions. Based on the corresponding criteria for the existence
of a solution emanated by the intermediate value theorems, generalized
bisection methods for approximating fixed points and zeros of continuous
functions are given. These bisection methods require only algebraic signs
of the function values and are of major importance for tackling problems
with imprecise (not exactly known) information.

Keywords: Bolzano theorem · Bolzano-Poincaré-Miranda theorem ·
Intermediate value theorems · Existence theorems · Bisection
methods · Fixed points · Nonlinear equations

1 Introduction

A system of n nonlinear equations in n real unknowns,

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0,

(1)

may be represented in the real n-dimensional vector space R
n as follows:

Fn(x) = θn, (2)

where Fn = (f1, f2, . . . , fn) : D ⊂ R
n → R

n is a nonlinear mapping and θn =
(0, 0, . . . , 0) is the origin of Rn. The problem of solving the Eq. (2) is to find a
zero x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ D for which Fn(x�) = θn. Similarly, the problem of

finding a fixed point of Fn in D ⊂ R
n is to find a point x� ∈ D which satisfies

the equation Fn(x�) = x�. Obviously, the problem of finding a fixed point is
equivalent to the problem of solving the Eq. (2) by considering the mapping
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Φn = In − Fn (where In indicates the identity mapping) instead of Fn and
solving the equation Φn(x) = θn, instead of the Eq. (2).

Many problems require solution of systems of equations for which Newton’s
method and the related class of algorithms [15] fail due to nonexistence of deriva-
tives or poorly behaved partial derivatives. Also, Newton’s method as well as
Newton’s-like methods often converge to a solution x∗ of Fn(x) = θn almost
independently of the initial guess, while Fn(x) = θn may have several solutions,
all of which are desired for the application [28]. Because of this reason, general-
ized bisection methods have been investigated. According to these methods one
establishes the existence of at least one solution of the Eq. (2) in a given domain
using a specific criterion for the existence of a solution. These kind of criteria can
be obtained using the conditions of various “existence theorems” (intermediate
value theorems). Once we have obtained a domain for which the criterion of the
existence is fulfilled, we are able to obtain upper and lower bounds for solution
values. To this end, by computing a sequence of bounded domains of decreasing
diameters, we are able to obtain a region with arbitrarily small diameter that
contains at least one solution of the Eq. (2).

These methods require only algebraic signs of the function values. The alge-
braic sign is the smallest amount of information (one bit of information) nec-
essary for the purpose needed. Thus, the methods that require only algebraic
signs are of major importance for tackling problems with imprecise (not exactly
known) information. This kind of problems occurs in various scientific fields
including mathematics, economics, engineering, computer science, biomedical
informatics, medicine and bioengineering, among others. This is so, because, in
a large variety of applications, precise function values are either impossible or
time consuming and computationally expensive to obtain. One such applica-
tion is provided in [28]. This application concerns the computation of all the
periodic orbits (stable and unstable) of any period and accuracy which occur,
among others, in the study of beam dynamics in circular particle accelerators
like the Large Hadron Collider (LHC) machine at the European Organization for
Nuclear Research (CERN). In this application, the method which is presented
in [24] and is implemented in [25] is used. Furthermore, these methods are par-
ticularly useful for tackling various problems where the corresponding functions
take very large and/or very small values.

2 Background Material

Notation 1. We denote by ϑA the boundary of a set A, by clA its closure, by
intA its interior, by card{A} its cardinality (i.e., the number of elements in the
set A) and by coA its convex hull (i.e., the set of all finite convex combinations
of elements of A).

Notation 2. We shall frequently use the index sets Nn = {0, 1, . . . , n}, Nn
¬0 =

{1, 2, . . . , n} and Nn
¬i = {0, 1, . . . , i − 1, i + 1, . . . , n}. Furthermore, for a given

set I = {i, j, . . . , �} ⊂ Nn we denote by Nn
¬I or equivalently by Nn

¬ij···� the set
{k ∈ Nn | k /∈ I}.
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Definition 1. For any positive integer n, and for any set of points V =
{υ0, υ1, . . . , υn} in some linear space which are affinely independent (i.e., the
vectors {υ1 − υ0, υ2 − υ0, . . . , υn − υ0} are linearly independent) the con-
vex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with ver-
tices υ0, υ1, . . . , υn. For each subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂
{υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is called an m-face of
[υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The
m-faces are also called facets of the n-simplex. An m-face of the n-simplex is
called the carrier of a point p if p lies on this m-face and not on any sub-face of
this m-face.

Notation 3. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn}
by σn = [υ0, υ1, . . . , υn]. Also, we denote the (n − 1)-simplex that determines
the i-th (n−1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn]. Furthermore,
for a given index set I = {i, j, . . . , �} ⊂ Nn with cardinality card{I} = κ, we
denote by σn

¬I or equivalently by σn
¬ij···� the (n − κ)-face of σn with vertices

υm,m ∈ Nn
¬I .

Definition 2 [23,26]. The diameter of an m-simplex σm in R
n, m � n, denoted

by diam(σm), is defined to be the length of the longest edge (1-face) of σm while
the microdiameter, μdiam(σm), of σm is defined to be the length of the shortest
edge of σm.

Definition 3. Let σm = [υ0, υ1, . . . , υm] be an m-simplex in R
n, m � n. Then

the barycenter of σm denoted by K is the point K = (m + 1)−1
∑m

i=0 υi in R
n.

Remark 1. By convexity it is obvious that the barycenter of any m-simplex σm

in R
n is a point in the relative interior of σm.

Definition 4. An n-simplex is oriented if an order has been assigned to its ver-
tices. If 〈υ0, υ1, . . . , υn〉 is an orientation of {υ0, υ1, . . . , υn} this is regarded as
being the same as any orientation obtained from it by an even permutation of the
vertices and as the opposite of any orientation obtained by an odd permutation
of the vertices. We shall denote oriented n-simplices by σn = 〈υ0, υ1, . . . , υn〉,
and we shall write, for example, 〈υ0, υ1, υ2, . . . , υn〉 = −〈υ1, υ0, υ2, . . . , υn〉 =
〈υ2, υ0, υ1, . . . , υn〉. The boundary ϑσn of an oriented n-simplex σn =
〈υ0, υ1, . . . , υn〉 is given by ϑσn =

∑n
i=0 (−1)i〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉.

The oriented (n − 1)-simplex 〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉 will be called the
ith face of σn.

Definition 5. An n-dimensional polyhedron Πn is a union of a finite number of
oriented n-simplices σn

i , i = 1, 2, . . . , k such that the σn
i have pairwise-disjoint

interiors. We write Πn =
∑k

i=1 σn
i and ϑΠn =

∑k
i=1 ϑσn

i .

Definition 6. Let ψ ∈ R, then the sign (or signum) function, denoted by sgn,
maps ψ to the set {−1, 0, 1} as follows:

sgnψ =

⎧
⎨

⎩

−1, if ψ < 0,
0, if ψ = 0,
1, if ψ > 0.

(3)
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Furthermore, for any a = (a1, a2, . . . , an) ∈ R
n the sign of a, denoted sgna, is

defined as sgna = (sgna1, sgna2, . . . , sgnan) .

3 Bolzano Intermediate Value Theorem

The fundamental and pioneering Bolzano’s theorem states the following [2,7]:

Theorem 1 (Bolzano’s theorem). If f : [a, b] ⊂ R → R is a continuous func-
tion and if it holds that f(a)f(b) < 0, then there is at least one x ∈ (a, b) such
that f(x) = 0.

This theorem is also called intermediate value theorem since it can be easily
formulated as follows:

Theorem 2 (Bolzano’s intermediate value theorem). If f : [a, b] ⊂ R → R

is a continuous function and if y0 is a real number such that:

min{f(a), f(b)} < y0 < max{f(a), f(b)},

then there is at least one x0 ∈ (a, b) such that f(x0) = y0.

Remark 2. Obviously, Theorem 2 can be deduced from Theorem 1 by considering
the function g(x) = f(x) − y0.

Remark 3. The first proofs of the above theorem, given independently by
Bolzano in 1817 [2] and Cauchy in 1821 [4], were crucial in the procedure of
arithmetization of analysis, which was a research program in the foundations of
mathematics during the second half of the 19th century.

Based on the hypotheses of Theorem 1, a simple and very useful criterion
for the existence of a zero of a continuous mapping f : [a, b] ⊂ R → R in some
interval (a, b) is the following Bolzano’s existence criterion:

f(a) f(b) < 0, (4)

or equivalently:
sgn f(a) sgn f(b) = −1, (5)

where sgn denotes the sign function (3).

Remark 4. The Bolzano existence criterion is well-known and widely used and
it can be generalized to higher dimensions, see [27,30] (cf. Sects. 4 and 5). Note
that when the condition (4) (or the condition (5)) is not fulfilled, then in the
interval (a, b) either no zero exists or there are zeros for which the sum of their
multiplicities is an even number (e.g., two simple zeros, one double and two
simple zeros, one triple and one simple zeros etc.).
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The well-know and widely applied bisection method is based on the Bolzano
existence criterion in order to approximate a zero of a continuous function f :
[a, b] ⊂ R → R in a given interval (a, b). A simplified version described in [24] is
the following:

xp+1 = xp + c sgn f(xp) / 2p+1, p = 0, 1, . . . , (6)

where x0 = a and c = sgnf(a) (b − a). Instead of the iterative formula (6) we
can also use the following [24]:

xp+1 = xp − ĉ sgn f(xp) / 2p+1, p = 0, 1, . . . , (7)

where x0 = b and ĉ = sgn f(b) (b − a).
The sequences (6) and (7) converge with certainty to a zero r ∈ (a, b) if for

some xp it holds that:

sgnf(x0) sgnf(xp) = −1, for p = 1, 2, . . . .

Furthermore, the number of iterations ν required to obtain an approximate
zero r∗ such that |r − r∗| � ε for some ε ∈ (0, 1) is given by:

ν =
⌈
log2(b − a) ε−1

⌉
, (8)

where �x� = ceil(x) denotes the ceiling function that maps a real number x to
the least integer greater than or equal to x.

Remark 5. The reasons for choosing the iterative schemes (6) and (7) are that:

1. They converge with certainty within the given interval (a, b).
2. They are globally convergent methods in the sense that they converge to a

zero from remote initial guesses.
3. Using the relation (8) we may predetermine the number of iterations that are

required for the attainment of an approximate zero to a given accuracy.
4. They have a great advantage since they are worst-case optimal. That is, they

possess asymptotically the best possible rate of convergence in the worst
case [20]. This means that they are guaranteed to converge within the prede-
fined number of iterations, and, moreover, no other method has this important
property.

5. They require only the algebraic signs of the function values to be computed,
as is evident from (6) and (7); thus they can be applied to problems with
imprecise function values.

For applications of the iterative schemes (6) and (7) we refer the interested
reader, among others, to [5,8,9,34,35].
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4 Bolzano-Poincaré-Miranda Intermediate
Value Theorem

A straightforward generalization of Bolzano’s intermediate value theorem to
continuous mappings of an n-cube (parallelotope) into R

n was proposed (with-
out proof) by Poincaré in 1883 and 1884 in his work on the three body prob-
lem [16,17]. This theorem, now known as Bolzano-Poincaré-Miranda theorem,
states that [13,22,27]:

Theorem 3 (Bolzano - Poincaré -Miranda theorem). Suppose that P ={
x ∈ R

n | |xi| < L, for 1 � i � n
}

and let the mapping Fn =
(f1, f2, . . . , fn) : P → R

n be continuous on the closure of P such that Fn(x) 	=
θn = (0, 0, . . . , 0) for x on the boundary of P , and

(a) fi(x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) � 0, for 1 � i � n,
(b) fi(x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

Theorem 3 it has come to be known as “Miranda’s theorem” since in 1940
Miranda [13] proved that it is equivalent to the traditional Brouwer fixed point
theorem [3]. It is worthy to mention that the Bolzano-Poincaré-Miranda theorem
is closely related to important theorems in analysis and topology and constitutes
an invaluable tool for verified solutions of numerical problems by means of inter-
val arithmetic. For a short proof and a generalization of the Bolzano-Poincaré-
Miranda theorem using topological degree theory we refer the interested reader
to [27]. In addition, for generalizations with respect to an arbitrary basis of Rn

that eliminate the dependence of the Bolzano-Poincaré-Miranda theorem on the
standard basis of R

n see [6,27]. For various interesting relations between the
theorems of Bolzano-Poincaré-Miranda, Borsuk, Kantorovich and Smale with
respect to the existence of a solution of a system of nonlinear equations, we refer
the interested reader to [1].

The conditions of the Bolzano-Poincaré-Miranda theorem give an invaluable
existence criterion for a solution of the Eq. (2) where Fn = (f1, f2, . . . , fn) : P ⊂
R

n → R
n is continuous.

Remark 6. Similarly to Bolzano’s criterion, the Bolzano - Poincaré - Miranda cri-
terion requires only the algebraic sings of the function values to be computed
on the boundary of the n-cube P . On the other hand, for general continuous
functions, in contrary to Bolzano’s criterion, the hypotheses (a) and (b) are not
always fulfilled or it is impossible to be verified for a given n-cube P .

Next, the characteristic polyhedron criterion and the characteristic bisec-
tion method are briefly presented. These approaches, in contrary to Bolzano -
Poincaré - Miranda criterion require only the algebraic sings of the function val-
ues to be computed on the vertices of the considered polyhedron.

There are various generalized bisection methods that require the compu-
tation of the topological degree in order to localize a solution of the Eq. (2)
(see, e.g., [11,23]). We shall allow us to briefly discuss a few basic concepts
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regarding topological degree theory. To this end, suppose that a function
Fn = (f1, f2, . . . , fn) : clDn ⊂ R

n → R
n is defined and twice continuously differ-

entiable in an open and bounded domain Dn of Rn with boundary ϑ Dn. Suppose
further that the solutions of the equation Fn(x) = p, where p ∈ R

n is a given
vector, are not located on ϑ Dn, and that they are simple, i.e., the determinant,
det JFn

, of the Jacobian matrix of Fn at these solutions is non-zero.

Definition 7. The topological degree of Fn at p relative to Dn is denoted by
deg[Fn,Dn, p] and is defined by the following sum:

deg[Fn,Dn, p] =
∑

x∈F−1
n (p)∩Dn

sgn det JFn
(x), (9)

where sgn denotes the sign function (3).

Remark 7. The topological degree can be generalized when the function is only
continuous [15]. Furthermore, if Dn = D1

n ∪ D2
n where D1

n and D2
n have disjoint

interiors and Fn(x) 	= θn for all x ∈ ϑD1
n ∪ ϑD2

n, then the topological degree is
additive, i.e.:

deg[Fn,Dn, θn] = deg[Fn,D1
n, θn] + deg[Fn,D2

n, θn]. (10)

The topological degree is invariant under changes of the vector p in the sense
that, if q ∈ R

n is any vector, then it holds that [15]:

deg[Fn,Dn, p] ≡ deg[Fn − q,Dn, p − q],

where Fn − q denotes the mapping Fn(x) − q, x ∈ Dn. Thus, for simplicity
reason, we consider the case where the topological degree is defined at the origin
θn = (0, 0, . . . , 0) in R

n.

The topological degree deg[Fn,Dn, θn] can be represented by the Kronecker
integral which is defined as follows:

deg[Fn,Dn, θn] =
Γ (n/2)
2πn/2

∫ ∫

ϑDn

· · ·
∫ ∑n

i=1 Aidx1 · · · dxi−1dxi+1 · · · dxn
(
f1

2 + f2
2 + · · · + fn

2
)n/2

, (11)

where Γ denotes the gamma function and Ai define the following determinants:

Ai = (−1)n(i−1) det
[

Fn
∂Fn

∂x1
· · · ∂Fn

∂xi−1

∂Fn

∂xi+1
· · · ∂Fn

∂xn

]

,

where ∂Fn

∂xk
=
(

∂f1
∂xk

, ∂f2
∂xk

, . . . , ∂fn

∂xk

)
is the kth column of the determinant detJFn

of the Jacobian matrix JFn
.

The important Kronecker’s theorem [15] states that the equation Fn(x) = θn

has at least one zero in Dn if deg[Fn,Dn, θn] 	= 0. To this end, several methods
for the computation of the topological degree have been proposed in the past
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few years (see, e.g., [11,22]). One such method is the fundamental and pioneer-
ing Stenger’s method [22] that in some classes of functions is an almost optimal
complexity algorithm (see, e.g., [14,20,22]). The accurate computation of topo-
logical degree using Stenger’s or other related methods [11], is based on suitable
assumptions, including appropriate representation of the boundary of Dn. Specif-
ically, if the boundary of Dn can be “sufficiently refined” then Stenger’s method
gives the value of the topological degree.

Definition 8 [11,22,33]. Let Πn be an n-polyhedron. Let Fn = (f1, f2, . . . ,
fn) : Πn ⊂ R

n → R
n be continuous with θn /∈ Fn(ϑΠn). If n = 1, ϑΠ1 is said

to be sufficiently refined relative to sgn F1, if 0 /∈ F1(ϑΠ1). If n > 1, ϑΠn is
said to be sufficiently refined relative to sgnFn, if ϑΠn has been subdivided so
that it may be written as a union of a finite number of (n − 1)-dimensional
regions Qn−1

1 , Qn−1
2 , . . . , Qn−1

m , each consisting of a union of a finite number of
(n − 1)-simplices with pairwise disjoint (n − 1)-dimensional interiors and having
the following properties:

(a) the interiors of the Qn−1
i are pairwise disjoint and each Qn−1

i is connected;
(b) for each region Qn−1

i , there exists at least one component of Fn, (for example
fri

), that does not vanish on it;
(c) if fri

	= 0 on Qn−1
i , then ϑQn−1

i is sufficiently refined relative to sgn F ri
n−1

where F ri
n−1 =

(
f1, f2, . . . , fri−1, fri+1, . . . , fn

)
.

As we have already mentioned previously, once we have obtained a domain
for which the value of the topological degree relative to this domain is nonzero,
we are able to obtain upper and lower bounds for solution values. To this end,
by computing a sequence of bounded domains with nonzero values of topological
degree and decreasing diameters, we are able to obtain a region with arbitrar-
ily small diameter that contains at least one solution of the Eq. (2). However,
although the nonzero value of topological degree plays an important role in the
existence of a solution of the Eq. (2), the computation of this value is a time-
consuming procedure. The bisection method, on the other hand, which is briefly
described below, avoids all calculations concerning the topological degree by
implementing the concept of the characteristic n-polyhedron criterion for the
existence of a solution of the Eq. (2) within a given bounded domain. This crite-
rion is based on the construction of a characteristic n-polyhedron [24,25,33]. To
define a characteristic n-polyhedron (n-dimensional convex polyhedron) we con-
struct the n-complete 2n × n matrix Mn whose rows are formed by all possible
combinations of −1 and 1. To this end we compute the n-binary 2n × n matrix
M∗

n =
[
e∗
ij

]2n,n

i,j=1
where e∗

ij is the jth digit of the n-digit binary representation
of the number (i − 1) counting the left-most digit first. Then the elements of
Mn =

[
eij

]2n,n

i,j=1
are given by eij = 2e∗

ij − 1.
Suppose now that Πn = 〈V1, V2, . . . , V2n〉 is an oriented (i.e., an orientation

has been assigned to its vertices) n-dimensional convex polyhedron with 2n ver-
tices, Vi ∈ R

n, and let Fn = (f1, f2, . . . , fn) : Πn ⊂ R
n → R

n be a continuous
mapping. Then,
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Definition 9. The 2n × n matrix S(Fn; Πn) whose entries in the k-th row are
the corresponding coordinates of the vector:

sgn Fn(Vk) =
(
sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)

)
, (12)

will be called matrix of signs associated with Fn and Πn, where sgn ψ defines
the sign function (3).

Definition 10. An n-polyhedron Πn is called characteristic n-polyhedron rela-
tive to Fn, iff the matrix S (Fn; Πn) is identical with the matrix Mn, after some
permutation of its rows.

Definition 11. A polyhedron which is a convex hull of 2n−1 vertices of a char-
acteristic n-polyhedron Πn relative to Fn, will be called r-side of Πn and will
be noted by Pr, r = 1, 2, . . . , n iff for all its vertices Vk, k = 1, 2, . . . , 2n−1 the
corresponding vectors sgn Fn(Vk) have their r-th coordinate equal to each other.
Moreover, if this common r-th element is −1 or 1 then the Pr will be called
negative or positive r-side correspondingly.

Lemma 1 [33]. In each characteristic n-polyhedron relative to Fn there are n
positive and n negative sides. Moreover, each side Pr of a characteristic n-
polyhedron Πn relative to Fn = (f1, f2, . . . , fn) : Πn ⊂ R

n → R
n is itself a char-

acteristic (n − 1)-polyhedron relative to F r
n−1 = (f1, f2, . . . , fr−1, fr+1, . . . , fn) :

Pr → R
n−1.

If the boundary ϑΠn of a characteristic polyhedron Πn can be sufficiently
refined then there is (at least) one zero within Πn. More specifically, the following
theorem holds:

Theorem 4 [33]. Let V = 〈Vi〉2ni=1 and P = {Pi}2n
i=1 be the ordered set of vertices

and the set of the sides, respectively, of a characteristic n-polyhedron Πn relative
to continuous Fn : Πn ⊂ R

n → R
n for which θn /∈ Fn(ϑΠn). Suppose that

S = {Si,j}2n
i=1,

ji
j=1 is a finite set of (n − 1)-dimensional oriented simplices which

lie on ϑΠn with the following properties:

(a) ϑΠn =
∑2n

i=1

∑ji
j=1 Si,j,

(b) the interiors of the members of S are disjoint,
(c) these simplices make ϑΠn sufficiently refined relative to sgn (Fn), and
(d) the vertices of each simplex Si,j are a subset of vertices of Pi.

Then, it holds that deg[Fn,Πn, θn] = ±1.

Remark 8. The above result implies the existence of at least one solution of
the Eq. (2) within Πn. For more details on how to construct a characteristic
n-polyhedron and locate a desired solution see [24,25,28]. The characteristic
polyhedron can be considered as a translation of the Poincaré-Miranda hyper-
cube [22,27].
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Next, we describe a generalized bisection method. This method combined
with the above mentioned criterion, produces a sequence of characteristic poly-
hedra of decreasing size always containing the desired solution. We call it Char-
acteristic Bisection. This version of bisection does not require the computation
of the topological degree at each step, as others do [11,23]. It can be applied to
problems with imprecise function values, since it depends only on their signs.
The method simply amounts to constructing another refined characteristic poly-
hedron, by bisecting a known one, say Πn. To do this, we compute the mid-
point M of the longest edge 〈Vi, Vj〉, of Πn (where the distances are measured
in Euclidean norms). Then we obtain another characteristic polyhedron, Πn

∗ , by
comparing the sign, sgnFn(M), of Fn(M) with that of Fn(Vi) and Fn(Vj) and
substituting M for that vertex for which the signs are identical [24,25,28]. Then
we select the longest edge of Πn

∗ and continue the above process. If the assump-
tions of Theorem 4 are satisfied, one of the sgnFn(Vi), sgnFn(Vj) coincides with
sgnFn(M), otherwise, we continue with another edge.

Theorem 5 [33]. Let Πn be a characteristic n-polyhedron whose longest edge
length is Δ(Πn). Then, the minimum number ζ of bisections of the edges of Πn

required to obtain a characteristic polyhedron Πn
∗ whose longest edge length sat-

isfies Δ(Πn
∗ ) � ε, for some accuracy ε ∈ (0, 1), is given by

ζ =
⌈
log2

(
Δ(Πn) ε−1

)⌉
. (13)

Remark 9. Notice that ζ is independent of the dimension n and that the bisection
algorithm has the same number of iterations as the bisection in one-dimension
which is optimal and possesses asymptotically the best rate of convergence [19].

5 Intermediate Value Theorem for Simplices

In [30] the intermediate value theorem for simplices is proposed. The obtained
proof is based on the Knaster-Kuratowski-Mazurkiewicz covering principle [12]
(cf. Lemma 2 below). Also, in [31] two short proofs of this theorem are given
which are based on Sperner covering principles (cf. Lemmas 3 and 4 below).

Lemma 2 (Knaster-Kuratowski-Mazurkiewicz (KKM Lemma)). Let
Ci, i ∈ Nn = {0, 1, . . . , n} be a family of (n + 1) closed subsets of an n-simplex
σn = [υ0, υ1, . . . , υn] in R

n satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) For each ∅ 	= I ⊂ Nn it holds that

⋂
i∈I σn

¬i ⊂ ⋃
j∈Nn

¬I
Cj .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 10. It is worthy to mention that, the three fundamental and pioneer-
ing classical results, namely, the Brouwer fixed point theorem [3], the Sperner
lemma [21], and the KKM lemma [12] are mutually equivalent in the sense that
each one can be deduced from another. Furthermore, Scarf proposed a method
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for approximating a fixed point of a continuous function from a unit simplex
into itself [18]. This approach is considered as the first constructive proof to
Brouwer’s fixed point theorem. Scarf’s method is based on a simplicial subdivi-
sion (triangulation) of the given simplex and it uses a labeling of the vertices of
the simplicial subdivision.

Definition 12. A system (family) of subsets of a set A whose union is A is called
a covering of A. The order of a finite system of sets is the greatest integer k for
which the system has k elements with nonempty intersection. A system of sets
is said to be simple if every two elements of the system are distinct. A covering
is called an ε-covering if the finite system of sets of this covering are of diameter
less than ε > 0.

A similar to KKM covering principle was proposed by Sperner [21]:

Lemma 3 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying the
following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ∩ Ci = ∅, ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

A similar result is the following:

Lemma 4 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying the
following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ⊂ Ci , ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Next, we give the intermediate value theorem for simplices [30].

Theorem 6 (Intermediate value theorem for simplices [30]). Assume that
σn = [υ0, υ1, . . . , υn] is an n-simplex in R

n. Let Fn = (f1, f2, . . . , fn) : σn → R
n

be a continuous function such that fj(υi) 	= 0, ∀ j ∈ Nn
¬0 = {1, 2, . . . , n}, i ∈

Nn = {0, 1, . . . , n} and θn = (0, 0, . . . , 0) /∈ Fn(ϑσn) (i.e. Fn does not vanish
on the boundary ϑσn of σn). Assume that the vertices υi, i ∈ Nn are reordered
such that the following hypotheses are fulfilled:

(a) sgnfj(υj) sgnfj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0 , (14)

(b) sgnFn(υ0) 	= sgnFn(x), ∀x ∈ σn
¬0 , (15)

where sgnFn(x) =
(
sgnf1(x), sgnf2(x), . . . , sgnfn(x)

)
and σn

¬i denotes the face
opposite to vertex υi. Then, there is at least one point x ∈ intσn such that
Fn(x) = θn.
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Remark 11. The only computable information required by the hypotheses (14)
and (15) of Theorem 6 is the algebraic sign of the function values on the boundary
of the n-simplex σn. Thus, Theorem 6 is applicable whenever the signs of the
function values are computed correctly. Theorem 6 has been applied for the
localization and approximation of fixed points and zeros of continuous mappings
using a simplicial subdivision of a simplex [31].

Next, we present a generalized method of bisection for simplices.

Definition 13 [10]. Let σm
0 = 〈υ0, υ1, . . . , υm〉 be an oriented m-simplex in R

n,
m � n, suppose that 〈υi, υj〉 is the longest edge of σm

0 and let Υ = (υi +υj)/2 be
the midpoint of 〈υi, υj〉. Then the bisection of σm

0 is the order pair of m-simplices
〈σm

10, σ
m
11〉 where:

σm
10 = 〈υ0, υ1, . . . , υi−1, Υ, υi+1, . . . , υj , . . . , υm〉,

σm
11 = 〈υ0, υ1, . . . , υi, . . . , υj−1, Υ, υj+1, . . . , υm〉.

The m-simplices σm
10 and σm

11 will be called lower simplex and upper simplex
respectively corresponding to σm

0 while both σm
10 and σm

11 will be called elements
of the bisection of σm

0 . Suppose that σn
0 = 〈υ0, υ1, . . . , υn〉 is an oriented n-

simplex in R
n which includes at least one solution of the Eq. (2). Suppose further

that 〈σn
10, σ

n
11〉 is the bisection of σn

0 and that there is at least one root of the
system (2) in some of its elements. Then this element will be called selected n-
simplex produced after one bisection of σn

0 and it will be denoted by σn
1 . Moreover

if there is at least one solution of the system (2) in both elements, then the
selected n-simplex will be the lower simplex corresponding to σn

0 . Suppose now
that the bisection is applied with σn

1 replacing σn
0 giving thus the σn

2 . Suppose
further that this process continues for p iterations. Then we call σn

p the selected
n-simplex produced after p iterations of the bisection of σn

0 .

Theorem 7 [23]. Suppose that σm = [υ0, υ1, . . . , υm] is an m-simplex in R
n,

m � n. Let K be the barycenter of σm and let Ki be the barycenter of the i-th
face σm

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υm] of σm then the following relationships
hold for all 0 � i � m,

(a) The points υi, K and Ki are collinear points,

(b) ‖K − υi‖2 =
m

m + 1

⎛

⎜
⎜
⎝

1
m

m∑

j=0
j �=i

‖υi − υj‖22 − 1
m2

m−1∑

p=0
p�=i

m∑

q=p+1
q �=i

‖υp − υq‖22

⎞

⎟
⎟
⎠

1/2

,

(c) ‖K − Ki‖2 = m−1‖K − υi‖2.
Definition 14 [26]. The barycentric radius β(σm) of an m-simplex σm in R

n is
the radius of the smallest ball centered at the barycenter of σm and containing
the simplex. The barycentric radius β(A) of a subset A of Rn is the supremum
of the barycentric radii of simplices with vertices in A.
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Remark 12. The length of the barycentric radius β(σm) of an m-simplex σm

in R
n, m � n, is maxi ‖K − υi‖2.

Theorem 8 [26]. Any m-simplex σm = [υ0, υ1, . . . , υm] in R
n, m � n is enclos-

able by the spherical surface Sm−1
β with radius β(σm) given by:

β(σm) =
1

m + 1
max

i

⎛

⎜
⎜
⎝m

m∑

j=0
j �=i

‖υi − υj‖22 −
m−1∑

p=0
p�=i

m∑

q=p+1
q �=i

‖υp − υq‖22

⎞

⎟
⎟
⎠

1/2

.

Remark 13. The barycentric radius β(σn) of a n-simplex σn in R
n can be

used to estimate error bounds for approximate fixed points or approximate
roots of mappings in R

n, by approximating a fixed point or a root by the
barycenter of σn. Note that the computation of β(σn) requires only the lengths
of the edges of σn, which are also required in order to compute the diame-
ter diam(σn) of σn. Furthermore, since the distance of the barycenter K of
an n-simplex σn = [υ0, υ1, . . . , υn] in R

n from the barycenter Ki of the i-
th face σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn] of σn is equal to ‖K − υi‖2/n
[23,26], then using Theorem 8 we can easily compute the value of γ(σn) =
mini ‖K − Ki‖2/diam(σn). The value γ(σn) can be used to estimate the thick-
ness θ(σn) of σn, that is:

θ(σn) = min
i

{

min
x∈σn

¬i

∥
∥K − x

∥
∥
2

}

/diam(σn).

In general, the thickness θ(σn) is important to piecewise linear approximations
of smooth mappings and, in general, to simplicial and continuation methods for
approximating fixed points or roots of systems of nonlinear equations.

Theorem 9 [10]. Suppose that σm
0 is an m-simplex in R

n and let σm
p be any

m-simplex produced after p bisections of σm
0 . Then

diam(σm
p ) �

(√
3/2

)�p/m�
diam(σm

0 ), (16)

where diam(σm
p ) and diam(σm

0 ) are the diameters of σm
p and σm

0 respectively and
�p/m� is the largest integer less than or equal to p/m.

Theorem 10 [23,29]. Suppose that σm
0 , σm

p , diam(σm
0 ) and diam(σm

p ) are as in
Theorem 9 and let Km

p be the barycenter of σm
p . Then for any point T in σm

p the
following relationship is valid

‖T − Km
p ‖2 � m

m + 1

(√
3/2

)�p/m�
diam(σm

0 ). (17)

Definition 15. Let σn be an n-simplex in R
n and let diam(σn) and μdiam(σn)

be the diameter and the microdiameter of σn respectively. Suppose that r is a
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solution of the Eq. (2) in σn. Then we define the barycenter Kn of σn to be an
approximation of r and the quantity

ε(σn) =
n

n + 1

(
(
diam(σn)

)2 − n − 1
2n

(
μdiam(σn)

)2
)1/2

, (18)

to be an error estimate for Kn.

Theorem 11 [23,29]. Suppose that σn
p is the selected n-simplex produced after

p bisections of an n-simplex σn
0 in R

n. Let r be a solution of the Eq. (2) which is
included in σn

p and that Kn
p and ε(σn

p ) are the approximation of r and the error
estimate for Kn

p respectively. Then the following hold:

(a) ε(σn
p ) � n

n + 1

(√
3/2

)�p/n�
diam(σn

0 ),

(b) ε(σn
p ) �

(√
3/2

)�p/n�
ε(σn

0 ),
(c) lim

p→∞ εp = 0,

(d) lim
p→∞ Kn

p = r.

6 Synopsis

The paper presents, among some new results, an overview on generalizations
of the intermediate value theorem for approximating fixed points and zeros of
continuous functions. The presented generalized theorems are particular useful
for the existence of solutions of systems of nonlinear equations in several vari-
ables as well as for the existence of fixed points of continuous functions. Based
on the corresponding criteria for the existence of a solution emanated by the
intermediate value theorems, generalized bisection methods for approximating
fixed points and zeros of continuous functions are given. These bisection methods
require only algebraic signs of the function values and are of major importance
for tackling problems with imprecise (not exactly known) information.

Acknowledgment. The author would like to thank the anonymous reviewers for their
helpful comments.
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Abstract. Capture-recapture analysis is applied to estimate population
size in ecology, biology, social science, medicine, linguistics and software
engineering. The Poisson distribution is one of the simplest models for
count data and appropriate for homogeneous populations. On the other
hand, it is found to underestimate the counts for overdispersed data. In
this study, population size estimation using the mixture of Poisson and
Lindley distribution is proposed. It can exhibit overdispersed, equidis-
persed and underdispersed data. Additionally, it is able to present count
data with long tail. As a result of the problem of unobserved individu-
als, the zero-truncated Poisson Lindley distribution is considered. The
parameter of distribution can be estimated using the maximum likeli-
hood estimation. The Horvitz-Thompson estimator based on the zero-
truncated Poisson Lindley distribution for modelling the population size
is investigated in this study. Point and interval estimation of the target
population are presented. The technique of conditioning is used for vari-
ance estimation of the population size. Relative bias, relative variance
and relative mean square error are used for measuring the accuracy of
the estimator. The simulation results show that the Horvitz-Thompson
estimator under the zero-truncated Poisson Lindley distribution provides
a good fit when compared to the zero-truncated Poisson distribution.

Keywords: Poisson-Lindley distribution · Zero-truncated
distribution · Horvitz-Thompson estimators · Variance estimation

1 Introduction

Estimating the unknown population size based on the idea of capture-recapture
approach have been investigated in many fields. In ecology, this concept is applied
to estimate the total number of species and the number of wildlife [6,8]. In
medicine, it is used to estimate the number of hidden diseases. In linguistics,
there are many words in novels and a linguist is interested in estimating the total
vocabularies of authors [12]. In software engineering, estimating the number of
faults in software inspection is useful for software quality improvements. In social
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science, the problem of the number of illegal immigrants, the number of drug
users, the number of forced labours and the number of domestic violence are
discussed.

Let Xi denote the frequency with which individual i observed from the pop-
ulation of size N , for Xi = 0, 1, 2, . . . and i = 0, 1, 2, . . . , N . Suppose that there
are K individuals in sample from M observations, the number of individuals
observed exactly x times is fx for x = 1, 2, . . . ,m and m is the maximum num-
ber of times any individual observed. Therefore, we have K =

∑m
x=1 fx and

M =
∑m

x=1 xfx.

1.1 Illegal Immigrants Data in the Netherlands

Illegal immigrants data in the Netherlands was recorded by the police in 1967.
The number of illegal immigrants expelled ineffectively is 1880. Some of them
are apprehended more than once. The frequencies of apprehension are shown in
Table 1.

Table 1. Illegal immigrants data [10]

x 1 2 3 4 5 6 K

fx 1645 183 37 13 1 1 1880

1.2 Heroin User Data in Bangkok

Capture-recapture experiment was studied to estimate the heroin user popula-
tion in Bangkok in 2004 [2]. It found 9302 drug users treated at the centres. The
number of contacts of heroin users from health treatment centres is observed
and presented in Table 2.

Table 2. Heroin user data in Bangkok [2]

x 1 2 3 4 5 6 7 8 9 10 11 12 13

fx 2176 1600 1278 976 748 570 455 368 281 254 188 138 99

x 14 15 16 17 18 19 20 21 K

fx 67 44 34 17 3 3 2 1 9302

1.3 Forced Labour Data

The number of forced labour is a hidden data hard to estimate. Forced labour
worldwide data in 2012 were observed. From report, it is found 5491 forced
labours worldwide. The frequency of forced labour are shown in Table 3 [3].
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Table 3. Forced labour data [3]

x 1 2 3 4 5 6 7 8 9 10 11 K

fx 4069 1186 167 46 10 7 3 1 0 1 1 5491

1.4 Domestic Violence in the Netherlands

In 2009, it is found 17662 domestic violence identified in the Netherlands 2009.
The number of domestic violence reported are shown in Table 4.

Table 4. Domestic violence in the Netherlands [11]

x 1 2 3 4 5 6 7 8 9 K

fx 15169 1957 393 99 28 8 6 1 1 17662

The basic idea of the population size can be determined by both parts of
observed and unobserved data. Nevertheless, the terms unobserved individual is
unknown, f0. Hence, the zero-truncated model is considered for the distribution
of Xi or X in this study.

Modelling capture-recapture count data under the Poisson distribution is the
simplest model for estimating N . It is a traditional model introduced for equidis-
persed data, the variance is equal to the mean. However, in practice, using the
homogeneous Poisson model is not appropriate because of different probabilities
of an individual being observed. This leads to a heterogeneous population which
is over or under dispersed. When fitting a model under the Poisson distribution,
it leads to an underestimate of the population size for overdispersed cases in
which the variance is greater than the mean [4,5].

Then, a mixed Poisson distribution is considered for heterogeneous popula-
tions. It has been studied to fit count data for both overdispersion and under-
dispersion. Some example of Poisson mixture model are Poisson-Lindley [9,
18], Poisson-gamma [5,8,16], Generalized Poisson-Lindley [15], Poisson-Inverse
Gaussian [13] Poisson-Weighted Exponential [19] and Poisson-Tweedie distribu-
tions [7].

Here, the problem about population size estimation is investigated using the
Horvitz-Thompson (HT) estimator. Improving the HT estimator of N based
on the zero truncated mixed Poisson model has been studied such as the zero
truncated Poisson Gamma distribution known as the zero truncated negative
binomial distribution. This estimator is proposed for overdispersed data in [5],
[16]. However, it might be found numerical problem in optimization.

In this study, the focus is on the HT estimator based on the mixture of
Poisson model with one parameter. The HT estimator under the zero truncated
Poisson Lindley (ZTPL) distribution is developed and compared to the zero
truncated Poisson model. The Horvitz-Thompson estimator based on the ZTPL
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distribution is presented with both point and interval estimation of N . The
PL distribution and its properties are reviewed in Sect. 2. Point and interval
for the population size estimator is discussed and variance estimation of N by
conditioning approach is derived in Sect. 3. Simulation study is presented in
Sect. 4. An application is shown in Sect. 5 and conclusion is in Sect. 6.

2 The Poisson Lindley Distribution
and the Zero-Truncated Model

The mixture model based on the Poisson and Lindley distribution was developed
in 1970 to model count data [17] and is named the Poisson Lindley distribution
(PL). Let X denote a random variable which follows the Poisson distribution
with parameter λ. The probability mass function is given by

g(x|λ) =
e−λλx

x!
, (1)

where x = 0, 1, 2, . . . and λ > 0. When the parameter λ generated by the Lindley
distribution with the probability density function

h(λ) =
θ2

θ + 1
(1 + λ)e−θλ, (2)

where λ > 0 and θ > 0, the random variable X has the PL distribution and the
probability mass function of the PL distribution is given by

Pr(X = x) =

∞∫

0

g(x|λ) h(λ)dλ

=

∞∫

0

e−λλx

x!
· θ2

θ + 1
(1 + λ)e−θλdλ

=
θ2

(θ + 1)2

{
x + 1

(θ + 1)x+1
+

1
(θ + 1)x

}

=
θ2(x + θ + 2)
(θ + 1)x+3

, (3)

where x = 0, 1, 2, . . . and θ is the Poisson-Lindley parameter for θ > 0 [17].

Figure 1 shows the probability mass function of the PL distribution based
on some values of the parameter θ. When some individuals are not identified,
the zero count data is missing. The zero-truncated distribution is considered for
the distribution of X, and the probability function is defined by a conditional
probability on X > 0

Pr(X = x|x > 0) =
Pr(X = x)
Pr(X > 0)

=
Pr(X = x)

1 − Pr(X = 0)
, (4)
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Fig. 1. Probability mass function for the Poisson-Lindley Distribution with the param-
eter θ = 0.1, 0.2, 0.3, 0.5, 1, 5.

which can be written as

p+x =
px

1 − p0
, x = 1, 2, . . . . (5)

Hence, the probability mass function of a random variable X under the zero-
truncated Poisson Lindley distribution (ZTPL) can be defined by

p+x =
θ2(x + θ + 2)

(θ2 + 3θ + 1)(θ + 1)x
, (6)

where x = 1, 2, . . . and θ > 0. The mean and variance of the X are given by

μ =
(θ + 1)2(θ + 2)
θ(θ2 + 3θ + 1)

(7)

and

σ2 =
(θ + 1)2(θ3 + 6θ2 + 10θ + 2)

θ2(θ2 + 3θ + 1)2
. (8)
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The ZTPL model can represent overdispersed (μ < σ2), underdispersed (μ > σ2)
and equidispersed data (μ = σ2) [18] cases. The parameter θ of the ZTPL can
be estimated using maximum likelihood estimation. The log-likelihood function
under the ZTPL distribution is given by

�(θ) = log
K∏

x=1

θ2(x + θ + 2)

(θ2 + 3θ + 1)(θ + 1)x

= log

m∏

x=1

(
θ2(x + θ + 2)

(θ2 + 3θ + 1)(θ + 1)x

)fx

= 2K log θ − K log(θ2 + 3θ + 1) − M log(θ + 1) +

m∑

x=1

fx log(x + θ + 2). (9)

3 Population Size Estimator

3.1 Horvitz-Thompson Estimator

Horvitz-Thompson estimator was developed for population size estimation in
1952 [14]. This approach is well known and the estimator is used in capture-
recapture analysis. It was used for estimating the total target population
based on the zero-truncated Poisson distribution by [10] and the zero-truncated
Poisson-Gamma distribution by [5]. Assume that each individual is identified
independently with the probability 1−p0. Let Ii be an indicator function, where
Ii = 1 indicates individual i is observed and Ii = 0 indicates individual i unob-
served for i = 1, 2, . . . , N . Then, K =

∑N
i=1 Ii has the binomial distribution. The

population size can be estimated by
N∑

i=1

Ii[1 − Pr(X = 0)]−1 and can written as

N̂ =
K

1 − p0
, (10)

where K =
N∑

i=1

Ii and 1 − p0 = 1 − Pr(X = 0), are the number of observed

individuals and the probability of an individual is observed, respectively. Hence,
considering the zero-truncated distribution, it leads to unknown probability p0.
Therefore, the estimated p0 is required for modelling the size of target popu-
lations. The maximum likelihood estimation (MLE) is a well known statistical
approach for estimating the unknown parameter. In this study, the log-likehood
function in [9] is maximized for estimating the parameter (θ) of the ZTPL dis-
tribution. After that, θ̂ is replaced in [3] for p0(θ̂). Finally, we have the HT
estimator as a point estimator of N under the ZTPL distribution.

For the interval estimator of N , the normal approximation is considered for
the confidence interval for the population size under the large enough sample
condition. The 95% confidence interval is given by [5,10].

N̂ ± 1.96
√

Var(N̂). (11)
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3.2 Variance Estimation of N

The confidence interval for N requires the variance term. In this study, the tech-
nique of conditioning proposed by [1] is used to estimate the variance estimation
of N which can be obtained as

Var(N̂) = E[Var(N̂ |K)] + Var(E[N̂ |K]). (12)

Considering the first term in (12), E[Var(N̂ |K)] can be estimated by
Var(N̂ |K) using the δ method. Under the HT estimator and the ZTPL dis-
tribution with parameter θ, this results in

V̂ar(N̂ |K) = K2

(
∂

∂θ

1
g(θ)

)T

Var(θ)
(

∂

∂θ

1
g(θ)

)

, (13)

where g(θ) = 1 − p0 and p0 =
θ2(θ + 2)
(θ + 1)3

is the probability for unobserved indi-

vidual based on the PL distribution and the variance of θ can be estimated
by

V̂ar(θ) = −
(

∂2�

∂θ2

)−1

,

where � is the log likelihood defined in (9), the first derivative and the second
derivative of the log-likelihood with respect to θ can be written as

∂�

∂θ
=

2K

θ
+

m∑

x=1

fx
x + θ + 2

− K(2θ + 3)

θ2 + 3θ + 1
− M

θ + 1

∂2�

∂θ2
=

2K

θ2
+

m∑

x=1

fx
(x + θ + 2)2

+
2K

θ2 + 3θ + 1
− K

[
2θ + 3

θ2 + 3θ + 1

]2

− M

(θ + 1)2
.

Then, the first term of variance in (12) can be evaluated as

V̂ar(N̂ |K) =
[
Kθ(θ + 1)2(θ + 4)

(θ2 + 3θ + 1)2

]2

V̂ar(θ). (14)

For the second term, assume that E[N̂ |K] can be estimated by N̂ and K
is the number of observed individuals which follows the binomial distribution.
Then,

Var(E[N̂ |K]) ≈ Var(N̂)

= Var(
K

1 − p0
)

=
Kθ2(θ + 2)(θ + 1)3

(θ2 + 3θ + 1)2
. (15)

Finally, the variance of N̂ in (12) can be estimated using (14) and (15) which
is given as

Var(N̂) =
[
Kθ(θ + 1)2(θ + 4)

(θ2 + 3θ + 1)2

]2

V̂ar(θ) +
Kθ2(θ + 2)(θ + 1)3

(θ2 + 3θ + 1)2
. (16)
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4 Simulation Study

The HT estimator based on the zero-truncated Poisson (ZTP) and the zero-
truncated Poisson Lindley (ZTPL) distribution are compared to Chao estimator
which is known as the lower bound of the estimated population size

N̂chao = K +
f2
1

2f2

and the estimated variance of N̂ is given by [1]

V̂ar(N̂chao) =
1
4

f4
1

f3
2

+
f3
1

f2
2

+
1
2

f2
1

f2
− 1

4
f4
1

Kf2
2

− 1
2

f4
1

f2(2Kf2 + f2
1 )

.

In a simulation study, N̂ and N̂ ± 1.96
√

Var(N̂) for all estimators have been
investigated as follows

1. Population of size N = 250, 500, 1000, 2000 are generated using the negative
binomial distribution with parameter (p, k)

px =
Γ (x + k)

Γ (x + 1)Γ (k)
pk(1 − p)x, x = 0, 1, 2, . . . , k,

where p =
k

k + μ
, μ = 0.5, 1, 1.5, 2, 4, 10, k = 0.5, 0.75, 1, 1.25, 1.5, 2 and

repeated 10000 times.
2. Likelihood function is constructed using the ZTP and ZTPL distribution

before optimizing to estimate the parameter of the distribution.
3. Chao estimator and the HT estimator under the ZTP and the ZTPL model

are evaluated.
4. Finally, the estimators are measured in terms of relative bias

RBIAS(N̂) =
1
N

[E(N̂) − N ],

relative variance
RVar(N̂) =

1
N2

Var(N̂),

and relative root mean square error

RRMSE(N̂) =
1
N

√

Var(N̂) + (bias(N̂))2.

Considering the count data from the negative binomial distribution, the lower
bound of the number of population in the simulation is approximated using
the Chao estimator. The Horvitz-Thompson estimator based on the ZTP and
ZTPL distributions is compared to the Chao estimator. Figure 2 represents the
estimated population size for small and large sample size, N = 250 and N =
1000. It is clear that the estimator based on the ZTPL model outperforms ZTP
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Fig. 2. Comparison of estimated population size using the HT estimator based on
the Poisson (ZTP) and Poisson-Lindley (ZTPL) model and Chao estimator when gen-
erating data from the negative binomial distribution (p, k) with N = 250, 1000 and
repeated 10000 times. The vertical lines at each dot represent the standard deviation
of population size.
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Fig. 3. RRMSE of the HT estimator based on the Poisson (ZTP) and Poisson-Lindley
(ZTPL) model and Chao estimator when generating data under the negative binomial
distribution (p, k) with N = 250, 500, 1000, 2000 and repeated 10000 times.

and Chao with small bias. The estimated population size is very close to the
true number of population, especially when p is less than 0.5.

On the other hand, the ZTP and Chao estimators result in underestimates
for all situations. Figure 3 shows the performance of the estimator in term of
the relative root mean square error (RRMSE). The results indicate that the HT
estimator based on the ZTPL model give the highest accuracy with the smallest
RRMSE for various values of the parameter p. When N is large, the performance
of the ZTPL can be improved, whereas the ZTP and Chao estimators give larger
RRMSE.

Table 5 represents the accuracy of the ZTP, ZTPL and Chao estimator with
the RBias. The results indicate that RBias for the ZTPL estimator is close to
zero and gives the smallest RBias. The ZTPL estimator provides more accuracy,
especially when k < 1.5. Table 6 shows that the RVar of N̂ . It is found that
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the variance of the estimator decreases when μ is larger. Although the ZTP
estimator gives the smaller RVar, it does not work well for the heterogeneous
population and does not outperform the ZTPL and Chao estimators.

Considering the accuracy and precision in term of the RRMSE in Table 7,
the ZTPL estimator provides a good fit with smallest RRMSE, particularly for
k < 1.5. For example, when N = 1000, μ = 1 and k = 1.25, RRMSE the ZTPL
estimator is 0.0076 while for the ZTP estimator it is 0.0509. For RBias of the
estimator, the ZTPL and ZTP estimators provide RRMSE = 2.0281 and 0.3533,
respectively. When k > 1.5, it is found that Chao estimator can approximate
the population size better than the ZTPL estimator.

Table 5. RBias for population size estimators, repeated 10000 times.

μ k N = 250 N = 500

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 −0.2389 −0.3689 −0.0513 −0.2446 −0.3705 −0.0542

1.25 −0.2018 −0.3234 0.0322 −0.2087 −0.3262 0.0271

1.5 −0.1735 −0.2883 0.0974 −0.1816 −0.2912 0.0915

2 −0.1371 −0.2360 0.1947 −0.1432 −0.2388 0.1888

2 1 −0.1599 −0.2900 −0.0688 −0.1636 −0.2906 −0.0700

1.25 −0.1278 −0.2502 −0.0037 −0.1317 −0.2502 −0.0041

1.5 −0.1053 −0.2190 0.0478 −0.1084 −0.2196 0.0464

2 −0.0773 −0.1763 0.1188 −0.0807 −0.1774 0.1169

4 1 −0.0950 −0.1943 −0.0692 −0.0974 −0.1943 −0.0697

1.25 −0.0682 −0.1586 −0.0202 −0.0718 −0.1591 −0.0211

1.5 −0.0522 −0.1334 0.0148 −0.0551 −0.1338 0.0142

2 −0.0333 −0.1005 0.0611 −0.0349 −0.1005 0.0608

μ k N = 1000 N = 2000

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 −0.2471 −0.3714 −0.0561 −0.2484 −0.3717 −0.0569

1.25 −0.2101 −0.3264 0.0263 −0.2120 −0.3273 0.0247

1.5 −0.1830 −0.2913 0.0911 −0.1843 −0.2922 0.0894

2 −0.1450 −0.2403 0.1860 −0.1469 −0.2409 0.1849

2 1 −0.1651 −0.2911 −0.0711 −0.1660 −0.2911 −0.0711

1.25 −0.1329 −0.2507 −0.0050 −0.1337 −0.2507 −0.0054

1.5 −0.1108 −0.2205 0.0449 −0.1112 −0.2205 0.0448

2 −0.0818 −0.1774 0.1168 −0.0825 −0.1776 0.1163

4 1 −0.0988 −0.1943 −0.0700 −0.0991 −0.1942 −0.0699

1.25 −0.0728 −0.1591 −0.0214 −0.0732 −0.1590 −0.0215

1.5 −0.0556 −0.1338 0.0138 −0.0561 −0.1338 0.0139

2 −0.0359 −0.1005 0.0606 −0.0364 −0.1005 0.0606
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Table 6. RVar for population size estimators, repeated 10000 times.

μ k N = 250 N = 500

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 1.8505 0.2891 1.7055 1.6856 0.2801 1.6684

1.25 1.9472 0.3718 2.1042 1.7743 0.3590 2.0509

1.5 2.0334 0.4469 2.4554 1.8422 0.4296 2.3840

2 2.1102 0.5737 3.0326 1.9433 0.5519 2.9455

2 1 0.9040 0.0071 0.5599 0.8351 0.0559 0.5535

1.25 0.8741 0.0721 0.6624 0.8046 0.0709 0.6566

1.5 0.8372 0.0857 0.7515 0.7831 0.0841 0.7431

2 0.7785 0.1067 0.8838 0.7329 0.1049 0.8752

4 1 0.4806 0.0062 0.1891 0.4411 0.0061 0.1877

1.25 0.4196 0.0080 0.2150 0.3805 0.0078 0.2136

1.5 0.3630 0.0094 0.2347 0.3321 0.0093 0.2337

2 0.2895 0.0116 0.2630 0.2684 0.0114 0.2614

μ k N = 1000 N = 2000

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 1.6125 0.2753 1.6479 1.5745 0.2724 1.6356

1.25 1.7081 0.3533 2.0281 1.6719 0.3501 2.0143

1.5 1.7783 0.4238 2.3618 1.7480 0.4201 2.3461

2 1.8873 0.5431 2.9107 1.8460 0.5392 2.8953

2 1 0.8086 0.0551 0.5492 0.7928 0.0549 0.5483

1.25 0.7818 0.0702 0.6525 0.7700 0.0699 0.6510

1.5 0.7566 0.0832 0.7386 0.7476 0.0830 0.7374

2 0.7128 0.1044 0.8726 0.7032 0.1038 0.8698

4 1 0.4207 0.0059 0.1866 0.4135 0.0059 0.1866

1.25 0.3659 0.0077 0.2126 0.3595 0.0076 0.2123

1.5 0.3229 0.0091 0.2328 0.3164 0.0091 0.2326

2 0.2580 0.0113 0.2608 0.2525 0.0113 0.2607

5 Application with Real Data Examples

In this section, the Horvitz-Thompson estimator based on the ZTPL distribution
is applied to some real data examples. The result of applying the ZTPL estimator
to real data can be seen in Table 8. Point and interval estimation are evaluated
for the data. Additional, Akaike information criterion (AIC) is used for model
selection, AIC = 2k − 2 ln(L), where L is the likelihood function and k is the
number of parameters.
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Table 7. RRMSE for population size estimators, repeated 10000 times.

μ k N = 250 N = 500

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 0.2539 0.3705 0.0972 0.2514 0.3713 0.0792

1.25 0.2202 0.3257 0.0972 0.2170 0.3273 0.0695

1.5 0.1955 0.2914 0.1389 0.1915 0.2927 0.1146

2 0.1651 0.2408 0.2237 0.1561 0.2411 0.2038

2 1 0.1708 0.2904 0.0835 0.1686 0.2908 0.0775

1.25 0.1408 0.2507 0.0516 0.1377 0.2505 0.0365

1.5 0.1202 0.2198 0.0727 0.1154 0.2200 0.0603

2 0.0954 0.1775 0.1328 0.0893 0.1780 0.1242

4 1 0.1046 0.1943 0.0745 0.1018 0.1944 0.0723

1.25 0.0796 0.1587 0.0356 0.0769 0.1591 0.0295

1.5 0.0646 0.1335 0.0340 0.0608 0.1338 0.0259

2 0.0476 0.1008 0.0692 0.0419 0.1006 0.0649

μ k N = 1000 N = 2000

Chao ZTP ZTPL Chao ZTP ZTPL

1 1 0.2503 0.3718 0.0692 0.2500 0.3719 0.0637

1.25 0.2141 0.3269 0.0522 0.2139 0.3275 0.0402

1.5 0.1878 0.2920 0.1032 0.1866 0.2926 0.0957

2 0.1513 0.2415 0.1937 0.1500 0.2414 0.1888

2 1 0.1675 0.2912 0.0748 0.1672 0.2912 0.0730

1.25 0.1358 0.2508 0.0260 0.1351 0.2510 0.0188

1.5 0.1141 0.2207 0.0525 0.1128 0.2206 0.0488

2 0.0860 0.1777 0.1205 0.0846 0.1778 0.1181

4 1 0.1009 0.1943 0.0713 0.1002 0.1942 0.0706

1.25 0.0752 0.1591 0.0259 0.0744 0.1590 0.0238

1.5 0.0584 0.1338 0.0206 0.0575 0.1338 0.0176

2 0.0393 0.1006 0.0627 0.0381 0.1005 0.0617

According to illegal immigrants data, the results show that the lower bound
of the estimated illegal immigrants is 9270 using the Chao estimator. The HT
estimator under the ZTP and the ZTPL estimator can be estimated as N̂ZTP =
7080, N̂ZTPL = 13334, respectively.

For the heroin user data, the number of heroin users using Chao estimator is
N̂chao = 10782, while the ZTP and ZTPL model can approximate the number of
heroin users as N̂HT = 9453 and N̂HT = 11324, respectively. When considering
the AIC criterion, it is clear that the ZTPL outperforms the ZTP with smaller
AIC as 42891.50 and the 95% confidence interval for the ZTPL is between 11213
and 11435.
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For forced labour data, the size of force labour worldwide is estimated
N̂ZTPL = 21879. For domestic violence data, the size of domestic violence is
approximated N̂ZTPL = 112502. All application in real data sets, the ZTPL
estimator gives a high estimated population size rather than Chao estimator.
When comparing the ZTPL to the ZTP estimator, the ZTPL has a better fit
compared to the ZTP (AICZTPL < AICZTP ).

Table 8. Estimated total number of population

Data N̂HT ŝe(N̂HT ) 95% CI AIC

Illegal immigrants

Chao 9270 635.65 8024–10516 -

ZTP(λ̂ = 0.31) 7080 365.75 6363–7797 1805.90

ZTPL(θ̂ = 6.88) 13334 643.15 12073–14595 1769.10

Heroin user

Chao 10782 80.21 10624–10940 -

ZTP(λ̂ = 4.13) 9453 12.84 9428–9479 50092.41

ZTPL(θ̂ = 0.49) 11324 56.61 11213–11435 42891.50

Forced labour

Chao 12470 288.40 11905–13035 -

ZTP(λ̂ = 0.59) 12326 240.17 11856–12797 8136.13

ZTPL(θ̂ = 3.66) 21879 469.16 20960–22799 8086.10

Domestic violence

Chao 76448 1579.65 73352–79544 -

ZTP(λ̂ = 0.35) 60214 941.76 58368–62059 18445.78

ZTPL(θ̂ = 6.14) 112502 1686.10 109197–115807 18051.60

6 Conclusion

Capture-recapture approach is widely used for estimating the population size.
The problem of unobserved data is an important consideration for population
size estimation. Horvitz-Thompson estimator is a parametric approach that is
applied to various distributions. The Poisson model is a fundamental distribu-
tion for count data. However, the mixture Poisson model is flexible for het-
erogeneity in the population. The Poisson Lindley distribution can represent
underdispersed, equidispersed and overdispersed data. When applying the zero-
truncated model, the Horvitz-Thompson estimator based on Poisson Lindley
can approximate well and can be improved for large sample size. Whereas the
zero-truncated Poisson distribution gives a poor fit. It underestimates the true
population size in the simulation study. Hence, the Poisson Lindley distribu-
tion can be an alternative method for estimating the population size. In this
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study, maximizing the log likelihood function based on the distribution with one
parameter converges to the correct parameter. In the future study, the aim is
to improve the Horvitz-Thompson estimator using other distributions such as
the Poisson mixture distribution with two parameters. However, the MLE would
need to be evaluated numerically and may be more difficult.
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Abstract. This work is dedicated to modelling economic dynamics with
random time scale. We propose a solution in the form a continuous time
model where interactions of agents are random exchanges of finite por-
tions of products and money at random points in time. In this frame-
work, the economic agent determines the volume, but not the moments
of the transactions and their order. The paper presents a correct for-
mal description of optimal consumption and borrowing as a stochastic
optimal control problem, which we study using the optimality conditions
in the Lagrange’s form. The solution appears to have a boundary layer
near the end of planning horizon where the optimal control satisfies the
specific functional equation. This equation was studied numerically using
the functional Newton method adapted to a two-dimensional case.

Keywords: Time scale · Optimal control · Functional Newton method

1 Introduction

This work is dedicated to modelling economic dynamics with random time scale.
The need for such model appears when a theoretical model formulated in con-
tinuous time is applied to numerical computations using the statistical data in
discrete time. Observed data have certain characteristic period - hour, month,
quarter, year, whereas the underlying economic processes, especially in what
relates to financial transactions, inventory management and trade in durable
goods, may not have periodicity at all, or have a characteristic time of change
different from what is observed on the available data. For example, for financial
accounts with equal balances at the end of period, the turnover during the period
might differ tenfold.
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Applied mathematical models of economy, nevertheless, have to combine
the mathematical description of rational behavior of economic agents with the
insights defined by the data. In this paper we try to adapt the standard models
of optimal consumption of households in the presence of debt, to the aforemen-
tioned specifics of real-life transactions, by introducing uncertainty of the timing
of deals. The studies of the consumption of households and their relation to debt
attracted attention after the crisis of 2008 [9–12]. The empirical studies test the
version of the model in continuos time or discrete time with fixed scale. To our
knowledge, the random-timescale model of optimal consumption and borrowing
by households was not studied before and its comparison to statistical data is a
topic for further research.

The mathematical model in the presented paper represents the household’s
problem as a stochastic optimal control problem with Poisson uncertainty. It
adds to the existing studies of similar economic models by the analysis of a case
of high intensity of the random process and the finite horizon. For a short review
see [14]. The typical approach to analytic solution for such problems is dynamic
programming (see [13]), but we demonstrate that the Lagrange’s method has its
own benefits.

This paper concentrates on the specific feature of the stochastic optimal
control model with finite time horizon - the presence of boundary layer, where
the optimal solution is defined from the functional equation. This equation has
a non-local form and is possible to analyze by numerical methods. We believe
that this study might be used for the study of similar stochastic optimal control
problems.

2 The Model

2.1 The Model of Optimal Consumption with Random Time Scale

The paper presents a correct formal description of optimal consumption and
borrowing as a stochastic optimal control problem, which we study using the
optimality conditions in the Lagrange’s form. The baseline model is the finite-
horizon problem of optimal consumption C(t), borrowing K(t) made as random
moments of time appear to make the transaction.

E

⎡
⎣

T∫

0

U

(
C(t)
C0

)
e−Δtdη(t) − W (A(T ) − L(T ))

⎤
⎦ → max

0≤L(t), 0≤A(t)
(1)

The debt L(t) changes whenever the consumer takes a loan K(t). The bank
accounts A(t) change as the consumer buys the consumption goods in the amount
C(t) for the price py(t), pay the interest at the rate rl(t) to the bank and the
income from ownership of shares Zπ(t) is paid to the consumer according to the
equations

dL(t) = K (t) dη(t), (2)

dA(t) = −py(t)C(t)dη(t) + K (t) dη(t) − rl(t)L(t)dt + Zπ(t)dt. (3)
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The function η(t) denotes the Poisson counting process η(t, ω) with ω omitted
for simplicity and η(t) = 1 when an event of the Poisson flow of possible deals
occurs in the small time interval [t, t + dt] and zero otherwise. The intensity of
the Poisson flow o events is assumed to be constant and we denote it by Λ.

The model assumes three constraints on the actions of the consumer. If the
debt L(t) is negative, the consumer might make it infinitely large negative num-
ber and from the Eq. (3) the consumption rate will also be infinitely large with
positive probability. Therefore, the constraint L(t) ≥ 0 is imposed. An additional
constraint is made to guarantee the solvency of the consumer: A(t) ≥ 0. The
constraint A(T ) ≥ L(T ) is added to ensure that the consumer may pay out all
the debt by the end of the planning period. See [2] for discussion of such condi-
tions in applied economic models. Due to the specifics of the stochastic optimal
control problem with the underlying Poisson process, one cannot guarantee the
controlability of the processes of A(t) and L(t), because by the time T with pos-
itive probability no transaction might be possible. Therefore, in contrast with
the continuous time model [2], for the inequality constraint we use the penalty
function W (·) in the form

W (x) =
(min(x, 0))2

2 a2
, a → 0. (4)

The utility function U(·) might be any monotone concave function with
U ′(0) = ∞ and here it is U(x) = ln(x). Due to the form of utility function,
the consumption rate C(t) may not be zero at any point, since a slight increase
from zero will substantially increase the value of utility.

The processes py(t), Zπ(t), rl(t) are determined and external to the con-
sumer. They are defined in the general equilibrium setting, where the consumer’s
model is a part of the household’s block. The variables C(t), L(t), A(t),K(t)
are stochastic processes, left-continuous with defined right limit and adapted
to the natural filtration generated by the random Poisson process η(t). The
stochastic optimal control problem is to find the optimal non-anticipating con-
trol C(·),K(·), such that given the initial conditions A(0), L(0), the processes
C(·),K(·), A(·) ≥ 0, L(·) ≥ 0 satisfy the Eqs. (2 and 3) and the functional (1)
achieves maximum.

2.2 The Solution to the Model

The analysis of the stochastic model, the sufficient optimality conditions and
their solutions in the form of synthesis of optimal control for most of the phase
space is provided in the paper [3]. We give the main results here to demonstrate
the source of the equation we had to solve. In this paper we concentrate on
the unusual problem that arises during analysis of the model for some values
of phase variables. It requires solving a functional non-linear non-local equation
that we made an attempt to analyze by asymptotic and numerical methods.

In [3] we formulate the sufficient optimality conditions that might be reduced
to a system of differential equations with finite shifts and functional equations.
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The approach uses the Lagrange’s method, which is quite unusual for the stochas-
tic optimal control problems in economic modelling [4–8]. The main idea is to
add the dual variables to the constraints to construct the Lagrange functional.
The dual variables are assumed to be right-continuous non-anticipating stochas-
tic processes ψ1(t), ψ3(t) for the equality constraints, and the dual variables to
the inequalty constraints A(·) ≥ 0, L(·) ≥ 0 are assumed to be left-continuous
non-anticipating stochastic processes φ2(t), φ4(t).

The sufficient conditions for the optimal control in the form of the sythesis
C(t, A, L),K(t, A, L) is defined from the equations

φ2 (t, A, L) L = 0, φ4 (t, A, L) A = 0, (5)

∂ψ3 (t, A, L)
∂t

= (rl (t) L − Zπ (t))
∂ψ3 (t, A, L)

∂A
− φ4 (t, A, L)

−
U ′

(
C(t,A,L)

C0

)
e−Δ tΛ

C0 py (t)
+ ψ3 (t, A, L) Λ,

(6)

∂ψ1 (t, A, L)
∂t

= (rl (t) L − Zπ (t))
∂ψ1 (t, A, L)

∂A
− φ2 (t, A, L)

+ rl (t) ψ3 (t, A, L) + ψ1 (t, A, L) Λ +
U ′

(
C(t,A,L)

C0

)
e−Δ tΛ

C0 py (t)
, (7)

ψ3 (t,K (t, A, L) + A − py (t)C (t, A, L) ,K (t, A, L) + L)

=
U ′

(
C(t,A,L)

C0

)
e−Δ t

C0 py (t)
,

(8)

ψ1 (t,K (t, A, L) + A − py (t)C (t, A, L) ,K (t, A, L) + L)

= −
U ′

(
C(t,A,L)

C0

)
e−Δ t

C0 py (t)
,

(9)

ψ1 (T,A,L) = W ′(A − L), ψ3 (T,A,L) = −W ′(A − L). (10)

This is a system of partial differential equations with shifts and functional
equations. For large values of Λ asymptotic methods allow one to obtain the
approximate expression for the consumption C(t, A, L) and K(t, A, L) when
t � T [3]. But the terminal conditions (10) might be satisfied only if there exist
a boundary layer in the vicinity of T . Changing the time variable t into

t = T − θ

Λ
,

C (t, A, L) =
c ((T − t) Λ,A,L)

py (T )
, K (t, A, L) = k ((T − t) Λ,A,L)

(11)
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one obtains the approximate (of the order 1, with expressions of the order O
(
1
Λ

)
omitted) version of the system. For this, firstly, the differential equations (6 and
7) are solved

ψ1

(
T − θ

Λ
,A,L

)
= −

θ∫

0

e−Δ T+x−θ

c (x,A,L)
dx + W ′ (A − L) (12)

ψ3

(
T − θ

Λ
,A,L

)
=

θ∫

0

e−Δ T+x−θ

c (x,A,L)
dx − W ′ (A − L) . (13)

The solutions are substituted into the functional equations (8 and 9) taking into
account the terminal conditions (10). The resulting two functional equations
appear to be identical.

θ∫

0

e−Δ T+x

c (x,−c (θ,A, L) + k (θ,A, L) + A, k (θ,A, L) + L)
dx

−W ′ (A − L − c (θ,A, L)) =
eθ−Δ T

c (θ,A, L)
, (14)

θ∫

0

− e−Δ T+x

c (x,−c (θ,A, L) + k (θ,A, L) + A, k (θ,A, L) + L)
dx

+W ′ (−c (θ,A, L) + A − L) e−θ = − eθ−Δ T

c (θ,A, L)
. (15)

Therefore, we consider only one equation in the following analysis. One may
observe that the Eq. (14) might have a symmetric solution

c (θ,A, L) = σ (θ,A − L) , A − L = Y. (16)

With such assumption, the Eq. (15) becomes more simple

min
(

Y − σ (θ, Y )
a2

, 0
)

= − eθ−Δ T

σ (θ, Y )
+

θ∫

0

ex

σ (x, Y − σ (θ, Y ))
dxe−Δ T . (17)

By the change in variables

σ (θ, Y ) = f

(
eθ,

Y e
1
2Δ T

a

)
e− 1

2Δ T a, (18)

eθ = t, Y = x e− 1
2 Δ T a, (19)

the Eq. (17) becomes independent of parameters a, T and Δ.
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min (x − f (t, x) , 0) = − t

f (t, x)
+

t∫

1

1
f (τ, x − f(t, x))

dτ. (20)

Our attempts to find an analytical solution for this equation did not lead to any
globally defined solution, but we suggest a method of numerical analysis of this
equation, combined with asymptotic estimates where possible.

3 Numerical Solution

The Eq. (20) we are trying to solve has a specific form: it contains both f(t, x) and
f (τ, x − f(t, x)) , τ ∈ [1, t]. Therefore, it is impossible to express f(t, x) in terms
of its values in some neighborhood of the point (t, x). The iterative procedure
for computing the solution to such equation has to calculate f(t, x) based on
the whole sale of values of f(t, x). We refer to this feature as nonlocality of the
problem.

Since we are looking for the solution which is interpreted as the rate of con-
sumption, the unknown function f(t, x) is nonnegative (to be precise, positive,
due to the properties of the utility function under the integral).

The equation defines the unknown function f(t, x) in two regions x ≤ f(t, x)
and x ≥ f(t, x) according to two equations

0 = − t

f (t, x)
+

t∫

1

1
f (τ, x − f(t, x))

dτ , x ≤ f(t, x), (21)

x − f(t, x) = − t

f (t, x)
+

t∫

1

1
f (τ, x − f(t, x))

dτ, x ≥ f(t, x). (22)

While the first equation (21) might have more than one solution (it is
“almost” homogeneous), the second one seems to less likely to have, but it is a
subject of additional research. We concentrated the numerical analysis on the
second one for the additional reason of relatively simple boundary condition.
As it will be demonstrated in the following section, the border x = f(t, x) is
a non-linear curve, so that if one would try to compute the solution to (21),
they will only have this curve as a boundary condition and the values of f(t, x)
below this line as the values for integration of f (τ, x − f(t, x)). At the same
time, the boundary condition for the solution to (22) is defined at t = 1,∀x and
x → ∞, t ≥ 1.

3.1 The Problem

The problem is to numerically solve the functional equation

0 = − t

f (t, x)
+

t∫

1

t

f (τ, x − f(t, x))
dτ − x + f (t, x) (23)
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with the initial condition

f (1, x) =
1
2

x +
√

x2 + 4
2

. (24)

The boundary condition was added by asymptotic approximation of the solution
at x → −∞.

Asymptotic Approximation of the Solution. Nonnegativity of the unknown
function f(t, x) implies that at x → −∞, f(t, x) > x. Therefore, the asymptotic
approximation for large x is obtained from the equation (22). If one assumes the
solution to be asymptotically approximated by the asymptotic series

f(t, x) =
∞∑

k=0

lk(t)x−k, (25)

it becomes possible to derive the recursive expressions for the coefficients lk(t).
We omit most of the derivations her, but provide the main results.

First of all, the coefficient lk(t) = 0 because otherwise the Eq. (22) contains
no terms matching the x in the left hand side of the equation

x −
∞∑

k=0

lk(t)x−k = − t
∞∑

k=0

lk(t)x−k

+

t∫

1

1
∞∑

k=0

lk(τ)
(

x −
∞∑

k=0

lk(t)x−k

)−k
dτ. (26)

Therefore, we look for

f(t, x) =
1
x

∞∑
k=0

ak(t)x−k, (27)

Taking the exponents of the power series and combining the coefficients of
the same terms, we rewrite the Eq. (22)

x − 1
x

∞∑
k=0

ak(t)x−k

= −t x
∞∑

k=0

bk(t)x−k +
(

x − 1
x

∞∑
k=0

ak(t)x−k

) ∞∑
m=0

t∫
1

βm(τ, t)dτx−m.
(28)

The coefficients βm(τ, t) and bk(t) are defined iteratively

b0(t) =
1

a0(t)
, bm(t) = − 1

a0(t)

∞∑
k=0

ak(t)bm−k(t), (29)

β0(τ, t) =
1

α0(τ, t)
, βm(τ, t) = − 1

α0(τ, t)

m∑
k=1

αk(τ, t)βm−k(τ, t) (30)

αk(τ, t) = − 1
a0(t)

∞∑
n=0

an(τ)cm−n,n(t), (31)
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c0,n(t) = 1, cm,n(t)m =
m−2∑
k=0

(n(m + k) − k) am−k−2(t) ck. (32)

The Eq. (28) gives the integral equations for coefficients of the asymptotic expan-
sion. The first 13 terms are obtained from relatively simple equations:

f (t, x) = − 1
x

+
ln (t) + 1

x3
+

−5 ln (t) − 2 − 2 (ln (t))2

x5

+
23 ln (t) + 22 (ln (t))2 + 5 (ln (t))3 + 5

x7

−
(

353
2

(ln (t))2 + 105 ln (t) + 93 (ln (t))3 + 14 (ln (t))4 + 14
)

x−9

+ O

(
t,

1
x11

)
.

(33)
The numerical computations in our work used the approximation till the 5th

order for the value of x = −50.

3.2 The Interative Method

We represent the (21) as the functional equation

F (f) = 0 (34)

and apply the functional Newton method to find its numerical solution.
The procedure was proposed by [1] for a similar problem of finding the func-

tion of one variable, but here we adapt it to the two-dimensional case. The
iterative method consists in updating the approximation according to

fn = fn−1 − D−1 (fn−1) [F (fn−1)] , (35)

where by D (fn−1) we denote the inverse operator to the Frechet derivative of
the operator F . In fact, the Frechet derivative has the form

D (f) [h] = −

(
t+

t∫
1

D2(f)(τ,x−f(t,x))
f(τ,x−f(t,x))2

dτf(t,x)2+f(t,x)2

)

f(t,x)2
h (t, x)

+
t∫
1

h(τ,x−f(t,x))

f(τ,x−f(t,x))2
dτ.

(36)

We omitted the integral term
t∫
1

h(τ,x−f(t,x))

f(τ,x−f(t,x))2
dτ to be able to compute the inverse

of the operator in a simple form. Of course, this affects the precision, but it
appear, the modified version of the method converges and the residual F (fn)
becomes sufficiently small. We use the operator

D0 (f) [h] = −

(
t +

t∫
1

D2(f)(τ,x−f(t,x))

f(τ,x−f(t,x))2
dτf (t, x)2 + f (t, x)2

)

f (t, x)2
h (t, x) (37)
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and build the iterative procedure on it

fn = fn−1 − D−1
0 (fn−1) [F (fn−1)] . (38)

The inverse operator is

D−1
0 (f) [F ] = − f (t, x)2(

t +
t∫
1

D2(f)(τ,x−f(t,x))

f(τ,x−f(t,x))2
dτf (t, x)2 + f (t, x)2

)F (t, x) . (39)

3.3 The Results of Computation

The procedure starts with the first approximation

f0 (t, x) = − (x − 1)−1
. (40)

This function was selected among other because the iterations seem to converge
faster with this starting point. The first two updated approximations might be
found explicitly

F (f0) = − (x − 1) t + x (t − 1) +
t − 1
x − 1

− t + 1 + x + (x − 1)−1
, (41)

f1 (t, x) = − xt − t − 1
t (x2 − 2x + 2)

. (42)

The function f2 is also found explicitly, but the expression is quite complex and
we used the computer algebra Maple for symbolic operations.

The problem is complex and it appears to be convenient to split the grid into
two areas: firstly, compute on the area x ∈ [−50, 0], t ∈ [1, 11] and then use the
computations as a boundary conditions for computing the numerical solution for
the positive values of x: x ∈ [0, 32], t ∈ [1, 11]. We initialize the values of f(t, x)
by the values of f2(t, x).

The results of 18 iterations of the method suggest that the values of f(t, x)
for large negtive x do not vary as much as they vary for smaller negative x (see
Fig. 1). Therefore, the grid was selected so that the points become more dense
for smaller negative x.

The quality of approximation is measured as a pointwise difference between
the left and the right hand side of the Eq. (21)

gf (t, x) =
t

f (t, x)
−

t∫

1

dτ

f (τ, x − f (t, x))
+ x − f (t, x) . (43)

The values of this indicator are presented on the Fig. 2 for t = 1 (red) and
t = 11 (blue). Since the size of the set was of the order 10−2 we consider these
values for the error to be satisfactory.
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Fig. 1. The numerical approximation of f(t, x) for x ∈ [−50, 0], t ∈ [1, 11].

Fig. 2. The difference between the right and left hand side of numerical approximation
of (21). (Color figure online)
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Fig. 3. The numerical approximation of f(t, x) for x ∈ [−50, 12], t ∈ [1, 11]

The Fig. 3 demonstrates the results of computation for both positive and
negative values of x. There appears a border where the solution breaks. The
reason is the presence of the border x̃(t) where 0 = x̃(t) − f (t, x̃(t)) and the
equation changes the form from (22) to (21). The expression for this border
might be given explicitly if one knows the values of f(t, 0):

x̃(t) − f (t, x̃(t)) = − t

x̃(t)
+

t∫

1

1
f (τ, 0)

dτ, x̃(t) = f (t, x̃(t)) . (44)

Therefore,

x̃(t) =
t

t∫
1

1
f(τ,0)dτ

. (45)

The problem of numerical computation above this border is the direction of
our current research. The main challenge is that one can show that the border
(45) comes close but never reaches the t = 1 asymptote (see Fig. 4). This means
that the border is nonlinear for x > 0 and it is the only boundary condition to
numerically compute the solution to the equation (21). The value at the point
A on this figure uses the values at the interval CB below, which contains f(t, x)
from the areas above and below x̃(t).

On the other hand, this effect has an interesting economic interpretation.
Below the border, f(t, x) > x which, in terms of A,L variables means that the
consumption expenditures py(t)C(t, A, L) are above the own money A − L. The
closer is the end of the planning interval, the more the agent tries to spend
instead of saving for the future.
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At the same time the solution above the border uses all the values of f(t, x)
below this nonlinear border in the integral term. This creates a challenging
problem.

Fig. 4. The border x̃(t) between the regions with f(t, x) > x (below) and f(t, x) > x
(above).

However, it appears possible to find the asymptotic approximation to the
solution for large positive x in the form of a series

f(t, x) = (ln(t) + 1) x + (ln(t) + 1) C0 + e−ln(t)−1
C1x−1 + O(t, x−2), (46)

where the constants C0, C1, . . . are defined from the correspondence between
f(t, x) for (t, x) above and below the border x̃(t).

3.4 Conclusion

This paper presents the analysis of the model of optimal stochastic control of the
processes of consumption and borrowing by a rational consumer. The solution to
problem is found from a system of equations. Due to a finite planning horizon,
there appears a boundary layer in the vicinity of the end of the planning time
interval, t ∼ T , where the solution is defined from the equation of a specific
form (20). This equation might be solved by numerical methods, in particular,
by the functional Newton method. For this, the boundary values are found by
deriving the asymptotic behavior of the solution for large negative values of the
argument. Another boundary condition comes from the terminal conditions of
the underlying problem.

The results of computation are presented in this paper. The numerical solu-
tion appears to have a nonlinear form and the border that separates the solu-
tion defined by different segments in the left hand side of the Eq. (20) - where
f(t, x) > x and vice versa.



Numerical Analysis of the Model of Optimal Consumption and Borrowing 267

This paper concentrates on the specific feature of the stochastic optimal
control model with finite time horizon - the presence of boundary layer, where
the optimal solution is defined from the functional equation. This equation has
a non-local form and is possible to analyze by numerical methods. We believe
that this study might be used for the study of similar stochastic optimal control
problems.

Acknowledgments.. The authors are very grateful to S. I. Bezrodnykh for valuable
comments. This research was supported by the grant RFBR project 17-01-00588 A
“Dynamic economic models with random time scale”.

References

1. Bezrodnykh, S.I., Vlasov, V.I.: Analytic-numerial method for computation of inter-
action of physical fields in semiconductor diode. Math. Model. 27(7), 15–24 (2015).
(in Russian)

2. Pospelov, I.G., Pilnik, N.P.: On natural terminal conditions in models of intertem-
portal equilibrium. HSE Econ. J. 11(1), 1–33 (2007). (in Russian)

3. Pospelov, I.G., Zhukova, A.A.: Model of optimal consumption with possibility of
taking loans at random moments of time. HSE Econ. J. 22(3), 330–361 (2018). (in
Russian)

4. Pospelov, I.G., Zhukova, A.A.: Stochastic model of trade of non-liquid goods. Proc.
MIPT 4(2), 131–147 (2012). (in Russian)

5. Chow, G.C.: Dynamic Economics: Optimization by the Lagrange Method. Oxford
University Press, Oxford (1997)

6. Chow, G.C.: Computation of optimum control functions by Lagrange multipliers.
In: Belsley, D.A. (ed.) Computational Techniques for Econometrics and Economic
Analysis, pp. 65–72. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-
015-8372-5 4

7. Rong, S.: Optimization for a financial market with jumps by Lagrange’s method.
Pac. Econ. Rev. 4(3), 261–276 (1999). https://doi.org/10.1111/1468-0106.00077

8. Rong, S.: Theory of Stochastic Differential Equations with Jumps and Applica-
tions: Mathematical and Analytical Techniques with Applications to Engineering.
Springer, Boston (2006). https://doi.org/10.1007/b106901

9. Betti, G., Dourmashkin, N., Rossi, M., Ping Yin, Y.: Consumer over-indebtedness
in the EU: measurement and characteristics. J. Econ. Stud. 34(2), 136–156 (2007).
https://doi.org/10.1108/01443580710745371

10. Keese, M.: Triggers and determinants of severe household indebtedness in Germany.
Ruhr Economic Paper 150 (2009)

11. Kukk, M.: How did household indebtedness hamper consumption during the reces-
sion? Evidence from micro data. J. Comp. Econ. 44(3), 764–786 (2016). https://
doi.org/10.1016/j.jce.2015.07.004

12. Costa, S., Farinha, L.: Households’ indebtedness: a microeconomic analysis based
on the results of the households’ financial and consumption survey. Financial sta-
bility report of Banco de Portugal (2012)

13. Oksendal, B.K., Sulem, A.: Applied Stochastic Control of Jump Diffusions.
Springer, Berlin (2005). https://doi.org/10.1007/b137590

14. Posch, O., Trimborn, T.: Numerical solution of dynamic equilibrium models under
Poisson uncertainty. J. Econ. Dyn. Control 37(12), 2602–2622 (2013). https://doi.
org/10.1016/j.jedc.2013.07.001

https://doi.org/10.1007/978-94-015-8372-5_4
https://doi.org/10.1007/978-94-015-8372-5_4
https://doi.org/10.1111/1468-0106.00077
https://doi.org/10.1007/b106901
https://doi.org/10.1108/01443580710745371
https://doi.org/10.1016/j.jce.2015.07.004
https://doi.org/10.1016/j.jce.2015.07.004
https://doi.org/10.1007/b137590
https://doi.org/10.1016/j.jedc.2013.07.001
https://doi.org/10.1016/j.jedc.2013.07.001


Short Papers



Conditions of the Stability Preservation
Under Discretization of a Class

of Nonlinear Time-Delay Systems

Alexander Yu. Aleksandrov(B)
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Abstract. Nonlinear differential systems with nonlinearities satisfying
sector constraints and with constant delays are studied. Such systems
belong to well-known class of Persidskii-type systems, and they are
widely used for modeling automatic control systems and neural networks.
With the aid of the Lyapunov direct method and original constructions
of Lyapunov–Krasovskii functionals, we derive conditions of the stability
preservation under discretization of the considered differential systems.
The fulfilment of these conditions guarantees that the zero solutions of
the corresponding difference systems are asymptotically stable for arbi-
trary values of delays. Moreover, estimates of the convergence rate of
solutions are obtained. The proposed approaches are used for the stabil-
ity analysis of a discrete-time model of population dynamics. An example
is given to demonstrate the effectiveness of our results.

Keywords: Nonlinear system · Discretization · Stability ·
Convergence rate

1 Introduction

Preserving qualitative characteristics, when passing from differential equations
to difference ones, is a fundamental and challenging research problem [1–3].
In many cases it is necessary to modify numerical schemes in order to pre-
serve required characteristics. These modifications result in conservative com-
putational schemes [2,4,5]. Such schemes, nowadays, are playing an important
role in the design of reliable numerical methods in various areas of Science and
Engineering (see, for instance, [2–4,6]).

However, it should be noted that the use of conservative schemes significantly
complicates corresponding difference systems. Therefore, from a practical point
of view, it is important to determine classes of systems for which discretization
preserves qualitative properties without modifications of computational schemes.

In this contribution, a class of nonlinear difference systems with nonlinearities
satisfying sector restrictions and with constant delays is studied. Such systems
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can be obtained as a result of application of the Euler numerical method to
Persidskii-type differential systems [7].

It is assumed that zero solutions of the corresponding continuous-time sys-
tems are asymptotically stable for any values of delays. We are looking for condi-
tions ensuring preservation of stability under discretization. A new construction
of a Lyapunov–Krasovskii functional is proposed for the considered difference
systems. It is shown that with the aid of such a functional, not only delay-
independent asymptotic stability conditions, but also estimates of the conver-
gence rate of solutions can be derived. In addition, the developed approaches
are used for the stability analysis of an equilibrium position for a discrete-time
model of population dynamics.

2 Preliminaries

Let R be the field of real numbers, Rn and Rn×n denote the vector spaces of
n-tuples of real numbers and of n×n matrices respectively, ‖·‖ be the Euclidean
norm of a vector. We use the notation C� for the transpose of a matrix C and
C � 0 (C ≺ 0) to denote that the matrix C is positive (negative) definite.

Let diag{λ1, . . . , λn} be the diagonal matrix with the elements λ1, . . . , λn

along the main diagonal.
Consider a pair of matrices (A,B), where A,B ∈ Rn×n.

Definition 1 (see [8]). The pair (A,B) is diagonally Riccati stable if there exist
diagonal matrices P = diag{p1, . . . , pn} and Q = diag{q1, . . . , qn} such that
P � 0, Q � 0, A�P + PA + Q + PBQ−1B�P ≺ 0.

Remark 1. The problem of diagonal Riccati stability was introduced in [8] and
is motivated by the constructing diagonal Lyapunov–Krasovskii functionals for
linear time-delay systems. Necessary and sufficient conditions for a given pair of
matrices to be diagonally Riccati stable have been derived in [9]. Moreover, in [9,
10], some classes of matrices were determined for which simple and constructively
verified conditions for diagonal Riccati stability can be obtained.

3 Statement of the Problem

Let the system of differential equations

ẋ(t) = AΦ(x(t)) + BΦ(x(t − τ)) (1)

be given. Here x(t) = (x1(t), . . . , xn(t))� is the state vector, A and B are con-
stant matrices, τ is a constant nonnegative delay, Φ(x) is a separable nonlinearity:
Φ(x) = (ϕ1(x1), . . . , ϕn(xn))�, where scalar functions ϕj(xj) are continuous for
|xj | < H (0 < H ≤ +∞) and satisfy the sector conditions xjϕj(xj) > 0 for
xj �= 0, j = 1, . . . , n.



Conditions of the Stability Preservation Under Discretization 273

Remark 2. The system (1) belongs to well-known class of Persidskii-type systems
(see [7]). Such systems are widely used for modeling automatic control systems
and neural networks [7,11].

We will assume that initial functions for (1) are chosen from the space
C([−τ, 0], Rn) of continuous functions ψ(θ) : [−τ, 0] → Rn with the uniform
norm ‖ψ‖τ = supθ∈[−τ,0] ‖ψ(θ)‖. In addition, let xt stand for the restriction of
a solution x(t) of (1) to the segment [t − τ, t], i.e., xt : θ → x(t + θ), θ ∈ [−τ, 0].

From the properties of Φ(x) it follows that (1) has the zero solution.

Assumption 1. Let the pair (A,B) be diagonally Riccati stable.

Remark 3. In [12] it is proved that, under Assumption 1, the zero solution of
(1) is asymptotically stable for arbitrary constant nonnegative delay τ , and the
system (1) admits a diagonal Lyapunov–Krasovskii functional.

In this paper, we consider the corresponding difference system

y(k + 1) = y(k) + h (AΦ(y(k)) + BΦ(y(k − l))) , (2)

where y(k) ∈ Rn, l is a nonnegative integer delay, h > 0 is a digitization step,
k = 0, 1, . . .. The system (2) can be obtained as a result of application of the
Euler numerical method to system (1). Moreover, systems of the form (2) have
own values, since they are used as discrete-time models of neural networks and
digital filters (see [7]).

We will look for conditions ensuring preservation of stability, when passing
from the continuous system (1) to its discrete-time counterpart (2). In addition,
we will derive estimates of the convergence rate for solutions of (2).

Remark 4. It should be noted that stability of the corresponding delay-free dif-
ference system was studied in [13], whereas delay-independent stability condi-
tions for systems of the form (2) were found in [14]. However, in [14] it was
assumed that functions ϕj(xj) are essentially nonlinear, i.e., their expansions
with respect to powers of state variables begin with powers of greater than one.
In this paper, we do not impose such a restriction on ϕj(xj). Therefore, the
approach proposed in [14] can not be applied to the stability analysis of (2).

4 Stability Conditions

To derive delay-independent asymptotic stability conditions for the difference
system (2), we will use the discrete-time counterpart of the Lyapunov direct
method and a special construction of a Lyapunov–Krasovskii functional.

Assumption 2. Functions ϕj(xj) satisfy a local Lipschitz condition, i.e., for any
H1 ∈ (0,H), there exists a constant L > 0 such that |ϕj(x′

j) − ϕj(x′′
j )| ≤

L|x′
j − x′′

j | for |x′
j | < H1, |x′′

j | < H1, j = 1, . . . , n.



274 A. Yu. Aleksandrov

Theorem 1. If Assumptions 1 and 2 are fulfilled, then there exists a number
h0 > 0 such that the zero solution of (2) is asymptotically stable for any h ∈
(0, h0) and for any nonnegative integer delay l.

Proof. Let y(k) =
(
y�(k), y�(k − 1), . . . , y�(k − l)

)� be the augmented state
vector. Consider matrices P = diag{p1, . . . , pn} and Q = diag{q1, . . . , qn} satis-
fying Assumption 1. Choose a Lyapunov–Krasovskii functional candidate for (2)
in the form

V
(
y(k)

)
= 2

n∑

i=1

pi

yi(k)∫

0

ϕi(u)du + h
l∑

m=1

Φ�(y(k − m))QΦ(y(k − m))

+h

l∑

m=1

λm‖Φ(y(k − m))‖2,
(3)

where λ1, . . . , λl are positive parameters.
Consider the difference ΔV = V

(
y(k+1)

)−V
(
y(k)

)
of the functional (3) with

respect to the system (2). We find that the difference satisfies

ΔV =

n∑

i=1

pi

yi(k+1)∫

yi(k)

ϕi(u)du + hΦ�(y(k))QΦ(y(k)) − hΦ�(y(k − l))QΦ(y(k − l))

+ hλ1‖Φ(y(k))‖2 − hλl‖Φ(y(k − l))‖2 + h

l∑

m=2

(λm − λm−1)‖Φ(y(k + 1 − m))‖2

= 2hΦ�(y(k))P (AΦ(y(k)) + BΦ(y(k − l))) + hΦ�(y(k))QΦ(y(k))

− hΦ�(y(k − l))QΦ(y(k − l)) + 2

n∑

i=1

pi (ϕi(yi(k) + ξikΔyi(k)) − ϕi(yi(k))) Δyi(k)

+ hλ1‖Φ(y(k))‖2 − hλl‖Φ(y(k − l))‖2 + h

l∑

m=2

(λm − λm−1)‖Φ(y(k + 1 − m))‖2

≤ −h(α1 − λ1)‖Φ(y(k))‖2 + 2

n∑

i=1

pi (ϕi(yi(k) + ξikΔyi(k)) − ϕi(yi(k))) Δyi(k)

+ h

l∑

m=2

(λm − λm−1)‖Φ(y(k + 1 − m))‖2 − h(α2 + λl)‖Φ(y(k − l))‖2.

Here α1 and α2 are positive constants, ξik ∈ (0, 1), and Δyi(k) = yi(k + 1)−
yi(k).

Choose a number H1 ∈ (0,H) and find the corresponding Lipschitz constant
L. We obtain that there exist numbers δ > 0 and α3 > 0 such that

|(ϕi(yi(k) + ξikΔyi(k)) − ϕi(yi(k)))Δyi(k)| ≤ L (Δyi(k))2
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for
∥
∥y(k)

∥
∥ < δ. Thus, if 0 < λl < λl−1 < . . . < λ1, and values of λ1 and h are

sufficiently small, then the estimate

ΔV ≤ −α4h

l∑

m=0

‖Φ(y(k − m))‖2 (α4 = const > 0) (4)

holds for
∥
∥y(k)

∥
∥ < δ. Hence (see [7]), the zero solution of (2) is asymptotically

stable for sufficiently small h and for any nonnegative integer delay l. 
�

5 Convergence Rate of Solutions

Next, let us show that in the case where function Φ(x) satisfies some additional
conditions, estimates of the convergence rate for solutions of (2) can be derived
with the aid of the functional (3).

Assumption 3. Functions ϕj(xj) are represented in the form ϕj(xi) = ρjx
σj

j +
ωj(xj), where ρj are positive coefficients, σj ≥ 1 are rationals with odd numer-
ators and denominators, and ωj(xj)/x

σj

j → 0 as xj → 0, j = 1, . . . , n.

Remark 5. Without loss of generality, we will assume that ρj = 1, j = 1, . . . , n,
and σ1 ≤ . . . ≤ σn.

Remark 6. If σ1 = . . . = σn = 1, then it is easy to prove that, under Assump-
tions 1–3 and for sufficiently small h, the zero solution of (2) is exponentially
stable. Therefore, in what follows, we consider the case where σn > 1.

Let y
(
k, k0, y

(k0)
)

denote a solution of (2) with initial conditions k0 ≥ 0,
y(k0) ∈ Rn(l+1).

Theorem 2. Let Assumptions 1–3 be fulfilled and σn > 1. Then, there exists
h > 0 such that, for any h ∈ (0, h0) and any nonnegative integer delay l, one
can find positive numbers c1, c2 and δ̃ such that

∣
∣
∣yi(k, k0, y

(k0))
∣
∣
∣
σi+1

≤ c1

∥
∥
∥y(k0)

∥
∥
∥

σ1+1
(

1 + c2

∥
∥
∥y(k0)

∥
∥
∥

ν(σ1+1)

(k − k0)
)− 1

ν

(5)

for i = 1, . . . , n,
∥
∥y(k0)

∥
∥ < δ̃, k0 ≥ 0, k ≥ k0. Here ν = (σn − 1)/(σn + 1).

Proof. Consider the functional (3). Let parameters h0, λ1, . . . , λl, δ be chosen in
a such way that the inequality (4) hold for

∥
∥y(k)

∥
∥ < δ.

Using Assumption 3, we obtain that if δ is sufficiently small, then

a1

n∑

i=1

(

yσi+1
i (k) +

l∑

m=1

y2σi
i (k − m)

)

≤ V
(
y(k)

)

≤ a2

n∑

i=1

(

yσi+1
i (k) +

l∑

m=1

y2σi
i (k − m)

)

,

(6)
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ΔV ≤ −a3

n∑

i=1

l∑

m=0

y2σi
i (k − m)

for
∥
∥y(k)

∥
∥ < δ, where a1, a2, a3 are positive constants. Hence, there exist numbers

a4 > 0 and δ̃ > 0 such that if
∥
∥y(k0)

∥
∥ < δ̃, k0 ≥ 0, then

V
(
y(k+1)

)
≤ V

(
y(k)

)
− a4Ṽ

ν+1
(
y(k)

)

for k ≥ k0. Applying Lemma 1 from [15] and taking into account the estimates
(6), we arrive at the inequalities (5). 
�

6 A Discrete-Time Model of Population Dynamics

Let the difference system

zi(k + 1) = zi(k) exp

(

h

(

ci +
n∑

j=1

aijfj(zj(k)) +
n∑

j=1

bijfj(zj(k − l))

))

,

i = 1, . . . , n,

(7)

be given. The system describes interaction of n species in a biological community.
Here zi(k) is the density of population i at the kth generation, functions fi(xi)
are defined for xi ≥ 0, aij , bij , ci are constant coefficients, i, j = 1, . . . , n, h is
a positive parameter characterizing the transient time between two consecutive
generations. System (7) is a discrete counterpart of a continuous generalized
Lotka–Volterra ecosystem model [16,17]. It is known [17,18] that in the case
where populations have non-overlapping generations, discrete-time models are
more appropriate than continuous ones.

We consider functions fi(xi), i = 1, . . . , n, satisfying the following conditions,
which are consistent with the standard assumptions made in [16,18–20] and
elsewhere:

(a) fi(0) = 0;
(b) fi(xi) is continuous and locally Lipschitz for xi ∈ [0,+∞);
(c) fi(xi) is a strictly increasing function for xi ≥ 0, and fi(xi) → +∞ as

xi → +∞.

By Rn
+ we denote the nonnegative orthant of Rn, and intRn

+ being the interior
of Rn

+. For biological reasons, we consider (7) in intRn
+ which is an invariant set

for this system. In addition, let A = {aij}n
i,j=1, B = {bij}n

i,j=1.

Assumption 4. The system (7) admits an equilibrium position z̄ = (z̄1, . . . , z̄n)�

∈ int Rn
+.

Theorem 3. If Assumptions 1 and 4 are fulfilled, then there exists a number
h0 > 0 such that the equilibrium position z̄ of (7) is asymptotically stable for
any h ∈ (0, h0) and for any nonnegative integer delay l.
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Proof. With the aid of the substitution yi(k) = log (zi(k)/z̄i), i = 1, . . . , n, we
transform (7) to a system of the form (2) with ϕi(xi) = fi (z̄ie

xi) − fi(z̄i),
i = 1, . . . , n. To complete the proof, one should verify that all the conditions of
Theorem 1 are fulfilled for the obtained system. 
�
Corollary 1. If Assumptions 1 and 4 are fulfilled and functions fi (z̄ie

xi) are
globally Lipschitz for xi ∈ (−∞,+∞), i = 1, . . . , n, then there exists a number
h0 > 0 such that the equilibrium position z̄ of (7) is globally asymptotically stable
in intRn

+ for any h ∈ (0, h0) and for any nonnegative integer delay l.

7 Example

Consider the case where n = 4 and the system (2) has the form

yi(k + 1) = yi(k) − haiyi(k) + hciϕ(y4(k)), i = 1, 2, 3,

y4(k + 1) = y4(k) − ha4ϕ(y4(k)) + h

3∑

j=1

bjyj(k − l). (8)

Here ai, bj , cj are constant coefficients with ai > 0, i = 1, 2, 3, 4, j = 1, 2, 3,
and ϕ(x4) is a sector nonlinearity that is continuous for x4 ∈ (−∞,+∞) and
satisfies a local Lipschitz condition.

The system (8) is a discrete-time counterpart of a canonical form of the
Yakubovich indirect control system with delay in the feedback law (see [7,11]).

With the aid of results of [10], it can be shown that the pair of matrices
(A,B) corresponding to the system (8) is diagonally Riccati stable if and only
if

a4 >
|b1c1|

a1
+

|b2c2|
a2

+
|b3c3|

a3
. (9)

Using Theorem 1, we obtain that, under the condition (9), there exists h0 > 0
such that the zero solution of (8) is asymptotically stable for an arbitrary h ∈
(0, h0) and an arbitrary nonnegative integer delay l.

Assume that a1 = 0.7563, a2 = 0.038, a3 = 0.0163, b1 = 0.2773, b2 = 0.0468,
b3 = 0.0642, c1 = 0.0264, c2 = 0.1259, c3 = 0.1348. It should be noted that in
[21,22] the corresponding continuous system with these values of coefficients was
used as a mathematical model of a transport ship motion, and the problem of
the course-keeping autopilot synthesis for the ship was studied.

In this case the condition (9) takes the form a4 > 0.6957 (we give the result
of approximate computations rounded to 10−4).

8 Conclusion

In the present paper, using the discrete-time counterpart of the Lyapunov direct
method, sufficient conditions of the delay-independent asymptotic stability are
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found for a class of nonlinear difference systems. In addition, with the aid of
the constructed Lyapunov–Krasovskii functional, estimates for the convergence
rate of solutions are obtained. An interesting direction of the future research
is an application of the developed approaches to stability analysis of switched
nonlinear difference systems with delay.
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Abstract. The turbulent flow in natural rough-bed watercourses is a rather com-
plex phenomenon, still poorly investigated. The majority of the existing works
on this subject is of experimental nature, while the numerical ones are mostly
related to artificially and regularly-roughened beds. In the present work a numeri-
cal investigation is carried out, in which the fully turbulent flow in an open channel
is simulated, where the channel bottom is constituted by natural-pebble layers. In
the numerical simulations, the Large Eddy Simulation (LES) approach is used, in
conjunctionwith theWall-AdaptingLocal Eddyviscosity (WALE)Sub-Grid Scale
(SGS) closure model at Reynolds number 46,500 and Froude number 0.186. The
Finite-Volume discretized governing equations are solved numerically by means
of the InterFOAM solver, embedded in the OpenFOAM C++ digital library. In
order to take into account the free-surface dynamics, the Volume of Fluid (VoF)
method has been used. The results of the simulations are compared with those
obtained in a companion experiment, mainly in terms of turbulence statistics of
different order, obtaining a rather good agreement.

Keywords: Pebble bed flow · Large Eddy Simulation · Volume of Fluid

1 Introduction

The fluid-dynamic phenomena occurring in turbulent open-channel flows play a key role
in rivers and watercourses, where the characteristic element is the presence of a macro-
roughness bed of natural origin. In the recent years this subject has been faced by several
researchers, both numerically and experimentally. In the experimental field, a noticeable
research effort has been made as related to the turbulent characteristics of open-channel
flows [1, 2]. In the last two decades, the spatial average method became popular, and was
used in severalworks to capture the heterogeneous nature of the bedflow in terms of stress
characteristics [3–7]. More recently, the low relative submergence condition raised the
interest of the researchers, and some works have been published about the turbulence
characteristics in this latter condition [8–12]. In the numerical field, the Large Eddy
Simulation (LES) technique has been often used. Nevertheless, most of the numerical
works are related to regular-roughness geometries. Stoesser and Nikora [13] performed
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a LES calculation of a turbulent flow over square ribs mounted on a wall. Bomminayuni
and Stoesser [14] executed a LES simulation of the flow over a channel bed artificially
roughened with hemispheres. Fang et al. [15] investigated the case of the open-channel
flow over three kinds of macro-roughened beds, as obtained with spheres with different
sizes and arrangements.Omidyeganeh andPiomelli [16, 17] executed a simulation taking
into account the macro-roughness through three-dimensional dunes at laboratory scale.
As for nonregular roughness,Hardy et al. [18, 19] performed a simulation of the flowover
a gravel surface by investigating the role of near-bed turbulence on the flow-structure
development process. Stoesser [20] proposed a physically-realistic method for the LES
of turbulent channel flows over a granular bed, in which the description of the bed
roughness was obtained by means of a roughness-geometry function. Overall, these
studies provided a relatively good insight of the near-wall turbulence, but the case of the
naturally-rough bed flow needs to be further investigated. In the aforementioned works,
the free surface is often assumed as a rigid frictionless boundary, so that its vertical
movement is neglected. In the present work, the rigid lid condition is abandoned and
a LES is performed of turbulent open-channel flow with a highly-rough bed of natural
origin. A computational solver embedded in the OpenFOAM C++ digital library has
been used, in conjunction with the WALE SGS closure model [21]. Moreover, the VoF
technique has been adopted in order to follow the free-surface behavior, so that the effects
of themoving surface are taken into account. The results of the simulations are compared
with those of a companion experiment, and are presented in terms of turbulence statistics.

The experimental set-up of the companion experiment is here concisely summarized.
The experiment was carried out in a 16 m long, 1 m wide, 0.8 m high tilting flume with
rectangular cross-section. At the flume outlet, the water depth was regulated by an
adjustable tailgate. In the downstream channel, a honeycomb was placed upstream from
a Bazin weir, used to measure the discharge with an accuracy less than 2%. Natural
nonuniform pebbles were spread onto the channel bed in four layers, with median size
d50 = 70 mm. The 2.5 m long test section was located 10 m downstream of the inlet
for an appropriate development of the boundary layer along the flume centerline [8,
9]. The measuring grid included 25 vertical-velocity profiles, 20 mm spaced along the
streamwise direction, 5mmand3mmspaced in the vertical direction near the free surface
and the bottom, respectively. A down-looking four-beam acoustic Doppler velocimeter
was used for the local pointwise measurement of the three instantaneous components of
the fluid velocity. The instantaneous velocity components (streamwise u, spanwise v, and
vertical w, with fluctuations u’, v’ and w’, along the x, y and z axes, respectively) were
measured in the x-z plane along the centerline. The data sampling rate and the sampling
durationwere 100Hz and 300 s, respectively, whichwere found to be adequate to achieve
the statistically time independent turbulent quantities [7]. The velocity measurements
were taken from the lowest accessible position into the bed grain gaps up to an elevation
of about 50 mm below the water surface, owing to the limitation of the ADV down-
looking probe. The Signal-to-Noise Ratio (SNR) was kept equal to about 15 and the
ellipsoid method proposed by Goring and Nikora [22] was applied for despiking. In
Table 1 the characteristic parameters of the experiment considered in the present work
for comparison with the numerical results are summarized, S being the longitudinal
flume bottom slope, B the flume width, Q the discharge, hw the water depth measured
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above the maximum grain-crest level, ks the statistical roughness scale defined as the
biggest gap into the granular bed, Δ = hw/ks the relative submergence, Re = Uhw/ν the
Reynolds number, U the bulk flow velocity, Fr = U/ (ghw)1/2 the Froude number, and g
the acceleration due to gravity. For the numerical simulations, the physical pebble-bed
surface has been captured with a 3D Laser scanner (Minolta Vivid 300) with resolution
of 0.1 × 0.1 mm2, and used for the characterization of the bottom of the numerical
channel.

Table 1. Characteristic parameters of the experimental and simulated flow case

S (%) B (m) Q (l/s) hw (m) U (m/s) ν (m2/s) ks (m) Δ Re Fr

0.4 1.00 46.5 0.185 0.251 10−6 0.0573 3.13 46500 0.186

2 Computing Procedures

The filtered unsteady Navier-Stokes equations for incompressible fluids are considered
(Einstein summation convention applies to repeated indices, i, j = 1, 2, 3):

∂ ūi
∂t

+ ∂

∂x j

(
ūi ū j

) = − 1

ρ

∂ p̄

∂xi
− ∂τi j

∂x j
+ υ

∂2ūi
∂x j∂x j

(1)

∂ ūi
∂xi

= 0 (2)

where ρ is the fluid density, ν is the water kinematic viscosity, p is the fluid pressure, ui
(u, v, w) is ith the fluid velocity component, x1 (x), x2 (y) and x3 (z) are the streamwise,
spanwise and vertical directions, respectively (overbars denote filtered quantities). The
effect of the small turbulent scales is mirrored by the term (τi j = ūi ū j − uiu j ), repre-
senting the subgrid-scale stress, that has to be modeled. The scales smaller than the grid
size are not resolved, but accounted for through the sub-grid scale tensor τi j :

τi j − 1

3
τkkδi j = −2υt S̄i j (3)

where S̄i j is the deformation-rate tensor of the resolved field. In Eq. (3), νt is the SGS
eddy viscosity, that is evaluated using the WALE SGS model [21]. The LES governing
equations have been discretized bymeans of finite volumes.As for the computing domain
(Fig. 1), a structured mesh has been built, where the dependent variables are stored at
the cell center in a co-located arrangement. Both convective and diffusive terms are
approximated with second-order central differences, while the Crank-Nicolson scheme
is used in time. The Pressure Implicit with Split Operator (PISO) technique introduced
by Issa [23] has been employed to couple pressure and velocity. The stability of the
procedure has been ensured utilizing an adaptive time step with an initial value of 10−6

s, in conjunction with a mean Courant-Friedrichs-Lewy (CFL) number limit of 0.5.
The governing equations have been solved numerically by means of the InterFOAM
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solver, embedded in the OpenFOAM C++ digital libraries. The InterFOAM code uses
the VoF interface capturing approach [24, 25], that has been satisfactorily utilized in
several flow cases [26–28]. Boundary conditions have been imposed of no-slip and zero
wall-normal velocity at the pebble-bed surface. Periodic boundary conditions have been
used in the streamwise and spanwise directions. A number of tests has been performed
before reaching the final configuration of the grid (Table 2), employing an increasing
number of points mainly along the normal direction (Nx, Ny and Nz are the grid node
number in the ith direction xi, with i= 1,2,3 for the x, y, z directions, respectively. Recall
that x+

i = xiu∗/υ, u+
i = ūi/u∗, being u∗ = √

τw/ρ the shear velocity). The grid is
uniformly spaced in the x and y directions, and the grid spacing in terms of wall units
is Δx+ = Δy+ = 22. Along the vertical direction (ẑ = (z − zc)/hw, where zc is the
maximum crest level), the grid is uniformly spaced among the pebbles (−0.54 ≤ ẑ ≤ 0,
Δz+ = 1), while in the main portion of the computing domain, in order to have a
better spatial resolution near the wall and near the free surface, a grid stretching law
of hyperbolic tangent type has been introduced [29]. After the insertion of appropriate
initial conditions (an initial velocity profile evolving with time), the initial transient of
the flow has been firstly simulated by means of the Reynolds-Averaged Navier-Stokes
(RANS) equations coupled with the k-ω SST closure model [25]. Then, the RANS
steady state has been mapped onto the LES domain and run for 15t (being t = 5.4hw/U
the flow-through time) for an appropriate turbulence development. Finally, the LES
turbulent steady state has been run for 30t to build up the turbulent-flow database.
A CPU-based computational system has been used for the simulations. The system
included 1 worker node equipped with 2 eight-core Intel E5-2640 CPUs (for a total of
16 cores/16 threads at 2.0 GHz), 128 GB RAM at 1899 MHz, and 4 TB of disk space.
The code has been parallelized through the OpenMPI implementation of the standard
MPI. The computational domain has been decomposed into 16 sub-domains (4 along the
spanwise direction and 4 along the vertical direction)with the SimpleGeometricDomain
Decomposition (SGDD) technique, for an appropriate balancing of the computational
weight among the different processors.

The simulation has been preliminarily run on different machine configurations, and
the results in terms of runtime in executing one full time step (Δt) of the calculation
procedure on the computational grid are reported in Table 3 (I/O operations are not
included). It can be noted that the execution time decreases, as expected, with the number
of processors involved in the calculations. The numerical simulation of the case at hand
has been run on the 16-coremachine configuration (Ntot = 8.4× 107,Re = 46,500, where
Ntot is the total number of grid nodes). The elapsed computational time resulted in a
total of about 1,500 h, which is a rather reasonable value for a relatively complex LES
simulation using the worker node depicted before.
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Fig. 1. Computing domain

Table 2. Computational grid

Nx Ny Nz Ntot Δx+ Δy+ Δz+
(min)

Δz+
(max)

1024 160 512 8.4 ×
107

22 22 1.19 22

Table 3. Full-Δt runtime with different machine configurations (seconds per Δt)

CPU cores 2 4 8 16

Runtime 262.50 86.42 65.38 55.00

3 Results

Computed and measured velocity profiles in the computing domain are compared in
Fig. 2, showing a good agreement along the entire water depth. Some discrepancies are
visible only below the crest level, related to the ADV data, because of the difficulties
in measuring inside the layers influenced by the bed roughness. In Fig. 3 the stream-
wise time-averaged velocity-vector distributions along the channel centerline are shown.
Figure 3 shows the high resolution of the LES results, where a clear recirculation in the
bed gaps (1.4 < x/hw < 1.6) is observed.



Numerical Investigation of Natural Rough-Bed Flow 285

Fig. 2. Mean velocity profiles at different locations in the computing domain: open bullets
represent experimental results, whereas solid lines represent numerical results.

Fig. 3. Mean-velocity-vector distributions along the channel centreline: numerical values.

In real space a stringent way to check the existence of the Kolmogorov scaling is
to consider the third-order structure functions [30] given by the compensated form [8–
31]. In Fig. 4 a comparison between the turbulent kinetic energy (TKE) dissipation rate
〈ε〉, 〈·〉 denoting the spatial averaging operator, from LES and experiment is shown at
several vertical dimensionless elevations. Although the third-order statistics are sensible,
the comparison between simulation and measurements is rather satisfactory. All the
compensated laws in Fig. 4 show a plateau in the so-called inertial range, which can be
fitted to obtain a precise value of the TKEdissipation rate, showing the correct simulation
of the Kolmogorov inertial range.
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Fig. 4. TKE dissipation rate vs. space increment. Open bullets represent the experimental data,
whereas solid lines are related to the LES results. Black colour represents 〈ε〉 (ẑ = 0.2), blue
colour 〈ε〉 (ẑ = 0.3), green colour 〈ε〉 (ẑ = 0.4), red colour 〈ε〉 (ẑ = 0.5). (Color figure online)

4 Conclusions

Overall, the LES code used for the simulations in conjunction with the WALE SGS
closure model has shown a rather good ability in correctly reproducing the turbulent
phenomena at hand. The numerical approach adopted guarantees a resolved-scale res-
olution that is enough to glimpse into the inertial subrange and perform the analysis of
turbulence proposed here. A first portion of the present work deals with the testing of the
reliability of the LES calculations with respect to the measured dataset. Once confident
about the convergence of the second-order moment analysis, as well as the more sensi-
ble third-order structures, we used the LES dataset to compute the TKE dissipation rate
(including the smallest scales of the inertial subrange) that was not captured with the
ADV.Moreover, the ADV down-looking configuration does not allow themeasurements
in the upper 50 mm of the water depth. Third-order structures clearly show the presence
of an inertial subrange as related to both experimental and numerical results, giving a
way to precisely compute the value of 〈ε〉.
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Abstract. We introduce a dynamic precision floating-point arithmetic
based on the Infinity Computer. This latter is a computational platform
which can handle both infinite and infinitesimal quantities epitomized
by the positive and negative finite powers of the symbol ①, which acts
as a radix in a corresponding positional numeral system. The idea is to
use the positional numeral system from the Infinity Computer to devise
a variable precision representation of finite floating-point numbers and
to execute arithmetical operations between them using the Infinity Com-
puter Arithmetics. Here, numerals with negative finite powers of ① will
act as infinitesimal-like quantities whose aim is to dynamically improve
the accuracy of representation only when needed during the execution of
a computation. An application to the iterative refinement technique to
solve linear systems is also presented.

Keywords: Infinity Computer · Floating-point arithmetic ·
Conditioning · Iterative refinement

1 Introduction

The Infinity Computer paradigm, patented in EU, USA, and Russia (see for
example [16]), is based on a positional numeral system with the infinite radix ①
(called grossone) representing, by definition, the number of elements of the set
of natural numbers N [11,14]. A number in this system is a linear combination
of powers of ① with coefficients in the standard numeral system, such as

dpm
①pm . . . dp1①p1dp0①p0dp−1①p−1 . . . dp−k

①p−k ,
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with the usual meaning

dpm
①pm + . . . + dp1①p1 + dp0①p0 + dp−1①p−1 + . . . + dp−k

①p−k .

The numerals di �= 0 belong to a traditional numeral system and are called
grossdigits, while numerals pi are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k,

and are called grosspowers (only finite grosspowers are considered in this contri-
bution). Among the many fields of research this new methodology has been
successfully applied, we mention numerical differentiation and optimization
[4,12,17] and numerical solution of differential equations [1,6,9,10].1 First results
on handling ill-conditioning using the Infinity Computer may be found in [5,13].

Of particular interest in our study are grossnumbers consisting of a finite
expansion of integer grosspowers such as, for example,

X = ①P
T∑

j=0

xj①
−j , with grossdigits xj = ±βpj

t∑

i=0

dijβ
−i, (1)

where P, pj ∈ Z and T, t are given positive integers, while β stands for the base
of the traditional floating-point arithmetic system (usually β = 2).

This representation suggests interesting applications of the Infinity Computer
if now ① identifies a suitable prescribed finite value. The idea is to exploit the
grossdigits xi in order to store a large number of significant digits in a dynamic
manner during the execution of an algorithm. This means that the accuracy
may be increased/decreased on demand during the flow of computations by
automatically activating/deactivating a number of negative grosspowers. Taking
aside the technical aspects related to the hardware implementation of the Infinity
Computer, our study explores this path of investigation and is addressed to the
accurate solution of ill-conditioned/unstable problems [3,7].

It should be noticed that, in principle, neither the user nor the programmer
needs to know what the value of ① actually is. This assumption should be instead
understood as an inherent feature of the machine architecture which, consistently
with the Infinity Arithmetic methodology, will perceive the negative powers of
① as infinitesimal-like quantities if related to the classical floating-point system.
Adopting this point of view, it turns out that changing the meaning of ① as we
are going to do in the present work, does not affect that much the philosophical
principles the grossone methodology is rooted in.

2 The Framework

In this section, we discuss an application of the Infinity Arithmetic system which
consists in devising a floating-point variable precision arithmetic that will be

1 For further references and applications see the survey [15].
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used later to overcome the intrinsic loss of accuracy experienced when solving
an ill-conditioned problem in the standard floating-point arithmetic.

The implementation of multiple and, in particular, variable precision arith-
metic has been largely explored and successfully implemented, as is testified
by the rich literature on this topic (see, for example, the survey paper [2] and
reference therein). Here, however, we explore a further generalization of this
paradigm in that the number of significant digits needs not to be a priori spec-
ified and maintained fixed but may be dynamically changed during the flow of
computations. In particular, depending on the specific problem at hand and the
algorithm used to solve it, the involved variables may allocate a different and
variable amount of memory during the execution of the algorithm. The final goal
is to control the error and make sure that the desired accuracy in the output
data is achieved. This dynamic precision arithmetic is introduced as a natural
byproduct of the Infinity Computer architecture and thus is expected to be easy
to handle and to perform efficiently, once a hardware implementation of this
latter will be available.

Representation of a Real Number. Consider first the problem of storing a real
non-zero number x = ±βp

∑∞
i=0 diβ

−i ∈ R, d0 �= 0, by preserving N + 1 > 0
significant digits. This task can be accomplished by setting in (1): ①

.=βt+1 and
assuming pj = p, j = 0, . . . , T , and P = 0.2 The first N + 1 digits of x may be
gathered in adjacent groups of t + 1 elements as follows:

x = ±βp d0.d1 . . . dt︸ ︷︷ ︸ dt+1 . . . d2t+1︸ ︷︷ ︸ . . . dj(t+1) . . . d(j+1)(t+1)−1︸ ︷︷ ︸
. . . dN . (2)

Then, assuming that (N + 1) ≤ (T + 1)(t + 1) and setting di = 0 for i =
N + 1, . . . , (T + 1)(t + 1), the floating-point grossnumber representing x takes
the form

fl(x) = ±βp
T∑

j=0

①−j
t∑

i=0

dj(t+1)+iβ
−i. (3)

Notice that all grossdigits share the same exponent p which, therefore, could be
stored only once. We call (3) the normalized machine representation of x and its
uniqueness comes from the uniqueness of the standard normalized notation (2).

Renormalization After a Computation. According to the Infinity Arithmetic me-
thodology, the four basic operations over two grossnumbers follow the same rules
of operations with polynomials. In fact, by definition, in this numeral system
the radix ① is infinite while all digits dij are finite. For example, given the two
grossnumbers (see (1))

X = x1①1 + x2①0 + x3①−1, Y = y1①0 + y2①−1 + y3①−2

we get
X + Y = x1①1 + (x2 + y1)①

0 + (x3 + y2)①
−1 + y3①−2 (4)

2 .
= denotes the identification operation, so the meaning of ① remains unaltered.
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and

X · Y = x1y1①1 + (x1y2 + x2y1)①
0 + (x1y3 + x2y2 + x3y1)①

−1

+ (x2y3 + x3y2)①
−2 + x3y3①−3.

(5)

Now, due to the identification of ① with a finite number and the assumption
that all grossdigits must share the same exponent, it follows that, in general,
the result of an operation will be not normalized and thus it is necessary to
carry forward or backward some digits along the powers of ① in order to obtain
the result in the form (3). Without entering into details of this normalization
procedure, which would go beyond the aims of this short paper, we consider an
illustrative example.

Example 1. Set β = 2 (binary base) and t = 3 (four significant digits). Consider
the sum of the two floating-point normalized grossnumbers

X = 20 · (①01.101 + ①−11.010 + ①−21.111),
Y = 2−2 · (①01.011 + ①−11.110 + ①−21.001).

The procedure, which moves along similar lines as for standard floating-point
arithmetic, is summarized by the following steps of obvious meaning:

①0 ①−1 ①−2

(a) alignment 20 1.101 1.010 1.111
20 0.010 1.111 1.010 01

(b) sum with carrying 20 10.000 1.010 1.001 01
(c) normalization 21 1.000 0.101 0.101

Notice that, as explained above, the Infinity Computer would perform the addi-
tion without carrying. This means that step (b) needs to be suitably arranged,
also considering how to manage the rounding effects in each floating-point gross-
digit. This aspects needs a specific study and is not addressed here since we just
intend to show the general lines of our apprach. As a further remark, one clear
advantage arising from the use of the Infinity Computer is that the computation
of the grossdigits outcoming from basic operations such as (4) and (5) may be
carried out in parallel.

Dynamic Precision Usage. Among the features offered by the computational
platform based on the Infinity Computer, we assume that the user may decide
how many infinitesimals stored in a variable should be involved in a given com-
putation. If X is chosen as in (1), we denote by X(q) the grossnumber obtained
by neglecting, in the sum, all the infinitesimals of order greater than q, that is,
X(q) = ①P ∑q

j=0 xj①
−j . For example, choosing X and Y as in Example 1, we see

that X(0) +Y (0) = 21 ·1.000 would become the standard floating-point addition,
and one can improve the accuracy by letting the subsequent infinitesimals come
into play. This possibility may be exploited in a dynamical manner to overcome
ill-conditioning issues associated with a given problem. The following example
has a heuristic purpose in this direction.
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Example 2. Set β = 10 (decimal base) and t = 3 (four significant digits), without
rounding. Consider the three grossnumbers

X = 100 · (①01.234 + ①−15.678 + ①−29.012 + ①−33.456),
Y = 100 · (①01.234 + ①−14.444 + ①−24.444 + ①−34.444),
Z = 10−4 · (①01.230 + ①−11.234 + ①−21.234 + ①−31.234).

storing three corresponding decimal numbers, say x, y, z ∈ R with 16 significant
digits. Then X(0),Y (0) and Z(0) may be interpreted as the single precision rep-
resentation of x, y, z while, on the other side, X, Y and Z are their quadruple
precision approximations. Consider the problem of computing w = (x − y) − z
with four significant digits, which would suggest the use of single precision.
Unfortunately, the first subtraction x − y is ill-conditioned in single precision:

∣∣∣∣
(x − y) − (X(0) − Y (0))

x − y

∣∣∣∣ =
∣∣∣∣
(X − Y ) − (X(0) − Y (0))

X − Y

∣∣∣∣ = 1. (6)

The following scheme illustrates the procedure to obtain the correct result while
minimizing the computational effort. It goes without saying that a cheap esti-
mation of the relative error be available.3 However, for simplicity of exposition,
we evaluate the error by exploiting formulae similar to (6).

steps error action
(a) X(0) − Y (0) = 0 1.9 · 10−1 improve the accuracy
(b) X(1) − Y (1) = 1.234 · 10−4 3.7 · 10−4 accept the result
(c) (X(1) − Y (1)) − Z(0) = 4.000 · 10−7 7.7 · 10−2 improve the accuracy
(d) X(2) − Y (2) = 1.2344568 · 10−4 8.0 · 10−9

(e) (X(2) − Y (2)) − Z(1) = 4.333 · 10−7 5.1 · 10−6 accept the result

Steps (a)–(b) produce four significant digits in the difference X − Y . However,
a new cancellation phenomenon occurs at step (c). To overcome the loss of
significant digits at this stage, a further improvement in accuracy of X − Y
is required (step (d)). The final step (e) reveals the coexistence of variables
combined with different precisions.

In general, improving the accuracy of variables results in an increase of the over-
all computational complexity. However, it turns out that, in certain situations,
algorithms may devised where only a marginal amount of computation needs to
be performed with high accuracy. One such example is the iterative refinement
and will be considered in the next section to illustrate the idea.

3 A Case Study

Citing Cleve Moler [8], iterative refinement reduces the roundoff errors in the
computed solution to a system of linear equations. Starting from an initial
3 For example, one could take the values X(k+1), Y (k+1) and Z(k+1) as a reference

solution with respect to X(k), Y (k) and Z(k), and change the procedure accordingly.
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approximated solution x0 to a linear system Ax = b, this procedure consists
of three steps iteratively executed. For k = 0, 1, . . . ,

step 1: compute the residual rk = b − Axk;
step 2: solve the system Adk = rk;
step 3: add the correction xk+1 = xk + dk.

In absence of roundoff errors the iteration would converge after one step to the
true solution x∗ = A−1b. As is well-known, the use of finite precision arithmetic
causes an amplification of the representation errors of the input data A and b
proportional to the condition number κ(A) of the coefficient matrix A. It turns
out that, if step 1 is performed using a higher precision arithmetic with respect
to the standard precision used at steps 2–3, the accuracy of the approximation
may be significantly improved. In particular, denoting by ε1 and ε2 the round-off
units defining the accuracy of the evaluations of steps 2–3 and step 1 respectively,
in [8] it is shown that

||xk − x∗||∞
||x∗||∞ ≤ (σκ∞(A)ε1)k + μ1ε1 + nμ2κ∞(A)ε2 (7)

where n is the dimension of A and σ, μ1, μ2 are suitable positive quantities
with μ1, μ2 = O(1/(1 − σκ∞(A)ε1)). Consequently, under the assumption 0 <
σκ∞(A)ε1 � 1, we see that μ1 and μ2 become of the order of unity and the
relative error approaches the size of the greatest round-off unit (that is ε1 if we
assume ε2 � ε1). Usually, the LU factorization with partial pivoting of matrix
A is used at step 2 to reduce the computational effort associated with the linear
systems to be solved at each iteration. During the execution of the algorithm on
the Infinity Computer, one can control the convergence of the scheme by looking
at the norms of the residuals computed at step 1:

– In the unfortunate event that ||rk|| diverges, the algorithm should improve
the overall accuracy of step 2 by involving suitable negative powers of ①, thus
reducing ε1 (see (7)). One alternative we adopt in the example below is to
compute the LU factorization of A with a higher accuracy and then truncate
L and U to the roundoff level ε1.

– In the case where ||rk|| stagnates before the error reaches the desired size,
an improvement of the accuracy in performing step 1 is needed to reduce the
value of ε2. This is again accomplished by introducing new negative powers
of ① in the representation of the data A and b and in the computation of the
residual rk.

In the following example, the Infinity Computer arithmetic has been emulated
in the Matlab environment by using β = 2 and t = 52, which means that the
grossdigits associated with ①0 carry the 64-bit base-2 format of the IEEE 754
standard (double precision). This precision is doubled or tripled by involving the
grossdigits associated with ①−1 and ①−2 respectively.

Example 3. Consider the system Ax = b, where A is the Vandermonde matrix
of size 25 and coefficients aij = (i − 1)j−1, i, j = 1, . . . , 25, while b = Ae with
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Fig. 1. Fixed versus dynamic precision implementation of the iterative refinement on
a linear system with Vandermonde coefficient matrix of size 25.

e = (1, . . . 1)�, so that x∗ := A−1b = e. The condition number of A is κ∞(A) ≈
8.5·1039. The iterative refinement procedure described above is executed starting
from the initial guess x0 = (0, . . . , 0)�. We make the choice ε1 = β−t/2 (double
precision) and we want to gain as many correct significant digits as possible while
dynamically changing ε2 in order to minimize the overall computational cost.
A double precision accurate LU factorization with pivoting has been initially
computed to solve the systems at step 2. As for the previous examples, we
set A(j) and b(j) the truncations of A and b to the term j in their expansion
along the negative grosspowers, and initially perform step 1 with A(0) and b(0)

until an increase in ||rk|| is detected. In fact, the condition ||rk|| > ||rk−1|| is
symptomatic that a stagnation of the error is going to occur. This happens
at the third iteration: here step 1 is run again with A(1) and b(1) (quadruple
precision) in place of A(0) and b(0) and, consequently, the accuracy increases in
the subsequent iterations. Notice that rk has to be truncated at t digits, that is
the standard double precision accuracy, before implementing step 2.

A further improvement in the accuracy of rk is needed at the eighth iteration
to avoid the saturation of the error at about 10−5. Therefore A(2) and b(2)

come into play at step 1 and assure a representation of A and b in sextuple
precision (192 bits). This is enough to allow the error decrease at roundoff level
ε1 (see (7)). The results are illustrated in Fig. 1. The dashed, dash-dotted and
dotted lines refer to the execution of the iterative refinement using fixed accuracy
ε2 = β−t/2, β−2t/2, β−3t/2, respectively, and reveal the error levels it is possible
to reach with these choices. In particular, we see that sextuple precision is needed
at step 1 in order to obtain a double precision accurate solution. The solid
line refers to the dynamic precision implementation of the procedure illustrated
above. The errors at the first two iterations executed with ε2 = ε1 are labeled
with asterisks. The errors in the subsequent five iterations, executed with ε2 =
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β−2t/2 are labeled with circles. Finally, the remaining iterations are executed
with ε2 = β−3t/2 and the related errors are labeled with crosses. We see that
the error decreases until the saturation level of the corresponding precision mode
is attained. Consequently, the dynamic change of the accuracy is finely tuned
for this example and guarantees a number of total iterations very close to those
needed by directly working with the highest considered precision but, evidently,
requiring a lower computational effort.
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Abstract. We focus on the solution of multiparameter spectral prob-
lems, and in particular on some strategies to compute coarse approxima-
tions of selected eigenparameters depending on the number of oscillations
of the associated eigenfunctions. Since the computation of the eigenpa-
rameters is crucial in codes for multiparameter problems based on finite
differences, we herein present two strategies. The first one is an iterative
algorithm computing solutions as limit of a set of decoupled problems
(much easier to solve). The second one solves problems depending on
a parameter σ ∈ [0, 1], that give back the original problem only when
σ = 1. We compare the strategies by using well known test problems
with two and three parameters.

Keywords: Multiparameter spectral problems · High order methods ·
Finite difference schemes

1 Introduction

We consider a self-adjoint multiparameter regular spectral problem defined as

(pi (ti) y′
i)

′ +

⎡
⎣qi (ti) +

N∑
j=1

rij (ti) λj

⎤
⎦ yi = 0 αi ≤ ti ≤ βi i = 1, 2, . . . , N,

(1)
and separated boundary conditions

ai1yi(αi) + ai2y
′
i(αi) = 0, ai1, ai2 real with a2

i1 + a2
i2 > 0,

ai3yi(βi) + ai4y
′
i(βi) = 0, ai3, ai4 real with a2

i3 + a2
i4 > 0,

where the number of eigenfunctions N ≥ 2 and the functions pi, rij , qi are real
and continuous on the interval [αi, βi] for all i, j.1 Moreover, it is supposed

1 In case of singular problem, the solution is not continuous at some endpoints but
the strategies discussed below continue to work well.

This research was supported by the project “Equazioni di Evoluzione: analisi qualita-
tiva e metodi numerici” of the Università degli Studi di Bari.
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pi > 0 on [αi, βi] for all i and det{rij(ti)}i,j=1,...N > 0 for all ti ∈ [αi, βi].
Let the eigenparameters λ

(li)
i := λi be such that the system (1) has non-trivial

solution with li oscillations, i = 1, . . . , N . For ease of notation in the following
we do not use the upper index even if we refer to specific eigenvalues.

This kind of spectral problems finds great application in the area of mathe-
matical physics, for example in boundary value problems associated with the Lamè
equation, the Laplace equation or the Helmholtz wave equation using separation of
variables. Problem (1), also defined as a multiparameter Sturm-Liouville problem,
see [19], has been discussed by different authors. In particular, different approaches
for its solution have been analysed in [17], although a large study concerns the solu-
tion of the two-parameter eigenvalue problems, see [9,10,12,13,18]. An automatic
algorithm based on the solution of a suitable initial value problems has been pre-
sented in [11] in order to obtain an estimation of the eigenvalues for both singular
and non singular two-parameter Sturm-Liouville problems. The method uses the
code SLEIGN based on the Prüfer transformation that handles with a differential
initial value problem. Another approach discussed in [16] and used in the MAT-
LAB toolbox MultiParEig is based on the spectral collocation method combined
with the Sylvester-Arnoldi method.

The solution of classical Sturm-Liouville problems (N = 1) has been much
more investigated and different numerical approaches exist; the authors of this
note have proposed in [2,5,6,8] a matrix method able to compute an accurate
estimation of the eigenvalues and the eigenfunctions. The HOFiD method follows
the idea of BVMs (Boundary Value Methods) using finite difference schemes of
high order, see [7]. An extension of this method HOFiD SLP [8] has been also
applied to solve two-parameter Sturm-Louville problems, most of them arising
from the separation of variables in the Helmhotz equation [3,4]. In this case the
coupled system needs an initial approximation of the eigenparameters, that are
computed using the Prüfer transformation.

The aim of this work is to compute eigenparameters and eigenfunctions cor-
responding to a specific number of oscillations (l1, . . . , lN ) of multiparameter
spectral problems pursuing the idea of the previous works [3,4] (see Sect. 2).
Since the main difficulty is to get an initial estimation of these eigenparame-
ters, we focus on the analysis of two different strategies allowing to overcome
this drawback (Sects. 4 and 5). Both strategies require, before starting, initial
approximations that are computed by a “frozen problem” described in Sect. 3.
Finally, the considered strategies are compared by using known regular multi-
parameter problems in Sect. 6.

2 High Order Finite Differences

We use finite differences to obtain a discrete counterpart of the continuous prob-
lem. For this reason, we rewrite problem (2) in order to explicit the first and
second derivatives

pi (ti) y′′
i + p′

i (ti) y′
i +

⎡
⎣qi(ti) +

N∑
j=1

rij (ti) λj

⎤
⎦ yi = 0, i = 1, 2, . . . , N. (2)
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Then, we define a suitable discretization for each interval [αi, βi] and substitute
continuous functions with the discrete ones

diag (Pi) Y
(2)
i + diag

(
P

(1)
i

)
Y

(1)
i + diag

⎛
⎝Qi +

N∑
j=1

Rijλj

⎞
⎠ Yi = 0, (3)

where now i = 1, 2, . . . , N and Pi, P
(1)
i , Qi, Rij , Y

(2)
i , Y

(1)
i , Yi are vectors of the

same length containing the discretizations in the mesh points of the respectively
functions in (2).

Successively, we approximate both the derivative vectors by means of finite
differences (linear combinations in the same points of Yi). We use the funda-
mental idea of BVMs, that is a main formula with the best stability properties
centred in the mid-point when possible, and different methods (with the same
order of accuracy of the main method) in the initial and final points in order to
obtain approximations in closed form. Therefore, Y

(2)
i = AiYi and Y

(1)
i = BiYi,

where Ai and Bi are essentially banded matrices (the bandwidth depend on the
order of used formulas) containing the coefficients of the methods. Assembling
the formulae we obtain an algebraic spectral problem with unknowns the N
parameters λi and the associated eigenvectors Yi that we rewrite in this form
(as previously, i = 1, 2, . . . , N)

(
diag(Pi)Ai + diag

(
P

(1)
i

)
Bi + diag(Qi)

)
Yi = −diag

⎛
⎝

N∑
j=1

Rijλj

⎞
⎠ Yi. (4)

For N = 1 the problem reduces to the computation of eigenvalues and eigen-
vectors of a band matrix. For N > 1 it may be solved by means of a Newton
method but, since the problem has infinite solutions, it requires a good initial
guess to converge to the desired one. In the following sections we define two
different strategies to obtain this starting value; both begin by computing the
solution of the same frozen problem.

3 The Frozen Problem

In [1] it is suggested to compute a first approximation of the eigenparameters by
simplifying the original problem in order to each equation in (2) becomes inde-
pendent of the others. We consider functions ri,j(ti) to be constant by choosing
points t0i ∈ [αi, βi] such that the frozen values r0i,j ≡ ri,j(t0i ) approximate ri,j(ti).

Substituting μi =
N∑
j=1

r0i,jλj in (2) we obtain a set of N decoupled problems

pi(ti)y′′
i + p′

i(ti)y
′
i + [qi(ti) + μi] yi = 0, i = 1, 2, . . . , N, (5)

that give (μi, yi) by using the idea in [2,5]. Values λ0
i , which represent the first

approximation of the eigenparameters, are obtained by means of the solution of
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the linear system
⎛
⎜⎜⎜⎝

r011 r012 . . . r01N
r021 r022 . . . r02N
...

r0N1 r0N2 . . . r0NN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ0
1

λ0
2
...

λ0
N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

μ1

μ2

...
μN

⎞
⎟⎟⎟⎠ .

It is important to observe that these initial estimations of the eigenparameters
could be far away from the exact ones, since they arise from a different problem.

4 Itevative Correction Strategy

Following the idea presented in [11], the first strategy continues to solve decou-
pled equations (much easier to solve) by using an iterative Gauss-Seidel–like pro-
cedure until a sufficiently accurate estimate of the eigenparameters is reached.

Given the solution of the frozen problem in Sect. 3, we define a sequence of
Sturm-Liouville problems (k = 1, 2, . . . )

pi(ti)y′′
i + p′

i(ti)y
′
i + [si(ti) + rii(ti)λi] yi = 0, i = 1, 2, . . . , N, (6)

where si(ti) = qi(ti) +
i−1∑
j=1

rij(ti)λk
j +

N∑
j=i+1

rij(ti)λk−1
j , which is used to com-

pute λk
i , for i = 1, 2, . . . , N . Problem (6) are decoupled and may be solved, as

the frozen problem, with techniques for the computations of spectral algebraic
problems.

It is worth to note that this strategy converges for regular problems while it
should be investigated for singular problems too.

5 Variation Strategy

Following the Abramov’s idea in [1], we define a set of multiparameter problems
depending on a parameter σ ∈ [0, 1]

pi(ti)y′′
i + p′

i(ti)y
′
i +

⎡
⎣qi(ti) +

N∑
j=1

rij(ti, σ)λk
j

⎤
⎦ yi = 0, i = 1, 2, . . . , N, (7)

where rij(ti, σ) = σrij(ti) + (1 − σ)rij(t0i ), that, starting from the solution of
the frozen problem (σ = 0), leads to the solution of the original problem (2)
(σ = 1). The number of steps needed for σ to go from 0 to 1 depends on the
problem to be solved. The solution obtained for σ = σk after k steps is used
as starting value for σk+1 > σk, meanwhile it is necessary to check that the
new eigenvectors have the right number of oscillations. If the Newton method
computes a different solution, it is necessary to decrease the distance between
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σk and σk+1, and try again. Therefore, the algorithm uses a stepsize variation
strategy on the parameter σ.

We observe that problem (7) is solved by using the same strategy explained in
Sect. 2. From a computational point of view, each step of this algorithm seems to
be more expensive than the previous algorithm, since solving N decoupled prob-
lems is cheaper than solving one problem N times larger, however the variation
strategy offers stronger guarantee to achieve the final solution.

6 Numerical Results

In this section we analyse two multiparameter spectral problems, both consid-
ering the separation of variables for solving boundary value problems associated
with the Helmholtz equation; the only difference is that the used coordinates are
elliptic for the Mathieu problem [14,16] and ellipsoidal for the Lamé problem
[15]. In order to execute the previous strategies, we use tol = 10−6 to estimate
the eigenparameters in the iterative strategy. For both the examples we have
plotted the frozen and the final solutions for each eigenvector (Figs. 1 and 3)
and the speed of convergence in the computation of the eigenparameters for the
two strategies (Figs. 2 and 4).

Mathieu Equations (see [14]). The two-parameter problem has been solved with
β2 = arccosh c√

c2−d2 , where c = 2, d = 1, and the following boundary conditions
y′
1(0) = y1(π/2) = y′

2(0) = y2(β2) = 0. We have computed the solution with
l1 = 2 and l2 = 1 oscillations by using n1 = n2 = 50 constant stepsizes. Since
the frozen solution is similar to the problem solution, both strategies require few
steps. We observe that, as usual, the variation approach computes completely
different solutions for the intermediate problems.
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Fig. 1. Mathieu equations. Frozen and final solutions.
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Fig. 2. Mathieu equations. Convergence to the eigenparameters for the two strategies.

Lamé Wave Equations (see [15]). The three-parameter problem has been solved
with d2 = ξ − ρ2, ξ = 3 and ρ2 = 2 and boundary conditions y′

1(0) = y′
1(1) =

y′
2(0) = y′

2(1) = y′
3(0) = y′

3(1) = 0. We have solved the problem with l1 = 11,
l2 = 31, l3 = 6 oscillations by using n1 = 500, n2 = 1000, n3 = 400 constant
stepsize. There are two main difficulties in this problem: the required eigenfunc-
tions have several oscillations, hence much more equispaced points needed with
respect to the previous example; moreover, the solutions computed by the frozen
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Fig. 3. Lamé wave equations. Frozen and final solutions.
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Fig. 4. Lamé wave equations. Convergence to the eigenparameters for the two strate-
gies.

problem are quite different from the final ones, hence both the strategies require
much more steps to reach the final solution.

We point out that the iterative approach is in general faster than the vari-
ational one and should be preferable. However we need to investigate more the
convergence properties of such method.
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Abstract. In this paper, we analyzed the performance of wind vector field recov-
ery from the wind lidar measurements. Wind lidar (LIDAR – Light Identification
Detection And Ranging) remotely measures the wind radial speed by using the
Doppler principle. Algorithms of the wind vector reconstruction using different
versions of the least squares method are considered. In particular, the versions of
weighted least squares (WLS) are considered, as well as the use of data spikes
filtering procedures in the source data. The weights were calculated inversely with
the local approximation error. As the initial data, the data of real measurements
obtained in various wind conditions were used. The situations of a stationary wind
field, a wind field with speed gusts, a wind field with fluctuations in direction, a
wind field of variable speed and direction are considered. Lidar data were obtained
for a region with a low-hilly terrain; therefore, even in the case of a stationary in
time, the wind field was characterized by spatial heterogeneity. The questions of
the use of regularization methods are considered. The analysis of the influence of
the size of the averaging region on the quality of the recovery process was carried
out.

Keywords: Remote sensing · Wind lidar · Wind field recovery

1 Introduction

Data on the spatial distribution of the wind speed and direction in the surface layer is an
important factor for aviation. To obtain this data, Doppler wind lidars are scanning in
PPI (Plan Position Indicator) mode with low elevation angles. However, only the wind
component along the measurement direction is directly measured, and post-processing
methods are required to determinewind speed and direction. For the tasks of wind profile
measurements, methods for wind vector recovery are researched in sufficient detail. The
impetus for the development of these methods is primarily the problem of wind energy.
Most of these methods are variations of the VAD - Velocity Azimut Display method.
The idea of the method is that with a conical scanning of a stationary wind field, the
radial component changes according to a sinusoidal law. VAD is a retrieval technique
that performs a harmonic analysis on radial wind data [1]. A huge amount of work has
been devoted to various variations of this method, in particular [2, 3], as well as works
of the author [4, 5], in which we are considered only the wind profile recovering.
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VAD is not applicable for the tasks of spatial scanning of the wind field. In this case,
VVP – Velocity Volume Processing is used. This method was developed in relation
to Doppler Weather Radars. The analysis volume in the VVP technique is a 3D space
containing several PPI observations. The hypothesis adopted for the analysis volume is
that the wind field varies linearly and remains constant during radar scanning [6, 7].

Wind vector recovery allows to define wind field characteristics such as wind
shear [8].

When the wind field recovering is according to lidar measurements, there are certain
features that are primarily related to the fact that all the data belong to the same PPI
observation. This scanning was performed with small elevation angles, which allows us
to consider a problem of reconstructing a two-dimensional vector.

Lidar scanning is usually performed at low speed to provide a high angular resolution
of the measurements. Therefore, the rate of data updating in a large scanning sector is
low, and the wind field may change during this period. In this case, the problem of wind
field reconstructing is different in that to determine the wind vector we can use scan
data only in a small sector. This can be explained by the fact that t the surface wind
is characterized by considerable variability in time and space, and for practical usage
of interest is the wind field structure on a small scale. For a good conditionality of the
equations system for determining wind parameters, it is necessary to increase the size
of the averaging region. On the other hand, smoothing of the wind field occurs when
we use measurement data from a large area to calculate the wind vector at a point. In
addition, as shown in this study, spatial variations in the wind field can lead to incorrect
solutions to the problem of recovering wind speed and direction.

2 Recovery Algorithms

Algorithms for recovering wind parameters at a given point minimize the root mean
square residual of remote sensing data and theoretical values of radial projections of
wind speed in a certain area. Suppose that the wind in a region is stable in time and
space. We consider a two-dimensional approximation of the wind field, assuming that
the contribution of the vertical velocity component is small. This hypothesis is valid
when scanning is performed with a small elevation angle or when the vertical wind
speed is small.

Let us to restore the wind speed vector W0 = (u0, v0) at the point r0. Here u0, v0
are the Cartesian components of the wind speed in the scanning plane.

Suppose the radial projection of the wind speed Vj along the direction of measure-
ment ϕ j is measured at the points r j . The points r j are located in a neighborhood of
the point r0 at a distance of not more than d:

∣
∣r j − r0

∣
∣ ≤ d.

The radial component of wind speed for the direction ϕ j has the form

v j = u0cosϕ j + v0sinϕ j , (1)

and the mimimized function is

IOLS =
∑

j

(

Vj − v j
)2

. (2)
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Minimizing the function (2) to determine the components u0, v0 is a classic ordinary
problem of least squares (OLS). The weighted least squares (WLS) method, which uses
instead of (2) weighted rms sums

IW LS =
∑

j
w j

(

Vj − v j
)2

, (3)

is a variation of the method OLS. Here w j is the weighting coefficient.
The function (2) is identical to (3) when w j = 1.
The solution to the minimization problem of (3) is calculated as a solution to the

equations system of the form
( ∑

j w jcos2ϕ j
∑

j w jcosϕ j sinϕ j
∑

j w jcosϕ j sinϕ j
∑

j w j sin2ϕ j

)(

u0
v0

)

=
(∑

j w j V jcosϕ j
∑

j w j V j sinϕ j

)

,

or in the matrix form

S
(

u0
v0

)

= Q. (4)

The weighting coefficients are chosen inversely proportional to the residual of the
measurements approximation by the relation (1), obtained as an OLS solution (2). In
other words, let uOLS , vOLS is the solution, that minimizes (2). Define

σ 2
j = (

Vj − uOLScosϕ j − vOLSsinϕ j
)2

.

The weighting coefficients of (3) are equal to

w j =
σ 2
0

σ 2
0 +σ 2

j

∑

j
σ 2
0

σ 2
0 +σ 2

j

. (5)

The value σ 2
0 > 0 is a parameter.

Weights can also be determined as follows. Let σ 2
lim is the maximum allowable value

of the residual. Then we define alternative weights

w j =
{

1, i f σ 2
j ≤ σ 2

lim,

0, i f σ 2
j > σ 2

lim .
(6)

Using of weight coefficients (6) actually means solving the problem with removing
emissions. That is, having found the solution uOLS , vOLS of the problem (2), we perform
the repeated solution on the reduced set of measurement points, excluding points for
which the residual value exceeds the permissible level σ 2

lim .
The value σ 2

lim is selected in proportion to the rms value of the residual:

σ 2
lim = k

1

N − 1

∑

j
σ 2
j .
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The choice of the radius d for selecting the measurement points near the point r0 is
non-trivial. If distance |r0| is small, a large radius value leads to unnecessary averaging
of the wind field. On the other hand, if the selection radius is small, then with a large
distance to the recovery point, the recovery accuracy decreases.

The accuracy of the numerical solution of the equations system (4) is inversely
proportional to the minimum eigenvalue of the matrix S [9]. The minimum eigenvalue
of the matrix S is a function of the angles between the measurement directions. As an
example, we consider a particular case of two measurement points, assuming that one
of the directions coincides with the x-axis direction of the Cartesian coordinate system.
Then system (4) has the form

(

1 + cos2ϕ sinϕ
sinϕ sin2ϕ

)(

u0
v0

)

=
(

V1 + V2cosϕ
V2sinϕ

)

,

The minimum eigenvalue is approximately equal to

λmin ≈ 1

4
cos2ϕsin2ϕ,

and the value sinϕ is related to the parameters d, |r0| by the ratio

|sinϕ| ≤ d

|r0| ,

then we get the estimate

λmin ≤ 1

4

(
d

|r0|
)2

.

Therefore, the problemof the rational choice of size of the recovering area as function
of distance d(|r0|) is studied in addition to the main task. In this paper, the selection
radius is considered as a linear function of distance

d(|r0|) = d0 + α|r0|. (7)

Considering that, in the general, the matrix of system (4) is ill-conditioned, we use
the Tikhonov regularization method [10] for its solving. Thus, we solve the system in
the form

(

S∗ · S + μI
)
(

u0
v0

)

= S∗ · Q, (8)

where S∗ is the transposed matrix, and μ > 0 is the regularization parameter.

3 Result Analysis

For the analysis we use the remote sensing data from the Windex-5000 pulse wind lidar.
Scanning was performed in PPI mode with an angular velocity 1°/s and elevation 6°.
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The time of one measurement is equal to 1 s (accumulation time is equal to 1 s), then
at a given scanning speed we have an angular resolution 1°. The distance resolution is
equal to 40 m.

Let consider the scanning data presented in Fig. 1. Qualitative analysis of the data
shows the presence of zones ofmoderate wind gain from 3 up to 6m/c. In addition, we can
observe a typical S-shaped data structure, corresponding to the situation of changing of
the wind direction. Note that there are areas of local velocity variations, such as, a region
around a point (−500, 500), where a local decrease in velocity is observed (Fig. 2).

We show that in the areas of local gusts of winds, the OLS algorithm leads to
inadequate recovery of the wind field. Local intensive changes in speed are interpreted
as a change in direction. As a result, situations when in neighboring nodes (e.g., (−500,
800) and (−400, 900)) there are wind vectors with almost opposite directions arise. The
use of theWLS (3), (5) algorithmwithout regularization (8) gives similar results (Fig. 3).

Fig. 1. Radial speed lidar data.

Fig. 2. Retrieved wind field. OLS method without regularization.
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Fig. 3. Retrieved wind field. WLS method without regularization.

Fig. 4. Retrieved wind field. WLS method with regularization, μ = 0.00001.

The use of regularization (8) for solving the system of Eq. (4) with small values of the
regularization parameter gives a solution without obvious anomalies in the distribution
of the wind direction (Fig. 4). However, as μ increases to 0.0001, the tendency for the
solution to degeneration appears (Fig. 5). A further increase in μ to values of 0.0005
gives the actually degenerate solution (Fig. 6): the wind directions coincide with the
direction of measurements, that is non-physical.

Figure 7 presents the recovery results for another wind situation. The distribution of
the radial velocities of the wind field has a jet character: in the azimuthal direction the
sections with low and high radial velocities alternate, that can be seen better at medium
distances.
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Fig. 5. Retrieved wind field. WLS method with regularization, μ = 0.0001.

Fig. 6. Retrieved wind field. WLS method with regularization, μ = 0.0005.

Fig. 7. Retrieved wind field. WLS method: (a) without regularization, (b) with regularization,
μ = 0.00001.
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In this case, the WLS method without regularization gives in practic a virtually
chaotic distribution of thewinddirection in the zone of negative radial velocities (Fig. 7a).
At the same time, the use of regularization (8) with a small μ = 0.00001 ensures a
qualitatively more appropriate recovery of the wind field (Fig. 7b).

4 Conclusions

The paper presents various options for solving the problem of wind field recovery using
lidar remote sensing data. With a low rate of updating lidar data, the temporal variability
of the wind field transforms to the spatial distribution of the measurement data. The
feature of the solved problem is the requirement of high spatial resolution of the wind
vector distribution. The complexity of its implementation is associated with a small
amount of measurement data in a small recovery area and a small angular resolution.

The variations of the least squares method for the reconstruction of the wind vector
are considered. The method is analogous to the VVPmethod. The parameters of the task
are determined and the effect of some of them on the quality of wind field recovery is
shown. Direct application of OLS in the case of spatially inhomogeneous lidar remote
sensing data leads to qualitative errors in the recovery of the wind field. In particular, the
spatial variability of the wind speed can transform during recovery into the variability
of the wind direction.

The WLS method with the regularization algorithms provides a higher quality
of recovering. However, the use of regularization requires the careful choice of the
regularization parameter.
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Abstract. We consider a nonsmooth optimization problem with van-
ishing constraints and constraint set. A new constraint qualification and
a necessary condition for M-stationary of the problem are presented. Our
results are formulated in terms of Mordukhoivich subdifferential.
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1 Introduction

In this paper we study necessary and sufficient conditions for nonsmooth mul-
tiobjective mathematical programming problem with vanishing constraints and
constrained set, which is defined as

(MMPVCC): min
(
f1(x), . . . , fp(x)

)

s.t. gi(x) ≤ 0 i ∈ Ig := {1, . . . , s},

hi(x) = 0 i ∈ Ih := {1, . . . , r},

Hi(x) ≥ 0, i ∈ I := {1, . . . , m},

Hi(x)Gi(x) ≤ 0, i ∈ I,

x ∈ Ω,

where, fj : Rn → R (j ∈ J := {1, . . . , p}), gi : Rn → R (i ∈ Ig), hi : Rn → R

(i ∈ Ih), Hi : Rn → R (i ∈ I), and Gi : Rn → R (i ∈ I) are locally Lipschitz
functions, and Ω ⊆ R

n is a closed set.
If p = 1 and Ω = R

n, then (MMMPVCC) reduces to “mathematical pro-
gramming with vanishing constraints” (MPVC in brief) which were introduced
by Kanzow and his coauthors in 2007 [1,5] as an important extension of “math-
ematical programming with equilibrium constraints” (MPEC) [9,11], defined as

min f1(x)
s.t. gi(x) ≤ 0 i ∈ Ig,

hi(x) = 0 i ∈ Ih,

0 ≤ Hi(x)⊥Gi(x) ≥ 0, i ∈ I,
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where the later condition means that Hi(x) ≥ 0, Gi(x) ≥ 0, and Hi(x)Gi(x) = 0
for all i ∈ I.

After defining the MPVC, finding the optimality conditions, named station-
ary conditions, for it become an interesting subject for some researchers; see
[3–5] in smooth case and [7,8] in nonsmooth case.

It is worth mentioning that the feasible set of above problems are not convex,
so their optimality conditions can formulate by different normal cones, including
Clarke, Micheal-Penot, and Mordukhovich normal cones. Motivated to [3–5,9,11],
we focus onMordukhovich one.Also, thepresent paper considered theproperly effi-
cient solutions of (MMPVCC), and another kinds of efficiency do not consider here.
Since there are several definitions for properly efficient solutions of multiobjective
problems (see [2]), we consider the newest definition of them from [6].

The structure of subsequent sections of this paper is as follows: in Sect. 2,
we define required definitions, theorems and relations of non-smooth analysis. In
Sect. 3, we will introduce a constraint qualification for (MMPVCC) and present
a Karusk-Kuhn-Tucker (KKT) type necessary condition for properly efficient
solutions of the problem.

2 Notations and Preliminaries

In this section we present some preliminary results on nonsmooth analysis
from [10].

The Mordukhovich subdifferential of locally Lipschitz function ϕ : Rp → R

at x0 ∈ R
p is defined as

∂ϕ(x0) := lim sup
x→x0

{
ξ ∈ R

n | lim inf
y→x

ϕ(y) − ϕ(x) − 〈
ξ, y − x

〉

‖y − x‖ ≥ 0
}

.

We observe that for two locally Lipschitz functions ϕ1 and ϕ2 from R
p to R,

and for two arbitrary real numbers α and β, the following subadditive formula
holds:

∂
(
αϕ1 + βϕ2

)
(x0) ⊆ α∂ϕ1(x0) + β∂ϕ2(x0). (1)

Notice that the subdifferential ∂ϕ(x0) is always a compact (not necessarily con-
vex) subset of Rp.

Recall also that the normal cone of a closed subset A ⊆ R
p at x0 ∈ A is

defined by N(A, x0) := ∂ΘA(x0), where ΘA(.) denotes the indicator function
of A, i.e., ΘA(x) := 0 for x ∈ A, and ΘA(x) := +∞ otherwise. The following
theorem will be useful in what follows.

Theorem 1. If x0 ∈ V is a local minimizer of ϕ : Rp → R on V ⊆ R
p, then

one has
0p ∈ ∂ϕ(x0) + N(V, x0),

where, 0p denotes the zero vector in R
p.
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Let M : Rr ⇒ R
s be a set-valued function, and

(y, x) ∈ GphM := {(y, x) ∈ R
r × R

s | x ∈ M(y)}.

We say that M is calm at (y, x) if there exist some L > 0 and neighborhoods X
and Y around x and y, respectively, such that

dM(y)(x) ≤ L‖y − y‖, ∀y ∈ Y, ∀x ∈ X ∩ M(y),

where, dB(a) := inf
b∈B

‖a − b‖ denotes the point-to-set distance between a ∈ R
s

to B ⊆ R
s induced by standard norm ‖.‖ on R

s.
Also, we associate Mordukhovich’s coderivative to M as D∗M(y, x) : Rs ⇒

R
r defined by

D∗M(y, x)(x∗) := {y∗ ∈ R
r | (y∗,−x∗) ∈ N(GphM, (y, x))}.

If M is a single-valued, we simply write D∗M(y) instead of D∗M(y;Mx). For
single-valued locally Lipschitz function h, it holds as

D∗h(y)(x∗) = ∂M 〈x∗, h〉(y), (2)

where 〈x∗, h〉(y) :=
∑s

k=1 x∗
khk(y) for x∗ = (x∗

1, . . . , x
∗
s) and

h(y) = (h1(y), . . . , hs(y)).
Suppose that the set-valued mapping M̃ : Rl ⇒ R

k is defined as

M̃(y) := {x ∈ C̃ | g̃(x) + y ∈ Ẽ}, (3)

where the function g̃ : Rk → R
l is locally Lipschitz and (C̃, Ẽ) ⊆ R

k × R
l is

closed. The following important theorems will be used in sequel.

Theorem 2 [4, Theorem 4.1]. Consider the multifunction M̃ given by (3) and
a pair (0, x) ∈ GphM̃ . If M̃ is calm at (0l, x), then

N
(
M̃(0l), x

) ⊆
⋃

y∗∈N( ˜E,g̃(x))

D∗g̃(x)(y∗) + N(C̃, x).

Theorem 3 [4, Corollary 3.4]. Consider the set-valued function M̂ : Rp ⇒ R
k,

M̂(y) := {x ∈ Ĉ | ĝ(x, y) ∈ Ê},

where ĝ : Rk × R
p → R

q is locally Lipschitz and Ê ⊆ R
q, Ĉ ⊆ R

k are closed.
Let (ȳ, x̄) ∈ GphM̂ and Ĉ be regular and semismooth at x̄ (in the sense of [4,
Definition 2.2]). Further, assume the following qualification condition holds,

⋃

z∗∈N( ̂E,ĝ(x̄,ȳ))\{0q}
[∂〈z∗, ĝ〉(x, y)]x ∩ −bd N(Ĉ, x̄) = ∅,

where [ ]x denotes projection onto the x-component. Then M̂ is calm at (ȳ, x̄).
It is noteworthy that bd A denotes the topological bound of A.
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3 Main Results

At starting point of this section, we denote the feasible set of (MMPVCC) by
S, i.e.,

S := Ω ∩ {x ∈ R
n | gi(x) ≤ 0, i ∈ Ig; hi(x) = 0, i ∈ Ih;

Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i ∈ I}.

A feasible point x0 ∈ S is said to be properly efficient for (MMPVCC) if there
exist positive numbers λ1, . . . , λp such that

p∑

j=1

λjfj(x0) ≤
p∑

j=1

λjfj(x), ∀x ∈ S.

We fix a feasible point x̂ ∈ S, and consider following index sets:

I+0 := {i ∈ I | Hi(x̂) > 0, Gi(x̂) = 0},

I+− := {i ∈ I | Hi(x̂) > 0, Gi(x̂) < 0},

I0+ := {i ∈ I | Hi(x̂) = 0, Gi(x̂) > 0},

I00 := {i ∈ I | Hi(x̂) = 0, Gi(x̂) = 0},

I0− := {i ∈ I | Hi(x̂) = 0, Gi(x̂) < 0}.

Also, we set
I0g := {i ∈ Ig | gi(x̂) = 0}.

Obviously, I = I0 ∪ I+ in which I+ := I+0 ∪ I+− and I0 := I0+ ∪ I00 ∪ I0−.
The mention of M-stationary point was introduced for smooth MPVC in [3,4]

and for nonsmooth MPEC in [9]. Now, we present a suitable extension of this
concept for (MMPVCC).

Definition 1. The feasible point x̂ is said to be generalized M-stationary (G-
M-stationary) point for (MMPVCC) if there exist λj > 0 for j ∈ J , λg

i ≥ 0 for
i ∈ I0g , λh

i ∈ R for i ∈ Ih, λG
i ∈ R for i ∈ I, and λH

i ∈ R for i ∈ I such that

0n ∈
p∑

j=1

λj∂fj(x̂) +
∑

i∈I0
g

λg
i ∂gi(x̂) +

r∑

i=1

λh
i ∂hi(x̂)

+
m∑

i=1

[
λG

i ∂Gi(x̂) − λH
i ∂Hi(x̂)

]
+ N(Ω, x̂), (4)

λG
i ≥ 0, i ∈ I00 ∪ I+0, λG

i = 0, i ∈ I0+ ∪ I0− ∪ I+0, (5)

λH
i free, i ∈ I00 ∪ I0+, λH

i ≥ 0, i ∈ I0−, (6)

λH
i = 0, i ∈ I+, λH

i λG
i = 0, i ∈ I00. (7)

To simplicity in writing, we rearrange the constraints of Gis and His such that
the constraints with index i ∈ I00 are first written, then the constraints with
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index i ∈ I0+, then i ∈ I0−, then i ∈ I+0, and finally i ∈ I+−. We keep this
order throughout this paper. Also, we assume that

I0g = {1, . . . , k}, k ≤ s.

Let the function Γ : Rn → R
k+r+2m be define by

Γ (x) :=
(
g1(x), . . . , gk(x), h1(x), . . . , hr(x), G1(x),H1(x), . . . , Gm(x),Hm(x)

)
.

Consider following problem which has been parameterized respect to y ∈
R

k+r+2m:

P̂ (y) : min f(x)
s.t. Γ (x) + y ∈ D

x ∈ Ω,

in which

D := R
k
− × {0r} × {(p, q) ∈ R

m × R
m | qi ≥ 0 and piqi ≤ 0, ∀i ∈ I}.

P̂ (0k+r+2m) is clearly (MMPVCC). We denote the feasible set of P̂ (y) by Ŝ(y),
i.e.,

Ŝ(y) := {x ∈ Ω | Γ (x) + y ∈ D}.

Note that Ŝ : Rk+r+2m ⇒ R
n is a set-valued mapping. The following important

theorem gives an upper estimate for N(S, x̂).

Theorem 4. Suppose that x̂ is an feasible point for (MMPVCC) and the set-
valued mapping Ŝ is calm at (0k+r+2m, x̂). Then

N(S, x̂) ⊆
⋃

μ∈N(D,Γ (x̂))

[
k∑

i=1

μg
i ∂gi(x̂) +

r∑

i=1

μh
i ∂hi(x̂) +

m∑

i=1

[
μH

i ∂Hi(x̂) + μG
i ∂Gi(x̂)

]
]

+N(Ω, x̂),

where, μ =
(
μg
1, . . . , μ

g
k, μh

1 , . . . , μh
r , μG

1 , μH
1 , . . . , μG

m, μH
m

)
.

Proof. Taking in Theorem 2

g̃(x) = Γ (x), M̃ = Ŝ, Ẽ = D, C̃ = Ω,

we deduce that

N(S, x̂) ⊆
⋃

μ∈N(D,Γ (x̂))

D∗Γ (x̂)(μ) + N(Ω, x̂). (8)

By well-known equality (2), for each

μ :=
(
μg
1, . . . , μ

g
k, μh

1 , . . . , μh
r , μG

1 , μH
1 , . . . , μG

m, μH
m

) ∈ R
k+r+2m
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we have
D∗Γ (x̂)(μ) = ∂〈μ, Γ (.)〉(x̂) =

= ∂

[
k∑

i=1

μg
i gi +

r∑

i=1

μh
i hi +

m∑

i=1

(
μH

i Hi + μG
i Gi

)
]

(x̂)

⊆
k∑

i=1

μg
i ∂gi(x̂) +

r∑

i=1

μh
i ∂hi(x̂) +

m∑

i=1

[
μH

i ∂Hi(x̂) + μG
i ∂Gi(x̂)

]
.

Thus, (8) implies that

N(S, x̂) ⊆
⋃

μ∈N(D,Γ (x̂))

[
k∑

i=1

μg
i ∂gi(x̂) +

r∑

i=1

μh
i ∂hi(x̂) +

m∑

i=1

[
μH

i ∂Hi(x̂) + μG
i ∂Gi(x̂)

]
]

+N(Ω, x̂),

as required.

Same as everywhere in optimization theory, we require a constraint qualification
for presenting a KKT type necessary condition for (MMPVCC). The concept
of “No Nonzero Abnormal Multiplier Constraint Qualification” (NNAMCQ in
brief) have been introduced by Ye [11] for smooth MPECs, and were extended
for nonsmooth MPECs by Movahedian and Nobakhtian [9]. We generalize this
constraint qualification for (MMPVCC) in following definition.

Definition 2. We say that (MMPVCC) at x̂ satisfies in “Generalized
NNAMCQ” (GNNAMCQ in short) if there is no nonzero scalars αg

i ∈ R for
i ∈ I0g , αh

i ∈ R for i ∈ Ih, αG
i ∈ R for i ∈ I, and αH

i ∈ R for i ∈ I such that

0n ∈
∑

i∈I0
g

αg
i ∂gi(x̂) +

r∑

i=1

αh
i ∂hi(x̂) +

m∑

i=1

[
αG

i ∂Gi(x̂) + αH
i ∂Hi(x̂)

]
+ N(Ω, x̂),

αg
i ≥ 0, i ∈ I0g , αH

i ≤ 0, i ∈ I0−,

αH
i = 0, i ∈ I+, αH

i αG
i = 0, i ∈ I00,

αG
i ≥ 0, i ∈ I00 ∪ I+0, αG

i = 0, i ∈ I0+ ∪ I0− ∪ I+0.

Now, we can state a necessary condition for G-M-stationarity of (MMPVCC).

Theorem 5. Suppose that x̂ is a properly efficient solution for (MMPVCC). If
GNNAMCQ is satisfied at x̂), then x̂ is a G-M-stationary point for (MMPVCC).

Proof. The properly efficiency of x̂ concludes that there exist positive scalars
λj > 0, for j ∈ J , such that x̂ is a minimizer to the following weighted problem:

min
p∑

j=1

λjfj(x) subject to x ∈ S.
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Thus, Theorem 1 implies that

0n ∈ ∂
( p∑

j=1

λjfj

)
(x̂) + N(S, x̂) ⊆

p∑

j=1

λj∂fj(x̂) + N(S, x̂). (9)

We claim that the set-valued mapping Ŝ is calm at (0k+r+2m, x̂). For this end,
we observe that

N
(

D, Γ (x̂)
)

= N

(

R
k
− × {0r} × {

(p, q) ∈ R
m × R

m | qi ≥ 0 and piqi ≤ 0, ∀i ∈ I
}

, Γ (x̂)

)

= N
(

R
k
−, 0k

)

× N
(

{0r}, 0r

)

× N
(

{

(p, q) ∈ R
m × R

m | qi ≥ 0 and piqi ≤ 0, ∀i ∈ I
}

,
(

G1(x̂), H1(x̂), . . . , Gm(x̂), Hm(x̂)
)

)

.

(10)

On the other hand, by [3, Lemma 3.2] we have

N
(

{

(p, q) ∈ R
m × R

m | qi ≥ 0 and piqi ≤ 0, ∀i ∈ I
}

,
(

G1(x̂), H1(x̂), . . . , Gm(x̂), Hm(x̂)
)

)

=
∏

i∈I00

B ×
∏

i∈I0+

({0} × R) ×
∏

i∈I0−
({0} × R−) ×

∏

i∈I+0

(R+ × {0}) ×
∏

i∈I+−
({0} × {0}),

where, B := {(r, s) ∈ R
2 | r ≥ 0, rs = 0}. Combining the latter equality and

(10), we get

N
(

D, Γ (x̂)
)

= R
k
+×R

r ×
∏

i∈I00

B×
∏

i∈I0+

({0}×R)×
∏

i∈I0−
({0}×R−)×

∏

i∈I+0

(R+×{0})×
∏

i∈I+−
({0}×{0}).

(11)
This means that α :=

(
αg
1, . . . , α

g
kαh

1 , . . . , αh
r , αG

1 , αH
1 , . . . , αG

m, αH
m

) ∈ N
(
D,

Γ (x̂)
)

if and only if
⎧
⎨

⎩

αg
i ≥ 0, i ∈ I0g , αH

i ≤ 0, i ∈ I0−,
αH

i = 0, i ∈ I+, αH
i αG

i = 0, i ∈ I00,
αG

i ≥ 0, i ∈ I00 ∪ I+0, αG
i = 0, i ∈ I0+ ∪ I0− ∪ I+0.

Thus, the satisfying GNNAMCQ at x̂ guaranties if α ∈ N
(
D, Γ (x̂)

)
and

∑

i∈I0
g

αg
i ∂gi(x̂) +

r∑

i=1

αh
i ∂hi(x̂) +

m∑

i=1

[
αG

i ∂Gi(x̂) + αH
i ∂Hi(x̂)

] ∩ −N(Ω, x̂) �= ∅,

then, α = 0k+r+2m. This implies that
⋃

0k+r+2m 	=α∈N(D,Γ (x̂))

[∂ (〈α, Γ (x) + y〉) (x̂, 0k+r+2m)]x ∩ −N((Ω, x̂) = ∅,

where y is a variable in R
k+r+2m. Thus, the hypotheses of Theorem 3 hold by

taking ĝ(x, y) = Γ (x) + y and ȳ := 0k+r+2m. Therefore, Theorem 3 implies that
M̂(=Ŝ) is calm at (0k+r+2m, x̂), and our claim is proved. Finally, Theorem 4
and inclusion (9) yield the result.



Stationarity Condition for Nonsmooth MPVCs with Constraint Set 321

References

1. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints:
optimality conditions and constraint qualifications. Math. Program. 114, 69–99
(2007)

2. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005). https://doi.org/
10.1007/3-540-27659-9

3. Hoheisel, T., Kanzow, C.: Stationarity conditions for mathematical programs with
vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl.
337, 292–310 (2008)

4. Hoheisel, T., Kanzow, C., Outrata, J.: Exact penalty results for mathematical
programs with vanishing constraints. Nonlinear Anal. 72, 2514–2526 (2010)

5. Hoheisel, T., Kanzow, C.: First- and second-order optimality conditions for math-
ematical programs with vanishing constraints. Appl. Math. 52, 495–514 (2007)

6. Gopfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partioal
Ordered Spaces. Springer, New York (2003). https://doi.org/10.1007/b97568

7. Kazemi, S., Kanzi, N.: Constraint qualifications and stationary conditions for
mathematical programming with non-differentiable vanishing constraints. J.
Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1373-7

8. Kazemi, S., Kanzi, N., Ebadian, A.: Estimating the Frèchet normal cone in opti-
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Abstract. An important task of chemical biology is to discover the
mechanism of recognition and binding between proteins. Despite the
simplicity of the ligand-based model, fundamental mechanisms that reg-
ulate these interactions are poorly understood. An adequate equipment
is mandatory to unravel this scientific challenge, not only through cost
savings but also with high-quality results. With this in mind, we per-
formed Molecular Dynamics simulations using the Gromacs package on
two promising platforms: Cavium ThunderX2 ARM based cluster setup
and shared-memory Intel based single-node machine. Aforementioned
tests were also performed on common Intel based servers as a reference.
Acquired results shown that shared-memory machine features the higest
performance, although ARM and Intel clutsers are only slightly slower
when more than four sockets are employed. During measurements, idle
and job-execution consumptions were sampled in order to evaluate the
energy required by a single simulation step. Results show that ARM
and Intel servers are much less power-hungry with respect to shared-
memory machine. The latter, on the other hand, features a decrement in
power consumption when more resources are employed. Said unexpected
behaviour is later discussed.

Keywords: Gromacs · High performance computing · Molecular
Dynamics

1 Introduction

Ligand-based control of protein functional motions can provide fresh opportuni-
ties in the study of fundamental biological mechanisms and in the development
of novel therapeutics. A prototypical example is represented by integrin ανβ6,
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a transmembrane protein with promising anticancer properties. Integrins are het-
erodimeric cell adhesion receptors formed by a bilobular head and two legs that
can assume two different configuration: closed (also called inactive) with bended
legs and open (or active, Fig. 1) in which it is proned to bind partners [1,2].

A large number of biological pathways (e.g. cell migration or intracellular
signal transduction) require the transition between close and open state. The
malfunction of this machinery could lead to the pathogenesis of many diseases,
as reported in ref. [3–6].

Fig. 1. Integrin model in open configuration. Color code: αν subunit in red, β6 subunit
in blue, ligand in yellow. (Color figure online)

Here we focus on the integrin ανβ6, an epitelial specific class of integring
that interact with TGF-β, i.e. the transforming growth factor. The head part
of ανβ6 was recently crystallized alone and in complex with TGF-β peptide
by Dong et al. [7] providing a starting model for the protein-ligand interaction.
The investigation of different activation/deactivation mechanisms of integrin is
a rather challenging problem, usually addressed with molecular dynamics com-
putational technique. Indeed, internal protein dynamics are strongly influenced
by binded ligands, requiring extensive simulations.
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The large system size (above 200000 atoms) drammatically increases CPU-
time requirements to compute an integration step, leading to unfeasible compu-
tational costs. For this reasons, the research of efficient architecture represents
an important step in the evolution of computational simulations towards real
biological structures.

In this work, we measured the performances of Gromacs, [8] a popular Molec-
ular Dynamics software, on different architectures in order to compare compu-
tational efficiency and power consumption.

2 Materials and Methods

2.1 Machines Used in These Simulations

Three systems were investigated in the present study: an ARM based and an
Intel based cluster and a shared-memory Intel based single-node. During tests,
all systems were installed in the E4 R&D facility capable of manteaning constant
environment temperature and power delivery.

The former one consists of four 2U servers equipped with two Cavium
ThunderX2 R© CN9980 processors (32 cores each @ 2.2–3.0 GHz) and a total of
256 GB of memory (16 DDR4 banks @ 2666 MHz). An Intel SSD (240 GB with
SATA III interface) is dedicated to the local storage, while a Mellanox ConnetX-5
PCIe card is dedicated to network connectivity (link @ 100 Gb/s). Each machine
is powered with a redundant 1200 W Platinum grade power supply.

Each of the four worker-nodes of the second cluster features two Intel Xeon R©

Gold 6130 CPUs (16 cores @ 2.1–3.7 GHz), 96 GB of memory (12 DDR4 banks
@ 2400 MHz), one Intel SSD (960 GB with SATA III interface) and a Mellanox
ConnectX-5 PCIe card (link @ 100 Gb/s). The main difference with previous setup
is the form factor. Indeed, these nodes show a high density configuration and they
share a redundant 2200 W Gold grade power supply. Nowadays, this setup is the
most common in the modern datacenter, therefore it is taken as reference for com-
parisons reported in this article.

The last machine shows the same total amount of processors of previous clus-
ters but with a major difference: all eight Intel Xeon R© Platinum 8168 (24 cores @
2.7-3.7 GHz) as well as 1536 GB of memory (48 DDR4 banks @ 2666 MHz) are pre-
sented as part of the same board to the OS. Comunications between sockets is han-
dled by the QuickPath Interconnect bus (QPI) that features much lower latency
and higher bandwidth with respect to a traditional network interface. This feature
could result in a major advantage if handled properly (see Sect. 2.2). Two Intel SSD
in mirror mode (480 GB with SATA III interface) and a 4800 W Titanium grade
power supply are completing the configuration.

All investigated platforms were running CentOS Linux distribution (release
7.5). GCC [9] v. 6.4.0, OpenMPI [10] v 4.0.0 and FFTW [11] v. 3.3.8 were adopted
to build Gromacs v. 2018.3 from source code. All firmware and drivers were
updated to the latest version before testing.
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2.2 Software Parameters and Test Execution

The investigated structure is the headpiece of integrin ανβ6 complex with TGF-
β peptide (the pdb code is 4UM9). Said model was obtained using X-Ray single
crystal crystallography and consequently refined to delete purely resolved parts.
The total residue count is 987. Three Mg atoms were added in the ion binding
sites and the complex was solvated with tip3p water molecules in an octahedron
box (1.4 nm of margin), Na+ counterions were added to ensure electroneutrality.
The final system is composed of 231756 atoms.

The molecular simulation was conducted with Gromacs package using the
amberff99SB-ildn forcefield [12]. Parameters used for Mg ions were developped by
Allner et al. [13] After an initial minimization, the system was equilibrated at a
constant temperature of 300 K for 100 ps and, successively, at costant temperatue
and pressure (300 K, 1 bar) for 100 ps. For temperature and pressure coupling, the
modified Berendsen thermostat (v-rescale) and Parrinello-Rahman barostat were
used [14,15] with τT of 0.1 ps and τP 2 ps. Electrostatic forces were evaluated by
Particle Mesh Ewald method [16] and Lennard-Jones forces by a cutoff of 0.9 nm.

To execute Gromacs parallel code, we used mpirun command provided by
OpenMPI package. More specifically, we employed available resources as follow:
one MPI process per physical core and one OpenMP thread per MPI process. Con-
sequently, the final command was

mpirun -np # of cores --machinefile hosts file mdrun mpi.

We took particular precautions to correctly distribute computational resources
on shared-memory machine. More specifically, we adopted a slightly different com-
mand, i.e.

mpirun -np # of cores --map-by ppr:24:socket mdrun mpi.

Said command allowed to fully occupy only requested sockets, mimicking a
cluster setup. Indeed, mpirun by default would spread cores across all eight sock-
ets of the single-node server, leading to a partial CPU allocation and therefore a
much higer clock frequency compared to a cluster setup with the same amount of
resources.

3 Results andDiscussion

A molecular dynamics simulation consists in the integration of the Newton’s law of
dynamics for every atom in the system. Interactions between atoms are modelled
with a force field potential. Therefore the system is represented by a large set of
coupled differential equations that could not be integrated analytically but had
to be solved numerically. Gromacs package implement various algorithms for the
numerical integration with different order of precision, in our test we use the leap-
frog algorithm [17].
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The choice of the integration interval has to be balance between performance
and integration errors, we set a time step of 0.002 ps. This should not be confused
with the real CPU-time needed to compute system evolution. Indeed, the actual
duration of a step is in the order of ten ms. Consequently, our results are expressed
in Gromacs performances, i.e. the number of evolutionary steps (espressed in ns)
during the 24 h.

Acquired results are reported in Fig. 2. Shared-memory machine turned out to
be the fastest in our pool. This can be easily traced to the higher clock frequency
of CPU. This being said, performance differences are significantly reduced with
the increment of employed resources (i.e. number of sockets). As a matter of fact,
ARM and Intel based servers turned out to be 40% and 20% slower than single-
node platform when four and eight sockets are employed.

One could guess that this behavior could be related to (i) the excellent paral-
lelizzation of Gromacs code and (ii) suboptimal memory allocation inside shared-
memory machine. Indeed, network interfaces increase communication latency
between processes executed on different servers, and consequently augmenting
the simulation length. In single-node systems said interfaces are substituted with
the much faster QPI busses, resulting in a substantial increment in performance.
On the other hand, computational cores are handling both calculation processes
and QPI communication messages (mostly related to allocated data in mem-
ory). Therefore, calculation processes are frequently interrupted by communica-
tion requests, slowing down the overall simulation.

Fig. 2. Gromacs perfomance vs employed resources. Higher is better.
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In recent years, attention to energy efficiency has become fundamental since
acceptable total cost of ownership must include not only hardware purchase but
also system power consumptions. Therefore, we measured energy requirements of
investigated architectures during job executions.

Figure 3 shows acquired results scaled by idle consumptions. This correction
is mandatory since compared machines feature different formfactors (i.e. high-
density twin-square for Intel servers, 2U for ARM once and 7U for shared-memory)
and consequently they adopt different power management strategies.

Shared-memory machine turned out to be the most power-hungry system in
our pool. On the other hand, ARM and Intel based servers show a rather modest
incremental trend. It must be noted that single-node server features a decrement
in power consumption when more than two sockets were employed. This unex-
pected behavior could be caused by the fact that full load and idle consumptions
does not change very much in shared-memory architecture, while Gromacs perfor-
mance are almost doubled. Machine efficiency substantially drops when 8 sockets
are employed (see Fig. 2). Consequently, energy required for a single simulation
step turned out to be comparable with tests requiring 4 sockets.

Fig. 3. Required energy to calcualte a single simulation step vs employed resources (i.e.
sockets). Lower is better.

Recently the interest of HPC community in ARM processors is increasing and
a comparison between ARM and x86 architectures were conducted [18], in our test
we introduce also a comparison with a shared-memory machine and an evaluation
of the energy consumption.
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Moreover the improvements in hardware configuration led us to extend the
length of molecular simulations arriving to simulation times in the order of μs,
necessary for analyze this system as is previously done with an other type of inte-
grin [19].

4 Conclusions

In the present work, we compared Gromacs performances on two rather new
architectures with rising popularity in datacenter environment: ARM based
clusters and shared-memory single-node machines. Also traditional Intel based
cluster were considered for comparative purposes. Our tests focused on activa-
tion/deactivation mechanisms of integrin ανβ6, a rather large systems comparable
to real size proteins.

We observe that integrin complexes could be efficiently simulated on all inves-
tigated platfoms. Indeed, all architectures were capable to simulate more than
40 ns/day. Intel and ARM servers feature a linear trend with employed resources
(i.e. number of sockets) in Gromacs performance. This being said, shared-memory
machine shows the highest absolute performances for every sockets configuration.
Concerning energy comsumptions, shared-memory server turned out to be the less
efficient. ARM based servers are the most energy efficient in our pool, while fea-
turing respectable performances. One could argue that said systems are indeed a
compelling alternative to traditional Intel based clusters.

Future works aim to expand the collection of investigated platforms with other
architectures like AMD and Power based cluster or enterprise level multi-GPU
server.
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Abstract. Deep Learning opened artificial intelligence to an unprece-
dented number of new applications. A critical success factor is the ability
to train deeper neural networks, striving for stable and accurate mod-
els. This translates into Artificial Neural Networks (ANN) that become
unmanageable as the number of features increases. The novelty of our
approach is to employ Network Science strategies to tackle the com-
plexity of the actual ANNs at each epoch of the training process. The
work presented herein originates in our earlier publications, where we
explored the acceleration effects obtained by enforcing, in turn, scale
freeness, small worldness, and sparsity during the ANN training process.
The efficiency of our approach has also been recently confirmed by inde-
pendent researchers, who managed to train a million-node ANN on non-
specialized laptops. Encouraged by these results, we have now moved
into having a closer look at some tunable parameters of our previous
approach to pursue a further acceleration effect. We now investigate on
the revise fraction parameter, to verify the necessity of the role of its
double-check. Our method is independent of specific machine learning
algorithms or datasets, since we operate merely on the topology of the
ANNs. We demonstrate that the revise phase can be avoided in order to
half the overall execution time with an almost negligible loss of quality.

Keywords: Network Science · Artificial Neural Networks

1 Introduction

The idea to simulate the human brain behaviour is one of the top scientific trends
today. In particular, Deep Learning strategies pave the way to an unprecedented
number of new applications thanks to their ability to manage more complex
architectures such as speech recognition [8], image [9] and signal [15] processing,
and cyber-security [2]. Other applications which are gaining popularity are in
the field of bio-medicine [3] and in drug discovery [4,14].
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Despite their success, Deep Learning architectures suffer from important scal-
ability issues: generally speaking, they translate into Artificial Neural Networks
(ANN) that become unmanageable as the number of features increases.

While most current strategies focus on using more powerful hardware, our
approach is to employ Network Science strategies to tackle the complexity of the
actual ANNs iteratively, that is at each epoch of the training process.

The work presented herein originates in our earlier publication [13], a promis-
ing research avenue to speed up Neural Network training. There, we defined a
new approach, called Sparse Evolutionary Training (SET), in which the acceler-
ation effects obtained by enforcing, in turn, scale-freeness, small-worldness, and
sparsity during the ANN training process are explored.

In the SET framework, an ANN is first initialized as a sparse weighted Erdős-
Rényi graph in which the graph density is fixed (20% by default), and weights
on edges are drawn from a normal distribution with mean equals to zero. In a
second stage (called revision), null-edges (i.e. links with weight equal to zero)
are iteratively replaced with non-zero weights with the twofold goal of reducing
the loss on the training set and to keep the number of connections constant.

The efficiency of this approach has also been recently confirmed by indepen-
dent researchers, who managed to train a million-node ANN on non-specialized
laptops [12].

Encouraged by these results, we have now moved into looking at algorithm
tuning parameters to pursue a further acceleration effect, with a negligible accu-
racy loss of the final model. The method is independent of specific machine
learning algorithms or datasets since we operate merely on the topology of the
ANNs. The focus is on the revision stage and on its impact on the training time
over epochs. Noteworthy results have been achieved, such as an improvement of
50% in terms of time gain, as shown in Sect. 4.

The rest of the paper is organized as follows. Section 2, presents the related
background. The adopted methodology is addressed in Sect. 3. Next, on Sect. 4,
the results are discussed. In Sect. 5, our conclusions are drawn.

2 Background

This section briefly introduces the main concepts required to understand our
work.

Note that, for the sake of simplicity, we use the words ‘weight’ and ‘link’
interchangeably. We demonstrate our approach in the context of the multilayer
perceptron (MLP), a popular supervised model. MLP is a feed-forward Artifi-
cial Neural Network (ANN) composed by several hidden layers, forming a Deep
Network, as shown in Fig. 1. Because of the intra-layer links flow, an MLP can
be seen as a fully connected directed graph between the input and output layers.

Supervised learning involves observing several samples of a given dataset,
which will be divided into ‘training’ and ‘test’ samples. While the former is used
to train the neural network, the latter has the role of the litmus test, as it is
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Fig. 1. Example of a generic multilayer perceptron graph with more than two hidden
layers.

compared with the ANN predictions. For further details on Deep Learning, refer
to [11, 7] .

The construction of a fully connected graph inevitably leads to higher com-
putational costs, as the network grows. To overcome this issue, in our earlier SET
framework [13], drawing inspiration from human brain models, we suggested to
model an ANN topology as a weighted sparse Erdős-Rényi graph in which edges
were randomly placed with nodes, according to a fixed probability [5,1,10].

Just like in [13], we set the edge probability as follows:

p
(
W k

ij

)
=

ε(nk + nk−1)
nknk−1

, (1)

where W k ∈ Rnk−1×nk

is a sparse weight matrix between the k-th layer and the
previous one, ε ∈ R+ is the sparsity parameter, and i, j are a pair of neurons;
moreover, nk is the number of neurons in the k-th layer [13].

As outlined in the previous section, this process led to forcing network spar-
sity. This trick was balanced by introducing the tunable revise fraction parame-
ter ζ that has the role to confirm (or to change) the weights during the training
process as explained below.

After that, the first input vector from training data to the network is pre-
sented and propagated through the ANN to obtain an output (forward propaga-
tion phase). Then, the error signal is computed by comparing the actual output
to the target output (from the test set). Next, this error signal is propagated
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back through the network. This event is called back-propagation. During this
phase, to minimise the overall error the weights are revised and adjusted. The
combined stage of both one forward pass and one backward pass of all the train-
ing examples is called epoch. The feed-forward and back-propagation stages are
repeated until the overall error is satisfactorily small [6].

At the end of each epoch, in [13] there is a weight adjustment phase. It
consists of removing the closest-to-zero links in between layers plus a wider
revising range (i.e. ζ). This parameter has the role to verify the correctness of
the forced-to-be-zero weights.

Subsequently, new weighs are added randomly to exactly compensate the
removed weights. Thanks to this procedure, the number of links between layers
remains constant across different epochs, while no isolated neurons are allowed.
The revise fraction, represented by the ζ parameter, is the one that we analyze
herein.

3 Method

In this section, we illustrate the research questions and the strategy that we
followed to achieve our goal.

To speed-up the training process, we examine the effects drawn by the vari-
ation of ζ during the evolutionary weight phase, at each epoch. We gradually
reduce ζ with the aim to better understand the trade-off between speed-up and
accuracy loss.

In [13] the default revise fraction was set to ζ = 0.3. Yet, no further inves-
tigations on the sensitivity to ζ (in terms of accuracy and running time) was
carried out. We set out to understand these effects, particularly how the revise
step affects the training when ζ is substantially reduced.

Some obvious considerations of this problem are that a shorter execution
time and a certain percentage of accuracy loss are expected, if we opt for smaller
values of ζ. Nonetheless, this relationship is bound to be non-linear; thus, it is
crucial to get to quantitative results, which is our aim herein.

Following a pragmatic approach, we have conducted our experiments using
a well-known dataset, the Lung Cancer Data Set1, which is widely used for its
importance in medicine. This comprises 203 instances, and 3,312 input features,
with five output classes.

Our ANN is composed of three hidden layers with 3,000 neurons per layer.
The activation functions used by default are ReLu for the hidden layers, and
Sigmoid for the output.

4 Results

In this section, we compare the results obtained varying the parameter ζ. We
evaluate the training goodness in terms of the best balance between short exe-
cution time and high accuracy reached.
1 http://featureselection.asu.edu/.

http://featureselection.asu.edu/
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For brevity, only the most important outcomes are reported hereafter. We
focused on the range of 0 ≤ ζ ≤ 1; furthermore, we enlarged the number of
epochs range from the default value of 100 up to 150 with the aim to find the
ending point of the transient phase. By combining these two tuning parameters
we discovered that, with this dataset, the meaningful range is 0 ≤ ζ ≤ 0.02.

Figure 2 shows substantial accuracy fluctuations, but no well-defined tran-
sient phase for ζ > 0.02. The default ζ value, used here as benchmark, shows
an accuracy variation of more than 10% (e.g. accuracy from 82% to 97% at the
60th epoch, and the accuracy from 85% to 95% at the 140th epoch). Note that
because the first 10 epochs are within the settling phase, the observations given
below concern the following steps. Due to this uncertainty, and the absence of a
transient phase, it is impossible to identify an absolute best stopping condition
for the algorithm. For instance, at the 60th epoch an accuracy collapse from 97%
to 82% was spotted, followed by an accuracy of 94% at the next step.

Considering a lower revise fraction, such as ζ ≤ 0.02, an improvement in
stability and a loss in accuracy emerged, as was to be expected. In this scenario,
defining an exit condition according to the accuracy trend over time is easier. In
this case, there is no unexpected sharp decrease.

To quantify the amount of accuracy loss compared with the execution time
gain, we refer to Table 1. This reports in percentage terms both the revise fraction
and the accuracy, at the 150th epoch, as well as the highest accuracy reached
during the whole simulation. Moreover, mean and confidence interval bounds are
given.

What becomes evident is that the revise phase substantially affects execution
time. The difference between the simulation with ζ = 1% and ζ = 30% is of
7 min approximately (29.36 vs 36.74). This is a small gap if compared with the
11 min between ζ = 0% and ζ = 1% (17.88 vs 31.46). Therefore, on average, the
improvement achieved by using a higher revise fraction (as the default one is)
has a gain of 3%.

Table 1. Evaluating parameters varying the revise fraction. From left: the revise frac-
tion in percentage; the overall time expressed in minutes; the accuracy at the last
epoch considered (i.e. 150th) in percentage; the highest accuracy reached during the
simulation expressed in percentage; the accuracy mean during the simulation, and the
confidence interval bounds. Notes that these last three parameters are computed after
the first 10 epochs.

ζ (%) Exec time (min) Last Acc (%) Max Acc (%) Mean Lower bound Upper bound

30% 36.74 95.59% 97.06% 0.931164 0.926608 0.935720

2% 31.47 95.59% 95.59% 0.903630 0.900610 0.906649

1% 29.36 92.65% 94.12% 0.901648 0.898086 0.905210

0% 17.88 92.65% 94.12% 0.901856 0.897713 0.906000
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Fig. 2. Accuracy percentage over 150 epochs with ζ = 0% in blue, ζ = 1% in yellow,
ζ = 2% in green, and the default value ζ = 30% in red as benchmark. (Color figure
online)

5 Conclusions

In this paper, we moved a step forward from earlier work [13]. Not only our exper-
iments confirmed the efficiency arising from training sparse neural networks. We
managed to further exploit sparsity through a better tuned algorithm, obtaining
a further speed up effect at a negligible accuracy loss.

Of course, the actual (quantitative) results will depend on the particular
application domain, dataset and training algorithm. Yet, it is evident that net-
work science algorithms that keep sparsity in ANNs are a promising direction
and have considerable further potential. Our next priority will be to test out a
broader range of training algorithms and datasets, venturing into more network
science strategies.

In the future, multiple datasets will be considered in order to analyse the
impact of ζ parameter on the training phase in different application domains. The
results obtained will allow us to verify that our approach works well regardless of
the reference scenario. The experiments will include also different distributions
for the initial weight assignments, and the sparsity parameter ε will be examined.
This last one improvement, in particular, leads to other important questions, like:
is there a critical threshold in pushing network sparsity any further?
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Abstract. In this work we have addressed lexicographic multi-objective
linear programming problems where some of the variables are constrained
to be integer. We have called this class of problems LMILP, which stands
for Lexicographic Mixed Integer Linear Programming. Following one of
the approach used to solve mixed integer linear programming prob-
lems, the branch and bound technique, we have extended it to work
with infinitesimal/infinite numbers, exploiting the Grossone Methodol-
ogy. The new algorithm, called GrossBB, is able to solve this new class
of problems, by using internally the GrossSimplex algorithm (a recently
introduced Grossone extension of the well-known simplex algorithm, to
solve lexicographic LP problems without integer constraints). Finally we
have illustrated the working principles of the GrossBB on a test problem.

Keywords: Multi-objective optimization · Lexicographic
optimization · Mixed Integer Linear Programming · Numerical
infinitesimals

1 Introduction

Engineering applications often lead to optimization problems where several
objectives should be optimized. An important class of problem of this kind
is the Lexicographic Mixed-Integer Linear Programming (LMILP), where the
first objective is incomparably more important than the second, which, on
its turn, is incomparably more important than the third one, and so on. An
LMILP problem is also characterized by the fact that the feasibility domain
is defined by a set of linear inequalities, with the addition of the integrality
constraint on some or all the decision variables. Here the LMILP problem will
be approached using a recently introduced computational methodology allowing
one to work numerically with infinities and infinitesimals in a handy way (see for
a detailed introduction surveys [11,13,14] and the book [10] written in a popular
way). This computational methodology has already been successfully applied in
optimization [2,3,7,8,16], game theory [4–6], and in many other fields, as
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reported in [15]. This methodology uses a numeral system working with an infi-
nite number called Grossone, expressed by the numeral ①, and introduced as
the number of elements of the set of natural numbers (the non-contradictory of
the methodology has been studied in [9]). This numeral system allows one to
express a variety of numbers involving different infinite and infinitesimal parts
and to execute operations with all of them in a unique framework.

In this work we propose a novel Branch-and-Bound (BB) algorithm using the
Grossone framework to analyze the LMILP problem. The key idea is to scalarize
the lexicographic objective functions using Grossone, in order to obtain a scalar
function (actually, a scalar function taking Grossone-based values), following the
same approach described in [2]. By removing the integrality constraints at each
node, we are able to map an LMOMILP (Lexicographic Multi-Objective Mixed
Integer Linear Programming) problem into an LP (Linear Programming)-like
problem, which can be solved using the GrossSimplex algorithm [2]. The next
step is to theoretically extend the BB algorithm to the case of function assuming
Gross-scalar values. We have called this algorithm GrossBB. After providing the
associated pruning and branching rules, we use this algorithm (coupled with the
GrossSimplex one) to solve the LMILP problem.

2 Lexicographic Mixed-Integer Linear Programming

The LMILP problem is formalized as follow:

lexmin c1Tx, c2Tx, ..., cr Tx

s.t. Ax � b,

x =
[
p
q

]
p ∈ Z

k, q ∈ R
n−k

P

where ci, i = 1, ..., r, are column vectors∈R
n, x is a column vector∈R

n, A is a
full-rank matrix ∈R

m×n, b is a column vector ∈R
m. The notation lexmin in P

denotes the Lexicographic Minimum and means that the first objective is much
more important than the second, and so on: c1Tx � c2Tx � ... � cr Tx.
From problem P, we can define the polyhedron with only linear constraints:

S ≡ {x∈R
n : Ax � b} . (1)

and with that we can define the relaxation of a Lexicographic (mixed) integer
linear problems arises by removing the integrality constraint of each variable:

lexmin c1Tx, c2Tx, ..., cr Tx

s.t. Ax � b,
R

R is called Lexicographic Multi-Objective Linear Programming (LMOLP) prob-
lem and can be solved as in [2].

Hereinafter we assume that S is bounded and non-empty. In next section we
briefly introduce the Grossone approach, that will allow us to provide in Sec. 4
another formulation of problem P, much easier to deal with.
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3 The Grossone Methodology

As said before, in [10–14] a computational methodology working with an infinite
unit of measure called Grossone and indicated by the numeral ① has been intro-
duced as the number of elements of the set of natural numbers N. On the one
hand, this allows one to treat easily many problems related to the traditional set
theory operating with Cantor’s cardinals by computing the number of elements
of infinite sets using ①-based numerals.

On the other hand, in the numeral system built upon Grossone, there is the
opportunity to treat infinite and infinitesimal numbers in a unique framework
and to work with all of them numerically, i.e., by executing arithmetic operations
with floating-point numbers and the possibility to assign concrete infinite and
infinitesimal values to variables.

A general way to express infinities and infinitesimals is also provided in [10–
14] by using records similar to traditional positional number systems, but with
the radix ①. A number c̃ in this new numeral system (c̃ will be called Gross-scalar
from here on) can be constructed by subdividing it into groups of corresponding
powers of ① and thus can be represented as

c̃ = cpm
①pm + ... + cp1①p1 + cp0①p0 + cp−1①p−1 + ... + cp−k

①p−k ,

where m, k ∈N, exponents pi are called Gross-powers (they can be numbers of
the type of c̃) with p0 = 0, and i = m, ..., 1, 0,−1, ...,−k. Then, cp

i
�= 0 called

Gross-digits are finite (positive or negative) numbers, i = m, ..., 1, 0,−1, ...,−k.
In this numeral system, finite numbers are represented by numerals with the
highest Gross-power equal to zero, e.g., −6.2 = −6.2①0.

4 LMILP Solved Using the GrossSimplex-Based GrossBB

First of all, let us show how the LMILP problem P can be rewritten, using
Gross-numbers, in the following way:

min c̃Tx

s.t. Ax � b,

x =
[
p
q

]
p ∈ Z

k, q ∈ R
n−k

P̃

where c̃ is a column Gross-vector having n Gross-scalar components:

c̃ =
r∑

i=1

ci①−i+1 (2)

and c̃Tx is the Gross-scalar obtained by multiplying the Gross-vector c̃ by the
purely finite vector x :

c̃Tx = (c1Tx)①0 + (c2Tx)①−1 + ... + (crTx)①−r+1, (3)
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where (3) can be equivalently written in the extended form as:

c̃Tx = (c11x1+...+c1nxn)①0+(c21x1+...+c2nxn)①−1+...+(cr1x1+...+crnxn)①−r+1.

What makes this formulation attractive is the fact that its relaxed version
(from the integrality constraint) is a Gross-LP problem [2], which can be effec-
tively solved using a single run of the GrossSimplex algorithm. This means
that the set of multiple objective functions is mapped into a single (Gross-)
scalar function to be optimized. This opens the possibility to solve the integer-
constrained variant of the problem using an adaptation of the BB algorithm (see
Sect. 4.3), coupled with the GrossSimplex. Of course the GrossSimplex will solve
problem R̃, the relaxed version of P̃ :

min c̃Tx

s.t. Ax � b
R̃

Next subsequent subsections provide the pruning and branching rules, then
the GrossBB algorithm, i.e. a BB algorithm able to work with Gross-numbers.

4.1 Pruning Rules for the GrossBB

Theorem 1 (Pruning Rules for the GrossBB). Let xopt be the best upper
bound found so far for P̃ , and let be ṽS(P̃ ) = c̃Txopt be the current upper bound.
Considering the current node (P̃c) and the associated problem P̃c:

1. If the feasible region of problem P̃c is empty the sub-tree with root (P̃c) has no
feasible solutions having values lower than xopt. So, we can prune this node.

2. If ṽI(P̃c) � ṽS(P̃ ), then we can prune at node (P̃c), since the sub-tree with
root (P̃c) cannot have feasible solutions having a value lower than ṽS(P̃ ).

3. If ṽI(P̃c) < ṽS(P̃ ) and the optimal solution x̄ of the relaxed problem R̃c is
feasible for P̃ , then x̄ is a better candidate solution for P̃ , and thus we can
update the value of xopt (xopt = x̄) and that of the upper bound (ṽS(P̃ ) =
ṽI(P̃c)). Finally, prune this node, for the same reasons of the second rule.

The correctness of the pruning rules above can be found in [1].

4.2 Branching Rule for the GrossBB

When the sub-tree below P̃c cannot be pruned (because it could contain better
solutions), its sub-tree must be explored. Thus we have to branch the current
node into Pl and Pr and to add these two new nodes to the tail of the queue of
the sub-problems to be analyzed and solved (by the GrossSimplex).
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4.3 Pseudo-Code for the GrossSimplex-Based GrossBB Algorithm

The steps of the branch and bound method for determining an optimal inte-
ger solution for a minimization model (with � constraints) is summarized in
Algorithm 1.

Algorithm 1. The GrossSimplex-based GrossBB Algorithm

Inputs: maxIter and a specific LMOMILP problem ˜|P |, to be put in the root node (P̃ )
Outputs: xopt (the optimal solution, a purely finite vector), f̃opt (the optimal value, a
Gross-scalar)

Step 0. Insert ˜|P | into a queue of the sub problems that must be solved. Put
ṽS(P̃ ) = ①, xopt = [ ], and f̃opt = ① or use a greedy algorithm to get an initial
feasible solution.

Step 1a. If all the remaining leaves have been visited (empty queue), or the maxi-
mum number of iterations has been reached, or the ε̃-optimality condition holds,
then goto Step 4. Otherwise extract from the head of the queue the next prob-
lem to solve and call it P̃c (current problem). Remark: this policy of insertion
of new problems at the tail of the queue and the extraction from its head leads
to a breadth-first visit for the binary tree of the generated problems.

Step 1b. Solve R̃c, the relaxed version of the problem P̃c at hand, using the Gross-
Simplex and get x̄ and f̃c ( = c̃T x̄):

[x̄, f̃c, emptyPolyhedron] ← GrossSimplex(R̃c)

Step 2a. If the LP solver has found that the polyhedron is empty, then prune the
sub-tree of (P̃c) (according to Pruning Rule 1) by going to Step 1a (without
branching (P̃c)). Otherwise, we have found a new lower value for P̃c:

ṽI(P̃c) = f̃c

Step 2b. If ṽI(P̃c) � ṽS(P̃ ), then prune the sub-tree under P̃c (according to Pruning
Rule 2), by going to Step 1a (without branching P̃c).

Step 2c. If ṽI(P̃c) < ṽS(P̃ ) and all components of x̄ that must be integer are
actually ε-integer (i.e., x̄ is feasible), then we have found a better upper bound
estimate. Thus we can update the value of ṽS(P̃ ) as:

ṽS(P̃ ) = ṽI(P̃c).

In addition we set xopt = x̄ and f̃opt = ṽI(P̃c). Then we also prune the sub-
tree under (P̃c) (according to Pruning Rule 3) by going to Step 1a (without
branching (P̃c)).

Step 3. If ṽI(P̃c) < ṽS(P̃ ) but not all components of x̄ that must be integer are
actually ε-integer, we have to branch. Select the component x̄t of x̄ having the
greatest fractional part, among all the components that must be integer. Create
two new nodes (i.e., problems) with a new constraint for this variable, one with
a new � constraint for the rounded down value of x̄t and another with a new
� constraint for the rounded up value of x̄t. Let us call the two new problems
P̃l and P̃r and put them at the tail of the queue of the problems to be solved,
then goto Step 1a.

Step 4. End of the algorithm.
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5 A Numerical Illustration

In this work we have presented the GrossBB for lexmin problems. Clearly, using
it we can also solve lexmax problems, by considering the opposite of the cost
Gross-vector, i.e., by calling the lexmin-based GrossBB with −c̃ instead of c̃.
The following lexmax-formulated problem is solved in this way.

Example: This problem is a variant to the two dimensional problem with three
objectives and all integer variables described in [2] with a known solution.

lexmax 8x1 + 12x2, 14x1 + 10x2, x1 + x2

s.t. 2x1 + 1x2 � 12
2x1 + 3x2 � 210 + 2.5
4x1 + 3x2 � 270
x1 + 2x2 � 60
− 200 � x1, x2 � +200, x ∈ Z

n

|T |

The polygon S associated to this problem is shown in Fig. 1. In black the
integer points and in light grey the LP problem without integer constraints.
It can be seen that the first objective vector c1 = [8, 12]T is orthogonal to
segment [α, β] (α = (0, 70.83), β = (28.75, 51.67)) shown in the same figure.
All the nearest integer points parallel to this segment are optimal for the first
objective. Since the solution is not unique, the is the chance to try to improve
the second objective vector (c2 = [14, 10]T ).

It is known that the optimal solution is x̄ = [28, 52]T and c̃Tx = 848①0 +
912①−1 + 80①−2 is the optimal Gross-scalar.

Fig. 1. This example is in two dimensions with three objectives. All the nearest integer
points parallel to the segment [α, β] (there are many), are optimal for the first objective,
while point (28, 52) is the unique lexicographic optimum for the given problem (i.e.,
considering the second objective too). The third objective plays no role in this case.
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Table 1. Iterations performed by GrossSimplex-based GrossBB Algorithm on test |T |

Iter. result at node(iter)

Init: - ṽS(P̃ ) = ①

- Queue len. 1 (add the root problem to the queue)

1 ṽI(P̃c): −850①0 − 919.167①−1 − 80.4167①−2. Queue length : 0

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 2

- Δ̃ = 100①0 + 100①−1 + 100①−2

2 ṽI(P̃c): −850①0 − 915.5①−1 − 80.25①−2. Queue length: 1

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 3

- Δ̃ = 100①0 + 100①−1 + 100①−2

3 ṽI(P̃c): −846①0 − 919.5①−1 − 80.25①−2. Queue length: 2

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 4

- Δ̃ = 100①0 + 100①−1 + 100①−2

4 prune node: rule 1, empty feasible region. Queue length: 3

5 ṽI(P̃c): −850①0 − 913.667①−1 − 80.1667①−2. Queue length: 2

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 4

- Δ̃ = 100①0 + 100①−1 + 100①−2

6 ṽI(P̃c): −840①0 − 920①−1 − 80①−2. Queue length: 3

- A feasible solution has been found: xopt = [30 50]T

- update ṽS(P̃ ) = ṽI(P̃c), prune node: rule 3

- Δ̃ = 0.0119048①0 − 0.00688406①−1 + 0.00208333①−2

7 ṽI(P̃c): −844①0 − 916①−1 − 80①−2. Queue length: 2

- A feasible solution has been found: xopt = [29 51]T

- update ṽS(P̃ ) = ṽI(P̃c), prune node: rule 3

- Δ̃ = 0.354191①0 − 0.127528①−1 + 0.104058①−2

8 ṽI(P̃c): −850①0 − 904.5①−1 − 79.75①−2. Queue length: 1

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 3

- Δ̃ = 0.007109①0 − 0.00254731①−1 + 0.00208333①−2

9 ṽI(P̃c): −848①0 − 912①−1 − 80①−2. Queue length: 2

- A feasible solution has been found: xopt = [28 52]T

- update ṽS(P̃ ) = ṽI(P̃c), prune node: rule 3

- Δ̃ = 0.00235849①0 − 0.00822368①−1 − 0.003125①−2

10 prune node: rule 1, empty feasible region. Queue length: 1

11 . ṽI(P̃c): −850①0 − 899①−1 − 79.5①−2. Queue length: 0

- no pruning rules applied, branch P̃c in two sub-problems. Queue length: 2

- Δ̃ = 0.00235849①0 − 0.0142544①−1 − 0.00625①−2

... ... ... ... ... ....

80 prune node: rule 1, empty feasible region. Queue length: 1

81 ṽI(P̃c): −848①0 − 714①−1 − 71①−2. Queue length: 0

- ṽI(P̃c) � ṽS(P̃ ) prune node: rule 2

Result at iteration 81: optimization ended. Optimal solution found:

xopt = [28 52]T f̃opt = −848①0 − 912①−1 − 80①−2

Δ̃ = 0①0 + 0①−1 + 0①−2
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Table 1 provides a synthesis with the most interesting iterations performed
by the GrossBB algorithm.

6 Conclusions

In this work, the LMILP problem has been formulated and a branch and bound
algorithm using the powerful Grossone methodology from [10–14] has been pro-
posed. The proposed algorithm has been called GrossBB and was coupled with
the GrossSimplex solver developed in [2]. Its properties have been analyzed
briefly and a numerical example showing a quite satisfactory behavior of the
new method has been provided.

These preliminary results show a high potential of the GrossBB method com-
bined with the GrossSimplex algorithm, and confirm that this research direction
deserves a deeper investigation.

References

1. Cococcioni, M., Cudazzo, A., Pappalardo, M., Sergeyev, Y.D.: Solving the lexico-
graphic mixed-integer linear programming problem using branch-and-bound and
Grossone methodology. Comm. Nonlinear Sci. Numer. Simul., Submitted

2. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective lin-
ear programming using grossone methodology: theory and algorithm. Appl. Math.
Comput. 318, 298–311 (2018)

3. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the
conjugate gradient breakdown in nonlinear programming. Comput. Optim. Appl.
71, 73–93 (2018)

4. Fiaschi, L., Cococcioni, M.: Non-archimedean game theory: a numerical approach.
Submitted

5. Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in game theory using
Sergeyev’s infinity computing. Int. J. Unconventional Comput. 14, 1–25 (2018)

6. Fiaschi, L., Cococcioni, M.: Generalizing pure and impure iterated prisoner’s dilem-
mas to the case of infinite and infinitesimal quantities. In: Proceedings of the 3rd
International Conference on “Numerical Computations: Theory and Algorithms”.
Springer Lecture Notes in Computer Science (2019)

7. Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesi-
mals in a variable metric method for convex nonsmooth optimization. Appl. Math.
Comput. 318, 312–320 (2018)

8. Lai, L., Fiaschi, L., Cococcioni, M.: Solving mixed pareto-lexicographic multi-
objective optimization problems: the case of priority chains. Submitted

9. Lolli, G.: Metamathematical investigations on the theory of grossone. Appl. Math.
Comput. 255, 3–14 (2015)

10. Sergeyev, Y.D.: Arithmetic of Infinity, 2nd edn. (2013). Orizz, Merid., CS (ed.)
11. Sergeyev, Y.D.: A new applied approach for executing computations with infinite

and infinitesimal quantities. Informatica 19(4), 567–596 (2008)
12. Sergeyev, Y.D.: Counting systems and the First Hilbert problem. Nonlinear Anal.

Ser. A Theory Methods Appl. 72(3–4), 1701–1708 (2010)



Grossone for Lexicographic Mixed-Integer Linear Programming 345

13. Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with
infinities and infinitesimals. Rend. del Seminario Matematico dell’Università e del
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Abstract. In his seminal work, Robert McNaughton (see [1] and [7])
developed a model of infinite games played on finite graphs. This paper
presents a new model of infinite games played on finite graphs using the
Grossone paradigm. The new Grossone model provides certain advan-
tages such as allowing for draws, which are common in board games,
and a more accurate and decisive method for determining the winner
when a game is played to infinite duration.

Keywords: Infinite games · Grossone · Finite automata

1 Introduction

This paper applies the theory of grossone (see [10,13,15–20]) to investigate games
of infinite duration with finitely many configurations. The games investigated
occur on finite graphs and are those with perfect information. That is, and
typically, a perfect information game is played on a board where a player moves
pieces subject to a given set of rules and each player knows everything important
to the game that has previously occurred.

We are all very familiar with finite board games such as tic-tac-toe, chess,
checkers, and go, to provide four examples. These are games of strategy, once the
specific positions are known. Of course we must exclude all games of chance and
card games where players do not reveal their hands, since these are not games
with perfect information. A board game will have a configuration (a state or a
state of play) and it must be made precise to include all information about any
situation in the game. The configuration describes the current state or stand-
ing of the game. Of significant importance, the configuration will dictate which
player is to move next. Hence, in board games, the play moves go from one player
to the other. A board game such as tic-tac-toe has only a very small number of
configurations. Here we can easily compute (via computer search techniques) all
the configurations and hence this game is not very interesting. However, and on
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the other hand, games of checkers, chess and go have an extremely large number
of configurations and command a lot of attention from computer scientists and
mathematicians.

Finite board games that are played to infinity may sound like science or
mathematical fiction. Indeed, following the traditional Turing machine model,
a computation is complete when it halts and produces some type of result.
However when a game is played to infinity, it is implied that the game continues
for an indefinite period (play continues without bound). For instance, a typical
application that can be considered an infinite game is the operating system
of a computer (a multiprogramming machine). The operating system has to
manage multiple processes (or users on a server) without termination. When
one process (or user) is satisfied, there are others waiting for system resources to
be processed. Hence process-oriented theory is an application of infinite games
to computer science (see [1]).

2 The Infinite Unit Axiom and Grossone

Applying the following new paradigm facilitates us to better understand the
notion of infinite games on graphs. The problem of better understanding the
notion of computing with infinity was approached beginning in 2003 by Yaroslav
Sergeyev (see [15–18]). In these works, a new unit of measure on the set of natural
numbers, N is defined. Thus, the following axiom evolves the idea of the infinite
unit.

Axiom 1. Infinite Unit Axiom. The number of elements in the set N of natural
numbers is equal to the infinite unit denoted as ① and called grossone.

The following properties are part of the Infinite Unit Axiom:

1. Infinity: For any finite natural number n, n < ①.
2. Identity: The following relationships hold and are extended from the usual

identity relationships of the natural numbers:

0 · ① = ① · 0 = 0 ① − ① = 0

①
①

= 1 ①0 = 1 1① = 1

3. Divisibility: For any finite natural number n, the numbers

①,
①

2
,

①

3
,

①

4
, ...,

①

n
, ...

are defined as the number of elements in the nth part of N1

1 In [15], Sergeyev formally presents the divisibility axiom as saying for any finite
natural number n sets Nk,n, 1 ≤ k ≤ n, being the nth parts of the set N, have the

same number of elements indicated by the numeral ①
n

where

Nk,n = {k, k + n, k + 2n, k + 3n, ...}, 1 ≤ k ≤ n,
n⋃

k=1

Nk,n = N.

.
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The divisibility property will be of significant importance in determining a win-
ner of an infinite game. Indeed, determining a winner will result by counting the
number of elements in a sequence. It is important to mention, with the introduc-
tion of the Infinite Unit Axiom and grossone, ①, we list the natural numbers as

N = {1, 2, 3, 4, ..., ① − 2, ① − 1, ①}

and as a consequence of this new paradigm, we have the following important
theorem.

Theorem 1. The number of elements of any infinite sequence is less or equal
to ①.

Proof. See [16] or [20].

Recently there has been a large amount of research activity on the logical
theory and applications of grossone. To name a few, see [2–6,8,10–14,20,21].
This next section will describe a new application of grossone to infinite games.

3 Infinite Games

Formally, an infinite graph game is defined on a finite bipartite directed graph
whose set, Q, of vertices are partitioned into two sets: R, the set of vertices
from which player Red moves, and B, the set of vertices from which player Blue
moves. The game has a place marker which is moved from vertex to vertex along
the directed edges. The place marker signifies the progress of the play. When the
marker is on a vertex of R, it is Red’s move to move to a vertex in B. When the
marker is on a vertex of B, it is Blue’s turn to move to a vertex of set R and
the play continues in this fashion.

Definition 1. An infinite game, G, is a 6-tuple

G = (Q,B,R,E,W (B),W (R))

where,

1. Q is the finite set of positions (vertices).
2. B and R are subsets of Q, such that B ∪ R = Q and B ∩ R = ∅
3. E is a set of directed edges between B and R such that:

(a) for each b ∈ B there exists r ∈ R such that (b, r) ∈ E.
(b) for each r ∈ R there exists b ∈ B such that (r, b) ∈ E.

4. W (B) is called the winning set for Blue.
5. W (R) is called the winning set for Red.
6. W (B) ∩ W (R) = ∅.

At this time it should be noted that the winning sets for each player are not
limited to vertices of the player’s color.
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Definition 2. A play that begins from position q is a complete2 infinite sequence
p = q1q2q3q4...q①−1

q① such that q = q1 and (qi, qi+1) ∈ E, ∀i ∈ N, E is the
edge relation.

Hence a play is a sequence of states of the game. That is,

p : N → Q

To determine how a player can win, let p be a play and consider the set of all
vertices that occur infinitely often. We now have the following definition.

Definition 3. In(p) is the set of vertices, in play p, that occur infinitely often,
called the infinity set of p.

We now have the following cases to determine a win:

1. W (B) ⊂ In(p) and W (R) 	⊂ In(p), then Blue wins.
2. W (B) 	⊂ In(p) and W (R) ⊂ In(p), then Red wins.
3. W (B) 	⊂ In(p) and W (R) 	⊂ In(p), then Draw.
4. W (B) ⊂ In(p) and W (R) ⊂ In(p), then the frequencies of occurrence of the

elements in each set must be considered; the player with the higher frequency
wins.

Cases 1 and 2 above are the result that whatever winning set a player chooses,
all vertices must occur infinitely often for a player to have a chance of winning
(this concept is consistent with the ideology presented in [19]). All vertices must
occur infinitely often also prevents a player from choosing too many vertices for
their winning set3. Next we look at a simple example to analyze the situation
when a player chooses the empty set.

Example 1. Suppose Blue chooses ∅ as their winning set (this is consistent with
the premise that no choice is also a choice). That is, W (B) = ∅. The reason for
Blue’s choice is clear. ∅ ⊂ In(p), hence Blue is hoping that W (R) 	⊂ In(p) and
Blue wins the game (the same can be true for Red, if Red chooses the empty
set). Of course the situation can arise if both players choose ∅. In that case, the
game will result in a draw. However, to show this we first need to define more
machinery.

It is necessary to define a frequency function to count the number of occur-
rences of a given vertex in a play sequence. This gives rise to the next two
definitions.

Definition 4. Given Q = {q1, q2, ..., qn} is the finite set of states and let D be
a subset of Q. Let p be an infinite sequence of states, from a play, define a new
sequence by the function

ψD,p : N → {0, 1}
2 Here we use the notion of complete taken from [15], that is the sequence containing

① elements is complete.
3 It is noted here that, as is usual, the ⊂ symbol can also imply equality.
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where,

ψD,p(i) =
{
1 if p(i) ∈ D
0 otherwise

Definition 5. Define the frequency function, freqp, as

freqp(D) =
①∑
i=1

ψD,p(i).

These definitions are in general, however here they are applied to the winning
sets for Blue and Red, respectively W (B) and W (R).

With the previous definitions, if both winning sets are subsets of the infinity
set (the elements of both player’s winning sets occur infinitely often) a winner
can be determined. If the frequency of the elements in W (B) is greater than the
frequency of the elements in W (R), then Blue is the winner. If the frequency of
the elements in W (R) is greater than the frequency of the elements in W (B),
then Red is the winner. If the frequencies are equal, then a draw results. This is a
key advancement as a result of the grossone theory. As an immediate consequence
from the above definitions, the following propositions are true.

Proposition 1. For any sequence p, freqp(∅) = 0.

Proof. p(i) 	∈ ∅ ∀i ∈ N. Hence ψ∅,p(i) = 0 ∀i ∈ N and freqp(∅) = 0.

Proposition 2. If both players choose the empty set as their winning set, then
the game is a draw.

Proof. By Proposition 1, freqp(W (B)) = freqp(W (R)) = freqp(∅) = 0.

4 Examples and Results

Example 2. Referring to the game in Fig. 1. Assume that W (B) = {b1} and
W (R) = {r1}. Then Blue is always the winner, no matter where the game begins.
If W (B) = {b1} and if W (R) = {r1, r2}, then Blue’s winning strategy would be
to move to either r1 or r2 finitely many times and the other infinitely times.
Therefore W (R) 	⊂ In(p).

For instance, if the following sequence is played

p = r1, b1, r2, b1, r1, b1, r2, b1, r1, b1, r1, b1, r1, b1, r1, ...

then In(p) = {b1, r1} and W (R) 	⊂ In(p), however W (B) ⊂ In(p), which implies
Blue wins the game.

The following theorem and corollaries provide a better understanding of the
frequency function.

Theorem 2. For any set A and play p, freqp(A) ≤ ①.
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Proof. This follows directly from the properties of ① and Theorem1.

Corollary 1. For any game, the frequency of occurrence of any single vertex is
≤ ①/2.

Proof. Follows from Theorem2 and the definition of a game, since there are two
players.

Corollary 2. For any game where Q is the set of vertices, freqp(Q) = ①.

Proof. Using the premise of a complete sequence, the corollary directly follows
from Theorems 1 and 2.

Example 3. Again, referring to Fig. 1, if W (B) = {r1} and W (R) = {r2}
(as mentioned previously, a player does not have to choose their color as their
winning set) then Blue wins the game. The winning strategy for Blue consists of
moving to r2 finitely many times. Actually Blue can move to r2 infinitely many
times, however it must be less than ①/4 times.

This next example will illustrate this new application of the grossone
paradigm to infinite games.

Example 4. Referring to the game in Fig. 1, suppose the play goes as follows:

p = r2, b1, r1, b1, r2, b1, r1, b1,

r2 skip︷︸︸︷
r1 , b1, r1, b1, r2, b1, r1, b1, r2, b1, r1, b1, ...

Here the In(p) = {b1, r1, r2}. Hence, the frequency of occurrence for each vertex
in the In(p) is:

freq({b1}) = ①/2 freq({r1}) = ①/4 + 1 freq({r2}) = ①/4 − 1

Using the same winning sets for Red and Blue as in Example 3, namely W (B) =
{r1} and W (R) = {r2}, Blue wins the game.

r2 b1 r1

Fig. 1. A game (Color figure online)

Example 5. In Fig. 2, if Blue chooses b4, that is W (B) = {b4}, a strategy for
Red would be to choose ∅. Then from r3, Red can always move to b3 an infinite
number of times or move to b4 a finite number of times.

Example 6. Referring again to Fig. 2, if each node is visited once in the 6
node outside cycle, that is via edges (r1, b3), (b3, r3), (r3, b4), (b4, r2), (r2, b1),
(b1, r1), then the frequency of each vertex occurrence is ①/6. The sequence that
will ensure this is:
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r2 b1 r1

r3 b3b4

Fig. 2. A more complex game (Color figure online)

p = r1, b3, r3, b4, r2, b1, r1, b3, r3, b4, r2, b1, r1, b3...

If player Blue chooses their winning sets W (B) = {b1, b3}, then Red can choose
W (R) = {r2, r3} and Red has a winning strategy. When Blue lands on vertex
b1, Blue must move to r1 to get to b3 (part of Blue’s winning set). The play
continues and can follow the outside cycle. However, at some point, Red moves
from r2 back to b4 a finite number of times. For instance, a play can follow:

p = r1, b3, r3, b4, r2, b4, r2, b4, r2, b4, r2, b1, r1, b3, r3, b4, r2, b1, r1, ...

hence
freqp({b1, b3}) = ①

3 − 2 freqp({r2, r3}) = ①
3 + 1

and Red wins the game.

5 Conclusion

This paper has presented a new model of infinite games played on finite graphs
by applying the theory of grossone and the Infinite Unit Axiom. In his original
work, McNaughton (see [1]) presented and developed a model of infinite games
played on finite graphs using traditional methods of dealing with infinity. This
paper has extended that work to count the number of times vertices in a board
game are visited, although vertices can5 be visited an infinite number of times.
Indeed, two players choose their winning sets and the player whose winning set
is visited more frequently wins the game. With this new paradigm, as is common
in the usual finite duration board games (chess, checkers, go), a draw can result.
This was not the case in McNaughton’s original work. Hence a more finer decision
process is used in determining the winner or draw.
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Abstract. Multidimensional scaling (MDS) is one of the most popular
methods for a visual representation of multidimensional data. A novel
geometric interpretation of the stress function and multidimensional scal-
ing in general (Geometric MDS) has been proposed. Following this inter-
pretation, the step size and direction forward the minimum of the stress
function are found analytically for a separate point without reference to
the analytical expression of the stress function, numerical evaluation of
its derivatives and the linear search. It is proved theoretically that the
direction coincides with the steepest descent direction, and the analyti-
cally found step size guarantees the decrease of stress in this direction.
A strategy of application of the discovered option to minimize the stress
function is presented and examined. It is compared with SMACOF ver-
sion of MDS. The novel geometric approach will allow developing a new
class of algorithms to minimize MDS stress, including global optimiza-
tion and high-performance computing.

Keywords: Multidimensional scaling · Geometric approach ·
Minimization · Analytical derivatives · Analytical step size · Geometric
MDS

1 Introduction

Recent approaches to minimize the stress in multidimensional scaling (MDS)
suggest wide possibilities for dimensionality reduction [1,2]. Recently, it finds
applications of various nature: face recognition [3], analysis of regional economic
development [4], image graininess characterization [5].

Suppose, we have a set X = {Xi = (xi1, . . . , xin), i = 1, . . . , m} of n-
dimensional data points (observations) Xi ∈ R

n, n � 3.
Dimensionality reduction and visualization requires estimating the coordi-

nates of new points Yi = (yi1, . . . , yid), i = 1, . . . ,m, in a lower-dimensional
space (d < n) by holding proximities δij between multidimensional points Xi

and Xj , i, j = 1, . . . , m, as much as possible. Proximity δij can be measured e.g.
by the distance between Xi and Xj .
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The input data for MDS consists of the symmetric m × m matrix D =
{dij , i, j = 1, . . . ,m} of proximities between pairs of points Xi and Xj . If the
Minkowski distance is used as the proximity, then

dij =

(
n∑

k=1

|xik − xjk|q
) 1

q

, 1 � i, j � m. (1)

If q = 1, then (1) defines the city-block or Manhattan distance. If q = 2, (1)
becomes the Euclidean distance.

MDS finds the coordinates of new points Yi representing Xi in a lower-
dimensional space R

d by minimizing the multimodal stress function. Consider
the raw stress function [6]:

S(Y1, . . . , Ym) =
m∑
i=1

m∑
j=i+1

(dij − d∗
ij)

2, (2)

where d∗
ij is the Euclidean distance between points Yi and Yj in a lower dimen-

sional space. In (2), other proximities may be used as well. The MDS-based
dimensionality reduction optimization problem may be formulated as follows:

min
Y1,...,Ym∈Rd

S(Y1, . . . , Ym). (3)

In case 1 � d < n, the stress function has many local minima, often. The
optimization problem (3) can be solved using well-known descent methods, e.g.
Quasi-Newton or conjugate gradient methods [7]. However, these algorithms
cannot guarantee to find a global minimum.

Various attempts to find the global minimum are suggested. However, they
are computational expensive and do not guarantee to find the global minimum,
too. This lead to the conclusion that the classical approaches [8–10] to minimize
the stress reached their limits in this sense. New viewpoint to the problem is
necessary, including its formulation and ways of solving.

In this paper, a novel geometric interpretation of the stress function and
multidimensional scaling has been proposed. It will allow developing a new class
of algorithms to minimize MDS stress, including global optimization and high-
performance computing. Denote this approach by Geometric MDS.

2 The Geometric Approach – Geometric MDS

A new approach, Geometric MDS, has been developed to minimize the stress
function (2). Suppose, we have m×m matrix D = {dij , i, j = 1, . . . ,m} of prox-
imities (e.g. distances) between n-dimensional points Xi = (xi1, . . . , xin), i =
1, . . . ,m. We aim to find two-dimensional points Yi = (yi1, ..., yid), i = 1, . . . ,m
by solving (3).

At first, let’s have some initial configuration of points Y1, . . . , Ym. Then, let’s
optimize the position of the particular point Yj when the position of remaining
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Fig. 1. An example of a single step of geometric method.

points Y1, . . . , Yj−1, Yj+1, . . . , Ym is fixed. In this case, we tend to minimize S(·)
in (3) by minimizing the so-called local stress function S∗(·) depending on Yj ,
only:

S∗(Yj) =
m∑
i=1
i�=j

⎛
⎝dij −

√√√√ d∑
k=1

(yik − yjk)
2

⎞
⎠

2

. (4)

Figure 1 illustrates an example, where m = 5, d = 2. The location of points
Y1, . . . , Ym and proximities dij , i, j = 1, . . . , m between points X1, . . . , Xm are
chosen such for better illustration of the idea. Position of point Y1 is optimized.
Y1 is denoted by Yj in Fig. 1 seeking for the better correspondence with notations
in (4). In the centre of each circle, we have a corresponding point Yi. Radius of
the i-th circle is equal to the proximity dij between the points Xi and Xj in
n-dimensional space. Point Aij lies on the line between Yi and Yj , i �= j, i.e.
vectors

−−−→
YiAij and

−−−→
AijYj are collinear. Denote a new position of Yj by Y ∗

j . Let
Y ∗
j be chosen so that

(a) vectors
−−−→
YiA

∗
ij and

−−−−→
A∗

ijY
∗
j are collinear, i �= j, (5)

(b) Y ∗
j =

1
m − 1

m∑
i=1
i�=j

Aij . (6)

We will analyse the value of the local stress function S∗(Y ∗
j ) and compare it

with the value S∗(Yj). According to (6), Y ∗
j is an average point of the points Aij

over i = 1 . . . m, i �= j. According to (5), when we make a step from Yj to Y ∗
j ,

we get new intersection points A∗
ij on circles that correspond to Yj , and these

points are on the line between Yi and Y ∗
j .
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Proposition 1. The gradient of local stress function S∗(·) is as follows:

∇S∗|Yj
=

(
2

m∑
i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk) , k = 1, . . . , d

)
.

The proof follows from (4) by differentiating S∗(·).
Proposition 2. The step direction from Yj to Y ∗

j corresponds to the anti-
gradient of the function S∗(·) at the point Yj:

Y ∗
j = Yj − 1

2(m − 1)
∇S∗|Yj

. (7)

Proof

Y ∗
j − Yj =

(
1

m − 1

m∑
i=1
i�=j

(
dij (yjk − yik)√∑d

l=1 (yil − yjl)
2

+ yik − yjk

)
, k = 1, . . . , d

)

=
(

− 1
2(m − 1)

2
m∑
i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk) , k = 1, . . . , d

)

= − ∇S∗|Yj

2(m − 1)
. �

Proposition 3. Size of a step from Yj to Y ∗
j is equal to

||∇S∗|Yj
||

2(m − 1)
=

1
m − 1

√√√√√√ d∑
k=1

⎛
⎜⎝ m∑

i=1
i�=j

dij −
√∑d

l=1 (yil − yjl)
2√∑d

l=1 (yil − yjl)
2

(yik − yjk)

⎞
⎟⎠

2

.

Proposition 4. Let Yj does not match to any local extreme point of the function
S∗(·). If Y ∗

j is chosen by (6), then a single step from Yj to Y ∗
j reduces a local

stress S∗(·):
S∗(Y ∗

j ) < S∗(Yj).

Proof. Let’s have following functions:

S∗(Yj) =
m∑
i=1
i�=j

d2(Aij , Yj), (8)

S∗
A(Y ∗

j ) =
m∑
i=1
i�=j

d2(Aij , Y
∗
j ), S∗(Y ∗

j ) =
m∑
i=1
i�=j

d2(A∗
ij , Y

∗
j ). (9)

where d(· , ·) is the Euclidean distance between two points.
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Figure 1 illustrates a case, where position of point Yj is optimized to Y ∗
j .

It is enough to show that

S∗(Y ∗
j ) < S∗

A(Y ∗
j ) < S∗(Yj).

Firstly, we show that S∗
A(Y ∗

j ) < S∗(Yj). Define Aij = (aij1, . . . , aijd). From
(8), it follows that the gradient of S∗(Yj) is equal to

∇S∗(Yj) =
( m∑

i=1
i�=j

2(aijk − yjk), k = 1, . . . , d
)
.

At the local minimum Yj of function S∗(Yj), the condition ∇S∗(Yj) =
(0, . . . , 0) is valid, and then we have a unique solution of Yj :

(m − 1)yjk −
m∑
i=1
i�=j

aijk = 0, k = 1, . . . , d =⇒ (m − 1)Yj −
m∑
i=1
i�=j

Aij = 0.

We see that the solution is defined as Y ∗
j , which is given in (6). Such Y ∗

j

corresponds to minimized local stress S∗
A(Y ∗

j ). Therefore, S∗
A(Y ∗

j ) < S∗(Yj).
For the proof that S∗(Y ∗

j ) < S∗
A(Y ∗

j ), it is enough to show that

d(Y ∗
j , A∗

ij) < d(Y ∗
j , Aij), i = 1, . . . ,m, i �= j.

Using the triangle inequality, we have a valid condition

d(Y ∗
i , Y ∗

j ) = d(Y ∗
i , A∗

ij) + d(A∗
ij , Y

∗
j ) < d(Y ∗

i , Aij) + d(Aij , Y
∗
j ).

Since the radius of the i-th circle satisfies condition d(Y ∗
i , A∗

ij) = d(Y ∗
i , Aij),

then d(Y ∗
j , A∗

ij) < d(Y ∗
j , Aij). �

Proposition 5. The value of the local stress function S∗(·) (4) will converge to
a local minimum when repeating steps (7) and Yj := Y ∗

j .

Proposition 6. Let Yj does not match to any local extreme point of the function
S∗(·). Movement of any projected point by the geometric method reduces the
stress (2) of MDS: if Y ∗

j is chosen by (6), then the stress function S(·), defined
by (2), decreases:

S(Y1, . . . , Yj−1, Y
∗
j , Yj+1, . . . , Ym) < S(Y1, . . . , Yj−1, Yj , Yj+1, . . . , Ym).

Proof. Before the step from Yj to Y ∗
j , we have following stress function

S(Y1, . . . , Yj−1, Yj , Yj+1, . . . , Ym) = S∗(Yj) +
m∑
i=1
i�=j

m∑
k=i+1
k �=j

(dik − d∗
ik)

2.

Since S∗(Y ∗
j ) < S∗(Yj) and

∑m
i=1
i�=j

∑m
k=i+1
k �=j

(dik − d∗
ik)

2 remain constant after the

step, the stress function S(·) is reduced after the step. �
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3 Multimodality of the Local Stress Function
of Geometric MDS

Proposition 7. Function f(δ) = S∗
(
Yj − δ

∇S∗|Yj

||∇S∗|Yj
||
)
is not unimodal, where

δ is a step size.

Proof. Consider a dataset X of six five-dimensional points and their Euclidean
distances as proximities:

X1 = (3.142, 2.718, 1.618, 1.202, 0.2078), X2 = (16.462, 2.718, 1.618, 1.202,
0.2078), X3 = (3.142, 7.648, 1.618, 1.202, 0.2078), X4 = (3.142, 2.718, 4.818,
1.202, 0.2078), X5 = (3.142, 2.718, 1.618, 4.952, 0.2078), X6 = (3.142, 2.718,
1.618, 1.202, 4.0278).

Let the values of Y (d = 2) be such:
Y1 = (18.723,−1.880), Y2 = (19.025, 6.247), Y3 = (12.147, 11.208), Y4 =

(11.338, 2.585), Y5 = (3.909, 3.546), Y6 = (10.560,−4.654). Consider point Y1

for its moving to a new position Y ∗
1 according to the anti-gradient direction by

(7). See Fig. 2 for details. The local stress function reaches its two different local
minima depending on the step δ. �

Fig. 2. Example of the anti-gradient search

4 Experiments with Geometric MDS

Simple realizations of Geometric MDS are based on fixing some initial positions
of points Yi = (yi1, . . . , yid), i = 1, . . . ,m (at random, using principal component
analysis, etc.), and further changing the positions of Yj (once by (7) or multistep
descent by several steps using (7)) in consecutive order from j = 1 to j = m



360 G. Dzemyda and M. Sabaliauskas

many times till some stop condition is met: e.g. number of runs from j = 1 to
j = m reaches some limit or the decrease of stress function S(·) becomes less
than some small constant after two consecutive runs.

In the experiments, minimization of stress S(·) was performed by consecu-
tive one-step (not multistep) changing of positions of points Y1, . . . , Ym many
times. 1000 random sets X of 30 points (m = 30) were generated inside the 4-
dimensional unit hypercube (n = 4) and represented in d = 2 and d = 3 spaces.
For comparison, the same data sets were analysed by multidimensional scaling
based on stress S(·) minimization using majorization (SMACOF) that is realized
in R [11,12]. Both Geometric MDS and SMACOF used the same initial values
of points Y1, . . . , Ym obtained by Torgerson Scaling [13] realized in R [14].

When d = 2, Geometric MDS and SMACOF gave the same results (stress
values) in 997 cases, however the average value of S(·) is obtained a bit better
by Geometric MDS and equals 13.7570 as compared with 13.7613 by SMACOF.
When d = 3, Geometric MDS gave the same results in 922 cases. Average values
of S(·) are almost the same: 2.9789 (Geometric MDS) and 2.9787 (SMACOF).
These preliminary results are very promising, because the evaluated efficiency of
the Geometric MDS and the SMACOF is the same, however Geometric MDS is
much easier realizable and interpreted.

5 Conclusions

A novel geometric interpretation of the stress function and multidimensional
scaling in general (Geometric MDS) has been proposed. Following this interpre-
tation, the step size and direction forward the minimum of the stress function
are found analytically for a separate point in a projected space without refer-
ence to the analytical expression of the stress function, numerical evaluation of
its derivatives and the linear search. It is proved theoretically that the direction
coincides with the steepest descent direction, and the analytically found step
size guarantees the decrease of stress in this direction.

The discovered option to minimize the stress function was examined on the
simple realization of the Geometric MDS. According to the experiments, the
realization of Geometric MDS gives very similar results as SMACOF [11]. The
results are a bit better often.

In fact, the proposed algorithm is some version of the coordinate-wise descent
using d-coordinate blocks. For the objective functions with curved valleys, the
convergence of those algorithms normally is slow. However, the geometric app-
roach guarantees the decrease of stress in every step, where the direction and
size of the step is determined analytically. In the realisation of Geometric MDS,
one step of descent is done only for a separate block taking into account that
the most decrease in stress is in the first steps, usually. Despite the fact that the
Geometric MDS uses the simplest stress function, there is no need for its normal-
ization depending on the number m of data points and the scale of proximities
dij . These are the reasons that a good performance of the proposed algorithm
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can be expected as compared with other (e.g. majorization) algorithms. More-
over, more sophisticated realizations of ideas presented in this paper should be
developed.
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results of this paper more valuable.
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Abstract. This paper is dedicated to the Infinity Computer – a new
type of a supercomputer allowing one to work numerically with finite,
infinite, and infinitesimal numbers in one general framework. The exis-
tent software simulators of the Infinity Computer are used already for
solving important real-world problems in applied mathematics. However,
they are not efficient for solving difficult problems in control theory and
dynamics, where visual programming tools like Simulink are used fre-
quently. For this purpose, the main aim of this paper is to introduce a
new Simulink-based solution of the Infinity Computer.

Keywords: Infinity computer · Scientific computing · Numerical
differentiation

1 Introduction

The Infinity Computer is a computational system based on the Infinity Com-
puting framework and allowing one to work numerically with finite, infinite and
infinitesimal numbers in one general framework. It can be applied for computa-
tions with infinite and infinitesimal quantities in any field of mathematics and
physics, where it is required. The existent simulator of the Infinity Computer if
written in C++ and is already used in practice (see, e.g., [5,13,14,26]). How-
ever, it is not optimized for solving difficult real-life problems, e.g., in control
theory or in dynamics due to the difficulties in extending the C++ code of the
arithmetical operations and elementary functions in the external environments
like Simulink. The main scope of this paper is to introduce such an extension
and to present a new Simulink-based solution of the Infinity Computer.

Simulink is a graphical programming environment, developed by MathWorks,
for modeling, simulating, and analyzing dynamical systems. It offers a graphical
block diagramming tool and a customizable set of blocks that are tightly inte-
grated with the MATLAB environment. Simulink is widely used in the modeling
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and simulation domain, including distributed simulation and model-based design
[8,9,11,12,17].

The rest of the paper is organized as follows. Section 2 describes briefly
the Infinity Computing methodology. The new Simulink-based solution for it
is described in details in Sect. 3. The Simulink-based solution is exemplified in
Sect. 4 by considering a higher order differentiation equation. Finally, some con-
cluding remarks are presented in Sect. 5.

2 An Overview on the Infinity Computing

The Infinity Computing is a novel methodology allowing one to work numerically
with different finite, infinite and infinitesimal numbers in one general framework
(see, e.g., [20,27]). It is based on the positional numeral system with the infinite
radix ① called grossone and introduced as the number of elements of the set of
natural numbers N (see, e.g., a recent survey of this methodology in [27]).

A number C in this numeral system can be represented as follows:

C = dn①pndn−1①pn−1 ...d0①p0 ...d−k①p−k , (1)

where di, i = n, ...,−k, are positive or negative finite numbers expressed in the
traditional computational framework and called grossdigits; pi, i = n, ...,−k, are
called grosspowers, are written in the decreasing order with p0 = 0 and can be
finite, infinite and infinitesimal1 of the form (1). One can see that the numeral
system based on the form (1) allows one to work with finite, infinite and infinites-
imal numbers in the same way: for instance, numbers containing at least one term
di①

pi with positive finite or infinite grosspower pi are infinite, numbers contain-
ing the term d0①p0 and no infinite terms are finite, while numbers containing
only the term d0①p0 are purely finite. Finally, numbers containing only negative
finite or infinite grosspowers are infinitesimal. For example, the following num-
bers written in the form (1) are infinite: ① = 1①1, 1.8①1.2 − 0.31①05.2①−1.4,
−1.3①3.20.1①−1, etc. The simplest infinitesimal representable in the form (1)
is ①−1 = 1

①
, which is positive, since it is the result of division of two positive

numbers 1 and ①.
The main advantage of this system is that arithmetical operations with ①

are similar to the operations with traditional finite numbers, for instance:

①0 =
①

①
= ① · ①−1 = 1, ① − ① = 0 = 0①,

(2.6①1.2 − 1.3①01.8①−3.1) − (3.5①1.2 − 1.3①0 − 2.7①−5.2)

= −0.9①1.21.8①−3.12.7①−5.2.

The software simulator of the Infinity Computer (see, e.g., patents [19])
has been already successfully used for solving different problems in the follow-
ing fields of applied mathematics: optimization (see, e.g., [5–7,13]), numerical
1 In this paper, only finite grosspowers are implemented for the simplicity.



364 A. Falcone et al.

solution to ODEs (see, e.g., [1,14,16,26]), numerical differentiation (see, e.g.,
[21,22]), handling ill-conditioning (see, e.g., [13,15,25]), probability theory (see,
e.g., [4,18]), Turing machines (see, e.g., [23,24]), etc.

3 A Simulink-Based Solution

In this section, with regards to the Infinity Computing concepts delineated in
Sect. 2, a Simulink-based solution is described.

The proposed Simulink-based solution is general-purpose and domain-
independent; this means that it can be used in all industrial and scientific
domains where a high level of accuracy in the calculations represents a key fac-
tor (e.g., Cyber-Physical Systems, Robotics and Automation (see [2,10])). This
solution allows engineers to focus on the specific aspects of their system, without
dealing with low level APIs as well as complex procedures of the emulator of
the Infinity Computer Arithmetic C++ library (ICA-lib) that can distract them
from their high level design. The Simulink-based solution abstracts the design of
a system while preserving the flexibility and performance of the C++ prototype.

Our design and implementation of the Simulink-based solution for the Infinity
Computer have been centered on typical software engineering methods and, in
particular, on the Agile software development process. Furthermore, it has been
developed through the use of standard Simulink Blocks and S-Functions. In this
way, engineers can jointly exploit the benefit coming from the Simulink-based
solution and the standard Matlab/Simulink functionalities. Figure 1 presents
an overview of the Simulink-based solution and its integration with the Mat-
lab/Simulink core components.

Figure 1 delineates three main parts: (i) Application Layer, which represents
the Simulink graphical programming environment that researchers use for mod-
eling, analyzing and simulating dynamic systems through blocks according to
the model-based paradigm (see [3]); (ii) Simulink Environment, which contains
all the standard blocks provided by Simulink along with the ones designed and
developed to provide Infinity Computer operations; and (iii) Matlab Environ-
ment, which represents the Matlab environment in which the Infinity Computer
arithmetic C++ library has been integrated for managing arithmetic operations
based on infinity computations.

Four Simulink blocks have been created, in the Infinity Computer Arith-
metic Blocks section, to manage elementary computations on infinite, finite, and
infinitesimal quantities that are: Sum, Subtraction, Multiplication and Division.
Each block takes as input infinite, finite, and infinitesimal quantities that are for-
warded to the associated S-Function to perform the computation by interacting
with ICA-lib.

The ICA-lib provides a set of domain-independent services. Each service
defines some C++ classes and interfaces that implement specific functionalities.
The architecture is shown in Fig. 2. The Infinity Computer Arithmetic Services
layer represents the kernel of the library and provides a set of low level services
to manage infinite, finite, and infinitesimal computations. It is composed of the
following five services.
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Fig. 1. Overview of the Simulink-based solution for the Infinity Computer and its
integration in the Matlab/Simulink environment

Fig. 2. The architecture of the infinity computer arithmetic library

The Data Types service provides data types for managing infinite, finite, and
infinitesimal quantities. The Logging service stores into a log file data related
to the activities carried out by ICA-lib. It represents a useful service for finding
out problems/errors occurred during a computation and for understanding how
the ICA-lib services work. The Optimization service delineates functionalities
to separate the variable part of a class from the one that can be shared among
instances. The provided functionalities allow to minimize the memory usage by
sharing as much information among instances in order to speed up computa-
tions. The Infinity Computer Arithmetic service offers low-level infinite, finite,
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and infinitesimal arithmetic functionalities along with a set of utility classes for
high precision computations. Finally, the Command Line Interface service pro-
vides classes that allow a user to interact with the library through input text
commands via an alphanumeric keyboard.

4 An Example: Exact Higher Order Differentiation

Let us consider the following function

f(x) =
x + 1
x− 1

(2)

implemented on the Infinity Computer by the procedure

g(x) = (x + 1①0)/(x− 1①0), (3)

where x can be finite, infinite, or infinitesimal of the form (1). Let us calculate
the first five derivatives of the function g(x) at the finite point x∗ = 3. According
to [22], in order to calculate the derivatives exactly2, the value of the function
g(x) at the point y = x∗ +①−1 = 3+①−1 = 3①01①−1 should be calculated (see
the output of the block g(x) in Figs. 3–4):

g(3①01①−1) = (3①01①−1 + 1①0)/(3①01①−1 − 1①0)
= 2①0 − 0.5①−1 + 0.25①−2 − 0.125①−3 + 0.0625①−4 − 0.03125①−5 + ...,

(4)

from where, it can be easily obtained that

g(3) = 2, g′(3) = −0.5 · 1! = −0.5,
g′′(3) = 0.25 · 2! = 0.5, g′′′(3) = −0.125 · 3! = −0.75,
g(4)(3) = 0.0625 · 4! = 1.5, g(5)(3) = −0.03125 · 5! = −3.75,

(5)

being the exact values of g(3), g′(3), g′′(3), g′′′(3), g(4)(3), and g(5)(3) (see the
output of the block differentiate in Fig. 4).

The scheme of the above mentioned procedures using the presented Simulink-
based solution is presented in Fig. 4. In this solution, each number is represented
by the variable sized matrix, where the first column contains the grossdigits and
the second column contains the grosspowers of a number written in the form
(1). E.g., the number 1 is represented by the matrix

[
1 0

]
, while the number

3①01①−1 is represented by the matrix
[
3 0
1 −1

]
. The block differentiate executes

only the extraction of the coefficients from the output matrix from the block
g(x) and its code is written in Matlab, since both the input and the output of
this block are finite floating-point numbers.

2 The word “exactly” means with the machine precision, since all the computations
are numerical.
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Fig. 3. Simulink block of the function g(x) = (x + 1①0)/(x− 1①0) from (3) using the
Infinity Computer Arithmetic blocks of the elementary operations +, − and / (see
Fig. 1).

Fig. 4. Simulink diagram of the exact computation of the derivatives of the procedure
g(x). The input consists of the number x∗ = 3 represented by the matrix [3 0] and
the infinitesimal step h = ①−1 represented by the matrix [1 − 1]. First, the value
y = x∗ + ①−1 = x∗①01①−1 and the value of the function g(y) are calculated by the
blocks Sum and g(x), respectively. Then, the values of the derivatives are extracted
from the result g(y) following (4)–(5) by the block differentiate.

5 Conclusion

A new Simulink-based solution of the Infinity Computer Arithmetic library has
been developed. The software solution is simple and powerful and allows one
to apply the Infinity Computer Arithmetic library (ICA-lib) for solving real-life
problems without the necessity to refer to its low-level implementation. This fact
is very important from the practical point of view. The presented solution has
been implemented and successfully applied for the exact higher order numerical
differentiation.
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Abstract. In this work, a generalization of both Pure and Impure iter-
ated Prisoner’s Dilemmas is presented. More precisely, the generalization
concerns the use of non-Archimedean quantities, i.e., payoffs that can
be infinite, finite or infinitesimal and probabilities that can be finite or
infinitesimal. This new approach allows to model situations that cannot
be adequately addressed using iterated games with purely finite quanti-
ties. This novel class of models contains, as a special case, the classical
known ones. This is an important feature of the proposed methodol-
ogy, which assures that we are proposing a generalization of the already
known games. The properties of the generalized models have also been
validated numerically, by using a Matlab simulator of Sergeyev’s Infinity
Computer.

Keywords: Game Theory · Prisoner’s Dilemma · Non-archimedean
payoffs and probabilities · Infinity computer · Grossone Methodology

1 Introduction

Game Theory (GT) is a widely and deeply studied mathematical branch which
models the strategic behavior of rational individuals in competitive scenarios.
For its intrinsic nature, GT found (and still nowadays finds) a lot of inter-
ests and applications in the economic and engineering fields. In this work we
focused on two of the most known and simplest game theoretic models: the so
called Prisoner’s Dilemma (PD) and its iterated version, the Iterated Prisoner’s
Dilemma (IPD). In particular, we aim at showing a numerical extension of the
IPD model to cases in which non-Archimedean (i.e., incommensurable) quan-
tities are involved. For example, this happens when payoffs may assume finite,
infinite and/or infinitesimal values, or when game probabilities may be finite
or infinitesimal. Such kind of scenarios are not so rare nor improbable, e.g.,
loosing a finite amount of money with respect to the loss of a relative’s life, or
the necessity to distinguish between probable events and extremely rare, but
still possible, ones. The classical game theoretic machinery used to model such
environments adopting values several orders of magnitude far from each other.
c© Springer Nature Switzerland AG 2020
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However, in iterated contexts where the number of iterations increases arbitrar-
ily, the repeated loss of an amount of money may be perceived by the model
worse than the loss of a life, for instance. In order to avoid this kind of mis-
leading behaviours, we employed Sergeyev’s Grossone Methodology (GM), for a
more proper representation of such non-Archimedean quantities. We also used
Sergeyev’s Infinity Computer (simulated in Matlab) to perform the numerical
simulations of the resulting models. Thanks to this approach as a whole, we have
been able to compare our results to the ones of the purely finite cases. Finally,
please observe that, even though the non-Archimedean quantities could have
been modeled using other methods like Non-Standard Analysis, the possibility
to execute numerical computations is a peculiarity of the Infinity Computer.

2 Grossone Methodology

Grossone Methodology (GM), also known as Arithmetic of Infinity (AoI), is a
novel way to numerically deal with infinite and infinitesimal quantities, originally
proposed by Sergeyev in 2003 (see [15] and the references therein). GM has found
application in a wide range of research fields, such as optimization [2–4,10],
Bertrand’s Paradox and mathematical determination [13] and numerical solution
of ordinary differential equations [17], to cite a few. Also in GT we can find a case
of AoI usage: in [5] the same authors exploited GM to deal with deterministic
and stochastic tournaments involving finite, infinite and infinitesimal quantities.

The key pillar of the AoI is an infinite number called Grossone, indicated
with ① and defined as the cardinality of the natural numbers set N. It has been
introduced by means of three methodological postulates and the Infinite Unit
Axiom [15]. In particular, Grossone is used as the base of a new numeral system
whose its generic element c (called Gross-scalar or Gross-number) is represented
as follows:

c = cpm
①pm + ... + cp1①p1 + cp0①p0 + cp−1①p−1 + ... + cp−k

①p−k ,

where m, k ∈ N, the exponents pi are called Gross-powers and the finite real
coefficients cp

i
�= 0 Gross-digits, i = m, ..., 1, 0,−1, ...,−k. Two relevant features

of GM make it so attractive. Firs of all, it offers the possibility to tackle the
problem of the mathematical determination of uneasy concepts like infinitesimal
probabilities [1,13] in a handy way. Secondly, the numerical attitude of GM,
which sets it apart from Non-Standard Analysis and similar methodologies (see
[16] for a discussion on the differences between the former and the latter).

3 A Glimpse on the PD Classical Formulation

In this section we introduce the class of game theoretic models referred as PDs.
First of all, their theoretic formulation is provided, then a more complex class
of games built upon them is shown. Such kind of games is known as Iterated
Prisoner’s Dilemmas and consists in playing repeatedly (potentially an infinite,
but numerable, number of times) a PD.
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3.1 Prisoner’s Dilemma

A PD is a game theoretic model which involves two players (℘1 and ℘2) who
have to independently choose whether to cooperate or to defect [7,18]. After the
simultaneous choice, each player obtain a reward depending on the outcome of
the decision process. Such prizes are called payoffs and are indicated with the
symbols Ti, Ri, Pi, Si, i = 1, 2. For the purposes of this work, we considered only
symmetric games, i.e., games where T1 = T2, R1 = R2, and so on. The policy
under which the payoffs are assigned is the following: if both cooperate they
receive R, if ℘i cooperates and ℘j defects (i �= j, i, j = 1, 2) the first receive S
and the second receive T , while if both defect they receive P . Furthermore, in any
PD the relation on the payoffs T > R > P > S (henceforth called fundamental
law) must hold. Finally, a PD can be also classified in one of two disjoint classes,
known as Pure and Impure PDs. In particular, a symmetric PD is defined as
Pure if the payoffs property 2R > T + S is satisfied. On the other hand, it is
called Impure if the payoffs inequality 2R < T + S holds.

3.2 Iterated Prisoner’s Dilemma

When a PD is played repeatedly by the two players, the resulting game is called
an Iterated PD (IPD) and every basic PD is referred to as stage or one-shot
game [18]. Iterated models are interesting and still nowadays deeply studied
[9,20] because they happen to be notably richer than their one-shot counter-
parts, thanks to the temporal component of such models. Indeed, the latter
is a fundamental components for the birth of cooperation in the societies and
collusion in competitive environments. We refer the reader to [11,12] for some
applications of the IPD for collusion analysis in industrial economy scenarios.
Such richness of the iterated models comes from the fact that the number of
stages in an IPD is not known a priori or assumed (numerable) infinite. Other-
wise, applying the so called backward induction, each stage’s outcome becomes
immediately predetermined, preventing any impact of the temporal component
on the game. Thus it happens that the most interesting quantity to analyze in an
IPD is the asymptotic per-stage expected reward of each player [8]. Henceforth
we will refer to this reward with the symbol ρi for the player ℘i, i = 1, 2.

There are still three relevant information about the IPD to point out before
concluding this section. Firstly, also the IPD can be classified as Pure or Impure.
The property depends on the nature of the one-shot PD played at each stage
of the game. Namely, if it is Pure the IPD is labeled as Pure, vice versa if it is
Impure. Hereinafter we will refer to them as Pure IPD (or simply PIPD) and
Impure IPD (IIPD). Secondly, the IPD configuration we have dealt with in this
work is the simplest one, where each player is modeled with an a priori fixed
probability of cooperation, p1 for ℘1 and p2 for ℘2. It is worth to stress that such
probability choices must be considered made up by the two players regardless
(i.e., independently) one from the other. Note that this fact has a relevant impact
on the set of the feasible couples of the form ρ = (ρ1, ρ2) the game can output.
In particular such set can be notably smaller than the one with players collusion
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(i.e., when the players can agree on the strategies to choose). Finally, one of
the most common ways for graphically represent an IPD is by means of the
just mentioned couple ρ, i.e., identifying the game outcome as a point of the
Cartesian plane where on the X-axis is reported ρ1’s values and on the Y -axis
ρ2’s. In Fig. 1 is reported the typical graphic resulting from several simulations
of the same IPD. Here the simulations are realized fixing the payoffs values and
letting the couple of probabilities (p1, p2) free to vary (uniformly) in [0, 1]2, while
the graphic plotting each game outcome ρ on the same plane. The same result
can be found in [18] along with a more detailed introduction to PDs and IPDs.
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Fig. 1. The well-known finite case of Pure (a) and Impure (b) IPDs graphics.

4 PD Generalization by Means of Grossone Methodology

The goal of this section is to numerically extend the Pure and Impure IPDs
to cases where also infinite and infinitesimal quantities are involved in terms of
payoffs and probabilities. The idea is to compute several simulations of both a
PIPD and IIPD and compare their outcomes with the graphics of Fig. 1. The
remainder of the section proceeds in two steps: firstly we discuss the expedients
we resorted to for realizing the simulations and the results comparisons, then we
show the simulations setups and discuss the graphical outcomes.

4.1 How to Tackle Non-archimedean Simulations

In order to deal with probabilities and payoffs made up by infinite, finite and
infinitesimal quantities, we make use of the GM, therefore representing them as
Gross-scalars. For the simulation part, we decided to execute the computations



374 L. Fiaschi and M. Cococcioni

exploiting an Infinity Computer simulator implemented in Matlab. Concern-
ing the simulation graphics drawing, we used a Gross-variant of the Cartesian
plane, i.e., a bi-dimensional space where each point is represented by coordinates
expressed with Gross-numbers. Hereinafter we refer to such Cartesian plane as
Gross-Cartesian plane. For the sake of simplicity but without loss of generality,
we have imposed constraints on the possible inputs of the tool. More precisely,
payoffs and probabilities are represented with positive Gross-numbers of the
form a①1b①0c①−1 and d①0e①−1f①−2, with a, b, c, d, e, f ∈ R, respectively.
Note that the algorithm for ρ’s value computation has been maintained unal-
tered, with the exception that now the input parameters are Gross-number not
necessarily finite. Before starting discussing the simulations setup and the result-
ing graphics, with reference to Fig. 2 let us spend few lines for the structure of
the Matlab tool’s output. The nine planes which can be seen denote the nine
regions in which we can appreciate the Gross-Cartesian plane, once constrained
by the structure of both the payoffs and the probabilities we have just assumed.
Such division comes from the point’s magnitude. From left to right and from
bottom to top, the point’s components increase their magnitude from O(①−1)
to O(①1), region by region. Thus, if a point falls in the top left region it has
ρ1 ∈ O(①−1) and ρ2 ∈ O(①1), while if it falls in the middle one ρ1, ρ2 ∈ O(①0),
and so on.

4.2 Simulations and Critical Analysis of the Obtained Results

In Figs. 2 and 3 are shown the simulations’ outcomes when both the payoffs and
the probabilities are non-Archimedean. To be specific, Fig. 2 refers to an IIPD,
while Fig. 3 to a PIPD. The payoffs used are T = 3①, R = 10, P = 7①−1,
S = 2①−1 and T = 3①, R = 2① + 10, P = 7①−1, S = 2①−1 respectively, while
both the probabilities have been left free to vary within (0, 1) contemplating the
possibility to assume also infinitesimal values. The graphics have been obtained
displaying a red point in correspondence of the game outcome ρ associated to
each couple of sampled probabilities (p1, p2). Moreover, the black lines define the
game diagram and, focusing on the IIPD, the dashed line identifies the Pareto
optimal in case of collusion between the players.

After an initial and shallow comparison, the results obtained numerically
extending the IPDs to scenarios involving infinite and infinitesimal quantities
already appear to have strong analogy with the finite case ones that are known
in literature (see, for example, chapter 6 of [18], or Fig. 1 in this work). For
example, we can point out the pseudo-quadrilateral shape of the game diagram
(the black lines), the quadratic behavior of ρ’s Pareto optimum in the IIPD
(see the top-right plane of Fig. 2), the Pareto optimum (R,R) for the PIPD, the
similar distributional behavior of ρ’s points (the density increases from bottom-
left to top-right). But this is not the only analogy. After a deeper analysis of
the tool’s outcomes, we can find even more correlations between the finite case
and its non-Archimedean extension. More precisely, it can be shown that: (i)
the parallelism of the diagram edges to the plane’s axes is only apparent (oth-
erwise the fundamental law would have been broken); (ii) the diagram edges
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Fig. 2. The Gross-IIPD graphic, after 10,000 simulations performed by the Infinity
Computer simulator. It is the generalization of the impure IPD shown in Fig. 1(b).

Fig. 3. The Gross-PIPD graphic, after 10,000 simulations performed by the Infinity
Computer simulator. It is the generalization of the pure IPD shown in Fig. 1(a).
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are continuous (in particular Scott-continuous [14,19]); (iii) the diagram edges
are straight lines. Thus, the diagram edges result into continuous straight lines
linking the points (P, P ), (S, T ), (R,R), (T, S) and form a quadrilateral shape,
exactly as in the finite case. The theoretical proof of these properties will be
available in [6]. In the same place, a discussion about practical applications of
the proposed framework will be provided. Before concluding, it is worth noting
that the numerical computations we have realized show that when an IPD sce-
nario involves at the same time infinite, infinitesimal and finite quantities, also
the rewards ρ1 and ρ2 may be infinite, infinitesimal or finite, depending on the
cooperation probabilities chosen by the two players.

5 Conclusions

In this work we have shown the possibility to numerically deal with Pure and
Impure IPDs even when non-Archimedean quantities (payoffs and probabilities)
are used. Such capability has been reached exploiting Sergeyev’s AoI. In partic-
ular, the non-Archimedean quantities representation has been realized by means
of the numeral system offered by the GM, while operationally the computations
have been realized implementing in Matlab an Infinity Computer simulator. The
more sensible modeling tools offered by the GM and their possible numerical
exploitation open the doors to finer studies of all the scenarios involving at the
same time infinite, finite and infinitesimal quantities. Concerning the GT, this
work moves orthogonally with respect to [5]. There, the AoI has been exploited
for showing how the usage of the GM in non-Archimedean contexts may lead to
new theoretical scenarios previously impossible even to imagine, being the clas-
sical tools too much inadequate for such problems. On the other hand, here we
have studied and pragmatically shown how the usage of the GM can numerically
deal with non-Archimedean versions of already well known and deeply studied
games. In particular, such machinery improvement can be implemented by mak-
ing use of the very same and well established tools and algorithms of the classic
theory, even preserving a perfect continuity with the results already achieved
in the finite case. When considered together, these two results prove that, by
exploiting Sergeyev’s GM, new game theoretic scenarios can be described, stud-
ied and numerically evaluated.
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Abstract. This paper proposes a novel approach to the solution of time-
consuming multivariate multiextremal optimization problems. This app-
roach is based on integrating the global search method using derivatives
of minimized functions and the nested scheme for dimensionality reduc-
tion. In contrast with related works novelty is that derivative values are
calculated numerically and the dimensionality reduction scheme is gen-
eralized for adaptive use of the search information. The obtained global
optimization method demonstrates a good performance, which has been
confirmed by numerical experiments.
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1 Introduction

Global optimization problems are frequently encountered in various applications
in the field of science and technology – see, for example, [1–6].

The global unconstrained optimization problem can be stated as follows

min
y∈D

ϕ(y),D = {y ∈ R
N : ai ≤ yi ≤ bi, 1 ≤ i ≤ N}, (1)

where ϕ(y) is the minimized function, y = (y1, y2, . . . , yN ) is an optimization
parameter vector, N is the problem dimensionality, and the boundary vectors a
and b define the search domain D.

To construct reliable estimates of the minimized function behavior, it is
assumed that the function ϕ(y) and its first derivatives ϕ

′
i(y), 1 ≤ i ≤ N satisfy

the Lipschitz condition

|ϕ(y2) − ϕ(y1)| ≤ L || y2 − y1 || , y1, y2 ∈ D,
∣
∣
∣ϕ

′
i(y2) − ϕ

′
i(y1)

∣
∣
∣ ≤ Li || y2 − y1 || , y1, y2 ∈ D, 1 ≤ i ≤ N,

(2)
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where L > 0 and Li > 0, 1 ≤ i ≤ N are the Lipschitz constants and || · || denotes
the Euclidean norm in R

N .
The proposed approach is described as follows. Firstly, in Sect. 2, the core

univariate global optimization method is presented. Next, in Sect. 3, the adaptive
nested reduction scheme providing for the use of the univariate method for solv-
ing the multidimensional problems is considered. Finally, in Sect. 4, we present
the numerical results of our experiments.

2 One-Dimensional Global Search Method Using
Numerical Derivatives

In the one-dimensional case, the global optimization problem can be stated in a
simpler form

min
x∈[a,b]

ϕ(x). (3)

To solve the problem (3), global optimization methods usually construct some
estimates of the minimized function – mostly in the form of function minorants
based on the condition (2). First such methods are given in [7–9], these methods
use only the values of the optimized function. Later, some methods using the
values of the function derivatives were proposed [10,11]. The latter methods are
more efficient than the former ones but they use the derivatives which are not
always available and computing the derivative values requires some additional
computations. As a result, more recently some methods were developed in which
the derivative values of the optimized function are computed numerically [12] –
just this type of methods are used in the framework of the proposed approach.

The Adaptive Global Method using Numerical Derivatives (AGMND) being
applied is given in [12,23]. For the sake of brevity, AGMND is described in the
most general way.

The first two iterations of the method are performed at the boundary points
a and b of the search domain [a, b] (computing the optimized function value at
each iteration of the search will be hereinafter called the trial). Suppose further
k, k > 2, iterations of the global search have been performed. The choice of trial
points xk+1 for the next iteration is determined by the following rules.

Rule 1. Renumber the points from the set of trial points with the subscripts in
the ascending order of coordinate values

a = x0 < x1 < · · · < xi < · · · < xk = b. (4)

Rule 2. For each interval (xt−1, xt), 1 ≤ i ≤ k compute the value of R(i),
hereinafter referred to as the interval characteristic.

Rule 3. Determine the interval with the maximum characteristic

R(t) = max
1≤i≤k

R(i). (5)
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Rule 4. Perform a new trial (computing the value of the function ϕ(y)) at a
point xk+1 located in the interval with the maximum characteristic from (5).

The stopping condition according to which the trials are terminated is deter-
mined by the condition

(xt − xt−1) ≤ ε, (6)

for the interval t, 1 ≤ t ≤ k, with the maximum characteristic from (5), and ε > 0
is the specified solution accuracy for the problem. If the stopping condition is not
satisfied, then the iteration number k is incremented by one, and a new global
search iteration is performed.

As an estimate of the globally optimal solution to the problem (3), we take the
point xk

∗ at which the smallest value of the optimized function ϕ(y) is calculated,
i.e.

ϕ∗
k = min

0≤i≤k
ϕ(xi), xk

∗ = arg min
0≤i≤k

ϕ(xi). (7)

It should be noted that many one-dimensional global search algorithms can be
represented in accordance with this general scheme (4)–(7). The properties and
effectiveness of each particular method are determined by the expression for cal-
culating the characteristics of the intervals R(i) from (5). To obtain the values of
the characteristics, AGMND uses the computed values of the function ϕ(y) being
optimized and numerically calculated estimates of the Lipschitz constant as well
as the values of the derivative ϕ

′
(y) - for more details see [12,23].

3 Applying One-Dimensional Algorithms for Solving
Multidimensional Optimization Problems

Effective algorithms used to solve multidimensional global optimization problems
(1), as a rule, generate coverage of the search domain D, which is denser only in the
vicinity of the sought-for global extrema. The construction of such non-uniform
coverages can only be ensured by performing adaptive calculations when all the
search information (previous trial points and the minimized function values at
these points) obtained during the calculation is used when choosing the next trial
points. The use of search information requires complex computational analysis of
a large amount of multidimensional search information. Thus, many optimization
algorithms use, to some extent, dimensional reduction methods (see, for example,
[1,13–18,24]). Moreover, this approach allows the use of one-dimensional global
search algorithms to solve multidimensional optimization problems.

One of the widely accepted methods for reducing the dimensionality is to use
Peano curves or Peano evolvents that uniquely map the interval [0, 1] onto the
N-dimensional search domain D [1,13,14,17]. As a result of such a reduction,
the initial multidimensional global optimization problem (1) reduces to a one-
dimensional problem:

ϕ(y(x∗)) = min(ϕ(y(x)) : x ∈ [0, 1]). (8)
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In the proposed approach, another commonly accepted method of dimension-
ality reduction is used - the nested dimensionality reduction scheme [1,18–20,23].
This scheme allows the solution of problem (1) to be reduced to solving a series of
nested one-dimensional problems:

According to this scheme, the solution of the multidimensional optimization
problem (1) can be obtained by solving a series of nested one-dimensional global
optimization problems:

min ϕ(y) : y ∈ D = min
a1≤y1≤b1

Φ1(y1),

↓
Φ1(y1) = min

a2≤y2≤b2
Φ2(y1, y2),

↓
. . .

Φi(y1, . . . , yi) = min
ai+1≤yi+1≤bi+1

Φi+1(y1, . . . , yi, yi+1),

↓
. . .

ΦN (y1, . . . , yN−1) = min
aN≤yN≤bN

ϕ(y1, . . . , yN−1, yN ).

(9)

The problems of family (9) are handled in strictly sequential order. To compute
the value of the function Φ1(y1) at some point y1, it is necessary to minimize the
function Φ2(y1, y2) for a fixed value of the variable y1 = y1, etc. The values of the
minimized function ϕ(y) are computed only at the very last level of dimensionality
reduction.

By applying the nested dimensionality reduction scheme, one can use many
algorithms of one-dimensional global optimization for solving problem (1). At the
same time, the efficiency of the global search with the use of this scheme is usually
significantly lower compared to dimensionality reduction with the use of Peano
curves.

Within the framework of the proposed approach, a new improved version of
the computational procedure (9) is used - the adaptive nested dimensionality
reduction scheme [18]. In the adaptive version of the scheme, the requirement of a
sequential order for solving problems of family (9) is no longer relevant. All one-
dimensional optimization problems

FL(x) = {fl(x) : 1 ≤ l ≤ L}, (10)

generated in the course of calculations in accordance with (9) are solved simulta-
neously. For this purpose, during the next iteration of the global search, the char-
acteristics of the intervals R(i) from (5) are calculated for each problem in the set
FL(x) from [10] and a point of the new trial is chosen for the problem, for which
the value of the characteristic R(i) is the largest.

4 Numerical Results

To evaluate the efficiency of the proposed approach, computational experi-
ments were performed in which for test global optimization problems, we used
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well-known two-dimensional multi-extremal functions determined by the
relations [1]

ϕ(y1, y2) = −

⎧

⎪⎨

⎪⎩

⎛

⎝

7∑

i=1

7∑

j=1

[Aijaij(y1, y2) + Bijbij(y1, y2)]

⎞

⎠

2

+

⎛

⎝

7∑

i=1

7∑

j=1

[Cijaij(y1, y2) + Dijbij(y1, y2)]

⎞

⎠

2
⎫

⎪⎬

⎪⎭

1
2

(11)

where

aij(y1, y2) = sin(πiy1) sin(πjy2), bij(y1, y2) = cos(πiy1) cos(πjy2)

are defined in the domain 0 ≤ y1, y2 ≤ 1, and −1 ≤ Aij , Bij, Cij ,Dij ≤ 1 are
independent random uniformly distributed values.

To achieve reliable conclusions, 100 problems of family (11) were solved in each
series of experiments. The location of the global minimum points in these problems
was known in advance, which made it possible to evaluate the degree of success in
solving the problems.

When evaluating the productivity of the AGMND algorithm, the well-
known Strongin Algorithm (GSA) was also considered, whose effectiveness has
been shown in many publications [1,14,15,21,22]. Various dimensionality reduc-
tion techniques were considered for applying these one-dimensional algorithms
AGMND and GSA to solve multidimensional global optimization problems. GSA
was combined with the Peano curve reduction approach (GSA-P, see (8)) and with
the standard (GSA-S, see (9)) and adaptive (GSA-A) nested reduction schemes.
AGMND was applied with the standard (AGMND-S) and adaptive (AGMND-A)
nested reduction schemes. The solution accuracy for the optimization problems
was ε = 0, 001, where ε is from (6).

As an efficiency indicator, we used the number of trials (computing the value of
the function being optimized) performed by the optimization method to solve the
problem with a given accuracy. Since the location of the global minimum points is
known for test problems of family (11), in addition to the stopping condition (6),
the optimization problem solving was also completed when the next trial point
fell within the ε-neighborhood of the global minimum of the problem.

For a more integrated assessment of the efficiency of the developed approach,
the frequently used operational characteristics (or the performance profile, P ) of
the compared methods were constructed using the results of the experiments per-
formed (see [1,18,21,22]). The operational characteristic of the method is a set
of pairs, each of them showing the dependence of the number of solved problems
(ordinate axis) from a certain class on the number of trials (abscissa axis), i.e.:

P = {<k, p(k)>} (12)
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where k is the number of the global search iterations, and p(k) is the proportion
of successfully solved problems of the test class for the specified number of itera-
tions. Such indicators can be calculated from the results of experiments and can
be shown graphically in the form of a piecewise-broken line graph. In general, one
may consider that the operational characteristic shows the probabilities of find-
ing a global minimum with the required accuracy depending on the number of
iterations performed by the method.

In the experiments performed, all 100 test problems were successfully solved by
all the methods under comparison, exception for the AGMND-A algorithm. Using
this algorithm, only 99 problems were solved. The operational characteristics of
the methods under comparison are presented in Fig. 1. These results demonstrate
that the AGMND method applied with the adaptive scheme (AGMND-A) shows
the best performance (the smallest number of trials) in up to 84% of solved prob-
lems. With the score ranging from 84% to 100% of solved problems, the results
of AGMND-A and GSA-A are very similar. The number of executed iterations
averaged for all successfully resolved problems for all compared methods is given
in Table 1.

Fig. 1. Operational characteristics of the compared optimization methods. The vertical
axis is the percentage of problems solved with the required accuracy, the horizontal axis
is the number of executed trials in logarithmic scale

In conclusion, it should be noted that the results of numerical experiments
confirm the potential of the proposed approach. Further research should include
computational experiments for global optimization problems of higher dimen-
sionality. Theoretical studies for investigating the convergence conditions of the
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Table 1. Average number of executed iterations when solving 100 test problems

Methods and the dimensionality reduction schemes

GSA-P GSA-S GSA-A AGMND-S AGMND-A

696.69 1974.75 252.59 494.74 206.08

AGMND method integrated with the adaptive nested dimensionality reduction
scheme should also be performed.

Acknowledgements. The reported study was funded by the RFBR under research
project No. 19-07-00242.
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Abstract. We consider a problem of 2-partitioning a finite sequence of
points in Euclidean space into clusters of the given sizes with some con-
straints. The solution criterion is the minimum of the sum of weighted
intracluster sums of squared distances between the elements of each clus-
ter and its center. The weight of the intracluster sum is equal to the clus-
ter size. The center of one cluster is given as input (is the origin without
loss of generality), while the center of the other one is unknown and is
determined as a geometric center. The following constraints hold: the
difference between the indices of two subsequent points included in the
first cluster is bounded from above and below by some given constants.
In this paper, we have shown that the considered problem is the strongly
NP-hard one and propose a polynomial-time 2-approximation algorithm
for solving the problem.

Keywords: Euclidean space · Sequence of points · Weighted
2-partition · Quadratic variation · NP-hard problem · Approximation
algorithm · Polynomial time

1 Introduction

The subject of this study is one quadratic cardinality-weighted problem of par-
titioning a sequence of points in Euclidean space into two subsequences of the
given sizes with some additional constraints. The goal of our study is to analyze
the computational complexity of the problem and to substantiate a polynomial-
time approximation algorithm for this problem. The motivation of our study is
the relevance of the considered problem, for example, for data mining and data
clustering, when the data having in the hands is a time series.

The paper is organized as follows. In Sect. 2 the problem formulation and its
interpretation are presented. Also, we present one closely related problem and
some known results for it there. In addition, in the same section, we analyze
the problem complexity. In Sect. 3 we formulate an auxiliary problem and some
statements which underlie quality estimates for the proposed algorithm. Section 4
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contains the approximation algorithm for the solution to the problem considered.
The analysis of the algorithm properties is also in this section.

2 Problem Formulation, Related Problem,
and Complexity

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

We consider the following

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points in R
d and some positive

integers Tmin, Tmax, and M > 1. Find a subset M = {n1, n2, . . . } ⊂ N =
{1, . . . , N} of indices in Y such that

F (M) = |M|
∑

j∈M
‖yj − y({yn|n ∈ M})‖2 + |N \M|

∑

i∈N\M
‖yi‖2 −→ min, (1)

where y({yn|n ∈ M}) = 1
|M|

∑
i∈M yi is the centroid of {yn|n ∈ M} with the

following constraints

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . , |M|, (2)

and |M| = M .

The following applied interpretation can be proposed for Problem1. As the
input, we have a sequence Y of N measurement results. This sequence is the time-
ordered one (i.e., the input is time series or discrete signal). The measurements
are taken for d characteristics of some object. There are two different possible
states for this object (active and passive, for example). We know that exactly
M times the object was in the active state (or the probability of the active
state is M

N ). And we also know that there is an error for each measurement.
The correspondence between the elements of the input sequence and the states
is unknown. But the time interval between every two consecutive active states
is bounded from below and above by some constants Tmin and Tmax. It requires
to find 2-partition of the input sequence and evaluate the object characteristics
(i.e., y({yn|n ∈ M}) in accordance with (1)).

This application problem is very typical for processing time-series or discrete
signals, for example, in distant object monitoring and in geophysics, in technical
and medical diagnostics, etc. (see, for example, [1–5]).

The considered problem is closely related to

Problem 2. (Cardinality-weighted variance-based 2-clustering with given center).
Given an N -element set Y of points in R

d, and positive integer number M . Find
a partition of Y into two non-empty clusters C and Y \ C such that

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min,

where y(C) = 1
|C|

∑
y∈C

y is the centroid of C, subject to constrain |C| = M .
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The strong NP-hardness of Problem 2 was established in [6]. The strong NP-
hardness of Problem1 follows from this result, as Problem 2 is the special case
of Problem 1 when Tmin = 1 and Tmax = N .

Problem 2 has been studied in algorithmic direction in [7–11].
In [7], an exact pseudo-polynomial algorithm was constructed for the case

of integer components of the input points and fixed dimension d of the space.
The running time of this algorithm is O(N(MD)d), where D is the maximum
absolute value of coordinates of the input points.

In [8], an approximation scheme that allows one to find (1 + ε)-approximate

solution in O
(

dN2
(√

2d
ε + 2

)d
)

time was proposed. It implements an FPTAS

in the case of the fixed space dimension.
Moreover, in [9], the modification of this algorithm with improved time

complexity: O
(√

dN2
(

πe
2

)d/2(√ 2
ε + 2

)d
)
, was proposed. The algorithm imple-

ments an FPTAS in the case of fixed space dimension and remains polynomial
for instances of dimension O(log n). In this case, it implements a PTAS with
O

(
NC (1.05+log(2+

√
2
ε ))

)
time, where C is a positive constant.

In [10], an approximation algorithm that allows one to find a 2-approximate
solution to the problem in O (

dN2
)

time was constructed.
In [11], a randomized algorithm was constructed. It allows one to find (1+ε)-

approximate solution with probability not less than 1 − γ in O(dN) time for an
established parameter value, a given relative error ε and fixed γ. The conditions
are found under which the algorithm is asymptotically exact and runs in O(dN2)
time.

In this paper, we present the first result for strongly NP-hard Problem1.
Namely, we present a 2-approximation algorithm. This algorithm is based on
the approaches and results presented in [10,12–14]. The running time of this
algorithm is O(N2(M(Tmax − Tmin + 1) + d)).

3 Foundations of the Algorithm

In this section, we formulate some statements (e.g. about indices of M) and
formulate one more auxiliary problem which can be solved in polynomial time.
All these statements and auxiliary problem are necessary for substantiation of
our algorithms.

The following lemma is well known (see, for example, [15,16]).

Lemma 1. For a finite set Z ⊂ R
d, if a point t ∈ R

d is closer (in terms of
distance) to the centroid z of Z than any point in Z, then

∑

z∈Z
‖z − t‖2 ≤ 2

∑

z∈Z
‖z − z‖2.

Two following lemmas were proved in [12,13].
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Lemma 2. If the elements of M = {n1, . . . , nM} belong to N = {1, . . . , N}
and satisfy the system of constraints (2), then for every fixed M ∈ {2, . . . , N}
we have:

(1) the parameters of this system are related by inequality

(M − 1)Tmin ≤ N − 1, (3)

(2) the element nm in {n1, . . . , nm, . . . , nM} belongs to the set

ωm = {n|1 + (m − 1)Tmin ≤ n ≤ N − (M − m)Tmin}, m = 1, . . . , M, (4)

(3) the feasibility domain of components nm−1 from this set under condition
nm = n is defined by formula

γ−
m−1(n) = {j|max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin}, (5)

where n ∈ ωm, m = 2, . . . ,M.

Lemma 3. For every M ∈ {2, . . . , N} the system of constraints (2) is feasible
if and only if inequality (3) holds.

Consider the following function:

S(M, b) = M
∑

n∈M
‖yn − b‖2 + (N − M)

∑

n∈N\M
‖yn‖2, b ∈ R

d, M ⊂ N .

It is similar to the objective function of Problem1. The only difference is the
point b instead of the centroid y({yn|n ∈ M}). This function can be rewritten
as follows:

S(M, b) = (N − M)
∑

n∈N
‖yn‖2 −

∑

n∈M

(
2M〈yn, b〉 − (2M − N)‖yn‖2 − M‖b‖2

)
.

(6)

Note that the first summand is a constant if M and b are the fixed values.
Hence the minimum of S(M, b) is reached on the subsequence that maximizes
the second summand. This expression motivates us to formulate auxiliary:

Problem 3. Given a sequence Y = (y1, . . . , yN ) of points in R
d, a point

b ∈ R
d, and some positive integers Tmin, Tmax and M . Find a subset M =

{n1, . . . , nM} ⊂ N = {1, . . . , N} of indices in the sequence Y such that

Gb(M) =
∑

n∈M
gb(n) −→ max, (7)

where
gb(n) = 2M〈yn, b〉 − (2M − N)‖yn‖2 − M‖b‖2, n ∈ N , (8)

with additional constraints (2) on the elements of M, if M 
= 1.
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Let us define the set ΨM of subsets of admissible index tuples in the auxiliary
problem:

ΨM =

⎧
⎪⎪⎨

⎪⎪⎩

{(n1)|n1 ∈ N}, if M = 1;
{(n1, . . . , nM )|ni ∈ N , i = 1, . . . ,M ;

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N,
m = 2, . . . ,M}, if 1 < M ≤ N.

(9)

For M = 1 the set ΨM is not empty for any parameters Tmin and Tmax by
definition (9). For other feasible values of M we have [12,13]:

Lemma 4. If M ≥ 2, then the set ΨM is not empty if and only if an inequality
(3) holds.

Proofs of the following lemma and its corollary in [12,13] do not use (8) and
so they hold for our case too.

Lemma 5. Let ΨM 
= ∅ for some M ≥ 1. Then for this M , the optimal value
Gb

max = max
M

Gb(M) of objective function (7) can be found by formula

Gb
max = max

n∈ωM

Gb
M (n). (10)

The values Gb
M (n), n ∈ ωM , can be calculated by the following recurrent formu-

lae:

Gb
m(n) =

⎧
⎨

⎩
gb(n), if n ∈ ω1,m = 1,

gb(n) + max
j∈γ−

m−1(n)
Gb

m−1(j), if n ∈ ωm,m = 2, . . . ,M, (11)

where sets ωm and γ−
m−1(n) are defined by formulae (4) and (5).

Corollary 1. The elements nb
1, . . . , n

b
M of the optimal set Mb = arg max

M
Gb

(M) can be found by the following recurrent formulae:

nb
M = arg max

n∈ωM

Gb
M (n), (12)

nb
m−1 = arg max

n∈γ−
m(nb

m)
Gb

m(n), m = M,M − 1, . . . , 2. (13)

The following algorithm finds an optimal solution for auxiliary Problem3.
The step-by-step description of the algorithm looks like as follows.

Algorithm A1.
Input : a sequence Y, a point b, some positive integer Tmin, Tmax, M .
Step 1. Compute gb(n), n ∈ N , using formula (8).
Step 2. Using recurrent formulae (11), compute Gb

m(n) for each n ∈ wn and
m = 1, . . . ,M .
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Step 3. Find the maximal value Gb
max of the objective function Gb using

formula (10) and the optimal set Mb = {nb
1, . . . , n

b
M} by (12) and (13) from

Corollary 1.
Output : the value of Gb

max, the set Mb.

The following theorem has been established in [13].

Theorem 1. Algorithm A1 finds an optimal solution of Problem 3 in
O(N(M(Tmax − Tmin + 1) + d)) time.

Remark 1. The value (Tmax − Tmin + 1) is bounded by N . So the algorithm has
a complexity at most O(N(MN + d)).

Remark 2. If the values Tmax and Tmin are fixed then the algorithm has a com-
plexity at most O(N(M + d)).

4 Approximation Algorithm

The idea of the proposed algorithm is that the solution of the original NP-
hard Problem1 is replaced by an efficient algorithmic exact solution of auxiliary
Problem 3. The solutions are found by Algorithm A1 presented in the previous
section for each point b ∈ Y and then the best one is to be chosen.

Algorithm A.
Input : a sequence Y, some positive integers Tmin, Tmax, M .
Step 1. i := 0, MA := ∅, N := −∞.
Step 2. i := i + 1, b := yi.
Step 3. Find the optimal solution Mb and the maximal value Gb

max of objec-
tive function (7) using algorithm A1.
Step 4. If H < Gb

max then bA := b, H := Gb
max, MA = Mb.

Step 5. If i < N then go to Step 2, else go to Step 6.
Step 6. Find the centroid y({yn|n ∈ MA}) and the value of the objective
function F (MA) by (1).
Output : the set MA, the value F (MA), the points y({yn|n ∈ MA}) and bA.

Theorem 2. Algorithm A finds a 2-approximate solution of Problem1 in
O(N2(M(Tmax − Tmin + 1) + d)) time.

Proof. Let M∗ be an optimal solution of Problem1, y∗ = y({yn|n ∈ M∗}) be
the centroid of this optimal solution, and MA, F (MA), y({yn|n ∈ MA}), bA
be the output of Algorithm A. Let t = arg min

i∈M∗
||yi − y∗||2 be a point from the

optimal subsequence that is the closest to y∗.
Let us substantiate the accuracy of the algorithm. The following chain of

equalities and inequalities holds:
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F (MA) = S(MA, y({yn|n ∈ MA})) ≤(1) S(MA, bA)

= (N − M)
∑

n∈N
‖yn‖2 − GbA(MA) =(2) (N − M)

∑

n∈N
‖yn‖2 − max

b∈Y
max

M∈ΨM

Gb(M)

= min
b∈Y

min
M∈ΨM

((N − M)
∑

n∈N
‖yn‖2 − Gb(M)) =(3) min

b∈Y
min

M∈ΨM

(M
∑

n∈M
‖yn − b‖2

+ (N − M)
∑

n∈N\M
‖yn‖2) ≤(4) M

∑

n∈M∗
‖yn − t‖2 + (N − M)

∑

n∈N\M∗
‖yn‖2

≤(5) 2M
∑

n∈M∗
‖yn − y∗‖2 + (N − M)

∑

n∈N\M∗
‖yn‖2 ≤ 2(M

∑

n∈M∗
‖yn − y∗‖2

+ (N − M)
∑

n∈N\M∗
‖yn‖2) = 2F (M∗).

Let us explain the numbered signs (we have chosen those that are not obvi-
ous). One can check by the differentiation that the minimum of S(MA, ·) (for
the fixed MA) is attained at y({yn|n ∈ MA}), so inequality (1) holds. Equality
(2) follows from Theorem 1 and the description of Algorithm A1. Equality (3) is
obvious by (6). Inequality (4) holds since M∗ ∈ ΨM and t ∈ Y and inequality
(5) holds by Lemma 1.

Hence F (MA)/F (M∗) ≤ 2 and Algorithm A finds a 2-approximate solution
of Problem 1.

Let us estimate the time complexity. At Step 1 and Step 2 we need
O(d) operations. At Step 3 we solve the auxiliary problem and so we need
O(N(M(Tmax − Tmin + 1) + d)) time. At Step 4 and Step 5 we need at
most O(dN) operations. Step 2 – Step 5 are executed for N times. Step 6
requires O(dN) operations. Thus, the total time complexity of the algorithm
is O(N2(M(Tmax − Tmin + 1) + d)). ��
Remark 3. The value (Tmax − Tmin + 1) is bounded by N . So the algorithm has
a complexity at most O(N2(MN + d)).

Remark 4. If the values Tmax and Tmin are fixed then the algorithm has a com-
plexity at most O(N2(M + d)).

5 Conclusion

In this paper, we have shown the strong NP-hardness of one cardinality-weighted
quadratic partitioning problem of a sequence of points in Euclidean space into
two clusters when the center of one of the desired clusters is fixed and the center
of the other one is unknown and is determined as a geometric center. We also
presented the first algorithmic result for the considered problem. This result is
the polynomial-time 2-approximation algorithm. It seems important to continue
studying the questions on the algorithmic approximability of the problem since
the considered problem is poorly studied in the algorithmic direction.
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Abstract. We consider a well-known strongly NP-hard K-Means prob-
lem. In this problem, one needs to partition a finite set of N points in
Euclidean space into K non-empty clusters minimizing the sum over all
clusters of the intracluster sums of the squared distances between the
elements of each cluster and its centers. The cluster’s center is defined
as the centroid (geometrical center). We analyze the polynomial-solvable
one-dimensional case of the problem and propose a novel parameter-
ized approach to this case. Within the framework of this approach, we,
firstly, introduce a new parameterized formulation of the problem for this
case and, secondly, we show that our approach and proposed algorithm
allows one to find an optimal input data partition and, contrary to exist-
ing approaches and algorithms, simultaneously find an optimal clusters
number in O(N) time.

Keywords: K-Means · One-dimensional case · Parameterized
approach · Linear-time algorithm

1 Introduction

The subject of this study is the polynomial-solvable one-dimensional case of well-
known strongly NP-hard K-Means problem. Our goal includes (1) substantiation
of a novel parameterized approach to this case of the problem and (2) justification
of new fast and exact algorithm for the problem-solving.

As is known, K-Means problem is important for Data mining, Pattern recog-
nition, Computational geometry. Even in the one-dimensional case, fast algo-
rithms are of great interest to mentioned applications. Some additional theoret-
ical motivations we present and explain below.

The paper has the following structure. In Sect. 2, the parameterized problem
formulation is given. We discuss our approach and existing ones there. The next
Sect. presents auxiliary statements. These statements allow us to prove the main
result. In Sect. 4, our main result, i.e., a new linear-time exact algorithm is
presented.
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2 Problem Formulation and Related Problems

Recall that in the well-known clustering K-Means problem, a set Y =
{y1 , . . . , yN} of points in d-dimension Euclidean space and a positive integer
K are given. It is required to find a partition of Y into non-empty clusters
C1, . . . , CK minimizing the sum

K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2, (1)

where y(Ck) = 1
|Ck|

∑
y∈Ck

y is the centroid (geometrical center) of the k-th clus-
ter.

K-Means problem is known from the last century and is associated with
Fisher (see, for example, [1,2]). In [3], it was shown that the problem can be
solved in exponential O(NdK+1) time. Later in [4] the strong NP-hardness in the
general case (when the space dimension is a part of the input) was proved, and
in [5] it was proved that the problem is NP-hard even on a plane (when d = 2).
But in the one-dimensional case (when d = 1), this problem is polynomially
solvable [6].

The running time of the exact algorithm presented in [6] for the one-
dimensional case is linear on K and quadratic on N . Recall that this algorithm
relies an exact polynomial algorithm for solving the well-known Nearest neighbor
search problem [7].

In recent years, for the one-dimensional case of K-Means problem, some exact
algorithms with improved running time have been constructed. An overview of
these algorithms and their properties can be found in [8]. In particularly, in [9],
it was shown that if the input points are ordered, then the problem is solvable in
a time that is linear both on K and N . But we have to note that the same result
follows directly from the fundamental mathematical results obtained earlier back
in 1965 [10] and 1969 [11] (even before [6]) for Nearest neighbor search problem.
Later, these results were developed and applied to solve some other important
mathematical and applied problems [12,13].

Below we recall some properties of problem K-means objective function.
First, directly from (1) follows that if one needs to optimize the number K of
clusters, then the solution is trivial. Indeed, in this case, the optimal value of
the nonnegative objective function (1) is equal to zero when the number K of
clusters is equal to the number N of the input points. It means that in the family
of problem K-means solutions for all K = 1, . . . , N , the best value of K is always
N . Here we have to recall that, in Data analysis and Data mining, finding an
optimal number of clusters is a very important issue.

Second, recall that if in the one-dimensional case of K-means problem the
input points are ordered, i.e., y1 < . . . < yN , then the optimal partition of Y into
clusters corresponds to a partition of the index sequence (1, . . . , N) into disjoint
segments [6].

Taking in attention above mentioned properties, it seems interesting to obtain
an algorithm that allows finding an optimal partition of the one-dimensional
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input set of points and optimal clusters number simultaneously and in linear
time. Below we present a new approach to find such partitioning and propose
an algorithm. On this way, we consider some parameterized modification of K-
Means problem.

Namely, we consider the following

Problem 1. Given a set Y = {y1 < . . . < yN} of points in R and some positive
integer parameters Tmin and Tmax. Find a partition of Y into clusters C1, . . . , CK

such that

F =
K∑

k=1

∑

y∈Ck

(y − y(Ck))2 −→ min
K,{C1,...,CK}

,

where y(Ck) = 1
|Ck|

∑
y∈Ck

y is the centroid of Ck = {ysk
, ysk+1, . . . , ynk

} with
the following constraints

1 ≤ Tmin ≤ nk − nk−1 ≤ Tmax ≤ N − 1, k = 2, . . . ,K . (2)

3 Auxiliary Statements

For constructing an algorithm for Problem 1, we formulate the following property
of elements of the tuple (n1, . . . , nK).

Lemma 1. Suppose that the elements of the tuple (n1, . . . , nK), belong to the
set {1, . . . , N} and satisfy the system of constraints (2). Then the following hold:

(i) K ≤ Kmax, where

Kmax = �(N − 1)/Tmin� ≤ N − 1; (3)

(ii) for each fixed K ∈ {1, . . . ,Kmax} and k ∈ {1, . . . ,K}, the element nk of the
tuple (n1, . . . , nK) belongs to the set

ωk(K) =
{
n | 1 + (k − 1)Tmin ≤ n ≤ N − (K − k)Tmin

}
;

(iii) for each fixed K ∈ {2, . . . , Kmax} and k ∈ {2, . . . , K}, if the element nk of
(n1, . . . , nK) is such that nk = n, where n ∈ ωk(K), then the element nk−1

belongs to the set

γk−1(n) =
{
j | max{1 + (k − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin

}
;

(iv) for all K ∈ {2, . . . , Kmax} and k ∈ {2, . . . , K}, if an element nk of
(n1, . . . , nK) is such that nk = n, then the element nk−1 belongs to the set

γ(n) =
{
j | max{1, n − Tmax} ≤ j ≤ n − Tmin

}
. (4)

The formula (3) is obvious. The validity of statement (ii) follows from inequal-
ities (2). The validity of statement (iii) follows from statements (i) and (ii).
Finally, the validity of statement (iv) follows from statements (i), (ii) and (iii).
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4 Exact Polynomial-Time Algorithm for 1D Case
of the Problem

Let Ys,n = {ys, . . . , yn}, where 1 ≤ s ≤ n ≤ N , be a subset of n − s + 1 points
of Y with indexes from s to n.

Let

fs,n =
n∑

i=s

(yi − y(Ys,n))2 ≡
n∑

k=s

y2
k − 1

n − s + 1

(
n∑

k=s

yk

)2

, (5)

where

y(Ys,n) =
1

n − s + 1

n∑

k=s

yk

is the centroid of the subset Ys,n.
The following lemma holds:

Lemma 2. The optimal value F ∗ of Problem 1 objective function is found by
the following formula

F ∗ = FN , (6)

and the values Fn are calculated by the following recurrent formulas

Fn = min
{

f1,n, min
j∈γ(n)

(
Fj + fj+1,n

)}
, n = 1, . . . , N, (7)

where fs,n are calculated by the formula (5) and the set γ(n) is defined by the
formula (4).

Formula (7) implements the forward running of the algorithm presented
below and is based on Bellman’s principle of optimality.

The following lemma implements the backward running of the algorithm.

Lemma 3. Let

j∗(n) =

⎧
⎨

⎩
0, if Fn = f1,n,

arg min
j∈γ(n)

(
Fj + fj+1,n

)
, if Fn = min

j∈γ(n)

(
Fj + fj+1,n

)
,

where n = 1, . . . , N . Then the optimal number K∗ of clusters is found by the
formula

K∗ = KN , (8)

and the values Kn are calculated by the following recurrent formulas

Kn =

⎧
⎨

⎩
1, if Fn = f1,n;
Kj∗(n) + 1, if Fn = min

j∈γ(n)

(
Fj + fj+1,n

)
. (9)

The optimal clusters C1, . . . , CK are found by the following recurrent rule.
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Step 0. Put n = N .
Step 1. Put

CKn
= {yj∗(n)+1, yj∗(n)+2, . . . , yn}.

Step 2. If Kn > 1, then put n = j∗(n) and go to Step 1. Otherwise—the end
of calculations.

The validity of this lemma we have proved by induction.
Let us formulate the following

Algorithm A.
Input: an N -element set Y of 1D points, positive integers Tmin and Tmax.

Step 1 (forward running).
Calculate the values of Fn, n = 1, . . . , N , using formula (7).
Find the optimal value F ∗ by formula (6).

Step 2 (backward running).
Calculate the values of Kn, n = 1, . . . , N , using formula (9).
Find the optimal number K∗ of clusters by formula (8).
Find the optimal clusters C∗

1 , . . . , C∗
K∗ using Steps 0–2 of the backward rule.

Output: the value F ∗, the number K∗ of clusters, clusters C∗
1 , . . . , C∗

K∗ .

From Lemmas 2 and 3 follows our main result.

Theorem 1. Algorithm A finds an optimal solution of Problem 1 in O((Tmax −
Tmin + 1)N) time.

Remark 1. If Tmin and Tmax are fixed parameters, then Algorithm A finds an
optimal solution of Problem 1 in O(N) time.

5 Conclusion

In this paper, we present a new parameterized approach for the one-dimensional
case of the well-known strongly NP-hard K-Means problem. In this case, our
approach allows one to find an optimal partition of the input set of points and
optimal clusters number simultaneously. To justify this approach, we present an
exact algorithm and show that its running time is linear on the size of the input
points set. In our opinion, this algorithm will be useful for Data analysis and
Data mining application problems.
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Abstract. The paper is addressed to one strongly NP-hard problem of
searching for the largest subset in the finite set of points in Euclidean
space. A restriction is imposed on the searched subset: quadratic vari-
ation of its points with respect to the unknown centroid of this subset
must not exceed a given value. We present the first polynomial-time
approximation scheme for this problem.

Keywords: Euclidean space · Largest subset · Quadratic variation ·
NP-hard problem · Polynomial-time approximation scheme

1 Introduction

In the paper, we consider a strongly NP-hard problem of searching for the largest
subset in a given finite set of points in Euclidean space. The sum of squared dis-
tances between the elements of this subset and its unknown centroid (geomet-
rical center) must not exceed a given value, which is defined as the percentage
of the sum of squared distances between the elements of the input set and its
centroid. The essence of the problem considered is searching for the largest well-
concentrated subset of points.

Our research is motivated by the relevance of the problem for some applica-
tions, in particular, for Data mining [1], Data cleaning [2], Data reduction [3],
statistics [4]. As is well known, the problems of searching in a finite set of objects
for similar elements are typical for marked applications. For example, the con-
sidered problem models a common Data mining problem of finding the largest
subset of pairwise similar objects (see next section). The additional motivation
of our research is the fact that the considered NP-hard problem is poorly studied
in terms of algorithms with performance guarantees. Our goal is to substantiate
a polynomial-time approximation scheme (PTAS) for the problem.

The paper has the following structure. In Sect. 2, the formulation of the
problem is given, as well as the formulation of the closely related problem. In the
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Y. D. Sergeyev and D. E. Kvasov (Eds.): NUMTA 2019, LNCS 11974, pp. 400–405, 2020.
https://doi.org/10.1007/978-3-030-40616-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40616-5_36&domain=pdf
http://orcid.org/0000-0003-2978-8340
https://doi.org/10.1007/978-3-030-40616-5_36


PTAS for a Problem of Searching for the Largest Subset 401

same section, existing results for these problems are presented. The next Section
contains auxiliary statements required for the justification of the algorithm. In
Sect. 4, a PTAS for the considered problem is presented.

2 Problem Formulation and Related Problems, Existing
and Obtained Results

Throughout what follows, ‖ · ‖ is the Euclidean norm.
The problem under consideration is as follows.

Problem 1. Given an N -element set Y of points in R
d and a real number α ∈

(0, 1). Find a subset C ⊂ Y of largest size such that

F (C) =
∑

y∈C
‖y − y(C)‖2 ≤ α

∑

y∈Y
‖y − y(Y)‖2 , (1)

where y(C) = 1
|C|

∑
y∈C y and y(Y) = 1

|Y|
∑

y∈Y y are the centroids of the subset
C and the input set Y, respectively.

Note that for an arbitrary subset C ⊆ Y, the well-known (see, e.g., [5])
equality holds: ∑

y∈C
‖y − y(C)‖2 =

1
2|C|

∑

y∈C

∑

z∈C
‖y − z‖2. (2)

It follows from the right-hand side of (2) that one can interpret Problem 1 as
the search for the largest subset with pairwise similar objects. The maximum
total dissimilarity between objects is defined by the right-hand side of (1) and
can be adjusted by the parameter α.

The strong NP-hardness of the problem was proved in [6]. In the same paper,
a polynomial-time 1/2-approximation algorithm with O(N2(d+logN)) running
time was presented for the problem.

In [7], an exact algorithm for the case of Problem 1 in which the input points
have integer-valued coordinates was proposed. If the space dimension is bounded
by some constant, the algorithm runs in pseudopolynomial time O(N2(NB)),
where B is the maximum absolute coordinate value in the input set.

Moreover, in [7,8], generalization of Problem 1 for the case when the input is
a sequence was considered. An exact algorithm for the case in which the input
points have integer-valued coordinates was proposed in [7]. If the space dimension
is bounded by some constant, the algorithm runs in pseudopolynomial time
O(N4(NB)), where B is the maximum absolute coordinate value in the input
sequence. In [8], a polynomial-time approximation algorithm was proposed. If
there are no solutions to the problem, the algorithm detects it in O(N3(N2+d))
time. Otherwise, the algorithm outputs a 1/2-approximate solution if the length
M∗ of an optimal subsequence is even, or it outputs a (M∗−1)/2M∗-approximate
solution if M∗ is odd.

The following problem is closely related to Problem 1.



402 V. Khandeev

Problem 2. Given an N -element set Y of points in Euclidean space of dimen-
sion d and a positive integer M . Find a subset C ⊂ Y of cardinality M minimizing
the value of F (C).

Problem 2 is also known as M -Variance [9]. Strong NP-hardness of this prob-
lem is substantiated in [10]. In the same paper, it was shown that there does not
exist a fully polynomial-time approximation scheme (FPTAS) for this problem
unless P = NP.

Note that Problem 1 is not equivalent to Problem 2, although it has a sim-
ilar statement. A list of known algorithms with guaranteed quality bounds for
Problem 2 can be found in [14]. Here we will mention only a few of them.

Exact algorithms for Problem 2 were proposed in [9,11]. Both these algo-
rithms run in O(dNd+1) time and are polynomial if the space dimension d is
fixed; in this case, their running time is O(Nd+1).

In [12], a 2-approximation polynomial algorithm with O(dN2) running time
was presented.

A PTAS for the general case of Problem 2 was proposed in [13]. The time
complexity of the scheme is O(dN2/ε+1(9/ε)3/ε), where ε > 0 is a relative error
of the algorithm.

Since Problems 1 and 2 are not equivalent, the algorithms for Problem 2 can-
not be directly applied to Problem 1. In particular, the possibility of constructing
approximate algorithms for Problem 1 with improved guaranteed quality bounds
remained an open issue. This issue is resolved in this paper: we improve the result
of [6] for Problem 1 and propose a polynomial-time algorithm for this problem
with relative performance guarantee greater than 1/2. Moreover, we prove that
our algorithm implements a PTAS.

3 Algorithm Foundations

To construct an algorithm, we need several auxiliary statements.

Lemma 1. Let a sequence a1 ≤ . . . ≤ ak and a number β ≤ 1 be given. Then,
g(�kβ�) ≤ βg(k), where g(i) = a1 + . . . + ai, i = 1, . . . , k.

The proof of this lemma can be found in [6].
Let Bi(x), where i ∈ {1, . . . , N}, x ∈ R

d, be the set of i points in Y closest
to x. Also let

f(C, x) =
∑

y∈C
‖y − x‖2 ,

where C ⊆ Y, x ∈ R
d.

Properties of this function are described by

Lemma 2. (i) For any fixed nonempty subset C ⊆ Y, the minimum of the func-
tion f(C, x) with respect to x ∈ R

d is achieved at the point y(C) = 1
|C|

∑
y∈C

y.

(ii) If |C| = M = const, then, for any fixed point x ∈ R
d, the minimum of the

function f(C, x) with respect to C ⊆ Y is achieved at the set BM (x).
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The validity of statement (i) follows from the well-known equation
∑

y∈C
‖y − x‖2 =

∑

y∈C
‖y − y(C)‖2 + |C| · ‖x − y(C)‖ .

The statement (ii) is obvious.
The next required statement is

Lemma 3. Let C∗
i be the optimal solution of Problem 2 for M = i, i ∈

{1, . . . , N}. Then, for a, b ∈ N, 1 ≤ a ≤ b ≤ N , the following holds:

F (C∗
a) ≤ a

b
F (C∗

b ) .

The validity of this lemma follows from Lemmas 1 and 2.
Finally, we need the following

Lemma 4. Let M ≥ 1/ε, where M is positive integer, ε ∈ (0, 1). Then for
δ = M

�(1−ε)M� − 1 it is true that 1/δ < 2/ε.

The idea of the proof is to apply the inequality �x� > x
2 to the value x = εM

and then use the equality �εM�
M−�εM� = δ.

Remark 1. Note that for positive integer M , real ε ∈ (0, 1), and δ = M
�(1−ε)M� −1,

the inequality δ > 0 holds if and only if M ≥ 1/ε.

4 Approximation Scheme

Let us formulate the approximate algorithm for Problem 1.

Algorithm A.
Input: set Y, real ε > 0, α ∈ (0, 1).
Step 1. Compute A = α

∑
y∈Y ‖y − y(Y)‖2 (the right-hand side of (1)).

Step 2. For each positive integer M < 1/ε, find an exact solution CM of
Problem 2 by exhaustive search of sets of size M .

Step 3. For each positive integer M such that 1/ε ≤ M < N , find a (1 + δ)-
approximate solution CK of sizeK = 
(1−ε)M� of Problem 2 for δ = M

�(1−ε)M� −1.
Step 4. In the family of solutions found at Steps 2 and 3, find subset CA of

the largest size for which F (CA) ≤ A.
Output: subset CA.

Remark 2. At Step 3, PTAS from [13] can be used. In that case, for each K,
subset CK is found in O(dN2/δ+1(9/δ)3/δ) time.

The following theorem is the main result of the paper.

Theorem 1. Algorithm A finds a (1− ε)-approximate solution of Problem 1 in
O(dN4/ε+2(18/ε)6/ε) time.
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The proof of the algorithm accuracy bound is split into two cases depending
on M∗ and 1/ε, where M∗ is cardinality of the optimal solution C∗ of Problem 1.

If M∗ < 1/ε, then is it easy to show that the algorithm at Step 2 for M = M∗

finds an optimal solution to the problem.
If M∗ ≥ 1/ε, then the set CK , which is constructed at Step 3 for K =


(1 − ε)M∗�, is a (1 − ε)-approximate solution of Problem 1. To show this, it
is enough to prove inequality F (CK) ≤ A. This inequality is justified by the
following chain of bounds:

F (CK) ≤ (1 + δ)F (C∗
K) ≤ (1 + δ)

K

M∗ F (C∗
M∗) ≤ A,

where C∗
K and C∗

M∗ are the optimal solutions of Problem 2 for M = K and
M = M∗, respectively. In this chain, the first bound follows from the definition
of Step 3; the second bound follows from Lemma 3 for a = K and b = M∗;
the third bound follows from the definitions of optimal solutions of Problems 1
and 2.

The running time of the algorithm is defined by Steps 2 and 3.
At Step 2, O(1/ε) values of M are considered. For each M , we need to iterate

over O(NM ) subsets of size M ; for each subset, the value of Problem 2 objective
function is calculated in O(dM) operations. Therefore, due to M < 1

ε , Step 2 is
performed in O(d(1/ε)2N1/ε) operations.

At Step 3, there are O(N) values of M ; for each of them, an approximate
solution of Problem 2 can be found in O(dN2/δ+2(9/δ)3/δ) time. Therefore, due
to 1/δ < 2/ε, the running time of Step 3 (as well as the running time of Algorithm
A) is O(dN4/ε+2(18/ε)6/ε).

Since Problem 1 is a maximization problem, it follows from Theorem 1 that
Algorithm A implements a PTAS.

5 Conclusion

In this paper, we have considered a poorly studied strongly NP-hard problem
of searching for the largest subset in a finite set of points in Euclidean space
with the constraint on quadratic variation. We have proposed a polynomial-
time approximation scheme for the problem. This is the first polynomial-time
algorithm for this problem with a relative performance guarantee greater than
1/2. The construction of faster polynomial-time algorithms with guaranteed per-
formance bounds seems to be the important direction of future studies.
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Abstract. The paper considers the numerical integration methods for
ordinary systems of differential equations in which the end of the integra-
tion interval is a priori undefined but is defined during the integration
process instead. Moreover, the calculation of right hand sides of such
systems is an expensive procedure. The paper describes a new integra-
tion strategy based on an implicit fourth order method. The proposed
strategy employs the behavior of obtained solution to control the inte-
gration process. In addition, the number of integration nodes selected by
the mentioned method is minimal at every fixed interval under the limi-
tations defined by the local error which results from the approximation
of system derivatives.

Keywords: Finite difference formulas · Integration strategies ·
Optimal strategy

1 Introduction

Difficulties of constructing effective algorithms of numerical integration of the
Cauchy problem are of great importance especially if calculation complexity of
the right hand sides of a differential equations system is rather high and the
system solution is strongly non-linear at one of subintervals of the change of the
independent variable and close to invariable at the other subinterval. Thereto,
there are such systems where the ending moment of the integration process is not
assumed to be determined a priori, but during the system integration process.
For example, such condition can be based on the fact that every component of
the system solution comes up to some present value.

Therefore, taking into consideration high complexity of calculation of the
right hand sides, when constructing the integration formulas, their parameters
should be chosen in order to minimize the calculations, and this can be formu-
lated as an optimization problem.

It should be noted that the issues of constructing effective algorithms of
numerical integration for ordinary differential equation systems were tackled
upon in the works [1–3,5].
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Y. D. Sergeyev and D. E. Kvasov (Eds.): NUMTA 2019, LNCS 11974, pp. 406–412, 2020.
https://doi.org/10.1007/978-3-030-40616-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40616-5_37&domain=pdf
http://orcid.org/0000-0002-7150-8114
http://orcid.org/0000-0003-0357-0976
https://doi.org/10.1007/978-3-030-40616-5_37


On a Comparison of Several Numerical Integration Methods 407

The article presents a new strategy of choosing integration steps for finite
difference scheme. The strategy is based on the idea that at every fixed interval
the number of integration nodes of the finite difference scheme is to be minimal
under the limitations defined by the local mistake resulted from the approxima-
tion of initial system derivatives.

In order to evaluate the effectiveness, the proposed strategy was compared
with ode45 and ode15s methods provided in MATLAB. The compared methods
were evaluated using the following criteria. The first criterion is the number of
integration nodes, the second one is the number of right hand side calculations
of the system at the integration interval and the third criterion is the maximum
of difference of exact and approximate solution of the test (model) problems for
each solution component at every integration node.

2 Problem Definition

Finding the solution Y = Y (x) of the Cauchy problem, it is assumed that the
solution Y (x) is the one and only and four times continuously differentiable
within the interval [x0, t]) for the system of ordinary differential equations:

Y ′ = F (x, Y ), Y (x0) = Y0, (1)

Y = Y (x) = (y1(x), . . . , yn(x)), x0 ≤ x < t,

where the value of variable t is unknown a priori and determined during the
system integration process. In case the system (1) is linear F (x, Y ) = B(x)Y +
b (x), where B(x) is (n × n)-matrix, b(x) is n-dimensional vector.

To determine the numerical values Yi =
(
yi
1, . . . , y

i
n

)
, i = 1, 2 . . . , of the

solution of system (1) we use the method which is based on applying finite
difference formula.

Consider the following finite difference formula:

Yi = ai−3Yi−3 + ai−2Yi−2 + ai−1Yi−1 + hiaiqi, (2)

where

qi = F (xi, Yi) , Yi = (y1
i , y

2
i , . . . , y

n
i ),

ai−3 = 1 − ai−2 − ai−1,

ai−2 =
−h2

iψ
2
i

hi−2hi−1(h2
i−1 + hi−1hi−2 + 2hihi−2 + 3h2

i + 4hi−1hi)
,

ai−1 =
(hi + hi−1)2ψ2

i

hi−1(hi−2 + hi−1)(h2
i−1 + hi−1hi−2 + 2hihi−2 + 3h2

i + 4hi−1hi)
,

ai =
(h2

i + hi−1hi)ψi

hi(h2
i−1 + hi−1hi−2 + 2hihi−2 + 3h2

i + 4hi−1hi)
,

herewith ψi = hi−2 + hi−1 + hi, hi = xi − xi−1 –is an integration step.
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Suppose that the system (1) meets the conditions in case the vector Yi =(
yi
1, . . . , y

i
n

)
may be obtained from the solution of the following system of equa-

tions
Yi = ai−3Yi−3 + ai−2Yi−2 + ai−1Yi−1 + hiaiF (xi, Yi) . (3)

The system (3) may be solved by means of some solution procedure for
nonlinear system of equations.

The local mistake occuring at the i-th step for every j-th component of the
solution as the main formula characteristics of Yi = (y1

i , . . . , y
n
i ) is

Rj
i =

h6
i + 2(hi−2 + 2hi−1)h5

i + 2hi−1(hi−2 + 2hi−1)h4
i

3h2
i + 2(hi−2 + 2hi−1)hi + (h2

i−1 + hi−1hi−2)
(4)

+
2hi−1(hi−2 + hi−1)(hi−2 + 2hi−1)h3

i + h2
i−1(hi−2 + hi−1)2h2

i

3h2
i + 2(hi−2 + 2hi−1)hi + (h2

i−1 + hi−1hi−2)
(yIV (Θi))

j
,

where xi−2−hi ≤ Θi ≤ xi−1+hi and (yIV (Θi))
j is the value of the fourth deriva-

tive of the j-th component of the solution vector Y (x) at point Θi. The local
mistake (4) results from the finite difference approximation of the derivatives of
the differential equation system.

Further, we assume that the following conditions are met during the process
of system integration:

max
1≤j≤n

|Rj
i | ≤ εi,

where εi is the fixed accuracy at the i-th step of integration.
Now suppose that each component of the fourth derivative of the solution

Y (x) meets the following condition within the interval [x0, x0 + z]:

max
1≤j≤n

|yIV (x)j | ≤ K,

where z > 0, K > 0 are real constants.
Thus, the formula (2) limitation defined by the calculation accuracy at the

i-th step of integration can be set as the following in equation:

ϕi(hi−2, hi−1, hi) = h6
i + 2(hi−2 + 2hi−1)h5

i + 2hi−1(hi−2 + 2hi−1)h4
i (5)

+ 2hi−1(hi−2 + hi−1)(hi−2 + 2hi−1)h3
i + h2

i−1(hi−2 + hi−1)
2
h2
i − 3Δih

2
i

− 2(hi−2 + 2hi−1)Δihi − (h2
i−1 + hi−1hi−2)Δi ≤ 0,

here Δi = 2εiK
−1, i = 1, 2, . . . .

Assign h2i−2 = τi−1, h2i−1 = τi, h2i = τi in functions ϕ2i(h2i−2, h2i−1, h2i),
defined in (5), and take into consideration the following functions:

fi(τi−1, τi) = 14τ5
i + 12τi−1τ

4
i + 3τ2

i−1τ
3
i − 8Δiτi − 3Δiτi−1, (6)

herewith ϕ2i(h2i−2, h2i−1, h2i) = τifi(τi−1, τi), i = 1, 2, . . . .
Then the formula (5) is satisfied by solving the inequation

fi (τi−1, τi) ≤ 0 (7)

for τi > 0 and assumptions made for the integration steps.
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3 Integration Strategy

Consider a new integration strategy based on the optimal strategy, which is
mentioned in [4]. Suppose h0 = τ0, where τ0 is a fixed positive number. Then
find solutions Y−1, Y−2, Y−3 of the system (1) in integration nodes x−1 = x0−h0,
x−2 = x−1 − h0, x−3 = x−2 − h0 using second-order Runge–Kutta method.

Let’s z be a fixed positive number. We will estimate the maximum K = K0 of
the absolute value of the fourth derivatives for the solution Y (x) at the segment
[x0, x0+z] by interpolating the solution with Lagrange polynomial of fourth order
in points (x−3, Y−3), (x−2, Y−2), (x−1, Y−1), (x0, Y0), x0, Y 0), where x0 = x0+z,
the solution Y 0(x0) is found by second-order Runge-Kutta method.

Integration steps h2i−1, h2i are taken equal τi, where τi may be found as the
unique positive root of

fi(τi−1, τi) = 14τ5
i + 12τi−1τ

4
i + 3τ2

i−1τ
3
i − 8Δiτi − 3Δiτi−1 = 0,

with τi−1 obtained at previous step, i = 1, 2, . . . .
Let xi = xi−1 + hi−1 where i = 1, 2, . . . .
Let again estimate the value Ki of maximum of the absolute value of the

fourth derivatives of the solution Y (x) at the segment [xi−1, xi] by interpolating
the solution with Lagrange polynomial of fourth order in points (xi−4, Yi−4),
(xi−3, Yi−3), (xi−2, Yi−2), (xi−1, Yi−1), (xi, Yi).

If Km ≤ K, where m is a positive number, xm ≥ x0 + z, then assign K =
K+Km

2 , otherwise take x0 = xm−1, x−1 = xm−2, x−2 = xm−3, x−3 = xm−4 and
start the strategy over in point x0.

The method based on the strategy described above stops when termination
condition is satisfied.

4 Numerical Illustration

The paper is devoted to the comparison of the designed method with ode45 and
ode15s methods provided in MATLAB [6]. Below denote by α1 the proposed
method. Recall that methods are compared using three criteria. Suppose N is the
number of integration nodes, M is the number of right hand side calculations
of the system at the integration interval and δ is the maximum of difference
of exact solution and approximate solution of test (model) problems for each
solution component at every integration node. A variety of experiments was
carried out on a range of model problems. Here, for instance, let us consider the
system with initial conditions y1(0) = 1, y2(0) = 2, y3(0) = 3 [1,3]:
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y′
1 =

(
5 − 2

(x + 1)2
+

2
(x + 1)3

)
y1 +

(
−3 +

2
(x + 1)3

+
3

(x + 1)4

)
y2

+
(

−3 +
1

(x + 1)2
− 3

(x + 1)4

)
y3 + e

1
x+1 + e

1
(x+1)

2

+ e
1

(x+1)3 ,

y′
2 =

(
12 − 2

(x + 1)2
+

4
(x + 1)3

)
y1 +

(
−10 − 4

(x + 1)3
+

3
(x + 1)4

)
y2

+
(

−3 +
1

(x + 1)2
− 3

(x + 1)4

)
y3 + e

1
x+1 + 2e

1
(x+1)2 + e

1
(x+1)3 ,

y′
3 =

(
12 − 2

(x + 1)2
+

4
(x + 1)3

y1

)
+

(
−6 − 4

(x + 1)3
+

6
(x + 1)4

)
y2

+
(

−7 +
1

(x + 1)2
− 6

(x + 1)4

)
y3 + e

1
x+1 + 2e

1
(x+1)2 + 2e

1
(x+1)3 .

The initial conditions are set in such a way that the integration interval can
be split into two subintervals. At the first of them each vector component of
the solution is significantly non-linear, whereas in the second one it practically
does not change. The first component of the solution of the considered system is
shown in Fig. 1. The second and the third components exhibit the same behavior.

y

x

Fig. 1. The first component of the solution of the system

In the Figs. 2 and 3 the results are displayed on the diagrams. The results
of ode45, ode15s, α1 are presented here as triangle markers, circle markers
and square markers respectively. The logarithmic scale is used to represent δ
value. The initial step is fixed and equals 0.000001 for each of methods. The
varied parameters are ‘RelTol’ for MATLAB methods, and ε for α1 method. α1

method needs more calculations of right hand sides of the system than MATLAB
methods on high tolerance (ε), however on low tolerance α1 yields lower maximal
error (δ) and requires less calculations than MATLAB methods. On the basis of
the results obtained we can conclude that α1 is applicable when it is necessary to
make a rough estimation of the solution behavior on a priory unknown segment.
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Fig. 2. The comparison of algorithms by the resulting number of nodes N and δ

Fig. 3. The comparison of algorithms by the resulting number of nodes N and the
number of system calculations M
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Abstract. Univariate box-constrained global optimization problems are
considered, where the objective function is supposed to be Lipschitz con-
tinuous and multiextremal. It is assumed that its analytical representa-
tion is unknown (the function is given as a “black-box”) and even one
its evaluation is a computationally expensive procedure. Geometric and
information statistical frameworks for construction of global optimiza-
tion algorithms are discussed. Several powerful acceleration techniques
are described and a number of methods of both classes is constructed by
mixing the introduced acceleration ideas. Numerical experiments exe-
cuted on broad test classes taken from the literature show advantages of
the presented techniques with respect to their direct competitors.

Keywords: Lipschitz global optimization · Univariate black-box
functions · Geometric and information approaches · Local tuning

1 Introduction

It is well known that multiextremal optimization problems arise in many prac-
tical applications such as technological processes, engineering design, economic
models, biology studies, etc. (see, e.g., [1,3–7,10,13,20,24,29]). Very often an
analytical representation of the function to be optimized is unknown (i.e., it is
given as a “black-box”) and even one its evaluation is a computationally expen-
sive procedure. In the literature (see, e.g., the references in [4,10,14,15,28,29]),
there exist numerous optimization techniques proposed for different classes of
problems. In particular, Lipschitz univariate global optimization problems that
can be met frequently in electric and electronic engineering are studied actively
(see, e.g., [3,8,10,15,20,22,28]). The fact that in these problems the objec-
tive functions are often non-differentiable explains the continuous interest of
researches in derivative-free univariate Lipschitz global optimization methods
(see, e.g., [2,8,18,19,21–23,26]).

Thus, in this work our attention is devoted to the global optimization problem

f∗ = f(x∗) = min f(x), x ∈ D, (1)
c© Springer Nature Switzerland AG 2020
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with the objective black-box function f(x), x ∈ D = [a, b], satisfying the Lips-
chitz condition with an unknown Lipschitz constant 0 < L < ∞.

2 Univariate Global Optimization Techniques

Let us consider geometric and information statistical classes of algorithms which
have their origins in the methods of Piyasvskij (see [16]) and Strongin (see [27]),
respectively. These methods have been chosen for this study because they have
shown their efficacy on several classes of problems (see, e.g., [15,18,19,22,26,28])
and it is also known that they can be improved with some powerful accelera-
tion techniques (see [9,17,18,22]). These two classes of methods have a different
nature: Piyasvskij’s method requires the knowledge of an overestimate of the
Lipschitz constant L and uses geometric ideas based on the Lipschitz property
whereas in the Information approach, introduced by Strongin, an adaptive esti-
mate of L calculated during the search is used in a statistical model.

The main idea of geometric algorithms is to construct a minorant ϕi(x)
for f(x) over each subinterval [xi−1, xi] of the search region D, where xi, i =
1, . . . , k, are so-called trial points, i.e., points where the values zi = f(xi) have
been evaluated. If we suppose that L̂ is an overestimate of L, then it follows

f(x) ≥ ϕi(x) = max{zi−1 − L̂(x − xi−1), zi + L̂(x − xi)}, x ∈ [xi−1, xi],

and the minimal value of ϕi(x), x ∈ [xi−1, xi], denoted by Ri, is called charac-
teristic of the interval [xi−1, xi] (see, e.g., [21]),

Ri = 0.5(zi−1 + zi − L̂(xi − xi−1)). (2)

In contrast, the information approach uses the Bayesian ideas and considers
the objective function from a stochastic point of view. The characteristic Ri of
the Strongin information algorithm associated to each subinterval [xi−1, xi] is

Ri = 2(zi + zi−1) − Lk(xi − xi−1) − (zi − zi−1)
2(Lk(xi − xi−1))−1, (3)

where Lk is an adaptive estimate of the global (i.e., valid for the whole search
region D) Lipschitz constant L during the search

Lk = r · max{Hk, ξ}, (4)

Hk = max{Hi : i = 2, . . . , k}, Hi = |zi − zi−1|/(xi − xi−1), (5)

and ξ > 0 is a small technical parameter allowing the correct work of the method.
It has been shown in [17–19,25] that the usage of global estimates of L

can slow down the search significantly. However, for both the methodologies,
geometric and information, the so-called local tuning approach introduced in
[17,18] can be used to accelerate the global search. It allows one to tune the
behavior of the algorithm according to behavior of the objective function at
different subintervals using adaptive estimates of the local Lipschitz constants.
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In fact, when subinterval [xi−1, xi] is narrow, only the local information near
trial points xi−1, xi has a decisive influence on the method. In contrast, when
the subintervals is wide, the local information becomes less reliable.

In order to introduce the local tuning techniques let us denote as {xi}k1 the
ordered trial points and k ≥ 2 the number of iterations of the algorithm (for
k = 2: x1 = a and x2 = b). Let r > 1 the reliability parameter. In the local
tuning approach, we compute estimates li of local Lipschitz constants for each
interval [xi−1, xi], i = 2, . . . , k, in one of the three following procedures:

1. “Maximum” Local Tuning

li = r · max{λi, γi, ξ}, (6)

λi = max{Hi−1,Hi,Hi+1}, γi = Hk (xi − xi−1)
max{xi − xi−1 : i = 2, . . . , k} ,

where Hi, Hk are from (5) (when i = 2 and i = k only H2,H3 and Hk−1,Hk

should be considered, respectively) and ξ is the technical parameter.
2. “Maximum-Additive” Local Tuning

li = r · max{Hi, 0.5(λi + γi), ξ}, (7)

where r, ξ,Hi, λi, and γi have the same meaning as above.
3. “Mixed” Local Tuning

li = 0.5
(
rη + H2

i (rη)−1
)
, η = max{Hk, ξ}. (8)

Let us give an explanation of the last procedure. It has been observed in [28]
that (3) can be rewritten in the form

Ri = 2(zi + zi−1) − (xi − xi−1)
(
Lk + H2

i · (Lk)−1
)
,

so it can be interpreted as an auxiliary piecewise-linear function with local slopes

0.5
(
Lk + H2

i · (Lk)−1
)
.

Therefore, the stochastic model has a geometric interpretation and, as we shall
see in the next section, the local estimates (8) can be very useful when used
together with the characteristic (3).

The second acceleration technique used hereinafter is the local improvement
technique (see [11,12,25]). We distinguish the “optimistic” and the “pessimistic”
approaches. The optimistic method alternates local steps with the global ones
until a local stopping rule is satisfied. In its turn, the pessimistic strategy con-
tinues the global search after the local search accuracy has been achieved and
stops if the global stopping rule is satisfied (see [25] for details). In both cases the
information obtained during the local searches is used in the global search, too.
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By mixing the above procedures we obtained the following 19 methods:

– GEOM-AL, GEOM-GL, GEOM-LTM, GEOM-LTMA that are
Geometric methods (in the sense that (2) is used) which use, respectively:
A priori given Lipschitz constant; Global estimate of the Lipschitz constant;
Maximum Local Tuning and Maximum-Additive Local Tuning. Each of
these methods does not perform local improvement.

– INF-AL, INF-GL, INF-LTM, INF-LTMA, INF-LTMI that are
Information methods ((3) is used) which use, respectively : A priori given
Lipschitz constant; Global estimate of the Lipschitz constant; Maximum
Local Tuning; Maximum-Additive Local Tuning and Mixed Local Tuning.
Each of these methods does not perform local improvement.

– GEOM-LTIMO, GEOM-LTIMAO are Geometric methods which use
Maximum Local Tuning and Maximum-Additive Local Tuning. Each of
these methods uses the Optimistic strategy of the local improvement.

– INF-LTIMO, INF-LTIMAO, INF-LTIMIO are Information methods
which use Maximum Local Tuning; Maximum-Additive Local Tuning and
Mixed Local Tuning. Each of these methods uses the Optimistic strategy of
the local improvement.

– GEOM-LTIMP, GEOM-LTIMAP are Geometric methods which use
Maximum Local Tuning and Maximum-Additive Local Tuning. Each of
these methods uses the Pessimistic strategy of the local improvement.

– INF-LTIMP, INF-LTIMAP, INF-LTIMIP are Information methods
which use Maximum Local Tuning; Maximum-Additive Local Tuning and
Mixed Local Tuning. Each of these methods uses the Pessimistic strategy of
the local improvement.

3 Numerical Experiments and Discussion

All the methods presented in the previous section have been compared on two
classes of functions: 100 Shekel (see [28]) type test functions (Class 1) and the
opposite of 100 Shekel type test functions selected so that x∗ �= a ∧ x∗ �= b,
where x∗ is from (1). Notice that given a function f : R → R, we denoted by
“the opposite of f” the function g : R → R defined as g(x) = −f(x). Functions
from Class 1 were generated as follows

ϕ(x) = −
10∑

i=1

[
k2
i (10x − ai)2 + ci

]−1
, 0 ≤ x ≤ 1,

where 1 ≤ ki ≤ 3, 0.1 ≤ ci ≤ 0.3, 0 ≤ ai ≤ 10, 1 ≤ i ≤ 10, and all the
parameters are supposed to be the pseudorandom numbers in the corresponding
ranges. For each method the technical parameter ξ from (6) was set to 10−8.
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Fig. 1. Function 3 from Class 1 and trial points generated by GEOM-AL (a) and
GEOM LTMA (b)

The initial values r = 1.1 and r = 2 were used respectively for the geometric and
information methods without optimistic local improvement over all the classes
of test functions and they were increased with step equal to 0.1 until all test
problems were solved, i.e., the tested algorithm has generated a point xk after k
trials such that |xk − x∗| ≤ ε with ε = 10−5. Figures 1 and 2 show two examples
of application of the methods respectively on Class 1 and on Class 2. In the
same figures appears the auxiliary function and trial points generated by the
methods. As the objective functions f(x) are considered to be hard to evaluate,
the number of trials was chosen as the comparison criterion. We reported in
Table 1 the averages of trials for each method on both classes. The best results
are shown in bold.
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Fig. 2. Function 85 from Class 2 and trial points generated by GEOM AL (a) and
GEOM LTMA (b)

Since the majority of test problems in both classes can be solved with smaller
values of the parameter r w.r.t those reported in Table 1, the use of a common
value of this parameter for the whole classes of test functions can increase con-
siderably the number of trials. For this reason, for the geometric and information
methods with the use of optimistic local improvement applied to Class 1 we have
not increased r until all test problems were solved to further appreciate the speed
of this approach. We have chosen to stop until at least 90 of the 100 problems
were solved and for the remaining ones we obtained a local minimum. In Table 2
we reported the averages of trials using the optimistic local improvement on both
classes and the percentage of problems solved.
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Table 1. Results of numerical experiments without the optimistic local improvement

Method Class 1 Class 2

r Average r Average

GEOM-AL 1.1 190.28 1.1 3756.54

GEOM-GL 1.4 205.42 1.3 2905.17

GEOM-LTM 1.7 93.85 1.3 217.11

GEOM-LTMA 2.5 97.92 1.5 196.00

INF-AL 2.0 188.79 2.0 3709.51

INF-GL 2.8 211.64 2.0 2211.69

INF-LTM 3.7 103.00 2.1 158.12

INF-LTMA 4.0 78.05 2.3 130.71

INF-LTMI 5.4 208.09 3.4 1913.82

GEOM-LTIMP 1.7 98.04 1.1 153.07

GEOM-LTIMAP 2.3 93.56 1.5 202.15

INF-LTIMP 3.7 107.98 2.1 160.84

INF-LTIMAP 4.2 86.01 2.1 114.76

INF-LTMIP 5.6 215.10 3.4 1892.04

Table 2. Results of numerical experiments with the optimistic local improvement

Method Class 1 Class 2

r Average Success r Average Success

GEOM-LTIMO 1.7 55.16 92% 1.8 55.40 100%

GEOM-LTIMAO 1.6 47.90 91% 1.7 55.74 100%

INF-LTIMO 2.3 54.48 91% 3.1 51.70 100%

INF-LTIMAO 4.0 61.34 95% 3.1 56.78 100%

INF-LTMIO 5.5 51.78 90% 3.4 50.66 100%

It has been shown that the two acceleration techniques, described in this
work, increase considerably the speed of geometric and information methods,
especially when they are tested on Class 2. Mixing the considered procedures we
obtained 19 different derivative-free Lipschitz Global Optimization Methods. In
particular, the use of the geometric interpretation of the stochastic model led to
the introduction of 3 new methods (INF-LTIMI, INF-LTIMIO, INF-LTIMIP).
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Abstract. The hydraulic behavior of ski jumps is investigated numerically using
the OpenFOAM digital library. A number of ski-jump cases has been simulated
by following the RANS approach (Reynolds Averaged Navier-Stokes equations),
using the k-ω SST closure model, and the VoF technique (Volume of Fluid) for the
trackingof the free surface. Particular attention is given to the pressure distributions
in the zone of impact of the falling jet, and to the length of the jet itself, as defined
as the distance along the x-direction between the point of maximum dynamic
pressure head, and the origin of the reference frame. A chart is proposed reporting
the correlation line (and correspondent formal expression) between the approach
Froude numbers and the lengths of the jets, in the limit of other parameters tested.
The chart may serve as a useful tool for the determination of the length of the jet
taking off from the bucket, starting from the value of the approach Froude number.

Keywords: Ski-Jump · Reynolds averaged Navier-Stokes equations · Volume of
fluid

1 Introduction

Ski jumps have been first introduced in the field of dam construction in the 1930s, and
have been studied in the early times within the potential-flow approach. By looking at
the literature of the more recent years, a number of works of different type and dealing
with different aspects of the phenomena at hand, can be found. Among others, in the
experimental field, Bathe et al. [1] reported on a case study related to the optimization of
the design of a two-tier spillway. De Lara et al. [2] studied the spillway flow originally
designed with a conventional ski jump. Deng et al. [3] proposed a leak-floor flip bucket
in which the middle of the water is lifted into the atmosphere and deflects transversely.
Gou et al. [4] studied the effect of sediment concentration on the hydraulic characteristics
of energy dissipation in a falling turbulent jet from a ski-jump energy dissipator. Felder
and Chanson [5] executed a number of experiments on a two-scaled stepped spillway to
investigate the scale effects in terms of air-water properties. Xu et al. [6] performed an
experimental study on pressure and aeration characteristics in stepped-chute flows. Li
et al. [7] executed a theoretical and experimental study on flaring gate pier on the surface
spillway in an arch dam. Wu et al. [8] studied the hydraulic characteristic of slit-type
energy dissipaters. In the numerical field, Deng et al. [9] proposed a new type of design
for a streamwise-lateral spillway. Chanson [10] performed a theoretical study on aeration
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of a free jet above a spillway, based on dimensional analysis. Overall, the majority of
the above-mentioned works report on specific case studies executed on reduced-scale
laboratory models, as related to the design of actual dams to be built. The results are
interesting but not susceptible to generalization.

Differently, Juon and Hager [11] and Heller et al. [12] performed a systematic exper-
imental research about the hydraulic behavior of ski jumps. They considered a simpli-
fied ski-jump configuration that involved an horizontal approach channel and a tailwa-
ter channel, and executed experimental tests with different values of the characteristic
parameters of the phenomenon at hand, with the aim of obtaining results of a more
general effectiveness.

In the present work, the hydraulic behavior of ski jumps is investigated numerically
using the OpenFOAM digital library. The numerical model has been first calibrated by
comparing the numerical results with some of those obtained by Heller et al. [12], and
then a number of ski-jump cases has been simulated. Particular attention is given to the
pressure distributions in the zone of impact of the falling jet, and to the length of the jet
itself. The results are reported in general form and may provide useful suggestions for
those involved in dam construction and management.

2 Numerical Procedures

The flow cases at hand have been simulated by solving the three-dimensional Reynolds
Averaged Navier-Stokes (RANS) equations (Alfonsi [13]) in conservative form (the
fluid is incompressible and viscous, Einstein summation convention applies to repeated
indices, i, j = 1, 2, 3):

ρ
∂ ūi
∂t

+ ρū j
∂ ūi
∂x j

= − ∂ p̄

∂xi
+ ∂

∂x j

(
2μs̄i j − ρu

′
i u

′
j

)
(1)

∂ ūi
∂xi

= 0 (2)

where ρ is the fluid density,μ is the fluid dynamic viscosity, p̄ is the mean fluid pressure,
ūi are the fluid mean velocity components, s̄i j is the mean strain-rate tensor, and τi j =
−ρu

′
i u

′
j is the Reynolds stress tensor. The Reynolds averaging procedure introduces

six new unknown quantities (the six independent components of τi j ) without providing
additional equations. To close the system, the Boussinesq approximation is introduced
(Wilcox [14]) and the eddy-viscosity is expressed as a function of the turbulent kinetic
energy (k) and the energy-dissipation rate (ω), leading to a two-equation turbulence
model. Two-equations models provide one equation to compute k and another equation
to calculate ω. In the present study in particular, the k-ω SST model developed by
Menter et al. [15] has been used. In this model, the turbulent kinetic energy and the
energy-dissipation rate are computed using the following expressions:
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where P̃k represents a production limiter used in the model to prevent the build-up of
the turbulence in stagnation regions, F1 represents a blending function defined as:

F1 = tanh
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, and y represent the distance from the

nearest wall. The turbulent eddy viscosity is μt = ρa1k
max(a1ω,SF2)

, where a1 = 0.31, S
the second invariant of the deviatoric stress tensor and F2 is a second blending function:

F2 = tanh
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All the constants are predicted through a blend from the corresponding constants. The
choice of the k-ω SST model is due to its generally-superior performance with respect,
for example, to the more classical two-equation k-ε model in a variety of complex flow
cases [15–17].

The system of the governing equations has been solved by means of the Inter-
Foam solver, embedded in the OpenFoam C++ libraries. The InterFoam solver has
been designed for incompressible, isothermal, immiscible fluids and incorporates the
VoF (Volume of Fluid) technique for the capturing of the interfaces. The VoF method
(Hirt and Nichols [18]) has been already used in several different flow cases always
giving satisfactory results ([19–21] among others). The governing equations are dis-
cretized with the method of the Finite Volumes. As for the discretization of the solution
domain, an unstructured multi-block mesh has been built where the dependent variables
are stored at the cell center of each cell-space domain in a co-located arrangement.
The PISO (Pressure Implicit with Split Operator) technique suggested by Issa [22, 23]
has been employed to couple pressure and velocity in the transient computations. The
PISO procedure adopts a segregated approach, and the system of the equations is solved
sequentially.

Table 1. Fluid properties used in the simulations.

Air density Water density Air kinematic viscosity Water kinematic
viscosity

1.225 kg/m3 1000 kg/m3 1.48 × 10−5 m2/s 1.0 × 10−6 m2/s
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The stability of the solution procedure has been ensured utilizing an adaptive time
step with an initial value of 1 × 10−6 s, in conjunction with a mean Courant-Friedrichs-
Lewy (CFL) number limit of 0.5. The fluid properties used in the simulations are reported
in Table 1.

As for the numerical channel, a rectangular horizontal approach channel with the
same characteristics of that of Heller et al. [12] has been considered (Fig. 1). The width
of the channel is b (0.50 m), the height is 0.70 m, the total length is about 7 m, the bucket
radius is R and the bucket angle is β. The water depth of the approaching flow is h0, the
flowrate is Q and the approaching-flow bulk velocity is V0= Q/(bh0). The approaching
flow can be described in terms of the approach Froude number F0 = V0/(gh0)1/2, and the
relative bucket radius h0/R, while the values of the bucket height w = R(1 − cosβ) have
been considered as only related to free-bucket flow (not chocked). The maxima values
of the upper and lower jet trajectories are, respectively hU and hL while the take-off
angles are αU and αL . The elevation difference (s − w) between the approach and the
tailwater channel has been kept constant (s = 0.25 m). The point of maximum dynamic
pressure head in the zone in which the falling jet impacts with the bottom of the -initially
empty - tailwater channel along its centerline is A, while the length of the jet, as defined
as the distance of A from the origin of the reference frame along the x-direction, is L
(Fig. 1). Boundary conditions of no-slip and zero wall-normal velocity at the solid walls
have been imposed.

Fig. 1. Definition sketch of ski-jump flow

A CPU-based computing system has been used for the calculations. The system
includes 3 worker nodes, each equipped with 4 E5-2640 CPU (a total of 96 cores/16
threads at 2.0 GHz), 128 GB RAM at 1899 MHz, and 1 TB disk space. The simu-
lations have been executed using 16 processors through the public domain OpenMPI
implementation of the standard Message Passing Interface (MPI) for parallel running.

Table 2. Characteristic parameters of the computational grid.

Nx Ny Nz Ntot Δx_min (m) Δy_min (m) Δz_min (m)

350 100 50 1,750,000 0.01 0.005 0.005
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For parallel computing, the technique of the domain decomposition has been adopted
to split the geometry and the associated fields into segments. In this study, the “simple
geometric decomposition” technique has been used, in which the domain is broken into
segments by direction. The elapsed computational time has been of about 5 h of CPU
time for each simulation. As for grid refinement, the unstructured computational mesh
has been refined through different steps, up to the point in which the comparisons of the
computed results with those obtained by other authors became satisfactory. The final
configuration of the computational grid is reported in Table 2.

3 Results

Seventeen ski-jump cases have been simulated numerically. In Fig. 2 some of the com-
puted nondimensional dynamic pressure head distributions along the bucket centerline
at the value of β equal to 40° are compared with reference Eq. (5) of the work of Heller
er al. [12]. In Fig. 3 a visual comparisons of jets from ski jumps (R= 0.10 m, β = 40°, h0
= 0.05 m) at approach Froude number F0 = 5 is shown. In the figure the experimental
jet of Heller et al. [12] is compared with the flow visualization of present work in terms
of velocity fields, where reddish colors mirror the highest values of the fluid velocities,
and bluish colors mirror the lowest values. Overall the comparison is rather satisfactory.

Fig. 2. Local pressure headdistribution alongbucket centerline: (—)measuredvalues fromEq. (5)
of Heller et al. [12], versus values from present work (symbols).

As mentioned before, we define here the length of the jet as the distance (L) along the
x-direction, between the point of maximum dynamic pressure head in the zone of impact
of the jet along the centerline of the tailwater channel, and the origin of the reference
frame (Fig. 1). In Fig. 4 a chart is shown in which the correlation line between values
of the approach Froude number (F0) and the nondimensional lengths of the jet (L/s)
as previously defined, and involving some of the simulated ski-jump cases with R =
0.10 m, are reported. The line in the chart of Fig. 4 mirror the expression reported in
Table 3.
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Fig. 3. Visual comparison (side view) between jets from ski jumps with R = 0.10 m, β = 40°,
h0 = 0.05 m, F0 = 5: (a) picture from Heller et al. [12], (b) flow visualization of present work in
terms of velocity field (reddish colors mirror highest fluid velocities, bluish colors mirror lowest
fluid velocities). (Color figure online)

Fig. 4. Chart of correlation line between values of the approach Froude number (F0) and nondi-
mensional length of the jet (L/s) at β = 40° involving some of the simulated ski-jump cases with
R = 0.10 m.

Table 3. Expression of correlation line in chart of Fig. 4.

R (m) β (°) r2 Expression Expression number

0.10 40 0.994 F0 = 0.652 (L/s) −
1.832

(7)
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The chart reported in Fig. 4 (in the limit of the parameter tested) may serve as a
useful tool to determine the length of the jet taking off from the bucket, starting from
the value of the approach Froude number.

4 Conclusions

In the present work a study of ski-jump hydraulics has been accomplished numerically.
Particular attention has been given to the issue of the length of the falling jet, as defined
as the distance along the x-direction between the point of maximum dynamic pressure
head in the zone of impact of the jet along the centerline of the tailwater channel, and
the origin of the reference frame. A chart is proposed reporting the correlation line (and
corresponding formal expression) between the approach Froude numbers and the lengths
of the jets. The chart may serve as a useful tool to determine the length of the jet taking
off from the bucket, starting from the value of the approach Froude number.
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Abstract. We examine Faber’s type decompositions for spaces of linear
minimal splines constructed on nonuniform grids on a segment. A char-
acteristic feature of the Faber decomposition is that the basis wavelets
are centered around the knots that do not belong to the coarse grid.
The construction of the lazy wavelets begins with the use of the basis
functions in refined spline space centered at the odd knots. We propose
to use as wavelets the functions centered at the even knots under some
conditions. In contrast to lazy wavelets, in this case the decomposition
system of equations has a unique solution, which can be found by the
sweep method with the guarantee of well-posedness and stability.

Keywords: Minimal splines · B-spline · Wavelets · Nonuniform grid

1 Introduction

One of the simplest and the most common processing schemes for digital data
arrays is piecewise linear interpolation on uniform grids. Investigating the con-
struction of a sequence of continuous piecewise linear functions that converge
pointwise to a continuous nowhere differentiable function, Faber [1] introduced
a hierarchical representation of functions by linear B-splines as a series based
on piecewise linear interpolation on nested dyadic grids. It is well known if this
scheme is used as a basis for multiresolution analysis, then it is often referred
to as Faber decomposition. If a grid is uniform, one can apply classical wavelets
using the powerful tools of harmonic analysis (in the space of functions L2(R1)
and in the space of sequences l2). However, many applications require consider-
ing bounded intervals and nonuniform grids. In this important case the methods
of harmonic analysis are not easily applicable, so it is less well studied. Some
examples and recommendations can be found in [2–8].

The construction of classical wavelets is based on the solution of refinement
equations. Instead of this we examine the calibration relations such that each
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basis function on a coarse grid can be represented as a linear combination of the
basis functions on a refine grid. This paper continues the studies initiated in [9–
11]. We consider Faber’s type decompositions for spaces of linear minimal splines
constructed on nonuniform grids on a segment. The approximation relations are
used as an initial structure for constructing the mentioned spaces. The method
of approximation relations used for construction of different types of minimal
splines has been initiated by Dem’yanovich [12]. The minimal splines of maxi-
mal smoothness [13] are nonpolynomial generalization of B-splines and as a spe-
cial case include well known polynomial B-splines and share most properties of
B-splines (smoothness, nonnegativity, etc.).

The construction of the lazy wavelets begins with the use of the basis func-
tions in refined spline space centered at the odd knots. We propose to use as
wavelets the functions centered at the even knots (on nonuniform grid) under
the additional condition that the spline must vanish at the last knot on the
considered segment. The approach is based on direct decomposition of space of
linear minimal splines by using the calibration relations for two-fold refining of
almost arbitrary initial nonuniform grid. Against to lazy wavelets, in this case
the decomposition system of equations has a unique solution, which can be found
by the sweep method with the guarantee of well-posedness and stability.

2 The Space of Coordinate Splines

On a closed interval [a, b] ⊂ R
1 consider a partition X with two supplementary

knots outside of [a, b]:

X : x−1 < a = x0 < x1 < . . . < xn−1 < xn = b < xn+1. (1)

Introduce the notation Ji,k := {i, i+1, . . . , k}, i, k ∈ Z, i < k. Let {aj} be an
ordered set of vectors aj ∈ R

2, j ∈ J−1,n−1. The vector components are denoted
by square brackets and supplied with subscripts for convenience. For instance,
aj = ([aj ]0, [aj ]1)T , where T is the transpose operation.

We assume that the square matrices of the second order (aj−1,aj), composed
of the two column vectors aj−1,aj , are nonsingular:

det(aj−1,aj) �= 0 ∀ j ∈ J−1,n−1. (2)

Let M := ∪j∈J−1,n(xj , xj+1) be the union of all elementary partition intervals
and let X(M) be the linear space of real-valued functions given on the set M.

Consider a vector function ϕ : [a, b] �→ R
2 with components in the space

C1[a, b] and nonzero Wronskian |det(ϕ,ϕ′)(t)| ≥ const > 0 for all t ∈ [a, b].
Suppose that functions ωj ∈ X(M), j ∈ J−1,n−1, satisfy the approximation

relations

k∑

j′=k−1

aj′ ωj′(t) ≡ ϕ(t) ∀ t ∈ (xk, xk+1), ∀ k ∈ J−1,n−1,

ωj(t) ≡ 0 ∀ t /∈ [xj , xj+2] ∩ M.

(3)
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For each fixed t ∈ (xk, xk+1) relations (3) can be regarded as a system of
linear algebraic equations with respect to the unknowns ωj(t). By virtue of
assumption (2) the system (3) is uniquely solvable and suppωj(t) ⊂ [xj , xj+2].

We introduce the notation ϕj := ϕ(xj) and consider the vectors dj ∈ R
2,

j ∈ J−1,n+1, defined by the identity dT
j z ≡ det(ϕj , z), where z ∈ R

2.

As is known [13], if the vectors aj ∈ R
2, j ∈ J−1,n−1, are defined by the

formula aj := ϕj+1, then ωj ∈ C[a, b] and the following formulas are valid

ωj(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dT
j ϕ(t)
dT
j aj

, t ∈ [xj , xj+1),

dT
j+2ϕ(t)
dT
j+2aj

, t ∈ [xj+1, xj+2).
(4)

The space

S(X) := {u : u =
n−1∑

j=−1

cj ωj ∀ cj ∈ R
1}

is called the space of minimal linear Bϕ -splines (of the second order) on the
partition X. The splines themselves are called the minimal splines of maximal
smoothness.

The vectors dj and aj in componentwise form have the representation as
follows dj = (−[ϕj ]1, [ϕj ]0)T , aj = ([ϕj+1]0, [ϕj+1]1)T .

If [ϕ(t)]0 ≡ 1, i. e. ϕ(t) = (1, ρ(t))T , where ρ ∈ C1[a, b], then we have the
identity

n−1∑

j=−1

ωj(t) ≡ 1 ∀ t ∈ [a, b],

and if we let ρj := ρ(xj), then we obtain the formulas (4) in the form

ωj(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(t) − ρj
ρj+1 − ρj

, t ∈ [xj , xj+1),

ρj+2 − ρ(t)
ρj+2 − ρj+1

, t ∈ [xj+1, xj+2).
(5)

Obviously, ωj(xi) = δj,i−1, where δj,i is the Kronecker symbol. Moreover, if
a function ρ(t) is strictly monotone on the set M, then the spline ωj(t) > 0 for
all t ∈ (xj , xj+2).

For ϕ(t) = (1, t)T the functions ωj coincide with the known polynomial B-
splines of the first degree, i. e. with the one-dimensional Courant functions.

3 Calibration Relations

If we extend the original partition X by a new knot ξ ∈ (xk, xk+1), k ∈ J0,n−1,
then as a result we get a refined partition X := {xj : j ∈ J−1,n+2} such that

xj :=

⎧
⎨

⎩

xj , j ≤ k,
ξ, j = k + 1,

xj−1, j ≥ k + 2.
(6)
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For convenience, we will explicitly indicate the partition on which a certain
object is considered. For instance, the functions ωX

j (t), j ∈ J−1,n, can be found
using (5) by replacing the knots xj with the knots xj , j ∈ J−1,n+2.

It is easy to see that

dX
j = dX

j , j ≤ k, dX
j = dX

j−1, j ≥ k + 2, (7)

dX
k+1

T
x ≡ det(ϕ(ξ), x), x ∈ R

2, aXk = ϕ(xk+1) = ϕ(ξ), (8)

aXj = aXj , j ≤ k − 1, aXj = aXj−1, j ≥ k + 1. (9)

Lemma 1. For k ∈ J0,n−1 and t ∈ [a, b] the following calibration relations hold:

ωX
i (t) =

∑

j∈J−1,n

pXi,j ωX
j (t) ∀ i ∈ J−1,n−1, (10)

the values pXi,j ∈ R
1 are given by the formulas

pXi,j =

⎧
⎪⎪⎨

⎪⎪⎩

δi,j , i ≤ k − 2, ∀ j,
δk−1,j , i = k − 1, j �= k,
δk+1,j , i = k, j �= k,
δi,j−1, i ≥ k + 1, ∀ j,

(11)

and by the formulas

pXk−1,k =
dX
k+1

T
aXk+1

dX
k

T
aXk+1

, (12)

pXk,k =
dX
k

T
aXk

dX
k

T
aXk+1

. (13)

Proof. The validity of the assertions directly follows from the papers [9,11].

Below, we consider the refinement of the original partition X by insertion a
single knot ξj into every elementary partition interval (xj , xj+1), j ∈ J0,n−1.

The two-fold refining of the partition X is defined as the partition Y := {yj :
j ∈ J−1,2n+1} such that

yj =

⎧
⎪⎪⎨

⎪⎪⎩

x−1, j = −1,
xj/2, j = 2l, l ∈ J0,n,
ξ(j−1)/2, j = 2l − 1, l ∈ J1,n,
xn+1, j = 2n + 1.

On the partition Y consider the splines ωY
j , j ∈ J−1,2n−1, which can be found

using (5) by replacing the knots xj with the knots yj .



434 S. Makarova and A. Makarov

Theorem 1. For t ∈ [a, b] the following calibration relations hold:

ωX
j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ωY
−1(t) + pY−1,2 ωY

0 (t), j = −1,
2∑

i=0

pYj,i ω
Y
2j+i(t), j ∈ J0,n−2,

pYn−1,0 ωY
2n−2(t) + ωY

2n−1(t), j = n − 1,

(14)

the values pYj,i ∈ R
1, i = 0, 1, 2, are given by the formulas

pYj,0 =
dY
2j

TaY2j
dY
2j

TaY2j+1

, j ∈ J0,n−1,

pYj,1 = 1, j ∈ J−1,n−1,

pYj,2 =
dY
2j+3

TaY2j+3

dY
2j+2

TaY2j+3

, j ∈ J−1,n−2.

(15)

Proof. For the spline functions constructed on the partitions X and X, in view
of the calibration relations (10)–(13), we have

ωX
k (t) = pXk,k ωX

k (t) + ωX
k+1(t). (16)

Consider the partition Z := {zj : zj = xj+2}. In the same way as (6),
construct the partition Z := {zj} by adding to the partition Z a new knot
ζ ∈ (zk, zk+1). Then, in view of the calibration relations (10)–(13), we have

ωZ
k−1(t) = ωZ

k−1(t) + pZk−1,k ωZ
k (t). (17)

Using obvious equalities ωX
k (t) = ωZ

k−2(t) = ωZ
k−2(t) and ωX

k+1(t) = ωZ
k−1(t),

from the relations (16)–(17) we find

ωX
k (t) = pXk,k ωZ

k−2(t) + ωZ
k−1(t) + pZk−1,k ωZ

k (t). (18)

By formulas (7)–(9), we have dX
k = dZ

k−2, a
X
k = aZk−2, and aXk+1 = aZk−1,

then, in accordance with (13), we find

pXk,k =
dZ
k−2

T
aZk−2

dZ
k−2

T
aZk−1

. (19)

Substituting (12) and (19) into (18), we have

ωX
k (t) =

dZ
k−2

T
aZk−2

dZ
k−2

T
aZk−1

ωZ
k−2(t) + ωZ

k−1(t) +
dZ
k+1

T
aZk+1

dZ
k

T
aZk+1

ωZ
k (t). (20)

Now we find the representation of the right-hand side of the obtained equality
(20) on the partition Y. It is obvious that ωZ

k−2(t) = ωY
2k(t), ωZ

k−1(t) = ωY
2k+1(t),

ωZ
k (t) = ωY

2k+2(t), and dZ
k = dY

2k+2, a
Z
k = aY2k+2.

Substituting the obtained relations into (20), we have the provable statement
(14). For boundary spline functions, the required equalities are found similarly.
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4 Construction of Direct Decompositions

We denote by ΔL a partition of the form (1), in which n = 2Lm, where L,m ∈ Z,
L ≥ 0,m ≥ 1. Against to [11] we will discuss construction of direct decompo-
sitions based on calibration relations for two-fold refining of almost arbitrary
initial nonuniform grids. The splines can be indexed both by the left knot of
the support (5) and also by the central knot. On the partition ΔL we construct
splines indexed by the central knots denoted by νL

j , j ∈ J0,n,

νL
j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(t) − ρj−1

ρj − ρj−1
, t ∈ [xj−1, xj),

ρj+1 − ρ(t)
ρj+1 − ρj

, t ∈ [xj , xj+1).

The space of such splines on the closed interval [a, b] is denoted by

V L := S(ΔL), dim V L = 2Lm + 1.

In view of the calibration relation (14)–(15) considered for splines with central
indexing, it holds that V L ⊂ V L+1. Hence the following direct decomposition
holds

V L+1 = V L � WL. (21)

There are two alternative possibilities for constructing the basis functions in
the space WL.

For instance, as the basis functions in the space WL one can use the basis
functions in V L+1 with centers at odd knots [14]. In this way, one obtains the so-
called “lazy” wavelets, which require no additional computations being a subset
of the scaling functions. Obviously, dimWL = 2Lm. Then the complementarity
condition for the dimensions of the spaces under consideration holds

dim V L+1 = dim V L + dim WL.

The second variant of choosing the basis functions in the space WL consists
in using the basis functions in V L+1 with centers at the even knots under the
additional condition that the spline must vanish at the last knot on the closed
interval [a, b]. In this case, we assume that the spline himself is vanish if its
values are vanish at the ends of a single elementary partition interval. Hence
the corresponding basis functions are removed from the bases of the spaces in
question V L+1, V L,WL. Supply the notation of the spaces considered with the
index “0”:

V L
0 := V L

0 (ΔL) =

⎧
⎨

⎩
SL : SL(t) =

2Lm−1∑

j=0

CL
j νL

j (t) ∀CL
j ∈ R

1, t ∈ [a, b]

⎫
⎬

⎭
,

(22)
dim V L

0 = 2Lm.
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Then dim WL
0 = 2Lm, and the complementarity condition for the dimensions

of the spaces in question holds:

dim V L+1
0 = dim V L

0 + dim WL
0 .

Let CL :=
(
CL

0 , CL
1 , . . . , CL

2Lm−1

)T

, NL :=
(
νL
0 , νL

1 , . . . , νL
2Lm−1

)
, then we

can write (22) in vector form as

SL(t) = NL(t)CL.

If the partition ΔL+1 is obtained by two-fold refining of the partition ΔL,
then there is a matrix of refining reconstruction of the scaling functions (or the
subdivision matrix) PL+1 of size 2L+1m × 2Lm such that

NL = NL+1 PL+1,

where the columns are formed from the coefficients of the calibration relations
(14)–(15), written for the splines with central indexing, taking into account that
the basic functions in each space are one less:

νL
j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

νL+1
0 (t) + pL+1

−1,2 νL+1
1 (t), j = 0,

2∑

i=0

pL+1
j,i νL+1

2j+i−1(t), j ∈ J1,2Lm−2,

pL+1
2Lm−1,0

νL+1
2L+1m−1

(t) + νL+1
2L+1m

(t), j = 2Lm − 1.

Denote the basis wavelet functions by

ΨL
i (t) := νL+1

2i (t), i = 0, 1, . . . , 2Lm − 1,

and introduce the notation ΨL :=
(
ΨL
0 , ΨL

1 , . . . , ΨL
2Lm−1

)
.

Denote the corresponding wavelet approximation coefficients by DL
i , i =

0, 1, . . . , 2Lm − 1, and introduce the vector DL :=
(
DL

0 ,DL
1 , . . . , DL

2Lm−1

)T

.

The corresponding reconstruction matrix QL+1 of size 2L+1m×2Lm satisfies
the equation

ΨL = NL+1 QL+1,

where all the entries in every column of the matrix QL+1 are zero, except for a
unique unit entry.

In view of the direct decomposition (21) any function in V L+1 can be written
as a sum of a certain function from V L and a certain function from WL, and
the following string of equalities is valid:

SL+1(t) = NL+1(t)CL+1 = NL(t)CL + ΨL(t)DL

= NL+1(t)PL+1 CL + NL+1(t)QL+1 DL.
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Therefore, the coefficients CL+1 can be obtained from the coefficients CL

and DL as follows:
CL+1 = PL+1 CL + QL+1 DL,

or, in block notation,

CL+1 =
[
PL+1 | QL+1

]
[

CL

DL

]

. (23)

The reverse process of decomposing the coefficients of CL+1 into a coarser
version CL and the refining coefficients DL consists in solving the sparse linear
algebraic system (23). It is reasonable to split this system into strictly diagonally
dominant systems for even and odd knots (for details in the case of B-splines
see [7]). Such systems of equations can be solved, with guaranteed well-posedness
and stability, by the sweep method.
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Abstract. Congestion games possess the property of emitting at least
one pure Nash equilibrium and have a rich history of practical use in
transport modelling. In this paper we approach the problem of modelling
equilibrium within congestion games using a decentralised multi-player
probabilistic approach via stochastic bandit feedback. Restricting the
strategies available to players under the assumption of bounded ratio-
nality, we explore an online multiplayer exponential weights algorithm
for unweighted atomic routing games and compare this with a ε-greedy
algorithm.

Keywords: Congestion games · Online learning · Multi-armed bandit

1 Introduction

The multi-armed bandit (MAB) problem has received much attention in recent
years within the online and machine learning community due to its appropri-
ateness for demonstrating the fundamental trade-off between exploration and
exploitation in online learning. The basic MAB problem is for an agent to max-
imise the cumulative reward received after playing a number of rounds (finite
or infinite). In each round the agent is required to choose one of K bandits
and subsequently receives an associated reward. For an agent to be successful
it must employ a strategy which balances the trade-off between exploration and
exploitation. Explore too little and the agent’s preferred choice may remain sub-
optimal, explore too often and the agent fails to exploit the most optimal choices.
Numerous algorithms have been studied for variants of the MAB problem and a
popular measure of an algorithm’s performance is the notion of expected regret,
whereby the agent’s received reward is compared with the expected reward that
would have been received for the optimal choices [1].

In strategic repeated games, a natural approach towards equilibrium is to
employ an online learning algorithm in which the expected regret of the player(s)
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is minimised over the time horizon [2]. Whilst expected regret analysis and con-
vergence of equilibrium are important and rich areas of research, they make
some key assumptions that could, in certain modelling scenarios, be deemed
too restrictive. First, when bounding the regret of an algorithm it is necessary
that the utility received by a player is itself bounded, therefore restricting the
types of utility function. Second, convergence to a state of equilibrium does not
take into account the capricious nature of certain individuals and that a player’s
rationality is often bounded by both the intractability of the decision making
process and the player’s preference for exhaustive search [4]. Therefore the best
one may be able to do is express a player’s belief in the most preferable choices
over a set of tractable strategies.

The above concepts are particularly inherent in routing games, a form of
strategic repeated game in which multiple players (e.g. drivers of vehicles) simul-
taneously route flow across a network in an attempt to minimise their own cost.
Routing games belong to the larger class of congestion games which possess the
property of emitting at least one pure strategy Nash equilibrium [6] and have
received much attention within the field of algorithmic game theory [7]. How-
ever, due to the underlying graph structure, the strategy set for these games
suffers from the “curse of dimensionality” whereby the strategy set for a source
sink pair (available paths) grows exponentially with the size of the underlying
graph. Traditionally methods have employed a centralised approach in which
full information of the costs associated with all strategies is known, and flow is
shifted globally between paths so as to satisfy a set of constraints representing a
state of equilibrium for the given problem [5]. Such approaches fail to consider
both the decentralised nature of the decision making processes within the system
and that individual players have a particularly myopic view of the system and,
therefore, tend to make decisions on very little information.

Motivated by the concepts of bounded rationality and random/deliberate
sub-optimal choices, the focus of this paper is to model unweighted atomic rout-
ing games under a restricted subset of strategies via noisy feedback, i.e. the
utility may vary due to external factors. We investigate an exponential weights
algorithm which at each time step (round) uses feedback as a mechanism for
a player to update their personal beliefs (probability distribution) of the best
course of action and an ε-greedy algorithm in which the best course of action
is selected greedily with probability p = 1 − ε. Variants of both algorithms are
implemented for the semi-bandit and bandit feedback scenarios.

2 Preliminaries

2.1 Congestion Games

An N-player congestion game consists of a finite number of players N =
{1, · · · , N}, a set of congestible elements E with associated cost (latency) func-
tions le : N �→ R for each element e ∈ E and a set of playable strategies Ai for each
player i, where a given strategy ai ∈ Ai is a set of congestible elements ai ⊆ E .
The number of players choosing element e is xe =

∑
i∈N

∑
ei∈ai

1(ei = e), where
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1 is the indicator function. The associated cost to player i playing strategy ai is
ui(ai; a−i) =

∑
e∈E

∑
ei∈ai

1(ei = e) · le(xe).1 That is each player picks a set of
congestible elements and their associated costs are dependent not only on their
own strategy, but on those played by the other players. The total cost U under
strategy profile a = (ai)i∈N is then,

U(a) =
∑

i∈N
ui(ai; a−i) =

∑

i∈N

∑

e∈E

∑

ei∈ai

1(ei = e) · le(xe) =
∑

e∈E
xele(xe).

Let A =
∏

i Ai to be the set of all strategy profiles and l = (le)e∈E the vector of
cost functions associated with each e, then the congestion game is described by
the tuple (N , E ,A, l).

Rosenthal showed that a congestion game has at least one pure strategy Nash
equilibrium found by minimising the potential function Φ =

∑
e∈E

∑xe

i=1 le(i) [6].

2.2 Unweighted Atomic Routing Game

For an unweighted atomic routing game, let the set of congestible elements E
be the edges in the graph G = (V,E) and for each player i ∈ N associate a
source/sink pair (oi, di) and traffic demand ki = 1, i.e. players route themselves.2

A player’s strategy set Ai is the set of possible paths from source to sink, i.e. a
strategy ai ∈ Ai is a path consisting of edges e ∈ E [7]. Therefore the cost to a
given player choosing a particular path is dependent on the number of players
choosing paths which share edges in the graph.

As a bandit problem, an unweighted atomic routing game consists of N play-
ers, a set E of functional bandit machines (edges), with corresponding conges-
tion functions l. Each player i ∈ N then pulls a combination of bandit machines
ai ⊆ E (path) from the strategy set Ai (set of available paths for (oi, di) pair)
and receives feedback given the strategy profile of played actions a = (ai)i∈N .

3 Learning Under Bandit Feedback

The following section introduces the exponential weights and ε-greedy algorithms
for both semi-bandit and bandit feedback.

For each player i let W t
i = (W t

iai
)ai∈Ai

be a set of weights associated with
the player’s available strategies at a given round t. We denote the probability of
a player selecting strategy ai as,

Pt
iai

=
W t

iai
∑|Ai|

j=1 W t
ij

,

and the probability distribution over all strategies Ai as Pt
i = (Pt

iai
)ai∈Ai

.

1 (ai; a−i) is commonly used to refer to player i’s strategy given the strategy profile
a = (a1, · · · , ai, · · · , aN ).

2 In general an unweighted traffic rate routes the same quantity ki = k ∀i ∈ N .
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3.1 Semi-bandit Feedback

Under semi-bandit feedback, the player has access to the entire payoff vector of
playable strategies. The noisy feedback for a given strategy at

i played by player
i in round t is,

r̂iai
(at

−i) = ui(at
i; a

t
−i) + ξt

iai
,

and the entire payoff vector for all strategies available to player i is then

r̂ti = (r̂iai
(at

−i))ai∈Ai

For each player i, the exponential weights algorithm (see Algorithm 1) main-
tains the probability distribution Pt

i = (Pt
iai

)ai∈Ai
reflecting the beliefs about

player i’s best strategy from the strategy set Ai. At time t, player i samples
an action at

i ∼ Pt
i and updates the distribution Pt+1

i based on the semi-bandit
feedback it receives [3]. Note that due to the interdependence of the congestion
functions, all players actions must be selected and played before players receive
their corresponding feedback.

Algorithm 1. Exponential weights with semi-bandit feedback [EW-SB]

Require: γt = t− 1
α ∀t ∈ [1, . . . , T ], W 0

i ∈ 1|Ai| ∀i ∈ N
1: for t = 1, . . . , T do
2: for each player i in N do

3: Pt
i =

W t
i

∑|Ai|
j=1 W t

ij

� Calculate probability distribution for strategies

4: at
i ∼ Pt

i � Sample action from probability distribution
5: end for
6: for each player i in N do
7: r̂ti = (r̂iai(a

t
−i))ai∈Ai � Observe estimated reward for strategies

8: W t+1
i = W t

i · exp
(

γtr̂
t
i

|Ai|

)
� Update weights

9: end for
10: end for

The ε-greedy algorithm (see Algorithm 2) updates the average reward for all
player strategies via the feedback vector and greedily selects the best known
strategy with probability p = 1 − ε and randomly selects an action with proba-
bility p = ε

Ai
.

3.2 Bandit Feedback

Under bandit feedback the player only has access to feedback for the strategy
played in round t and therefore a player must attempt to estimate the cost
of strategies over time. The exponential Weights algorithm can be amended
(see Algorithm 3) by utilising the importance sampling estimator.
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Algorithm 2. ε-greedy with semi-bandit feedback [εG-SB]
Require: W 0

i ∈ 0|Ai| ∀i ∈ N
1: for t = 1, . . . , T do
2: for each player i in N do
3: if εt ∼ unif(0, 1) < ε then
4: at

i ∼ unif{1, |Ai|} � Choose at random with probability p = 1
|Ai|

5: else
6: at

i = arg max
ai∈Ai

(W t
iai

)

7: end if
8: end for
9: for each player i in N do

10: r̂ti = (r̂iai(a
t
−i))ai∈Ai � Observe estimated feedback for strategies

11: W t+1
i = W t

i + 1
t+1

[
r̂ti − W t

i

]
� Update average feedback

12: end for
13: end for

The feedback for strategy at
i received in round t is the individual cost incurred

by the player,
ût

i = ui(at
i; a

t
−i) + ξt

i

and the full feedback vector rti (a
t
−i) can be estimated by r̂ti = (r̂t

iai
)ai∈Ai

, where,

r̂t
iai

=

{
ût

i

Pt
iai

, if ai = at
i.

0, otherwise.
∀ai ∈ Ai.

It can be shown [3] that under certain probabilistic assumptions, r̂t
iai

results
in an unbiased estimator of the feedback received by player i playing action ai

calculated over the joint probability of all other strategy profiles a−i ∈ ∏
j �=i Aj ,

Pt
−i = (Pt

−ia−i
)a−i∈A−i

,

namely,
Et[r̂t

iai
] = ui(ai;Pt

−i) =
∑

a−i∈A−i

Pt
−ia−i

ui(at
i; a

t
−i).

For the ε-greedy algorithm (see Algorithm 4) we amend the update of the average
rewards W t+1

i to only update the strategy that has been played at time t.

4 Preliminary Results

Algorithms 1–4 were tested on a bidirectional lattice network with 16 vertices
and 48 edges. Given the stochastic nature of the algorithms, 10 randomly gener-
ated instances of the lattice network were generated and 250 players were routed
between 4 origin destination pairs. The results were averaged over 10 episodes per
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Algorithm 3. Exponential weights with bandit feedback [EW-B]
Replace lines 7 − 8 in algorithm 1 with:

ût
i = ui(a

t
i; a

t
−i) + ξt

i � Observe estimated feedback for played strategy

r̂t
iai

=

⎧
⎨
⎩

ût
i

Pt
iai

, if ai = at
i.

0, otherwise.
∀ai ∈ Ai

� Estimate feedback vector r̂ti

W t+1
i = W t

i · exp
(

γtr̂
t
i

|Ai|

)
� Update weights

Algorithm 4. ε-greedy with bandit feedback [εG-B]
Replace lines 10 − 11 in algorithm 2 with:

ût
i = ui(a

t
i; a

t
−i) + ξt

i � Observe estimated feedback for played strategy

r̂t
iai

=

{
1

t+1

[
ût

i − W t
iai

]
, if ai = at

i.

0, otherwise.
∀ai ∈ Ai

� Estimate feedback vector r̂ti
W t+1

i = W t
i + r̂ti � Update average rewards

network - each episode consisting of a 100 rounds (T = 100).3 Figure 1(a) plots
the total cost U averaged over the data set and for comparison, the total cost
UΦ experienced at the equilibrium given by the potential function Φ. Figure 1(b)
plots the regret of each algorithm defined to be the cumulative sum of the dif-
ference between the total cost of the played strategy profile at at time t and the
equilibrium total cost UΦ,

Rt =
t∑

i=t

[
U(at) − UΦ

]
.

Finally Fig. 2 plots the individual costs for the players at the initial and the
final (T ) round. Clearly a more uniform cost has emerged at time T for the 4
origin/destination pairs and this compares well with the costs at equilibrium
given by minimising Φ (indicated in red).

3 The source code is available at https://github.com/samtoneill/congestionbandi
tgames.

https://github.com/samtoneill/congestionbanditgames
https://github.com/samtoneill/congestionbanditgames
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(a) Total Cost                                  (b) Cumulative Regret

Fig. 1. Log-lin plots of total cost and cumulative regret for the 4 algorithms averaged
over all test data

(a) Player costs after initial round (b) Player costs after T rounds

Fig. 2. Log-lin plots illustrating the convergence of players costs for the 4 ori-
gin/destination pairs (Color figure online)

5 Concluding Remarks

On average, the exponential weights algorithm with semi-bandit feedback per-
forms the best over the data set and compares reasonably well with the total
cost associated with the Nash equilibrium given by minimising Φ. It is worth
noting that the two bandit feedback algorithms which, arguably, in certain cir-
cumstances represent a more realistic model, e.g. a player would only experience
or log their own travel time, perform comparably well. The poor performance of
the ε-greedy algorithm with semi-bandit feedback is also of interest and, while
it would require more investigation, a possible cause is that certain strategies
ai ∈ Ai experience an extreme cost under certain strategy profiles (ai; a−i) and
therefore the averages maintained become unrepresentative of the more optimal
choices.

Whilst it can be argued that these algorithms more realistically represent
a player’s decision making processes when taking into account human nature,
they are not designed to be efficient in terms of computational complexity
and therefore they may not be practical for use on larger networks. A future
direction would be to employ similar techniques using a more scalable function
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approximation, such as a neural network, to keep track of a player’s beliefs.
There is also the possibility of using reinforcement learning techniques to employ
autonomous agents whose primary role is to act altruistically for the benefit of
the other agents within the network to reduce the overall congestion experienced
[8].
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Abstract. The problem of dynamic 2D vector tomography is consid-
ered. Object motion is a combination of rotation and shifting. Proper-
ties of the dynamic ray transform operators are investigated. Singular
value decomposition of the operators is constructed with usage of classic
orthogonal polynomials.
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1 Introduction

Currently, directions in tomography, focused on the study of vector character-
istics of mediums, are developing intensively. And above all, due to the fact
that the areas of application of tomographic methods for studying nonscalar
properties of objects are very wide.

We list the main mathematical tools on which numerical methods and algo-
rithms for solving vector tomography problems are based. In the absence of the
phenomenon of refraction, the inversion formulas [1–3] are very attractive from
a mathematical point of view. Of particular interest are two very general meth-
ods: the least squares method and the method of singular value decomposition.
In the numerical solution of the vector tomography problem, the least squares
method was used with approximating sequences consisted of polynomials [4] and
B-splines [5,6]. Note articles in which singular value decompositions of the oper-
ators of ray transforms of two-dimensional vector fields [7–9], the normal Radon
transform operator of three-dimensional vector fields [10,11] were obtained, and
numerical studies of algorithms based on the truncated singular decomposition
method were performed. The method of approximate inverse is another powerful
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approach used to solve Doppler tomography problems in R
3 [12,13] and vector

tomography problems in R
2 [14,15].

All the above results were obtained under the assumption that the object of
study is stationary. Often in practice, this assumption is not true. Such tasks are
called dynamic tomography problems. There is a small number of works devoted
to solving problems of dynamic tomography to restore the scalar characteristics
of objects [16–18], while the vector case was not considered previously.

In this article we give definitions of dynamic longitudinal and transverse
ray transforms of vector fields and formulate the dynamic vector tomography
problem. It is necessary to recovery a vector field from its known values of
the dynamic longitudinal and transverse ray transforms. We assume that the
movement of the object under study is known and is a combination of rotation
and shifting. The properties of the operators are investigated and their singular
value decompositions are constructed.

2 Definitions

Let x = (x, y), B = {x ∈ R
2

∣
∣ |x| =

√

x2 + y2 < 1} be a unit disk with a center in
the origin of Cartesian rectangular coordinate system, ∂B = {x ∈ R

2
∣
∣ |x| = 1}

be its boundary (unit circle), Z = {(s, ξ) ∣
∣ ξ ∈ R

2, |ξ| = 1, s ∈ R} be a cylinder.
Functional space L2(B) consists of functions, which are square integrable in

B. We also use functions in weight space L2(Z, ρ), ρ > 0. The inner product in
the space L2(Z, ρ) is defined as

(f, g)L2(Z,ρ) =
∫

Z

f(z)g(z)ρ(z)dz.

The Radon transform Rf : L2(B) → L2(Z) of a function f is defined by
formula

(Rf)(s, ξ) =
∫

B

f(x) δ(〈ξ,x〉 − s) dx,

where δ denotes the delta distribution, the unit vector ξ⊥ = (− sinα, cosα)
specifies the direction of integration, ξ = (cosα, sinα) is the orthogonal direction.
A set of parallel lines on the plane is defined by the fixed direction ξ and every
line of the set is determined by distance s.

Let vector field w = (w1, w2), w : B → R
2 be given. The transverse ray

transform
P⊥ : L2(S1(B)) → L2(Z)

acting on the vector field w is determined by the formula

(P⊥w)(s, ξ) =
∫

B

〈w(x), ξ〉 δ(〈ξ,x〉 − s) dx.
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The longitudinal ray transform

P : L2(S1(B)) → L2(Z)

of the vector field w is defined as

(Pw)(s, ξ) =
∫

B

〈w(x), ξ⊥〉 δ(〈ξ,x〉 − s) dx.

Remind that a vector field u is called potential, if there is a function ϕ, such
that u = dϕ =

(
∂ϕ
∂x , ∂ϕ

∂y

)

. A vector field v is called solenoidal, if its divergence

is equal to 0, div v = ∂v1
∂x + ∂v2

∂y = 0. In the other words, there is a function ψ,

such that v = d⊥ψ =
(

−∂ψ
∂y , ∂ψ

∂x

)

(see, for example, [3]).
It is well known [1,5], that there is uniquely decomposition of arbitrary vector

field w on a sum of potential and solenoidal parts

w = dϕ + d⊥ψ, ϕ, ψ|∂B = 0.

The operators of longitudinal and transverse ray transforms have nonzero kernels
[5], namely

(P dϕ) (s, ξ) = (P⊥ d⊥ψ)(s, ξ) = 0, ϕ, ψ|∂B = 0.

Moreover, there are connections between the ray transforms and the Radon
transform of the same potential [6]:

(P d⊥ϕ
)

(s, ξ) =
(P⊥ dϕ

)

(s, ξ) =
∂(Rϕ)

∂s
(s, ξ), ϕ|∂B = 0.

In the other words, if for the vector field w = dϕ+ d⊥ψ we know only values of
the longitudinal ray transform Pw, we can reconstruct only solenoidal part d⊥ψ
of the field w, and we can reconstruct only potential part dϕ of w by known
values of the transverse ray transform P⊥w.

We can formulate the vector tomography problem in stationary case. Let
the longitudinal ray transform Pw and (or) the transverse ray transform P⊥w
of a vector field w be known for all (s, ξ) ∈ Z. It is required to determine the
unknown vector field w(x), x ∈ B from these data.

3 Singular Value Decomposition of the Ray Transform
Operators

Need to remind a singular value decomposition of the operators of ray transforms
[8]. Taking in consideration of the connection between the operators of ray trans-
form, we can consider only the transverse ray transform operator, acting on a
potential vector field P⊥ dφ. Singular value decomposition for the longitudinal
ray transform operator can be obtained analogously.
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Lemma. The singular value decomposition of the transverse ray transform
operator

P⊥ : L2(S1(B)) → L2(Z, (1 − s2)−1/2)

is given by
{(σkn, ukn, vkn)| k, n = 0, 1, ...}

where

σkn = 2
√

π

k + 2n + 2
,

ukn(x) = d

(√

k + 2n + 2
2π

Ck
n+k

n + 1
(1 − |x|2)|x|kYk (x/|x|)P (k+2,k+1)

n (|x|2)
)

,

vkn(s, α) = (−1)n+1

√
2

π

√

1 − s2C
(1)
k+2n+2(s)Yk(α),

with the spherical harmonics Yk, the Jakobi polynomials P
(p,q)
n and the Gegen-

bauer polynomials C
(μ)
m .

4 The Mathematical Model of the Dynamic Setting

Through the rotation of the x-ray source, the data collecting in computer tomog-
raphy takes a definite amount of time. The position of the radiation source can
be uniquely described via the following parametrization

ξ = (cos(φt), sin(φt))T ,

where t is a moment of time, φ is the source rotation angle.
Further, let the motion of the investigated object be described by

Γθx = Aθx+ bθ, (1)

where a matrix

Aθ =
(
cos(θt) − sin(θt)
sin(θt) cos(θt)

)

sets the rotation by the angle θt at the moment of time t from beginning of data
collecting, a vector bθ ∈ R

2 specifies the shifting.
Let function f ∈ L2(B) describes the state of the object at the beginning

of data acquisition. Then at the moment of time t the state of the object is
described by (f ◦ Γθ). For more details see [16]. In the frame of the setting, the
dynamic Radon transform

RΓ : L2(B) → L2(Z),

is given by

(RΓ f)(s, ξ) =
∫

B

f(Γθx) δ(〈ξ,x〉 − s) dx.
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Then the dynamic transverse and longitudinal ray transforms

P⊥
Γ , PΓ : L2(B) → L2(Z)

can be defined by

(P⊥
Γ w)(s, ξ) =

∫

B

〈w(Γθx), Aθξ〉 δ(〈ξ,x〉 − s) dx,

(PΓ w)(s, ξ) =
∫

B

〈w(Γθx), Aθξ
⊥〉 δ(〈ξ,x〉 − s) dx.

The statement of the vector tomography problem in dynamic case: Let the
longitudinal ray transform PΓ w and (or) the transverse ray transform P⊥

Γ w of
a vector field w be known for all (s, ξ) ∈ Z. It is required to determine the
unknown vector field w(x), x ∈ B from these data in moment of time t = 0.

5 Singular Value Decomposition of the Dynamic Ray
Transform Operators

To solve the problem, we construct singular value decompositions of the dynamic
ray transform operators.

Theorem 1. In the case of motion (1) there is connection between the dynamic
Radon transform and the dynamic ray transforms

(PΓ d⊥ϕ
)

(s, ξ) =
(P⊥

Γ dϕ
)

(s, ξ) =
∂(RΓ ϕ)

∂s
(s, ξ), ϕ|∂B = 0.

Proof. Introduce the notation Γθx := x̃ = (x̃, ỹ), then coordinates of points of
integrating line are defined by the following formulae

x̃ = s cos(φ + θ)t − p sin(φ + θ)t + (bθ)1,

ỹ = s sin(φ + θ)t + p cos(φ + θ)t + (bθ)2,

and we have

∂(RΓ ϕ)
∂s

(s, ξ) =
∂

∂s

∫

B

ϕ(Γθx) δ(〈ξ,x〉 − s) dx =
∂

∂s

∫

B

ϕ(x̃(s, p), ỹ(s, p))dp

=
∫

B

∂ϕ(x̃(s, p), ỹ(s, p))
∂s

dp =
∫

B

(
∂ϕ

∂x̃
· ∂x̃

∂s
+

∂ϕ

∂ỹ
· ∂ỹ

∂s

)

dp

=
∫

B

〈dϕ(Γθx), Aθξ〉 δ(〈ξ,x〉 − s) dx = (P⊥
Γ dϕ)(s, ξ).
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On the other hand, there are equalities

∂(RΓ ϕ)
∂s

(s, ξ) =
∫

B

((

−∂ϕ

∂ỹ

)

·
(

−∂ỹ

∂s

)

+
∂ϕ

∂x̃
· ∂x̃

∂s

)

dp

=
∫

B

〈d⊥ϕ(Γθx), Aθξ
⊥〉 δ(〈ξ,x〉 − s) dx = (PΓd⊥ϕ)(s, ξ). �

Theorem 2. In the case of motion (1) there are connections between the
dynamic ray transforms and the static ray transforms:

(PΓ w)(s, ξ) = (Pw)(s + 〈Aθξ,bθ〉, Aθξ),

(P⊥
Γ w)(s, ξ) = (P⊥w)(s + 〈Aθξ,bθ〉, Aθξ).

Proof. We demonstrate this for the transverse ray transforms (static and
dynamic), for the longitudinal ray transforms proof is analogously. We have

(P⊥
Γ w

)

(s, ξ) =
∫

B

〈w(Aθx+ bθ), Aθξ〉 δ(〈ξ,x〉 − s) dx

=
∫

B

〈w(y), Aθξ〉 δ(〈ξ,A−1
θ (y − bθ)〉 − s) dy

=
∫

B

〈w(y), Aθξ〉 δ(〈(A−1
θ )T ξ,y − bθ〉 − s) dy

=
∫

B

〈w(y), Aθξ〉 δ (〈Aθξ,y〉 − (〈Aθξ,bθ〉 + s)) dy

= (P⊥w)(s + 〈Aθξ,bθ〉, Aθξ). �
Theorem 3. In the case of motion (1) the singular value decomposition of the
dynamic transverse ray transform operator

P⊥
Γ : L2(S1(B)) → L2(Z, (1 − s2)−1/2)

is given by
{(σkn, ukn, ṽkn)| k, n = 0, 1, ...}

where

σkn = 2
√

π

k + 2n + 2
,

ukn(x) = d

(√

k + 2n + 2
2π

Ck
n+k

n + 1
(1 − |x|2)|x|kYk(x/|x|)P (k+2,k+1)

n (|x|2)
)

,

ṽkn(s, α) = (−1)n+1

√
2

π

√

1 − (s̃)2C(1)
k+2n+2(s̃)Yk(α̃),

with s̃ = s + 〈Aθξ,bθ〉, α̃ = (φ + θ)t.
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Proof. This follows from the Lemma and the Theorem2. �
Remark that the singular value decomposition of the dynamic longitudinal

ray transform operator can be obtained using the Theorems 1 and 3.

6 Conclusion

We consider the problem of dynamic vector tomography for reconstructing a
vector field from its known values of the dynamic longitudinal and transverse
ray transforms. The movement of the investigated object is known and is a com-
bination of rotation and shifting. The properties of the dynamic ray transform
operators are studied and their singular value decompositions are obtained.
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Abstract. One of the promising approaches in clean energy is hydrogen
production using the hydration reaction of a metal micropowder, stim-
ulated by plasma formations. In present work, we carried out a series of
numerical simulations of the turbulent three-dimensional swirling flow
with chemical reactions in plasma vortex reactor (PVR) to provide fur-
ther insights into use of such apparatus. The modelling has demonstrated
that desirable behavior with heat transferred mostly downstream can
be ensured by use of pipe-like electrode placed downstream from cylin-
drical one. Then, using exact experimental geometry and flow composi-
tion, optimized electrode system and simplified kinetic scheme of plasma-
chemical reactions, we tested several operating modes of the PVR and
obtained time dependent flow characteristics, which, in turn, will be used
for further adjustment of the scheme and overall apparatus.

Keywords: Swirling flow · Numerical simulation · Plasma-chemical
reactions · Plasma-vortex reactor

1 Introduction

For a number of important tasks and problems in the power engineering, road
transport, aviation, and agriculture, mobile sources of energy are needed that
would ensure the production of hydrogen and thermal energy in remote loca-
tions, especially in the northern territories. The high transportation cost of con-
ventional hydrocarbon fuels to such territories makes it necessary to look for new
ways to produce heat and electrical energy in the North. On the other hand, one
of the most crucial problems of the modern world is the prevention of environ-
mental pollution. International standards on the emission of harmful substances
are constantly becoming tougher, and to ensure the competitiveness of prod-
ucts (and manufacturers) on the global market, it is necessary to develop new
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environmentally friendly and energy-efficient technologies for the production of
energy and harmless fuels. Many developed countries consider hydrogen as one
of the most promising alternative fuels and foresee its strategic use [1–3]. Still,
plasma technologies are generally not considered as an economically competitive
technology for hydrogen generation [1], because target production cost of 1–2
US dollars seemed to be unachievable. But some plasma-based methods reach
energy yield target of 60 g [H2]/kWh, which could ensure desirable pricing [4].
However, those approaches have to deal with questions of high production rate
and reliability.

The technical solution of these problems can be achieved by production
of cheap hydrogen in plasma-chemical reactors, including hydrogen generators,
based on the use of stimulated by plasma formations chemical reactions of metal
particles (aluminum, nickel, etc.) in water vapor. The advantages of this app-
roach are simplicity, low cost, the possibility of mobile efficient production of
hydrogen and thermal energy in laboratory and field conditions at high speed,
an order of magnitude higher than that in traditional chemical technologies. The
corresponding technology [5] currently provides the minimum price for hydro-
gen production among the well-known plasma-chemical methods. Still, the cre-
ation of efficiently operating PVR requires a series of experimental and theoret-
ical studies devoted to determining the structure of swirling flow with plasma-
chemical reactions, the mechanisms and possible paths of these reactions. In
present work, we carried out a series of numerical simulations of the turbu-
lent three-dimensional swirling flow in plasma vortex reactor to provide further
insights into use of such apparatus: determining the optimal configuration of
electrode system and calculating corresponding distributions of flow parameters.

2 Methods

First task was solved using schematic geometry of principal parts of experimen-
tal setup (Fig. 1): flow tube, swirler, and electrode system. For the second one,
we employed exact experimental geometry [5] (Fig. 1) with explicit modeling of
quartz glass walls and construction elements made of aluminum. Experimen-
tal setup, which was chosen based on results of calculations for model system,
has following features. The cathode was merged with nozzle system. Anode has
cylindrical form with radius of 5 mm and length of 66 mm. The interelectrode
distance was set equal to 60 mm, the length of the quartz glass duct is 407 mm.
Heat generation in gas discharge was modeled using a heat source of constant
power. In what follows, we investigate the problem for water vapor flow close
to the experimental conditions [5], corresponding to the total mass flow rate
mt = 2 g/s, the heat source power N = 200 W and the static gas pressure
P = 105 Pa.
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Fig. 1. Computational geometry used for task of electrode system optimization (a) and
reacting flow modelling (b).

Reynolds averaged Navier-Stokes equations were used to describe the flow
with chemical reactions.
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components, density, temperature, pressure, total energy, and enthalpy, respec-
tively; N is the volumetric density of energy source power, cP is the molar specific
heat capacity at constant pressure, μt, μeff are the turbulent and effective vis-
cosity coefficients, κ is the thermal conductivity coefficient, M is the molar mass,
Prt is the turbulent Prandtl number, Rn and Sn are the terms responsible for
the generation and destruction of the nth component during chemical reactions,
Sct is turbulent Shmidt number, the value of which was set to 0.7 by default,
Dt is turbulent diffusion coefficient. For the first step (optimization of electrode
system), we excluded reactions from consideration. That results in significant
simplification of equation system, namely, balance equation for components of
the flow with mass fractions Yn was not solved and corresponding diffusion flux
Jn was eliminated from energy equation.

Mass flow rate for the inlet of the system was fixed. The pressure for the
outlet was set equal to ambient one (1 atm). The no-slip velocity conditions were
imposed along the tube, nozzle, electrode surfaces etc. For the of experimental
geometry, temperature of outer surfaces of all internal construction elements
was equal to 300 K. For all the internal boundaries separating the gas flow with
electrodes, a glass tube, a nozzle and all internal boundaries between the solid
elements of the setup, the conducting boundary condition was used without
additional heat generation on the dividing interior wall.

To close equation set, we used Spalart-Allmaras turbulence model as one of
the most adequate and computationally modest tools [6]. System of equation was
solved by finite volume method using the ANSYS FLUENT 15.0 program pack-
age. Density, momentum, energy and turbulent quantities was discretized using
a second-order upwind scheme. The use of higher-order schemes has not changed
the flow parameters considerably. The diffusion terms are central-differenced and
second-order accurate. The PRESTO! scheme for pressure treatment was used
because of the strong swirl nature of the flow. For transient terms, we used the
fully implicit scheme of the second-order accuracy. The SIMPLE scheme as the
least resource intensive was employed for pressure-velocity coupling. The com-
putational grid consists of about 3...4 · 106 hexahedral cells. The skewness and
orthogonality metrics were far from critical values. Calculations with different
values of time step from 1 · 10−4 s to 1 · 10−6 s were carried out. The time step
was set equal to 5 · 10−5 s since use of lower values did not improve convergence
of procedure and led only to an increase in the computational time.

Full kinetic modeling of reactions in water vapor plasma in the presence of
heat source is a very challenging and computationally demanding task. In our
work, we used a simplified kinetic scheme of plasma-chemical reactions, which
takes into account neutral particles: water vapor H2O, hydroxyl radical OH,
atomic hydrogen H; charged particles: electrons, H2O

+, H3O
+ ions, hydroxyl

radical ions OH−, atomic hydrogen ions H. The reactions between them are
presented in Table 1, where M stands for any neutral molecule. The current
values of the standard enthalpies of formation of components (at temperature
T = 298.15 K) which are absent in the ANSYS FLUENT substance database,
such as the H2O

+ and H3O
+ ions, were taken from the database of the Argon

National Laboratory.
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Table 1. Kinetic scheme used in calculations.

Reaction Reaction rate constant

H2O + e → H2O
+ + e + e 1.8 · 10−11 cm3 · s−1

H2O + e → e + OH + H 6.0 · 10−9 cm3 · s−1

H2O + e → OH + H− 5.0 · 10−11 cm3 · s−1

e + H2O
+ + H2O → H + OH + H2O 2.6 · 10−23 · (0.026)7/2 · T−2 · T−3/2

e cm6 · s−1

e + H3O
+ + H2O → 2H + OH + H2O 2.6 · 10−23 · (0.026)7/2 · T−2 · T−3/2

e cm6 · s−1

e + H2O
+ → H + OH 2.0 · 10−6 · (0.026/1.5)1/2 · (300/T ) cm3 · s−1

e + H3O
+ → 2H + OH 2.0 · 10−6 · (0.026/1.5)1/2 · (300/T ) cm3 · s−1

OH− + H → H2O + e 1.0 · 10−9 cm3 · s−1

H2O
+ + H2O → H3O

+ + OH 1.7 · 10−9 cm3 · s−1

OH− + H2O
+ → OH + H2O 9.0 · 10−8 · (300/T )1/2 cm3 · s−1

OH− + H2O
+ + M → OH + H2O + M 1.0 · 10−37 · (300/T )5/2 cm6 · s−1

H− + H2O
+ → H + H2O 2.8 · 10−7(300/T )1/2 cm3 · s−1

H− + H2O
+ + M → H + H2O + M 1.0 · 10−37(300/T )5/2 cm6 · s−1

H− + H3O
+ → 2H + H2O 2.8 · 10−7(300/T )1/2 cm3 · s−1

H− + H3O
+ + M → 2H + H2O + M 1.0 · 10−37(300/T )5/2 cm6 · s−1

OH− + H3O
+ → OH + H + H2O 9.2 · 10−8(300/T )1/2 cm3 · s−1

OH− + H3O
+ + M → OH + H + H2O + M 1.0 · 10−37(300/T )5/2 cm6 · s−1

H− + H2O → OH− + H2 3.8 · 10−9 cm3 · s−1

H− + H → H2 + e 1.3 · 10−9 cm3 · s−1

H + H + M → H2 + M 4.8 · 10−33 cm6 · s−1

H + OH + M → H2O + M 4.2 · 10−31 cm6 · s−1

3 Results

For the first task, the calculations were carried out with several electrode systems
composed from electrodes of different size and shape, such as solid and hollow,
thick and thin cylinders. That modeling revealed crucial features of flow and
allowed us to propose configuration which maximizes energy output. Such desir-
able behavior can be achieved if the central zone of counterflow will not intersect
with discharge region. That zone can be of two types: bounded by the thick elec-
trode (Fig. 2a) and fading away due to a gradual decrease of angular momentum
of the fluid and a consequent fall of the swirl number below the critical value
(Fig. 2b). However, use of two thick solid electrodes creates interelectrode zone
of stagnating flow (Fig. 2c). If anode is thick and cathode is thin, the counter-
flow zone does not prolong into interelectrode area, but cathode, although being
thin, still disrupts to some extent downstream flow of energy. It cannot be made
thinner due to experimental limitations. Those facts suggest that there are two
potentially promising configurations. The first one is thick anode and pipe-like
cathode. That design ensured downstream energy flow because of the pressure
gradient along the symmetry axis which draws out the hot gas from the inter-
electrode area. Another possibility is to place thin anode and pipe-like cathode
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downstream from the end of the counterflow zone where the flow is completely
downstream. Analogous problem for argon flow was solved in [7]. As can be seen,
there is no principal difference in the flow structure, and we can extrapolate our
conclusion to different flow compositions.

Fig. 2. Counterflow structures for different types of electrodes: a - thick anode that
limits counterflow zone, b - hollow cathode placed downstrem from the end of coun-
terflow zone, c - two thick electrodes which create stagnation zone. Limited range of
values was taken for illustrative purposes.

The second problem of calculating of flow parameters distributions was solved
using experimentally adjusted setup where cathode was merged with nozzle. The
results are shown in Fig. 3. Aforementioned mechanism defines the flow structure
and hot gas is sucked towards nozzle (Fig. 3a) because of the pressure difference.
In addition, the nonstationary nature of the swirling flow under study [6] is
again demonstrated. Such feature results in axial asymmetry of the heated region
(Fig. 3b). Nevertheless, inertia and pressure forces still prevent hot gas leakage
in the upstream region. The mass fractions of the reacting components of the
mixture, except for water vapor, have maximum values in the discharge region
(see Fig. 3c for hydrogen as an example) and can be controlled by modifying
discharge power which leads to temperature change. Those species, the most
valuable among them are atomic and molecular hydrogen, are carried away by
the flow and can be utilized after proper separation.
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Fig. 3. Flow parameters distributions calculated for experimentally adjusted setup: a
- axial velocity, b - temperature, c - molecular hydrogen mass fraction. Limited range
of values was taken for illustrative purposes.

4 Conclusions

Our work results in concept of electrode configuration which allows one to min-
imize undesirable counterflow from discharge zone. Solid thin or thick anode
placed upstream limits the zone of reverse flow. Whereas pipe-like cathode makes
possible direct flow from the discharge zone towards outlet due to the pressure
gradients. Such design, adjusted by experimental group by merging cathode into
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the exit nozzle system, seems to be the promising approach to the development
of industrial samples of plasma-vortex reactor. However, the construction of
effective heat and hydrogen generator requires simulation with proper model of
plasma-chemical reactions. In comparison with previous research [7,8], we made
the next step in present work and modelled chemically reacting flow, which
allowed us to predict localization of species of interest and estimate its mass
fractions. Although, in our research, we obtained good qualitative agreement
with experimental data, verification of the kinetic scheme is still open question
and needs further research.
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Abstract. This study deals with application of finite element method
to model electrochemical impedance spectra of phospholipid membranes
containing defects. Practical issues of choosing mesh and solver parame-
ters are investigated in order to obtain the best combination of solution
accuracy and computation times for the given problem. A simple mesh
generation strategy suitable for membrane models with various randomly
generated defect distributions is presented. Models with varying mesh
densities were solved with direct and iterative solvers and solution accu-
racy was evaluated in terms of EIS spectral features. Computation times
of models with various mesh sizes and solver configurations were also
measured in two different computing environments.

Keywords: Finite element analysis · Computer modeling ·
Electrochemical impedance · Phospholipid membranes

1 Introduction

Tethered bilayer lipid membranes (tBLM) are versatile experimental platforms
for studying a wide range of biophysical processes involving protein-membrane
interactions [2]. One of alternating current (AC) techniques used to assess dielec-
tric properties of tBLMs is electrochemical impedance spectroscopy (EIS) [7].
While this method is useful for determining macroscopic properties of bilayers,
it provides no direct information on structural properties of membranes contain-
ing defects. Such cases often require more complex microscopy techniques, such
as atomic force microscopy (AFM). However, recent studies showed that model-
ing EIS spectra either analytically [6] or numerically [3] can provide insight into
important structural properties of defected tBLMs.

While EIS spectra can be obtained analytically for membrane models with
homogeneous defect distributions [6], such cases are rarely encountered in prac-
tice. Modeling membranes with various irregular defect distributions usually
involve finding approximate numerical solutions from which EIS spectra are con-
structed. Finite element method (FEM) is one of such numerical techniques for
c© Springer Nature Switzerland AG 2020
Y. D. Sergeyev and D. E. Kvasov (Eds.): NUMTA 2019, LNCS 11974, pp. 462–469, 2020.
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finding approximate solutions of partial differential equations [8] and is widely
used in various fields, such as aerodynamics, fluid flow, heat transfer, electro-
magnetism. The core concept of this method is dividing modeled domain into
discrete elements, using this discretization to assemble a sparse system of linear
equations and solving it to obtain an approximate solution.

An important practical consideration of using FEM is determining the right
balance between computation time and solution accuracy. It is influenced by
various factors, such as the choice of linear solver algorithm and its parameters,
mesh generation strategy and computing environment. This study concentrates
on these technical details of using FEM to effectively solve a large number of
generated tBLM membrane models with various defect sizes, counts and densi-
ties, as presented by authors in the earlier work [4]. All computation experiments
were carried out using COMSOL Multiphysics FEM software (version 5.4) with
ACDC module.

2 EIS Spectra of Phospholipid Membranes

EIS is a versatile experimental method that provides information about physical
and chemical properties of electrochemical cell. This technique works by apply-
ing an alternating current in certain frequency range to the system under study
and measuring its response. While EIS data can be represented and analyzed in
different ways, this study focuses on admittance phase versus frequency plots.
The most important spectral features obtained from such plots is the minimum
value of admittance Y (defined in Sect. 3) phase (argY (fmin)) and the corre-
sponding frequency (fmin) in that point (Fig. 1). It has been shown that these
features are informative in determining some properties of membrane defects,
such as defect density and size [4].

Fig. 1. Example of modeled EIS spectrum and its spectral features
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3 Membrane Model

Three-dimensional model of tBLM is defined as a hexagonal prism, consisting of
four layers: solution, membrane, submembrane layer and Helmholtz layer (Fig. 2,
left). Each membrane defect is represented as a cylinder, intersecting membrane
and submembrane layers and having the same conductivity properties as the
solution layer.

Fig. 2. Left: cross-section of three-dimensional membrane model in the vicinity of
defect. Right: top view of model domain with randomly distributed defects.

The basis of this model is solving Laplace’s equation for complex voltage Φ:

∇ · (σ̃(x, y, z)∇Φ(x, y, z)) = 0. (1)

Complex conductivity depends on layer properties σ and ε (parameter values
are listed in [4]) and AC frequency f :

σ̃(x, y, z) = σ(x, y, z) + j 2πfε(x, y, z), (2)

Boundary conditions are defined assuming 1 V electric potential at the top
of model domain and perfectly insulating hexagonal prism sides:

Φ(x, y, hhex) = 1 (3)
Φ(x, y, 0) = 0 (4)

n · J = 0 (5)

Admittance (Y ) is evaluated at the top of hexagonal prism by using current
density derived from complex voltage:

J(x, y, z) = −σ̃(x, y, z)∇Φ(x, y, z) (6)

Y =

∫∫

(x,y)∈Γhex

−n · J(x, y, hhex) dx dy

Shex
× 1

Φ(x, y, hhex)
(7)
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4 Finite Element Analysis

4.1 Model Parameters

Membrane models used in experiments were constructed with randomly gener-
ated defect distributions, where X and Y coordinates of each defect are indepen-
dently drawn from uniform distribution. Side length of hexagonal prism depends
on predefined defect density which was set to 10µm−2 in all cases. Frequency
range in logarithmic scale from 10−2 Hz to 106 Hz is used, with 10 points per
decade (81 frequency values in total). After solutions are obtained for each fre-
quency independently, the resulting EIS spectrum is constructed by cubic spline
interpolation and EIS spectral features (fmin and argY (fmin)) are subsequently
derived. Precision of these solutions is considered by one decimal place for fmin

and two decimal places for argY (fmin).

4.2 Mesh Generation

We considered two types of mesh elements for three-dimensional membrane mod-
els - tetrahedral elements and triangular prisms. Both types of meshes were
generated using built-in COMSOL mesh generation functionality. Assumption
was made that current flux is the most intense inside and close to defects, so
mesh generation parameters for areas inside and outside defects were set sepa-
rately (Table 1), ensuring that defect areas are meshed significantly more densely.
Both tetrahedral and prismatic meshes were generated in several density levels
depending on the following parameters:

– kd - ratio between defect radius and mesh element size inside defect
– kh - ratio between hexagonal prism side length and maximum mesh element

size outside defects
– ks - number of swept mesh layers for defect and its surrounding submembrane

and membrane layers (prismatic mesh only).
– r0 - defect radius
– lh - hexagonal prism side length.

Ratio kd was varied, while kh was fixed and set to 20. All defects had the
same radius r0 of 1 nm. Hexagon side length lh was also fixed in all cases and

Table 1. COMSOL mesh generation settings.

Element size parameter Value (defect areas) Value (other areas)

Maximum element size r0/kd lh/kh

Minimum element size r0/kd lh/kh

Maximum element growth rate 1.7 1.7

Curvature factor 0.5 0.5

Resolution of narrow regions 0.5 0.5
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Fig. 3. Example of prism mesh ele-
ments at density level #4 in and
around defect.

Table 2. DoF dependency on mesh type and
kd ratio when model contains 100 randomly dis-
tributed defects.

# Ratio
(kd)

Swept layers
(prisms)

DoF
(prisms)

DoF
(tetrahedra)

1 0.5 2 3.15E+05 5.05E+05

2 1.0 4 6.46E+05 7.87E+05

3 1.5 6 1.04E+06 9.99E+05

4 2.0 8 1.38E+06 1.27E+06

5 2.5 10 2.03E+06 1.82E+06

6 3.0 12 1.78E+06 2.38E+06

7 3.5 14 3.95E+06 3.25E+06

derived from defect count and density during defect distribution generation.
Table 2 shows dependency between mesh generation parameters kd and ks and
degrees of freedom (DoF) of the resulting models.

4.3 Solver Settings

Models with varying mesh densities were solved by using both direct and itera-
tive solvers, implemented in COMSOL software package. MUMPS (MUltifrontal
Massively Parallel Sparse) [1] direct solver and GMRES (Generalized Minimal
Residual Method) iterative solver [5] were selected. Both solvers were used with
default settings provided by COMSOL, with the exception of relative tolerance
parameter for iterative solver, which was varied. Also, in both cases COMSOL
was configured to parallelize computations among multiple CPU cores by dis-
tributing frequency values.

5 Experiments

5.1 Direct Solver

In order to estimate the effect of mesh density level (Table 2) on the solution
accuracy expressed in terms of EIS spectral features, experiments were performed
with direct solver, both mesh element types (prisms and tetrahedra) and varying
mesh densities. Minimum mesh element quality in terms of element skewness
was also analyzed. In all modeling cases the same model geometry having 100
randomly scattered defects was used. Results (Table 3) indicate that for both
tetrahedral and prismatic meshes increasing their density past level #3 (kd =
1.5) does not result in significant changes of argY (fmin) values, although fmin

still shows decreasing trend in case of tetrahedral meshes. An anomaly at mesh
density level #6 of prismatic meshes can be observed, which might possibly be
attributed to COMSOL mesh generation algorithm issue. Prismatic meshes also
show a clear advantage over tetrahedrals in terms of minimum element quality
which is consistently orders of magnitude higher.
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Table 3. Solution dependency on mesh density levels for tetrahedral and prismatic
meshes where direct solver was used.

Mesh density Tetrahedra Prisms

fmin argY (fmin) Min. quality fmin argY (fmin) Min. quality

1 160.22 43.071 1.1E-03 160.58 43.096 0.361

2 159.96 43.062 2.1E-03 160.12 43.076 0.341

3 159.95 43.060 1.5E-03 160.12 43.074 0.318

4 159.94 43.060 1.2E-03 160.12 43.074 0.318

5 159.91 43.061 8.2E-04 160.12 43.073 0.310

6 159.90 43.060 1.2E-04 160.44 43.088 0.058

7 159.90 43.060 8.3E-04 160.15 43.074 0.307

5.2 Iterative Solver

GMRES iterative solver was used with different relative tolerance for each mesh
density level. Relative tolerance values were distributed logarithmically from
10−3 to 10−5 with 4 points per decade and from 10−6 to 10−8 with 1 point per
decade. Table 4 indicates iteration counts and solutions for each selected relative
tolerance value, when prismatic mesh with density level #3 was used (approxi-
mately 106 DoF), according to observations made in previous experiment.

Table 4. Solution and iteration
count dependency on relative toler-
ance for fixed density (kd = 1.5) pris-
matic mesh and iterative solver.

# Relative

tolerance

fmin argY (fmin) Iteration

count

1 1.0E-03 215.44 42.421 133

2 5.6E-04 193.26 42.530 173

3 3.2E-04 163.81 42.710 201

4 1.8E-04 162.34 42.995 275

5 1.0E-04 160.97 43.141 336

6 5.6E-05 159.23 43.074 392

7 3.2E-05 161.07 43.055 467

8 1.8E-05 160.39 43.071 549

9 1.0E-05 160.89 43.077 634

10 1.0E-06 160.18 43.074 1046

11 1.0E-07 160.11 43.074 1545

12 1.0E-08 160.12 43.074 2109

Fig. 4. Solution dependency on mesh den-
sity level and relative tolerance index. Col-
ors represent mesh density levels, num-
bers indicate relative tolerance index from
Table 4, limited to level #7 (Color figure
online).
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Results (Table 4) show that relative tolerance greater than or equal to 10−4

corresponds to low solution accuracy compared to results obtained using direct
solver. Visually comparing solutions among different mesh densities (Fig. 4) also
show a similar tendency independent on specific mesh density level. However,
decreasing relative tolerance below 10−5 results in sharp increase of iteration
counts and does not make significant accuracy improvements for argY (fmin),
although for fmin this starts to take effect below relative tolerance of 10−6.

5.3 Computation Times

In order to estimate computation time dependency on model size (expressed in
terms of defect count), several models with different defect counts (10, 25, 50,
100, 200 and 500) were solved, using both types of meshes (prismatic and tetra-
hedral) and both solvers (direct and iterative). Mesh density level was fixed and
set to #3, while relative tolerance for iterative solver was set to 10−5, accord-
ing to previous results. Experiments were conducted in two different computing
environments: a standalone workstation and HPC cluster environment. Work-
station was equipped with Intel Core i5-8600K 3.60 GHz CPU (6 cores), 64 GB of
RAM and Ubuntu Linux 18.04 OS. Each cluster node had 2 x Intel Xeon X5650
2.66 GHz CPUs (6 cores each), 24 GB of RAM and Debian GNU/Linux 9 OS.
To effectively use all available CPU cores, COMSOL was run in parallel mode,
using 1 instance and 6 processes in workstation environment and 10 instances
(one per node) in cluster environment, with 12 processes per each instance.

Fig. 5. Solution time dependency on defect count, solver type and mesh type in dif-
ferent computing environments (Color figure online).

Results (Fig. 5) indicate linear dependency in log-log scale between model
degrees of freedom and solution time. A sharp increase of computation time
(green curve) in cluster environment can be attributed to MUMPS solver switch-
ing to out-of-core mode due to limited amount of RAM. An overall trend of pris-
matic meshes taking more time to compute is visible, although its effect varies
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depending on defect count and, subsequently, degrees of freedom of the model.
Using iterative solver with specified parameters instead of direct solver does not
provide much benefit in terms of computation times and even the opposite can be
observed in some cases with higher DoF. Choosing cluster environment resulted
in approximately 3 times lower computation times compared to workstation.

6 Conclusions

In this work different practical aspects of applying FEM to model EIS spectra for
defected phospholipid membranes were investigated. Several mesh density levels
were defined and tested experimentally. Also, we experimented with different
linear solvers and their parameters.

These results (see Sect. 5) allowed us to find optimal configuration (employed
in computer modeling experiments presented in [4]) of FEM in terms of EIS
spectral feature precision versus computation times. Note, that in this setup
(defect count, density and size) both direct and iterative solvers showed similar
times (Fig. 5), although in general iterative solvers could be preferred for their
significantly lower memory usage.
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Abstract. In this paper, the stable approximate solution of the side-
ways heat equation is numerically investigated. The problem is severely
ill-posed because if the solution exists, it does not depend continuously
on the data. We introduce the compact filter regularization as a new,
simple and convenient regularization method. Furthermore, the numeri-
cal implementation of the method is discussed. The numerical example
shows that the proposed method is efficient and feasible.

Keywords: Sideways heat equation · Compact filter regularization ·
Ill-posed problem

1 Introduction

The sideways heat equation (SHE) often occurs in many industrial and engineer-
ing applications. The sideways heat equation is a model of a situation where one
wishes to find out the surface temperature, but the surface itself is inaccessible
for measurement [1]. Practically, the data available to us is measured data as it
is based on the observations. This kind of problem is severely ill-posed since any
small disruption in the observed data may lead to a drastic change in the solu-
tion. The ill-posed problems are susceptible to measurement and computational
error, due to which the numerical recovery of the temperature is a tough task.
Moreover, any existing numerical methods for classical PDEs cannot be directly
applied to ill-posed problems to obtain a stable solution.

To overcome such difficulties, some special regularization methods [2,3] are
required for stabilizing computations. Such as, Tikhonov method [4], quasi-
reversibility method [5,6], optimal filtering method [7], wavelet and wavelet-
Galerkin method [8], wavelet and Fourier method [9], wavelet and spectral
regularization method [10,11], and so on.

A set of high order compact explicit filtering scheme is discussed in [12]
to filter the high-frequency phenomena. Generally, if we use any regularization
by filtering approach, the filtering is done in the Fourier space. Compact filter
regularization (CFR) is a very simple and efficient method since filtering is done
in the physical domain rather than other domain. The contribution of our paper
can be seen as follows:
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– In this paper, the key objective is to apply the compact filter as a regulariza-
tion method to obtain a stable solution of SHE.

– Compact filters are a smooth filter which is preferred as compared to sharp
filter.

– We do not have to go back and forth each time between physical and other
domain, unlike other filtering methods.

– The proposed method is easy to implement and more efficient as all the
computations are done in the physical domain only.

– A numerical example is discussed and compared with the Fourier method in
terms of CPU time.

2 Problem Formulation

In a one-dimensional setting, the ill-posed problem for the heat equation in the
bounded domain can be modeled as the following problem:

ut = νuxx, x ∈ (0, L), t ∈ [0, 2π],
u(x, 0) = 0, x ∈ (0, L),
u(L, t) = φ(t), t ∈ [0, 2π], u|x→∞ bounded,

(1)

where the constant L > 0 and ν is thermal conductivity. The aim is to determine
the distribution of surface temperature for x ∈ (0, L) for the given Cauchy data
u(L, t) = φ(t). It is assumed that the function φ(.), u(x, .) and other functions
which will appear in the paper vanish for t < 0. This problem is referred to as
the sideways heat equation. Physically, the data φ can only be measured, which
results in some measurement errors. The exact data φ and measured data φδ

satisfy ‖φ−φδ‖2 ≤ δ, where ‖.‖2 denotes the L2-norm in [0, 2π] and δ > 0 stand
for the noise level.

The ill-posedness of the problem can be identified if we solve them in the
Fourier domain. Let the exact solution u for the problem (1) can be represented
in the Fourier expansion as

u(x, t) =
∞∑

k=−∞
uk(x)eikt, (2)

where

uk = <u(x, t), e−ikt> =
1
2π

∫ 2π

0

u(x, t)e−iktdt, (3)

and < ., . > is the inner product in L2(0, 2π). The solution of the problem (1)
in the frequency domain is

uk(x) = e(L−x)ν
√

ikφk, (4)

or, equivalently,

u(x, t) =
∞∑

k=−∞
e(L−x)ν

√
ikφkeikt, (5)
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where the principle value of
√

ik is given by

√
ik =

⎧
⎨

⎩
(1 + i)

√
|k|
2 , k ≥ 0

(1 − i)
√

|k|
2 , k < 0

. (6)

We note that e
√

ik tends to infinity as k tends to infinity since the real part of√
ik is positive. For our solution uk(x) to be in L2(R), (4) implies that the exact

data φk must decay rapidly as k → ∞. Practically, we have measured data φδ
k

instead of φk, for which such decay is not attainable in the Fourier domain. To
deal with this problem, we must use some regularization methods to filter away
the high frequencies.

3 Compact Filter Regularization

High order compact filtering [12] is an explicit spatial filtering technique which
filters the high unwanted wavenumber in the spatial domain. Filters are either
smooth filter (obtained from the sharp filter by smoothing the sharp vertical
edge at a cut off wavenumber) or sharp filter (whose value is either zero or one
depending on whether the wavenumber modes are greater or below than some
cutoff wavenumber). Compact filters are smooth filters rather than the sharp
filter. If yf (t) denotes the filtered value of function y(t) for t ∈ (0, T ), then
general high order compact filter for the interior domain is expressed as

βyf (t − 2τ) + αyf (t − τ) + yf (t) + αyf (t + τ) + βyf (t + 2τ) = ay(t) +
b

2
(y(t + τ)

+ y(t − τ)) +
c

2
(y(t + 2τ) + y(t − 2τ)) +

d

2
(y(t + 3τ) + y(t − 3τ)),

(7)
where τ is the step length. Through Fourier analysis, the transfer function Fα(ω)
corresponding to the (7) is given by

Fα(ω) =
a + b cos(ω) + c cos(2ω) + d cos(3ω)

1 + 2α cos(ω) + 2β cos(2ω)
. (8)

Here, ω = 2πkτ/T is the modified wavenumber and its value lies in (0, π). For the
filters, the necessary criteria required is to eliminate all the phenomena arising at
wavenumber ω = π, i.e., Fα(π) = 0. For different formal accuracy, the coefficients
in (7) are obtained by matching the coefficients of Taylor series of various order
along with the required condition for the transfer function Fα(π) = 0. Here we
use a fourth-order compact filter which can be obtained by solving the following
set of coefficients

a =
1
8
(5 + 6α), b =

1
2
(1 + 2α), c = −1

8
(1 − 2α), (9)

with β = 0, d = 0 (tridiagonal scheme). Putting the values of a, b and c from (9)
to (8), we obtain

Fα(ω) =
(5 + 6α) + (4 + 8α) cos(ω) − (1 − 2α) cos(2ω)

8(1 + 2α cos(ω))
. (10)
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The coefficients a, b, and c are given in terms of single variable α, which is called
the control variable. The range of α usually varies from 0 to 0.5. Values of α close
to 0.5 correspond to filtering of only high wavenumber modes.

The interior compact filters given in (7) cannot be utilized for non-periodic
boundary points due to relatively large symmetric stencils. Hence, for boundary
filters, a one-sided fourth-order compact filter is used which is explicitly given as

yf (0) =
15
16

y(0) +
1
16

(4y(τ) − 6y(2τ) + 4y(3τ) − y(4τ)),

yf (τ) =
3
4
y(τ) +

1
16

(y(0) + 6y(2τ) − 4y(3τ) + y(4τ)),
(11)

with exact filtering of wavenumber ω = π. The similar expression can be written
for yf (T −τ) and yf (T ). We use (11) for boundary point and (7) for any interior
value of t to obtain filtered function yf (t) from the function y(t). The plot of
filtering transfer function Fα(ω) (given in (10)) versus wavenumber ω for different
values of α is shown in Fig. 1.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

wavenumber

Tr
an

sf
er

 F
un

ct
io

n 
(F

ilt
er

in
g)

no filtering
CF4(α =0.4)
CF4(α =0.45)
CF4(α =0.49)

Fig. 1. Transfer function Fα(ω) versus wavenumber ω for no filtering and fourth-order
compact filtering with α = 0.4, 0.45 and 0.49.

From Fig. 1, we can see that as we reduce the value of α from 0.5, not only
high wavenumber mode, but a wide range of wavenumber spectrum is also fil-
tered. It is also clear from the figure that Fα(π) = 0 for all α.

The compact filter regularized solution for problem (1) with measured data
φδ(.) can be presented as

uδ
f (x, t) =

M∑

k=−M

e(L−x)ν
√

ikFα(ω)φδ
keikt, (12)

where ω = kτ as t ∈ [0, 2π]. The step length τ plays the role of regularization
parameter and M is taken as M = [π

τ ] where [.] denoted the greatest integer
part of a real number.
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4 Numerical Implementation of CFR Method

To obtain the stable numerical solution, we will use the method of lines to solve
the Cauchy problem. Let tn be the coordinate of the node after time discretiza-
tion with n denotes the indices for discrete time. Consider the equidistant grid
0 = t1 < t2 < . . . < tN+1 = 2π where 1 ≤ n ≤ N + 1 and N = 2π

τ with
M = N/2. The block operator equation of the discretized problem (1) using
compact filter with L = 1 can be rewritten as

[
Uf (x)

νUf,x(x)

]

x

=
[

0 ν−1I
D 0

] [
Uf (x)

νUf,x(x)

]
, x ∈ (0, 1),

[
Uf (1)
Uf,x(1)

]
= [φδ,1

f , . . . φδ,N+1
f , ρδ,1

f , . . . , ρδ,N+1
f ]T

uf (x, t1) ≈ u1
f = 0, x ∈ (0, 1),

(13)

where D is the time discretization matrix, and Uf (x) is the vector containing
the values un

f . We will use (7) at a given discrete node tn to obtain the filtered
value un

f of u. The vectors Uf (x), Uf (1) and Uf,x(1) are represented as

Uf (x) = [u1
f , u2

f . . . uN
f , uN+1

f ]T ,

Uf (1) = [φδ,1
f , φδ,2

f . . . φδ,N
f , φδ,N+1

f ]T , Uf,x(1) = [ρδ,1
f , ρδ,2

f . . . ρδ,N
f , ρδ,N+1

f ]T .

The problem defined by (13) is considered as method of lines.
The time discretization matrix D is obtained using central difference approx-

imation, i.e.,

Dn =
un+1

f − un−1
f

2τ
, 2 ≤ n ≤ N, (14)

where, as before, τ is the time step length. At n = N + 1, we use linear extrap-
olation, i.e.,

DN+1 = DN + (DN − DN−1) =
1
2τ

(1 − 2 − 1 2)

⎡

⎢⎢⎣

uN−2
f

uN−1
f

uN
f

uN+1
f

⎤

⎥⎥⎦.

Finally, to obtain the stable numerical solution of sideways heat equation using
a compact filter regularization method, the necessary steps of the algorithm are
given as follows:

1. Discretize the problem and obtain the vector ρ = Ux(1) using U(1).
2. For the given vector of exact data [φ, ρ], construct the vector with noisy data

[φδ, ρδ].
3. Obtain the compact filtered vector [φδ

f , ρδ
f ] using Compact Filter function.

4. Compute the central difference approximation for time derivative using (14).
5. Solve the ODE using the method of lines as discussed in (4) with filtered

vector and go to next step.
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6. Use the function Compact Filter after a fixed interval, say p to obtain the
compact filter regularized solution at time t.

7. Repeat the above step 3 until the final solution Uf (x) at given t is obtained.

4.1 Numerical Experiment

In this section, we present a numerical example of the sideways heat equation to
illustrate the stability and effectiveness of our proposed compact filter regular-
ization method. The method of lines is used to solve the discretized version of
the sideways heat equation as given by (13) for numerical experiments. Central
difference approximation is used for time derivative, and then the Runge-Kutta-
Fehlberg method (ode45 in Matlab) is applied to perform the space marching.
In all the experiments, the required accuracy in the R-K method was 10−4.

To obtain the noisy data φδ(t) and ρδ(t), we introduce some random noise η,
i.e., φδ(t) = φ(t) + η, ρδ(t) = ρ(t) + η, where η = δ × rand(t) × ||.||∞, rand(t)
is the random vector obtained using MATLAB function ‘rand’ and δ is the noise
level of the measured data. For comparing the numerical and exact solution,
relative error at fixed x is computed as

e2(u) =
||uδ

f (x, .) − u(x, .)||2
||u(x, .)||2 ,

where uδ
f (x, .) stands for the numerical regularized solution with noisy data and

u(x, .) stands for exact solution of the problem considered.

Example. It is easy to verify that u(x, t) =

{
x+1
t3/2

exp
(
− (x+1)2

4t

)
, t ∈ (0, 2π),

0, t ≤ 0,
is the exact solution of the problem (1) with data

φ(t) =
{

2
t3/2

exp
(− 1

t

)
, t ∈ (0, 2π).

0, t ≤ 0,

with u(x, 0) = 0. The exact solution at x = 0 is h(t) := u(0, t) = t−3/2 exp
(− 1

4t

)
.

To obtain the numerical results, the noise level is fixed at 10−3, and the con-
stant coefficient of the differential operator is set at ν = 1. We choose N = 2π

τ
and corresponding M = N/2 for ML solution. The step size for x is taken as
1/128. The exact and regularized solution for different x is computed using the
method of lines and shown in Fig. 2. From the figure, we find that the com-
puted results using our proposed regularization method is stable and effective.
In Table 1, the relative error at different x for two noise level δ is displayed from
which we can observe that the computed regularized solution are better for large
x. Furthermore, it can also be seen that the regularized solution becomes worse
as we increase the noise level δ, which is obvious. To compare our proposed
method in terms of CPU time, we have solved our problem using the Fourier
method [9] where filtering is done in the Fourier domain with k = M . The CPU
time for both the method is given in Table 2 from which it is clear that proposed
method is more efficient.
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Fig. 2. Plot of exact and regularized solution with δ = 10−3.

Table 1. Relative error for test problem 1 with noise level δ1 = 10−3, δ2 = 10−2.

x 0.8 0.6 0.4 0.2 0

eδ1 0.0062 0.0089 0.0214 0.0382 0.0507

eδ2 0.031 0.0583 0.061 0.102 0.461

Table 2. Comparison of CPU time for test problem 1 with proposed method and
Fourier method [9].

x 0.8 0.6 0.4 0.2 0

CPU ([9]) 0.34 1.18 1.63 2.41 4.38

CPU (CF4) 0.22 0.86 1.12 1.30 2.53

5 Conclusion

In this paper, the sideways heat equation is solved by the compact filter regu-
larization method. The numerical experiment is done to obtain a stable solution
of the SHE. We conclude that the numerical implementation of the proposed
method is simple and efficient. Numerical results are presented and compared
with the existing one to demonstrate that the proposed method is effective and
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works well. In the future, we would like to extend the proposed method for
the solution of two-dimensional SHE and also some other non-linear ill-posed
problems.
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Abstract. The paper considers global optimization problems with a
black-box objective function satisfying the Lipschitz condition. Efficient
algorithms for this class of problems require reliable estimates of the Lips-
chitz constant to be introduced. Various approaches have been proposed
to take into account both global and local properties of the objective
function. In particular, algorithms using local estimates of the Lipschitz
constant have shown their potential. The new approach presented in this
paper is based on simultaneous use of two estimates: one is substantially
larger than the other. The larger estimate ensures global convergence
and the smaller one reduces the total number of trials needed to find
the global optimizer. Results of numerical experiments on the random
sample of multidimensional functions demonstrate the efficiency of the
approach proposed by the authors.

Keywords: Global optimization · Multiextremal problems · Lipschitz
constant estimates

1 Introduction

The paper considers global optimization problems of the form

ϕ(y∗) = min {ϕ(y) : y ∈ D}, (1)

D =
{
y ∈ RN : ai ≤ yi ≤ bi, ai, bi ∈ R, 1 ≤ i ≤ N

}
, (2)

where the objective function is a black-box function and it is assumed to satisfy
the Lipschitz condition

|ϕ(y1) − ϕ(y2)| ≤ L ‖y1 − y2‖ , y1, y2 ∈ D,
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with the constant L, L < ∞, unknown a priori.
The assumption of the objective function to be Lipschitzian is typical of

many approaches to the development of the global optimization algorithms
[3,11,12,17]. Moreover, the adaptive estimate of the unknown Lipschitz con-
stant, based on the obtained search information, is one of the most important
problems being solved in these algorithms. The value of the Lipschitz constant
affects essentially the convergence rate of the global optimization algorithms.
Therefore, the issue of its correct estimate is so important. The underestima-
tion of the real value of this constant may result in losing the convergence of
the algorithm to the global solution. At the same time, if the value of the con-
stant estimate for the objective function is too large and does not match its
real behavior, this will slow down the convergence of the algorithm to the global
minimizer.

Several typical methods of adaptive estimation of the Lipschitz constant are
known:

– global estimation of the constant L in the whole search domain D [7,12,17].
– local estimations of the constants Li in different subdomains Di of the search

domain D [9,10,15].
– the choice of the estimates of the constant L from a set of possible values

[4,8,13].

Each of the above approaches has its own advantages and disadvantages.
For example, the use of the global estimate over the whole search domain can
slow down the convergence of the algorithm to the global minimizer. The use
of the local estimates to accelerate the convergence of the method requires an
adequate adjustment of the algorithm parameters in order to preserve the global
convergence.

In the present work, we consider a new algorithm that uses two global esti-
mates of the Lipschitz constant. One of the two estimates is much greater than
the other one. The larger estimate ensures global convergence and the smaller
one reduces the total number of trials needed to find the global optimizer. The
choice of one of the two estimates in the algorithm is performed adaptively during
the search phase.

A rigorous substantiation of the proposed approach goes beyond the present
initial publication and will be done in the forthcoming works. Here we present the
results of numerical experiments that clearly demonstrate the efficiency of the
new algorithm. Several hundred multiextremal test problems of various dimen-
sionalities have been solved in the course of numerical experiments.

2 Global Search Algorithm and Dimensionality
Reduction

The adaptation of the efficient algorithms that solve one-dimensional problems
to solve multidimensional problems is a typical method to construct global opti-
mization algorithms, see, for example, the diagonal partitions method in [13] or
the simplicial partitions method in [18].
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In this paper, we follow the approach based on the idea of reducing the dimen-
sion with the use of the Peano-Hilbert curves [16,17], which continuously and
unambiguously map the unit interval [0, 1] onto the N -dimensional cube D from
(2). By using this kind of mapping, it is possible to reduce the multidimensional
problem (1) to a univariate problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]},

where the function ϕ(y(x)) will satisfy a uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N

with the Hölder constant H linked to the Lipschitz constant L by the relation
H = 2L

√
N + 3 and y(x) is a Peano-Hilbert curve from [0, 1] onto D. Note that

theoretically the Peano-Hilbert curve y(x) is defined as a limit object. Therefore,
in practical implementation, only some approximation to the true space-filling
curve can be constructed. Some methods for constructing this type of approxi-
mations (called evolvents) are considered in [16,17]. In this case, the accuracy
of the evolvent approximation to the true curve y(x) depends on the density of
the evolvent m (which is a parameter for constructing the evolvent) and is of
the order of 2−m for each coordinate.

Let us call the process of computing a function value (including the con-
struction of the image y = y(x)) as a trial, and the pair {x, z = ϕ(y(x))} as the
outcome of the trial.

The Divide-The-Best global search algorithm used in this paper (according
to [17]) can be formulated as follows. The first two trials are executed at the
points y0 = y(0), y1 = y(1). The choice of the point yk+1, k ≥ 1, for the next
(k + 1)th trial is defined by the following rules.

1. Renumber the preimages of all the points yi = y(xi) from the trials already
performed by subscripts in the increasing order of their coordinates, i.e.

0 = x0 < x1 < · · · < xk = 1, (3)

and associate these with the values zi = ϕ(y(xi)), 0 ≤ i ≤ k, computed at
these points.

2. Compute the maximum absolute value of the first divided differences

M = max
1≤i≤k

|zi − zi−1|
Δi

,

where Δi = (xi − xi−1)
1/N and let

μ =
{

1, if M = 0,
M, if M �= 0.

(4)

3. For each interval (xi−1, xi), 1 ≤ i ≤ k, calculate the value R(i) called the
characteristic of the interval

R(i) = Δi +
(zi − zi−1)2

r2μ2Δi
− 2

zi + zi−1 − 2z∗

rμ
, (5)
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where
z∗ = min

0≤i≤k
zi (6)

and the real number r > 1 is a reliability parameter of the algorithm.
4. Select the interval (xt−1, xt) corresponding to the maximum characteristic

R(t) = max
1≤i≤k

R(i). (7)

5. Carry out the next trial at the point xk+1 ∈ (xt−1, xt) calculated using the
following formula

xk+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[ |zt − zt−1|
μ

]N

. (8)

The algorithm terminates if the condition Δt < ε is satisfied where t is from
(7), and ε > 0 is the predefined accuracy.

The theory of convergence of this algorithm is provided in [17]. The algorithm
can be efficiently parallelized for shared and distributed memory [6] and for
accelerators [1].

3 Algorithm with Dual Lipschitz Constant Estimates

The global search algorithm presented in the previous section is intended for
solving the multiextremal problems, in which the objective function satisfies the
Lipschitz condition. It is not necessary to define the value of the constant for
the algorithm convergence. The estimation of the constant is performed in the
course of global search based on available search information. According to the
theorem from [17], the sequence of the trial points {yk} will converge to the
global minimizer y∗ if the condition

rμ > 23−1/NL
√

N + 3 (9)

is satisfied. Thus, an appropriate choice of the parameter r from (5) allows using
the value (rμ)/(23−1/N

√
N + 3) as an estimate of the Lipschitz constant for the

objective function ϕ(y).
Satisfying the condition (9) will be guaranteed if we choose a large enough

value of the parameter r. However, in this case the method will perform a large
number of trials until the stop condition is satisfied. The choice of a small value
of the parameter r (that corresponds to the lower estimate of the Lipschitz
constant) would considerably reduce the number of trials but may violate the
convergence to the global extremum.

An approach, in which two estimates of the Lipschitz constant are used in
the rules of the algorithm, seems quite promising. This approach implies the use
in the algorithm of two parameters rglob and rloc, where rglob > rloc > 1. When
using the parameter rloc we shall deal with the smaller estimate of the Lipschitz
constant, and using the parameter rglob will correspond to the larger one.
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The rules of the algorithm with two estimates of the Lipschitz constant repro-
duce the ones of the global search algorithm completely except Rule 3 (the
computation of the characteristic) and Rule 4 (search for the interval with the
maximum characteristic).

The new rule for calculating the characteristic R(i) of the interval (xi−1, xi)
will consist of the following operations:

– Calculate the value Rglob(i) corresponding to the larger estimate of the Lip-
schitz constant

Rglob(i) = Δi +
(zi − zi−1)2

r2globμ
2Δi

− 2
zi + zi−1 − 2z∗

rglobμ
.

– Calculate the value Rloc(i) corresponding to the smaller estimate of the Lip-
schitz constant

Rloc(i) = Δi +
(zi − zi−1)2

r2locμ
2Δi

− 2
zi + zi−1 − 2z∗

rlocμ
.

– Determine the characteristic R(i) as

R(i) = max{ρRloc(i), Rglob(i)},where ρ =
(

1 − 1/rglob
1 − 1/rloc

)2

, (10)

The new rules for finding the interval with the maximum characteristic will
be as follows:

– Select the interval (xt−1, xt) corresponding to the maximum characteristic
R(t) = max1≤i≤k R(i).

– Fix the value r = rloc if ρRloc(t) > Rglob(t), otherwise fix r = rglob.
– Use this value of r in Rule 5 of the algorithm in the computing of the next

trial point.

This method for computing the characteristic can be substantiated as follows.
Each search iteration will yield an interval with the current minimum value z∗

from (6) at one of its boundaries. In the final phase of the search, this interval
will correspond to the interval containing the global minimum, i.e. it will be the
best one in terms of conducting further trials within it.

Let the current minimum value of z∗ from (6) be achieved at the left point
of the ith interval, i.e. z∗ = zi−1. As proven in [17], according to the rule (5) the
following inequality will be true:

R(i) ≥ Δi (1 − 1/r)2 .

Therefore, for the estimates of the characteristics Rloc(i) and Rglob(i) calculated
with different parameters rloc and rglob, the following relation will hold:

Δi (1 − 1/rglob)
2

> Δi (1 − 1/rloc)
2
.
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Thus, when choosing the largest of the characteristics in accordance with

R(i) = max{Rloc(i), Rglob(i)}

the characteristic Rglob(i) corresponding to the higher estimate of the Lipschitz
constant will be chosen; the lower estimate (which speeds up the process of
refining the current solution) will not be used. However, if we multiply the lower
estimate for the characteristic Rloc(i) by the coefficient ρ in accordance with
(10), then such lower estimates will be equal, thus the choice of the characteristic
Rloc(i) corresponding to the lower estimate of the Lipschitz constant will become
more likely.

4 Numerical Experiments

A numerical comparison of the algorithms was carried out by solving several
series of problems generated by the GKLS generator [5]. This generator of mul-
tiextremal functions is widely used to compare global optimization methods
(see, for example, [2,13,14]). In this study, six series each containing 100 prob-
lems of dimensions N = 3, 4, 5 were solved. For each dimension, Simple and
Hard problems were generated, differing in the size of the attraction regions for
local extremums and global extremum. The problem was considered solved if
the method conducted the trial at a point that was in the δ-neighborhood of the
global minimizer y∗, i.e.

∥
∥yk − y∗∥∥ < δ ‖b − a‖, where a and b are the boundaries

of the search domain D.
Each series of problems has been solved by the original global search algo-

rithm (GSA) and by the method with two estimates of the Lipschitz constant
(GSA-DL). The evolvent constructed using the parameter m = 10 was used for
the dimensionality reduction in both algorithms. The relative accuracy of the
solution search was δ = 0.01. The maximum allowable number of iterations per
problem was Kmax = 106.

The averaged numbers of iterations performed by the algorithms are pre-
sented in Table 1. For the GSA method the values of the parameter r = 4.8
when solving the problems of the Simple class and r = 5.6 when solving the
problems of the Hard class were used. These values are the minimum ones (with
the accuracy 0.1), at which all problems have been solved successfully. When
solving the problems from the above classes by the GSA-DL method, the value
of the parameter r specified above was selected for the upper estimate of the
Lipschitz constant, i.e. the value rglob = r was set, which was complemented by
the values rloc = 1.8, rloc = 2.1 and rloc = 2.4. The number of unsolved problems
is specified in brackets.
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Table 1. Average number of iterations

N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard

AGS 2444 5345 28415 77470 25220(1) 126138(4)

AGS-DL, rloc = 1.8 1372 2632 13273 37715 12702 94296(1)

AGS-DL, rloc = 2.1 1502 2805 14826 38843 15213 90792(2)

AGS-DL, rloc = 2.4 1567 2868 19447 40342 18239 106438(2)

(a) (b)

Fig. 1. Operational characteristics for GKLS Simple (a) and Hard (b) classes, N = 4.

(a) (b)

Fig. 2. Operational characteristics for GKLS Simple (a) and Hard (b) classes, N = 5.

The advantages of the GSA-DL algorithm over its prototype are also con-
firmed by the operational characteristics of the algorithms as well. Assume a
series of test problems to be solved. The results of solving the series can be pre-
sented by a function p(k) featuring the fraction of the total number of problems
solved in k iterations. Such a function will be called the operational characteristic
of the algorithm.

The operational characteristics for the GSA and GSA-DL methods obtained
when solving the Simple and Hard problem series with the dimensionalities
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N = 4 and N = 5 are presented in Figs. 1 and 2, respectively. The values of the
parameters r used for estimating the Lipschitz constant are given in the figures.

The lower curves in Figs. 1 and 2 feature the characteristics of the GSA
method whereas the upper ones, those of the GSA-DL. Such relative positions
of the curves show the algorithm with two estimates of the Lipschitz constant
is much faster on average when solving the problem series than the algorithm
using a single estimate of the constant. Note that to solve problems of all classes
(except for the Hard class at N = 5) the GSA-DL method requires about half as
many trials as the GSA. The deterioration of the results in the case of the Hard
class at N = 5 is explained by the complexity of this class’ functions, which
have a large attraction region of local minima and a narrow attraction region
of the global minimum. To correctly solve such problems, the GSA-DL method
often uses a higher estimate of the Lipschitz constant, thus reducing the speed
difference of the GSA and GSA-DL algorithms.
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Abstract. A numerical solution of the problem of recovering the sole-
noidal part of three-dimensional vector field using the incomplete tomo-
graphic data is proposed. Namely, values of the ray transform for all
straight lines, which are parallel to one of the coordinate planes, are
known. The recovery algorithms are based on the method of approximate
inverse.

Keywords: Vector tomography · Ray transform · Solenoidal vector
field · Method of approximate inverse

1 Introduction

In the article we consider the following three-dimensional vector tomogra-
phy problem. Let a vector field v in a bounded domain of the space R

3 be
unknown. It is required to reconstruct the field by its known values of the ray
transform [I3v].

The fact that there is not a unique solution of the problem is due to the
following. The potential fields ∇g with potentials g vanishing on the boundary
of domain belong to the kernel of ray transform [1]. Therefore, only the solenoidal
part sv of vector field v can be reconstructed by [I3v].

In the three-dimensional space the problem of reconstruction of the solenoidal
part of vector field from their known values of the ray transform is overdeter-
mined in terms of its dimension. Namely, it is necessary to recover the functions
svj(x), j = 1, 2, 3, x ∈ R

3, from the values of function [I3v] defined on the
four-dimensional set of oriented lines. In the articles [2,3] it was proposed to
consider the problem of recovering sv from the incomplete data [I3v]|M3 , where
M3 is some three-dimensional set of oriented straight lines. We mention the
papers [4,5] devoted to the development and numerical study of the algorithms
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based on the inversion formulas [3]. It should be noted, that in R
2 the task of

reconstruction of a vector field v from the values of ray transform [I2v] is not
overdetermined (see, for example, [6–8]). In the space R

3, the problem of recon-
struction of the potential part of vector field v from the values of normal Radon
transform [R⊥

1 v] is not overdetermined [9–11].
In this paper, the problem of reconstruction of the solenoidal part sv of vector

field v is considered in the following statement. Let the values of ray transform
[I3v]|M3 be known, where M3 is the set of all straight lines parallel to the
coordinate planes. It is necessary to recover sv by these data. We propose to use
the method of approximate inverse [12–15] to solve the problem. This numerical
method was successfully applied, in particular, to solve problems of the Doppler
tomography [16,17] in R3 and the vector tomography in R

2 [18,19].

2 Definitions and Statement of Problems

We give basic definitions of the vector tomography in R
n for arbitrary n, but in

the article we consider only n = 2 and n = 3. Let ξ ∈ S
n−1 and v be a vector

field in R
n, then the ray transform of v is defined by the formula

[Inv](ξ, x) =
n∑

j=1

∫

R

ξjvj(x + tξ) dt

where x ∈ ξ⊥.
It is known [1], that every vector field v may be presented uniquely as the

sum
v = sv + ∇g,

where vector field sv satisfies the condition δ sv =
n∑

j=1

∂
∂xj

svj = 0, and function

g is such as g(x) → 0 at |x| → ∞, (∇g)j = ∂
∂xj

g. A field sv is called the
solenoidal part of vector filed v, and a field ∇g is called the potential part of v.
Ray transform of the potential field is identically zero: [In(∇g)] = 0 for arbitrary
g ∈ C1(Rn) such that g(x) → 0 at |x| → ∞. Thus we can reconstruct only the
solenoidal part sv of field v by its known values of Inv.

Let πj = {xj = 0} ⊂ R
3 (j = 1, 2, 3) be the coordinate planes. We define the

manifolds

M3(πj) = {(ξ, x) ∈ R
3 × R

3 | |ξ| = 1, ξj = 0, 〈ξ, x〉 = 0}, j = 1, 2, 3.

We introduce the coordinates (θ, s, z) on M3(πj) so that

ξ = cos θ ej+1 + sin θ ej+2, x = s(− sin θ ej+1 + cos θ ej+2) + zej ,

where (e1, e2, e3) is the standard basis. The lower indices take values 1, 2, 3, so,
for example, if j = 2 we have: ej+1 = e3, ej+2 = e1. For the three-dimensional
vector field v the function [I3

(j)v] = [I3v]|M3(πj) is defined by the following
formula
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[I3
(j)v](θ, s, z) =

∫

R

(
cos θ vj+1(x + tξ) + sin θ vj+2(x + tξ)

)
dt.

We consider two problems:
The 2P -problem. It is required to recover the solenoidal part sv of vector

field v by two given functions [I3
(1)v] and [I3

(2)v].
The 3P -problem. It needs to reconstruct the solenoidal part sv of vector

field v by tree given functions [I3
(j)v], j = 1, 2, 3.

It is proved [3], that the 2P -problem has an unique solution and a solution
of the 3P -problem is stable.

3 The Theoretical Background of Algorithms

Let us present the theoretical basis of algorithms proposed for a solving of the
posed problems.

3.1 The Two-Dimensional Slices of Three-Dimensional Vector Field

Let S(j), j = 1, 2, 3, be an orthogonal projector of the vector field on the plane πj .
We can consider the field (S(j)v)(x) for the given v(x) as the three-dimensional
vector field with zero j-th component, or as the two-dimensional vector field

(
S(j)v

)
(xj+1, xj+2)(xj) = (vj+1, vj+2)(xj+1, xj+2)(xj)

on the plane (xj+1, xj+2), with smooth dependence of xj . The two-dimensional
vector field (S(j)v)(xj+1, xj+2)(z) is called the slice of three-dimensional
vector field v(x) on the plane {xj = z}. Note that [I3

(j)v](θ, s, xj) =
[I2(S(j)v)(xj)](θ, s), where (S(j)v)(xj) is j-th slice of v for fixed xj . In this
way only the solenoidal parts s(S(j)v) of two-dimensional vector fields S(j)v,
j = 1, 2, 3, may be reconstructed by their known values of [I3

(j)v], j = 1, 2, 3.
There is a connection between components of the solenoidal part of three-

dimensional vector field and components of the solenoidal parts of its slices [3].
Namely, for j = 1, 2, 3 there are equalities

yj+1F [s(S(j)v)]j+2(y) − yj+2F [s(S(j)v)]j+1(y)
= yj+1F [sv]j+2(y) − yj+2F [sv]j+1(y).

(1)

Here F [ · ] is the three-dimensional Fourier transform, defined by the formula

F [g](y) = (2π)−3/2

∫∫∫

R3

e−i〈y,x〉g(x) dx.

Here and further, we denote points in the main space by x and points in the
space of the Fourier transform image by y. For the Fourier images of components
of solenoidal parts the following equalities are also fulfilled

y1F [sv]1(y) + y2F3[sv]2(y) + y3F [sv]3(y) = 0, (2)
yj+1F [s(S(j)v)]j+1(y) + yj+2F [s(S(j)v)]j+2(y) = 0.
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3.2 The Method of Approximate Inverse For Reconstruction of the
Two-Dimensional Vector Fields

We propose to use the method of approximate inverse for reconstruction of the
solenoidal parts of two-dimensional slices of three-dimensional vector field. This
approach was successfully applied in [18,19].

There is a relation between the ray transform I2 of two-dimensional vector
field and the Radon transform R of function f defined by the formula

[Rf ](θ, s) =
∫

R

f(sξ⊥ + tξ)dt,

where ξ = (cos θ, sin θ), ξ⊥ = (− sin θ, cos θ). Namely, there are following
equalities

[R(su)i](θ, s) = ξi

[I2 u
]
(θ, s), i = 1, 2.

It is necessary to remind the scheme of the method of approximate inverse
for the function reconstruction by its Radon transform. Let e ∈ L2(R2) be a
function with the feature ‖e‖L1(R2) = 1. Using the operator of shifting and
dilating T p

1,γ : L2(R2) → L2(R2) we form the mollifier ep
γ from the function e

ep
γ(x) = T p

1,γe(x) = γ−2e ((x − p)/γ) , x, p ∈ R
2.

Namely, for the function ep
γ(x) and an arbitrary function f ∈ L2(R2) the follow-

ing equality
lim
γ→0

〈f, ep
γ〉L2(R2) = f(p)

holds.
The operator of shifting and dilating T p

2,γ at fixed γ > 0, p ∈ R
2 acts on a

function g(θ, s) according to the formula

T p
2,γg(θ, s) = γ−2g

(
θ, (s − 〈p, ξ⊥〉)/γ

)

and is connected with T p
1,γ by the equality R∗T p

2,γ = T p
1,γR∗. Here R∗ is an

adjoined operator for the Radon transform R acting on a function g(θ, s) by the
following formula

(R∗g)(x) =

2π∫

0

g(θ, 〈x, ξ⊥〉) dθ.

Let e belong to the range of operator R∗ and ψ be a solution of the equation
R∗ψ = e, then for fixed γ and p the function

ψp
γ = T p

2,γψ (3)

is a solution of the equation R∗ψp
γ = ep

γ . At small γ we obtain

f(p) ≈ 〈f, ep
γ〉L2(R2) = 〈f,R∗ψp

γ〉L2(R2) = 〈Rf, ψp
γ〉L2(Z),

where Z = {(θ, s) ∈ R
2 : θ ∈ [0, 2π), s ∈ R}. Thus formulas for the approximate

inverse of the ray transform operator I2 have the form (at small γ)
sui(p) ≈ 〈ξi[I2u], ψp

γ〉L2(Z), i = 1, 2. (4)
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3.3 About Solution of the 2P - and 3P -Problems

We introduce the notations w = F [sv],

ν(j)(y) = yj+1F [s(S(j)v)]j+2(y) − yj+2F [s(S(j)v)]j+1(y), (5)

and rewrite the equalities (1) for each j

y2w3(y) − y3w2(y) = ν(1)(y), (6)
y3w1(y) − y1w3(y) = ν(2)(y), (7)
y1w2(y) − y2w1(y) = ν(3)(y). (8)

In the statement of 3P -problem we know the values of three functions [I(j)v],
j = 1, 2, 3. Thus we can reconstruct the solenoidal parts s(S(j)v) of three slices
of vector field v, therefore we have three functions ν(j), j = 1, 2, 3. It is not
difficult to obtain the solution of system (2), (6)–(8) for each y �= 0,

w1(y) = |y|−2
(
y3ν(2)(y) − y2ν(3)(y)

)
, (9)

w2(y) = |y|−2
(
y1ν(3)(y) − y3ν(1)(y)

)
, (10)

w3(y) = |y|−2
(
y2ν(1)(y) − y1ν(2)(y)

)
. (11)

In its turn, in the 2P -problem the values of two functions [I(1)v], [I(2)v] are
known. In this way, there are two functions ν(1) and ν(2), and it is necessary to
solve the system (2), (6), (7) for finding the vector field w. When y3 �= 0 the
solution has the form

w1(y) = |y|−2y−1
3

(
y1y2ν(1)(y) + (y2

2 + y2
3)ν(2)(y)

)
, (12)

w2(y) = −|y|−2y−1
3

(
(y2

1 + y2
3)ν(1)(y) + y1y2ν(2)(y)

)
, (13)

the component w3(y) should be found by the formula (11).

4 The Schemes of Algorithms for Solving the 2P - and
3P -Problems

4.1 Solving the 3P -Problem

Let three functions [I(j)v], j = 1, 2, 3 be given for a vector field v. It is necessary
to realize the following steps for recovery of the solenoidal part sv of field v by
these data.

The step 1. Reconstruction of the components s(S(j)v)j+i, i = 1, 2 of
solenoidal parts of slices S(j)v, j = 1, 2, 3 of field v at fixed xj using the for-
mulas (4) of the method of approximate inverse. For the mollifiers construction
we use the Gauss function

eG(x) = (2π)−1 exp(−|x|2/2).
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The solution of equation R∗ψG = eG has the form

ψG(s) = (2π2)−1
(
1 −

√
2 sD(s/

√
2)

)
,

where D(t) = exp(−t2)
t∫
0

exp(z2)dz is the Dawson integral. The values of func-

tions ψp
G,γ(θ, s) are calculated using (3).

The step 2. Finding of the functions ν(j)(y), j = 1, 2, 3 using (5).
The step 3. Calculating w(y) = F [sv](y) by the formulas (9)–(11).
The step 4. Finding sv(x), applying the three-dimensional inverse Fourier

transform to w(y).

4.2 Solving the 2P -Problem

Let two functions [I(1)v] and [I(2)v] be given for a vector field v. It is necessary
to reconstruct the solenoidal part sv of field v.

The algorithm for the 2P -problem differs from the one for the 3P -problem by
that the first and the second steps are realized for j = 1, 2, and at the third step
the components of field w(y) = F [sv](y) are found by the formulas (11)–(13).

5 Simulations

We demonstrate the results of the numerical experiment aimed to finding of the
value of γ being optimal for the chosen discretization of the input data with
respect to parameters θ, s. As “optimal value” of γ we mention such value of
it (among several values under consideration) at which the relative error (in
percents) for the test field takes the smallest value. Discretization of the ray
transform with respect to z is 64, discretization with respect to θ, s is changing
and takes values 100, 200, 300, 400. Values of the parameter γ of the approximate
inverse method are equal 0.005, 0.01, 0.02, 0.03, 0.04. Test solenoidal vector field
v = v(x) is given by the equality

v(x) =

{
4

(
0.49 − r2

) (
x3 − (x2 + 0.1), x1−0.2

0.8
− x3, (x2 + 0.1) − x1−0.2

0.8

)
, r2 < 0.49,

(0, 0, 0), otherwise,

where r2 = (x1−0.2)2

0.64 + (x2 + 0.1)2 + x2
3.

Values of the relative error of the reconstruction of the field v in solving 2P -
and 3P -problems at different discretization of the ray transform and different
values of γ are shown in the Table 1. Discretization of the ray transform is chang-
ing in rows, values of γ and the type of the problem (2P or 3P )—in columns.
The smallest value of the error which may be achieved at the selected set for
the parameter γ in solving 2P and 3P -problems and at the fixed discretization
of the data is bold. The results show the following relative error behavior. As
γ increases from 0.005 to 0.05 we see the error decreasing to the some smallest
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value depending from the type of the problem and the discretization and after
this the error is increasing. Thus we conclude that optimal value of γ at dis-
cretization 100 is 0.03, at discretization 200—0.02, at discretization 400—0.01
for both types of problems. Also we obtain that at discretization 300 optimal
value of γ is 0.01 for 2P-problem and 0.02 for 3P-problem.

Table 1. The relative error at different discretization of the ray transform and different
values of γ

γ 0.005 0.01 0.02 0.03 0.04 0.05

discr. \ Pr 2P 3P 2P 3P 2P 3P 2P 3P 2P 3P 2P 3P

100 >100 >100 >100 >100 14.62 10.17 13.62 7.25 14.27 8.07 15.25 9.5

200 >100 >100 14.69 10.61 12.99 6.39 13.41 6.83 14.1 7.76 15.06 9.17

300 63.07 72.86 12.83 6.49 12.94 6.32 13.37 6.75 14.05 7.67 15.01 9.07

400 16.27 13.57 12.72 6.23 12.92 6.3 13.34 6.72 14.02 7.62 14.98 9.03

6 Conclusion

We consider the problem of reconstruction of the solenoidal part sv of vector
field v in R

3 from the incomplete data. Namely, it is required to recover sv by
the values of ray transform [I3v]|M3 , where M3 is the set of all lines parallel
to the coordinate planes. We use the denotation [I3

(j)v] for the values of ray
transform known for all lines parallel to the coordinate plane πj = {xj = 0}.
Two statements of the problem are considered:

– The 2P -problem. It is required to recover the solenoidal part sv of vector field
v by two given functions [I3

(1)v] and [I3
(2)v].

– The 3P -problem. It needs to reconstruct the solenoidal part sv of vector field
v by tree given functions [I3

(j)v], j = 1, 2, 3.

For a numerical solution of the problems we develop the algorithms based on
the method of approximate inverse.
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Abstract. The use of already existing infrastructure for mounting of
wind speed sensors could be a promising way of how to assess wind
resources instead to install the new meteorological mast. One part of this
study is devoted to exploring the impact of the mast on the flow field
around it. Computational Fluid Dynamics (CFD) is chosen to predict
airflow using Reynolds-Averaged Navier-Stokes equations. In the second
part of this research, the typical topology near the Baltic Sea is selected
to evaluate numerically the turbulent airflow over coastal terrain. The
lidar images are utilized to describe the topology of the interested area.
Digital Surface Model is used to generate the ground surface which is
applied as the input to develop the high-resolution computational mesh
of the terrain. Computational domain parallelization and the computa-
tional cluster is applied due to the complexity of the numerical simula-
tions. Obtained results are compared with experimentally measured data
from wind speed sensors located on the telecommunication mast.

Keywords: CFD · Flow modelling · RANS equations · Wind resources

1 Introduction

Increasing wind resource applicability leads to the interest of the wind turbine
installations in areas with more uniform topography. Special meteorological mast
installation to obtain measurements is the expensive way how to determine the
suitability of the area for the wind power generation. The alternative could be
to use already existing infrastructures (such as telecommunications masts) for
the mounting of measurement sensors.

The one part of this research is related to the numerical evaluation of the
telecommunication mast induced distortions in the flow field around it. The
estimation of changes in the field distribution allows to chose better locations for
wind speed sensors. In the scientific literature is available numbers of researches
where the numerical evaluation of the flow pattern around masts and the flow
distortion effect induced by the mast on the sensors measurements is analysed.
For example, atmospheric flow around tubular and lattice meteorological masts
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has been investigated in [1]. An experimental and numerical research of flow
around triangular lattice mast with anemometer booms is described in [2]. The
impact of top-mounted sensors is studied in [3] and [4]. An analytical estimation
of the center-line wind speed deficit as function of the mast solidity is available
in IEC standard [5].

The second part of this study is about the flow field prediction over coastal
terrain. In this research, the typical topology near the Baltic Sea is analysed.
The telecommunication mast on which are placed wind speed sensors is located
approximately 2 km from the coast. A feasibility study described [6] has been
carried out in which the coastal topology was described with a smooth surface
using orthophoto. In this study, data derived from lidar measurements were
used to obtain the digital model of the ground surface, providing a significantly
more detailed description. Obtained results are compared with experimentally
measured wind speed in the corresponding area.

2 Numerical Approach

The numerical method is based on the Computational Fluid Dynamics (CFD)
approach. To carry out a CFD analysis, the partial differential equations are
solved using the Finite Volume discretization. A computational study of the
airflow around the communication mast and over the coastal terrain has been
realised by the open source CFD tool OpenFOAM 2.4.x [7].

The flow is assumed to be incompressible and isothermal therefore the equa-
tion of energy is not solved. The three-dimensional equations describing the con-
servation of the mass and momentum are calculated applying the time-averaged
approximation – Reynolds-Averaged Navier-Stokes (RANS) method. To obtain
the closure of the system of equations due to the turbulence, two additional trans-
port equations (one for the turbulence kinetic energy, k and one for the rate of
dissipation of turbulence energy, ε) have been added. The SIMPLE algorithm
has been selected using OpenFOAM solver simpleFoam for solving pressure-
correction equation from the momentum and mass balance equations [8].

2.1 Implementation of the Mast

The analysed telecommunication mast is a triangular guyed mast which consists
of 1 m long segments. The total length of the mast is 92 m but modelled is only
four mast segments. The construction of the cellular communication mast has
been modelled as a rigid object.

The mast model consists of three vertical tubular tubes (7.6 cm diameter)
which are connected with tubular cross-arms (3.8 cm diameter). One segment
of the mast is 1.76 m high with a leg-to-leg distance of 1.2 m. The digital rep-
resentation of the mast contains also cables and stairs. Structural elements are
created as STL surfaces which are generated by mesh generator NetGen [9].

The computational domain for the flow field simulations around the mast is
defined as a rectangular area with the following dimensions – 30 m in the flow
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direction, 9 m in the perpendicular direction of the flow and 5 m in the vertical
direction. The scheme of the domain is shown in Fig. 1.

Fig. 1. Computational domain for calculations of the flow field around the communi-
cation mast.

The computational mesh is developed using built-in OpenFOAM mesh util-
ities. Around the mast construction is generated as unstructured mesh using
snappyHexMesh utility. blockMesh is used to obtain structured mesh in the
remaining part of the computational domain.

2.2 Implementation of the Terrain

The flow simulations over coastal terrain are done using four rectangular com-
putational domains. Dimensions of the domains are summarized in Table 1.

Table 1. Dimensions of the computational domains.

Domain Streamwise (x) Spanwise (y) Vertical (z)

D1 5000m 5000 m 1000m

D2 5000m 5000 m 600m

D3 2000m 2000 m 600m

D4 400m 800 m 600m

Digital Surface Model (DSM), employed for mesh development, is obtained
from the lidar data. Surface roughness coefficients to each DSM pixel are
assigned according to the land cover classes. The classification is performed using
supervised k nearest neighbours (kNN) classifier. A sample set for kNN covers
3000 m× 3000 m area around the telecommunication mast. Each of the sample
points is classified in 6 classes: water, sand, buildings and asphalt, grasslands and
agricultural lands, forest and marsh. Resultant land cover maps are prepared at
1 m per pixel spatial resolution (see the left side of Fig. 2).
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Fig. 2. The map of the analysed area with classified pixels (left). The ground of the
computational domain (right).

In the next step, the obtained data is converted to STL format using Matlab
script. The STL file describes smaller part (see Table 1) of terrain with the max-
imum difference of the height – 93.11 m. To obtain ground surface applicable for
OpenFOAM the snappyHexMesh utility is used. The ground level of the domain
can be seen in the right side of Fig. 2. Simulation domains contain approximately
from 12.2 · 106 to 34.4 · 106 hexahedral cells.

2.3 Boundary Conditions

Atmospheric boundary layer (ABL) library is used to define boundary conditions
for both simulations – to predict the flow around the mast and the flow over the
terrain. The thermal stratification and Coriolis effects are not taken into account.
It is assumed that the turbulence intensity is 10% and turbulence length scale
is 10% of the computational domain height.

Inlet velocity is defined by logarithmic law:

U(z) =
uτ

κ
ln((z + z0)/z0), (1)

where U is the time-averaged horizontal velocity, z is the vertical coordinate, κ
is the von Karman constant, z0 is the physical roughness height and the friction
velocity uτ is defined as:

uτ =
√

τω/ρ, (2)

where τω is the wall shear stress and ρ is the density.
Other boundary conditions are represented in Table 2.

3 Results and Discussion

At the beginning of the computational simulations, the preliminary study was
realized to investigate the effect of the turbulence model, the size of the com-
putational domain, the mesh resolution and boundary conditions. The solutions
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Table 2. Boundary conditions of the computational domain

Boundary Description

Inlet (incoming flow) Dirichlet conditions are applied for U , k and ε using

ABL libraries with Richardson and Hoxey expressions

[10]. Neumann zero gradient condition is used for p

Outlet (outflow) A constant pressure, p = 0 is set. For all other

variables Neumann zero gradient condition is

considered

Sky (top of the domain) Slip condition (zero for normal component of a vector,

zero gradient for tangential and for any scalar) is used

Sides (parallel to the flow) Slip conditions are considered

Ground (for the terrain) Standard OpenFOAM wall functions have been applied

for νt, k and ε. Velocity on surface walls is equal to

zero. Neumann zero gradient condition is used for p

Bottom (for the mast) Symmetry plane

have been assumed as converged when the sum of the residuals is kept within
limits of 10−5.

Two turbulence models – standard k-ε and realizable k-ε was compared. Flow
velocity profile before the communication mast was chosen to evaluate the impact
of the model. From obtained results follows that there is no significant difference
between predicted profile. However, the standard k-ε has better convergence
therefore for the future simulations this turbulence model is chosen.

The impact of the domain vertical dimension was analysed using domains D1
and D2. Results show that the domain height reduction from 1000 m to 600 m
changes the velocity at 100 m from the ground by 1.68%. Therefore for the next
investigation, the domain with 600 m vertical dimension was used. The effect of
domain size in streamwise and spanwise direction was analysed using D2, D3
and D4. Based on the obtained results the domain D4 was chosen as optimal.

The mesh sensitivity study was realized using three different cell sizes at the
ground in the vertical direction: M1 with 2 m height; M2 with 1.67 m height and
M3 with 1 m height. An investigation of the vertical resolution influence showed
the obtained difference is negligible and for future calculations can be used
mesh M1.

To evaluate the telecommunication mast influence on the sensor measure-
ment accuracy several series of simulations were done. Simulations of flow field
distribution around segments of the mast are conducted for two different wind
velocities and 4 different angles of attack, α. Analysed wind directions are illus-
trated in Fig. 3.

Figure 4 shows the examples of velocity distribution of a wind speed around
a telecommunication mast at a distance of 2.8 m relative to the mast centre.
The distance from the mast centre was chosen on the basis of the previous study
where optimum boom length was select, see [11]. Flow velocities are 5.0 and
10.0 m/s and the angles of attack are 0◦, 90◦, 180◦ and 270◦.

In Fig. 4, you can see that the pattern of the distortions is similar to both
wind speeds. Significant structure impacts on wind speed are only observed in
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Fig. 3. Analysed angles of attack.

Fig. 4. Simulation results of the wind flow field around a triangular cellular communi-
cation mast at 2.8 m from the centre, for wind velocities U = 5.0 and 10.0 m/s.

the tail region. Due to cable lines, the distortions are larger and nonsymmetric in
corresponding places. It is recommended that you use two sensors at one height
to avoid incorrect measurements obtained in the shadow of the mast.

The second group of simulations is used to model the flow over the terrain.
Figure 5 demonstrates a comparison of simulated velocity profile and experi-
mentally measured velocity at certain points. It can be seen that the largest
differences are between 20 and 60 m from the ground. For example, at 40 m
height simulations overpredicts velocity by 17%. It could be speculated that the
main reason for the difference is the description of the terrain.

Comparing the velocity in the computational domain with and without ter-
rain can evaluate the effect of the ground surface roughness on measured wind
speed. For example, at 62 m height, the difference in the flow velocity is approx-
imately 5%. Increasing distance from the ground, the difference decrease. It can
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Fig. 5. The comparison of the velocity profile predicted in the computational domain
with the terrain and experimentally measured values on site.

be concluded that the flat terrain affects the airflow only by a few percentages
if measurements is taken above 60 m.

4 Conclusions

The obtained results show that the presence of cable lines inside a lattice cellular
communication mast slows down wind flow speed and it is the main disadvantage
of telecommunication masts comparing to meteorological masts. However, it can
be concluded that the telecommunications masts of the type considered may be
used to install wind sensors at the selected distance from the mast centre if two
sensors in one level are used.

The CFD simulations of flow field over coastal terrain were done to analyse
changes of the velocity profile due to the terrain. Using the described methodology
the largest differences between experimentally measured values and numerically
predicted were from 20 m to 60 m from the ground. It can be guessed that this is
related to the representation of the terrain. Calculation results show that the flat
terrain effect on the wind speed above 60 m from the ground is less than 5%.
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Abstract. We continue investigations started in the previous publica-
tions by the authors (LNCS, volumes 8136 (2013) and 9570 (2016)). The
structure of stationary point sets is established for the family of functions
given as linear combinations of an exponent L of Euclidean distances from
a variable point to the fixed points in 2D and 3D spaces. We compare the
structure of the stationary point sets for several values of the exponent
L, focusing ourselves mainly onto the cases of Coulomb potential and
Weber facility location problem. We develop the analytical approach to
the problem aiming at finding the exact number of stationary points and
their location in relation to the parameters involved.

Keywords: Stationary points · Coulomb potential · Weber problem

1 Introduction

Given the coordinates of K ≥ 3 points {Pj}Kj=1 ⊂ R
n, the problem is to find the

exact number and the coordinates of the stationary points for the function

F (P ) =
K∑

j=1

mj |PPj |L , P = (x1, . . . , xn) ∈ R
n. (1)

Here {mj}Kj=1 are assumed to be real non-negative numbers, the exponent L ∈ R

is nonzero while |·| stands for the Euclidean distance.
For L = 2, the problem has a well-known solution: the center of mass

(barycenter) P∗ =
∑K

j=1 mjPj/
∑K

j=1 mj provides the global minimum for the
function F (P ). For L = 1, the problem is know as the generalized Fermat–
Torricelli or the Weber problem, and it is the origin of the branch of Operation
Research known as Facility Location. For this case, a unique stationary point
might exist for (1), and for the specialization n = 2,K = 3, its coordinates can
be expresses by radicals via the parameters of the function [5].

For L = −1 and n = 3, the problem can be viewed to as a classical elec-
trostatics one with the function (1) representing the Coulomb potential of the
charges {mj}Kj=1 placed at fixed positions {Pj}Kj=1 in the space. In despite of
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its classical looking formulation, the problem has not been given a systematic
exploration — with the exception of some special configurations [4]. The diffi-
culty of the problem can be acknowledged also from the state of the art with its
part known as

Maxwell’s Conjecture [3]. The total number of stationary points of any
configuration with K charges in R

3 never exceeds (K − 1)2.
After more than a century and a half from its formulation, this conjecture

has recently attracted attention in [2]. It remains still open even for the case of
K = 3 charges [6].

Aside from the stated problem of localization of stationary points corre-
sponding to minimum (or stable equilibria for the potential), we also treat the
parameter synthesis problem. Namely, we look for the largest possible domain P

in the parameter space R
K such that for any specialization of parameter vector

(m1, . . . , mK) from this domain, there exists at least one local minimum for (1).
On the other hand, we look for the set S in coordinate space R

n where every
point might be made a stationary minimum one for (1) by a suitable specializa-
tion of (m1, . . . , mK) ∈ P. Every set S or P will be hereinafter referred to as the
stability domain in the corresponding space.

Although the stated problem hardly expect the closed form analytical solu-
tion, the latter can be suggested for sufficiently wide class of functions (1). To
illuminate this statement, we tackle the case of function (1) where K = n + 1.

2 Multidimensional Case

Stationary points of the function

F (P ) =
n+1∑

j=1

mj |PPj |L (2)

are given by the system

∂F/∂x1 = 0, . . . , ∂F/∂xn = 0. (3)

These equations are linear homogeneous ones with respect to {mj}n+1
j=1 . Their

elimination from this system leads to the following

Theorem 1. Let the points {Pj = (xj1, . . . , xjn)}n+1
j=1 be chosen such that the

condition

V =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x11 x21 . . . xn+1,1

...
...

...
x1n x2n . . . xn+1,n

∣∣∣∣∣∣∣∣∣

> 0 (4)

is satisfied. Denote by Vj the determinant obtained on replacing the jth column of
(4) by the column1 [1, x1, . . . , xn]�. Any solution to the system (3) is a solution
to the system
1 Hereinafter � denotes transposition.
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m1 : m2 : · · · : mn+1 = |PP1|2−LV1 : |PP2|2−LV2 : · · · : |PPn+1|2−LVn+1. (5)

Since a solution to system (3) is invariant under substitution {mj →
cmj}n+1

j=1 , c �= 0, it is possible to assume that at this solution the following
relations {

mj = |PPj |2−LVj

}n+1

j=1
(6)

are valid up to a common numerical factor. This permits one to find the boundary
for stability domain S. Indeed, this boundary is defined by the condition for the
Hessian H(P ) of (2) to lose the property of positive definiteness, and this happens
when

det H(P ) = 0 (7)

at some stationary point P∗ of F (P ). Joint fulfillment of the equalities (3) and
(7) at this point for some specialization of parameters means then that it is a
multiple one for the system (3). Namely, its appearance is due to collision of
(generically) two non-degenerate stationary points of the function F (P ) when
the parameter vector (m1, . . . , mn+1) tends to a bifurcation point lying at the
boundary of the stability domain P in the parameter space.

Since at this point the relationships (6) are valid, one can eliminate the
parameters {mj}n+1

j=1 from (7). This results in an equation for the manifold in R
n

yielding the boundary of the stability domain S provided the latter is not empty.
We detail the structure of this manifold for n ∈ {2, 3} in the foregoing sections,
and restrict ourselves here with the following condition for the emptiness of S.

Theorem 2. For 2 − n ≤ L < 0, none of the stationary point of (2) is a point
of minimum.

For L > 0 or L < 2 − n, the principal existence of the point of minimum is
confirmed by the following

Example 1. Let the points {Pj}n+1
j=1 compose a regular n-dimensional simplex in

R
n centered at P∗ = O. For instance, for n = 3, one may take

P1 =

⎛

⎝
−1/3

−√
2/3

−√
2/3

⎞

⎠ , P2 =

⎛

⎝
−1/3√

8/3
0

⎞

⎠ , P3 =

⎛

⎝
−1/3

−√
2/3√
2/3

⎞

⎠ , P4 =

⎛

⎝
1
0
0

⎞

⎠ . (8)

For the function F (P ) =
∑n+1

j=1 |PPj |L, the point P∗ = O ∈ R
n is evidently a

stationary one. Hessian H(O) possesses a single eigenvalue (of the multiplicity
n) equal (up to a positive factor) to L(L + n − 2). Therefore, O is the point of
minimum iff L > 0 or L < 2 − n. 	


As for the stability domain P in the parameter space, its boundary can be
obtained on elimination of the variables x1, . . . , xn from equation (7) using sys-
tem (3). Compared with the previously considered procedure of elimination of
parameters, this time one cannot expect even the algebraicity of the procedure.
Only for the case of the rationality of the exponent L, the system (3) can be
reduced to an algebraic one. Elimination of variables from such a system can
be organized with the aid of the multivariate resultant computation or via the
Gröbner basis construction [1].
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3 The 2D Case

The planar counterpart of (5) is as follows

m1 : m2 : m3 = |PP1|2−LS1 : |PP2|2−LS2 : |PP3|2−LS3. (9)

Here {Pj = (xj , yj)}3j=1, P = (x, y) and

S1(x, y) =

∣∣∣∣∣∣

1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣
, S2(x, y) =

∣∣∣∣∣∣

1 1 1
x1 x x3

y1 y y3

∣∣∣∣∣∣
, S3(x, y) =

∣∣∣∣∣∣

1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣
.

Theorem 3. Let the points P1, P2, P3 be noncollinear and be counted counter-
clockwise. If L ≥ 1 then the stability domain S in the coordinate plane coincides
with the interior of the triangle P1P2P3, i.e. any point P∗ = (x∗, y∗) inside the
triangle is the point of minimum for the function

F∗(P ) =
3∑

j=1

m∗
j |PPj |L where {m∗

j = |P∗Pj |2−LSj(x∗, y∗)}3j=1. (10)

If L < 1, L �= 0 then the boundary of the stability domain S is given by the
equation

Φ̃L(x, y) :=
S1(x, y)S2(x, y)S3(x, y)

|PP1|2|PP2|2|PP3|2
3∑

j=1

Sj(x, y)|PPj |2 +
L − 1

(L − 2)2
S2 = 0 (11)

where

S = S1 + S2 + S3 ≡
∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
.

Proof. The characteristic polynomial of the Hessian at any stationary point P∗
of the function F (P ) can be represented as follows [5]:

det(λI − H(P∗)) = λ2 − L2Sλ + L2(L − 2)2Φ̃L(x∗, y∗). (12)

It turns out that for L < 1, L �= 0, the inequality Φ̃L(x, y) > 0 provides a
nonempty domain inside the triangle P1P2P3, and if the point P∗ lies within
this domain then all the zeros of (12) are positive and therefore P∗ is point of
minimum for (10). 	


As for the localization of stability domain in the parameter space, this prob-
lem is rather more difficult since the variables x and y to be eliminated from (9)
are involved in it in a highly nonlinear manner.

Example 2. Let P1 = (1, 1), P2 = (5, 1), P3 = (2, 6). For the Coulomb potential
F (P ) = 1/|PP1|+m2/|PP2|+m3/|PP3|, stability domainP in the (m2,m3)-plane
has a boundary which is obtained via resultant computation for the equations

m2
2S

2
1 |PP1|6 − S2

2 |PP2|6 = 0, m2
2S

2
3 |PP3|6 − m2

3S
2
2 |PP2|6 = 0
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accomplished with the condition (7); this time the variables x and y are to
be eliminated. This results in the algebraic equation Ψ(m2,m3) = 0 where
Ψ(m2,m3) ∈ Z[m2,m3],deg Ψ = 48 and the coefficients of the magnitude of
up to 1080. The details of computation and the image of both domains S and P

are presented in [6]. 	

Representation (9) permits one to trace the curve of stationary points

under variation of an extra parameter of the considered function, namely the
exponent L.

Theorem 4. For any specialization of {mj , Pj}3j=1, the stationary points of the
function (10) lie in the curve2

(log |PP2| − log |PP3|) log
S1

m1
+ (log |PP3| − log |PP1|) log

S2

m2

+ (log |PP1| − log |PP2|) log
S3

m3
= 0 (13)

Proof. From (9) it follows that
{

log S2/m2 − log S1/m1 − (2 − L) (log |PP1| − log |PP2|) = 0,
log S3/m3 − log S1/m1 − (2 − L) (log |PP1| − log |PP3|) = 0.

(14)

Elimination of L results in (13). 	

Though the curve (13) is not an algebraic one, its depiction does not cause

trouble.

Example 3. For m1 = m2 = m3 = 1 and P1 = (1, 1), P2 = (5, 1), P3 = (2, 6), the
curve (13) is plotted in Fig. 1 (a).

It passes through nearly all the significant points of the triangle P1P2P3,
namely its vertices ( L → 1), the midpoints of the sides ( L → −∞), cen-
troid (L = 2), circumcenter (L → +∞ and L → −∞), Fermat–Torricelli point
(L = 1). The two extra points in the curve

(
8
3

±
√

−6 +
√

61
3

,
8
3

∓
√

6 +
√

61
3

)
≈ {(3.1151, 1.4279); (2.2181, 3.9054)}

corresponding to L → 0 are the stationary points of the logarithmic potential
log |PP1| + log |PP2| + log |PP3| (or, equivalently, for |PP1| · |PP2| · |PP3|).

The bifurcation values for the exponent L are obtained from the condition
that Eq. (14) have a multiple zero with respect to x and y. This is equiv-
alent to vanishment of their Jacobian. It turns out that the latter equals
(L−2)2Φ̃L(x, y)/(S1S2S3) with Φ̃L(x, y) defined by (11). Resolving the obtained
non-algebraic system yields two bifurcation values for L, namely L1 ≈ −13.5023
and L2 ≈ 0.7948 (Fig. 1 (b)). An extra bifurcation value is L3 = 1. When L

2 With the logarithm considered to an arbitrary positive base.
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Fig. 1. Example 3. Stationary points for different values of the exponent L.

approaches L1 from the left the two stationary points tend to collision point
at ≈ (3.3099, 3.3907); when L approaches L2 from the right the two station-
ary points tend to collision at ≈ (1.8354, 1.6141). When L approaches 1 from
the left, the three stationary points tend to P1, P2 and P3. Bifurcation values
L1, L2, L3 separate the intervals in the L-axis corresponding to distinct numbers
of stationary points for the function (10). The latter possesses four stationary
points if L < L1 or L2 < L < 1, two points if L1 < L < L2, and a single point
if L ≥ 1. 	


4 The 3D Case

We next treat the case n = 3, i.e.,

F (P ) =
4∑

j=1

mj |PPj |L , P = (x, y, z), {Pj = (xj , yj , zj)}4j=1 ⊂ R
3 (15)

In the following result we give a corrected version of one erroneous statement
from [5].

Theorem 5. Let the points {Pj}4j=1 satisfy the assumptions of Theorem 1. If
L ≥ 2 then the stability domain S for the function (15) in the coordinate space
coincides with the interior of the simplex P1P2P3P4. If L ∈ [−1; 0] then the
domain is empty (v. Theorem 2). Else the boundary for the domain of stability
is given by the equation

Φ̃L(x, y, z) = (L − 1)V 3 + (L − 2)2V t2(x, y, z) + (L − 2)3t3(x, y, z) = 0 (16)
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where

t2(x, y, z) =
∑

1≤j<k≤4

VjVk

det(Mjk · M�
jk)

|P∗Pj |2|PPk|2 , Mjk =
[

x − xj y − yj z − zj
x − xk y − yk z − zk

]
;

and

t3(x, y, z) =
V1V2V3V4

|PP1|2|PP2|2|PP3|2|PP4|2
4∑

j=1

Vj |PPj |2 .

Proof. For the function (15) with {mj = m∗
j}4j=1 defined by (6), compute the

characteristic polynomial of the Hessian matrix H(P∗):

λ3−L(L+1)V λ2+L2
[
(2L − 1)V 2 + (L − 2)2t2(x∗, y∗, z∗)

]
λ−L3Φ̃L(x∗, y∗, z∗).

Both expressions t2 and t3 are non-negative if the point P∗ lies inside the simplex.
For L ∈ [−1; 0], the coefficient of λ2 is not negative, therefore, at least one of
the eigenvalues of the Hessian should be non-positive. From this follows the first
statement of the theorem. On the contrary, for L ≥ 2, the three variations in
sign in the sequence of the coefficients of the characteristic polynomial certify,
due to Descartes rule of signs, that all the eigenvalues of H(P∗) are positive.
Wherefrom follows the last statement of the theorem. 	


Fig. 2. Example 4. Stability domain in the coordinate space (in red). (Color figure
online)

Example 4. For the simplex (8) and the function
∑4

j=1 mj/ |PPj |2, the surface
(16) is given by the equation

81(x2 + z2 + y2)4 − 144 (−2x2 + 2
√

2xy − y2 + 3z2))(x +
√

2y)(x2 + z2 + y2)2

+ · · · − 304(−2x2 + 2
√

2xy − y2 + 3z2)(x +
√

2y) − 132(x2 + z2 + y2) + 1 = 0.
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Stability domain S is bounded by a closed tetrahedron-looking part of this surface
surrounding the origin (Fig. 2).

5 Conclusion

We have treated the problem of structure specification for the set of stationary
points of the function (1). We have also keened in establishing the influence of
the involved parameters onto this set. The suggested solution results in the pair
of sets. The one in parameter space absorbs all the bifurcation values while the
other in the space of variables contains all the possible locations for the points of
minimum. Both sets has been represented analytically by algebraic equations or
inequalities. This opportunity is certainly granted only for the case of functions
with rational exponents L. Even for this case, the computational complexity of
the algorithm grows drastically with the increase of the dimension from n = 2
to n = 3. The hope to overcome this obstacle is connected with a counterpart
in R

3 of Theorem 4.
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Abstract. The research is aimed at coping with the inherent computa-
tional intensity of Bayesian multi-objective optimization algorithms. We
propose the implementation which is based on the rectangular partition
of the feasible region and circumvents much of computational burden
typical for the traditional implementations of Bayesian algorithms. The
included results of the solution of testing and practical problems illus-
trate the performance of the proposed algorithm.

Keywords: Non-convex optimization · Multi-objective optimization ·
Bayesian approach

1 Introduction

Applied optimization problems, especially those in engineering design, frequently
are multi-objective and non-convex. The class of non-convex objective functions
is non-homogeneous from the point of view of design of optimization algorithms.
We address the black-box problems differently from the problems, where objec-
tive functions and constraints are described by mathematical formulas. Methods
for the latter problems generalize classical mathematical programming meth-
ods [8,10]. Metaheuristic methods are popular for black-box problems [5]. How-
ever, the metaheuristic methods frequently are not appropriate for the expensive
black-box problems because of the limited budget of the computations of the
objective functions.

The optimization of expensive black-box objective functions can be consid-
ered as a sequence of decisions under uncertainty, and the ideas of the theory of
rational decision making seem most appropriate for the development of the corre-
sponding algorithms. Gaussian random fields (GRF) normally are used as models
representing uncertainty about aimed objective functions. Bayesian algorithms
are designed maximizing a criterion of average utility with respect to the random
field chosen for a model. The most frequently used criteria are: the maximum
average improvement and the maximum improvement probability. The research
and applications of the single-objective Bayesian methods is booming during
last years. The Bayesian approach has recently extended to multi-objective opti-
mization. The idea of the maximization of the multi-objective improvement
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probability is implemented in [17]. A popular alternative method is based on
the reduction to single objective optimization where the hyper-volume of a sub-
region of the objective space, bounded by the approximation of the Pareto front,
is maximized; see e.g. [6,7]. For the relevant single-objective black-box optimiza-
tion methods we refer to [11–14].

The inherent computational burden of Bayesian multi-objective algorithms
bounds their application area similarly to the single-objective case. In the present
paper we propose coping with such a challenge by the implementation based on
the rectangular partition of the feasible region. We merge the ideas of [17] (where
the multi-objective P-algorithm was proposed), and of [3] (where the partition
based single-objective P-algorithm was implemented). The developed algorithm
was applied to the optimization of a biochemical process modeling of which is
computationally extremely intensive.

2 The Proposed Algorithm

A black-box multi-objective minimization problem is considered

min F (x), x ∈ A ⊂ R
d, F (x) = (f1(x), . . . , fm(x))T ; (1)

we assume that A is of simple structure, e.g., a hyper-rectangular. We assume
that objective functions are computationally expensive.

We start from a brief introduction of the original single-objective (m = 1)
P-algorithm. For a review of related methods we refer to [15]. A GRF ξ(x),
x ∈ A, is accepted for a model of an objective function. The results of k function
evaluations yi = f(xi), i = 1, . . . , k, are available and can be taken into account
for planning a current evaluation point. The P-algorithm selects for the evalua-
tion of the objective function the point of maximum of conditional improvement
probability

xk+1 = arg max
x∈A

P{ξ(x) < yok | ξ(xi) = yi, i = 1, . . . , k}, (2)

where yok = min{y1, . . . , yk} − εk, εk > 0 is an improvement threshold.
A generalization of the P-algorithm to the multi-objective case was proposed

in [17]. A vector valued GRF Ξ(x) = (ξ1(x), . . . , ξm(x))T , m > 1, x ∈ A, is
accepted for a model of objective functions. Let Yi = F (xi), i = 1, . . . , k, denote
the vectors of objective function values evaluated in previous iterations, and Yok

be a reference point. The P-algorithm computes a current vector of the objectives
at the point

xk+1 = arg max
x∈A

P{Ξ(x) < Yok |Ξ(xi) = Yi, i = 1, . . . , k}. (3)

The main disadvantage of the standard implementation of the multi-objective
P-algorithm is its computational burden where the maximization problem (3) is
multimodal, and the computation of P(·) involves inverting large ill conditioned
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matrices. The computational burden in a single-objective case can be substan-
tially reduced by the partition based implementation as shown in [3]. We will
generalise that implementation, in the present paper, for the multi-objective
case.

Let the feasible region A be a hyper-rectangle. The algorithm is designed as a
sequence of subdivisions by means of the bisection. The selected hyper-rectangle is
bisected by a hyper-plane orthogonal to its longest edges. The values of F (x) are
computed at 2d−1 intersection points. A hyper-rectangle is selected for the sub-
division according to a criterion which is an approximation of (3). The criterion
of a hyper-rectangle is computed as the conditional improvement probability at
its center xc. The computational complexity for that probability is defined by the
complexity of the computations of the conditional mean μ(xc | ·) and conditional
variance σ2(xc | ·) of Ξ(xc). We approximate the conditional probability in (3) by
restricting information used in the definition of μ(xc | ·) and σ2(xc | ·) with func-
tion values at the vertices of the considered rectangle. Thus the computational
complexity of μ(·) and σ(·) in the proposed implementation is lower than in the
standard implementation thanks to the restriction of the involved information.
Further, the expressions of μ(·) and σ(·) are replaced with their asymptotic expres-
sions obtained by shrinking the hyper-rectangle to a point [3]:

μ(xc | · ) ∼ 1
|I|

∑

i∈I

Yi, σ2(xc | · ) ∼ V, (4)

where I denotes the set of indices of the vertices, and V denotes the hyper-
volume of the considered hyper-rectangle. These simplifications imply the fol-
lowing expression of the selection criterion

V

|| ∑
i∈I

Yi − Yok|| .

The high asymptotic convergence of the bi-objective version of that algorithm
is proved in [4]. The partition of the feasible region at the initial iterations is
quite uniform, thus it is rational with respect to the modest information about
the considered objective functions at the initial iterations [16]. The accumulated
information guides the selection of hyper-rectangles at later iterations towards
the set of efficient decisions. The computational complexity of the proposed algo-
rithm at a current iteration t can be evaluate similarly to the single-objective
optimization algorithm [20] since the same operations are performed to man-
age the accumulated data. Thus the computational complexity of iteration t is
T (n) = O(n × m × log(n × m)), where n is the number of evaluations of F (x)
made at previous iterations. The complexity of computations at a current t itera-
tion of the standard implementation of Bayesian algorithms, e.g. of the algorithm
of average improvement, is much higher than T (n) (here t = n). The iteration t
includes inverting of, generally speaking, m n × n matrices the time-complexity
of which is O(m × n3). Moreover, the inverting of the considered matrices is chal-
lenging since their condition numbers typically are very large. The other serious
computational complexity of a standard implementation is the maximization of
the average improvement which is a non-convex optimization problem.



514 A. Žilinskas and L. Litvinas

3 Comparison with the Standard Implementation of the
P-Algorithm

The proposed algorithm is a simplified version of its predecessor, i.e., of the
standard implementation of the P-algorithm. It is interesting to compare their
performance. The standard implementation is described in detail in [17] where
several test problems are solved to illustrate its performance. We use the same
test problems.

A non-convex problem, proposed in [9], is quite frequently used for testing
multi-objective algorithms; see e.g., [5]. The objective functions are

f1(x) = 1 − e− ∑d
i=1(xi−1/

√
d)2 ,

f2(x) = 1 − e− ∑d
i=1(xi+1/

√
d)2 , (5)

d = 2, and the feasible region is A : −4 ≤ x1, x2 ≤ 4. The next test problem
is composed of two Shekel functions which are frequently used for testing of
single-objective global optimization algorithms:

f1(x) = − 0.1
(0.1 + (x1 − 0.1)2 + 2(x2 − 0.1)2)

− 0.1
(0.14 + 20((x1 − 0.45)2 + (x2 − 0.55)2))

,

f2(x) = − 0.1
(0.15 + 40((x1 − 0.55)2 + (x2 − 0.45)2)

− 0.1
(0.1 + (x1 − 0.3)2 + (x2 − 0.95)2)

. (6)

The visualization of these test problems including graphs of the Pareto fronts
and sets of Pareto optimal decisions is presented, e.g. in [5,10].

Several metrics are used for the quantitative assessment of the precision of a
Pareto set approximation. For the comparison of the proposed implementation
of the P-algorithm with the standard one we apply the metrics which were used
in recent publications related to the standard implementation. The generational
distance (GD) is used to estimate the distance between the found approxima-
tion and the true Pareto front [5]. GD is computed as the maximum of distances
between the found non-dominated solutions and their closest neighbors from the
Pareto set. The epsilon indicator (EI) is a metric suggested in [21] which inte-
grates measures of the approximation precision and spread: it is the min max
distance between the Pareto front and the set of the found non-dominated solu-
tions

EI = max
1≤i≤K

min
1≤j≤N

||Zi − F ∗
j ||, (7)

where F ∗
j , j = 1, . . . , N , are the non-dominated solutions found by the considered

algorithm, and {Zi, i = 1, . . . ,K} is the set of points well representing the Pareto
set, i.e. Zi are sufficiently densely and uniformly distributed over the Pareto set.
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The algorithms were stopped after 100 computations of F (x). Although the
P-algorithm theoretically is deterministic, its version implemented in [17] is ran-
domised because of a stochastic maximization method used for (3). Therefore,
test problem were solved 100 times. We present the mean values and standard
deviations of the considered metrics from [10] in two columns of Table 1. The
proposed algorithm is deterministic; thus its results occupy single column for
each test problem. The results of the proposed algorithm for the test problem
(5) are even better than the results of the standard version of the P-algorithm.
However, the standard version outperforms the proposed algorithm in solving
(6). The set of optimal decisions of the latter problem consists of three disjoint
subsets, and the diameter of one of subsets is relatively small. A considerable
number of partitions of the feasible region was needed to indicate the latter
subset. The experimentally measured solution time was 8.6 ms for the proposed
algorithm, and 3.9 s for the algorithm of [17].

Table 1. Performance criteria of the standard and partition based implementations of
the P-algorithm for Problems (5) and (6)

Implementation Standard Partition based

Problem Problem (5) Problem (6) Problem (5) Problem (6)

NN 9.87 1.4 15.7 2.0 27 18

GD 0.015 0.0061 0.070 0.051 0.015 0.21

EI 0.20 0.034 0.13 0.053 0.092 0.25

4 Performance Evaluation on a Real World Problem

Quite many optimization problems in biotechnology can be characterized as
black-box expensive ones. For example, optimal design of bio-sensors and bio-
reactors requires solving optimization problems the objective functions of which
are defined by computer models of high complexity [1,2]. The micro bio-reactors
are computationally modeled by a two-compartment model based on reaction-
diffusion equations containing a nonlinear term related to the Michaelis-Menten
enzyme kinetics; we refer to [1,2] for the description and substantiation of the
model. The computation of one objective function value of such problems take
up to 10 min, and for some special cases possibly more. However, we are opti-
mistic about these challenges since the problems in question are low dimensional.

We consider an optimization problem related to the optimal design of a micro
bio-reactor, which well represents real world problems for which the proposed
algorithm is potentially appropriate. Specific technical aspects of the computer
model of the micro bio-reactor, and the substantiation of the objective functions
are addressed in [18].
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Fig. 1. Pareto front of the set of objec-
tive vectors computed by the proposed and
genetic algorithms. (Color figure online)

Optimal design of a micro bio-
reactor is formulated as a three-
objective optimization problem of
four variables. The objectives are: the
time of the reactions; the amount
of the substrate per volume unite
converted to the product; the total
amount of the enzyme used per vol-
ume unit of the reactor; first and third
objectives are minimized, and the sec-
ond one is maximized. The variables
are: two constructive parameters of
a bio-reactor, and the concentrations
of the enzyme and of the substrate.
The computation time depends on
the parameters of the bio-reactor; the
average time of computation of a sin-

gle value of the first objective function is 4.32 min (a computer with Intel Xeon
X5650 2.66 GHz processor was used). A long reaction time means that the bio-
reactor with such parameters is not appropriate; correspondingly, the simulation
was interrupted if it exceeded 10 min.

We demonstrate the performance of the proposed algorithm under the con-
ditions typical to a real world applications. The following optimization problem
is considered where F (x) is available as a function in C:

min
x∈A

F (x), F (x) = (f1(x), f2(x), f3(x))T ,

A = {x : −4 ≤ x1, x2 ≤ −3, −8 ≤ x3 ≤ −4, −5 ≤ x4 ≤ −1}. (8)

We focus here on black-box optimization without discussing its applied aspects.
The problem will be presented from the point of view of applied optimal designed
in the next paper co-authored with experts in biotechnology. The proposed algo-
rithm was applied to the solution of (8) with the predefined budget of evaluations
of F (x) equal to 1000; the solution time was 72 h and 14 min. The genetic algo-
rithm (GA) from the MATLAB Optimization Toolbox was also applied to the
solution of the considered problem. The following parameters of GA were chosen:
the population size was 50, the crossover fraction was 0.8, Pareto fraction was
0.35, and the other parameters were chosen as predefined in the Optimization
Toolbox. The termination condition of GA was the same: budget of the objec-
tive function evaluations equal to 1000. GA is a randomized algorithm, thus
results of a single run are not sufficiently reliable from the point of view of sta-
tistical testing. Indeed, the use of real world problems with expensive objective
functions for testing randomised algorithms is challenging especially where the
experimentation time is limited.

The Pareto front approximation computed by the proposed algorithm con-
sisted of 124 vectors, and the approximation computed by GA consisted of 15
vectors. None vector of the of first approximation was dominated by a vector of
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the second approximation. Only four vectors of the second approximation were
not dominated by the vectors of the first approximation. The hypervolume indi-
cators of both approximations were equal to 42.3 and 12.4 correspondingly. Thus
the proposed algorithm clearly outperforms GA. The non-dominated vectors (in
the commonly used physical units) of the union of both approximations are pre-
sented in Fig. 1 where circles denote the points of the first approximation, and
the red rectangles denote the points of the second one. This figure shows only
a general shape of the Pareto front. User oriented interfaces and visualization
methods are available to experts in biotechnology to aid selecting an appropriate
Pareto optimal decision; the advantages of visualising not only Pareto optimal
solutions but also Pareto optimal decisions are argued in [18].

The performance of the proposed method is appropriate for low dimensional
black-box expensive problems. Extensions to higher dimensionality can be chal-
lenging because of large number of computations of the objective function values
(2d−1) at a current iteration. We plan the investigation of the simplicial parti-
tion based Bayesian algorithms to cope with that challenge; note that such a
partition proved efficient in Lipschitzian optimization [11]. The hybridization
of the proposed global search algorithm with a local one seems promising. The
good performance of hybrids of the single-objective Bayesian algorithms with
local ones [19,20] gives hope that similar synergy of the global and local search
strategies will be achieved also in the multi-objective case.

5 Conclusions

A rectangular partition based implementation of a Bayesian multi-objective
method is proposed where the typical for Bayesian algorithms inherent com-
putational burden is avoided. The proposed algorithm is appropriate for solv-
ing practical problems characterized as expensive black-box problems of modest
dimensionality. The prospective directions of further research are: increasing
dimensionality of efficiently solvable problems, and studying efficiency of other
partition strategies.
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17. Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective
optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)

18. Žilinskas, A., Baronas, R., Litvinas, L., Petkevičius, L.: Multi-objective optimiza-
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19. Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear
least squares regression. J. Global Optim. 56(2), 265–277 (2013)
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Abstract. Oil refining is a key industry of the world economy. Growing
hydrocarbon production cost and global competition in the oil market
encourage the oil refining industry to optimize the production scheme.
The evolution of mathematical tools of automated enterprise control sys-
tems is closely connected with the systems development at each level of
control. Mathematical models for organizational and economic control of
the enterprise and process control models are widely presented in pub-
lications and implemented in the enterprise information systems. The
management of operational scheduled and dispatching production is one
of the most complex problems. The paper deals with the problem of find-
ing an optimal ratio for the components from the tanks to obtain an oil
product of the required amount and quality in a commercial tank. The
peculiarity of the mathematical models proposed for solving the problem
is that only the boundaries for each quality indicator of petroleum prod-
uct are known. To formalize the emerging uncertainty, models utilizing
the interval approach are proposed.

Keywords: Oil refining · Mathematical tools of automated systems ·
Production processes optimization · Calendar task · Dispatch
schedule · Interval optimization

1 Introduction

The increase in the crude hydrocarbons recovery costs and the global competi-
tion on the oil products market induce the oil processing industry to optimize
petroleum refineries. Production control systems used at oil refineries should
promptly respond to increasing dynamics of perturbances such as volumes and
quality of the feed as well as orders for the manufactured products volumes in
terms of the constraints imposed by shipment logistics. Inexhaustible opportuni-
ties of solving this kind of problems lie in enhancing a petroleum refinery control
system, its main tool being automation.

Developing mathematical tools of an integrated automated control system
for an enterprise is closely connected with constructing systems for every control
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level and is performed due to priorities from the top-down and bottom-up. The
questions of constructing and investigating mathematical models of the enter-
prise for the business management purposes are widely discussed in the literature
[1]. Operational-calendar and dispatch production control is one of the most com-
plex control forms. That is the reason why this stage of operational planning of
continuous operation has not been sufficiently addressed in the literature and
has no ready-made practical solutions [2].

The article aims to develop an approach to mathematical modelling of dis-
patch control to optimize the processes in layered control systems of a petroleum
refinery.

In mathematical programming models, to which the tasks of planning, design,
and control are reduced, some or all of the parameters (characteristics) of the
quality indicators and constraints may appear uncertain or random. In some
cases, experience, statistics, and the study of the processes, determining the
change in the source data and forming the conditions under which the plan,
project or control system is implemented, allow you to set certain probabilistic
characteristics of the task parameters. In other cases, there is no information
about the features of the phenomena that can change the expected values of
the task conditions parameters. Both situations are the scope of the study for
stochastic programming [3–5].

The practical problems of choosing solutions with conflicting conditions or
under risk and uncertainty often describe the study subject and the investigated
system more adequately than those under solvability and certainty. This indi-
cates the relevance of developing and implementing algorithms to solve problems
with incomplete information, including controversial ones. The effective solution
of such problems requires not only the development of new algorithms to find
solutions but also fundamentally new approaches and new mathematical designs
to model and determine the concept of solving such problems [6,7].

2 Problem Statement and Mathematical Model

Consider the production problem of preparing an end product. For a given range,
weight and quality restrictions of the end product based on the calendar task, one
needs to calculate the corresponding shipment operations and the full schedule of
the pumping equipment operation in commodity production for the entire period
of the dispatch schedule so as to ensure a minimum components arrival deviation
from the formulation specified in the calendar task. The deviation is calculated
for each component as the difference between the value in the calendar job
and the sum of the component arrival operations in the dispatch schedule. The
scheme of objects interaction in preparing the end product from the components
is as follows. There are multiple component containers R1, R2, ..., Rr, multiple
pump units U1, U2, ..., Um and a commercial tank where the blending of the
components, i.e. the end product P manufacture, occurs. Each of the components
can be stored in several component tanks.

The task of the dispatch schedule is to find an optimal ratio of the components
from the component tanks to obtain the required amount of the product, with
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the specified quality indicators and with minimal deviations from the specified
formulation, for a given period in the commercial tank.

To formalize the proposed conditions, the following notations are introduced:

n is the number of components involved in blending, i = 1, ..., n;
m is the number of pumping units, p = 1, ...,m;
r is the number of component tanks, j = 1, ..., r, n ≤ r, r ≤ m;
g is the number of types of quality indicators, k = 1, ..., g;
vij is the available amount of the i-th component in the j-th tank;
ρij is the density of the i-th component in the j-th tank;
θi is the required amount of the i-th component due to the formulation;
qjki is the value of the k-th quality indicator for the i-th component in the
j-th container;
V E is the remaining amount of the end product in the commercial tank;
qEk is the value of the k-th indicator for the quality of the end product remain-
ing in the commercial tank;
V P is the required amount of the end product;
qPk is the value of the k-th indicator of the end product quality;
Cp is the maximum capacity of the p-th pumping unit at the specified period
for the arrival of the components to prepare the end product;
cp is the minimum capacity of the p-th pumping unit at the specified period
for the arrival of the components to prepare the end product.

Let X be the matrix, whose elements are values xij , i.e. the amount of the
i-th component taken from the j-th container; the matrix X is the solution to
the set problem.

Let us introduce the graph G, which is a tree, whose root is a commercial
tank, inner nodes are pumping units, and the leaves are component tanks (corre-
sponding to the elements of the matrix X), which form the set L(G). Let Gp be
a subgraph G that is a tree whose root is the pump unit with number p, where
p = 1, ...,m. Denoting through L(Gp) the set leaves of the rooted tree Gp, as
L(Gp) ⊆ L(G), the set I(Gp) is introduced for the indices of the leaves of the
rooted tree Gp:

I(Gp) = (i, j)|xij ∈ L(Gp), p = 1, ...,m.

Since the task of minimizing the deviation of the components i arrival from
the given formulation θi, i = 1, ..., n is set, then we consider:

F (x) =
n∑

i=1

( r∑

j=1

xij − θi

)2

(1)

of the optimization problem which F (x) as the target function.
Let us formulate the constraints of the problem.
The amount of the used i-th component from the j-th tank satisfies the

non-negativity conditions and does not exceed the available amount vij :
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0 ≤ xij ≤ vij , i = 1, ..., n, j = 1, ..., r. (2)

The total number of all used components i = 1, ..., n from all tanks j = 1, ..., r
is equal to the required amount of end product:

n∑

i=1

r∑

j=1

xij = V P . (3)

The constraints on the capacity of the pump unit with number p are:

cp ≤
∑

i,j∈I(Gp)

ρijxij ≤ Cp, p = 1, ...,m. (4)

The constraints on the quality indicators of the end product in terms of the
remaining end product V E in the commercial tank are:

n∑

i=1

r∑

j=1

qjkixij =
(
V P + V E

)
qPk − V EqEk , k = 1, ..., g. (5)

To form restrictions (5) a linear dependence of the end product quality indica-
tors on their components quality indicators was used (considering V E , i.e. the
remaining end product in the commercial tank)

qPk (X) =

( n∑
i=1

r∑
j=1

qjkixij + qEk V E
)

(
V P + V E

) , k = 1, ..., g.

The studies of this dependence were carried out based on the initial data
from the laboratory system of the enterprise and demonstrated satisfactory
results [8].

3 Interval Problem Statement

Forming the dispatch schedule according to the calendar task based on the model
(1)–(5) has a significant drawback consisting in the following. If permissible
ranges for the values [cp, Cp], p = 1, ...,m are set for the capacity constraints of
the pump unit with number p = 1, ...,m in the production process, the quality
indicators of the end product qPk , k = 1, ..., g are constants. But the quality
of the components differs in individual batches of filling the component tanks
j = 1, ..., r, while the production process includes no measurement of the quality
indicators values for the blended components i = 1, ..., n. According to depen-
dence (5), the resulting quality indicators qPk , k = 1, ..., g of the end product, in
terms of the remaining end product V E in the commercial tank, depend on the
quality indicators values qjki, j = 1, ..., r, i = 1, ..., n, of the blended components,
and constraints (5) are incorrect if the quality values for the components are set
incorrectly. To formalize the obtained uncertainty, various approaches are used
[9,10].
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Let the boundaries of the quality indicators k = 1, ..., g be known (or defined
in the calendar task) for the end product. Let us denote the lower and upper
limits of each quality indicator as qPk and qPk , correspondingly. Consequently,
problem statement under interval uncertainty results.

To solve such problems, there are specially developed methods of solving the
interval linear programming [11], as well as the methods of the interval global
optimization [12].

The advantage of interval approach is the possibility to reduce the nondeter-
ministic problem to solving a pair of the corresponding deterministic problems
(lower boundary problem and upper boundary problem), in which uncertain
parameters are determined by the lower and upper boundaries of each of them.
The peculiarity of the method is that the solution result is presented in the same
form as the uncertain parameters, that is, in the form of the intervals for possible
values. The disadvantage of the interval approach to the optimization problem
is the possible insolubility of the lower and/or upper boundary problem.

Let us construct the lower and upper boundary problems for tasks (1)–(5),
replacing the parameters qPk in constraint (5) with the corresponding values qPk

and qPk , k = 1, ..., g.
The lower boundary problem for (1)–(5) is one in which target function (1)

and constraints (2)–(4) remain the same, while constraints (5) are replaced by
the constraints of the form:

n∑

i=1

r∑

j=1

qjkixij =
(
V P + V E

)
qPk − V EqEk , k = 1, ..., g. (6)

Its solution will be denoted by X.
The upper boundary problem for (1)–(5), correspondingly, is one in which

target function (1) and constraints (2)–(4) remain the same, while constraints
(5) are replaced by the constraints of the form:

n∑

i=1

r∑

j=1

qjkixij =
(
V P + V E

)
qPk − V EqEk , k = 1, ..., g. (7)

Its solution will be denoted by X.
In the conducted numerical experiments, the sets of the parameters providing

the solvability of the boundary problems were formed. Table 1 shows an exam-
ple of this set of parameters qPk and qPk , k = 1, ..., g, for the upper and lower
boundary problems. The initial data were taken from the laboratory system of
the enterprise. In this experiment the number of quality indicators is equal to 4,
the number of the components involved in blending is 5, and the number of the
component tanks is equal to 5. Table 2 provides the solutions X and X for the
corresponding upper and lower boundary problems. The solutions set the inter-
vals

[
xij , xij

]
for the solutions xij of the initial task (1)–(5) under the conditions

of interval uncertainty.
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Table 1. Lower and upper boundary problem.

k Quality indicator The lower boundary The upper boundary

1 Octane number (research method) 99 101

2 Density 0,73 0,75

3 Mass fraction of sulphur 3,87 3,94

4 Volume fraction of benzene 0,31 0,32

Table 2. Solutions X and X for both upper and lower boundary problems.

xij The available amount The lower problem The upper problem

x11 69 1,1 23,5

x22 780,5 148,6 325,3

x33 1391,7 519,2 171,7

x44 37,5 37,5 37,5

x55 ∞ 63,6 212

4 Interval Approach to Controversial Problem

Problem (1)–(5) is a convex quadratic programming problem: constraints (2)–(5)
are given by linear functions, the Hesse matrix of target function (1) is positively
semidefinite (which, due to the sufficient convexity condition, provides the con-
vexity of the target function). In the deterministic statement, in the case of the
consistency of the constraints, this problem has an optimal solution. Indeed,
constraints (2) provide compactness of tolerance region (2)–(5), hence quadratic
programming problem (1)–(5) has an optimal solution under the compatibility
of constraint system (2)–(5).

The production process and the calendar task provide the consistency of
constraint (3) by the required amount of the end product and interval constraints
(4) by the capacity for the pumping units with constraints (2) by filling the
component tanks. Therefore, constraints (2)–(4) are consistent and specify a
non-empty compact domain. Let us denote this set D.

Interval constraints (5) (or (6) and (7) for the lower and upper boundary
problems, respectively) depend on the set of the quality indicators values qPk , k =
1, ..., g, and at the boundary values qPk and qPk , k = 1, ..., g, constraints (5) (or
(6), or (7), respectively) may be incompatible with the compact set D specified
by the set constraints (2)–(4).

To determine the boundary values qPk and qPk ensuring the solvability of the
upper and lower boundary problems, respectively, let us note the following two
problems.
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Table 3. Boundary value sets providing the solvability of the lower and upper boundary
problems.

k Quality indicator The lower boundary The upper boundary

1 Octane number (research method) 97,168 106,36

2 Density 0,68 0,83

3 Mass fraction of sulphur 3,41 3,83

4 Volume fraction of benzene 0,28 0,35

Table 4. Solutions X and X to both upper and lower solvable boundary problems.

xij The available amount The lower problem The upper problem

x11 69 0 64,3

x22 780,5 0 689,2

x33 1391,7 275,5 0

x44 37,5 0 16,4

x55 ∞ 494,5 0

Problem 1 (for the lower boundary problem):

g∑

k=1

αkq
P
k → min. (8)

under the constraints (2), (3), (4), (6), qPk ≥ 0, k = 1, ..., g.

Problem 2 (for the upper boundary problem):

g∑

k=1

αkqPk → max. (9)

under the constraints (2), (3), (4), (7), qPk ≥ 0, k = 1, ..., g.

Problems 1 and 2 are linear optimization problems. Optimized unknown
parameters in these problems are sets of the boundary values qPk and qPk , respec-
tively. The coefficients in the linear objective functions (8) and (9) are αk ≥ 0 and
αk ≥ 0 and they set the weight value (normalization) of the desired parameters
qPk and qPk , respectively.

Table 3 provides the results of the numerical experiments for Problems 1 and
2. The sets of the boundary values qPk and qPk , providing the solvability of the
lower and upper boundary problems, respectively, are obtained. Table 4 gives
the solutions X and X for the corresponding solvable lower and upper boundary
tasks. These solutions determine the tolerance intervals

[
xij , xij

]
ensuring the

solvability for the solutions xij of the initial tasks (1)–(5). These values can be
recommended to form the dispatch schedule.
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5 Conclusion

The article studies mathematical models of a petroleum refinery. The problem
of finding an optimal ratio for the components from the tanks to obtain the
oil product of required amount and quality has been considered. The result
of the work is the developed approaches to calculating the boundary values of
the end product quality indicators at filling the tanks in the case when the
production process of the petroleum refining includes no measurement of the
quality indicators values. The scientific significance of the article lies in the use
of mathematical modelling apparatus under uncertainty and inconsistency to
construct mathematical models for optimizing a petroleum refinery. Numerical
studies of the constructed models are of practical importance: a set of calculated
boundary values for the quality indicators of the end product provides solvability,
and hence the guarantee of the practical feasibility of the production process
under the specified parameters.
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