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Preface

This volume, edited by Yaroslav D. Sergeyev and Dmitri E. Kvasov, contains selected
peer-reviewed papers from the Third Triennial International Conference and Summer
School on Numerical Computations: Theory and Algorithms (NUMTA 2019) held in
Le Castella — Isola Capo Rizzuto (Crotone), Italy, during June 15-21, 2019.
The NUMTA 2019 conference has continued the previous successful editions of
NUMTA that took place in 2013 and 2016 in Italy in the beautiful Calabria region.

NUMTA 2019 was organized by the University of Calabria, Department of Com-
puter Engineering, Modeling, Electronics and Systems Science, Italy, in cooperation
with the Society for Industrial and Applied Mathematics (SIAM), USA. This edition
had the high patronage of the municipality of Crotone — the city of Pythagoras and his
followers, the Pythagoreans. In fact, Pythagoras established the first Pythagorean
community in this city in the 6th century B.C. It was a very special feeling for the
participants of NUMTA 2019 to visit these holy, for any mathematician, places with a
conference dedicated to numerical mathematics.

The goal of the NUMTA series of conferences is to create a multidisciplinary round
table for an open discussion on numerical modeling nature by using traditional and
emerging computational paradigms. Participants of the NUMTA 2019 conference
discussed multiple aspects of numerical computations and modeling starting from
foundations and philosophy of mathematics and computer science to advanced
numerical techniques. New technological challenges and fundamental ideas from
theoretical computer science, machine learning, linguistic, logic, set theory, and phi-
losophy met the requirements, as well as fresh, new applications from physics,
chemistry, biology, and economy.

Researchers from both theoretical and applied sciences were invited to use this
excellent opportunity to exchange ideas with leading scientists from different research
fields. Papers discussing new computational paradigms, relations with foundations of
mathematics, and their impact on natural sciences were particularly solicited. Special
attention during the conference was dedicated to numerical optimization techniques
and a variety of issues related to the theory and practice of the usage of infinities and
infinitesimals in numerical computations. In particular, there were a substantial number
of talks dedicated to a new promising methodology allowing one to execute numerical
computations with finite, infinite, and infinitesimal numbers on a new type of a
computational device — the Infinity Computer patented in the EU, Russia, and the USA.

This edition of the NUMTA conference was dedicated to the 80th birthday of
Professor Roman Strongin. For the past 50 years Roman Strongin has been a leader and
an innovator in Global Optimization, an important field of Numerical Analysis having
numerous real-life applications. His book on Global Optimization, published in 1978,
was one of the first in the world on this subject. Now it is a classic and has been used by
many as their first introduction and continued inspiration for Global Optimization.
Since that time, Roman has published numerous books and more than 400 papers in
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several scientific fields and has been rewarded with many national and international
honors including the President of the Russian Federation Prize. For decades Roman
served as Dean, First Vice-Rector, and Rector of the famous Lobachevsky State
University of Nizhny Novgorod. Since 2008 he has been President of this university.
He is also Chairman of the Council of Presidents of Russian Universities,
Vice-President of the Union of the Rectors of Russian Universities, and Chairman
of the Public Chamber of the Nizhny Novgorod Region.

We are proud to inform you that 200 researchers from the following 30 countries
participated at the NUMTA 2019 conference: Argentina, Bulgaria, Canada, China,
Czech Republic, Estonia, Finland, France, Germany, Greece, India, Iran, Italy, Japan,
Kazakhstan, Latvia, Lithuania, the Netherlands, Philippines, Portugal, Romania,
Russia, Saudi Arabia, South Korea, Spain, Switzerland, Thailand, Ukraine, the UK,
and the USA.

The following plenary lecturers shared their achievements with the NUMTA 2019
participants:

e Louis D’Alotto, USA: “Infinite games on finite graphs using Grossone”

e Renato De Leone, Italy: “Recent advances on the use of Grossone in optimization
and regularization problems”

e Kalyanmoy Deb, USA: “Karush-Kuhn-Tucker proximity measure for convergence
of real-parameter single and multi-criterion optimization”

e Luca Formaggia, Italy: “Numerical modeling of flow in fractured porous media and
fault reactivation”

e Jan Hesthaven, Switzerland: “Precision algorithms”

e Francesca Mazzia, Italy: “Numerical differentiation on the Infinity Computer and
applications for solving ODEs and approximating functions”

e Michael Vrahatis, Greece: “Generalizations of the intermediate value theorem for
approximations of fixed points and zeroes of continuous functions”

e Anatoly Zhigljavsky, UK: “Uniformly distributed sequences and space-filling”

Moreover, the following tutorials were presented during the conference:

e Roberto Natalini, Italy: “Vector kinetic approximations to fluid-dynamics
equations”

e Yaroslav Sergeyev, Italy and Russia: “Grossone-based Infinity Computing with
numerical infinities and infinitesimals”

e Vassili Toropov, UK: “Design optimization techniques for industrial applications:
Challenges and progress”

These proceedings of NUMTA 2019 consist of two volumes: Part I and Part II. The
book you have in your hands is the second part containing peer-reviewed papers
chosen from the general stream, plenary lectures, and small special sessions of
NUMTA 2019. Papers carefully selected from big special streams and sessions held
during the conference have been collected in the Part I of the NUMTA 2019
proceedings.
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This volume contains 19 long papers and 32 short papers that were accepted for
publication after a thorough peer review process (required up to three review rounds for
some manuscripts) by the members of the NUMTA 2019 Program Committee and
independent reviewers. This volume also contains the paper of the winner (Lorenzo
Fiaschi, Pisa, Italy) of the Springer Young Researcher Prize for the best NUMTA 2019
presentation made by a young scientist. The support of the Springer LNCS editorial
staff and the sponsorship of the Young Researcher Prize by Springer are greatly
appreciated.

The editors express their gratitude to institutions that have offered their generous
support to the international conference NUMTA 2019. This support was essential for
the success of this event:

— University of Calabria (Italy)

— Department of Computer Engineering, Modeling, Electronics and Systems Science
of the University of Calabria (Italy)

— Ttalian National Group for Scientific Computation of the National Institute for
Advanced Mathematics F. Severi (Italy)

— Institute of High Performance Computing and Networking of the National Research
Council (Italy)

— International Association for Mathematics and Computers in Simulation

— International Society of Global Optimization

The editors thank all the participants for their dedication to the success of NUMTA
2019 and are grateful to the reviewers for their valuable work. Many thanks go to Maria
Chiara Nasso from the University of Calabria, Italy, for her kind support in the tech-
nical editing of this volume.

The next Triennial International Conference and Summer School NUMTA
“Numerical Computations: Theory and Algorithms” will take place in 2022 in Italy.
The editors of this volume, who are chairs of the NUMTA Scientific and Organizing
Committees, respectively, invite all the participants of NUMTA 2019, and readers of
this book, to submit their high-quality results to the next edition of this wonderful
event.

October 2019 Yaroslav D. Sergeyev
Dmitri E. Kvasov
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Abstract. The use of detailed chemical mechanisms is becoming increas-
ingly necessary during the actual transition of energy production from
fossil to renewable fuels. Indeed, the modern renewable fuels are charac-
terized by a composition more complex than traditional fossil fuels due to
the variability of the properties of the primary source, i.e. biomass. The
parametric continuation can be a formidable tool to study the behavior of
these new fuels allowing to promptly assess equilibrium conditions vary-
ing the main operative parameters. However, parametric continuation is
a very computationally demanding procedure, both for the number of ele-
mentary operations needed and for the memory requirements. Actually,
only very recently some approaches that allow affording this computation
with chemical mechanisms composed of hundreds of chemical species and
thousands of reactions have been proposed [1,2,37]. Starting from the pro-
cedure presented in [1], this paper illustrates further improvements of key
steps that usually represents a bottleneck for the effective computation of
parametric continuations and for the identification of bifurcation points.

Keywords: Bifurcation of combustion systems - Parametric
continuation - Detailed mechanisms
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Cp constant pressure specific heat, J kg71 K1
h mass specific enthalpy, J kg_1
N number of chemical species
N, number of non zero element in a matrix
r net production rate, kmols~!
T temperature, K
t time, s
1% volume of the reactor, m?
W molecular weight, kg kmol ™
Y mass fraction
Subscripts
F Fold Bifurcation
f feed conditions
H Hopf Bifurcation
j species index

1 Introduction

The increasing energy needs and the current environmental challenges (such
as actions to contrast the climate change and reduce pollutant emissions) are
driving the growth of the demand for low-carbon (alternative to petroleum)
fuels [10]. Bio-fuels are one of the most promising low-carbon energy source,
but many aspects of these fuels must be deepened ranging from the economic
and environmental impact of their production (f.i. the annual greenhouse gas
reductions that can be obtained depends on how they are produced) [10,44] and
combustion aspects such as ignition, oxidation, and pollutant emissions [44].
Computer simulations and chemical kinetic studies alongside experiments are
fundamental tools to carry out investigations on these combustion aspects [44].

Particularly, the studies of the combustion processes in a Perfectly Stirred
Reactor (PSR) are important topics in chemical kinetic because they are frequently
employed to develop reliable kinetics mechanisms or model fuels (e.g. [23,30,43]),
and to validate reduced kinetic mechanisms (e.g. [3,20,24-27,37,42]). The bifurca-
tion analysis and the parametric continuation technique are the tools of choice for
studying the dynamical behavior of these chemical reactive systems because they
permit to understand the phenomenology of combustion chemistry and to iden-
tify reactor instabilities, multiple steady-states and optimum operating conditions
[20,22].

These analysis tools are very popular since the pioneering work of Uppal,
Ray and Poore [40,41]. Consequently, they are widely discussed in the scientific
literature [5,14,15,21,35] and several parametric continuation and bifurcation
analysis software are available such as AUTO [9] and MATCONT [8].
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However, despite the popularity, these tools are rarely applied to systems
involving large detailed chemical mechanisms (consisting of hundreds of species
and thousands of reactions) because of the computational complexity and effort
that arise in these models [1,22]. Indeed, in the past, complete bifurcation anal-
yses (both bifurcation curves and bifurcation points are computed) have been
successfully conducted only for some elementary fuels like hydrogen [17,31] or
methane (31 species and 177 reactions) [32,33] by using ad-hoc software for ther-
modynamic, transport and kinetic data. Only in the past few years, some signif-
icant progress have been made. Shan and Lu [36] presented a bifurcation analy-
sis tool based on computer code that automatically generate mechanism-specific
subroutines for analytical Jacobian evaluation from mechanisms described in
CHEMKIN format, and its application to the bifurcation analysis of methane
(53 species and 325 reactions), DME (55 species and 290 reactions) combustion
in PSR [36,37]. Acampora and coworkers developed a very efficient parametric
continuation and bifurcation analysis module (rely on the fully numerical eval-
uation of the Jacobians) able to compute one-parameter bifurcation curves and
identifying Fold and Hopf bifurcation points starting from a classical predictor-
corrector continuation algorithm [1,4]. Some basic elements of this module have
been specifically designed to overcome the difficulties in dealing with reaction
mechanisms with several hundreds of species and thousands of chemical reactions
[1]. Cantera [13] libraries have been integrated into the module for the manage-
ment of kinetic, thermodynamic and transport data. The algorithm was applied
to the study of methane (53 species and 325 reactions), Jet-A (482 species and
19,072 reactions) [1] and n-dodecane (451 species and 17,848) [3] combustion
in a PSR. Kooshkbaghy et al. [20] have obtained a tool able to compute both
one-parameter and two-parameter bifurcation curves by coupling AUTO-07p [9]
and Chemkin [18]. It was used to the study of n-heptane oxidation describer by
using a reduced mechanism consisting of 149 species in 669 reactions.

Despite, all of these significant achievements, there are also still aspects that
must be deepened in this topic. Particularly, the detection of bifurcation points
appears to be crucial. Therefore, the present work discusses possible improve-
ments on the formulation of the test functions for the identification of saddle-
node bifurcation points starting from the approach proposed in [1,4], Then, the
proposed tool was applied to the complete bifurcation analysis of three different
reaction mechanisms, with increasing number of species and reactions in order
to illustrate the improvements suggested.

2 Mathematical Problem Setup

The problem that must be faced in this paper consists of the complete bifurca-
tion analysis of a combustion process (modelled by using large detailed reaction
mechanisms) in a PSR. The governing equations of an unsteady adiabatic con-
stant pressure and constant volume PSR can be written as [11]:
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ﬁfyj,f—YjJer

= j=1,2,...,Ng 1
dt T pV IR (1)
N
ar _ 3 Yjg(hjg —hi)  hiWir; 2)
dt cpT pPVep

j=1
The system of Eqgs. 1-2 can be recast in the form:

dx

dt
where x = [Y7,...,Yn,,T] is the state vector, f is the right-hand side of the
system given by Eqs. (1-2) and « is a system parameter (e.g. residence time,
pressure, temperature of feeding reactant mixture, etc.).

The bifurcation analysis of the system Eq. (3) consists of determining the
steady state solutions (equilibrium points or simply the equilibria) as function of
the parameter « and locating the bifurcation points, i.e. the equilibria in which
qualitative changes in the dynamics of the system occur (for further details
see [21]).

Computing equilibria is equivalent to find the curve, called equilibrium curve,
implicitly defined by:

=f(x,a) (3)

F(X)=0, F:R"™ R" (4)

with n = Ng + 1, X = (x,a) and F (X) = f(x, a).
The Eq. (4) is an example of an algebraic continuation problem. Its numerical
solution is a sequence of points:

X1, Xa,. .., (5)

approximating the equilibrium curve with desired accuracy [21]. This sequence
starts from a known equilibrium point that can be found at some fixed parameter
value by numerical integration. This continuation problem is solved by adopting
the predictor-corrector (PCM) method introduced in [1,4]:

X predictor corrector
9

Xit1 Xit1

However, Eq. (4) does not define a well-posed mathematical problem because
the number of equations is lower than the number of the unknowns. Therefore,
an extra scalar equation is appended to the system (4) in order to obtain a
well-posed problem:

=0 (6)

p(X)

p represents the equation of a hyperplane passing through Xi+1 that is orthog-
onal to the normalized vector v; tangent to the equilibrium curve in the point
X, [19,21]: i

(X = Xiq1,vi) =0 (7)
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Locating the bifurcation points is addressed by studying the eigenvalues A =
a + b of the Jacobian matrix:

_ of (x, @)

Tt ox

(8)

For system (3) only two different bifurcations can be detected: the Fold bifur-
cation also knows as Saddle-Node bifurcation or Turning Point, associated with
the existence of a null eigenvalue and the Hopf (also known as Andronov-Hopf)
bifurcation, corresponding to the presence of a pair of purely imaginary eigen-
values [21].

The ordinary approach adopted to detect these bifurcations is based on the
monitoring of two functions, one for Fold and one for Hopf bifurcation [35], called
test functions (1)), defined in such a way as to change sign across the bifurcation
point [14].

3 Test Functions

The choice of the test functions is the main topic of this work. They can be
simply formulated based on the definition of the bifurcation points [21,35] to be
zero when:

— a real eigenvalue is zero - Fold:

— a pair of eigenvalues is purely complex - Hopf:

vr(X)= [ uX)+X(X) (10)

1<i<j<n

To avoid to directly deal with the eigenvalues of the Jacobian matrix Eq. (8),
these functions are usually rewritten by considering that the product of the eigen-
values of a matrix is equal to its determinant [12] and the Stéphanos theorem [21]:

Yr(X) = det(J¢(X)) (11)

where I is the identity matrix and ® is the symbol of the bialternate matriz
product (for further details see [14]).
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This form of the test functions Eqgs. (11)—(12) is popular but it is not imme-
diately suitable for the problem at hand. Indeed, as it is discussed in [1], two
issues can arise when large reaction mechanisms are adopted. First of all, in
both test functions the determinant may be too large to be represented by
conventional floating-point values (overflow). Furthermore, the test function
Eq. (12) introduces a limit on the number of species in the reaction mechanism
because the resulting matrix of the bialternate product, a square matrix with
size m = in(n — 1) and N,,. = O(n®) nonzero elements [14] (n = N, + 1), may
require more memory than available to be stored. For instance, using Matlab in
a 64-bit system environment, (8 + 8)N,. + 8(m + 1) bytes are needed to store
this matrix in memory as sparse while only 8n? bytes are required to store the
matrix J¢ in memory as dense.

Despite the first issue can be faced by rescaling the elements of the Jacobian
matrix, the most effective approach to overcome both issues is to introduce new
test functions.

The test function for the fold bifurcation Eq. (11) can be rewritten by con-

sidering the LUP decomposition of the Jacobian matrix J¢ = P~!LU, as:
b (X) = (=1)°" [ J ua (13)
i=1

Indeed, it results that:

— det(P~!) = (—1)%, where s is the number of row permutations performed
during LUP factorization;

— det(L) = 1 if the Doolittle’s factorization algorithm [34] is adopted;

— det(U) = [[;, wsi, being det(U) a upper triangular matrix (u;; are the diag-
onal elements of the matrix U).

Since a bifurcation point is detected if:

P(Xi) Y(Xiy1) <0 (14)

only the sign of the test function is important. To locate the bifurcation point
with the desired accuracy, the procedure suggested in [1] is considered. Therefore,
the test function Eq. (13) can be modified as suggested in [2,35]:

Yr (X) = (=1)° H sign(u;;) (15)

The procedure to compute this test function is described in Algorithm 1. The
pseudocode is written by following the conventions reported in [6]. The matrix
operations are not explicitly described by for cycles but they have interpretations
similar to those in Matlab.
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Algorithm 1. Test function for Fold bifurcations based on LUP decomposition
1: procedure sGNDETLUP(A)

2: n «— rows[A]

3: sgndet — 1

4: fori—1ton—1do

5: cp—1

6: ndx < FINDMAX(ABS(A[i..n, ]))

T if ndr # 1 then

8: cp — —1

9: pivot — Ali,i..n]

10: Aliyi.n] — Alndx + (i — 1),i..n]
11: Alndz + (i — 1),i..n] < pivot
12: end if

13: je—i+1

14: AV — Alj..n,i| /A3, 1]

15: Alj..n, j.n] — A[j..n,j.n] — AV - A[i, j..n]
16: sgndet — sgndet - cp- SGN(A[, 1))

17: end for

18: sgndet < sgndet- SGN(A[n, n])
19: return sgndet

20: end procedure

In the Algorithm 1, FINDMAX, ABS and SGN are the functions used to find the
index of the greatest values in a vector, the absolute value and the sign function,
respectively.

As suggested by [16] to mitigate the memory requirements of the test func-
tions for computing Hopf bifurcations (Eq. 12), it is possible to exploit the spar-
sity pattern of the bialternate product matrix. The pattern of the bialternate
product matrix obtained by considering the reduction of J¢ to Hessenberg form
appears particularly interesting to this purpose (see Fig. 1) [16].

The structure in Fig. 1 is exploited to compute directly the sign of the deter-
minant of the bialternate product matrix in Eq. (12) without needing to store
in memory the whole matrix. The procedure here proposed is described in
Algorithm 2, where the functions HESS, SQRT and FINDMIN are used for: com-
puting the Hessenberg form of the input matrix, for computing the square root
and for finding the index of the lowest value in a vector, respectively. NZSDH
finds the row index of the non-zero element below the first sub-diagonal of the
bialternate product matrix (see Fig.1). From the pattern in Fig. 1 it is deduced
that the index of the row containing this element of the matrix follows the
numerical sequence defined in [38] (2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16 ...).
PERSEQ(%, p) is a procedure based on the numerical sequence defined in [39] that
returns the element i-th of the simple periodic sequence with period p (formula
x = 1+ mod(i,p)). The function BPROD2AI is described in the Algorithm 3.
In the Algorithm 3, the function ROUND rounds to nearest decimal or integer
and the function TIMES performs the element-wise multiplication (Hadamard
product).
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Algorithm 2. Test function for Hopf bifurcations based on LUP decomposition

1: procedure SGNDETBALUP(A)

2: H «— HESS(A)

3 nH «— rows[H]

4: nBH «— nH - (nH —1)/2

5: Ak «— BPROD2AI(H,1,1.nBH)
6.

7

8

9

nzv < NzspH((1,2,...,nBH — 1))
maaxd < FINDMIN(ABS(nzv — nBH))
Mnr «— nzv[mazd] — mazd
Allocate rectangular matrix M of size Mnr x nBH
10: nrr «— 0
11: nfr«—1
12: ndznz_old «— 0
13: sgndet +— 1
14: for k — 1tonBH —1do

15: cp—1

16: ndxbnda «— MAX((k + 1, ndznza-old + 1))

17: nzr «— MIN((nzv[k],nBHY))

18: ndxbndb «— MAX((k + 1,nzr))

19: if ndrbnda < ndzxbndb then

20: Akadd < BPROD2AI(H, ndzbnda : ndxbndb, k : nBH)

21: nr_ad «— rows[Akadd]

22: vec — (nfr —mnrr,...,nfr +nr.ad — 1)

23: nfr «— nfr 4+ nr_ad

24: insrows < PERSEQ(vec[nrr + 1..length(vec)] — 1, Mnr)

25: subM [insrows, k.nBH| = Akadd

26: nrr «— nrr + nr-ad

27: ndxznza_old «— ndxbndb

28: else

29: vec «— (nfr —nrr,...,nfr — 1)

30: end if

31: actrows < PERSEQ(vec — 1, Mnr)

32: Ap — (Ak[1], M[actrows, k])

33: ndzp < FINDMAX(ABS(Ap))

34: if ndzp # 1 then

35: cp — —1

36: pivot «— Ak

37: Ak — Mlactrows[ndzp — 1], k..nBH]

38: Mlactrows[ndzp — 1), k.nBH] « pivot

39: end if

40: if Ak[1] # 0 then

41: MM — Mlactrows, k]/Ak[1]

42: ndxnz < FINDNONZERO(AK)

43: Mlactrows,k + ndxnz — 1] «— Mlactrows,k + ndznz — 1] — MM -
Ak[1..length(Ak), ndznz]

44: end if

45: sgndet «— sgndet - cp- SGN(AK[1])

46: Ak — Mactrows|1],k + 1..length(M)]

47: nrr «— nrr — 1

48: end for

49: sgndet «— sgndet- SGN(Ak)
50: return sgndet

51: end procedure
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nz = 477

Fig. 1. Sparsity pattern in the bialternate product matrix produced by the Hessenberg
form of a dense square matrix of dimension n = 10.

Algorithm 3. Compute the bialternate matrix product 2A ® I

1: procedure BPROD2AI(H,r,c)
2: A—2-H
Define I Identity matrix of the same size of A
1 <~ ROUND(SQRT(2 - 1) + 1)
k —r—TMES((i — 2), (s — 1)/2)
Jj < ROUND(SQRT(2 - ¢) + 1)
l—c—rmMEs((j —2),(j —1)/2)
cre — (TIMES(A[i, 7], I[k,1]) — TIMES(A[Z, 1], Ik, j]) + TIMES(I[4, j], Alk,1]) —
TIMES(I[4,1], Ak, 7]))/2
9: end procedure

The proposed method reduces drastically the memory requirement of the
test function Eq. 12. For example, a Jacobian matrix of size 812 leads to a mem-
ory requirement to store the result of the bialternate product of about 8 GB
(storing it as a sparse matrix) while it requires only 2 GB if the test function
Eq. 12 is computed by using the Algorithm 2. Despite this remarkable result,
this approach is not effective in terms of CPU cost.

To find a computationally attractive algorithm in terms of computational
cost for chemical systems involving large detailed reaction mechanisms, it is
needed to exploit the eigenvalues. Therefore, a different Hopf test function can
be defined as done in [1]:

va(X) =[] sign(N(X) + (X)) (16)

1<i<j<n

The test function Eq. 16 force to compute the eigenvalues of the Jacobian
matrix but it has low memory requirements (only the vector containing the
eigenvalues must be stored in addition to the Jacobian matrix) and it has
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better performance in terms of CPU cost as shown in [1]. In Fig.2 is reported
a comparison between the Algorithm 2 and the test function Eq. 16. The tests
are conducted on random generated dense matrices in Matlab computing envi-
ronment by adopting a laptop PC with an Intel i7-8550U with 16 GB of RAM
memory. All the results are obtained by averaging the results coming from 10
runs of the code in the same conditions.

102 " " "
o Algorithm 2 o ©°
o Eq.16 o °

10"F °

CPU times [s]
G
EN o
o
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o
N

-
o

&
<

<

N
o
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50 100 150 200
Matrix dimension

o

Fig. 2. CPU times (in seconds) required for computing Hopf test function by using
Algorithm 2 and Eq. 16.

The results reported in Fig. 2 clearly show that the function based on Eq. 16
increase significantly the performance of the bifurcation analysis. A further
advantage of this approach is that the same eigenvalues can be promptly adopted
for the location of the Fold bifurcations [1]:

dr(X) = [ [ sign(hi(X)) (17)
=1

4 Study Case

This study case consists in the computation and analysis of the equilibrium
curve, the stability of equilibrium points and the bifurcation behavior of a stoi-
chiometric premixed n-heptane/air mixture in PSR (Egs. 1 and 2). This case was
similar to that studied by Kooshkbaghi et al. [20] but in their paper the authors
performed the location of bifurcation point only by using a reduced reaction
mechanism. Therefore, the purpose of this study is to demonstrate the ability of
the algorithm to deal with a reaction mechanism with hundreds of species and
thousands of reactions.
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The chemical kinetic mechanism for the study of the oxidation of n-heptane in
flow reactors, shock tubes and rapid compression machines developed by Curran
et al. [7,28,29] (Version 3) is used in order to stress the method in conditions
relevant for practical applications. This mechanism consists of 654 species and
2827 reactions.

The residence time is chosen as the bifurcation parameter. The reactor oper-
ates at 1013250 Pa (10 atm) and it is fed with a fuel-air mixture at 700 K. Air
is defined as 21% Oy and 79% Ns. The complete analysis is obtained in about
31 min of execution time on the same laptop described in the previous paragraph
and the results are reported in Fig. 3.

2600

2400 800 C—1
2200 o
780 o
2000 /,’
- \ — /
% 1800 —— Stable Branch % 760 / ——Stable Branch
g 1600 ——-Unstable Branch “§ % ——-Unstable Branch
E ~ © Hopf Bifucations g \ © Hopf Bifucations
% 1400 \\ o Fold Bifucations §740 \ \ o Fold Bifucations
= . = \
1200 \ \
\ 720 AN
1000 \
D \
800 6—0/) 70—
2>
600
10 107 1072 10° 1 2 3 4 5
Residence Time [s] Residence Time [s] x107

Fig. 3. Reactor temperature versus residence time. The dashed lines identify the unsta-
ble branches. The plot on the right is a magnification of the region of first ignition.

The bifurcation diagram in figure Fig. 3 shows three stable branches: a weakly
or non-reacting branch, a cool flame branch, and a strongly burning branch. The
cool flame branch is typical of hydrocarbons displaying multi-stage ignitions and
the Negative Temperature Coefficient (NTC) regime [20]. This branch is broken
by an unstable branch between two Hopf bifurcations revealing the existence of
oscillatory states. Similar results are reported in [20] for the pressure of 101325
Pa (1 atm).

5 Conclusions

This work deepens some aspects of locating the bifurcation points in systems
of equations arising from the adoption of large, detailed chemical mechanisms.
It introduces a new algorithm able to reduce the memory requirement of the
bialternate product matrix by exploiting the sparse structure of this matrix.
However, it is shown that the execution time of this algorithm is not affordable
when it is adopted repetitively in the analysis of equilibrium points. Instead, by
dealing with the direct evaluation of eigenvalues when a large detailed reaction
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mechanism is considered becomes effective both in terms of computational effort
and memory requirements. Finally, the bifurcation analysis method proposed is
used to study the bifurcation behavior of a n-heptane/air mixture in a PSR with
an entire detailed mechanism, demonstrating the effectiveness of the approach.

References

10.

11.

12.

13.

14.

15.

. Acampora, L., Marra, F.: Numerical strategies for the bifurcation analysis of per-

fectly stirred reactors with detailed combustion mechanisms. Comput. Chem. Eng.
82, 273-282 (2015). https://doi.org/10.1016/j.compchemeng.2015.07.008
Acampora, L., Marra, F.: Numerical strategies for detection of bifurcation points
in the parametric continuation of model reactors with detailed chemical mecha-
nisms. In: AIP Conference Proceedings, vol. 1906 (2017). https://doi.org/10.1063/
1.5012382

Acampora, L., Kooshkbaghi, M., Frouzakis, C.E., Marra, F.S.: Generalized entropy
production analysis for mechanism reduction. Combust. Theory Model. 23(2), 197—
209 (2019). https://doi.org/10.1080/13647830.2018.1504990

. Acampora, L., Mancusi, E., Marra, F.S.: Bifurcation analysis of perfectly stirred

reactors with large reaction mechanisms. Chem. Eng. Trans. 43, 877-882 (2015)
Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2003)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction To Algorithms.
The MIT Press, Cambridge (2001)

Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling
study of n-heptane oxidation. Combust. Flame 114(1-2), 149-177 (1998). https://
doi.org/10.1016,/S0010-2180(97)00282-4

. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for

numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141-164
(2003). https://doi.org/10.1145/779359.779362

Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of
autonomous systems. Congr. Numer. 30, 265-284 (1981)

Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P.: Land clearing and
the biofuel carbon debt. Science 319(5867), 1235-1238 (2008). https://doi.org/10.
1126 /science.1152747

Glarborg, P., Miller, J.A., Kee, R.J.: Kinetic modeling and sensitivity analysis of
nitrogen oxide formation in well-stirred reactors. Combust. Flame 65(2), 177-202
(1986). https://doi.org/10.1016/0010-2180(86)90018-0

Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)
Goodwin, D.G.: An open-source, extensible software suite for CVD process simu-
lation. In: Allendorf, M., Maury, F., Teyssandier, F. (eds.) Chemical Vapor Depo-
sition XVI and EUROCVD 14, vol. 2003-08, pp. 155-162. The Electrochemical
Society ECS, Pennington (2003)

Govaerts, W.: Numerical bifurcation analysis for ODEs. J. Comput. Appl. Math.
125(1-2), 57-68 (2000). https://doi.org/10.1016/S0377-0427(00)00458- 1
Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of bifurcations
of limit cycles in MATLAB. SIAM J. Sci. Comput. 27(1), 231-252 (2005). https://
doi.org/10.1137/030600746


https://doi.org/10.1016/j.compchemeng.2015.07.008
https://doi.org/10.1063/1.5012382
https://doi.org/10.1063/1.5012382
https://doi.org/10.1080/13647830.2018.1504990
https://doi.org/10.1016/S0010-2180(97)00282-4
https://doi.org/10.1016/S0010-2180(97)00282-4
https://doi.org/10.1145/779359.779362
https://doi.org/10.1126/science.1152747
https://doi.org/10.1126/science.1152747
https://doi.org/10.1016/0010-2180(86)90018-0
https://doi.org/10.1016/S0377-0427(00)00458-1
https://doi.org/10.1137/030600746
https://doi.org/10.1137/030600746

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Parametric Continuation of Combustion with Detailed Mechanisms 15

Guckenheimer, J., Myers, M., Sturmfels, B.: Computing hopf bifurcations I. STAM
J. Numer. Anal. 34(1), 1-21 (1997)

Kalamatianos, S., Vlachos, D.G.: Bifurcation behavior of premixed hydrogen/air
mixtures in a continuous stirred tank reactor. Combust. Sci. Technol. 109(1-6),
347-371 (1995). https://doi.org/10.1080,/00102209508951909

Kee, R.J., Rupley, F.M., Meeks, E., Miller, J.A.: CHEMKIN-III: a FORTRAN
chemical kinetics package for the analysis of gas-phase chemical and plasma kinet-
ics. Technical report, SAND-96-8216, Sandia National Laboratories (1996)
Keller, H.: Lectures on Numerical Methods in Bifurcation Problems. Lectures on
Mathematics and Physics. Springer, Berlin (1987). Published for the TATA Insti-
tute of Fundamental Research

Kooshkbaghi, M., Frouzakis, C.E., Boulouchos, K., Karlin, I.V.: n-Heptane/air
combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reac-
tions at critical conditions. Combust. Flame 162(9), 3166-3179 (2015). https://
doi.org/10.1016/j.combustflame.2015.05.002

Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical
Sciences. Springer, Berlin (1998). https://doi.org/10.1007 /98848

Lengyel, 1., West, D.H.: Numerical bifurcation analysis of large-scale detailed kinet-
ics mechanisms. Curr. Opin. Chem. Eng. 21, 41-47 (2018). https://doi.org/10.
1016/j.coche.2018.02.013

Lindstedt, R.P., Maurice, L.Q.: Detailed kinetic modelling of n-Heptane combus-
tion. Combust. Sci. Technol. 107(4-6), 317-353 (1995). https://doi.org/10.1080/
00102209508907810

Lu, T., Ju, Y., Law, C.K.: Complex CSP for chemistry reduction and analy-
sis. Combust. Flame 126(1-2), 1445-1455 (2001). https://doi.org/10.1016 /S0010-
2180(01)00252-8

Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction.
Proc. Combust. Inst. 30(1), 1333-1341 (2005). https://doi.org/10.1016/j.proci.
2004.08.145

Lu, T., Law, C.K.: A criterion based on computational singular perturbation for
the identification of quasi steady state species: a reduced mechanism for methane
oxidation with NO chemistry. Combust. Flame 154(4), 761-774 (2008). https://
doi.org/10.1016/j.combustflame.2008.04.025

Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale
computations. Prog. Energy Combust. Sci. 35(2), 192-215 (2009). https://doi.org/
10.1016/j.pecs.2008.10.002

Mehl, M., Pitz, W.J., Sjoberg, M., Dec, J.E.: Detailed kinetic modeling of low-
temperature heat release for PRF fuels in an HCCI engine.Technical Paper 2009-
01-1806, SAE International, June 2009. https://doi.org/10.4271/2009-01-1806
Mehl, M., Pitz, W.J., Westbrook, C.K., Curran, H.J.: Kinetic modeling of gasoline
surrogate components and mixtures under engine conditions. Proc. Combust. Inst.
33(1), 193-200 (2011). https://doi.org/10.1016/j.proci.2010.05.027

Metcalfe, W.K., Dooley, S., Dryer, F.L.: Comprehensive detailed chemical kinetic
modeling study of toluene oxidation. Energy Fuels 25(11), 4915-4936 (2011).
https://doi.org/10.1021/ef200900g

Olsen, R.J., Vlachos, D.G.: A complete pressure-temperature diagram for air oxi-
dation of hydrogen in a continuous-flow stirred tank reactor. J. Phys. Chem. A
103(40), 7990-7999 (1999). https://doi.org/10.1021/jp991148b

Park, Y.K., Vlachos, D.G.: Isothermal chain-branching, reaction exothermicity, and
transport interactions in the stability of methane/air mixtures*. Combust. Flame
114(1-2), 214-230 (1998). https://doi.org/10.1016/S0010-2180(97)00285-X


https://doi.org/10.1080/00102209508951909
https://doi.org/10.1016/j.combustflame.2015.05.002
https://doi.org/10.1016/j.combustflame.2015.05.002
https://doi.org/10.1007/b98848
https://doi.org/10.1016/j.coche.2018.02.013
https://doi.org/10.1016/j.coche.2018.02.013
https://doi.org/10.1080/00102209508907810
https://doi.org/10.1080/00102209508907810
https://doi.org/10.1016/S0010-2180(01)00252-8
https://doi.org/10.1016/S0010-2180(01)00252-8
https://doi.org/10.1016/j.proci.2004.08.145
https://doi.org/10.1016/j.proci.2004.08.145
https://doi.org/10.1016/j.combustflame.2008.04.025
https://doi.org/10.1016/j.combustflame.2008.04.025
https://doi.org/10.1016/j.pecs.2008.10.002
https://doi.org/10.1016/j.pecs.2008.10.002
https://doi.org/10.4271/2009-01-1806
https://doi.org/10.1016/j.proci.2010.05.027
https://doi.org/10.1021/ef200900q
https://doi.org/10.1021/jp991148b
https://doi.org/10.1016/S0010-2180(97)00285-X

16

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

L. Acampora and F. S. Marra

Park, Y.K., Vlachos, D.G.: Kinetically driven instabilities and selectivities in
methane oxidation. AIChE J. 43(8), 2083-2095 (1997). https://doi.org/10.1002/
aic.690430816

Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied
Mathematics. Springer, New York (2017)

Seydel, R.: Practical Bifurcation and Stability Analysis, Interdisciplinary Applied
Mathematics, vol. 5. Springer, New York (2010). https://doi.org/10.1007/978-1-
4419-1740-9

Shan, R., Lu, T.: Ignition and extinction in perfectly stirred reactors with detailed
chemistry. Combust. Flame 159(6), 20692076 (2012). https://doi.org/10.1016/].
combustflame.2012.01.023

Shan, R., Lu, T.: A bifurcation analysis for limit flame phenomena of DME/air in
perfectly stirred reactors. Combust. Flame 161(7), 1716-1723 (2014). https://doi.
org/10.1016/j.combustflame.2013.12.025

Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). https://oeis.
org/A014132

Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). http://oeis.
org/A010883

Uppal, A., Ray, W.H., Poore, A.B.: On the dynamic behavior of continuous stirred
tank reactors. Chem. Eng. Sci. 29(4), 967-985 (1974). https://doi.org/10.1016/
0009-2509(74)80089-8

Uppal, A., Ray, W.H., Poore, A.B.: The classification of the dynamic behavior of
continuous stirred tank reactors—influence of reactor residence time. Chem. Eng.
Sci. 31(3), 205-214 (1976). https://doi.org/10.1016/0009-2509(76)85058-0
Valorani, M., Creta, F., Goussis, D.A., Lee, J.C., Najm, H.N.: An automatic proce-
dure for the simplification of chemical kinetic mechanisms based on CSP. Combust.
Flame 146(1-2), 29-51 (2006). https://doi.org/10.1016/j.combustflame.2006.03.
011

Westbrook, C.K., Pitz, W.J., Herbinet, O., Curran, H.J., Silke, E.J.: A compre-
hensive detailed chemical kinetic reaction mechanism for combustion of n-alkane
hydrocarbons from n-octane to n-hexadecane. Combust. Flame 156(1), 181-199
(2009). https://doi.org/10.1016/j.combustflame.2008.07.014

Westbrook, C.K., et al.: Detailed chemical kinetic reaction mechanisms for soy and
rapeseed biodiesel fuels. Combust. Flame 158(4), 742-755 (2011). https://doi.org/
10.1016/j.combustflame.2010.10.020


https://doi.org/10.1002/aic.690430816
https://doi.org/10.1002/aic.690430816
https://doi.org/10.1007/978-1-4419-1740-9
https://doi.org/10.1007/978-1-4419-1740-9
https://doi.org/10.1016/j.combustflame.2012.01.023
https://doi.org/10.1016/j.combustflame.2012.01.023
https://doi.org/10.1016/j.combustflame.2013.12.025
https://doi.org/10.1016/j.combustflame.2013.12.025
https://oeis.org/A014132
https://oeis.org/A014132
http://oeis.org/A010883
http://oeis.org/A010883
https://doi.org/10.1016/0009-2509(74)80089-8
https://doi.org/10.1016/0009-2509(74)80089-8
https://doi.org/10.1016/0009-2509(76)85058-0
https://doi.org/10.1016/j.combustflame.2006.03.011
https://doi.org/10.1016/j.combustflame.2006.03.011
https://doi.org/10.1016/j.combustflame.2008.07.014
https://doi.org/10.1016/j.combustflame.2010.10.020
https://doi.org/10.1016/j.combustflame.2010.10.020

®

Check for
updates

Stability Analysis of DESA Optimization
Algorithm

Rizavel C. Addawe!®)@® and Joselito C. Magadia?

! University of the Philippines Baguio, Baguio, Philippines
rcaddawe@up.edu.ph
2 University of the Philippines School of Statistics,
Diliman, Quezon City, Philippines
jcmagadia@up.edu.ph

Abstract. This paper investigates the dynamics of the hybrid evolution-
ary optimization algorithm, Differential Evolution-Simulated Annealing
(DESA) algorithm with the binomial crossover and SA-like selection
operators. A detailed mathematical framework of the operators of the
DESA /rand/1/bin algorithm is provided to characterize the behavior
of the DESA-population system. In DESA, the SA-like selection opera-
tion provides a nonzero probability of accepting a deteriorated solution
that decreases with a sufficient number of generations. This paper shows
that the system defined by the DESA-population is stable. Moreover, the
DESA-population system time constant, learning and momentum rates
are dependent on the value of the crossover constant and the probability
of accepting deterioration in the quality of the objective function.

Keywords: Differential evolution - simulated annealing - Stability
analysis + Lyapunov’s theorem

1 Introduction

Differential Evolution (DE) [1] is one of the best genetic types of Evolutionary
Algorithms (EAs) [2,3] for solving problems with the real-valued variables from
diverse areas of science and technology, engineering, and economic [4]. From a
theoretical point of view, the combination of the search properties of stochastic
algorithms in the development of a hybrid algorithm that is equally applicable
and has searching ability and power to reach the optimal solution is of impor-
tance to many in the growing population of machine-learning researchers. Also,
the analysis of increasingly many areas of application generate data requires
theory and robust methods that consistently find the optimal fit to the data.
Furthermore, there is also a great need for methods that can run with min-
imal need for manual human input. Only a number of theoretical studies on
the DE-population include time complexity [5], dynamical behavior [6-10] and
convergence properties [11-14].

Whether or not an annealed version of DE or a combination of Simulated
Annealing (SA) [15] and DE is of practical use can contribute to the growth of
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DE algorithm [16]. Indeed, developing the DESA algorithm [17] for fitting high-
dimensional functions was a worthy topic for several reasons. Despite already
promising results, DE is still in its infancy and can most probably be improved.
Hence, theoretical analysis of DE and its hybrid is also necessary to understand
its search process, to detect the allowable ranges of its control parameters, and to
find problem classes in which a given set of parameters will perform successfully
or will fail [4].

There is therefore a need for methods that robustly obtain the optimal fit
to the data. Stochastic nature-inspired meta-heuristics optimization algorithms
[1,18-21] have been the interest of a community of engineers due to their sim-
plicity and adaptability in solving real-life problems. On the other hand, deter-
ministic mathematical programming methods [22-26] are actively studied in the
academe due to their interesting theoretical convergence properties. In a study
done in [24], results show that both stochastic nature-inspired meta-heuristics
and deterministic global optimization methods are competitive and surpass each
other in dependence on the available budget of function evaluations.

Theoretical analysis of the EA and its convergence analysis has been an
important research topic in the evolutionary community. Markovian stochastic
process [27-31] and global random search [32,33] are two theoretical frameworks
that have been used to model the evolutionary process. Despite some theoretical
analysis of the DE behavior, the theory of DE is still behind the empirical studies.

In this paper, we investigate the stability of the DESA algorithm, a DE based
algorithm with the SA-like selection operator. Section 2 gives a detailed algorith-
mic framework of the binomial crossover and SA-like selection components of the
DESA algorithm. Section 3 provides the computations of the mean and variance
of the DESA-population as it goes through a number of mutations, crossovers
and selections. Section 4 shows that the system defined by the DESA-population
is stable. We also establish that an estimate of the DESA-population system time
constant can be expressed as 'yﬁ_l. Finally, the learning rate and momentum rate
of DESA is compared with those of the classical DE algorithm.

2 The DESA Algorithm

Differential Evolution-Simulated Annealing (DESA) optimization algorithm [17]
was developed as an optimization algorithm for high dimensional functions. The
combination is done by incorporating a SA-like selection criterion in a DE frame-
work to form the DESA algorithm. DESA has been used in several applications
[34-36]. The objective function to be minimized is f(%),# = (z1,...,7p) € R"
with D number of parameters, and the feasible solution @ = HjD:1 [Zjins Tjranls
where x;, . and z; _  are the lower and upper bounds of the parameter values,
respectively.
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2.1 The Implementation of the DESA Algorithms

The mathematical framework of the DESA algorithm are detailed as follows:

(1) Initialization: Generate an initial population denoted by Z(0) = (x; ;o) for
t=1,...,Npindividuals; j = 1,..., D parameters; and, let the number of
generation g < 0. This initial population is generated by assigning random
values in the search space to the variables of every solution.

(2) Reproduction: Generate a trial population §(g) from the current popula-
tion Z(g).

(a) Mutation: Generate a mutant population from Z(g) by a mutation oper-
ator, denoted by ¥(g). The binomial mutation operator, DE /rand/1/bin,

is given by

6(9) =Ty + F(x'l”Q - 1'7“3) (1)
where F' € [0,2], a constant; while 1, 2,2 and z,3 are distinct and
randomly chosen from the current population Z(g) = (), for i =

., Np individuals, and j = 1,..., D parameters.
(b) Crossover: Generate a trial population §(g) from Z(g) and ¥(g) by a
crossover operator, denoted by u(g). Let ¢(g) < (g). The crossover
operator is given by,

g

sy = {Uw =y + F(2r2 — zp3) if rand(0,1) < CR, @)

Tig otherwise

where F € [0,2], and CR € [0, 1].
For the binomial crossover we let 4; , = binomial_crossover(¥; 4, Z; ), for
i=1,...,NP.
(3) Selection: Generate a new population z(g) from (g) by a selection oper-
ator, denoted by &; g11. Let 2(g) «— & g+1. The SA-like selection operator
is implemented as

g if f(uzy)<f(_’z )
Tig+1 = or [f(tig) 2 f(Tig)] Alrand(0,1) < Bigl;  (3)
%34 otherwise

where

Big =€xp |— T (4)
is expected to attain a smaller value in (0,1). T" > 0 starts high and kT
gradually decreases according to the parameter 0 < k < 1. For the SA-like
selection we let &; g41 = SA-like_selection(u; 4,7 4), for i =1,...,NP.

(4) Termination: If the termination condition is satisfied, then stop; else, let
g+ 1« gand Z(g) — Z(g); then go to Step 2.
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2.2 The Binomial Crossover Operator of DESA Algorithm

For the DESA algorithm, we use the DE/rand/1/bin [16] mutation. Let x,1, 2o
and x,3 be three trial solutions picked-up randomly from population x,;,i =
1,..., Np. Here, we assume that the trial solutions are drawn with replacement
such that x,1, 2,2, and z,3 are independent of each other. Thus, P[(z,; = z;) N
(xrj = x)] = P(xy; = 1)P(ar; = x)) where 4,5 =1,2,3 and k,l =1,...,Np
and ¢ # j. Hence, from the DE/rand/1/bin mutation operator in (1), DESA
may choose ¥; ; with probability (wp) CR. Consequently, we have

. Uig = @ + F(z; — ap) if rand(0,1) < CR, wp CR (5)
Tig otherwise, wp 1-CR.

2.3 The SA-like Selection Operator of DESA Algorithm

With the SA-like selection of DESA algorithm, we now compute the expected
value of the trial solution w,, corresponding to the target solution z,,. Using
(3), let o be equal to the true probability of the event that f(i,) <
f(#,) which is mutually exclusive from the event that f(@,) > f(Zn).
with probability equal to 1 — «a. Also, P(rand[0,1] < () = (. Hence,
Pf(dm) > f(@m) N (rand]0,1] < B)] = (1 — a)B. So, the probabilities to the

mutually exclusive and exhaustive events as follows:

ai,g lff(dz,g) < f(fz,g) Wp «
Zig41 = or f(ig) > f(&ig) ANrand[0,1] < B;, wp (1 —a)f
Z;,4 otherwise, wp 1—[a+8—af].

(6)
If the trial vector u; 4 has the lower value of the fitness function f, it will sur-
vive to the population of the next generation; otherwise, it is subjected to the
Metropolis Criterion as done in SA [15].
DESA algorithm incorporates a typical SA-like selection mechanism that
conditionally accepts an inferior solution to the next generation. When g = 0,
(6) assumes the DE selection process such that

R Us,g wp «
Z; =9 = . 7
Lot {xm otherwise, wp 1 — o (™)

By the independence of the binomial crossover and SA-like selection operators
of DESA, we have the following probability assignments:

. _ Uiy wp (@ + 8 —aB)CR (8)
Lo+l Tig wp 1 —(a+ 0 —af)CR.

For ease of notation, let v3 = (o + 8 — aB)CR denotes the probability of
accepting poor solutions in DESA where (§ is non-zero. Thus,

- _ f iy WD Y8
Fog =40 9
e {x NI ©)
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2.4 The Mean and Variance of the DESA-population

The mean or the expected value of the m'" individual in the next DESA-
population, denoted as E(CEm’ngl)DESA, is computed as

E[(®m,g+1)pEsa]l = (1 —v8)Tm + Vaha (10)
where p, = Ningf; | Tm, the mean of the current population with m =
1,..., Np. Similarly, E(xfn’gH)DEsA is given by

E (22, g11)pEsal = 1 —)zp, + 78 [(2F% + 1)o7 + 2] - (11)

Therefore, the variance of the DESA-population is given by

Var(xm,g-&-l)DESA = '7[3(1 - 75)(xm - NI)Q + 3 [(2F2 + 1)0';3] . (12)

Again, with 8 = 0, the probabilities to events of the DESA-population in (6)
becomes a classical DE-population. Hence, we have

E(xm.g+1)pE = (1 = %) Tm + Yolta, (13)
E(xfmgH)DE = (1 =)z, +%(2F% + 1)Var(z) + you2, (14)

and
Var(mgi1)pe =01 —70) (@m — pe)® +70(2F? + 1)o7 (15)

where 79 = aCR.

In DESA, the probability of accepting a set of bad solution, 3, decreases expo-
nentially with the badness of the move, which is the amount f(g+ 1) — f(g). For
some sufficient number of generations, or when z,,, = x4, .. form =1,2,..., Np,
Or T1 = ...= Ty = [z, then o2 = 0, the DESA algorithm converges to the opti-
mal solution. Hence, f(z,,) — f(z;) becomes negligible Vm,j € {1,..., Np}.
DESA-population attains convergence to the optimal solution.

3 Stability Analysis of the DESA Population System

For this section, we show the stability of the DESA population system as shown
in [8,9]. In order to validate the analysis, we make certain assumptions, which
are enumerated below:

(i) The objective function f(z) is assumed to be of class C?, derivatives f(1),
f@ ..., f® exist and are continuous [37]. In addition, let f(z) be Lipschitz
continuous [38], and unimodal in the region of interest.

(ii) The population of Np individual trial solutions are located very close to each
other. That is, the parameter vectors gather in a compact cluster around the
global optimum during the later stages of the search and especially when
the scaling factor F' = 0.5 [39,40].
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(iii) Dynamics is modeled assuming the vectors as search-agents moving in con-
tinuous time.

(iv) Assume that the mutation and crossover of DESA occur in unit time to
give rise to offsprings. In the SA-like selection of individuals, Z,, is replaced
by @, if the f(ty) < f(Zn) or f(Um) > f(Zm) A rand[0,1] < B.

Theorem 1 Velocity of an individual point, X,,, in DESA system. If
DESA-population may be modeled as a continuous-time dynamic system, then
the expected value of the velocity of an individual point on the fitness landscape
may be given as:

E (ﬁ;”) = —gw {F? + 1)o2 + (o — )} [/ (w) + %%(uw — 2 (16)

where 73 = (a + 8 — af)CR, a = P[f(uy) < f(Zw)], 8 = Plrand(0,1) < f],
0 < CR < 1 is a crossover constant operator, ju, and o2 are the mean and

variance of z,,,,m = 1,2, ..., Np, respectively.

Proof. Let us assume that mutation and crossover occur in unit time to give
rise to offspring. In DESA’s selection, x,, is replaced by i, if f(Z) > f(@mn)
or [f(Zm) < f(tm) Arand0,1] < g]. This decision making is performed using
Heaviside’s unit step function [41], which is defined as follows:

_J1 p>0
u(p) = {O otherwise. (17)
Hence,
d:l?n dzrr
dtl =u {—f’(xm) dtl} (U, — Tm)- (18)

Now, we replace the unit step function by logistic function: wu(p) =
limg_ 00 He%kp For the analysis, take a reasonable value of k to get an approxi-

mate value of u(p) which is given by u(p) ~ H_e%kp Now, with a very small value
of p and by neglecting higher order terms, we obtain e ~ 1 — kp. Therefore,
1 1 1 kp\ !
~ R =—(1-— . 19
R e 2( 2) (19)
Also implying that,
1k
=+ —p. 20
ulp) = 5+ 4P (20)

Now, the DESA-population has a small divergence [8]. Therefore, u,, — x, is
not very large, and as |% is either 0 or |ty — | This ensures that |% is
small. Also, we have assumed that fitness landscape has a moderate slope. That
is, f'(x) is also small which in turn suggests that |f’(a:m) dZm | is small. Thus,

dt
from (18) we get, %= = [ — & /(3 )] (u,, — 2,). Hence,

dzm 2 (U — T4
At 1+ E () (U — o)

(21)



Stability Analysis of DESA Optimization Algorithm 23

Since ’%f’(mm)(um - xm)| is small, we have
-1

1+ gf’(a:m)(um — Tp) ~1— = f (@) (Um — T). (22)

=]

From (21) we get

d!Em _ _E(um _ xm)Qfl(xm) +

(um - CUm)
dt 8

5 (23)

Now, u,,, is a random variable. Therefore, dzg" which is a function of u,, is also

a random variable. So, we may compute its expected value as follows:

dz,, k ., 1
E(w) =—3/ (@) E(tm — Tm)? + iE(um — Tm). (24)

This implies that

)= _gf’(xm) [E(ufn) + a2 — meE(um)] + % [E(um) — Tm] . (25)

d'r’fl'b
dt

B(

Now, substitute the values of E(u,,) and E(u2,) from (10) and (11), respectively.
Then, set p1, = Nip ZZL Ty, and 02 = Var(z) to obtain the expression for the
expected value given in (16). This completes the proof.

Theorem 2 Velocity of the Centroid of DESA system. Let pu, =

Nip Zgil ZTm denotes the centroid of all points of the current population, py =

Nip ZTNnil "(xm) be the average slope of the fitness landscape, and €., = pip — Ty,
denotes the deviation of an individual from this centroid. Then, the expected

velocity of the centroid of the population is given by

dy k k 1 X
E(=2) = —2q3QF2 +1)oupy — -y | — 2 (g + Em 2
(%) = ~§er + Doy 8w<Npm§_:16mf (o + >> (26)

Proof. Since,

1 & 1 &
Mo = 77— T = ~5— T s 27
PP 7P 0
we may now solve for dc‘l‘; as follows:
Np Np

dipy d [ 1 1 Az,
Pe o S N ) =Y & (28)

dt dt \ Np — Np — dt

Getting expected value of its derivative with respect to time t (generation g)

gives
Np Np
dtg 1 dx,, 1 dx,,
E =F|— — = — El— ). 2
(dt) <sz:1 dt) sz (dt) (29)

m= m=1
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Substituting the value of E (%) from (16), we obtain

x
dt

Np
1;(%Zx>zzﬁz)§: (—SWﬁ{QFQ4-Dai+fﬂ}f%xm)4—;76.5> (30)

m=1

where €, = u; — =, denotes the deviation of an individual from the centroid.
Hence,

Np

(%) = s (3o et o e ) 0

=1

since the sum of all deviations from the mean is zero. Hence,

Np
i (dgz) ) _gw o [2F? 41002 gw (]\}p Z 52f/(96m)> (32)

m=1

where f,, = N%) Zﬁi 1 [/ (zm). Resetting x,, = 1y — €y, gives the desired expres-

sion in (26). This completes the proof.

As done in [8], to study the stability of DESA algorithm, we model DESA
algorithm as an autonomous control system. Here, each population member z,,
is a state variable of the control system. For the DESA-population, the expected
value of the velocity of an individual point on the fitness landscape is given
in (16).

Assuming the DESA-population to be concentrated into a small neigh-
borhood around an optimum in a flatter portion of the function, we have
|f'(zm)| < 1. Hence, the equation can be written as,

dzp, 1
E(;) zivﬁ(ugg—xm) form=1,2,...,Np. (33)

Using (27) we now rewrite the above expectation as

dx 1 1 Np
() 22 (S a—a, | fori=1.2,... Np. 34
( 7 ) 575 (Np;m x > or § D (34)

Hence, (34) represents Np number of simultaneous equations:
d(l?l 1 1
El—)=2 ~- i ; 35
(%) 275<Np§$/ x> (39)

Np

d(ENp 1 1 .
E< i )nyﬂ (]\[})21'11'2) fori =1,2,...,Np. (36)

=1
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So, we may now represent them using this matrix notation:

dzy 1 1 1
E (Ciitl) Ni;l) -1 N7p [N Ni;l) T
E (%2) S s T i -
dt 1 Np Np Np 2
: g : ST o (37)
dz 1 1 1 '
The above matrix equation is of the form [E(%)] = A[7], where ¥ =
[€1,x2,. .. ,pr]T is the set of state variables and
17 L 2
N7 Np - Np
N BT U
P P P
A= 5’}’6 . . (38)
R T TR
Np Np - Np

The eigenvalues of the system-matrix A are those of A satifying det [\ — A] = 0,
where T is the identity matrix of order Np. Now, det [\ — A] = 0 implies that

2 1 1 1
%)\_W—’_l 2 _Tf .« .. _W
- L 2 -1 41 _L
N N N
det P e . F = 0. (39)
.1 1 . 2 .1
7N7p 7N7p .« .. %A7N7P+1

After doing simple algebraic operations on the rows of the determinant in LHS
of (39) we get,

Np—1
A (A + %ﬁ) =0, (40)
which is the characteristic equation of matrix A. Hence, we get the system eigen-
values as: A = 0, —%, cee —%ﬁ. Since one eigenvalue is zero, the system is not

asymptotically stable and must have a DC' component in the output.
Theorem 3. The DESA-population dynamics system is asymptotically stable.

Proof. Recall that in the SA-like selection in DESA algorithm, v3 = (oo + 8 —
afB)CR > 0 since the probability of accepting bad solutions [ is greater than
zero. Now, in (40), A + % = 0. This implies that y3 = —2X > 0, only if A < 0.
Hence, we may argue that the system eigenvalues: A < 0, f%ﬁ, ceey 777’3 satisfy

(40). This completes the proof.

Theorem 4. The DESA-population system,

dx 1 JRAL
E(dt) =5 <Np;mi—xm> fori=1,2,...,Np, (41)

is stable in the sense of Lyapunov.
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Proof. We are assuming the DESA-population is located very close to optima.
So, (41) holds true in such a region where the value of the gradient is negli-
gibly small. Hence, a condition for an equilibrium point is E (dgtm) = 0 [42].
We consider the case where the DESA-population is confined within a small
neighborhood of an isolated optimum and over the entire population value of
the gradient is minimal. In this case, the preferred equilibrium point should be
the optimum itself. With time there is no change in values of state variables
after they hit the optimum. Now, since F (dﬁﬁ—g") =0, then z,, = Nip Zj.vzpl T =
pg for j =1,..., Np. This completes the proof.

This is possible only if all of the state variables are equal in value. In case of a
smooth, unimodal fitness landscape, the solution vectors generally crowd into a
small neighborhood surrounding the optimum. Thus, during the later stages of
the search, the equilibrium point z. is identical to the optimum, and population
members are expected not to change any further, and thus this point should
satisfy the condition 1 = ... = znp = ..

Now, we examine the stability of the solution vectors very near to such an
optimum point of the search space. First, we define the Lyapunov’s Energy func-

tion V as follows:
Np

V(. anp t) = Y (xi — pta)”. (42)

i=1
Observe that V', the sum of the squared differences of each individual from
the centroid, is always positive except the equilibrium, where it becomes zero.
V is positive definite with respect to equilibrium [42]. In addition, we note that
V = Np(o?). Differentiating (42) with respect to time and getting expectations,

we get
() s ()5(%)]

From (25) we get, E (%) = 278 (ko — Tm) and

dyss d {1 1 (&R da;
E<dt>:E[dt<Np;xi>]:NpE<Z dt):o. (44)

i i=1

Putting these expected values in (43), we get

v Al
E (dt) = v =—ys Y (0 — ) (45)
=1

It is clear that puys = 0 when 1 = 23 = ... = Ty}, = %, and is negative other-
wise, since yg > 0. Hence, py+ is a negative definite with respect to equilibrium
point. Therefore, V' is positive definite and wpy+ is negative definite, satisfying
Lyapunov’s stability theorem.
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Theorem 5. An estimate of the system time-constant of DESA is fyﬁ_l.

Proof. Using determinant of the population system in (39) the Lyapunov’s
energy function in (42) is written as _L/V/ = % where _L/V/ is the average
value of time rate of change of energy function. Let py denotes the average of
the energy function, V, when the process be carried out repeatedly for same
initial conditions and parameter values. Similarly, the time rate of change of
the average is denoted as py/. We assume that the runs of the algorithm that

the process is time invariant. Hence, —E(uy/)uy = 7[;1 which implies that

wy = Vyexp (—t fyﬁ_l) where V; is the initial value of V. Now, define a time-

constant for the system as the time interval in which the energy function reduces
to e~ ! part of its initial value. Denoting this time-constant by T and putting
py =e Wy, and t = T in (45) gives time-constant T = 'y[;l.

4 The Learning Rate and Momentum
of DESA-population

From (16) we may write,

dx,m,
E ((ﬁ) = —npesaf (tm) + TpEsa, (46)
where npepsa = gfyg [(2F2 + D)Var(z) + (pe — :Em)Q] and Tppga = %fyﬁ(,uz —
Zm). The classical gradient descent search algorithm is given by the following
continuous-time dynamics in single dimension [43]:

dé

= - G 47

pri (SR (47)

where 7 is the learning rate and 7 is the momentum.

e\ k : 3
E ( - ) = 5 WEF + WVar(@)fi, — 7 (;I mZZIE%f(uz + 6m)> (48)

The resemblance of (46) and (47) suggests that, the dynamics of DESA uses
some kind of estimation for the gradient of the objective function, f'(z,,). In
Eq. (48), —npgrsaf'(zm) term on the RHS is responsible for moving along the
direction of the negative gradient, whereas Tppsa represents a component of
velocity of a trial solution towards the centroid of the population. Clearly, this
individual x,, is very near to an optimum, when f'(z,,) — 0,

dz,, 1
E (dt> N TDESA = iw(ﬂx — Tm). (49)

Now, if the population converges towards the optimum, (p, — x,,) tends to zero
and E (%) — 0. Thus, once reaching the optimum, the average velocity of the
population members approaches zero, Var(z) — 0, py — z,, — 0, and &, — 0.

We get B (%) — 0 in (49), and B (%) — 0.
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4.1 Comparison of Learning Rate and Momentum Rate of de
and DESA

We compare the classical DE and DESA algorithms with respect to the learning
rate n and the momentum rate 7.

We compute the relative difference of DE and DESA as: ’”DE;D%
v8 = (a+ § — aB)CR. The learning rates are given by

. With

NDESA = g(a + B —aB)CR[(2F* + 1)Var(z) + (ts — zm)?] (50)

and
NpE = gcR [F? + 1)Var(z) + (g — zm)?] , (51)

respectively. Hence,

N"DE —TIDESA
"DE

= (1-a)(1- 7).

_‘CR—(a+ﬁ—a5)CR
- CR

Thus, the relative difference in learning rate of DE and DESA approaches 0, if
either v or 3 approaches 1. It approaches 1, otherwise.

Similarly, we compute the relative difference in momentum rates of DE and
DESA as

L1CR(py — ) — 2(a+ B — aB)CR(py — )
L1CR(py — ) '

TDE —TDESA

(52)

TDE

Therefore, the relative difference (change) in momentum rates is also (1 — «)
(1 — ) which also approaches 0, if either « or 3 approaches 1. It approaches 1,
otherwise.

4.2 On the Stability of DESA in the Sense of Lyapunov

Lyapunov stability analysis is based on the idea that if the total energy in the
system continually decreases, then the system will asymptotically reach the zero
energy state associated with an equilibrium point of the system. A system is
said to be asymptotically stable if all the states approach the equilibrium state
with time [4].

It can be noted that the centroid (u,) of the population system does not
change with time since

dyts d {1 & AL
E((Z):E(Clt(wzxi»sz(Z dt):o. (53)

i=1 i=1

The condition for equilibrium is z; = ... = xnp = 2., where z,. the equilibrium
position is. If all population members are equal, then z; = u,,79 = 1,...,Np
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of the population. Hence, z. = p,. Initially, the population spread within a
small region around the optima. So, the centroid was also very close to the
actual optima. Lyapunov’s function, in this case, is directly proportional to the
population variance. With time, the initially dispersed populations gather at
the center of the system, and eventually, population variance diminishes to 0,
which leads to convergence of the population system. Average velocity of m!"

population member is F (dﬁg”) = %75(,% — &) and the average acceleration
is %’yg (dg; - %) = —%vgdZ—;”. So, acceleration is directly proportional to

velocity, and the negative sign indicates that it acts in opposite direction.

5 Conclusions

From mathematical framework of the operators of the DESA /rand/1/bin algo-
rithm, we described the characteristics of the DESA-population as it goes
through mutation and selection operators. This allows a comparison of the char-
acteristics and convergence of the classical DE and its hybrid DESA. An analysis
using basic concepts and interpretations of nonlinear control theory, showed that
the DESA-population dynamics system is asymptotically stable. The dynamics
of DE and DESA uses some kind of estimation for the gradient of the objective
function. The SA-like selection operator of DESA increased its learning rates
and momentum, which results to convergence faster than the classical DE. In

addition, the time-constant of DESA algorithm is given by v5~!.
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Abstract. Many real-world problems have complicated objective functions
whose optimization requires sophisticated sequential decision-making strategies.
Modelling human function learning has been the subject of intense research in cog-
nitive sciences. The topic is relevant in black-box optimization where information
about the objective and/or constraints is not available and must be learned through
function evaluations. The Gaussian Process based Bayesian learning paradigm
is central in the development of active learning approaches balancing explo-
ration/exploitation in uncertain conditions towards effective generalization in large
decision spaces. In this paper we focus on Bayesian Optimization and analyse
experimentally how it compares to humans while searching for the maximum of
an unknown 2D function. A set of controlled experiments with 53 subjects confirm
that Gaussian Processes provide a general model to explain different patterns of
learning enabled search and optimization in humans.

Keywords: Bayesian Optimization - Cognitive models - Search strategy

1 Introduction

We consider as a reference problem the black-box optimization problem: the objective
function and/or constraints are analytically unknown and evaluating the function might
be very expensive and noisy. In black-box situations as we cannot assume any prior
knowledge about the objective function f(x), any functional form is a priori admissible
and the value of the function at a point says nothing about the value at other points, as
postulated by the No Free Lunch theorems (Adam et al. 2019). The only way to develop
a problem specific algorithm is through a sample of function evaluations.

An algorithm fitting for such applications should have global properties and be sam-
ple efficient, because the cost of function evaluations is the dominating cost. This prob-
lem has been addressed in several fields under different names, including active learning
(Kruschke et al. 2008), Bayesian Optimization (Jones et al. 1998), (Zhigljavsky and
Zilinskas 2007), (Candelieri et al. 2018), optimal search, optimal experimental design,
hyperparameter optimization (Eggensperger et al. 2019) and others.

Efficient sampling is active sampling in which a surrogated model of the objective
function is built upon the observations already performed and the next sampled point is
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chosen on the basis of its informative value: this choice brings up the so called “explo-
ration vs exploitation dilemma”, where exploration means devoting resources to know
more about possible solutions while exploitation devotes resources to improve on solu-
tions already identified in previous phases. The search for the new point must strike an
effective balance between the needs of exploration and exploitation.

To do this, the surrogate model must sum up our a priori beliefs: the Gaussian Process
(GP) is the best probabilistic framework to update our beliefs as new data arrives and
provide an estimate of the expected value of the objective function and the uncertainty
in this estimate.

Psychologists have extensively studied how humans balance exploration and
exploitation (Krusche et al. 2008), (Mehlhorn et al. 2015), with a recent attention on
the links between modern machine learning algorithms and psychological processes.
(Gershman 2018; Schulz et al. 2017; (Gopnik et al. 2017). Psychological research has
mostly focused on how people learn functions according to a protocol in which an input
is presented to participants and they are asked to predict the corresponding output value.
Then they observe the true output value (usually noisy) in order to improve their own
“predictive model”. Through this outcome feedback, people are thought to adjust their
internal representation of the underlying function. The pioneering work of (Wilson et al.
2014) demonstrated that humans use both random and directed exploration. The issue
of GP regression, kernel composition for different degrees of smoothness and safe opti-
mization in their relation to cognition is also studied in a recent survey by (Shultz et al.
2018). Directed exploration is realized by adding uncertainty bonuses (Auer et al. 2002).
to estimated values obtaining the upper confidence bound (UCB) algorithm (Srinivas
etal. 2010). In (Wu et al. 2018) the human search strategy is analysed for rewards under
limited search horizons, concluding that GP offers the best model for generalization and
UCB the best solution of the exploration/exploitation dilemma.

This paper considers optimization, a task related with function learning, but with its
own specific features. Contrary to function learning, optimization is not yet widely con-
sidered in the literature; as a reference, in (Borji and Itti 2013) a simple 1-D optimization
problem has been considered. Specifically, the aim of this paper is how humans choose
the next x to be queried when attempting to locate the maximum of an unknown 2D
function. We’ll focus on the questions: do humans follow a Bayesian approach, and if
so, how do humans balance between exploration and exploitation during optimization?
Which space representation do they use? Can GPs offer a unifying theory of human
function optimization?

The structure of the paper is as follows: Sect. 2 outlines the methodological back-
ground of GP based optimization linking them to the issue of learning including the
temporal trade-off over uncertain rewards (this is also a central topic in cognitive sci-
ence). Section 3 is devoted to the experimental set-up and Sect. 4 reports the experimental
results on how humans behave in black-box Bayesian Optimization (BO).

2 Methodological Background

This section provides the underlying methodological framework of the study.
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2.1 Gaussian Processes

GPs are a powerful non-parametric model for implementing both regression and classifi-
cation. One way to interpret a GP is as a distribution over functions, with inference taking
place directly in the space of functions (Williams and Rasmussen 2006). A GP, therefore,
is a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP is completely specified by its mean function w(x) and covariance
function cov(f (x), f(x')) = k(x, x'):

p(x) =E[f(x)]

cov(f (), f(x')) = k(x,x") = E[(f () = p)(f (x) = n(x))]

and will be denoted by: f(x) ~ GP(u(x), k(x,x")).

Usually, for notational simplicity we will take the prior of the mean function to be
zero, although this is not necessary. The covariance function assumes a critical role int
the GP modelling, as it specifies the distribution over functions, depending on a sample
X1 with f(X1:) ~ N0, K(X1:0, X1:0))-

We usually have access only to noisy function values, denoted by y = f(x) + ¢.
Assuming additive independent identically distributed Gaussian noise ¢ with variance
A2 covy = (31, .oy yn) = K(X 10, X1:0) + 221

Therefore, the predictive equations for GP regression, that are p(x) and k(x, x’ )
can be easily updated, by conditioning the joint Gaussian prior distribution on the
observations:

-1
(0 = BLF (01 D1, x] = K, X1 [K X, Xp) +521] y

-1
02(x) = k¥, %) = KCx, X1 [K(X 1, X1) + 221 K (X1, )

The covariance function is the crucial ingredient in a GP predictor, as it encodes
assumptions about the function to approximate: function evaluations that are near to a
given point should be informative about the prediction at that point. Under the GP view
it is the covariance function that defines nearness or similarity. Examples of covariance
(aka kernel) functions:

Squared Exponential (SE) kernel:

e
ksg (x, x/) =e 202

with £ known as characteristic length-scale.
Exponential kernel:

Jx—']

kExp(x, x’) =e

Power Exponential kernel:

sy
- 4
kpowEsxp(x,x') = e
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Matérn kernels:

Katan (5. ') = 21-v <|x —xﬂ@) KU<|x —x/|m>

) [ ¢

With two hyperparameters v and ¢, and where K, is a modified Bessel function, that
is a product of an exponential and a polynomial of order r. The most widely adopted
versions, specifically in the Machine Learning community, are v = 3/2 and v = 5/2.

2.2 GP-Based Optimization

The acquisition function is the mechanism to implement the trade-off between explo-
ration and exploitation in BO. More precisely, any acquisition function aims to guide
the search of the optimum towards points with potential low values of objective function
either because the prediction of f(x), based on the probabilistic surrogate model, is low
or the uncertainty, also based on the same model, is high (or both). Indeed, exploiting
means to consider the area providing more chance to improve the current solution (with
respect to the current surrogate model), while exploring means to move towards less
explored regions of the search space where predictions based on the surrogate model are
more uncertain, with higher variance.

Probability of Improvement (PI) was the first acquisition function proposed in the
literature (Kushner 1964):

FxT) = n)
PI(x)=P(f(x) < f(xT)) = q’(%)'

where f (x*) is the best value of the objective function observed so far, ;(x) and o (x)
are mean and standard deviation of the probabilistic surrogate model, such as a GP, and
®(-) is the normal distribution function. The next point to evaluate is chosen according
to:

Xp4+1 = argmax PI(x)
xeX

Expected Improvement (EI) was initially proposed in (Mockus et al. 1978) and then
made popular in (Jones et al. 1998). It measures the expectation of the improvement on
f (x) with respect to the predictive distribution of the probabilistic surrogate model.

_ () =) @(2) + 0 (0)p(Z)if o(x) >0
El(x) = . ,
Oifo(x)=0
where ¢(Z) and ®(Z) are the probability distribution and the cumulative distribution
of the standardized normal, respectively, where

Zz{wifg(x)>0

o(x)

0ifo(x)=0
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The El is made up of 2 terms: the first is increased by decreasing the predictive mean;
the second by increasing the predictive uncertainty. The next point to evaluate is chosen
according to:

Xp4+1 = argmax E1(x)
xeX

Upper/Lower Confidence Bound, where Upper and Lower are used, respectively,
for maximization and minimization problems, is an acquisition function that manages
exploration-exploitation by being optimistic in the face of uncertainty.

In the case of a minimization problem, LCB (Lower Confidence Bound) is given by:

LCB(x) = n(x) — &0 (x)
while in the case of a maximization problem the UCB acquisition function is used:
UCB(x) = u(x) +§0(x)

where £ > 0 is the parameter to manage the trade-off between exploration and exploita-
tion (¢ = O is for pure exploitation; on the contrary, higher values of £ emphasizes
exploration by inflating the model uncertainty). In (Srinivas et al. 2010), a policy is
provided for updating the value of & along function evaluations, with also a proof of
convergence of such a policy.

In the case of a minimization problem the next point is chosen as

Xp+1 = argmin LC B (x)
xeX

while, in the case of a maximization problem the next point is selected as

Xn4+1 = argmax UC B (x)
xeX

2.3 Bayesian Optimization

The following algorithm summarizes a general Bayesian Optimization process where the
acquisition function, whichever it is, is denoted by o (x, D1.,). This function is generally
maximized, but in the case of « = LCB.

With respect to the probabilistic surrogate model, the summarized algorithm does
not specify the probabilistic surrogate model, as well as the kernel in the case of a GP.
This is basically done in order to maintain the algorithm as general as possible.

In this study we have used a GP as a surrogate probabilistic model, considering
all the five different kernels presented in the previous section, and the three different
acquisition functions previously described.
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General Bayesian Optimization Algorithm

lforn=1,2,..do

2 select a new x,,, by optimizing an acquisition function «, such that
Xp+1 = argmaxy (Z(X, Dl:n)

3 evaluate the objective function to obtain y, ;1 = f(X41)

4  update the dataset of observations D;.,41 = Dy1.p U {(Xns1, Yne1)}

5 update the probabilistic surrogate model, p(x) and o(x), as in section 2.1

6 endfor

7 Output: the best f value observed over the entire optimization process

3 Experimental Setup

3.1 Test Function as a “Task”

In this study, we have selected the Styblinski-Tang test function, as defined in https://
www.sfu.ca/~ssurjano/optimization.html.

d

fx)= %Z(x:‘ — 16x} +5x,~>

i=1

where d is the number of dimensions (d = 2, in this study) and f(x) is minimized in
the hypercube x; € [-5;5]Vi=1,....,d.

Since the optimization performed by humans was defined as a black-box maximiza-
tion task, this means that the optimization problem considered is:

max —f(x)
xe[=5;51¢

3.2 Experiment: Optimization by Humans

3.2.1 Participants Fifty-three participants (14 female), with an average age of 26 (stan-
dard deviation: 5.82) were recruited. The experiment took around 15 min to complete
the task, on average. The experimental procedure is defined in the following.

3.2.2 Procedure In order to conduct the test, each one of the participants was sat in
front of a personal computer, asked to play for a game with the following rules:

e [n front of the player there is a white panel: the goal of the game is to click on it and
find a point with maximum score, within 15 clicks

e Everytime the player clicks on the panel a score is shown for that selected point: higher
the score, better the choice. Points are also colored according to the associated score,
providing a visual feedback about the distribution of the scores collected so far.


https://www.sfu.ca/%7essurjano/optimization.html
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Fig. 1. An example of a game play

Figure 1 shows a frame of the game, with points selected by one of the participants.

For each player, at each iteration, a GP is fitted on the observed points and the GP
next point is compared, via Euclidean distance, to the choice made by the player.

To fit the GP the five kernels described in Sect. 2.1 have been considered, along with
the three acquisition functions: PI, ET and UCB.

The two strategies, human player and BO, are considered compliant, pointwise, if
the distance between the point chosen by the human player and the algorithmic player
is less than a given “threshold”. The specific procedure is summarized in the following
pseudo-code.
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Let denote by:

- p a participant

- k a kernel

- a an acquisition function

- n a generic iteration

- sPRM g search strategy (i.e., an acquisition fuction, under a GP with a given kernl,
at a specific iteration)

1 foreach p, k and n
2 fit a Gaussian Process GPP*™

3 foreach a
GP
pkn
4 select x,
pkn
5 compute dP*me = ”xﬁﬁl —xl ”, where
p.kn . . . C .
xGP1" = argmax, a(x)|GPP*™ is the next point according to acquisition
function a under GPP*™

and x7,, is the next point chosen by participant p at iteration n + 1
6 endforeach
7 dPRM = min, {dPF™e}
8 ifdP*" < threshold then
9 sPkm = argmin, {dP*™*}
10 else
11 sPkn =g

Finally, for a given kernel k, the search strategy of the participant p is compliant to
the most frequent acquisition function in the series s?* = {sl”k’” }n=1: N

According to the mentioned procedure, the following figures summarize the main
results of the study (Figs. 2, 3, 4, 5 and 6).
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Fig. 2. Number of human players whose strategy is compliant with respect to kernel type and
acquisition functions, with “threshold” set to 0.10, and 8 = 1 in UCB
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Fig. 6. Number of players, depending on the number of clicks, whose strategy is compliant with
respect to anyone of the BO implementations considered (i.e., pair “kernel type — acquisition
function”). This figure refers to threshold = 0.10 (left) and threshold = 0.15 (right)

4 Conclusions

In conclusion, 40 out of 53 participants (75%) shown search patterns compliant with
Bayesian Optimization. This percentage is increasing with the number of iterations (i.e.,
clicks) and the “threshold” value. Also interesting is the analysis of which space model,
thatis kernel, and which exploitation-exploration balance, that is the acquisition function,
are implied by human search. Contrary to previous results, kernel is not a major factor
in determining compliance, while acquisition functions, and specifically the balancing
parameter 8 in UCB, are the main determinants.
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Abstract. In this paper we propose a new syntactical representation of
C.S. Peirce’s diagrammatic systems for propositional and predicate logic.
In particular, we use the categorical notion of generic figures to represent
the syntax of the diagrammatic language as a category of functors from
a suitable, simple category into the category of sets, highlighting the
relational nature of Peirce’s diagrammatic logic.

1 Introduction

In this paper we present a new syntactical representation of the Alpha and
Beta Existential Graphs (from now on denoted by EG, and EGg) — introduced
by C.S. Peirce towards the end of the 19th century — which are diagrammatic
systems that have been proven to be equivalent to propositional and predicate
logic respectively.

These are representations of the syntax and semantics for propositional and
predicate logic solely based on simple diagrams and some basic topological rela-
tions that such diagrams entail. For too long these graphs have been considered
just a curious variation of the standard linear notation in logic. The renewed
interest in diagrammatic reasoning via category theory, however (see the work
in diagrammatic quantum computation done by Coecke [5], Spivak’s wiring dia-
grams [11] and Ahti Pietarinen’s diagrammatic proof analysis [8]), motivated
us to look deeper into the structure of Peirce’s graphs, and we believe that the
categorical notion of generic figures developed by Reyes [10] is especially apt for
highlighting some interesting characteristics of these logical systems.

Among other things, category theory is a powerful and efficient framework to
model logic. At a very basic level, categorical logic is based on the idea that, in
a suitable category, objects can model propositions, whereas morphisms model
proofs. In our work we study a variation on this theme, as we aim to model
propositions as functors from a suitable “base” category into the category of
sets. In this way, some of the lurking problems that arise when trying to formal-
ize in a rigorous way Peirce’s Existential Graphs are solved in a single stroke
by introducing an intuitively structured category that “generates” the graphs.
In some sense, ours is a hybrid model that aims to build a link between the
categorical and the classical approaches to logic.

© Springer Nature Switzerland AG 2020
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The aim of this paper is modest, as we are only concerned, at this level, to
represent the syntax of these systems in a categorical framework. This, however,
is meant to be the first of a series of papers with a much broader scope, in which
a thorough investigation of the inference rules and the semantics of the graphs
will be provided in terms of this very general framework.

In order to keep the paper self-contained, in Sect. 2 below we present a brief
introduction to the syntax of FG, and EG,. In Sect. 3 we provide the necessary
basic categorical background needed to introduce the notion of generic figures,
and in Sect.4 we present a full account of the syntax of such systems in terms
of functor categories.

2 Peirce’s Existential Graphs

In this section we introduce Peirce’s diagrammatic syntax for formal logic that he
named Existential Graphs. Peirce himself developed three increasingly sophisti-
cated levels of the graphs, which he denoted alpha, beta and gamma. The alpha
level (EG,,) corresponds to classical propositional logic, the beta level (EGg) to
first-order predicate logic, and the gamma level (EG~) to modal and higher-order
logics. We summarize here only the basic syntax of Peirce’s EG, and EGg3.

2.1 Existential Graphs: Alpha

We now discuss the basic elements of Peirce’s Existential Graphs and present a
schematic introduction for those unfamiliar with the graphs, following the basic
outline presented in [2] and using some of that material in a slightly modified
form. Besides the rigorous mathematical presentation in [1], detailed but more
accessible treatments may be found in [12]. A categorical approach to the graphs
can be found in [3] and [4].

Every EG,, graph is understood by Peirce to represent a propositional asser-
tion according to a syntax consisting of three types of elements: the Sheet of
Assertion, characters and seps (or cuts). An FG, graph is composed of char-
acters and seps “scribed” on the Sheet of Assertion. The syntactical relations
among these elements may be described as follows:

— The blank sheet (called the Sheet of Assertion or SA) is both the site on which
graphs are scribed and is itself a graph (called the empty graph).

— A character is any reproducible image (an iterable symbol, typically letters of
the Roman alphabet) scribed on part of the SA.

— Characters may be enclosed, along with a local area surrounding them (a
neighborhood on the SA) that may or may not include other characters, by a
closed curve called a sep (or cut). These curves are usually drawn as ovals or
circles. These seps may not intersect characters, nor may they intersect one
another. They may, however, be nested with any number of characters and
seps scribed in the areas or enclosures they distinguish.
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The class of EG,, graphs may be characterized through the following recursive
definition:

The sheet of assertion is a graph

The sep is a graph ©

FEvery character is a graph A B

If o and B are graphs, then af is a graph G G’

If v is a graph, then @ is a graph @

Let us first notice that the FG,, graphs constructed in this way separate regions
in the sheet of assertion into evenly and oddly enclosed areas, as the following

picture shows.
Cuts (seps) QO

Even areas =——

Odd areas

We omit a detailed discussion of Peirce’s transformation rules for £G,. A full
treatment of these rules may be found in [12]. As a reminder to the reader,
examples of all of the rules are provided in an informal, iconic way below.
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G/
G//

1. Write Odd (WO)

2. Erase Even (EE) —_—
<P

|
8

G/
3. De/Iterate (DE/IT)

|
5

4. Double Cut Write/Erase (WR/ER) G —

The correspondence between EG,, and the classical propositional calculus (with
seps interpreted as the negation of their contents and the inscription of multiple
(sub)graphs on the same area as the logical conjunction of those (sub)graphs)
has been exhaustively investigated by Zeman [16] and more recently in a much
broader context in [1]. The iconic quality of Peirce’s calculus does indeed possess,
as shown by several authors, including the knot theorist Kauffman [7], a truly
topological nature. The derivation rules themselves may be characterized in a
combinatorial-topological nature, in such a way that the dual nature of a graph
as equally syntactical and semantical emerges naturally. In fact, two of the three
basic elements of the EG, syntax, the Sheet of Assertion and the seps, are
defined topologically. This feature induces several of the aspects of the EG,,
system that distinguish it from the more common linear notation, such as the
obviation of axioms of commutativity.

Example 1. Here below is a proof of the classical modus ponens in Peirce’s
style: from A and A — B we can infer B.

A (@) LEa D—C>A B

EFE
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2.2 Existential Graphs: Beta

In order to extend diagrammatic propositional calculus to predicate logic, Peirce
introduced what he called the line of identity. Essentially, the line of identity
is an existential quantifier that augments the language of EG, to generate a
complete and sound first order logic (without free variables). We refer to the
excellent work by Dau [6] for details. In what follows we only sketch the main
traits of the system, in order to offer the reader an idea of what the graphs
in EGg look like (the structure of their syntax) along with a flavor of their
interpretation (their semantics).

First, we assert the existence of an object by drawing a dot on the SA.

A line of identity asserts the equality of all the points on the line.

T~

To express that an object has a certain property P, write the predicate symbol
next to the object:

T~—0

To express that two objects are not the same (notice that the cut is still inter-
preted as a negation, as in EG,):

f\@v

The following examples should help the reader to clarify the interpretation of
the EGg graphs.

Example 2. The graphs below represent the classical Aristotelean square of
opposition. The translation into the classic linear notation of the graphs, starting
from the top left in the counterclockwise direction, is the following:

- Va(B(z) — A(x)): every B is A;

- Va(B(z) — —A(z)): no B is A;

- Ja(B(z) A A(z)): some B is A;

— Jx(B(z) A —A(x)): some B is not A.
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ad

B’@ B™~~—A

Example 3. The graph below encloses the property (i.e. the unary relation) “is
a woman” together with its single hook within a cut. The same line of identity is
connected to the first hook of the triadic relation “gives”. Thus, the graph may
be understood to assert that someone who is not a woman gives something to
someone.

[ Ly p—

3 Presheaf Categories and Their Generic Figures

In this section we present a brief outline of the mathematics needed to represent
the Existential Graphs in a categorical fashion. This presentation follows that
given in [2], Appendix A.

3.1 Category Theory: Basic Notions

A mathematical category consists of a class of objects together with morphisms or
arrows between objects subject to axioms of identity (every object is equipped
with an identity morphism that composes inertly), composition (head-to-tail
morphisms compose to a unique morphism) and associativity (paths of mor-
phisms compose uniquely). For a comprehensive introduction and details filling
out this rough characterization, see [9].

A bit more formally, a category C consists of

— a collection of objects Ob(C) and
— a collection of arrows Ar(C) between objects
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subject to the following axioms:

— (A1) Aziom of Composition: Given any two arrows ordered such that the
target of one is the source of the other, the composition of the first followed
by the second exists in the category as a unique and definite arrow.

A—1

B

g
gof ‘
C

— (A2) Aziom of Associativity: Given any three arrows ordered such that the
target of the first is the source of the second and the target of the second is
the source of the third, the composite of the first two arrows composed with
the third is the same as the first arrow composed with the composite of the
second and third.

B g c

A D
ho(gof)=(hog)of

— (A3) Aziom of Identity: There exists at least one arrow from any object into
itself, called the identity arrow.

Example 4. A few example of categories (objects and arrows):

- Set (sets and functions)

— Mon (monoids and monoid homomorphisms)

— Grp (groups and group homomorphisms)

— Vecty (vector spaces over a field k, and linear maps)
— Pos (partially ordered sets and monotone functions)
— Top (topological spaces and continuous functions).

3.2 Functors Between Categories

Categories may be related to one another via mappings called functors, which
may be understood at a first approach on analogy with functions between sets.

Given two categories C and D, a functor is in the first place a map F' from
objects of C into objects of D and from arrows of C into arrows of D, that is,
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roughly, a function from the set of the objects of C to the set of the objects of D
together with a function from the set of arrows of C to the set of arrows of D.!
The condition that this map has to satisfy is that (a) relations linking arrows
to their source and target objects are preserved and (b) composition relations
between arrows are preserved across the mapping.
This amounts to saying that, if

A

is an arrow in C, then

is an arrow in D.
Furthermore, the following diagram must commute in D for all suitable objects
A, B and C and arrows f, g and go f in C:

Fa)—"D . p(p)
F(gof) Flo)
F(C)

Finally, identity arrows must “track” with their objects across the mapping.
Formally, for any object A in C,

F(Ida) = Idpa)

Such a mapping F' is called a covariant functor. There is a dual notion of con-
travariant functor, which, essentially, instead of “preserving” arrows it “reverses”
them. That is, F' : C — D is said to be contravariant if, given two object A and
B in C we have that?

(F:A— B)= F(f): F(B) — F(A)

! This formulation only causes difficulties in the (not infrequent) cases when the
objects and/or arrows of either C or D cannot be gathered into a set, for instance
when one of these is the category Set of sets and functions. The ensuing problems
and the various strategies for resolving them are readily located in the standard
literature on categories.

2 Contravariant functors also reverse the direction of composition.
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3.3 Presheaf Categories and Generic Figures

The approach we follow in this paper was introduced in the book Generic Figures
and their Glueings by Reyes et al. [10]. In a nutshell, the main idea is to consider
classes of structures, defined set-theoretically yet intuitively pictured as types
of diagrams (sets, bisets, directed graphs, etc.) and, given that each element in
the class is itself built up from determinate kinds of ingredients (set-elements
represented as dots or points, pairs of such points, vertices and arrows, etc.) a
category of generic figures may be defined in which those very ingredients are
the objects. Such a construction is very general, and lends itself to application
to a large class of diagrammatic structures. In fact, in Sect. 4 we will apply this
notion to EG, and EGg. Here below we outline the steps of this approach.

Given a (small) category C, a functor F' from C°? into Set, the category of
sets and functions, is a presheaf. Here, C°P represents the category generated by
reversing all the arrows in C while preserving objects, identity morphisms and
composition of morphisms. Schematically, a morphism f : A — B in C becomes
a morphism f/: B — A in C°P. A natural transformation from one such functor
F to another F” is then a family of functions in Set that maps one presheaf into
another.

More generally, given any two categories C and D, the functor category D¢
is defined as follows:

— The objects of D¢ are all functors C — D.
— The arrows of D¢ are all natural transformations between functors C — D.

Natural transformations are morphisms between functors: given two functors
F € D€ and G € D, a natural transformation between F' and G is a family of
morphisms 7o parametrized by the objects O € C such that the following dia-
gram commutes for any two objects A and B that are connected by a morphism

finC:

na nB

G(4) — " G(B)

In the case of the functor category of all presheaves over C, the collection of all
functors C°? — Set may be taken to be the objects of the new category Setcop,
the morphisms of which are all the natural transformations between these func-
tors. Each functor may be associated with an identity natural transformation.
Also, natural transformations compose in the appropriate way and this compo-
sition is associative, so the axioms of a category are satisfied. Such a category is
called a presheaf category. For details, see [10] and [9] ch. 2.
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Example: The Category Set®” of Directed Graphs

Example 5. Consider the category C consisting of exactly two objects V and A
and two non-identity arrows s,t : V. — A. This category is pictured here, with
the identity arrows on V and A not shown:

|4 ZA
t

Contravariant functors from C into Set may be thought of as directed graphs.
Given such a functor D: C°? — Set, where D(V) is the set of graph vertices
and D(A) is the set of graph arrows, D(s) and D(t) are then two functions
D(A) — D(V) assigning a source-vertex and a target-vertex, respectively, to
each arrow, that is, each element of D(A).

The example above illustrates clearly how the structural properties of a given
class of diagrams are completely recast into the structure of C°P: an arbitrary
directed graph G can be encoded /reconstructed by the data provided by a unique
associated functor G : C°? — Set. Notice that the structure of C°P in this case
is very simple, since it has only two objects and two arrows. This motivates the
following definition:

Definition 1. Given a class of structures F whose elements are in one-to-one
correspondence with the elements of the collection of functors from C°P into Set,
we call generic figures the elements of CP.

4 Existential Graphs as Functor Categories

At this point we are in the position to represent EG, and EGgs in terms of their
generic figures. We will proceed in steps. We first look at EG«, defined as the
unlabeled version of EG,, then we consider EG g+, defined as EGg without the
cuts, and finally we will present the generic figures for the full EGg system. We
will use the italic fonts to refer to the categorical version of each of these systems
(so, for instance, we use £G,+ to denote the category of functors correspondent
to the collection of graphs EG,,).

4.1 EGq-

The iconic syntax of Peirce’s EG,~ is given by the class of contravariant functors
from the category pictured below, which we notate A*, into the category FinSet
of finite sets and functions between these.®> We denote such a functor category
by EGax.

Ay A As. ..

3 Restriction: for some n, F(A,) =0.
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Notice how the complexity of the nesting of the cuts is represented in an entirely
straightforward and natural way by functors from the category of the ordered
natural numbers into FinSet.

A few examples of cuts-only graphs are given below:

o ||O 6y |(©@ 6o

As indicated in the footnote on the previous page, we do require F'(A;) to be
definitively equal to the empty set for ¢ greater or equal to a given, finite n. It
is only natural to conceive a system in which such a restriction is dropped, and
therefore study graphs with infinite depth, so to speak. The notion of grossone
— a groundbreaking idea developed by Sergeyev (see for instance [13], [14] and
[15]) — provides a fundamentally finer structure underlying the infinite, discrete
nature of the natural numbers, and we believe that representing graphs of infinite
depth in such a framework will set the basis for a progressive research program.
Needless to say, a category that captures the nature of grossone would need to be
defined, and functors from such a category into the category of sets investigated.

4.2 EG,

In order to add labeled variables to EG,+, we need to add the generic figures
correspondent to tokens and types of variables, along with their structural (syn-
tactical) relations with the cuts. Here the iconic syntax is given by the category
of contravariant functors from the category pictured below, which we notate A,
into the category FinSet of finite sets and functions between these. We indicate
such a functor category by £G,,.

[

Examples of objects of £G,, (expressed diagrammatically):

@9

(AvBach) (A’BaCaDaX7Y7Z)
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Some readers may find the appearance of the letters at the bottom of each graph
not very elegant: we could get rid of them to the cost of adding some conditions
on the arrows, which we prefer not to do.

4.3 EG/3+

We define EG g+ following the same reasoning outlined in the previous sections for
EG, and EG 4, Peirce’s EG g+ is the given by the class of contravariant functors
from the category pictured below, which we notate B, into the category FinSet
of finite sets and functions between these. We call this functor category £Gg. .

/ /
T Ry
Tr——R
T3 R3
s R,

More precisely, the category B, consists of objects and morphisms specified as
follows:

— Objects: {T;}ien, {Ritien, L
— Morphisms:
e identities;
e a collection of morphisms {¢;};cy where

e for each i € N a collection of morphisms {rf }i=01,....; where
r{ L — Ry

Formally, then, a EG g+ graph is a functor G : B4 — FinSet such that there
is some n such that for all m > n G(T,,) = 0. This latter condition simply
ensures for the sake of tidiness that every graph has a maximal relation arity.

Example 6. The graph below represents the same situation illustrated in
Ezxample 3 but without the cut. It may be read as saying thatsomeone who is a woman
gives something to someone. Without cuts and, in particular, without nested cuts,
neither negation nor universal quantification may be expressed in the reduced
system.
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hz’s a woman

For the sake of clarity, here below we present an example in which the corre-

spondence between a given graph and the correspondent functor is illustrated in
detail.

[ —

Example 7. Consider the diagram below, which represents a functor from B,
into FinSet.

The ovals above each of the category objects represent the sets to which the
functor G sends those objects. All objects that are not shown, such as Ty are
understood to be sent to the empty set. For instance, G(Ry) is the two-element set
containing oy and ag. The three functions G(t1), G(t2) and G(t3) are completely
determined since their codomains are singletons (the reader should keep in mind
the contravariance of the functor).

We may stipulate that the remaining functions are defined as follows (the
functions are listed in the top row and their argument in the leftmost column):

G(r1) G(r3) G(r3) G(r3) G(r3) G(r3)

(5] l1
(%) l5
B la U5

0 1 lo I3
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The resulting beta graph may then be pictured as below:

4.4 EGQ

Finally, the full-fledged EG s system is given by the class of contravariant functors
from the category pictured below, which we notate B, into the category FinSet
of finite sets and functions between these. We call this functor category £Gg.

Without specifying all the details, we note only that this category is constructed
by, roughly speaking, gluing copies of By below each object of A*, with one
additional copy added at the beginning of the sequence. The objects labeled
1L, represent “lines-in”, that is, lines of identity that extend across a cut and
are glued to lines of identity on the area of that cut, functioning in this respect
like “soldering points”. In this way, the structures presented at the beta level by
lines of identity and n-ary relations are embedded in the nested cut structures
formalized at the alpha level.
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Example 8. The diagram below presents the graph discussed in Example 7 with
two cuts added to it. For the sake of brevity, we omit the details describing the
structure of its associated functor. The attentive reader should at this point be
able to construct this functor as a useful exercise.

S

5 Conclusion

We have shown how the generic figures approach within categories of presheaf
functors provides an appropriate mathematical setting for representing the dia-
grammatic syntax of Peirce’s Existential Graphs. The same general mathemati-
cal setting captures the relevant syntactical structure of diagrams in both alpha
and beta systems, the only difference being the complexity of the base category
over which the presheafs are constructed. We remarked above that the grossone
research program might find interesting possibilities for syntactical representa-
tion in proximity to Peirce’s alpha system (with the controlled lifting of the
restriction on finite nesting of cuts). This suggests one possible path for future
research that may very well find additional, perhaps fruitful, connections between
the grossone program and Peirce’s logic. Another potential line of development
would examine the semantics for Peirce’s graphs and aim to formulate Peirce’s
transformation rules in the generic figures framework. Finally, the generic fig-
ures approach suggests itself as a natural medium for rigorously formulating a
variety of otherwise quite different diagrammatic systems. Perhaps the basis for
a general theory of diagrammatic representation may eventually be worked out
on this categorical mathematical terrain.
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Abstract. This paper addresses the problem of solving a constrained
global optimization problem using a modification of the DIRECT method
that incorporates the filter methodology to simultaneously minimize the
objective function and the constraints violation. Thus, in the “Selection”
step of the herein proposed DIRECT-filter algorithm, the hyperrectan-
gles are classified in four categories and subsequently handled separately.
The new algorithm also imposes upper bounds on the objective func-
tion and constraints violation aiming to discard some hyperrectangles
from the process of identifying the potentially optimal ones. A heuristic
to avoid the exploration of the hyperrectangles that have been mostly
divided is also implemented. Preliminary numerical experiments are car-
ried out to show the effectiveness of the imposed upper bounds on the
objective and violation as well as the goodness of the heuristic.

Keywords: Global optimization - DIRECT - Filter method - Heuristic

1 Introduction

The paper aims to address the use of the filter methodology [8] combined with
a DIRECT-type method [12] to globally solve non-smooth and non-convex con-
strained optimization problems. The constrained global optimization (CGO)
problem has the form:

xzef?
subject to h(z) =

min f(z)
( 0
g(z) <0,

(1)

where f : R" — R, h : R® - R™ and ¢g : R® — RP are nonlinear continu-
ous functions and 2 = {x e R" : —c0 < [; < z; < u; < 00,4 = 1,...,n}.
Since convexity is not assumed, many local minima may exist in the feasible
region, although we require only a global solution. For non-smooth problems,
the derivative-free methods are the most appropriate. Popular methods to solve
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problem (1) combine a penalty term, which depends on a constraint violation
measure, with the objective function to give the so-called penalty function. The
penalty term aims to penalize f whenever an approximation point is found that
is infeasible. Penalty functions within a DIRECT-type framework are proposed
in [5,21]. An auxiliary function that combines in a special manner information on
the objective and constraints is presented in [11]. Other techniques that involve
the handling of the objective function and constraints violation separately can
be found in [3,4,13].

This paper addresses the exploration of the DIRECT method in order to solve
CGO problems. It uses the filter methodology [8] to handle the constraints. The
objective function and the constraints violation measure are separately handled
and both simultaneously minimized. The main differences relative to the work
reported in [3] are the following:

1. four categories of hyperrectangles (according to the violation measure and
the non-dominance vs dominance feature of their center points) are defined
instead of three;

2. upper bounds on the objective and violation values are imposed during the
selection step in order to reduce the number of explored hyperrectangles;

3. aheuristic is used to prevent the mostly divided hyperrectangles to be selected
and identified as potentially optimal.

The paper is organized as follows. Section 2 briefly presents some ideas and
the main steps of the DIRECT method. Section 3 describes the proposed exten-
sion to handle CGO problems, in particular, the use of a filter method to classify
each hyperrectangle according to its non-dominance/dominance feature and con-
straints violation magnitude. Further, the strategy that imposes upper bounds
on f and violation values, as well as the heuristic are exposed. Finally, Sect. 4
contains the results of our preliminary numerical experiments and we conclude
the paper with the Sect. 5.

2 Features About DIRECT Method

The DIRECT (DIviding RECTangles) algorithm, originally proposed to solve
bound constrained global optimization problems, assumes that the objective
function, f, is a continuous function and creates finer and finer partitions of the
hyperrectangles generated from the set 2 [6,7,12]. The algorithm is a modifica-
tion of the standard Lipschitzian approach, in which f is assumed to satisfy the
Lipschitz condition

If(.’L‘l) — f(l‘g)l < KHl‘l — .1‘2” for all xr1,To € .Q,

where the Lipschitz constant K > 0 is viewed as a weighting parameter that
indicates how much emphasis to place on global versus local search.

DIRECT is a deterministic and derivative-free method that is able to explore
optimal regions aiming to converge to the global optimum and at the same time
avoiding being trapped in a local optimum.
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DIRECT is described by six main steps: “Initialization”, “Selection”, “Sam-
pling”, “Division”, “Iteration” and “Termination” [9,10,12].

The “Selection” step serves the purpose of identifying the set of indices of
hyperrectangles that are the most promising, denoted by potentially optimal
hyperrectangles (POH), based on the current partition of {2. In the “Sampling”
steps, the set of dimensions with the maximum size in each POH is identified
to define points where the objective function is evaluated. For the “Division”
step, DIRECT uses two measures: (i) the size of the hyperrectangle to favor
the global search feature of the algorithm; (ii) the walue of the hyperrectangle
to give preference to the local search feature. The wvalue corresponds to the
objective function value alone at the center, for bound constrained problems
(and to the objective function and constraint violation values, when problem (1)
is addressed).

For further details on the original DIRECT and other recent interesting mod-
ifications, we refer the reader to [14-20,22].

3 DIRECT-Filter Method

In this section, we reveal how the DIRECT algorithm is extended to incorporate
the filter methodology in order to minimize both the objective function and
constraints violation. First, we briefly present the filter methodology and the
proposed extensions to be incorporated in the main steps of DIRECT. Second,
the strategy that uses the upper bounds on objective and violation values and
the heuristic to avoid the selection of the mostly divided hyperrectangles are
presented.

3.1 Filter Methodology

Based on the filter methodology [1,8], the problem (1) is reformulated into the
following bound constrained bi-objective optimization problem:

min (6(z), f(2)), (2)
where 6(z) = ||h(z)]|1 + ||g(x)+]/1 is a non-negative function to measure equality

and inequality constraints violation, and g; € RP is defined componentwise by
max{0,¢;},7 = 1,...,p. A point z is feasible when 6(z) = 0 and is infeasible
when 6(x) > 0. While minimizing the constraints violation, 6, and the objective
function, f, the filter method builds a region of dominated points that will not
be accepted as new approximations to the solution. The concept of dominance
arises from the multi-objective optimization area:

Definition 1. A point x, or the corresponding pair (0(x), f(x)), is said to dom-
inate y, or the corresponding pair (0(y), f(y)), denoted by x < y, if and only
if

O(x) <0(y) and f(x) < f(y),

with at least one inequality being strict.
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The filter F contains a finite set of pairs (6(x), f(x)), none of which is dominated
by any of the others, and the corresponding points z are known as the non-
dominated points [8].

Let z(®) be a trial point (approximation to the optimal solution of the CGO
problem (1)) and Fj, be the filter, at iteration k, of the algorithm. To avoid the
acceptance of the trial point, or the corresponding pair ((z*)), f(x*))), that
is arbitrary close to the boundary of the filter, the conditions of acceptability
define an envelope around the filter and are as follows:

0(x®) < (1=7)0(z') or f(z®™) < f(a!) —40(a") (3)

for all points z! that correspond to pairs (6(x'), f(2!)) in the filter F,, where
~v € (0,1) is fixed. When the point is acceptable to the filter, the filter is updated
and whenever a point is added to the filter, all the dominated points are removed
from the filter.

We note that the filter contains only infeasible points. However, the feasible
point with the least function value, denoted by fyest, is saved and is used to filter
other feasible points.

3.2 Identifying POH in the DIRECT-Filter Method

In the context of solving a CGO problem, the herein proposed algorithm defines
two separate regions within the usually called infeasible region. One is denoted
by “infeasible” region (identified by I) and contains hyperrectangles with center
points ¢; that satisfy 6(c;) > Ofcas, for a sufficiently small positive tolerance
Ofeas- The other is called “feasible-band” region (identified by F'B) and con-
tains the hyperrectangles with center points that satisfy 0 < 8(c;) < 6feqs. On
the other hand, the herein coined “feasible” region (identified with F') contains
hyperrectangles with 6(c;) = 0.

When applying a DIRECT-type method, in the partition of {H® : i € I}
of iteration k, using the filter methodology and the three regions above defined,
the identification of POH (in the “Selection” step) is implemented separately for
the following four sets of indices:

— the set [ ,f B/ ND+b, contains indices of hyperrectangles with center points in

the “feasible-band” region that are non-dominated (F'B/N D), appended with
the index of the hyperrectangle that corresponds to fpest (+b);

— the set [ ]f B/DHE\E contains the indices of hyperrectangles with center points
in the “feasible-band” region that are dominated (F'B/D), appended with the
indices of the hyperrectangles with centers in the region F' except b (+F'\ b);

— the set I,g/ NP contains the indices of hyperrectangles with non-dominated
center points that are in the “infeasible” region (I/ND);

— the set I,g/ P contains the indices of hyperrectangles with dominated center
points that belong to the “infeasible” region (I/D).

As usual, the hyperrectangles are organized by groups of the same size. The
proposed strategy aims to identify, from each hull, indices of promising hyper-
rectangles, in terms of the
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— optimality measure f, when the indices for exploration belong to the sets
JFB/ND+b ;14 [FB/D+F\b.

— feasibility measure 6, when the indices belong to the sets I7/NP and I1/P.

Thus, in this filter-type method context, the algorithm identifies POH with
respect to (w.r.t.) f, using the following definition [12]:

Definition 2. Given the partition {H® :i € I} of £2, let € be a positive constant
and let fmin be the current best function value among center points in the regions
“feasible” and “feasible-band”. A hyperrectangle j is said to be potentially optimal
w.r.t. f if there exists some rate-of-change constant K >0 such that

flej) — Kdj < f(ei) — Kd;, foralliel
f(ej) = Kdj < fuvin = € fuin (4)

where ¢; is the center, d; is a measure of the size of the hyperrectangle j (for
instance, the distance from c; to its vertices) and I is TFB/ND+b o [FB/D+E\b,

The value of fuin coincides with fpes¢ if there are center points with 6 = 0;
otherwise fii, is set to the least function value of the center points in the region
FB/ND.

On the other hand, for the remaining sets of indices (hyperrectangles) where
0 is used to define the hull, the algorithm identifies POH w.r.t 6, by adopting
the following definition [3,4]:

Definition 3. Given the partition {H" : i € I} of £2, let € be a positive constant.
A hyperrectangle j is said to be potentially optimal w.r.l. the function 0 if there
exists some constant K > 0 such that

0(cs) — de <0(c)— Kd;, foralliel
e(cj) - f(dj < emin - 6emin (5)

where Omin > 0 is the 0 value that corresponds to fmin if the “feasible-band”
region is non-empty; otherwise is the least value of 0 reached by a point in the
“infeasible” region. The set I is I'/NP or T1/P .

3.3 Objective and Violation Upper Bounds

We now show how upper bounds on objective function and constraints violation,
denoted by fU and 8Y respectively, are imposed in a way that hyperrectangles
with f and/or @ values greater than the corresponding upper bounds are not
considered in the “Selection” step to identify POH. The bounds fU and #Y
are defined at each iteration and depend on the information available at that
moment.

Thus, the bound on f to apply to the set I¥B/P+F\b ig defined by

fls = frp + B¢l frp| with frp = max{fEB/ND f..1,
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FB/ND .. . . .
where fmax - directly identified from the filter F - is the f value of the center
of the hyperrectangle with the lowest 6 value among the hyperrectangles with
center in the region FB/ND, and §; > 0 is a constant factor.
On the other hand, the bound on f to apply to the set I'/P is defined by

11 = fr+ Bl fil

where fr - directly identified from the filter - is the f value of the center of the
hyperrectangle with the lowest 6 value among the hyperrectangles with center
in the region I/ND. This 0 value will be denoted by Omin > fcas-

Moreover, 8V is computed using Ouin as follows:

QU = emin + ﬂeomin

where Gy > 0 is a constant factor. This upper bound on 6 is applied only to the
sets IT/ND and I1/P | since the other two are naturally bounded by 0fcqs-.
From hereafter, we denote the basic DIRECT-filter method (as described in the
previous subsection) by “DIRECT-f” and the variant that incorporates the upper
bounds on f and  (as reported here in this subsection) by “UB-DIRECT-{”.

3.4 Heuristic

Besides using the above described upper bounds, the “UB-DIRECT-{” algorithm
can be enhanced with a heuristic that aims to avoid identifying POH among
those hyperrectangles that were mostly divided [17].

The heuristic is applied only to the two sets of indices I¥B/P+F\b and 11/
Thus, hyperrectangles with indices based on size that are larger than [i,/4| are
discarded, where || gives the greatest integer less than or equal to t, and i is
the index based on the size of the hyperrectangle that corresponds to

~ fumin, when the hull from the set IFB/P+F\b ig explored;
~ Omin, when the hull from the set I7/P is explored.

(We note that the larger the size, the smaller is the index based on size.)

This heuristic runs for a cycle of 10 iterations and aims to potentiate the
exploration of hyperrectangles of larger sizes in order to identify POH. With this
selection, global information during the search is reinforced and the likelihood is
that fmin and/or 0,;, may be improved. This cycle of iterations is implemented
every 10 iterations of the original “UB-DIRECT-f”. While the heuristic is active,
the upper bounds on f and 6 are disabled. This variant is denoted by “UB-
DIRECT-f+Heur” in the subsequent tables of results.
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4 Numerical Experiments

During the preliminary numerical experiments, a set of benchmark problems is
used. The MATLAB® (MATLAB is a registered trademark of the MathWorks,
Inc.) programming language is used to code the algorithm and the tested prob-
lems.

Unless otherwise stated, the stopping conditions for the algorithm are the
following. We consider that a good approximate solution z(*)| at iteration k, is
found, if the conditions

®) _ ™) -7
9(1’ ) < m and Perror = max{l, ‘f*”’ < 12 (6)
are satisfied, for sufficiently small tolerances 11,72 > 0, where f* is the best
known solution to the problem. However, if conditions (6) are not satisfied, the
algorithm runs until a maximum number of function evaluations, nfempax, is
reached.

The parameter values for the algorithm are set as follows: v = 1E—05,
Ofeas = 1E—04, e = 1E-04, By = 1.1, By = 1E+04, n1 = 1E—-04, 1 = 1E-04
and n femax = 1E+06. (We note that a smaller value of 55 was also tested but
the reported choice gave better results specially for the larger problems.)

Our goal is to reveal the effectiveness of the proposed objective function and
constraint violation upper bounds in reducing the computational burden without
affecting the robustness of the DIRECT-filter method.

Table 1 presents a comparison of our solutions with others reported in the
literature, when solving the problem “Gomez #3” [11], with global optimum
value f* = —0.9711, occurring at (0.109, —0.623):

: 2, 21,2 2.2
min (4 —2.1z7 4+ ﬁ) x5 + x1xo + (—4 + 4a3) 23
subject to — sin(4mz;) + 2sin?(27a) <0

with 2 = {x € R? : -1 < z; < 1,7 = 1,2}. The solutions reported in the
table have 1% and 0.01% error relative to the known global solution. The results
are compared to those available in [11] and to another filter-based DIRECT
algorithm (in [3]). We can see that the implementation of the upper bounds on
f and 0 as well as the heuristic make the DIRECT-filter method more efficient.

To compare the results to those in [21] (variants DIRECT-GLc and DIRECT-
GLce), problem “T1” (with several instances depending on n) is used:

. n
min -1 X4
e Ez-l T

subject to >.i  2? <6

with 2 ={xz e R": -1 <z; <1,i=1,...,n}. The algorithms stop with the
condition perror < 1E—04 alone (or a maximum of 1E+406 function evaluations).

See Table 2. Although we are not yet able to achieve convergence before 1E+06
function evaluations on the larger instances, n = 5 and n = 6 of the problem
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Table 1. Comparison results when solving problem “Gomez #3”.

Algorithm Perror f(:v(k>) G(m(m) k nfel|f*
“DIRECT-{” 1% —0.961782 | 0.00E4+00| 9|185 | —0.9711
“UB-DIRECT-{” —0.961782 | 0.00E4+00 | 9225
“UB-DIRECT-f+Heur” —0.961782 | 0.00E4-00 | 10 | 149

In [3] - - 91219

In [11] - - ~ | 89
“DIRECT-{” 0.01% | —0.971006 | 6.00E—05 | 17 | 615
“UB-DIRECT-{” —0.971006 | 6.00E—05 | 17 | 683
“UB-DIRECT-f+Heur” —0.971041 | 3.17E—05 | 18 | 555

In [3] - - 18733

In [11] - - ~ 513

“T1”, the results obtained by “UB-DIRECT-f+Heur” for the other instances
outperform the others in comparison.

To analyze the quality of the obtained solutions we use problem “5” (available
in [2]):

min xg
e

subject to 30z — 635% —x3 = —250
20.1‘2 - 12l‘% — X3 = —300
05(56‘1 + $2)2 —x3 = —150

with 2 = {z € R3: 0 < 2 <9422,0 < 29 < 5.903,0 < 23 < 267.42} and
problem “8” [2]:
mig zf — 1423 + 24z, — 23
xre
subject to xy — 3 — 221 < —2

7931+SC2§8

with 2 = { € R? : -8 < 2; < 10,0 < 2o < 10} and stop the algorithm
after kmax = 20 iterations and then after k... = 50 iterations. The results are
compared to those obtained previously in [3], and are shown in Table 3. On the
other hand, to analyze the gain in efficiency of the present algorithm variants,
Table4 reports the best f and 6 values obtained by the algorithms when the
stopping conditions in (6) are used. The gain in quality and efficiency of the
proposed DIRECT-filter method, in particular when the upper bounds on f
and 6, and the heuristic are implemented, have been once more demonstrated
with the problems “5” and “8”. The results reported in [3] and those obtained
by variants DIRECT-GLc and DIRECT-GLce in [21] are also used in the
comparison.

Figures 1(a), (b) and (c) show the center points generated by the three
variants of the DIRECT-filter method when solving the problem “8”. Feasible
points are marked with ‘4’ (blue) and infeasible points with ‘x’ (red). It can be
seen that the variant “UB-DIRECT-f+Heur” is more effective in reaching the
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Table 2. Comparison results when solving problem “T1”.

Algorithm Fz(R)) A(z*)) k nfe r*

n=2| “DIRECT-{” —3.464106 | 9.29E-05 |14 1395 —3.4641
“UB-DIRECT-{” —3.464106 |9.29E-05 |14 893
“UB-DIRECT-f+Heur” | —3.464106 |5.72E—05 |13 335
DIRECT-GLc - - - 1373
DIRECT-GLce - - - 2933

n = 3| “DIRECT-{” —4.242443 | 0.00E+00 |28 16885 —4.2426
“UB-DIRECT-{” —4.242443 | 0.00E+00 |35 37977
“UB-DIRECT-f+Heur” | —4.242443 | 9.17TE—05 |29 3233
DIRECT-GLc - - - 26643
DIRECT-GLce - - - 8297

n=4| “DIRECT-{” —4.898847 | 0.00E400 |42 151753 | —4.899
“UB-DIRECT-{” —4.898847 | 3.42E-05 |39 78859
“UB-DIRECT-f+Heur” | —4.898440 |3.30E—05 |51 36219
DIRECT-GLc - - - 192951
DIRECT-GLce - - - 47431

n =5 “DIRECT-f” (—5.470982) | (6.65E—05) | (61) | >1E+06 | —5.4772
“UB-DIRECT-f? (—5.470711) | (0.00E+00) | (63) | >1E-+06
“UB-DIRECT-f+Heur” | (—5.474293) | (1.00E—04) | (117)  >1E+06
DIRECT-GLc - - - 253805
DIRECT-GLce - - - 78257

n = 6| “DIRECT-{” (—5.991770) | (0.00E+400) | (45) | >1E+06 | —6.0000
“UB-DIRECT-f? (—5.996647) | (0.00E+00) | (50) | >1E-+06
“UB-DIRECT-f+Heur” | (—5.988112) | (0.00E+00) | (79) | >1E+06
DIRECT-GLc - - - 239697
DIRECT-GLce - - - 135843

In parentheses, the achieved values when the algorithm stops due to nfe > 1E+06

solution. The points cluster around the global solution, being “UB-DIRECT-
f+Heur” the one that concentrates the search the most. Figure 1(d) shows the
pairs (6, f) corresponding to the center points of all the hyperrectangles gen-
erated by variant “UB-DIRECT-f+Heur”. Dominated points are marked with
‘circle’ (red) and non-dominated points (or filter points) are marked with ‘full
circle’ (blue). The smaller plot shows an overview of the filter points.
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Table 3. Quality of the results when solving problems “5” and “8”.

Prob. | Algorithm k= kmax | |f(z®) — £ 0(z*)) nfe I

“5” “DIRECT-{” 20 2.512E—04 5.92E—03 | 471 201.16
“UB-DIRECT-{” 2.512E—-04 5.92E—03 | 471
“UB-DIRECT-f+Heur” 2.512E—-04 5.92E—03 | 379
In [3] 2.512E—04 | 5.92E—03 | (471)
“DIRECT-{” 50 6.819E—04 9.44E—-05 | 3307
“UB-DIRECT-f” 6.819E—04 9.44E—-05 | 2653
“UB-DIRECT-f+Heur” 6.819E—04 9.44E—-05 | 2167
In [3] 6.819E—-04 9.55E—05 | (2827)

“8” “DIRECT-{” 20 9.756E—04 0.00E4-00 | 881 —118.70
“UB-DIRECT-{” 9.756E—04 0.00E+00 | 873
“UB-DIRECT-f+Heur” 7.611E—02 5.08E—05 | 587
In [3] 5.372E—02 | 0.00E400 | (717)
“DIRECT-{” 50 3.724E—-03 9.85E—05 | 3363
“UB-DIRECT-{” 3.724E—03 9.85E—05 | 2715
“UB-DIRECT-f+Heur” 2.993E—03 9.82E—05 | 1971
In (3] 3.623E—-03 9.62E—05 | (3333)

In parentheses, values computed for the comparison, but not reported in [3]

Table 4. Efficiency when solving problems “5” and “8”.

Prob. | Algorithm E | f(z®) 0(z*) nfe | f*

“5” “DIRECT-{” 301201.159343 | 7.83E—051015| 201.16
“UB-DIRECT-{” 301201.159343 | 7.83E—05| 883
“UB-DIRECT-f+Heur” | 30 | 201.159343 | 7.83E—05| 769
In [3] 30 201.159343 | 7.83E—05 | 1009
DIRECT-GLc - 1201.1593 - 819
DIRECT-GLce — 1201.1593 - 819

“g” “DIRECT-t” 19| —118.700976 | 0.00E+00 | 823 | —118.70
“UB-DIRECT-{” 19 | —118.700976 | 0.00E+4-00 | 797
“UB-DIRECT-f+Heur” | 23 | —118.692210 | 0.00E4+00 | 689
In [3] 23| —118.700976 | 0.00E4-00 | 881
DIRECT-GLc - | —118.6892 |- 1197
DIRECT-GLce - | —118.6898 | — 1947
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Fig. 1. Plots of center points in problem “8”: ‘+’ (blue) - feasible points and ‘X’
(red) - infeasible points; ‘circle’ (red) - dominated points and ‘full circle’ (blue) - non-
dominated points (Color figure online)

5 Conclusions

In this paper, we present an extension of the DIRECT method for solving equal-
ity and inequality constrained global optimization problems. The extension inte-
grates the filter methodology into the DIRECT and aims to minimize both
the objective function and the constraints violation simultaneously. The use of
the filter method allows the classification of the hyperrectangles, through the
objective and violation values of their center points, in four categories. Features
like non-dominance/dominance and almost feasible/infeasibility are used to clas-
sify and separately handle the hyperrectangles. Furthermore, upper bounds on
the objective function and on the constraints violation are imposed to identify
the hyperrectangles that should be avoided from the process of selecting the
most promising hyperrectangles. Furthermore, a heuristic that avoids the iden-
tification of potentially optimal hyperrectangles, among those that were mostly
divided, has been cyclically (every 10 iterations) implemented.
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Preliminary numerical experiments show that the quality and the efficiency
of the proposed DIRECT-filter method have been improved when the objective
and constraints violation upper bounds are introduced, and in particular, when
the heuristic is activated. The comparison carried out with other DIRECT-type
methods is encouraging for the smaller dimensional problems.

Future work will be directed to generate upper bounds based on information
gathered from the objective and violation values from each category, resorting
to the average and standard deviation of those values. Issues related to the
extension of the heuristic to avoid exploring hyperrectangles with the larger sizes,
while focusing on hyperrectangles with very small violation and lower objective
values, will require further work.
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Abstract. We consider one of the classes of hybrid systems, heteroge-
neous discrete systems (HDSs). The mathematical model of an HDS is a
two-level model, where the lower level represents descriptions of homo-
geneous discrete processes at separate stages and the upper (discrete)
level connects these descriptions into a single process and controls the
functioning of the entire system to ensure a minimum of functionality.
In addition, each homogeneous subsystem has its own goal. A method of
the approximate synthesis of optimal control is constructed on the basis
of Krotov-type sufficient optimality conditions obtained for such a model
in two forms. A theorem on the convergence of the method with respect
to a function is proved, and an illustrative example is given.

Keywords: Heterogeneous discrete system -+ Intermediate criteria -
Approximate synthesis - Optimal control

1 Introduction

The direct use of the optimal control theory’s theoretical results is associated
with insurmountable difficulties regarding the solvability of practical problems
in analytical form. Therefore, theoretical results have always been accompanied
by the construction and development of various iterative methods. It is nearly
impossible to track the many works that represent various scientific schools and
areas. Therefore, generalization and analogs of Krotov’s sufficient optimality
conditions [1] in two forms will be used substantially in this paper. Some insight
into this field is given via an overview [2] and several publications [3-5].

The approach that is proposed in [6] is based on an interpretation of the
abstract model of multi-step controlled processes [7] as a discrete-continuous
system and extended to heterogeneous discrete systems (HDS) [8]. This method
has essentially allowed the decomposition of the inhomogeneous system into
homogeneous subsystems by constructing a two-level hierarchical model and
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generalizing optimality conditions and optimization algorithms that were devel-
oped for homogeneous systems. This refers to systems with a fixed structure that
are studied within the classical theory of optimal control.

Notably, with this approach, all homogeneous subsystems are linked by a
common goal and represented by a function in the model. However, each homo-
geneous subsystem can also have its own goal. Such a generalization of the HDS
model was carried out in [11], where sufficient conditions for optimal control in
two forms were obtained.

In this paper a method of approximate synthesis of optimal control is con-
structed, and an illustrative example is considered.

Previously, the authors proposed a more sophisticated improvement method
[12] for another class of heterogeneous systems, discrete-continuous systems, that
requires searching for a global extremum in control variables at both levels of
the hierarchical model. For the class of heterogeneous discrete systems consid-
ered in the present paper, the derivation of its analogue is not possible due to
the structural features of the discrete models and the construction of sufficient
optimality conditions.

2 Heterogeneous Discrete Processes with Intermediate
Criteria

Let us consider a two-level model where the lower level consists of discrete
dynamic systems of homogeneous structure. A discrete model of general form
appears on the top level.

z(k+1) = f(k,z(k),u(k)), (1)
kEK:{k}I,kI+1,...,kF}, UGU(]C,IE),

where k is the number of the step, x and u are respectively variables of state
and control of arbitrary nature (possibly different) for different k, and U(k, x)
is the set given for each k and z. On some subset K’ C K, kr ¢ K’, u(k) is
interpreted as a pair (u'(k), m®(k)), where m®(k) is a process (z%(k,t),u’(k,t)),
t € T(k,z(k)), mi(k) € D?(k, z(k)), and D9 is the set of admissible processes

m?, complying with the system

vkt +1) = f4 (k,z,t,xd(k,t),ud(k,t)) , )
teT={t;(z),t;(z) +1,...tr(2)},
z? e XUk, 2,t), uteU? (k,z,t,xd) , z=(k,x,u’).

For this system an intermediate goal is defined on the set T in the form of a
functional that needs to be minimized:

= S Rtk ), ut(k, 1) — inf
T(2)\tr(z)

Here X4(k, z,t), U? (k, z,t,xd) are given sets for each ¢, z, and . The right-
hand side operator of the 1 is the following on the set K':

f (k’,x,u) =0 (27761(’2)) ) ’Yd = (t[,l‘?,tp,x%') € I‘d(kaz)7
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D(z) = {3 tr = 7(k, 2), tr = V(k, 2),
f =&(k,2), o € Tk 2)}.
On the set D of the processes
m = (:r(k),u(k),xd(k,t)md(k,t)) )

satisfying 1, 2, the optimal control problem on minimization of a terminal func-
tional I = F (x(kr)) is considered. Here k; = 0, kp, x(k;) are fixed and
z(k) € X(k).

3 Sufficient Optimality Conditions

The following theorems are valid [11]:

Theorem 1. Let there be a sequence of processes {ms} C D and functions
@, o such that:

(1) R(k,xs(k),us (k) — p(k), k€ K;

(2) R? (zs,t,x‘j (t),ul (t)) —p?(2s,t) = 0, k €K', t € T (z,);
(3) G (25,7%) = 1% (25) = 0, k e K';

(4) G(zs (tr)) — L.

Then the sequence {ms} is a minimizing sequence for I on the set D.

Theorem 2. For each element m € D and any functionals o, ©? the estimate is

I(m)—i%fISA:I(m)—l.

Let there be two processes m! € D and m"Y € E and functionals ¢ and ¢
such that L (mH) <L (mI) =17 (mI) , and m' € D.
Then I(m') < I(m!).

Here:

L=Gx(kp)— Y Rk z(k),uk))

K\K/\kr
+3 (G- Y Rtk ), u (ks 1))),
K’ T(z)\tr
G (x) = F(z(kr)) + ¢ (kp,x) — ¢ (k1,z (k1)) ,

R(k,z,u)=pk+1,f(kx,u)—¢(kx),

el (, zmd) =—p(k+1,0(k, z,vd)) + o (k,z (k)

+ ¢ (k:,z7tF7m}ir) — (k,Z,t[,.'I;?) ,
R? (k:, z,t, xd,ud) = ok, 2z, t + 1, f¢ (k,z,t,md,ud))
— R, 2k, 1), ul(k, 1) — ok, 2, t, %),
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pd (k, z,t) = sup {R? (k, z,t,xd,ud) cxt e XUk, 2, t),u € U? (k, z,t,xd)},
19(k, z) = inf {G? (k,z,’yd) : (v e Tk, 2), 2% € Xk, z,tr)},

) — sup{R (k,z,u) : x € X(k),u € U(k,z)}, teK\K/,
n )_{—inf{ld(z): zeX(k), uw €U (k2)}, keK,

l=inf{G(z): zeTNX(kp)}.

Here ¢ (k,z) is an arbitrary functional and ¢%(k, z,t, 2%) is an arbitrary para-
metric family of functionals with parameters k and z.

We note that L(m) and I(m) coincide for m € D.

Theorem 1 allows us to reduce the solution of the optimal control problem
posed to an extremum study of the constructions R, G and R?, G¢ by the
arguments for each k and ¢, respectively. Theorem 2 indicates a way to construct
improvement methods. One of the variants of these methods is implemented
below.

4 Sufficient Conditions in the Bellman Form

One of the possible ways to set a pair (¢, $?) is to require fulfillment of condition
inf L = 0 for any m,. Here m, = (u(k), u’(k), u?(k,t)) is a set of control

{mu}
functions from the sets U, U?, and U9, respectively, m, = (z(k), 7¢(k,t))is a
set of state variables of upper and lower levels. Such a requirement leads directly
to concrete optimality conditions of the Bellman type that can also be used
to construct effective iterations of process improvement. Let T4 (z) = R™F),
0 (z, ’yd) =0 (z, Jc%) There are no other restrictions on the state variables.

The following recurrent chain is obtained with respect to the Krotov-Bellman
functionals ¢ and 9 (2) of two levels:

o (k,x)= swp @(k+1,f(kax(k),u), keK\K\kp,
weU(k,z)

o (kp,x) = —F (x),

¢(k,t)= sup (cpd (bt + 1, (k, t, 2% (1) u)) (3)

udeUd(z,t,zd)
— Pt (k) u (k1)) )

o (z,tp,2h) = (k+ 1,0 (2,2%)),

o(k,)= sup ¢ (2,7(2),£(2), keK,
uv €UV (t,x)
which is resolved in the order from kg to k;. Suppose that a solution to this
chain ((p (k,x (k)), ¢ (z7t,md)) exists and, moreover, that there are controls
corresponding to this solution @ (k,z), @’ (k,z), a? (z,t,xd), obtained from
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the maximum operations in 3. Substituting the found controls in the right parts
of the given discrete formulas, we obtain

v(k+1)=f(kazt),a(kz(t), =)=z, keK\K\kp,

)
w(k+1) =0 (kz(k),a ( ()) d())
ekt +1) = f* (k,x (k) , @ (k,z (k 4 at (2(k),t,2%)),

tr :T(Z(k))7 T (tl) 25(2(]{?)), é(k) = (kvx(k)7ﬂ” (kvx(k)))
for k € K’. The solution of this chain is

(1’ (k) ) U (k))* ’ k € K\K/u

(z(k), a(k), a*(k,t), v’ (k,t)),, keK, teT(zk).

If this solution exists, it sets the optimal heterogeneous discrete process m.,. We

note that the functional ¢9(z,¢,z%) in this case can be considered independent

of x, because it “serves” a family of problems for different initial conditions.
The first variant of these conditions is obtained in [8,11].

5 The Approximate Synthesis of Optimal Control

Suppose that X (k) = R™®) X4(z,t) = R*K) g = ¢ (2), k1, o1, kr, t1(k), tp(k)
are given, x‘}; e R™*) | and lower-level systems do not depend on control u".

We will develop the method based on the principles of expansion [9] and
localization [10]. The task of improvement is to build an operator n(m), n: D —
D, such that I(n(m)) < I(m). For some given initial element, such an operator
generates improving, specifically a minimizing sequence {ms} : ms11 = n(ms).

According to the localization principle, the task of improving an element m!
resolves itself into the problem of the minimum of the intermediary functional

I(m) = al(m) + (1 —a)J(m',m), «c][0,1], (4)

where J(m!, m) is the functional of a metric type. By varying o from 0 to 1, we
can achieve the necessary degree of proximity ma to m! and effectively use the
approximations of the constructions of sufficient conditions in the neighbourhood
of m!. As a result, we obtain an algorithm with the parameter a, which is a
regulator configurable for a specific application. This parameter is chosen so
that the difference I(m!) — I(m,,) is the largest; then the corresponding element
My is taken as m!!. We consider the intermediary functional of the form

I=al+(1-a)| > 7|Au IR |Au 1,

K\K'\kp K’ T(z)\tp

where a € [0,1], Au = u — ul, Aud =u? — .
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According to said extension principle for the given element m! € D, we need
to find an element m!' € D for which I,(m') = L, (m') < Io(m') = L, (m'),
or L, (mH) — L, (ml) < 0. We consider the increment of the functional L, (m):

ZAIP1

ALy ~ GI, Ay + L ARG,
-y (R;fA:c + R Au+ %AUTRMAU
K\K'\kr

1
+ iAxTRmAJ: + AuTRuan:> + Z (Gig Azd + GgTAm
K/\’CF

1 1
+ 5 A0 GI ) Aat + S AT G Av + AT GIT, Ax)

1
- > (RTA 4 RIT Az + RIT Au + 5 AT R0 A
T(2)\tr
1
+ §AdeR;ldId Azt + AxTRgxd Azt + AmTRiud Aud + AudTRZ%d Amd),
where Au = u —ul, Ax =z — 2!, Au? = u? —u¥, Azt = ¢ — 29, Ax‘lé =
4 — 2% and xp = x(kp). Here the functions R, G, R?, and G? are defined
for the functional I, and their first and second derivatives are calculated at
u = ul(k), = = 2'(k), 2?7 = 2¥%(k,t), and u? = u¥(k,t). We suppose that
matrices R,, and Ridud are negative definite (this can always be achieved by

choosing a parameter a [10]). We find Au, Au? such that Y. , 3 reach
K\K'\k?p T(Z)\tp
their respective maximum values. It is easy to see that

Au = —(Ryy) Ry + RuzAx(k)),
Au? = — (R4

udyd

)M (Rl + Rl Av(k) + Ry Ax(k, 1)),

We substitute the found formulas for the control increments into the formula for
the increment of the functional AL,. Then we perform the necessary transfor-
mations and denote the result by AM,. We obtain

AM, ~ GT Az + %AzTGmAx - > ((Rz — RyuR,IRM) Az
K\K'\kp

1 1
+ 520" (Ryw = ReuRIRY,) Ax - iRER;jRu)

1 1
+ 3 (Ggg A+ 5 AT Gy 0 Arh + GIT A + S AT, Aa
K’\k:p
+ At Gl Ax) = 3 (R = Rbua(Rlaa) ' RIT) Aat
T(2)\tr
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1
+ *Af,UdT (Rd — Rgdud (deud)_le}‘ ) Axd

) zdxd zdud

zu? zud \*ly

1
+ (RYT — RY a(R%4,0) ' RE)) Az + 5Aa:T (R, — R% 4(Res ) ' RT ) Az

zz? zud udyd

1
+ (AxT (Riga = Bppa(Riaya) " RD,0) At = S RUI(R, )1R§d)> :
We define the functions ¢, ¢ as ¢ = 97 (k) z (k) + 1 Az™ (k) o (k) Az (k),

o = AT (k,t) 2 (k) + T (k, t) 2 (k, t) + %A:ch (k,t) o (k,t) Azt (k,t)

+ A2 (B) A (k, ) A (k) + %AazT (k) S (k1) Az (k) |

where 1,1, X are vector functions and o, ¢, S, A are matrices, and so that
the increment of the functional AM,, does not depend on Az, Azrp, Az?, Axd.
The last requirement will be achieved if

R, — RuuRIRT =0,
Ril - Riud (Rgdud)il RZE = 0’

R;ld - Rgdud (Rgdud)_lRZ:{ - 07
Ridzd - Rwdud (Rgdud)_lREdud == 07
Rgm - Rwud (Rdd )_1RT =0,

udyd zud

Rgzd - Rwud (Rgdud)_ledud =0,

G,=0, GI=0, G% =0, Gy =0, G% . =0, G =0, G =0.
F YFYF F

Transformation of these conditions leads to a Cauchy problem for HDS with
respect to ¢, ¥%, X, o, 0%, S, and A, with initial conditions on the right end:

z/}(k'F) = —OéFw, U(kF) = _asz7
Y(k) = Hy — (fTo (k+1) fu+ Heu) (fLo (k+1) fu + Huu) Hu,
ok) = fYo (k+1) fo + Hya
— (fFo (k+1) fu+ How) (f0 (k+1) fu+ Hy)

(fFo (k+1) fu+ Hy) '\ k€ K\K'\kp,

(k) = Hp + & Hya + 50 (K, tr) + A1) — Atr), ke K,
a (k) = HEU (k + 1) ea: + Hyp + ngea:d (t])O'(ki + 1)91 + Q;FO'(k‘ + 1)9wd (tl)gm
+ &6 00a(tr)o (k+1) 0pa(tr)ée + & 0 (ko tr) & + S (K, tr)
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+&aath(tr) + € 0k tr)Ee + E A1), k€K,
o= HE — (FT o (et + 1) £ + Hea) (F9F 0 (kyt +1) % + HY ) H,
V4 (ko tr) = Hyq,
Mk, t) = Ak, t +1) + HE — (A(k,t + 1) f% + fP0% b, t + 1) f2 + HE 2)
(f%To (kyt +1) f + HY )~ HE Ak, tr) =0,
ok, t) = fiT o (kyt+ 1) fla + Hlaga — (f& 0% (kt + 1) fla + Hla )
(J40 (kyt 4+ 1) £+ Haa) ™ (S50 (hot + 1)+ HY )
ol (k,tp) = H;F%a (k+1) 6,0 + Hya o,

Ak t) = fITA(kt+ 1) foa + HE o — (ijA(k,t+ 1) foa + Hdu)

(fiF o (k+1) fos + Herpa) " (f2F 0 (kot 1) £+ HE )

Ak, tp) =0 0 (E4+1) 0,0 + Hyya,
S(k,t) = S(k,t+1)+ fATAT(k,t+1) + Ak, t + 1) fE+ HE + f Tk, t +1)f2

~(£TAC ) fia 4 HE ) (0 (k1) fla 4 Hlae)

((ijA(k,t +1) £+ ngd))T, S (k,tp) =0,

where

H=9"(k+1) f(k,z(k),u(k)) — % (1—a)|Au (k) ?, ke K\K'\kp

and
H=+yT (k+1)0(k,z(k),25,2%) ke K/,

1

H = ¢dT(k,t+ l)fd(k7t,x(k),xd,ud) — fk(t,xdmd) 5 (1-a) |Aud (k) |2,

x(kr) =27, x(kp) =2p, 29 (kt;) = x?, 24 (k,tp) = x‘},.
Wherein

Au(k) == (ffo (k+1) fut Hu) " (Hut (fTo (k4 1) fu+ Hea) " Ax(k))
Aul (k) = —(HZ, )~ (Hffd (AT, 4+ HY )T Ax(k)

(o Haya) " A (1)),

We note that the formulas obtained for the control increments of the upper
and lower levels depend on the state increments of the same levels. The method
then gives a solution to the problem in the form of approximately optimal linear
synthesis.
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6 Iterative Procedure

Based on the formulas obtained, we can formulate the following iterative
procedure:

1. We calculate the initial HDS from left to right for u = u,(k), u? = ud(k,t)
with the given initial conditions to obtain the corresponding trajectory
(2 (), a2k, 1)),

2. We resolve the HDS from right to left with respect to 1 (k), ¥ (k,t), A(k, ),
o(k), od(k,t), A(k,t), and S(k,t).

3. We find Au, Au? and new controls u = us(k) + Au, u? = ul(k,t) + Aud.

4. With the controls found and the initial condition z(k;) = z;, we calculate
the initial HDS from left to right. This defines a new element m.

The iteration process ends when |51 — I5| = 0 with a specified accuracy.

Theorem 3. Suppose that the indicated iteration procedure is developed for a
given HDS and the functional I is bounded from below. Then it generates an
improving sequence of elements {ms} € D, convergent in terms of the functional,
i.e., there is a number I* such that I* < I(my), I(ms) — I*.

Proof. The proof follows directly from the monotonicity property with respect
to the functional of the improvement operator under consideration. Thus, we
obtain a monotonic numerical sequence

{IS} = {I(ms)}v Is+1 S Is,

bounded from below, which according to the well-known analysis theorem con-
verges to a certain limit: I, — I,.

Remark 1. The equations for the matrices o, 0? are analogs of the matrix Riccati

equations and can therefore have singular points. Points k* € K, t* € T(k) are
called singular if there are changes in the sign of definiteness of matrices Ry,
Ridud' In these cases, by analogy with homogeneous discrete processes, singular
points can be shifted to the points ky, ¢;(k) due to the special choice of the
parameter «, and we can find the control increments by the modified formulas
[13]. In the particular case when the discrete process of the lower level does not
depend on z and u?, these formulas have the simplest form:
Ruu(k‘[)Au(k‘]) = 0, Rd (k‘,t])A’U,d(k,t]) =0.

udyd

The last equalities are systems of linear homogeneous algebraic equations
with degenerate matrices Ry (kr), R%,,.(k,t1) and therefore always have non-
zero solutions.

Remark 2. If 0 = 0, 0% = 0, A = 0 in the resulting algorithm, then we obtain
the first-order improvement method. In this case, the formulas Au, Au? will still
depend on the state increments. Consequently, the resulting solution, as before,
is an approximate synthesis of optimal control.
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7 Example

We illustrate the work of the method with an example. Let the HDS be given:
2t +1) = —22%(t) + (ud — 1)%, 2%(0) =1,t =0,1,2,3,

I = S0 + 5 (),

1
pl(t+1) = (t—u3)’, t=4,5,6, I' = - (2) +uj,

I =2%(7) — min.

6 T T T T T T
°
ud
4t i
2 i
) ® 8 ® 0 o) o) o)
ot .
ol O Initial control ® |
B ®  Resulting control
°
_4 1 1 1 1 1 1
0 1 2 3 4 5 t 6 7

Fig. 1. Control variables in different iterations

It is easy to see that K = 0,1,2. Since z¢ is a linking variable in the two

periods under consideration, we can write the process of the upper level in terms
of this variable:

z(0) = 2%(0,0), x(1) = 2%(0,4), =(2) = z%(1,7), 2%(1,4) = z(1).

Then 0 = 24(0,4), ¢ = 2(1), I = z(2).

Since at both stages the process of the lower level does not depend on the
state variables of the upper level, then A(0,¢) = A\(1,¢) =0, A(0,t) = A(1,t) =
0, S(0,t) = S(1,t) =0.

We obtain
P(2) = —a, 7(2) = 0, (1) = $(2) +¥(1,4), o(1) = 20%(1,4)
FO(0,8) = (0,6 1)(=20 + (uf —1)%) = S ()7 — 5 ()* — 5 (1~ ) (Auf?,
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H(L 1) = 91,4 1) (0~ ud)? — (@)~ — S(1 — a)(Aug)?,

¥3(0,t) = —20%0,t + 1) — 2% — 4620, + 1)(1 — ud) (4(ul — 1)>)0?(0,t + 1)
+207(0,8+1) = 2uf — (1— ) ' (207(0, ¢+ 1) (uf = 1) = (uf)?), ©4(0,4) = 9(2),
c?(0,t) = 464(0,t + 1) — 1 — (40%(0,¢ + 1)(1 — u®))?)(4(ud — 1)%)c?(0,t + 1)
+ 2040, +1) — 2ud — (1 — )71,

Yi(1,t) = —2¢, ¥(1,7) =0, o¥(1,t) = -1, ¢%(1,7) =0,

Aud = (20%0,t +1) — 2ud — (1 — )1 2040, t 4+ 1) (ud — 1) — (ud)?
+20%0,t + 1) (ud — 1)Az%(0, 1),

Aud = — (2041, t+1) — (1 — ) (2041, t + 1)(t —ud) +1).

80 T T T T T T
°
d60 O Initial state
X ®  Resulting state
40 - .
°
)
20 ® o
® (@)
e ® ¥ )
O)
_20 1 1 1 1 1 1
0 1 2 3 4 5 t 6 7

Fig. 2. State variables in different iterations

Numerical experiments show that the improvement of the functional does not
depend significantly on the choice of the parameter o and occurs in almost one
iteration. The result of calculations is shown for « = 0.76 and u(¢t) = 1,t = 0, .., 6.
The functional value is improved from 25 to 0.64 in one iteration. Initial and
resulting controls and states are shown in Figs. 1 and 2.

For comparison, calculations using the gradient method were also performed.
The result is obtained in six iterations, while the value of the functional is 2.87.
This indicates the efficiency of the proposed method.

8 Conclusion

This paper considers HDS with intermediate criteria. On the basis of an ana-
logue of Krotov’s sufficient optimality conditions, a method for the approximate
synthesis of optimal control is constructed, its algorithm formulated, and an
illustrative example given to demonstrate the efficiency of the proposed method.
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Abstract. Climate is changing; many studies of time series confirm this sentence,
but this does not imply that the past is no more representative of the future, and
then that “stationarity is dead”.

In fact, “stationarity” and “change” are not mutually exclusive. As examples:
(1) according to Newton’s first law, without an external force, the position of
a body in motion changes in time but the velocity is unchanged; (2) according
to Newton’s second law, a constant force implies a constant acceleration and a
changing velocity.

Consequently, “non-stationarity” is not synonymous with change; change is
a general notion applicable everywhere, including the real (material) world, while
stationarity and non-stationarity only regard the adopted models. Thus, stationary
models can be also adopted for environmental changes.

With this aim, in this work Authors show some numerical experiments con-
cerning rainfall processes. In detail, a Neymann Scott Rectangular Pulse model
(NRSP), with some changing temporal scenarios for its parameters, is adopted,
and the derived Annual Maximum Rainfall (AMR) time series are investigated
for several temporal resolutions (sub-hourly and hourly scales). The goal is to
analyze if there are some particular scales in which the assumed temporal changes
in parameters could be “hidden” when AMR series (which are nowadays more
available and longer than high-resolution continuous time series for many sites in
the world) are studied, and then stationary models for Extreme Value distributions
could be adopted.

The results confirm what is obtained from analysis of AMR series in some
parts of Italy, for which it is not essential to remove the hypothesis of stationary
parameters: significant trends could not appear only from the observed AMR
data, as a relevant rate of outlier events also occurred in the central part of the last
century.

Keywords: Rainfall processes - Climate changes - Stationary models

1 Introduction

Climate changes are widely described in many technical reports and scientific papers
(e.g. [1, 2]). Concerning Europe, and in particular Italy, the report of the European
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Environmental Agency (EEA) [3] and the publication of the Italian Institute for Envi-
ronmental Protection and Research (ISPRA) [4] can be mentioned. In these reports,
projections of future climate were derived by four Regional Climate Models (RCMs),
named as ALADIN, GUF, CMCC, LMD. For each RCM, four scenarios of Representa-
tive Concentration Pathways (RCPs) of total radiative forcing (i.e., cumulative measure
of human emissions of greenhouse gasses from all sources expressed in W/m?) were
used as input: RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. Moreover, an ensemble mean
projection from all the RCMs was also derived for each RCP. Focusing the attention
on RCP 4.5 (intermediate emissions) and RCP 8.5 (high emissions), with respect to the
reference period 1971-2000, the results of the simulations related to a future period until
2090 for Italy are:

e adecrease of annual precipitation. In details, the ensemble mean of reduction is 13 mm
for RCP 4.5 and 71 mm for RCP 8.5;

e a modest increase for the annual maximum daily rainfall. The ensemble mean is, for
both RCP 4.5 and RCP 8.5, up to 5-7 mm;

e a significant increase for the waiting time between two consecutive rainfall events.
The ensemble mean is up to 8 days for RCP 4.5, and up to 16 days for RCP 8.5.

However, RCMs usually underestimate intensity of extreme rainfall, due to struc-
ture of the adopted numerical schemes and to their temporal and spatial resolutions.
Concerning these last aspects, spatial resolutions between 10 and 30 km, typically used
in RCMs for climate change studies, are still too coarse to well reproduce sub-daily
localized heavy precipitation events [5, 6].

Moreover, from analysis of some time series in southern Italy, related to Annual
Maximum Rainfall (AMR) for daily and sub-daily resolutions, significant trends do not
appear from the observed data, as a relevant number of heavy events also occurred in
the central part of the last century [7].

Consequently, the contrast between the perception of climate changes by people (also
supported by RCMs projections) and the evidence from some time data series implies a
more in-depth analysis of rainfall processes, mainly for extremes from high-resolution
data. In this context, only an analysis of observed records may not be sufficient, as high-
resolution rainfall data usually present a very short sample size; this aspect, together
with the need to obtain perturbed time series which are representative of future rainfall
fields, makes preferable the use of stochastic rainfall generators.

In this paper, a modified version of the Neymann Scott Rectangular Pulse (NSRP,
[8-10]) was implemented (Sect. 2.1), in which:

e the parameters were estimated by considering the AMR time series at sub-daily dura-
tions, that are usually more lengthy with respect to high-resolution continuous time
series. Moreover, with this choice, a better reconstruction of AMR time series can be
obtained, which are of main interest in this study;

e a simple goniometric scheme was introduced for the mean value of inter-arrivals
between two consecutive storms, in order to better reproduce seasonality and annual
precipitation, without over parameterizing the model by using monthly or seasonal
parameter sets.
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Once the NSRP model has been calibrated, some parameters trends were hypoth-
esized, which provided compatible results with RCM scenarios in terms of variation
for maximum daily rainfall and cumulative annual precipitation. Time series of Viterbo
raingauge (central Italy) were used as case study (Sect. 2.2). The obtained results are
discussed in Sect. 3.

2 Methods and Materials

2.1 Brief Overview of NSRP Model

The single-site Neymann Scott Rectangular Pulses (NSRP, [8—10]) model presents a
flexible structure, in which the meaning of model parameters is strictly related to the
underlying physical features observed in rainfall events. In details, the basic formulation
is:

1. itis assumed that the inter-arrivals T's between the origins of two consecutive storms
are independent and identically distributed, and follow an exponential distribution:

Prg(ts) = 1 — ™15, (1)

where 1/A represents the mean value for inter-arrivals;

2. for each origin, a number M of rain cells (also named bursts) is associated. M is
usually considered as Geometric or Poisson distributed. In the following, a geometric
distribution is assumed and, with the aim of having at least one burst for a storm, the
random variable C = M — 1 is used, with E[C] =6 — 1, so that E[M] = 6 and:

P _! 1 Ly’ 2
C(C)—é'(—5> (2)

3. the starting time of each rain cell 7c, measured from the origin of the associated
storm, is exponentially distributed with parameter p:

Pr.(t.) =1—eP% 3)

4. arectangular pulse is then related to each burst, with an Intensity / and a duration
D, which are both exponential distributed with parameters n and &, respectively:

Pii)=1—¢ “4)
Pp(d) =1—¢5d (5)
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5. the total precipitation intensity at time #, Y (¢), is then calculated as sum of the
intensities related to the active bursts at time t:

+00
Y(t) = f Li—u)dM(t — u), (6)
0

where I;_, (u) is the intensity of a single rectangular pulse at time u and M(t) is
the counting process of the burst occurrences. Then, the aggregated process, i.e. the
rainfall height HE.I) cumulated on the temporal 7 - resolution and related to the time
interval j is:

jT
HjT) = / Y (t)dt (7
(G—Dt

Therefore, the basic version of a NSRP model has 5 parameters that can be esti-
mated by minimizing an objective function, evaluated as sum of residuals (normalized
or not) between the considered (by users) statistical properties of the observed data at
chosen resolutions and their theoretical expressions. The statistical properties are typi-
cally referred to high-resolution continuous time series (e.g. 5-min rainfall time series),
for example: mean, variance, k-lag autocorrelation for H;.T) at several values of 7 [11].

However, the sample size of these datasets is usually short (at most 15-20 years of
records) and then not very suitable for obtaining robust estimations, even more so when
a specific S-parameter set is considered for each month or season, in order to take into
account the seasonality of the process.

To overcome this problem, in this work Authors considered statistical properties from
the annual maximum time series of rainfall heights at hourly and sub-hourly resolutions,
which are usually longer than continuous series. This choice also allows for a better
reproduction of extreme events, which are generally underestimated if continuous time
series are used for model calibration [12].

Moreover, due to the fact that the information about the seasonality of the rainfall
process during the year is lost with the use of Block Maxima (BM) series, a very simple
schematization was introduced for modelling the seasonality. In detail, with the goal to
not over parameterize the model (i.e. introducing monthly or seasonal parameter sets),
if no specific information can be derived from BM series, the following goniometric
function was introduced for the mean value of the inter-arrivals between two consecutive
storm origins (i.e. 1/1):

1 _ 1
)‘(t) B )\min

+A- (14 cos(p@))), ®)

where 1/A,, is the assumed minimum value of mean waiting time between two storms,
A is the difference (1/A — 1/Aip), with A from Eq. (1), and

n="2l4 9
€0()—Ty T, &)

in which 7 is the total number of minutes in one year, and 0 < ¢t < T,. With adoption
of Eq. (8), Authors hypothesize that the mean waiting time assumes the minimum value
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(1/Amin) wWhen tis very close to 0 and 7), (i.e. in the winter period), the maximum value
during summer season, and the mean value along the whole interval [0; 7y] is equal to
1/x.

The use of this goniometric function only introduces one more parameter, Ay With
respect to the basic formulation for NSRP, and it also allows for a better reconstruction of
the annual precipitation, as explained in Sect. 3.1. In the following, the standard model
version (without goniometric function) is indicated as NSRP1, while the version with
Eq. (8) is NSRP2.

Once the model calibration was completed, some parameters trends were hypothe-
sized, from which Authors considered those that provided compatible results with RCM
scenarios, in terms of variation for maximum daily rainfall and annual precipitation.
In this paper, as a representative example, Authors discussed the obtained outcomes
(Sect. 3.2) for the following scenario, which is characterized by:

e alinear increasing trend of 50% in 100 years concerning Intensity of Bursts;

e alinear decreasing trend of 25% in 100 years concerning Duration of Bursts;

e a linear increasing trend of 50% in 100 years concerning the mean waiting time
between two consecutive storms.

2.2 The Case Study of Viterbo Raingauge

Authors focused attention on Viterbo rain gauge (central Italy), characterized by a Mean
Annual Precipitation (MAP) equal to 746 mm. The analyzed data, provided by ‘Agenzia
Regionale di Protezione Civile — Centro Funzionale Regionale’ of Lazio region, were: (i)
Annual Maximum Rainfall (AMR) series related to sub-daily durations (1-24 h), with
a sample size N = 71 years; (ii) continuous high-resolution (5-min) rainfall series from
1994 to 2015, from which the AMR series related to 5, 15 and 30 min were obtained,
with N = 22 years.

As explained in Sect. 2.1, because of the relatively short sample size for the continu-
ous rainfall series, Authors preferred to calibrate (Sect. 3) the model by using the longer
hourly AMR series, in order to better reproduce the extreme rainfall events, which are of
main interest for specific topics, like analysis of induced events (floods and landslides)
and related strategies of disaster risk reduction. However, the statistics of sub-hourly
AMR data (derived from continuous series) were considered in the validation step.

3 Results and Discussion

3.1 Calibration of NSRP Models Without Parameter Trend

The calibration for NSRP1 and NSRP2 was carried out by optimizing with respect
to the mean sample values of hourly AMR series (1-24 h) and annual precipitation.
According with [11, 13], the ranges of variation for the 5 parameters related to NSRP1
were: [0.002 h~!; 0.01 h™!] for A; [2, 10] for 6; [0.02 h—!; 0.5 h~'] for B; [0.05 h/mm;
0.2 h/mm] for n and [1 h~!; 10 h=1] for &. Moreover, the range [2 days; 5 days] was
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adopted for 1/A,,in, introduced in NSRP2 (see Eq. 8). For each hypothesized parameter
set, concerning both NSRP1 and NSRP2, a single 500-year realization of continuous 1-
min rainfall heights was generated with the usual Monte Carlo technique [14], according
to the property of ergodicity [15, 16] related to a stationary process.

The calibration results are reported in Table 1. From Table 2 (where there are also
indicated the mean values for 5, 15 and 30-min AMR series, not adopted for calibra-
tion), it is clear that there is not a significant difference between NSRP1 and NRSP2 in
terms of mean values for AMR (there is in general a slight overestimation from NSRP2
when sample data are compared). The more noticeable difference is concerned with the
reconstruction of MAP: NSRP1 provided a value of 552.0 mm, while 739.3 mm (closer
to the sample value of 746 mm) were obtained from NSRP2, which is clearly preferable
for the successive elaborations.

Table 1. NSRP calibration results

1/2 6 1/B 1/n 1/ 1/Amin
h () () @mmh (H) (h)

NSRP1 model
NSRP2 model 2145 5.7 11.9 14.2 0.16 7.0

Table 2. NSRP performances, in terms of reconstruction of mean values for Annual Maximum
Rainfall (AMR) and Mean Annual Precipitation (MAP)

5-min 15-min 30-min 1-h 3-h
AMR AMR AMR AMR AMR

(mm) (mm) (mm) (mm) (mm)
NSRP1 model 6.9 17.6 26.9 329 382
NSRP2 model 7.1 18.3 28.5 354 41.1
Sample data 8.3 15.7 22.1 310 403

6-h 12-h 24-h

AMR  AMR AMR  MAP

mm)  (mm)  (mm) ™™
NSRP1 model  44.4 533 64.0 552.0
NSRP2 model  47.9 60.2 72.8 739.3
Sample data 47.3 55.6 65.5 746.0

In Fig. 1, the comparison among Amount-Duration-Frequency (ADF) curves
obtained from the sample AMR series and those derived from the simulated contin-
uous NSRP2 process is illustrated. For values of return period from 10 to 1000 years, we
can observe at most a difference of about £2.5 mm for longer durations, ranging from —
2% to 4% with respect to sample data. Consequently, the proposed calibration for NSRP,
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carried out by considering sample statistics from observed AMR series, seems useful in
order to reproduce extreme rainfall events along several sub-daily durations.

180

160

———T=10 years NSRP2
T=10 years Sample Series

140 ——T=20 years NSRP2
€ - = T=20 years Sample Series
E— 120 - ——T=50 years NSRP2
f" = = T=50 years Sample Series
E ——T=100 years NSRP2
:‘E A — —T=100 years Sample Series
L ——T=200 years NSRP2
80 - — = T=200 years Sample Series
——T=500 years NSRP2
60 — —T=500 years Sample Series
——T=1000 years NSRP2
40 — —T=1000 years Sample Series

0 5 10 15 20 25
duration (h)

Fig. 1. Comparison among ADF curves obtained from NSRP2 model and sample data analysis

3.2 Results from the Assumed Parameter Trends

Starting from the hypothesized scenario described in Sect. 2.1 for parameter trends, 500
realizations, each one concerning 101 years of continuous 1-min rainfall heights, were
generated with the usual Monte Carlo technique [14]. Obviously, the first generated year,
denoted as “0”, has all the features of the calibrated stationary process in Sect. 3.1.

Focusing on Annual Precipitation (AP) and annual maximum 24-h rainfall height, the
temporal evolution of their mean values (calculated for each year from the correspondent
500 realizations) is compatible with RCM projections, reported in Sect. 1. In fact (see
also Table 3):

e a mean reduction of 82.5 mm in 100 years is obtained for AP (well-matched with
71 mm in 90 years from RCP 8.5);

e there is a slight increase for 24-h AMR, of about 4 mm in 100 years (the ensemble
mean is, for both RCP 4.5 and RCP 8.5, up to 5-7 mm in 90 years, related to daily
duration).

Moreover, interesting comments can be made from analysis of temporal evolution for
the generated distributions regarding AMR series at sub-hourly and hourly time scales.
A specific AMR distribution, related to a fixed year, is obviously derived from the
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Table 3. Evolution of mean values for Annual Maximum Rainfall (AMR) and Mean Annual
Precipitation (MAP): from now (t0) to 25 (t25), 50 (t50), 75 (t75) and 100 (t100) years

5-min 15-min 30-min 1-h 3-h
AMR AMR AMR AMR AMR

(mm) (mm) (mm)  (mm) (mm)
t0 7.1 18.3 28.5 354 411
t25 7.8 19.9 30.7 375 434
t50 8.4 20.8 31.0 369 432
t75 9.0 225 33.1 386 443
t100 9.7 23.5 334 379 440
6-h 12-h 24-h
AMR AMR AMR xﬁ;};
(mm) (mm) (mm)
t0 47.9 60.2 72.8 739.3
t25 50.8 61.4 74.8 732.6
t50 51.0 61.6 74.9 700.8
t75 51.8 62.7 75.3 687.0
t100 51.5 63.1 76.7 656.8

correspondent 500 annual extremes associated to the generated realizations. From Fig. 2
it is clear that there is a significant difference among AMR distributions (represented in
EV1 probabilistic plots, [14]) at higher resolutions (5—15 min); from Table 3 it can be
noted that there is an increase in mean values of about 37% (5-min AMR), 28% (15-min
AMR) and 17% (30-min AMR) in 100 years.

These differences are less and less evident for hourly time scales (Fig. 3); the increase
in mean values is at most about 5-7% in 100 years (Table 3).

These results can be easily justified from the assumed trend scenario:

e an increase in burst intensity induces a clear increase in rainfall height for finer time
scales (5-30 min), which are less influenced by a contemporary reduction of burst
duration;

e on the contrary, for coarser resolutions (from 1 h), the simultaneous presence of an
increase for intensity and a reduction in duration for bursts produces a sort of balance
for rainfall heights, and then it is not possible to highlight a significant trend for AMR
series;

e the increase of mean waiting time between two consecutive storms mainly influences
the reduction of annual precipitation, as expected from RCM projections.

Such considerations are also confirmed by Figs. 4 and 5. For finer time scales (5
and 15 min), the temporal evolutions of 2.5%, 97.5% quantiles and mean value (derived
from all the 500 realizations) clearly show an increasing trend more significant than
those associated to the coarser ones (1-24 h), for which the temporal slopes could be
also considered as horizontal.
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Fig. 2. Evolution of distributions for 5-min AMR (top) and 15-min AMR (bottom): from now
(t0) to 25 (t25), 50 (t50), 75 (t75) and 100 (t100) years.
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Fig. 3. Evolution of distributions for 1-h AMR (top) and 24-h AMR (bottom): from now (t0) to
25 (t25), 50 (t50), 75 (t75) and 100 (t100) years.
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Fig. 4. Temporal evolution of mean, 2.5% and 97.5% quantiles for 5-min AMR (top) and 15-min
AMR (bottom), from Monte Carlo simulation carried out for the adopted NSRP2 with parameter
trend.

Consequently, from the exposed numerical experiments it could be affirmed that
adoption of stationary models for rainfall extreme value distributions still remains as a
valid tool, when the specific time scale is such as to “hide” climatic change effects which
are more evident at finer resolutions. Obviously, this is also confirmed by preliminary
data analysis of many AMR series, for which a relevant rate of outlier events also occurred
in the last century.
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Fig. 5. Temporal evolution of mean, 2.5% and 97.5% quantiles for 1-h AMR (top) and 24-h AMR
(bottom), from Monte Carlo simulation carried out for the adopted NSRP2 with parameter trend.

4 Conclusions

From the proposed numerical experiments, the obtained results can clearly constitute
an interesting contribution for discussion about climate change effects on several time
resolutions for rainfall time series. As well-known by preliminary analysis of many
observed Annual Maximum Rainfall (AMR) time series, significant trends do not appear
from the sample data at specific resolutions in some parts of Italy [7], and this is confirmed
by simulations carried out in this work, although some parameter trends were imposed
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for the continuous process, which induce a more evident non-stationary behavior only
for very high-resolution AMR series.

Consequently, stationary models can still remain a valid tool for estimation of design

extremes also in a changing climate, mainly for coarser scales, which are not so influ-
enced by potential trends in bursts intensity, duration, and number of occurrences for
the continuous process.
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Abstract. Properties of operators of generalized attenuated ray trans-
forms (ART) are investigated. Starting with Radon transform in the
mathematical model of computer tomography, attenuated ray transform
in emission tomography and longitudinal ray transform in tensor tomogra-
phy, we come to the operators of ART of order k over symmetric m-tensor
fields, depending on spatial and temporal variables. The operators of ART
of order k over tensor fields contain complex-valued absorption, different
weights, and depend on time. Connections between ART of various orders
are established by means of application of linear part of transport equa-
tion. This connections lead to the inhomogeneous k-th order differential
equations for the ART of order k over symmetric m-tensor field. The right
hand parts of such equations are m-homogeneous polynomials contain-
ing the components of the tensor field as the coefficients. The polynomial
variables are the components &7 of direction vector ¢ participating in dif-
ferential part of transport equation. Uniqueness theorems of boundary-
value and initial boundary-value problems for the obtained equations are
proved, with significant application of Gauss-Ostrogradsky theorem. The
connections of specified operators with integral geometry of tensor fields,
emission tomography, photometry and wave optics allow to treat the prob-
lem of inversion of the ART of order k as the inverse problem of determin-
ing the right hand part of certain differential equation.

Keywords: Tensor tomography - Attenuated ray transform -
Transport equation - Boundary-value problem - Uniqueness theorem

1 Preliminaries

Two well-known tomography and integral geometry problems underlay in a
notion of generalized attenuated ray transform (ART) of tensor fields. The first
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is the problem of emission computer tomography, and the second is the problem
of integral geometry, consisting in reconstruction of a tensor field by its known
longitudinal ray transform.

A progress of emission tomography in biology and medicine diagnostics is
well known [1,2]. In contradistinction to the transmission computer tomography,
a setting of emission tomography problem contains, in general, two unknown
functions that should be reconstructed. First function (absorption coefficient)
is responsible for a medium absorption, and the second describes a distribution
of internal sources, which radiation is fixed by detectors. A purpose is to find
distribution of internal sources f and/or absorption coefficient £ by given values
of attenuated ray transform

1= [t@en{~ [ )i}, 1)
L

L(q)

where L(q) is a segment of straight line L between point ¢ and detector. At the
most part of settings of emission tomography problem the absorption coefficient
supposed to be known. Later a phenomenon of absorption arises in the models
of vector tomography [3-8]. The authors of listed articles develop as approaches
to some aspects of applications of vector tomography, so investigate certain the-
oretical questions.

Tensor tomography has traditional applications to the problems of photoe-
lasticity and fiber optics [9,10], new approaches and achievements in diffrac-
tive tomography of strains [11], polarization tomography of quantum radiation
[12], diffusion MRI-tomography and cross-polarization optic coherent tomogra-
phy [13-16]. A success of tensor tomography in studying of anisotropic objects
and materials in physics, geophysics, biology and medicine makes a deep impres-
sion and closely connected with progress in integral geometry of tensor fields,
wherein many types of ray transforms are suggested and investigated [17,18]
as in 2D-case [19-22] so in case of arbitrary dimension of Euclidean space and
Riemannian surface or manifold [23,24].

Initial data for well-known problem of integral geometry for tensor fields
represent, in particular, the longitudinal ray transform

oo

Pw(x, &) = / wi, ., (x — s€)E™ .. Emds, (2)

— 00

where w;, . ;, () is a symmetric tensor field of rank m (m-tensor field), £ is a
unit direction vector, || = 1, for a straight line L along which the integration
is carried out. Here and below the Einstein rule consisting in that by repeating
super- and subscripts in a monomial a summation from 1 to n is meant (n is a
dimension of Euclidean space). The purpose of this integral geometry problem
is to find tensor field w by given values of the longitudinal ray transform (2).
The operators of generalized ART for tensor fields are defined and studied
in the article. A generalization of the operators of attenuated ray transform
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for tensor fields is implemented in three directions. At first, the attenuation
function exp {— | &) dp} becomes complex-valued similar to those arising in

L(q)
inverse scattering problem at Rytov’s approach [25,26], and then within diffrac-

tion tomography, see [2] for instance. Secondly we take into account a concept of
generalized ray transform of tensor fields (integral moments of generalized ten-
sor fields) considered in [17,18]. A third direction of generalization is connected
with settings of dynamic tomography and consists in consideration of depending
upon a time internal sources [27-29].

We would like to point out some connections between partial cases of genera-
lized ART for tensor fields and certain tomography problems, photometry, and
wave optics.

Let rectangular Cartesian coordinates system be given in Euclidean space R?
with inner product (z,y) of elements = = (zt,2%,23), y = (y',4%,vy>) € R®. Let
in R® a bounded convex domain D, with smooth boundary 9D, be given. The
domain D contains distribution f(z), € D, of sources of monochromatic scalar
wave field. Usage of a notion of the optical system which is mathematical formal-
ization of device like a camera [30] leads to a formulation of direct problem of
wave optics consisting in solving the boundary-value problem for the Helmholtz
equation satisfying to discontinuous boundary conditions of Kirchhoff [31] and
to radiation condition of Sommerfeld on the infinity.

An application of the Green’s function for a half-space gives a solution of
direct problem in a form of Kirchhoff integral [31]. Usually in optics the Fraun-
hofer approach is exploited [32] allowing to simplify a solution of direct problem
significantly. The obtained approximate solution can be represented as the con-
volution ug * A with known kernel A. Function us is known as the ideal wave
image [33],

o0
s(o.€) = [ 5ef — s€)ds, 3)
0
where k is wave number, k¥ = const. A similar setting of direct problem with
incoherent sources in a medium with constant absorption coefficient € > 0 leads
to so called notion of ideal photometric image,

oo

us(e§) = [ %o - se)ds. (4)
0
The inverse problems of wave optics and photometry are formulated as a prob-
lem of determination of a function f which describes distributions of sources of
monochromatic wave field or distributions of incoherent sources.
The attenuated ray transform (ART) of order k for m-tensor fields, k, m is
integer, k,m > 0, is defined by a formula

o S

b (@6) = [ *exp{~ [ (ela 06,6 +inla - 06, €))do
0 0o .
X wiy ., (@ —s§)E ... &mds.

(5)
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Functions € > 0, p, and symmetric m-tensor field w = w;,
ponent of w) are finite and bounded.

The attenuated ray transform ud(x, &) of order 0 for scalar fields at p = 0 and
¢ = const may be treated as ideal photometric image (4), and for order £ = 1 and
rank m = 0 the operator u$(z, &) coincides with ideal wave transform (3). The
generalized ART for scalar fields is connected with tomographic transforms also,
see [2]. Thus at k,m =0, p =0 and € = 0, the operator (5) describes fan-beam
(in R?) or cone-beam (in R?) transforms. The same operator with limits from
—00 to 400 is ray transform defined in the space R™ of any dimension n > 2;
for n = 2 this operator may be treated as the Radon transform. At k,m = 0,
p =0, n > 2 the operator (5) is standard attenuated ray transform. For p = 0,
e =0,k =0, minteger, m > 1, n > 2, we obtain well-known longitudinal
ray transform for tensor fields [18]. Besides, if & > 1 then we have integral
k-moments of generalized tensor fields. Thus we make sure that, at first, the
operators of ART of order k for m-tensor fields are connected with tomographic
transforms. Secondly, settings of inverse problems consisting in determination
of m-tensor field w by its known ART of order k arise naturally. At last, the
notion has an obvious potential to further generalizations and new settings of
inverse problems. For example we may consider the Riemannian domain instead
of Euclidean space.

The formula (5) defines the stationary ART of order & for m-tensor fields. We
assume now that a symmetric tensor field w depends and of time also. A speed
of propagation of perturbation is equal, for simplicity, to unit. Then a function
uk (t,z,€) of a form

(i.e. every com-

tm

o0 S

il )= / e { - / (s(x — 08,€) +ip(x — 06, §))dor |
Xt (£ = 5,2~ SET . €

(6)

is called the non-stationary ART of order k for m-tensor fields.

First section of the paper contains certain connections between generalized
ART for tensor fields of different orders. We obtain differential equations which
solutions are the ART of order k for m-tensor fields. Differential equations of
the first order coincides with stationary and non-stationary transport equations
with right-hand part of the form w;,. ; (t—s,x—s&)&0 ... ¢ complex-valued
absorption coefficient, and without integral part, describing the scattering [34].
Next section is devoted to a proof of uniqueness theorems for the boundary-value
and initial boundary-value problems for obtained equations.

2 Main Equations

At first we derive the equations which solutions are the ART of order k for
m-tensor fields. It should be remarked that all constructions are valid and for
the space R? of dimension 2.
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We denote a set of pairs (x,€) as SR = R¥x R3 = {(x,€) | z,& € R3,|¢| = 1}.
The set of pairs (z,£) € SR with fixed z is denoted as S2. A set given in D
symmetric m-tensor fields w(z) = (w4,..i,, (), i1, .., im = 1,2, 3, is designated
by S™(D). Below we often omit the letter “D” in the designation S™(D) = S™.
The scalar product in S™ is defined by the formula

(u(@), v(2)) = tiy...,, (20" (2). (7)

We recall that in Euclidean spaces with rectangular Cartesian coordinate system
there is no difference between contravariant and covariant components of tensors.
Below the covariant components of tensors are used usually.

An operator H, acting on differentiable on SR functions v (z,§), is defined
by relation

(H)(2,6) = (o + 76,8 _ Q

In particular the function ¢ may be depending on x only, but Hv depends on
the pair (z,v) always. In Cartesian coordinates the operator is represented as

d o oY oY
()@, = b +160)| _ =g +@ o +e55 )
and hence
(HY)(x,6) = (€, Vi) = div(y§). (10)

Remark 1. For differentiability of a function ¥ (z,&) on SR its differentiability
upon coordinates of spatial variables z € R? is enough.

We use a short transcription (w, &™) for a sum w;, . 4, €9 ... &%, and deno-
tation a(x,€) = e(x,§) + ip(x, §) below.

Lemma 1. Let e(z,&) > 0, p(x,€) be the elements of C*(SR), the components

Wiy, s 81,5 0m = 1,2,3, of a finite symmetric m-tensor field w(zx) be the
elements of C1(R3), m integer, m > 0. Then for integer k, k > 1, the formula
(H+ a)up,) (2,8) = kuy, ' (2,€) (11)

is valid with u®, determined by (5).

Proof. We set a designation f(x) := w;,. ., (z) for a fixed indexes i1,...,im,
and prove relation (11) for the function f. For this purpose we change the sum
(w(x — s£),&™) in uk (z,€) by f(z — s&). Taking in account this replacement we
prove the relation (11) directly. By definition (8)

d
(Ml )(2,€) = by @+ 76|,

= O/skddT exp{ - O/Q(gc—i— (1—0)¢ f)da} T:Of(a? — s8)ds
+O/Sk exp{ - /04(90 - U§7§>d0} (%f@ + (7~ s)f)) T:ods'
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For fixed point « and unit vector £ the functions f(z + v€) and a(z 4+ v€,€) can
be treated as functions depending on a real variable v only,

[z +0€) = o(v), oz +v8) = Y(v).

Then
d d d d
o) = —or—s), plr—0) = —y(r o),
and hence
(Hu )(355):/ Fo(— s)exp{f/zb do / @/}T*J)dJT_OdS
0
i (4l =9
/sk exp /w i ) T:Ods.
0

Passing to the limit at 7 — 0 and integrating by parts the second term of
right-hand part, we obtain

(). €) = / s exp { / vlo)do i(—s) ((—5) ~ 6(0) s

— sk exp /¢ —s) -
0 (12)

-l-k/oosk_l exp{ - /w(—a)da}go(—s)ds
o s ° s

—/Sk exp{ —/w(—a)da}go(—s)(%/@/}(—a do )ds
0 0 0

As the function f(x) is finite, s* = 0 at k > 1, s = 0, then the second term
at s — oo, and at s = 0 vanishes. The third term on the right is equal to

kuk=1(z, ¢ ) according to (5). Summing up the first and the last items we obtain

—a(z, &)uk, (x,€). Thus
(Hup)(x, &) = kub ' (2,€) — alz, Ouy, (2,€),

and the formula (11) for the component w;,  ; (z) of m-tensor field w(z) is
proved. We take into account now the linearity property

(oo}

o0 S

[sten{= [ate-oe.odo}twie - s6)., €m)as

0 0 s (13)

_ <,5 , 7sk eXp{ - /a(:ﬂ - 0§7§)da}w(m - s§)d8>

0
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of inner product and remind that Einstein rule works here again. We prove the
lemma for each component w;, ; of m-tensor field w. Consequently as (13)
fulfilled so (11) is proved for the tensor field w.

Lemma 2. Fore >0, p € CY(SR), w;, i, € C1(R3), suppose that symmetric
m-tensor field w is finite, m > 0. Then for k = 0 the formula

(H+ a)up,) (2,€) = (w(=), &™) (14)
1s valid.

Proof. Coming back to the proof of Lemma 1 we obtain the formula (12) for
the fixed component w;, ; ~=: f of the field w. As k = 0 then the third
term vanishes, and the second at s = 0 is equal to ¢(0) = f(z). The first and
the last terms give —a(x, &) ul, (x,€). Accordingly Hul (z,€) = wy,. 4 () —
a(z,&)ud, (z,£). Turning to (13) and taking it into account, we come to the
statement of Lemma 2.

An operator L, : C¥(SR) — C(SR) is defined by relations

(L)) = 7 (H+ @) (L1 (2,6),

for k integer, k > 1.

Theorem 1. For ¢, p € CFTY(SR), w € C*1(S*), suppose that ¢ is non-
negative, w is finite symmetric m-tensor field. Then for integer k,m (k,m > 0),
the formula

(Lrrruy)(2,€) = (w(z),&™) (15)
is valid with u, (z,€) defined by (5).

Proof. Under assumption of Lemma 1, we act on the both parts of (11) (k — 1)
times by the operator (H+a). The formula (H+a)kuk, (z,€) = k!ul, (z, £) arises
as a result. Applying the operator H + « once more and using Lemma 2, we get

the statement of the theorem.

Thus we have a differential equation (15), connecting ART of order k for
m-tensor fields u*, with symmetric m-tensor fields.
We consider non-stationary case now.

Lemma 3. For functions ¢, p € C*(SR), symmetric m-tensor field w(t,x) €
CY(R x S™), suppose that ¢ is non-negative, w is finite. Then for uk (t,z,¢)
determined by the formula (6), k,m > 0, the relations

8 k _ k—1

(&+H+a)um—kum L k>1, (16)
9 m
(§+H+a)u?n:<w,§ ) (17)

are valid.
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Proof. As it was done above, we choose one of the components w;, ;. (¢, )
of symmetric m-tensor field w(¢,x), with fixed indexes i1,...,%,, and prove
formulas (16), (17) for this any component wj, . ; (¢,2) of w, denoted by
(a function) f(¢,z). We fix also new designation v¥(t,x,¢) for non-stationary
ART of order k, acting on the function f.

ov* of(t — s,z — s&)

For calculation of derivative %(t,x,ﬁ) we need to find 5

only, as merely function f depends on ¢,

S

ok T Of(t — s, —
LA / sFexp{ - / o(z — o, o } L2 Sas. ()
0 0

d
We calculate a total derivative d—f at first,
s

ﬁ: <8f(t—s,m—sf) 8(x—s£)>+8f(t—s,x—s§) (’9(15—3).

ds Az —s&) ds At —s) ds
With usage of
af(0,y) _
Oy . .
fory=x—s¢ 60 =t—s, and 95 = —¢& the derivative can be represented in a
form df 2f(0,y) 99
g _ _ 9I\%Y) oY

Next step comsists in calculation of a result of the operator H action on the
function f,

Hf = af(0.y+78)| _ <8f(9,y+fﬁ) 8(y+75)>
- dr =0 \ Oy+7E or =0
=(Vyf(0,9),8).
Noting that 5 = —%, we obtain
0f0.y)  dfOy+TE|  dF(0y)
ot dr =0 ds
This implies
8 k o0 S d _ _
%(t,x,f) = —/sk exp {—/a(sc - ag,f)da} ft s,xd—: (T =5)8) T:ods
0 0

o0 S

—/sk exp {—/a(a: - Uf,f)do} (W)ds

0
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Based on the definition of operator H, we integrate the second term to the
right-hand part of the last expression,

S

(88—: +Hv (t,x,&) = /s —exp /Oz(x-i-(T—U)faf)dU}

0

7=0

X f(t—s,x ffﬁ)ds

—skexp{ — /a(m—af,f)da}f(t—s,x—sf) :o
0
—l—O/f(t—s,x—Sf);;(skexp{ —O/a(m—af,g)da})ds

We refer now to the reasonings and calculations similar to those in the proofs
of Lemmas 1 (see (12), (13) as samples) and 2. As it was done above, taking
into account distinctions in final results depending on the £ > 1 or &k = 0, we
obtain the statement of Lemma 3 for the non-stationary ART v* of order k for
the function f := w;, ;, i.e. for a fixed component of the field w. A choice of
the component was arbitrary so the result is valid for every component. Now
we consider the expression (w,£™) (a linear combination of components) and,
accordingly, the ART u¥ . Taking into account the property (13), we obtain the
Egs. (16) and (17).

We define an operator £ : C*(R x SR) — C(R x SR) by induction on m,
3}
(Lh)(ta.6) = (57 + H+ ) (t.2.€),
3}
(i)t w,€) = (5 +H+ ) (Lhyw) (e, k> 1

Theorem 2. Fore, p € C**1(SR), w € C*TY(R x S™), suppose that € is non-
negative, w is finite m-tensor field. Then

(Lhsrtm)(t2,€) = (w(t,z),€™). (19)

Proof. The proof of formulated theorem is based just on the same reasons as
Theorem 1. We use Lemma 3 significantly.

3 Uniqueness Theorems

We prove uniqueness theorems for boundary-value and initial boundary-value
problems of the Egs. (15) and (19), respectively. We remind that D is a bounded
convex domain in R? with smooth boundary dD.

Theorem 3. For given functions e, p € C*(D x S2), e(z,£) > 0 at x € D,
€ €52, a function p(z,£) € C*1(D x S2), x € D, satisfies in D to the Eq. (15)
with zero right-hand part,

1
M+ a) e =Lip =0, (20)
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and boundary-value conditions

(,0(55,6) = (HW)(xvg) == (Hkga)(x7§) =0, ze€dD, <nac7£> <0, (21)

where n, is outer normal to the surface 0D at the point x. Then p(z,£) =0 for
allz € D, £ € S2.

Proof. We prove the theorem for k = 0 at first. Then (20) looks like (H+«a)p = 0.
As the coefficient a(z, &) = e(x, £) + ip(x, &) in (21) is complex-valued, then the
function ¢(z, £) is complex-valued also, and thus it can be represented in a form
© = p1 +ipy. Let’s write (H + )¢ in more details,

(H+e+ip)(p1 +ip2) = (He1 +ep1 — pp2) +i(Hee +epz + pp1) =0,

and multiple it on @ = @1 —ips. Here the designations ¢ for complex conjugate
and |p| for modulus of complex-valued function ¢ are used. Then

Re {p(H + a)p} = SH(IgP) +<lol? =

After integration of last equation over D and unit sphere S2, we get

5 [ [rtePrsan+ [ [elepasirie = o

D 52 D 52

where d\,(£) is angular measure on S2, z € D.
As H(|¢)?) = div(]p|*¢) (see (10)), then Gauss-Ostrogradsky formula can be
applied to the first integral of last expression. We have as a result

5 [ [oelebasin@+ [ [eetanioi=o @)
aD §2 D sz

The condition (21), for £ = 0, implies (z, &) vanishes at (n,,&) < 0, z € 9D.
Hence the first integral at the left-hand part of (22) is equal to zero. Hereof
and from nonnegativity of e(x, &) it follows that (22) is performed if and only if
o(z,&) =0 for all x € D, £ € S2. We proved the theorem for k = 0.

We assume now that the theorem is true for some j = k—1, 7 > 1, and prove
it for j = k (namely for the equation of order k + 1). Let’s consider the equation

Lip1p = (H +a) = (H + a)(Lrp) =0,
and denote Ly as A + 1B. Then
1 1 i
S(H+a)(A+iB) = - (HA+cA—pB) + %(HB +eB+ pA) =0.

Let’s multiply obtained expression on complex conjugate Lx to Lrp. The mul-
tiplication is possible by virtue induction assumption, so

(A— iB)%(H +a)(A+iB) = %(AHA + BHB + cA® + eB?)

+ %(AHB — BHA + pA% + pB?) =0
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Hence

Re{ (Eep) b (M + ) (Lup)} = 5L H(A® + B2) o+ (42 + B?)

S (1ewel’) + el tagl” =

After integration of last expression over D and S2%, x € D, and application of
Gauss-Ostrogradsky formula we obtain expression of a form (22), where instead
of |¢]? the term |£;|? appears. The term contains degrees H’¢ of the operator
H no more then k, so at « € 9D, (n,,£) < 0, it follows that Lip = 0. We can
conclude now, as in the case for k = 0, that p(x,£) =0 for all z € D, ¢ € S2.
The theorem is proved.

Theorem 4. Fore, p € C*(D x S?), x € D, e(x,6) >0atxz € D, £ € S2. If
o(t,r,&) € C*Y(R, x D x S?) satisfies the equation

1,0 k+1 .
(G +H+a) e=Liap=0 (23)
in D, initial conditions

6k

0
P(0,2,6) = 20,3, = ... = F

2(0,2,6) =0, (24)
and, for x € 9D, (n,, &) <0, t >0, boundary conditions

(P(taxag) - (H@)(t,$,f) == (Hk@)(tﬂzvf) =0, (25)

where n, is outer normal to the surface 0D at the point x, then p(t,z,§) =0
fort>0,z€D,¢eS2

Proof. We check a rightness of the theorem for &k = 0 at first, i.e. for the equation
of the first order.
Considering ¢ = 1 + ips and multiplying both parts of the equality

0
(81& +H+a)(cp1+i<p2) =0
on p = 1 — ipy, we obtain

10

2 2 _
5lel + H(le ) +elel? =

We integrate obtained expression by ¢ from 0 until T € (0, 00), domain D and
sphere S2, then use Gauss-Ostrogradsky formula,

%//Oﬂﬂﬁaﬁﬂw@%mﬂ”“&m

D 52
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T
///nx,§|4p|2d)\ det+///5\g&|2d)\ &)dxdt = 0.
0D

0 0D 52 S2

Taking into account arbitrariness of T', the initial (24) and boundary (25) condi-
tions (for k = 0), we make sure that the last formula is correct if p(¢,2,&) =0
for t € (0,00), z € D, £ € S2.

Remaining part of proof of this theorem is quite similar to the proof of the
second part of the Theorem 3.

4 Conclusion

In the article the generalized attenuated ray transforms (ART) for tensor fields
are considered and investigated. The transforms are connected with attenuated
ray transform arising in emission tomography problem and some ray trans-
forms of the other types. The generalization is implemented in three directions.
Namely, a function of attenuation exp{— [ &(y)dy} becomes complex-valued,
L(z

the weight have more general form, and mazchematical model contains internal
sources (in scalar case) or symmetric tensor fields depending on time.

The generalization of ART operator leads to stationary u* (z,€¢) and non-
stationary u¥ (t,z,¢) ART of order k for m-tensor fields. They may be treated
as the integral moments of a source distribution f or of a symmetric tensor field
w with components w;, ., with a weight generated by exponential function.
Connections between ART of different orders are established. Differential equa-
tions which solutions are the generalized ART-operators of order k for m-tensor
fields are derived. In particular, for O-tensor field (scalar field) the differential
equations of the first order coincide with stationary and non-stationary trans-
port equations with complex-valued absorption coefficient, but without integral
part responsible for the scattering phenomenon [34]. Uniqueness theorems for
boundary-valued problems in stationary case, and initial boundary-value prob-
lems in non-stationary case are proved.

There exist close connections of ART of order k for m-tensor fields with
different problems of integral geometry, tomography and optics. According to
optical terminology it can be seen easily that uj(z,&) for ¢ = 0 and p(z,&) =
const is the ideal wave image, and ud(x,£) for p = 0 and & = const is the ideal
photometric image [30,31,33]. Concerning notions and terms of computerized
tomography the operator (5), for m = 0, p = 0, ¢ = 0, may be treated as
fan-beam or cone-beam transforms, and as well as well-known Radon or ray
transforms. In more complicated mathematical models, for example in emission
tomography, the operator (5) is standard attenuated ray transform, and certain
natural generalization of the integrand leads to a notion of longitudinal ray
transform of symmetric tensor fields [18] and to integral moments of generalized
tensor fields [17].
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We make sure that introduced in the article notion of ART of order k is
connected in its partial cases with various transforms of tomographic types.
So it arises naturally settings of inverse problems of determination of a scalar,
vector or tensor fields by its known generalized ART of order k. This inverse
problem can be treated and as the inverse problem for generalized transport
equation by determining of its right-hand part. Considered in the article notions
may be treated as the first step of investigations towards this direction, and
have good potential for further generalization and settings of inverse problems.
In particular, the generalized ART of order k can be extended in natural way
onto the case of Riemannian metric, including stationary and non-stationary
settings. The operator H then turns into the operator H = &/ — — Filfkgli

oI 0&J
known in differential geometry as geodesic vector field, and as before the differ-
ential equations can contain or not contain the variable ¢. This way leads to the
construction and subsequent investigations of mathematical models for dynamic
refractive tensor tomography.
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Abstract. The paper is devoted to consideration of multidimensional
optimization problems with multiextremal objective functions over
search domains determined by constraints, which form a special type
of domain boundaries called computable ones, which, in general case,
are non-linear and multiextremal. The regions of this class can be very
complicated, in particular, non-convex, non-simply connected, and even
disconnected. For solving such problems, a new global optimization tech-
nique based on the adaptive nested scheme developed recently for uncon-
strained optimization is proposed. The novelty consists in combination of
the adaptive scheme with a technique for reducing the constraints to an
explicit form of feasible subregions in internal subproblems of the nested
scheme that allows one to evaluate the objective function at the feasible
points only. For efficiency estimation of the proposed adaptive nested
algorithm in comparison with the classical nested optimization and the
penalty function method, a representative numerical experiment on the
test classes of multidimensional multiextremal functions has been carried
out. The results of the experiment demonstrate a significant advantage
of the adaptive scheme over its competitors.

Keywords: Multiextremal optimization - Dimensionality reduction -
Computable boundaries

1 Introduction

Many important applied problems of decision making can be stated as problems
of searching the global minimum of a multidimensional multiextremal function
subject to complicated constraints [1,6,13,22,28,33,38]. The property of mul-
tiextremality generates significant complexity of these problems because ana-
lytical methods are not almost applicable to solve them and numerical algo-
rithms in general case require essential computational expenditures. This feature
is explained by the fact that the global minimizer is an integral characteristic
of the objective function, i.e., in order to confirm that a point is the global
minimizer, it is necessary to compare the objective function value at this point
with function values at all points in the region of the search. As a consequence,
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the global optimization method is obliged to build in the search domain a grid
of trial points (the term trial means the evaluation of objective function value at
a point). Such the grids can be simple enough, for example, regular rectangular
or random Monte-Carlo ones [39], but efficient methods build non-uniform grids
which adapt to the behavior of the objective function placing trials densely in
subregions with low function values and rarely in subdomains where the func-
tion has high values. For essentially multiextremal functions like Lipschitzian
ones the number of grid nodes grows exponentially when increasing the prob-
lem dimension. Just this circumstance explains the high complexity of global
optimization problems.

As the main approaches to designing efficient and theoretically substantiated
methods one can consider the paradigm of component methods and the idea of
reducing the dimensionality of optimization problems.

The component methods [4,21,23,27,28,30] partition the search region into
several subdomains and introduce a criterion that evaluates numerically each
subdomain from the point of view of its efficiency for search continuation and
after that a new iteration is executed in the subdomain with the best criterion
value. The methods of this class differ in the strategies of partitioning and criteria
of efficiency of subdomains.

The algorithms based on the idea of dimensionality reduction can be divided
into two groups. The methods of the first group replace the multidimensional
problem with an equivalent univariate one applying a continuous mapping of the
multidimensional search domain onto a subregion of the real axis by means of
the Peano space-filling curves, or evolvents [3,14,24-26,32,36].

The second group of optimization algorithms is based on the known scheme
of nested optimization [4]. According to this approach the initial multidimen-
sional problems is reduced to a family one-dimensional subproblems connected
recursively [5,9-12,17,18,29,34,36]. In the paper [9], a generalization of the clas-
sical scheme called adaptive nested optimization has been proposed and the
research [18] has demonstrated that this version of the nested scheme in combi-
nation with information-statistic algorithm of univariate global search has the
high efficiency being better significantly than the classical prototype and one of
the most qualitative popular method DIRECT [21].

For solving relatively simple problems of global optimization characterized
by a small number of local optima with regions of attraction being large enough,
a so called multi-start approach [2,5,35] can be used when a local optimization
method is launched from several starting points. This approach is clear geomet-
rically, but, unfortunately, the methods of this type are semiheuristical and are
not efficient for complicated multiextremal problems.

Another challenge in global optimization refers to problems with compli-
cated constraints. The traditional way to solve such the problems consists in
transforming the constrained problem to an equivalent problem either without
constraints or, as a rule, in a simple region like a box.

There exist two main approaches in this way. The first transformation is clas-
sical in optimization and is connected with the penalty function method [7,20,37].
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This method is sufficiently universal but it requires a tuning of its parameters
(penalty constant, equalizing coefficients for constraints). In many cases this tun-
ing is not simple and a wrong choice of parameters does not allow obtaining the
correct solution of the constrained problem. For example, if the penalty constant
is small the solution of the unconstrained problem can differ significantly from the
solution of the initial problem. At the same time, if the penalty constant is too
large then it worsens substantially the properties of the objective function in the
transformed problem, in particular, the Lipschitz constant can increase essentially.

The second approach is based on building the so called index function [36]
that contains no tuning parameters but generates, in general case, a discon-
tinuous objective function in the transformed problem and requires, as a con-
sequence, application of special global optimization techniques oriented at this
class of functions.

When solving the transformed problem in the framework of both the
approaches (penalty and index methods), the optimization algorithm places trial
points not only in the feasible domain of the constrained problem but out of it
as well.

In this paper we consider the approach which allows one to avoid performing
trials at non-feasible points and does not include any tuning parameters. The
core of this approach is the nested optimization scheme applied to multiextremal
optimization in domains with special type of constraints, namely, in domains
with computable boundaries. These domains can be very complicated, in par-
ticular, non-convex, non-simply connected, and even disconnected domains. An
algorithm for Lipschitzian optimization on the base of classical nested scheme
for domains with computable boundaries has been described in the paper [16].
In the present paper we propose its generalization that applies the more efficient
recursive technique of global search in the framework of the adaptive nested
optimization [9]. To demonstrate the advantages of the proposed constraint sat-
isfaction approach the results of comparison with the penalty function method
are given on two known test classes that are classical for estimating the efficiency
of global optimization algorithms.

The rest of the paper is organized as follows. Section 2 contains statement of
the multiextremal constrained problem to be studied and description of a gener-
alization of the adaptive nested scheme for the case of computable boundaries.
Section 3 is devoted to computational testing the proposed technique in com-
parison with the classical nested scheme and the method of penalty functions.
Section 4 concludes the paper.

2 Nested Optimization and Computable Boundaries

The optimization problem under consideration is formulated in the following way.
It is required to find the least value (global minimum) and its coordinates (global
minimizer) of an objective function f(z) in a domain D of the N-dimensional
Euclidean space RY. This problem will be denoted as

f(z) = min, x = (21,...,2y) € D C RV, (1)
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The feasible domain D is supposed to be given by constraints-inequalities
D={reX:hs(z)<0,1<s<gq}, (2)
where the region X is determined by simple coordinate constraints as
X={zeRY:q; <z<b;,1<j< N} (3)

The objective function f(x) and constraints hs(x), 1 < s < ¢, are supposed to
satisfy in the domain X the Lipschitz condition

|hs(x') — hs(2")| < Lg||a" —2"||, 2’2" € X, 1 <s<q+1, (4)

where the function hgt1(x) = f(z), Ls > 0 is a finite value called the Lipschitz
constant of the function hs(z), 1 < s < g+1, and || || denotes the Euclidean norm
in RY. In general case, the objective function and constraints of the problem
(1)—(2) are multiextremal and non-smooth.

If the problem (1) does not contain constraints (2) (¢ = 0), i.e., D = X,
for solving such the problem the known nested scheme of dimensionality reduc-
tion [4,36] can be applied. For example, it can be done if the constrained prob-
lem (1) has been transformed to the unconstrained one in the framework of the
penalty function method [7,20,37]. According to this method, instead of the
problem (1)—(2), the problem

F(z) — min, z € X CRY, (5)
is considered with the “penalized” objective function
F(x) = f(z) + PH(x), (6)

where P > 0 is the penalty constant and H(z) is the penalty function such that
H(z)=0,ifx € D,and H(z) > 0, if ¢ D. If to choose the penalty function as

H(z) = max{0, hy (z), ..., hy(z)}, (7)

then F'(z) meets the Lipschitz condition under requirements (4).

In its original classical form the nested optimization scheme was oriented
at unconstrained optimization, or more detailed, at solving problems (1) when
constraints of the type (2) are absent, i.e., D = X. In this situation there takes
place [4] the relation

min f(z) = min min --- min Tl1y...,TN)- 8
IEXf( ) z1€X1 22€X>2 TNEXN f( ! N) ( )
where X; is a line segment [a;,b;], 1 <i < N.

This approach can be generalized (see, for example, [16]) to the case with

continuous constraints (2) that allows one to present (8) for the domain D in
the form

fz, ..., xN), (9)

min f(z) = min  min - min
zeD r1E€EA x2€A2(€1) sNEAN(EN-1)
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where & = (21,...,25), 1 < s < N, and the region A;(&s_1) is the projection of
the set
Qs(fs):{£s€RsZ(€S,$s+1,...,$N)€D}, (10)

onto the coordinate axis xs.

Now the nested optimization scheme applied for the case (9) can be described
as follows.

Let us introduce a family of reduced function f*(¢s), 1 < s < N, in the
following manner:

fME) = min f(6), 2<s <N, (11)

() = f(2). (12)
Then, the solving the multidimensional problem (1) can be substituted with

searching for the global minimum of the univariate function f!(x;) in the domain
Ay, as according to (9)—(11)

. . 1
= ) 13
min f(z) = min f(z1) (13)
But any evaluation of the function f!(z1) at a chosen point z; requires
solving the problem

(21, m2) — min, z9 € Aa(z1), (14)

which is one-dimensional because the coordinate 7 is fixed.

The necessity of evaluation of the function f2(z1,22) generates solving the
problem of minimization of the function f2(&2,z3) in the domain A3(&:), and
this problem is univariate as well, because the vector &; is fixed.

This recursive procedure is in progress until we reach the level N where it is
required to solve problem

N (En—1,2n) — min, oy € An(En—1) (15)

This problem is univariate too because the vector £n_1 has been given at
previous levels and is fixed for the problem (15). Moreover, in this problem
an evaluation of the objective function consists in computation of the value
f(én—1,xN) of the function f(x) from the original problem (1).

The approach of reducing the multidimensional problem (1) to solving the
family of one-dimensional subproblems

fs(gs—laxs) - HliIl, Ts € As(gs—l)a 1 S S S N7 (16)

in accordance of the above procedure is called the nested scheme of dimension-
ality reduction or the nested scheme of optimization.

The structure of domains A;(£s—1) depends on the properties and complexity
of the constraints hs(z) from (2). For example, if all the functions h(x) are
convex, then the domain is a convex set, and any projection A(€s_1) is a single
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interval of the axis z,. In general case, when the constraints h4(z) are continuous,
the domain A4(€s—1) is a union of closed intervals, i.e.,

Ag(E—1) =UM_ [a™ b™], 1 < s <N, (17)

m=11%s »Ys

where the end points a?*, b7* of intervals and even the number of interval M can

depend on the vector &;_1.

If all the end points a7, b7* and all numbers M can be given explicitly (for
example, as analytical expressions or by means of a computational procedure) in
all the subtasks (16) then the domain D is called as the domain with computable
boundaries. These domains can have very complicated structure, in particular,
can be non-convex and even disconnected.

As an example, let us consider a 2-dimensional domain (2) determined by
the following constraints:

(2 — 0.5(uy (z1) + ua(21)))?

h =1- , 18
(w1 2) 0.25(u1 (1) — ua(z1))? (18)
ho(z1,22) = 0.04 — (21 — 0.6)* — (z2 — 0.59)2, (19)
hg(l’l,xg) = T2 —U3($1), (20)
where
ul(:zzl) =—0.05 COS(4OI1) — 01931 + 015,
uz(x1) = —0.05 cos(45x1) + 0.1z, — 0.22,
uz(x1) = 0.1sin(50x1) 4+ 0.521 + 0.6,
and coordinate constraints (3), 0 < 1,2z < 1. For this domain
/11 = [0, 1], (21)
U _ [a, b2, |z —0.6] <0.2,
Aaay) = { Up=r 18 08l = 0] (22
Uz,—q [@8, B5], otherwise,
where
a% :a% 207 b% :621 :ul(xl)a
a2 = o2 = uy(x1), b2 = 0.59 — ,/0.04 — (z; — 0.6)2,

a3 = 0.59 +1/0.04 — (z; — 0.6)2, b3 = $2 = min{us(z1),1}.

The domain D corresponding to these constraints is shown in Fig. 1, where
inaccessible part is dark. The domain consists of two disconnected parts and
inside the upper part there is a removed circle. Moreover, the boundaries have
complicated “oscillating” structure.

The nested optimization scheme in combination with univariate global search
methods providing optimization on several intervals like characteristical algo-
rithms [19] allows one to execute trials in the feasible domain only and not
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to spend resources to evaluate the objective function at inaccessible points as
opposed to penalty function or index methods.

In present paper we propose to apply the adaptive nested scheme to solv-
ing problems with computable boundaries in combination with information-
statistical univariate algorithm of global search [36] adapted to optimization
in the domain of type (17). In the adaptive scheme all one-dimensional sub-
problems (16) are considered in dynamics simultaneously and to each of them
a numerical value called the characteristic of the subproblem is assigned. The
characteristic depends on the domain (17) and values of the subproblem objec-
tive function. The iteration of the multidimensional search consists in the choice
of the subproblem with the best characteristic and executing a new trial in it.
Such organization allows one to take into account the full information about the
multidimensional problem obtained in the course of optimization and to focus
on the most perspective subproblems. The effectiveness of the new proposed
adaptive nested technique is demonstrated in the next section on the base of
representative experiment on test classes of multiextremal problems in domains
with computable boundaries of complicated structure.

3 Numerical Experiments

The efficiency estimation of different approaches to solving constrained global
optimization problems was executed experimentally on two test classes of mul-
tiextremal functions which are often used for testing the global search algo-
rithms [9,10,18,32,36]. The first class GLOB2 included 2-dimensional functions

u;j (21, w2) = ayj sin(mizy) sin(mjze) + Bi; cos(mize) cos(mjza),

v (@1, T2) = vij sin(mizy) sin(mjae) — 0;5 cos(miza) cos(mjzs),

and the parameters ai;, Bij, Vij, i, 1 < 4,5 < 7, are the independent random
numbers, distributed uniformly over the interval [—1, 1]. The functions (23) were
considered in the box X = {z € R? : 0 < 1,29 < 1}.

The multiextremal class GKLS [8] was chosen as the second class of objective
functions in the problem (1). The functions were taken from the hard GKLS
subclass of the dimension 3 and for them X = {x € R®: —1 < 2, 19,23 < 1}.

For building constraints (2) for both GLOB2 and GKLS the idea close to
making constraints in the EMMENTAL GKLS [31] was used. Namely, in the
domain X several random points were generated which are considered as centers
of spheres with random radii. The hyperparallelepiped X without internal parts
of the generated spheres was considered as the feasible domain D. Such way
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allows one to form complicated domains with computable boundaries because
the information about centers and radii of spheres enables to build explicitly the
regions (17) in univariate subproblems of the nested scheme.

Three methods were compared in experiments:

— CNS-CB Classical nested scheme with computable boundaries;
— ANS-CB Adaptive nested scheme with computable boundaries;
— ANS-PF Adaptive nested scheme combined with penalty function method.

In all three methods for solving univariate problems (16) the information-
statistical Global Search Algorithm (GSA) was used.

An example of comparative behavior of the methods taking computable
boundaries into account (ANS-CB) and applying penalty function approach (5),
(6) (ANS-PF) is presented in Fig.1 for a function from class GLOB2 and con-
straints (18)—(20). The pictures contain level curves of the function, points of
trials, and the infeasible part X \ D is dark.

06 08 1

Fig. 1. Distribution of trials by ANS-CB (the left panel) and by ANS-PF (the right
panel).

Comparison of the algorithms on the test classes was carried out according to
the method of operational characteristics introduced in [15]. In the framework of
this method a set of test problems is taken, the problems of the set are solved by
an optimization algorithm with different parameters and two criteria are used for
evaluating the algorithm’s quality: average number K of trials executed (search
spending) and number A of problems solved successfully (search reliability).
For launches of the algorithm with different parameters we obtain several pairs
(K,A). The set of these pairs on the plane (K, A) is called the operational
characteristic of the algorithm.
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Figure 2 shows the operational characteristics (from left to right) of ANS-
CB, CNS-CB and 3 operational characteristics of ANS-PF for different values of
penalty factor P from (6) on the class (23) with 100 test problems. The axis K
is presented in the logarithmic scale.

As it follows from the results presented in Fig.2 the adaptive and classi-
cal schemes using the computable boundaries approach excel significantly the
version with the penalty function method. With the value of penalty constant
P = 100 the algorithm with transformation to the penalized function (6) did
not provide solving all test problems and spent considerably more trials.

As the functions of the test class are very complicated, attempts to enlarge the
penalty constant have demonstrated one of the drawbacks of the penalty function
method for Lipschitzian optimization problems, namely, such the enlargement
leads to increasing the Lipschitz constant for the function (6) and, as a conse-
quence, to the growth of the trial number. Moreover, the adaptive nested scheme
is better than its classical prototype CNS-CB.

The experiment with 100 3-dimensional functions from the class GKLS has
shown even more advantage of the computable boundaries approach over the
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penalty function technique. Figure 3 presents the operational characteristic for
ANS-CB (the left plot) and the operational characteristic for ANS-PF (the right
plot) with the penalty constant P = 100.

The algorithm ANS-CB has solved all the test problems for about 12000
objective function evaluations and its rival ANS-PF having spent 30000 trials
could not find all the global minima.

4 Conclusion

In the paper the multidimensional global optimization problems with non-linear
and multiextremal objective functions and constraints generating domains with
computable boundaries have been considered. The domains of this type can have
a complicated structure, in particular, can be non-convex and disconnected. For
solving the problems under consideration a new global optimization algorithm
based on the adaptive nested scheme has been proposed. The algorithm reduces
the initial multidimensional problem to a family of univariate subproblems in
which the domains of one-dimensional optimization can be presented as systems
of closed intervals with explicitly given boundary points. For solving univari-
ate subproblems a modification of the information-statistic algorithm of global
search is used which execute iteration within the feasible intervals only. It pro-
vides evaluation of multidimensional objective function in the accessible domain
only and distinguishes the proposed method from known approaches to solv-
ing global constrained optimization such as penalty function and index methods
which can carry out iterations at infeasible points.

The more economical behavior of the new method has been confirmed in the
experiment where the proposed adaptive nested algorithm was compared with
the classical nested scheme and adaptive scheme combined with penalty func-
tion method. The results of the experiment have demonstrated the significant
advantage of the suggested adaptive scheme over its opponents.

As continuation of the research it is interesting to evaluate the efficiency of
the new adaptive scheme via comparison with the global optimization methods
of different nature, for example, with some component methods of DIRECT-
type. Moreover, it would be perspective to develop a parallel version of the
algorithm and to study its effectiveness of parallelizing on various computational
architectures.
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Abstract. We consider discrete-time systems of bilinear type for the
case when interval bounds on the coefficients of the system are imposed,
additive input terms are restricted by integral non-quadratic constraints,
and initial states belong to given sets, which are assumed to be paral-
lelepipeds. An approach for estimating the reachable sets is presented. It
is based on considering reachable sets in the “extended” space and con-
structing external and internal estimates of them in the form of polytopes
of some special shape. The specific cross-sections of these polytopes pro-
vide the parallelepiped-valued or parallelotope-valued estimates of the
reachable sets in the “initial” space. Evolution of the estimates in the
“extended” space is determined by recurrence relations. All the esti-
mates can be calculated by explicit formulas. The main attention is paid
to internal estimates. Illustrative examples are presented.

Keywords: Discrete-time systems - Reachable sets - Integral
constraints + Uncertain matrices + Polyhedral estimates -
Parallelepipeds + Parallelotopes

1 Introduction

The reachability problem may be considered as one of the fundamental problems
of the mathematical control theory [19-21]. Exact calculation of reachable sets
is as a rule a very complicated problem, therefore different numerical methods
were developed for their approximations, in particular using polytopes with a
large number of vertices or unions of a large number of points (see, for example,
[1,2,7,26,27]; here and below we cite for instances only some of numerous pub-
lications; see references therein too). But the methods meant for constructing
approximations as accurate as possible can require much calculations, especially
for large dimensional systems. Another approach is based on estimates of sets
by domains of some fixed shape such as ellipsoids, parallelepipeds, and some
others [3,5,6,9-16,19-21,24]. Its main advantage is that it enables to calculate
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approximate solutions using relatively simple tools in opposite to the mentioned
above methods for obtaining the most accurate approximations. More accurate
approximations can be obtained by using parametric families of fixed shape esti-
mates similarly to [20,21]. The interval analysis methods based on subpavings
of interval vectors [9] serve the same aim, but can require much computations
and memory for high-dimensional systems.

Fair techniques for constructing effective fixed shape estimates were devel-
oped for linear systems with hard bounds on controls. It is also important
to study linear systems under integral constraints and moreover to study the
systems with uncertain coefficients (matrices). This leads to bilinearity and
additional difficulties caused by nonlinearity (specifically reachable sets can be
non-convex). Some approaches to investigation and approximation of reach-
able sets for systems with integral constraints and different impulsive systems,
for bilinear systems, and for some combinations of such types can be found,
for instance, in [1,2,6-8,11,12,18,19,21,26], in [3,10,13,14,21,22,24,25], and in
[5,15,16] respectively.

The paper develops research [11] to the more complicated case of systems with
uncertain matrices. The first such extensions are given in [15,16]. There, in [15], a
family of external estimates for reachable sets of the systems under consideration
is proposed, and, in [16], another family of external estimates is constructed,
which can provide more accurate estimates. The last mentioned estimates [16] are
obtained by two ways: using considerations in the initial space just like [15] and
using considerations in an “extended” space. This paper presents an approach for
two-sided estimation of the reachable sets based on considering reachable sets in
the “extended” space and constructing external and internal estimates for them
in the form of polytopes of some special shape. The specific cross-sections of these
polytopes provide the parallelepiped-valued or parallelotope-valued estimates of
the reachable sets in the initial space. The main attention is paid to the internal
estimates. Note that the task of constructing internal estimates is usually more
difficult than the task for external ones. We construct new (in comparison with
[13]) primary internal estimates in R™ for the result of multiplying a parallelotope
by an interval matrix, then construct primary internal estimates for results of two
operations with sets in R™*!, and then derive systems of recurrence relations for
calculating parametric families of internal estimates of the reachable sets in the
“extended” space and in the initial one. For completeness of description of the
unified technique for both-sided estimation of the reachable sets we also briefly
recall the way of construction of the external estimates from [16]. Calculation of
both external and internal estimates, first, provide more information about the
exact reachable sets and, second, can provide some insight into a quality of the
estimates by comparing them. Illustrative examples are presented.

The following notation is used below: R™ is the n-dimensional vector space; T
is the transposition symbol; ||z|lz = (zT2)Y/?, ||z]c = max;<i<,, |2;| are vector
norms for x = (z1,...,7,)" € R"; e = (0,...,0,1,0, ...,0)" is the unit vector
oriented along the axis x; (the unit stands at position i); e = (1,1, ...,1)T;
R™™ is the space of real nxm-matrices A = {a!} = {a’} with elements a] and
columns a’; 0 is the zero matrix (vector); I is the identity matrix; Abs A = {|a/|}
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for A = {al} € R"*™; diag, diag {m;} are the diagonal matrix A with a! = m;
(m; are the components of the vector 7); det A is the determinant of A € R™*";
|All = maxi<i<n Z;”:l lal| is the matrix norm for A € R™*™ induced by the
vector norm ||z{|o0; co Q is the convex hull of a set @ C R"; p(I|Q) = sup{l"z|x €
Q} is the support function of @ C R™, vol Q is the volume of @ C R"; and the
notation k = 1,..., N is used instead of £k = 1,2,..., N for brevity.

2 Problem Formulation

We consider a system (with states z € R™)

olj] = Alleli—1] + BJali] +olil, 5 =100, m
S0 € X R 3 fubllle < o )
Wi € K] BT, j=1L.....N. ®)

where terms v[j] € R™ and matrices B[j] € R"*" (r < n) are given. The initial
state x[0] = z¢p € R™ and the inputs (controls/disturbances) u[j] € R" are
unknown but satisfy constraints (2)—(3). Here &p is a given convex compact set,
o > 0, K[j] CR" are convex closed cones in R”. Matrices A[j] € R™*™ are also
unknown but subjected to constraints of an interval type

Alj] € Alj] ={A e R | Alj] < A < A[j]}

- R 4
where A[j] = (A[j] + 4[j])/2, A[j] = (A[j] — A[j])/2. Here and below, matrix
and vector inequalities and also the operations of maximum and minimum are
understood elementwise.

Let us start with some definitions.

The reachable set X[k] for the system (1)—(4) at time k € {1,...,N} is a
set of all points € R™ for each of which there exists a triple {z[0], u[-], A[-]}
that satisfies (2)—(4) and generates a solution z[-] of (1) that satisfies z[k] = .
Set-valued map X[k], as a function of k, defines a so-called trajectory tube X|[].

By a parallelepiped P(p,P,7) C R"™ we mean a set such that P =
Pp,P,m) = {z € R*|z = p+ Pdiagn¢, €|l < 1}, where p € R™;
P = {p'} € R™" is such that det P # 0, |p‘|]2 = 1 (the normality condi-
tion [[p’[la = 1 may be omitted to simplify formulas); 7 € R™, 7 > 0. It may
be said that p determines the center of the parallelepiped, P is the orientation
matrix, p’ are the “directions”, and ; are the values of its “semi-axes” Fig. 1(a).

By a parallelotope P[p, P] C R™ we mean a set P = Plp,P] = {z| z =
p + P& €]l < 1}, where p € R™ and P = {p'} € R®™*™ m < n. We call a
parallelotope P nondegenerate if m = n and det P # 0.

Each parallelepiped P(p, P, ) is a parallelotope P|p,

P| wi
Each nondegenerate parallelotope is a parallelepiped with P =

}}P: Pdlagﬂ'
P,r
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O
" (a) \/ (b)

Fig. 1. Forms of polyhedral estimates: (a) parallelepiped in R3, (b) IT-polytope in R®

Let us introduce the following sets, which will be used below:
Rj]=CNK[j], C=P(0,1,e) CR", ()

where C is the unit cube with the center at origin.
We consider the system under the following assumption.

Assumption 1. The initial set Xy is a parallelepiped Xy = Py = P(po, Po, 7o) C
R™, and all the sets R[j] defined in (5) are parallelepipeds in R".

Exact computing the reachable sets X'[k] can be rather cumbersome especially
for systems with uncertain matrices because X'[k] may be nonconvex in this case.
We will look for external parallelepiped-valued and internal parallelotope-valued
estimates for X'[k].

We call P external (internal) estimate for @ C R™ if @ CP (P C Q). The
estimate P for @ C R" is called tight (in direction 1) [21] if @ C P (P C Q)
and there exists [ € R™ such that p(+l|P) = p(£l|Q). We call a parallelepiped
Pl (Q) = P(pT,V,nt) touching external estimate for Q, denoting it by Py (Q),
if it is tight estimate in n specified directions I = (V=1 Te! i =1,... n.

Thus we consider the following problem.

Problem 1. Find some external parallelepiped-valued estimates PT[k] =
P(pt|k], PT[k],7"[k]) and internal parallelotope-valued ones P~[k] =
Plp~[k], P~[k]] for the reachable sets X[k]: P~[k] C X[k] C Pt[k] , k =
1,...,N. Moreover introduce some families of such estimates P* [k].

To investigate the reachable sets X'[k] it is useful to introduce reachable sets
Z[k] of states z = {x,u} = (x7,u) " € R™*! for system (1), (3), (4), (6)—(8):

ulil = pli—1] = luljllles, J=1,...,N; (6)
plg] >0, j=1,...,N; (7)
z[0] = {z[0], u[0]} € Zo = A % [0, po] (8)
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in the “extended” space, where u corresponds to a current stock of u and state
constraints (7) are imposed on p[j] instead of integral constraints (4) on w[].
The reachable sets Z[k| are defined in the standard way (in short, the sets of all
states z[k] that are possible under given constraints).

We will look for external and internal estimates IT*[k] for Z[k] in the form of
polytopes IT = IT({PP,0}, {P*, u*}) C R**! of some specific form (we call them
II-polytopes), which are defined by their “lower” and “upper” cross-sections
through the operation of convex hull, Fig. 1(b) where the both mentioned cross-
sections are either the parallelepipeds with the identical orientation matrices
or the identical parallelotopes (then we also say that the II-polytope is a II-
cylinder):

I = IT({P", 0}, {P*, u*}) = co({P>, 03 U{P", pu*}), p* >0,
PP =P(pb, P,7b), Pt =P, P7l), (9)
or PP =7P'="Ppt, P.

Problem 2. Find some external and internal estimates 11+ [k] for Z[k]: II ~[k] C
Z[k] C IT[k], k=1,...,N. Introduce some families of such estimates IT*[k].

We will find estimates P*[k] for X'[k] using estimates I1*[k] for Z[k].
We call both estimates P*[k] and IT*[k] polyhedral estimates for brevity.

3 Auxiliary Results

It is convenient to represent the reachable sets Z[k] of the system (1), (3),
(4), (6)—(8) in the form of the union of their p-cross-sections X (u, k): Z[k] =

Uogﬂgm[k]{)((ﬂa k), .
The sets Z[k] (unlike X'[k]) satisty the semigroup property (for the definitions
see, for example, [10,20,21]) and therefore satisfy some recurrence relations.

Theorem 1 (See [16]). Let Z[k] be the reachable sets for the system (1), (3),
(4), (6)—(8) with the initial set Zg = Xy x [0, ug]. Then we have p'lk] = po,
k=1, ...,N, and Z[k| satisfy the following recurrence relations:

Zk] = (A[k] @ Z[k—1] D v[k]) W BIkIR[k], k=1,...,N; Z[0] = X x [0, uol,
and we have X[k] = J{X(u, k)| 0 < p < po} = X(0,k), k=1,...,N.

Here are involved the following operations with the sets of the form Z =
UOS;},S/M{X(H’)’M} C R™:

z2ov= |J (X +o,u}, WweRH

0<pu<pt
Aoz = |J {AcX(u),n};
_ ~ O<p<pt
ZoR=Z= J {Xw.uh, ¥w = |J (X(Q+(—mR), YR CR",
0<p<pt p<C<pt

(10)
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which in their turn involve the results of set operations in R™ such as the
Minkowski sum X' +X? = {y|y = ' +22, 2% € X*} and multiplying a set X by an
interval matriv A = {A|A< A< A} AoX = {y e Ry = Az, Ac A, x € X}
In (10), the first two operations act on the each cross-section independently, the
last one combines operations of Minkowski sum and union over cross-sections.

To construct polyhedral estimates for Z[k] we use properties of operations
with sets and primary polyhedral estimates for the results of set operations.

The touching external parallelepiped-valued estimates PJ‘E(Q) with a given
orientation matrix V' can be calculated by known explicit formulas for the cases
when Q is a sum or union of two parallelotopes (Q = P! +P? or Q = PLUP?),
and also for @ = Ao P, where A is an interval matrix and P is a parallelepiped
or a parallelotope (see [10,13,16]). For the reader’s convenience, let us recall
these primary estimates.

The affine transformation of a parallelepiped and of a parallelotope is a par-
allelotope: AP[p, P] +a = P[Ap + a, AP] for A € R"*", p € R", P € R™*",
a €R"; AP(p,P,m) =P(Ap, AP, ) if det A # 0.

For further it is useful to bear in mind the equivalent representation of the
parallelepiped P = P(p, P,w): P = P(P,47),4)) = {z|y7) < P71z <
()}, where ’yi(i) = dp(£(P~HTe!|P), i =1,...,n, and we have the following
interconnections: Y(&) = P=1p £ m; p = P(7(7) + 1)) /2, m = (v(H) —~(5))/2.

The touching external estimate for a bounded set  C R™ with a given
orientation matrix V is determined by the formula P7;(Q) = P(V,+(7), 7)),
7 = pEV1el|Q).

The support functions of a parallelepiped and a parallelotope are deter-
mined by formulas p(I|P(p, P,7)) = l'p + Abs(I" P)m, p(l|P[p,P]) = 1"p +

Abs (1T P)e.
The touching estimates for the sum of two parallelepipeds can be
found by the explicit formula P‘t(Zizl P(p*, Pk, 7F)) = ’P(Zzzlpk,v,

Zi:I(Abs (V=1Pk))nk). For the sum of two parallelotopes we have

_ _ 5 o
P$(Zi:1 Pp*, P¥)) = P[Zi:l p*,V diag (k=1 Abs(V 'PF)e)] .

The estimates P (Pt U P?) for the union of two parallelotopes P*¥ =
P[p*, P*] are determined by the formula

PH(P' UP?) =PV, () 4T ) = = max {£V7p" + Abs (VT PF)e).

For calculating touching external estimate P, (Q) for @ = AoP, where A is
an interval matrix and P is a parallelepiped, we can use each of two expressions

p(11Q) = nIIE%){zTAx + (Absl)T A(Absz)},
TE
= TA Abs (1T AP
plI1Q) = s {17 Ap-+ (Abs (T AP}
where E(P) and E(A) denote sets of all vertices of P and A (i.e., the set of

points p + Y it p'm&; with & € {—1,1} and the set of matrices with elements
J Jj =
a; € {a],al}).

1771
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To construct external estimates IT7[k] for the reachable sets Z[k] we use
primary polyhedral estimates for the results of set operations IT & P and A® IT
from (10), where II = II({P",0},{P, u'}) is a II-polytope defined in (9).

External estimates ITI{,(IT & P) = II ({P*>,0}, {P+, u**}), where P is a
paralelotope, can be found [11,16] by formulas

P = PU(PY), pt=ut, P = PHPPUPH(P +4'P)), (1)

and all its p-cross-sections turn out to be touching estimates for u-cross-sections
of the set Z = ITWP.

External estimates IT{; (A ® IT) = II ({P*?,0}, {P+t, u**}), where A is an
interval matrix, can be found [16] by formulas

7)+t _ P‘t(AOPt), Iqut _ Hta rPer _ P;;(.AO’Pb) (12)

Here the orientation matrix V' appears as a parameter, which determines the
parametric families of the estimates.

Now let us consider ways for constructing primary internal polyhedral esti-
mates.

Introduce the following set of matrices (where ||I'|| = maxi<a<r 22:1 Iv2)):

G ={I = {3} eR7" || 1] <1}

Let Pk = P[pk, P¥], k = 1,2, P! € R"*", P2 ¢ R™*", Internal estimates for
the sum of parallelotopes @ = P! + P2 can be found similarly to [13] in the
form of a parallelotope

P~ =P »(P' + P?) = Plp'+p?, P I+ P°T?, (13)

where I't € Gn*", I'?2 € G™™. Matrices I't, I'? serve as admissible parameters.
Let’s pass to the new results concerning ways of constructing internal esti-
mates for AoP and IT W P, AR II.
First we present a parametric family of internal estimates for Q@ = Ao P.

Proposition 1. Let A = {A|Abs(A — A) < A} and P = Plp, P] with P €

R™ ™. Let J = {j1,- .-, jn} be an arbitrary permutation for {1,...,n} and I'*, I"?

be arbitrary matrices such that I'', I'? € G"*™. Then the parallelotope
P~ =Pj i 2(AoP) =P[Ap, API'" + (diagv) I,

. _ (14)
vi=al'n;, i=1,....,n, n=max{0,Absp—Abs(PI'")e},

is an internal estimate for Ao P, i.e., P~ C Ao P.

Proof. To prove the inclusion P~ C Ao P, let us make sure that for any y €
P~ (e, y=p  + P& [€llc <1) wecan find A € A (ie, A=A+ A4,
Abs(AA) < A) and z € P (i.e., z = p+ PC, ||{]loc < 1), such that y = Az, i.e.,

Ap+ (APT* + (diagv)I'?)¢ = Ap + AP¢ + AA(p + P¢). (15)
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Set ¢ = I''¢. Then we have [|¢[loo < [T [|€llce < 1. Set AA = (diag d) D, where
D = {e/r--.e/"}T is the matrix obtained by permuting rows of the identity
matrix according to the permutation J, and components of the vector § are

calculated as follows. If v; = 0 for some %, then set §; = 0. If v; > 0, then n;, > 0
due to (14), and |pj,| > et ' Abs (PT' )e. Then e/ ' (p + PI''¢) # 0 and we set
§; = el | T2¢/(ed (p + PT''€)). The equality (15) is provided. It remains to
check the inequalities |§;| < a', which ensure Abs (AA) < A. They are evident
for indices ¢ such that v; = 0. For the rest ones (i.e., for ¢ such that v; > 0), we

have [6;] < al'n, eiT(Abs I')e/(Ipj;|— ej'iT(Abs(Pf’l))e) < &gieiT(Abs I'?)e <
al’ because ||| < 1. 0

Remark 1. Under conditions of Proposition 1, we can choose I'2 € G™*" such
that

¢i'I? = p;¢l APTY, B, = (¢! Abs(APTIV)e)!, i€l (16)
where I, = {i € {1,...,n}| el Abs(API')e # 0}. If we also put
' 1?2 =0=p¢ API, B; =0, icl,=1{1,...,n\L, (17)

then we obtain P~ = P[Ap, (I + diagv diag 3) API''], which is the same esti-
mate as in [13, Theorem 3.3]. If in addition the parallelotope P is nondegenerate,
det A # 0, and det I'! # 0, then the above parallelotope P~ turns out to be non-
degenerate.

Remark 2. Tt is not difficult to provide examples, where P is a degenerate paral-
lelotope and, under some conditions, matrices I'> € G"*™ with (16) but without
zero row vectors from (17) can give nondegenerate estimates P~ C Ao P.

Ezample 1. Let us consider a simplest example, wheren =2, A =1, P = [(1) 8} ,

rt=1r%= {711 ’32] € g™ In this case, API'" = P, (Abs (API'"))e =
272
(Abs (PI'))e = e', n = max{0, Absp—e'} = (max{0, |p1|—1}, |p2|) " Let P~
and P~ correspond to J) = {1,2} and J? = {2,1} according to (14), where
we have v = v(1) = (a} -max{0, [p1| — 1},d% - [p2]) " and v = v = (4} - |ps),as -
max{0, [p1| — 1})T respectively. We obtain det PV~ = (1 + ai max{0, |p;| —
1}) - a3 |pa| 73, det PP~ = (1 4 a3 |po]) - a4 max{0, |p1| — 1} 43. The estimates
P~ = P[p~, P~] with maximal volumes correspond to the ones with maximal
absolute value of det P~. Maximal values of both |det P(V~| and |det P(®)~|
under the above I'? € G"*™ are obtained at I'? with v3 € {1,—1}, 74 = 0.
Thus such choice of I'? together with J(*) under conditions a3 > 0, |p2| > 0 and
together with J(®) under the conditions a3 > 0, |p1| > 1 generates nondegenerate
estimates, while the estimates from Remark 1 are degenerate because det P = 0.

Remark 3. Let det P # 0, det A # 0, and A has the unique nonzero ele-
ment a”. Let 't satisfies I'' € G"*", det 't # 0 (in particular, I't = 1)
and I'? be determined by (16), where I, = {1,...,n}. Then the parallelotope
P[Ap, diag (e—l—aﬁ:nj*ﬁi*ei*);lpfl] is a solution of the optimization problem
VOIP,_I,Fl,FQ (AoP)— maxy.
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Remark 4. The estimates from Proposition 1 possess the peculiarity that we
have v = = 0 in (14) if P contains 0. In this case it may be useful to apply the
estimates P, (Ao P) of the form P, (Ao P) = AP = P[Ap, AP] with A € A,
which were called simple in [13]. Recall that volume-maximal simple estimates
can be found among those that correspond to vertices of A: maxae 4 vol (AP) =
max geg(4) Vol (AP) = max geg(a) | det Al - vol P [13].

To construct estimates IT~ [k] C Z[k] we use primary IT-cylinder-valued esti-
mates for the results of set operations II &P and A®II, where II is a II-cylinder.

Proposition 2. Let I = II({P®,0}, {P*, u}) be a II-cylinder with P> = P*

and P = Plp, P be a parallelotope with P € R™*" and 0 € P. Then an arbitrary

I -cylinder II-— = IT({P~2,0},{P " .u=t}) with p=* = p* —h, 0 < h < pt,

PP = PCP' + hP serves as an internal estimate for II & P. In particular,

1 -cylinders

n = H;:J"l,[‘2 (H @ P) = H({'P_b,()}, {P_t7#_t}):
pot=pt=h, P7° =P = P, o(P* + hP) = Pp* + hp, P'T'" + hPI?

(18)

are internal estimates for I WP whatever are admissible parameters 0 < h < pt,

't e g, and I'? € Gr<.

Proposition 3. Let IT = II({P’,0},{P*, ut}) be a II-cylinder and A be an
iterval matriz. Then an arbitrary II-cylinder I~ = I ({P~°,0}, {P~*.u~*})
with p=t = pt, P~P=P~*C Ao P serves as an internal estimate for A® II. In
particular, II -cylinders

I =10 0 o(A® 1) = T{P20} (Pt }),

19
M_t = Mt’ Pp—b — p-t — P;,I"l’[Q(AOPt) (19)

are internal estimates for A ® II whatever are admissible parameters J (which
is an arbitrary permutation of {1,...,n}), I'','? € gn*".

Proof. Both propositions follow from the definition of IT-cylinder and properties
of the used primary estimates in R™ that were described above. a

4  Polyhedral Estimates for Reachable Sets
First we recall the way of constructing external estimates for the reachable sets
Z[k] and X[k].

Theorem 2 (See [16]). Let Z[k] be the reachable sets of the system (1), (3),
(4), (6)—(8) under Assumption 1. Let IT-polytopes IIT[k] satisfy the relations
(AlK] © T k-1 @olk], k=1,...,N; T¥[0] = Po x [0, o
' [k] w Blk|R[K]), k=1,..., N,

o' k] = H;+
Itk = I},

(k]

21
(20)
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where formulas (11) and (12) are applied. Then Z[k] C IIT[k], k = 1,...,N,
whatever are nonsingular orientation matrices PT[k] € R"*" k=1,...,N, and
parallelepipeds PT[k] = P*P[k] that coincide with the “lower” cross-sections of
It [k] are external estimates for the reachable sets X|k] of the system (1)-(4):
X[kl CPT[k], k=1,...,N.

Remark 5. Theorem 2 describes the parametric family of estimates, where the
function PT[], which determines a dynamics of orientation matrices of cross-
sections, serves as a parameter of the family. Under the condition det ;1[]] #0,
j =1,...,N, we can construct the tubes for which the orientation matrices
satisfy

P*[k] = Ak]P*[k-1], k=1,...,N; P*0] =P, (21)

where P is an arbitrary nonsingular matrix (recall that for the case A[k] = 0
the corresponding estimates P [k] turn out to be touching [16, Remark 7]). The
choice of constant orientation matrices PT[k] = P can lead to much more con-
servative estimates due to the well-known in interval analysis “wrapping effect”.

Now we present the technique for constructing internal estimates for the
reachable sets Z[k] and X[k].
Let us introduce the following family of tubes IT~[-] that satisfy the relations

M) = T pa e epy (AR © T [k=1) @olk], k=1,...,N;
k) = My pagy ragg (K] @ BRIRKD), k=1,....N; (22)
1I7[0] = Po x [0, po] = 1 ({Po, 0},{Po, pto})

where the admissible parameters satisfy the conditions
N
Rl >0, Y Bl <po, TULTP) TP € g, Tl e g, (23)
j=1

J[j] are arbitrary permutations of {1,...,n}, and formulas (18), (19) are used.

Theorem 3. Let Z[k| be the reachable sets of the system (1), (3), (4), (6)-
(8) under Assumption 1. Then II -cylinders II~[k| that satisfy (22) are internal
estimates for Z[k]: I~ [k] C Z[k], k=1, ..., N, whatever are the above-mentioned
admissible parameters satisfying (23), and parallellotopes P~ [k] = P~P[k] that
coincide with the cross-sections of II -cylinders I~ [k] are internal estimates for
the reachable sets X[k| of the system (1)-(4): P~[k] C X[k], k=1,...,N.

Proof. The proof is obtained by using Theorem 1 and Propositions 2 and 3. O

As a result, we obtain the following explicit formulas for constructing the
parametric family of internal estimates the reachable sets X[k].



134 E. K. Kostousova

9.5.8
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N =27/ 1]
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N SOl 7
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Fig. 2. External and internal estimates for X[N] in Example 2 with K[j] = (—o0, c0):
(a) case (i), (b) case (ii); external and internal estimates for X[-]: (c),(d) case (ii)

Corollary 1. Let X[k] be the reachable sets of the system (1)-(4) under
Assumption 1. Let h[-] and T[], T'?[], I3[, I'*[-] be parameters satisfying
conditions (23) and parallelotopes P~ [k] be constructed by the following formu-
las:

PUk] = Pl gy (ARl 0 P Ik=1]) + ofk], k=1,...,N; P~[0] = Py;
P[K] = Pragy papg (P~ (K] + hKIBEIRIK), k=1,...,N,
(24)

where primary estimates (13) and (14) are used. Then P~[k] are internal esti-
mates for X[k]: P~[k] C X[k], k=1,...,N.

Introducing the families of estimates instead of single ones, we can estimate
reachable sets more accurately in the form of intersections of several external
estimates and unions of several internal ones.

Ezxample 2. For illustration, we present simulation results for discrete-time sys-
tems which can be obtained by discretization of impulsive differential ones

considered on a time interval [0,6]. Let A[j] = I + hy- [_(1) 5 (1)]7 Aljl =0
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-2 -2

4 -2 0 X 2 4 -2 0 X 2

Fig. 3. External and internal estimates for X[N] in Example 2 with K[j] = [0, 00): (a)
case (i), (b) case (ii)

(case (i), the system is linear) or A[j] (case (ii), the system turns

00
= hav- {0.1 0
out to be bilinear), hy = 6N~ 0 = 2.5, N = 100, B[j] = (0,1)", v[j] = 0,
Po =P((1.5,0.5)7,1,(0.2,0.5)7), o = 1, K[j] = (=00, 00) or K[j] = [0, 0).

First we consider the case with K[j] = (—o0, 00). Figure2(a) and 2(b) show
Xo (“small parallelepiped”) and several external and internal estimates P*[N]
and P~ [N] for the reachable set X'[N] for cases (i) and (ii) respectively. External
estimates are calculated by (20), (21), where the matrices P are taken as orthog-
cosp —sing| . ‘ .
onal ones of the form P Lin(p cosgo} with ¢; =0.5(i—1)n/ne, i =1,...,n,
n, = 9. Internal estimates are calculated due to (24), where I''[k] = I"®[k] = I;
I'?[k] and I'[k] are calculated according to (16) and similarly to [13, Sec. 4]
respectively; J[k] are found by maximization of vol P, ; ropy (Alk]oP™ [k —1])
under fixed I'%[k]; h[-] are taken as h[j] = po/N and as several random realiza-
tions of h[-] satisfying (23). The external estimates for the case (i) in Fig. 2(a)
are touching; in aggregate, they “outline” X[N]. Both external and internal
estimates for the case (ii) in Fig. 2(b) (when the system is bilinear) as expected
turned out to be larger than for the case (i), this is consistent with the fact that
reachable sets for systems with uncertain matrices should be larger. Figure 2(d)
presents one of the corresponding tubes P~[-] for the case (ii) (drawing is car-
ried out one time per each 2 stages k). Figure 2(c) shows both some external and
internal polyhedral tubes, namely P*[-] that correspond to P = Py and P[]
presented in Fig. 2(d).

Figure3(a) and 3(b) are obtained for the case with the cone constraint
K[j] = [0,00) (i.e., only nonnegative values of u[j] are allowed) and are simi-
lar to Fig.2(a) and 2(b). Here both external and internal estimates for X[N] are
smaller than for the case K[j] = (—o0, x0).
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5 Conclusion

The techniques for constructing external parallelepiped-valued and internal
parallelotope-valued estimates for the reachable sets of discrete-time systems
with uncertain matrices and integral non-quadratic constraints on additive terms
are presented. They are based on constructing estimates for the reachable sets
in the “extended” space in the form of polytopes of some special shape. Evolu-
tion of the last mentioned estimates is determined by the recurrence relations.
Although the described estimates can turn out to be rather rough, we can easily
calculate them by explicit formulas and they can give the useful information
about the system while it is difficult to calculate the reachable sets exactly. The
proposed estimates in the “extended” space can be modified to obtain estimates
for reachable sets under state constraints and, in particular, for information
sets similarly to [11], where external estimates were constructed for the case of
linear systems. The proposed estimates can be used for constructing estimates
of reachable sets for impulsive differential systems similarly to [12]. Models of
linear impulsive differential systems, for which considerations under uncertain
matrices is also of importance, arise (including linearization) in many applied
areas, for example, space navigation, automation, biomedical issues, problems
in economics, investment problems, and others (see, for example, [17, Sec. 3], [4,
Sec. 4.4, Ch. 6], [21, p. 253], [19, Ch. 1], [23] and references therein).
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Abstract. The aim of this paper is to solve numerically a class of prob-
lems on conservation laws, modelled by hyperbolic partial differential
equations. In this paper, primary focus is over the idea of fuzzy logic-
based operators for the simulation of problems related to hyperbolic con-
servation laws. Present approach considers a novel computational proce-
dure which relies on using some operators from fuzzy logic to reconstruct
several higher-order numerical methods known as the flux-limited meth-
ods. Further optimization of the flux limiters is discussed. The approach
ensures better convergence of the approximation and preserves the basic
properties of the solution of the problem under consideration. The new
limiters are further applied to several real-life problems like the advec-
tion problem to demonstrate that the optimized schemes ensure better
results. Simulation results are included wherever required.

Keywords: Conservation laws + Flux limiters + Fuzzy logic

1 Introduction

Conservation laws can also be stated as the fundamental laws of nature, they
have various applications in real life and they are an interesting topic of research
in multiple fields like Biology, Physics, Geology, Chemistry, and many engineer-
ing sciences like astronomy, civil, electrical to name a few. The simulation of
the partial differential equations associated with conservation laws has been a
popular branch of computational mathematics. It is well known that numeri-
cally solving hyperbolic system of conservation laws is a difficult task due to the
possible interaction between the shock and rarefaction waves, the undesirable
propagation of discontinuities and the main difficulty is the evolution of discon-
tinuities after some time no matter how smooth our initial condition is. For any
numerical method, the essential requirements for the convergence of the approx-
imate solution to the real solution are the preservation of basic properties and
the efficiency of the procedure in reducing the rounding and systematic errors.
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There are different methods in the literature [1-3] to control these undesirable
obstacles, which also ensure the essential requirements stated above.

The central theme of this work is to resolve the two contradictory but nec-
essary needs for numerical methods, one is to attain high order accuracy and
the other is to reduce non-physical oscillations near the discontinuities. High-
resolution methods are significant for hyperbolic conservation laws because they
provide better results as compared to the first generation methods [3] which
are in general, least concerned with the type of initial solution. Another cat-
egory of methods involves TVD (Total variation diminishing) methods which
are one of the most important tools in the development of numerical methods
for problems in computational fluid dynamics. A lot of effective methods have
been approached from classical methods like the first generation methods to the
advanced methods like the essentially non oscillatory /weighted essentially non-
oscillatory (ENO/WENO) methods [4,5], the flux limited methods [5]. These
methods have been regarded as successful in simulating the conservation laws.
But, the design of some high order methods requires expert knowledge and the
coding of such methods is also a tedious task. To ease this coding process one
can somehow take the help of operators from the fuzzy logic branch. This work
presents a unique combination of two entirely different subjects namely Fuzzy
Mathematics and the Computational Fluid Dynamics. The main concern among
various robust methods is modern HR (High resolution) methods which blend
two or more first-generation methods to produce some new schemes which give a
more stable and high order accurate output. Flux limited methods are the ones
belonging in this category. Flux limiters play an important role in switching
up efficiently from smooth regions to the region having discontinuities. Thus,
limiters help in providing a high-resolution approximation to the system. This
work provides a clear observation of the effect of these limiters in the light of
fuzzy expert rules, applied to a Fuzzy inference system to the same setup of flux
limiters based upon their behaviour with respect to different solution parts and
regenerated them in fuzzy logic. Apart from that, hedges provide better opti-
mization to the existing limiters, and the new limiters obtained after optimizing
the limiters with the aid of modifiers are able to provide even better results for
the problems in conservation laws.

The construction of new and more efficient numerical methods for Hyperbolic
conservation laws using a few tools from fuzzy is explored, these techniques can
be considered as an easier analogue of the flux-limited methods and also this sort
of application has not been used much in the literature, therefore there is not
much theory developed in the context of this application. The main objective of
this paper is to design new computational methods in an autonomous way. In
upcoming sections, a brief review of the concepts used in this paper from fuzzy
logic, namely: fuzzy sets, fuzzy inference system and fuzzy modifiers is given.
Later in the same section, a summarized mathematical background on hyperbolic
conservation laws is written, specifically flux limiters. Then in the third section,
the experimental part is disclosed where reconstruction of the limiters in fuzzy
logic using a built-in Matlab toolbox can be seen, followed by the optimization
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of limiters. After that, approximation of some popular test cases on advection
equation based on square pulse test and a combination of sine wave and square
pulse using the new optimized limiters are presented. The paper ends with a
summary where the final conclusions and the benefits of this new approach are
discussed.

2 Preliminaries

2.1 Fuzzy Logic Concepts Required for This Work

Fuzzy logic serves as an important concept in various real-life applications. It
permits to control various complex processes based upon a few rules where a
knowledge base is created which give the idea about the behavior of the system
so considered. Fuzzy logic aims to generalize the concept of classical logic for
reasoning under certainty.

Fuzzy Sets. Just like the classical set theory, fuzzy sets are studied in fuzzy
logic. Fuzzy sets can be considered as the extension of classical sets. It can be
best understood in the context of set membership. Unlike Classical sets known
as crisp sets in fuzzy logic, fuzzy sets talk about the degree of compatibility of
each member of the set with the set itself. The main idea is, in fuzzy one takes
membership values which may lie in the interval [0,1] but in case of classical
sets, it was either 0 or 1 based upon whether the element belongs to the set or
not. A fuzzy set is defined as follows:

Definition 1. Fuzzy Set: Let U be the universe of discourse and K C U then the
fuzzy set K is the collection of ordered pairs (x,u(x)), where u(x) is the degree
of compatibility of the element .

K = {(z,u(x))|z c U}

In crisp sets, the total number of elements in the set gives the cardinality of the
set, but in case of fuzzy logic, we have a different approach. The cardinality of
a fuzzy set K denoted by card(K) is:

card(K) = Z w(x;)

Just like the classical sets, the mathematical and logical operations can be car-
ried out in fuzzy theory also. These operations enable us to put these sets into
practical use. For detailed theory refer [6]. Although, there are many fuzzy sets
in the fuzzy logic theory the ones we need in our work are: Singleton fuzzy sets,
triangular fuzzy sets, trapezoidal fuzzy sets, as shown in the Fig. 1. Here, we
need to mark that the interval [0, 1] is the main reason for making us capable of
building the foundation of approximate reasoning and fuzzy control.

Some standard fuzzy sets to be used in this work are the triangular fuzzy set,
the trapezoidal fuzzy set, and the singleton fuzzy set (see Fig. 1). Additionally,
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X X X

Fig.1. Some standard fuzzy sets: Singleton(leftmost), triangular(middle), trape-
zoidal(right)

in order to adapt the fuzzy sets, we can use fuzzy modifiers, also known as fuzzy
hedges, which are indeed a powerful adaption tool resulting in a change in the
shapes of original fuzzy sets. These operators modify the membership values
related to the fuzzy set, due to which its geometry gets altered.

Hedges/Modifiers: Another important concept which is to be considered from
fuzzy systems are the “hedges”, or modifier of fuzzy values. These operations
are used in an effort to get closer to the natural human language, and they help
in the generation of fuzzy statements with some mathematical calculations. As
such, the initial definition of modifiers and corresponding algebra upon them will
be quite a subjective process and may vary from project to project. Nonetheless,
the system ultimately derived operates with the same formality as the classic
theory of logic. These are special terms aimed to make modifications in fuzzy
theory. Hedges modify the meaning of existing data by changing the membership
values corresponding to the relevant fuzzy sets.

Consider a fuzzy set A = {(z,u(z)) | + € K} corresponding to a crisp set
K lying in some universe U, for such case some popular modifiers are defined as
follows: (see figure for their geometric representation)

— Concentration operator:

CON(A) = {(z, (u(x))")) | = € U}

— Dilation operator:

DILT(A) = {(z, 3/ (u(x))) | x € U}

n <.
— Contrast operator: CONT(A) = {i(ﬂ(;()l) o ,ul(x) <0.5
- - x else

In this work, some standard modifiers are used, namely: the contrast operator,
dilation operator, and the concentration operator. This work modifies the exist-
ing limiters [7] using these tools and molds them into more efficient limiters. The
results obtained by doing such a thing is shown in the third section of the paper.
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Fuzzy Inference System (FIS): It is a system based upon the popular “Input-
processing-Output” theory. One has to provide some crisp data as input to this
inference system, which is then fuzzified i.e, changed into the equivalent fuzzy set
using the fuzzifiers. This fuzzified data is then evaluated based upon some fuzzy
rules, which ultimately infer something in terms of fuzzy. This fuzzy output is
then translated to the crisp set by the aid of defuzzifier. This is how a fuzzy
inference system works. There are various fuzzy inference systems available in
fuzzy systems and the most popular ones are the Mamdani and the Sugeno
FIS [8]. In this work, Mamdani FIS is used (see Fig. 2 for fuzzy inference system).
It is an expert system based on fuzzy logic. The fuzzy rules to be used in this
system are decided on the basis of the behavior of the limiter to be reconstructed
with respect to various solution areas. In short, fuzzy rules are extracted from a
given data which is considered at the very initial stage. The good thing about
using fuzzy inference system is that one does not need to seriously code up the
things to produce results because the fuzzy rule base consisting of a few three to
four fuzzy rules is serving our goal. Therefore, a better approximation is obtained
without messy coding work which saves both the time and money and hence this
new approach to reconstruct the limiters via inference system seems easier and
doing optimization is also quite handy in this place. In a way, the fuzzy theory
provides yet another way to carry out the study based upon interpolation in
a nice way. Specifically, it provides the optimization tools for the hyperbolic
partial differential equations. Fuzzy systems, mainly fuzzy logic and fuzzy set
theory, gives a rich and clear version addition to standard logic. The mathematics
generated by these theories is consistent, and fuzzy logic may be considered as a
generalization of classical logic. The applications which may be generated from or
adapted to fuzzy logic are quite wide-ranging, and they provide the opportunity
for modeling of situations which are inherently imprecisely defined, despite the
concerns of classical logicians. The important and nice thing is any systems may
be re-modeled, and even replicated with the help of fuzzy systems, not the least
of which is human reasoning itself.

o e——
S e—

Fig. 2. Fuzzy inference system

Crisp Output
—_—
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2.2 Concepts Required from Hyperbolic Conservation Laws

High Resolution Methods: High-resolution methods are basically the non-
linear methods which are more solution sensitive as they take into account the
flux/solution gradients. Such methods are also known commonly as high resolu-
tion or TVD (Total Variation Diminishing) methods. In such methods, nonlinear
stability conditions are enforced which help in reducing the spurious oscillations
but they sometimes lead to clipping errors (a form of distortion that limits a
wavefront once it exceeds a threshold) at the solution extrema.

Here main concern is flux-limited methods for scalar conservation laws. Flux
limited methods are based upon first-generation methods, they are basically the
adaptive linear combination of two first-generation methods. For scalar conser-
vation laws such methods are defined as follows:

Consider the computational domain IR x IR{ covered uniformly by the cells
[Zi—1/2: Tig1/2] X [t", t"T], where z; = j Az and t" = n At being the space size
and the time step respectively. Over these cells, the unknown u(x, t) is given by

the cell averages
" 1 i+1/2 n
Uj = E/l u(z, t")dx

i—1/2

Then, the general form of numerical scheme by taking forward difference in time

and central difference in space reads as
u?“ =uf = ANF' 1 —F" 1),

where 0 FO, — FO
Flay=FL +o7 (B0 - FilL)

here F ® 1 and F( )1 are the conservative flux terms (edge fluxes for the ;"
2

cell) Wthh are selected from non adaptive (first generation schemes) having

complimentary properties (1 means low precision and h means high precision)

and ¢§L 1 is the main adaptive parameter for such adaptive schemes which is
2

commonly known as Flux Limiter.

In high-resolution numerical schemes, flux limiters are mainly employed to
deal with the spurious oscillations (wiggles) that would otherwise arise in non-
adaptive methods with high order schemes due to some problems like shocks,
contact discontinuities or quick changes in the solution domain. More impor-
tantly, the proper use of flux limiters with an appropriate high-resolution scheme
leads to total variation diminishing solutions.

Till now, various flux limiters have become a part of the theory but no
single limiter can serve all the problems, each limiter is applied according to the
demand of the problem we want to work with some of the popular examples of
flux limiters are discussed here (see Fig. 3):
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The Minmod limiter The Superbee limiter
. i T T

0 0.5 1 15 2 25 3 0.5 1 15 2 25 3

The MC limiter
T

0 0.5 1 1.5 2 25 3

Fig. 3. Red line indicates classical limiters (Color figure online)

The minmod limiter selects the values with smaller modulus, else returns 0
and in MC limiter, we compare the second-order central difference with twice
the forward and twice the backward differences. Minmod scheme gives quite dis-
sipative output at the discontinuous parts, so this superbee limiter takes higher
modulus near the discontinuities. The expressions for Minmod, superbee and the
MC limiter are given by:

— Minmod limiter: ¢, (r) = maz[0, min(1,r)]
— Monotonized Central(MC) limiter:

Dme(r) = mazx[0, min(2r,0.5(1 + r), 2)]

— Superbee Limiter: ¢4, (r) = maz[0, maz(min(2r, 1)), min(r, 2)]
where ‘r’ is the smoothness measure, also called the slope gradient and mm,
mc and sb are just the notations for respective limiters.

3 Experiments: New Approach to Flux Limiters

High-resolution schemes can be approached via fuzzy logic as well, in fact, the
study of flux limiters becomes easier in this manner, especially for the coding part
as already mentioned earlier in the aim of this paper, the focus is on constructing
the flux limiters by using fuzzy logic.

3.1 Reconstruction of Flux Limiters in Fuzzy Logic

In this fuzzy limiter reconstruction, as an abstract view, the purpose here is
to determine the value of flux limiter ¢ in the range [0, 2], this limiter depends
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upon the smoothness parameter, i.e., the flux gradient ‘r’ which is treated as

smoothness measure in this work. In order to model a solution to the problem
in conservation laws with the aid of fuzzy inference the following set of rules are
obeyed:

1. First of all select the input and output parameters. Fix the domains for each
of the category as input and output domain.

2. Next, select the inference mechanism among the standard fuzzy inferences
available to in system, depending upon the need of the problem.

3. After that choose a defuzzification method, as the data so obtained is still in
the form of fuzzy sets which needs to be defuzzified.

4. Define a knowledge base, consisting of a set of rules based upon the type of
initial data provided in the problem.

Here recreation of the flux limiters is explored with the aid of fuzzy toolbox
which is nothing but the coded form of FIS (fuzzy inference system) in Matlab.
In this FIS, one provides the smoothness of the initial data as an input parameter
and then give the limiter value as output. The knowledge base consists of the
set of if-then rules, which are based upon the classic limiter setup as available
in the literature. This theory can be concluded in the following points:

— A flux limiter takes initial data type features as input unit and returns a
suitable limiter value as output unit. So, here look for an ideal output limiter
for corresponding characteristic input situations.

— For fuzzy flux limiter, as a first step, one has to choose the input and output
parameters (known as linguistic variables) and determine their respective
domains.

— Then partition the variables by defining some terms with their membership
functions.

— After that final and important step is to specify the knowledge base (if-then
type of rules).

Demonstrating the Reconstruction of the Minmod Limiter: Minmod
limiter is supposed to be the simplest limiter among the family of flux limiters
in computational fluid dynamics. The functioning of minmod function can be
explained in three parts, the two regions where the limiters are constant with
functional values 0 and 1, and the intermediate part where it seems like a straight
line passing through the origin. The main rule is to use the high order scheme at
the smooth regions and the lower first-order monotone scheme at the problematic
parts pertaining to discontinuous solution features. So, as far as the smoothness
measure is concerned, lookup for the subset [—1, 2] of the real line as the working
domain. Then the rule base to be used in order to reconstruct the minmod scheme
is selected.

Also, ‘min’ operator is taken as the implication operator, for aggregation the
‘max’ operator is used and ‘centroid method’ is selected for defuzzification of
the fuzzified output (Fuzzy toolbox is a graphical user interface, there one can
select from the available options according to the demand of the problem, see
Fig. 4).
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— Classify the input variable “datatype” as “typel” and “type2” for the
extremum and smooth initial profiles respectively, similarly classify the out-
put parameter “limiter” as “upwind” and “laxwend” for the upwind and lax
wendroff schemes respectively (see Fig. 5)

Taking ‘datatype’ as the input variable with linguistic terms ‘typel’ and
‘type2’ as the trapezoidal functions.

— Taking ‘limiter’ as the output variable with terms ‘upwind’ and ‘laxwend’
as singleton membership functions (see Fig. 6).

— Then the knowledge base consists of the rules which says the input variable
is ‘typel’ then the output value will be ‘upwind’ and if the input is ‘type2’
then the output will be ‘laxwend’ (see Fig. 7).

e If smoothness is typel then flux is upwind.
e If smoothness is type2 then flux is laxwend.

— Then the FIS so obtained is analogous to Minmod scheme from computa-

tional fluid dynamics to that in fuzzy logic (see Fig.8).

This reconstruction of minmod limiter only requires two rules in the rule base,
but in general, there may be more than two rules in the rule base for other
limiters. Like while reconstructing the superbee limiter one has to use three
rules, for superbee the range is [0, 2] for the output variable and select [—1, 3] as
the domain of the input variable and the three key features are: superbee limiter
takes either three functional values namely 0, 1, 2 (remaining constant at these
values) and in the connecting parts it is a straight line, so one can use the rule
base which allows using three linguistic terms for the output variable and three
linguistic terms namely extremum, smooth and excursive for the input variable.

reconstructed_minmod

(mamdani)

datatype limiter

FIS Name: reconstructed_minmod FIS Type: mamdani
And method I min l Current Variable
Or method max l Name limiter

- Type output
Implication min l

Range [01]

Aggregation max
Defuzzification I centroid l ‘ | Help | | Close
Saved FIS "reconstructed_minmod" to file

Fig. 4. Creating environment for FIS
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: " oot noints: 181
FIS Variables i Membershlp flunctlon p|ot§ '
typel type2
1
datatype limiter
0.5 B
0 1 Il 1 T 1
-1 -0.5 0 0.5 15 2
input variable "datatype"
Current Variable Current Membership Function (click on MF to select)
Name datatype Name type1
T
pe = e e
Params [1-101]
Range [12]
Display Range [-12] | Help Close
Selected variable "datatype”

Fig. 5. Input variables

. . ot naints: 181
FIS Variables ‘ ‘ ‘ Memb‘ershlp fyundmn‘ plots ‘ ‘ ‘
upwind laxwend
1y 4
datatype limiter
0.5
0 L L L L 1 L L 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
output variable "limiter"
Current Variable Current Membership Function (click on MF to select)
Name limiter Name upwind
Type output Type I i I
Params [000]

Range 01
Display Range [01] | Help Close
Ready

Fig. 6. Output variables
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1. If (datatype is type1) then (limiter is upwind) (1)
2. If (datatype is type2) then (limiter is laxwend) (1)

datatype is

type1
type2
none

D not

Connection Weight:

[i]or

C] and 1

Then

limiter is

upwind
laxwend

none

D not

Delete rule I | Add rule | | Change rule I
| Ready ‘ | | Help | | Close | ‘
Fig. 7. Rules insertion
1 T
0.9 B
0.8 !
0.7 H
0.6 - 4
:I:) 0.5
0.4 !
0.3 *
0.2 B
0.1 B
0 .
-1 0.5 15 2
X (input): | datatype I Y (input): I -none - I Z (output): | limiter I
X grids: 15 Y grids: 15
Ref. Input: Plot points: 101 H | Help | | Close | |
Ready

Fig. 8. The analogous minmod limiter
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Hence, under the same implication, aggregation, and the centroid defuzzification
method, one can reconstruct the superbee or any other limiter in fuzzy logic.
Now the next section uses hedges to improve these analogous limiters so obtained
using this FIS technique. Then optimization of these limiters by considering
suitable modifiers at various portions of these limiters is discussed. One should
observe that until now, this work has not used any serious coding skills as such
to carry out these limiters using FIS. However, after getting the limiters, it will
switch again to the coding part to see the effect of these newly obtained limiters
on various class of problems in conservation laws.

3.2 Optimization of Flux Limiters

This part emphasizes on parameter tuning with the help of fuzzy modifiers.
Apart from reconstructing the flux limiters, some improvisations using the mod-
ifiers are also implemented. For doing so, systematically consider the combina-
tions of the standard dilation, contrast, and the concentration operators. This
section is focusing on the MC limiter and minmod limiter only although these
operators can be implemented on any flux limiter if it suits the problem so con-
sidered. This section systematically imposes the standard operators to the input
parameters, here only a finite number of values for n are taken, which are used
in the membership value of the operators, but one can further extend this set to
obtain, even more, results (see Fig.9) for the following optimized limiters:

Optimized MC limiter 1
T

0 1 1 1 1 1
0 05 1 15 2 25 3

Optimized MC limiter 2
T

0 I I I I I
0 05 1 15 2 25 3

Optimized Minmod limiter
T

Fig. 9. Newly obtained optimized limiters
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1. Optimized MC limiter 1 obtained by applying concentration operator with
n = 8 to the extremum part.

2. Optimized MC limiter 2 by applying concentration operator with n = 6 to
the extremum part and the dilation operator with n =8 to sharp regions.

3. Optimized Minmod limiter by applying n = 2 to the extremum and the
dilation operator with n =8 to smooth regions.

Further, in order to examine the new limiters, the linear advection equation is
considered, which is the benchmark problem to check some new scheme or some-
thing, it is the first test problem which flashes into mind. Here some experiments
based on these optimized limiters are applied to the standard model problem in
computational fluid dynamics, the linear advection problem.

3.3 Application of Optimized Limiters to Real Life Problem

The Advection Problem: The advection equation in one space dimension is
of the form: 5 5
U U

— ta;—=0 1

ot + ox (1)
here, u := (x,t) is some scalar field, z € IR and t € IR are the space and time
components respectively. Here, ‘a’ is a nonzero constant (in most cases we refer
‘a’ as some velocity vector field.)

We will work with the Eq. (1) with the conditions

u(z,0) = f(z) (2)
where f is some conserved quantity [9,10].

Note: Here, the numerical scheme is obtained by taking forward difference in
time and a central difference in space which is written as:

u;“rl =uj )\(FJ"JF% - F;i%),
where 0 B )
Fioy=FL+ qﬁj+%(Fj+é - Fj+é)
here

¢ = max (0, min(min(0.5(1 +7),2),2r)/((1 — 3r)® + 3r)).

Also, F®) and F™ are the Upwind scheme and the Lax Wendroff schemes
respectively. We are taking time step At = 0.0025 and space size Az = 0.01 and
checking the results over varying points (200, 400, 600, 800), taking the speed of
advection a = 1.0. Here, two test cases have been considered, the square pulse
test, and the combination of a sine wave and square pulse (see Fig. 10, 11). It is
interesting to note that we get better result as compared to the existing minmod
limiter for both tests. On same lines, many other robust limiters can be used to
approximate the numerical solutions for the problems in conservation laws.
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12 of new versus existing method
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Fig. 10. Results for the optimized Minmod limiter for square pulse initial conditions,
leftmost figure in bottom row shows the zoomed view of circled part in the correspond-
ing right image
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Fig. 11. Results for the optimized Minmod limiter for combined initial conditions, left-
most figure in bottom row shows the zoomed view of circled part in the corresponding
right image
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4 Summary

In this work, a novel approach to study flux limiters methods using fuzzy logic
theory is described. In the test cases like the two discussed in section four namely
the square pulse test and the mixed case, the modified limiters are able to approx-
imate the solution in a nice way resulting in even much better results. The main
advantage of doing so can be the easy interpretation of flux limiters. Using fuzzy
toolbox the modification of flux limiters becomes easier. This approach can be
beneficial in providing more efficient numerical methods for solving various prob-
lems arising in the computational fluid dynamics.
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Abstract. In this paper, we consider a non-cooperative 2-player zero-sum
interval-valued 2-tuple fuzzy linguistic (IVTFL) matrix game and develop a
methodology to evaluate its saddle point and optimal interval-valued linguis-
tic value of the game. In this direction, we have constructed an auxiliary pair
of interval-valued linguistic linear programming (IVLLP) problem that is fur-
ther transformed into conventional interval linear programming (ILP) problem to
obtain optimal strategy sets of both players as the region that is not only com-
pletely feasible but also totally optimal. The proposed method is illustrated via
a hypothetical example to show its applicability in the real world. To validate
the suggested solution scheme, the transformed ILP problems are solved using
best-worst case (BWC) approach, enhanced-interval linear programming (EILP)
method and linguistic linear programming (LLP) technique of solving interval
linguistic matrix game problems and lastly the obtained results are compared.

Keywords: 2-tuple fuzzy linguistic model - Interval-valued 2-tuple fuzzy
linguistic model - Interval linear programming - Interval-valued linguistic linear
programming - Matrix game problem

1 Introduction

Non-cooperative game theory in its classical set up was introduced by Von-Neumann
and Morgenstern [6] in 1944. It asserts that every player is exposed to the game’s pre-
cisely known information. The prevailing knowledge of the game permits each player
to furnish appropriate evaluations to their utility functions corresponding to different
pair of strategies. The postulations made for the exact payoffs can be considered as
the stringent ideology in the real world scenario which involves uncertain and ambigu-
ous information. Imprecision and uncertainty have been incorporated in game theory
by using various frameworks like fuzzy, stochastic etc. Several researchers have con-
tributed significantly in enhancing the literature of fuzzy games [17-19] and stochastic
games [21,22]. However, in the world of uncertainties, it is also challenging for players
to express payoffs in terms of membership functions in fuzzy environment or prob-
ability distribution functions in stochastic environment. To facilitate the players with
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effortless choice of payoffs, a new version of matrix games under uncertainty is pro-
posed by Arfi [23,24] based on linguistic fuzzy logic. To annex a new dimension to
the matrix game problems under linguistic environment, Singh et al. [2] defined matrix
games with linguistic information and proposed a linguistic linear programming (LLP)
approach to solve such class of games. Singh et al. [3] further extended the matrix games
to interval-valued 2-tuple fuzzy linguistic framework to increase the level of uncertainty
in game problems and adopted LLP approach to solve it. The authors formulated a pair
of auxiliary LLP problems to obtain the linguistic lower and upper bounds of interval
linguistic value of the game.

In this study, we extend the work of solving interval linguistic matrix game (ILG)
problems one step forward. Here, we propose a mechanism to compare IVTFL variables
using the bounds of the intervals and subsequently, define interval linguistic lower value
(ILLV) and interval linguistic upper value (ILUV) of the matrix game by introducing the
concept of max-min and min-max principle. In the absence of pure strategies, we sug-
gest IVLLP formulation to obtain the interval linguistic value of game with the optimal
strategies of both players by transforming it to conventional ILP problem. To validate
the proposed methodology, Best Worst Case (BWC) method [20], Enhanced Interval
Linear Programming (EILP) method [25] and Linguistic Linear Programming (LLP)
method [3] are adopted to solve the transformed ILP problems and provide a compar-
ative analysis. The duality principle of IVLLP is also taken into consideration in order
to prove the equality of ILLV and ILUV of the game for player I and II, respectively.

The remaining paper unfolds as follows. In subsequent section, the fundamentals
of subscript symmetric linguistic variables are elucidated with matrix games under lin-
guistic framework. Section 3 explains a new approach to compare two IVTFL variables
based on the end point approach. In Sect. 4, a zero sum interval-valued 2-tuple fuzzy lin-
guistic matrix game is defined with its interval linguistic lower and upper values using
max-min principle. Section5 discusses interval-valued linguistic linear programming
approach to solve the game in absence of pure strategies with a hypothetical illustra-
tion. The paper concludes in Sect. 6.

2 Preliminaries

In this section, we review the fundamentals of subscript symmetric linguistic variables
followed by the foundations of matrix games with linguistic information.

2.1 Subscript-Symmetric Linguistic Computational Model

Definition 1 [5]. Let LT = {¢_,,...,{y,..., Ly} be a finite and totally ordered prede-
fined linguistic term set with the following properties.

(i) The set LT is ordered i.e. ¢; > ¢; if and only if i > j,
(i) Negation of any linguistic variable ¢; € LT is given as ¢_;.

The 2-tuple linguistic computational model, defined by Herrera and Martinez [1]
can be easily enhanced to the above defined subscript symmetric linguistic term set LT.
Extending the notion of operators A and A~!, formalized by Herrera and Martinez [1]
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to set LT, the translation function converting a numerical value to a 2-tuple linguistic
variables can be stipulated as follows.

Definition 2. Let LT = {¢; | i= —g,...,0,...,g} be a finite set of linguistic terms hav-
ing cardinality 2g + 1 and let 3 € [—g,g| be a value that represents the outcome of a
symbolic aggregation operation. The 2-tuple linguistic variable that depicts the identical
information to f8 is defined in the following aspect.

A:[—g,¢] — LT x [-0.5,0.5]

i =round(f),

4,
AB) = (&,Of)wﬂh{ =B—i, aec[-05,0.5].

where round(.) is the usual round operation, ¢; being the linguistic term closest to f3,
and « is the symbolic translation.

Clearly, it has been observed that the aforementioned function A is a bijection [1]
and hence, its inverse is given by,

A LT % [-0.5,05] — [—g.g] as A4, a)=i+o=B.

Furthermore, Herrera and Martinez [1] have expressed the comparison of 2-tuple
linguistic information by using conventional lexicographic ordering. On the similar
grounds we can propose the following definition stating the ranking order.

Definition 3. Let (4;, 0;) and (¢;, ;) be 2-tuple linguistic variables using the term set
LT. Then,

(1) Ifi < j then ((,’, OC,') < (fj, O(j).
(ii) If i = j,ie., {; = {;, then
(@) if o = aj, then (¢, o) = (¢}, o), that is, (¢;, &) and (¢}, o) express the
identical information;
(b) if o > oj, then (Ei, O(,‘) > (Zj, OC]');
(c) if oy < o, then (Ei, O(i) < (fﬁ OC]').

The literature concerning operators for the set of 2-tuple linguistic variables is vast
and extensive. Here, we recall the weighted average operator defined in [4] after extend-
ing it to subscript symmetric linguistic term set LT.

Definition 4. Let {({,,,0,), r; € {—g,...,0,....8}, i=1,...,q} be a set of 2-tuple
linguistic variables and w = (wy,.. .,wq)T be the weight vector satisfying 0 < w; <
1,i=1,...,q, 2?:1 w; = 1. Then, the weighted average operator is defined as

IWA[(4y 00,) ii=1,...,q) = (b, 00 )W1 B (Lry, Oy ) W2 B ... B (ﬂrq,a,q)wq

—A(ZW, (£, 0, )
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Consequently,

q
71(@ (4, 0,) W,) zwA (4, 0,).
i=1

To extend the degree of uncertainty, an interval-valued 2-tuple linguistic variable [7]
can also be defined as follows in frame of aforementioned linguistic term set LT.

Definition 5. Let LT ={/{_,,...,0,...,{,} be a predefined linguistic term set. Then, an
interval-valued 2-tuple linguistic variable is defined as [(/\”), (X)), (&Y, a(V))] where
EgL),EI(U) € LT with ZI(L) < ng and o', () are the symbolic translations.

1

In literature, Singh et al. [2,3] have introduced matrix games with 2-tuple linguistic
and interval-valued 2-tuple linguistic information based on the set of predefined lin-
guistic term, ¢;,i = 0,1,...,g. In that paper, authors have defined a methodology for
solving two players constant-sum linguistic matrix games primarily based on 2-tuple
linguistic and interval-valued 2-tuple linguistic information. Authors also proposed an
LLP approach to solve such class of games to evaluate optimal mixed strategies with
linguistic value of the game. For thorough study of the methodology, one may refer to
the paper [2,3].

2.2 Zero-Sum Linguistic Matrix Game

The matrix game problem where the sum of the payoffs corresponding to any given set
of strategies is zero is termed as two players zero-sum game [26]. A zero-sum game is
a particular case of the constant sum game and has subjected to several findings both in
the fuzzy as well as conventional set up. However, the game problems with linguistic
payoff matrices are pristine and required to be explored.

In the present subsection, we review the basic terminologies and notations related
to the zero-sum matrix games within a 2-tuple linguistic framework. The following
definitions are taken from [2] and can be easily extended to the subscript symmetric
linguistic term set, LT as mentioned above.

Definition 6. A two-player zero-sum linguistic game G is defined by a quadruplet
(§",8™, LT,A), where S" and S are the strategy sets of player I and II, LT =
{€_q,.... 0o, 01,... Ly}, with cardinality 2g + 1, is a subscript symmetric linguistic term
set for both the players, A is the linguistic payoff matrix of player I against player II,
and neg(A) is the payoff matrix for player IL

Since the lexicographic ordering is available in the 2-tuple linguistic variables, one
can easily extend the notion of the value of the game to the linguistic matrix game G.

Definition 7. A matrix game G with payoff matrix A = [dij]nxm has the linguistic lower
value and the linguistic upper value defined as,

V' = max min q, vT = min max al/
i=1,...nj=1,...m j=1,...mi=l1,.
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Here, it is considered that v~ (player I gain floor) is the minimum linguistic payoff that
player I is assured to receive while v (player II loss ceiling) is the maximum linguistic
loss of player II. The value of the game G exists if and only if v~ = v". The strategies
i* and j*, yielding the payoff @+ = v~ = V", are optimal for player I and player II,
respectively. The pair (i*, j*) is also known as the saddle point of the game G.

In the case, where solution set of the game G does not possess pure strategies. We
define the solution set as mixed strategies.

Definition 8. A mixed strategy is an ordered pair of vectors (x,y) € S" x ™, where

St={(x1,... %) 1 x; 20, i=1...,n, ¥ 1 x; =1}
S"={01s-5¥m) 1 ;>0 j=1,....m, 37 y; =1}

Here, x; is the probability of choosing strategy i by player I and y; is the probability of
selecting strategy j by player II.

In the subsequent section, we define the comparison of linguistic intervals to pro-
pose the interval linguistic lower and upper values using max-min principle.

3 Comparison of Interval-Valued 2-Tuple Fuzzy Linguistic
Variables

In literature, Zhang [7] defined the comparison of interval-valued 2-tuple linguistic vari-
ables using score and accuracy values. It gives a total ordering of the linguistic intervals
that does not show analogy with classical numeric intervals [8—16].

So, in this study, we present a new comparison scheme of interval-valued 2-tuple
linguistic variables. The approach involves the bounds of the intervals that allows to
define a partial ordering of the linguistic intervals. Here, we consider the following
cases to encompass all possible pair of intervals.

() Case of Disjoint Intervals: Let u = [({0), %w), (Gw), ow)]s V = [(w),
o;w), (¢jw), &w))] be two disjoint IVTFL variables. Then
f<v it (G, ogw) < (), m)-

(I) Case of Nested Intervals : Let i = [({,0), o)), (L), %w))], V= (€005 05m)),

(¢;w),e;w))] be the two IVTFL variables such that one of the following cases

OocCcur :
@ 1f i < 0 < jU <i® = (), 00) < (Cu,ow) < Cw), &w) <
(biw)» bw))
(1) If i<L) = j(L) ZJ(U> = i(U) = (0709) < O(]-(L) < OCj(U) < (071%) such that (gi(L)7ai(L)) <
(4w 0m)) < (Cjw), &w)) < (G, Gw))-
(1) If i) (L) < ]( ) < l( ) = oy < O(j( ) < OC vy < 04w ) such that (f (L), OC,»(L)) <
(4w, o) < (Gw), tw) < (), Gw))-
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(v) If i) = jB) = jU) < iV) = o 1) < 0y < 0wy < o) such that (), o)) <
(5,-@)706 ) < (jw), &w)) < (@-(u) (u))
(v) Ifilh) < ;i) = ]( ) ( ):>a<L)<oc<)<a(U)<oc such that (£,1), o)) <

(fj@w ,(L ) < w), w) < G, ,U))-
(Vl) If i< ( ) ( ) = ( ) = O < Otj(L) < OCJ-(U) < Ov) such that (K[(L),OC[(L)) <
(¢ ,-(L%Of,-(m) < (f 10, 0%w)) < (Lw), 0w )-
All above cases infer that the linguistic interval Vv is contained in [, denoted as

Vv C 1. It demonstrates the inclusion property of linguistic intervals i.e. the inter-
val V is nested within (I and cannot be ordered in respect of values.

(Il) Case of Overlapped Intervals: Let [ = [({,0),0%w), (Lw) %w)], V =
[(€;), ¢jw)), (€ ) @) )] be two overlapping IVTFL variables such that

(G, 04)) < (Ljw, 05)) < (G, Ow)) < (Ljw), 0iw)),

then i < V.

For instance, consider the predefined linguistic term set LT = {¢_; : Very Bad (VB),
{1 : Bad (B), 4y : Medium (M), ¢; : Good (G),/; : Very Good (VG)}. Suppose S =
{ﬁl = [(67270)7 (6070)]’ﬁ2 = [(6727()'8)’ (£7170~23)i “3 [(&),0 05) (62’ )] H4 =
[(£-1,0),(£1,0)]} be a set of IVTFL variables using the predefined linguistic term set
LT. Here, u; and u, are nested linguistic intervals whereas interval i is disjoint with
U3 and overlapping with 4, comparing which we obtain that ) < sz, g < s but py
and U, can not be compared. Only the inclusion property can be discussed i.e. ty C ;.
On the similar grounds, the other pair of intervals can be compared.

In literature, Singh et al. [3] adopted the matrices formulated using lower bounds
and upper bounds of the payoff intervals to define interval-valued linguistic (IVL) value
of the game. However, the authors suggested linguistic linear programming approach
to solve interval-valued linguistic matrix game in case of mixed strategies. Unlike the
existing solution scheme, here in this work, using the comparison of linguistic inter-
vals defined in the preceding section, the value of the interval fuzzy linguistic game
is defined in the light of min-max principle and subsequently, interval linguistic linear
programming problem approach is proposed to solve such games.

4 A Zero-Sum Interval-Valued Linguistic Matrix Game

Definition 9. A two-player zero-sum interval-valued linguistic matrix game G is
characterized by a quadruplet (S",8™,LT,A;, ), where S", S™ are strategy sets for
player I and II respectively and LT = {¢_,,...,{o,...,{,} is the predefined subscript-
symmetric linguistic term set. The matrix A = ([“ff),“ij ]) s i=1,...n, j=
nxm
1,...,m is the interval-valued linguistic payoff matrix of player I in defiance of player
11 whereas negA ,; = ([neg(&ﬁj) ), neg(&ff))]) depicts the payoff matrix of player IT
nxm

such that the payoffs of two players sum up to (¢, 0).
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Since the comparison of IVTFL variables are proposed in the preceding section, the
IVL value of the game can be defined as follows.

Definition 10. For a given IVL matrix game ém, with payoff matrix le, the interval-
valued linguistic lower value, v;,, and interval-valued linguistic upper value, me of the
game is defined as,

~ L) ~U)
Vy = Max  min [aij NOr 1,
i=1,...n j=1,...m
L) ~(U
v/, = min max [&f.),&{.. )].
; j ooy
j=1..m i=1,...,

The IVL value, vy, of the game exists when v, = \7;;” = V-
The strategy set (i*, j*) for which these values are equal is called the saddle point
of the game and i*, j* are optimal strategies of players I and II respectively.

For any IVL matrix game, the following inequality holds.

Theorem 1. Suppose v, = [v~5), 3~ U)] and v = [+ 5+U)] be the interval-
valued linguistic lower and upper values of an interval linguistic matrix game Gy, such
that both values exist. Then, v, <V} .

Proof. We are given that v, . and 17;;” both exist, so for some column j and fixed row i,
we have,

. U L) U
Jmin (a7),a]) < (a aj ),
By taking max over i = 1,...,n on both sides, we obtain,
Vi =  max min [&{L),“{U)] < max [Zl( )7(’,\1’([-])}
=1, j=1,..., Y i=1,.., o
L) ~(U
= vlnt < max [Zil(j)’ZiI(J )]

Since the above inequality holds for any j. Hence, we obtain the following
inequality.
> ; ~(L) ~U)
Vi < min_ max [8,/°,;;"]

Hence, v;,, <V},
Now, we exemplify the above theory using an illustration.

Example 1. Two firms need to introduce a number of essentially equivalent new prod-
ucts. In the next two months, the companies are planning to launch the products.
The payoffs are the companies’ share, which it will acquire taking into account the
months during which production takes place. The payoffs of the companies appear in
the form of IVTFL variables from the set of predefined linguistic terms, LT = {¢_, :
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Very Low (VL),¢_; : Low (L), : Fair (F),£¢; : Good (G), ¢» : Very Good (VG).}. The
interval linguistic payoff matrix for player I is given as.

i { . O%’VG] [(VL,0.2), éL,0.4561)]

Here,
T = max min {4}
= max{min{VL,[(VL,0.2),(L,0.4561)]},min{[(G,0.4),VG)],G}}
=max{VL,G} =G.

Also, v} = min max {[d?;),dg.])]}
= min{max{VL,[(G,0.4),VG)]},max{[(VL,0.2),(L,0.4561)],G}}
= min{[(G,0.4),VG],G} =G.

Here, (2,2) is the saddle point and v;,, = G is the interval-valued linguistic value of
the matrix games. This shows that in order to maximize the profit both the firms should
launch their products in the second month simultaneously.

In the above example, if we replace the entry [d(lLl),d(lllj) | as [F,G] and [dgli) dgllj)] as
VL, thenv,,, = [(VL,0.2),(L,0.4561)], and v}, = [F, G, it depicts the absence of pure
strategies. The validity of Theorem 1 can also be deduced from the example as in case
of pure strategy, the equality holds whereas in another case, v;,, < me.

To evaluate the strategy sets and optimal value of the game in absence of pure strat-
egy, here we define the interval-valued linguistic linear programming approach to solve
such games.

5 Interval-Valued Linguistic Linear Programming Approach to
Solve Interval Linguistic Matrix Games

Suppose, we have the interval linguistic payoff matrix A 1ne using the predefined linguis-
tic term set LT = {{_,, ..., lo,...,{g} as follows.

[dé? dé ]l §> a >] ..[aéia%;]
Ay = [521 ‘721 ][227 22 [a2m7 L |
a.a\) (@5 .ay)) . a.aln)

;L) 50
ij > 1]
the j" strategy.

where [d ] is the payoff of player I on selecting i'" strategy when player II selects
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Here, we may assume that each entries of the interval linguistic payoff matrix

is either [a\,al)] < 0 or [a),al)] > 0. Let " = {X = (x1,%2,...,3) x>0,

Y x=1} and §" = {Y = (1y2eeem) | 520, Sy = 1} be the mixed
strategy set for player I and II, respectively. Then, the expected payoff of player I when

player II selects j* strategy, is taken as the weighted average of the interval-valued

linguistic variables in the j* column i.e. [a 11 7“1] d,;d ]x,,.
Hence, the required IVLLP problem for player I is given as.

max v, (IVLLP1)
subject to

@y dV e .o@h, a1 >,

@5 aP N @...0@s,ay x> v,

ﬁﬁfﬁm] © .. B a1 = iy

X1+x4+...+x,=1
X1, X2, ... xn > 0.

Using the monotonicity of A~! operator, the inequality constraints of above IVLLP
model can be rewritten as follows,

A (@E @ e, ea (@5, dV)x > A 5,)
AN @s,aY e ea(@5,ay x> A )

ATN(ag) @D e . oA (@, aw ) > A7 (7,)

1m>

and the objective function max v;,, = max A~!(v,,,).

By taking A~ (g} ")) = [a}aly) i=1,....n. j=1,....m and A" (¥;,,) =
Vi, the constraints of model IVLLP1 is given as.
[a(llf) (11 )]xl +.. 4+ [ 5;1)7 (U)}xn > Vint

(L) ()}

U
[a(lz)’agz)]xl +ot [an2 2O | Xn 2 Vit

[a(ll;,fva(ll,]n)]m +...+ [a%,affr]n)]xn > Vi

Xi+x+...+x,=1
X1y X2, ... Xn > 0.
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Here, we assume that 0 ¢ A~

Xi.
—,i=1,..

We set, X; =

Vint

15—\
Vi) = Vine-
.n,and Vy,; =

1 1
vim v 7D
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1
] . Hence, by making the

above substitutions, the model IVLLP1 is transformed into standard ILP problem for
player I, given below.

@\ al1x, .+ [ab) alS)1X, > [1,1]
X17X27"'7Xn > 0.
Analogously, we can formulate an IVLLP problem for player II.
min V;:lt
subject to
U
[all 7a/(ll>] ®.. 69[N<1m>7(3(1111)}))”” —A;tll

min Vi, = Xi+Xo+...+X,
subject to
[a(lL1)7a(ll)]X +...tla ;(zl)a Ez])]X" > [1,1]

[agz)aagz)]X1+---+[ 512)’ 512)]X

(L)

[“21 v‘élﬁﬂ@@ @[aéﬁq),%m)}y <V

(ILP1)

(IVLLP2)

H(ay

lj’

(ILP2)

@8 a0 ..o @k, ab . <,
yi+y+...+ym=1
YI-,y27~~~7)’m 20
Recall 0 ¢ vy, = A‘l(V;lt). If vp,;; is the value of the interval linguistic game then
_ A-l(
Vine = A~ (vlnt)
By taking Y; = , j=1,...,m, and as earlier we discussed that A~
Vint
szjm D)= [al(jL>, ,(j )] the corresponding model IVLLP2 reduces to the following stan-
dard ILP problem for player II.
max Vi, = Y+ +...4+Y,
subject to
L U L (U
a7l 1+ el al) I < [11)

sy as 11+ [asy) s Y < [1,1]

(L)

[anl A

Y17Y27"'7

( >}Y +.. +[anmﬂz(1(r]n)

YITL 2 0

(L)

}Ym [1 1]
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Here, models ILP1 and ILP2 can be solved using any existing methods for solving
interval linear programming problems to obtain the optimal mixed strategies Xf,, €
S" and Yy, € " along with the interval linguistic value of the game V.. It is also
noteworthy that both models ILP1 and ILP2 form a primal-dual interval linear programs
in the crisp set-up.

Example 2. Consider the zero-sum IVTFL matrix game with interval payoffs defined
from the predefined subscript symmetric linguistic term set LT = {¢_5 : Very Low(V L),
l_5 : Low(L),¢_; : Moderately Low(ML),¢, : Average(Avg),¢; : Moderately High
(MH), ¢, : High(H),¢5 : Very High(VH)} with payoff matrix,

(

[(VL02)~ L,O)] [(Hafoz)(Vvao:;)] [(MH03)7(H702)] [(MLa7013)7(AVgaO)]
X”” - [(VH,O)(VH,O)] [(H,O)(VH,*OZH [(L 704)(ML~O)] [(MH,O)(H*OZ)]

Let player I's mixed strategies be given as x(X) = (ng),xéL),ng)), P >0,i=

1,...,3, z?=1x§L) =1,and xV) = (xgw,xéU),xéU)), 0> 0,i=1,...,3, Z?ZHCSU) =

i
1 for the given interval payoff matrix, Ay,. Additionally, player II’s mixed strategies

are defined as y(L) = (ygm, ygL),ygL),ygL)), yE-L) >0, j=1,...,4, Z‘J‘-ZlyS-L) =1, and

U) = (ygU)ayéU)aygU)a yz(lU>7ygU))a yEU) > 0; Jj= 17"'75a 23:1.)’5‘[]> =1L

In view of the proposed methodology, we formulate models IVLLP1 and IVLLP2)
that is further converted into standard ILP problems to obtain optimal strategy set for
player I and II, respectively.

Method 1: Best-Worst Method

y!

For Player I:

Best-sub model [Worst-sub model
min V'Y =X +X,+X3 min V- =X, + X+ X3
subject to subject to
—2.8X1+3X,+24X3 > 1, —2X1+3X,+3X3 > 1,
1.8X 42X, —2X3 > 1, 27X +2.8X, — X3 > 1,
13X —2.4X, +3X3 > 1, 22X —X>+3X3 > 1,
—1.13X; + X +3X3 > 1, 0X,+1.8X,+3X3 > 1,
X1,X2,X3 > 0. X1,X2,X3 > 0.

Solving these two problems, we obtain the optimal strategy of player I as x| =
[0.3146,0.3685], x, = [0.3149,0.3289], x3 = [0.3149,0.3575] with interval-valued lin-
guistic lower value of the game given as, v;,, = [(¢1,—0.33),(¢1,0.43)].
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For Player II:
Best-sub model [Worst-sub model
max V+<U)=Y1—|—Y2—|—Y3—|—Y4 max VL =Y1+H+Y34+Y,
subject to subject to
—2.8Y1+1.8Y,+1.3Y3—1.13Y, < 1, —2Y1+2.7Y,+2.2Y34+0Y, <1,
3V1+2Y,—24Y3+ Y, < 1, 31 +28Y,— 13+ 1.8, <1,
2.4Y) —2Y, +3Y3+3Y, < 1, 31— 1 +33+3Y, < 1,
Y1,Y2,Y3,Y4 > 0. Y,Y2,Y3,Y4 > 0.

For player II, the optimal strategy set is y; = [0.2077,0.2288], y, = [0.4004,0.4422],
y3 = [0.3484,0.3718], y4 = 0 with interval-valued linguistic upper value of the game,

vi = [(61,-0.33), (¢1,0.43)].
Method 2: Enhanced Interval-Valued Linear Programming Method

For Player I:
Sub-problem I Sub-problem II
min VW =xV 4 xV 4 xV min V™0 = xF 4+ xF 4+ xt
subject to subject to
—2xV +3xY 4 2.4xY > 1, — 28X} +3X5 +3x5 > 1,
1.8x7 +2xY —xY > 1, 2.7XF +2.8XE —2x% > 1,
1.3xV —x¥ +3xV > 1, 22XF —2.4x5 + 3% > 1,
oxY +x¥ +3xY > 1, — L13XE + 1.8X% +3XE > 1,
xV.xy x¥V >o0. XF x5 xE>0.
For Player II:
Sub-problem I Sub-problem II
max VIO =yV vV vV +vf | max v =ylyvl+vE vk
subject to subject to
=2V + 1.8y +1.3r¢ <1, —2.8YF +2.7vF 12.2vF —1.137F < 1,
3yf vy —vY +vf <1, 3y 2.8vf —24vF —18vfF <1,
2.4v0 —v¥ +3vE+3vf <1, 3vf—ovi +3vE+3rY <1,
vl vy vy vY >o. YEYE YE YE > 0.

Solving the above models, the optimal strategies of player I and II are eval-
vated as x; = [0.3008,0.3395], x, = [0.2726,0.3201], x3 = [0.2813,0.3196] and
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y1 = [0.1455,0.235), y, = [0.3478,0.4462], y3 = [0.3102,0.3589], y4 = O respectively
with vy = [(£1,—0.06), (£, —0.03)].

Method 3: Linguistic Linear Programming (LLP) Method

We split our matrix Ay into linguistic lower matrix and linguistic upper matrix to obtain
interval linguistic lower and upper values of the interval linguistic matrix game. The
mathematical formulation for this problem is similar to that of BWC.

The optimal strategies of both players and value of the game using various existing
methodologies to solve ILP problems, are tabulated below.

For Player I:
Method | & by %3 Optimal value
BWC 0.3146,0.3685] | [0.3149,0.3289] | [0.3149,0.3575] | [(¢1,—0.33),(¢1,0.43)]

[ [
EILP | [0.3008,0.3395] | [0.2726,0.3201] | [0.2813,0.3196] | [(¢;,—0.06), (¢1,—0.03)]
[ [

LLP 0.3146,0.3685] | [0.3149,0.3289] | [0.3149,0.3575] | [(¢1,—0.33),(¢1,0.43)]
For Player II:
Method | ; Vo V3 ¥4 | Optimal value

BWC | [0.2077,0.2288] | [0.4004,0.4422] | [0.3484,0.3718] 0 | [(¢1,—0.33),(¢1,0.43)]
EILP | [0.1455,0.235] | [0.3478,0.4462] | [0.3102,0.3589] 0 | [(¢,—0.06),(¢;,—0.03)]
LLP | [0.2077,0.2288] | [0.4004,0.4422] | [0.3484,0.3718] | 0 | [(¢1,—0.33),(¢1,0.43)]

Here, the solution region obtained using EILP method is completely optimal and
feasible. However, BWC and LLP approach provides a solution region which is com-
pletely optimal but may not be feasible. This is because it incorporates some infeasible
points within the solution set.

6 Conclusion

In this paper, we have studied the 2-player zero sum interval-valued linguistic matrix
game problems. We proposed a new methodology for comparing two IVTFL variables
and subsequently, put forward the concept of max-min principle for defining the lower
and upper value of the interval linguistic game problem. However, in the absence of
pure strategies, we designed a new approach for evaluating the optimal strategies and
value of the game. We envision that the proposed method can easily be applied to
large scale interval linguistic game problems, manufacturing companies, large scale
decision-making problems where the existing players (or decision makers) have con-
flicting objectives.
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Abstract. An efficient guaranteed method for the computation of the
integral of a nonlinear continuous function between two interval end-
points is proposed. This computation can be of interest for the compu-
tation of global optimization problems where such integrals occur like in
robotics. The method results in the computation of the minimum and
maximum of these integrals and provides the endpoints at stake. The
complexity of the resulting algorithms is discussed, it depends on the
number of roots of the function to be integrated. The computation is
illustrated on several examples.

Keywords: Integral - Set-membership computation - Interval methods

1 Introduction

Numerical integration is one of the fundamental tools of scientific computation.
It occurs in many domains and providing a reliable result to such problem is
important. We can cite, for example, the computation of a validated simulation
of ODEs [2,9] or for global optimization with continuous objective function [6].
It has applications in robotics as well [3,12].

The numerical computation of integrals has been intensively studied and the
same happened for a validated computation. In [1], the validated computation
of an integral where both endpoints are reals is considered using quadrature (see
also [5]). In [11], the problem is tackled for piece-wise analytic functions.

For integrals where uncertainties happen in the endpoints defining them or
if one wants to produce a set of possible integrals for which the endpoints take
their value in an interval, there is fewer studies. We can nonetheless cite [4]. In
there, the notion of integrals with intervals is defined and a formulation of the
problem when the two interval endpoints are disjoint is given.

A simple algorithm in the general case remains to be defined, and it is the
purpose of the present work. The subject of this work will not be to treat directly
the guaranteed numerical computation of integrals where the endpoints are real
even if it is mandatory when extending to set of endpoints. Indeed, a study of
the general case with interval endpoints provides a decomposition of the problem
that make the previous case appearing. Then any method for this matter can be
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used in order to produce eventually the computation of an integral with unknown
endpoints. We already mentioned (linear) quadrature and the interested reader
to this particular point can read, for example, [10].

Our work makes use of interval analysis and the analysis of the roots of the
function we integrate. It then requires the function to be analytic in the gen-
eral case or make use of the computation when endpoints are known exactly to
detect the parts where the integral is positive and the ones where it is negative.
Our work is presented as follows: the next section provides the mathematical
background for the understanding of this work, Sect. 3 is dedicated to the main
result that is the computation of an integral with interval endpoints, some exper-
iments make possible discussion on the presented method and the complexity of
its associated algorithms in Sect. 4 before we conclude.

2 The Interval Integrals

In this Section, we recall the notions on interval analysis required in the follow-
ing of the article and introduce the interval integral, an integral with interval
endpoints.

2.1 Interval Analysis

Interval analysis [8] is well suited when dealing with computation involving
sets of values or when handling uncertainties. Its goal is to produce an outer-
approximation of a desired computation in a sound manner. We denotes hereafter
an interval with brackets: [x] = [z, 7] with < T the lower and upper bounds of
the interval. Any interval lies in the set of intervals IR = {[z] = [z,T] | z,T €
R, z < Z}. For higher dimensions, we deal with Cartesian product of intervals
[x] € IR™ which are named boxes.

As depicted in the fundamental theorem of interval analysis (see [7]),
the evaluation of an arithmetic expression using intervals leads to an outer-
approximation of the resulting set of values for this expression whatever the
values considered in the intervals. This result can be extended to functions deal-
ing with intervals we then call interval function or interval extension of a function
thenceforth they verify the fundamental theorem.

We can cite classical ways to design such interval extension like the natural
extension [8] which replaces the operations on reals by their interval counterparts
using interval arithmetic or the mean value extension [8] which linearizes the
function around its mean value. Such interval extension can easily be designed
to produce a validated computation of integrals.

2.2 Validated Computation of Integrals

A simple way to produce an interval extension of the integral of a function is to
extend the composite midpoint rule to the intervals. Using

b
/ f(z)dz € wid([a, ]) [£] ([a, b) (1)
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with [f] : IR — IR an interval extension of the function f and wid([a,b]) =b—a
is the width of the interval [a,b], one can cut the interval [a,d] into n intervals

and the computation of fab f(z)dz can be then

b wid([a, b]) — —a —a
/af(x)dze‘w;mqﬁ(knb atk D @)

1

2.3 Integrals with Interval Endpoints

We denote an integral with interval endpoints as an interval integral and it is
defined as follows:

Definition 1 (Interval integral). Let f : R — R, a continuous function and
[z1], [x2] € IR two intervals. The interval integral of f with [z1] and [x2] as

endpoints is denoted f[ﬁ’é’]] f(z)dx and corresponds to the set

- (x)dx = {/:2 f(z)dx

[x1]

xr1 € [.’171] , Lo € [.’1?2]} . (3)

This set considers all the integrals with the endpoints taken in the intervals [z]
and [z3]. The following property is useful to decompose the computation of an
interval integral.

Property 1. For an interval [z1] = [ﬁ , 371} and Z; € [z1], an integral interval
can be subdivided as follows

[z2] [z2] [x2]
x)dx = z)dx z)dx 4
(2) /[ @) U/{im]f() (4)

[z1] z1,%1

and the same subdivision applies for [zs].

How to handle this set to produce an outer approximation using interval analysis
is discussed in the next section.

3 Main Result

When dealing with the computation of the set in Eq. (3), three cases can occur
whether the intervals [z1] and [z2] are disjoint, intersect or one is included. In
the following, each case is discussed.
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3.1 The Interval Endpoints Are Disjoint

The first case occurs when the two interval endpoints do not intersect. In the
following, we will consider, without loss of generality, that for the computation

of the integral ﬁgﬁ] f(z)dz, the endpoints [z1] and [z3] respect the constraint

T1 < xp. If not, we just have to consider the computation of — f[[z;ﬂ and the
constraint still apply for Tz < z;. Using this assumption, the considered integrals
are always with the first endpoint being smaller than the second endpoint and
the integral cannot go backward.

As introduced in [4], An interval integral as defined in Definition 1 where the
endpoints are disjoint can be decomposed as follows

[z2] TT Ty [w2]
wir= [ j@iet [Ciwdet [ f@de )
] _

[z1] [z1 Z1 T2

where 2 subcases of interval integrals appear and a more classical integral with
real endpoints. Using Eq. (5), we can compute the minimum using

[22] T1 Lo [w2]
min (z)dz = min f(z)dx + f(x)dx + min f(x)dz  (6)

[z1] [z1] T T2

and

[x2] T To [w2]
max f(z)dx = max/ f(z)dx + f(z)dz + max f(z)dx (7)
1] 1

[z1] z1 T

for the maximum since the minimum (or maximum) operator can be here dis-
tributed. Then computing the interval integral requires the computation of each
integral in the right hand side of this equation, in particular the two interval
integrals occurring.

Computing f[z] f(x)dz

To produce the minimum and the maximum of this integral, we have to consider
the parts where sub-integrals are positive and parts where they are negative.
The change between positiveness and negativeness of the integral occurs at x
being a root of x (such that f(x) = 0). Computing the minimum and maximum
then requires to produce the set of roots

X" ={x e a]: f(x) =0} (®)

The integral has to reach the endpoint Z then all candidates to be minimum and

maximum are the integrals
{/ f@)de| o € X*} )

If the set of roots is finite, we end up with a finite number of candidates to
minimum and maximum when the general set contains an infinite number of
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integrals. Figure 1 illustrates an example of this computation where the set from
Eq. (9) consists in 4 candidates. The sign of the integral starting at each z* € X*
dictates if the candidate is a minimum or a maximum (in Fig. 1, candidate 2
and 4 are candidates to be the minimum and candidates 1 and 3 can only be
maximum).

L1

Candidates :

=N =

Fig. 1. Example of computation of f[i] f(z)dz for X* = {27, 2z5,z3} (blue: maximum;
red: minimum). (Color figure online)

Computing fm[m] f(z)dz

In the case of the interval integral having only the endpoint as an interval, a
dual method is applied from the previous example since the Second Fundamental
Theorem of Calculus can be applied

[z] T
r)dr = — x)dx 10
f() /m f(@) (10)

z

and then it is the sign of integral prior to the endpoint z* that defines the sub-
integral to be candidate to minimum or maximum. Figure 2 provides an example
of the computation of the minimum and the maximum.

The intervals 1 and 3 are candidates to be minimum and the intervals 2 and
4 to be maximum.

3.2 The Interval Endpoints Overlap

This case occurs when z1 < 2 < T1 < T2. More interval integrals have to be
considered since the interval integral can be backward with z1 > xa, 21 € [21],
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Ax) S o

Candidates :

=W =

Fig. 2. Example of computation of fz[?] f(z)dz for X5 = {z], x5, x3}.

x9 € [z2]. The set of integrals the interval integral defines can be subdivided
(using Eq. (4)) since

[x2] [z2] [z2]
f(z)dx = / f(z)dx U (11)
(1] ﬂ,wz 9027961
[z2] 332,371 [961,962]
= /[ x)dx U/ x)dx U/ z. (12)

The first and the last interval integrals in Eq. (12) are of the same type as the
one where endpoints are disjoint except that the integral can be equal to 0 when
taking the same value for both endpoints.

Computing f[[;]] f(z)dx
We now discuss the middle interval integral occurring in the decomposition of
Eq. (12). It is the case where both endpoints take their value in the same interval:

[:] F(@)dz = {/m F(@)da| 21,20 € [:c]}. (13)

The minimum and maximum will also be determined using the set of endpoints
X* ={x € [z]] f(z) = 0}. We have also to make the distinction between value
in X* for which f/(x) > 0 or f'(x) < 0. Then the computation of the minimum
and maximum is stated by the following theorem.
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Theorem 1. Let f : R — R be a differentiable function. For [x] = [z,Z] an
interval in IR, we define

s = [ T (14)
max — 5 1
Xyu{z} e
X+U{£}
Inin = f(z)dz 15
Jony 7@ (15)
using the sets
X*={zelz]: f(x)=0,f (z) <0} (16)

AT ={z 2] f(z)

0, f'(x) > 0}. (17)
The minimum and the mazimum of the set (13) can be defined by

[=]
f(z)dr = [— max(—Inin, Imax), MaxX(—Imin, Imax)] (18)
(=]

3.3 The Starting Endpoint Is Included in the Ending Endpoint

When [z1] C [z2], we have z2 < 21 < T1 < T3 and the same decomposition as

in Sect. 3.2 follows:

[z2] [22,21] [21.72]
x)dx = x)dx x)dx 19
f(z) /[ ora /[ f(x) (19)

[#1] 1] 1]

_ /[[“C 2)da U/ F(@)dz U/mz 2)dz (20)

wl]

so we go back to the already treated kind of interval integral that occurred in
the previous cases.

Eventually, the computation of any interval integral only depends on the
computation of the particular interval integrals

i f(z)dz (21)
f(x)dx (22)

[z]
/ f(z)da. (23)

(=]

An implementation of the computation of those interval integrals is introduced
in the next section.
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4 Experiments

An implementation of the computation of the bounds of the set defined in
Egs. (21)—(23) is introduced using interval analysis [7] and tested on several
examples.

4.1 Algorithms

We now introduce the algorithms that have been implemented in order to com-
pute an interval outer approximation of an interval integral.

Algorithm for the Computation of f[f f(x)dx

The first algorithm treats the problem of computing f x)dx (see
Algorithm 1).

Algorithm 1. COMPUTE INTEGRAL1 compute an outer approximation of
the integral of f x)dz

Input: [z] an interval
Input: f the function we want the integral
Output: the interval [If] D {f; fl@)dx : x € [:c]}
lcandidates — @
X" —{zela]: f(z) =0}
[Zcurrent] < compute_integral(f, z, 1)
lcandidates — {[Icurrent]}
for i — 1 to |X*|—1do

[[current] — CompLItefintEgral(f7 LEZ, 17:4,1)

foreach candidate € lcandidates dO

| candidate — candidate + [lcurrent]

© 00N s W N

lcandidates — {lcandidates, [Icurrent”’

10 [lcurrent] «<— compute_integral( f, er*‘, T)
11 foreach candidate € l .ondidates AO

12 L candidate < candidate + [lcurrent]

13 lcandidates — {loandidateS7 [Icurrent}}
14 [Imin] — min(lcandidates)
15 [[max} — max(lcandidates)

16 return [Iminlmaz]|

The first step is to compute the set of roots X* = {z € [z]: f(x) =0}
(Line 2). Then the set of candidates is computed incrementally over the inter-
val [z] by computing each integral between two contiguous roots in the set X'*.
Indeed, as we can see in Fig. 1, each integral between two elements of X'* is the
beginning of a candidate to be the minimum or the maximum so the algorithm
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needs to compute this integral, add it to the list of candidates and add it to the
existing candidates. This is done in Lines 5 to 9. After that the integral from the
last element of X* and the upper bound of [z] is added (Lines 10 to 12). The
minimum and the maximum is one of these candidates.

Algorithm for the Computation of fy] f(x)dx

The algorithm for the computation of fm[m] f(x)dx is somehow the same as the pre-
vious one (see Algorithm 2). The difference is now that each couple of contiguous
points in the set X'* is the end of a candidate. The integrals are then computed
from the end to the beginning of the set X*, added to the current existing candi-
dates, and added to the list of candidates (Lines 5 to 9). Eventually the integral
from the lower bound of [z] to the first element of X'* is computed, added to the
existing candidates and added to the list (Line 10 to 12).

Algorithm 2. COMPUTE_INTEGRAL2 compute an outer approximation of
the integral of fw[z] f(x)dx

Input: [z] an interval
Input: f the function we want the integral

Output: the interval [I7] D {f; flz)dz :xz € [as]}

lcandidates — @
X" —{z€z]: f(z) =0}
[{current] < compute_integral( f, xrx*‘, T)
lcandidates {[Icurrcnt]}
for i — |X*| downto z7 + 1 do
[{current] < compute_integral(f, z;_y, =)
foreach candidate € l andidates AO
L candidate < candidate + [lcurrent]

© 0N O R W

lcandidates — {lcandidat657 [Icurrent}}

10 [Icurrent} — compute,integral(f, Z, $T)
11 foreach candidate € lcandidates dO
12 L candidate < candidate + [lcurrent]

13 lcandidates — {lcandidates, [Icurrent”’
14 [Imin] — min(lcandidates)

15 [Imax} — max(lcandidates)

16 return [Mm]

Algorithm for the Computation f[f]] f(x)dx

We now introduce Algorithm 3 to compute an interval integral with the same
interval endpoints. As described in Theorem 1, every pair of elements in X* can
be the candidate to be a minimum or a maximum. In Algorithm 3, we start by
computing the integral from the lower bound of [z] to the first element of A*
(Line 3). Then all the other integrals between two elements of X* are computed
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Algorithm 3. COMPUTE_INTEGRAL3 compute an outer approximation of
the integral of f[[;]] f(x)dx

Input: [z] an interval
Input: f the function we want the integral
Output: the interval [If] D {f;f flz)dx = x1,22 € [x]}
lcandidates +— ]
X" —A{zelz]: flz) =0}
[Icurrent] < compute_integral(f, z, =7)
lcandidates < {[Icurrent]}
fori«—1to|X*|—1do
[Icurrent] — ComPUtefintegral(fv ‘T:7 x:—l»l)
foreach candidate from last iteration € l andidates O
L lcandidates {lcandidates, candidate + [Icurrcnt”’

© 00 N0 T A W N

lcandidates — {lcandidateS7 [Icurrent}}

10 [Lourrent] < compute_integral(f, x]y«|, T)

11 foreach candidate from last iteration (Line 5) € lcandidates dO
12 L lcandidates — {lcandidate57 candidate + [Icurrent}}

13 lcandidates <— {lcandidate57 [Icurrcnt”’

14 [Imin] — — max(— min(lcandidates), max(lcandidates))

15 [[max} — maX(_ min(lcandidates)7 max(lcandidates))

16 return [Im’in]maw]

and added to the list of candidates (Line 5). The condition in the foreach loop
(Lines 7 and 11) means that the computation between two contiguous elements
x} and x}_; can only be added to integrals where the endpoint is z;. Only the
candidates from the previous iteration fulfill this requirement.

The three algorithms that have been introduced can be used to compute the
result of any interval integration discussed in Sect. 3. For example, we can use
Algorithms 1 and 2 to compute the case where [z1] and [x2] do not intersect (see
Algorithm 4). It simply corresponds to the decomposition given in Eq. (5).

Complexity

The complexity of Algorithms1 and 2 is linear on the arity of the set A™*.
Since Algorithm 4 has no loop and simply uses Algorithms1 and 2, it has the
same complexity. Now for the case of the algorithm used for the computation of
J [f]] f(x)dx, we have more candidates to assume and the complexity is then fac-
torial on the arity of the set X* which corresponds to the number of candidates
we need to compute.
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Algorithm 4. COMPUTE_INTEGRAL_DISJOINT compute an outer approxi-
mation of the integral of {f;f f(x)dx 21 € [11] 22 € [272]}

Input: [z1], [z2] two interval endpoints such that [z1] N [z2] =0
Input: f the function we want the integral

Output: the interval [I¢] D {f;f f(x)dz 21 € [21],22 € [:Uz}}

1 lcandidates <
/* Computation of I[Z] f(z)dz */
2 [Imin] < min(compute_integrall(f, [z1]))
3 [Imax| < max(compute_integrall(f, [z1]))
/* Computation of f%f(a:)dx */
4 [I] «— compute_integral(f, 1, z2)
5 [Lmin] — [Imin] + [1]
6 [Imax] — [Imax] + /]
/* Computation of fx[?] f(z)dz */
7 ] <—(compu‘ce,in‘cegraﬁ(f7 [z2]))
8 [Lmin] — [Imin] + [1]
9 [Imax) < [Imax) + [{]
10 return [Iminlmas]|

4.2 Examples

We now apply the previous algorithms in several cases using an implementation
in C++ of them. When the computation of an integral with real endpoints is
required, we simply use an interval version of the composite midpoint rule (see
Sect. 2.2).

Ezample 1. The first example, from [4], is as follows: compute

R
_/0 1422 24)

0 1
dzx dzx
. 4 2
UO 1+x2’/0 1+x2}c[0’0785 3] (25)

which is compatible with the exact result that is [0, %]

The result is then

Example 2. A second example illustrates the complexity over the number of
elements in X* = {z € [z]| f(z) = 0}. We want to compute the interval integral

[avl] 1
/ sin (> dz,a > 0. (26)
o x

The arity of X* increases with o — 0.
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Table 1. Results for the computation of the interval integral from Eq. (26).

o |X*| | Minimum Maximum Computation time
-1 T : T -

10 3 f0.1592 sin (%) dx = 0.4815 f0.3183 sin (%) dxr = 0.57774 | 0.198216

10=2 491 0.4815 0.57774 0.212816

1073 | 547 0.4815 0.57774 0.228498

107% | 5640 | 0.4815 0.57774 0.492445

In Table 1 are represented the result of the computation of the interval inte-
gral in Eq. (26) for different values of the parameter .

Ezxample 3. The last example is the computation of the interval integral

[0,5]
/ rsinzdr (27)
[0,5]

In the interval [0, 5], two roots occur: 0 and 7 and the computation gives the
results:

5 3.14133
[/ xsina:d:c,/ xsinxdm] C [-5.518,5.52]. (28)
3.14133 5

Here since 7 is not representable, the method guarantees that the endpoints for
the minimum are in the interval [3.14133, 5].

5 Conclusion

In this work, we introduced algorithms for the computation of interval integrals,
integrals with unknown endpoints for which their value is taken in an interval.
These algorithm make use of interval analysis and the guaranteed computation
of integrals with known endpoints to produce the minimum and the maximum of
the corresponding set of integral the interval integral defines. These algorithms
are simple to apply the moment we can compute the set of roots of the function:
the value that make the function at stake in the integral equal to zero. The
algorithms in the worst case scenario then have a factorial complexity on the
number of the roots.

These algorithms can be embedded in any resolution of problems where inter-
val integrals occur such as robotics problem like the optimal control problem.
Future work will be to apply this method to such problems.
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Abstract. Epidemic processes on networks have been thoroughly inves-
tigated in different research fields including physics, biology, computer
science and medicine. Within this research area, a challenge is the defi-
nition of curing strategies able to suppress the epidemic spreading while
exploiting a minimal quantity of curing resources. In this paper, we model
the network under analysis as a directed graph where a virus spreads
from node to node with different spreading and curing rates. Specifi-
cally, we adopt an approximation of the Susceptible-Infected-Susceptible
(SIS) epidemic model, the N-Intertwined Mean Field Approximation
(NIMFA). In order to control the diffusion of the virus while limiting
the total cost needed for curing the whole network, we formalize the
problem of finding an Optimal Curing Policy (OCP) as a constrained
optimization problem and propose a genetic algorithm (GA) to solve it.
Differently from a previous work where we proposed a GA for solving the
OCP problem on undirected networks, here we consider the formulation
of the optimization problem for directed weighted networks and extend
the GA method to deal with not symmetric adjacency matrices that are
not diagonally symmetrizable.

Keywords: Epidemic spreading -+ NIMFA model + Directed networks -
Genetic algorithms

1 Introduction

The spread and the permanence of viruses, both biological and digital, over a
network represent a threat for society and organizations. Digital viruses mainly
use the Internet as diffusion media and usually spread over telecommunication
networks and social networks, while biological viruses propagate over contact
networks of living beings through contacts. The first epidemic model emulating
the diffusion of a virus between individuals of a population dates back to 1926
with the Kermack-McKendrick epidemic model [10] describing the interactions
between individuals in susceptible, infected and immune states. In these last
years, spreading processes continued to receive attention from researchers work-
ing in different research fields [12]. The most common applications of epidemic
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models include information diffusion on social networks like Facebook or Twit-
ter, diffusion of viruses in computer networks, propagation of infectious diseases
in contact networks.

Independently of the kind of network where the epidemic spreads, the viral
process can be formalized using the same network-based theoretical model. In
fact, the entities experiencing the infection and their relationships can be formal-
ized with a graph G = (V, E) with |V| nodes representing the entities involved
and |F| edges denoting the propagation of the virus from an infected node to a
susceptible neighbor. In this context, to arrest the diffusion of a virus and make
its pervasiveness as low as possible, the optimal distribution of resources (eg.
medicines, medical staff, etc.) is fundamental. Thus, the development of poli-
cies aiming at controlling the spreading process with a fixed budget, referred as
Optimal Curing Policy (OCP) is of paramount importance for public health and
network security domains.

When the network resources are limited and the evolution of an epidemic
has to be controlled, optimization techniques are usually adopted: distribute
vaccines or antidotes by minimizing the costs for the medical cures [1,20,21],
find the minimum number of nodes to protect with vaccines or the minimum
number of links to remove [2,12], identify influential spreaders for maximizing
the diffusion of information are just some examples. All these applications have
in common the availability of a restricted budget and the need of methods able
to provide fast and effective solutions.

In [17], we proposed a genetic algorithm, namely OCPGA, finding a minimal-
cost curing strategy making the network virus-free in an undirected network
where the virus spreads with a Susceptible-Infected-Susceptible (SIS) model. Due
to the complexity of the model for large networks, we exploited one of its approx-
imations, the heterogeneous version of the N-Intertwined Mean-Field Approxi-
mation (NIMFA) [24,25], where nodes have their own curing rates and the virus
spreads to their neighbors with different infection rates.

In this paper, we propose to solve the optimization problem for directed
weighted networks. Specifically, we extend the OCPGA method to deal with
adjacency matrices that are not diagonally symmetrizable. The method, named
D-OCPGA (Directed OCPGA) is validated through a comparison with the exact
semidefinite programming solver SDPT3 [23]. By testing the two algorithms
over both real-world and synthetic networks, we find that D-OCPGA is able to
outperform SDPT3 in terms of total curing cost needed to make the network
virus-free.

The paper is organized as follows. Section 2 describes the most relevant works
on epidemic spreading in networks, and on genetic algorithms in combination
with epidemic spreading. Section 3 introduces the OCP constrained minimization
problem. Section4 describes D-OCPGA, the genetic algorithm we propose for
solving the OCP problem. In Sect. 5, we present the results of the performance
comparison between D-OCPGA and SDPT3 over real-world and synthetically
generated networks. Finally, in Sect. 6, we draw the main conclusions.
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2 Related Work

Epidemic spreading and infectious diseases have been studied in different
research fields including physics, mathematics, computer science and epidemi-
ology. A description of the state of the art on disease spreading models can be
found in [12,15]. Pastor-Satorras and Vespignani [16] analyzed epidemic spread-
ing on scale-free networks, Newman [11] on random graphs, Wang et al. [27] in
contact networks.

In [1], Borgs et al. studied the problem of how to distribute antidotes to
control the spread of an epidemic on a finite graph. Gourdin et al. [5] studied how
to minimize the cost for curing a network when there is a given level of infection.
Prakash et al. [19] analyzed the problem of properly distributing resources to
nodes for minimizing the rate at which nodes infect each other.

In [20,21], Preciado et al. optimized the distribution of curing resources for
controlling and protecting arbitrary networks from the diffusion of a virus by
modifying the infection rates of the nodes.

Zhai et al. [28] analyzed several algorithms for epidemic evolution by propos-
ing a framework for controlling the epidemic spread in broadcast networks.

More recently, Ottaviano et al. [13], focused on epidemic processes on net-
works organized in communities by studying an optimal policy for curing these
types of network structures.

Regarding epidemic spreading and the use of genetic algorithms, so far, a few
number of works have been proposed. Lahiri and Cebrian [7] proposed a genetic
algorithm diffusion model (GADM) for static and dynamic social networks.
Specifically, the authors defined a GA paired with specific forms of Holland’s
synthetic hyperplane-defined objective functions as a general diffusion model.
GADM generates a spatially distributed population of chromosomes encoded
with binary strings by exploiting the one-point crossover as genetic operator.

Liao et al. [9] focused on infectious diseases modeled through a stochas-
tic ripple-spreading process emulating the effect of random mobility and con-
tacts between individuals on the diffusion of a virus between them. The authors
adopted a GA to tune the several parameters of the model.

Parousis-Orthodoxou and Vlachos [14], harnessed a GA for optimizing the
distribution of vaccines on a SIR (Susceptible-Infected-Recovered) model. The
objective function is the number of vaccines needed to have a minimal percentage
of infected nodes, taking into account both the cost of the vaccine and the cost
for the treatments.

Our work distinguishes from the work by Parousis-Orthodoxou and Vlachos
for the model adopted, the SIS, for the spreading and curing rates that are
nodal and link-dependent, respectively, and for the genetic operators employed.
In addition, our scheme looks for an optimal curing strategy that is able to cure
all the nodes (i.e., having all the nodes healthy).

In [2], Concatto et al. proposed a GA for minimizing the viral process of an
infection by removing edges from the network graph. Here, the authors focused
on the Min-SEIS-Cluster problem in which the SIS model is extended with the
exposed (E) state, and nodes are organized in clusters where the epidemic spreads
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at a higher rate. Analogously to [14], this algorithm aims at minimizing the
infected nodes while D-OCPGA completely cures the whole network with the
applied curing policy.

3 The Optimal Curing Policy (OCP) Problem

The diffusion of a virus over a population of individuals is usually modeled
through three different disease stages: susceptible (S), i.e. an individual can
contract the infection, in fectious (I), i.e. the infection has been contracted, and
recovered (R), i.e. the individual recovered from the disease.

The Susceptible-Infected-Susceptible (SIS) is a type of epidemic model where
an individual can pass from the state S to the state I and again to the state S.
The states are modeled through a Bernoulli random variable X; € {0,1} which
is X; = 0 when the node is healthy and X; = 1 when the node is infected [13].
The probability for a node of being in the infected state is v;(t) = Pr[X;(t) = 1],
while the node is in the healthy state with probability 1 —wv;(¢). To solve the SIS
model, we need to compute v;(t) for each node.

In the homogeneous setting, each node is cured with the same curing rate §
and the infection rate (8 is the same for each link. In this situation, the effective
infection rate is defined as 7 = /6. In the heterogeneous case, on the contrary,
the curing rate is node-specific thus each node ¢ is recovered at rate §;, and
also the infection rate is link-specific (i.e. §;; can be different for each couple of
connected nodes i and j).

In a network with N nodes, the SIS model can be described through a
continuous Markov chain with 2%V states, corresponding to all the combinations
of infected nodes [25]. After a certain time, the network converges to an absorbing
state where the virus disappears. Moreover, the process is characterized by a
phase transition 7., named epidemic threshold, a critical value for which if 7 > 7,
the infection becomes persistent, while if 7 < 7., the virus extinguishes.

For networks with a high number of nodes, the exact solution of the Marko-
vian chain can be obtained by solving a system of linear differential equations,
whose number increases exponentially with the network size. Consequently,
approximate models have been proposed [22,25], such as the N-Intertwined
Mean-Field Approzimation (NIMFA), which substitutes the original 2V lin-
ear differential equations with N non-linear differential equations.

In NIMF A, the probability of infection for a node ¢, v;(t), is modeled as:

dt B j=1 ljvj j=1 ’LJ,UZ vj i ’

which can be rewritten as
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where V(t) is the vector V() = (vi(t),v2(t), ...,un(t)), A is the matrix

0 Prz.. . Pin
B21 02

A= 3)
Byt - .. ﬂNzlv—1 on

and F(V) is the column vector having as i-th element

N
- Z Bijvi(t)v;(t) (4)

In the heterogeneous setting, Ottaviano et al. [13] derived the epidemic threshold
by relying on the work of Lajmanovich and Yorke [8]. By defining

r(A) = maz1<j<nRe(\;(A)) (5)

where Re()\;j(A)) is the real part of the eigenvalues of A, if r(A4) < 0, then the
virus dies out and this condition identifies the epidemic threshold.

Specifically, Ottaviano et al. [13] formalized the problem of suppressing
the viral diffusion on a weighted network with a proper assignment of curing
resources as follows. Let §; be the curing rate of node ¢ and ¢; the correspond-
ing cost for recovering this node. The objective is to minimize the total cost for
curing the network while making the infectious process die out. The total cost
is defined as

N

where A = (d1,02,...,0n) is the vector of the curing rates for each node to
determine, knowing the cost ¢; of the curing resources for a node i.

When the network is undirected and weighted, the adjacency matrix A =
(Bi) is symmetric (8;; = B;;) and, consequently, the values of the eigenvalues
are real. In [13], Theorem 2.1 states that if A\,q.(A — diag(A)) < 0 the viral
infection is suppressed and all nodes are healthy. Thus, the epidemic threshold
for the considered network is determined by the largest eigenvalue of A—diag(A).

However, for directed graphs, the weighted adjacency matrix A is not sym-
metric (8;; # B;i). Thus, for an arbitrary, strongly connected, directed weighted
graph having a not symmetrizable’ matrix A, instead of A, its Hermitian part
H = (A + AT)/2 needs to be considered, in this case obtaining only a subopti-
mal solution. In fact, it has been shown that A4, (A — diag(A)) < Apaz(H —
diag(A)), thus the feasible region of the optimization problem using the Hermi-
tian part of the matrix A, which is the region where A\, (H — diag(A)) < 0,

1 A matrix A is symmetrizable if there exists an invertible diagonal matrix D and
symmetric matrix S such that A = DS.
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is a subset of the feasible region of the original problem using A. This means
that the optimal cost function value of the former problem is an upper bound of
the original problem, thus, though the epidemic will go towards extinction, more
effort will be necessary. The cost-optimal allocation of curing resources can thus
be formulated as follows.

Problem Optimal Curing Policy (OCP). Let G = (V, E) be an undirected
weighted graph with adjacency matrix A where the elements are not symmetric
(ai; # Bji), thus meaning that node ¢ can infect node j with rate 3;; while node
J can infect ¢ with a different rate 3;;. Let H be the Hermitian part of A, and
c; >0,i=1,...N the cost coefficients. The OCP problem can be formalized as
the following nonlinear constrained optimization problem:

minimize U(A)
subject to A\ppae(H — diag(A)) <0
A>0

where A > 0 is the curing vector to find.
Reformulated as a semidefinite programming problem (SDP) [26], solvable
through an SDP solver like SDPT3 [23], the OCP problem is:

minimize U(A)
subject to diag(A) — H >0
A>0

Since diag(A) > 0 and the inequality sign in diag(A) — H > 0, being
diag(A) — H a matrix, means that it is semidefinite positive?.

4 D-OCPGA: A Constrained Genetic Algorithm Solving
the OCP Problem

We propose an extension of the constrained genetic algorithm OC PG A, which
minimizes the total curing cost U(A) by evolving a population of individuals.
Each individual is represented by a vector A = (41,02, ...,dn), where J; is the
curing rate for each node of the network assuming values in the interval [z}, z}] =
[0,1]. As the OCP formulation states, we need to check if a possible solution
has the real part of the largest eigenvalue of H — diag(A) positive and the
components §; fall within the bounds so that xi <é; <z

D-OCPGA receives in input the matrix A = (8;;) of the spreading rates, the
vector of curing costs C' = (¢, ¢a, ..., cy) and the number T of iterations, then
it performs the following steps:

1. compute diag(A), the diagonal matrix of the vector of curing costs;
2. compute H, the Hermitian part of the not symmetrizable matrix A;

2 A semidefinite positive matrix A € RV *¥ is a symmetric matrix such that z7 Az > 0
for all the z € RY. Equivalently, all the eigenvalues of A are nonnegative.
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3. compute the real part of the largest eigenvalue A4, of H — diag(A);
4. for T iterations, run by using U(A) as fitness function to minimize subject
t0 Anaz < 0 and A > 0, applying crossover and mutation operators;

In output, the algorithm provides A* = (67,03, ...,d%), a curing vector having
the lowest fitness function.

As crossover operator, we adopted the simulated binary crossover (SBX)
proposed by Deb in [3]. As underlined by Deb, this crossover is able to manage
the distance of the children from the parents generating feasible solutions. The
spread of children is tuned using a distribution index 7. which is able to explore
contiguous regions if the diversity among parents is sufficient. It exploits the
diversity between the parents to drive the search towards certain regions. The
SBX operator generates the children solutions s(!) and s(?) from the two feasible
parents (! and =2 as

s =05 {(m(l) + 2@ — gz + x(l)]} (7)

5@ =05 [(x@) +2@ 1 @ + x<1>]} 8)

where
5o (qu)/ (et if 4 < 1/a (9)
= (%)1/(77#1) otherwise

—Qu
with a = 2 — 3=(=+1) 44 assumes a random number in the interval [0, 1], 7., if
small, generates children solutions distant from the parents while for large values
allows neighbor children and

B=1+ min[(x(l) — b, (2% — x(Q))]

s(2) — (1)
This formulation guarantees that the children solutions fall within the fixed
range [2!, z%].

As mutation operator, since the problem is constrained, we selected the muta-
tion feasible from the Global Optimization Toolbox of Matlab. This operator gen-
erates feasible mutants by choosing random directions that satisfy the bounds
and the linear constraints.

5 Experimental Evaluation

In this section, we detail the experiments performed to test the effectiveness
of D-OCPGA. We tested the algorithm both on real-world and synthetic net-
works whose topological characteristics are summarized in Table 1. Specifically,
we compared the performance of D-OCPGA with those found by the SDPT3
solver.

D-OCPGA has been implemented in Matlab v2015b. To run SDPT3, we
used the CV X package which helps in specifying constraints and objectives
and thus solving convex programs [6] by using the standard Matlab expression
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syntax. The genetic parameters have been set using a trial-and-error procedure
on the benchmark datasets. We fixed crossover fraction to 0.9, mutation rate
to 0.2, population size and number of generations to 1000 for networks with a
number of nodes lower than 128, and to 2000 for the other networks. Finally, as
suggested in [3], n. = 1.

The infection spreading rates of each node, have been obtained by randomly
generating rates in the range [0, 1] and then by multiplying them for 10~3. The
spreading rates 3;; for each link have been fixed by generating random values in
the range [0, 10~3]. The following subsections detail the features of the dataset
used and the results of the experimentation.

5.1 Datasets
Real-World Networks

— Internet Backbones. From the repository Internet Topology Zoo®, we
selected 5 Internet Backbone networks, namely Bell South, OTEGlobe, ITC
Deltacom, ION, and US Carrier with different features in terms of number
of nodes, average clustering coefficient and density. Each node which cor-
responds to a BGP (Border Gateway Protocol) router is usually connected
to one or two routers. Such bidirectional networks are of particular inter-
est for analyzing the OCP problem since are often subject to attacks like
blackholing or traffic redirection that provoke instability.

— Friendship Networks. Friendship networks are examples of social net-
works composed by several ego networks (one central node directly con-
nected to other alters/friends forming a star topology) connected between
them through common friends. These networks are usually characterized
by the spreading of fake news/comments to friends. We start analyzing two
types of Facebook friendship networks, the Ego 3980 and the Ego 686%, rep-
resenting the egos (i.e., social profiles) of two Facebook users. Since Facebook
friendships are bidirectional, we also analyze three unidirectional friendship
networks taken from the KONECT repository®, namely the HighSchool and
the Residence Hall. The HighSchool network contains self-declared friend-
ships between boys in a small highschool in Illinois in two different time
steps, for this reason we consider two snapshots of the network, the High-
School 1 and the HighSchool 2. Similarly, the Residence Hall contains self-
declared friendship data between residents of a residence hall located on the
Australian National University campus.

3 http://www.topology-zoo.org/.
* https://snap.standford.edu/data/egonets-Facebook.html.
5 http://konect.uni-koblenz.de.
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Table 1. Features of the topologies considered in terms of number of nodes (N),
average degree (<k>), average clustering coefficient (<C>) and density (D). For the
synthetic networks, the measures refer to an average over 10 network samples of the
same network class.

Network type | Network name N | <k> |<C> D

Backbone Bell South 51 |1.294 |0.081 | 0.052
OTE Globe 93 |1.108 |0.011 |0.024
ITC Deltacom 113 1.425 | 0.053 | 0.025
ION 125]1.168 |0.006 | 0.019
US Carrier 158 11.196 |0.002 | 0.015

Friendship Facebook Ego 3980 |52 |5.625 |0.462 |0.11
Facebook Ego 686 |168|19.714|0.534 | 0.118

HighSchool 1 73 |3.328 | 0.353|0.046
HighSchool 2 73 13.602 |0.312|0.05
Residence Hall 21712.314 1 0.379 | 0.057
Synthetic Erdoés-Rényi 128 15.23 |0.054 | 0.041
Watts-Strogatz 128 | 6 0.109 | 0.047

Bérabasi-Albert 128 3.954 1 0.132]0.031

Synthetic Networks

— Erd6s-Rényi random networks. These networks are generated from an
initial set of N isolated nodes that are then connected between them with
a probability p.. Since a threshold for the connectivity of Erdés-Rényi net-
works is p. ~ In(N)/N for large N, here, we set p. = 2In(N)/N to be
sure to obtain a connected bidirectional graph. Erdés-Rényi networks are
usually adopted for modeling with a good accuracy peer-to-peer and ad-hoc
networks.

— Watts-Strogatz small-world networks. Watts-Strogatz networks are
highly organized in clusters with nodes easily reachable in few hops by the
other nodes. These networks can be created from an initial ring lattice of
N nodes where each node is afterward linked to k£ nodes by rewiring each
edge with probability p. In our simulations, we generate bidirectional Watts-
Strogatz networks setting £ = 6 and p = 0.5. Watts-Strogatz networks are
commonly exploited to model Bluetooth or Wi-Fi contact networks.

— Barabasi-Albert power law networks. These networks well model social
networks, the Internet and the World Wide Web. The main characteristic
of such kind of networks is the so-called preferential attachment feature,
i.e. nodes prefer to connect to high-degree nodes. Starting from mg nodes,
Barabasi-Albert networks can be generated as follows. At every time step, a
new node is connected to m < mg nodes with a probability proportional to
the degree of the existing nodes. Here we set my = 5 and m = 2 to obtain
bidirectional Barabasi-Albert networks.
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Table 2. Performance comparison between SDPT3 and D-OCPGA values of objective
function and number of generations of D-OCPGA needed to equal SDPT3 for equal
costs (e) and random costs (r).

Network U(A)sppr3 | U(A)D ocpga | #Gen® |U(A)sppra |U(A)p ocpga | #Gen”
Bell South 0.065 0.029 48.1 0.031 0.015 31.5
OTEGIlobe 0.095 0.031 22.7 0.037 0.011 17
ITC Deltacom |0.16 0.074 25.2 0.066 0.036 33.8
ION 0.153 0.055 26 0.063 0.024 28.9
US Carrier 0.174 0.075 85.2 0.078 0.023 23.3
Ego 3980 0.144 0.113 160.4 0.065 0.049 80.5
Ego 686 1.678 1.329 150.3 0.788 0.624 120.9
High School 1 0.124 0.08 156.1 0.05 0.032 64.1
High School 2 0.134 0.086 48.3 0.05 0.033 124.2
Residence Hall |1.34 1.257 202.3 0.591 0.499 185.4
Erdé&s-Rényi 0.622 0.539 244.3 0.256 0.244 64.6
Watts-Strogatz |0.385 0.291 181.1 0.165 0.131 80.1
Barabasi-Albert | 0.247 0.165 54.3 0.107 0.077 276.9

5.2 Results

Table 2 shows the results obtained by the comparison between D-OCPGA with
the classical SDPT3 solver applied to the semidefinite programming based ver-
sion of the OCP problem. Besides the value of the objective function obtained
by the two methods, we also specify the number of iterations necessary to D-
OCPGA to obtain values of the objective function lower than those obtained by
SDPT3. For D-OCPGA, the method has been executed 10 times over a partic-
ular network and the average values of the results have been indicated. For the
synthetic networks, each result refers to the mean values over 10 different graph
realizations of a network type.

We considered both the situation in which all the nodes have equal unitary
costs and the setting in which each node has its own curing cost (i.e. we assign
random costs to nodes). Observe that, for the bidirectional networks, in order
to make them asymmetric, we fixed different spreading rates for each given link.

For the first group of real-world networks, the Internet Backbones, D-
OCPGA is always able to outperform SDPT3. This holds both with unitary
costs and random costs. It is worth noting that when the curing costs are ran-
dom, since §; < 1, the objective function values U(A) are lower. D-OCPGA
shows to be much more effective than SDPT3 especially in the unitary costs
case. On the US Carrier network, for example, the total curing cost for SDPT3 is
0.174 and for D-OCPGA is 0.075, while for random costs, SDPT3 obtains 0.078
and D-OCPGA 0.023. Observe that very few generations of GA are required to
achieve SDPT3 values. For the OTE Globe network, for example, on average 22
generations are required for the unitary costs and 17 generations for the random
costs over the 1000 generations we fixed.

For the real-world friendship networks, we found similar results. On the Ego
3980, for instance, D-OCPGA outperforms SDPT3 obtaining a fitness value
of 0.113 instead of 0.144, when unitary costs are considered, and 0.049 instead
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of 0.065 with random costs. On the Ego 686 with equal costs, the difference
between D-OCPGA and SPDT3 performance is even more marked. It is inter-
esting the epidemic behavior of the HighSchool dataset over the two timestamps
of friendship networks, HighSchool 1 and HighSchool 2. Note that for a given
optimization method, the values of the objective function are similar. For D-
OCPGA with unitary costs, for example, HighSchool 1 achieves a total curing
cost of 0.08 and HighSchool 2 of 0.086. A similar behavior can be observed for
the random costs. We thus conclude that the epidemic processes over the two
network timestamps are similar. Overall, comparing all the friendship networks
to the Internet Backbones, we observe that the number of generations of D-
OCPGA required to outperform SDPT3 are higher. This is probably due to
the higher average degree of the networks that facilitates the diffusion of the
epidemic thus complicating the search of an optimal curing strategy. Finally,
over the synthetic networks, D-OCPGA again outperforms SDPT3 in all the
network scenarios.

6 Conclusion

The D-OCPGA method has been proposed as a constrained genetic algorithm
able to find an Optimal Curing Policy (OCP) in directed networks subject to a
virus spreading modeled as Susceptible-Infected-Susceptible (SIS) epidemic pro-
cess. As in [17], where we proposed a GA method for undirected networks solving
the OCP problem, the method exploits the N-Intertwined Mean-Field Approxi-
mation (NIMFA) of the SIS spreading process to find curing rates for the nodes
that minimize the cost needed for completely curing the network. Specifically,
we extended the GA method to deal with not symmetric adjacency matrices.
A thorough experimentation on both real-world and synthetic networks demon-
strated that D-OCPGA finds solutions whose curing cost is lower than that
obtained by the SDPT3 solver over the semidefinite programming formulation
of the OCP problem. In [18] a self-adaptive SBX crossover operator [4] has been
investigated for the OC PG A method and showed to obtain better results than
the SBX crossover. Future work will experiment this crossover operator also
for directed networks, will concentrate on the effect of different strategies for
setting the initial population, different mutation operators and the extension of
the method to networks organized in communities.
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Abstract. Unmanned aerial vehicles (UAV) faces localization chal-
lenges in satellite navigation systems denied environments. Images taken
from on-board cameras can be used to compare against orthophotograph-
ical map to support visual localization algorithms. Image similarity esti-
mation can be achieved calculating various similarity metrics. Pearson
correlation was found to be the best choice for evaluating areal images
similarity in our experiments. Still is not robust against image displace-
ment caused by aircraft frame movement. We propose a new architecture
of triplet neural network to learn image similarity measure. The proposed
architecture incorporates VGG16 network base layers. Top layer struc-
ture, loss function and performance metrics being suggested by authors.
Images were matched to the maps from satellite photo. The matching
results from proposed neural network architecture were compared and
evaluated against Pearson correlation.

Keywords: Image similarity - Triplet loss - Neural networks - UAV
localization

1 Introduction

Unmanned aerial vehicles (UAV) faces localization challenges in satellite naviga-
tion systems denied environments. Conventional autopilot systems fail to navi-
gate safely if the GPS signal is lost, jammed or unavailable. UAV should estimate
its position without the need for external signals. Visual odometry, Simultaneous
Localization and Mapping (SLAM), or map-based localization techniques can be
used to process aerial imagery from a downward looking camera on-board UAV
may be used to solve the pose estimation problem. Visual odometry and SLAM
has shown astonishing results while performing flights in indoors or near-ground
altitudes (<100 m). While Visual odometry and SLAM methods do not require
an apriori known map of the environment (map-less methods), these algorithms
are prone to errors over long distance flights (>1km). The accuracy of these
© Springer Nature Switzerland AG 2020
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methods for low-altitude flights (>100m) is not well studied since the GPS sig-
nal is usually available in this altitude and the problem of signal jamming and
spoofing is receiving attention only in recent years. Map-based techniques can
reduce the errors for long distance flights compared to map-less systems. Map-
based techniques takes an image from on-board camera and compares against
orthophotographical map to search for the most similar location on map and
localize the UAV.

Similarity between two images represented as a numerical sequence can be
calculated using a similarity function that quantifies the similarity between the
images. Usually, image is represented as a vectors of numerical values, each
value representing the intensity of a pixel (1). Therefore similarity function can
be defined trough a distance metric (lower the distance grater the similarity).

T =2T,T2,.., TN, (1)

where N is the dimension of a vector  and x;1 to x represents different pixels
of the image.

There are various distance based similarity metrics, such as Euclidean dis-
tance [5], Pearson correlation [5], Root mean squares [5], Pattern intensity [3],
RBF kernel [6] or Mutual information [7].

Image similarity estimation becomes more difficult as images are represented
as multiple matrices (a tensor). Colored images are often represented via three
or four different matrices (channels). Therefore, images usually are converted to
grey scale and transformed to vectors, before calculating distance based similar-
ity. Some information is inevitably lost during the process.

In our previous works it was shown [14], that Pearson correlation is not
robust against image displacement caused by aircraft frame movement. The 5°
error of aircraft heading angle change causes 35% decreased in correlation mea-
sure compared to the image with no rotational error. On the other hand, as
image resolution is usually high, the distance-based metrics (e.g. Mean squares)
struggle from the Curse of dimensionality. In our experiments, to get reliable
correlation measure, high resolution images were downsized to 150 x 150 pixels.
High resolution is defined by the capability of on board camera. It ranges from
640 x 480 pixels of some global shutter or thermal cameras, up to 4K to 8K for
general use cameras.

Therefore, to be able to compare two high resolution images that could be
rotated more than 5° or taken at different time, we build and train a model
which is able to learn image similarity metric. The learning can be formulated in
terms of ranking similarity learning. In ranking similarity learning, the goal is to
learn a distance function d such that for any triplet of an images (im®, im?, im™)
it obeys (2):

d(im®,imP) > d(im®,im"), (2)

where im® denotes an anchor image, imP an positive image (similar to the
anchor), and ém™ represents a negative (or different) image.
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Recently, many deep neural networks were developed (e.g. AlexNet [17],
Resnet [11], Inception [23]) for image classification task, one of classical net-
works is VGG16 [3]. Therefore, we used pre-trained lower layers of this network
as feature extractor for the similarity learning. We make an assumption that if
these classifiers have good discriminate properties, they should embed images in
space where similar images are close to each other. This property should hold
for images on which these networks were not yet trained. As experiments of
this paper showed this assumption is valid and a simple network build on these
features can be used as the similarity metric.

The paper structure is as follows: we present current state of similarity learn-
ing in Sect. 2, proposed deep neural network architecture is presented in Sect. 3,
experiment results are shown in Sect. 4, conclusions were drawn in Sect. 5.

2 Related Works

Finding similarity between two images is a relevant task in image registration,
image mosaicing, template matching, map-based robot localization, and other
applications. This task extends beyond of image classification task and deals
with a set of very similar images, otherwise often considered to be of the same
class. Some examples are: search-by-example technique - used by many search
engines to find very similar images; face recognition - most prominent example
being Google’s FaceNet [21]; landmark recognition - ability to identify current
geographical position based of surroundings; in this paper examined - aerial
images similarity.

Image similarity estimation can be achieved by calculating Pearson correla-
tion, Mean squares, Pattern intensity or Mutual information, or other similarity
metrics. To increase the accuracy of chosen metric some image prepossessing
techniques, often including dimensionality reduction, can be used. The simplest
techniques are images resizing and conversion to a lower dimensionality space
(e.g. RGB to 8 bit gray scale color conversion). Advanced techniques uses feature
extraction methods such as SIFT [18] or HOG [8].

One common approach to the problem is the category-level image similarity.
It extends a classification algorithm and considers tho images with the proba-
bility of belonging to the same class to be similar [10,24].

With invention of Convolutional Neural Networks and hardware availability
to evaluate deep models in a feasible amount of time lots of Deep Learning
techniques emerged for image manipulation. A lot of these techniques emerged
from ImageNet challenges [9].

Our proposed method requires images to be represented as visual embed-
dings. Visual embedding is a high-dimensional vector representation of an image
which captures semantic similarity. This technique calculates the similarity in
a semantic feature space instead of pixel (color) intensity space. This way, the
problem of high dimensionality is solved by letting a neural network to find the
feature space for image similarity calculation.

The embeddings are produced by deep neural networks in the intermediate lay-
ers. No hand tuning or hand-crafted metrics are required, model learns these rep-
resentations by minimizing the loss function by examples from the training data.
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Andreeva et al. [1] used VGG16 from FC6 layer (only top model removed)
to get the embeddings. And technique called Locality-sensitive hashing (LSH)
to get similarities between embeddings. Other widely used deep neural network
architectures to get the embeddings are Inception [23], AlexNet [17], ResNet
[12]. It is a similar approach to ones used with textual data, to transform it to
k-dimensional space and capture semantic similarity, e.g. word2vec [19], fasttext
[4], glove [20]. The choice of neural network model has no fundamental difference
from implementation or model usage perspectives. These model are often trained
using transfer learning. This way, initial weights are taken from a pretrained
model, most often on ImageNet dataset. Additional layers are added and trained
based on custom loss function. The pre-trained layers are frozen and their weights
are not changed, only the added layers are trained.

Two main types of neural networks architectures for similarity learning are
Siamese neural networks [16] and, in this paper discussed, triplet neural net-
works. Both of these architectures build two or three neural networks witch the
same weights and optimize it’s loss function to put similar images close to each
other in the embeddings space, though triplet neural networks utilizes additional
negative (non-similar) example to boost the embedding performance.

Triplet loss was used by Google scientists to create a cutting edge face recog-
nition algorithm - FaceNet [21], at the time of publication it reduced the error
rate of face recognition in comparison to the best published result by 30% on
Labeled Faces in the Wild (LFW) [13] and YouTube Faces DB dataset [27]. While
working on neural network that can easily detect failure in Telecom Operators
networks Marc-Olivier Arsenault defined the triplet loss function (5) that pre-
vents loss from going below zero [2]. This improved performance of his model on
his dataset, compared to loss function defined by FaceNet paper [21]. Histogram
loss was proposed by Ustinova and Lempitsky [25] and showed that such oper-
ations can be performed in a simple and piecewise-differentiable manner using
1D histograms with soft assignment operations.

Going deeper into triplet learning process observation can be made, that by
reusing an already good classifier (e.g. VGG16 or AlexNet) to find the similarity
between very similar images (that is the name fine grained similarity), only
edge case examples from the training data can be used to increase networks
performance and save some computational resources.

3 Network Architecture

A triplet-based general network architecture is shown in the Fig. 1. This network
takes a triplet (Anchor image, Positive image, Negative image) or in a short form
(im®,imP,im™) as an input, which are fed independently into three identical
deep neural networks f(.) with shared architecture and parameters. The deep
neural network consist of all layers taken from pre-trained VGG16 without very
last layer and the proposed custom trainable layers (see Fig.1). The network
f(.) computes the embedding of an image im; : f(im;) € (R)%, where d is
the dimension of the feature embedding. After application of the deep neural
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network on a triplet of images, the embeddings (f(im?), f(im?), f(im}')) are

i
retrieved from output of the neural network. To effectively train the top layer of
the network triplet, the loss function from Eq. (5) is used.

Anchor
Image
- Pre-trained Custom .
:Drr?smve Deep NN —> Trainable 'Il_'gslset
age (VGG16) Layers
Negative
Image

Fig. 1. General model.

Four configurations of the general model by including different number of
VGG16 network layers were implemented. First configuration has all VGG16
layers except the last one (Output layer). This configuration is called Mod-
eINN or ModeINN(0). The second configuration does not contain 4 top layers
of VGG16 network - ModelNN(-4). And similarly ModelNN(-8) is VGG16 net-
work without 8 top layers. Lastly, ModeINN(-12) has only 6 bottom layers of
the VGG16 network. ModelNN(-12) is a network that has the lowest number of
VGG16 layers and gives good classification results for image triplets.

Detailed model network ModelNN(-8) architecture is presented in the Fig. 2.
All the VGG16 layers of the model network uses original weights, since modifica-
tion of these weights reduced overall accuracy of the similarity estimates. This is
most likely caused due to the small size of the dataset used for training and high
number of trainable variables in VGG16. This leads to a very fast over-fitting
of the model network. The custom layers of the model consists of one fully con-
nected layer of sizes 28 x 28 x 1 and a flatten layer to get vector for the triplet
loss calculation. The fully connected layer size changes depending on the output
of the last VGG16 layer. As lower layers of VGG16 network have larger output
dimensions, therefore by omitting more VGG16 layers, we get more learnable
weights in ModelNN custom layers.
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Fig. 2. The model network ModeINN(-8) architecture.

3.1 Triplet Loss Function

To be able to learn similarity metric in this research we looked for effective loss
function. A one of the most popular triplet loss function (3) is presented bellow [26]:

Ny
loss = Zmax(d( 20y =d(fE, ) + margin, 0), (3)
i1

where d is some distance metric such that d(f2,fF) < d(f&, fI), triplet
(f&, fF, fI*) consist of an anchor image, a positive image and a negative image,
respectively and Ny is a number of triplets. margin > 0 is a gap parameter
that regularizes the gap between the distance of the two image pairs: (f&, f7)
and (£, 7).

Closely related to the Eq.(3) is an Eq.(4) [21]. The Eq. (4) uses squared
Euclidean distance as distance metric and o > 0 as margin between two pairs of
images and sum absolute values. This triplet loss function was successfully used
for training deep neural networks for face verification and recognition.

Ntr

loss =Y [[l£8 = I3 = 1£f = f713 +a] ., (4)

i=1

where triplet (f, fF, f*) consist of an anchor image, a positive image, and a
negative image respectively, a is some small positive number (e.g. ¢ = 107°)
and Ny, is a number of triplets.

Histogram loss was proposed by Ustinova and Lempitsky [25] and showed
that such operations can be performed in a simple and piecewise-differentiable

manner using 1D histograms with soft assignment operations.
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This paper uses triplet modified loss function [2]:

Nir N a _ ?2 . N o ny2
lOSS = —Z [ln(—% + 1 + 6) + ln(—N Z]:l/(gflj fw)

i=1

+ 14 €],

()
where ff: is ModelNN output for an anchor image, fé'} and fi are ModeINN
outputs for positive and negative image respectably. N is output vectors dimen-
sion, Ny, is a number of triplets in the training batch, € is some small positive
number (e.g. e = 107%). The loss function is equal to 0 when both positive and
negative images are at the maximum distance. The loss (5) can be averaged over
number of triplet to keep its value not depended on the Ny,.

To measure the similarity between some two images im; and imso, we use
modified loss function (5). Instead of Eq.(6) can be used standard Euclidean
distance, but our similarity metrics gives lower values of the distances.

Sy (fij = f2))?
B

where fi1; = f(im1);, fo; = f(ima);, N is number of dimensions and j € [1..N].

sim(imq,ims) = —In(— +1+e), (6)

4 Experiments

The triplet network is implemented using Tensorflow 1.3.1 framework, Python
3.7 and a NVIDIA GeForce RTX 2080 Ti Graphics Card was used to train the
network.

4.1 Image Dataset for Training and Testing the Neural Network

For this research special Aerial Imagery dataset [15] was used, which consists of
113474 images captured from the different UAV flights in a robotics simulator.
All images are of 640 x 480 resolution and are rectified to do not contain camera
distortion. For this experiment, a special subset of the dataset was created.
It was created by performing flights and recording aerial images on two maps
simultaneously, which were created a few years apart. The subset contains 1188 of
image triplets (anchor image(im®), positive image(im?), negative image(im™))
for training and 105 image triplets for validation (e.g. Fig.3) and 64 for the
testing. The anchor and positive images are aerial images of the same place but
at a different time, the negative images are of randomly selected regions from
the map that was used to create the anchor images. The input dimensions for
the VGG16 network are 224 x 224, therefore the triplets images are resized to
the input dimensions. In case of K-fold cross validation, the test and training
datasets parts were joined before performing the cross validation splitting.
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anchor image positive image negative image

Fig. 3. Example of a triplet of images.

4.2 Accuracy Measure

The goal of ranking similarity learning is to learn the distance function d
such that for any triplet of images (im®, imP,im™) it obeys d(im®,imP) >
d(tm®,im™). Accuracy metric (7) from the evaluation of binary classifiers can
be used to evaluate the accuracy of ModelNN.

> True positive + Y True negative

accuracy = (7)
As it is very rare to d(im®,imP) be equal to d(im®,im'™) we can assume that
> True positive is equal to > True negative. Therefore, we can count only
True positive triplets and divide by total number of triplets N, in the training
dataset. The final Eq. (8) is used to evaluate the accuracy of the ModelNN.

> Total population

ima,im ime,imn 1
accuracy = i im ) > i) . (8)

Ntr

4.3 Pearson Correlation as Similarity Metric

In this research, Pearson correlation is used as a baseline, since it was the most
suitable similarity metric found for calculating similarity of UAV images in our
previous research [14]. Using Pearson correlation as the classifier on all training
dataset (Fig.4), an accuracy of 0.884 was achieved. Repeating the experiment
on images transformed to gray scale, the accuracy slightly increased to 0.888.
This result show that Pearson correlations struggle from the Curse of dimension-
ality, and lowering the dimensions of the images gives better results. A triplet
(im®,9mP im'™) is considered a true positive in Eq. (8) if pearson(im®,imP) >
person(im®,im™).

4.4 Learning Metric on Full VGG16 Model

Grid search with K-fold cross validation of 4 folds was used to tune hyper-
parameters to improve the model performance.
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Fig. 4. Pearson correlation: blue points are representing correlation between im® and

imP images, orange points are representing correlation between im® and im" images.
(Color figure online)

Table 1. Dependency of ModelNN(0) average accuracy (in %) on number of epochs
and batch size.

Batch size | 1 4 16 50
3 99.7 (0.21) 199.92 (0.13) | 99.78 (0.25) | 100.0 (0.0)
6 99.25 (0.43) 199.92 (0.13) | 99.92 (0.13) | 99.92 (0.13)
12 98.22 (1.03) | 99.85 (0.26) | 99.92 (0.13) | 99.92 (0.13)
24 96.48 (1.36) | 98.98 (0.62) | 99.92 (0.13) | 99.92 (0.13)
48 96.2 (0.69) |99.12 (0.69) 100.0 (0.0) 99.92 (0.13)
96 90.82 (3.24) | 98.4 (0.82) ‘ 99.78 (0.25) | 100.0 (0.0)

Table 1 depicts iterations and batch size influence on accuracy of full VGG16
model with custom top layers or ModeINN(0). Standard deviation of the accu-
racy is presented in the parentheses. The table shows that ModelNN(0) accuracy
on the test dataset increases with increasing number of the epochs, and decreases
with increasing batch size. ModelNN(0) has only 49 trainable parameters, as
number of images is greater than 1000, this avoids over-fitting the neural net-
work and achieved high accuracy shows that ModeINN(0) learns to discriminate
similar images from not one. Nevertheless, we can observe signs of over-fitting
when we pass 16 epochs of training (e.g. batch size 48). Therefore, we suggest
to train the ModelNN for 16 epochs.

Figureb5 presents a triplet of images with wrong classification due to over-
trained ModelNN(0).

Looking at similarity metric distribution over image triplet (Fig.6) we can
observe that ModelNN(0) can learn to separate positive images from negative
ones. The Fig.6 has 4 different regions, this is because we used 4 folds cross
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s

anchor image positive image negative image

Fig. 5. Example of false positive classification of images with over-trained network.

validation and trained 4 different networks. From right side of the figure we can
conclude that, similar images in our dataset have very low distance (or high
similarity) values (6). Assumption can be made that two images are similar if
the similarity value is lower than 0.5, we get accuracy of 98%.

Metric Distribution

Similarity
=
o
S

0 250 500 750 1000 1250 0 100 200 300
Triplet Count

Fig. 6. K-fold cross-validation ModeINN(0) trained with 16 epochs.

4.5 VGG16 Depth Influence

Relation between different modifications of the ModelNN(k) and number of
training epochs is presented in Table2. Number of omitted layers k is shown
in the first column of the Table 2. All experiment were run using cross validation
of 4 folds. The result shows that ModelNN with lower number of VGG16 layers
tend to learn slower, and to achieve same accuracy need more training epochs.
Therefore, we suggest to use ModelNN(0) or ModeINN(—4) configuration for
image similarity estimation.

As Fig. 6 shows, similarity values sim(im®,imP) and sim(im®,im™) are quite
well separate from each other. Table 3 shows that the same tendency is applicable
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Table 2. Average accuracy dependency on number of layers and epochs. Batch size is
equal to 48

ModeINN (k) | 1 4 16 50

0 96.2 (0.69) |99.12 (0.69) 100.0 (0.0) | 99.92 (0.13)
—4 96.18 (3.01) | 99.45 (0.79) 100.0 (0.0) | 99.92 (0.13)
-8 88.88 (8.21) 99.12 (0.88) | 99.52 (0.82) | 99.92 (0.13)
—12 79.7 (9.12) | 91.38 (10.45) | 99.2 (0.67) | 100.0 (0.0)

to other ModelNN configurations. Min-max of the similarity values for similar
images are presented in each odd row of the Table 3 and the values for not similar
images are in each even row.

Table 3. Dependency of min and max similarity (6) values on number of layers and
epochs. The batch size is 48.

ModeINN(k) | 1 4 16 50
0 0.0-0.99 0.0-1.25 | 0.0-0.77 | 0.0-0.8
0.13-2.75 0.16-5.11 | 0.46-7.4 | 0.45-10.09
—4 0.01-0.92 —0.0-0.94 0.0-0.53 | 0.0-0.68
0.34-2.24 1 0.27-4.18 | 0.62-13.82 | 0.51-13.82
-8 0.1-0.78  0.0-0.84 | 0.0-0.88 | 0.0-0.57
0.25-1.21 0.2-2.57 | 0.15-4.27 | 0.23-5.05
~12 0.21-0.75 0.12-0.69 | 0.03-1.41 | 0.01-0.8
0.37-0.97  0.2-1.7 | 0.28-3.0 | 0.41-2.94

5 Conclusions

This paper presents an investigation of image similarity metric learning to esti-
mate image similarity of aerial images from UAV flights. We developed ModelNN
neural network based on VGG16 with additional custom layer and a modified
triple loss function. ModelNN was able to learn image similarity with the accu-
racy greater than 99%. All configurations of ModeINN with different VGG16
depth were able to learn images similarity, but ModelINN with smaller number
of VGG16 layers requires higher number of training epochs. Therefore, we rec-
ommend to use ModelNN(0) for image similarity estimation, as it is the most
accurate and can be trained quickly.

We proposed the similarity metric based on the image embeddings from Mod-
eINN, and if the similarity value sim(im;,im;) <= 0.5, we can confidently state
that images are similar. From the similarity function properties, it follows that
the images are getting more similar when sim(im;,im;) is getting closer to 0.
The similarity of value 2 and higher can be used as a threshold to confidently
reject the hypothesis that images are similar.
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6 Future Works

If the future we are planing to investigate how affine transformations can influ-
ence our ModeINN performance. More complicated custom layer architecture
may be required. Another approach is to use one of the deterministic optimiza-
tion methods to optimize triplet loss function, as proposed, e.g., in [22].
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Abstract. The purpose of this paper is to analyze a geometrical case study as a
sample of an intended methodology based on invariant theory’s strategies, which
have been developed particularly throughout the nineteenth century as one of the
cornerstones of mathematics [15, p. 41], and whose resolution was reached by
means of a combination of different disciplines: graph theory, mechanics and
group theory, among others.

This case study presents the “perfect squared rectangle problem”, that is an
exhaustive classification of the dissection of a rectangle into a finite number of
unequal squares. Despite its simplicity, in both description and mathematical res-
olution, it provides plausible elements of generalization from “the ‘applied field’
of mathematics” [8, p. 658], as a special case of applied mathematical toolkit [1,
p. 715], related to the practice of invariant strategies that remain fixed through
changes.

Keywords: Invariants - Graph theory - Geometry

1 Introduction

One of the cornerstones of mathematics is invariance, i.e. patterns of regularity that
characterize permanent situations when a transformation occurs, stable properties of
objects that remain constant despite changes in the system to which they belong. Objects
and their properties may be invariant under specific changes that occur in the object
or with the object. Therefore, an invariant relationship remains stable or unchanged
regardless of the occurrence of other changes. When talking about identity, congruence,
isomorphism, cycles, constancy, symmetry or periodicity, we refer to a situation in which
a particular property remains permanent despite changes, either during the transition
from one situation to the next, or during the process of transformation between two
components of it. Invariance holds over a range of changes, and it is recognized as an
intrinsic feature, a common property.

Thus, given a domain of mathematical objects and after applying some transforma-
tion on them, it turns out that some of the properties remain invariant. Turning our focus
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back on such invariance producing transformations, these become entities of another
level, susceptible of constituting a new field of study.

The advantage of knowing many invariant functions is that we can use them to com-
pletely characterize equivalent objects from different domains. Two objects are equiva-
lent if they can be transformed into each other by means of making a suitable change in
the mapping that connects them. Equivalence makes both objects indistinguishable. If
we can determine completely the equivalent indistinguishable objects of some domain
among the invariants functions, these invariants form the basic building blocks, which
can be used to construct some kind of objects of mathematical interest. Conversely, and
equally important, two equivalent objects must necessarily have the same invariants.

This is the sense in which it is characterized, within a specific domain, the “funda-
mental equivalence problem”, i.e. to determine whether two mathematical objects can
be transformed into each other by a suitable change of some kind. Therefore, a solution
to this problem will allow the characterization of all the equivalent entities, as long as
two objects can be identified under a specific transformation. The characterization of
this class of objects can generate a new theory in mathematics.

Therefore, our aim is set at characterizing a methodology that not only involves devel-
oping a variety of techniques that will allow one to handle some or all of the problems of
specific kinds in a wide variety of mathematical contexts, but also generating a strategy
that allows the emergence of the totality of objects of a certain type. This is where the
notion of invariance is relevant, since the construction of invariants and their description
are used to characterize the equivalent objects and then completely solve the equivalent
problem. Such equivalent objects brings to the discovery of indistinguishabilities, which,
once they are fully determined and defined, can conform accepted theories.

The work of many mathematicians includes the determination of the totality of
objects that meet specific conditions, a characterization of all the elements within a class
that need to be defined. For instance, the search for symmetries of a geometric object
ended by describing the notion of “group”, which in turn allowed the classification of
differential equations and variational problems. The search for invariants was influential
in the process of developing the notion of group.

In the following sections, we will establish how different ways of understanding
the notion of invariance have led to characterize the indistinguishability of objects in
different areas of mathematics. In the case of geometry, where we will mainly focus,
the search for invariants was the crucial step to find indistinguishabilities. That is to say,
some type of equivalence that would allow us to characterize the type of geometry one
was working with, and, consequently, the theory that came along with it. Therefore, it is
worth emphasizing the heuristic and creative aspects that drive the search for invariants,
and not just their justificatory processes, which must then be put into action to convert the
findings into thoroughly consolidated results within some appropriate deductive system.

In this paper, the search for invariants will be analyzed from a methodological point
of view, in order to characterize strategies present in mathematics since its inception.
The history of Western mathematics has a long tradition, originated in Greece, on a
top-down methodological characterization, described from theories conformed by true,
evident, eternal and immutable basic elements: Elements of Euclid is a tangible sample
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of such top-down style. From such theories, applications can be built in various fields,
internal as well as external to mathematics.

The Euclidean top-down style has been used in several domains: in logic for example
(Aristotle’s syllogistic), in probability (Suppes’ axioms for propensities and foundations
of objective probability [16]), in foundations of mathematics (Russell and Whitehead’s
Principia Mathematica), in biology (Woodger’s axiomatic methodology [23]), in psy-
chology (Hull’s principles of behavior as well as Rottmayer’s formal theory of per-
ception), in physics (McKinsey, Sugar and Suppes’ axiomatics foundations of classical
particle mechanics); even in philosophy, as it was the case with Spinoza’s ethics, written
following traditional axiomatic schemes.

But also, and especially in Modernity, many other mathematical developments
respect a bottom-up methodology, where it is the practice itself that leads to the gen-
eration of theories. Mathematicians such as Lagrange, Gauss, Laplace and Euler show
mathematical developments arising from the interaction with empirical problems from
other disciplines than the so-called “pure mathematics”, which have usually received
the label of “mixed” or “applied” mathematics.

This bottom-up style, even at the dawn of the nineteenth century, has been nourished
by another cognitive strategy that we will refer to as “transductive methodology” [18—
21], which will take a central role in this work. Our main objective will be to determine
how this type of methodology is implemented in a good number of applied mathemat-
ics developments. The intended methodology is based on invariant theory’s strategies,
and have been developed particularly throughout the nineteenth century as one of the
cornerstones of mathematics:

“[Invariant theory] has had as deep and lasting influence on the development of
mathematics, to the point that seldom in history has an international community
of scholars [from England, Germany, France, Italy and America] felt so united lay
a common scientific ideal” [15, p. 41].

Consequently, in section two of the article, we develop the transductive method-
ological proposal, for which we introduce a brief historical overview of the notion of
invariance in mathematics, which will allow us to understand how this transductive style
is typical in a great number of applied mathematics related works. Next, in section three,
we analyze a geometric case study based on the proposed methodology, which highlights
the importance of invariants in applied mathematics.

This case study has its origin in geometry, and presents the “perfect squared rectan-
gle” problem, that is an exhaustive classification of the dissection of a rectangle into a
finite number of unequal squares. Despite its simplicity, in both description and math-
ematical resolution, it provides plausible elements of generalization from “the ‘applied
field’ of mathematics” [8, p. 658], as a special case of applied mathematical toolkit [1,
p. 715], related to the practice of invariant strategies that remain fixed through changes.

2 Invariant Transductive Methodology: A Proposal

For the purpose of introducing our proposal, which is based on the theory of invariants,
as we mentioned in the introduction, we carry out a historical outline of the emergence of
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such theoretical developments. We will concentrate on an analysis of different invariance
principles that were adopted effectively by several geometers, mainly in the nineteenth
century. This condensed journey will allow us to appreciate the relevance of problem
solving strategies that rely on the search for patterns of regularity, and their applications
in other domains different from those from which they arose.

Within the great variety of instances of the notion of invariance in mathematics,
there is a case that should be highlighted and that owes its beginnings to quadratic
binary forms' and to the problem of representing integers by them (as well as a to a type
of indistinguishability based on the use of the discriminant to match equivalent forms):
the classical invariant theory.

The roots of invariant theory can be traced back at least to Lagrange in 1788,
on the one hand, and to Gauss in 1801, on the other. In the case of Carl Friedrich
Gauss (1777-1855), his Disquisitione arithmeticae of 1801, at the turn of nineteenth
century, had observed a special case of algebraic invariance, the discriminant of a
binary quadratic form. Indeed, given a quadratic binary form f with integer coefficients
f(x, y) = ax® + 2bxy + cy* with a, b, ¢ € Z, an homogeneous polynomial of
degree 2 (quadratic) in 2 (binary) unknowns, let 7' be a (non-singularz) linear transforma-
tion affecting f, thatis T (x’, y') = (mx’ + ny’, m'x’ + n’y') withm, n, m’, n’ € Z.
Due to the application of T to f, Gauss get a new binary quadratic form:

F(TK', y)) = Ax? 4 2Bx'y’ + Cy” where

A = am? + 2bmm’ + em?, B = amn + b(mn/ + nm/) + cm/n/, C =
an® 4 2bnn’ + cn'?. Gauss observed that the discriminant 5 — 4ac of the original
form f satisfied the following relation to the discriminant of the transformed form:
B? — 4AC = A?.(b* — 4ac). Hence, the discriminant of the original form f was
altered uniformly by a factor, which depends on the coefficients m, n, m,, n’ included
in the transformation 7. More precisely, a factor that is equal up to a power (2) of

A2
the determinant of the linear transformation 7', that is (mn/ — nm ) . In brief, the

discriminant b> — 4ac is an invariant of the binary form f, under a non-singular linear
transformation 7.

Now, regarding Joseph-Louis Lagrange (1736-1813), in his 1788 two-volume book
Mécanique analytique, he worked on a specific physical problem concerning the motion
of various kinds of bodies representing kinetic energy. This representation was realized
by a reduction from a quadratic form to a sum of squares; in other words, by some linear
substitution that then allowed a diagonalization of the quadratic form, via what we now
call an orthogonal transformation.

Lagrange found that the coefficients of the transformation satisfied some vanish-
ing conditions, which remain permanent through the algebraic operations. This aspect
caught Boole’s attention. Working now on Lagrange ideas, George Boole (1815-1864)
isolated the phenomenon of invariance while working on the resolution of the general

! The word “quadratic” refers here to the degree of homogeneity of the variables of the form (so
each term of the form has degree two); whereas the adjective “binary” indicates the number of
variables involved in the form.

2 This means that the determinant A is non zero: A = mn — m'n # 0.



212 S. Visokolskis and C. Trillini

problem of determining algebraic relationships among the coefficients of homogeneous
polynomials of degree n in m unknowns, which remain invariant under a non-singular
linear transformation. Boole eliminated the restrictions that Gauss imposed on the coef-
ficients. More precisely, Boole called invariant any expression in the coefficients of
a binary form, which varies only in a factor depending on the linear transformation.
However, if the expression not only involves the coefficients but also the variables of
the form, it is called a covariant. After that, two British algebraists, Arthur Cayley and
James Joseph Sylvester, carried out the study of invariants and covariants.

Before discussing the work of these two English mathematicians, the following
observation should be made regarding Boole’s methodological work: his main goal was
not the finding of invariants. This task ended up being a consequence of his greater
concern for solving the equivalence problem, an indistinguishability problem. In order
to solve the equivalence problem between two n-ary forms, in his two first papers [2, 3]
Boole proceeded by setting to zero one particular invariant: the discriminant.

To understand this procedure, let us consider a very simple situation, the discrimi-
nant of the following quadratic polynomial (in one variable): p(x) = x% + 2bx + ¢
with b, ¢ € N. Nowadays, the simplest method to acquire the discriminant consists in
applying Bhaskara’s formula, with discriminant D = b?> — ¢, which, in this case has
three possibilities: D > 0 (two different real roots of the equation), D = 0 (double equal
real root), and D < 0 (two different conjugate complex roots). However, what Boole
noticed is that having a double root is invariant under translation, that is, if we consider
the polynomial p(x + d) = (x + d)? + 2b(x + d) + ¢ where d is constant, then its
corresponding discriminant D' = b* — ¢ would be the same as D.

Here, we are looking for an invariant whose vanishing expresses the condition that
if the polynomial p has a double root, so does the polynomial p’, result of the translation
due to a change of variables 7' (x) = x = x + d. However, the way Boole solved
this problem in a general style implied the utilization of partial derivatives to eliminate
the variables from the given polynomial. Again, using a very simple case, the one we
saw previously from Gauss, but now without the restrictions over the variables and
parameters, let f(x,y) = ax?> + 2bxy + cy* witha, b, ¢ € %. We now calculate
the partial derivatives of f with respect to x and y, and equating them to zero, we obtain:

(x y) = 2ax 4+ 2bx = 0 and 2 3y (x y) = 2bx 4+ 2cy = 0. The elimination

of x and y from these equations yielded the expression D(f) = b> — ac, which was
the relation he was looking for between the coefficients of f. If we now apply a linear
transformation T as before (but now under i), we obtain the transformed binary form
g(x',y) = Ax? +2Bx'y + Cy?with A, B, C € %. Calculating the corresponding
partial derivatives of g relative to x and y, we find that its discriminant is a multiple of the
previously discriminant D(f), altered by a factor which depends only on the coefficients
included in the linear transformation, by elimination of the variables: D’(g) = k.D(f).
What Boole ends up achieving is a method of elimination, that, eventually but not
primarily, works by capturing one type of invariance as well as covariance. More pre-
cisely, this method, among equations in partial derivatives or differentials of the forms,
instead of allowing to capture invariants, what is actually allowed is the application of
his method to obtain substitutions that transform a pair of forms into an equivalent pair of
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forms. His goal, then, was to produce “important step[s] in the theory of the linear trans-
formation of functions of two variables” [4, p. 98]. Nevertheless, who took over the task
that Boole initiated is Cayley, taking it one step further: it aims at the isolation of many
types of invariance (and covariance), that is, it is oriented towards the independence of
a theory of invariants. As Paul R. Wolfson says:

“Cayley [had discovered] that there were invariants (and covariants) other than
those defines by Boole [that led Cayley] to refer to this property as ‘the character-
istic property’. By focusing on expressions that satisfy the ‘characteristic property’,
Cayley was shifting the direction of research. Even though Boole had shown that
his D enjoyed this property, he had not highlighted it as the defining relation of
an invariant. Indeed, he would have seen no need to do so, for he was considering
only D and related functions, anyway. Rather than study functions with a certain
property, Boole had employed the relation to obtain the proportions” [22, p. 44].

Moreover, in later works [4, p. 95] to his classic articles of 1841 and 1842 [2,
3], Boole himself recognized that Cayley had detected other invariants in addition to
the discriminants of n-ary forms, what Boole called ‘constant functions’: “There exist
other functions than D(f) [f n-ary form; D discriminant] possessing those [invariance]
properties which I had regarded as peculiar to it” [4, p. 95]. Wolfson says: “After that, the
hunt was on, not merely for new invariants, but for what we would now call generators
and relations in the ring of invariants” [22, p. 44]. Then he declares:

“By contrast to Boole’s direct attack on the equivalence problem, (...) his prin-
cipal aims in (1841b and 1842) had been, first to determine when two pairs of
forms are equivalent, and second, if they are indeed equivalent, to determine those
substitutions which take the first pair to the second (...) Cayley shifted attention
to the production and study of the invariants (and covariants) themselves.” [22,
p- 45]

Note that, while Boole dealt with the fundamental problem of equivalence (i.e.,
to determine whether two pairs of forms can be transformed into each other, that is,
one replaceable by the other, by a suitable change of variables), Cayley focused on the
study of invariants and covariants. Thus, the equivalence problem and the invariance
search are two sides of the same coin, that is, the search for an intelligible and complete
characterization of mathematical theory. This is the kind of indistinguishability that
invariant properties can preserve. In the situation we explained ut supra, where D’ =
k.D, two homogeneous functions become similar functions, as their discriminants are
equal up to a power of a constant.

In 1846, Arthur Cayley (1821-1895) published a paper where his ideas about invari-
ance were very clear. His purpose was, in his own words: “(...) to find all derivatives
[i.e., invariants] of any number of functions, which have the property of preserving their
form unaltered after any linear transformation of the variables” [6, p. 104]. The project
began by a quest to find all invariants of any number of forms; but then he moved on
to looking for what we now call the “generator and relations in the rings of invariants”
[22, p. 44], as we said ut supra.
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Arthur Cayley has employed a calculational oriented methodology: he intended and
achieved to formulate several efficient algorithms for explicitly exhibiting invariants and
covariants. However, this project finally stumbled upon many technical difficulties. The
methods employed were based on what was then called the symbolic or umbral notation
(umbrae, “shadows” of specifiable coefficients). Above all, it seemed impossible to
convey any sense of the subject in nontechnical terms.

By 1850, Cayley met James Joseph Sylvester (1819-1897), when both of them, due
to different motives, were initiating a career in law, besides their formation in mathemat-
ics. Sylvester brought new perspectives on the incipient theory of invariants. They both
contributed to its inception, applying similar calculational techniques. Is worth noting
that this theory too was the joint work of mathematicians from several countries. In Eng-
land, besides those two just named, there were others: Young, Turnbull, and Salmon. In
France: Hermite, Jordan, Laguerre. In Italy: Capelli, Brioschi, Trudi. In Germany: Aron-
hold, Clebsch, Gordan, Grassmann, Lie, Study. In America: Glenn, Dickson, Bell and
later Weyl. Karen Hunger Parshall gave a very precise characterization of the cooperative
work done by Cayley and Sylvester:

“Each of [the] texts [from Cayley and Sylvester] read, in a real sense, like a
cookbook for the proper preparation of invariants and covariants. In the absence
both of the necessary theoretical underpinnings and of a sufficiently general nota-
tion, the British school’s techniques did not lend themselves to proving existence
theorems (...) This is not to say that the non-symbolic approach of Cayley and
Sylvester did not have spectacular successes. It enabled its adherents to calculate
the invariants and covariants for binary forms up to the eighth degree and to deter-
mine the syzygies, or dependences, between them. They catalogued their results
in massive tables, the very construction of which generated important discoveries
in combinatorics and in the theory of symmetric forms” [13, p. 186].

The problem with this extreme technical style is the loss of intelligibility of mathe-
matical expressions. If what is spoken here refers to the semantic content of the theories,
Hermann Weyl (1885-1955), in his book The Classical Groups sought to highlight this
aspect about invariants applied to geometry. There, Weyl indicated that the computation
needs to express the “geometric facts”, that is, facts about space that are independent
of the choice of a coordinate system. There was a search for a translation of invariant
algebraic equations expressed in terms of tensors into geometric facts, which could cap-
ture irreducible components under changes of coordinates. This task—one of the great
advances in mathematics of all times, according to Gian-Carlo Rota [15] - involves the
understanding of the indistinguishable ideas behind technical theory. It was discovered
around the turn of twentieth century almost simultaneously by Issai Schur and Alfred
Young. It is important to note that the emphasis on a theoretical description of invari-
ance that shows the indistinguishabilities of each theory, was previously carried out
successfully by the German school; especially in the field of geometry, by Felix Klein
(1849-1925), and in the constitution of Modern Algebra, by David Hilbert (1862—1943).

An important observation deserves to be brought up: while Boole, in his investi-
gations put the emphasis on the set of transformations or substitutions that can pro-
duce equivalences between two pairs of n-ary forms, the theory of algebraic invariants
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cultivated in England, especially by Cayley and Sylvester, explored those relations or
properties that remain permanent under a set of transformations. Another point in this
brief summary of ours should be directed toward developments involved in geometry
research. In this sense, both the problem of equivalence treated by Boole and the theory
of invariants from the English school of thought point towards geometry—with the works
of Felix Klein and Hilbert-, where either the invariant properties or the set of transfor-
mations may be taken to characterize the geometry. The foregoing notes had consisted
of a condensed summary of the classical theories of invariants.

Next, we will turn to specific cases where we will not refer to “theories” of invariance,
but to ways of applying invariance without constituting theories in the style just described.
These cases are Peacock’s algebra and, finally, the projective geometry of Poncelet.

George Peacock formulated in 1830 a general principle that became influential
in the later nineteenth and early twentieth centuries. He called it the Principle of the
Permanence of Equivalent Forms, and stated it as follows:

“(...) If we discover an equivalent form in Arithmetical Algebra or any other
subordinate science, when the symbols are general in form though specific in their
nature, the same must be an equivalent form, when the symbols are general in their
nature as well in their form” [14, p. 104].

An important feature of this principle was the origin of its ideas. In this regard,
Peacock believed and defended the idea that algebra was a pure science, unlike what other
prevailing approaches about the role of algebra in Cambridge society, like Peacock’s
Trinity College colleague and friend William Whewell, who throughout the 1820’s did
not consider the study of abstract algebra as an independent discipline.

Peacock’s defense was supported by the introduction of the aforementioned princi-
ple, which was based on Peacock’s philosophy of what he called “suggestion”. Kevin
Lambert argues that Peacock came about his principle through a historical investigation,
an interpretation of his philosophy of suggestion taken from Natural History. Indeed,
the Cambridge Philosophical Society, with researchers as John Stevens, Edward Daniel
Clarke and Adam Sedgwick, professors of mineralogy and geology respectively oriented
this society’s goal to introduce “subjects of natural history to (...) Cambridge students”
[10 p. 282]. In this context and under the influence of natural history, Peacock initiated
research on the history of arithmetic, defending in several texts an empirical foundation
for symbolic algebra.

He had the idea from a prior practice, an ancient and universal practical reasoning
that transcended culture, a science of “suggestion” that ruled his search for the origins of
algebraic thought. In other words, “practice suggests the abstract system”. In this sense,
by applying an ethnographic investigation, he found that, since the beginning of times,
the practical problem of counting objects existed. These first practices of counting would
suggest numeral language, that in turn would suggest new practices of calculation, and
therefore, new symbols for those practices. Consequently, it would be a shift from the
operations themselves. In this manner, the development of counting, the first stage of
Peacock’s history, would suggest arithmetic. Arithmetic is the science of suggestion for
arithmetical algebra, which in turn acts as the science of suggestion for symbolic algebra,
the last stage.
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Here we find a process of abstraction that has to do with Peacock’s idea of “sug-
gestion”. First, we have a suggestive discipline, e.g. arithmetical algebra, helping in
the development of another branch of science, e.g. symbolical algebra. Thus, symbolic
algebra is suggested or derived from some extensions we make over the properties of the
operations from the former discipline. This process of abstraction operates as a heuristic
strategy, where we take the rules of operation of arithmetic as conjectures or suggestions
for developing an unrestricted symbolical algebra. Either Peacock’s Treatise of 1830
or his Report to the BAAS in 1833 were texts that he wrote stripped of any reference
to the historical developments of 1820s. These former papers were his philosophical
justification not only for his principle of permanence of forms, but also for his project
of a narrative structure for a story of the progress of algebraic reasoning, starting from
counting objects and finishing with the emergence of symbolic algebra.

Jean Victor Poncelet was a mathematician who made a serious attempt to justify the
introduction of imaginary, singular or improper points into his formulation of synthetic
projective geometry. Due to this lack of meaning of this employed symbolism, there
was a possibility to introduce a principle that could extend the scope of the theoretical
statements about entities and contexts not previously addressed, since they are considered
non real elements and prohibited methodologies, respectively, by the standard norms of
the mathematics of that time.

Regarding this matter, Poncelet distinguished three types of correlation between
two figures when one of them is obtained from the other by what he called a “general
correlation”: (1) a direct correlation, if the figures involved are composed of the same
number of parts similarly placed, (2) an indirect or inverse correlation, when the parts
of the correlative figures are in different order, differently placed, though the general
relations remain the same, and (3) an ideal correlation, when certain distances and
points cease to exist in a geometrical manner.

For each type of correlation, there must be an invariance of certain abstract relations
stipulated in the initial conditions for the configuration, so that each figure in the series of
figures obtained by gradual transformations must be an instance of these relations. This
is what Poncelet called the “Principle of continuity or permanence of the mathematical
relations”.

We can see that for Poncelet, the geometric diagrams, which supposedly constitute
the subject matter of geometry, were not necessarily real or actual configurations, with
real existence, limited by visual perception or imagination. These figures are variable
entities, abstract signs that could assume different values subject to certain rules of
combination, and also could be left uninterpreted, as indeterminate magnitudes. In the
case of ideal transformations, they could assume infinitely small or great values; they
could be imaginary elements, improper points, things that could not be visualized (at
least in a standard description).

Although Poncelet “would hardly have assented to the view that the task of the
pure geometer is the exploration of the mutual interrelation of signs governed by speci-
fied rules of operation, irrespective of the ‘interpretations’ or ‘meaning’ which may be
assigned to them” [12, p. 206], nonetheless, he understood that this use of the principle
of continuity gave rise to an advance in the legitimate study of the relations between
the transformed and the original figures, as legitimate as any deductive demonstrative
procedure.
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The work style, both of Peacock based on his notion of suggestion, and of Poncelet
applying a questioned principle on ideal entities, are usually acceptable in the context
of discovery. The main reason behind this lies in the type of argumentation implicit in
these principles of permanence and continuity. Indeed, as it was stated in the introduction
(Sect. 1), we can distinguish at least three types of argumentative inferences that configure
work methodologies: top-down (deductive reasoning that goes from generic to generic,
or applies generic to particular), bottom-up (reasoning which infers from particular to
generic), and what we called “transductive” reasoning (which infers from particular to
particular). This last term was coined by Gammerman, Vovk, and Vapnik [9] and applies
to processes that try to match a current particular case with a familiar similar one, in
order to transfer properties from one to the other, the known and familiar case to the
unknown and problematic case that is sought to be solved.

By adopting a transductive inference, an analogy is constructed, described through
a function from a domain A (the problem to be solved) to an image B (another problem
already solved previously). This analogy allows us to explore how the problem A might
be by comparing it with problem B, and how it might work if it were like the analogical
problem B. Since we know a solution of B, all we have to do is transfer it to A. Therefore,
the analogy must reflect the invariant structure that A has in terms of some invariance
present in problem B and similar to that of A.

Thusly, we can portray the characteristics of the starting set A in terms of some
already-formed and known set B with which we are familiar. In doing so, imagining
some aspect or property of the domain A in terms of something else, we are able to
think about the original problem from their transductive model. This allows solving the
initial problem in terms of a solution that is already known in the analogous previously
solved problem. The evocation of the familiar and known in advance problem B, leads
to solving problem A, given the similarity between A and B. In this way, there is a
connection—once unthinkable and surprising- between A and B, in making the terms
from A to the analogical model B, and vice versa as the analogical terms fit back to
problem A.

The advantage that problem A acquires when interacting with problem B consists in
the creation of a new cognitive scheme to characterize A in terms of B, embedding A
into B and redirecting A to the solution of B, which is based on its latent invariants, to
finish capturing the invariants in A that allow its solution.

In the next section, we developed a case study that similarly connects a problem A
of a geometric nature with another problem B belonging to the field of graph theory.
In turn, B is analogically linked to a third problem C related to electrical circuits. The
analogy between the three problems leads to solve A in terms of B first, and then in terms
of C, allowing a characterization of the solution of A and A itself in physical terms.

3 The Perfect Squared Rectangle Problem: A Case Study

In this section, we put into practice the constructed and adopted transductive method-
ology so as to allow analogical transferences of invariant structures between any two
domains.
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The problem to be solved is centered on the analysis of geometric tessellations
through graph theory and planar electrical networks. A tessellation consists in a refine-
ment of a specific surface by a set of pieces assembled together such that they are all
together without spaces in between or causing overlaps. In our case, we consider flat tiles
and, within those, flat geometric shapes. More precisely, we deal with “perfect squared
rectangles”. A rectangle is said to be squared into a finite number n of figures if it is
tiled into n squares of sizes si, sa,..., Sp, all integer numbers, being n the order of the
tiling. A squared rectangle is called perfect if the squares in the tiling are all of different
sizes, and it is called simple if no square of the same size is repeated. Thus, the “perfect
squared rectangle” problem (to which we will refer as problem A and will be the one we
will deal with from here onward) is as follows: given a rectangle, is it possible to tile its
surface with different squares? Are there perfect rectangles of all order, or what orders
are there? And, are these unique, under such conditions?

This type of problem goes back at least to 1902, when Ernest H. Dudeney published
in a magazine the solution to the puzzle concerning Lady Isabel’s rectangular casquet
with a square lid, which contained in this lid, a pattern of subdivisions into a rectangle
and a number of squares, all of different sizes. The puzzle was designed to answer how
many different squares there were on the lid, what those sizes were, and how the squares
and the rectangle must fit together.

The following year, Max Dehn [7] proved that a rectangle can be squared if and
only its sides are commensurable (using counting numbers), i.e. if the sides are integral
multiples of each other. Therefore, solutions should be presented with integer lengths.
In 1925, Moron [11] found the 32 by 33 simple perfect rectangle of order 9, the first
one published. In 1940, two important papers were published: on the one hand, R.
Sprague proved that each rectangle with commensurable sides has a perfect squaring,
and has infinitely many totally distinct perfect squarings. On the other hand, Leonard
Brooks, Cedric Smith, Arthur Stone and William Thomas Tutte [5], in their attempt
to demonstrate the uniqueness of the dissection of a square into smaller squares, all
unequal, i.e. the Lusin’s conjecture, came to work with perfect rectangles:

“After some practice we found that the construction of such rectangles was not
difficult. Our method was to draw a rectangle dissected into smaller rectangles,
and to pretend that these rectangles were badly drawn squares. On this assumption
the relative sizes of the squares could be found by solving algebraic equations
describing how the squares had to fit together (...) We amassed quite a respectable
catalogue of perfect rectangles (...) Alas, no perfect square made its way into our
catalogue” [17, pp. 2-3].

Thanks to this last work, the above-mentioned problem ends up being solved by
graph theory and electrical networks. Below, we present a particular rectangle (Fig. 1)
different from the one studied by Brooks et al., as a generalizable case, which allows us
to appreciate the herein proposed transductive methodology.

The idea is to establish a correspondence between the original problem A and two
equivalent problems: B represents the analogy in terms of graph theory, and C represents
the translation from A to the field of electrical networks. This produces the parallelism
inserted in Table 1:
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Table 1. Three analogical problems.

Problem A Problem B Problem C

Geometry Graph Theory Electrical Networks

Squared rectangle Connected planar graph Electric circuit

[Figure 1] [Figure 2] [Figure 3]

Horizontal line segments Vertices (nodes) Terminals (dots)

Squares (that have two Edges Wires? (lines connecting two
horizontal lines as boundaries) of the dots)

Side-length of the square (that | The length of the lines Current in a wire

the lines represent) connecting two nodes

4 Assuming that the wires have electrical resistance of value 1, then Ohm’s law implies that the
value of the wire will be equal to the intensity of the current flowing through it.

Brooks et al. explain it so:

“The horizontal lines in the squared rectangle correspond to the terminals of the
network, and the squares correspond to the wires joining them. The current in a
wire is measured by the side-length of the corresponding square, and its direction
is downward in the rectangle. The top edge of the squared rectangle corresponds
to the positive pole, the terminal at which current enters the network. The bottom
edge likewise corresponds to the negative pole, the terminal from which the current

leaves” [17, pp. 3-4].

Figure 1 describes a tessellation of a squared rectangle: the variables x; to x¢ represent
the side-lengths of the squares inside the rectangle. Linear relationships between the
variables are established. The horizontal relationships represent the first law of Kirchhoff
(the sum of the values of the wires that fit into a node is equal to the sum of the values of the
wires that leave it): x; = x4 + x5, X6 = X3 + X5, X1 + X4 = X7 + X8, X9 = Xg + Xg.
On the other hand, Kirchhoff’s second law states that the sum of the currents for the

Fig. 1. Perfect squared rectangle.
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Fig. 3. Electrical interpretation.

entire circuit has to be zero. Referring to the Figs. 1, 2 and 3, the following equations
are constructed: x| = xp + x4, X7 = Xg + X9,x4 + Xg = X5 + X¢, X3 = X2 + X5.
The results obtained are: x; = 15,xp = 8,x3 = 9, x4 = 7,x5 = 1,x¢ = 10, x7 =
18, x3 = 4, x9 = 14, as shown in Fig. 1, finally producing a squared perfect rectangle
of dimensions 32 by 33.

4 Conclusion

Brooks, Smith, Stone and Tutte’s paper succeeded in separating the topological part of
the problem, related to the theory of linear graphs, from the metrical part, associated to
the theory of current flow in electrical circuits.

Consequently, the analyzed case offers an example of an invariant structure under-
lying the three representations, which these authors knew how to recognize, beyond
expressing it in other terms. The characteristics of the problem help to understand how
the detection of an analogy can contribute to the configuration of a pattern of regularity
that, when applied correctly, can solve the posed problem. The discovery of the electrical
analogy allowed Kirchhoff’s laws to be applied, and this, in turn, allowed these authors
to solve the dimensions of the sides of the squares inside the rectangle, and many other
problems.
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Abstract. Generalizations of the traditional intermediate value theo-
rem are presented. The obtained generalized theorems are particular
useful for the existence of solutions of systems of nonlinear equations
in several variables as well as for the existence of fixed points of con-
tinuous functions. Based on the corresponding criteria for the existence
of a solution emanated by the intermediate value theorems, generalized
bisection methods for approximating fixed points and zeros of continuous
functions are given. These bisection methods require only algebraic signs
of the function values and are of major importance for tackling problems
with imprecise (not exactly known) information.
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1 Introduction

A system of n nonlinear equations in n real unknowns,

fl(xlam27-"7xn) = 07
f2($1,$2,-- .,$n) = 07

(1)
fn($1a$27"'7xn) = 07

may be represented in the real n-dimensional vector space R™ as follows:
F,(z) =60, (2)

where F,, = (f1, f2,-.-,fn): D C R® — R" is a nonlinear mapping and 6" =
(0,0,...,0) is the origin of R™. The problem of solving the Eq. (2) is to find a
zero * = (a7}, %, ..., x%) € D for which F,,(x*) = ™. Similarly, the problem of
finding a fized point of F,, in D C R"™ is to find a point * € D which satisfies
the equation F,(z*) = z*. Obviously, the problem of finding a fixed point is
equivalent to the problem of solving the Eq.(2) by considering the mapping
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&, = I, — F,, (where I,, indicates the identity mapping) instead of F, and
solving the equation @, (z) = 0™, instead of the Eq. (2).

Many problems require solution of systems of equations for which Newton’s
method and the related class of algorithms [15] fail due to nonexistence of deriva-
tives or poorly behaved partial derivatives. Also, Newton’s method as well as
Newton’s-like methods often converge to a solution z* of Fj,(x) = ™ almost
independently of the initial guess, while F,,(x) = 6™ may have several solutions,
all of which are desired for the application [28]. Because of this reason, general-
ized bisection methods have been investigated. According to these methods one
establishes the existence of at least one solution of the Eq. (2) in a given domain
using a specific criterion for the existence of a solution. These kind of criteria can
be obtained using the conditions of various “existence theorems” (intermediate
value theorems). Once we have obtained a domain for which the criterion of the
existence is fulfilled, we are able to obtain upper and lower bounds for solution
values. To this end, by computing a sequence of bounded domains of decreasing
diameters, we are able to obtain a region with arbitrarily small diameter that
contains at least one solution of the Eq. (2).

These methods require only algebraic signs of the function values. The alge-
braic sign is the smallest amount of information (one bit of information) nec-
essary for the purpose needed. Thus, the methods that require only algebraic
signs are of major importance for tackling problems with imprecise (not exactly
known) information. This kind of problems occurs in various scientific fields
including mathematics, economics, engineering, computer science, biomedical
informatics, medicine and bioengineering,