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Preface

These proceedings contain the papers that should have been presented at the 14th
International Conference on Language and Automata Theory and Applications (LATA
2020) which was planned to be held in Milan, Italy, during March 4-6, 2020. The
conference was postponed due to the coronavirus pandemic and will be merged with
LATA 2021.

The scope of LATA is rather broad, including: algebraic language theory; algo-
rithms for semi-structured data mining; algorithms on automata and words; automata
and logic; automata for system analysis and program verification; automata networks;
automatic structures; codes; combinatorics on words; computational complexity;
concurrency and Petri nets; data and image compression; descriptional complexity;
foundations of finite state technology; foundations of XML; grammars (Chomsky
hierarchy, contextual, unification, categorial, etc.); grammatical inference, inductive
inference, and algorithmic learning; graphs and graph transformation; language vari-
eties and semigroups; language-based cryptography; mathematical and logical foun-
dations of programming methodologies; parallel and regulated rewriting; parsing;
patterns; power series; string processing algorithms; symbolic dynamics; term rewrit-
ing; transducers; trees, tree languages, and tree automata; and weighted automata.

LATA 2020 received 59 submissions. Each paper was reviewed by three Program
Committee members. There were also some external experts consulted. After a thor-
ough and vivid discussion phase, the committee decided to accept 26 papers (which
represents an acceptance rate of about 44%). The conference program included six
invited talks as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

December 2019 Alberto Leporati
Carlos Martin-Vide

Dana Shapira

Claudio Zandron
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The New Complexity Landscape Around
Circuit Minimization

Eric Allender®)

Rutgers University, New Brunswick, NJ 08854, USA
allender@cs.rutgers.edu
http://www.cs.rutgers.edu/ allender

Abstract. We survey recent developments related to the Minimum Cir-
cuit Size Problem.

Keywords: Complexity theory - Kolmogorov complexity - Minimum
Circuit Size Problem

1 Introduction

Over the past few years, there has been an explosion of interest in the Minimum
Circuit Size Problem (MCSP) and related problems. Thus the time seemed right
to provide a survey, describing the new landscape and offering a guidebook so
that one can easily reach the new frontiers of research in this area.

It turns out that this landscape is extremely unstable, with new features
arising at an alarming rate. Although this makes it a scientifically-exciting time,
it also means that this survey is doomed to be obsolete before it appears. It also
means that the survey is going to take the form of an “annotated bibliography”
with the intent to provide many pointers to the relevant literature, along with
a bit of context.

The title of this article is “The New Complexity Landscape around Circuit
Minimization” (emphasis added). This means that I will try to avoid repeating
too many of the observations that were made in an earlier survey I wrote on a
related topic [1]. Although that article was written only three years ago, several
of the open questions that were mentioned there have now been resolved (and
some of the conjectures that were mentioned have been overturned).

2 Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The focus
of meta-complezity is to determine how hard it is to determine how hard problems
are. Some of the most exciting recent developments in complexity theory have
been the result of meta-complexity-theoretic investigations.

Supported in part by NSF Grant CCF-1909216.
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The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of
determining the circuit complexity of functions. The input consists of a pair (f, ),
where f is a bit string of length N = 2" representing the truth-table of a Boolean
function, and ¢ € N, and the problem is to determine if f has a circuit of size at
most i. The study of the complexity of MCSP is therefore the canonical meta-
complexity-theoretic question. Complexity theoreticians are fond of complaining
that the problems they confront (showing that computational problems are hard
to compute) are notoriously difficult. But is this really true? Is it hard to show
that a particular function is difficult to compute? This question can be made
precise by asking about the computational complexity of MCSP. (See also [44]
for a different approach.)

A small circuit is a short description of a large truth-table f; thus it is no
surprise that investigations of MCSP have made use of the tools and terminology
of Kolmogorov complexity. In order to discuss some of the recent developments,
it will be necessary to review some of the different notions, and to establish the
notation that will be used throughout the rest of the article.

Let U be a Turing machine. We define Ky () to be min{|d| : U(d) = z}.
Those readers who are familiar with Kolmogorov complexity® will notice that
the definition here is for what is sometimes called “plain” Kolmogorov com-
plexity, although the notation Ky (z) is more commonly used to denote what is
called “prefix-free” Kolmogorov complexity. This is intentional. In this survey,
the distinctions between these two notions will be blurred, in order to keep the
discussion on a high level. Some of the theorems that will be mentioned below
are only known to hold for the prefix-free variant, but the reader is encouraged
to ignore these finer distinctions here, and seek the more detailed information in
the cited references. For some Turing machines U, Ky (z) will not be defined for
some x, and the values of Ky (z) and Ky (z) can be very different, for different
machines U and U’. But the beauty of Kolmogorov complexity (and the appli-
cability of of the theory it gives rise to) derives from the fact that if U and U’
are universal Turing machines, then Ky (x) and Ky (x) differ by at most O(1).
By convention, we select one particular universal machine U and define K (x) to
be equal to Ky (x).

The function K is not computable. The simplest way to obtain a computable
function that shares many of the properties of K is to simply impose a time
bound, leading to the definition K*(z) := min{|d| : U(d) = z in time ¢(|z|)}
where ¢ is a computable function. Although it is useful in many contexts, K*(z)
does not appear to be closely connected to the circuit size of x (where z is viewed
as the truth-table of a function). Thus we will frequently refer to two additional
resource-bounded Kolmogorov complexity measures, Kt and KT.

Levin defined Kt(z) to be min{|d| + logt : U(d) = = in time ¢} [32]; it
has the nice property that it can be used to define the optimal search strategy
to use, in searching for accepting computations on a nondeterministic Turing
machine. Kt(x) also corresponds to the circuit size of the function z, but not on

L If the reader is not familiar with Kolmogorov complexity, then we recommend some
excellent books on this topic [17,33].
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“normal” circuits. As is shown in [2], Kt(x) is roughly the same as the size of
the smallest oracle circuit that computes x, where the oracle is a complete set
for EXP. (An oracle circuit has “oracle gates” in addition to the usual AND,
OR, and NOT gates; an oracle gate for oracle A has k wires leading into it, and
if those k wires encode a bitstring y of length k where y is in A, then the gate
outputs 1, otherwise it outputs 0.)

It is clearly desirable to have a version of Kolmogorov complexity that is
more closely related to “ordinary” circuit size, instead of oracle circuit size. This
is accomplished by defining KT(z) to be min{|d| + ¢ : U(d,i) = x; in time t}.
(More precise definitions can be found in [2,10].)

We have now presented a number of different measures K,, € {K, K*, Kt, KT}.
By analogy with MCSP, we can study K, in place of the “circuit size” measure,
and thus obtain various problems of the form MK, P = {(z,%) : K,(z) < i}, such
as MKTP, MK'P and MKtP. If t(n) = n°("), then MK'P is in NP, and several
theorems about MKTP yield corollaries about MK'P in this case. (See, e.g. [2]).
Similarly, if t(n) = 2" for some ¢ > 0, then MK*P is in EXP, and several
theorems about MKtP yield corollaries about MK*P for ¢ in this range [2].

In order to highlight some of the recent developments, let us introduce some
notation that is somewhat imprecise and which is not used anywhere else, but
which will be convenient for our purposes. Let KP°¥ serve as a shorthand for
K*' whenever t = n°M and similarly let K¢*? serve as a shorthand for K*
whenever ¢t = 2"° for some ¢ > 0. We will thus be referring to MKP°YP and
MK “*PP. Doing so will enable us to avoid some confusing notation surround-
ing the name MINKT, which was introduced by Ko [31] to denote the set
{x,1*,1" : Id U(d) = x in at most ¢ steps and |d| < i}. That is, (x,i) € MKPWP
iff (z,1"",i) € MINKT (where the time bound #(n) = n¢). Hence these sets
have comparable complexity and results about MINKT can be rephrased in
terms of MKP°'YP with only a small loss of accuracy. In particular, some recent
important results [19,20] are phrased in terms of MINKT, and as such they
deal with KP°% complexity, and they are not really very closely connected with
the KT measure; the name MIN KT was devised more than a decade before KT
was formulated. The reader who is interested in the details should refer to the
original papers for the precise formulation of the theorems. However, the view
presented here is “probably approximately correct”.

Frequently, theorems about MCSP and the various MK, P problems are stated
not in terms of exactly computing the circuit size or the complexity of a string,
but in terms of approximating these values. This is usually presented in terms of
two thresholds 61 < 03, where the desired solution is to say yes if the complexity
of = is less than 67, and to say no if the complexity of z is greater than 65, and
any answer is allowed if the complexity of x lies in the “gap” between #; and
f>. In the various theorems that have been proved in this setting, the choice of
thresholds 61 and 65 is usually important, but in this article those details will
be suppressed, and all of these approximation problems will be referred to as
GapMCSP, GapMKtP, GapMKTP; etc.
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At this point, the reader’s eyes may be starting to glaze over. It is natural to
wonder if we really need to have all of these different related notions. In particu-
lar, there does not seem to be much difference between MCSP and MKTP. Most
hardness results for MCSP actually hold for GapMCSP, and if the “gap” is large
enough, then MKTP is a solution to GapMCSP (and vice-versa). Furthermore
it has frequently been the case that a theorem about MCSP was first proved
for MKTP and then the result for MCSP was obtained as a corollary. However,
there is no efficient reduction known (in either direction) between MCSP and
MKTP, and there are some theorems that are currently known to hold only for
MKTP, although they are suspected to hold also for MCSP (e.g., [4,6,23]). Simi-
larly, some of the more intriguing recent developments can only be understood by
paying attention to the distinction between different notions of resource-bounded
Kolmogorov complexity. Thus it is worth making this investment in defining the
various distinct notions.

3 Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov
complexity were identified soon after computational learning theory emerged as
a field. After all, the goal of computational learning theory is to find a satisfactory
(and hence succinct) explanation of a large body of observed data. For instance,
in the 1980s and 1990s there was work [40,41] showing that it is NP-hard to find
“succinct explanations” that have size somewhat close to the optimal size, if these
“explanations” are required to be finite automata or various other restricted
formalisms. Ko studied this in a more general setting, allowing “explanations”
to be efficient programs (in the setting of time-bounded Kolmogorov complexity).

Thus Ko studied not only the problem of computing K?°(z) (where one can
consider z to be a completely-specified Boolean function), but also the problem
of finding the smallest description d such that U(d) agrees with a given list of
“yes instances” Y and a list of “no instances” N (that is, z can be considered as
a partial Boolean function, with many “don’t care” instances). Thus, following
[28], we can call this problem Partial-MKP°'P. In the setting that is most relevant
for computational learning theory, the partial function z is presented compactly
as separate lists Y and N, rather than as a string of length 2™ over the alphabet
{0, 1, %}.

Ko showed in [31] that relativizing techniques would not suffice, in order to
settle the question of whether MKP°WP and Partial-MKP?!YP are NP-complete.
That is, by giving the universal Turing machine U that defines Kolmogorov
complexity access to an oracle A, one obtains the problems MKP?YPA and
Partial-MKP°'vPA | and these sets can either be NP“-complete or not, depending
on the choice of A.

Thus it is noteworthy that it has recently been shown that Partial-MCSP is
NP-complete under <P reductions [28]. I suspect (although I have not verified)
that the proof also establishes that Partial-MKTP is NP-complete under <P
reductions. One lesson to take from this is that KT and KP°" complexity differ
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from each other in significant ways. There are other recent examples of related
phenomena, which will be discussed below.

There are other strong connections between MCSP and learning theory that
have come to light recently. Using MCSP as an oracle (or even using a set that
shares certain characteristics with MCSP) one can efficiently learn small circuits
that do a good job of explaining the data [11]. For certain restricted classes of
circuits, there are sets in P that one can use in place of MCSP to obtain learning
algorithms that don’t require an oracle [11]. This connection has been explored
further [12,36].

4 Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete
under <P reductions. In order to discuss other results about the complexity of
MCSP and related problems it is necessary to go into more detail about different
notions of reducibility.

Let C be either a class of functions or a class of circuits. The classes that will
concern us the most are the standard complexity classes L C P C NP as well as
the circuit classes (both uniform and nonuniform):

NC® ¢ AC” ¢ AC°[p] € NC* C P/poly.

We refer the reader to the text by Vollmer [46] for background and more complete
definitions of these standard circuit complexity complexity classes, as well as for
a discussion of uniformity.

We say that A <¢ B if there is a function f € C (or f computed by a circuit
family in C, respectively) such that z € A iff f(z) € B. We will make use of
<t Sﬁlco and Sr'\,'lco reducibility. The more powerful notion of Turing reducibility
also plays an important role in this work. Here, C is a complexity class that
admits a characterization in terms of Turing machines or circuits, which can
be augmented with an “oracle” mechanism, either by providing a “query tape”
or “oracle gates”. We say that A <$ B if there is a oracle machine in C (or
a family of oracle circuits in C) accepting A, when given oracle B. We make
use of S;/pdy, gf}ﬂg%’ﬂg?ﬂg%, and S'%Cl reducibility; instead of writing
A gﬁﬂ/poly B or A <4PP B, we will sometimes write A € PP /poly or A € ZPPB.
Turing reductions that are “nonadaptive” — in the sense that the list of queries
that are posed on input x does not depend on the answers provided by the oracle
— are called truth table reductions. We make use of <, reducibility.

Not much has changed, regarding what is known about the “hardness” of
MCSP, in the three years that have passed since my earlier survey [1]. Here is
what I wrote at that time:

Table 1 presents information about the consequences that will follow if MCSP
is NP-complete (or even if it is hard for certain subclasses of NP ). The table
is incomplete (since it does not mention the influential theorems of Kabanets
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and Cai [30] describing various consequences if MCSP were complete under
a certain restricted type of <P reduction). It also fails to adequately give
credit to all of the papers that have contributed to this line of work, since —
for ezample — some of the important contributions of [35] have subsequently
been slightly improved [7,25]. But one thing should jump out at the reader
from Table 1: All of the conditions listed in Column 8 (with the exception
of “FALSE”) are widely believed to be true, although they all seem to be far
beyond the reach of current proof techniques.

Table 1. Summary of what is known about the consequences of MCSP being hard for
NP under different types of reducibility. If MCSP is hard for the class in Column 1
under the reducibility shown in Column 2, then the consequence in Column 3 follows.

Class C | Reductions R | Statement S Reference
T | <n? FALSE [35]

TCY <AC? LTH® Z io-SIZE[2("™)] and P = BPP | [7,35]
TCO | <A NP ¢ P/poly [7]

P <t PSPACE # P [7]

NP <4 PSPACE # ZPP (35]

NP <P EXP # ZPP [25]

2LTH is the linear-time analog of the polynomial hierarchy. Problems in
LTH are accepted by alternating Turing machines that make only O(1)
alternations and run for linear time.

It is significant that neither MCSP nor MKTP is NP-complete under SZ;B
reductions, since SAT and many other well-known problems are complete under
this very restrictive notion of reducibility — but it would be more satisfying to
know whether these problems can be complete under more widely-used reducibil-
ities such as SQCO. These sublinear-time reductions are so restrictive, that even
the PARITY problem is not g?nl/s—reducible to MCSP or MKTP. In an attempt

to prove that PARITY is not Sﬁlco-reducible to MKTP, we actually ended up
proving the opposite:

Theorem 1 [6]. MKTP is hard for DET under non-uniform NC° reductions.
This also holds for MKtP and MKP.

Here, DET is the class of problems NC!'-Turing-reducible to computing the deter-
minant. It includes the well-known complexity classes L and NL. This remains
the only theorem that shows hardness of MK, P problems under any kind of <¢
reductions.

As a corollary of this theorem it follows that MKTP is not in AC°[p] for any
prime p. This was mentioned as an open question in [1] (see footnote 2 in [1]).
(An alternate proof was given in [23].) It remained open whether MCSP was in
AC[p] until a lower bound was proved in [18].
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It is still open whether MCSP is hard for DET. The proof of the hardness
result in [6] actually carries over to a version of GapMKTP where the “gap” is
quite small. Thus one avenue for proving a hardness result for MCSP had seemed
to be to improve the hardness result of [6], so that it worked for a much larger
“gap”. This avenue was subsequently blocked, when it was shown that PARITY
is not AC’-reducible to GapMCSP (or to GapMKTP) for a moderate-sized “gap”
[8]. Thus, although it is still open whether MCSP is NP-complete under gﬁfo
reductions, we now know that GapMCSP is not NP-complete under this notion
of reducibility.

When a much larger “gap” is considered, it was shown in [6] that,
if cryptographically-secure one-way functions exist, then GapMCSP and
GapMKTP are NP-intermediate in the sense that neither problem is in P/poly,
and neither problem is complete for NP under P/poly-Turing reductions.

The strongest hardness results that are known for the MK, P problems in NP
remain the results of [3], where it was shown that MCSP, MKTP, and MKP?°P
are all hard for SZK under <BFP reductions. SZK is the class of problems that
have statistical zero knowledge interactive proofs; SZK contains most of the
problems that are assumed to be intractable, in order to build public-key cryp-
tosystems. Thus it is widely assumed that MCSP and related problems lie outside
of P/poly, and cryptographers hope that it requires nearly exponential-sized cir-
cuits. SZK also contains the Graph Isomorphism problem, which is <RP-reducible
to MCSP and MKTP. In [4], Graph Isomorphism (and several other problems)
were shown to be <#PP reducible to MKTP; it remains unknown if this also holds
for MCSP. In fact, there is no interesting example of a problem A that is not
known to be in NP N coNP that has been shown to be S%PP reducible to MCSP.

We close this section with a discussion of a very powerful notion of reducibil-
ity: SNP reductions. (Informally A is SNP reducible to B means that A is
(NP N coNP)-reducible to B.) Hitchcock and Pavan have shown that MCSP is
indeed NP-complete under SNP reductions if NP N coNP contains problems that
require large circuits (which seems very plausible) [25]. It is interesting to note
that, back in the early 1990’s, Ko explicitly considered the possibility that com-
puting MKP°"YP might be NP-complete under SNP reductions [31].

4.1 Completeness in EXP and Other Classes

There are problems “similar” to MCSP that reside in many complexity classes.
We can define MCSP# to be MCSP for oracle circuits with A-oracle gates. That
is, MCSP? = {(f,4) : f has an A-oracle circuit of size at most i}. When A is
complete for EXP, then MCSP# is thought of as being quite similar to MKtP.
Both of these problems, along with MK “*PP | are complete for EXP under SZ/ poly
and <\P reductions [2].

It is still open whether either of MKtP or MCSP# is in P, and it had been
open if MK'P is in P for “small” exponential functions ¢ such as t(n) = 2"/2.
But there is recent progress:
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Theorem 2 [20]. MK®®PP is complete for EXP under <F. reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].

As a corollary, MK®*PP is not in P. In fact, a much stronger result holds.
Let ¢ be any superpolynomial function. Then the set of K*-random strings {z :
K'(z) < |z|} is immune to P (meaning: it has no infinite subset in P) [20]. The
proof does not seem to carry over to Kt complexity, highlighting a significant
difference between Kt and K“*P.

Although it remains open whether MKtP € P, Hirahara does show that MKtP
is not in P-uniform ACC?, and in fact the set of Kt-random strings is immune
to P-uniform ACCY. Furthermore, improved immunity results for the Kt-random
strings are in some sense possible if and only if better algorithms for CircuitSAT
can be devised for larger classes of circuits.

Oliveira has defined a randomized version of Kt complexity, which is conjec-
tured to be nearly the same as Kt, but for which he is able to prove unconditional
intractability results [37].

MCSP9EF was known to be complete for PSPACE under <ZPP reductions [2].
In more recent work, for various subclasses C of PSPACE, when A is a suitable
complete problem for C, then MCSP has been shown to be complete for C under
<BPP reductions [29]. Crucially, the techniques used by [29] (and, indeed, by any
of the authors who had proved hardness results for MCS pA previously for various
A) failed to work for any A in the polynomial hierarchy. We will return to this
issue in the following section.

In related work, it was shown [6] that the question of whether MKTP# is hard
for DET under a type of uniform ACP reductions is equivalent to the question
of whether DSPACE(n) contains any sets that require exponential-size A-oracle
circuits. Furthermore, this happens if and only if PARITY reduces to MKTPA.
Note that this condition is more likely to be true if A is easy, than if A is complex;
it is false if A is complete for PSPACE, and it is probably true if A = ). Thus,
although MKTP®BF is almost certainly more complex than MKTP (the former
is PSPACE-complete, and the latter is in NP), a reasonably-large subclass of P
probably reduces to MKTP via these uniform ACY reductions, whereas hardly
anything AC’-reduces to MKTPREF . The explanation for this is that a uniform
AC® reduction cannot formulate any useful queries to a complex oracle, whereas
it (probably) can do so for a simpler oracle.

4.2 NP-Hardness

Recall from the previous section that there were no NP-hardness results known
for any problem of the form MCSP# where A is in the polynomial hierarchy.

This is still true; however, there is some progress to report. Hirahara has
shown that computing the “conditional” complexity K?°%(z|y) relative to SAT
(i.e., given (z,y), finding the length of the shortest description d such that
USAT(d,y) = x in time n¢) is NP-hard under <}, reductions [20].

It might be more satisfying to remove the SAT oracle, and have a hardness
result for computing K?°"¥(x|y) — but Hirahara shows that this can’t be shown
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to be hard for NP (or even hard for ZPP) under <P, reductions without first
separating EXP from ZPP.

In a similar vein, if one were to show that MCSP or MKTP (or MCSP# or
MKTP# for any set A € EXP) is hard for NP under <P, reductions, then one
will have shown that ZPP # EXP [20].

A different kind of NP-hardness result for conditional Kolmogorov complexity
was proved recently by Ilango [27]. In [2], conditional KT complexity KT (z|y) was
studied by making the string y available to the universal Turing machine U as
an “oracle”. Thus it makes sense to consider a “conditional complexity” version
of MCSP by giving a string y available to a circuit via oracle gates. This problem
was formalized and shown to be NP-complete under <4FP reductions [27].

Many of the functions that we compute daily produce more than one bit of
output. Thus it makes sense to study the circuit size that is required in order
to compute such functions. This problem is called Multi-MCSP in [28], where
it is shown to be NP-complete under gF{f’ reductions. It will be interesting to
see how the complexity of this problem varies, as the number of output bits of
the functions under consideration shrinks toward one (at which point it becomes
MCSP).

It has been known since the 1970’s that computing the size of the smallest
DNF expression for a given truth-table is NP-complete. (A simple proof, and
a discussion of the history can be found in [5].) However, it remains unknown
what the complexity is of finding the smallest depth-three circuit for a given
truth table. (Some very weak intractability results for minimizing constant-depth
circuits can be found in [5], giving subexponential reductions from the problem
of factoring Blum integers.) The first real progress on this front was reported
in [22], giving an NP-completeness result (under <P reductions) for a class of
depth three circuits (with MOD gates on the bottom level). Ilango proved that
computing the size of the smallest depth-d formula for a truth-table lies outside
of AC°[p] for any prime p [27], and he has now followed that up with a proof
that computing the size of the smallest depth-d formula is NP-complete under
<RP reductions [26]. Note that a constant-depth circuit can be transformed into
a formula with only a polynomial blow-up; thus in many situations we are able
to ignore the distinction between circuits and formulas in the constant-depth
realm. However, the techniques employed in [26,27] are quite sensitive to small
perturbations in the size, and hence the distinction between circuits and formulae
is important here. Still, this is dramatic progress on a front where progress has
been very slow.

5 Average Case Complexity, One-Way Functions

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [30], in
a paper that was motivated in part by the study of Natural Proofs [42], and
which called attention to the fact that if MCSP is easy, then there are no
cryptographically-secure one-way functions. In the succeeding decades, there has
been speculation about whether the converse implication also holds. That is, can
one base cryptography on assumptions about the complexity of MCSP?
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First, it should be observed that, in some sense, MCSP is very easy “on
average”. For instance the hardness results that we have (such as reducing SZK
to MCSP) show that the “hard instances” of MCSP are the ones where we want
to distinguish between n-ary functions that require circuits of size 2" /n? (the
“NO” instances) and those that have circuits of size at most 2"/3 (the “YES”
instances). However, an algorithm that simply says “no” on all inputs will give
the correct answer more than 99% of the time.

Thus Hirahara and Santhanam [23] chose to study a different notion of heuris-
tics for MCSP, where algorithms must always give an answer in {Yes, No, I don’t
know}, where the algorithm never gives an incorrect answer, and the algorithm is
said to perform well “on average” if it only seldom answers “I don’t know”. They
were able to show unconditionally that MCSP is hard on average in this sense for
AC®[p] for any prime p, and to show that certain well-studied hypotheses imply
that MCSP is hard on average.

More recently, Santhanam [43] has formulated a conjecture (which would
involve too big of a digression to describe more carefully here), which — if true
— would imply that a version of MCSP is hard on average in this sense if and
only if cryptographically-secure one-way functions exist. That is, Santhanam’s
conjecture provides a framework for believing that one can base cryptography
on the average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-
case complexity? Hirahara [19] showed that GapMCSP has no solution in BPP
if and only if a version of MCSP is hard on average. A related result stated in
terms of KP° appears in the same paper. These results attracted considerable
attention, because prior work had indicated that such worst-case-to-average-case
reductions would be impossible to prove using black-box techniques. Additional
work has given further evidence that the techniques of [19] are inherently non-
black-box [24].

6 Complexity Classes and Noncomputable Complexity
Measures

The title of this section is the same as the title of Sect.4 of the survey that I
wrote three years ago [1]. In that section, I described the work that had been
done, studying the classes of sets that are reducible to the (non-computable) set
of Kolmogorov-random strings Rg, and to MKP, including the reasons why it
seemed reasonable to conjecture that BPP and NEXP could be characterized in
terms of different types of reductions to the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have
been disproved (barring some extremely unlikely complexity class collapses).
Taken together, the papers [21,24], and [20] give a much better understanding
of the classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that PSPACE C PEx and NEXP C NP Hirahara
[20] has now shown NEXP C EXPNF C PFx,
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This same paper also gives a surprising answer to Open Question 4.6 of [1],
in showing that Quasipolynomial-time nonadaptive reductions to Rg suffice to
capture NP (and also some other classes in the polynomial hierarchy).

7 Magnification

Some of the most important and exciting developments relating to MCSP and
related problems deal with the emerging study of “hardness magnification”. This
is the phenomenon whereby seemingly very modest lower bounds can be “ampli-
fied” or “magnified” and thereby be shown to imply superpolynomial lower
bounds. I was involved in some of the early work in this direction [9] (which
did not involve MCSP), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved
for MCSP that essentially match the strongest lower bounds that we have for any
problems in NP [16]. There is now a significant body of work, showing that slight
improvements to those bounds, or other seemingly-attainable lower bounds for
GapMKtP or GapMCSP or related problems, would yield dramatic complexity
class separations [12-15,34,38,39,45].

This would be a good place to survey this work, except that an excellent
survey already appears in [12]. Igor Carboni Oliveira has also written some
notes entitled “Advances in Hardness Magnification” related to a talk he gave
at the Simons Institute in December, 2019, available on his home page. These
notes and [12] describe in detail the reasons that this approach seems to avoid
the Natural Proofs barrier identified in the work of Razborov and Rudich [42].
But they also describe some potential obstacles that need to be overcome, before
this approach can truly be used to separate complexity classes.
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Abstract. This paper surveys some results regarding decision problems
for probabilistic and max-plus automata, such as containment and equiva-
lence. Probabilistic and max-plus automata are part of the general family
of weighted automata, whose semantics are maps from words to real val-
ues. Given two weighted automata, the equivalence problem asks whether
their semantics are the same, and the containment problem whether one
is point-wise smaller than the other one. These problems have been stud-
ied intensively and this paper will review some techniques used to show
(un)decidability and state a list of open questions that still remain.
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1 Introduction

Weighted automata have been introduced by Schiitzenberger in 1961 in [37] as a
quantitative generalisation of non deterministic finite-state automata. While non
deterministic finite automata have a Boolean behaviour (each word is mapped
to 0 or 1), weighted automata allow a more fine grained output: each word is
mapped to an element in a chosen semiring. This allows for example to map
words with real values, modelling probabilities or costs. They have been inten-
sively studied both:

1. in a general setting, i.e. giving frameworks and results that are valid for any
semiring,

2. and on particular instances, for example when focusing on the classic semiring
R with the standard addition and product operations.

For any semiring, a weighted automaton can be viewed as a graph with
labelled transitions carrying weights, or as a morphism from words to matrices
(both definitions are given in Sect.2). Recently, Alur introduced another equiv-
alent model, closer to the implementation level: the cost register automata [2,3].
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These have engendered a lot of research works, in particular regarding ques-
tions around minimisation. Weighted automata also admit an equivalent logic
[14] introduced by Droste and Gastin and while this paper focuses on weighted
automata on words, they have also been generalised to other structures such as
trees [4,29,38].

Specific instances that have been particularly studied are the probabilistic
automata on the standard semiring R with operations + and x (the exact def-
inition is given in Sect.2) [35]; and the max-plus (resp. min-plus) automata on
the semiring R with operations max (resp. min) and + [40].

They have been applied in image compression [25], natural language process-
ing [6,32,33], model-checking of probabilistic systems [30,42], automatic analysis
of complexity of programs [9], study of discrete event systems [18], and in the
proofs of results in tropical algebra [10] and automata theory [21,39,40].

One of the first natural question which arises when dealing with computa-
tional models is the equivalence problem: in our case, this would ask whether
two distinct weighted automata map words to the same values? Since proba-
bilistic and max-plus automata compute functions from words to real values,
another natural problem is to wonder whether the function computed by a given
probabilistic (resp. max-plus) automaton is point-wise smaller than the function
computed by another probabilistic (resp. max-plus) automaton. This is called
the containment problem. These problems are highly dependant on the semir-
ing under consideration and have originally been tackled using very different
techniques for probabilistic and max-plus automata. We will however present
one technique that can be used in both cases to show the undecidability of the
containment problem for both max-plus and probabilistic automata which are
linearly ambiguous.

Another mainstream topic that have been intensively studied is the one of
determinisation. Weighted automata are not determinisable in general: there
exist for example max-plus automata that do not have an equivalent determin-
istic one. This question is of particular interest for max-plus automata and is
linked to the minimisation of cost register automata [11,13]. Deciding whether
a given max-plus automaton is determinisable is still open. This topic is out of
the scope of this paper but the interested reader is referred to [17,26,27].

In the rest of this paper, we will explain a way to prove undecidability of
the containment problem for probabilistic and max-plus automata and discuss
restricted classes as well as approximations to obtain more positive results and
decidability in some cases.

2 Weighted Automata

In this section, we start by recalling basic notions used to define weighted
automata. The paper should be self-contained but the reader is referred to [36]
for a full exposition on the topic.
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2.1 Preliminaries

Semiring. Given a set M, a binary operation - on M and an element 1 of
M (called neutral element), (M,-,1) is called a monoid if - is associative and
l-z =21 =z for all z € M. The monoid is said to be commutative if
z-y=y-xforall z,y € M.

A semiring (S, ®, ®,0, 1) is a set S equipped with two binary operations such
that (S, ®,0) is a commutative monoid, (S, ®,1) is a monoid, 0@z =2z ®0=0
and xR (yP2)=(rRy)®(x®z2)and (Y 2)Rzx = (yQx) (2 ® x) for all
z,y,z € S. In the rest of the paper, we will simply use S to denote the semiring
(S,®,®,0,1). For z in S, we will use the standard notation z* to denote the
product x ® - -+ ® x.

————

k times

Matrices. Given a semiring S, we consider the set of matrices with coefficients
in S. Given a matrix M, M[i][j] denotes the coefficient at row ¢ and column
j of the matrix. For two matrices M and M’, one defines the product M - M’
provided the number of columns of M is equal to the number of rows of M’
(denoted by N) by:

M-MH = @ (MK ©MK])

k=1,...N

Given a positive integer N, the set of square matrices of dimension N x N
with coefficients in S is denoted by My (S) or simply My when S is clear
from context. The set My equipped with the binary operation - is a monoid
with neutral element the identity matrix (the matrix with 1 on the diagonal
coefficients and 0 everywhere else).

Words. In the rest of the paper, X denotes a finite alphabet, X* the set of words
on this alphabet, and ¢ the empty word. For a word w, |w| denotes the length
of w.

Notation. Given a finite set @, |Q| denotes the number of elements in Q.

2.2 Graphical Definition
We give now a first definition of weighted automata.

Definition 1. A weighted automaton over a semiring S and alphabet X is a
tuple (Q,Q1,Qr,T) where:

- Q is a finite set of states,

- Q1 € Q is the set of initial states,

- Qr C Q is the set of final states,

— T is the transition function Q@ X X X Q — S.
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Given p,q € Q and a € X, whenever T(p,a, q) # 0, we say that (p,a,q) is a
transition, T'(p, a, q) is its weight and we write:

a:T(p,a,q)
p——

A run on a word w = wiws...w, where for all i = 1,...,n, w; € X is a
sequence of compatible transitions:

wi:Mmy w2:Mm2 wsz:ms Wp, My,

q0 q1 q2 e qn

The weight of a run is the product of the weights of the transitions in the run
i.e. @, m;. A run is said to be accepting if gy € Qr and g, € Qr. The weight
of a word in the automaton is the sum @ of the weights of the accepting runs on
w, and 0 if there is no such run. By convention, the weight of the empty word is
1 if there exist a state which is both initial and final and 0 otherwise.

Definition 2. The semantics of a weighted automaton A over the semiring S
and alphabet X is the function which maps every word of X* to its weight in S.
It is denoted by [A].

Variants. There exist several alternative definitions for weighted automata. A
classic one allows also initial and final weights: each state ¢ is associated with
two elements i, and f, from S (possibly 0). The weight of a run:

wiimy wo M w3:ms Wyt Moy,
q0 q1 q2 T qn

is then the product igq, ® m1 ® -+ ® my, ® fq, and the weight of a word w the
sum of the weights of the runs on w.

Adding initial and final weights does not increase the expressive power of
weighted automata: the set of semantics is the same. The problems we are con-
sidering in this paper are also not affected by this: equivalence or containment
will be decidable for both variants or for none.

However, these considerations will have to be taken into account when dealing
with determinisation issues, but this is not in the scope of this paper.

Example 1. Figure 1 shows a weighted automaton on a semiring S and alphabet
{a,b,t}. It has two initial states ¢; and ¢ and two final states g3 and g4. Let
w be the word a’bota’ birt - - - ta’ b+ for some non negative integers ig, jo, . . -
There are k accepting runs on w: each accepting run corresponds to read one
of the occurrences of ¢ from g» to g3 and has weight m* @ n*+ for some ¢ €
{0,...,k —1}. The weight of w is then:

@

¢€{0,....k—1}
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a,b,t:1 a:m a:n a,b,t:1
t:1 t:1 b,t:1
b:1

Fig. 1. Weighted automaton

Ambiguity. The notion of ambiguity that applies for finite non deterministic
automata applies here too: A weighted automaton is said to be unambiguous is
there is at most one accepting run on every word, and finitely ambiguous if there
is an integer L such that for all words w, there are at most L accepting runs
labelled by w. Finally, a run is polynomially ambiguous if there is a polynomial
P such that for all words w, there are at most P(|w|) accepting runs labelled by
w, and linearly ambiguous whenever this polynomial is of degree 1.

2.3 Matrix Representation
An equivalent way to see weighted automata is by using a matrix representation.

Definition 3 (equivalent definition). A weighted automaton over a semiring
S and alphabet X is a tuple (N, I, F, u) where N is an integer and:

— I is a set of matrices with 1 row and N columns, and coefficients in {0,1},
— F is a set of matrices with N rows and 1 column, and coefficients in {0, 1},
- pis a map X — Mpy(S).

The semantics of a weighted automaton is a function mapping each word
w = wiws - - - Wy, where for all i, w; € X to:

I p(wr) - p(ws) - p(wy) - F

Note that the later is an element of S. There are easy translations to go from
the graphical definitions to the matrix one and conversely:

— starting from (Q,Qr,Qr,T), set N = |Q|, and denote by ¢1,¢o,...,qn the
states in Q. Set I with 1 row and N columns, defined by I[1][j] =1if ¢; € Q;
and 0 otherwise. Similarly, set F with N rows and 1 column, defined by
F[j][1] =11if ¢; € QF and 0 otherwise. Finally, set x such that for all a € X,
w(a)dlg] = T(gi,a,q;). It is easy to check that the semantics of the two
weighted automata are the same. In particular, for any word w, p(w)[é][j] is
the sum of the weights of the runs labelled by w going from ¢; to g;.

— Similarly, starting from (N,I,F,u), set @ = {q1,92,---,98}, Q1 = {qg; |
1] = 1} Qr = {g; | FUIIL| = 1} and T(gs,a,45) = p(a)li[j] for al
a€ X i,je{l,...,N}
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Example 2. The weighted automaton from Fig. 1 is represented by the following
set, of matrices:

1000 1000 1100
0m 00 0100 0010
Ma)=100n0l *@=10001]| *®=|0001
0001 0001 0001

0

=100 rF=|"

1

1

2.4 Classic Examples

In the rest of the paper, we will consider two classic examples of weighted
automata: max-plus automata and probabilistic automata.

Non Deterministic Finite Automata (or Boolean Automata). Non deterministic
finite automata can be seen as weighted automata over the Boolean semiring.
They can also be seen as weighted automata in any semiring as follows: for a
given Boolean automaton B, and a semiring S, construct the weighted automaton
A by giving weight 1 to transitions in B (and 0 to non-existing transitions). It is
easy to see that for every word w, w is accepted by B if and only if [A](w) =1
([A](w) = 0 otherwise).

Maz-Plus Automata. The semiring {R U {—o0}, max, +, —00,0} is called the
max-plus semiring. Max-plus automata are weighted automata over the max-
plus semiring. Alternatively, the min-plus semiring is {RU{+o0}, min, +, 400, 0}
and min-plus automata are weighted automata over this semiring. Given a max-
plus automaton A, it is easy to construct a min-plus automaton B by changing
all the weights to their opposite to obtain [A] = —[B]. Most of the results
later on given for max-plus automata can thus be easily translated for min-
plus automata. However, when restricting the domain of the semiring to N, the
translation does not work anymore and for the results which are only valid in
N, one has to be more careful when translating from max-plus to min-plus and
vice-versa.

Probabilistic Automata. Probabilistic automata are weighted automata over the
semiring {R, +, x, 0,1} with the extra restriction that all the weights on transi-
tions are in [0, 1] and for a given state ¢ and a given letter a of X, the weights
of the transitions exiting ¢ labelled by a have to sum to 1.

Ezxample 3. Let us consider the weighted automaton given in Fig. 1 and the word
w defined in Example 1. For S taken as the max-plus semiring, the weight of w
would be:

max  (igm + ipp1n)
£e{0,...,k—1}
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For S taken as the semiring {R, +, x,0, 1}, the weight of w would be:

E mizniz+1

£e{0,...,k—1}

The later is not a probabilistic automaton, as for example there are two transi-
tions labelled by ¢ each of weight 1 exiting ¢;.

3 Decision Problems

Many decision problems arise naturally when considering weighted automata.
We will consider two of them (and their variants): the equivalence and the con-
tainment problems. Generally speaking, the decidability of these problems highly
depends on the semiring under consideration, and there is no general results that
would work for the whole class of weighted automata. However, we will see that
some techniques can be used both for max-plus and for probabilistic automata.

3.1 The Equivalence and Containment Problems
The equivalence and containment problems are stated as follows:

Equivalence problem: Given two weighted automata 4 and B
over an alphabet X’ and a semiring S, is it true that [A] = [B]?

This problem has been known to be decidable for Boolean automata since
the 50’s and for probabilistic automata since the 70’s. Surprisingly at the time,
it was proved to be undecidable for max-plus automata, in the 90’s.

Containment problem: Given two weighted automata A and B
over an alphabet X and a semiring S whose domain is equipped
with an order <, is it true that for all w € X*, [A](w) < [B](w)?

This problem is the counterpart of the containment problem for Boolean
automata: given two non deterministic finite automata A and B, is it true that
the regular language accepted by A is a subset of the regular language accepted
by B.

Several other problems of the same kind have been investigated: the bound-
edness problem for min-plus automata, the isolation, emptiness and value 1
problems for probabilistic automata. They will be discussed later on.

3.2 Undecidability of the Containment Problem

The containment problem is undecidable both for max-plus and for probabilistic
automata and we will explain here one common idea used in specific proofs of
this result in both cases.
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Probabilistic Automata. The more specific emptiness problem:

Given a probabilistic automaton A and a constant ¢, is it true that
for allw e X, [A)(w) < ¢?

was proved to be undecidable by Paz in 1971 [34]. Other similar problems were
also proved to be undecidable like the c-threshold problem [5]:

Given a probabilistic automaton A and a constant ¢, does there
exist € > 0 such that for all words w, |[A](w) —¢| >¢e?

and the value 1 problem [19]:

Given a probabilistic automaton A and a constant c, for alle > 0,
does there exist a word w such that [AJ(w) >1—¢?

Maz-Plus Automata. Regarding max-plus automata, the undecidability of the
containment problem was first proved in a seminal paper by Krob [28], by reduc-
tion from Hilbert’s tenth problem: given a diophantine equation, is there a solu-
tion with only integral values?

More recently, a new proof has been given by reduction from the halting
problem of two-counter machines [1].

More specifically, the two following problems are already undecidable:

— Given a max-plus automaton A with weights in Z, is it true that for all words
w, [A](w) > 0?7
— Given a max-plus automaton A with weights in N; is it true that for all words

w, [AJ(w) = fw]?

Restricted Classes. Given the negative results stated above, restricted classes
of weighted automata have been studied to get decidability. For probabilistic
automata one can cite hierarchical [7] and leaktight [16] automata, and both
for probabilistic and max-plus automata, classes of automata with restricted
ambiguity (see Sect. 3.4).

However, even for the classes of linearly ambiguous max-plus automata and
linearly ambiguous probabilistic automata the containment problem remains
undecidable (it is proved in [12] for probabilistic automata, previous proofs were
not attaining linear ambiguity - for max-plus automata, this could have already
been deduced from the original proof of Krob). In both cases, one can use the
reduction from the halting problem of a two counter machine.

Reduction from the Halting Problem of Two Counter Machines. Two counter
machines or Minsky machines have many equivalent definitions. We consider
here the following one: A two counter machine is a deterministic finite state
machine with two non-negative counters which can be incremented, decremented
and checked to be equal to 0. Transitions are of the form (p, update., q) where p
and ¢ are states of the machine, ¢ € {1,2} and update. can be equal to:

— inc., meaning that the value of the counter c is incremented,
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— dec. meaning that the value of the counter c¢ is decremented and that the
transition can only be taken if the value of the counter ¢ is not 0,

— check. meaning that the transition can only be taken if the value of the
counter c is 0.

Determinism is guaranteed if for every state p, every two distinct transitions
exiting from p are labelled by dec. and check. respectively for ¢ = 1 or ¢ = 2.
A run of the machine starts from an initial state, follows the unique transitions
that can be taken and halts when a final state is reached. If the unique run halts,
the machine is said to halt.

The halting problem, i.e. given a two-counter machine, does the unique run
halts? Is undecidable [31].

Given a two counter machine M, let X'y be the alphabet containing letters
a, b and one letter for each transition of the two-counter machine. The idea
is to encode the value of the first counter into the size of blocks of consecu-
tive occurrences of the letter a and the value of the second counter into the
size of blocks of consecutive occurrences of the letter b. More precisely, we say
that a word on X encodes a halting run of the machine if it is of the form
abiot a1 bty - - - ta'* bk where:

1. t1,tq9,...,t, are transitions of the machine, such that the sequence forms a
valid run with compatible states,

2. 19 =0, jo = 0, t; starts in the initial state,

t; ends in a final state,

4. for all ty, if ty = (p, update,, q), then (ip_1,4¢) and (js—1,j¢) have to be com-
patible with update.. For example, if update. = incy, then we should have
ig =ip_1+ 1 and jp_1 = jy. If update. = deco then we should have iy = iy_1,
je—1 # 0 and j, = jy—1 — 1. And similarly for the other cases.

@

Clearly, a two-counter machine halts if and only if there exist a halting word
on X pq. In the case of max-plus automata and probabilistic automata, one can
prove that:

Theorem 1 ([1]). Given a two-counter machine, one can construct a linearly
ambiguous mazx-plus automaton A such that a word w € Xy encodes a halting
run if and only if [A](w) < 0.

Theorem 2 ([12]). Given a two-counter machine, one can construct a linearly
ambiguous probabilistic automaton A such that a word w € X aq encodes a halting
run if and only if [A](w) > L.

This later theorem is also true for all the variants: >, <, <.

To prove the first result, one needs to construct a max-plus automaton which
will give high value (greater than 0) to any word that does not encode a halting
run. Or, in other words, a high value to any word that does not satisfy at least
one of the conditions 1-4 above. This is done by taking the union of several
max-plus automata, each giving high value to words not fulfilling one of the
conditions. Conditions 1-3 are regular conditions, and such a construction will
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be straightforward. Conditions 4 will be dealt with by a similar automaton as
the one given in Fig. 1.

For probabilistic automata, the idea is similar. However, the construction of
an automaton giving high value (greater than %) to any word encoding a halting
run, while ensuring the probabilistic condition is much more intricate than in
the max-plus case.

Remark 1. By considering a universal two-counter machine, which encodes ini-
tially any two-counter machine in the value of the first counter, these two results
prove that the containment problem is also undecidable on classes of max-plus
(resp. probabilistic) automata with a bounded number of states.

3.3 Equivalence

For max-plus automata, it is easy to see that the equivalence problem is as
difficult as the containment problem, and thus undecidable. This is due to the
use of the operation max in the semiring. Indeed, given two automata A and B,
one has that [A] < [B] if and only if [B] = max([A], [B]). The later function
is the semantics of a max-plus automaton constructible from A and B (just
taking the union). These problems are also undecidable even when restricting
the weights in N.

This is a very different situation for probabilistic automata, as the equivalence
is decidable (this is generally true when the domain of the semiring is a field).
Tzeng gave an algorithm in PTIME to solve this problem [41].

3.4 Decidability: Restricting the Ambiguity

On the positive side, containment and equivalence are decidable when restricting
sufficiently the ambiguity of the automaton:

Theorem 3 ([24,43]). The containment and equivalence problems are decidable
on the class of finitely ambiguous maz-plus automata.

For probabilistic automata, the situation is more complex and the decidabil-
ity of the containment problem on the class of finitely ambiguous probabilistic
automata is open. A restricted case is shown to be decidable in [12], and the
proof of this result is mathematically difficult.

Theorem 4 ([12]). If Schanuel’s conjecture holds then the containment problem
1s decidable for the class of finitely ambiguous probabilistic automata, provided
that at least one of the input automata is unambiguous.

4 Approximations

Approximations of the containment and equivalence problems have also been
studied, in the hope to get decidability, in particular considering algorithms
that do not always output the correct result.
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4.1 Probabilistic Case

Unfortunately, in the probabilistic case, even by allowing quite a lot of flexibility,
undecidability persists. Fijalkow gives in [15] a result which subsumes all the
results of undecidability for the problems mentioned above (emptiness, value 1
and isolation).

Theorem 5 ([15]). There exists no algorithm such that: given a probabilistic
automaton A,

— if supyes+[A](w) =1 then the algorithm outputs “Yes”,
— if supyes+[A](w) < %, then the algorithm outputs “No”.

4.2 Approximating Max-Plus and Min-Plus Automata

For max-plus and min-plus automata, the situation is slightly different and one
can obtain good approximations of their semantics provided the weights are
restricted to be non-negative.

Since we are now considering only non-negative weights, it is unclear whether
the results that are stated below for max-plus automata are also valid for min-
plus automata and vice-versa.

Approximate Comparison. The following result shows that an approximation
of the containment problem can be decided for min-plus automata. Given two
min-plus automata with weights in N, one can compare their semantics up to
any small multiplicative error.

Theorem 6 ([8]). There exist an algorithm which, given e > 0, given two min-
plus automata A and B with weights in N, has the following behaviour:

— if [A] < [B] then the algorithm outputs “Yes”,
— if there is a word w such that [A](w) > (1 + €)[B](w), then the algorithm
outputs “No”.

Note that in the remaining cases, the algorithm can answer “Yes” or “No”.
It is unclear whether a similar result holds for max-plus automata.

Boundedness and Asymptotic Descriptions. The semantics of a max-plus or min-
plus automaton A with weights in N can be represented as follows (let us suppose
that no word has weight —oo or 400 - it would be easy to reduce the problems
to this case).
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words of
weight p

words of
length ¢

We are interested in describing the functions Agyp and Ajns defined by:

Agyp : N— N A : N —= N
n— sup [A](w) n— inf  [A](w)

w st |lw|=n w s.t Jw|=n

The function Agy,p is easy to described for max-plus automata, and similarly
the function Aj,s is easy to describe for min-plus automata. However, the other
way around is much more difficult.

The boundedness problem asks whether A, is bounded for .4 a min-plus
automaton. This problem was proved to be decidable by Hashiguchi is 1982
[20,22,23].

Theorem 7 ([20]). The boundedness problem is decidable for min-plus
automata with weights in N.

The function A;,¢ can also be described for max-plus automata, and it was
proved that this function is asymptotically equivalent to n® for some rational «
in [0, 1]. Moreover, all the rationals « in [0, 1] can be attained by some max-plus
automata.

Theorem 8 ([9]). There exist an algorithm which, given a maz-plus automaton
A with weights in N, such that no word is mapped to —oco, computes the value

ae{Be€Q : Bel0,1]} such that: Ains = O(n®).

This result was applied in the automatic analysis of complexity of programs.
All the results given in this section were proved using the forest factorisation
theorem and the matrix representation given in Sect. 2.

5 Conclusion

The containment and equivalence problems have been studied intensively for
probabilistic and max-plus automata. Though many open questions remain.
First, cost register automata gives an alternative model for weighted automata.
Containment and equivalence could be studied on restricted classes of this model.



Containment and Equivalence of Weighted Automata 29

For probabilistic automata, the (un)decidability of the containment problem over
the class of finitely ambiguous automata is unknown. For max-plus and min-plus
automata, approximations should be generalised and it is unclear if the ones that
are decidable for max-plus automata are also decidable for min-plus automata
and vice-versa. Finally, generally speaking, complexity issues could be investi-
gated.
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1 Introduction

Finite-state automata over finite and infinite words provide an elegant method
for deciding linear arithmetic theories such as Presburger arithmetic or linear
real arithmetic. Automata-based decision procedures for arithmetic theories have
also been of remarkable practical use and have been implemented in tools such as
LASH [16] or TaPAS [10]. However, understanding the algorithmic properties of
automata-based decision procedures turned out to be surprisingly difficult and
tedious, see e.g. [3,6,9,19]. It took, for instance, 50 years to show that Biichi’s
seminal approach for deciding Presburger arithmetic using finite-state automata
runs in triply-exponential time and thus matches the upper bound of quantifier-
elimination algorithms [5,6]. Given this history, it is not surprising that, until
recently, the author was of the opinion that automata should better be avoided
when attempting to prove complexity upper bounds for arithmetic theories.
The author’s opinion drastically changed when appealing to automata-based
approaches recently allowed for settling long-standing open problems about the

This work is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 852769, ARIAT).

© Springer Nature Switzerland AG 2020

A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 33-43, 2020.
https://doi.org/10.1007/978-3-030-40608-0_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_3&domain=pdf
http://orcid.org/0000-0002-5452-936X
https://doi.org/10.1007/978-3-030-40608-0_3

34 C. Haase

complexity of the existential fragments of Biichi arithmetic and linear arith-
metic over p-adic fields, which were both shown NP-complete [8]. The NP upper
bounds are the non-trivial part in those results, since, unlike, for instance, in
existential Presburger arithmetic, the encoding of smallest solutions can grow
super-polynomially. The key result underlying both NP upper bounds is that
given two states of a finite-state automaton encoding the set of solutions of a
system of linear Diophantine equations, one can decide whether one state reaches
the other in NP in the size of the encoding of the system (and without explicitly
constructing the automaton).

This article gives a high-level yet sufficiently detailed outline of how the NP
upper bound for existential Biichi arithmetic can be obtained. We subsequently
show how the techniques used for the NP upper bound can be applied in order
to show decidability and complexity results for an extension of Presburger arith-
metic with valuation constraints. Those results are somewhat implicit in [8] but
seem worthwhile being explicated in written. We conclude with some observa-
tions and discussion of open problems.

2 Preliminaries

We denote by R the real numbers, by R, the non-negative reals, by Q the
rational numbers, by Z the integers, by N the non-negative integers, and by N
the positive integers. For integers a < b, we write [a, b] for the set {a,a+1,...,b}.
All numbers in this article are assumed to be encoded in binary. Given a matrix
A € Z"™*™ with components a;; € Z, 1 <i<m, 1 < j <mn, the (1,00)-norm of
A s [|[All1 00 := maxi?, 377 [aij|. For v € R™, we just write [|v]|oo.

2.1 Biichi Arithmetic

Throughout this article, let p > 2 be a base. Recall that Presburger arithmetic
is the first-order theory of the structure (N, 0, 1, +). Biichi arithmetic is the first-
order theory of the structure (N, 0,1, +,V,) obtained from endowing Presburger
arithmetic with a functional binary predicate V,, C N x N such that V,(z,u)
evaluates to true if and only if u is the largest power of p dividing x without
remainder. This definition leaves the case x = 0 ambiguous. A sensible approach
would be to introduce a special value co and to assert V,,(0,00) to hold, many
authors choose to assert V,,(0, 1), see e.g. [4]. However, the particular choice has
no impact on the sets of naturals definable in Biichi arithmetic.

Atomic formulas of Biichi arithmetic are either linear equations a - € = ¢ or
Biichi predicates V,(x,u). Note that the negation of a - = ¢ is equivalent to
a-x <cVa-x > c. Since we interpret variables over the non-negative integers,
we have a -« > ¢ =3dya-x —y = ¢+ 1. Consequently, we can, with no loss of
generality, assume that negation symbols only occur in front of V, predicates.
Now if we consider a negated literal =V, (x, u), we have that =V, (z, u) evaluates
to true if and only if either
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(i) w is a power of p but not the largest power of p dividing x; or
(ii) u is not a power of p.

The case (i) can easily be dealt with, as it is definable by
Fo V,(u,u) A Vy(x,v) A =(u=v)

Moreover, -V, (u, u) asserts that u is not a power of p. Thus, we may, without
loss of generality, assume that quantifier-free formulas of Biichi arithmetic are
positive Boolean combinations of atomic formulas a-x = ¢, V,,(z, u) and V,(u, u).

2.2 Finite-State Automata and p-automata

It is well known that Biichi arithmetic can elegantly be decided using finite-state
automata, see [2] for a detailed overview over this approach. In this section, we
give a generic definition of deterministic automata and then define p-automata
which are used for deciding Biichi arithmetic.

Definition 1. A deterministic automaton is a tuple A = (Q, X, 0, qo, F'), where

- @ is a set of states,

- XY is a finite alphabet,

- 0:Qx XY - QU{L}, where L & Q, is the transition function,
- qo € @ is the initial state, and

- F C Q is the set of final states.

Note that this definition allows automata to have infinitely many states and
to have partially defined transition functions (due to the presence of L in the
codomain of §).

For states ¢, € Q and u € ¥, we write ¢ — 7 if d(g,u) = r, and extend —
inductively to finite words such that for w € ¥* and v € X, ¢ =% r if there is
s € @ such that ¢ = s = r. Whenever ¢ — r, we say that A has a run on w
from q to r. We write ¢ = r if there is some w € X* such that ¢ — r.

A finite-state automaton A is a deterministic automaton with a finite set of
states that accepts finite words. The language of A is defined as

L(A) € {we X g0 % qp,q7 € F}.

We now introduce p-automata, which are deterministic automata whose lan-
guage encodes a set of non-negative integers in base p. Furthermore, we recall
the construction of the key gadget underlying the automata-based decision pro-
cedures for Biichi arithmetic which provides a representation of the set of non-
negative integer solutions of a system of linear equations as the language of a
finite-state p-automaton.

Formally, a p-automaton is a deterministic automaton over an alphabet
Xy = {0,1,...,p — 1}" for some nonnegative integer n. A finite word over
the alphabet X can naturally be seen as encoding an n-tuple of nonnegative
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integers in base p. There are two possible encodings: least significant digit first
and most-significant digit first. We only consider the latter msd-first encoding,
in which the most significant digit appears on the left. Formally, given a word
w=wug--ug € (X)), we define [w] € N

k
[w] =P

j=0

Note that for w = ¢, the empty word, we have [w] = 0.

A system S of linear Diophantine equations has the form S: A-x = ¢, where
A is an m x n matrix with integer coefficients, ¢ € Z™, and « = (z1, ... ,xn)T is
a vector of variables taking values in the nonnegative integers. We write [S] :=
{u € N*" : A - u = ¢} for the set of all nonnegative integer solutions of S. We
denote by (S) the size of the encoding of S, i.e., the number of symbols required
to represent S assuming binary encoding of all numbers.

Following Wolper and Boigelot [19], we define a p-automaton whose language
is the msd-first encoding all nonnegative integer solutions of systems of linear
equations.

Definition 2. Let S: A - x = ¢ be a system of linear equations with integer
coefficients such that A has dimension m X n. Corresponding to S, we define a
p-automaton A(S) := (Q, X}, 0,4, F) such that

7Q:Zm7
- 6(qu)=p-q+A-u forallqgeQ anduc I},
- g9 =0, and

- F={c}.

Although the automaton A(S) has infinitely many states, it defines a regular
language since there are only finitely many live states, i.e., states that can reach
the set I’ of accepting states. The reason is that no state ¢ € @ such that
lglloc > [|All1,00 and ||g|jsc > |l¢/l can reach an accepting state [1,8], and
hence @ can be restricted to a finite number of states. A rough upper bound on
the number #@ of states of A(S) is

#Q < 2™ - max(||All1,00, [I€]lo0)™ (1)

where m is the number of equations in the system S [8,19].
A key reachability property of the automaton A(S) is the following: Let
q,r € Z™ be states of A(S). Then for all ¥ € N and words w € (Z]}’})k we have

qﬂr@r:phq—i—A[[w]] (2)

From this characterization, it follows that the language of A(S) is an msd-first
encoding of the set of solutions of the system A - x = c¢. Indeed, choosing q as
0 and the final state ¢ as 7, we have that 0 - ¢ if and only if A - [w],, = ¢.

If we wish to emphasize the underlying system S of linear Diophantine equa-
tions of a p-automaton A(S) we annotate the transition relation with the sub-

script S and, e.g., write ¢ —g 7.



Approaching Arithmetic Theories with Finite-State Automata 37

2.3 Semi-linear Sets

Given a base vector b € N™ and a finite set of period vectors P = {p;,...,p,,} C
N™, define
L(b, P) := {b+z>\i P\ € N}.
i=1

We call L(b, P) a linear set and we say that a subset of N" is semi-linear if
it can be written as a finite union of linear sets. It is well-known that the set
of nonnegative integer solutions of a system of linear Diophantine equations is
a semi-linear set [7]. Also note that a linear set is definable by a formula of
existential Presburger arithmetic of linear size.

A special subclass of semi-linear sets are ultimately periodic sets, which are
an equivalent presentation of semi-linear sets in dimension one. A set M C N is
ultimately periodic if there is a threshold ¢t € N and a period ¢ € N such that for
all a,b € N with a,b >t and ¢« = b mod £ we have a € M if and only if b € M.

3 Existential Biichi Arithmetic

One of the main results of [8] is that deciding existential formulas of Biichi
arithmetic is NP-complete. A main obstacle is that the magnitude of satisfying
variable assignments may grow super-polynomially. It is known that for infinitely
many primes ¢ the multiplicative order ord,(2) of 2 modulo ¢ is at least /g [13].
For such a prime the predicate x is a strictly positive power of 2 that is congruent
to 1 modulo q can easily be expressed as a formula of existential Biichi arithmetic
of base 2:
&(x) dzdﬂyx >1AV(z,2) ANe=q-y+1

Observe that @(z) has a constant number of literals and that its length linear
in the bit-length of ¢, while the smallest satisfying assignment is @ = 2°da(2)
Thus satisfying assignments in existential Biichi arithmetic may have super-
polynomial bit-length in the formula size, even for a fixed base and a fixed
number of literals. This rules out the possibility of showing NP membership by a
non-deterministic guess-and-check algorithm. We nevertheless have the following
theorem:

Theorem 1 ([8]). Existential Biichi arithmetic is NP-complete.

Existential Biichi arithmetic inherits the NP lower bound from integer program-
ming when the number of variables is not fixed. While existential Presburger
arithmetic can be decided in polynomial time when the number of variables is
fixed [15], showing such a result for Biichi arithmetic would likely require major
breakthroughs in number theory, even when fixing the number of literals. Given
a,b,c € N, we can express discrete logarithm problems of the kind, does there
exist * € N such that a® = b mod ¢, in a similar way as above:

Iy Vo(z,z) N =c-y+b
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Such discrete logarithm problems are believed to possibly be even more difficult
than those underlying the Diffie-Hellman key exchange [14]. Of course, it may
well be that existential Biichi arithmetic with a fixed number of variables (and
even literals) is NP-hard. For instance, existential Presburger arithmetic with
a full divisibility predicate is NP-hard already for a fixed number of variables
and literals [11], shown via a reduction from a certain NP-complete problem
involving a special class of quadratic congruences [12].

We now give an exposition of the NP upper bound of Theorem 1 developed
in [8]. It clearly suffices to only consider quantifier-free formulas. Let &(x) be
a quantifier-free formula of Biichi arithmetic, and let us first consider the spe-
cial case of a system of linear Diophantine equations together with a single V},
assertion

d(x) LA x=cAV,(2,u),

where z and u are variables occurring in «. From Sect. 2.2, we know that we can
construct a p-automaton A(S) whose language encodes all solutions of S: A-x =
c. A key insight enabling showing decidability of Biichi arithmetic is that the
set of solutions of V,(z,u) for x > 0 can be encoded by a regular language over

the alphabet X, x X,:
Zp| [Zp \ {0} |0
0 1 0

Thus, in order to decide whether @(x) is satisfiable, we can check whether we
can find a run through the automaton A(S) that can be partitioned into three
parts. In the first part, z can have any digit and u has only zeros as digits. The
second part is a single transition in which x can have any non-zero digit and u
has digit one, and in the third part both = and u have digits zero.

To make this argument more formal, it will be useful to introduce a mild
generalization of the reachability relation for p-automata. Suppose we are given
a system of linear equations S: A -x = ¢ and an additional system of constraints
T: B-x = d. For all pairs of states q, r of the automaton A(S), write g ﬂsm T

if g %57 and B - [w] = d. Plainly q E’S[T] r if and only if

(g) 2 gnr (Z) ,

where S AT is the system of equations

or (3)e-(0)

With the new notation at hand, the observations made above now enable us
to reduce satisfiability of @(x) to three reachability queries in p-automata: @(x)
is satisfiable if and only if there are states d and e of A(S), and a € X, \ {0}
such that

0 i)S[u:O] d —S[z=a,u=1] € i>S’[Jc:u:O] C. (3)
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Note that by (1), the encoding of the binary representation of the states d and e
of A(S) is polynomial in the encoding of S, and hence both states can be guessed
in NP.

The reduction to reachability queries in p-automata is easily seen to gener-
alize to the case where we have an arbitrary number & of constraints V,,(z;, u;)
in @(x). To check satisfiability, all we have to do is to guess a relative order
between the u;, a; € X, \ {0}, states d; and e; of A(S), resulting in O(k) reach-
ability queries in p-automata. We illustrate the reachability queries for the case
in which u; > ;41 for all 1 <4 <k, the remaining cases follow analogously:

*
0 —S[u1,...,up=0] dl —S[z1=a1,u1=1,us,...,u,=0] €1

* *
7 S[w1,u1,..0,ul,=0] d> T S[za=az,u2=1,21,u1,us,...ux=0] €2 7 S[z1,z2,u1,...,us=0] """

.
e dy T S[r=ak,ur=1,21,....Tp—1,U1,...,up—1=0] €k T S[z1,...,zp,u1,...,ux=0] C (4)

Finally, we observe that the set of solutions of a literal =V}, (u, u), stating that
u is not a power of p, is encoded by the regular language given by the following
regular expression:

07107 = 07(5, \ {0,1}) 5 + 0°10°(5, \ {0}) X

Observe that this regular expression induces a decomposition similar to (3).
Hence, we can non-deterministically polynomially reduce deciding conjunctions
of the form

Az =ch \Vp(,uw)n N\ Vpluy, ) (5)

i€l jed

for finite index sets I, J to a linear number of state-to-state reachability queries
in p-automata implicitly given by systems of linear Diophantine equations. We
now invoke the following theorem:

Theorem 2 ([8]). Deciding state-to-state reachability in a p-automaton A(S)
given by a system of linear Diophantine equations S is in NP (with respect to
the encoding of S).

In particular, the NP upper bound does not require the explicit construction
of A(S). By application of this result and the arguments above, the NP upper
bound for existential Biichi arithmetic follows. Given a quantifier-free formula
&(x), as discussed in Sect.2.1, we can assume that @ is a positive Boolean
combination of literals @ - © = ¢, V,(x,u) and -V, (u, u). Hence we can guess in
NP a clause of the disjunctive normal form of @, which is of the form (5), and in
turn check in NP a series of