
Alberto Leporati
Carlos Martín-Vide
Dana Shapira
Claudio Zandron (Eds.)

LN
CS

 1
20

38

14th International Conference, LATA 2020
Milan, Italy, March 4–6, 2020
Proceedings

Language
and Automata Theory
and Applications

Lecture Notes in Computer Science 12038

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alberto Leporati • Carlos Martín-Vide •

Dana Shapira • Claudio Zandron (Eds.)

Language
and Automata Theory
and Applications
14th International Conference, LATA 2020
Milan, Italy, March 4–6, 2020
Proceedings

123

Editors
Alberto Leporati
University of Milano-Bicocca
Milan, Italy

Carlos Martín-Vide
Rovira i Virgili University
Tarragona, Spain

Dana Shapira
Ariel University
Ariel, Israel

Claudio Zandron
University of Milano-Bicocca
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-40607-3 ISBN 978-3-030-40608-0 (eBook)
https://doi.org/10.1007/978-3-030-40608-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8105-4371
https://orcid.org/0000-0003-1670-6000
https://orcid.org/0000-0002-2320-9064
https://orcid.org/0000-0002-2163-7639
https://doi.org/10.1007/978-3-030-40608-0

Preface

These proceedings contain the papers that should have been presented at the 14th
International Conference on Language and Automata Theory and Applications (LATA
2020) which was planned to be held in Milan, Italy, during March 4–6, 2020. The
conference was postponed due to the coronavirus pandemic and will be merged with
LATA 2021.

The scope of LATA is rather broad, including: algebraic language theory; algo-
rithms for semi-structured data mining; algorithms on automata and words; automata
and logic; automata for system analysis and program verification; automata networks;
automatic structures; codes; combinatorics on words; computational complexity;
concurrency and Petri nets; data and image compression; descriptional complexity;
foundations of finite state technology; foundations of XML; grammars (Chomsky
hierarchy, contextual, unification, categorial, etc.); grammatical inference, inductive
inference, and algorithmic learning; graphs and graph transformation; language vari-
eties and semigroups; language-based cryptography; mathematical and logical foun-
dations of programming methodologies; parallel and regulated rewriting; parsing;
patterns; power series; string processing algorithms; symbolic dynamics; term rewrit-
ing; transducers; trees, tree languages, and tree automata; and weighted automata.

LATA 2020 received 59 submissions. Each paper was reviewed by three Program
Committee members. There were also some external experts consulted. After a thor-
ough and vivid discussion phase, the committee decided to accept 26 papers (which
represents an acceptance rate of about 44%). The conference program included six
invited talks as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

December 2019 Alberto Leporati
Carlos Martín-Vide

Dana Shapira
Claudio Zandron

Organization

Program Committee

Jorge Almeida University of Porto, Portugal
Franz Baader Technical University of Dresden, Germany
Alessandro Barenghi Polytechnic University of Milan, Italy
Marie-Pierre Béal University of Paris-Est, France
Djamal Belazzougui CERIST, Algeria
Marcello Bonsangue Leiden University, The Netherlands
Flavio Corradini University of Camerino, Italy
Bruno Courcelle University of Bordeaux, France
Laurent Doyen ENS Paris-Saclay, France
Manfred Droste Leipzig University, Germany
Rudolf Freund Technical University of Vienna, Austria
Paweł Gawrychowski University of Wroclaw, Poland
Amélie Gheerbrant Paris Diderot University, France
Tero Harju University of Turku, Finland
Jeffrey Heinz Stony Brook University, USA
Lane A. Hemaspaandra University of Rochester, USA
Marcin Jurdziński University of Warwick, UK
Juhani Karhumäki University of Turku, Finland
Jarkko Kari University of Turku, Finland
Dexter Kozen Cornell University, USA
François Le Gall Kyoto University, Japan
Markus Lohrey University of Siegen, Japan
Parthasarathy Madhusudan University of Illinois at Urbana-Champaign, USA
Sebastian Maneth University of Bremen, Germany
Nicolas Markey Irisa, Rennes, France
Carlos Martín-Vide (Chair) Rovira i Virgili University, Spain
Giancarlo Mauri University of Milano-Bicocca, Italy
Victor Mitrana University of Bucharest, Romania
Paliath Narendran University at Albany, USA
Gennaro Parlato University of Molise, Italy
Dominique Perrin University of Paris-Est, France
Nir Piterman Chalmers University of Technology, Sweden
Sanguthevar Rajasekaran University of Connecticut, USA
Antonio Restivo University of Palermo, Italy
Wojciech Rytter University of Warsaw, Poland
Kai Salomaa Queen’s University, Canada
Helmut Seidl Technical University of Munich, Germany
William F. Smyth McMaster University, Canada

Jiří Srba Aalborg University, Denmark
Edward Stabler University of California, Los Angeles, USA
Benjamin Steinberg City University of New York, USA
Frank Stephan National University of Singapore, Singapore
Jan van Leeuwen Utrecht University, The Netherlands
Margus Veanes Microsoft Research, USA
Tomáš Vojnar Brno University of Technology, Czech Republic
Mikhail Volkov Ural Federal University, Russia
James Worrell University of Oxford, UK

Additional Reviewers

Berdinsky, Dmitry
Boigelot, Bernard
Boker, Udi
Bollig, Benedikt
Bosma, Wieb
Cacciagrano, Diletta Romana
Carpi, Arturo
Chaiken, Seth
Choudhury, Salimur
Dolce, Francesco
Erbatur, Serdar
Fahrenberg, Uli
Fici, Gabriele
Gagie, Travis
Ganardi, Moses
Giammarresi, Dora
Grabolle, Gustav
Guaiana, Giovanna
Havlena, Vojtěch
Holík, Lukás
Holt, Derek
Hunter, Tim
Jain, Chirag
Jančar, Petr
Janczewski, Wojciech
Jeż, Artur
K. S., Thejaswini
Keeler, Chris
Kiefer, Sandra
Lemay, Aurélien

Lengál, Ondrej
Lipták, Zsuzsanna
Loreti, Michele
Madonia, Maria
Maletti, Andreas
Mhaskar, Neerja
Mostarda, Leonardo
Muniz, Marco
Peltomäki, Jarkko
Popa, Alexandru
Rogers, John
Rosenkrantz, Daniel
Rowland, Eric
Saarela, Aleksi
Salmela, Leena
Sankur, Ocan
Sawada, Joe
Sciortino, Marinella
Semukhin, Pavel
Sernadas, Cristina
Shur, Arseny
Skrzypczak, Michał
Sohrabi, Mahmood
Staiger, Ludwig
Tesei, Luca
Tesson, Pascal
van Gool, Sam
Williams, Ryan
Winter, Sarah

viii Organization

Contents

Invited Papers

The New Complexity Landscape Around Circuit Minimization 3
Eric Allender

Containment and Equivalence of Weighted Automata: Probabilistic
and Max-Plus Cases . 17

Laure Daviaud

Approaching Arithmetic Theories with Finite-State Automata 33
Christoph Haase

Recompression: Technique for Word Equations and Compressed Data. 44
Artur Jeż

How to Prove that a Language Is Regular or Star-Free? 68
Jean-Éric Pin

Deciding Classes of Regular Languages: The Covering Approach 89
Thomas Place

Algebraic Structures

Nonstandard Cayley Automatic Representations for Fundamental Groups
of Torus Bundles over the Circle . 115

Dmitry Berdinsky and Prohrak Kruengthomya

hR; þ ;\; 1i Is Decidable in hR; þ ;\;Zi . 128
Alexis Bès and Christian Choffrut

Ordered Semiautomatic Rings with Applications to Geometry. 141
Ziyuan Gao, Sanjay Jain, Ji Qi, Philipp Schlicht, Frank Stephan,
and Jacob Tarr

Automata

Boolean Monadic Recursive Schemes as a Logical Characterization
of the Subsequential Functions . 157

Siddharth Bhaskar, Jane Chandlee, Adam Jardine,
and Christopher Oakden

Expressiveness and Conciseness of Timed Automata for the Verification
of Stochastic Models . 170

Susanna Donatelli and Serge Haddad

Windable Heads and Recognizing NL with Constant Randomness. 184
Mehmet Utkan Gezer

Alternating Finite Automata with Limited Universal Branching. 196
Chris Keeler and Kai Salomaa

Pebble-Intervals Automata and FO2 with Two Orders 208
Nadia Labai, Tomer Kotek, Magdalena Ortiz, and Helmut Veith

Limited Two-Way Deterministic Finite Automata with Advice 222
Ahmet Bilal Uçan

Complexity

On the Size of Depth-Two Threshold Circuits for the Inner Product
Mod 2 Function . 235

Kazuyuki Amano

Complexity Issues of String to Graph Approximate Matching. 248
Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis

Complexity of Automatic Sequences . 260
Hans Zantema

Grammars

Context-Sensitive Fusion Grammars Are Universal 275
Aaron Lye

Cyclic Shift on Multi-component Grammars . 287
Alexander Okhotin and Alexey Sorokin

Languages

The Automatic Baire Property and an Effective Property
of x-Rational Functions . 303

Olivier Finkel

The Power of Programs over Monoids in J . 315
Nathan Grosshans

Geometrically Closed Positive Varieties of Star-Free Languages 328
Ondřej Klíma and Peter Kostolányi

x Contents

Intersection and Union Hierarchies of Deterministic Context-Free
Languages and Pumping Lemmas . 341

Tomoyuki Yamakami

Trees and Graphs

On the Weisfeiler-Leman Dimension of Fractional Packing 357
Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler,
and Oleg Verbitsky

Input Strictly Local Tree Transducers . 369
Jing Ji and Jeffrey Heinz

Words and Codes

Lyndon Words versus Inverse Lyndon Words: Queries on Suffixes
and Bordered Words . 385

Paola Bonizzoni, Clelia De Felice, Rocco Zaccagnino,
and Rosalba Zizza

Reducing the Ambiguity of Parikh Matrices . 397
Jeffery Dick, Laura K. Hutchinson, Robert Mercaş,
and Daniel Reidenbach

On Collapsing Prefix Normal Words . 412
Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka,
and Danny Bøgsted Poulsen

Simplified Parsing Expression Derivatives . 425
Aaron Moss

Complete Variable-Length Codes: An Excursion into Word
Edit Operations. 437

Jean Néraud

Author Index . 449

Contents xi

Invited Papers

The New Complexity Landscape Around
Circuit Minimization

Eric Allender(B)

Rutgers University, New Brunswick, NJ 08854, USA
allender@cs.rutgers.edu

http://www.cs.rutgers.edu/~allender

Abstract. We survey recent developments related to the Minimum Cir-
cuit Size Problem.

Keywords: Complexity theory · Kolmogorov complexity · Minimum
Circuit Size Problem

1 Introduction

Over the past few years, there has been an explosion of interest in the Minimum
Circuit Size Problem (MCSP) and related problems. Thus the time seemed right
to provide a survey, describing the new landscape and offering a guidebook so
that one can easily reach the new frontiers of research in this area.

It turns out that this landscape is extremely unstable, with new features
arising at an alarming rate. Although this makes it a scientifically-exciting time,
it also means that this survey is doomed to be obsolete before it appears. It also
means that the survey is going to take the form of an “annotated bibliography”
with the intent to provide many pointers to the relevant literature, along with
a bit of context.

The title of this article is “The New Complexity Landscape around Circuit
Minimization” (emphasis added). This means that I will try to avoid repeating
too many of the observations that were made in an earlier survey I wrote on a
related topic [1]. Although that article was written only three years ago, several
of the open questions that were mentioned there have now been resolved (and
some of the conjectures that were mentioned have been overturned).

2 Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The focus
of meta-complexity is to determine how hard it is to determine how hard problems
are. Some of the most exciting recent developments in complexity theory have
been the result of meta-complexity-theoretic investigations.

Supported in part by NSF Grant CCF-1909216.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-40608-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_1&domain=pdf
http://orcid.org/0000-0002-0650-028X
https://doi.org/10.1007/978-3-030-40608-0_1

4 E. Allender

The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of
determining the circuit complexity of functions. The input consists of a pair (f, i),
where f is a bit string of length N = 2n representing the truth-table of a Boolean
function, and i ∈ N, and the problem is to determine if f has a circuit of size at
most i. The study of the complexity of MCSP is therefore the canonical meta-
complexity-theoretic question. Complexity theoreticians are fond of complaining
that the problems they confront (showing that computational problems are hard
to compute) are notoriously difficult. But is this really true? Is it hard to show
that a particular function is difficult to compute? This question can be made
precise by asking about the computational complexity of MCSP. (See also [44]
for a different approach.)

A small circuit is a short description of a large truth-table f ; thus it is no
surprise that investigations of MCSP have made use of the tools and terminology
of Kolmogorov complexity. In order to discuss some of the recent developments,
it will be necessary to review some of the different notions, and to establish the
notation that will be used throughout the rest of the article.

Let U be a Turing machine. We define KU (x) to be min{|d| : U(d) = x}.
Those readers who are familiar with Kolmogorov complexity1 will notice that
the definition here is for what is sometimes called “plain” Kolmogorov com-
plexity, although the notation KU (x) is more commonly used to denote what is
called “prefix-free” Kolmogorov complexity. This is intentional. In this survey,
the distinctions between these two notions will be blurred, in order to keep the
discussion on a high level. Some of the theorems that will be mentioned below
are only known to hold for the prefix-free variant, but the reader is encouraged
to ignore these finer distinctions here, and seek the more detailed information in
the cited references. For some Turing machines U , KU (x) will not be defined for
some x, and the values of KU (x) and KU ′(x) can be very different, for different
machines U and U ′. But the beauty of Kolmogorov complexity (and the appli-
cability of of the theory it gives rise to) derives from the fact that if U and U ′

are universal Turing machines, then KU (x) and KU ′(x) differ by at most O(1).
By convention, we select one particular universal machine U and define K(x) to
be equal to KU (x).

The function K is not computable. The simplest way to obtain a computable
function that shares many of the properties of K is to simply impose a time
bound, leading to the definition Kt(x) := min{|d| : U(d) = x in time t(|x|)}
where t is a computable function. Although it is useful in many contexts, Kt(x)
does not appear to be closely connected to the circuit size of x (where x is viewed
as the truth-table of a function). Thus we will frequently refer to two additional
resource-bounded Kolmogorov complexity measures, Kt and KT.

Levin defined Kt(x) to be min{|d| + log t : U(d) = x in time t} [32]; it
has the nice property that it can be used to define the optimal search strategy
to use, in searching for accepting computations on a nondeterministic Turing
machine. Kt(x) also corresponds to the circuit size of the function x, but not on

1 If the reader is not familiar with Kolmogorov complexity, then we recommend some
excellent books on this topic [17,33].

The New Complexity Landscape Around Circuit Minimization 5

“normal” circuits. As is shown in [2], Kt(x) is roughly the same as the size of
the smallest oracle circuit that computes x, where the oracle is a complete set
for EXP. (An oracle circuit has “oracle gates” in addition to the usual AND,
OR, and NOT gates; an oracle gate for oracle A has k wires leading into it, and
if those k wires encode a bitstring y of length k where y is in A, then the gate
outputs 1, otherwise it outputs 0.)

It is clearly desirable to have a version of Kolmogorov complexity that is
more closely related to “ordinary” circuit size, instead of oracle circuit size. This
is accomplished by defining KT(x) to be min{|d| + t : U(d, i) = xi in time t}.
(More precise definitions can be found in [2,10].)

We have now presented a number of different measures Kµ ∈ {K,Kt,Kt,KT}.
By analogy with MCSP, we can study Kµ in place of the “circuit size” measure,
and thus obtain various problems of the form MKµP = {(x, i) : Kµ(x) ≤ i}, such
as MKTP, MKtP and MKtP. If t(n) = nO(1), then MKtP is in NP, and several
theorems about MKTP yield corollaries about MKtP in this case. (See, e.g. [2]).
Similarly, if t(n) = 2n

c

for some c > 0, then MKtP is in EXP, and several
theorems about MKtP yield corollaries about MKtP for t in this range [2].

In order to highlight some of the recent developments, let us introduce some
notation that is somewhat imprecise and which is not used anywhere else, but
which will be convenient for our purposes. Let Kpoly serve as a shorthand for
Kt whenever t = nO(1), and similarly let Kexp serve as a shorthand for Kt

whenever t = 2n
c

for some c > 0. We will thus be referring to MKpolyP and
MKexpP. Doing so will enable us to avoid some confusing notation surround-
ing the name MINKT , which was introduced by Ko [31] to denote the set
{x, 1t, 1i : ∃d U(d) = x in at most t steps and |d| ≤ i}. That is, (x, i) ∈ MKpolyP
iff (x, 1n

c

, i) ∈ MINKT (where the time bound t(n) = nc). Hence these sets
have comparable complexity and results about MINKT can be rephrased in
terms of MKpolyP with only a small loss of accuracy. In particular, some recent
important results [19,20] are phrased in terms of MINKT , and as such they
deal with Kpoly complexity, and they are not really very closely connected with
the KT measure; the name MINKT was devised more than a decade before KT
was formulated. The reader who is interested in the details should refer to the
original papers for the precise formulation of the theorems. However, the view
presented here is “probably approximately correct”.

Frequently, theorems about MCSP and the various MKµP problems are stated
not in terms of exactly computing the circuit size or the complexity of a string,
but in terms of approximating these values. This is usually presented in terms of
two thresholds θ1 < θ2, where the desired solution is to say yes if the complexity
of x is less than θ1, and to say no if the complexity of x is greater than θ2, and
any answer is allowed if the complexity of x lies in the “gap” between θ1 and
θ2. In the various theorems that have been proved in this setting, the choice of
thresholds θ1 and θ2 is usually important, but in this article those details will
be suppressed, and all of these approximation problems will be referred to as
GapMCSP, GapMKtP, GapMKTP, etc.

6 E. Allender

At this point, the reader’s eyes may be starting to glaze over. It is natural to
wonder if we really need to have all of these different related notions. In particu-
lar, there does not seem to be much difference between MCSP and MKTP. Most
hardness results for MCSP actually hold for GapMCSP, and if the “gap” is large
enough, then MKTP is a solution to GapMCSP (and vice-versa). Furthermore
it has frequently been the case that a theorem about MCSP was first proved
for MKTP and then the result for MCSP was obtained as a corollary. However,
there is no efficient reduction known (in either direction) between MCSP and
MKTP, and there are some theorems that are currently known to hold only for
MKTP, although they are suspected to hold also for MCSP (e.g., [4,6,23]). Simi-
larly, some of the more intriguing recent developments can only be understood by
paying attention to the distinction between different notions of resource-bounded
Kolmogorov complexity. Thus it is worth making this investment in defining the
various distinct notions.

3 Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov
complexity were identified soon after computational learning theory emerged as
a field. After all, the goal of computational learning theory is to find a satisfactory
(and hence succinct) explanation of a large body of observed data. For instance,
in the 1980s and 1990s there was work [40,41] showing that it is NP-hard to find
“succinct explanations” that have size somewhat close to the optimal size, if these
“explanations” are required to be finite automata or various other restricted
formalisms. Ko studied this in a more general setting, allowing “explanations”
to be efficient programs (in the setting of time-bounded Kolmogorov complexity).

Thus Ko studied not only the problem of computing Kpoly(x) (where one can
consider x to be a completely-specified Boolean function), but also the problem
of finding the smallest description d such that U(d) agrees with a given list of
“yes instances” Y and a list of “no instances” N (that is, x can be considered as
a partial Boolean function, with many “don’t care” instances). Thus, following
[28], we can call this problem Partial-MKpolyP. In the setting that is most relevant
for computational learning theory, the partial function x is presented compactly
as separate lists Y and N , rather than as a string of length 2n over the alphabet
{0, 1, ∗}.

Ko showed in [31] that relativizing techniques would not suffice, in order to
settle the question of whether MKpolyP and Partial-MKpolyP are NP-complete.
That is, by giving the universal Turing machine U that defines Kolmogorov
complexity access to an oracle A, one obtains the problems MKpolyPA and
Partial-MKpolyPA, and these sets can either be NPA-complete or not, depending
on the choice of A.

Thus it is noteworthy that it has recently been shown that Partial-MCSP is
NP-complete under ≤P

m reductions [28]. I suspect (although I have not verified)
that the proof also establishes that Partial-MKTP is NP-complete under ≤P

m

reductions. One lesson to take from this is that KT and Kpoly complexity differ

The New Complexity Landscape Around Circuit Minimization 7

from each other in significant ways. There are other recent examples of related
phenomena, which will be discussed below.

There are other strong connections between MCSP and learning theory that
have come to light recently. Using MCSP as an oracle (or even using a set that
shares certain characteristics with MCSP) one can efficiently learn small circuits
that do a good job of explaining the data [11]. For certain restricted classes of
circuits, there are sets in P that one can use in place of MCSP to obtain learning
algorithms that don’t require an oracle [11]. This connection has been explored
further [12,36].

4 Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete
under ≤P

m reductions. In order to discuss other results about the complexity of
MCSP and related problems it is necessary to go into more detail about different
notions of reducibility.

Let C be either a class of functions or a class of circuits. The classes that will
concern us the most are the standard complexity classes L ⊆ P ⊆ NP as well as
the circuit classes (both uniform and nonuniform):

NC0
� AC0

� AC0[p] � NC1 ⊆ P/poly.

We refer the reader to the text by Vollmer [46] for background and more complete
definitions of these standard circuit complexity complexity classes, as well as for
a discussion of uniformity.

We say that A ≤C
m B if there is a function f ∈ C (or f computed by a circuit

family in C, respectively) such that x ∈ A iff f(x) ∈ B. We will make use of
≤L

m,≤AC0

m and ≤NC0

m reducibility. The more powerful notion of Turing reducibility
also plays an important role in this work. Here, C is a complexity class that
admits a characterization in terms of Turing machines or circuits, which can
be augmented with an “oracle” mechanism, either by providing a “query tape”
or “oracle gates”. We say that A ≤C

T B if there is a oracle machine in C (or
a family of oracle circuits in C) accepting A, when given oracle B. We make
use of ≤P/poly

T ,≤RP
T ,≤ZPP

T ,≤BPP
T ,≤P

T, and ≤NC1

T reducibility; instead of writing
A ≤P/poly

T B or A ≤ZPP
T B, we will sometimes write A ∈ PB/poly or A ∈ ZPPB.

Turing reductions that are “nonadaptive” – in the sense that the list of queries
that are posed on input x does not depend on the answers provided by the oracle
– are called truth table reductions. We make use of ≤P

tt reducibility.
Not much has changed, regarding what is known about the “hardness” of

MCSP, in the three years that have passed since my earlier survey [1]. Here is
what I wrote at that time:

Table 1 presents information about the consequences that will follow ifMCSP
is NP-complete (or even if it is hard for certain subclasses of NP). The table
is incomplete (since it does not mention the influential theorems of Kabanets

8 E. Allender

and Cai [30] describing various consequences if MCSP were complete under
a certain restricted type of ≤P

m reduction). It also fails to adequately give
credit to all of the papers that have contributed to this line of work, since –
for example – some of the important contributions of [35] have subsequently
been slightly improved [7,25]. But one thing should jump out at the reader
from Table 1: All of the conditions listed in Column 3 (with the exception
of “FALSE”) are widely believed to be true, although they all seem to be far
beyond the reach of current proof techniques.

Table 1. Summary of what is known about the consequences of MCSP being hard for
NP under different types of reducibility. If MCSP is hard for the class in Column 1
under the reducibility shown in Column 2, then the consequence in Column 3 follows.

Class C Reductions R Statement S Reference

TC0 ≤n1/3
m FALSE [35]

TC0 ≤AC0
m LTHa �⊆ io-SIZE[2Ω(n)] and P = BPP [7,35]

TC0 ≤AC0
m NP �⊆ P/poly [7]

P ≤L
m PSPACE �= P [7]

NP ≤L
m PSPACE �= ZPP [35]

NP ≤P
tt EXP �= ZPP [25]

aLTH is the linear-time analog of the polynomial hierarchy. Problems in
LTH are accepted by alternating Turing machines that make only O(1)
alternations and run for linear time.

It is significant that neither MCSP nor MKTP is NP-complete under ≤n1/3

m

reductions, since SAT and many other well-known problems are complete under
this very restrictive notion of reducibility – but it would be more satisfying to
know whether these problems can be complete under more widely-used reducibil-
ities such as ≤AC0

m . These sublinear-time reductions are so restrictive, that even
the PARITY problem is not ≤n1/3

m -reducible to MCSP or MKTP. In an attempt
to prove that PARITY is not ≤AC0

m -reducible to MKTP, we actually ended up
proving the opposite:

Theorem 1 [6]. MKTP is hard for DET under non-uniform NC0 reductions.
This also holds for MKtP and MKP.

Here, DET is the class of problems NC1-Turing-reducible to computing the deter-
minant. It includes the well-known complexity classes L and NL. This remains
the only theorem that shows hardness of MKµP problems under any kind of ≤C

m

reductions.
As a corollary of this theorem it follows that MKTP is not in AC0[p] for any

prime p. This was mentioned as an open question in [1] (see footnote 2 in [1]).
(An alternate proof was given in [23].) It remained open whether MCSP was in
AC0[p] until a lower bound was proved in [18].

The New Complexity Landscape Around Circuit Minimization 9

It is still open whether MCSP is hard for DET. The proof of the hardness
result in [6] actually carries over to a version of GapMKTP where the “gap” is
quite small. Thus one avenue for proving a hardness result for MCSP had seemed
to be to improve the hardness result of [6], so that it worked for a much larger
“gap”. This avenue was subsequently blocked, when it was shown that PARITY
is not AC0-reducible to GapMCSP (or to GapMKTP) for a moderate-sized “gap”
[8]. Thus, although it is still open whether MCSP is NP-complete under ≤AC0

m

reductions, we now know that GapMCSP is not NP-complete under this notion
of reducibility.

When a much larger “gap” is considered, it was shown in [6] that,
if cryptographically-secure one-way functions exist, then GapMCSP and
GapMKTP are NP-intermediate in the sense that neither problem is in P/poly,
and neither problem is complete for NP under P/poly-Turing reductions.

The strongest hardness results that are known for the MKµP problems in NP
remain the results of [3], where it was shown that MCSP, MKTP, and MKpolyP
are all hard for SZK under ≤BPP

T reductions. SZK is the class of problems that
have statistical zero knowledge interactive proofs; SZK contains most of the
problems that are assumed to be intractable, in order to build public-key cryp-
tosystems. Thus it is widely assumed that MCSP and related problems lie outside
of P/poly, and cryptographers hope that it requires nearly exponential-sized cir-
cuits. SZK also contains the Graph Isomorphism problem, which is ≤RP

T -reducible
to MCSP and MKTP. In [4], Graph Isomorphism (and several other problems)
were shown to be ≤ZPP

T reducible to MKTP; it remains unknown if this also holds
for MCSP. In fact, there is no interesting example of a problem A that is not
known to be in NP∩ coNP that has been shown to be ≤ZPP

T reducible to MCSP.
We close this section with a discussion of a very powerful notion of reducibil-

ity: SNP reductions. (Informally A is SNP reducible to B means that A is
(NP ∩ coNP)-reducible to B.) Hitchcock and Pavan have shown that MCSP is
indeed NP-complete under SNP reductions if NP∩ coNP contains problems that
require large circuits (which seems very plausible) [25]. It is interesting to note
that, back in the early 1990’s, Ko explicitly considered the possibility that com-
puting MKpolyP might be NP-complete under SNP reductions [31].

4.1 Completeness in EXP and Other Classes

There are problems “similar” to MCSP that reside in many complexity classes.
We can define MCSPA to be MCSP for oracle circuits with A-oracle gates. That
is, MCSPA = {(f, i) : f has an A-oracle circuit of size at most i}. When A is
complete for EXP, then MCSPA is thought of as being quite similar to MKtP.
Both of these problems, along with MKexpP, are complete for EXP under ≤P/poly

T

and ≤NP
T reductions [2].

It is still open whether either of MKtP or MCSPA is in P, and it had been
open if MKtP is in P for “small” exponential functions t such as t(n) = 2n/2.
But there is recent progress:

10 E. Allender

Theorem 2 [20]. MKexpP is complete for EXP under ≤P
T reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].
As a corollary, MKexpP is not in P. In fact, a much stronger result holds.

Let t be any superpolynomial function. Then the set of Kt-random strings {x :
Kt(x) < |x|} is immune to P (meaning: it has no infinite subset in P) [20]. The
proof does not seem to carry over to Kt complexity, highlighting a significant
difference between Kt and Kexp.

Although it remains open whether MKtP ∈ P, Hirahara does show that MKtP
is not in P-uniform ACC0, and in fact the set of Kt-random strings is immune
to P-uniform ACC0. Furthermore, improved immunity results for the Kt-random
strings are in some sense possible if and only if better algorithms for CircuitSAT
can be devised for larger classes of circuits.

Oliveira has defined a randomized version of Kt complexity, which is conjec-
tured to be nearly the same as Kt, but for which he is able to prove unconditional
intractability results [37].

MCSPQBF was known to be complete for PSPACE under ≤ZPP
T reductions [2].

In more recent work, for various subclasses C of PSPACE, when A is a suitable
complete problem for C, then MCSPA has been shown to be complete for C under
≤BPP

T reductions [29]. Crucially, the techniques used by [29] (and, indeed, by any
of the authors who had proved hardness results for MCSPA previously for various
A) failed to work for any A in the polynomial hierarchy. We will return to this
issue in the following section.

In related work, it was shown [6] that the question of whether MKTPA is hard
for DET under a type of uniform AC0 reductions is equivalent to the question
of whether DSPACE(n) contains any sets that require exponential-size A-oracle
circuits. Furthermore, this happens if and only if PARITY reduces to MKTPA.
Note that this condition is more likely to be true if A is easy, than if A is complex;
it is false if A is complete for PSPACE, and it is probably true if A = ∅. Thus,
although MKTPQBF is almost certainly more complex than MKTP (the former
is PSPACE-complete, and the latter is in NP), a reasonably-large subclass of P
probably reduces to MKTP via these uniform AC0 reductions, whereas hardly
anything AC0-reduces to MKTPQBF. The explanation for this is that a uniform
AC0 reduction cannot formulate any useful queries to a complex oracle, whereas
it (probably) can do so for a simpler oracle.

4.2 NP-Hardness

Recall from the previous section that there were no NP-hardness results known
for any problem of the form MCSPA where A is in the polynomial hierarchy.

This is still true; however, there is some progress to report. Hirahara has
shown that computing the “conditional” complexity Kpoly(x|y) relative to SAT
(i.e., given (x, y), finding the length of the shortest description d such that
USAT(d, y) = x in time nc) is NP-hard under ≤P

tt reductions [20].
It might be more satisfying to remove the SAT oracle, and have a hardness

result for computing Kpoly(x|y) – but Hirahara shows that this can’t be shown

The New Complexity Landscape Around Circuit Minimization 11

to be hard for NP (or even hard for ZPP) under ≤P
tt reductions without first

separating EXP from ZPP.
In a similar vein, if one were to show that MCSP or MKTP (or MCSPA or

MKTPA for any set A ∈ EXP) is hard for NP under ≤P
tt reductions, then one

will have shown that ZPP 	= EXP [20].
A different kind of NP-hardness result for conditional Kolmogorov complexity

was proved recently by Ilango [27]. In [2], conditional KT complexity KT(x|y) was
studied by making the string y available to the universal Turing machine U as
an “oracle”. Thus it makes sense to consider a “conditional complexity” version
of MCSP by giving a string y available to a circuit via oracle gates. This problem
was formalized and shown to be NP-complete under ≤ZPP

T reductions [27].
Many of the functions that we compute daily produce more than one bit of

output. Thus it makes sense to study the circuit size that is required in order
to compute such functions. This problem is called Multi-MCSP in [28], where
it is shown to be NP-complete under ≤RP

T reductions. It will be interesting to
see how the complexity of this problem varies, as the number of output bits of
the functions under consideration shrinks toward one (at which point it becomes
MCSP).

It has been known since the 1970’s that computing the size of the smallest
DNF expression for a given truth-table is NP-complete. (A simple proof, and
a discussion of the history can be found in [5].) However, it remains unknown
what the complexity is of finding the smallest depth-three circuit for a given
truth table. (Some very weak intractability results for minimizing constant-depth
circuits can be found in [5], giving subexponential reductions from the problem
of factoring Blum integers.) The first real progress on this front was reported
in [22], giving an NP-completeness result (under ≤P

m reductions) for a class of
depth three circuits (with MOD gates on the bottom level). Ilango proved that
computing the size of the smallest depth-d formula for a truth-table lies outside
of AC0[p] for any prime p [27], and he has now followed that up with a proof
that computing the size of the smallest depth-d formula is NP-complete under
≤RP

T reductions [26]. Note that a constant-depth circuit can be transformed into
a formula with only a polynomial blow-up; thus in many situations we are able
to ignore the distinction between circuits and formulas in the constant-depth
realm. However, the techniques employed in [26,27] are quite sensitive to small
perturbations in the size, and hence the distinction between circuits and formulae
is important here. Still, this is dramatic progress on a front where progress has
been very slow.

5 Average Case Complexity, One-Way Functions

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [30], in
a paper that was motivated in part by the study of Natural Proofs [42], and
which called attention to the fact that if MCSP is easy, then there are no
cryptographically-secure one-way functions. In the succeeding decades, there has
been speculation about whether the converse implication also holds. That is, can
one base cryptography on assumptions about the complexity of MCSP?

12 E. Allender

First, it should be observed that, in some sense, MCSP is very easy “on
average”. For instance the hardness results that we have (such as reducing SZK
to MCSP) show that the “hard instances” of MCSP are the ones where we want
to distinguish between n-ary functions that require circuits of size 2n/n2 (the
“NO” instances) and those that have circuits of size at most 2n/3 (the “YES”
instances). However, an algorithm that simply says “no” on all inputs will give
the correct answer more than 99% of the time.

Thus Hirahara and Santhanam [23] chose to study a different notion of heuris-
tics for MCSP, where algorithms must always give an answer in {Yes, No, I don’t
know}, where the algorithm never gives an incorrect answer, and the algorithm is
said to perform well “on average” if it only seldom answers “I don’t know”. They
were able to show unconditionally that MCSP is hard on average in this sense for
AC0[p] for any prime p, and to show that certain well-studied hypotheses imply
that MCSP is hard on average.

More recently, Santhanam [43] has formulated a conjecture (which would
involve too big of a digression to describe more carefully here), which – if true
– would imply that a version of MCSP is hard on average in this sense if and
only if cryptographically-secure one-way functions exist. That is, Santhanam’s
conjecture provides a framework for believing that one can base cryptography
on the average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-
case complexity? Hirahara [19] showed that GapMCSP has no solution in BPP
if and only if a version of MCSP is hard on average. A related result stated in
terms of Kpoly appears in the same paper. These results attracted considerable
attention, because prior work had indicated that such worst-case-to-average-case
reductions would be impossible to prove using black-box techniques. Additional
work has given further evidence that the techniques of [19] are inherently non-
black-box [24].

6 Complexity Classes and Noncomputable Complexity
Measures

The title of this section is the same as the title of Sect. 4 of the survey that I
wrote three years ago [1]. In that section, I described the work that had been
done, studying the classes of sets that are reducible to the (non-computable) set
of Kolmogorov-random strings RK , and to MKP, including the reasons why it
seemed reasonable to conjecture that BPP and NEXP could be characterized in
terms of different types of reductions to the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have
been disproved (barring some extremely unlikely complexity class collapses).
Taken together, the papers [21,24], and [20] give a much better understanding
of the classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that PSPACE ⊆ PRK , and NEXP ⊆ NPRK . Hirahara
[20] has now shown NEXP ⊆ EXPNP ⊆ PRK .

The New Complexity Landscape Around Circuit Minimization 13

This same paper also gives a surprising answer to Open Question 4.6 of [1],
in showing that Quasipolynomial-time nonadaptive reductions to RK suffice to
capture NP (and also some other classes in the polynomial hierarchy).

7 Magnification

Some of the most important and exciting developments relating to MCSP and
related problems deal with the emerging study of “hardness magnification”. This
is the phenomenon whereby seemingly very modest lower bounds can be “ampli-
fied” or “magnified” and thereby be shown to imply superpolynomial lower
bounds. I was involved in some of the early work in this direction [9] (which
did not involve MCSP), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved
for MCSP that essentially match the strongest lower bounds that we have for any
problems in NP [16]. There is now a significant body of work, showing that slight
improvements to those bounds, or other seemingly-attainable lower bounds for
GapMKtP or GapMCSP or related problems, would yield dramatic complexity
class separations [12–15,34,38,39,45].

This would be a good place to survey this work, except that an excellent
survey already appears in [12]. Igor Carboni Oliveira has also written some
notes entitled “Advances in Hardness Magnification” related to a talk he gave
at the Simons Institute in December, 2019, available on his home page. These
notes and [12] describe in detail the reasons that this approach seems to avoid
the Natural Proofs barrier identified in the work of Razborov and Rudich [42].
But they also describe some potential obstacles that need to be overcome, before
this approach can truly be used to separate complexity classes.

References

1. Allender, E.: The complexity of complexity. In: Day, A., Fellows, M., Greenberg,
N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Com-
plexity. LNCS, vol. 10010, pp. 79–94. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-50062-1 6

2. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.:
Power from random strings. SIAM J. Comput. 35, 1467–1493 (2006). https://doi.
org/10.1137/050628994

3. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256,
2–8 (2017). https://doi.org/10.1016/j.ic.2017.04.004. Special issue for MFCS 2014

4. Allender, E., Grochow, J., van Melkebeek, D., Morgan, A., Moore, C.: Minimum
circuit size, graph isomorphism and related problems. SIAM J. Comput. 47, 1339–
1372 (2018). https://doi.org/10.1137/17M1157970

5. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.E.: Minimizing dis-
junctive normal form formulas and AC0 circuits given a truth table. SIAM J.
Comput. 38(1), 63–84 (2008). https://doi.org/10.1137/060664537

6. Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimiza-
tion and related problems. ACM Trans. Comput. Theory (ToCT) 11(4), 27:1–27:27
(2019). https://doi.org/10.1145/3349616

https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1137/17M1157970
https://doi.org/10.1137/060664537
https://doi.org/10.1145/3349616

14 E. Allender

7. Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem.
Comput. Complex. 26(2), 469–496 (2017). https://doi.org/10.1007/s00037-016-
0124-0

8. Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size.
In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 13–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 2

9. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility.
J. ACM 57, 14:1–14:36 (2010). https://doi.org/10.1145/1706591.1706594

10. Allender, E., Koucký, M., Ronneburger, D., Roy, S.: The pervasive reach of
resource-bounded Kolmogorov complexity in computational complexity theory. J.
Comput. Syst. Sci. 77, 14–40 (2010). https://doi.org/10.1016/j.jcss.2010.06.004

11. Carmosino, M., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algo-
rithms from natural proofs. In: 31st Conference on Computational Complexity,
CCC. LIPIcs, vol. 50, pp. 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.10

12. Chen, L., Hirahara, S., Oliveira, I.C., Pich, J., Rajgopal, N., Santhanam, R.:
Beyond natural proofs: hardness magnification and locality. In: 11th Innovations
in Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 151, pp. 70:1–
70:48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/
10.4230/LIPIcs.ITCS.2020.70

13. Chen, L., Jin, C., Williams, R.: Hardness magnification for all sparse NP languages.
In: Symposium on Foundations of Computer Science (FOCS), pp. 1240–1255 (2019)

14. Chen, L., Jin, C., Williams, R.: Sharp threshold results for computational com-
plexity (2019). Manuscript

15. Chen, L., McKay, D.M., Murray, C.D., Williams, R.R.: Relations and equivalences
between circuit lower bounds and Karp-Lipton theorems. In: 34th Computational
Complexity Conference (CCC). LIPIcs, vol. 137, pp. 30:1–30:21. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.CCC.
2019.30

16. Cheraghchi, M., Kabanets, V., Lu, Z., Myrisiotis, D.: Circuit lower bounds for
MCSP from local pseudorandom generators. In: 46th International Colloquium
on Automata, Languages, and Programming, (ICALP). LIPIcs, vol. 132, pp. 39:1–
39:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/
10.4230/LIPIcs.ICALP.2019.39

17. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
New York (2010). https://doi.org/10.1007/978-0-387-68441-3

18. Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.:
AC0[p] lower bounds against MCSP via the coin problem. In: 46th International
Colloquium on Automata, Languages, and Programming, (ICALP). LIPIcs, vol.
132, pp. 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019).
https://doi.org/10.4230/LIPIcs.ICALP.2019.66

19. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In:
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
247–258 (2018). https://doi.org/10.1109/FOCS.2018.00032

20. Hirahara, S.: Kolmogorov-randomness is harder than expected (2019). Manuscript
21. Hirahara, S.: Unexpected power of random strings. In: 11th Innovations in The-

oretical Computer Science Conference, ITCS. LIPIcs, vol. 151, pp. 41:1–41:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.
4230/LIPIcs.ITCS.2020.41

https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/978-3-030-19955-5_2
https://doi.org/10.1145/1706591.1706594
https://doi.org/10.1016/j.jcss.2010.06.004
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.4230/LIPIcs.ICALP.2019.39
https://doi.org/10.4230/LIPIcs.ICALP.2019.39
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.ITCS.2020.41
https://doi.org/10.4230/LIPIcs.ITCS.2020.41

The New Complexity Landscape Around Circuit Minimization 15

22. Hirahara, S., Oliveira, I.C., Santhanam, R.: NP-hardness of minimum circuit size
problem for OR-AND-MOD circuits. In: 33rd Conference on Computational Com-
plexity, CCC. LIPIcs, vol. 102, pp. 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CCC.2018.5

23. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its
variants. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79,
pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://
doi.org/10.4230/LIPIcs.CCC.2017.7

24. Hirahara, S., Watanabe, O.: On nonadaptive reductions to the set of random strings
and its dense subsets. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 26, p. 25 (2019)

25. Hitchcock, J.M., Pavan, A.: On the NP-completeness of the minimum circuit
size problem. In: Conference on Foundations of Software Technology and The-
oretical Computer Science (FST&TCS). LIPIcs, vol. 45, pp. 236–245. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/
LIPIcs.FSTTCS.2015.236

26. Ilango, R.: Personal communication (2019)
27. Ilango, R.: Approaching MCSP from above and below: Hardness for a conditional

variant and AC0[p]. In: 11th Innovations in Theoretical Computer Science Confer-
ence, ITCS. LIPIcs, vol. 151, pp. 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.34

28. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of minimizing circuits and com-
munication (2019). Manuscript

29. Impagliazzo, R., Kabanets, V., Volkovich, I.: The power of natural properties as
oracles. In: 33rd Conference on Computational Complexity, CCC. LIPIcs, vol. 102,
pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://
doi.org/10.4230/LIPIcs.CCC.2018.7

30. Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on
Theory of Computing (STOC), pp. 73–79 (2000). https://doi.org/10.1145/335305.
335314

31. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

32. Levin, L.A.: Randomness conservation inequalities; information and independence
in mathematical theories. Inf. Control 61(1), 15–37 (1984). https://doi.org/10.
1016/S0019-9958(84)80060-1

33. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations. Texts in Computer Science, 4th edn. Springer (2019). https://doi.org/10.
1007/978-3-030-11298-1

34. McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 1215–1225 (2019). https://doi.org/10.1145/3313276.3316396

35. Murray, C., Williams, R.: On the (non) NP-hardness of computing circuit com-
plexity. Theory Comput. 13(4), 1–22 (2017). https://doi.org/10.4086/toc.2017.
v013a004

36. Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower
bounds and pseudorandomness. In: 32nd Conference on Computational Complex-
ity, CCC. LIPIcs, vol. 79, pp. 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4230/LIPIcs.CCC.2017.18

16 E. Allender

37. Oliveira, I.C.: Randomness and intractability in Kolmogorov complexity. In: 46th
International Colloquium on Automata, Languages, and Programming, (ICALP).
LIPIcs, vol. 132, pp. 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.32

38. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-
the-art lower bounds. In: 34th Computational Complexity Conference (CCC).
LIPIcs, vol. 137, pp. 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.27

39. Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In:
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
65–76 (2018). https://doi.org/10.1109/FOCS.2018.00016

40. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.
ACM 35(4), 965–984 (1988). https://doi.org/10.1145/48014.63140

41. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993). https://doi.org/10.
1145/138027.138042

42. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55, 24–35 (1997).
https://doi.org/10.1006/jcss.1997.1494

43. Santhanam, R.: Pseudorandomness and the minimum circuit size problem. In:
11th Innovations in Theoretical Computer Science Conference (ITCS), LIPIcs, vol.
151, pp. 68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020).
https://doi.org/10.4230/LIPIcs.ITCS.2020.68

44. Santhanam, R.: Why are proof complexity lower bounds hard? In: Symposium on
Foundations of Computer Science (FOCS), pp. 1305–1324 (2019)

45. Tal, A.: The bipartite formula complexity of inner-product is quadratic. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 23, p. 181 (2016)

46. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer,
New York Inc. (1999). https://doi.org/10.1007/978-3-662-03927-4

https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1145/48014.63140
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/138027.138042
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1007/978-3-662-03927-4

Containment and Equivalence
of Weighted Automata: Probabilistic

and Max-Plus Cases

Laure Daviaud(B)

CitAI, Department of Computer Science, SMCSE, City University of London,
London, UK

laure.daviaud@city.ac.uk

Abstract. This paper surveys some results regarding decision problems
for probabilistic and max-plus automata, such as containment and equiva-
lence. Probabilistic and max-plus automata are part of the general family
of weighted automata, whose semantics are maps from words to real val-
ues. Given two weighted automata, the equivalence problem asks whether
their semantics are the same, and the containment problem whether one
is point-wise smaller than the other one. These problems have been stud-
ied intensively and this paper will review some techniques used to show
(un)decidability and state a list of open questions that still remain.

Keywords: Weighted automata · Probabilistic automata · Max-plus
automata · Equivalence problem · Containment problem · Decidability

1 Introduction

Weighted automata have been introduced by Schützenberger in 1961 in [37] as a
quantitative generalisation of non deterministic finite-state automata. While non
deterministic finite automata have a Boolean behaviour (each word is mapped
to 0 or 1), weighted automata allow a more fine grained output: each word is
mapped to an element in a chosen semiring. This allows for example to map
words with real values, modelling probabilities or costs. They have been inten-
sively studied both:

1. in a general setting, i.e. giving frameworks and results that are valid for any
semiring,

2. and on particular instances, for example when focusing on the classic semiring
R with the standard addition and product operations.

For any semiring, a weighted automaton can be viewed as a graph with
labelled transitions carrying weights, or as a morphism from words to matrices
(both definitions are given in Sect. 2). Recently, Alur introduced another equiv-
alent model, closer to the implementation level: the cost register automata [2,3].

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 17–32, 2020.
https://doi.org/10.1007/978-3-030-40608-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_2&domain=pdf
http://orcid.org/0000-0002-9220-7118
https://doi.org/10.1007/978-3-030-40608-0_2

18 L. Daviaud

These have engendered a lot of research works, in particular regarding ques-
tions around minimisation. Weighted automata also admit an equivalent logic
[14] introduced by Droste and Gastin and while this paper focuses on weighted
automata on words, they have also been generalised to other structures such as
trees [4,29,38].

Specific instances that have been particularly studied are the probabilistic
automata on the standard semiring R with operations + and × (the exact def-
inition is given in Sect. 2) [35]; and the max-plus (resp. min-plus) automata on
the semiring R with operations max (resp. min) and + [40].

They have been applied in image compression [25], natural language process-
ing [6,32,33], model-checking of probabilistic systems [30,42], automatic analysis
of complexity of programs [9], study of discrete event systems [18], and in the
proofs of results in tropical algebra [10] and automata theory [21,39,40].

One of the first natural question which arises when dealing with computa-
tional models is the equivalence problem: in our case, this would ask whether
two distinct weighted automata map words to the same values? Since proba-
bilistic and max-plus automata compute functions from words to real values,
another natural problem is to wonder whether the function computed by a given
probabilistic (resp. max-plus) automaton is point-wise smaller than the function
computed by another probabilistic (resp. max-plus) automaton. This is called
the containment problem. These problems are highly dependant on the semir-
ing under consideration and have originally been tackled using very different
techniques for probabilistic and max-plus automata. We will however present
one technique that can be used in both cases to show the undecidability of the
containment problem for both max-plus and probabilistic automata which are
linearly ambiguous.

Another mainstream topic that have been intensively studied is the one of
determinisation. Weighted automata are not determinisable in general: there
exist for example max-plus automata that do not have an equivalent determin-
istic one. This question is of particular interest for max-plus automata and is
linked to the minimisation of cost register automata [11,13]. Deciding whether
a given max-plus automaton is determinisable is still open. This topic is out of
the scope of this paper but the interested reader is referred to [17,26,27].

In the rest of this paper, we will explain a way to prove undecidability of
the containment problem for probabilistic and max-plus automata and discuss
restricted classes as well as approximations to obtain more positive results and
decidability in some cases.

2 Weighted Automata

In this section, we start by recalling basic notions used to define weighted
automata. The paper should be self-contained but the reader is referred to [36]
for a full exposition on the topic.

Containment and Equivalence of Weighted Automata 19

2.1 Preliminaries

Semiring. Given a set M , a binary operation · on M and an element 1 of
M (called neutral element), (M, ·, 1) is called a monoid if · is associative and
1 · x = x · 1 = x for all x ∈ M . The monoid is said to be commutative if
x · y = y · x for all x, y ∈ M .

A semiring (S,⊕,⊗, 0, 1) is a set S equipped with two binary operations such
that (S,⊕, 0) is a commutative monoid, (S,⊗, 1) is a monoid, 0 ⊗ x = x ⊗ 0 = 0
and x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and (y ⊕ z) ⊗ x = (y ⊗ x) ⊕ (z ⊗ x) for all
x, y, z ∈ S. In the rest of the paper, we will simply use S to denote the semiring
(S,⊕,⊗, 0, 1). For x in S, we will use the standard notation xk to denote the
product x ⊗ · · · ⊗ x

︸ ︷︷ ︸

k times

.

Matrices. Given a semiring S, we consider the set of matrices with coefficients
in S. Given a matrix M , M [i][j] denotes the coefficient at row i and column
j of the matrix. For two matrices M and M ′, one defines the product M · M ′

provided the number of columns of M is equal to the number of rows of M ′

(denoted by N) by:

(M · M ′)[i][j] =
⊕

k=1,...,N

(M [i][k] ⊗ M ′[k][j])

Given a positive integer N , the set of square matrices of dimension N × N
with coefficients in S is denoted by MN (S) or simply MN when S is clear
from context. The set MN equipped with the binary operation · is a monoid
with neutral element the identity matrix (the matrix with 1 on the diagonal
coefficients and 0 everywhere else).

Words. In the rest of the paper, Σ denotes a finite alphabet, Σ∗ the set of words
on this alphabet, and ε the empty word. For a word w, |w| denotes the length
of w.

Notation. Given a finite set Q, |Q| denotes the number of elements in Q.

2.2 Graphical Definition

We give now a first definition of weighted automata.

Definition 1. A weighted automaton over a semiring S and alphabet Σ is a
tuple (Q,QI , QF , T) where:

– Q is a finite set of states,
– QI ⊆ Q is the set of initial states,
– QF ⊆ Q is the set of final states,
– T is the transition function Q × Σ × Q → S.

20 L. Daviaud

Given p, q ∈ Q and a ∈ Σ, whenever T (p, a, q) �= 0, we say that (p, a, q) is a
transition, T (p, a, q) is its weight and we write:

p
a:T (p,a,q)−−−−−−→ q

A run on a word w = w1w2 . . . wn where for all i = 1, . . . , n, wi ∈ Σ is a
sequence of compatible transitions:

q0
w1:m1−−−−→ q1

w2:m2−−−−→ q2
w3:m3−−−−→ · · · wn:mn−−−−→ qn

The weight of a run is the product of the weights of the transitions in the run
i.e.

⊗n
i=1 mi. A run is said to be accepting if q0 ∈ QI and qn ∈ QF . The weight

of a word in the automaton is the sum ⊕ of the weights of the accepting runs on
w, and 0 if there is no such run. By convention, the weight of the empty word is
1 if there exist a state which is both initial and final and 0 otherwise.

Definition 2. The semantics of a weighted automaton A over the semiring S
and alphabet Σ is the function which maps every word of Σ∗ to its weight in S.
It is denoted by [[A]].

Variants. There exist several alternative definitions for weighted automata. A
classic one allows also initial and final weights: each state q is associated with
two elements iq and fq from S (possibly 0). The weight of a run:

q0
w1:m1−−−−→ q1

w2:m2−−−−→ q2
w3:m3−−−−→ · · · wn:mn−−−−→ qn

is then the product iq0 ⊗ m1 ⊗ · · · ⊗ mn ⊗ fqn
and the weight of a word w the

sum of the weights of the runs on w.
Adding initial and final weights does not increase the expressive power of

weighted automata: the set of semantics is the same. The problems we are con-
sidering in this paper are also not affected by this: equivalence or containment
will be decidable for both variants or for none.

However, these considerations will have to be taken into account when dealing
with determinisation issues, but this is not in the scope of this paper.

Example 1. Figure 1 shows a weighted automaton on a semiring S and alphabet
{a, b, t}. It has two initial states q1 and q2 and two final states q3 and q4. Let
w be the word ai0bj0tai1bj1t · · · taikbjk for some non negative integers i0, j0, . . .
There are k accepting runs on w: each accepting run corresponds to read one
of the occurrences of t from q2 to q3 and has weight mi� ⊗ ni�+1 for some � ∈
{0, . . . , k − 1}. The weight of w is then:

⊕

�∈{0,...,k−1}
mi� ⊗ ni�+1

Containment and Equivalence of Weighted Automata 21

q1 q2 q3 q4

a, b, t : 1

t : 1

a : m

b : 1
t : 1

a : n

b, t : 1

a, b, t : 1

Fig. 1. Weighted automaton

Ambiguity. The notion of ambiguity that applies for finite non deterministic
automata applies here too: A weighted automaton is said to be unambiguous is
there is at most one accepting run on every word, and finitely ambiguous if there
is an integer L such that for all words w, there are at most L accepting runs
labelled by w. Finally, a run is polynomially ambiguous if there is a polynomial
P such that for all words w, there are at most P (|w|) accepting runs labelled by
w, and linearly ambiguous whenever this polynomial is of degree 1.

2.3 Matrix Representation

An equivalent way to see weighted automata is by using a matrix representation.

Definition 3 (equivalent definition). A weighted automaton over a semiring
S and alphabet Σ is a tuple (N, I, F, μ) where N is an integer and:

– I is a set of matrices with 1 row and N columns, and coefficients in {0, 1},
– F is a set of matrices with N rows and 1 column, and coefficients in {0, 1},
– μ is a map Σ → MN (S).

The semantics of a weighted automaton is a function mapping each word
w = w1w2 · · · wn, where for all i, wi ∈ Σ to:

I · μ(w1) · μ(w2) · · · μ(wn) · F

Note that the later is an element of S. There are easy translations to go from
the graphical definitions to the matrix one and conversely:

– starting from (Q,QI , QF , T), set N = |Q|, and denote by q1, q2, . . . , qN the
states in Q. Set I with 1 row and N columns, defined by I[1][j] = 1 if qj ∈ QI

and 0 otherwise. Similarly, set F with N rows and 1 column, defined by
F [j][1] = 1 if qj ∈ QF and 0 otherwise. Finally, set μ such that for all a ∈ Σ,
μ(a)[i][j] = T (qi, a, qj). It is easy to check that the semantics of the two
weighted automata are the same. In particular, for any word w, μ(w)[i][j] is
the sum of the weights of the runs labelled by w going from qi to qj .

– Similarly, starting from (N, I, F, μ), set Q = {q1, q2, . . . , qN}, QI = {qj |
I[1][j] = 1}, QF = {qj | F [j][1] = 1} and T (qi, a, qj) = μ(a)[i][j] for all
a ∈ Σ, i, j ∈ {1, . . . , N}.

22 L. Daviaud

Example 2. The weighted automaton from Fig. 1 is represented by the following
set of matrices:

μ(a) =

⎛

⎜

⎜

⎝

1 0 0 0
0 m 0 0
0 0 n 0
0 0 0 1

⎞

⎟

⎟

⎠
μ(b) =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

⎞

⎟

⎟

⎠
μ(t) =

⎛

⎜

⎜

⎝

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞

⎟

⎟

⎠

I =
(

1 1 0 0
)

F =

⎛

⎜

⎜

⎝

0
0
1
1

⎞

⎟

⎟

⎠

2.4 Classic Examples

In the rest of the paper, we will consider two classic examples of weighted
automata: max-plus automata and probabilistic automata.

Non Deterministic Finite Automata (or Boolean Automata). Non deterministic
finite automata can be seen as weighted automata over the Boolean semiring.
They can also be seen as weighted automata in any semiring as follows: for a
given Boolean automaton B, and a semiring S, construct the weighted automaton
A by giving weight 1 to transitions in B (and 0 to non-existing transitions). It is
easy to see that for every word w, w is accepted by B if and only if [[A]](w) = 1
([[A]](w) = 0 otherwise).

Max-Plus Automata. The semiring {R ∪ {−∞},max,+,−∞, 0} is called the
max-plus semiring. Max-plus automata are weighted automata over the max-
plus semiring. Alternatively, the min-plus semiring is {R∪{+∞},min,+,+∞, 0}
and min-plus automata are weighted automata over this semiring. Given a max-
plus automaton A, it is easy to construct a min-plus automaton B by changing
all the weights to their opposite to obtain [[A]] = −[[B]]. Most of the results
later on given for max-plus automata can thus be easily translated for min-
plus automata. However, when restricting the domain of the semiring to N, the
translation does not work anymore and for the results which are only valid in
N, one has to be more careful when translating from max-plus to min-plus and
vice-versa.

Probabilistic Automata. Probabilistic automata are weighted automata over the
semiring {R,+,×, 0, 1} with the extra restriction that all the weights on transi-
tions are in [0, 1] and for a given state q and a given letter a of Σ, the weights
of the transitions exiting q labelled by a have to sum to 1.

Example 3. Let us consider the weighted automaton given in Fig. 1 and the word
w defined in Example 1. For S taken as the max-plus semiring, the weight of w
would be:

max
�∈{0,...,k−1}

(i�m + i�+1n)

Containment and Equivalence of Weighted Automata 23

For S taken as the semiring {R,+,×, 0, 1}, the weight of w would be:
∑

�∈{0,...,k−1}
mi�ni�+1

The later is not a probabilistic automaton, as for example there are two transi-
tions labelled by t each of weight 1 exiting q1.

3 Decision Problems

Many decision problems arise naturally when considering weighted automata.
We will consider two of them (and their variants): the equivalence and the con-
tainment problems. Generally speaking, the decidability of these problems highly
depends on the semiring under consideration, and there is no general results that
would work for the whole class of weighted automata. However, we will see that
some techniques can be used both for max-plus and for probabilistic automata.

3.1 The Equivalence and Containment Problems

The equivalence and containment problems are stated as follows:

Equivalence problem: Given two weighted automata A and B
over an alphabet Σ and a semiring S, is it true that [[A]] = [[B]]?

This problem has been known to be decidable for Boolean automata since
the 50’s and for probabilistic automata since the 70’s. Surprisingly at the time,
it was proved to be undecidable for max-plus automata, in the 90’s.

Containment problem: Given two weighted automata A and B
over an alphabet Σ and a semiring S whose domain is equipped
with an order ≤, is it true that for all w ∈ Σ∗, [[A]](w) ≤ [[B]](w)?

This problem is the counterpart of the containment problem for Boolean
automata: given two non deterministic finite automata A and B, is it true that
the regular language accepted by A is a subset of the regular language accepted
by B.

Several other problems of the same kind have been investigated: the bound-
edness problem for min-plus automata, the isolation, emptiness and value 1
problems for probabilistic automata. They will be discussed later on.

3.2 Undecidability of the Containment Problem

The containment problem is undecidable both for max-plus and for probabilistic
automata and we will explain here one common idea used in specific proofs of
this result in both cases.

24 L. Daviaud

Probabilistic Automata. The more specific emptiness problem:

Given a probabilistic automaton A and a constant c, is it true that
for all w ∈ Σ, [[A]](w) < c?

was proved to be undecidable by Paz in 1971 [34]. Other similar problems were
also proved to be undecidable like the c-threshold problem [5]:

Given a probabilistic automaton A and a constant c, does there
exist ε > 0 such that for all words w, |[[A]](w) − c| ≥ ε?

and the value 1 problem [19]:

Given a probabilistic automaton A and a constant c, for all ε > 0,
does there exist a word w such that [[A]](w) ≥ 1 − ε?

Max-Plus Automata. Regarding max-plus automata, the undecidability of the
containment problem was first proved in a seminal paper by Krob [28], by reduc-
tion from Hilbert’s tenth problem: given a diophantine equation, is there a solu-
tion with only integral values?

More recently, a new proof has been given by reduction from the halting
problem of two-counter machines [1].

More specifically, the two following problems are already undecidable:

– Given a max-plus automaton A with weights in Z, is it true that for all words
w, [[A]](w) ≥ 0?

– Given a max-plus automaton A with weights in N, is it true that for all words
w, [[A]](w) ≥ |w|?

Restricted Classes. Given the negative results stated above, restricted classes
of weighted automata have been studied to get decidability. For probabilistic
automata one can cite hierarchical [7] and leaktight [16] automata, and both
for probabilistic and max-plus automata, classes of automata with restricted
ambiguity (see Sect. 3.4).

However, even for the classes of linearly ambiguous max-plus automata and
linearly ambiguous probabilistic automata the containment problem remains
undecidable (it is proved in [12] for probabilistic automata, previous proofs were
not attaining linear ambiguity - for max-plus automata, this could have already
been deduced from the original proof of Krob). In both cases, one can use the
reduction from the halting problem of a two counter machine.

Reduction from the Halting Problem of Two Counter Machines. Two counter
machines or Minsky machines have many equivalent definitions. We consider
here the following one: A two counter machine is a deterministic finite state
machine with two non-negative counters which can be incremented, decremented
and checked to be equal to 0. Transitions are of the form (p, updatec, q) where p
and q are states of the machine, i ∈ {1, 2} and updatec can be equal to:

– incc, meaning that the value of the counter c is incremented,

Containment and Equivalence of Weighted Automata 25

– decc meaning that the value of the counter c is decremented and that the
transition can only be taken if the value of the counter c is not 0,

– checkc meaning that the transition can only be taken if the value of the
counter c is 0.

Determinism is guaranteed if for every state p, every two distinct transitions
exiting from p are labelled by decc and checkc respectively for c = 1 or c = 2.
A run of the machine starts from an initial state, follows the unique transitions
that can be taken and halts when a final state is reached. If the unique run halts,
the machine is said to halt.

The halting problem, i.e. given a two-counter machine, does the unique run
halts? Is undecidable [31].

Given a two counter machine M, let ΣM be the alphabet containing letters
a, b and one letter for each transition of the two-counter machine. The idea
is to encode the value of the first counter into the size of blocks of consecu-
tive occurrences of the letter a and the value of the second counter into the
size of blocks of consecutive occurrences of the letter b. More precisely, we say
that a word on ΣM encodes a halting run of the machine if it is of the form
ai0bj0t1a

i1bj1t2 · · · tkaikbjk where:

1. t1, t2, . . . , tk are transitions of the machine, such that the sequence forms a
valid run with compatible states,

2. i0 = 0, j0 = 0, t1 starts in the initial state,
3. tk ends in a final state,
4. for all t�, if t� = (p, updatec, q), then (i�−1, i�) and (j�−1, j�) have to be com-

patible with updatec. For example, if updatec = inc1, then we should have
i� = i�−1 + 1 and j�−1 = j�. If updatec = dec2 then we should have i� = i�−1,
j�−1 �= 0 and j� = j�−1 − 1. And similarly for the other cases.

Clearly, a two-counter machine halts if and only if there exist a halting word
on ΣM. In the case of max-plus automata and probabilistic automata, one can
prove that:

Theorem 1 ([1]). Given a two-counter machine, one can construct a linearly
ambiguous max-plus automaton A such that a word w ∈ ΣM encodes a halting
run if and only if [[A]](w) < 0.

Theorem 2 ([12]). Given a two-counter machine, one can construct a linearly
ambiguous probabilistic automaton A such that a word w ∈ ΣM encodes a halting
run if and only if [[A]](w) > 1

2 .

This later theorem is also true for all the variants: ≥, <, ≤.
To prove the first result, one needs to construct a max-plus automaton which

will give high value (greater than 0) to any word that does not encode a halting
run. Or, in other words, a high value to any word that does not satisfy at least
one of the conditions 1–4 above. This is done by taking the union of several
max-plus automata, each giving high value to words not fulfilling one of the
conditions. Conditions 1–3 are regular conditions, and such a construction will

26 L. Daviaud

be straightforward. Conditions 4 will be dealt with by a similar automaton as
the one given in Fig. 1.

For probabilistic automata, the idea is similar. However, the construction of
an automaton giving high value (greater than 1

2) to any word encoding a halting
run, while ensuring the probabilistic condition is much more intricate than in
the max-plus case.

Remark 1. By considering a universal two-counter machine, which encodes ini-
tially any two-counter machine in the value of the first counter, these two results
prove that the containment problem is also undecidable on classes of max-plus
(resp. probabilistic) automata with a bounded number of states.

3.3 Equivalence

For max-plus automata, it is easy to see that the equivalence problem is as
difficult as the containment problem, and thus undecidable. This is due to the
use of the operation max in the semiring. Indeed, given two automata A and B,
one has that [[A]] ≤ [[B]] if and only if [[B]] = max([[A]], [[B]]). The later function
is the semantics of a max-plus automaton constructible from A and B (just
taking the union). These problems are also undecidable even when restricting
the weights in N.

This is a very different situation for probabilistic automata, as the equivalence
is decidable (this is generally true when the domain of the semiring is a field).
Tzeng gave an algorithm in PTIME to solve this problem [41].

3.4 Decidability: Restricting the Ambiguity

On the positive side, containment and equivalence are decidable when restricting
sufficiently the ambiguity of the automaton:

Theorem 3 ([24,43]). The containment and equivalence problems are decidable
on the class of finitely ambiguous max-plus automata.

For probabilistic automata, the situation is more complex and the decidabil-
ity of the containment problem on the class of finitely ambiguous probabilistic
automata is open. A restricted case is shown to be decidable in [12], and the
proof of this result is mathematically difficult.

Theorem 4 ([12]). If Schanuel’s conjecture holds then the containment problem
is decidable for the class of finitely ambiguous probabilistic automata, provided
that at least one of the input automata is unambiguous.

4 Approximations

Approximations of the containment and equivalence problems have also been
studied, in the hope to get decidability, in particular considering algorithms
that do not always output the correct result.

Containment and Equivalence of Weighted Automata 27

4.1 Probabilistic Case

Unfortunately, in the probabilistic case, even by allowing quite a lot of flexibility,
undecidability persists. Fijalkow gives in [15] a result which subsumes all the
results of undecidability for the problems mentioned above (emptiness, value 1
and isolation).

Theorem 5 ([15]). There exists no algorithm such that: given a probabilistic
automaton A,

– if supw∈Σ∗ [[A]](w) = 1 then the algorithm outputs “Yes”,
– if supw∈Σ∗ [[A]](w) ≤ 1

2 , then the algorithm outputs “No”.

4.2 Approximating Max-Plus and Min-Plus Automata

For max-plus and min-plus automata, the situation is slightly different and one
can obtain good approximations of their semantics provided the weights are
restricted to be non-negative.

Since we are now considering only non-negative weights, it is unclear whether
the results that are stated below for max-plus automata are also valid for min-
plus automata and vice-versa.

Approximate Comparison. The following result shows that an approximation
of the containment problem can be decided for min-plus automata. Given two
min-plus automata with weights in N, one can compare their semantics up to
any small multiplicative error.

Theorem 6 ([8]). There exist an algorithm which, given ε > 0, given two min-
plus automata A and B with weights in N, has the following behaviour:

– if [[A]] ≤ [[B]] then the algorithm outputs “Yes”,
– if there is a word w such that [[A]](w) ≥ (1 + ε)[[B]](w), then the algorithm

outputs “No”.

Note that in the remaining cases, the algorithm can answer “Yes” or “No”.
It is unclear whether a similar result holds for max-plus automata.

Boundedness and Asymptotic Descriptions. The semantics of a max-plus or min-
plus automaton A with weights in N can be represented as follows (let us suppose
that no word has weight −∞ or +∞ - it would be easy to reduce the problems
to this case).

28 L. Daviaud

words of
length �

words of
weight p

[[A]]inf

[[A]]sup

We are interested in describing the functions Asup and Ainf defined by:

Asup : N → N Ainf : N → N

n �→ sup
w s.t |w|=n

[[A]](w) n �→ inf
w s.t |w|=n

[[A]](w)

The function Asup is easy to described for max-plus automata, and similarly
the function Ainf is easy to describe for min-plus automata. However, the other
way around is much more difficult.

The boundedness problem asks whether Asup is bounded for A a min-plus
automaton. This problem was proved to be decidable by Hashiguchi is 1982
[20,22,23].

Theorem 7 ([20]). The boundedness problem is decidable for min-plus
automata with weights in N.

The function Ainf can also be described for max-plus automata, and it was
proved that this function is asymptotically equivalent to nα for some rational α
in [0, 1]. Moreover, all the rationals α in [0, 1] can be attained by some max-plus
automata.

Theorem 8 ([9]). There exist an algorithm which, given a max-plus automaton
A with weights in N, such that no word is mapped to −∞, computes the value
α ∈ {β ∈ Q : β ∈ [0, 1]} such that: Ainf = Θ(nα).

This result was applied in the automatic analysis of complexity of programs.
All the results given in this section were proved using the forest factorisation

theorem and the matrix representation given in Sect. 2.

5 Conclusion

The containment and equivalence problems have been studied intensively for
probabilistic and max-plus automata. Though many open questions remain.
First, cost register automata gives an alternative model for weighted automata.
Containment and equivalence could be studied on restricted classes of this model.

Containment and Equivalence of Weighted Automata 29

For probabilistic automata, the (un)decidability of the containment problem over
the class of finitely ambiguous automata is unknown. For max-plus and min-plus
automata, approximations should be generalised and it is unclear if the ones that
are decidable for max-plus automata are also decidable for min-plus automata
and vice-versa. Finally, generally speaking, complexity issues could be investi-
gated.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-
1 37

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013,
pp. 13–22. IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.65

3. Alur, R., Raghothaman, M.: Decision problems for additive regular functions.
CoRR abs/1304.7029 (2013). http://arxiv.org/abs/1304.7029

4. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Com-
put. Sci. 18, 115–148 (1982). https://doi.org/10.1016/0304-3975(82)90019-6

5. Bertoni, A., Mauri, G., Torelli, M.: Some recursively unsolvable problems relating
to isolated cutpoints in probabilistic automata. In: Salomaa, A., Steinby, M. (eds.)
ICALP 1977. LNCS, vol. 52, pp. 87–94. Springer, Heidelberg (1977). https://doi.
org/10.1007/3-540-08342-1 7

6. Buchsbaum, A.L., Giancarlo, R., Westbrook, J.R.: On the determinization of
weighted finite automata. SIAM J. Comput. 30(5), 1502–1531 (2000). https://
doi.org/10.1137/S0097539798346676

7. Chadha, R., Sistla, A.P., Viswanathan, M., Ben, Y.: Decidable and expressive
classes of probabilistic automata. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol.
9034, pp. 200–214. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46678-0 13

8. Colcombet, T., Daviaud, L.: Approximate comparison of distance automata. In:
Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects
of Computer Science, STACS 2013, Kiel, Germany, 27 February–2 March 2013,
vol. 20, pp. 574–585. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2013). https://doi.org/10.4230/LIPIcs.STACS.2013.574

9. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014.
LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44522-8 18

10. Daviaud, L., Guillon, P., Merlet, G.: Comparison of max-plus automata and joint
spectral radius of tropical matrices. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.
(eds.) 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, Aalborg, Denmark, 21–25 August 2017, vol. 83, pp. 19:1–
19:14. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://
doi.org/10.4230/LIPIcs.MFCS.2017.19

https://doi.org/10.1007/978-3-642-24372-1_37
https://doi.org/10.1007/978-3-642-24372-1_37
https://doi.org/10.1109/LICS.2013.65
http://arxiv.org/abs/1304.7029
https://doi.org/10.1016/0304-3975(82)90019-6
https://doi.org/10.1007/3-540-08342-1_7
https://doi.org/10.1007/3-540-08342-1_7
https://doi.org/10.1137/S0097539798346676
https://doi.org/10.1137/S0097539798346676
https://doi.org/10.1007/978-3-662-46678-0_13
https://doi.org/10.1007/978-3-662-46678-0_13
https://doi.org/10.4230/LIPIcs.STACS.2013.574
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.4230/LIPIcs.MFCS.2017.19
https://doi.org/10.4230/LIPIcs.MFCS.2017.19

30 L. Daviaud

11. Daviaud, L., Jecker, I., Reynier, P.-A., Villevalois, D.: Degree of sequentiality of
weighted automata. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 215–230. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54458-7 13

12. Daviaud, L., Jurdzinski, M., Lazic, R., Mazowiecki, F., Pérez, G.A., Worrell, J.:
When is containment decidable for probabilistic automata? In: Chatzigiannakis, I.,
Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, 9–13 July 2018, Prague,
Czech Republic, vol. 107, pp. 121:1–121:14. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.121

13. Daviaud, L., Reynier, P., Talbot, J.: A generalised twinning property for minimi-
sation of cost register automata. In: Grohe, M., Koskinen, E., Shankar, N. (eds.)
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2016, 5–8 July 2016, New York, NY, USA, pp. 857–866. ACM (2016).
https://doi.org/10.1145/2933575.2934549

14. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007). https://doi.org/10.1016/j.tcs.2007.02.055

15. Fijalkow, N.: Undecidability results for probabilistic automata. SIGLOG News
4(4), 10–17 (2017). https://dl.acm.org/citation.cfm?id=3157833

16. Fijalkow, N., Gimbert, H., Kelmendi, E., Oualhadj, Y.: Deciding the value 1 prob-
lem for probabilistic leaktight automata. Logical Methods Comput. Sci. 11(2)
(2015). https://doi.org/10.2168/LMCS-11(2:12)2015

17. Filiot, E., Jecker, I., Lhote, N., Pérez, G.A., Raskin, J.: On delay and regret deter-
minization of max-plus automata. In: 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp.
1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.2017.8005096

18. Gaubert, S., Mairesse, J.: Modeling and analysis of timed petri nets using heaps
of pieces. IEEE Trans. Automat. Contr. 44(4), 683–697 (1999). https://doi.org/
10.1109/9.754807

19. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and
undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 44

20. Hashiguchi, K.: Limitedness theorem on finite automata with distance func-
tions. J. Comput. Syst. Sci. 24(2), 233–244 (1982). https://doi.org/10.1016/0022-
0000(82)90051-4

21. Hashiguchi, K.: Algorithms for determining relative star height and starheight. Inf.
Comput. 78(2), 124–169 (1988). https://doi.org/10.1016/0890-5401(88)90033-8

22. Hashiguchi, K.: Improved limitedness theorems on finite automata with distance
functions. Theor. Comput. Sci. 72(1), 27–38 (1990). https://doi.org/10.1016/0304-
3975(90)90044-I

23. Hashiguchi, K.: New upper bounds to the limitedness of distance automata. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 324–335. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 139

24. Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem
for finitely ambiguous finance automata. IJAC 12(3), 445 (2002). https://doi.org/
10.1142/S0218196702000845

25. Ii, K.C., Kari, J.: Image compression using weighted finite automata. Comput.
Graph. 17(3), 305–313 (1993). https://doi.org/10.1016/0097-8493(93)90079-0

https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.4230/LIPIcs.ICALP.2018.121
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.1016/j.tcs.2007.02.055
https://dl.acm.org/citation.cfm?id=3157833
https://doi.org/10.2168/LMCS-11(2:12)2015
https://doi.org/10.1109/LICS.2017.8005096
https://doi.org/10.1109/9.754807
https://doi.org/10.1109/9.754807
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1016/0022-0000(82)90051-4
https://doi.org/10.1016/0022-0000(82)90051-4
https://doi.org/10.1016/0890-5401(88)90033-8
https://doi.org/10.1016/0304-3975(90)90044-I
https://doi.org/10.1016/0304-3975(90)90044-I
https://doi.org/10.1007/3-540-61440-0_139
https://doi.org/10.1142/S0218196702000845
https://doi.org/10.1142/S0218196702000845
https://doi.org/10.1016/0097-8493(93)90079-0

Containment and Equivalence of Weighted Automata 31

26. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In: Albers, S., Marion, J. (eds.) 26th International
Symposium on Theoretical Aspects of Computer Science, Proceedings, STACS
2009, Freiburg, Germany, 26–28 February 2009, vol. 3, pp. 589–600. LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009). https://doi.org/10.
4230/LIPIcs.STACS.2009.1850

27. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004). https://doi.org/10.1016/j.tcs.2004.02.049

28. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 101–
112. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9 67

29. Kuich, W.: Formal power series over trees. In: Bozapalidis, S. (ed.) Proceedings of
the 3rd International Conference Developments in Language Theory, DLT 1997,
Thessaloniki, Greece, 20–23 July 1997, pp. 61–101. Aristotle University of Thessa-
loniki (1997)

30. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 3

31. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967). Prentice-Hall Series in Automatic Computation

32. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

33. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recog-
nition. Comput. Speech Lang. 16(1), 69–88 (2002). https://doi.org/10.1006/csla.
2001.0184

34. Paz, A.: Introduction to Probabilistic Automata (Computer Science and Applied
Mathematics). Academic Press Inc., Cambridge (1971)

35. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963). https://
doi.org/10.1016/S0019-9958(63)90290-0

36. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521844253

37. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961). https://doi.org/10.1016/S0019-9958(61)80020-X

38. Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1),
113–142 (1994). https://doi.org/10.1016/0304-3975(94)90271-2

39. Simon, I.: Limited subsets of a free monoid. In: 19th Annual Symposium on Foun-
dations of Computer Science, Ann Arbor, Michigan, USA, 16–18 October 1978, pp.
143–150. IEEE Computer Society (1978). https://doi.org/10.1109/SFCS.1978.21

40. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil,
M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 107–120.
Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0017135

41. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilisti-
cautomata. SIAM J. Comput. 21(2), 216–227 (1992). https://doi.org/10.1137/
0221017

https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1007/3-540-55719-9_67
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/S0019-9958(63)90290-0
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/0304-3975(94)90271-2
https://doi.org/10.1109/SFCS.1978.21
https://doi.org/10.1007/BFb0017135
https://doi.org/10.1137/0221017
https://doi.org/10.1137/0221017

32 L. Daviaud

42. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21–23 October 1985, pp. 327–338. IEEE Computer Society
(1985). https://doi.org/10.1109/SFCS.1985.12

43. Weber, A.: Finite-valued distance automata. Theor. Comput. Sci. 134(1), 225–251
(1994). https://doi.org/10.1016/0304-3975(94)90287-9

https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1016/0304-3975(94)90287-9

Approaching Arithmetic Theories
with Finite-State Automata

Christoph Haase(B)

University College London, London, UK
c.haase@ucl.ac.uk

Abstract. The automata-theoretic approach provides an elegant
method for deciding linear arithmetic theories. This approach has
recently been instrumental for settling long-standing open problems
about the complexity of deciding the existential fragments of Büchi
arithmetic and linear arithmetic over p-adic fields. In this article, which
accompanies an invited talk, we give a high-level exposition of the
NP upper bound for existential Büchi arithmetic, obtain some derived
results, and further discuss some open problems.

Keywords: Presburger arithmetic · Büchi arithmetic · Reachability ·
Automatic structures

1 Introduction

Finite-state automata over finite and infinite words provide an elegant method
for deciding linear arithmetic theories such as Presburger arithmetic or linear
real arithmetic. Automata-based decision procedures for arithmetic theories have
also been of remarkable practical use and have been implemented in tools such as
LASH [16] or TaPAS [10]. However, understanding the algorithmic properties of
automata-based decision procedures turned out to be surprisingly difficult and
tedious, see e.g. [3,6,9,19]. It took, for instance, 50 years to show that Büchi’s
seminal approach for deciding Presburger arithmetic using finite-state automata
runs in triply-exponential time and thus matches the upper bound of quantifier-
elimination algorithms [5,6]. Given this history, it is not surprising that, until
recently, the author was of the opinion that automata should better be avoided
when attempting to prove complexity upper bounds for arithmetic theories.

The author’s opinion drastically changed when appealing to automata-based
approaches recently allowed for settling long-standing open problems about the

This work is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 852769, ARiAT).

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 33–43, 2020.
https://doi.org/10.1007/978-3-030-40608-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_3&domain=pdf
http://orcid.org/0000-0002-5452-936X
https://doi.org/10.1007/978-3-030-40608-0_3

34 C. Haase

complexity of the existential fragments of Büchi arithmetic and linear arith-
metic over p-adic fields, which were both shown NP-complete [8]. The NP upper
bounds are the non-trivial part in those results, since, unlike, for instance, in
existential Presburger arithmetic, the encoding of smallest solutions can grow
super-polynomially. The key result underlying both NP upper bounds is that
given two states of a finite-state automaton encoding the set of solutions of a
system of linear Diophantine equations, one can decide whether one state reaches
the other in NP in the size of the encoding of the system (and without explicitly
constructing the automaton).

This article gives a high-level yet sufficiently detailed outline of how the NP
upper bound for existential Büchi arithmetic can be obtained. We subsequently
show how the techniques used for the NP upper bound can be applied in order
to show decidability and complexity results for an extension of Presburger arith-
metic with valuation constraints. Those results are somewhat implicit in [8] but
seem worthwhile being explicated in written. We conclude with some observa-
tions and discussion of open problems.

2 Preliminaries

We denote by R the real numbers, by R+ the non-negative reals, by Q the
rational numbers, by Z the integers, by N the non-negative integers, and by N+

the positive integers. For integers a < b, we write [a, b] for the set {a, a+1, . . . , b}.
All numbers in this article are assumed to be encoded in binary. Given a matrix
A ∈ Z

m×n with components aij ∈ Z, 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (1,∞)-norm of
A is ‖A‖1,∞ := maxm

i=1

∑n
j=1|aij |. For v ∈ R

n, we just write ‖v‖∞.

2.1 Büchi Arithmetic

Throughout this article, let p ≥ 2 be a base. Recall that Presburger arithmetic
is the first-order theory of the structure 〈N, 0, 1,+〉. Büchi arithmetic is the first-
order theory of the structure 〈N, 0, 1,+, Vp〉 obtained from endowing Presburger
arithmetic with a functional binary predicate Vp ⊆ N × N such that Vp(x, u)
evaluates to true if and only if u is the largest power of p dividing x without
remainder. This definition leaves the case x = 0 ambiguous. A sensible approach
would be to introduce a special value ∞ and to assert Vp(0,∞) to hold, many
authors choose to assert Vp(0, 1), see e.g. [4]. However, the particular choice has
no impact on the sets of naturals definable in Büchi arithmetic.

Atomic formulas of Büchi arithmetic are either linear equations a · x = c or
Büchi predicates Vp(x, u). Note that the negation of a · x = c is equivalent to
a ·x < c ∨a ·x > c. Since we interpret variables over the non-negative integers,
we have a · x > c ≡ ∃y a · x − y = c + 1. Consequently, we can, with no loss of
generality, assume that negation symbols only occur in front of Vp predicates.
Now if we consider a negated literal ¬Vp(x, u), we have that ¬Vp(x, u) evaluates
to true if and only if either

Approaching Arithmetic Theories with Finite-State Automata 35

(i) u is a power of p but not the largest power of p dividing x; or
(ii) u is not a power of p.

The case (i) can easily be dealt with, as it is definable by

∃v Vp(u, u) ∧ Vp(x, v) ∧ ¬(u = v)

Moreover, ¬Vp(u, u) asserts that u is not a power of p. Thus, we may, without
loss of generality, assume that quantifier-free formulas of Büchi arithmetic are
positive Boolean combinations of atomic formulas a·x = c, Vp(x, u) and Vp(u, u).

2.2 Finite-State Automata and p-automata

It is well known that Büchi arithmetic can elegantly be decided using finite-state
automata, see [2] for a detailed overview over this approach. In this section, we
give a generic definition of deterministic automata and then define p-automata
which are used for deciding Büchi arithmetic.

Definition 1. A deterministic automaton is a tuple A = (Q,Σ, δ, q0, F), where

– Q is a set of states,
– Σ is a finite alphabet,
– δ : Q × Σ → Q ∪ {⊥}, where ⊥ �∈ Q, is the transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of final states.

Note that this definition allows automata to have infinitely many states and
to have partially defined transition functions (due to the presence of ⊥ in the
codomain of δ).

For states q, r ∈ Q and u ∈ Σ, we write q
u−→ r if δ(q, u) = r, and extend −→

inductively to finite words such that for w ∈ Σ∗ and u ∈ Σ, q
w·u−−→ r if there is

s ∈ Q such that q
w−→ s

u−→ r. Whenever q
w−→ r, we say that A has a run on w

from q to r. We write q
∗−→ r if there is some w ∈ Σ∗ such that q

w−→ r.
A finite-state automaton A is a deterministic automaton with a finite set of

states that accepts finite words. The language of A is defined as

L(A) def= {w ∈ Σ∗ : q0
w−→ qf , qf ∈ F}.

We now introduce p-automata, which are deterministic automata whose lan-
guage encodes a set of non-negative integers in base p. Furthermore, we recall
the construction of the key gadget underlying the automata-based decision pro-
cedures for Büchi arithmetic which provides a representation of the set of non-
negative integer solutions of a system of linear equations as the language of a
finite-state p-automaton.

Formally, a p-automaton is a deterministic automaton over an alphabet
Σn

p := {0, 1, . . . , p − 1}n for some nonnegative integer n. A finite word over
the alphabet Σn

p can naturally be seen as encoding an n-tuple of nonnegative

36 C. Haase

integers in base p. There are two possible encodings: least significant digit first
and most-significant digit first. We only consider the latter msd-first encoding,
in which the most significant digit appears on the left. Formally, given a word
w = u0 · · ·uk ∈ (Σn

p)∗, we define �w� ∈ N
n

�w� :=
k∑

j=0

pk−j · uj .

Note that for w = ε, the empty word, we have �w� = 0.
A system S of linear Diophantine equations has the form S : A ·x = c, where

A is an m×n matrix with integer coefficients, c ∈ Z
m, and x = (x1, . . . , xn)� is

a vector of variables taking values in the nonnegative integers. We write �S� :=
{u ∈ N

n : A · u = c} for the set of all nonnegative integer solutions of S. We
denote by 〈S〉 the size of the encoding of S, i.e., the number of symbols required
to represent S assuming binary encoding of all numbers.

Following Wolper and Boigelot [19], we define a p-automaton whose language
is the msd-first encoding all nonnegative integer solutions of systems of linear
equations.

Definition 2. Let S : A · x = c be a system of linear equations with integer
coefficients such that A has dimension m × n. Corresponding to S, we define a
p-automaton A(S) := (Q,Σn

p , δ, q0, F) such that

– Q = Z
m,

– δ(q,u) = p · q + A · u for all q ∈ Q and u ∈ Σn
p ,

– q0 = 0, and
– F = {c}.

Although the automaton A(S) has infinitely many states, it defines a regular
language since there are only finitely many live states, i.e., states that can reach
the set F of accepting states. The reason is that no state q ∈ Q such that
‖q‖∞ > ‖A‖1,∞ and ‖q‖∞ > ‖c‖∞ can reach an accepting state [1,8], and
hence Q can be restricted to a finite number of states. A rough upper bound on
the number #Q of states of A(S) is

#Q ≤ 2m · max(‖A‖1,∞, ‖c‖∞)m , (1)

where m is the number of equations in the system S [8,19].
A key reachability property of the automaton A(S) is the following: Let

q, r ∈ Z
m be states of A(S). Then for all k ∈ N and words w ∈ (Σn

p)k we have

q
w−→ r ⇐⇒ r = pk · q + A �w� (2)

From this characterization, it follows that the language of A(S) is an msd-first
encoding of the set of solutions of the system A · x = c. Indeed, choosing q as
0 and the final state c as r, we have that 0 w−→ c if and only if A · �w�m = c.

If we wish to emphasize the underlying system S of linear Diophantine equa-
tions of a p-automaton A(S) we annotate the transition relation with the sub-
script S and, e.g., write q

∗−→S r.

Approaching Arithmetic Theories with Finite-State Automata 37

2.3 Semi-linear Sets

Given a base vector b ∈ N
n and a finite set of period vectors P = {p1, . . . ,pm} ⊆

N
n, define

L(b, P) :=

{

b +
m∑

i=1

λi · pi : λi ∈ N

}

.

We call L(b, P) a linear set and we say that a subset of N
n is semi-linear if

it can be written as a finite union of linear sets. It is well-known that the set
of nonnegative integer solutions of a system of linear Diophantine equations is
a semi-linear set [7]. Also note that a linear set is definable by a formula of
existential Presburger arithmetic of linear size.

A special subclass of semi-linear sets are ultimately periodic sets, which are
an equivalent presentation of semi-linear sets in dimension one. A set M ⊆ N is
ultimately periodic if there is a threshold t ∈ N and a period � ∈ N such that for
all a, b ∈ N with a, b ≥ t and a ≡ b mod � we have a ∈ M if and only if b ∈ M .

3 Existential Büchi Arithmetic

One of the main results of [8] is that deciding existential formulas of Büchi
arithmetic is NP-complete. A main obstacle is that the magnitude of satisfying
variable assignments may grow super-polynomially. It is known that for infinitely
many primes q the multiplicative order ordq(2) of 2 modulo q is at least

√
q [13].

For such a prime the predicate x is a strictly positive power of 2 that is congruent
to 1 modulo q can easily be expressed as a formula of existential Büchi arithmetic
of base 2:

Φ(x) def= ∃y x > 1 ∧ V2(x, x) ∧ x = q · y + 1

Observe that Φ(x) has a constant number of literals and that its length linear
in the bit-length of q, while the smallest satisfying assignment is x = 2ordq(2).
Thus satisfying assignments in existential Büchi arithmetic may have super-
polynomial bit-length in the formula size, even for a fixed base and a fixed
number of literals. This rules out the possibility of showing NP membership by a
non-deterministic guess-and-check algorithm. We nevertheless have the following
theorem:

Theorem 1 ([8]). Existential Büchi arithmetic is NP-complete.

Existential Büchi arithmetic inherits the NP lower bound from integer program-
ming when the number of variables is not fixed. While existential Presburger
arithmetic can be decided in polynomial time when the number of variables is
fixed [15], showing such a result for Büchi arithmetic would likely require major
breakthroughs in number theory, even when fixing the number of literals. Given
a, b, c ∈ N, we can express discrete logarithm problems of the kind, does there
exist x ∈ N such that ax ≡ b mod c, in a similar way as above:

∃x∃y Va(x, x) ∧ x = c · y + b

38 C. Haase

Such discrete logarithm problems are believed to possibly be even more difficult
than those underlying the Diffie-Hellman key exchange [14]. Of course, it may
well be that existential Büchi arithmetic with a fixed number of variables (and
even literals) is NP-hard. For instance, existential Presburger arithmetic with
a full divisibility predicate is NP-hard already for a fixed number of variables
and literals [11], shown via a reduction from a certain NP-complete problem
involving a special class of quadratic congruences [12].

We now give an exposition of the NP upper bound of Theorem1 developed
in [8]. It clearly suffices to only consider quantifier-free formulas. Let Φ(x) be
a quantifier-free formula of Büchi arithmetic, and let us first consider the spe-
cial case of a system of linear Diophantine equations together with a single Vp

assertion
Φ(x) def= A · x = c ∧ Vp(x, u),

where x and u are variables occurring in x. From Sect. 2.2, we know that we can
construct a p-automaton A(S) whose language encodes all solutions of S : A·x =
c. A key insight enabling showing decidability of Büchi arithmetic is that the
set of solutions of Vp(x, u) for x > 0 can be encoded by a regular language over
the alphabet Σp × Σp: [

Σp

0

]∗ [
Σp \ {0}

1

] [
0
0

]∗

Thus, in order to decide whether Φ(x) is satisfiable, we can check whether we
can find a run through the automaton A(S) that can be partitioned into three
parts. In the first part, x can have any digit and u has only zeros as digits. The
second part is a single transition in which x can have any non-zero digit and u
has digit one, and in the third part both x and u have digits zero.

To make this argument more formal, it will be useful to introduce a mild
generalization of the reachability relation for p-automata. Suppose we are given
a system of linear equations S : A ·x = c and an additional system of constraints
T : B ·x = d. For all pairs of states q, r of the automaton A(S), write q

w−→S[T] r

if q w−→S r and B · �w� = d. Plainly q
w−→S[T] r if and only if

(
q
0

)
w−→S∧T

(
r
d

)

,

where S ∧ T is the system of equations

S ∧ T :
(
A
B

)

x =
(
c
d

)

.

With the new notation at hand, the observations made above now enable us
to reduce satisfiability of Φ(x) to three reachability queries in p-automata: Φ(x)
is satisfiable if and only if there are states d and e of A(S), and a ∈ Σp \ {0}
such that

0 ∗−→S[u=0] d −→S[x=a,u=1] e
∗−→S[x=u=0] c . (3)

Approaching Arithmetic Theories with Finite-State Automata 39

Note that by (1), the encoding of the binary representation of the states d and e
of A(S) is polynomial in the encoding of S, and hence both states can be guessed
in NP.

The reduction to reachability queries in p-automata is easily seen to gener-
alize to the case where we have an arbitrary number k of constraints Vp(xi, ui)
in Φ(x). To check satisfiability, all we have to do is to guess a relative order
between the ui, ai ∈ Σp \ {0}, states di and ei of A(S), resulting in O(k) reach-
ability queries in p-automata. We illustrate the reachability queries for the case
in which ui > ui+1 for all 1 ≤ i ≤ k, the remaining cases follow analogously:

0 ∗−→S[u1,...,uk=0] d1 −→S[x1=a1,u1=1,u2,...,uk=0] e1
∗−→S[x1,u1,...,uk=0] d2 −→S[x2=a2,u2=1,x1,u1,u3,...uk=0] e2

∗−→S[x1,x2,u1,...,uk=0] · · ·
· · ·dk −→S[xk=ak,uk=1,x1,...,xk−1,u1,...,uk−1=0] ek

∗−→S[x1,...,xk,u1,...,uk=0] c (4)

Finally, we observe that the set of solutions of a literal ¬Vp(u, u), stating that
u is not a power of p, is encoded by the regular language given by the following
regular expression:

0∗10∗ ≡ 0∗(Σp \ {0, 1})Σ∗
p + 0∗10∗(Σp \ {0})Σ∗

p

Observe that this regular expression induces a decomposition similar to (3).
Hence, we can non-deterministically polynomially reduce deciding conjunctions
of the form

A · x = c ∧
∧

i∈I

Vp(xi, ui) ∧
∧

j∈J

¬Vp(uj , uj) (5)

for finite index sets I, J to a linear number of state-to-state reachability queries
in p-automata implicitly given by systems of linear Diophantine equations. We
now invoke the following theorem:

Theorem 2 ([8]). Deciding state-to-state reachability in a p-automaton A(S)
given by a system of linear Diophantine equations S is in NP (with respect to
the encoding of S).

In particular, the NP upper bound does not require the explicit construction
of A(S). By application of this result and the arguments above, the NP upper
bound for existential Büchi arithmetic follows. Given a quantifier-free formula
Φ(x), as discussed in Sect. 2.1, we can assume that Φ is a positive Boolean
combination of literals a · x = c, Vp(x, u) and ¬Vp(u, u). Hence we can guess in
NP a clause of the disjunctive normal form of Φ, which is of the form (5), and in
turn check in NP a series of guessed reachability queries in p-automata induced
by the guessed clause.

We close this section with a brief discussion of the main ideas behind the
NP upper bound of Theorem2. The first observation is that reachability in
p-automata reduces to satisfiability in a certain class of systems of linear-
exponential Diophantine equations. From (2), we can deduce that for a word
w ∈ (Σn

p)k,

q
w−→ r ⇐⇒ r = pk · q + A · �w� ⇐⇒ r = pk · q + A · x, ‖x‖∞ < pk.

40 C. Haase

Let x = (x1, . . . , xn)�, replacing pk by a fresh variable y, it follows that q ∗−→ r if
and only if the following system of linear Diophantine inequalities has a solution
in which y is a power of p:

r = y · q + A · x, xi < y, 1 ≤ i ≤ n.

This is now a problem that is not difficult to decide, since we can guess in NP
a linear set L(b, P) ⊆ N

m with a small description that generates a subset of
the set of solutions of this system. Checking whether L(b, P) contains a point
in which the y-coordinate is a power of p can easily be done in NP, we refer the
reader to [8] for further details.

4 Presburger Arithmetic with Valuation Constraints

The definition of Vp ensures that p-recognizable sets are equivalent to those defin-
able in Büchi arithmetic. Note that it is possible to enrich Presburger arithmetic
with an even more general predicate which does, however, not change the defin-
able sets of natural numbers, see e.g. [4, p. 209]. But the predicate Vp also has
a close connection to the valuation function vp : Q → Z underlying the defini-
tion of the p-adic numbers. Given a prime p and a non-zero rational number
x, the p-adic valuation vp(x) is defined to be the unique integer e ∈ Z such
that x = pe · a

b with a, b ∈ Z and p � a, b. Intuitively vp(x) is the exponent of
the greatest power of p that divides x. Now the p-adic valuation vp and the Vp

predicate of Büchi arithmetic (viewing Vp as a function) are related as follows:
for a natural number n ∈ N we have Vp(n) = pvp(n). Thus, we could view vp(n)
as a succinct representation of Vp(n).

In arithmetic theories over p-adic numbers, it is common to consider two-
sorted logics with one sort for the p-adic numbers and another sort for the valu-
ation ring Z, together with additional (restricted) arithmetic over the valuation
ring, see e.g. [18]. One can naturally transfer this concept to arithmetic theo-
ries over numerical domains other than the p-adic numbers. The decompositions
established in the previous section together with classical results on finite-state
automata then give decidability and complexity results.

As a concrete illustrating example, we introduce in this section Presburger
arithmetic with valuation constraints. Since vp(n) ∈ N for all n ∈ N+, technically
we are not dealing with a multi-sorted logic.1 We use the following notational
convention: a variable x is interpreted as a natural number, and x

def= vp(x) is
interpreted as the valuation of x. A formula Φ of Presburger arithmetic with
valuation constraints is then given by a tuple

Φ = (Ψ(x1, . . . , xn);Γ (x1, . . . , xn)),

where both Ψ and Γ are formulas of Presburger arithmetic. We say that Φ is
existential if both Ψ and Γ are formulas of existential Presburger arithmetic.
1 And for brevity, we do not delve into different ways of defining Vp(0), the results

given work for any sensible choice of defining Vp(0).

Approaching Arithmetic Theories with Finite-State Automata 41

Moreover, Φ is satisfiable with respect to a fixed p > 1 given as input when-
ever we can find a variable assignment σ : {x1, . . . , xn} → N such that both
Ψ(σ(x1), . . . , σ(xn)) and Γ (vp(σ(x1)), . . . , vp(σ(xn))) evaluate to true.

It is not surprising and easy to see that satisfying assignments are not semi-
linear since, e.g.,

Φ = (x > 0;∃y x = 2y ∧ y > 0)

has the set of all positive integers n with vp(n) even and greater than zero as
its set of satisfying assignments, i.e., Φ defines the set {p2k · n : k, n ∈ N+, p � n}
which, for any base p > 1, is obviously not ultimately periodic and hence not
semi-linear.

We now show NP-completeness of existential formulas of Presburger arith-
metic with valuation constraints from which we can then conclude decidability
of the general case. Given Φ = (Ψ, Γ), let us first consider the case in which Ψ
is a system of linear Diophantine equations S : A · x = c with x = (x1, . . . , xn),
and Γ is existential. A solution of S is encoded by a path in A(S) from 0 to c,
and if we assume without loss of generality that xi > xi+1 for all 1 ≤ i < n then
similarly as in (4) we can decompose this path as

0 ∗−→ d1 −→S[x1=a1] e1
w1−−→S[x1=0] d2 −→S[x2=a2,x1=0] e2

w2−−→S[x1,x2=0] · · ·
· · ·dn −→S[xn=an,x1,...,xn−1=0] en

wn−−→S[x1,...,xn=0] c (6)

for some wi ∈ (Σn
p)∗ and with all ai �= 0. Note that this decomposition implies

that vp(xn) = |wn| + 1, vp(xn−1) = |wn| + |wn−1| + 2, etc. In particular, each
|wi| is the length of a path between the states ei and di+1. It is well-known that
the set of lengths of paths between two states in a non-deterministic finite-state
automaton is semi-linear and that the encoding of each linear set in such a semi-
linear set is logarithmic in the number states, see e.g. [17]. Moreover, semi-linear
sets are closed under taking finite sums. Recall that by the estimation in Eq. (1)
the number of states of a p-automaton A(S) is exponentially bounded and that
each state has an encoding linear in the encoding of S. It follows that given a
decomposition as in (6), we can for each xi guess in NP a linear set L(b, P) ⊆ N

such that vp(xi) ∈ L(b, P). Also recall from Sect. 2.3 that a linear set is definable
by a formula of existential Presburger arithmetic of linear size. Consequently,
we obtain the following non-deterministic polynomial-time algorithm deciding
satisfiability of Φ above:

– guess the states occurring in a decomposition of a run from 0 to c in A(S) of
the form (6) (again note that this does not require constructing A(S));

– from this decomposition, guess linear sets L(bi, Pi) such that vp(xi) ∈
L(bi, Pi) for each xi;

– check whether Γ is satisfiable with each vp(xi) constrained to lie in L(bi, Pi).

If Φ = (Ψ, Γ) is an arbitrary existential formula of Presburger arithmetic with
valuation constraints, an NP upper bound also follows: we only need to guess a
clause of the disjunctive normal form of Ψ and then proceed as before. The case
where Φ is arbitrary obviously reduces to the existential case since Presburger
arithmetic has quantifier elimination.

42 C. Haase

Theorem 3. Presburger arithmetic with valuation constraints is decidable, and
its existential fragment is NP-complete.

5 Conclusion

This article provided an exposition of the results of [8] together with some
results that follow but are not explicated in [8]. We described the proof of NP-
completeness of existential Büchi arithmetic and showed how this proof can
be applied to obtain decidability of Presburger arithmetic with valuation con-
straints and NP-completeness of its existential fragment. We close this article
with a couple of remarks and open questions for future work:

– There is an analogue of Büchi arithmetic for the reals that was studied by
Boigelot, Rassart and Wolper [1]. This analogue builds upon a predicate Xp ⊆
R+ × Q × [0, p − 1] such that Xp(x, u, k) is true if and only if u is a (possibly
negative) integer power of p, and there is an encoding of x such that the digit
at the position specified by u is k:

Xp(x, u, k) ⇐⇒ there are � ∈ Z, a�, a�−1, . . . ∈ [0, p − 1] s.t. x =
−∞∑

i=�

aip
i

and there is q ∈ Z s.t. q ≤ �, u = pq and aq = k.

The real analogue of Büchi arithmetic is the first-order theory of the struc-
ture 〈R+, 0, 1,+,Xp〉 (BRW arithmetic after the authors of [1] for short).2

Looking at the similarities of the definitions of Xp(x, u, k) and Vp, it seems
conceivable that existential BRW arithmetic is also NP-complete, though this
is likely more tedious to prove mainly because some real numbers have mul-
tiple encodings (e.g., 1.0000 · · · = 0.9999 · · ·).

– Presburger arithmetic with valuation constraints is a powerful logic which can
be used to reason about sets of integers which are not semi-linear. Decidabil-
ity in such contexts is rare, and NP-completeness of its existential fragment
means that this logic could potentially find practical applications in areas
such as formal verification, as we seemingly can, for instance, express some
problems typically arising in bit-vector arithmetic. Generally speaking, what
are natural applications of Presburger arithmetic with valuation constraints?

– Is Büchi arithmetic with valuation constraints decidable? It can be derived
from the approach presented in Sect. 4 that this is the case for existential
Büchi arithmetic. However, the author is not aware of a quantifier-elimination
procedure for Büchi arithmetic that given a formula of Büchi arithmetic allows
for obtaining an equivalent formula of existential Büchi arithmetic.

– Is existential Büchi arithmetic with a fixed number of variables (and possibly
even a fixed number of literals) NP-complete? As discussed in Sect. 3, showing
membership in P would require breakthroughs that currently (and likely over
the next decades) seem out of reach, and would moreover break some public
key cryptographic systems.

2 For presentational convenience, we chose R+ as the domain of BRW arithmetic,
unlike [1] who actually use R.

Approaching Arithmetic Theories with Finite-State Automata 43

References

1. Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer
arithmetic automata (extended abstract). In: Automata, Languages and Program-
ming, ICALP. Lect. Notes Comp. Sci., vol. 1443, pp. 152–163. Springer (1998)

2. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata:
An overview. In: Logic Programming, ICLP. Lect. Notes Comp. Sci., vol. 2401, pp.
1–19. Springer (2002)

3. Boudet, A., Comon, H.: Diophantine equations, presburger arithmetic and finite
automata. In: Trees in Algebra and Programming - CAAP. Lect. Notes Comp. Sci.,
vol. 1059, pp. 30–43. Springer (1996)

4. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belg. Math. Soc. Simon Stevin 1(2), 191–238 (1994)

5. Durand-Gasselin, A., Habermehl, P.: On the use of non-deterministic automata for
presburger arithmetic. In: Concurrency Theory - CONCUR. Lect. Notes Comp.
Sci., vol. 6269, pp. 373–387. Springer (2010)

6. Durand-Gasselin, A., Habermehl, P.: Ehrenfeucht-fräıssé goes elementarily auto-
matic for structures of bounded degree. In: Symposium on Theoretical Aspects
of Computer Science, STACS. LIPIcs, vol. 14, pp. 242–253. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

7. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. T. Am. Math. Soc.
pp. 333–368 (1964)

8. Guépin, F., Haase, C., Worrell, J.: On the existential theories of Büchi arithmetic
and linear p-adic fields. In: Logic in Computer Science, LICS. IEEE (2019)

9. Klaedtke, F.: Bounds on the automata size for presburger arithmetic. ACM Trans.
Comput. Log. 9(2), 11:1–11:34 (2008)

10. Leroux, J., Point, G.: Tapas: The talence presburger arithmetic suite. In: Tools and
Algorithms for the Construction and Analysis of Systems, TACAS. Lect. Notes
Comp. Sci., vol. 5505, pp. 182–185. Springer (2009)

11. Lipshitz, L.M.: Some remarks on the Diophantine problem for addition and divis-
ibility. Proc. Model Theory Meeting. 33, 41–52 (1981)

12. Manders, K.L., Adleman, L.M.: NP-complete decision problems for binary quadrat-
ics. J. Comput. Syst. Sci. 16(2), 168–184 (1978)

13. Matthews, C.R.: Counting Points Modulo p for some Finitely Generated Subgroups
of Algebraic Groups. Bull. Lond. Math. Soc. 14(2), 149–154 (1982)

14. McCurley, K.S.: The discrete logarithm problem. Proc. of Symp. in Applied Math.
42, 49–74 (1990)

15. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. T. Am. Math.
Soc. 284, 203–218 (1984)

16. The Liège automata-based symbolic handler (LASH): Available at http://www.
montefiore.ulg.ac.be/∼boigelot/research/lash/

17. To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.
109(17), 1010–1014 (2009)

18. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1/2), 3–27 (1988)

19. Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic
constraints. In: Tools and Algorithms for the Construction and Analysis of Systems,
TACAS. Lect. Notes Comp. Sci., vol. 1785, pp. 1–19. Springer (2000)

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

Recompression: Technique for Word
Equations and Compressed Data

Artur Jeż(B)

University of Wroc�law, Joliot-Curie 15, 50383 Wroc�law, Poland
aje@cs.uni.wroc.pl

Abstract. In this talk I will present the recompression technique on
the running example of word equations. In word equation problem we
are given an equation u = v, where both u and v are words of letters and
variables, and ask for a substitution of variables by words that equal-
izes the sides of the equation. The recompression technique is based
on employing simple compression rules (replacement of two letters ab
by a new letter c, replacement of maximal repetitions of a by a new let-
ter), and modifying the equations (replacing a variable X by bX or Xa)
so that those operations are sound and complete. The simple analysis
focuses on the size of the instance and not on the combinatorial proper-
ties of words that are used. The recompression-based algorithm for word
equations runs in nondeterministic linear space.

The approach turned out to be quite robust and can be applied to
various generalized, simplified and related problems, in particular, to
problems in the area of grammar compressed words. I will comment on
some of those applications.

Keywords: Algorithms on automata and words · Word equations ·
Context unification · Equations in groups · Compression · SLPs

1 Introduction

1.1 Word Equations

The word equation problem, i.e. solving equations in the algebra of words, was
first investigated by Markov in the fifties. In this problem we get as an input
an equation of the form

u = v

where u and v are strings of letters (from a fixed alphabet) as well as variables and
a solution is a substitution of words for variables that turns this formal equation
into a true equality of strings of letters (over the same fixed alphabet). It is
relatively easy to show a reduction of this problem to the Hilbert’s 10-th problem,
i.e. the question of solving systems of Diophantine equations. Already then it
was generally accepted that Hilbert’s 10-th problem is undecidable and Markov
wanted to show this by proving the undecidability of word equations.
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 44–67, 2020.
https://doi.org/10.1007/978-3-030-40608-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_4&domain=pdf
http://orcid.org/0000-0003-4321-3105
https://doi.org/10.1007/978-3-030-40608-0_4

Recompression: Technique for Word Equations and Compressed Data 45

Alas, while Hilbert’s 10-th problem is undecidable, the word equation prob-
lem is decidable, which was shown by Makanin [54]. The termination proof of
his algorithm is very complex and yields a relatively weak bound on the com-
putational complexity, thus over the years several improvements and simplifi-
cations over the original algorithm were proposed [27,29,43,79]. Simplifications
have many potential advantages: it seems natural that simpler algorithm can
be generalised or extended more easily (for instance, to the case of equations
in groups) than a complex one. Moreover, simpler algorithm should be more
effective in practical applications and should have a lower complexity bounds.

Subcases. It is easy to show NP-hardness for word equations, so far no bet-
ter computational complexity lower bound is known. Such hardness stimulated
a search for a restricted subclasses of the problem for which efficient (i.e. polyno-
mial) algorithms can be given [4]. One of such subclasses is defined by restricting
the amount of different variables that can be used in an equation: it is known
that equations with one [11,45] and two [4,10,28] variables can be solved in
polynomial time. Already for three variables it is not known, whether they are
in NP or not [71] and partial results require nontrivial analysis [71].

Generalisations. Since Makanin’s original solution much effort was put into
extending his algorithm to other structures. Three directions seemed most nat-
ural:

– adding constraints to word equations;
– equations in free groups;
– partial commutation;
– equations in terms.

Constraints. From the application point of view, it is advantageous to consider
word equations that can also use some additional constraints, i.e. we require
that the solution for X has some additional properties. This was first done for
regular constraints [79], on the other hand, for several types of constraints,
for instance length-constraints, it is still open, whether the resulting problem
is decidable or not (it becomes undecidable, if we allow counting occurrences
of particular letter in the substitutions and arithmetic operations on such
counts [3]).

Free groups. From the algebraic point of view, the word equation problem is
solving equations in a free semigroup. It is natural to try to extend an algo-
rithm from the free semigroup also to the case of free groups and then per-
haps even to a larger class of groups (observe, that there are groups and semi-
groups for which the word problem is undecidable). The first algorithm for the
group case was given by Makanin [55,56], his algorithm was not primitively-
recursive [44]. Furthermore, Razborov showed that this algorithm can be used
to give a description of all solutions of an equation [68] (more readable descrip-
tion of the Razborov’s construction is available in [41]). As a final comment,
note that such a description was the first step in proving the Tarski’s Con-
jecture for free groups (that the theory of free groups is decidable) [42].

46 A. Jeż

Partial commutation. Another natural generalization is to allow partial com-
mutation between the letters, i.e. for each pair of letters we specify, whether
ab = ba or not. Such partially commutative words are usually called traces and
the corresponding groups are usually known as Right-Angled Artin Groups,
RAAGs for short. Decidability for trace equations was shown by Matiyase-
vich [57] and for RAAGs by Diekert and Muscholl [15]. In both cases, the
main step in the proof was a reduction from a partially commutative case to
a non-commutative one.

Terms. We can view words as very simple terms: each letter is a function symbol
of arity 1. In this way word equations are equations over (very simple) terms.
It is known, that term unification can be decided in polynomial time, assuming
that variables represent closed (full) terms [69]; thus such a problem is unlikely
to generalise word equations.
A natural generalisation of term unification and word equations is a second-
order unification, in which we allow variables to represent functions that take
arguments (which need to be closed terms). However, it is known that this
problem is undecidable, even in many restricted subcases [16,26,47,49]. Con-
text unification [7,8,74] is a natural problem ‘in between’: we allow variables
representing functions, but we insist that they use their argument exactly
once. It is easy to show that such defined problem generalises word equations,
on the other hand, the undecidability proofs for second-order unification do
not transfer directly to this model.
Being a natural generalisation is not enough to explain the interest in this
problem, more importantly, context unification has natural connections with
other, well-studied problems (equality up to constraints [61], linear second-
order unification [47,50], one-step term rewriting [62], bounded second order
unification [76], . . .). Unfortunately, for over two decades the question of
decidability of context unification remained open. Despite intensive research,
not much is known about the decidability of this problem: only results for
some restricted subcases are known: [8,19,47,48,51,75,77,78].

1.2 Compression and Word Equations

For more than 20 years since Makanin’s original solution there was very small
progress in algorithms for word equations: the algorithm was improved in many
places, in particular this lead to a better estimation of the running time; however,
the main idea (and the general complexity of the proof) was essentially the same.

The breakthrough was done by Plandowski and Rytter [67], who, for the
first time, used the compression to solve word equations. They showed, that
the shortest solution (of size N) of the word equation (of size n) has an SLP
representation of size poly(n, log N); here a Straight Line Programme (SLP for
short) is simply a context free grammar generating exactly one word. Using
the algorithm for testing the equality of two SLPs [63] this easily yields a (non-
deterministic) algorithm running in time poly(n, log N). Unfortunately, this work
did not provide any bound on N and the only known bound (4 times exponen-
tial in n) came directly from Makanin’s algorithm, together those two results

Recompression: Technique for Word Equations and Compressed Data 47

yielded a 3NEXPTIME algorithm. Soon after the bound on the size of the short-
est solution was improved to triply exponential [27], which immediately yielded
an algorithm from class 2NEXPTIME, however, the same paper [27] improved
Makanin’s algorithm, so that it workd in EXPSPACE.

Next, Plandowski gave a better (doubly exponential) bound on the size of the
shortest solution [64] and thus obtained a NEXPTIME algorithm, in particular,
at that time this was the best known algorithm for this problem. The proof
was based on novel factorisations of words. By better exploiting the interplay
between factorisations and compression, he improved the algorithm so that it
worked in PSPACE [65].

It is worth mentioning, that the solution proposed by Plandowski is essen-
tially different than the one given by Makanin. In particular, it allowed gen-
eralisations more easily: Diekert, Gutiérrez and Hagenah [13] showed, that
Plandowski’s algorithm can be extended to the case in which we allow regu-
lar constraints in the equation (i.e. we want that the word substituted for X
is from a regular language, whose description by a finite automaton is part of
the input) and inversion; such an extended algorithm still works in polynomial
space. It is easy to show that solving equations in free groups reduces to the
above-mentioned problem of word equations with regular constraints and inver-
sion [13] (it is worth mentioning, that in general we do not know whether solving
equations in free groups is easier or harder than solving the ones in a free semi-
group).

On the other hand, Plandowski showed, that his algorithm can be used to gen-
erate a finite representation of all solutions of a word equation [66], which allows
solving several decision problems concerning the set of all solutions (finiteness,
boundedness, boundedness of the exponent of periodicity etc.). It is not known,
whether this algorithm can be generalised so that it generates all solutions also
in the case of regular constraints and inversion (or in a free group).

The new, simpler algorithm for word equations and demonstration of connec-
tions between compression and word equations gave a new hope for solving the
context unification problem. The first results were very promising: by using ‘tree’
equivalents of SLPs [2] computational complexity of some problems related to
context unification was established [9,19,48]. Unfortunately, this approach failed
to fully generalise Plandowski’s algorithm for words: the equivalent of factorisa-
tions that were used in the algorithm were not found for trees.

It is worth mentioning, that Rytter and Plandowski’s approach, in which
we compress a solution using SLPs (or in the non-deterministic case—we guess
the compressed representation of the solution) and then perform the computa-
tion directly on the SLP-compressed representations using known algorithm that
work in polynomial time, turned out to be extremely fruitful in many branches
of computer science. The recent survey by Lohrey gives several such successful
applications [53].

48 A. Jeż

1.3 Recompression

Recompression was developed for a specific problem concerning compressed data
(fully compressed membership problem for finite automata [30]) and was later
successfully applied to word equations [36] and other problems related to com-
pressed representations. The usual approach for word equations (and compressed
data in general) is that one tries to extract information about the combinatorics
of the underlying words from the equation (compressed representation) and use
this structure to solve the problem at hand. This is somehow natural: if the word
can be represented compactly (be it as a solution of a word equation or using
some compression mechanism) then it should have a lot of internal structure.

Recompression takes a different approach: our aim is to perform simple com-
pression operations on the solution word of the word equation directly on the
compressed representation. We need to modify the equation a bit in order to do
that, however, the choice of the compression operation and the analysis focuses
on the compressed representation and its properties and (almost) completely
ignores the properties of the solution. The idea of performing the compression
operation is somehow natural in view of the already mentioned Plandowski and
Rytter result [67], that the (length-minimal) solution has a small SLP: since
such an SLP exists, we can try to build it bottom-up, i.e. the SLP has a rule
a → bc and so we will replace each bc in the solution by a. (There are some
complications in case of b = c, as then the compression is ambiguous: we solve
this by replacing the maximal repetitions of b letter instead of replacing bb).

Of course, performing such a compression on the equation might be difficult
or even impossible at all and we sometimes need to modify the equation. How-
ever, it turns out that a greedy choice suffices to guarantee that the kept equation
is of quadratic size. The correctness and size analysis turns out to be surpris-
ingly easy. The method is also very robust, so that it can be applied to various
scenarios related to word equations: one variable word equations [35], equations
in free groups [14], twisted word equations [12], context unification [31], . . . See
the following Sections for details of some of those results.

1.4 Algorithms for Grammar-Based Compression

Due to ever-increasing amount of data, compression is widely applied in order
to decrease the data’s size. Still, the stored data is accessed and processed.
Decompressing it on each such an occasion basically wastes the gain of reduced
storage size. Thus there is a demand for algorithms dealing directly with the
compressed data, without explicit decompression. Indeed, efficient algorithms for
fundamental text operations (pattern matching, equality testing, etc.) are known
for various practically used compression methods (LZ77, LZW, their variants,
etc.) [20–25,63].

Note that above the compression can be seen as a source of problem that we
want to overcome. However, as demonstrated by Plandowski and Rytter [67],
the compression can also be seen as a solution to some problems, i.e. if we
can show that the instance or its solutions is (highly) compressible, then we can

Recompression: Technique for Word Equations and Compressed Data 49

compress it and, using the algorithms mentioned above, perform the computation
on the compressed representation. See a recent survey of Lohrey [53], which gives
examples of application of this approach in various fields, ranging from group
theory, computational topology to program verification.

Compression standards differ in the main idea as well as in details. Thus
when devising algorithms for compressed data, quite early one needs to focus
on the exact compression method, to which the algorithm is applied. The most
practical (and challenging) choice is one of the widely used standards, like LZW
or LZ77. However, a different approach is also pursued: for some applications
(and most of theory-oriented considerations) it would be useful to model one
of the practical compression standard by a more mathematically well-founded
and ‘clean’ method. The already mentioned Straight-Line Programs (SLPs), are
such a clean formulation for many block compression methods: each LZ77 com-
pressed text can be converted into an equivalent SLP of size O(n log(N/n)) and
in O(n log(N/n)) time [5,70] (where N is the size of the decompressed text),
while each SLP can be converted to an equivalent LZ77-like of O(n) size in
polynomial time. Other reasons of popularity of SLPs is that usually they com-
press well the input text [46,60] Lastly, a greedy grammar compression can be
efficiently implemented and thus can be used as a preprocessing to other com-
pression methods, like those based on Burrows-Wheeler transform [39].

One can treat an SLP as a system of (very simple) word equations, i.e. a pro-
duction X → α is rewritten as X = α, and so the recompression algorithm
generalizes also to such setting. It can be then seen as a variant of locally con-
sistent parsing [1,58,72], and indeed those techniques were one of the sources of
the recompression approach.

It is no surprise that the highly non-deterministic recompression algorithm
determinises when applied to SLPs, what is surprising is that it can be made
efficient. In particular, it can be used to checking the equality of two SLPs
in roughly quadratic time, which is the fastest known algorithm for this prob-
lem [33] (and also for the generalisation of this problem, the fully compressed
pattern matching).

The main drawback of grammar compression is that the size of the small-
est grammar cannot be even approximated within (small enough) constant fac-
tor [5,80]. There are many algorithms that achieve a logarithmic approximation
ratio [5,70,73], recompression can also be used to obtain one (in fact: two dif-
ferent). One of those algorithms [32] seems to have a slightly better practical
behaviour than the other ones, the second has much simpler analysis than other
approximation algorithms [34] (as it is essentially a greedy left-to-right scan).

Just as recompression generalizes from word equations to context unification
(i.e. term equations), the approximation algorithm based on recompression for
strings can be generalized to trees [38], in which case it produces a so-called tree
SLP [2]. This was the first approximation algorithm for this problem.

50 A. Jeż

Survey’s Limitations

As this is an informal survey presentations, most of the proofs are only sketched
or omitted. Due to space constraints, only some applications and results are
explained in detail.

2 Recompression for Word Equations

We begin with a formal definition of the word equations problem: Consider
a finite alphabet Σ and set of variables X ; during the algorithm Σ will be
extended by new letters, but it will always remain finite. Word equation is
of a form ‘u = v’, where u, v ∈ (Σ ∪ X)∗ and its solution is a homomorphism
S : Σ ∪ X �→ Σ∗, which is constant on Σ, that is S(a) = a, and satisfies the
equation, i.e. words S(u) and S(v) are equal. By n we denote the size of the
equation, i.e. |u| + |v|. The algorithm requires only small improvements so that
it applies also to systems of equations, to streamline the presentation we will
not consider this case.

Fix any solution S of the equation u = v, without loss of generality we can
assume that this is the shortest solution, i.e. the one minimising |S(u)|; let N
denote the length of the solution, that is |S(u)|. By the earlier work of Plandowski
and Rytter [67], we know that S(u) (and also S(X) for each variable X) has an
SLP (of size poly(n, log N)), in fact the same conclusion can be to drawn from
the later works of Plandowski [64–66]. Regardless of the form of S and SLP, we
know, that at least one of the productions in this SLP is of the form c → ab,
where c is a nonterminal of the SLP while a, b ∈ Σ are letters. Let us ‘reverse’
this production, i.e. replace in S(u) all pairs of letters ab by c. It is relatively
easy to formalise this operation for words, it is not so clear, what should be done
in case of equations, so let us inspect the easier fragment first.

Algorithm 1. PairComp(ab, w) Compression of pair ab

1: let c ∈ Σ be an unused letter
2: replace all occurrences of ab in w by c

Consider an explicitly given word w. Performing the ‘ab-pair compression’
on it is easy (we replace each pair ab by c), as long as a �= b: replacing pairs aa
is ambiguous, as such pairs can ‘overlap’. Instead, we replace maximal blocks of
a letter a: block a� is maximal, when there is no letter a to left nor to the right
of it (in particular, there could be no letter at all).

Formally, the operations are defined as follows:

– ab pair compression For a given word w replace all occurrences of ab in w by
a fresh letter c.

– a block compression For a given word w replace all occurrences of maximal
blocks a� for � > 1 in w by fresh letters a�.

Recompression: Technique for Word Equations and Compressed Data 51

We always assume, that in the ab-pair compression the letters a and b are dif-
ferent.

Observe, that those operations are indeed ‘inverses’ of SLP productions:
replacing ab with c corresponds to a production c → ab, similarly replacing
a� with a� corresponds to a production a� → a�.

Algorithm 2. BlockComp(a,w) Block compression for a

1: for � > 1 do
2: let a� ∈ Σ be an unused letter
3: replace all maximal blocks a� in w by a�

Iterating the pair and blocks compression results in a compression of word
w, assuming that we treat the introduced symbols as normal letters. There are
several possible ways to implement such iteration, different results are obtained
by altering the order of the compressions, exact treatment of new letters and so
on. Still, essentially each ‘reasonable’ variant works.

Observe, that if we compress two words, say w1 and w2, in parallel then
the resulting words w′

1 and w′
2 are equal if and only if w1 and w2 are. This

justifies the usage of compression operations to both sides of the word equation
in parallel, it remains to show, how to do that.

Let us fix a solution S, a pair ab (where a �= b); consider how does a particular
occurrence of ab got into S(u).

Definition 1. For an equation u = v, solution S and pair ab an occurrence of
ab in S(u) (or S(v)) is

– explicit, if it consists solely of letters coming from u (or v);
– implicit, if it consists solely of letters coming from a substitution S(X) for a

fixed occurrence of some variable X;
– crossing, otherwise.

A pair ab is crossing (for a solution S) if it has at least one crossing occurrence
and non-crossing (for a solution S) otherwise.

We similarly define explicit, implicit and crossing occurrences for blocks of
letter a; a is crossing, if at least one of its blocks has a crossing occurrence. (In
other words: aa is crossing).

Example 1. Equation

aaXbbabababa = XaabbY abX

has a unique solution S(X) = a, S(Y) = abab, under which sides evaluate to

aaabbabababa = aaabbabababa.

Pair ba is crossing (as the first letter of S(Y) is a and first Y is preceded by
a letter b, moreover, the last letter of S(Y) is b and the second Y is succeeded by

52 A. Jeż

a letter a), pair ab is non-crossing. Letter b is non-crossing, letter a is crossing
(as X is preceded by a letter a on the left-hand side of the equation and on the
right-hand side of the equation X is succeeded by a letter a).

Algorithm 3. PairComp(ab, ‘u = v’) Pair compression for ab in an equation
u = v
1: let c ∈ Σ be a fresh letter
2: replace all occurrences of ab in ‘u = v’ by c

Algorithm 4. BlockComp(a, ‘u = v’) Block compression for a letter a in an
equation ‘u = v’
1: for � > 1 do
2: let a� ∈ Σ be a fresh letter
3: replace all occurrences of maximal blocks a� in ‘u = v’ by a�

Fix a pair ab and a solution S of the equation u = v. If ab is non-crossing, per-
forming PairComp(ab, S(u)) is easy: we need to replace every explicit occurrence
(which we do directly on the equation) as well as each implicit occurrence, which
is done ‘implicitly’, as the solution is not stored, nor written anywhere. Due to
the similarities to PairComp we will simply use the name PairComp(ab,‘u = v’),
when we make the pair compressions on the equation. The argument above
shows, that if the equation had a solution for which ab is non-crossing then
also the obtained equation has a solution. The same applies to the block com-
pression, called BlockComp(a,‘u = v’) for simplicity. On the other hand, if the
obtained equation has a solution, then also the original equation had one (this
solution is obtained by replacing each letter c by ab, the argument for the block
compressions the same).

Lemma 1. Let the equation u = v have a solution S, such that ab is non-
crossing for S. Then u′ = v′ obtained by PairComp(ab,‘u = v’) is satisfiable. If
the obtained equation u′ = v′ is satisfiable, then also the original equation u = v
is. The same applies to BlockComp(a,‘u = v’).

Unfortunately Lemma 1 is not enough to simulate Compression(w) directly
on the equation: In general there is no guarantee that the pair ab (letter a) is
non-crossing, moreover, we do not know which pairs have only implicit occur-
rences. It turns out, that the second problem is trivial: if we restrict ourselves to
the shortest solutions then every pair that has an implicit occurrence has also
a crossing or explicit one, a similar statement holds also for blocks of letters.

Recompression: Technique for Word Equations and Compressed Data 53

Lemma 2 ([67]). Let S be a shortest solution of an equation ‘u = v’. Then:

– If ab is a substring of S(u), where a �= b, then a, b have explicit occurrences
in the equation and ab has an explicit or crossing occurrence.

– If ak is a maximal block in S(u) then a has an explicit occurrence in the
equation and ak has an explicit or crossing occurrence.

The proof is simple: suppose that a pair has only implicit occurrences. Then
we could remove them and the obtained solution is shorter, contradicting the
assumption. The argument for blocks is a bit more involved, as they can overlap.

Getting back to the crossing pairs (and blocks), if we fix a pair ab (letter a),
then it is easy to ‘uncross’ it: by Definition 1 we can conclude that the pair ab
is crossing if and only if for some variables X and Y (not necessarily different)
one of the following conditions holds (we assume that the solution does not
assign an empty word to any variable—otherwise we could simply remove such
a variable from the equation):

(CP1) aX occurs in the equation and S(X) begins with b;
(CP2) Y b occurs in the equation and S(Y) ends with a;
(CP3) Y X occurs in the equation, S(X) begins with b and b S(Y) ends with a.

In each of these cases the ‘uncrossing’ is natural: in (1) we ‘pop’ from X
a letter b to the left, in (2) we pop a to the right from Y , in (3) we perform
both operations. It turns out that in fact we can be even more systematic: we
do not have to look at the occurrences of variables, it is enough to consider the
first and last letter of S(X) for each variable X:

– If S(X) begins with b then we replace X with bX (changing implicitly the
solution S(X) = bw to S′(X) = w), if in the new solution S(X) = ε, i.e. it is
empty, then we remove X from the equation;

– if S(X) ends with a then we apply a symmetric procedure.

Such an algorithm is called Pop.

Algorithm 5. Pop(a, b, ‘u = v’)
1: for X: variable do
2: if the first letter of S(X) is b then � Guess
3: replace every X w ‘u = v’ by bX

� Implicitly change solution S(X) = bw to S(X) = w
4: if S(X) = ε then � Guess
5: remove X from u and v
6: . . . � Perform a symmetric operation for the last letter and a

It is easy to see, that for appropriate non-deterministic choices the obtained
equation has a solution for which ab is non-crossing: for instance, if aX occurs
in the equation and S(X) begins with b then we make the corresponding non-
deterministic choices, popping b to the left and obtaining abX; a simple proof
requires a precise statement of the claim as well as some case analysis.

54 A. Jeż

Lemma 3. If the equation ‘u = v’ has a solution S then for an appropriate
run of Pop(a, b, ‘u = v’) (for appropriate non-deterministic choices) the obtained
equation u′ = v′ has a corresponding solution S′, i.e. S(u) = S′(u′), for which
ab is a non-crossing pair. If the obtained equation has a solution then also the
original equation had one.

Thus, we know how to proceed with a crossing ab-pair compression: we first
turn ab into a non-crossing pair (Pop) and then compress it as a non-crossing
pair (PairComp).

We would like to perform similar operations for block compression. For non-
crossing blocks we can naturally define a similar algorithm BlockComp(a,‘u = v’).
It remains to show how to ‘uncross’ a letter a. Unfortunately, if aX occurs in
the equation and S(X) begins with a then replacing X with aX is not enough,
as S(X) may still begin with a. In such a case we iterate the procedure until
the first letter of X is not a (this includes the case in which we remove the
whole variable X). Observe, that instead of doing this letter by letter, we can
uncross a in one step: it is enough to remove from variable X its whole a-prefix
and a-suffix of S(X) (if w = a�w′ar, where w′ does not begin nor end with a,
a-prefix w is a� and a-suffix is ar; if w = a� then a-suffix and w′ are empty).
Such an algorithm is called CutPrefSuff.

Algorithm 6. CutPrefSuff(a, ‘u = v’) Popping prefixes and suffixes
1: for X: variable do
2: guess the lengths �, r of a-prefix and suffix of S(X) � S(X) = a�war

� If S(X) = a� then r = 0
3: replace occurrences of X in u and v by a�Xar

� a�, ar are stored in a compressed way
4: � Implicitly change the solution S(X) = a�wbr to S(X) = w
5: if S(X) = ε then � Guess
6: remove X from u and v

Similarly as in Pop, we can show that after an appropriate run of CutPrefSuff
the obtained equation has a (corresponding) solution for which a is non-crossing.
Unfortunately, there is another problem: we need to write down the lengths � and
r of a-prefixes and suffixes. We can write them as binary numbers, in which case
they use O(log � + log r) bits of memory. However in general those still can be
arbitrarily large numbers. Fortunately, we can show that in some solution those
values are at most exponential (and so their description is polynomial-size). This
easily follows from the exponential bound on exponent of periodicity [43]. For
the moment it is enough that we know that:

Lemma 4 ([43]). In the shortest solution of the equation ‘u = v’ each a-prefix
and a-suffix has at most exponential length (in terms of |u| + |v|).

Thus in Pop we can restrict ourselves to a-prefixes and suffixes of at most
exponential length.

Recompression: Technique for Word Equations and Compressed Data 55

Lemma 5. Let S be a shortest solution of ‘u = v’. For some non-deterministic
choices, i.e. after some run of CutPrefSuff(a, ‘u = v’), the obtained equation ‘u′ =
v′’ has a corresponding solution S′, such that S′(u′) = S(u), and a is a non-
crossing letter for S′, moreover, the explicit a blocks in ‘u′ = v′’ have at most
exponential length. If the obtained equation has a solution then also the original
equation had one.

After Pop we can compress a-blocks using BlockComp(a,‘u = v’), observe
that afterwards long a-blocks are replaced with single letters.

We are now ready to simulate Compression directly on the equation. The
question is, in which order we should compress pairs and blocks? We make the
choice nondeterministically: if there are any non-crossing pairs or letters, we
compress them. This is natural, as such compression decreases both the size of
the equation and the size of the length-minimal solution of the equation. If all
pairs and letters are crossing, we choose greedily, i.e. the one that leads to the
smallest equation (in one step). It is easy to show that such a strategy keeps
the equation quadratic, more involved strategy, in which we compress many
pairs/blocks in parallel, leads to a linear-length equation.

Algorithm 7. WordEqSAT Deciding the satisfiability of word equations
1: while |u| > 1 or |u| > 1 do
2: L ← list of letters in u, v
3: Choose a pair ab ∈ P 2 or a letter a ∈ P � Guess
4: if it is crossing then � Guess
5: uncross it
6: compress it

7: Solve the problem naively

Call one iteration of the main loop a phase.
The correctness of the algorithm follows from the earlier discussion on the

correctness of BlockComp, CutPrefSuff, PairComp and Pop. In particular, the
length of the length-minimal solution drops by at least 1 in each iteration, thus
the algorithm terminates.

Lemma 6. Algorithm WordEqSAT has O(N) phases, where N is the length of
the shortest solution of the input equation.

Let us bound the space needed by the algorithm: we claim that for appropriate
nondeterministic choices the stored equation has at most 8n2 letters (and n
variables). To see this, observe first that each Pop introduces at most 2n letters,
one at each side of the variable. The same applies to CutPrefSuff (formally,
CutPrefSuff introduces long blocks but they are immediately replaced with single
letters, and so we can think that in fact we introduce only 2n letters). By (1)–(3)
we know that there are at most 2n crossing pairs and crossing letters (as each
crossing pair/each crossing letter corresponds to one occurrence of a variable

56 A. Jeż

and one ‘side’ of such an occurrence). If the equation has m letters (and at most
n occurrences of variables) and there is an occurrence of a non-crossing pair
or block then we choose it for compression. Otherwise, there are m letters in
the equation and each is covered by at least one pair/block, so for one of 2n
choice at least m

2n letters are covered, so at least m
4n letters are removed by some

compression. Thus the new equation has at most

m
︸︷︷︸

previous

− m

4n
︸︷︷︸

removed

+ 2n
︸︷︷︸

popped

= m

(

1 − 1
4n

)

+ 2n

≤ 8n2

(

1 − 1
4n

)

+ 2n

= 8n2 − 2n + 2n = 8n2

letters, where the inequality follows by the inductive assumption that m ≤ 8n2.
Going for the bit-size, each symbol requires at most logarithmic number of bits,
and so

Lemma 7. WordEqSAT runs in O(n2 log n) (bit) space.

With some effort we can make the above if analysis much tighter, see Sect. 4.1.

Theorem 1 ([36]). The recompression based algorithm (nondeterministically)
decides word equations problem in O(n log n) bit-space; moreover, the stored
equation has linear length.

Moreover, with some extra effort one can remove also the logarithmic depen-
dency, and show that satisfiability of word equations is in non-deterministic
linear space, i.e. the problem is context sensitive. Surprisingly, it is enough to
employ Huffman coding for the equation and run a variant of the algorithm.
However, the analysis requires a deeper understanding of how fragments of the
equation are changed during the algorithm and how they depend one on another.

Theorem 2 ([37]). A variant of recompression based algorithm which encodes
the equation using Huffman coding (nondeterministically) decides word equations
problem in O(m) bit-space; where m is the bit-size encoding of the input using
any prefix-free code.

Note that we allow some bit-optimization in the size of the input problem.
As a reminder: a PSPACE algorithm for this problem was already known [65].

Its memory consumption is not stated explicitly in that work, however, it is much
larger than O(n log n): the stored equations are of length O(n3) and during the
transformations the algorithm uses essentially more memory.

3 Extensions of the Algorithm for Word Equations

3.1 O(n logn) Space

In order to improve the space consumption from quadratic to O(n log n) we want
to perform several compressions in parallel. To make it more precise, observe that

Recompression: Technique for Word Equations and Compressed Data 57

– All block compressions (also for different letters) can be performed in parallel,
as such blocks do not overlap. Moreover, uncrossing different letters can also
be done in parallel: if a is the first letter of S(X) and b the last, then we pop
from X the a-prefix and b-suffix.

– If Σ� and Σr are disjoint, then the pair compressions for ab with a ∈ Σ� and
b ∈ Σr can be done in parallel. Similarly as in the previous case, uncrossing
can be done in parallel, by popping first letter if it is from Σr and last if it is
from Σ�.

– We do not compress all pairs, only those from O(1) partitions Σ�, Σr that
cover ‘many’ occurrences of pairs in the equation and in the solution.

The crucial things is the choice of partitions. It turns out that choosing
a random partition reduces the length of the solution by a constant fraction:
consider two consecutive letters ab in S(X). If a = b then they will be compressed
as part of the maximal block. If a �= b then there is 1/4 chance that ab ∈ Σ�Σr.
Thus, in expectation, the length of the word shortens by one fourth of its length.

A similar argument also shows that the number of letters in the equation
remains linear, when a random partition is chosen. Thus, the equation will be
of linear size (though each letter may need O(log n) bits for the encoding).

3.2 Equations with Regular Constraints and Inversion; Equations
in Free Groups

As already mentioned, it is natural and important to extend the word equations
by regular constraints and inversion, in particular this leads to an algorithm
for equations in free groups [13] (the reduction between those two problems is
fully syntactical and does not depend on the particular algorithm for solving
word equations). Note that it is not known, whether the algorithm generating
a representation of all solutions can be also extended by regular constraints and
inversion. Thus the only previously known algorithm for representation of all
solutions of an equation in a free group was due to Razborov [68], and it was
based on Makanin’s algorithm for word equations in free groups.

Adding the regular constraints to the recompression based algorithm Word-
EqSAT is fairly standard: We can encode all constraints using one non-
deterministic finite automaton (the constraints for particular variables differ
only in the set of accepting states). For each letter c we store its transition
function, i.e. a function fc : Q → 2Q, which says that the automaton in state q
after reading a letter c reaches a state in fc(q). This function naturally extends
to words: it still defines which states can be reached from q after reading w.
Formally fwa = (fw ◦ fa)(q) = {p | ∃q′ ∈ fw(q) i p ∈ fa(q′)} for a letter a. If we
introduce a new letter c (which replaces a word w) then we naturally define the
transition function fc ← fw. We can express the regular constraints in terms
of this function: saying that S(X) is accepted by an automaton means that
fS(X)(q0) is one of the accepting states. So it is enough to guess the value of
fS(X) which satisfies this condition; in this way we can talk about the value fX

for a variable X. Popping letters from a variable means that we need to adjust

58 A. Jeż

the transition function, i.e. when we replace X by aX then fX = fa ◦ fX′ , we
similarly define fX when we pop letters to the right.

More problems are caused by the inversion: intuitively it corresponds to
taking the inverse element in the group and on the semigroup level we this is
simulated by requiring that a = a for each letter a and a1a2 . . . am = am . . . a2a1.
This has an impact on the compression: when we compress a pair ab to c, then
we should also replace ab = ba by a letter c. At the first sight this looks easy, but
becomes problematic, when those two pairs are not disjoint, i.e. when a = a (or
b = b); in general we cannot exclude such a case and if it happens, in a sequence
bab during the pair compression for ba we want to simultaneously replace ba
and ab, which is not possible. Instead, we replace maximal fragments that can
be fully covered with pairs ab or ba, in this case this: the whole triple bab. In
the worst case (when a = a and b = b) we need to replace whole sequences
of the form (ab)n, which is a common generalisation of both pairs and blocks
compression.

Theorem 3 ([6,14]). A recompression based algorithm generates in polynomial
space the description of all solutions of a word equation in free semigroups with
inversion and regular constraints.

3.3 Context Unification

Recall that the context unification is a generalisation of word equations to the
case of terms (Fig. 2). What type of equations we would like to consider? Clearly
we consider terms over a fixed signature (which is usually part of the input),
and allow occurrences of constants and variables. If we allow only that the vari-
ables represent full terms, then the satisfiability of such equations is decidable
in polynomial time [69] and so probably does not generalise the word equations
(which are NP-hard). This is also easy to observe when we look closer at a word
equation: the words represented by the variables can be concatenated at both
ends, i.e. they represent terms with a missing argument.

We arrive at a conclusion that our generalisation should use variables with
arguments, i.e. the (second-order) variables take an argument that is a full term
and can use it, perhaps several times. Such a definition leads to a second-order
unification, which is known to be undecidable even in very restricted subcases [16,
26,47,49].

Thus we would like to have a subclass of second order unification that still
generalises word equations. In order to do that we put additional restriction on
the solutions: each argument can be used by the term exactly once. Observe
that this still generalises the word equations: using the argument exactly once
naturally corresponds to concatenation (Fig. 1).

Formally, in the context unification problem [7,8,74], we consider an equation
u = v in which we use term variables (representing closed terms), which we
denote by letters x, y, as well as context variables (representing terms with one
‘hole’ for the argument, they are usually called contexts), which we denote by
letters X,Y . Syntactically, u and v are terms that use letters from signature Σ

Recompression: Technique for Word Equations and Compressed Data 59

X =
h

c c

c

f

f

f

X(t) =
h

c c

c

f

f

f

t

c c c c

Ω

Fig. 1. A context and the same context applied on an argument.

(which is part of the input), term variables and context variables, the former are
treated as symbols of arity 0, while the latter as symbols of arity 1. A substitution
S assigns to each variable a closed term over Σ and to each context variable it
assigns a context, i.e. a term over Σ ∪ {Ω} in which the special symbol Ω has
arity 0 and is used exactly once. (Intuitively it corresponds to a place in which we
later substitute the argument). S is extended to u, v in a natural way, note that
for a context variable X the term S(X(t)) is obtained by replacing in S(X) the
unique symbol Ω by S(t). A solution is a substitution satisfying S(u) = S(v).

Example 2. Consider a signature {f, c, c′}, where f has arity 2 while c, c′ have
arity 0 and consider an equation X(c) = Y (c′), where X and Y are context
variables. The equation has a solution S(X) = f(Ω, c′), S(Y) = f(c,Ω) and
then S(X(c)) = f(c, c′) = S(Y (c′)).

h

c c

c

f

f

f

c

cc

Fig. 2. Term f(h(c, c, c), f(c, f(c, c))) viewed as a tree, f is of arity 2, h: 3 and c: 0.

We try to apply the main idea of the recompression also in the case of
terms: we iterate local compression operations and we guarantee that the word
(term) equation is polynomial size. Since several term problems were solved
using compression-based methods [9,17–19,48], there is a reasonable hope that
our approach may succeed.

60 A. Jeż

Pair and block compression easily generalise to sequences of letters of arity 1
(we can think of them as words), unfortunately, there is no guarantee that a term
has even one such letter. Intuitively, we rather expect that it has mostly leaves
and symbols of larger arity. This leads us to another local compression operation:
leaf compression. Consider a node labelled with f and its i-th child that is a leaf.
We want to compress f with this child, leaving other children (and their subtrees)
unchanged. Formally, given f of arity at least 1, position 1 ≤ i ≤ ar(f) and a let-
ter c of arity 0 the LeafComp(f, i, c, t) operation (leaf compression) replaces in
term t nodes labelled with f and subterms t1, . . . , ti−1, c, ti+1, . . . , tar(f) (where c
and position i are fixed, while other terms t1, . . . , ti−1, ti+1, . . . , tar(f)—varying)
by a term labelled with f ′ and subterms t′1, . . . , t

′
i−1, t

′
i+1, . . . , t

′
ar(f) that are

obtained by applying recursively LeafComp to terms t1, . . . , ti−1, ti+1, . . . , tar(f);
in other words, we first change the label from f to f ′ and then remove the i-th
child, which has a label c and we apply such a compression to all occurrences of
f and c in parallel.

The notion of crossing pair generalizes to this case in a natural way and
the uncrossing replaces a term variable with a constant or replaces X(t) with
X(f(x1, . . . , xi, t, xi+1, . . . , x�)). Note that this introduces new variables.

Now the whole algorithm looks similar as in the case of word equations, we
simply use additional compression operation. However, the analysis is much more
involved, as the new uncrossing introduces fresh term variables. However, their
number at any point can be linearly bounded and the polynomial upper-bound
follows.

Theorem 4 ([31]). Recompression based algorithm solves context unification in
nondeterministic polynomial space.

4 Recompression and Compressed Data

The recompression technique is (partially) inspired by methods coming from the
algorithm’s design [1,58]. In this section we show that it is able to contribute
back to algorithmics: some algorithmic questions for compressed data can be
solved using a recompression technique. The obtained solutions are as good
and sometimes better than the known ones, which is surprising taking into the
account the robustness of the method.

4.1 Straight Line Programs and Recompression

Recall that the Straight Line Programme (SLP) was defined as a context-free
grammar whose each nonterminal generates exactly one word. We employ the
following naming conventions for SLPs: its nonterminals are ordered (without
loss of generality: X1, X2, . . . , Xm), each nonterminal has exactly one production
and if Xj occurs in the production for Xi then j < i; we will use symbols A,
B, etc. to denote an SLP. The unique word generated by a nonterminal Xi is
denoted by val(Xi), while the whole SLP A defines a word val(A) = val(Xm).

Recompression: Technique for Word Equations and Compressed Data 61

We can treat SLP as a system of word equations (in variables X1, . . . , Xm):
production Xi → αi corresponds to an equation Xi = αi; observe that such an
equality is meaningful as val(X) = val(α) (where val is naturally extended to
strings of letters and nonterminals), moreover, this is the unique solution of this
equation. Thus the recompression technique can be applied to SLPs as well (so
far we used recompression only to one equation but it easily generalises also to
a system of equations).

However, there are two issues that need to be solved: non-determinism and
efficiency: the recompression for word equations is highly non-deterministic while
algorithms for SLPs should, if possible, be deterministic and we usually want
them to be efficient, i.e. we want as small polynomial degree as possible.

Let us inspect the source of non-determinism of recompression-based app-
roach, it is needed to:

1. establish, whether val(Xi) = ε;
2. establish the first (and last) letter of val(Xi);
3. establish the length of a-prefix and suffix of val(Xi);
4. the choice of the partition to compress.

The first three question ask about some basic properties of the solution and
can be easily answered in case of SLPs: assuming that we already know the
answers for Xj for j < i: let Xi → αi, then we first remove from αi all nonter-
minals Xj , for which val(Xj) = ε, and then

1. val(Xi) = ε if and only if αi = ε;
2. the first letter of val(Xi) is the first letter of αi or the first letter of val(Xj),

if the first symbol of αi is Xj ;
3. the length of the a-prefix depends only on the letters a in αi and the lengths

of a-prefixes in nonterminals in αi.

All those conditions can be verified in linear time. The last question is of different
nature. However, the argument used to show that a good choice of a partition
exists actually shown that in expectation the choice is a good one and this
approach can be easily derandomised using conditional expectation approach.
In particular, this subprocedure can be implemented in linear time.

Concerning the running time, the generalisations of Pop, PairComp, CutPref-
Suff and BlockComp can be implemented in linear time, thus the recompression
for SLPs runs in polynomial (in SLP’s size) time, so polynomial in total.

Lemma 8. The recompression for SLPs runs in O(n log N) ≤ O(n2) time,
where n is the size of the input SLP and N is the length of the defined word.

4.2 SLP Equality and Fully Compressed Pattern Matching

One of the first (and most important) problems considered for SLPs is the equal-
ity testing, i.e. for two SLPs we want to decide if they define the same word. The
first polynomial algorithm for this problem was given in 1994 by Plandowski [63],

62 A. Jeż

to be more precise, his algorithm run in O(n4) time. Afterwards research was
mostly focused on the more general problem of fully compressed pattern match-
ing : for given SLPs A and B we want to decide, whether val(A) occurs in
val(B) (as a subword). The first solution to this problem was given by Karpiński
et al. [40] in 1995. Gasieniec et al. [21] gave a faster randomised algorithm. In
1997 Miyazaki et al. [59] constructed an O(n4) algorithm. Finally, Lifshits gave
an O(n3) algorithm for this problem [52]. All of the mentioned papers were based
on the same original idea as Plandowski’s algorithm.

Recompression can be naturally applied to equality testing of SLPs: given two
SLPs A and B we add an equation XmA = YmA and ask about the satisfiability of
the whole system. As already observed, the recompression based algorithm will
work in polynomial time. It turns out that the proper implementation (using
many nontrivial algorithmic techniques) runs in time O(n log N), where N =
| val(A)| = | val(B)| (if | val(A)| �= | val(B)| then clearly A and B are not equal)
and n the sum of sizes of SLPs A and B. In order to obtain such a running time,
we need several optimisations.

Theorem 5 ([33]). The recompression based algorithm for equality testing for
SLPs runs in O(n log N) time, where n is the sum of SLPs’ sizes while N the
size of the defined (decompressed) words.

In order to use the recompression technique for the fully compressed pattern
matching problem, we need some essential modifications: consider ba-pair com-
pression on a pattern ab and text bab. We obtain the same pattern ab and text
cb, loosing the only occurrence of the pattern in the text. This happens because
the compression (on the text) is done partially on the pattern occurrence and
partially outside it. To remedy this, we perform the compression operations in a
particular order, which takes into the account what are the first and last letters
of pattern and text. (In the considered example, we make the ab-pair compres-
sion first and this preserves the occurrences of the pattern.) Similar approach
works also for block compression.

Theorem 6 ([33]). The recompression based algorithm for fully compressed pat-
tern matching runs in O(n log M) time, where n is the sum of SLPs’ sizes while
M the length of the (uncompressed) pattern.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In:
Shmoys, D.B. (ed.) SODA, pp. 819–828. ACM/SIAM (2000). https://doi.org/10.
1145/338219.338645, http://dl.acm.org/citation.cfm?id=338219.338645

2. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Inf. Syst. 33(4–5), 456–474 (2008)

3. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation
and undecidable extensions of this theory. Math. Log. Q. 34(4), 337–342 (1988).
https://doi.org/10.1002/malq.19880340410

https://doi.org/10.1145/338219.338645
https://doi.org/10.1145/338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.1002/malq.19880340410

Recompression: Technique for Word Equations and Compressed Data 63

4. Charatonik, W., Pacholski, L.: Word equations with two variables. In: IWWERT,
pp. 43–56 (1991). https://doi.org/10.1007/3-540-56730-5 30

5. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

6. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. IJAC 26(5), 843–886 (2016). https://doi.org/10.1142/
S0218196716500363

7. Comon, H.: Completion of rewrite systems with membership constraints. Part
I: deduction rules. J. Symb. Comput. 25(4), 397–419 (1998). https://doi.org/10.
1006/jsco.1997.0185

8. Comon, H.: Completion of rewrite systems with membership constraints. Part II:
constraint solving. J. Symb. Comput. 25(4), 421–453 (1998). https://doi.org/10.
1006/jsco.1997.0186

9. Creus, C., Gascón, A., Godoy, G.: One-context unification with STG-compressed
terms is in NP. In: Tiwari, A. (ed.) 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 149–
164. Schloss Dagstuhl – Leibniz Zentrum fuer Informatik, Dagstuhl, Germany
(2012). https://doi.org/10.4230/LIPIcs.RTA.2012.149, http://drops.dagstuhl.de/
opus/volltexte/2012/3490

10. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408–419. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 36

11. Da̧browski, R., Plandowski, W.: On word equations in one variable. Algorithmica
60(4), 819–828 (2011). https://doi.org/10.1007/s00453-009-9375-3

12. Diekert, V., Elder, M.: Solutions of twisted word equations, EDT0L languages,
and context-free groups. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A.
(eds.) ICALP. LIPIcs, vol. 80, pp. 96:1–96:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.96

13. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005). http://dx.doi.org/10.1016/j.ic.2005.04.002

14. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

15. Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative
groups is decidable. Int. J. Algebr. Comput. 16, 1047–1070 (2006). https://doi.org/
10.1142/S0218196706003372. Conference version in Proceedings of ICALP 2001,
pp. 543-554, LNCS 2076

16. Farmer, W.M.: Simple second-order languages for which unification is undecid-
able. Theor. Comput. Sci. 87(1), 25–41 (1991). https://doi.org/10.1016/S0304-
3975(06)80003-4

17. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Context matching for compressed
terms. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24–27 June 2008, Pittsburgh, PA, USA, pp. 93–102.
IEEE Computer Society (2008). https://doi.org/10.1109/LICS.2008.17

18. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on com-
pressed terms. ACM Trans. Comput. Log. 12(4), 26 (2011). https://doi.org/10.
1145/1970398.1970402

https://doi.org/10.1007/3-540-56730-5_30
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.4230/LIPIcs.RTA.2012.149
http://drops.dagstuhl.de/opus/volltexte/2012/3490
http://drops.dagstuhl.de/opus/volltexte/2012/3490
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/s00453-009-9375-3
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
http://dx.doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1016/S0304-3975(06)80003-4
https://doi.org/10.1016/S0304-3975(06)80003-4
https://doi.org/10.1109/LICS.2008.17
https://doi.org/10.1145/1970398.1970402
https://doi.org/10.1145/1970398.1970402

64 A. Jeż

19. Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with
one context variable. J. Symb. Comput. 45(2), 173–193 (2010). https://doi.org/
10.1016/j.jsc.2008.10.005

20. Gasieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding. In: SWAT, pp. 392–403 (1996). https://doi.org/10.1007/3-
540-61422-2 148

21. Gasieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Randomized efficient
algorithms for compressed strings: the finger-print approach. In: CPM, pp. 39–49
(1996). https://doi.org/10.1007/3-540-61258-0 3

22. Gasieniec, L., Rytter, W.: Almost optimal fully LZW-compressed pattern match-
ing. In: DCC, pp. 316–325. IEEE Computer Society (1999)

23. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23719-5 36

24. Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern
matching. In: Dürr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 624–635.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012). https://doi.org/10.
4230/LIPIcs.STACS.2012.624

25. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. ACM
Trans. Algorithms 9(3), 25 (2013). https://doi.org/10.1145/2483699.2483705

26. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225–230 (1981). https://doi.org/10.1016/0304-3975(81)90040-2

27. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: FOCS, pp. 112–119 (1998). https://doi.org/10.1109/SFCS.1998.743434

28. Ilie, L., Plandowski, W.: Two-variable word equations. ITA 34(6), 467–501 (2000).
https://doi.org/10.1051/ita:2000126

29. Jaffar, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)
30. Jeż, A.: The complexity of compressed membership problems for finite automata.

Theory Comput. Syst. 55, 685–718 (2014). https://doi.org/10.1007/s00224-013-
9443-6

31. Jeż, A.: Context unification is in PSPACE. In: Koutsoupias, E., Esparza, J., Fraig-
niaud, P. (eds.) ICALP. LNCS, vol. 8573, pp. 244–255. Springer (2014). https://
doi.org/10.1007/978-3-662-43951-7 21, full version at http://arxiv.org/abs/1310.
4367

32. Jeż, A.: Approximation of grammar-based compression via recompression. Theor.
Comput. Sci. 592, 115–134 (2015). https://doi.org/10.1016/j.tcs.2015.05.027

33. Jeż, A.: Faster fully compressed pattern matching by recompression. ACM Trans.
Algorithms 11(3), 20:1–20:43 (2015). https://doi.org/10.1145/2631920

34. Jeż, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016). https://doi.org/10.1016/j.tcs.2015.12.032

35. Jeż, A.: One-variable word equations in linear time. Algorithmica 74, 1–48 (2016).
https://doi.org/10.1007/s00453-014-9931-3

36. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1–4:51 (2016). https://doi.org/10.1145/2743014

37. Jeż, A.: Word equations in nondeterministic linear space. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) ICALP. LIPIcs, vol. 80, pp. 95:1–
95:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017). https://doi.org/
10.4230/LIPIcs.ICALP.2017.95

38. Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammar. Inf. Comput.
251, 215–251 (2016). https://doi.org/10.1016/j.ic.2016.09.007

https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1007/3-540-61422-2_148
https://doi.org/10.1007/3-540-61422-2_148
https://doi.org/10.1007/3-540-61258-0_3
https://doi.org/10.1007/978-3-642-23719-5_36
https://doi.org/10.1007/978-3-642-23719-5_36
https://doi.org/10.4230/LIPIcs.STACS.2012.624
https://doi.org/10.4230/LIPIcs.STACS.2012.624
https://doi.org/10.1145/2483699.2483705
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1109/SFCS.1998.743434
https://doi.org/10.1051/ita:2000126
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/978-3-662-43951-7_21
http://arxiv.org/abs/1310.4367
http://arxiv.org/abs/1310.4367
https://doi.org/10.1016/j.tcs.2015.05.027
https://doi.org/10.1145/2631920
https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1145/2743014
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.1016/j.ic.2016.09.007

Recompression: Technique for Word Equations and Compressed Data 65

39. Kärkkäinen, J., Mikkola, P., Kempa, D.: Grammar precompression speeds up
Burrows–Wheeler compression. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 330–335. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34109-0 34

40. Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short
descriptions. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp.
205–214. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60044-2 44

41. Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group.
II: systems in triangular quasi-quadratic form and description of residually free
groups. J. Algebra 200, 517–570 (1998)

42. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. Algebra 302, 451–552 (2006)

43. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. J. ACM 43(4),
670–684 (1996). https://doi.org/10.1145/234533.234543

44. Kościelski, A., Pacholski, L.: Makanin’s algorithm is not primitive recursive.
Theor. Comput. Sci. 191(1–2), 145–156 (1998). https://doi.org/10.1016/S0304-
3975(96)00321-0

45. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(2), 345–375 (2011). https://doi.org/10.1142/S0129054111008088

46. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference, pp. 296–305 (1999). https://doi.org/10.1109/DCC.1999.755679

47. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332–346. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61464-8 63

48. Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded second-
order unification and stratified context unification. Log. J. IGPL 19(6), 763–789
(2011). https://doi.org/10.1093/jigpal/jzq010

49. Levy, J., Veanes, M.: On the undecidability of second-order unification. Inf. Com-
put. 159(1–2), 125–150 (2000). https://doi.org/10.1006/inco.2000.2877

50. Levy, J., Villaret, M.: Linear second-order unification and context unification with
tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp.
156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975 11

51. Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison,
S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45610-4 23

52. Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73437-6 24

53. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

54. Makanin, G.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 2(103), 147–236 (1977). (in Russian)

55. Makanin, G.: Equations in a free group. Izv. Akad. Nauk SSR Ser. Math. 46,
1199–1273 (1983). English translation in Math. USSR Izv. 21 (1983)

56. Makanin, G.: Decidability of the universal and positive theories of a free group. Izv.
Akad. Nauk SSSR Ser. Mat. 48, 735–749 (1984). in Russian. English translation.
In: Math. USSR Izvestija 25(75–88) (1985)

57. Matiyasevich, Y.: Some decision problems for traces. In: Adian, S., Nerode, A.
(eds.) LFCS 1997. LNCS, vol. 1234, pp. 248–257. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63045-7 25

https://doi.org/10.1007/978-3-642-34109-0_34
https://doi.org/10.1007/3-540-60044-2_44
https://doi.org/10.1145/234533.234543
https://doi.org/10.1016/S0304-3975(96)00321-0
https://doi.org/10.1016/S0304-3975(96)00321-0
https://doi.org/10.1142/S0129054111008088
https://doi.org/10.1109/DCC.1999.755679
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1093/jigpal/jzq010
https://doi.org/10.1006/inco.2000.2877
https://doi.org/10.1007/10721975_11
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/978-3-540-73437-6_24
https://doi.org/10.1007/3-540-63045-7_25

66 A. Jeż

58. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997). https://doi.
org/10.1007/BF02522825

59. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Apostolico, A., Hein, J. (eds.)
CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63220-4 45

60. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. (JAIR) 7, 67–82 (1997). https://doi.
org/10.1613/jair.374

61. Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 34–48. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63104-6 4

62. Niehren, J., Pinkal, M., Ruhrberg, P.: A uniform approach to under specification
and parallelism. In: Cohen, P.R., Wahlster, W. (eds.) ACL, pp. 410–417. Morgan
Kaufmann Publishers/ACL (1997). https://doi.org/10.3115/979617.979670

63. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0049431

64. Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME.
In: STOC, pp. 721–725. ACM (1999). https://doi.org/10.1145/301250.301443

65. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004). https://doi.org/10.1145/990308.990312

66. Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg,
J.M. (ed.) STOC, pp. 467–476. ACM (2006). https://doi.org/10.1145/1132516.
1132584

67. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

68. Razborov, A.A.: On systems of equations in free groups. Ph.D. thesis, Steklov
Institute of Mathematics (1987). (in Russian)

69. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

70. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

71. Saarela, A.: On the complexity of Hmelevskii’s theorem and satisfiability of three
unknown equations. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol.
5583, pp. 443–453. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02737-6 36

72. Sahinalp, S.C., Vishkin, U.: Symmetry breaking for suffix tree construction. In:
Leighton, F.T., Goodrich, M.T. (eds.) SODA, pp. 300–309. ACM (1994). https://
doi.org/10.1145/195058.195164

73. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(2–4), 416–430 (2005). https://doi.org/10.
1016/j.jda.2004.08.016

74. Schmidt-Schauß, M.: Unification of stratified second-order terms (1994). Internal
Report 12/94, Johann-Wolfgang-Goethe-Universität

https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1613/jair.374
https://doi.org/10.1613/jair.374
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.3115/979617.979670
https://doi.org/10.1007/BFb0049431
https://doi.org/10.1145/301250.301443
https://doi.org/10.1145/990308.990312
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.1145/195058.195164
https://doi.org/10.1145/195058.195164
https://doi.org/10.1016/j.jda.2004.08.016
https://doi.org/10.1016/j.jda.2004.08.016

Recompression: Technique for Word Equations and Compressed Data 67

75. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929–953 (2002). https://doi.org/10.1093/logcom/12.6.929

76. Schmidt-Schauß, M.: Decidability of bounded second order unification. Inf. Com-
put. 188(2), 143–178 (2004). https://doi.org/10.1016/j.ic.2003.08.002

77. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solu-
tions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp.
61–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052361

78. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002). https://doi.
org/10.1006/jsco.2001.0438

79. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

80. Storer, J.A., Szymanski, T.G.: The macro model for data compression. In: STOC,
pp. 30–39 (1978)

https://doi.org/10.1093/logcom/12.6.929
https://doi.org/10.1016/j.ic.2003.08.002
https://doi.org/10.1007/BFb0052361
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1007/3-540-55124-7_4

How to Prove that a Language Is Regular
or Star-Free?

Jean-Éric Pin(B)

IRIF, CNRS and Université Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France
Jean-Eric.Pin@irif.fr

Abstract. This survey article presents some standard and less standard
methods used to prove that a language is regular or star-free.

Most books of automata theory [9,23,29,45,49] offer exercises on regular lan-
guages, including some difficult ones. Further examples can be found on the web
sites math.stackexchange.com and cs.stackexchange.com. Another good source
of tough questions is the recent book 200 Problems in Formal Languages and
Automata Theory [36]. Surprisingly, there are very few exercises related to star-
free languages. In this paper, we present various methods to prove that a lan-
guage is regular or star-free.

1 Background

1.1 Regular and Star-Free Languages

Let’s start by reminding us what a regular language and a star-free language
are.

Definition 1. The class of regular languages is the smallest class of languages
containing the finite languages that is closed under finite union, finite product
and star.

The definition of star-free languages follows the same pattern, with the difference
that the star operation is replaced by the complement:

Definition 2. The class of star-free languages is the smallest class of languages
containing the finite languages that is closed under finite union, finite product
and complement.

For instance, the language A∗ is star-free, since A∗ = ∅c. More generally, if B is
a subset of A, then B∗ is star-free since

B∗ = A∗ −
∑

a∈A−B

A∗aA∗ =
(∑

a∈A−B

∅ca∅c
)c

J.-É. Pin—Work supported by the DeLTA project (ANR-16-CE40-0007).

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 68–88, 2020.
https://doi.org/10.1007/978-3-030-40608-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_5&domain=pdf
https://math.stackexchange.com
https://cs.stackexchange.com
https://doi.org/10.1007/978-3-030-40608-0_5

How to Prove that a Language Is Regular or Star-Free? 69

On the alphabet {a, b}, the language (ab)∗ is star-free since

(ab)∗ = (b∅c + ∅ca + ∅caa∅c + ∅cbb∅c)c.

Since regular languages are closed under complement, every star-free language
is regular, but the converse is not true: one can show that the language (aa)∗ is
not star-free.

1.2 Early Results and Their Consequences

Kleene’s theorem [26] states that regular languages are accepted by finite
automata.

Theorem 1. Let L be a language. The following conditions are equivalent:

(1) L is regular,
(2) L is accepted by a finite deterministic automaton,
(3) L is accepted by a finite non-deterministic automaton.

Given a language L and a word u, the left [right] quotient of L by u are defined
by u−1L = {v | uv ∈ L} and Lu−1 = {v | vu ∈ L}, respectively. The quotients
of a regular [star-free] language are also regular [star-free].

Here is another standard result, due to Nerode.

Theorem 2. A language is regular if and only if it has finitely many left (respec-
tively right) quotients.

Example 1. Nerode’s theorem suffices to show that if L1 and L2 are regular
[star-free], then the language

L = {uw | there exists v such that uv ∈ L1 and vw ∈ L2}

is also regular [star-free]. Indeed L =
⋃

v∈A∗(L1v
−1)(v−1L2) and since L1 and

L2 are regular [star-free], this apparently infinite union can be rewritten as a
finite union. Thus L is regular [star-free].

1.3 Recognition by a Monoid and Syntactic Monoid

It is often useful to have a more algebraic definition of regular languages, based
on the following result.

Proposition 1. Let L be a language. The following conditions are equivalent:

(1) L is regular,
(2) L is recognised by a finite monoid,
(3) the syntactic monoid of L is finite.

70 J.-É. Pin

For readers who may have forgotten the definitions used in this proposition, here
are some reminders. A language L of A∗ is recognised by a monoid M if there
is a surjective monoid morphism f : A∗ → M and a subset P of M such that
f−1(P) = L.

The syntactic congruence of a language L of A∗ is the equivalence relation
∼L on A∗ defined as follows: u ∼L v if and only if, for every x, y ∈ A∗, xuy and
xvy are either both in L or both outside of L. The syntactic monoid of L is the
quotient monoid A∗/∼L.

Moreover, the syntactic monoid of a regular language is the transition monoid
of its minimal automaton, which gives a convenient algorithm to compute it. It
is also the minimal monoid (in size, but also for the division ordering1) that
recognises the language.

Syntactic monoids are particularly useful to show that a language is star-free.
Recall that a finite monoid M is aperiodic if, for every x ∈ M , there exists n � 0
such that xn+1 = xn.

Theorem 3 (Schützenberger [46]). For a language L, the following condi-
tions are equivalent:

(1) L is star-free,
(2) L is recognised by a finite aperiodic monoid,
(3) the syntactic monoid of L a finite aperiodic monoid.

Schützenberger’s theorem is considered, right after Kleene’s theorem, as the most
important result of the algebraic theory of automata.

Example 2. The languages (ab + ba)∗ and (a(ab)∗b)∗ are star-free, but the lan-
guages (aa)∗ and (a + bab)∗ are not. This is easy to prove by computing the
syntactic monoid of these languages.

The following classic example is a good example of the usefulness of the
monoid approach. For each language L, let

√
L = {u | uu ∈ L}.

Proposition 2. If L is regular [star-free], then so is
√

L.

Proof. Let h : A∗ → M be the syntactic morphism of L, let P = h(L) and let
Q = {x ∈ M | x2 ∈ P}. Then

h−1(Q) = {u ∈ A∗ | h(u) ∈ Q} = {u ∈ A∗ | h(u)2 ∈ P}
= {u ∈ A∗ | h(u2) ∈ P} = {u ∈ A∗ | u2 ∈ L} =

√
L.

Thus M recognises
√

L and the result follows.

Although the star operation is prohibited in the definition of a star-free lan-
guage, some languages of the form L∗ are star-free. A submonoid M of A∗ is
pure if, for all u ∈ A∗ and n > 0, the condition un ∈ M implies u ∈ M . The
following result is due to Restivo [43] for finite languages and to Straubing [52]
for the general case.
1 Let M and N be monoids. We say that M divides N if there is a submonoid R of
N and a monoid morphism that maps R onto M .

How to Prove that a Language Is Regular or Star-Free? 71

Theorem 4. If L is star-free and L∗ is pure, then L∗ is star-free.

Here is another example, based on [51, Theorem 5]. For each language L, let

fW (L) = {u ∈ A∗ | there exists x, z ∈ A∗ and y ∈ W with u = xz and xyz ∈ L}

Proposition 3. If L is regular [star-free], then so is fW (L).

Proof. Let h : A∗ → M be the syntactic morphism of L and let P = h(L).
Note that the conditions x−1Lz−1 ∩ W �= ∅ and P ∩ h(x)h(W)h(z) �= ∅ are
equivalent, for any x, z ∈ A∗. Setting R = h(W) and T = {(u, v) ∈ M × M |
uRv ∩ P �= ∅} one gets

fW (L) =
⋃

(u,v)∈T

h−1(u)h−1(v).

and the result now follows easily.

2 Iteration Properties

The bible on this topic is the book of de Luca and Varricchio [13]. I only present
here a selection of their numerous results.

2.1 Pumping

The standard pumping lemma is designed to prove that a language is non-regular,
although some students try to use it to prove the opposite. In a commendable
effort to comfort these poor students, several authors have proposed extensions
of the pumping lemma that characterise regular languages. The first is due to
Jaffe [24]:

Theorem 5. A language L is regular if and only if there is an integer m such
that every word x of length � m can be written as x = uvw, with v �= 1, and for
all words z and for all k � 0, xz ∈ L if and only if uvkwz ∈ L.

Stronger versions were proposed by Stanat and Weiss [50] and Ehrenfeucht,
Parikh and Rozenberg [15], but the most powerful version was given by Varric-
chio [54].

Theorem 6. A language L is regular if and only if there is an integer m > 0
such that, for all words x, u1, . . . , um and y, there exist i, j with 1 � i < j � m
such that for all k > 0,

xu1 · · · ui−1(ui · · · uj)kuj+1 · · · umy ∈ L ⇐⇒ xu1 · · · umy ∈ L

72 J.-É. Pin

2.2 Periodicity and Permutation

Definition 3. Let L be a language of A∗.

(1) L is periodic if, for any u ∈ A∗, there exist integers n, k > 0 such that, for
all x, y ∈ A∗, xuny ∈ L ⇐⇒ xun+ky ∈ L.

(2) L is n-permutable if, for any sequence u1, . . . , un of n words of A∗, there
exists a nontrivial permutation σ of {1, . . . , n} such that, for all x, y ∈ A∗,
xu1 · · · uny ∈ L ⇐⇒ xuσ(1) · · · uσ(n)y ∈ L.

(3) L is permutable if it is permutable for some n > 1.

These definitions were introduced by Restivo and Reutenauer [44], who proved
the following result.

Proposition 4. A language is regular if and only if it is periodic and per-
mutable.

2.3 Iteration Properties

The book of de Luca and Varricchio [13] also contains many results about iter-
ations properties. Here is an example of this type of results.

Proposition 5. A language L is regular if and only if there exist integers m and
s such that for any z1, . . . , zm ∈ A∗, there exist integers h, k with 1 � h � k � m,
such that for all for all u, v ∈ A∗,

uz1 · · · zmv ∈ L ⇐⇒ uz1 · · · zh−1(zh · · · zk)nzk+1 · · · zmv ∈ L, (1)

for all n � s.

3 Rewriting Systems and Well Quasi-orders

Rewriting systems and well quasi-orders are two powerful methods to prove the
regularity of a language. We follow the terminology of Otto’s survey [37].

3.1 Rewriting Systems

A rewriting system is a binary relation R on A∗. A pair (�, r) from R is usually
referred to as the rewrite rule or simply the rule � → r. A rule is special if r = 1,
context-free if |�| � 1, inverse context-free if |r| � 1, length-reducing if |r| < |l|. It
is monadic if it is length-reducing and inverse context-free. A rewriting system is
special (context-free, inverse context-free, length-reducing, monadic) if its rules
have the corresponding properties.

The reduction relation ∗−→R the reflexive and transitive closure of the single-
step reduction relation →R defined as follows: u →R v if u = x�y and v = xry
for some (�, r) ∈ R and some x, y ∈ A∗. For each language L, we set

[L] ∗−→R
= {v ∈ A∗ | there exists u ∈ L such that u

∗−→R v}
A rewriting system R is said to preserve regularity if, for each regular language
L, the language [L] ∗−→R

is regular. The following result is well-known.

How to Prove that a Language Is Regular or Star-Free? 73

Theorem 7. Inverse context-free rewriting systems preserve regularity.

Proof. Let R be an inverse context-free rewriting system and let L be a regular
language. Starting from the minimal deterministic automaton of L, construct
an automaton with the same set of states, but with 1-transitions, by iterating
the following process: for each rule u → 1 and for each path p u q, create
a new transition p

1−→ q; for each rule v → a with a ∈ A and for each path
p v q, create a new transition p

a−→ q. The automaton obtained at the end of
the iteration process will accept [L] ∗−→R

.

A similar technique can be used to prove the following result [38]. If K is
a regular language, then the smallest language L containing K and such that
xu+y ⊆ L =⇒ xy ∈ L is regular.

3.2 Suffix Rewriting Systems

A suffix rewriting system is a binary relation S on A∗. Its elements are called
suffix rules. The suffix-reduction relation ∗−→S defined by S is the reflexive transi-
tive closure of the single-step suffix-reduction relation defined as follows: u →S v
if u = x� and v = xr for some (�, r) ∈ S and some x ∈ A∗. Prefix rewriting
systems are defined symmetrically. For each language L, we set

[L] ∗−→S
= {v ∈ A∗ | there exists u ∈ L such that u

∗−→S v}

The following early result is due to Büchi [8].

Theorem 8. Suffix (prefix) rewriting systems preserve regularity.

3.3 Deleting Rewriting Systems

We follow Hofbauer and Waldmann [22] for the definition of deleting systems. If
u is a word, the content of u is the set c(u) of all letters of u occurring in u. A
precedence relation is an irreflexive and transitive binary relation. A precedence
relation < on an alphabet A can be extended to a precedence relation on A∗,
by setting u < v if c(u) �= c(v) and, for each a ∈ c(u), there exists b ∈ c(v) such
that a < b. A rewriting system R is <-deleting if for each rule � → r of R, � < r.

Hofbauer and Waldmann [22] proved the following result.

Theorem 9. Every deleting string rewriting system preserves regularity.

3.4 Rules of the Form un → um

Rules of the form un → um were studied in several papers, for instance [5,16,34].
The following result is due to Bovet and Varricchio [5].

Proposition 6. The rewriting systems {(u → uu) | u ∈ {a, b}∗} and {(u →
uu) | u ∈ {a, b}∗, |u| � 2} both preserve regularity.

74 J.-É. Pin

This result can be used to solve the following exercise. Let L be a language
such that, for all x, y ∈ A∗, x−1Ly−1 is a semigroup. Prove that L is regular.
Indeed, this condition implies that xuy ∈ L implies xu2y ∈ L.

Several results were obtained by Leupold [33,34]. Let us say that a rewriting
system is k-period-expanding [k-period-reducing] if its rules are of the form un →
um, with n < m [m < n] and |u| = k. Any union of finitely many k-period-
expanding and k-period reducing SRSs is called a k-periodic rewriting system.

Proposition 7 (Leupold).

(1) Every k-periodic rewriting system preserves regularity.
(2) For each k � 3, the rewriting system {(u → uu) | |u| � k} preserves

regularity.
(3) For each k and for m � n, the rewriting system {un → um | |u| � k}

preserves regularity.

3.5 Well Quasi-orders

A quasi-order (or preorder) on A∗ is a reflexive and transitive relation. A quasi-
order � is stable (or monotone) if, for all words u, v, x, y, the condition u � v
implies xuy � xvy. A language U is an upper set with respect to a quasi-order
� is the conditions u ∈ U and u � v imply v ∈ U . The upper set generated by a
language L is the language ↑L = {u ∈ A∗ | there exists v ∈ L such that v � u}.

A quasi-order � on A∗ is a well quasi-order (wqo) if every upper set is
generated by some finite language. The connection with regular languages was
first established in [14] (see also [13, Theorem 6.3.1, p. 203] and [12]).

Theorem 10. A language is regular if and only if it is an upper set with respect
to some stable well quasi-order on A∗.

It follows that if the reduction relation defined by a rewriting system is a well
quasi-order, then this rewriting system preserves regularity. Actually, a stronger
property holds. Following Conway [11], let us say that a rewriting system R is a
total regulator if for any language L, the language [L] ∗−→R

is regular.

Theorem 11. Any rewriting system whose reduction relation is a well quasi-
order is a total regulator.

The most famous example is the rewriting system {1 → a | a ∈ A}, which
defines the subword ordering. A word u = a1 · · · an is a subword of a word v if
v ∈ A∗a1A

∗ · · · A∗anA∗. Higman’s theorem states that if A is finite, the subword
relation is a well quasi-order on A∗. It follows that for any language L (regular
or not), the shuffle product L ��� A∗ is regular.

The following result extends Higman’s theorem on the subword order. Let us
say that a set H of words of A∗ is unavoidable if the language A∗ − A∗HA∗ is
finite.

How to Prove that a Language Is Regular or Star-Free? 75

Theorem 12 (Ehrenfeucht, Haussler, Rozenberg [14, Theorem 4.8]). If
H is a unavoidable finite set of words of A∗, then the reduction relation of the
rewriting system {1 → u | u ∈ H} is a well quasi-order on A∗.

A similar result holds for rewriting systems with rules of the form a → u, where
a is a letter.

Theorem 13 (Bucher, Ehrenfeucht and Haussler [6, Theorem 2.3]). Let
R be a finite rewriting system with rules of the form a → x with a ∈ A and
x ∈ A∗. The following conditions are equivalent:

(1) the relation ∗−→R is a well quasi-order,
(2) The set {ax | x ∈ A∗ and a

∗−→R ax} ∪ {xa | x ∈ A∗ and a
∗−→R xa} is

unavoidable,
(3) The set {axa | x ∈ A∗ and a

∗−→R axa} is unavoidable.

It follows for instance that the following rewriting systems are total regulators:

R1 = {a → aa, a → aba, b → bb, b → bab}
R2 = {a → b, b → a, b → bb}

Bucher, Ehrenfeucht and Haussler [6] considered context-free rewriting systems
related to semigroup morphims. Recall that an ordered semigroup is a semigroup
equipped with a stable partial order. Let (S,�) be a finite ordered semigroup
and let σ : A+ → S be a semigroup morphism. Consider the rewriting system

Rσ = {a → u | a ∈ A, u ∈ A+ and σ(a) � σ(u)}.

Let L be a finite set of languages of A+. Consider a (possibly infinite) system of
inequations of the form

Pi(X1, . . . , Xn) ⊆ Ei(X1, . . . , Xn) (i ∈ I) (2)

where each Pi(X1, . . . , Xn) is a product built from the variables X1, . . . , Xn and
arbitrary constant languages and each Ei(X1, . . . , Xn) is an expression built from
the variables X1, . . . , Xn and constant languages belonging to the set L ∪ {1},
using concatenation, possibly infinite union and possibly infinite intersection.
Note that the expressions Ei can also use Kleene star, since it can be rewritten
as an infinite union of products.

Theorem 14 (Kunc [30]). Let σ : A+ → S be a semigroup morphism that
recognises all languages in L. If ∗−→Rσ

is a well quasi-order on A∗, then the
components of every maximal solution of (2) is regular and they are star-free is
S is aperiodic.

Characterising the semigroup morphisms for which ∗−→Rσ
is a well quasi-

order, is an open problem. However, Kunc found a complete answer for finite
semigroups (S,=) ordered by the equality relation.

76 J.-É. Pin

Theorem 15 (Kunc [30]). Let (S,=) be a finite ordered semigroup ordered by
the equality relation and let σ : A+ → S be a surjective semigroup morphism.
Then the relation ∗−→Rσ

is a well quasi-order on A∗ if and only if S is a chain of
simple semigroups.

In particular any finite group is a simple semigroup. It follows that if L is a
language recognised by a finite group, then, for any subset S of N, the language⋃

n∈S Ln is regular.

Example 3. The following example is given by Kunc [30, Example 19]. Let L be
the language consisting of those words u ∈ A+ which contain some occurrence
of b and where the difference between the length of u and the number of blocks
of occurrences of b in u is even. Here is the minimal automaton of this language.

1 2 3

4 5 6

a

b

a

b a

b

a

b

a
b a

b

The syntactic semigroup of L is defined by the relations a3 = a, b3 = b,
ab2 = a2b, ba2 = b2a and bab = b2. It is a chain of two simple semigroups whose
elements are represented by the words a, a2 and b, b2, ab, ab2, ba, b2a, aba, ab2a,
respectively.

Let us consider the inequality aXaXa ⊆ LXL with one variable X. It is easy
to verify that this inequality has a largest solution, namely the regular language
(a2)∗ab2a(a2)∗ ∪ A∗bA+bA∗.

3.6 Equations and Inequalities

Inequations in languages in which the right hand side is a constant language were
first considered by Conway [11], see also Bala [1]. In Chap. 21 of the forthcom-
ing Handbook of Automata Theory, Kunc and Okhotin [32] give the following
remarkable result. Consider a finite system of inequations of the form

⋃

j∈Ji

Pi,j(X1, . . . , Xn) ⊆ Ci (1 � i � k) (3)

where each Pi,j(X1, . . . , Xn) is a product of arbitrary constant languages and
variables, each Ci is a constant regular language and each index set Ji is possibly
infinite.

Theorem 16 (Kunc and Okhotin [32]). Every system of the form (3) has
only finitely many maximal solutions and every maximal solution has all com-
ponents regular. If all Ci are star-free, then the maximal solutions are star-free.
Furthermore, the result still holds if any inequalities are replaced by equations.

How to Prove that a Language Is Regular or Star-Free? 77

Proof. Let h : A∗ → M be the simultaneous syntactic monoid of the languages
Ci. If (L1, . . . , Ln) is a solution, then so is (h−1h(L1), . . . , h−1h(Ln)). It fol-
lows that every solution is contained in a solution in which all components are
recognised by h and the result follows.

Inequations of the form XK ⊆ LX were considered by Kunc [30].

Theorem 17 (Kunc [30]). Let K be an arbitrary language and let L be a reg-
ular language. Then the greatest solution of the inequality XK ⊆ LX is regular.

The situation is totally different for equations of the type XK = LX. Indeed
Kunc [31] has shown that there exists a finite language L such that the greatest
solution of the equation XL = LX is co-recursively enumerable complete.

4 Logic

Logic can be used in various ways to characterise regular languages. We consider
successively logic on words, linear temporal logic and logic on trees.

4.1 Logic on Words

Let u = a1 . . . an be a nonempty word on the alphabet A. The domain of u,
denoted by Dom(u), is the set Dom(u) = {1, . . . , n}. For each letter a ∈ A, let a
be a unary predicate symbol, where ax is interpreted as “the letter in position
x is an a”. We also use the binary predicate symbols < and S, interpreted as
the usual order relation and the successor relation on Dom(u), respectively. The
language defined by a sentence ϕ is the set

L(ϕ) = {u ∈ A+ | u satisfies ϕ}.

We let FO[<] and MSO[<] denote the set of first-order and monadic second-
order formulas of signature {<, (a)a∈A}, respectively. Similarly, we let FO[S]
and MSO[S] denote the same sets of formulas of signature {S, (a)a∈A}.

Let us say that a syntactic fragment of logic F captures a class of languages
C if every sentence of the fragment F defines a language of C and every language
of C can be defined by a sentence of F .

Two famous results are a natural ingredient of this survey. The first one is due
to Buchi [7] and was independently obtained by Elgot [20] and Trakhtenbrot [53].

Theorem 18 (Buchi [7]). MSO[S] captures the class of regular languages.

The second one relates first order logic and star-free languages.

Theorem 19 (McNaughton [35]). FO[<] captures the class of star-free lan-
guages.

78 J.-É. Pin

Second order logic SO is much more expressive than monadic second order,
but two successive results led to a complete characterisation of the syntactic
fragments of SO — in the signature {S, (a)a∈A} — that capture the regular
languages.

A quantifier prefix is any word on the alphabet {∃,∀}. A quantifier prefix
class is any set of quantifier prefixes. For any quantifier prefix Q, let Σ1

0(Q)
(resp. Π1

0(Q)) be the set of all formulas of the shape ∃R Qϕ (resp. ∀R Qϕ)
where R is a list of relations and ϕ is quantifier free. For every k � 0, let
Σ1

k+1(Q) (resp., Π1
k+1(Q)) be the set of all formulas of the form ∃R Φ (resp.

∀R Φ) where Φ is a Π1
k(Q) (resp. Σ1

k(Q)) formula. Finally, for every quantifier
prefix class Q, let Σ1

k(Q) =
⋃

Q∈Q Σ1
k(Q).

The fragment Σ1
1, also known as existential second order and frequently

denoted by ESO, was first explored by Eiter, Gottlob and Gurevich [17].

Theorem 20 (Eiter, Gottlob and Gurevich [17]). A syntactic fragment
ESO(Q) captures the regular languages if and only if Q is a quantifier prefix
class contained in ∃∗∀(∀ ∪ ∃∗) whose intersection with ∃∗∀{∃,∀}+ is nonempty.

The proof of this result is very difficult. It relies on combinatorial methods
related to hypergraph transversals for the fragment ∃∗∀∃∗ and on more logical
techniques for the fragment ∃∗∀∀. Eiter, Gottlob and Gurevich further proved
the following dichotomy theorem: a class ESO[Q] either expresses only regular
languages or it expresses some NP-complete languages.

The fragments Σ1
k(Q), with k � 2, were explored by Eiter, Gottlob and

Schwentick [18].

Theorem 21 (Eiter, Gottlob and Schwentick [18]). The fragments Σ1
2(∀∀)

and Σ1
2(∀∃) capture the class of regular languages. Furthermore, for each k � 0,

the fragments Σ1
k(∀) and Σ1

k(∃) only define regular languages.

For more information on this topic, the reader is invited to read the beautiful
survey of Eiter, Gottlob and Schwentick [19].

4.2 Linear Temporal Logic

Linear temporal logic (LTL for short) on an alphabet A is defined as follows. The
vocabulary consists of an atomic proposition pa (for each letter a ∈ A), the usual
connectives ∨, ∧ and ¬ and the temporal operators X (next), F (eventually) and
U (until). The formulas are constructed according to the following rules:

(1) for every a ∈ A, pa is a formula,
(2) if ϕ and ψ are formulas, so are ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ, Xϕ, Fϕ and ϕUψ.

Semantics are defined by induction on the formation rules. Given a word w ∈ A+,
and n ∈ {1, 2, ..., |w|}, we define the expression “w satisfies ϕ at the instant n”
(denoted (w, n) |= ϕ) as follows:

How to Prove that a Language Is Regular or Star-Free? 79

(1) (w, n) |= pa if the n-th letter of w is an a.
(2) (w, n) |= ϕ ∨ ψ (resp. ϕ ∧ ψ, ¬ϕ) if (w, n) |= ϕ or (w, n) |= ψ (resp. if

(w, n) |= ϕ and (w, n) |= ψ, if (w, n) does not satisfy ϕ).
(3) (w, n) |= Xϕ if (w, n + 1) satisfies ϕ.
(4) (w, n) |= Fϕ if there exists m such that n � m � |w| and (w,m) |= ϕ.
(5) (w, n) |= ϕUψ if there exists m such that n � m � |w|, (w,m) |= ψ and,

for every k such that n � k < m , (w, k) |= ϕ.

Note that, if w = w1w2 · · · w|w|, (w, n) |= ϕ only depends on the word w =
wnwn+1 · · · w|w|.

Example 4. Let w = abbababcba. Then (w, 4) |= pa since the fourth letter of w
is an a, (w, 4) |= Xpb since the fifth letter of w is a b and (w, 4) |= F(pc ∧ Xpb)
since cb is a factor of babcba.

If ϕ is a temporal formula, we say that w satisfies ϕ if (w, 1) |= ϕ. The language
defined by a LTL formula ϕ is the set L(ϕ) of all words of A+ that satisfy ϕ.

A famous result of Kamp [25] states that LTL is equivalent to the first-order
logic of order. As a consequence, one gets the following result.

Theorem 22. A language of A+ is star-free if and only if it is LTL-definable.

We just defined future temporal formulas but one can define in the same
way past temporal formulas by reversing time: it suffices to replace next by
previous, eventually by sometimes and until by since. The expressive power of
this extended temporal logic remains the same: it still captures the class of star-
free languages.

4.3 Rabin’s Tree Theorem

We now consider the structure (A∗, (Sa)a∈A), where each Sa is a binary relation
symbol, interpreted on A∗ as follows: Sa(u, v) if and only if v = ua. Let ϕ(X) be
a monadic second order formula with a free set-variable X. We write ∃!X ϕ(X)
as a short hand for the formula ∃X

(
ϕ(X) ∧ (∀Y [ϕ(Y) → (Y = X)]

))
. A

language L is said to be definable in MSO[(Sa)a∈A] if there exists a monadic
second order formula ϕ(X) such that L satisfies ∃!X ϕ(X).

The following result is a consequence of Rabin’s tree theorem [42].

Theorem 23. A language of A∗ is regular if and only if it is definable in
MSO[(Sa)a∈A].

5 Transductions

Transductions proved to be a powerful tool to study regular languages. Let us
first recall some useful facts about rational and recognisable sets.

80 J.-É. Pin

5.1 Rational and Recognisable Sets

Let M be a monoid. A subset P of M is recognisable if there exists a finite
monoid F , and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P)).
It is well known that the class Rec(M) of recognisable subsets of M is closed
under Boolean operations, left and right quotients and under inverses of monoid
morphisms. The recognisable subsets of a product of monoids were described by
Mezei (unpublished).

Theorem 24. Let M1, . . . ,Mn be monoids. A subset of M1 ×· · ·×Mn is recog-
nisable if and only if it is a finite union of subsets of the form R1 × · · · × Rn,
where Ri ∈ Rec(Mi).

Furthermore, the following property holds:

Proposition 8. Let A1, . . . , An be finite alphabets. Then Rec(A∗
1 × · · · × A∗

n)
is closed under product.

The class Rat(M) of rational subsets of M is the smallest set R of subsets
of M containing the finite subsets and closed under finite union, product and
star (where X∗ is the submonoid of M generated by X). Rational sets are closed
under monoid morphisms. Kleene’s theorem shows that Rec(A∗) = Rat(A∗), but
this result does not extend to arbitrary monoids.

5.2 Matrix Representations of Transductions

Let M be a monoid. We denote by P(M) the semiring of subsets of M with
union as addition and the usual product of subsets as multiplication. Note that
both Rat(M) and Rec(M) are subsemirings of P(M). Let also P(M)n×n denote
the semiring of n × n-matrices with entries in P(M).

Let M and N be two monoids. A transduction τ : M → N is a relation on
M and N , viewed as a function from M to P(N). One extends τ to a func-
tion P(M) → P(N) by setting τ(P) =

⋃
m∈P τ(m). The inverse transduction

τ−1 : N → M is defined by τ−1(Q) = {m ∈ M | τ(m) ∩ Q �= ∅}. The transduc-
tion is rational if the set {(m,n) ∈ M × N | n ∈ τ(m)} is a rational subset of
M × N .

A transduction τ : A∗ → M admits a linear matrix representation (λ, μ, ν)
of degree n if there exist n > 0, a monoid morphism μ : A∗ → P(M)n×n, a
row vector λ ∈ P(M)1×n and a column vector ν ∈ P(M)n×1 such that, for all
u ∈ A∗, τ(u) = λμ(u)ν.

A substitution from A∗ to a monoid M is a monoid morphism from A∗ to
P(M). Thus a substitution has linear matrix representation of degree 1.

Kleene-Schützenberger’s theorem (see [2]) states that a transduction τ : A∗ →
M is rational if and only if it admits a linear matrix representation with entries
in Rat(M).

The following result already suffices for most of the applications we have
in mind. It relies on the fact that every monoid morphism M → N can be
extended to a semiring morphism P(M) → P(N) and, for each n > 0, to a
semiring morphism P(M)n×n → P(N)n×n.

How to Prove that a Language Is Regular or Star-Free? 81

Theorem 25. Let τ : A∗ → M be a transduction that admits a linear matrix
representation (λ, μ, ν) of degree n and let P be a subset of M recognised by a
morphism η : M → N . Then the language τ−1(P) is recognised by the submonoid
ημ(A∗) of the monoid of matrices P(N)n×n.

This result was generalised in [39,40]. Let us say that a transduction
τ : A∗ → M admits a matrix representation (S, μ) of degree n if there exist
a morphism μ : A∗ → P(M)n×n and an expression S(X1,1, . . . , Xn,n), where S
is a possibly infinite union of products involving arbitrary languages and the
variables (Xi,j)1�i,j�n, such that, for all u ∈ A∗, τ(u) = S[μ1,1(u), . . . , μn,n(u)].
Theorem 25 can now be generalized as follows.

Theorem 26. Let τ : A∗ → M be a transduction that admits a matrix repre-
sentation (S, μ) of degree n and let P be a subset of M recognised by a morphism
η : M → N . Then the language τ−1(P) is recognised by the submonoid ημ(A∗)
of the monoid of matrices P(N)n×n.

Example 5. Let us come back to the example
√

L = {u ∈ A∗ | u2 ∈ L}. Observe
that

√
L = τ−1(L) where τ(u) = u2 . Clearly τ admits the matrix representation

(S, μ) where μ(u) = u and S = X2.

Example 6. Let us show that if L is a regular language and S is a subset of N2

then the language

LS = {u ∈ A∗ | there exist (x, y) ∈ A∗ and (p, q) ∈ S

such that |x| = p|u|, |y| = q|u| and xuy ∈ L}
is also regular. It suffices to observe that LS = τ−1(L) where the transduction
τ(u) =

⋃
(p,q)∈S Ap|u|uAq|u| admits the matrix representation (S, μ), where

μ(u) =

⎛

⎝
A|u| ∅ ∅
∅ u ∅
∅ ∅ A|u|

⎞

⎠ and S(X1,1, . . . , X3,3) =
⋃

(p,q)∈S

Xp
1,1X2,2X

q
3,3

Example 7. Finally the reader who likes more complicated examples may prove
by the same method that if L ⊆ {a, b}∗ is regular, then the following language
is also regular (D∗ is the Dyck language):

L′ =
⋃

n square-free

{u ∈ A∗ | D∗u�√
n�anun!b ∩ L �= ∅}

Many more examples can be found in [39,40].

5.3 Decompositions of Languages

For each n > 0, consider the transduction τn : A∗ → (A∗)n defined by

τn(u) = {(u1, . . . , un) | u1 · · · un = u}

82 J.-É. Pin

Theorem 27. Let L be a language of A∗. The following conditions are
equivalent:

(1) L is rational,
(2) for some n > 0, τn(L) is a recognisable subset of (A∗)n,
(3) for all n > 0, τn(L) is a recognisable subset of (A∗)n.

Proof. (1) implies (3). Let A = (Q,A, · , i, F) be the minimal automaton of L.
For each state p, q of A, let Lp,q be the language accepted by A with p as initial
state and q as unique final state. Let S = {i} × Qn−2 × F . We claim that

τn(L) =
⋃

(q0,...,qn)∈S

Lq0,q1 × Lq1,q2 × · · · × Lqn−1,qn
(4)

Let R be the right hand side of (4). Let (u1, . . . , un) ∈ τn(L). Let q0 = i,
q1 = q0 ·u1, . . . , qn = qn−1 ·un. Since u1 · · · un ∈ L, one has qn ∈ F and hence
(q0, . . . , qn) ∈ S. Moreover, by construction, u1 ∈ Lq0,q1 , . . . , un ∈ Lqn−1,qn

and
hence (u1, . . . , un) ∈ R.

Let now (u1, . . . , un) ∈ R. Then, for some (q0, . . . , qn) ∈ S, one has u1 ∈
Lq0,q1 , . . . , un ∈ Lqn−1,qn

. It follows that q1 = q0 ·u1, . . . , qn = qn−1 ·un and
thus i·u1 · · · un = qn ∈ F and hence u ∈ L.

6 Profinite Topology

Let M be a monoid. A monoid morphism ϕ : M → N separates two elements u
and v of M if ϕ(u) �= ϕ(v). By extension, we say that a monoid N separates two
elements of M if there exists a morphism ϕ : M → N which separates them. A
monoid is residually finite if any pair of distinct elements of M can be separated
by a finite monoid.

Let us consider the class M of monoids that are finitely generated and resid-
ually finite. This class include finite monoids, free monoids, free groups, free
commutative monoids and many others. It is closed under direct products and
thus monoids of the form A∗

1 × A∗
2 × · · · × A∗

n are also in M.
Each monoid M of M can be equipped with the profinite metric, defined as

follows. Let, for each (u, v) ∈ M2,

r(u, v) = min
{
Card(N) N separates u and v}

Then we set d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and
2−∞ = 0. One can show that d is an ultrametric and that the product on M is
uniformly continuous for this metric.

6.1 Uniformly Continuous Functions and Recognisable sets

The connection with recognisable sets is given by the following result:

Proposition 9. Let M,N ∈ M and let f : M → N be a function. Then the
following conditions are equivalent:

How to Prove that a Language Is Regular or Star-Free? 83

(1) for every L ∈ Rec(N), one has f−1(L) ∈ Rec(M),
(2) the function f is uniformly continuous for the profinite metric.

Here is an interesting example [41].

Proposition 10. The function g : A∗ × N → A∗ defined by g(x, n) = xn is
uniformly continuous.

Example 8. As an application, let us show that if L is a regular language of A∗,
then the language

K = {u ∈ A∗ | u|u| ∈ L}
is also regular. Indeed, K = h−1(L), where h is the function defined by h(u) =
u|u|. Observe that h = g ◦ f , where f : A∗ → A∗ × N is the monoid morphism
defined by f(u) = (u, |u|) and g is the function defined in Proposition 10. Now
since L ∈ Rec(A∗), one gets g−1(L) ∈ Rec(A∗ × N) by Proposition 10 and
f−1(g−1(L)) ∈ Rec(A∗) since f is a monoid morphism. Thus K is regular.

Uniformly continuous functions from N to N are of special interest. A function
f : N → N is residually ultimately periodic (rup) if, for each monoid morphism h
from N to a finite monoid F , the sequence h(f(n)) is ultimately periodic. It is
cyclically ultimately periodic if, for every p > 0, there exist two integers m � 0
and r > 0 such that, for each n � m, f(n) ≡ f(n + r) (mod p). It is ultimately
periodic threshold t if the function min(f(n), t) is ultimately periodic.

For instance, the functions n2 and n! are residually ultimately periodic. The
function

(
2n
n

)
is not cyclically ultimately periodic. Indeed, it is known that

(
2n
n

) ≡
2 mod 4 if and only if n is a power of 2. It is shown in [48] that the sequence
�√n� is not cyclically ultimately periodic.

Let us mention a last example, first given in [10]. Let bn be a non-ultimately
periodic sequence of 0 and 1. The function f(n) = (

∑
0�i�n bi)! is residually

ultimately periodic. It follows that the function Δf(n) = f(n + 1) − f(n) is not
residually ultimately periodic since min(Δf(n), 1) = bn.

The following result was proved in [3].

Proposition 11. For a function f : N → N, the following conditions are
equivalent:

(1) f is uniformly continuous,
(2) f is residually ultimately periodic,
(3) f is cyclically ultimately periodic and ultimately periodic threshold t for all

t � 0.

The class of cyclically ultimately periodic functions has been studied by
Siefkes [48], who gave in particular a recursion scheme for producing such func-
tions. The class of residually ultimately periodic sequences was also thoroughly
studied in [10,55] (see also [27,28,47]). Their properties are summarized in the
next proposition.

84 J.-É. Pin

Theorem 28. Let g and g be rup functions. Then the following functions are
also rup: f ◦ g, f + g, fg, fg,

∑
0�i�g(n) f(i),

∏
0�i�g(n) f(i). Furthermore, if

f(n) � g(n) for all n and lim
n→∞(f − g)(n) = +∞, then f − g is also rup.

In particular, the functions fk and n → kf(n) (for a fixed k), are rup. The
tetration function n2 (exponential stack of 2’s of height n), considered in [47],
is also rup, according to the following result: if k is a positive integer, then the
function f(n) defined by f(0) = 1 and f(n + 1) = kf(n) is rup.

The existence of non-recursive rup functions was established in [47]: if f is
a strictly increasing, non-recursive function, then the function g(n) = n!f(n) is
non-recursive but is rup.

Coming back to regular languages, Seiferas and McNaughton [47] proved the
following result.

Theorem 29. Let f : N → N be a rup function. If L is regular, then so is the
language

P (f, L) = {x ∈ A∗ | there exists y ∈ A∗ such that |y| = f(|x|) and xy ∈ L}.

Here is another application of rup functions. A filter is a strictly increasing
function f : N → N. Filtering a word a0a1 · · · an by f consists in deleting the
letters ai such that i is not in the range of f . For each language L, let L[f]
denote the set of all words of L filtered by f . A filter is said to preserve regular
languages if, for every regular language L, the language L[f] is also regular. The
following result was proved in [3].

Theorem 30. A filter f preserves regular languages if and only if the function
Δf defined by Δf(n) = f(n + 1) − f(n) is rup.

6.2 Transductions and Recognisable Sets

Some further topological results are required to extend Proposition 9 to trans-
ductions.

The completion of the metric space (M,d), denoted by (M̂, d), is called the
profinite completion of M . Since multiplication on M is uniformly continuous,
it extends, in a unique way, to a multiplication on M̂ , which is again uniformly
continuous. One can show that M̂ is a metric compact monoid.

Let K(M̂) be the monoid of compact subsets of M̂ . The Hausdorff metric on
K(M̂) is defined as follows. For K,K ′ ∈ K(M̂), let

δ(K,K ′) = sup
x∈K

inf
x′∈K′

d(x, x′)

h(K,K ′) =

⎧
⎪⎨

⎪⎩

max(δ(K,K ′), δ(K ′,K)) if K and K ′ are nonempty,

0 if K and K ′ are empty ,

1 otherwise.

How to Prove that a Language Is Regular or Star-Free? 85

By a standard result of topology, K(M̂), equipped with this metric, is compact.
Let now τ : M → N be a transduction. Define a map τ̂ : M → K(N̂) by

setting, for each x ∈ M , τ̂(x) = τ(x), the topological closure of τ(x). The
following extension of Proposition 9 was proved in [41].

Theorem 31. Let M,N ∈ M and let τ : M → N be a transduction. Then the
following conditions are equivalent:

(1) for every L ∈ Rec(N), one has τ−1(L) ∈ Rec(M),
(2) the function τ̂ : M → K(N̂) is uniformly continuous.

Let us say that a transduction τ is uniformly continuous, if τ̂ is uniformly con-
tinuous. Uniformly continuous transductions are closed under composition and
they are also closed under direct product.

Proposition 12. Let τ1 : M → N1 and τ2 : M → N2 be uniformly continuous
transductions. Then the transduction τ : M → N1 × N2 defined by τ(x) =
τ1(x) × τ2(x) is uniformly continuous.

Proposition 13. For every M ∈ M, the transduction σ : M → M defined by
σ(x) = x∗ is uniformly continuous.

7 Further Examples and Conclusion

Here are a few results relating regular languages and Turing machines.

Theorem 32 ([9, Theorem 3.84, p. 185]). The language accepted by a one-
tape Turing machine that never writes on its input is regular.

Theorem 33 (Hartmanis [21]). The language accepted by a one-tape Turing
machine that works in time o(n log n) is regular.

The following result is proposed as an exercise in [9, Exercise 4.16, p. 243].

Theorem 34. The language accepted by a Turing machine that works in space
o(log log n) is regular.

Let me also mention a result related to formal power series.

Theorem 35 (Restivo and Reutenauer [44]). If a language and its comple-
ment are support of a rational series, then it is a regular language.

Many other examples could not be included in this survey, notably the work of
Bertoni, Mereghetti and Palano [4, Theorem 3, p. 8] on 1-way quantum automata
and the large literature on splicing systems.

I would be very grateful to any reader providing me new interesting examples
to enrich this survey.

86 J.-É. Pin

Acknowledgements. I would like to thank Olivier Carton for his useful suggestions.

References

1. Bala, S.: Complexity of regular language matching and other decidable cases of the
satisfiability problem for constraints between regular open terms. Theory Comput.
Syst. 39(1), 137–163 (2006)

2. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
3. Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.-É.: Operations preserv-

ing recognizable languages. Theor. Comput. Sci. 354, 405–420 (2006)
4. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum

automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6 1

5. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Inform. Process. Lett. 44(3), 119–123 (1992)

6. Bucher, W., Ehrenfeucht, A., Haussler, D.: On total regulators generated by deriva-
tion relations. Theor. Comput. Sci. 40(2–3), 131–148 (1985)

7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundl. Math. 6, 66–92 (1960)

8. Büchi, J.R.: Regular canonical systems. Arch. Math. Logik Grundlagenforsch. 6,
91–111 (1964) (1964)

9. Carton, O.: Langages formels, calculabilité et complexité. Vuibert (2008)
10. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-

eralizations. Inform. Comput. 176, 51–76 (2002)
11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London

(1971)
12. D’Alessandro, F., Varricchio, S.: Well quasi-orders in formal language theory. In:

Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 84–95. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85780-8 6

13. De Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and For-
mal Languages. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59849-4

14. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theor. Comput. Sci. 27(3), 311–332 (1983)

15. Ehrenfeucht, A., Parikh, R., Rozenberg, G.: Pumping lemmas for regular sets.
SIAM J. Comput. 10(3), 536–541 (1981)

16. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying
systems. Discrete Appl. Math. 8(3), 313–317 (1984)

17. Eiter, T., Gottlob, G., Gurevich, Y.: Existential second-order logic over strings. J.
ACM 47(1), 77–131 (2000)

18. Eiter, T., Gottlob, G., Schwentick, T.: Second-order logic over strings: regular and
non-regular fragments. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001.
LNCS, vol. 2295, pp. 37–56. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46011-X 4

19. Eiter, T., Gottlob, G., Schwentick, T.: The model checking problem for prefix
classes of second-order logic: a survey. In: Blass, A., Dershowitz, N., Reisig, W.
(eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 227–250. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-8 13

20. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98, 21–51 (1961)

https://doi.org/10.1007/3-540-45007-6_1
https://doi.org/10.1007/978-3-540-85780-8_6
https://doi.org/10.1007/978-3-642-59849-4
https://doi.org/10.1007/3-540-46011-X_4
https://doi.org/10.1007/3-540-46011-X_4
https://doi.org/10.1007/978-3-642-15025-8_13

How to Prove that a Language Is Regular or Star-Free? 87

21. Hartmanis, J.: Computational complexity of one-tape Turing machine computa-
tions. J. Assoc. Comput. Mach. 15, 325–339 (1968)

22. Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity.
Theor. Comput. Sci. 327(3), 301–317 (2004)

23. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley Publishing Co., Reading (1979). Addison-Wesley
Series in Computer Science

24. Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT
News 10(2), 48–49 (1978)

25. Kamp, J.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University
of California, Los Angeles (1968)

26. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956). Ann.
Math. Stud. 34

27. Kosaraju, S.R.: Regularity preserving functions. SIGACT News 6(2), 16–17 (1974).
Correction to “Regularity preserving functions”, SIGACT News 6(3), (1974), p. 22

28. Kozen, D.: On regularity-preserving functions. Bull. Europ. Assoc. Theor. Comput.
Sci. 58, 131–138 (1996). Erratum: on regularity-preserving functions. Bull. Europ.
Assoc. Theor. Comput. Sci. 59, 455 (1996)

29. Kozen, D.C.: Automata and computability. Undergraduate Texts in Computer
Science. Springer, New York (1997). https://doi.org/10.1007/978-3-642-85706-5

30. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor.
Comput. Sci. 348(2–3), 277–293 (2005)

31. Kunc, M.: The power of commuting with finite sets of words. Theory Comput.
Syst. 40(4), 521–551 (2007)

32. Kunc, M., Okhotin, A.: Language equations. In: Pin, J.E. (ed.) Handbook of
Automata Theory, vol. II, chap. 21. European Mathematical Society, Zürich (2020,
To appear)

33. Leupold, P.: Languages generated by iterated idempotency. Theor. Comput. Sci.
370(1–3), 170–185 (2007)

34. Leupold, P.: On regularity-preservation by string-rewriting systems. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 345–356.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 32

35. McNaughton, R., Papert, S.: Counter-Free Automata. The M.I.T. Press, Cam-
bridge (1971). With an appendix by William Henneman, M.I.T. ResearchMono-
graph, No. 65

36. Niwinśki, D., Rytter, W.: 200 Problems in Formal Languages and Automata The-
ory. University of Warsaw (2017)

37. Otto, F.: On the connections between rewriting and formal language theory. In:
Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 332–355.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48685-2 27

38. Pin, J.-É.: Topologies for the free monoid. J. Algebra 137, 297–337 (1991)
39. Pin, J.-É., Sakarovitch, J.: Some operations and transductions that preserve ratio-

nality. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp.
277–288. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0036488

40. Pin, J.-É., Sakarovitch, J.: Une application de la représentation matricielle des
transductions. Theor. Comput. Sci. 35, 271–293 (1985)

41. Pin, J.-É., Silva, P.V.: A topological approach to transductions. Theor. Comput.
Sci. 340, 443–456 (2005)

42. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

https://doi.org/10.1007/978-3-642-85706-5
https://doi.org/10.1007/978-3-540-88282-4_32
https://doi.org/10.1007/3-540-48685-2_27
https://doi.org/10.1007/BFb0036488

88 J.-É. Pin

43. Restivo, A.: Codes and aperiodic languages. In: Erste Fachtagung der Gesellschaft
für Informatik über Automatentheorie und Formale Sprachen (Bonn, 1973), LNCS,
vol. 2, pp. 175–181. Springer, Berlin (1973)

44. Restivo, A., Reutenauer, C.: On cancellation properties of languages which are
supports of rational power series. J. Comput. Syst. Sci. 29(2), 153–159 (1984)

45. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009). Translated from the 2003 French original by Reuben Thomas

46. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

47. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comput.
Sci. 2(2), 147–154 (1976)

48. Siefkes, D.: Decidable extensions of monadic second order successor arithmetic. In:
Automatentheorie und formale Sprachen (Tagung, Math. Forschungsinst., Ober-
wolfach, 1969), pp. 441–472. Bibliographisches Inst., Mannheim (1970)

49. Sipser, M.: Introduction to the Theory of Computation. 3rd edn. Cengage Learning
(2012)

50. Stanat, D.F., Weiss, S.F.: A pumping theorem for regular languages. SIGACT
News 14(1), 36–37 (1982)

51. Stearns, R.E., Hartmanis, J.: Regularity preserving modifications of regular expres-
sions. Inf. Control 6, 55–69 (1963)

52. Straubing, H.: Relational morphisms and operations on recognizable sets. RAIRO
Inf. Theor. 15, 149–159 (1981)

53. Trakhtenbrot, B.A.: Barzdin′, Y.M.: Finite Automata, Behavior and Synthesis.
North-Holland Publishing Co., Amsterdam (1973). Translated from the Russian
by D. Louvish, English translation edited by E. Shamir and L. H. Landweber,
Fundamental Studies in Computer Science, vol. 1

54. Varricchio, S.: A pumping condition for regular sets. SIAM J. Comput. 26(3),
764–771 (1997)

55. Zhang, G.Q.: Automata, boolean matrices, and ultimate periodicity. Inform. Com-
put. 152(1), 138–154 (1999)

Deciding Classes of Regular Languages:
The Covering Approach

Thomas Place(B)

LaBRI, Université de Bordeaux, Institut Universitaire de France, Talence, France
tplace@labri.fr

Abstract. We investigate the membership problem that one may asso-
ciate to every class of languages C. The problem takes a regular language
as input and asks whether it belongs to C. In practice, finding an algo-
rithm provides a deep insight on the class C. While this problem has a
long history, many famous open questions in automata theory are tied
to membership. Recently, a breakthrough was made on several of these
open questions. This was achieved by considering a more general deci-
sion problem than membership: covering. In the paper, we investigate
how the new ideas and techniques brought about by the introduction
of this problem can be applied to get new insight on earlier results. In
particular, we use them to give new proofs for two of the most famous
membership results: Schützenberger’s theorem and Simon’s theorem.

Keywords: Regular languages · Automata · Covering · Membership ·
Star-free languages · Piecewise testable languages

1 Introduction

Historical Context. A prominent question in formal languages theory is to
solve the membership problem for classes of regular languages. Given a fixed
class C, one must find an algorithm which decides whether an input regular
language belongs to C. Such a procedure is called a C-membership algorithm.
What motivates this question is the deep insight on the class C that is usually
provided by a solution. Intuitively, being able to formulate an algorithm requires
a solid understanding of all languages contained in the class C. In other words,
membership is used as a mathematical tool whose purpose is to analyze classes.

This research effort started with a famous theorem of Schützenberger [36]
which describes the class of star-free languages (SF). These are the languages
that can be expressed by a regular expression using union, concatenation and
complement, but not Kleene star. This is a prominent class which admits natural
alternate definitions. For example, the star-free languages are those which can
be defined in first-order logic [15] or equivalently in linear temporal logic [11].
Schützenberger’s theorem yields an algorithm which decides whether an input
regular language is star-free (i.e. an SF-membership algorithm). This provides
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 89–112, 2020.
https://doi.org/10.1007/978-3-030-40608-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_6

90 T. Place

insight on SF not because of the algorithm itself, but rather because of its proof.
Indeed, it includes a generic construction which builds an expression witnessing
membership in SF for every input language on which the algorithm answers
positively. This result was highly influential and pioneered a very successful line
of research. The theorem itself was often revisited [5,7,8,10,14,16,17,21,23,41]
and researchers successfully obtained similar results for other prominent classes
of languages. Famous examples include the locally testable languages [4,42] or
the piecewise testable languages [38]. However, membership is a difficult question
and despite years of investigation, there are still many open problems.

Among these open problems, a famous one is the dot-depth problem. Brzo-
zowski and Cohen [2] defined a natural classification of the star-free languages:
the dot-depth hierarchy. Each star-free language is assigned a “complexity level”
(called dot-depth) according to the number of alternations between concatena-
tions and complements that are required to define it with an expression. It is
known that this hierarchy is strict [3]. Hence, a natural question is whether
membership is decidable for each level. This has been a very active research
topic since the 70s (see [20,28,32] for surveys). Yet, only the first two levels are
known to be decidable so far. An algorithm for dot-depth one was published
by Knast in 1983 [13]. Despite a lot of partial results along the way, it took
thirty more years to solve the next level: the decidability of dot-depth two was
shown in 2014 [26,33]. This situation is easily explained: in practice, getting new
membership results always required new conceptual ideas and techniques. In the
paper, we are interested in the ideas that led to a solution for dot-depth two.
The key ingredient was a new more general decision problem called covering.

Covering. The problem was first considered implicitly in [26] and properly
defined later in [31]. Given a class C, the C-covering problem is as follows. The
input consists in two objects: a regular language L and a finite set of regular
languages L. One must decide whether there exists a C-cover K of L (a finite set
of languages in C whose union includes L) such that no language in K intersects
all languages in L. Naturally, this definition is more involved than the one of
membership and it is more difficult to find an algorithm for C-covering than for C-
membership. Yet, covering was recently shown to be decidable for many natural
classes (see for example [6,24,25,30,34,35]) including the star-free languages [29].

At the time of its introduction, there were two motivations for investigat-
ing this new question. First, while harder, covering is also more rewarding than
membership: it yields a more robust understanding of the classes. Indeed, a C-
membership algorithm only yields benefits for the languages of C: we manage
to detect them and to build a description witnessing this membership. On the
other hand, a C-covering algorithm applies to arbitrary languages. One may view
C-covering as an approximation problem: on inputs L and L, we want to over-
approximate L with a C-cover while L specifies what an acceptable approxima-
tion is. A second key motivation was the application to the dot-depth hierarchy.
It turns out that all recent membership results for this hierarchy rely heavily
on covering arguments. More precisely, they are based on techniques that allow

Deciding Classes of Regular Languages: The Covering Approach 91

to lift covering results for a level in the hierarchy as membership results for a
higher level (see [32] for a detailed explanation).

Contribution. In the paper, we are not looking to provide new covering algo-
rithms. Instead, we look at a slightly different question. As we explained, finding
an algorithm for C-covering is even harder than for C-membership. Consequently,
the recent breakthroughs that were made on this question required developing
new ideas, new techniques and new ways to formulate intricate proof arguments.
In the paper, we look back at the original membership problem and investigate
how these new developments can be applied to get new insight on earlier results.
We prove that even if one is only interested in membership, reasoning in terms of
“covers” is quite natural and rather intuitive when presenting proof arguments.
In particular, C-covers are a very powerful tool for presenting generic construc-
tions which build descriptions of languages in the class C. We illustrate this point
by using covers to give new intuitive proofs for two of the most important mem-
bership results in the literature: Schützenberger theorem [36] for the star-free
languages and Simon’s theorem [38] for the piecewise testable languages.

Organization of the Paper. We first recall standard terminology about regu-
lar languages and define membership in Sect. 2. We introduce covering in Sect. 3
and explain why reasoning in terms of covers is intuitive and relevant even if
one is only interested in membership. We illustrate this point in Sect. 4 with a
new proof of Schützenberger’s theorem. Finally, we present a second example in
Sect. 5 with a new proof of Simon’s theorem.

2 Preliminaries

In this section, we briefly recall standard terminology about finite words and
classes regular languages. Moreover, we introduce the membership problem.

Regular Languages. An alphabet is a finite set A. As usual, A∗ denotes the set
of all words over A, including the empty word ε. For w ∈ A∗, we write |w| ∈ N

for the length of w (i.e. the number of letters in w). Moreover, for u, v ∈ A∗, we
denote by uv the word obtained by concatenating u and v.

Given an alphabet A, a language (over A) is a subset of A∗. Abusing terminol-
ogy, we shall often denote by u the singleton language {u}. We lift concatenation
to languages: for K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. Finally, we
use Kleene star: if K ⊆ A∗, K+ denotes the union of all languages Kn for n ≥ 1
and K∗ = K+ ∪{ε}. In the paper, we only consider regular languages. These are
the languages that can be equivalently defined by regular expressions, monadic
second-order logic, finite automata or finite monoids. We shall use the definition
based on monoids which we briefly recall now (see [21] for details).

A monoid is a set M endowed with an associative multiplication (s, t) �→ s · t
(also denoted by st) having a neutral element 1M . An idempotent of a monoid
M is an element e ∈ M such that ee = e. It is folklore that for any finite monoid
M , there exists a natural number ω(M) (denoted by ω when M is understood)
such that sω is an idempotent for every s ∈ M . Observe that A∗ is a monoid

92 T. Place

whose multiplication is concatenation (the neutral element is ε). Thus, we may
consider monoid morphisms α : A∗ → M where M is an arbitrary monoid. Given
such a morphism and L ⊆ A∗, we say that L is recognized by α when there exists
a set F ⊆ M such that L = α−1(F). A language L is regular if and only if it is
recognized by a morphism into a finite monoid.

Classes. We investigate classes of languages. Mathematically speaking, a class of
languages C is a correspondence A �→ C(A) which associates a (possibly infinite)
set of languages C(A) over A to every alphabet A. For the sake of avoiding clutter,
we shall often abuse terminology and omit the alphabet when manipulating
classes. That is, whenever A is fixed and understood, we directly write L ∈ C to
indicate that some language L ⊆ A∗ belongs to C(A).

While this is the mathematical definition, in practice, the term “class” is used
to indicate that C is presented in a specific way. Typically, classes are tied to a
particular syntax used to describe all the languages they contain. For example,
the regular languages are tied to regular expressions and monadic second-order
logic. Consequently, the classes that we consider in practice are natural and have
robust properties that we present now.

A lattice is a class C which is closed under finite union and intersection:
for every alphabet A, we have ∅, A∗ ∈ C(A) and for every K,L ∈ C(A), we
have H ∪ L,H ∩ L ∈ C(A). Moreover, a Boolean algebra is a lattice C which is
additionally closed under complement: for every alphabet A and K ∈ C(A), we
have A∗ \ K ∈ C(A). Finally, we say that a class C is quotient-closed when for
every alphabet A, every L ∈ C(A) and every w ∈ A∗, the following two languages
belong to C(A) as well:

w−1L
def= {u ∈ A∗ | wu ∈ L},

Lw−1 def= {u ∈ A∗ | uw ∈ L}.

The techniques that we discuss in the paper are meant to be applied for classes
that are quotient-closed lattices and contain only regular languages. The two
examples that we detail are quotient-closed Boolean algebras of regular lan-
guages.

Membership. When encountering a new class C, a natural objective is to pre-
cisely understand the languages it contains. In other words, we want to under-
stand what properties can be expressed with the syntax defining C. Of course,
this is an informal objective. In practice, we rely on a decision problem called
membership which we use as a mathematical tool to approach this question.

The problem is parameterized by an arbitrary class of languages C: we speak
of C-membership. It takes as input a regular language L and asks whether L
belongs to C. The key idea is that obtaining an algorithm for C-membership
is not possible without a solid understanding of C. In the literature, such an
algorithm is also called a decidable characterization of C.

Remark 1. We are not only interested in C-membership algorithms themselves
but also in their correctness proofs. In practice, the deep insight that we obtain

Deciding Classes of Regular Languages: The Covering Approach 93

on the class C comes from these proofs. Typically, the difficult part in such an
argument is to prove that a membership is sound: when it answers positively,
prove that the input language does belong to C. Typically, this requires a generic
construction for building a syntactic description of the language witnessing its
membership in C.
�

Finding membership algorithms has been an important quest for a long time
in formal languages theory. The solutions that were obtained for important
classes are milestones in the theory of regular languages [13,22,33,36,38,40].
In the paper, we prove two of them: Schützenberger’s theorem [36] and Simon’s
theorem [38]. We frame these proofs using a new formalism based on a more
general problem which was recently introduced [31]: covering.

3 The Covering Problem

The covering problem generalizes membership. It was first considered implic-
itly in [26,27] and was later formalized in [31] (along with a detailed framework
designed for handling it). At the time, its introduction was motivated by two
reasons. First, an algorithm for covering is usually more rewarding than an algo-
rithm for membership as the former provides more insight on the investigated
class of languages. Second, covering was introduced as a key ingredient for han-
dling difficult membership questions. For several important classes, membership
is effectively reducible to covering for another simpler class. Recently, this idea
was applied to prominent hierarchies of classes called “concatenation hierarchies”
(see the surveys [28,32] for details on these results).

In the paper, we are interested in covering for a slightly different reason.
In particular, we do not present any covering algorithm. Instead, we look at
how the new ideas that were recently introduced with covering in mind can be
applied in the simpler membership setting. It turns out that even for the early
membership results, reasoning in terms of covers is quite natural and allows to
present arguments in a very intuitive way. We manage to formulate new proof
arguments for two famous membership algorithms.

We first define covering and explain why it generalizes membership as a
decision problem. Then, we come back to membership and briefly recall the
general approach that is usually followed in order to handle it. We show that
this approach can actually be formulated in a convenient and natural way with
covering. For the sake of avoiding clutter, we fix an arbitrary alphabet A for the
presentation: all languages that we consider are over A.

3.1 Definition

Similarly to membership, covering is parameterized by an arbitrary class of lan-
guages C: we speak of C-covering. It is designed with the same objective in mind:
it serves as a mathematical tool for investigating the class C.

94 T. Place

For a class C, the C-covering takes a language L and a finite set of languages L
as input. It asks whether there exists a C-cover of L which is separating for L.
Let us first define these two notions.

Given a language L, a cover of L is a finite set of languages K such that
L ⊆ ⋃

K∈K K. Additionally, given some class C, a C-cover of L is a cover K of
L such that every K ∈ K belongs to C.

Moreover, given two finite sets of languages K and L, we say that K is
separating for L if for every K ∈ K, there exists L ∈ L which satisfies K∩L = ∅.
In other words, there exists no language in K which intersects all languages in L.
Given a class C, the C-covering problem is now defined as follows:

INPUT: A regular language L and a finite set of regular languages L.
OUTPUT: Does there exist a C-cover of L which is separating for L?
A simple observation is that covering generalizes another well-known decision

problem called separation. Given a class C and two languages L1 and L2, we say
that L1 is C-separable from L2 when there exists a third language K ∈ C such
that L1 ⊆ K and K∩L2 = ∅. We have the following lemma (see [31] for a proof).

Lemma 2. Let C be a lattice and L1, L2 two languages. Then L1 is C-separable
from L2, if and only if there exist a C-cover of L1 which is separating for {L2}.

Lemma 2 proves that C-covering generalizes C-membership as a decision prob-
lem. Indeed, given as input a regular language L, it is immediate that L belongs
to C if and only if L is C-separable from A∗ \ L (which is also regular). Thus,
there exists an effective reduction from C-membership to C-covering.

Yet, this not the only connection between membership and covering. More
importantly, this is not how we use covering in the paper. While each membership
algorithm existing in the literature is based on unique ideas (specific to the class
under investigation), most of them are formulated and proved within a standard
common framework. It turns out that this framework boils down to a particular
kind of covering question: this is the property that we shall exploit in the paper.

3.2 Application to Membership

We first summarize the standard general approach that is commonly used to
handle membership questions and formulate solutions. Historically, this app-
roach was initiated by Schützenberger who applied it to obtain the first known
membership algorithm [36] (for the class of star-free languages). We shall detail
and prove this result in Sect. 4.

The syntactic approach. Obtaining a membership algorithm for a given
class C is intuitively hard, as it requires to decide a semantic property which
may not be apparent on the piece of syntax that defines the input regular lan-
guage L (be it a regular expression, an automaton or a monoid morphism). To
palliate this issue, the syntactic approach relies on the existence of a canonical
recognizer for any given regular language. The idea is that while belonging to C

may not be apparent on an arbitrary syntax for L, it should be apparent on a
canonical representation of L. Typically, the syntactic morphism of L serves as

Deciding Classes of Regular Languages: The Covering Approach 95

this canonical representation. As the name suggests, this object is a canonical
morphism into a finite monoid which recognizes L (and can be computed from
any representation of L).

Let us first define the syntactic morphism properly. Consider a language L.
One may associate a canonical equivalence relation ≡L over A∗ to L. Given two
words u, v ∈ A∗, we write,

u ≡L v if and only if for every x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L

Clearly, ≡L is an equivalence relation and one may verify that it is a congruence
for word concatenation: for every u, v, u′, v′ ∈ A∗, if u ≡L v and u′ ≡L v′,
then uu′ ≡L vv′. Consequently, the quotient set A∗/≡L is a monoid called the
syntactic monoid of L. Moreover, the map α : A∗ → A∗/≡L which maps each
word to its ≡L-class is a monoid morphism called the syntactic morphism of L.
In particular, this morphism recognizes the language L: L = α−1(F) where F is
the set of all ≡L-classes which intersect L. It is well-known and simple to verify
that L is regular if and only if its syntactic monoid is finite. Moreover, in that
case, one may compute the syntactic morphism of L from any representation
of L (such as an automaton or an arbitrary monoid morphism recognizing L).

We are ready to present the key result behind the syntactic approach: for
every quotient-closed Boolean algebra C, membership of an arbitrary regular
language in C depends only on its syntactic morphism. This claim is formalized
with the following standard result.

Proposition 3. Let C be a quotient-closed Boolean algebra, L a regular language
and α its syntactic morphism. Then L belongs to C if and only if every language
recognized by α belongs to C.

Proof. The right to left implication is immediate since L is recognized by its
syntactic morphism. We concentrate on the converse one. Assume that L ∈ C.
We show that every language recognized by α belongs to C as well. By definition,
these languages are exactly the unions of ≡L-classes. Thus, since C is closed
under union, it suffices to show that every ≡L-class belongs to C. Observe that
the definition of ≡L can be reformulated as follows. Given u, v ∈ A∗, we have,

u ≡L v if and only if u ∈ x−1Ly−1 ⇔ v ∈ x−1Ly−1 for every x, y ∈ A∗.

Let x, y ∈ A∗. Since L is recognized by α, it is clear that whether some word
w ∈ A∗ belongs to x−1Ly−1 depends only on its image α(w). In other words,
x−1Ly−1 is recognized by α. Moreover, since L is regular, its syntactic monoid is
finite which implies that α recognizes finitely many languages. Thus, while there
are infinitely many words x, y ∈ A∗, there are finitely many languages x−1Ly−1.

Altogether, we obtain that every ≡L-class is a finite Boolean combination of
languages x−1Ly−1 where x, y ∈ A∗. Since L ∈ C and C is quotient-closed, every
such language belongs to C. Hence, since C is a Boolean algebra, we conclude
that every ≡L-class belongs to C, completing the proof.
�

96 T. Place

Proposition 3 implies that membership of a regular language L in some fixed
quotient-closed Boolean algebra is equivalent to some property of an algebraic
abstraction of L: its syntactic morphism. In particular, this is independent from
the accepting set F = α(L). By itself, this is a simple result. Yet, it captures the
gist of the syntactic approach.

Naturally, the proposition tells nothing about the actual the property on the
syntactic morphism that one should look for. This question is specific to each
particular class C: one has to find the right decidable property characterizing C.

Remark 4. This may seem counterintuitive. We replaced the question of deciding
whether a single language belongs to the class C by an intuitively harder one:
deciding whether all languages recognized by a given monoid morphism belong
to C. The idea is that the set of languages recognized by a morphism has a
structure which can be exploited in membership arguments.
�
Remark 5. Proposition 3 is restricted quotient-closed Boolean algebras. This
excludes quotient-closed lattices that are not closed under complement. One
may generalize the syntactic approach to such classes (as done by Pin [19]). We
do not discuss this as our two examples are quotient-closed Boolean algebras.
�

Back to Covering. We proved that for every quotient-closed Boolean algebra C,
the associated membership problem boils down to deciding whether all languages
recognized by an input morphism belong to C. It turns out that this new question
is a particular instance of C-covering. In order to explain this properly, we require
a last definition.

Consider a morphism α : A∗ → M into a finite monoid M and a finite set
of languages K. We say that K is confined by α if it is separating for the set
{α−1(M \ {s}) | s ∈ M}. The following fact can be verified from the definitions
and reformulates this property in a way that is easier to manipulate.

Fact 6. Let α : A∗ → M be a morphism into a finite monoid and K a finite
set of languages. Then K is confined by α if and only if for every K ∈ K, there
exists s ∈ M such that K ⊆ α−1(s).

Proof. By definition K is confined by α if and only if for every K ∈ K, there
exists s ∈ M such that K ∩α−1(M \{s}) = ∅. Since α−1(M \{s}) = A∗ \α−1(s),
the fact follows.
�

We show that given a lattice C and a morphism α : A∗ → M into a finite
monoid, all languages recognized by α belong to C if and only if there exists a
C-cover of A∗ which is confined by α. The latter question is a particular case of
C-covering. In fact, we prove a slightly more general result that we shall need
later when dealing with our two examples.

Proposition 7 Let C be a lattice, α : A∗ → M a morphism into a finite monoid
and H ∈ C a language. The two following properties are equivalent:

1. For every language L recognized by α, we have L ∩ H ∈ C.
2. There exists a C-cover of H which is confined by α.

Deciding Classes of Regular Languages: The Covering Approach 97

Proof. Assume first that L ∩ H ∈ C for every language L recognized by α. We
define K = {α−1(s) ∩ H | s ∈ M}. Clearly, K is a cover of H and it is a C-cover
by hypothesis. Moreover, it is clear from Fact 6 that K is confined by α.

For the converse direction, assume that there exists a C-cover K of H which
is confined by α. Let L be a language recognized by α, we show that,

L ∩ H =

⎛

⎝
⋃

{K∈K|K∩L�=∅}
K

⎞

⎠ ∩ H

This implies that L ∩ H ∈ C since H ∈ C, every language in K belongs to C and
C is a lattice. The left to right inclusion is immediate since K is a cover of H.
We prove the converse one. Let K ∈ K such that K ∩ L �= ∅, we show that
K ∩ H ⊆ L ∩ H. Let u ∈ K ∩ H. Consider v ∈ K ∩ L (which is nonempty by
definition of K). Since u, v ∈ K and K is confined by α, we have α(u) = α(v)
by Fact 6. Thus, since v ∈ L and L is recognized by α, it follows that u ∈ L,
concluding the proof: we obtain K ∩ H ⊆ L ∩ H.
�

Let us combine Propositions 3 and 7. When put together, they imply that
for every quotient-closed Boolean algebra C, a regular language L belongs to C

if and only if there exists a C-cover of A∗ which is confined by the syntactic
morphism of L.

The key point is that this formulation is very convenient when writing proof
arguments. As we explained in Remark 1, the technical core of membership proofs
consists in generic constructions which build descriptions of languages in C. It
turns out that building a C-cover which is confined by some input morphism
is an objective that is much easier to manipulate than directly proving that all
languages recognized by the morphism belong to C. We illustrate this point in
the next section with new proofs for two well-known membership algorithms:
the star-free languages and the piecewise testable languages.

4 Star-Free Languages and Schützenberger’s Theorem

We now illustrate the discussion of the previous section with a first example:
Schützenberger’s theorem [36]. This result is important as it started the quest
for membership algorithms. It provides such an algorithm for a very famous
class: the star-free languages (SF). Informally, these are the languages which
can be defined by a regular expression in which the Kleene star is disallowed
(hence the name “star-free”) but a new operator for the complement operation
is allowed instead. This class is important as it admits several natural alternate
definitions. For example, the star-free languages are those which can be defined
in first-order logic [15] or equivalently in linear temporal logic [11].

Schützenberger’s theorem states an algebraic characterization of SF: a regular
language is star-free if and only if its syntactic monoid is aperiodic. This yields
an algorithm for SF-membership as aperiodicity is a decidable property of finite
monoids. Historically, Schützenberger’s theorem was the first result of its kind. It

98 T. Place

motivated the systematic investigation of the membership problem for important
classes of languages. It is often viewed as one of the most important results of
automata theory. This claim is supported by the number of times this theorem
has been revisited over the years and the wealth of existing proofs [5,7,8,10,14,
16,17,21,23,41].

In this section, we present our own proof, based on SF-covers. Let us point
out that while the formulation is new, the original ideas behind the argument
can be traced back to the proof of Wilke [41]. We first recall the definition of the
star-free languages. Then, we state the theorem properly and present the proof.

4.1 Definition

Let us define the class of star-free languages (SF). For every alphabet A, SF(A)
is the least set containing ∅ and all singletons {a} for a ∈ A, which is closed
under union, complement and concatenation. That is, for every K,L ∈ SF(A),
the languages K ∪ L, A∗ \ K and KL belong to SF(A) as well.

Example 8. For every sub-alphabet B ⊆ A, we have B∗ ∈ SF(A). Indeed, by
closure under complement, A∗ = A∗ \ ∅ ∈ SF(A). We then get A∗aA∗ ∈ SF(A)
by closure under concatenation. Finally, this yields,

B∗ = A∗ \
⎛

⎝
⋃

a∈A\B

A∗aA∗

⎞

⎠ ∈ SF(A)

Another standard example is (ab)∗ (where a, b are two distinct letters of A).
Indeed, (ab)∗ is the complement of bA∗ ∪A∗aaA∗ ∪A∗bbA∗ ∪A∗a (provided that
A = {a, b}) which is clearly star-free.
�

By definition, SF is a Boolean algebra and one may verify that it is quotient-
closed (the details are left to the reader). We complete the definition with a stan-
dard property that we require to prove the “easy” direction of Schützenberger’s
theorem (every star-free language has an aperiodic syntactic monoid). Another
typical application of this property is to show that examples of languages are
not star-free. For example, (AA)∗ (words with even length) is not star-free since
since it does not satisfy the following lemma.

Lemma 9 Let A be an alphabet and L ∈ SF(A). There exists a number k ≥ 1
such that for every � ≥ k and w ∈ A∗, we have w� ≡L w�+1.

Proof. We proceed by structural induction on the definition of L as a star-free
language. When L = ∅, it is clear that the lemma holds for k = 1. When
L = {a} for a ∈ A, one may verify that the lemma holds for k = 2. We turn
to the inductive cases. Assume first that L = L1 ∪ L2 where L1, L2 ∈ SF are
simpler languages. Induction yields k1, k2 ≥ 1 such that for i = 1, 2, if � ≥ ki

and w ∈ A∗, we have w� ≡Li
w�+1. Hence, the lemma holds for k = max(k1, k2)

in that case. We turn to complement: L = A∗ \ H where H ∈ SF is a simpler

Deciding Classes of Regular Languages: The Covering Approach 99

language. By induction, we get h ≥ 1 such that for every w ∈ A∗ and � ≥ h, we
have w� ≡H w�+1. Clearly, the lemma holds for k = h.

We now consider concatenation: L = L1L2 where L1, L2 ∈ SF are simpler
languages. Induction yields k1, k2 ≥ 1 such that for i = 1, 2, if � ≥ ki and
w ∈ A∗, we have w� ≡Li

w�+1. Let m be the maximum between k1 and k2. We
prove that the lemma holds for k = 2m + 1. Let w ∈ A∗ and � ≥ k, we have to
show that w� ≡L w�+1, i.e. xu�y ∈ L ⇔ xu�+1y ∈ L for every x, y ∈ A∗. We
concentrate on the right to left implication (the converse one is symmetrical).
Assume that xu�+1y ∈ L. Since L = L1L2, we get w1 ∈ L1 and w2 ∈ L2 such
that xuk+1y = w1w2. Since k ≥ 2m + 1, it follows that either xum+1 is a prefix
of w1 or um+1y is a suffix of w2. By symmetry, we assume that the former
property holds: we have w1 = xum+1z for some z ∈ A∗. Observe that since
xuk+1y = w1w2, it follows that zw2 = uk−my. Moreover, we have m ≥ k1 by
definition of m. Since xum+1z = w1 ∈ L1, we know therefore that xumz ∈ L1

by definition of k1. Thus, xumzw2 ∈ L1L2 = L. Since zw2 = uk−my, this yields
xuky ∈ L, concluding the proof.
�

4.2 Schützenberger’s Theorem

We may now present and prove Schützenberger’s theorem. Let us first define
aperiodic monoids. There are several equivalent definitions in the literature.
We use an equational one based on the idempotent power ω available in finite
monoids. A finite monoid M is aperiodic when it satisfies the following property:

for every s ∈ M, sω = sω+1 (1)

We are ready to state Schützenberger’s theorem.

Theorem 10 (Schützenberger [36]). A regular language is star-free if and
only if its syntactic monoid is aperiodic.

Theorem 10 illustrates of the syntactic approach presented in Sect. 3. It val-
idates Proposition 3: the star-free languages are characterized by a property of
their syntactic morphism. In fact, for this particular class, one does not even
need the full morphism, the syntactic monoid suffices.

The main application is a membership algorithm for the class of star-free
languages. Given as input a regular language L, one may compute its syntactic
monoid and check whether it satisfies Eq. (1): this boils down to testing all
elements in the monoid. By Theorem 10, this decides whether L is star-free.
However, as we explained in Remark 1 when we first introduced membership,
this theorem is also important for the arguments that are required to prove it.
Indeed, providing these arguments requires a deep insight on SF. The right to left
implication is of particular interest: “given a regular language whose syntactic
monoid is aperiodic, prove that it is star-free”. This involves devising a generic
way to construct a star-free description for every regular language recognized by
a monoid satisfying a syntactic property. This is the implication that we handle
with covers. On the other hand, the converse implication is simple and standard
(essentially, we already proved it with Lemma 9).

100 T. Place

Proof. We fix an alphabet A and a regular language L ⊆ A∗ for the proof. Let
α : A∗ → M be the syntactic morphism of L. We prove that L ∈ SF(A) if and
only if M is aperiodic. Let us first handle the left to right implication.

From star-free languages to aperiodicity. Assume that L ∈ SF(A). We
prove that M is aperiodic, i.e. that (1) is satisfied. Let s ∈ M , we have to show
that sω = sω+1.

Since α is a syntactic morphism, it is surjective and there exists w ∈ A∗

such that α(w) = s. Moreover, since L ∈ SF(A), Lemma 9 yields k ≥ 1 such
that wkω ≡L wkω+1. By definition of the syntactic morphism, this implies that
α(wkω) = α(wkω+1). Since α(w) = s, this yields sω = sω+1 as desired.

From aperiodicity to star-free languages. Assume that M is aperiodic. We
show that L is star-free. We rely on the notions introduced in the Sect. 3 and
directly prove that every language recognized by α is star-free.

Remark 11. Intuitively, this property is stronger than L being star-free. Yet, since
SF is a quotient-closed Boolean algebra, it is equivalent by Proposition 3.
�

The argument is based on Proposition 7: we use induction to construct an
SF-cover K of A∗ which is confined by α. By the proposition, this implies that
every language recognized by α belongs to SF(A). We start with a preliminary
definition that we require to formulate the induction.

Let B be an arbitrary alphabet, β : B∗ → M a morphism and s ∈ M . We
say that a finite set of languages K (over B) is (s, β)-safe if for every K ∈ K
and every w,w′ ∈ K, we have sβ(w) = sβ(w′).

Lemma 12. Let B be an alphabet. Consider a morphism β : B∗ → M , C ⊆ B
and s ∈ M . There exists an SF-cover of C∗ which is (s, β)-safe.

We first use Lemma 12 to conclude the main argument. We apply the lemma
for B = A, β = α and s = 1M . This yields an SF-cover K of A∗ which is (1M , α)-
safe. By definition, it follows that for every K ∈ K, we have α(w) = α(w′) for
all K ∈ K. By Fact 6, this implies that K is confined by α, completing the main
argument.

It remains to prove Lemma 12. Let B be an alphabet, β : B∗ → M a mor-
phism, C ⊆ B and s ∈ M . We build an SF-cover K of C∗ which is (s, β)-safe
using induction on the three following parameters listed by order of importance:

1. The size of β(C+) ⊆ M .
2. The size of C.
3. The size of sβ(C∗) ⊆ M .

Remark 13. The aperiodic monoid M remains fixed throughout the whole proof.
On the other hand, the alphabets B and C, the morphism β : B∗ → M and
s ∈ M may change when applying induction.
�

Deciding Classes of Regular Languages: The Covering Approach 101

We distinguish two cases depending on the following property of β, C and s.
We say that s is (β,C)-stable when the following holds:

for every c ∈ C, sβ(C∗) = sβ(C∗c). (2)

We first consider the case when s is (β,C)-stable. This is the base case which
we handle using the hypothesis that M is aperiodic.

Base case: s is (β,C)-stable. In that case, we define K = {C∗} which is clearly
an SF-cover of C∗ (we have C∗ ∈ SF(B) as seen in Example 8). It remains to
show that K is (s, β)-safe. For w,w′ ∈ C∗, we have to show that sβ(w) = sβ(w′).
We actually prove that sβ(w) = s for every w ∈ C∗ which implies the desired
result. Since s is (β,C)-stable, we have the following fact.

Fact 14. For every u ∈ C∗, there exists t ∈ β(C∗) such that stβ(u) = s.

Proof. We use induction on the length of u ∈ C∗. If u = ε, the fact holds for
t = 1M . Assume now that u ∈ C+. We have u = cu′ for u′ ∈ C∗ and c ∈ C.
Induction yields t′ ∈ β(C∗) such that st′β(u′) = s. Moreover, since s is (β,C)-
stable, (2) yields t ∈ β(C∗) such that stβ(c) = st′. Altogether, we obtain that
stβ(u) = stβ(c)β(u′) = st′β(u′) = s which concludes the proof.
�

Consider the word wω ∈ C∗ (with ω as the idempotent power of M). We
apply Fact 14 for u = wω. This yields t ∈ β(C∗) such that s = st(β(w))ω.
Since M is aperiodic, we have (β(w))ω = (β(w))ω+1 by Eq. (1). This yields
sβ(w) = st(β(w))ω+1 = st(β(w))ω = s, concluding the base case.

Inductive case: s is not (β,C)-stable. By hypothesis, there exists a letter
c ∈ C such that the following strict inclusion holds sβ(C∗c) � sβ(C∗). We fix
c ∈ C for the remainder of the argument.

Let D be the sub-alphabet D = C \ {c}. By definition, |D| < |C|. Hence,
induction on our second parameter in Lemma12 (i.e., the size of C) yields an SF-
cover H of D∗ which is (1M , β)-safe. Note that it is clear that our first induction
parameter (the size of α(C+)) has not increased since D ⊆ C.

We distinguish two independent sub-cases. Clearly, we have β(C∗c) ⊆ β(C+).
The argument differs depending on whether this inclusion is strict or not.

Sub-case 1: β(C∗c) = β(C+). Consider a language H ∈ H. Since H is a cover
of D∗ which is (1M , β)-safe by definition, there exists some element tH ∈ β(D∗)
such that β(w) = tH for every w ∈ H. The construction of the desired SF-cover
K of C∗ is based on the following fact which we prove using induction on our
third parameter (the size of sβ(C∗)).

Fact 15. For every language H ∈ H, there exists an SF-cover UH of C∗ which
is (stHβ(c), β)-safe.

Proof. Since tH ∈ β(D∗), it is immediate that stHβ(c) ∈ sβ(D∗c). Hence,
stHβ(c)β(C∗) ⊆ sβ(C+). Moreover, β(C∗c) = β(C+) by hypothesis in Sub-
case 1. Thus, stHβ(c)β(C∗) ⊆ sβ(C∗c). Finally, recall that the letter c satisfies

102 T. Place

sβ(C∗c) � sβ(C∗) by definition. Consequently, we have the strict inclusion
stHβ(c)β(C∗) � sβ(C∗). Hence, we may apply induction on our third parame-
ter in Lemma 12 (i.e. the size of sβ(C∗)) to obtain the desiredn SF-cover UH of
C∗ which is (stHβ(c), β)-safe. Note that here, our first two parameters have not
increased (they only depend on β and C which remain unchanged).
�

We may now use Fact 15 to build the desired cover K of C∗. We define
K = H ∪ {HcU | H ∈ H and U ∈ UH}. Clearly, K is an SF-cover of C∗ by
hypothesis on H and UH since D = C\{c} and SF is closed under concatenation.
We need to show that K is (s, β)-safe. Let K ∈ K and w,w′ ∈ K, we need
to show that sβ(w) = sβ(w′). By definition of K, there are two cases. When
K ∈ H, the result is immediate since H is (1M , β)-safe by definition. Otherwise,
K = HcU for H ∈ H and U ∈ UH . Thus, we get x, x′ ∈ H and u, u′ ∈ U such
that w = xcu and w′ = x′cu′. By definition, β(x) = β(x′) = tH . Moreover, since
UH is (stHβ(c), β)-safe by definition in Fact 15, we have stHβ(cu) = stHβ(cu′).
Altogether, this yields sβ(xcu) = sβ(x′cu′), i.e. sβ(w) = sβ(w′) as desired.

Sub-case 2: β(C∗c) � β(C+). Let us first explain informally how the cover
K of C∗ is built in this case. Let w ∈ C∗. Since D = C \ {c}, w admits a
unique decomposition w = uv such that u ∈ (D∗c)∗ and v ∈ D∗ (i.e., v is the
largest suffix of w in D∗ and u is the corresponding prefix). Using induction,
we construct SF-covers of the possible prefixes and suffixes. Then, we combine
them to construct a cover of the whole set C∗. Actually, we already covered
the suffixes: we have an SF-cover H of C∗ which is (1M , β)-safe. It remains to
cover the prefixes. We do so this in the following lemma which we prove using
induction on our first parameter (the size of β(C+)).

Lemma 16. There exists an SF-cover V of (D∗c)∗ which is (1M , β)-safe.

Proof. Let E = β(D∗c). Using E as a new alphabet, we apply induction on
the first parameter in Lemma 12 (i.e., the size of β(C+)) to build an auxiliary
SF-cover of E∗ which we then use to construct V.

Since E = β(D∗c) ⊆ M , there exists a natural morphism γ : E∗ → M defined
by γ(e) = e for every e ∈ E. Clearly, γ(E+) ⊆ β(C∗c). Since β(C∗c) � β(C+)
by hypothesis of Sub-case 2, this implies γ(E+) � β(C+) and induction on the
first parameter in Lemma 12 yields an SF-cover W of E∗ which is (1M , γ)-safe.
We use W to construct V. First, we define a map μ : (D∗c)∗ → E∗.

We let μ(ε) = ε. Otherwise, let w ∈ (D∗c)+ be a nonempty word. Since
c �∈ D, w admits a unique decomposition w = w1 · · · wn with w1, . . . , wn ∈ D∗c.
Hence, we may define μ(w1 · · · wn) = e1 · · · en with ei = β(wi) for every i ≤ n
(recall that E = β(D∗c) by definition). We are ready to define W. We let,

V = {μ−1(W) | W ∈ W}
It remains to show that V is an SF-cover of (D∗c)∗ which is (1M , β)-safe. It is
immediate that V is a cover of (D∗c)∗ since W was a cover of E∗.

Let us prove that V is (1M , β)-safe. Let V ∈ V and v, v′ ∈ V . We prove that
β(v) = β(v′). By definition, there exists w ∈ W such that V = μ−1(W). Thus,

Deciding Classes of Regular Languages: The Covering Approach 103

μ(v), μ(v′) ∈ W which implies that γ(μ(v)) = γ(μ(v′)) since W is (1M , γ)-safe
by definition. One may now verify from the definitions that γ(μ(v)) = β(v) and
γ(μ(v′)) = β(v′). Thus, we obtain β(v) = β(v′) as desired.

It remains to show that every V ∈ V is star-free. By definition of V, it suffices
to show that for every W ∈ SF(E), we have μ−1(W) ∈ SF(B). We proceed by
induction on the definition of W as a star-free language. When W = ∅, it is
clear that μ−1(W) = ∅ ∈ SF(B). Assume now that W = {e} for some e ∈ E. By
definition, μ−1(e) = {w ∈ D∗c | β(w) = e}. This may be reformulated as follows:
μ−1(e) = Uc with U = {u ∈ D∗ | β(uc) = e}. Clearly, U is the intersection of
D∗ with a language recognized by β. Recall that we have an SF-cover H of D∗

which is (1M , β)-safe (and therefore confined by β). Hence, Proposition 7 implies
that U ∈ SF(B). It follows that μ−1(e) = Uc ∈ SF(B) as desired. We turn to
the inductive cases.

First, assume that there are simpler languages W1,W2 ∈ SF(E) such that
either W = W1W2 or W = W1∪W2. By induction, μ−1(Wi) ∈ SF(B) for i = 1, 2.
Moreover, the definition of μ implies that μ−1(W1W2) = μ−1(W1)μ−1(W2) and
μ−1(W1 ∪ W2) = μ−1(W1) ∪ μ−1(W2). Hence, we obtain μ−1(W) ∈ SF(B).
Finally, assume that W = E∗ \ W ′ for a simpler language W ′ ∈ SF(E). By
induction, μ−1(W ′) ∈ SF(E). Moreover, μ−1(W) = (D∗c)∗ \ μ−1(W ′). Clearly,
(D∗c)∗ = C∗ \ (C∗D) ∈ SF(B). Thus, we get μ−1(W) ∈ SF(B) as desired.
�

We are ready to construct the desired SF-cover K of C∗. Let V be the
(1M , β)-safe SF-cover of (D∗c)∗ given by Lemma 16 and consider our (1M , β)-
safe SF-cover H of D∗. We define K = {V H | V ∈ V and H ∈ H}. It is
immediate by definition that K is an SF-cover of C∗ since D = C \{c} and SF is
closed under concatenation. It remains to verify that K is (s, β)-safe (it is in fact
(1M , β)-safe). Let K ∈ K and w,w′ ∈ K, we show that β(w) = β(w′) (which
implies sβ(w) = sβ(w′)). By definition, K = V U with V ∈ V and U ∈ U.
Therefore, w = vu and w′ = v′u′ with u, u′ ∈ U and v, v′ ∈ V . Since U and V
are both (1M , β)-safe by definition, we have β(u) = β(u′) and β(v) = β(v′). It
follows that β(w) = β(w′). This concludes the proof of Lemma 12.
�

5 Piecewise Testable Languages and Simon’s Theorem

We turn to our second example: Simon’s theorem [38]. This results states an
algebraic characterization of another prominent class of regular languages: the
piecewise testable languages (PT). It is quite important in the literature as it
was among the first results of this kind after Schützenberger’s theorem (which
we proved in Sect. 4). Over the years, many different proofs have been found
(examples include [1,9,12,18,38,39]). We present a new proof, based on PT-
covers and entirely independent from previously known arguments. It relies on
a concatenation principle for the piecewise testable languages that can only be
formulated with PT-covers.

We first recall the definition of piecewise testable languages. Then, we state
the theorem properly and present the proof.

104 T. Place

5.1 Definition

Let us define the class of piecewise testable languages (PT). Given an alpha-
bet A and u, v ∈ A∗, we say that u is a piece of v and write u � v
when u can be obtained from v by removing letters and gluing the remain-
ing ones together. More precisely, u � v when there exist a1, . . . , an ∈ A and
v0, . . . , vn ∈ A∗ such that,

u = a1a2 · · · an and v = v0a1v1a2v2 · · · vn−1anvn.

For instance, acb is a piece of bbabcbcbba. Note that by definition, the empty
word “ε” is a piece of every word (this is the case n = 0). Furthermore, it is
clear that the relation � is a preorder on A∗.

For every word u ∈ A∗, we write ↑u ⊆ A∗ for the language consisting of all
words v such that u is a piece of v. If u = a1 · · · an, we have by definition:

↑u = {v ∈ A∗ | u � v} = A∗a1A
∗a2A

∗ · · · an−1A
∗anA∗.

We may now define PT. A language L ⊆ A∗ is piecewise testable (i.e. L ∈ PT(A))
when L is a (finite) Boolean combination of languages ↑w for w ∈ A∗.

Example 17. We let A = {a, b} as the alphabet. Then a+b+ ∈ PT(A). Indeed,
a+b+ = A∗aA∗bA∗ \ A∗bA∗aA∗. Moreover, observe that every finite language
is piecewise testable. Since PT is closed under union, it suffices to show that
every singleton is piecewise testable. Consider a word w = a1 · · · an. By defini-
tion, w is the only word belonging to A∗a1A

∗a2A
∗ · · · an−1A

∗anA∗ but not to
A∗b1A∗b2A∗ · · · bnA∗bn+1A

∗, where b1, . . . , bn+1 denotes any sequence of n + 1
letters. Hence, {w} is piecewise testable.
�

Clearly PT is a Boolean algebra and one may verify that it is quotient-
closed (the details are left to the reader). We complete the definition with two
properties of PT. The first one is standard and we shall need it to prove that
“easy” direction of Simon’s theorem (every piecewise testable language satisfies
the characterization).

Lemma 18. Let A be an alphabet and L ∈ PT(A). There exists k ≥ 1 such that
for every � ≥ k and u, v ∈ A∗, we have (uv)�u ≡L (uv)� ≡L v(uv)�.

Proof. Since L ∈ PT, there exists k ≥ 1 such that L is a Boolean combinations
of language ↑w with w ∈ A∗ such that |w| ≤ k (i.e. w has length at most k).
We prove that the lemma holds for this number k. Let u, v ∈ A∗ and � ≥ k.
We show that (uv)�u ≡L (uv)� ≡L v(uv)�. By symmetry, we concentrate on
(uv)�u ≡L (uv)�: given x, y ∈ A∗, we show that x(uv)�uy ∈ L ⇔ x(uv)�y ∈ L.
Since � ≥ k, one may verify that for every w ∈ A∗ such that |w| ≤ k, we have
w � x(uv)�uy ⇔ w � x(uv)�y. In other words, x(uv)�uy ∈ ↑w ⇔ x(uv)�y ∈ ↑w.
Since L is a Boolean combination of such languages, this implies the equivalence
x(uv)�uy ∈ L ⇔ x(uv)�y ∈ L as desired.
�

Deciding Classes of Regular Languages: The Covering Approach 105

The second result is specific to our covering-based approach for proving
Simon’s theorem. It turns out that elegant proof arguments for membership
algorithms often apply to classes that are closed under concatenation (or some
weak variant thereof). As seen in the previous section, the star-free languages are
an example. Unfortunately, PT is not closed under concatenation. For example,
consider the alphabet A = {a, b}. We have A∗ ∈ PT and {a} ∈ PT as seen in
Example 17. Yet, one may verify with Lemma 18 that A∗a �∈ PT.

We solve this issue with a “weak concatenation principle” for piecewise
testable languages. This result can only be formulated using PT-covers. While
its proof is rather technical, an interesting observation is that it characterizes
the piecewise testable languages. In the proof of Simon’s theorem, we only use
this concatenation principle and the hypothesis that PT is a Boolean algebra
(we never come back to the original definition of PT).

Proposition 19. Let u, v ∈ A∗ and a ∈ A. Moreover, let Ku and Kv be PT-
covers of ↑u and ↑v respectively. There exists a PT-cover K of ↑(uav) such that
for every K ∈ K we have Ku ∈ Ku and Kv ∈ Kv satisfying K ⊆ KuaKv.

Proof. We start with standard definitions that we need to describe K. For every
k ∈ N, we associate a preorder �k over A∗. For w,w′ ∈ A∗, we write w �k w′

to indicate that for every x ∈ A∗ such that |x| ≤ k, we have x � w ⇒ x � w′.
Clearly, �k is a preorder which is coarser than �: for every w,w′ such that
w � w′, we have w �k w′. Moreover, we write ∼k for the equivalence generated
by this preorder: w ∼k w′ if and only if x � w ⇔ x � w′ for every x ∈ A∗ such
that |x| ≤ k. Clearly, ∼k has finite index.

Since Ku and Kv are PT-covers, there exists some number k ∈ N every
language K ∈ Ku ∪ Kv is a finite Boolean combination of languages ↑x for
x ∈ A∗ such that |x| ≤ k. In other words, every such language K is a union of
∼k-classes. Moreover, we may choose k so that |u| ≤ k and |v| ≤ k. We shall
define the cover K as a set of ∼h-classes for an appropriate number h that we
choose using the following technical lemma.

Lemma 20. Let h ≥ 2|A|k+1+1, a ∈ A and u′, v′, w ∈ A∗ such that u′av′ �h w.
There exist u′′, v′′ ∈ A∗ such that w = u′′av′′, u′ �k u′′ and v′ �k v′′.

Proof. We claim that there exist y, z ∈ A∗ with length at most |A|k+1 such that
y � u′ �k y and z � v′ �k z. We first use this claim to prove the lemma. Clearly,
|yaz| ≤ 2|A|k+1 + 1 ≤ h and yaz � u′av′. Therefore, since u′av′ �h w, it follows
that yaz � w. This yields a decomposition w = u′′av′′ such that y � u′′ and
z � v′′. Since u′ �k y and v′ �k z, this implies u′ �k u′′ and v′ �k v′′ as desired.

It remains to prove the claim. We only construct a piece y ∈ A∗ such that
|y| ≤ |A|k+1 and y � u′ �k y, as the construction of z is analogous. Let F be
the set of all pieces of u′ of size at most k, that is,

F = {u′′ ∈ A∗ | u′′ � u′ and |u′′| ≤ k}.

Clearly, |F | ≤ |A|k+1. For x ∈ A∗, let LF (x) be the set of words of F that are pieces
of x. Let u′ = u1au2 be some decomposition of u′. Note that LF (u1) ⊆ LF (u1a).

106 T. Place

We say that the occurrence of a given by the decomposition u′ = u1au2 is bad if
LF (u1) = LF (u1a). Let y be the word obtained from u′ by deleting all bad letters
(and keeping the other ones). By construction, y � u′ and LF (y) = LF (u′). The
latter property implies that u′ � y for every u′ ∈ F . By definition of F , this means
that u′ �k y. Furthermore, letters of y are not bad, and one may verify that there
are at most |LF (u′)| = |F | such letters. Therefore, |y| ≤ |F | ≤ |A|k+1, which
concludes the proof.
�

We define h = 2|A|k+1 + 1. It is immediate that every ∼h-class is a language
of PT (it is a Boolean combination of languages ↑x for x ∈ A∗ such that |x| ≤ h).
Hence, the set K containing all ∼h-classes which intersect ↑(uav) is a PT-cover
of ↑(uav). It remains to show that for every K ∈ K, there exist Ku ∈ Ku and
Kv ∈ Kv such that K ⊆ KuaKv. We fix the language K ∈ K for the proof. We
need the following result.

Lemma 21. Let H ⊆ K be a finite language. There exist K ′ ∈ Ku and K ′′ ∈
Kv such that H ⊆ K ′aK ′′.

Proof. Let w1, . . . , wn ∈ A∗ be the words in H, i.e., H = {w1, . . . , wn}. Our goal
is to find K ′ ∈ Ku and K ′′ ∈ Kv such that wi ∈ K ′aK ′′ for all i = 1, . . . , n.
Therefore, we first have to find a suitable decomposition of each word wi as
uiavi, and then to show that all ui’s belong to some K ′ ∈ Ku and all vi’s belong
to some K ′′ ∈ Kv.

By definition, K is a ∼h-class and it intersects ↑(uav). This yields a word
x ∈ ↑(uav) such that x ∼h w1 ∼h · · · ∼h wn. Since x ∈ ↑(uav), there exist
u′ ∈ ↑u and v′ ∈ ↑v such that x = u′av′. Let � = |w1| + 1. We may write the
relations x ∼h w1 ∼h · · · ∼h wn as follows:

u′av′ �h w1 �h · · · �h wn︸ ︷︷ ︸
block 1

�h w1 �h · · · �h wn︸ ︷︷ ︸
block 2

�h · · · �h w1 �h · · · �h wn︸ ︷︷ ︸
block �

︸ ︷︷ ︸
n� words

.

Since h ≥ 2|A|k+1 + 1 by definition, may apply Lemma 20 n� times to get
u1,1, . . . , un,1, . . . , u1,�, . . . , un,� ∈ A∗ and v1,1, . . . , vn,1, . . . , v1,�, . . . , vn,� ∈ A∗

such that,

– for every i ≤ n and j ≤ �, we have wi = ui,javi,j , and,
– u′ �k u1,1 �k · · · �k un,1 �k · · · �k u1,� �k · · · �k un,�, and,
– v′ �k v1,1 �k · · · �k vn,1 �k · · · �k v1,� �k · · · �k vn,�.

Since � = |w1|+1, the first property and the pigeonhole principle yield j1 < j2 ≤ �
such that u1,j1 = u1,j2 and v1,j1 = v1,j2 . For every i ≤ n, we let ui = ui,j1 and
vi = vi,j1 . Therefore, for all i = 1, . . . , n, we have wi = uiavi.

The second and third properties now yield u′ �k u1 �k · · · �k un �k u1 and
v′ �k v1 �k · · · �k vn �k v1, whence:

u′ �k u1 ∼k · · · ∼k un and v′ �k v1 ∼k · · · ∼k vn.

Recall that |u| ≤ k by definition of k. Since u′ ∈ ↑u and u′ �k u1, it follows
that u1 ∈ ↑u. Since Ku is a cover of ↑u, this yields K ′ ∈ Ku such that u1 ∈ K ′.

Deciding Classes of Regular Languages: The Covering Approach 107

Since K ′ is a union of ∼k-classes by choice of k and since u1 ∼k · · · ∼k un,
we deduce that u1, . . . , un ∈ K ′. Symmetrically, we obtain K ′′ ∈ Kv such that
v1, . . . , vn ∈ K ′′. Finally, since wi = uiavi for every i ≤ n, this yields H =
{w1, . . . , wn} ⊆ K ′aK ′′, as desired.
�

We may now finish the proof. For every n ∈ N, we let Hn ⊆ K be the (finite)
language containing all words of length at most n in K. Clearly, K =

⋃
n∈N

Hn

and Hn ⊆ Hn+1 for every n ∈ N. Moreover, Lemma 21 implies that for every
n ∈ N, we have K ′

n ∈ Ku and K ′′
n ∈ Kv such that Hn ⊆ K ′

naK ′′
n . Since Ku

and Kv are finite sets, there exist Ku ∈ Ku and Kv ∈ Kv such that K ′
n = Ku

and K ′′
n = Kv for infinitely many n. Since Hn ⊆ Hn+1 for every n ∈ N, it then

follows that Hn ⊆ KuaKv for every n ∈ N. Finally, since K =
⋃

n∈N
Hn, this

implies K ⊆ KuaKv which concludes the proof.
�

5.2 Simon’s Theorem

We may now present and prove Simon’s theorem. It characterizes the star-free
languages as those whose syntactic monoid is J-trivial. The original definition
of this notion is based on the Green relation J defined on every finite monoid.
Here, we do not consider this relation. Instead, we use an equational definition.
A finite monoid M is J-trivial when it satisfies the following property:

for every s, t ∈ M (st)ωs = (st)ω = t(st)ω. (3)

Theorem 22 (Simon [38]). A regular language is piecewise testable if and only
if its syntactic monoid is J-trivial.

As expected, the main application of Simon’s theorem is the decidability of
PT-membership. Given a regular language L as input, one may compute its
syntactic monoid and check whether it satisfies Eq. (3) by testing all possible
combinations. By Theorem22, this decides whether L is piecewise testable. Yet,
as for the star-free languages in Sect. 4, this theorem is also important for the
arguments that are required to prove it. We present such a proof now.

Proof. We fix an alphabet A and a regular language L ⊆ A∗ for the proof.
Let α : A∗ → M be the syntactic morphism of L. We prove that L ∈ PT(A)
if and only if M is J-trivial. We start with the left to right implication which
is essentially immediate from Lemma 18. As expected, the difficult and most
interesting part of the proof is the converse implication.

From piecewise testable languages to J-triviality. Assume that we have
L ∈ PT(A). We prove that M is J-trivial: (3) holds. Let s, t ∈ M , we have to
show that (st)ωs = (st)ω = t(st)ω.

Since α is a syntactic morphism, it is surjective and there exists u, v ∈ A∗

such that α(u) = s and α(v) = t. Moreover, since L ∈ SF(A), Lemma 18 yields
k ≥ 1 such that (uv)kωu ≡L (uv)kω ≡L v(uv)kω. By definition of the syntac-
tic morphism, this implies that α((uv)kωu) = α((uv)kω) = α(v(uv)kω). Since
α(u) = s and α(v) = t, this yields (st)ωs = (st)ω = t(st)ω as desired.

108 T. Place

From J-triviality to piecewise testable languages. Assume that M is J-
trivial. We show that L is piecewise testable. We rely on the notions introduced
in the Sect. 3 and directly prove that every language recognized by α is piecewise
testable. The argument is based on Proposition 7: we use induction to construct
a PT-cover K of A∗ which is confined by α. By the proposition, this implies that
every language recognized by α belongs to PT(A). We start with a preliminary
definition that we require to formulate the induction.

Given a finite set of languages K, and s, t ∈ M , we say that K is (s, t)-safe
if for every K ∈ K and w,w′ ∈ K, we have sα(w)t = sα(w′)t. The argument is
based on the following lemma.

Lemma 23. Let s, t ∈ M and w ∈ A∗. There exists a PT-cover of ↑w which is
(s, t)-safe.

We first use Lemma 23 to complete the main argument. We apply the lemma
for s = t = 1M and w = ε. Since ↑ε = A∗, this yields a PT-cover K of A∗ which
is (1M , 1M)-safe. Thus, for every K ∈ K and w,w′ ∈ A∗, we have α(w) = α(w′).
By Fact 6, this implies that K is confined by α, concluding the proof.

It remains to prove Lemma 23. Let s, t ∈ M and w ∈ A∗. We construct a
PT-cover K of ↑w which is (s, t)-safe. We write P [s, w, t] ⊆ M × M for the
following set:

P [s, w, t] =
{
(sα(x), α(y)t) | x, y ∈ A∗ and xy ∈ ↑w

}
.

We proceed by induction on the two following parameters, listed by order of
importance:

1. The size of P [s, w, t].
2. The length of w.

We consider two cases depending on whether w is empty or not. We first assume
that this property holds.

First case: w = ε. We handle this case using induction on our first parameter.
Let H ⊆ A∗ be the language of all words v ∈ A∗ such that (s, t) �∈ P [s, v, t].
We use induction to build a PT-cover of H (note that it may happen that H is
empty in which case we do not need induction).

Fact 24. There exists a PT-cover KH of H which is (s, t)-safe.

Proof. One may verify with a pumping argument that there exists a finite set
F ⊆ H such that H ⊆ ⋃

v∈F (↑v) (this is also an immediate consequence of
Higman’s lemma). Hence, it suffices to prove that for every v ∈ H, there exists
a PT-cover Kv of ↑v which is (s, t)-safe. Indeed, one may then choose KH to be
the union of all covers Kv for v ∈ F . We fix v ∈ H for the proof.

Since w = ε, we have ↑w = A∗. Since α is surjective (it is a syntactic
morphism), it follows that P [s, w, t] = {(sq, rt) | q, r ∈ M}. Therefore, we have
P [s, v, t] ⊆ P [s, w, t] and (s, t) ∈ P [s, w, t]. Since (s, t) �∈ P [s, v, t] by definition
of H, we get |P [s, v, t]| < |P [s, w, t]|. Hence, induction on the first parameter in
Lemma 23 (the size of P [s, w, t]) yields a PT-cover Kv of ↑v which is (s, t)-safe,
as desired.
�

Deciding Classes of Regular Languages: The Covering Approach 109

We let KH be the PT-cover KH of H given by Fact 24. We define,

K⊥ = A∗ \
(

⋃

K∈KH

K

)

.

Finally, we let K = {K⊥}∪KH . It is immediate that K is a PT-cover of A∗ = ↑ε
since PT is a Boolean algebra. It remains to verify that K is (s, t)-safe. Consider
K ∈ K and let u, u′ ∈ K. We prove that sα(u)t = sα(u′)t. If K ∈ KH , this is
immediate since KH is (s, t)-safe by construction. Hence, it suffices to show that
K⊥ is (s, t)-safe. This is a direct consequence of the following fact. Note that this
is the only place in the proof where we use the hypothesis that M satisfies (3).

Fact 25. For every word v ∈ K⊥, we have sα(v)t = st.

Proof. Let v ∈ K⊥. By definition of K⊥, v �∈ K ′ for every K ′ ∈ KH . Since KH

is a cover of H, it follows that v �∈ H. By definition of H, it follows that (s, t) ∈
P [s, v, t]. By definition, this yields x, y ∈ A∗ such that sα(x) = s, t = α(y)t and
xy ∈ ↑v. The latter property yields x′, y′ ∈ A∗ such that v = x′y′, x ∈ ↑x′ and
y ∈ ↑y′. We prove that sα(x′) = s and t = α(y′)t, which yields as desired that
sα(v)t = sα(x′y′)t = st. By symmetry, we only show that s = sα(x′).

Since s = sα(x), we have s = s(α(x))ω. Moreover, since x ∈ ↑x′, we
have x0, . . . , xn ∈ A∗ and a1, . . . , an ∈ A such that x′ = a1 · · · an and
x = x0a1x1 · · · anxn. It follows from (3) that for every 1 ≤ i ≤ n, we have:

(α(x))ω = (α(x))ωα(x0a1x1 · · · xi−1) = (α(x))ωα(x0a1x1 · · · xi−1ai).

This yields (α(x))ω = (α(x))ωα(ai). Therefore, since we know that s = s(α(x))ω,
we obtain sα(ai) = s(α(x))ωα(ai) = s(α(x))ω = s. Finally, this yields,

s = sα(an) = sα(an−1an) = · · · = sα(a1 · · · an−1an) = sα(x′).

This concludes the proof.
�
Second case: w ∈ A+. In that case, we have u, v ∈ A∗ and a ∈ A such that
w = uav (the choice of u, v and a is arbitrary). Consider the two following
subsets of M :

Mu = {α(xa) | x ∈ ↑u} and Mv = {α(ay) | y ∈ ↑v}.

Moreover, we say that a cover K of some language H is tight when K ⊆ H for
every K ∈ K. We use induction to prove the following fact.

Fact 26. There exist tight PT-covers Ku and Kv of ↑u and ↑v which satisfy the
following properties:

– for every r ∈ Mu, the cover Kv of ↑v is (sr, t)-safe.
– for every r ∈ Mv, the cover Ku of ↑u is (s, rt)-safe.

110 T. Place

Proof. We construct Kv (the construction of Ku is symmetrical). Let Mu =
{r1, . . . , rn}. For every i ≤ n, assume that we already have a PT-cover Hi of ↑v
which is (sri, t)-safe. We define,

Kv = {↑v ∩ H1 ∩ · · · ∩ Hn | Hi ∈ Hi for every i ≤ n} .

Since PT is a Boolean algebra, it is immediate that Kv is a tight PT-cover of ↑v
which is (sr, t)-safe for every r ∈ Mu. Thus, it remains to build for every i ≤ n
such a PT-cover Hi.

We fix i ≤ n for the proof. By definition of Mu, we have ri = α(uia) for
some word ui ∈ ↑u. Observe that since w = uav, we have P [sri, v, t] ⊆ P [s, w, t]
by definition: our first induction parameter (i.e., the size of P [s, w, t]) has not
increased. Hence, since |v| < |w|, it follows by induction on our second parameter
in Lemma 23 (the length of w) that there exists a PT-cover Hi of ↑v which is
(sri, t)-safe. This concludes the proof.
�

We are ready to construct the desired PT-cover K of ↑w. Consider the tight
PT-covers Ku and Kv of ↑u and ↑v described in Fact 26. Since w = uav, Propo-
sition 19 yields a PT-cover K of ↑w such that for every K ∈ K, there exist
Ku ∈ Ku and Kv ∈ Kv satisfying K ⊆ KuaKv. It remains to prove that K is
(s, t)-safe. Let K ∈ K and x, x′ ∈ K. We prove that sα(x)t = sα(x′)t.

By definition, K ⊆ KuaKv for Ku ∈ Ku and Kv ∈ Kv. Hence, there exist
y, y′ ∈ Ku and z, z′ ∈ Kv such that x = yaz and x′ = y′az′. Since Ku is a tight
cover of ↑u, we know that y ∈ ↑u, which implies that α(ya) ∈ Mu by definition.
It follows that Kv is (sα(ya), t)-safe by Fact 26. Therefore, since z, z′ ∈ Kv

and Kv ∈ Kv, we obtain sα(yaz)t = sα(yaz′)t. Symmetrically, one may verify
that sα(yaz′)t = sα(y′az′)t. Altogether, it follows that sα(yaz)t = sα(y′az′)t,
meaning that sα(x)t = sα(x′)t. This concludes the proof of Lemma 23.
�

6 Conclusion

We explained how covering provides a natural and convenient framework for
handling membership questions. We illustrated this point by using covers to for-
mulate new proofs for Schützenberger’s theorem and Simon’s theorem. We chose
these two examples as they are arguably the two most famous characterization
theorems of this kind. However, this approach is also relevant for other prominent
characterization theorems. A first promising example is the class of unambiguous
languages. It was also characterized by Schützenberger [37] and it also famous
as the class of languages that can be define in two-variable first-order logic (this
was shown by Thérien and Wilke [40]). Another interesting example is Knast’s
theorem [13] which characterizes the languages of dot-depth one. This class is
natural generalization of the piecewise testable languages.

Deciding Classes of Regular Languages: The Covering Approach 111

References

1. Almeida, J.: Implicit operations on finite j-trivial semigroups and a conjecture of
I. Simon. J. Pure Appl. Algebra 69, 205–218 (1990)

2. Brzozowski, J.A., Cohen, R.S.: Dot-depth of star-free events. J. Comput. Syst. Sci.
5(1), 1–16 (1971)

3. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

4. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discrete
Math. 4(3), 243–271 (1973)

5. Colcombet, T.: Green’s relations and their use in automata theory. In: Dediu, A.-
H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 1–21.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3 1

6. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 150–161. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39212-2 16

7. Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel, E.,
Wilke, T. (eds.) Logic and Automata: History and Perspectives, Texts in Logic
and Games, vol. 2, pp. 261–306. Amsterdam University Press, Amsterdam (2008)

8. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press Inc.,
Orlando (1976)

9. Higgins, P.: A proof of simon’s theorem on piecewise testable languages. Theor.
Comput. Sci. 178(1), 257–264 (1997)

10. Higgins, P.M.: A new proof of Schützenberger’s theorem. Int. J. Algebra Comput.
10(02), 217–220 (2000)

11. Kamp, H.W.: Tense logic and the theory of linear order. Ph.D. thesis, Computer
Science Department, University of California at Los Angeles, USA (1968)

12. Klima, O.: Piecewise testable languages via combinatorics on words. Discrete Math.
311(20), 2124–2127 (2011)

13. Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO -
Theor. Inform. Appl. 17(4), 321–330 (1983)

14. Lucchesi, C.L., Simon, I., Simon, I., Simon, J., Kowaltowski, T.: Aspectos teóricos
da computação. IMPA, Sao Paulo (1979)

15. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge
(1971)

16. Meyer, A.R.: A note on star-free events. J. ACM 16(2), 220–225 (1969)
17. Perrin, D.: Finite automata. In: Formal Models and Semantics. Elsevier (1990)
18. Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
19. Pin, J.E.: A variety theorem without complementation. Russ. Math. (Izvestija

vuzov.Matematika) 39, 80–90 (1995)
20. Pin, J.E.: The dot-depth hierarchy, 45 years later, pp. 177–202. World Scientific

(2017). (chap. 8)
21. Pin, J.E.: Mathematical foundations of automata theory (2019, in preparation).

https://www.irif.fr/∼jep/PDF/MPRI/MPRI.pdf
22. Pin, J.E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.

Syst. 30(4), 383–422 (1997)
23. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge

(1997)

https://doi.org/10.1007/978-3-642-21254-3_1
https://doi.org/10.1007/978-3-642-39212-2_16
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf

112 T. Place

24. Place, T.: Separating regular languages with two quantifier alternations. Log.
Methods Comput. Sci. 14(4) (2018)

25. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40313-2 64

26. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43951-7 29

27. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: Pro-
ceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer
Science Logic (CSL 2014) and the 29th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2014), pp. 75:1–75:10. ACM, New York (2014)

28. Place, T., Zeitoun, M.: The tale of the quantifier alternation hierarchy of first-order
logic over words. SIGLOG News 2(3), 4–17 (2015)

29. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Log.
Methods Comput. Sci. 12(1) (2016)

30. Place, T., Zeitoun, M.: Separation for dot-depth two. In: Proceedings of the 32th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), pp.
202–213. IEEE Computer Society (2017)

31. Place, T., Zeitoun, M.: The covering problem. Log. Methods Comput. Sci. 14(3)
(2018)

32. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory Com-
put. Syst. (ToCS) 63(4), 849–901 (2019). Selected papers from CSR 2017

33. Place, T., Zeitoun, M.: Going higher in first-order quantifier alternation hierarchies
on words. J. ACM 66(2), 12:1–12:65 (2019)

34. Place, T., Zeitoun, M.: On all things star-free. In: Proceedings of the 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019),
pp. 126:1–126:14 (2019)

35. Place, T., Zeitoun, M.: Separation and covering for group based concatenation
hierarchies. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2019), pp. 1–13 (2019)

36. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

37. Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup
Forum 13, 47–75 (1976)

38. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

39. Straubing, H., Thérien, D.: Partially ordered finite monoids and a theorem of I.
Simon. J. Algebra 119(2), 393–399 (1988)

40. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (STOC 1998), pp. 234–240. ACM, New York (1998)

41. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49116-3 3

42. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167
(1972)

https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-49116-3_3
https://doi.org/10.1007/3-540-49116-3_3

Algebraic Structures

Nonstandard Cayley Automatic
Representations for Fundamental Groups

of Torus Bundles over the Circle

Dmitry Berdinsky1,2(B) and Prohrak Kruengthomya1,2

1 Department of Mathematics, Faculty of Science, Mahidol University,
Bangkok, Thailand

berdinsky@gmail.com
2 Centre of Excellence in Mathematics, Commission on Higher Education,

Bangkok, Thailand
prohrakju@gmail.com

Abstract. We construct a new family of Cayley automatic representa-
tions of semidirect products Z

n
�A Z for which none of the projections

of the normal subgroup Z
n onto each of its cyclic components is finite

automaton recognizable. For n = 2 we describe a family of matrices from
GL(2,Z) corresponding to these representations. We are motivated by a
problem of characterization of all possible Cayley automatic representa-
tions of these groups.

Keywords: FA–presentable structure · Cayley automatic
representation · Semidirect product · Pell’s equation

1 Introduction and Preliminaries

Thurston and Epstein showed that a fundamental group of a closed 3–manifold
is automatic if and only if none of its prime factors is a closed manifold modelled
on nilgeometry or solvgeometry [9, Chapter 12]. A fundamental group of a closed
manifold modelled on nilgeometry or solvgeometry has a finite index subgroup iso-
morphic to Z

2
�A Z, where A is unipotent or Anosov, respectively. These groups

are not automatic due to [9, Theorems 8.2.8 and 8.1.3]. To include all fundamen-
tal groups of closed 3–manifolds, the class of automatic groups had been extended
by Bridson and Gilman [5], Baumslag, Shapiro and Short [1]; see also autostack-
able groups proposed by Brittenham, Hermiller and Holt [7]. In this paper we use
the concept of Cayley automatic groups, extending the class of automatic groups,
proposed by Kharlampovich, Khoussainov and Miasnikov [11].

All semidirect products of the form Z
n

�AZ are Cayley automatic [11, Propo-
sition 13.5]. These groups are the fundamental groups of torus bundles over the
circle and they play important role in group theory. Bridson and Gersten studied
the Dehn function for this family groups [6]. In this paper we construct a new
family of Cayley automatic representations for semidirect products Z

n
�A Z.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 115–127, 2020.
https://doi.org/10.1007/978-3-030-40608-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_7

116 D. Berdinsky and P. Kruengthomya

These representations demonstrate unforeseen behaviour violating a basic prop-
erty, to be explained below in this section, known for representations described
in [11, Proposition 10.5]. They also reveal an unexpected connection with Pell’s
equation. The results of this paper are based on the original construction of
FA–presentation for

(
Z
2,+

)
found by Nies and Semukhin [13].

In general, we are interested in the following question: Given a Cayley auto-
matic group, is there any way to characterize all of its Cayley automatic represen-
tations in terms of some numerical characteristics or by any other means? Despite
the generality of the notion of Cayley automatic groups which retains only com-
putational mechanism of automatic groups, it is possible to partly answer this
question for some Cayley automatic groups in terms of a certain numerical char-
acteristic which is intimately related to the Dehn function. We discuss it in more
details in the end of this section. In the following few paragraphs we briefly recall
the notion of Cayley automatic groups and representations, and a standard way
to construct such representations for semidirect products Z

n
�A Z.

Let Σ be a finite alphabet. We denote by Σ� the alpahbet Σ ∪ {�}, where
� /∈ Σ is called a padding symbol. The convolution w1 ⊗ · · · ⊗ wm ∈ Σm

� of
strings w1, . . . , wm ∈ Σ∗ is the string of length max{|w1|, . . . , |wm|} obtained
by placing w1, . . . , wm one under another and adding the padding symbol � at
the end of each string to make their lengths equal. More formally, the kth symbol
of w1 ⊗· · ·⊗wm is (σ1, . . . , σm)�, where σi, i = 1, . . . ,m is the kth symbol of wi

if k � |wi| and � otherwise. The convolution ⊗R of a m–ary relation R ⊆ Σ∗m

is defined as ⊗R = {w1 ⊗ · · · ⊗ wm | (w1, . . . , wm) ∈ R}. The relation R is called
FA–recognizable if ⊗R is recognized by a finite automaton.

Let A = (A;Rm1
1 , . . . , Rm�

� , fk1
1 , . . . , fkr

r) be a structure, where A is the
domain, Rmi

i ⊆ Ami , i = 1, . . . , � is a mi–ary relation over A and f
kj

j : Akj → A,
j = 1, . . . , r is a kj–ary operation on A. Assume that there exist a regu-
lar language L ⊆ Σ∗ and a bijection ψ : L → A such that all relations
ψ−1(Rmi

i) = {(w1, . . . , wmi
) ∈ Σ∗mi | (ψ(w1), . . . , ψ(wmi

)) ∈ Rmi
i }, i = 1, . . . , �

and ψ−1(Graph(fj)) = {(w1, . . . , wkj
, wkj+1) ∈ Σ∗(kj+1) | fj(ψ(w1), . . . , ψ(wkj

))
= ψ(wkj+1)}, j = 1, . . . , r are FA–recognizable. In this case the structure A is
called FA–presentable and the bijection ψ : L → A is called FA–presentation of
A [12]. For a recent survey of the theory of FA–presentable structures we refer
the reader to [16]. A finitely generated group G is called Cayley automatic if the
labelled directed Cayley graph Γ (G,S) is a FA–presentable structure for some
generating set S ⊆ G [11]. Cayley automatic groups form a special class of FA–
presentable structures and they naturally generalize automatic groups retaining
its basic algorithmic properties. We call a FA–presentation ψ : L → G of Γ (G,S)
a Cayley automatic representation of the group G.

We recall that every element of a group Z
n

�A Z, where A ∈ GL(n, Z), is
given as a pair (b, h), where b ∈ Z and h ∈ Z

n. The group multiplication is given
by (b1, h1) · (b2, h2) = (b1 + b2, A

b2h1 + h2). The maps b �→ (b,0) and h �→ (0, h)
give the natural embeddings of Z and Z

n into Z
n

�A Z, respectively, where 0 and
0 denote the identities of the groups Z and Z

n, respectively. Let g0 = (1,0) and

Nonstandard Cayley Automatic Representations for Fundamental Groups 117

gi = (0, ei), where ei = (0, . . . , 0, 1
i
, 0, . . . , 0)t ∈ Z

n. The elements g0, g1, . . . , gn

generate the group Z
n

�A Z. The right multiplication by gi, i = 0, 1, . . . , n is as
follows: for a given g = (b, h) ∈ Z

n
�A Z, gg0 = (b + 1, Ah) and ggi = (b, h + ei).

Let ψ1 : L1 → Z be a Cayley automatic representation of Z and ψ2 : L2 → Z
n

be a Cayley automatic representations of Z
n such that the automorphism of Z

n

given by the matrix A is FA–recognizable. Then, due to [11, Theorem 10.3], one
gets a Cayley automatic representation ψ : L → Z

n
�A Z as follows: L = L1L2

(we may assume that L1 ⊂ Σ1, L2 ⊂ Σ2 and Σ1 ∩ Σ2 = ∅) and for given
u ∈ L1 and v ∈ L2, ψ(uv) = (ψ1(u), ψ2(v)). A standard way to construct
ψ2 : L2 → Z

n is to take a FA–presentation ϕ : L0 → Z of the structure (Z,+),
for example a binary representation, and define L2 as L2 = {w1 ⊗· · ·⊗wn |wi ∈
L0, i = 1, . . . , n} and ψ2 as ψ2(w1 ⊗ · · · ⊗ wn) = (ϕ(w1), . . . , ϕ(wn)) for every
w1, . . . , wn ∈ L0. Clearly, for such a representation ψ2 every automorphism of
Z

n is FA–recognizable. Therefore, ψ1 and ϕ as above give a Cayley automatic
representation of Z

n
�A Z. We call such a representation standard. Every stan-

dard Cayley automatic representation ψ : L → Z
n

�A Z satisfies the following
basic properties:

(a) The language LZn = ψ−1(Zn) of the strings representing elements in the
subgroup Z

n � Z
n

�A Z is regular and the relation RA = {(u, v) ∈ LZn ×
LZn |Aψ(u) = ψ(v)} is FA–recognizable.

(b) For each projection pi : Z
n → Z

n, i = 1, . . . , n, on the ith component
given by pi((z1, . . . , zn)) = (0, . . . , 0, zi, 0, . . . , 0) the relation Pi = {(u, v) ∈
LZn × LZn | piψ(u) = ψ(v)} is FA–recognizable.

In this paper we construct Cayley automatic representations of groups Z
n

�AZ

for which the property (a) holds but the property (b) does not hold – in other
words, these representations are nonstandard.Namely, in Sect. 2we constructCay-
ley automatic representations of Z

n for which every projection pi : Z
n → Z

n,
i = 1, . . . , n is not FA–recognizable while some nontrivial automorphisms A ∈
GL(n, Z) are FA–recognizable. A family of these automorphisms for the case n = 2
is described in Sect. 3. Taking such a representation as ψ2 and an arbitrary Cayley
automatic representation ψ1 : L1 → Z one obtains a Cayley automatic represen-
tation of Z

n
�A Z as described above. Clearly, for this representation the property

(a) holds while the property (b) does not hold. In this paper we primarily focus on
the case n = 2 briefly discussing the case n > 2. Section 4 concludes the paper.

Apart from the importance of semidirect products Z
n

�A Z, let us explain
another reason motivated us to study Cayley automatic representations of this
family of groups violating at least one of the properties (a) or (b). We first briefly
recall some notation and results. For a given f.g. groupG with some finite set of gen-
erators A ⊆ G, we denote by A−1 the set of inverses of the elements of A in G and by
dA the word metric in G with respect to A. We denote by π :

(
A ∪ A−1

)∗ → G the
canonical map sending a word w ∈ (A∪A−1)∗ to the corresponding group element
π(w). For the rest of the section we assume that L ⊆ (A∪A−1)∗. We denote by L�n

the language L�n = {w ∈ L | |w| � n}. For a Cayley automatic representation
ψ : L → G we denote by h the function: h(n) = max{dA(ψ(w), π(w))|w ∈ L�n}.

118 D. Berdinsky and P. Kruengthomya

The function h had been introduced in [3] as a measure of deviation of Cayley
automatic representation ψ from π, i.e., from being automatic in the classical
sense of Thurston. For two nondecreasing functions h : [Q1,+∞) → R

+ and
f : [Q2,+∞) → R

+, where [Q1,+∞), [Q2,+∞) ⊆ N, we say that h � f
if there exist positive integer constants K,M and N such that for all n � N :
h(n) � Kf(Mn). A f.g. group is said to be in Bf if there exists a Cayley auto-
matic representation ψ for which the function h � f . It was shown that the iden-
tity function i(n) = n is the sharp lower bound of the function h (in the sense
of �) for all Cayley automatic representations of the Baumslag–Solitar groups
BS(p, q), 1 � p < q [3, Theorem 11] and the wreath products G
H, if H is virtually
cyclic and G is in the class Bi [2].

We recall that the Heisenberg group H3(Z) is isomorphic to Z
2

�T Z for
some lower triangular matrix T , see Remark 12. The result of [4, Theorem 5.1]
shows that if a Cayley automatic representation of the Heisenberg group ψ :
L → H3(Z) satisfies certain conditions, then the function h is bounded from
below by the exponential function e(n) = exp(n). In particular, for every Cayley
automatic representation ψ : L → H3(Z) satisfying the properties (a) and (b)
the function h has the exponential lower bound: e � h. The lower bounds for
all possible Cayley automatic representations of the Heisenberg group and the
groups Z

2
�A Z, if A ∈ GL(2, Z) is a matrix with two real eigenvalues not

equal to ±1, known to us are given by the functions 3
√

n and i, respectively, see
[4, Corollary 2.4]. However, it is not known whether or not these lower bounds are
sharp. These observations motivated us to seek nonstandard Cayley automatic
representations for a whole family of groups Z

n
�A Z, A ∈ GL(n, Z). While we

construct nonstandard representations for a large family of groups Z
n

�A Z, see
Theorem 8 for the case n = 2, it does not contain nilpotent groups including
the Heisenberg group H3(Z). This leads us to think that the case of nilpotent
groups is special.

2 Nies–Semukhin FA–Presentations of (Zn,+)

Nies and Semukhin constructed a FA–presentation of
(
Z
2,+

)
for which no non-

trivial cyclic subgroup is FA–recognizable [13, § 6]. Let us briefly recall their con-
struction. The group Z

2 is identified with the additive group of the quotient ring
Z[x]/〈p3〉, where p3(x) = x2+x−31. A polynomial anxn+· · ·+a0 ∈ Z[x] is called
reduced if |ai| � 2 for all i = 0, . . . , n. For given f, g ∈ Z[x], it is said that f ∼ g if
p3 divides f −g. In [13, Proposition 6.2] it is then shown that every f(x) ∈ Z[x] is
equivalent to a reduced polynomial f̃(x). Let Σ = {−2,−1, 0, 1, 2}. Each reduced
polynomial anxn + · · · + a0 is represented by a string a0 . . . an over the alphabet
Σ. Two strings u = a0 . . . an and v = b0 . . . bm from Σ∗ are said to be equivalent
(u ∼ v) if anxn+· · ·+a0 ∼ bmxm+· · ·+b0. It is then shown that this equivalence
relation defined on Σ∗ is FA–recognizable. Let llex be the length–lexicographical

1 In [13, Remark 6.1] it is said that one can use a polynomial x2 + x− q for a prime
q � 3.

Nonstandard Cayley Automatic Representations for Fundamental Groups 119

order on Σ∗ with respect to the ordering −2 < −1 < 0 < 1 < 2. A regular domain
for a presentation of Z

2 is defined as Dom = {w ∈ Σ∗ : (∀u <llex w)u �∼ w}.
Then a FA–recognizable relation R(x1, x2, x3) ⊂ Σ∗3 is defined such that for
every pair x1, x2 ∈ Σ∗ there exists a unique x3 ∈ Σ∗ for which (x1, x2, x3) ∈ R
and if (x1, x2, x3) ∈ R, then for the corresponding polynomials f1, f2 and f3:
f1 + f2 ∼ f3. It enables to define a FA–recognizable relation Add(x, y, z) on
Dom as follows: Add = {(x, y, z) : x, y, z ∈ Dom ∧ ∃w(R(x, y, w) ∧ (w ∼ z))}.
Clearly, the structure (Dom,Add) is isomorphic to (Z2,+).

Now we notice that the Nies–Semukhin construction can be generalized for
a given polynomial t(x) = x2 + px − q ∈ Z[x] for which 1 + |p| < |q|. Again, we
identify Z

2 with the additive group of the quotient ring Z[x]/〈t〉. The inequality
1+ |p| < |q| implies that |q| � 2. We say that a polynomial anxn + · · ·+a0 ∈ Z[x]
is reduced if |ai| < |q| for all i = 0, . . . , n and two polynomials f, g ∈ Z[x] are
equivalent f ∼ g if t divides f −g. For a given real r we denote by [r] the integral
part of r: [r] = max{m ∈ Z |m � r} if r � 0 and [r] = min{m ∈ Z |m � r} if
r < 0.

Proposition 1. Every polynomial f(x) ∈ Z[x] is equivalent to a reduced poly-
nomial f̃(x).

Proof. Let f(x) = anxn + · · · + a0 and k0 =
[

a0
q

]
. Since x2 + px ∼ q, f(x) ∼

f1(x) = bnxn + · · · + b0, where b0 = a0 − k0q, b1 = a1 + k0p, b2 = a2 + k0
and bi = ai for i > 2. If |a0| < |q|, then f1(x) = f0(x). Otherwise, we get that
∑n

i=0 |ai| >
∑n

i=0 |bi|. Let k1 =
[

b1
q

]
. Since x3 + px2 ∼ qx, f1(x) ∼ f2(x) =

cnxn + · · · + c0, where c0 = b0, c1 = b1 − k1q, c2 = b2 + k1p, c3 = b3 + k1
and ci = bi for i > 3. If |b1| < |q|, then f2(x) = f1(x). Otherwise, we get that∑n

i=0 |bi| >
∑n

i=0 |ci|. We have: |c0| = |b0| < |q| and |c1| < |q|. If we continue in
this way, the process will terminate after a finite number of iterations producing
a reduced polynomial f̃(x) at the last iteration. ��
Remark 2. It can be seen that if the inequality 1+ |p| < |q| is not satisfied, then
the procedure described in Proposition 1 fails to produce a reduced polynomial
for some input polynomials f(x). For example, let t(x) = x2 + 2x − 3 and
f(x) = 2x + 6. Applying the procedure from Proposition 1 one gets an infinite
sequence of polynomials fi(x) = 2xi+1 + 6xi which never terminates.

Let Σq = {−(|q|−1), . . . , |q|−1}. We represent a reduced polynomial anxn +
· · · + a0 by a string a0 . . . an over the alphabet Σq. Similarly, we say that two
strings a0 . . . an and b0 . . . bm over Σq are equivalent if the polynomials anxn +
· · · + a0 and bmxm + · · · + b0 are equivalent. An algorithm checking whether two
given reduced polynomials f(x) = anxn + · · · + a0 and g(x) = bmxm + · · · + b0
are equivalent is the same, up to minor changes, as it is described by Nies and
Semukhin for the case t(x) = x2 + x − 3, see [13, § 6]. We first check if q divides
a0 − b0; if not, f �∼ g. We remember two carries r0 = pa0−b0

q and r1 = a0−b0
q ,

and then verify whether q divides r0 + a1 − b1; if not, f �∼ g. Otherwise, we

120 D. Berdinsky and P. Kruengthomya

update the carries: r0 → r1 + p r0+a1−b1
q and r1 → r0+a1−b1

q , and then verify
whether q divides r0 + a2 − b2. Proceeding in this way we check if f ∼ g or not.
Initially, |r1| � 1 � |q| − 1 and |r0| � |p| < (|q| − 1)2. Since q divides r0 + ai − bi

at every step of our process unless f �∼ g, we can change the formulas for
updating carries as follows: r0 → r1 +p

[
r0+ai−bi

q

]
and r1 →

[
r0+ai−bi

q

]
. Now, if

|r1| � |q|−1 and |r0| � (|q|−1)2, then
∣
∣
∣
[

r0+ai−bi

q

]∣∣
∣ �

[
(|q|−1)2+2(|q|−1)

|q|
]

= |q|−1

and
∣
∣
∣r1 + p

[
r0+ai−bi

q

]∣∣
∣ � (|q|−1)+|p|

∣
∣
∣
[

r0+ai−bi

q

]∣∣
∣ � (|q|−1)+(|q|−2)(|q|−1) =

(|q|−1)2. This shows that |r1| and |r0| are always bounded by |q|−1 and (|q|−1)2.
This algorithm requires only a finite amount of memory, so the equivalence
relation ∼ is FA–recognizable.

Similarly, one can construct a FA–recognizable relation R(u, v, w) ⊂ Σ∗
q such

that for every pair (u, v) ∈ Σ∗
q there exists a unique w ∈ Σ∗

q for which (u, v, w) ∈
R and if (u, v, w) ∈ R then for the corresponding polynomials fu, fv and fw:
fu+fv ∼ fw. Again, the construction of such a relation R is the same, up to minor
changes, as it is described by Nies and Semukhin for the case t(x) = x2 + x − 3.
Let u = a0 . . . an and v = b0 . . . bm. Then a string w = c0 . . . ck for which
(u, v, w) ∈ R is obtained as follows. Let c0 be an integer such that |c0| < |q| − 1,
c0 has the same sign as a0 + b0 and c0 ≡ a0 + b0 (mod q). We remember two
carries r0 = p

[
a0+b0

q

]
and r1 =

[
a0+b0

q

]
. We put c1 to be an integer such that

|c1| � |q| − 1, c1 has the same sign as r0 + a1 + b1 and c1 ≡ r0 + a1 + b1 (mod q),
and update the carries as r0 → r1 + p

[
r0+a1+b1

q

]
and r1 →

[
r0+a1+b1

q

]
. This

process is continued until the string w is generated. The formulas for updating
carries are r0 → r1 + p

[
r0+ai+bi

q

]
and r1 →

[
r0+ai+bi

q

]
. The proof that |r1| and

|r0| are bounded by (|q| − 1) and (|q| − 1)2, respectively, is the same as in the
paragraph above, so the relation R is FA–recognizable.

Fixing the ordering −(|q|−1) < · · · < (|q|−1) on Σq, the domain Dom and the
relation Add are then defined in exactly the same way as by Nies and Semuhkhin,
see the first paragraph of this section. So, for every pair of integers p and q, for
which 1 + |p| < |q|, we obtain a regular domain Domp,q and a FA–recognizable
relation Addp,q for which (Domp,q,Addp,q) is isomorphic to (Z2,+). For given p
and q satisfying the inequality 1+ |p| < |q|, we denote by ψp,q : Domp,q → Z

2 the
representation of (Z2,+) described above. Let g ∈ Z[x] be some fixed polynomial.
Clearly, if f1 ∼ f2, then f1g ∼ f2g. Therefore, multiplication by g induces
a map from Z[x]/〈t〉 to Z[x]/〈t〉 which sends an equivalence class [f]∼ to the
equivalence class [fg]∼ . So, by Proposition 1, multiplication by g induces a map
ϕg : Domp,q → Domp,q.

Proposition 3. For every representation ψp,q the function ϕg : Domp,q →
Domp,q is FA–recognizable.

Proof. Since the equivalence relation ∼ and Add are FA–recognizable, it is
enough only to show that multiplication by a monomial x is FA–recognizable.

Nonstandard Cayley Automatic Representations for Fundamental Groups 121

It is true because for a string u = a0 . . . an ∈ Domp,q the string ϕx(u) is equiv-
alent to the shifted string 0a0 . . . an. Clearly, such shifting of strings is FA–
recognizable. ��

Nies and Semukhin showed that every nontrivial cyclic subgroup 〈z〉 of Z
2 is

not FA–recognizable for the representation ψ1,3 [13, § 6]. We will show that each
of the two cyclic components of Z

2 is not FA–recognizable for every representa-
tion ψp,q, if gcd(p, q) = 1. Let ξ = [1]∼ , where 1 is the polynomial f(x) = 1; also,
ξ corresponds to the single–letter string 1 ∈ Domp,q: ψp,q(1) = ξ. Let us show
that the cyclic subgroup generated by ξ is not FA–recognizable with respect to
ψp,q, if gcd(p, q) = 1. We will use arguments analogous to the ones in [13, § 6]
with relevant modifications. It is straightforward that [13, Lemma 6.3] claiming
that for given two equivalent reduced polynomials f(x) and g(x), xk|f implies
xk|g, holds valid. It is said that f(x) ∈ Z[x] starts with k zeros in reduced form if
there exists a reduced polynomial g(x) for which f ∼ g and xk|g(x): in this case
the string representing g(x) starts with k zeros. For a given k > 0, the polynomial
qk starts with at least k zeros in reduced form because qk ∼ xk(x + p)k.

Assume now that Lξ = ψ−1
p,q(〈ξ〉) is regular and recognized by a finite automa-

ton with k0 states. The string ψ−1
p,q([q

k0]∼) ∈ Lξ starts with at least k0 zeros, i.e.,
ψ−1

p,q([q
k0]∼) = 0ku for k � k0 and some u ∈ Σ∗

q , which does not have 0 as the
first symbol. By pumping lemma, there exist k1, k2 and 0 < d � k0, for which
k1 + d + k2 = k, such that si = 0k1+di+k2u ∈ Lξ for all i � 0. Since si ∈ Lξ,
we have a sequence of integers ni, i � 0 for which ψp,q(si) = [ni]∼ , so ni starts
with k1 + di + k2 zeros in reduced form. For a given integer n, if it starts with
at least one zero in reduced form, then q |n: it is because n = q� + r for some �
and r ∈ {0, . . . , |q| − 1}, so if r �= 0 then n ∼ x(x + p)� + r starts with no zeros
in reduced form.

Proposition 4. Assume that gcd(p, q) = 1. If n = q� starts with m > 0 zeros
in reduced form, then � starts with m − 1 zeros in reduced form.

Proof. Let f(x) = xi(bjx
j−i + · · · + bi) be a reduced polynomial equivalent to �,

where bi �= 0. We have n = q� ∼ xi+1(x+p)(bjx
j−i+ · · ·+bi). Since gcd(p, q) = 1

and |bi| < |q|, q � | pbi. Therefore, n starts with i + 1 zeros in reduced form, so
i = m − 1. Therefore, � starts with m − 1 zeros in reduced form. ��

Thus, if gcd(p, q) = 1, by Proposition 4, we obtain that qk1+di+k2 |ni, so
ni = qk1+di+k2mi for some nonzero integer mi. Let α and β be the roots of the
polynomial t(x) = x2+px−q. We have αβ = −q, so |αβ| = |q|. Therefore, either
|α| or |β| must be less or equal than

√|q|. So, let us assume that |α| �
√|q|.

For every two equivalent polynomials f ∼ g: f(α) = g(α). Let fi be the reduced
polynomials corresponding to the strings si. If |α| > 1, then |fi(α)| is bounded
from above by (|q| − 1)|u||α||si|−1, where |si| = k1 + di + k2 + |u| is the length
of the string si; it is because there are only at most |u| nonzero coefficients of
the polynomial fi and the absolute value of each of which is less than or equal

122 D. Berdinsky and P. Kruengthomya

to |q| − 1. Therefore, |fi(α)| � C1|α|di, where C1 = (|q| − 1)|u||α|k1+k2+|u|−1. If
|α| � 1, then |fi(α)| � C2, where C2 = (|q| − 1)|u|. In both cases we obtain that

|fi(α)| � C
√|q|di

for some constant C. On the other hand, since fi ∼ ni, fi(α) =
ni = qk1+di+k2mi. Therefore, |fi(α)| = |q|k1+di+k2 |mi| � |q|di. Thus, we obtain

that |q|di � C
√|q|di

for all i � 0, which apparently leads to a contradiction
since |q| > 1. Thus, Lξ is not regular.

Let η = [x]∼, where x is the polynomial f(x) = x; also, η corresponds
to the string 01 ∈ Domp,q: ψp,q(01) = η. Clearly, Z

2 is the direct sum of
its cyclic subgroups 〈ξ〉 and 〈η〉. Let Lη = ψ−1

p,q(〈η〉). We notice that Lξ =
{w ∈ Domp,q |ϕx(w) ∈ Lη}. The inclusion Lξ ⊆ {w ∈ Domp,q |ϕx(w) ∈ Lη}
is straightforward. For the inclusion {w ∈ Domp,q |ϕx(w) ∈ Lη} ⊆ Lξ it is
enough to notice that if ψp,q(w) = [sx + r]∼, then ϕx(w) = [x(sx + r)]∼ =
[s(−px + q) + rx]∼ = [(r − sp)x + sq]∼ which is equal to [kx]∼ for some
k ∈ Z only if sq = 0. The map ϕx : Domp,q → Domp,q is FA–recognizable, by
Proposition 3. So, the regularity of Lη implies the regularity of Lξ. Therefore, Lη

is not regular. Clearly, the fact that Lξ and Lη are not regular implies that the
projections of Z

2 onto its cyclic components 〈ξ〉 and 〈η〉 are not FA–recognizable.
Let us summarize the results we obtained in the following theorem.

Theorem 5. For every pair of integers p and q for which 1 + |p| < |q| the map
ψp,q : Domp,q → Z

2 gives a FA–presentation of (Z2,+). Moreover, if gcd(p, q) =
1, then none of the two cyclic components of Z

2 and the projections onto theses
components is FA–recognizable with respect to ψp,q.

Remark 6. In order to guarantee that all nontrivial cyclic subgroups of Z
2 are

not FA–recognizable with respect to ψp,q, one should additionally require that
the polynomial t(x) = x2 + px − q is irreducible in Z[x]. Let γ = [g]∼ for some
g ∈ Z[x], g �∼ 0, and Lγ = ψ−1

p,q(〈γ〉). We have: Lξ = {w ∈ Domp,q |ϕg(w) ∈ Lγ}.
To prove the inclusion {w ∈ Domp,q |ϕg(w) ∈ Lγ} ⊆ Lξ we notice that if
ψp,q(w) = [sx + r]∼, then ϕg(w) = [g(sx + r)]∼ which is equal to [gk]∼ for some
k ∈ Z iff the polynomial t divides g(sx + r − k). Since t is irreducible and t does
not divide g, then s = 0 and r = k. Therefore, by Proposition 3, if Lγ is regular,
then Lξ is regular. So, Lγ is not regular. Also, if t is irreducible, every nonzero
endomorphism of Z

2 with nontrivial kernel is not FA–recognizable.

Now, let n > 2 and t(x) = xn + pn−1x + · · · + p1x − q be a polynomial
with integers coefficients for which 1 + |pn−1| + · · · + |p1| < |q|. We identify
the group Z

n with the additive group of the ring Z[x]/〈t〉. We denote by p a
tuple p = 〈p1, . . . , pn−1〉. Clearly, one gets a representation ψp,q : Domp,q → Z

n,
in exactly the same way as it is described for the case n = 2. It can be seen
that all arguments presented in this section hold valid up to the following
minor modifications. For an algorithm recognizing the equivalence ∼, one should
use n carries r0, r1, . . . , rn−1 updated as follows: r0 → r1 + p1[r0+ai−bi

q], r1 →
r2 + p2[r0+ai−bi

q], ..., rn−2 → rn−1 + pn−1[r0+ai−bi

q], rn−1 → [r0+ai−bi

q]. It can
be directly verified that r0 � (|q| − 1)2, r1 � (|q| − 1)(1 + |pn−1| + |pn−2| +
· · · + |p2|), . . . , |rn−2| � (|q| − 1)(1 + |pn−1|) and |rn−1| � |q| − 1. So, the algo-
rithm requires only a finite amount of memory. The same remains true for an

Nonstandard Cayley Automatic Representations for Fundamental Groups 123

algorithm recognizing the addition. In Proposition 4 one should change p to p1.
Also, clearly, there is a root α of polynomial t(x) for which |α| � n

√|q|. We call
all presentations ψp,q satisfying the conditions 1 + |pn−1| + · · · + |p1| < |q| and
gcd(p1, q) = 1 Nies–Semukhin FA–presentations. The following theorem gener-
alizes Theorem 5 for the case n > 2.

Theorem 7. For every tuple p = 〈p1, . . . , pn−1〉 and an integer q for which
1+ |pn−1|+ · · ·+ |p1| < |q| the map ψp,q : Domp,q → Z

n gives a FA–presentation
of (Zn,+). If gcd(p1, q) = 1, then none of the cyclic components of Z

n and the
projections onto these components is FA–recognizable with respect to ψp,q.

3 FA–Recognizable Automorphisms of Z
n

In this section until the last paragraph we discuss the case n = 2. By Proposition 3,
for a polynomial g ∈ Z[x], multiplication by g induces a FA–recognizable map
ϕg : Domp,q → Domp,q. Clearly, if f ∼ g, then ϕg = ϕf . Therefore, since every
polynomial from Z[x] is equivalent to a polynomial of degree at most one, we may
assume that g(x) = ax + b for a, b ∈ Z. Let h(x) = h1x + h2, for h1, h2 ∈ Z.
The equivalence class [h]∼ is identified with (h1, h2) ∈ Z

2. We have: g(x)h(x) =
(ax + b)(h1x + h2) = ah1x

2 + (ah2 + bh1)x + bh2 ∼ ah1(−px + q) + (ah2 +
bh1)x + bh2 = ((b − ap)h1 + ah2)x + aqh1 + bh2. Clearly, ξ = [1]∼ and η = [x]∼,
already defined in Section 2, generate the group Z

2. We denote by H1 and H2 the
cyclic subgroups of Z

2 generated by η and ξ, respectively. Thus, multiplication by

g induces an endomorphism of Z
2 = H1 ⊕H2 given by a matrix A =

(
b − ap a

aq b

)
.

The condition that A ∈ GL(2, Z) yields the equations b2 − abp − a2q = ±1. The
latter is equivalent to (2b − ap)2 − (p2 + 4q)a2 = ±4. Let c = 2b − ap. Then we
have:

A =
(

c−ap
2 a
aq c+ap

2

)
, (1)

where p, q, a and c satisfy one of the following two equations:

c2 − (p2 + 4q)a2 = ±4. (2)

For given p and q, the trivial solutions of (1), a = 0 and c = ±2, correspond
to the matrices A = ±I. We will assume that a �= 0. Let n = p2 + 4q. Clearly,
nontrivial solutions of (2) exist only if n � −4. The following theorem can be
verified by direct calculations.

Theorem 8. For a given n � −4, the matrices A defined by (1) together with
the coefficients p and q for which p, q, a and c satisfy: 1+ |p| < |q|, gcd(p, q) = 1,
n = p2 + 4q, a �= 0 and the equation c2 − na2 = ±4 are as follows:

124 D. Berdinsky and P. Kruengthomya

– For n = −4, A = ±
(−r 1

−(r2 + 1) r

)
, p = 2r and q = −(r2 + 1), where

r ∈ (−∞,−4] ∪ [4,+∞) and r ≡ 0 (mod 2).

– For n = −3, A = ±
(−r 1

−(r2 + r + 1) (r + 1)

)
or A = ±

(−(r + 1) 1
−(r2 + r + 1) r

)
,

p = 2r + 1 and q = −(r2 + r + 1), where r ∈ (−∞,−3] ∪ [2,+∞) and either
r ≡ 0 (mod 3) or r ≡ 2 (mod 3).

– For n = 0, n = −1 and n = −2, there exist no nontrivial solutions.
– For n = m2 > 0, nontrivial solutions exist only if n = 1 or n = 4. For

n = 1, A = ±
(−(2r + 1) 2

−2(r2 + r) (2r + 1)

)
, p = 2r + 1 and q = −(r2 + r),

where r ∈ (−∞,−4] ∪ [3,+∞). For n = 4, A = ±
(−r 1

1 − r2 r

)
, p = 2r

and q = 1 − r2, where r ∈ (−∞,−4] ∪ [4,+∞) and r ≡ 0 (mod 2).
– For a positive nonsquare integer n, the equality n = p2+4q implies that either

n ≡ 0 (mod 4) or n ≡ 1 (mod 4). For these two cases we have:

• For n = 4s, A = ±
(

x − ra a
a(s − r2) x + ra

)
or A = ±

(−x − ra a
a(s − r2) −x + ra

)
,

p = 2r and q = s − r2, where x > 0 and a > 0 give a solution of Pell’s
equation or negative Pell’s equation:

x2 − sa2 = ±1,

and r either satisfies the inequality |r| <
√

s − 1 or the inequality |r| >√
s + 2 + 1. Also, it is required that gcd(r, s) = 1 and r �≡ s (mod 2).

• For n ≡ 1 (mod 4), A = ±
(

c−pa
2 a

an−p2

4
c+pa

2

)

or A = ±
(−c−pa

2 a

an−p2

4
−c+pa

2

)

,

p ≡ 1 (mod 2) and q = n−p2

4 , where c > 0 and a > 0 give a solution of
one of the following Pell–type equations:

c2 − na2 = ±4,

and p either satisfies the inequality |p| <
√

n − 2 or the inequality |p| >√
n + 8 + 2. Also, it is required that gcd(p, n) = 1.

Remark 9. We recall that for a nonsquare integer n > 0 Pell’s equation
x2−ny2 = 1 has infinitely many solutions which are recursively generated, using
Brahmagupta’s identity: (x2

1 − ny2
1)(x

2
2 − ny2

2) = (x1x2 + ny1y2)2 − n(x1y2 +
y1x2)2, from the fundamental solution – the one for which positive x and y are
minimal. The fundamental solution can be found, for example, using continued
fraction of

√
n. All solutions of negative Pell’s equation x2 − ny2 = −1 are also

generated from its fundamental solution. However, solutions of negative Pell’s
equation do not always exist. The first 54 numbers for which solutions exist are
given by the sequence A031396 in OEIS [15]. Similarly, for the Pell–type equa-
tions c2 − na2 = 4 and c2 − na2 = −4, all solutions are recursively generated
from the fundamental solutions. For the latter equation solutions exist if and

Nonstandard Cayley Automatic Representations for Fundamental Groups 125

only if they exist for the equation x2 − ny2 = −1. Furthermore, by Cayley’s
theorem, if the fundamental solution (u, v) of the equation c2 − na2 = 4 is odd
(i.e., both u and v are odd), then

(
(u2 − 3)u/2, (u2 − 1)v/2

)
gives the funda-

mental solution of the equation x2 − ny2 = 1. Similarly, the odd fundamental
solution (u, v) of the equation c2 − na2 = −4 leads to the fundamental solution(
(u2 + 3)u)/2, ((u2 + 1)v)/2

)
of the equation x2 − ny2 = −1 [14]. If the funda-

mental solution is even then it is obtained from the fundamental solution of the
corresponding Pell’s equation by multiplication by 2.

Remark 10. For a fixed pair p and q, the matrices (1) with coefficients satisfying
(2) form a submonoid Sp,q in GL(2, Z). Let P be the set of all pairs (p, q) for
which 1 + |p| < |q|, gcd(p, q) = 1 and n = p2 + 4q is equal to either −4,−3, 1, 4
or a nonsquare positive integer. Then a set of all matrices given by Theorem 8 is
the union S =

⋃
(p,q)∈P Sp,q. For different pairs (p, q)(p′, q′) ∈ P we clearly have

Sp,q ∩ Sp′,q′ = {±I}. Moreover, it can be verified that each of these submonoids
Sp,q is isomorphic to one of the groups: Z4, Z6, Z2 × Z2 and Z × Z2. Namely,
from Theorem 8 we obtain the following. For n = −4, n = −3 and n = 1, 4, Sp,q

is a finite group isomorphic to Z4, Z6 and Z2 × Z2, respectively. For a positive
nonsquare integer n, Sp,q

∼= Z × Z2.

Remark 11. Let (p, q) ∈ P such that the polynomial t(x) = x2 + px − q is
irreducible in Z[x]. One can easily construct an infinite family of not FA–
recognizable automorphisms of Z

2 with respect to the representation ψp,q. Let

A =
(

a11 a12

a21 a22

)
∈ Sp,q. For a matrix A′ = A + D, where D =

(
k� kn
m� mn

)
is a

nonzero singular matrix, detA′ = det A iff m(a11n + a12�) + k(a21n + a22�) = 0.
The latter equation admits infinitely many solutions for k, l,m and n. Since A is
FA–recognizable with respect to ψp,q, assuming that A′ is FA–recognizable with
respect to ψp,q, we get that D = A′ −A must be FA–recognizable with respect to
ψp,q. But D is not FA–recognizable (see Remark 6), so A′ is not FA–recognizable.

Remark 12. There exist automorphisms of Z
2 which are not FA–recognizable

with respect to every representation ψp,q, (p, q) ∈ P. For example, all automor-

phisms of Z
2 given by the matrices Tn =

(
1 0
n 1

)
for nonzero integer n are not

FA–recognizable. This follows from the fact that I is FA–recognizable but the
endomorphisms Tn − I for n �= 0 are not FA–recognizable. In particular, none of
the representations ψp,q, (p, q) ∈ P can be used to construct a Cayley automatic
representation for the Heisenberg group H3(Z) ∼= Z

2
�T1 Z.

Remark 13. We note that for two conjugate matrices A and B = TAT−1

in GL(2, Z) the groups Z
2

�A Z and Z
2

�B Z are isomorphic. An algorithm
for solving conjugacy problem in GL(2, Z) is described in [8]; see also an
algorithm for solving conjugacy problem in SL(2, Z) using continued fractions
[10, § 7.2]. It can be verified that for the cases n = −4,−3, 1, 4 each of the matri-
ces from Theorem 8 is conjugate to one of the following matrices in GL(2, Z):

126 D. Berdinsky and P. Kruengthomya

(
0 −1
1 0

)
,

(
1 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
1 0
0 −1

)
and

(
0 1
1 0

)
. If n is a positive non-

square integer, every matrix from Theorem 8, which is in SL(2, Z), is Anosov.
Moreover, in this case, for a pair (p, q) ∈ P satisfying n = p2 + 4q the matri-
ces from Sp,q generate infinitely many conjugacy classes in GL(2, Z). The latter
immediately follows from the observation that for different values of c, which is
the trace of the matrix (1), we have different conjugacy classes.

Similarly to the case n = 2, one gets a family of FA–recognizable automor-
phisms A ∈ GL(n, Z) with respect to the Nies–Semukhin FA–presentations ψp,q

of Z
n. We postpone a careful analysis of this family for future work.

4 Conclusion and Open Questions

In this paper we generalize the Nies–Semukhin FA–presentation of
(
Z
2,+

)
, orig-

inally constructed for the polynomial x2 + x − 3, to a polynomial x2 + px − q
such that 1 + |p| < |q| and gcd(p, q) = 1. We also show how this construction
is generalized for (Zn,+) , n > 2. Based on this, we construct a new family
of Cayley automatic representations of groups Z

n
�A Z, A ∈ GL(n, Z) that

violate the basic property known for standard representations – projections
pi : Z

n → Z
n, i = 1, . . . , n are FA–recognizable, i.e., the property (b) in Sect. 1.

For n = 2 we describe the set of matrices S ⊆ GL(2, Z) corresponding to this
family of nonstandard representations and show its connection with Pell’s equa-
tion. Let us pose the following questions that are apparent from the results of
this paper.

– Is there a nonstandard representation, e.g., preserving the property (a) and
violating the property (b), for the Heisenberg group H3(Z)?

– What is the set of conjugacy classes of the set of matrices S in GL(2, Z)?

References

1. Baumslag, G., Shapiro, M., Short, H.: Parallel poly-pushdown groups. J. Pure
Appl. Algebra 140, 209–227 (1999)

2. Berdinsky, D., Elder, M., Taback, J.: Separating automatic from Cayley automatic
groups, in preparation

3. Berdinsky, D., Trakuldit, P.: Measuring closeness between Cayley automatic groups
and automatic groups. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA
2018. LNCS, vol. 10792, pp. 245–257. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77313-1 19

4. Berdinsky, D., Trakuldit, P.: Towards quantitative classification of Cayley auto-
matic groups. East-West J. Math. 20(2), 107–124 (2018)

5. Bridson, M.R., Gilman, R.H.: Formal language theory and the geometry of 3-
manifolds. Commentarii Mathematici Helvetici 71(1), 525–555 (1996)

6. Bridson, M., Gersten, S.: The optimal isoperimetric inequality for torus bundles
over the circle. Q. J. Math. 47(1), 1–23 (1996)

https://doi.org/10.1007/978-3-319-77313-1_19
https://doi.org/10.1007/978-3-319-77313-1_19

Nonstandard Cayley Automatic Representations for Fundamental Groups 127

7. Brittenham, M., Hermiller, S., Holt, D.: Algorithms and topology of Cayley graphs
for groups. J. Algebra 415, 112–136 (2014)

8. Campbell, J.T., Trouy, E.C.: When are two elements of GL(2,Z) similar? Linear
Algebra Its Appl. 157, 175–184 (1991)

9. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones and Barlett Publishers, Boston
(1992)

10. Karpenkov, O.: Geometry of Continued Fractions. Springer, Heidelberg (2013)
11. Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures

to automatic groups. Groups Geom. Dyn. 8(1), 157–198 (2014)
12. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,

D. (ed.) Logic and Computational Complexity. Lecture Notes in Computer Science,
vol. 960, pp. 367–392. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60178-3 93

13. Nies, A., Semukhin, P.: Finite automata presentable Abelian groups. Ann. Pure
Appl. Logic 161(3), 458–467 (2009)

14. Piezas III, T.: A collection of algebraic identities. https://sites.google.com/site/
tpiezas/008

15. Sloane, N.J.A.: On-Line Encyclopedia of Integer Sequences. https://oeis.org/
A031396

16. Stephan, F.: Automatic structures—recent results and open questions. J. Phys.:
Conf. Ser. 622, 012013 (2015)

https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/3-540-60178-3_93
https://sites.google.com/site/tpiezas/008
https://sites.google.com/site/tpiezas/008
https://oeis.org/A031396
https://oeis.org/A031396

〈R,+, <, 1〉 Is Decidable in 〈R,+, <,Z〉

Alexis Bès1(B) and Christian Choffrut2

1 Université Paris Est Creteil, LACL 94000, Creteil, France
bes@u-pec.fr

2 IRIF, CNRS and Université Paris 7 Denis Diderot, Paris, France

Abstract. We show that it is decidable whether or not a relation on
the reals definable in the structure 〈R,+, <,Z〉 can be defined in the
structure 〈R,+, <, 1〉. This result is achieved by obtaining a topolog-
ical characterization of 〈R,+, <, 1〉-definable relations in the family of
〈R,+, <,Z〉-definable relations and then by following Muchnik’s app-
roach of showing that this characterization can be expressed in the logic
of 〈R,+, <, 1〉.

1 Introduction

Consider the structure 〈R,+, <, 1〉 of the additive ordered group of reals along
with the constant 1. It is well-known that the subgroup Z of integers is not first-
order-definable. Add the predicate x ∈ Z resulting in the structure 〈R,+, <,Z〉.
Our main result shows that given a 〈R,+, <,Z〉-definable relation it is decidable
whether or not it is 〈R,+, <, 1〉-definable.

The structure 〈R,+, <,Z〉 is a privileged area of application of algorithmic
verification of properties of reactive and hybrid systems, where logical formalisms
involving reals and arithmetic naturally appear, see e.g [1,4,13]. It admits quan-
tifier elimination and is decidable as proved independently by Miller [16] and
Weisfpfenning [20]. The latter’s proof uses reduction to the theories of 〈Z,+, <〉
and 〈R,+, <, 1〉.

There are many ways to come across the structure 〈R,+, <,Z〉, which high-
lights its significance. One approach is through automata. Cobham considers a
fixed base r and represents integers as finite strings of r digits. A subset X of
integers is r−recognizable if there exists a finite automaton accepting precisely
the representations in base r of its elements. Cobham’s theorem says that if
X is r- and s-recognizable for two multiplicatively independent values r and s
(i.e., for all i, j > 0 it holds ri �= sj) then X is definable in Presburger arith-
metic, i.e., in 〈N,+〉 [11,18]. Conversely, each Presburger-definable subset of N
is r-recognizable for every r. This result was extended to integer relations of
arbitrary arity by Semënov [19].

Consider now recognizability of sets of reals. As early as in 1962 Büchi inter-
prets subsets of integers as characteric functions of reals in their binary represen-
tations and shows the decidability of a structure which is essentially an extension
of 〈R,+, <,Z〉, namely 〈R+, <, P,N〉 where P if the set of positive powers of 2
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 128–140, 2020.
https://doi.org/10.1007/978-3-030-40608-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_8

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 129

and N the set of natural numbers [9, Thm 4]. Going one step further Boigelot
et al. [7] consider reals as infinite strings of digits and use Muller automata to
speak of r-recognizable subsets and more generally of r-recognizable relations of
reals. In the papers [3,5,6] the equivalence was proved between (1) 〈R,+, <,Z〉-
definability, (2) r- and s-recognizability where the two bases have distinct primes
in their factorization [6, Thm 5] and (3) r- and s-weakly recognizability for two
independently multiplicative bases, [6, Thm 6] (a relation is r-weakly recogniz-
able if it is recognized by some deterministic Muller automaton in which all
states in the same strongly connected component are either final or nonfinal).
Consequently, as far as reals are concerned, definability in 〈R,+, <,Z〉 compared
to recognizability or weak recognizability by automata on infinite strings can be
seen as the analog of Presburger arithmetic for integers compared to recogniz-
ability by automata on finite strings.

A natural issue is to find effective characterizations of subclasses of r−reco-
gnizable relations. In the case of relations over integers, Muchnik proved that
for every base r ≥ 2 and arity k ≥ 1, it is decidable whether a r-recognizable
relation X ⊆ N

k is Presburger-definable [17] (see a different approach in [14]
which provides a polynomial time algorithm). For relations over reals, up to
our knowledge, the only known result is due to Milchior who proved that it
is decidable (in linear time) whether a weakly r−recognizable subset of R is
definable in 〈R,+, <, 1〉 [15]. Our result provides an effective characterization of
〈R,+, <, 1〉-definable relations within 〈R,+, <,Z〉-definable relations. Our app-
roach is inspired by Muchnik’s one, which consists of giving a combinatorical
characterization of 〈N,+〉-definable relations that can be expressed in 〈N,+〉
itself.

Now we give a short outline of our paper. Section 2 gathers all the basic
on the two specific structures 〈R,+, <,Z〉 and 〈R,+, <, 1〉, taking advantage
of the existence of quantifier elimination which allows us to work with simpler
formulas. Section 3 introduces topological notions. In particular we say that the
neighborhood of a point x ∈ R

n relative to a relation X ⊆ R
n has strata if there

exists a direction such that the intersection of all sufficiently small neighborhoods
around x with X is the trace of a union of lines parallel to the given direction.
This reflects the fact that the relations we work with are defined by finite unions
of regions of the spaces delimited by hyperplanes of arbitrary dimension. In
Sect. 5 we show that when X is 〈R,+, <, 1〉-definable all points (except finitely
many which we call singular) have at least one direction which is a stratum. In
Sect. 6 we give a necessary and sufficient condition for a 〈R,+, <,Z〉-definable
relation to be 〈R,+, <, 1〉-definable, namely (1) it has finitely many singular
points and (2) all intersections of X with arbitrary hyperplanes parallel to n− 1
axes and having rational components on the remaining axis are 〈R,+, <, 1〉-
definable. Then we show that these properties are expressible in 〈R,+, <, 1,X〉.

2 Preliminaries

Throughout this work we assume the vector space Rn is provided with the metric
L∞ (i.e., |x| = max1≤i≤n |xi|). The open ball centered at x ∈ R

n and of radius

130 A. Bès and C. Choffrut

r > 0 is denoted by B(x, r). Given x, y ∈ R
n we denote by [x, y] (resp. (x, y)) the

closed segment (resp. open segment) with extremities x, y. We use also notations
such as [x, y) or (x, y] for half-open segments.

Let us specify our logical conventions and notations. We work within first-
order predicate calculus with equality. We confuse formal symbols and their
interpretations, except in Sect. 6.2 where the distinction is needed. We are mainly
concerned with the structures 〈R,+, <, 1〉 and 〈R,+, <,Z〉. In the latter struc-
ture, Z should be understood as a unary predicate which is satisfied only by
elements of Z - in other words, we deal only with one-sorted structures. Given a
structure M with domain D and X ⊆ Dn, we say that X is definable in M, or
M-definable, if there exists a formula ϕ(x1, . . . , xn) in the signature of M such
that ϕ(a1, . . . , an) holds in M if and only if (a1, . . . , an) ∈ X.

The 〈R,+, <, 1〉-theory admits quantifier elimination in the following way,
which can be interpreted geometrically as saying that a 〈R,+, <, 1〉-definable
relation is a finite union of closed and open polyhedra.

Theorem 1 [12, Thm 1]. Every formula in 〈R,+, <, 1〉 is equivalent to a Boo-
lean combination of inequalities between linear combinations of variables with
coefficients in Z (or, equivalently, in Q).

In particular in the unary case, the definable subsets are finite unions of
intervals whose endpoints are rational numbers, which shows that Z is not
〈R,+, <, 1〉-definable.

In the larger structure 〈R,+, <,Z〉 it is possible to separate the integer
(superscript ‘I’) and fractional (superscript ‘F ’) parts of the reals as follows.

Theorem 2 [8],[6, p. 7]. Let X ⊆ R
n be definable in 〈R,+, <,Z〉. Then there

exists a unique finite union

X =
K⋃

k=1

(X(I)
k + X

(F)
k) (1)

where

– the relations X
(I)
k are pairwise disjoint subsets of Z

n and are 〈Z,+, <〉-
definable

– the relations X
(F)
k are distinct subsets of [0, 1)n and are 〈R,+, <, 1〉-definable

There is again a geometric interpretation of 〈R,+, <,Z〉-definable relations
as a regular (in a precise technical way) tiling of the space by a finite number
of tiles which are themselves finite unions of polyhedra. As a consequence, the
restriction of a 〈R,+, <,Z〉-definable relation to a bounded subset is 〈R,+, <, 1〉-
definable as stated in the following lemma.

Lemma 1. For every 〈R,+, <,Z〉-definable relation X ⊆ R
n, its restriction to

a bounded domain [a1, b1]×· · ·× [an, bn] where the ai’s and the bi’s are rationals,
is 〈R,+, <, 1〉-definable.

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 131

By considering the restriction of the 〈R,+, <,Z〉-relation to a ball containing
all possible tiles with their closest neighbors, we get that the neighborhoods of
〈R,+, <,Z〉- and 〈R,+, <, 1〉-definable relations are indistinguishable.

Lemma 2. For every 〈R,+, <,Z〉-definable relation X ⊆ R
n there exists a

〈R,+, <, 1〉-definable relation Y ⊆ R
n such that for all x ∈ R

n there exists
y ∈ R

n and a real r > 0 such that the translation u �→ u + y − x is a one-to-one
mapping between B(x, r) ∩ X and B(y, r) ∩ Y .

3 Strata

The aim is to decide, given n ≥ 1 and a 〈R,+, <,Z〉-definable relation X ⊆ R
n,

whether X is 〈R,+, <, 1〉-definable. Though the relations defined in the two
structures have very specific properties we define properties that make sense
in a setting as general as possible. The following clearly defines an equivalence
relation.

Definition 1. Given x, y ∈ R
n we write x ∼

X
y or simply x ∼ y when X is

understood, if there exists a real r > 0 such that the translation w �→ w + y − x
is a one-to-one mapping from B(x, r) ∩ X onto B(y, r) ∩ X.

Example 1. Consider a closed subset of the plane delimited by a square. There
are 10 equivalence classes: the set of points interior to the square, the set of
points interior to its complement, the four vertices and the four open edges.

Definition 2. 1. Given a non-zero vector v ∈ R
n and a point y ∈ R

n we denote
by Lv(y) the line passing through y in the direction v. More generally, if
X ⊆ R

n we denote by Lv(X) the set
⋃

x∈X Lv(x).
2. A non-zero vector v ∈ R

n is an X-stratum at x (or simply a stratum when
X is understood) if there exists a real r > 0 such that

B(x, r) ∩ X = B(x, r) ∩ Lv(X) (2)

This can be seen as saying that inside the ball B(x, r), the relation X is a
union of lines parallel to v.

3. The set of X-strata at x is denoted by StrX(x), or simply Str(x).

Proposition 1. For all X ⊆ R
n and x ∈ R

n the set Str(x) is either empty or a
(vector) subspace of Rn.

Definition 3. The dimension dim(x) of a point x ∈ R
n is the dimension of the

subspace Str(x) if Str(x) is nonempty or 0 otherwise.

Definition 4. Given a relation X ⊆ R
n, a point x ∈ R

n is X-singular, or
simply singular, if Str(x) is empty, otherwise it is nonsingular.

132 A. Bès and C. Choffrut

Note that non-〈R,+, <,Z〉-definable relations may have no singular points:
consider in the plane the collection of vertical lines at abscissa 1

n for all positive
integers n. In this case any vertical vector is a stratum.

Now it can be shown that all strata at x can be defined by a common value
r in expression (2).

Proposition 2. If Str(x) �= ∅ then there exists a real r > 0 such that for every
v ∈ Str(x) we have

B(x, r) ∩ X = B(x, r) ∩ Lv(X).

Definition 5. A safe radius (for x) is a real r > 0 satisfying the condition of
Proposition 2. Clearly if r is safe then so are all 0 < s ≤ r. By convention every
real is a safe radius if Str(x) = ∅.
Example 2 (Example 1 continued). For an element x of the interior of the square
or the interior of its complement, let r be the (minimal) distance from x to the
edges of the square. Then r is safe for x. If x is a vertex then Str(x) is empty
and every r > 0 is safe for x. In all other cases r is the minimal distance of x to
a vertex.

Lemma 3. If x ∼ y then Str(x) = Str(y).

The converse of Lemma 3 is false in general. Indeed consider e.g. X = {(x, y) |
y ≤ 0} ∪ {(x, y) | y = 1} in R

2. The points (0, 0) and (0, 1) have the same
subspace of strata, namely that generated by (1, 0), but x �∼ y.

Now we combine the notions of strata and of safe radius.

Lemma 4. Let X ⊆ R
n, x ∈ R

n and r be a safe radius for x. Then for all
y ∈ B(x, r) we have Str(x) ⊆ Str(y).

Example 3 (Example 1 continued). Consider a point x on an (open) edge of the
square and a safe radius r. For every point y in B(x, r) which is not on the edge
we have Str(x) ⊂ Str(y) = R

2. For all other points we have Str(x) = Str(y).

We relativize the notion of singularity and strata to an affine subspace P ⊆
R

n. The next definition should come as no surprise.

Definition 6. Given an affine subspace P ⊆ R
n, a subset X ⊆ P and a point

x ∈ P , we say that a vector v parallel to P is an (X,P)-stratum for the point x
if for all sufficiently small r > 0 it holds

P ∩ X ∩ B(x, r) = P ∩ Lv(X) ∩ B(x, r)

A point x ∈ P is (X,P)-singular if it has no (X,P)-stratum. For simplicity
when P is the space R

n we will still stick to the previous terminology and speak
of X-strata and X-singular points.

Singularity and nonsingularity do not go through restriction to affine subpaces.

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 133

Example 4. In the real plane, let X = {(x, y) | y < 0} and P be the line x = 0.
Then the origin is not X−singular but it is (X ∩ P, P)−singular. All other
elements of P admit (0, 1) as an (X ∩ P, P)−stratum thus they are not (X ∩
P, P)−singular. The opposite situation may occur. In the real plane, let X =
{(x, y) | y < 0} ∪ P where P = {(x, y) | x = 0}. Then the origin is X−singular
but it is not (X ∩ P, P)−singular.

4 Local Properties

4.1 Local Neighborhoods

In this section we recall that if X ⊆ R
n is 〈R,+, <, 1〉-definable then the equiva-

lence relation ∼ (introduced in Definition 1) has finite index. This extends easily
to the case where X is 〈R,+, <,Z〉-definable.

We modify the usual notion of cones so that it suits better our purposes.

Definition 7. A cone is an intersection of finitely many halfspaces defined by a
condition of the form u(x) < 0 or u(x) ≤ 0 where u is a linear expression having
rational coefficients. The origin of the space is thus an apex of the cone.

In particular a point, the empty set and the whole space are specific cones in
our sense (on the real line they can be described respectively by x ≤ 0∧−x ≤ 0,
x < 0 ∧ −x < 0 and x ≤ 0 ∨ −x ≤ 0). By convention, the origin is an apex of
the empty set.

By paraphrasing [2, Thm 1] where “face” means “∼-equivalence class” in our
terminology we have.

Proposition 3. Consider an 〈R,+, <, 1〉-definable relation X. There exists a
finite collection Θ of 〈R,+, <, 1〉-formulas defining finite unions of cones such
that for all ξ ∈ R

n there exist some θ in Θ and some real s > 0 such that for all
t ≤ s we have

θ(t) ∧ |t| < s ↔ φ(ξ + t) ∧ |t| < s (3)

Corollary 1. Let X ⊆ R
n be 〈R,+, <, 1〉-definable.

1. The equivalence relation ∼ has finite index.
2. The set Str(x) is finite when x runs over R

n.
3. There exists a fixed finite collection C of cones (in the sense of Definition 7)

such that for each ∼-class E there exists a subset C′ ⊆ C such that for every
x ∈ E there exists r > 0 such that

(x + t ∈ X) ∧ |t| < r ↔ (
t ∈

⋃

C∈C′
C

) ∧ |t| < r

Because of Lemma 2 we have

Corollary 2. The statements of Corollary 1 extend to the case where X is
〈R,+, <,Z〉-definable.

134 A. Bès and C. Choffrut

Combining Corollaries 1 and 2 allows us to specify properties of singular
points for 〈R,+, <, 1〉- and 〈R,+, <,Z〉-definable relations.

Proposition 4. Let X ⊆ R
n. If X is 〈R,+, <, 1〉-definable then it has finitely

many singular points and their components are rational numbers. If X is
〈R,+, <,Z〉-definable then it has a countable number of singular points and their
components are rational numbers.

4.2 Application: Expressing the Singularity of a Point in a
〈R,+, <,Z〉-Definable Relation

The singularity of a point x is defined as the property that no intersection of X
with a ball centered at x is a union of lines parallel with a given direction. This
property is not directly expressible within 〈R,+, <,Z〉 since the natural way
would be to use multiplication on reals, which is not 〈R,+, <,Z〉-definable. In
order to be able to express the property, we give an alternative characterization
of singularity which relies on the assumption that X is 〈R,+, <,Z〉-definable.

Lemma 5. Given an 〈R,+, <,Z〉-definable relation X ⊆ R
n and x ∈ R

n the
following two conditions are equivalent:

1. x is singular.
2. for all r > 0, there exists s > 0 such that for all vectors v of norm less than s,

there exist two points y, z ∈ B(x, r) such that y = z + v and y ∈ X ⇔ z �∈ X.

Observe that when X is not 〈R,+, <,Z〉-definable, then the two assertions
are no longer equivalent. E.g., Q has only singular points but condition 2 holds
for no point in R.

5 Relations Between Neighborhoods

We illustrate the purpose of this section with a very simple example. We start
with a cube sitting in the horizontal plane with only one face visible. The rules
of the game is that we are given a finite collection of vectors such that for
all 6 faces and all 12 edges it is possible to choose vectors that generate the
vectorial subspace of the smallest affine subspace in which they live. Let the
point at the center of the upper face move towards the observer (assuming that
this direction belongs to the initial collection). It will eventually hit the upper
edge of the visible face. Now let the point move to the left along the edge (this
direction necessarily exists because of the assumption on the collection). The
point will hit the upper left vertex. Consequently, in the trajectory the point
visits three different ∼-classes: that of the points on the open upper face, that of
the points on the open edge and that of the upper left vertex. Here we investigate
the adjacency of such equivalence classes having decreasing dimensions. Observe
that another finite collection of vectors may have moved the point from the
center of the upper face directly to the upper left vertex.

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 135

Since two ∼-equivalent points either have no stratum or the same subspace
of strata, given a ∼-class E it makes sense to denote by Str(E) the empty set
in the first case and the common subspace of all points in E in the latter case.
Similarly, dim(E) is the common dimension of the points in E.

5.1 Compatibility

The above explanation should help the reader understand the following definition
by considering the backwards trajectory: the point passes from an ∼-equivalence
class of low dimension into an ∼-equivalence class of higher dimension along a
direction that is proper to this latter class. This leads to the notion of compati-
bility. For technical reasons we allow a class to be compatible with itself.

Definition 8. Let E be a nonsingular ∼-class and let v be one of its strata.
Given a ∼-class F , a point y ∈ F is v−compatible with E if there exists ε > 0
such that for all 0 < α ≤ ε we have y + αv ∈ E.

A ∼-class F is v-compatible with E if there exists a point y ∈ F which is
v-compatible with E.

Lemma 6. Given a ∼-class F and a vector v ∈ R
n there exists at most one

∼-class E such that F is v-compatible with E. If F is v-compatible with E, all
elements of F are v-compatible with E.

Observe that for any nonsingular ∼-class E and one of its strata v there
always exists a ∼-class v-compatible with E, namely E itself, but also that
conversely there might be different classes v-compatible with E.

Example 5. Let X be the union of the two axes of the 2-dimensional plane and
v = (1, 1). The different classes are: the complement of X, the origin {0} which
is a singular point, the horizontal axis deprived of the origin, and the vertical
axis deprived of the origin. The two latter ∼-classes are both v−compatible with
the class R

2 \ X.

5.2 Intersection of a Line and Equivalence Classes

In this section we describe the intersection of a ∼-class E with a line parallel to
some v ∈ Str(E).

With the above example of the cube, a line passing through a point x on
the upper face along any of the directions of Str(x) of dimension 2 intersects an
open edge or a vertex at point y. In the former case dim(y) = 1 and in the latter
dim(y) = 0, and in both cases Str(y) ⊂ Str(x).

Lemma 7. Let X ⊆ R
n, F,G be two ∼-classes, and v ∈ Str(F). Let y be an

element of G which is adherent to Ly(v) ∩ F . Then Str(G) ⊆ Str(F).
If F,G are different, then Str(G) ⊆ Str(F) \ {v} and therefore dim(G) <

dim(F).

136 A. Bès and C. Choffrut

With the above example of the cube, every point x of a face (which is an
open subset on the delimiting affine space supporting the face) is interior to
some open segment passing through x, parallel to any direction of the subspace
Str(x) and included in the face. The same observation holds for a point on an
open edge of the cube.

Lemma 8. Let X ⊆ R
n, x ∈ R

n a nonsingular point and v ∈ Str(x). There
exist y, z ∈ Lv(x) such that x ∈ (y, z) and every element w of (y, z) satisfies
w ∼ x.

Consequently, via Lemmas 7 and 8 we get the following.

Corollary 3. Let X ⊆ R
n, x ∈ R

n, E its ∼-class and let v ∈ Str(x). The set
Lv(x) ∩ E is a union of disjoint open segments (possibly infinite in one or two
directions) of Lv(x), i.e., of the form (y − αv, y + βv) with 0 < α, β ≤ ∞ and
y ∈ E.

If α < ∞ (resp. β < ∞) then the point y − αv (resp. y + βv) belongs to a
∼-class F �= E where F is v-compatible (resp. (−v)-compatible) with E, and
dim(F) < dim(E).

Corollary 4. Given a nonsingular ∼-class E, a point x ∈ E and v ∈ Str(x),
the intersection of E with the line Lv(x) is a union of open segments whose
endpoints have dimension (cf. Definition 3) less than that of E.

6 Characterization and Effectivity

6.1 Characterization of 〈R,+, <, 1〉 in 〈R,+, <,Z〉
In this section we give the characterization of 〈R,+, <,Z〉-definable relations
which are 〈R,+, <, 1〉-definable. A rational section of a relation X ⊆ R

n is a
relation of the form

X(i)
c = X ∩ (Ri × {c} × R

n−i−1) for some c ∈ Q, 0 ≤ i < n

Theorem 3. Let n ≥ 1 and let X ⊆ R
n be 〈R,+, <,Z〉-definable. Then X is

〈R,+, <, 1〉-definable if and only if the following two conditions hold

1. There exist finitely many X−singular points.
2. Every rational section of X is 〈R,+, <, 1〉-definable.

Observe that both conditions (1) and (2) are needed. Indeed, the relation X =
R×Z is 〈R,+, <,Z〉-definable. It has no singular point thus it satisfies condition
(1), but does not satisfy (2) since, e.g., the rational section X

(0)
0 = {0}×Z is not

〈R,+, <, 1〉-definable. Now, consider the relation X = {(x, x) | x ∈ Z} which is
〈R,+, <,Z〉-definable. It does not satisfy condition (1) since every element of X
is singular, but it satisfies (2) because every rational section of X is either empty
or equal to the singleton {(x, x)} for some x ∈ Z, thus is 〈R,+, <, 1〉-definable.

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 137

Now we give an idea of the proof since it cannot fit in the space allowed.
The necessity of point 1 follows from Proposition 4. That of point 2 results from
the fact that all rational constants are 〈R,+, <, 1〉-definable by Theorem 1, and
moreover that 〈R,+, <, 1〉-definable relations are closed under direct product
and intersection.

Now the sufficiency. Corollary 4 suggests that we proceed by induction on
the dimension of the ∼-classes. There are finitely many classes of dimension
0 since there are finitely many singular points so the base of the induction is
guaranteed. Now the intersection of a nonsingular class E with a line passing
through a point x in the class and parallel to a direction of the class is a finite
union of open segments, see Lemma 6. If the segment containing x is closed or
half-closed then one of its adherent point belongs to a class F of lower dimension
and we can define E relatively to F via the notion of compatibility. However the
line may not intersect any other equivalence class. So we consider the canonical
subspaces, see below, since every line has an intersection with one of these.

Hi = {(x1, . . . , xn) ∈ R
n | xi = 0} i ∈ {1, . . . , n}

QI =
⋂

i∈I

Hi, Q′
I = (QI \

⋃

i∈{1,...,n}\I
Hi) for all ∅ ⊂ I ⊆ {1, . . . , n} (4)

In particular Q{1,...,n} = {0} and by convention Q∅ = R
n. The Qi’s are the

canonical subspaces. The Q′
i’s are not vectorial subspaces but with some abuse

of language we will write dim(Q′
I) to mean dim(QI) = n − |I|. Observe that

point 2 of the theorem implies that for every I the intersection X ∩ QI (resp.
X ∩ Q′

I) is 〈R,+, <, 1〉-definable.
We consider the finite decomposition of the space consisting of all subsets

E ∩ Q′
I where E is a ∼ −class and Q′

I is as in 4. We associate to each subset
E ∩ Q′

I the pair of integers (dim(Str(E) ∩ QI),dim(Q′
I)) equipped with the

product ordering, and we proceed by induction. The result follows from the fact
that X is a union of finitely many ∼-classes, since if x ∼ y then both x and y
belong to X or both belong to its complement.

The proof can be seen as describing a trajectory starting from a point x
in a ∼-class E, traveling along a stratum of E until it reaches a class of lower
dimension F (by Corollary 4) or some canonical subspace. In the first case it
resumes the journey from the new class F on. In the second case it is trapped
in the canonical subspace: it resumes the journey by choosing one direction of
the subspace until it reaches a new ∼-class or a point belonging to a proper
canonical subspace. Along the journey, either the dimension of the new class or
the dimension of the canonical subspace decreases. The journey stops when the
point reaches a (X,QI)−singular point, or the origin which is the least canonical
subspace.

6.2 Decidability

So far we did not distinguish between formal symbols and their interpretations
but here we must do it if we want to avoid any confusion. Let Xn ⊆ R

n be

138 A. Bès and C. Choffrut

a relation defined by a 〈R,+, <,Z〉-formula φ. In order to express that Xn is
actually 〈R,+, <, 1〉-definable we proceed as follows. Let {Xn(x1, . . . , xn) | n ≥
1} be a collection of relational symbols. We construct a {+, <, 1,Xn}−sentence
ψn(Xn) such that ψn(Xn) holds if and only Xn is 〈R,+, <, 1〉-definable.

Proposition 5. Let {Xn(x1, . . . , xn) | n ≥ 1} denote a set of relational symbols.
For every n ≥ 1 there exists a {+, <, 1,Xn}−sentence ψn such that for every
{+, <, 1,Xn}− structure M = (R,+, <, 1,Xn), if Xn is 〈R,+, <,Z〉-definable
then we have M |= ψn if and only if Xn is 〈R,+, <, 1〉-definable.

Sketch. The formula is of the form

σn(Xn) ∧
∧

1≤i≤n

∀y ψ
(i)
n−1(y,Xn−1) (5)

where each ψ
(i)
n−1(y,Xn−1) is obtained from ψn−1(Xn−1) by inserting y at posi-

tion i in the sequence of variables of the interpretation Xn. The conjunct σn(Xn)
expresses the fact that Xn has finitely many singular points (point 1 of Theorem 3)
and each conjunctψ

(i)
n−1(y,Xn−1) expresses the fact that, interpreting y as a param-

eter, the section is 〈R,+, <,Z〉-definable (point 2 of Theorem 3). As an exam-
ple σ1(X1) is as follows (the formula is correct only when X1 is interpreted as a
〈R,+, <,Z〉-definable relation)

∃r∀x ∈ R (∀t > 0
((∃y ∈ X1 ∧ |y − x| < t) ∧ (∃y /∈ X1 ∧ |y − x| < t))) → |x| ≤ r)

Theorem 4. For every n ≥ 1 and every 〈R,+, <,Z〉-definable relation X ⊆ R
n,

it is decidable whether X is 〈R,+, <, 1〉-definable.

Proof. In Proposition 5, if we substitute the predicate φ(x) for every occurrence
of x ∈ Xn in ψn, then ψn can be interpreted in the structure 〈R,+, <,Z〉 and the
decidability of its truth value results from the decidability of 〈R,+, <,Z〉 [20].

7 Conclusion

We discuss some extensions and open problems. Is it possible to remove our
assumption that X is 〈R,+, <,Z〉-definable in Theorem 3? We believe that the
answer is positive and it can be formally proven in dimension 2. Note that even
if one proves such a result, the question of providing an effective characterization
is more complex. Indeed the sentence ψn of Proposition 5 expresses a variant
of the criterion of Theorem 3, and we use heavily the fact that we work within
〈R,+, <,Z〉 to ensure that this variant is actually equivalent to the criterion. In
particular the construction of ψn relies on Lemma 5 to express that a point is
X−singular. However if we consider e.g. X = Q then every element x of X is
singular while no element x of X satisfies the condition stated in Lemma 5.

Another question is the following. In Presburger arithmetic it is decidable
whether or not a formula is equivalent to a formula in the structure without <,
cf. [10]. What about the case where the structure is 〈R,+, <,Z〉?

Deciding 〈R,+, <, 1〉 in 〈R,+, <,Z〉 139

References

1. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73368-3 36

2. Bieri, H., Nef, W.: Elementary set operations with d-dimensional polyhedra. In:
Noltemeier, H. (ed.) CG 1988. LNCS, vol. 333, pp. 97–112. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-50335-8 28

3. Boigelot, B., Brusten, J., Bruyère., V.: On the sets of real numbers recognized by
finite automata in multiple bases. LMCS 6(1), 1–17 (2010)

4. Boigelot, B.: The Liege automata-based symbolic handler (LASH). http://www.
montefiore.ulg.ac.be/boigelot/research/lash/

5. Boigelot, B., Brusten, J.: A generalization of Cobham’s theorem to automata over
real numbers. Theor. Comput. Sci. 410(18), 1694–1703 (2009)

6. Boigelot, B., Brusten, J., Leroux, J.: A generalization of Semenov’s theorem to
automata over real numbers. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 469–484. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02959-2 34

7. Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer
arithmetic automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055049

8. Bouchy, F., Finkel, A., Leroux, J.: Decomposition of decidable first-order logics
over integers and reals. In: 2008 15th International Symposium on Temporal Rep-
resentation and Reasoning, pp. 147–155. IEEE (2008)

9. Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In:
Proceedings International Congress Logic, Methodology and Philosophy of Science,
Berkeley 1960, pp. 1–11. Stanford University Press (1962)

10. Choffrut, C., Frigeri, A.: Deciding whether the ordering is necessary in a Presburger
formula. DMTCS 12(1), 20–38 (2010)

11. Cobham, A.: On the base-dependence of sets of numbers recognizable by finite
automata. Math. Syst. Theor. 3(2), 186–192 (1969)

12. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

13. Fränzle, M., Quaas, K., Shirmohammadi, M., Worrell, J.: Effective definability of
the reachability relation in timed automata. Inf. Proc. Lett. 153, 105871 (2020)

14. Leroux, J.: A polynomial time Presburger criterion and synthesis for number deci-
sion diagrams. In: Proceedings of LICS 2005, pp. 147–156. IEEE (2005)

15. Milchior, A.: Büchi automata recognizing sets of reals definable in first-order logic
with addition and order. In: Gopal, T.V., Jäger, G., Steila, S. (eds.) TAMC 2017.
LNCS, vol. 10185, pp. 440–454. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55911-7 32

16. Miller, C.: Expansions of dense linear orders with the intermediate value property.
J. Symb. Logic 66(4), 1783–1790 (2001)

17. Muchnik, A.A.: The definable criterion for definability in Presburger arithmetic
and its applications. Theor. Comput. Sci. 290(3), 1433–1444 (2003)

18. Presburger, M.: Uber die vollstandigkeit eines gewissen systems der arithmetic
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: du
Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, vol. 395, pp. 92–
101 (1927)

https://doi.org/10.1007/978-3-540-73368-3_36
https://doi.org/10.1007/978-3-540-73368-3_36
https://doi.org/10.1007/3-540-50335-8_28
http://www.montefiore.ulg.ac.be/ boigelot/research/lash/
http://www.montefiore.ulg.ac.be/ boigelot/research/lash/
https://doi.org/10.1007/978-3-642-02959-2_34
https://doi.org/10.1007/978-3-642-02959-2_34
https://doi.org/10.1007/BFb0055049
https://doi.org/10.1007/BFb0055049
https://doi.org/10.1007/978-3-319-55911-7_32
https://doi.org/10.1007/978-3-319-55911-7_32

140 A. Bès and C. Choffrut

19. Semenov, A.L.: Presburgerness of predicates regular in two number systems.
Siberian Math. J. 18(2), 289–300 (1977)

20. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: Proceedings
of the 1999 International Symposium on Symbolic and Algebraic Computation,
ISSAC 1999, pp. 129–136. ACM, New York (1999)

Ordered Semiautomatic Rings
with Applications to Geometry

Ziyuan Gao1(B), Sanjay Jain2, Ji Qi1, Philipp Schlicht3, Frank Stephan1,2,
and Jacob Tarr4

1 Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, S17, Singapore 119076, Republic of Singapore

ziyuan84@yahoo.com
2 Department of Computer Science, National University of Singapore,
13 Computing Drive, COM1, Singapore 117417, Republic of Singapore

{sanjay,fstephan}@comp.nus.edu.sg
3 School of Mathematics, University of Bristol,

Fry Building, Woodland Road, Bristol BS8 1UG, UK
philipp.schlicht@bristol.ac.uk

4 University of British Columbia, Vancouver, Canada
jacobdtarr@gmail.com

Abstract. Thepresentwork looks at semiautomatic ringswith automatic
addition and comparisonswhich are dense subrings of the real numbers and
asks how these can be used to represent geometric objects such that certain
operations and transformations are automatic. The underlying ring has
always to be a countable dense subring of the real numbers and additions
and comparisons and multiplications with constants need to be automatic.
It is shown that the ring can be selected such that equilateral triangles can
be represented and rotations by 30◦ are possible, while the standard rep-
resentation of the b-adic rationals does not allow this.

1 Introduction

Hodgson [6,7] as well as Khoussainov and Nerode [11] and Blumensath and
Grädel [1] initiated the study of automatic structures. A structure, say the
ordered semigroup of natural numbers (N, ◦,≤) is then automatic iff there is
an isomorphic structure (A, ◦,≤) where A is regular and ◦,≤,= are automatic
in the following sense: A finite automaton reads all tuples of possible inputs and
outputs with the same speed in a synchronised way and accepts these tuples
which are valid tuples in the relations ≤ and = or which are valid combinations

S. Jain and F. Stephan are supported in part by Singapore Ministry of Education
Tier 2 AcRF MOE2016-T2-1-019 / R146-000-234-112. S. Jain was also supported in
part by NUS grant C252-000-087-001. P. Schlicht is supported by the European Union
under the Marie Sk�lodowska-Curie grant 794020 (IMIC). J. Qi and J. Tarr worked on
this paper as UROPS projects at NUS. The authors would like to thank Bakhadyr
Khoussainov and Sasha Rubin for correspondence.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 141–153, 2020.
https://doi.org/10.1007/978-3-030-40608-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_9

142 Z. Gao et al.

(x, y, z) with x ◦ y = z in the case of the semigroup operation (function) ◦.
For this, one assumes that the inputs and outputs of relations and functions are
aligned with each other, like decimal numbers in addition, and for this alignment
– which has to be the same for all operations – one fills the gaps with a special
character. So words are functions with some domain {−m,−m+1, . . . , n−1, n}
and some fixed range Σ and the finite automaton reads, when processing a pair
(x, y) of inputs, in each round the symbols (x(k), y(k)) where the special symbol
/∈ Σ replaces x(k) or y(k) in the case that these are not defined. See Example 3
below for an example of a finite automaton checking whether x+y = z for num-
bers x, y, z; here a finite automaton computes a function by checking whether
the output matches the inputs. Automatic functions are characterised as those
computed by a position-faithful one-tape Turing machine in linear time [3].

The reader should note, that after Hodgson’s pioneering work [6,7], Epstein,
Cannon, Holt, Levy, Paterson and Thurston [5] argued that in the above formal-
isation, automaticity is, at least from the viewpoint of finitely generated groups,
too restrictive. They furthermore wanted that the representatives of the group
elements are given as words over the generators, leading to more meaningful
representatives than arbitrary strings. Their concept of automatic groups led,
for finitely generated groups, to a larger class of groups, though, by definition,
of course it does not include groups which require infinitely many generators;
groups with infinitely many generators, to some extent, were covered in the
notion of automaticity by Hodgson, Khoussainov and Nerode. Nies, Oliver and
Thomas provide in several papers [14,15] results which contrast and compare
these two notions of automaticity and give an overview on results for groups
which are automatic in the sense of Hodgson, Khoussainov and Nerode.

Jain, Khoussainov, Stephan, Teng and Zou [8] investigated the general app-
roach where, in a structure for some relations and functions, it is only required
that the versions of the functions or relations with all but one variable fixed to
constants is automatic. Here the convention is to put the automatic domains,
functions and relations before a semicolon and the semiautomatic relations after
the semicolon. The present work will focus more on structures like rings than
groups, although the field of automatic and semiautomatic structures has a
strong group theoretic component. The construction of these semiautomatic
rings is similar to that of Nies and Semukhin [13] for a presentation of Z2 where
no 1-dimensional subgroup is a regular subset.

The interested reader finds information about automatic structures in the
surveys of Khoussainov and Minnes [10] and Rubin [16]. Related but different
links between automata theory and geometry have been studied previously like,
for example, the usage of weighted automata and transducers to generate fractals
[4], ω-automata to represent geometric objects in the reals [2,9] and the field of
reals not being ω-automatic [19]. The last section of the present work applies
the results and methods of the current work to ω-automatic structures.

The present work looks at semiautomatic rings which can be used to represent
selected points in the real plane. Addition and subtraction and comparisons as
well as multiplication with constants have to be automatic; however, the full

Ordered Semiautomatic Rings with Applications to Geometry 143

multiplication is not automatic. It depends on the structures which geometric
objects and operations with such object can be represented.

Definition 1. The convolution of two words v, w is a mapping from the union of
their domains to (Σ ∪{#})×(Σ ∪{#}) such that first one extends v, w to v′, w′,
each having the domain dom(v) ∪ dom(w), by assigning # whenever v or w are
undefined and then letting the convolution u map every h ∈ dom(v) ∪ dom(w)
to the new symbol (v′(h), w′(h)). Similarly one defines the convolutions of three,
four or more words.

A h-ary relation R is automatic [1,6,7,11] iff the set of all convolutions of
(x1, . . . , xh) ∈ R is regular; a h-ary function f is automatic iff the set of all
convolutions of (x1, . . . , xh, y) with f(x1, . . . , xh) = y is regular. A h-ary relation
P is semiautomatic [8] iff for all indices i ∈ {1, . . . , h} and for all possible fixed
values xj with j �= i the resulting set {xi : (x1, . . . , xh) ∈ P} is regular. A h-
ary function g is semiautomatic iff for all indices i ∈ {1, . . . , h} and all possible
values xj with j �= i the function xi �→ g(x1, . . . , xh) is automatic.

A structure (A, f1, . . . , fk, R1, . . . , R�; g1, . . . , gi, P1, . . . , Pj) is semiautomatic
[8] iff (i) A is a regular set of words where each word maps a finite subset of Z to
a fixed alphabet, (ii) each fh is automatic, (iii) each Rh is automatic, (iv) each gh

is semiautomatic and (v) each Ph is semiautomatic. The semicolon separates the
automatic components of the structure from those which are only semiautomatic.
Structures without semiautomatic items are just called automatic.

An automatic family {Ld : d ∈ E} is a collection of sets such that their index
set E and the set of all convolutions of (d, x) with x ∈ Ld and d ∈ E are regular.

Definition 2. A semiautomatic grid or, in this paper, just grid, is a semiau-
tomatic ring (A,+,=, <; ·) where the multiplication is only semiautomatic and
the addition and comparisons are automatic such that A forms a dense subring
of the reals, that is, whenever p, r are real numbers with p < r then there is
an q ∈ A with p < q ∧ q < r and furthermore, all elements of A represent real
numbers.

It makes sense to define density as a property of an ordered ring that is embed-
dable into the reals, since the embedding is unique. A necessary and sufficient
criterion for the ring to be dense is that it has an element strictly between 0
and 1.

Example 3. The ring (Db,+,=, <; ·) of the rational numbers in base b with
only finitely many nonzero digits is a grid. Here Db = {n/bm : n,m ∈ Z}.
Addition and comparison follow the school algorithm as in the following example
of Stephan [17]. In D10, given three numbers x, y, z, an automaton to check
whether x+y = z would process from the back to the front and the states would
be “correct and carry to next digit (c)”, “correct and no carry to next digit (n)”
and “incorrect (i)”. In the following three examples, x stands on the top, y in
the second and z in the last row. The states of the automaton are for starting
from the end of the string to the beginning after having processed the digits
after them but not those before them. The filling symbol # is identified with 0.

144 Z. Gao et al.

The decimal dot is not there physically, it just indicates the position between
digit a0 and digit a−1. The domain of each string is an interval from a negative
to a positive number plus an entry for the sign − if needed.

Correct Addition Incorrect Addition Incomplete Addition
2 3 5 8. 2 2 5 3 3 3 3. 3 3 # 9 9 1 2 3. 4 5 6
9 1 1 2. # # # # # 2 2. 2 2 2 # # 9 8 7. 6 5 4
1 1 4 7 0. 2 2 5 # 1 5 5. 5 5 2 0 0 1 1 1. 1 1 #

n c n n c n n n n i i n n n n n n c c c c c c c c n

The difference x − y = z is checked by checking whether x = y + z and then one
can compare the outcome of additions of possibly negative numbers by going to
− when the signs of the numbers require this. Furthermore, x < y iff y − x is
positive and x = y if the two numbers are equal as strings.

For checking whether x · i/j = y for given rational constant i/j, one just
checks whether i · x = j · y which, as i, j are constants, can be done by i times
adding x to itself and j time adding y to itself and then comparing the results.
So x · 3/2 = y is equivalent to x + x + x = y + y and the latter check is
automatic. Also the set of all x ∈ D10 so that x is a multiple of 3 is regular, as it
is first-order definable as {x : ∃y ∈ D10 [x = y + y + y]} and 1.2 would be in this
set and 1.01 not. This works for all multiples of fixed rational numbers in Db.

2 Grids with Special Properties

Jain, Khoussainov, Stephan, Teng and Zou [8] showed that for every natural
number c which is not a square there is a grid containing

√
c. Though these

grids are dense subsets of the real numbers, they do not have the property that
one can divide by any natural number, that is, for each b ≥ 2 there is a ring
element x such that x/b is not in the ring. The reason is that most of the
rings considered by Jain, Khoussainov, Stephan, Teng and Zou are of the form
Z⊕√

c·Z. The following result will produce grids for which one can always divide
by some number b ≥ 2, if this number is composite, it might allow division by
finitely many primes. Note that the number of primes cannot be infinite by a
result of Tsankov [18].

Theorem 4. Assume that b ∈ {2, 3, 4, . . .} and c is some root of an integer
and let u > 1 be a real number chosen such that the following four polynomials
p1, p2, p3, p4 in a variable x and constants �, ĉ exist, where all polynomials have
only finitely many nonzero coefficients and all coefficients are integers:

1. p1(u) =
∑

k∈Z
bkuk = 1/b;

2. p2(u) =
∑

k∈Z
ckuk = c;

3. p3(u) =
∑

k=0,−1,−2,...,−h+1 dkuk = 0 with d0 = 1;
4. p4(u) =

∑
k∈Z

ekuk = 0 with e� >
∑

k �=� |ek| and |ek| being the absolute value
of ek.

Ordered Semiautomatic Rings with Applications to Geometry 145

Furthermore, the choice of the above has to be such that ĉ > 3|e�| and one can
run for every polynomial p =

∑
k=−m,...,n akxk with every ak being an integer

satisfying |ak| ≤ 3|e�| the following algorithm C satisfying the below termination
condition:

Let k = n + h.
While k > −m and |ak′ | ≤ ĉ for k′ = k, k − 1, . . . , k − h + 1
Do Begin p = p−ak ·p3(u)·uk and update the coefficients of the polynomial
p accordingly; Let k = k − 1 End.

The termination condition on C is that whenever the algorithm terminates at
some k > −m with some |ak′ | > ĉ then

|∑k′=k,k−1,...,k−h+1 uk′
ak′ | > uk−h/(1 − u−1) · 3|e�|.

If all these assumptions are satisfied then one can use the representation

S = {
∑

k=−m,...,n

akuk : m,n ∈ N, ak ∈ Z and |ak| < |e�|}

to represent every member of Db[c] and the ring (S,+, <,=; ·) has automatic
addition and comparisons and semiautomatic multiplication. Furthermore, as
1/b is in the ring, it is a dense subset of the reals, thus the ring forms a semi-
automatic grid.

Proof. When not giving −m,n explicitly in the sum, sums like
∑

k∈Z
akuk use

the assumption that almost all ak are 0. For ease of notation, let S′ be the set

S′ = {
∑

k∈Z

akxk : almost all ak are 0 and all ak ∈ Z}

so that S ⊆ S′. On members p, q ∈ S′, one defines that p ≤ q iff p(u) ≤ q(u)
when the polynomial is evaluated at the real number u. Furthermore, p = q iff
p ≤ q and q ≤ p. Addition and subtraction in S′ is defined using componentwise
addition of coefficients.

Now one shows that for every p ∈ S′ there is a q ∈ S with p = q. For this one
lets initially h = 0 and qh = p and whenever there is a coefficient ak of qh with
|ak| ≥ |e�| then one either lets qh+1 = qh − xk−� · p4 (in the case that ak > 0) or
lets qh+1 = qh + xk−� · p4 (in the case that ak < 0). Now let ||qh|| be the sum of
the absolute values of the coefficients; note that

||qh+1|| ≤ ||qh|| − e� +
∑

k �=�

|ek| < ||qh||

and as there is no infinite strictly decreasing sequence of positive integers, there
is a h where qh is defined but qh+1 not, as this update can no longer be made.
Thus all coefficients of qh are between −|e�| and +|e�| and furthermore, as each
polynomial p4(u) · uk−� added or subtracted has the value 0, qh = p. Now let
q = qh and note that q is a member of S with the same value at u as p, so
p(u) = q(u).

146 Z. Gao et al.

Now let p, q, r be members of S. In order to see what the sign of p + q − r is,
that is, whether p(u) + q(u) < r(u), p(u) + q(u) = r(u) or p(u) + q(u) > r(u),
one adds the coefficients pointwise and to check the expression p + q − r at u,
one then runs the algorithm C. If C terminates with some |ak′ | > ĉ, then the
sign of the current value of

ã =
∑

k′=k,k−1,...,k−h+1

uk′
ak′

gives the sign of p+q−r, as the not yet processed tail-sum of p+q−r is bounded
by uk−h/(1 − u−1) · 3|e�|. In the case that C terminates with all |ak′ | ≤ ĉ and
k = −m, then only the coefficients at k′ = k, k − 1, . . . , k − h + 1 are not zero
and again the sign of ã is the sign of the original polynomial p + q − r.

Note that the algorithm C can be carried out by a finite automaton, as it
only needs to memorise the current values of (ak, ak−1, . . . , ak−h+1) which are
(0, 0, . . . , 0) at the start and which are updated in each step by reading ak−h for
k = n+h, n+h−1, . . . ,−m; the update is just subtracting ak′ = ak′ −ak ·dk′−k

for k′ = k, k − 1, . . . , k − h + 1 and then updating k = k − 1 which basically
requires to read ak−h into the window and shift the window by one character;
note that the first member, which goes out of the window, is 0. Furthermore,
during the whole runtime of the algorithm, all values in the window have at
most the values (1 + max{|dk′′ | : 0 ≥ k′′ ≥ −h + 1}) · ĉ and thus there are only
finitely many choices for (ak, ak−1, . . . , ak−h+1), and thus the determination of
the sign of

∑
k′=k,k−1,...,k−h+1 uk′

ak′ can be done by looking up a finite table.
Early termination of the finite automaton can be handled by not changing the
state on reading new symbols, once it has gone to a state with some |ak′ | > ĉ.
Thus comparisons and addition are automatic; note that for automatic functions,
the automaton checks whether the tuple (inputs, output) is correct, it does not
compute output from inputs.

For the multiplication with constants, note that multiplication with u or u−1

is just shifting the coefficients in the representation by one position; multiplica-
tion with −1 can be carried out componentwise on all coefficients; multiplication
with integers is repeated addition with itself. This also then applies to polyno-
mials put together from these ground operations, so p · (u2 −2+u−1) can be put
together as the sum of p · u · u, −p, −p, p · u−1. All four terms of the sum can
be computed by concatenated automatic functions, thus there is an automatic
function which also computes the sum of these terms from a single input p. ��
Example 5. There is a semiautomatic grid containing

√
2 and 1/2.

Proof. For c =
√

2 and b = 2, one chooses

1. u−1 = 1 − c/2 (note that u = 1/(1 − √
1/2) = 2/(2 − √

2) > 1),
2. p1(u) = 2u−1 − u−2 = 1/2,
3. p2(u) = 2 − 2u−1 = c,
4. p3(u) = 1 − 4u−1 + 2u−2 = 0,
5. p4(u) = −u + 4 − 2u−1 = 0 with � = 0 and e� = 4,
6. ĉ = 100 (or any larger value).

Ordered Semiautomatic Rings with Applications to Geometry 147

While all operations above come from straight-forward manipulations of the
choice of u−1, one has to show the termination condition of the algorithm.

For this one uses that u ≥ 3.41 and 1/(1 − 1/u) =
∑

k≤0 uk =
√

2 ≤ 1.4143.
Assume that the algorithm satisfies before doing the step for k that all |ak′ | ≤ ĉ
and does not satisfy this after updating ak, ak−1, ak−2 respectively to 0, a′ =
ak−1 + 4ak and a′′ = ak−2 − 2ak; in the following, ak, ak−1, ak−2 refer to the
values before the update. Without loss of generality assume that ak > 0, the case
ak < 0 is symmetric, the case ak = 0 does not make the coefficients go beyond
ĉ. If a′′ < −ĉ — it can only go out of the range to the negative side — then
2ak ≥ ĉ−3(e� −1) and p(u) is at least ak · (4−2/u) ·uk−1 − ĉ ·uk−1/(1−1/u) ≥
((2−1/u)·(ĉ−9)−1.4143ĉ)uk−1 ≥ (1.7·(ĉ·0.9)−1.4143ĉ)uk−1 ≥ 0.1·ĉ·uk−1 > 0.
If a′′ ≥ −ĉ and a′ > ĉ then p(u) ≥ (ĉ · u − 1/(1 − 1/u)ĉ) · uk−2 ≥ ĉ · uk−2 > 0.
So in both cases, one can conclude that p(u) is positive. Similarly, when ak < 0
and the bound ĉ becomes violated in the updating process then p(u) < 0. ��
Example 6. There is a grid which contains

√
3 and 1/2 or, more generally, any

c of the form c =
√

b2 − 1 and 1/b for some fixed integer b ≥ 2.

Proof. One chooses

1. u−1 = 1 − c/b (note that u = b/(b − c) > 1),
2. p1(u) = 2bu−1 − bu−2 = 1/b,
3. p2(u) = b − bu−1 = c,
4. p3(u) = 1 − 2b2u−1 + b2u−2 = 0,
5. p4(u) = −u + 2b2 − b2u−1 = 0 with � = 0 and e� = 2b2,
6. ĉ = 1000 · b5 (or any larger value).

While all operations above come from straight-forward manipulations of the
equations, the termination condition of the algorithm needs some additional
work. Note that u > b, as b − c < 1. Indeed, by u ≥ 1 and p3(u) = 0 and
b ≥ 2, one has 1 − b2u−1 ≥ 0 and u ≥ b2 and

∑
k≤0 uk ≤ 2. For the algorithm,

one now notes that if after an update at k where, without loss of generality,
ak > 0, it happens that either (a) a′′ = ak−2 − b2ak < −ĉ or (b) a′′ ≥ −ĉ and
a′ = ak−1+2b2ak > ĉ then the following holds: In the case (a), ak ≥ 1000b3−6b2

and the value of the sum is at least

(ak · (2b2u − b2) − ĉ · u − 12b4) · uk−2 >

((2000b5u − 6b4) − 1000b5 · u − 12b4) · uk−2 >

(1000b5 − 18b4) · uk−1 > 0

where the tail sum 12b4 estimates that all digits ak′ with k′ ≤ k − 2 are at least
−6b2 in the expression and the ak−1 is at least −ĉ by assumption. In case (b),
one just uses that the first coefficient in the sum is greater than ĉ while all other
coefficients are of absolute value below ĉ, in particular as ĉ ≥ 6b2, so that, since
u ≥ 2,

ĉ · uk−1 >
∑

k′<k−1

ĉuk′
and ĉ · uk−1 > 2 · ĉ · uk−2.

Thus the algorithm terminates as required. ��

148 Z. Gao et al.

3 Applications to Geometry

One can use the grid to represent the coordinates of geometric objects. For
this, one uses in the field of automatic structures the concept of convolution
which uses the overlay of constantly many words into one word. One intro-
duces a new symbol, #, which is there to pad words onto the same length.
Now, for example, if in the grid of decimal numbers, one wants to describe a
point of coordinates (1.112, 22.2895), this would be done with the convolution
(#, 2)(1, 2).(1, 2)(1, 8)(2, 9)(#, 5) where these six characters are the overlay of
two characters and the dot is virtual and only marking the position where the
numbers have to be aligned, that means, the position between the symbols at
location 0 and location −1. Instead of combining two numbers, one can also
combine five numbers or any other arity.

An automatic family is a family of sets Le with the indices e from some
regular set D such that the set {conv(e, x) : x ∈ Le} is regular. Given a grid G,
the set of all lines parallel to the x-axis in G × G is an automatic family: Now
D = G and Ly = {conv(x, y) : x ∈ G}. The next example shows that one cannot
have an automatic family of all lines.

Example 7. The set of all lines (with arbitrary slope) is not an automatic
family, independent of the definition of the semiautomatic grid. Given a grid G
and assuming that {Le : e ∈ D} is the automatic family of all lines, one can
first-order define the multiplication using this automatic family:

x ·y = z if either at least one of x, y and also z are 0 or x = 1 and y = z or
y = 1 and x = z or all are nonzero and neither x nor y is 1 and there exists
an e ∈ D such that conv(0, 0), conv(1, y), conv(x, z) are all three in Le.

As the grid G has to be dense and is a ring with automatic addition and compar-
ison and as G ⊂ R, the ring G is an integral domain and furthermore, G has an
automatic multiplication by the above first-order definition. Khoussainov, Nies,
Rubin and Stephan [12] showed that no integral domain is automatic, hence the
collection of all lines cannot be an automatic family, independent of the choice
of the grid.

Similarly one can consider the family of all triangles.

Theorem 8. Independently of the choice of the semiautomatic grid G, the fam-
ily of all triangles in the plane is not an automatic family. However, every tri-
angle with corner points in G × G is a regular set.

Ordered Semiautomatic Rings with Applications to Geometry 149

Proof. For the first result, assume that {Le : e ∈ D} is a family of all triangles
– when viewed as closed subsets of G × G – which are represented in the grid
and that this family contains at least all triangles with corner points in G × G.
Now one can define for x, y, z > 0 the multiplication-relation z = x · y using this
family as follows:

z = x · y ⇔ some e ∈ D satisfies the following conditions:
∀v, w ∈ G with v ≤ 0 [(v, w) ∈ Le ⇔ (v, w) = (0, 0)],
∀w ∈ G [(1, w) ∈ Le ⇔ 0 ≤ w ∧ w ≤ y],
∀w ∈ G [(x,w) ∈ Le ⇔ 0 ≤ w ∧ w ≤ z].

This definition can be extended to a definition for the multiplication on full G
with a straightforward case-distinction. Again this cannot happen as then the
grid would form an infinite automatic integral domain which does not exist.

However, given a triangle with corner points (x, y), (x′, y′), (x′′, y′′), note that
one can find that linear functions from G × G into G which are nonnegative iff
the input point is on the right side of the line through (x, y) and (x′, y′). So one
would require that the function

f(v, w) = (w − y) · (x′ − x) − (v − x) · (y′ − y)

is either always nonpositive or always nonnegative, depending on which side of
the line the triangle lies; by multiplying f with −1, one can enforce nonnega-
tiveness. Note here that x′ − x and y′ − y are constants and multiplying with
constants is automatic, as the ring has a semiautomatic multiplication. Thus a
point is in the triangle or on its border iff all three automatic functions associ-
ated with the three border-lines of the triangle do not have negative values. This
allows to show that every triangle with corner points in G × G is regular. ��

Note that this also implies that polygons with all corner points being in G × G
are regular subsets of the plane G × G.

Proposition 9. Moving a polygon by a distance (v, w) can be done in any grid,
as it only requires adding (v, w) to the coordinates of each points. However,
rotating by 30◦ or 45◦ is possible in some but not all grids.

Proof. Note that the formula for rotating around 30◦, one needs tomap each point
(x, y) by the mapping (x, y) �→ (cos(30◦)x− sin(30◦)y, sin(30◦)x+cos(30◦)y) and
similarly for 45◦ and 60◦. For 30◦, as sin(30◦) = 1/2 and cos(30◦) =

√
3/2, one

needs a grid which allows to divide by 2 and multiply by
√

3, an example is given
by the grid of Example 6. For rotating by 60◦, as it is twice doing a rotation by 30◦,
the same requirements on the grid need to be there. For rotating by 45◦, the grid
from Example 5 can be used. However, these operations cannot be done with grids
which do not have the corresponding roots and also do not have the possibility to
divide by 2. In particular, the grids Db do not allow to multiply by roots and those
grids of the formZ∪√

c·Z in prior work [8] do not allow to divide by 2. Furthermore,
the authors are not aware of any grid which has both,

√
2 and

√
3 and thus allow

to rotate by both, 30◦ and 45◦. ��

150 Z. Gao et al.

Remark 10. A grid allows to represent all equilateral triangles with side-length
in G iff

√
3 and 1/2 are both in G.

Remark 11. Note that one can represent a word a5a4 . . . a1a0.a−1a−2 . . . a−7

also by starting with a0 and then putting alternatingly the digits of even and
odd indices given and one can show that in this representation, the same semi-
automaticity properties are valid as in the previously considered representation.
However, one gets one additional relation: One can recognise whether two digits
a−m and an satisfy that n = m + c for a given integer constant c. This is used
in the following example.

Example 12. The family {Ed : d ∈ D} of all axis-parallel rectangles is an
automatic family in all grids. Furthermore, let d ≡ d′ denote that Ed and Ed′

have the same area. In no grid, this relation ≡ is automatic, as otherwise one
could reconstruct the multiplication.

For p being a prime power, in the grid (Dp,+,=, <; ·) from Example 3, the
relation ≡ is semiautomatic using the representation given in Remark 11. To see
this, for a given area � · pk, (i) one can disjunct over all factorisations �1 · �2 of
� which are pairs of natural numbers not divisible by p, then (ii) check whether
the length of the sides of a given rectangle are of the form �1 · pi and �2 · pj

with i + j = k, where i, j are the positions of the last nonzero digits in the
p-adic representation of the lengths and (iii) check, by Remark 11, whether i+ j
are the given constant k. Note that representations using prime powers can be
translated into representations based on the corresponding primes.

However, for grids such as (D6,+,=, <; ·), where b is a composite number
other than a prime power, this method does not work. This is mainly because
one needs to use base 6 for the comparison < and then a finite automaton
cannot see whether the two sides are, for example, of lengths 2k and 2−k when
recognising squares of area 1. Knowing that this method does not work, however,
does not say that no other method works. It is an open problem whether one
can find a semiautomatic grid which allows to divide by 6 and to represent axis-
parallel rectangles in a way such that checking whether two rectangles have same
area is semiautomatic. The same applies to the grids of Examples 5 and 6.

4 Cube Roots

Jain, Khoussainov, Stephan, Teng and Zou [8] did not find any example of other
roots than square roots to be represented in a semiautomatic ordered ring. The
following example represents a cube root.

Example 13. There is a grid which contains 3
√

7. Furthermore, there is a grid
which contains 3

√
65 and 1/2.

For the first, as one does not want to represent a proper rational, p1 is not
needed. For this, one chooses

Ordered Semiautomatic Rings with Applications to Geometry 151

1. u−1 = 2 − 3
√

7,
2. p2(u) = 2 − u−1 = 3

√
7,

3. p3(u) = 1 − 12u−1 + 6u−2 − u−3 = 0 and p4(u) = −p3(u) with � = −1,
4. Instead of a flat ĉ, one uses a bit different bound for the algorithm, namely

|ak| ≤ 16ĉ, |ak−1| ≤ 4ĉ and |ak−2| ≤ ĉ for ĉ = 360.

The equations for p3, p4 follow from p3(u) = (p2(u))3 −7. Note that 11 < u < 12
and u−1 + u−2 + . . . ≤ 1/10. Furthermore, the coefficients in the normal form
are between −12 and +12 and, when three numbers are added coefficientwise,
between −36 and +36. Let p =

∑
k ak ·uk be such a sum of three numbers whose

sign has to be determined; all the coefficients have absolute values up to 36.
The main thing is that the algorithm can detect the sign of the number when-

ever the first three coefficients overshoot for the first time. Note that they start
with (0, 0, 0) and so one runs the updates ak−k′ = ak−k′ − ak · d−k′ simultane-
ously for k′ = 1, 2, 3 and then sets ak = 0 and k = k − 1. Here d· are coefficients
of p3. Assume that the update would make the coefficients to overshoot for the
first time and let k, ak, ak−1, ak−2, ak−3 and p =

∑
k′ ak′uk′

denote the values
just before the update.

Without loss of generality, assume that ak > 0 and it will be shown that this
implies that the polynomial p would be positive. Note that before the update,
for all k′ < k, |ak′ | ≤ 4ĉ and |∑k′<k ak′uk′ | ≤ 0.4 · ĉ · uk.

If ak−3 grows above ĉ at the update then ak ≥ ĉ · 9/10 and p > (0.9 · ĉ −∑
k′≤−1 ak+k′ · uk′

) · uk ≥ (0.9 − 0.4) · ĉ · uk > 0.
If ak−2 grows below −4ĉ at the update but ak−3 stays inside the bound then

ak ≥ ĉ · 3 · 1/6 and p > (0.5 − 0.4) · ĉ · uk > 0.
If ak−1 grows beyond 16ĉ at the update but ak−2 and ak−3 stay inside their

bounds then ak ≥ ĉ · 12 · 1/12 and p > (1 − 0.4) · ĉ · uk > 0.
Thus there is a semiautomatic grid containing 3

√
7. One similarly proves the

second item that there is a semiautomatic grid containing 3
√

65 and 1/2.

5 Representing All Reals

Now a comment on the ω-automatic approach [2,4,9]. The reals with addition
and multiplication and infinite integral domains in general are not ω-automatic
[19]. It is also clear that (R,+; ·) is not ω-semiautomatic, as one otherwise would
need uncountably many different ω-automata for recognising the uncountably
many functions x �→ r · x for constants r ∈ R. So the best what one can expect
is that (R,+, <,=) is ω-automatic and that there are countably many functions
fr : x �→ r · x which are ω-automatic as well. These functions certainly include,
independent of the ring representation, all fr with r ∈ Q, as one only verifies the
relation x · r = y and for r = i/j this is equivalent with verifying x · i = y · j with
i, j are integers and multiplication with integers can be realised by repeated self-
addition. The following result shows that one can carry over ideas of Theorem4
to ω-automatic structures in order to get that multiplication with all constants
from Q[

√
b] are ω-automatic where b ≥ 2 is given. As all reals are represented and

multiplication by rational constants comes for free, one can can use ω-versions
of the previously known representations [8, Theorem 26].

152 Z. Gao et al.

Theorem 14. There is an ω-automatic representation of the reals where addi-
tion, subtraction and comparisons are ω-automatic and furthermore the multi-
plication with any constant from Q[

√
b] is also an ω-automatic unary function.

References

1. Blumensath, A., Grädel, E.: Automatic structures. In: Fifteenth Annual IEEE
Symposium on Logic in Computer Science, LICS 2000, pp. 51–62 (2000)

2. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Trans. Comput. Logic 6(3), 614–633
(2005)

3. Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and
learning. Logical Methods Comput. Sci. 9(3) (2013)

4. Culik II, K., Kari, J.: Computational fractal geometry with WFA. Acta Informatica
34, 151–166 (1997)

5. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston
(1992)

6. Hodgson, B.R.: Théories décidables par automate fini. Ph.D. thesis, Département
de mathématiques et de statistique, Université de Montréal (1976)

7. Hodgson, B.R.: Décidabilité par automate fini. Annales des sciences mathématiques
du Québec 7(1), 39–57 (1983)

8. Jain, S., Khoussainov, B., Stephan, F., Teng, D., Zou, S.: Semiautomatic structures.
Theory Comput. Syst. 61(4), 1254–1287 (2017)

9. Jürgensen, H., Staiger, L., Yamasaki, H.: Finite automata encoding geometric fig-
ures. Theor. Comput. Sci. 381(2–3), 20–30 (2007)

10. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proceed-
ings of the Logic Colloquium 2007. Lecture Notes in Logic, vol. 35, pp. 132–176
(2010)

11. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60178-3 93

12. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness
and limitations. Logical Methods Comput. Sci. 3(2) (2007)

13. Nies, A., Semukhin, P.: Finite automata presentable Abelian groups. Ann. Pure
Appl. Logic 161, 458–467 (2009)

14. Nies, A., Thomas, R.: FA-presentable groups and rings. J. Algebra 320, 569–585
(2008)

15. Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 57

16. Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull.
Symb. Logic 14, 169–209 (2008)

17. Stephan, F.: Automatic structures - recent results and open questions. In: Third
International Conference on Science and Engineering in Mathematics, Chemistry
and Physics, ScieTech 2015, Journal of Physics: Conference Series, vol. 622, isssue
no. 1742/6596/622/1 (2015). https://iopscience.iop.org/issue/1742-6596/622/1, 10
pages, Paper No. 012013

https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/978-3-540-31856-9_57
https://iopscience.iop.org/issue/1742-6596/622/1

Ordered Semiautomatic Rings with Applications to Geometry 153

18. Tsankov, T.: The additive group of the rationals does not have an automatic
presentation. J. Symb. Logic 76(4), 1341–1351 (2011)

19. Zaid, F.A., Grädel, E., Kaiser, L., Pakusa, W.: Model-theoretic properties of ω-
automatic structures. Theory Comput. Syst. 55, 856–880 (2014)

Automata

Boolean Monadic Recursive Schemes
as a Logical Characterization
of the Subsequential Functions

Siddharth Bhaskar1(B), Jane Chandlee2, Adam Jardine3,
and Christopher Oakden3

1 DIKU, Københavns Universitet, 2100 Copenhagen, Denmark
sbhaskar@di.ku.dk

2 Haverford College, Haverford, PA, USA
jchandlee@haverford.edu

3 Rutgers University, New Brunswick, NJ, USA
{adam.jardine,chris.oakden}@rutgers.edu

Abstract. This paper defines boolean monadic recursive schemes
(BMRSs), a restriction on recursive programs, and shows that when
interpreted as transductions on strings they describe exactly the sub-
sequential functions. We discuss how this new result furthers the study
of the connections between logic, formal languages and functions, and
automata.

Keywords: Subsequential functions · Logic · Recursive program
schemes · Finite automata

1 Introduction

A fundamental result in the connection between automata and logic is that
of Elgot [7], Büchi [1], and Trakhtenbrot [21], which states that sentences in
monadic second-order (MSO) logic describe exactly the same class of formal lan-
guages as finite-state acceptors (FSAs); namely, the regular class of languages.
Further work established many connections between restrictions on MSO, restric-
tions on FSAs, and sub-classes of the regular languages [14,20].

More recently, a major result of Engelfriet and Hoogeboom shows the rela-
tionship between MSO and regular functions on strings—that is, exactly those
functions described by two-way finite state transducers [9]. Essentially, string
functions can be described by a MSO interpretation in which the binary succes-
sor relation and alphabet labels of the output string are defined by a series of
binary and unary predicates in the MSO logic of the input strings, relativized
over a copy set which allows the output string to be larger than the input string.
Each element in the output string is thus a copy of an index in the input string,
and the character it receives and where it is in the order is determined by which
predicates are satisfied by the input string at that index. This technique has
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 157–169, 2020.
https://doi.org/10.1007/978-3-030-40608-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_10

158 S. Bhaskar et al.

allowed a rich study of the relationship between sub-MSO logics and restric-
tions on finite-state transducers [10,11] parallel to the earlier work on logic and
finite-state automata and languages.

However, there remain some interesting classes for which no logical char-
acterization has been previously established. In this paper, we investigate the
subsequential functions, a strict sub-class of the rational functions, or those that
are describable by one-way finite-state transducers.1 While a weak class, there
are a number of reasons why the subsequential class is a worthy object of study.
From a theoretical perspective, the subsequential functions admit an abstract
characterization that generalizes the Myhill-Nerode equivalence classes of reg-
ular languages [19]. This property makes the subsequential functions learnable
from a sample of positive data [18]. In terms of practical applications, the sub-
sequential functions have applications to speech and language processing [16],
and form a hypothesis for the computational upper bound of functions in certain
domains of natural language phonology [12,13].

In this paper, we define boolean monadic recursive schemes (BMRSs), a
restriction on the general notion of a recursive program scheme in the sense
of Moschovakis [17]. As indicated by the name, these schemes recursively define
a series of unary functions that take as inputs indices from a string and return
a boolean value. A system of BMRS functions can be used to express a logi-
cal transduction in the sense of Engelfriet and Hoogeboom by assigning these
functions to symbols in an output alphabet. An output string then consists of
the characters whose functions are true at each index in the input string. We
show that string transductions defined by BMRS transductions with predecessor
or successor describe exactly the left- and right-subsequential functions, respec-
tively. This is an entirely novel result; the closest result in the literature is that of
[6], who give a fragment of least-fixed point logic that captures strict subsets of
the left- and right-subsequential functions. As we discuss at the end of the paper,
the current result allows for further study of the connections among subclasses
of the subsequential functions and of rational functions in general.

This paper is structured as follows. Sections 2 and 3 establish the notation
and definitions for strings, subsequential functions, and subsequential trans-
ducers. Section 4 establishes BMRSs and BMRS transductions, and Sect. 5
shows the equivalence between BMRS transductions and subsequential functions.
Sections 6 and 7 discuss the implications of this result and conclude the paper.

2 Preliminaries

An alphabet Σ is a finite set of symbols; let Σ∗ be all strings over Σ, including
λ, the empty string. We will frequently make use of special left and right string
boundary symbols �, � �∈ Σ. We denote by �Σ∗

� the set {�w � | w ∈ Σ∗}.
Let Σ� = Σ ∪ {�}, likewise Σ� = Σ ∪ {�} and Σ�� = Σ ∪ {�, �}. For a string
w, |w| indicates the length of w. We write wr for the reversal of w.
1 We mean subsequential in the sense of Schützenberger and Mohri; other authors (e.g.

[11]) use the term sequential for the same class.

Recursive Schemes for Subsequential Functions 159

A string u is a prefix of w, written u � w, iff w = uv for some string v. For a
set L ⊆ Σ∗ of strings let the common prefixes be comprefs(L) =

⋂
w∈L{u | u �

w}. The longest common prefix of L is the maximum element in comprefs(L):
lcp(L) = w ∈ comprefs(L) s.t. for all v ∈ comprefs(L), |v| ≤ |w|.

3 Subsequential Functions and Transducers

3.1 Abstract Definition

We first define the subsequential functions based on the notion of tails [16,19].
Let f : Σ∗ → Γ ∗ be an arbitrary function and fp(x) = lcp({f(xu) | u ∈ Σ∗}).
Then of course, for every u, fp(x) � f(xu). Now let the tail function fx(u) be
defined as v such that fp(x)v = f(xu). This function represents the tails of x.
This allows us to define the subsequential functions as follows.

Definition 1 (Left-subsequential). A function f is left-subsequential iff the
set {fx | x ∈ Σ∗} is finite.

Example 1. For input alphabet Σ = {a}, the function f defined as

f(an) = (abb)n/2c if n is even;
(abb)(n−1)/2ad if n is odd,

is left-subsequential. Note that for any x = an for an even n, fp(x) = (abb)n/2,
and so fx = f . For any y = an for an odd n, then fp(y) = (abb)(n−1)/2a, and
so fy is the function fy(am) = d if m = 0; bb · f(am−1) otherwise. Then f is
describable by these two tail functions {fx, fy}.

Conversely, the function g defined as

g(an) = can−1 if n is even;
dan−1 if n is odd,

is not left-subsequential. Note that for any x = an, gp(x) = λ. This is because
{g(xu) | u ∈ Σ∗} includes both cai and daj for some i and j. Because gx(u) is
defined as v such that gp(x)v = g(xu), and because gp(x) = λ, gx(u) = g(xu).
The consequence of this is that for any x = an and y = am for a distinct m �= n,
for any u, gx(u) �= gy(u). Thus the set of tails functions for g is an infinite set
{gx1 , gx2 , ...} of distinct functions for each xi = ai.

The right-subsequential functions are those that are the mirror image of some
left-subsequential function.

Definition 2 (Right-subsequential). A function f is right-subsequential iff
there is some left-subsequential function f� such that for any string in the domain
of f , f(w) = (f�(wr))r.

We leave it to the reader to show that g is right-subsequential. Thus,
the subsequential functions are those functions that are either left- or right-
subsequential.

160 S. Bhaskar et al.

3.2 Subsequential Finite-State Transducers

A (left-)subsequential finite-state transducer (SFST) for an input alphabet Σ
and an output alphabet Γ is a tuple T = 〈Q, q0, Qf , δ, o, ω〉, where Q is the set
of states, q0 ∈ Q is the (unique) start state, Qf ⊆ Q is the set of final states,
δ : Q×Σ → Q is the transition function, o : Q×Σ → Γ ∗ is the output function,
and ω : Qf → Γ ∗ is the final function. We define the reflexive, transitive closure
of δ and o as δ∗ : Q × Σ∗ → Q and o∗ : Q × Σ∗ → Γ ∗ in the usual way.

The semantics of a SFST is a transduction t(T) defined as follows; let t =
t(T). For w ∈ Σ∗, t(w) = uv where o∗(q0, w) = u, and ω(qf) = v if δ∗(q0, w) = qf

for some qf ∈ Qf ; t(w) undefined otherwise.

0 : c 1 : d

a : a

a : bb

Fig. 1. A graph representation of the SFST for the function f from Example 1.

Theorem 1 ([16,19]). The left-subsequential functions are exactly those
describable by a SFST reading a string left-to-right. The right-subsequential func-
tions are exactly those describable by a SFST reading a string right-to-left and
reversing the output.

Theorem 2 ([16]). Both the left- and right-subsequential functions are a strict
subset of the rational functions.

For more properties of the subsequential functions and their application to
speech and language processing see [16].

4 Boolean Monadic Recursive Schemes

4.1 Syntax and Semantics

We identify strings in Σ� with structures of the form S = 〈D;σ1, σ2, ..., σn, p, s〉
where the domain D is the set of indices; for each character σ ∈ Σ��, we also
write σi for the unary relation σi ⊆ D selecting the indices of that character
(and we assume that the least and greatest indices contain the characters �

and �, respectively); p is the predecessor function on indices (fixing the least
index); and s is the successor function on indices (fixing the greatest index). As
an abbreviatory convention we use x− i for i applications of p to x, and likewise
x + i for i applications of s. (E.g. x − 2 is the same as p(p(x))).

Boolean monadic recursive schemes are simple programs that operate over
such string structures. They are a particular case of the recursive programs of
Moschovakis [17]. We briefly review the syntax and semantics of such recursive
programs in this particular signature, then impose (Definition 3) the pertinent
syntactic restriction to obtain BMRSs.

Recursive Schemes for Subsequential Functions 161

Data and Variables. We have two types of data: boolean values and string
indices. We have two countably infinite set of variables: (index) variables X,
which range over string indices, and recursive function names F. Each recur-
sive function name f ∈ F comes with an arity n ∈ N and an output type, either
“index” or “boolean”. Function names f of arity n and type s range over n-ary
functions from string indices to s.

Terms. Terms are given by the following grammar

T → x | T1 = T2 | � | ⊥ | f(T1, . . . , Tk) |
s(T1) | p(T1) | σ(T1) (σ ∈ Σ��) | if T1 then T2 else T3

Terms inherit “boolean” or “index” types inductively from their variables and
function names, and term formation is subject to the usual typing rules: for
f(T1, . . . , Tk), σ(T1), s(T1) or p(T1), the type of each TI must be “index”; for
T1 = T2, the types of T1 and T2 must be the same; for and “if T1 then T2 else T3,”
then the type of T1 must be “boolean,” and the types of T2 and T3 must agree.

Programs. A program consists of a tuple (f1, . . . , fk) of function names, plus k
lines of the form fi(x1i , . . . , xni

) = Ti, where Ti is a term whose type agrees with
the output type of fi, every variable that occurs in Ti is some xij , and every
function name that occurs in Ti is some fj . Syntactically, we will write

f1(�x1) = T1(�f,�x1)
...

fk(�xk) = Tk(�f,�xk)

to indicate that the above properties hold.

Semantics. We impose the usual least fixed-point semantics on recursive pro-
grams. Briefly; over a given string, terms denote functionals which are monotone
relative to extension relation on partial functions. We define the semantics of a
program to be the first coordinate f̄1 of the least fixed-point (f̄1, . . . , f̄k) of the
monotone operator (f, . . . , fk)
→ (T1(�f), . . . , Tk(�f)) [17].

Definition 3. A boolean monadic recursive scheme (BMRS) is a program in
which the arity of every function name in the program is one, and the output
type of every function name in the program is “boolean.”

Boolean monadic recursive schemes compute (partial) functions from string
indices to booleans, or equivalently (partial) subsets of indices. For example, the
following scheme detects exactly those indices with some preceding b.

f(x) = if � (p(x)) then ⊥ else if b(p(x)) then � else f(p(x)) (1)

162 S. Bhaskar et al.

4.2 Schemes as Definitions of String Transductions

We can define a string transduction t : Σ∗ → Γ ∗ via a BMRS interpretation as
follows. Fix a copy set C = {1, . . . , m} and for n = |Γ | consider a system T of
equationswith a set of recursive functions�f = (γ1

1 , . . . , γm
1 , γ1

2 , . . . , γm
n , f1, . . . , fk);

that is, with a function γc for each γ ∈ Γ and c ∈ C.
Following the definition of logical string transductions [9,10], the semantics

of T given an input model S with a universe D as follows. For each d ∈ D,
we output a copy dc of d if and only if there is exactly one γ ∈ Γ for c ∈ C
such that γc(x) ∈ T evaluates to � when x is mapped to d. We fix the order of
these output copies to be derived from C and the order on D induced by the
predecessor function p: for any two copies dc and de of a single index d, dc < de

iff c < e in the order on C, and for any copies dc
i and de

j for distinct input indices
di, dj , dc

i < de
j iff di < dj in the order on the indices in S. We fix the order

due to the relation between order-preserving logical transductions and one-tape
finite-state transducers [10].

This semantics of T thus defines a string transduction t = t(T) where for a
string w ∈ Σ∗ of length
, t(w) = u0u1...u�u�+1, where each ui = γ1...γr if and
only if for each γj , 1 ≤ j ≤ r, γj is the unique symbol in Γ for j ∈ C such
that γj

j (x) evaluates to � when x is assigned to i in the structure of �w�. An
example is given in Example 2.

To describe partial functions we can add to �f a special function def(x) and
specify the semantics of t to state that t(w) is defined iff def(x) evaluates to �
for element
 in w.

Example 2. The following is a BMRS definition of f from Example 1 using
strings models from �Σ∗

�. The copy set is C = {1, 2}.

a1(x) = if a(x) then c1(x) = if � (x) then b1(p(x)) else ⊥
if � (p(x)) then � else b1(p(x)) c2(x) = ⊥
else ⊥ d1(x) = if � (x) then a1(p(x)) else ⊥

a2(x) = ⊥ d2(x) = ⊥
b1(x) = if a(x) then a1(p(x)) else ⊥
b2(x) = if a(x) then a1(p(x)) else ⊥

The following shows how this maps aaaaa to abbabbad:

0 1 2 3 4 5 6
Input: � a a a a a �

Copy 1: a b a b a d
Copy 2: b b

We define two important variants of BMRS logic. For BMRS systems of
equations over a set of recursive function symbols f, we say a system of equations
T ∈ BMRSp iff it contains no terms of the form s(T1) for any term T1, and
likewise T ∈ BMRSs iff it contains no terms of the form p(T1) for any term
T1. We define these as they fix the ‘direction’ of the recursion, which will be
important in connecting them to the left- and right-subsequential functions.

Recursive Schemes for Subsequential Functions 163

4.3 Convergence and Well-Definedness

We only want to consider BMRS that compute well-defined transductions.
Therefore, we require that for each string w ∈ Σ∗, each index i of w, and each
c ∈ C and γ ∈ Γ , every function γc(i) converges, and furthermore for each c,
there is a unique γ such that γc(i) = �.

This is of course a semantic property, which is not an issue as far as the
following proofs of extensional equivalence are concerned. However, there is an
effective way of transforming a BMRS T into a BMRS T ′ such that T ′ computes a
well-defined transduction, and agrees with T on inputs where T is well-defined.2

Therefore, considering partially-defined schemata do not increase the computa-
tional power in any appreciable way.

5 Equivalence

5.1 Subsequential Functions Are BMRS-Definable

For a left-subsequential function f : Σ∗ → Γ ∗, we can define an equivalent
function in BMRSp over models of strings in �Σ∗

�. We do this by giving a
construction of its SFST.

For an SFST T = 〈Q, q0, Qf , δ, o, ω〉, where Q is the set of k states, we
construct a BMRSp system of equations T over the set of recursive functions
�f = (γ1

1 , ..., γm
1 , γ1

2 , ..., γm
n , q0, . . . , qk−1), where n = |Γ | and m is the maximum

length of any output of o or ω. The definitions in T are fixed as follows. First,
we define q0, . . . , qk−1 to parallel the transition function δ. For each state q ∈ Q
we define its corresponding recursive function symbol q as

q(x) = if q1(p(x)) then σ1(x)
else if q2(p(x)) then σ2(x)
else ...
else if q�(p(x)) then σ�(x)
else ⊥

(2)

where q1, ..., q� is the set of states reaching q; that is, the set of states such
that for each qi, δ(qi, σi) = q. For the start state we instead set the final ‘else’
statement to x is the minimum element in the string; i.e. that �(p(x)).

We then define the set of functions γ1
1 , ..., γm

1 , γ1
2 , ..., γm

n representing the sym-
bols in the output strings to parallel the output and final functions o and ω:

γc(x) = if q1(x) then σ1(x)
else if q2(x) then σ2(x)
else ...
else if q�(x) then σn(x) else ⊥

(3)

2 For example, we can augment a boolean monadic recursive scheme with a “clock”
that returns some default value if the program does not terminate within a given
polynomial number of steps. (For each BMRS, there is some polynomial which
bounds the number of steps in each terminating computation). Using a large “switch
statement,” we can ensure that exactly one character gets printed.

164 S. Bhaskar et al.

for all states qi whose output on σi has γ as the cth symbol. That is, for each
qi either o(qi, σi) = u1γu2 or, if σi = �, that ω(qi) = u1γu2, where |u1| = c − 1.
If there are no such states we set γc(x) = ⊥.

Finally, in cases when Qf � Q we can, via the definition of the semantics
of BMRS transductions for partial functions, we set the equation for the special
function def(x) determining when the function is defined as

def(x) = if q1(x) then �
else if q2(x) then �
else ...
else if q�(x) then � else ⊥

(4)

for qi ∈ Qf . When Qf = Q, we set def(x) = �.
An example definition modeling the SFST in Fig. 1, and an example compu-

tation for an input string aaaa is given in Table 1.

Table 1. A BMRS transduction for the SFST in Fig. 1 (left) and an example derivation
(right). The rows for a2(x), c2(x), and d2(x) have been omitted.

def(x) = �
q0(x) = if q1(p(x)) then a(x) else � (p(x))

q1(x) = if q0(p(x)) then a(x) else ⊥
a1(x) = if q0(x) then a(x) else ⊥
a2(x) = ⊥
b1(x) = if q1(x) then a(x) else ⊥
b2(x) = if q1(x) then a(x) else ⊥
c1(x) = if q0(x) then � (x) else ⊥
c2(x) = ⊥
d1(x) = if q1(x) then � (x) else ⊥
d2(x) = ⊥

Input: � a a a a �

0 1 2 3 4 5

q0(x) ⊥ � ⊥ � ⊥ �
q1(x) ⊥ ⊥ � ⊥ � ⊥
a1(x) ⊥ � ⊥ � ⊥ ⊥
b1(x) ⊥ ⊥ � ⊥ � ⊥
b2(x) ⊥ ⊥ � ⊥ � ⊥
c1(x) ⊥ ⊥ ⊥ ⊥ ⊥ �
d1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Output:

Copy 1 : a b a b c

Copy 2 : b b

Lemma 1. Any left-subsequential function has some BMRSp definition.

Proof. It is sufficient to show that the above construction creates from any SFST
T a BMRSp system of equations T whose transduction t(T) = t(T).

Consider any string in w = σ1...σn ∈ Σ∗ of length n; we refer to the positions
in �w� as their indices 0, 1, ..., n+1. From the construction q0(x) is always true
of position 1; likewise by definition T is in state q0 at position 1. By definition
(2) for T , whenever T is in state qi, reads position i, and δ(qi, σi) = qj , then
qj(x) in T evaluates to � for i+1, because ‘if qi(x) then σi(x)’ is in the definition
for qj(x). By induction on δ∗ it is thus the case that whenever T is in state qi

at position i, position i satisfies qi(x) in T .

Recursive Schemes for Subsequential Functions 165

Let o(qi, σi) = u = γ1...γm for any position i in w. By (3), for each γj there is
a function γj

j (x) whose definition includes ‘if qi(x) then σi(x)’. Because i satisfies
qi(x) in T , then each jth copy of i will be γj , and so the output of i under T
will also be γ1...γj = u. This also holds for the output function ω.

Thus for any w, t(T)(w) = w′ implies that t(T)(w) = w′, and it is not hard
to show that the reverse holds. ��

The following lemma shows that the same is true for right-subsequential
functions and BMRSs, which follows by the same logic as for Lemma 1.

Lemma 2. Any right-subsequential function has some BMRSs definition.

5.2 BMRSp and BMRSs-Definable String Functions Are
Subsequential

To show the converse, we show that for any well-defined BMRSp transduction T ,
for f = t(T), the sets {fx | x ∈ Σ∗} are finite. For a copy set C = {1, ...,m} and
for n = |Γ | consider a system T of equations with a set of recursive functions

�f = (γ1
1 , ..., γm

1 , γ1
2 , ..., γm

n , f1, . . . , fk);

let F be the set of function names appearing in �f, and let
 be the maximum
number such that x −
 appears as a term in T .

First, define sats(w, i) = {f ∈ T | f(i) = � in w} to identify the functions
in T true in w at index i. The following fact will be used throughout this proof.

Remark 1. For any f ∈ F and string w ∈ �Σ∗
�, the value of f(i) can be calcu-

lated from the sets F�, F�−1, ..., F1, where for each 1 ≤ j ≤
, Fj = sats(w, i−j).

Proof. Let f(x) = Tf be the equation for f in T . By the definition of T ,
 is the
maximum number of times the p function can be applied to a variable in any
term in T . Thus, for any function g ∈ F , Tf can only contain g(x−h) for at most
some h ≤
. Thus, in terms of the semantics of f(i) for some index i in w, the
value of g(i−h) can be determined by whether g is in Fh. The remainder of the
semantics of f(i) then follows from the definition of the semantics of BMRSs. ��

The following states that sats(w, i) holds no matter how w is extended. This
follows directly from Remark 1.

Remark 2. For any w, v ∈ �Σ∗
�, sats(w, i) = sats(wv, i).

Recall that among the functions in F there is a function γc ∈ F for each γ ∈ Γ
and c ∈ C. Recall also that the semantics of BMRS transductions produces an
output string ui at each input index i such that γ is the cth position in ui if
and only if γc(i) evaluates to �. (The stipulation that there is only one such γc

ensures that only a single output string is produced for each index). To refer to
this string we define out(w, i) = γ1γ2...γh where each γj ∈ sats(w, i).

166 S. Bhaskar et al.

Then let outT(w) = out(w, 1) ·out(w, 2) · ... ·out(w, last(w)), where last(w)
indicates the final index in w.

We can now connect these facts to the string function f = t(T) described
by T . Recall the technicality that the domain of f is Σ∗ but T is defined over
string models of the form �Σ∗

�. First, the above allows us to make the following
assertion about the relationship between outT and fp.

Remark 3. outT(�w) � fp(w).

Proof. This follows directly from Remark 2: the output at each index at w will be
constant no matter how w is extended. Thus, fp(w) at least includes outT (�w).

The final piece is to define when two strings w and v are equivalent with
respect to T , which we then show that they are equivalent with respect to f ;
that is, that fw = fv. Intuitively, w and v are equivalent if their final
 indices
satisfy exactly the same functions in F . Formally,

w ≡T v iff for all 0 ≤ i <
, sats(�w, last(�w) − i) = sats(�v, last(�v) − i)

Remark 4. The partition on Σ∗ induced by ≡T is finite.

Proof. For any sequence of
 indices, there are at most (2|F |)� possible sequences
of subsets of F that they satisfy.

The following states the key implication that equivalence with respect to T
implies equivalence with respect to f .

Lemma 3. For any two strings w, v ∈ Σ∗, w ≡T v implies fw = fv.

Proof. First, for any σ ∈ Σ�, out(�wσ, last(�wσ)) = out(�vσ, last(�vσ)).
In other words, the string output at any additional σ following w and v is the
same. This follows from Remark 1 and the fact that the final
 indices in �w
and �v satisfy the same sets of functions in F .

For any string u ∈ Σ∗, then, by induction on the length of u� it is clear that
f(wu) = outT (�w)u′ and f(vu) = outT (�v)u′ for the same u′ ∈ Γ ∗. From this
and Remark 3, we know that fp(w) = outT (�w)u1 and fp(v) = outT (�v)u1

for the same u1 ∈ Γ ∗. Clearly then for any u ∈ Σ∗, f(wu) = fp(w)u′ and
f(vu) = fp(v)u′ and so by the definition of fw and fv, fw = fv.

Lemma 4. For any BMRSp transduction T , the function f = t(T) is a left-
subsequential function.

Proof. The set {fx | x ∈ Σ∗} is finite: from Remark 4, ≡T induces a finite
partition on Σ∗, and by Lemma 3, for any two strings w, v in the same block in
this partition, fw = fv. Thus there can only be finitely many such functions fx.

We omit the proof for the following parallel lemma for BMRSs.

Lemma 5. For any BMRSs transduction T , the function f = t(T) is a right-
subsequential function.

Recursive Schemes for Subsequential Functions 167

5.3 Main Theorem

We now can give the central result of the paper.

Theorem 3. BMRSp (respectively, BMRSs) transductions are equivalent to the
left-subsequential (resp., right-subsequential) functions.

Proof. From Lemmas 1, 2, 4, and 5.

6 Discussion

The above result provides the first logical characterization of the subsequen-
tial functions. A consequence of this is we can get a better understanding of
subclasses of the subsequential functions. We sketch two here.

First, the input strictly local (ISL) functions are a strict subset of the subse-
quential class for which the output string is computed by referencing a bounded
window in the input string only [2,3]. Briefly, a function is ISL iff there is some
number k such that for any two strings w and v that share a k − 1 suffix,
fw = fv. This class has attractive learnability properties [3] and empirically is
relevant to processes in natural language phonology [5]. We omit a proof, but
it is almost certainly the case that a BMRS system of equations T corresponds
to an ISL function iff for each function symbol f ∈ �f, the definition of f con-
tains no recursive function calls. This is further interesting in that it suggests
that any left-subsequential function f has a ISL counterpart whose input alpha-
bet subsumes the recursive function symbols in the BMRSp definition of f .3

This is strongly reminiscent of the old result that any regular language is the
homomorphism of a strictly 2-local language [15].

A sister class to the ISL functions is the output strictly local (OSL) functions,
which are those subsequential functions which compute the output string by
referencing the current input and a bounded window in the output [2,4]. They
are divided into two classes the left- and right-OSL functions depending on
whether the string is read from the left or right. We conjecture that a BMRS
system of equations T corresponds to an OSL function iff for each function
fi ∈ f corresponding to γc ∈ Γ , for any non recursively-defined σ(t) (σ ∈ Σ),
then t = x. BMRSp systems of equations of this type correspond to left-OSL
functions, while BMRSs systems of this type correspond to right-OSL functions.

Finally, this paper has limited its discussion to BMRS transductions restricted
to either p or s, so an obvious open question is to what functions are described
by BMRS transductions without this restriction. As any rational function is the
composition of a right- and left-subsequential function [8], it is clear that BMRS
transductions in general are strictly more expressive than either the BMRSp and
BMRSs transductions. Based on this, we tentatively conjecture that the BMRS
transductions in general are equivalent to the rational functions, but this claim
requires more rigorous investigation than can be done here.

3 We thank Jeff Heinz for pointing this out.

168 S. Bhaskar et al.

7 Conclusion

This paper has given the first logical characterization of the subsequential
functions. As with previous work connecting logical, language-theoretic, and
automata-theoretic characterizations of formal languages and functions, we are
confident this will further study of the connections between subclasses of the
subsequential functions, and subclasses of the rational functions in general.

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Log.
Grundl. Mathmatik 6, 66–92 (1960)

2. Chandlee, J.: Strictly Local Phonological Processes. Ph.D. thesis, University of
Delaware (2014)

3. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. Assoc. Comput. Linguist. 2, 491–503 (2014)

4. Chandlee, J., Eyraud, R., Heinz, J.: Output strictly local functions. In: Kornai,
A., Kuhlmann, M. (eds.) Proceedings of the 14th Meeting on the Mathematics of
Language (MoL 2014), Chicago, IL, pp. 52–63, July 2015

5. Chandlee, J., Heinz, J.: Strictly locality and phonological maps. Linguist. Inq. 49,
23–60 (2018)

6. Chandlee, J., Jardine, A.: Autosegmental input-strictly local functions. Trans.
Assoc. Comput. Linguist. 7, 157–168 (2019)

7. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–51 (1961)

8. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. Res. Dev. 9, 47–68 (1965)

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2, 216–254 (2001)

10. Filiot, E.: Logic-automata connections for transformations. In: Banerjee, M.,
Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 30–57. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-45824-2 3

11. Filiot, E., Reynier, P.: Transducers, logic, and algebra for functions of finite words.
ACM SIGLOG News 3(3), 4–19 (2016)

12. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology. Phonetics and Phonology, pp. 126–195.
De Gruyter Mouton, Berlin (2018). Chapter 5

13. Heinz, J., Lai, R.: Vowel harmony and subsequentiality. In: Kornai, A., Kuhlmann,
M. (eds.) Proceedings of the 13th Meeting on Mathematics of Language, Sofia,
Bulgaria, pp. 52–63 (2013)

14. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

15. Medvedev, Y.T.: On the class of events representable in a finite automaton. In:
Moore, E.F. (ed.) Sequential Machines - Selected Papers, pp. 215–227. Addison-
Wesley, New York (1964)

16. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

17. Moschovakis, Y.N.: Abstract Recursion and Intrinsic Complexity. Lecture Notes in
Logic, vol. 48. Cambridge University Press, Cambridge (2019)

https://doi.org/10.1007/978-3-662-45824-2_3

Recursive Schemes for Subsequential Functions 169

18. Oncina, J., Garćıa, P., Vidal, E.: Learning subsequential transducers for pattern
recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 15, 448–458 (1993)

19. Schützenberger, M.P.: Sur une variante des fonctions séquentielles. Theor. Comput.
Sci. 4, 47–57 (1977)

20. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25, 360–376 (1982)

21. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Dokl. Akad.
Nauk SSSR 140, 326–329 (1961)

Expressiveness and Conciseness of Timed
Automata for the Verification

of Stochastic Models

Susanna Donatelli1(B) and Serge Haddad2

1 Dipartimento di Informatica, Università di Torino, Turin, Italy
donatelli@di.unito.it

2 LSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay, Cachan, France
haddad@lsv.fr

Abstract. Timed Automata are a well-known formalism for specifying
timed behaviours. In this paper we are concerned with Timed Automata
for the specification of timed behaviour of Continuous Time Markov
Chains (CTMC), as used in the stochastic temporal logic CSLTA. A timed
path formula of CSLTA is specified by a Deterministic Timed Automaton
(DTA) that features two kinds of transitions: synchronizing transitions
(triggered by CTMC transitions) and autonomous transitions (triggered
when a clock reaches a given threshold). Other definitions of CSLTA are
based on DTAs that do not include autonomous transitions. This raises
the natural question: do autonomous transitions enhance expressiveness
and/or conciseness of DTAs? We prove that this is the case and we pro-
vide a syntactical characterization of DTAs for which autonomous tran-
sitions do not add expressive power, but allow one to define exponentially
more concise DTAs.

1 Introduction

Stochastic logics like CSL [5] allow one to express assertions about the prob-
ability of timed executions of Continuous Time Markov Chains (CTMC). In
CSL, model executions (typically called “paths”) are specified by two operators:
timed neXt and timed Until. CSL has been extended in several ways to include
action names (name of the events in the paths) and path properties specified
using regular expressions leading to asCSL [6], or rewards, leading to CSRL
[7]. Note that asCSL can specify rather complex path behaviour, expressed by
regular expressions, but the timing requirements cannot be mixed within these
expressions. GCSRL [14] is an extension of CSRL for model checking of CTMC
generated by Generalized Stochastic Petri nets (GSPN) [1] taking into account
both stochastic and immediate events.

Automata with time constraints have been used to specify path-based perfor-
mance indices [16] for Stochastic Activity Networks [15], while hybrid automata
have been used to define rather complex forms of passage of time [2] for GSPN,
as well as generic performance properties [9] that are estimated using simu-
lation. The use of a Deterministic Timed Automaton (DTA) in the stochastic
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 170–183, 2020.
https://doi.org/10.1007/978-3-030-40608-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_11&domain=pdf
http://orcid.org/0000-0002-0911-8457
http://orcid.org/0000-0002-1759-1201
https://doi.org/10.1007/978-3-030-40608-0_11

Timed Automata for the Verification of Stochastic Models 171

logic CSLTA [12] allows to specify paths in terms of state propositions and action
names associated to CTMC states and transitions (respectively) and in terms of
the timed behaviour of portions of the paths. The CTMC actions are the input
symbols for the DTA, and two types of transitions are distinguished: synchro-
nizing transitions that read the input symbols of the CTMC, and autonomous
transitions, that are taken by the DTA when the clock reaches some threshold,
with priority over synchronizing ones. The determinism requirement ensures that
the synchronized product of the DTA and the CTMC is still a stochastic process
as all sources of non-determinism are eliminated. CSLTA strictly includes [12]
CSL and asCSL. Various extensions of CSLTA have been presented in the lit-
erature. DTA with multiple clocks have been used for defining an extension of
CSLTA [10,13] but autonomous transitions are not allowed. In this paper we con-
centrate on single-clock CSLTA with autonomous transitions, as in the original
definition of CSLTA. Indeed the single-clock limitation is a necessary requirement
to reduce the CSLTA model-checking problem to the (steady-state) solution of a
Markov Regenerative Process, which is the largest class of stochastic processes
for which we can compute an exact numerical solution, supported by efficient
solution tools [3,4]. The single-clock setting allows also to investigate whether
the definition of CSLTA in [10,13], once limited to a single clock, is equivalent
to the original definition of CSLTA (introduced in [12]).

Paper Contributions. This paper addresses two research questions. The first
one (Sect. 3) is whether the presence of autonomous transitions enhances the
expressiveness of DTAs both in terms of timed languages (qualitative compar-
ison) and in terms of probability of accepting the random path of a CTMC
(quantitative comparison). We establish that autonomous transitions do enhance
expressiveness. Given that eliminating autonomous transitions from a DTA is not
always feasible, the second question (Sect. 4) is which are the uses of autonomous
transitions that can be emulated by DTA w/o autonomous transitions. We have
identified a hierarchy of subclasses of DTA in which the presence of autonomous
transitions does not extend expressiveness (and autonomous transitions can
therefore be eliminated), but that exponentially improves the DTA size. Only
the most interesting proofs and properties have been included in this paper.
Missing proofs and the full set of properties can be found in [11].

2 Context and Definitions

Although our motivations rely on the acceptance of paths of CTMCs featuring
atomic propositions that label states and actions that label transitions, we set
our work in the general context of acceptance of timed paths, where the i ` 1-th
state of a timed path is identified by vi (we count indices from 0), the boolean
evaluation of the atomic propositions in that state. δi indicates a delay, or a
sojourn time in state i, and τi indicates the time elapsed until exiting state i. A
timed path leaves state vi with action ai after a sojourn time in the state equal
to δi. The elapsed time can be computed as: τi “ δi ` τi−1, with τ−1 “ 0.

172 S. Donatelli and S. Haddad

Definition 1 (Timed Path). Given a set AP of atomic propositions and a
set Act of actions, a timed (infinite) path is a sequence (v0, δ0)

a0−→ (v1, δ1)
a1−→

· · · (vi, δi)
ai−→ · · · such that for all i P N : vi P {J, K}AP , ai P Act , δi P R�0.

Example 1 (Timed Path). In writing timed paths we indicate functions vi as
the set of elements in AP that evaluate to J. Given AP “ {p, q} and Act “
{a, b, c}, a timed path ({p, q}, 0.5) a−→ ({q}, 1.3) b−→ · · · , is interpreted as the
system staying in a state that satisfies p ^ q in the time interval [0, 0.5[, at time
0.5 action a takes place and the system moves to a state that satisfies ¬p ^ q,
stays there for 1.3 time units and then action b takes place (at the global time
τ “ 1.8).

DTA definition includes a clock x and two types of constraints: boundary ones,
BoundC = {x “ α, α P N} and inner ones, InC = {α �� x ��′ β}, with
��, ��′P {ă,�, }, α P N, and β P N Y {8}. In the sequel, C is the largest time
constant occurring in a DTA. Before formally defining the syntax and semantic
of a DTA (Definitions 2, 3 and 4), let us introduce its main ingredients. During
the execution of a stochastic discrete event system (e.g. a Markov chain) that
can be represented by a timed path, one manages (1) an index i of the timed
path (2) a location, say �, is matched with the current state of the path indexed
by i, and (3) a delay δ � δi until the next state change from i to i ` 1. The
function Λ mapping the set of locations to the set of boolean expressions over
atomic propositions, BAP , restricts the possible matchings since the valuation vi

must satisfy the formula Λ(�). This matching evolves in three ways depending
on the delay δ, elapsed until the next transition (vi, δi)

ai−→ (vi`1, δi`1) of the
path.

– Either after some delay δ′ � δ, there is an outgoing autonomous transition
from � whose boundary condition (say x “ α) is satisfied and such that
vi fulfills Λ(�′) where �′ is the target location of the transition. Then �′ is
matched with i, delay δ becomes δ− δ′, the clock x is increased by δ′ and the
index i is unchanged.

– Else if there is a synchronizing transition outgoing from � such that (1) after
time δ has elapsed its inner condition (say α �� x ��′ β) is satisfied, (2) the
action ai belongs to the subset of actions associated with the synchronizing
transition, and (3) vi`1 satisfies Λ(�′) where �′ is the target location of the
transition. Then �′ is matched with i ` 1, the new delay δ is set to δi`1, the
clock x is either increased by δ or reset depending on the transition, and the
index becomes i ` 1.

– Otherwise there is no possible matching and the timed path is rejected by
the DTA.

In the first two cases above, when �′ “ �f , the final location, the timed
path is accepted by the DTA whatever its future. This is ensured due to
Λ(�f) “ J and the existence of the unique (looping) synchronizing transition
from �f with no timing and action conditions. Observe that the synchroniza-
tion may last forever without visiting �f : in this case the timed path is rejected.

Timed Automata for the Verification of Stochastic Models 173

Furthermore the synchronization of the stochastic system with the DTA should
not introduce non determinism. So (1) the formulas associated with the initial
locations are mutually exclusive, (2) synchronizing transitions outgoing from
the same location are never simultaneously enabled, (3) autonomous transi-
tions outgoing from the same location are never simultaneously enabled, and
(4) autonomous transitions have priority over synchronizing transitions.

Definition 2 (DTA). A single-clock Deterministic Timed Automaton with
autonomous transitions is defined by a tuple A “ 〈L,Λ,L0, �f ,AP ,Synch,Aut〉
where L is a finite set of locations, L0 Ď L is the set of initial locations, �f P L is
the final location, Λ : L → BAP is a function that assigns to each location a boolean
expression over the set of propositions AP, Synch Ď L ˆ InC ˆ 2Actˆ{

∅, ↓ }ˆL

is the set of synchronizing transitions, and Aut Ď L ˆ BoundC ˆ 7ˆ{
∅, ↓}ˆL is

the set of autonomous transitions, with E “ Synch Y Aut. �
γ,B,r−−−→ �′ denotes the

transition (�, γ,B, r, �′).
Furthermore A fulfills the following conditions.

– Initial determinism. ∀�, �′ P L0, Λ(l) ^ Λ(l′) ⇔ K.
– Determinism on actions. ∀B,B′ Ď Act s.t . B ∩ B′ 	“ ∅,∀�, �′, �′′ P L,

if �
γ,B,r−−−→ �′ and �

γ′,B′,r′
−−−−−→ �′′ then Λ(�′) ^ Λ(�′′) ⇔ K or γ ^ γ′ ⇔ K.

– Determinism on autonomous transitions. ∀�, �′, �′′ P L,

if �
x“α,7,r−−−−−→ �′ and �

x“α′,7,r′
−−−−−−→ �′′ then Λ(�′) ^ Λ(�′′) ⇔ K or α 	“ α′.

– Conditions on the final location �f . Λ(�f) “ J and (�f , J,Act , ∅, �f) P
Synch.

Given a clock constraint γ and a clock valuation x̄, x̄ |“ γ denotes the satisfac-
tion of γ by x̄. Similarly given a boolean formula ϕ and a valuation of atomic
propositions v, v |“ ϕ denotes the satisfaction of ϕ by v.

p
�0

p
�1

p
�2

p
q

�3 �f Act G B N

x 1; a1

b

1c

2d

x 3

x 1;G

2

x 1

x 1;N

x 1

2

Fig. 1. Some examples of DTA.

174 S. Donatelli and S. Haddad

Example 2 (DTA). Figure 1, left, shows a DTA with five locations: �0, �1, �2, �3
and �f . There is a single initial location, �0. Autonomous transitions are depicted
as dotted arcs, while synchronizing are depicted as solid arcs. For readability we
omit: (1) the symbol 7 on autonomous transitions; (2) the set r when there is
no reset; (3) Act if a transition accepts all actions; (4) trivially true guards (like
x � 0) and boolean conditions; (5) the name x of the clock in x “ α guards.

As a result an autonomous transition is depicted as either l
α,↓−−→ l′, as between

�1 and �0, or as l
α−→ l′, as between �0 and �2. We informally write “a transition

with reset” or “a transition without reset” to indicate the condition r “ ↓ and
r “ ∅ respectively. The arc from �0 to �1 represents a synchronizing transition
with a clock reset. The arc from �0 to �2 represents an autonomous transition to
be taken when the clock is equal to 1, with no clock reset. Boolean expression
of locations are: p, associated with �0, �1, �2 and (¬p ^ q), associated with �3.

Let us describe a possible run of this DTA. At time 0.5, it goes from �0 to �1
by performing action a and resets x. Then at time 1.5, it autonomously comes
back to location �0 and clock x is again reset. Then it autonomously goes to �2
at time 2.5 and later to �f at time 3.5. While irrelevant, x has current value 2.

Definition 3 (Run of A). A run of a DTA A is a sequence: (�0, v0, x̄0, δ0)
γ0,B0,r0−−−−−→ (�1, v1, x̄1, δ1) · · · (�i, vi, x̄i, δi)

γi,Bi,ri−−−−−→ · · · such that for all i P N: �i P
L, l0 P L0, vi P {J, K}AP , δi P R�0 :

�i
γi,Bi,ri−−−−−→ �i`1 P E, vi |“ Λ(�i), x̄i ` δi |“ γi, x̄i`1 “

{
0 if r “ ↓
x̄i ` δi otherwise

To enforce priority of autonomous transitions,

let x̄7 “ min{α | ∃�i
x“α,7,r−−−−−→ � P E ^ x̄i � α ^ vi |“ Λ(�)} (min(∅) “ 8)

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi ă x7.

A run is therefore a path in the DTA where the visited locations are coupled
with a valuation of propositions, a clock value and a delay in a consistent way
w.r.t. the DTA.

Example 3 (DTA run). Given that v is described in terms of the subset of AP
that evaluate to J, a run for the DTA of Fig. 1, left, is: 0:(�0, {p}, x̄0 “ 0.0, δ0 “
0.2)

x�1,{a},↓−−−−−−→ 1:(�1, {p, q}, 0.0, 1.0)
x“1,7,↓−−−−→ 2:(�0, {p, q}, 0.0, 1.0)

x“1,7,∅−−−−−→
3:(�2, {p}, 1.0, 1.0)

x“2,7,∅−−−−−→ 4:(�f , {p}, 2.0, 3.1)
x�0,Act,∅−−−−−−−→ 5:(�f , {q}, 5.1, 0.5)

x�0,Act,∅−−−−−−−→ 6:(�f , {q}, 5.6, δ) · · ·
A timed path σ is recognized by a run ρ of A such that the occurrences of the

actions in σ are matched by the synchronizing transitions in ρ. This requires to
define a mapping to match the points in the paths in which synchronizing tran-
sitions take place. This can be done by identifying a strictly increasing mapping
for the indices of the timed path σ to the subset of the indices of the run ρ that
correspond to a synchronizing transition. Note that, due to determinism, if such
a run exists, it is unique.

Timed Automata for the Verification of Stochastic Models 175

Definition 4 (Path recognized by A and L(A)). Let σ “ (v0, δ0)
a0−→

(v1, δ1)
a1−→ · · · (vi, δi)

ai−→ · · · be a timed path and ρ “ (�0, v′
0, x̄0, δ

′
0)

γ0,B0,r0−−−−−→
· · · (�i, v

′
i, x̄i, δ

′
i)

γi,Bi,ri−−−−−→ · · · be a run of a DTA A. Then σ is recognized by ρ if
there is a strictly increasing mapping κ : N → N (extended to κ(−1) “ −1), such
that for all i P N

– ai P Bκ(i) and δi “ ∑
κ(i−1)ăh�κ(i) δ′h

– ∀h, κ(i − 1) ă h � κ(i) ⇒ v′
h “ vi and h 	P κ(N) ⇒ Bh “ 7

A timed path σ is accepted by A if σ is recognized by a run ρ and ρ visits �f .
The language L(A) of A is the set of the timed paths σ accepted by A.

Example 4 (Path recognized by a run). A timed path σ “ 0:(p, 0.2) a−→ 1:
({p, q}, 6.1) b−→ 2:(q, 0.5) d−→ 3 ::(p, δ) · · · is recognized by the run of Example 3
with mapping κ: κ(0) “ 0, κ(1) “ 4, κ(2) “ 5, κ(3) “ 6, The run visits �f

and the path is accepted.

We consider timed paths generated by a CTMC with state properties and
actions.

Definition 5 (CTMC representation). A continuous time Markov chain
with state and action labels is represented by a tuple M “ 〈S, s0,Act ,AP ,
lab,R〉, where S is a finite set of states, s0 P S the initial state, Act is a finite set
of action names, AP is a finite set of atomic propositions, lab : S → {J, K}AP

is a state-labeling function that assigns to each state s a valuation of the atomic
propositions, R Ď SˆActˆS → R�0 is a rate function. If λ “ R(s, a, s′)^λ > 0,

we write s
a,λ−−→ s′.

We assume that each state has at least one successor: for all s P S, exists
a P Act, s′ P S such that R(s, a, s′) > 0. CTMC executions lead to timed
paths, and a CTMC is a generator of a random path. We define by PrM(A) the
probability that the random path of M is accepted by A (probability measure
of all paths accepted by A as in [8]).

3 Autonomous Transitions and Expressiveness

We indicate with A the whole family of automata of Definition 2 and with A
na the

subclass of automata with no autonomous transitions: A
na “ {A P A | Aut(A) “

∅} The comparison of the expressive power of A and A
na is both qualitative

(based on the timed path language) and quantitative (based on accepting prob-
abilities).

Definition 6. Let A1 and A2 be families of DTA. Then:

– A2 is at least as expressive as A1 w.r.t. language, denoted A1 ăL A2,
if for all A1 P A1 there exists A2 P A2 such that L(A2) “ L(A1);

176 S. Donatelli and S. Haddad

– A2 is at least as expressive as A1 w.r.t. Markov chains, denoted A1 ăM A2,
if for all A1 P A1 there exists A2 P A2

such that for all Markov chains M, PrM(A2) “ PrM(A1).

As usual, we derive other relations between such families. A1 and A2 are
equally expressive w.r.t. language (resp. Markov chains), denoted A1 „L A2

(resp. A1 „M A2) if A1 ăL A2 and A2 ăL A1 (resp. A1 ăM A2 and A2 ăM A1).
A2 is strictly more expressive than A1 w.r.t. language (resp. Markov chains),
denoted A1 ňL A2 (resp. A1 ňM A2) if A1 ăL A2 and not A2 ăL A1 (resp.
A1 ăM A2 and not A2 ăM A1).

Observe that by definition A1 ăL A2 implies A1 ăM A2. We now establish
that autonomous resetting transitions extend the expressive power of DTA w.r.t.
Markov chains (Ana ňM A). The weaker result w.r.t. language (Ana ňL A) is
shown in [11].

Theorem 1. There exists A P A such that for all A′ P A
na there exists a Markov

chain M with PrM(A′) 	“ PrM(A).

Before proving this theorem, we prove some intermediate properties. We first
establish a kind of 0-1 law for DTA in A

na and Markov chains. In order to obtain
this intermediate result, we introduce some objects. Simple chains are Markov
chains with a single action, no atomic proposition (or equivalently with the same
valuation for all states) and such that each state s has a single successor state
sc(s) reached with rate λs. W.r.t. the acceptance probability of simple chains, we
can consider DTAs without actions and atomic propositions. Moreover we add
to each DTA an additional garbage location and we split the transitions, so that,
w.l.o.g. one can assume that for each location � of a DTA in A

na, there are C `1
outgoing transitions: {� i−1�xăi,ri−−−−−−−→ sci(�) | 1 � i � C} Y {� x�C,rC`1−−−−−−→ scC`1(�)}
where C is the maximal constant occurring in the DTA. The shape of the guards
is not a restriction in the context of Markov chains. For all clock valuations x̄,
the clock valuation sc(�, x̄) is defined by:

– Let i “ min(j | j P {1, . . . , C} ^ x̄ ă j) with min(∅) “ C ` 1;
– If ri “↓ then sc(�, x̄) “ 0 else sc(�, x̄) “ x̄.

Observe the difference between sci, defined at the syntactical level, which maps
a location to its ith successor and sc, defined at the semantical level, which maps
a pair consisting in a location and a clock valuation to the new clock valuation
obtained by firing the single transition enabled w.r.t. the clock valuation.

We also define the region (multi-)graph GA “ (V,E) of such a DTA A as
follows.

– V , the set of vertices, is defined by V “ {(�, i) | � P L ^ 0 � i � C ` 1};
– Let (�, i) be a vertex, then for all j s.t. max(i, 1) � j � C ` 1, there is a

transition from (�, i) to (scj(�), j′) labelled by j with j′ “ 0 if rj “↓ and
j′ “ j otherwise.

Timed Automata for the Verification of Stochastic Models 177

One interprets GA as follows. The vertex (�, 0) corresponds to the region defined
by location � with clock valuation 0. The vertex (�, 1) corresponds to the region
defined by location � with clock valuation in]0, 1[. The vertex (�, i) for 1 ă i � C
corresponds to the region defined by location � with clock valuation in [i− 1, i[.
The vertex (�, C ` 1) corresponds to the region defined by location � with clock
valuation in [C, 8[. The transition outgoing from (�, i) labelled by j corresponds
to the combination of time elapsing to enter the region (�, j) followed by an
action of the Markov chain, leading to either (�′, j) or to (�′, 0), in case of reset.

Given s a state of a Markov chain, � a location of DTA, and x̄ a clock
valuation, p(s, �, x̄) denotes the probability of acceptance when the Markov chain
starts in s and the DTA starts in � with clock valuation x̄. In particular for a
DTA A applied to a Markov chain M, PrM(A) “ p(s0, �0, 0) where s0 is the
initial state of M and �0 is the initial location of A such that lab(s0) |“ Λ(�0).

Lemma 1. Let s be a state of a simple Markov chain M and � be a location of
a DTA in A

na. Then the function that maps t to p(s, �, t) is continuous and for
i − 1 � t � i � C it is equal to:

∫ i

t

λse−λs(τ−t)p(sc(s), sci(�), sc(�, τ))dτ `
∫ 8

C

λse−λs(τ−t)p(sc(s), scC`1(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1
λse−λs(τ−t)p(sc(s), scj(�), sc(�, τ))dτ

(1)

The above formula represents the probability of acceptance when the Markov
chain starts in s and the DTA starts in � with clock valuation t, with i−1 � t �
i � C, therefore within the region (l, i). This probability is computed in terms
of the probability of having the next CTMC transition within the region (l, i)
itself, or any later region (l, j), multiplied by the probability of acceptance from
the state reached by accepting the CTMC transition.

Proof. Define pn(s, �, t) as the probability that the run associated with a random
timed path of M starting in s when the DTA starts in � with clock valuation
t reaches location �f after performing n actions. Then for � 	“ �f , p0(s, �, t) “ 0
and p0(s, �f , t) “ 1. Assume that pn(s, �, t) is continuous (and so measurable)
for all s and �. Then the following equation holds for i − 1 � t � i � C:

pn`1(s, �, t) “
∫ i

t

λqe
−λs(τ−t)pn(sc(s), sci(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1

λse
−λq(τ−t)pn(sc(s), scj(�), sc(�, τ))dτ

`
∫ 8

C

λse
−λs(τ−t)pn(sc(s), scC`1(�), sc(�, τ))dτ

178 S. Donatelli and S. Haddad

Observe that for τ > C, pn(sc(s), scC`1(�), sc(�, τ)) is constant since if there is
a reset then sc(�, τ) “ 0 and if there is no reset then sc(�, τ) “ τ > C and so
the valuation of the clock is irrelevant. Thus the equation can be rewritten as
follows.

pn`1(s, �, t) “
∫ i

t

λse
−λs(τ−t)pn(sc(s), sci(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1

λse
−λs(τ−t)pn(sc(s), scj(�), sc(�, τ))dτ

` e−λs(C−t)pn(sc(s), scC`1(�), sc(�, C ` 1))

Observe that max(1, λs)e−λsτ is uniformly continuous. So pick η′ > 0 such that
for all τ ă τ ′ � τ ` η′ max(1, λs)|e−λsτ − e−λsτ ′ | � ε

3C . Let η “ min(η′, ε
3λs

).
Then for all t ă t′ � t ` η, one bounds |pn`1(s, �, t) − pn`1(s, �, t′)| by the
sum of three terms using the above equation to establish that |pn`1(s, �, t) −
pn`1(s, �, t′)| � ε. Thus pn`1(s, �, t) is continuous. When t > C, pn`1(s, �, t) is
constant and so continuous.
Observe that p(s, �, t) “ limn→8 pn(s, �, t). So the mapping p(s, �, t) is measur-
able as a limit of continuous mappings. Thus Eq. 1 holds for i − 1 � t � i � C:
Repeating the same argument as the one for the inductive case yields the result.
When t > C, p(s, �, t) is constant and so continuous.

Proposition 1. Let A P A
na and z P [0, 1] such that for all Markov chains M,

PrM(A) “ z, then z P {0, 1}.
Proof. We will even prove this result when restricting the quantification to
Markov chains with a single action and a single valuation of propositions for
all states and a single successor for all states. Thus we can omit propositions
and actions in the DTA and only consider simple chains.

Let A be an automaton that satisfies the hypothesis. We want to establish that
for all configurations (�, t) in some region of GA reachable from (�0, 0), and for
all states s of a simple Markov chain, p(s, �, t) “ z. We do this by induction on
the distance from the initial region in the region graph and then we prove that
z is either 0 or 1. The basis case of the induction corresponds to the assumption
PrM(A) “ z, for all M.
For the inductive step we assume that for a given (�, t), and for all states s of a
simple chain, p(s, �, t) “ z and we prove that the p(s′, �′, t′) “ z, for all (s′, �′, t′)
reachable in one step from (s, �, t).
Let M be an arbitrary simple chain and define Mλ as the simple chain with a
single transition outgoing from its initial state to the initial state of M whose
rate is λ. Let s be the initial state of Mλ.
By assumption, p(s, �, t) “ z. Define f(τ) by p(sc(s), scj(�), sc(�, t ` τ)) when
j − 1 ă t ` τ � j � C and by p(sc(s), scC`1(�), sc(�, t ` τ)) when t ` τ > C.
Equation 1 can be rewitten as p(s, �, t) “ ∫

τ�0
λe−λτf(τ)dτ . Since for all λ,

Timed Automata for the Verification of Stochastic Models 179

PrMλ
(A) “ z, the Laplace transform of f(τ) is equal to z

λ , i.e. the Laplace trans-
form of the constant function z. By the theorem of unicity of Laplace transforms,
this entails that f(τ) “ z except for a set of null measure. However, consider a
successor region (�′, i) of location � with clock valuation t′.

• Either i “ 0 (meaning that there has been a reset) and the region has a single
point reached with non null probability. So p(sc(s), �′, 0) “ z.

• Or i > 0, so by Lemma 1, p(sc(s), �′, t′) is continuous inside the region w.r.t.
t′ and thus everywhere equal to z.

So the induction is established. So if a region of �f is reachable in the region
graph, then z “ 1. Otherwise �f is not reachable implying that no run is accept-
ing, and thus z “ 0.

We can now prove Theorem 1 (Ana ňM A).
Proof of Theorem 1. The DTA A in Fig. 1 (lower right) has an action set reduced
to a singleton {a} (omitted in the figure) and an empty set of propositions.
The language of A is the set of timed paths whose first action occurs at time
τ P [2i, 2i`1[for some i P N. Assume by contradiction that there exists A′ P A

na

such that for all Markov chain M, PrM(A′) “ PrM(A).
Pick an arbitrary Markov chain M and define Mλ as the Markov chain which
has a single transition from its initial state to the initial state of M with rate λ.
It is routine to check that PrMλ

(A) “ 1−e−λ

1−e−2λ (as only the first transition of Mλ

is relevant) and, consequently, limλ→0 PrMλ
(A) “ 1

2 and, given the hypothesis,
also limλ→0 PrMλ

(A′) “ 1
2 .

PrMλ
(A′) can be decomposed as p1,λ ` p2,λ where p1,λ is the probability to

accept the random timed path and that the first action takes place at most at
time C and p2,λ is the probability to accept the random timed path and that
the first action takes place after C, where C is the maximal constant of A′. But
limλ→0 p1,λ “ 0 and therefore limλ→0 p2,λ “ 1

2 .
On the other hand, let �1 be the location of A′ reached from its initial location
when the value of the clock is greater than C, its maximal constant. There
must be one, if not limλ→0 p2,λ “ 0, which contradicts what derived above. We
want to design an automaton A′′ equivalent to A′ when reaching �1 with clock
value greater than C: any timed path is accepted by A′′ iff it is accepted by A′

when starting in �1 with clock valuation greater than C. For the construction
we duplicate the automaton and merge the final location, the initial location is
location �1 of the first copy, and in the first copy we add to the guard of all
transitions the formula x > C and redirect the transitions that reset the clock
to the corresponding location of the second copy.

But then limλ→0 p2,λ “ PrM(A′′). Since limλ→0 p2,λ “ 1
2 and M is arbitrary,

this contradicts Proposition 1 applied to A′′.
The DTA in Fig. 1 (upper right) shows that the above counter-example is of

practical interest. Consider a periodic system that cycles over phases of duration
2, each split in two sub-phases of duration 1 (for example a running and a reset
phase) and that can experience good (G), bad (B), and neutral (N) actions,

180 S. Donatelli and S. Haddad

generated from a CTMC of arbitrary complexity. The depicted DTA allows one
to compute the probability of the CTMC behaviours characterized by a good
action in the running sub-phase, given that in the preceding phases no bad
action has happened in the running phase. Any action is instead allowed during
the reset phase.

4 Autonomous Transitions and Conciseness

We have established that there exists DTAs that cannot be translated into
DTAs without autonomous transitions (Ana ňM A). We now investigate whether
restricted forms of use of autonomous transitions are as expressive as A

na. To
this goal we identify two additional subclasses of A, namely A

nra and A
rc, char-

acterized by a limited presence of autonomous transitions and that are in the
following subset relationship: A

na Ď A
nra Ď A

rc Ď A.

Restricted cycles. A
rc is the subclass of automata A P A in which all cycles

of A including an autonomous transition with a reset also include a synchro-
nizing transition (�, γ,B, r, �′) with r “↓ or γ “ (x > C).

No reset on autonomous transitions. A
nra is the subclass of automata A P

A
rc in which there is no autonomous transition that resets the clock: A

nra “
{A P A | (�, γ, 7, r, �′) P Aut(A) ⇒ r “ ∅}.

The DTA on the left of Fig. 1 belongs to A
rc\A

nra: indeed there is an autonomous
transition with reset (from �1 to �0), therefore it is not in A

nra, but although the
transition is part of a cycle, that cycle also includes a synchronizing transition
with reset (from �0 to �1). Any DTA with no reset on autonomous transitions is
an example of A

nra. The family A
rc has been introduced to provide an accurate

syntactical characterization of DTA for which the autonomous transitions do
not add expressive power. In some sense, the DTA of Theorem 1 emphasizes the
interest of A

rc since the cycle performed by the autonomous resetting transition
points out what increases the expressive power. A

nra, which forbids clock resets
on autonomous transitions, removes from CSLTA the capacity of combining time
constants depending on the time elapsed during (a portion of) an execution.
As observed in [12](section 4), clock resets on autonomous transitions are what
makes CSLTA more expressive than asCSL [6].
The following frame summarizes the results for A subclasses.

A
na „L A

nra „L A
rc ňM A

with A
rc (Anra) exponentially more concise than A

nra (Ana, respectively)

We first establish that in A
rc the autonomous resetting transitions can be mim-

icked in A
nra using additional finite memory, but with exponential cost.

Proposition 2. There exists an algorithm operating in exponential time that
takes as input A P A

rc and outputs A′ P A
nra with L(A′) “ L(A).

Timed Automata for the Verification of Stochastic Models 181

Sketch of Proof. The construction (1) duplicates locations by memorizing in the
location an integer value, (2) take into account this value for modifying the
guard and the destination of the outgoing transitions, and (3) deletes the reset
of autonomous transitions. This value corresponds to the accumulated value of
constants in the guards of resetting autonomous transitions since the last visit
of a synchronizing transition with a reset or a guard x > C. The restriction over
A

rc ensures that this value is bounded by some finite integer K. However K may
be exponential in the size of A and thus this transformation is exponential.

The exponential blowup due to the duplication of locations is unavoidable:

Proposition 3. There exists a family {An}nPN in A
rc such that the size of An

is O(n2) and for all A P A
nra with L(A) “ L(An), (|Aut| ` 1)|Synch| � 2n.

We now prove that autonomous transitions in A
nra can be eliminated, also

at an exponential cost.

Proposition 4. There exists an algorithm operating in exponential time that
takes as input A P A

nra and outputs A′ P A
na with L(A′) “ L(A).

Sketch of Proof. The construction proceeds in two steps: at first, cycles of
autonomous transitions are eliminated, then all (linear) paths of autonomous
transitions are eliminated. The first construction is quadratic, as we dupli-
cate each location to store in the location the information on the number of
autonomous transitions visited since the last visit of a synchronized transition.
The idea of this construction is that if a path exceeds the number of autonomous
transitions it must visit twice the same autonomous transition without visiting
a synchronized transition and so diverges. In words: in the resulting DTA, diver-
gence has been transformed into deadlock. This finite memory has a linear size
w.r.t. the size of the original DTA.

The second step consists in eliminating autonomous transitions when there
are no such cycles. The key point is to select a location � which is the source of
the last autonomous transition of a maximal path of such transitions. Thus every
autonomous transition outgoing from � reaches some location �u where only syn-
chronized transitions are possible. Roughly speaking, the construction builds a
synchronized transition corresponding to a sequence of an autonomous transition
followed by a synchronized transition. However the construction is more involved
since � has to be duplicated in order to check which autonomous transition can
be triggered (or if no autonomous transition can be triggered). This duplica-
tion also has an impact on the incoming transitions of �. Repeating (at most
|L| times) this transformation eliminates all autonomous transitions. The expo-
nential blowup due to the repetition of duplication of locations is unavoidable:

Proposition 5. There exists a family of automata {An}nPN in A
nra such that

the size of An belongs to O(n log(n)) and for all A P A
na with L(A) “ L(An)

the number of its locations is at least 2n.

182 S. Donatelli and S. Haddad

5 Conclusion and Future Work

We have established that autonomous transitions do enhance expressiveness of
single clock DTAs, and more precisely for the less discriminating case of the
probability of the random paths of a CTMC accepted by the DTA. This is the
most relevant one for comparing some variations of (1-clock) CSLTA defined in
the literature. This enhanced expressiveness is due to the possibility of associ-
ating clock resets with autonomous transitions that occur in a cycle. The small
counterexample of Proposition 1 can be seen as the basic construct to study
systems with periodic behaviours or periodic phases, with clear practical impli-
cations. Even in DTA subclasses for which the autonomous transitions do not
enhance expressiveness, they do play a role in defining concise DTAs: removing
autonomous transitions may lead to an exponential blow up of the DTA.

We plan to investigate whether the precise identification of the characteristics
that enhance expressiveness and conciseness can help the identification of the
best algorithms for CSLTA model-checking, in particular for the component-
based method [4]. Moreover, following the suggestion by an anonymous reviewer,
we intend to investigate further consequences of Proposition 1, for example to
study systems that include probabilistic choices of autonomous transitions.

References

1. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley, Hoboken (1995)

2. Amparore, E.G., Ballarini, P., Beccuti, M., Donatelli, S., Franceschinis, G.:
Expressing and computing passage time measures of GSPN models with HASL. In:
Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 110–129.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8 7

3. Amparore, E.G., Donatelli, S.: MC4CSLTA: an efficient model checking tool for
CSLTA. In: QEST 2010, pp. 153–154. IEEE Computer Society (2010)

4. Amparore, E.G., Donatelli, S.: Efficient model checking of the stochastic logic
CSLTA. Perform. Eval. 123–124, 1–34 (2018)

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

6. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking
Markov chains with actions and state labels. IEEE TSE 33, 209–224 (2007)

7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the logical characterisa-
tion of performability properties. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.)
ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45022-X 65

8. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

9. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new app-
roach for performance evaluation and model checking from concepts to experimen-
tation. Perform. Eval. 90, 53–77 (2015)

10. TChen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Log. Methods Comput.
Sci. 7(1:12), 1–34 (2011)

https://doi.org/10.1007/978-3-642-38697-8_7
https://doi.org/10.1007/3-540-45022-X_65
https://doi.org/10.1007/3-540-45022-X_65

Timed Automata for the Verification of Stochastic Models 183

11. Donatelli, S., Haddad, S.: Autonomous Transitions Enhance CSATA Expressiveness
and Conciseness. Research report, Inria Saclay Ile de France, LSV, ENS Cachan,
CNRS, INRIA, Université Paris-Saclay, Cachan, France, Universita degli Studi di
Torino, October 2019. https://hal.inria.fr/hal-02306021

12. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE TSE 35(2), 224–240 (2009)

13. Feng, Y., Katoen, J.-P., Li, H., Xia, B., Zhan, N.: Monitoring CTMCs by multi-
clock timed automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10981, pp. 507–526. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96145-3 27

14. Kuntz, M., Haverkort, B.R.: GCSRL-a logic for stochastic reward models with
timed and untimed behaviour. In: 8th PMCCS, pp. 50–56 (2007)

15. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: structure,
behavior, and application. In: International Workshop on Timed Petri Nets, pp.
106–115. IEEE CS (1985)

16. Obal II, W.D., Sanders, W.H.: State-space support for path-based reward variables.
Perform. Eval. 35, 233–251 (1999)

https://hal.inria.fr/hal-02306021
https://doi.org/10.1007/978-3-319-96145-3_27
https://doi.org/10.1007/978-3-319-96145-3_27

Windable Heads and Recognizing NL
with Constant Randomness

Mehmet Utkan Gezer(B)

Boğaziçi University, Bebek, Istanbul, Turkey
utkan.gezer@boun.edu.tr

Abstract. Every language in NL has a k-head two-way nondeterminis-
tic finite automaton (2nfa(k)) recognizing it. It is known how to build a
constant-space verifier algorithm from a 2nfa(k) for the same language
with constant-randomness, but with error probability (k2 − 1)/2k2 that
can not be reduced further by repetition. We have defined the unpleasant
characteristic of the heads that causes the high error as the property of
being “windable”. With a tweak on the previous verification algorithm,
the error is improved to (k2

W − 1)/2k2
W, where kW ≤ k is the number of

windable heads. Using this new algorithm, a subset of languages in NL
that have a 2nfa(k) recognizer with kW ≤ 1 can be verified with arbi-
trarily reducible error using constant space and randomness.

Keywords: Interactive proof systems · Multi-head finite automata ·
Probabilistic finite automata

1 Introduction

Probabilistic Turing machines (PTM) are classical Turing machines with ran-
domness as a resource. These machines alone can be recognizers of a language,
or be verifiers for the proofs of membership in an interactive proof system (IPS).
In either scenario, a noticeable error might be incurred in machines’ decisions
due to randomness involved in their execution. This error can usually be reduced
via repeated execution in PTM’s control.

The class of languages verifiable by the constant-randomness two-way prob-
abilistic finite automata (2pfa) is the same as NL, the class of languages rec-
ognizable by the nondeterministic sub-linear space Turing Machines. Curiously,
however, the error of these verifiers in recognizing languages of this class seems
to be irreducible beyond a certain threshold [6].

In this paper, we introduce a characteristic for the languages in NL. Based
on this characteristic, we lower the error threshold established in [6] for almost
all languages in NL. Finally, we delineate a subset of NL in which each language
is verifiable by a constant-randomness 2pfa with arbitrarily low error.

The remaining of the paper is structured as follows: Sects. 2 and 3 provides
the necessary background as well as our terminology in the domain. A key prop-
erty of the multi-head finite automata is identified in Sect. 4. Our verification
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 184–195, 2020.
https://doi.org/10.1007/978-3-030-40608-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_12&domain=pdf
http://orcid.org/0000-0002-5022-178X
https://doi.org/10.1007/978-3-030-40608-0_12

Windable Heads and Recognizing NL with Constant Randomness 185

algorithm, which improves on Say and Yakaryılmaz algorithm, and a subset of
NL on which this algorithm excels are described in Sect. 5.

The following notation will be common throughout this paper:

– L (M) denotes the language recognized by the machine M .
– L (X) = { L (M) | M ∈ X } for a class of machines X.
– S\q denotes the set S without its element q.
– σi denotes the ith element of the sequence σ.
– w× denotes the substring of w without its last character.
– σ◦ τ denotes the sequence σ concatenated with the element or sequence τ .

2 Finite Automata with k Heads

Finite automata are the Turing machines with read-only tape heads on a single
tape. A finite automata with only one head is equivalent to a DFA (deterministic
finite automaton) in terms of language recognition [3], hence recognizes a regular
language. Finite automata with k > 1 heads can recognize more than just regular
languages. Their formal definition may be given as follows:

Definition 1 (Multi-head nondeterministic finite automata). A 2nfa(k)
is a 5-tuple, M = (Q,Σ, δ, q0, qf), where;

1. Q is the finite set of states,
2. Σ is the finite set of input symbols,

(a) �, � are the left and right end-markers for the input on the tape,
(b) Γ = Σ ∪ { �, � } is the tape alphabet,

3. δ : Q × Γ k → P(Q\q0 × Δk) is the transition function, where;
(a) Δ = { −1, 0, 1 } is the set of head movements,

4. q0 ∈ Q is the unique initial state,
5. qf ∈ Q is the unique accepting state.

Machine M is said to execute on a string w ∈ Σ∗, when �w� is written onto
M ’s tape, all of its heads rewound to the cell with �, its state is reset to q0, and
then it executes in steps by the rules of δ. At each step, inputs to δ are the state
of M and the symbols read by respective heads of M .

When |δ| = 1 with the only member (q′, (d1, . . . , dk)) ∈ Q\q0 × Δk, the next
state of M becomes q′, and M moves its ith head by di. Whenever |δ| > 1, the
execution branches, and each branch runs in parallel. A branch is said to reject
w, if |δ| = 0, or if all of its branches reject. A branch accepts w, if its state is at
qf , or if any one of its branches accepts. A branch may also do neither, in which
case the branch is said to loop.

A string w is in L (M), if the root of M ’s execution on w is an accepting
branch. Otherwise, w /∈ L (M), and the root of M ’s execution is either a rejecting
or a looping branch.

Restricting δ to not have transitions inbound to q0 does not detriment the lan-
guage recognition of a 2nfa(k) in terms of its language recognition: Any 2nfa(k)
with such transitions can be converted into one without, by adding a new initial
state q′

0 and setting δ(q′
0, �, . . . , �) = { (q0, 0, . . . , 0) }.

186 M. U. Gezer

Lemma 1. The containment L (2nfa(k)) � L (2nfa(k + 1)) is proper [4,5].

Lemma 2. Given a 2nfa(k), one can construct a 2nfa(2k) recognizing the same
language, which is guaranteed to halt.

Proof. A k-headed automaton running on an input w of length n has nk distinct
configurations. Additional k heads can count up to nk = (nnn . . . n)n, and halt
the machine with a rejection.

Lemma 3. Every 2nfa(k) can be converted into an equivalent 2nfa(k) which does
not move its heads beyond the end markers.

Conversion in Lemma 3 is done via trivial modifications on the transition
function.

Definition 2 (Multi-head deterministic finite automata). A 2dfa(k) is a
2nfa(k) that is restricted to satisfy |δ| ≤ 1, where δ is its transition function.

Lemma 4. The following are shown in [2]:

∪∞
k=1L (2nfa(k)) = NL (1)

∪∞
k=1L (2dfa(k)) = L (2)

Definition 3 (Multi-head one-way finite automata). A 1nfa(k) is a
restricted 2nfa(k) that does not move its heads backwards on the tape. In its
definition, Δ = { 0, 1 }. A 1dfa(k) is similarly a restriction of 2dfa(k).

Definition 4 (Multi-head probabilistic finite automata). A 2pfa(k) M
is a PTM defined similar to a 2nfa(k) with the following modifications on
Definition 1:

1.′ Q = QD ∪ QP , where QD and QP are disjoint.
3.′ Transition function δ is overloaded as follows:

– δ : QD × Γ k → P(Q\q0 × Δk)
– δ : QP × Γ k × { 0, 1 } → P(Q\q0 × Δk)

The output of δ may at most have 1 element.

States QD are called deterministic, and QP probabilistic. Depending on the
state of the machine, δ receives a third parameter, where a 0 or 1 is provided by
a random bit-stream. We write 2pfa instead of 2pfa(1).

A string w is in L (M), iff M accepts w with a probability greater than 1/2.
Due to the probabilistic nature of a given 2pfa(k) M , the following three

types of error in the language recognition are inherent to it. For w ∈ L (M):

εfail-to-accept(M) = Pr[M does not accept w] (Failure to accept)

And for w /∈ L (M):

εfail-to-reject(M) = Pr[M does not reject w] (Failure to reject)

Windable Heads and Recognizing NL with Constant Randomness 187

εfalse-accept(M) = Pr[M accepts w] (False acceptance)

The overall weak and strong errors of a probabilistic machine M are defined
as follows [1]:

εweak(M) = max(εfail-to-accept(M), εfalse-accept(M)) (Weak error)

εstrong(M) = max(εfail-to-accept(M), εfail-to-reject(M)) (Strong error)

Note that a 2pfa(k) M can fail to reject a string w, by either accepting
it, or going into an infinite loop. Consequently, εfail-to-reject ≥ εfalse-accept and
εstrong ≥ εweak are always true.

Given a k and ε < 1/2, let

Lweak,ε (2pfa(k)) = { L (M) | M ∈ 2pfa(k), εweak(M) ≤ ε }

be the class of languages recognized by a 2pfa(k) with a weak error at most ε.
Class Lstrong,ε (2pfa(k)) is defined similarly.

3 Interactive Proof Systems

An interactive proof system (IPS) models the verification process of proofs. Of
the two components in an IPS, the prover produces the purported proof of
membership for a given input string, while the verifier either accepts or rejects
the string, alongside its proof. The catch is that the prover is assumed to advocate
for the input string’s membership without regards to truth, and the verifier is
expected to be accurate in its decision, holding a healthy level of skepticism
against the proof.

The verifier is any Turing machine with capabilities to interact with the
prover via a shared communication cell. The prover can be seen as an infinite
state transducer that has access to both an original copy of the input string and
the communication cell. Prover never halts, and its output is to the communi-
cation cell.

Our focus will be on the one-way IPS, which restricts the interaction to be
a monologue from the prover to the verifier. Since there is no influx of informa-
tion to the prover, prover’s output will be dependent on the input string only.
Consequently, a one-way IPS can also be modeled as a verifier paired with a
certificate function, c : Σ∗ → Λ∞, where Λ is the communication alphabet. A
formal definition follows:

Definition 5 (One-way interactive proof systems). An IP(restriction-list)
is defined with a tuple of a verifier and a certificate function, S = (V, c). The
verifier V is a Turing machine of type specified by the restriction-list. The certifi-
cate function c outputs the claimed proof of membership c(w) ∈ Λ∞ for a given
input string w.

188 M. U. Gezer

The verifier’s access to the certificate is only in the forward direction. The
qualifier “one-way”, however, specifies that the interaction in the IPS is a mono-
logue from the prover to the verifier, not the aforementioned fact, which is true
for all IPS.

The language recognized by S can be denoted with L (S), as well as L (V).
A string w is in L (S) iff the interaction results in an acceptance of w by V .

If the verifier of the IPS is probabilistic, its error becomes the error of the
IPS. The notation Lweak,ε (IP(restriction-list)) and Lstrong,ε (IP(restriction-list)) is
also adopted.

Say and Yakaryılmaz proved that [6]:

NL ⊆ Lweak,ε (IP(2pfa, constant-randomness)) for ε > 0 arbitrarily small, (3)

NL ⊆ Lstrong,ε (IP(2pfa, constant-randomness)) for ε =
1
2

− 1
2k2

, k → ∞. (4)

For the latter proposition, the research proves that any language L ∈ NL
can be recognized by a one-way IPS S ∈ IP(2pfa, constant-randomness), which
satisfies εstrong(S) ≤ 1/2 − 1/2k, and where k is the minimum number of heads
among the 2nfa(k) recognizing L that also halts on every input. Existence of
such a 2nfa(k) is guaranteed by Lemmas 2 and 4.

This work improves on the findings of [6]. For their pertinence, an outline of
the algorithms attaining the errors in Eqs. (3) and (4) is provided in the following
sections.

3.1 Reducing Weak Error Arbitrarily Using Constant-Randomness
Verifier

Given a language L ∈ NL with a halting 2nfa(k) recognizer M , verifier V1 ∈ 2pfa
expects a certificate to report (i) the k symbols read, and (ii) the nondetermin-
istic branch taken for each transition made by M on the course of accepting w.
Such a report necessarily contains a lie, if w /∈ L (M) = L.

Verifier V1 has an internal representation of M ’s control. Then, the algorithm
for the verifier is as follows:

1. Repeat m times:
(a) Move head left, until � is read.
(b) Reset M ’s state in the internal representation, denoted qm.
(c) Randomly choose a head of M by flipping 	log k
 coins.
(d) Repeat until qm becomes the accepting state of M :

i. Read k symbols and the nondeterministic branch taken by M from
the certificate.

ii. Reject if the reading from V1’s head disagrees with the corresponding
symbol on the certificate.

iii. Make the transition in the internal representation if it is valid, and
move the chosen head as dictated by the nondeterministic branch.
Reject otherwise.

2. Accept.

Windable Heads and Recognizing NL with Constant Randomness 189

For the worst case errors, it is assumed that there is a lie for the certificate
to tell about each one of the heads alone and in any single one of the transitions,
which causes V1 to fail to reject a string w /∈ L. Similar lies are assumed to exist
for the false acceptances. The following are then the (upper bounds of) errors
for V1:

εfail-to-accept(V1) = 0 εfail-to-reject(V1) ≤ k − 1
k

εfalse-accept(V1) ≤ 1
km

A discrepancy between εfalse-accept and εfail-to-reject is observed, because an
adversarial certificate may wind V1 up in an infinite loop on its first round of
m repetitions. This is possible despite M being a halting machine. The lie in
the certificate can present an infinite and even changing input string from the
perspective of the head being lied about.

Being wound up counts as a failure to reject, but does not yield a false accep-
tance. The resulting weak error is εstrong = k−m, which can be made arbitrarily
small.

3.2 Bringing Strong Error Below 1/2 Using Constant-Randomness
Verifier

Presented first in [6], verifier V ′
1 with the following algorithm manages to achieve

εstrong(V ′
1) < 1/2, outlined as follows:

1. Randomly reject with (k − 1)/2k probability by flipping 	log k
 + 1 coins.
2. Continue as V1.

This algorithm then has the following upper bounds for the errors:

εfail-to-accept(V ′
1) =

k − 1
2k

εfail-to-reject(V ′
1) ≤ k2 − 1

2k2
εfalse-accept(V ′

1) ≤ k + 1
2km+1

Since εfail-to-reject(V ′
1) is potentially greater than εfail-to-accept(V ′

1), the strong
error is bounded by (k2 − 1)/2k2.

4 Windable Heads

This section will introduce a property of the heads of a 2nfa(k). It leads to
a characterization of the 2nfa(k) by the number of heads with this property.
A subset rNL of the class NL will be defined, which will also be a subset of
Lstrong,ε (IP(2pfa, constant-randomness)) for ε > 0 approaching zero.

A head of a 2nfa(k) M is said to be windable, if these three conditions hold:

– There is a cycle on the graph of M ’s transition diagram, and a path from q0
to a node on the cycle.

– The movements of the head-in-question add up to zero in a full round of that
cycle.

– The readings of the head is consistent along the said path and cycle.

190 M. U. Gezer

The definition of a head being windable completely disregards the readings of
the other heads, hence the witness path and the cycle need not be a part of a
realistic execution of the machine M .

We will define the windable heads formally to clarify its distinguishing points.
Some preliminary definitions will be needed.

Definition 6 (Multi-step transition function).

δt : Q × (Γ t)k → P (
Q\q0 × (Δt)k

)

is the t-step extension of the transition function δ of a 2nfa(k) M . It is defined
recursively, as follows:

δ1 = δ

δt(q, g1, ... , gk) =

{

(r,D1◦ d1, ... ,Dk◦ dk)

∣
∣
∣
∣
∣

(r, d1, ... , dk) ∈ δ(s, g1t, ... , gkt)

(s,D1, ... ,Dk) ∈ δt−1(q, g×
1 , ... , g×

k)

}

The set δt(q, g1, . . . , gk) contains a (k + 1)-tuple for each nondeterministic
computation to be performed by M , as it starts from the state q and reads gi

with its ith head. These tuples, each referred to as a computation log, consist
of the state reached, and the movement histories of the k heads during that
computation.

The constraint of a constant and persistent tape contents that is present in
an execution of a 2nfa(k) is blurred in the definition for multi-step transition
function. This closely resembles the verifier’s perspective of the remaining heads
that it does not verify in the previous section. There, however, the verifier’s
readings were consistent in itself. This slight will be accounted for with the next
pair of definitions.

Definition 7 (Relative head position during ith transition). Let M be
a 2nfa(k) that does not attempt to move its heads beyond the end markers on the
input tape, and δ be its transition function. Let H be a head of M , and D be any
t-step movement history in the output of δt of that head. The relative position of
H while making the ith transition of D since before making the first movement
in that history is given by the function ρD(i) : N

≤t
1 → (−t, t) defined as

ρD(i) = sum(D1:i−1).

By Lemmas 3 and 4, given any language in NL there is a 2nfa(k) recognizing
it, which also does not attempt to move its heads beyond the end markers.

Definition 8 (1-head consistent δt). δt
1 : Q × (Γ t)k → P (

Q\q0 × (Δt)k
)

is
the ith-head consistent subset of δt of a 2nfa(k) M . It filters out the first-head
inconsistent computation logs by scrutinizing the purportedly read characters by
examining the movement histories against the readings. The formal definition
assumes that M does not attempt to move its heads beyond the end markers,
and is as follows:

δt
1(q, g1, . . . , gk) =

{
(r,D1, . . . , Dk) ∈ δt(q, g1, . . . , gk)

∣
∣

∀p ∈ (−t, t) , ∀x, y ∈ ρ−1
Di

(p)
[
gix = giy

] }

Windable Heads and Recognizing NL with Constant Randomness 191

For each pair of transitions departing from the same tape cell, it is checked
whether the same symbol is read while being performed. This check is needed
to be done only for p ∈ (−t, t), since in t steps, a head may at most travel t cells
afar, and the last cell it can read from will then be the previous one. This is also
consistent with the definition of ρD.

This last definition is the exact analogue of the verifiers’ perspective in the
algorithms proposed by [6]. It can be used directly in our next definition, that
will lead us to a characterization of the 2nfa(k).

Definition 9 (Windable heads). The ith head of a 2nfa(k) M is windable
iff there exists;
1. g1, . . . , gk ∈ Γ t and g′

1, . . . , g
′
k ∈ Γ l, for t and l positive,

2. (q,D1, . . . , Dk) ∈ δt
i(q0, g1, . . . , gk),

3. (q,D1◦ D′
1, . . . , Dk◦ D′

k) ∈ δt+l
i (q0, g1◦ g′

1, . . . , gk◦ g′
k) where sum(D′

i) = 0.

When these conditions hold, g1, . . . , gk can be viewed as the sequences of
characters that can be fed to δ to bring M from q0 to q, crucially without
breaking consistency among the ith head’s readings. This ensures reachability
to state q. Then, the sequences g′

1, . . . , g
′
k wind the ith head into a loop; bringing

M back to state q and the first head back to where it started the loop, all while
keeping the ith head’s readings consistent. The readings from the other heads
are allowed to be inconsistent, and their position can change with every such
loop.

A head is reliable iff the head is not windable.
It is important to note that a winding is not based on a realistic execution of

a 2nfa(k). A head of a 2nfa(k) M might be windable, even if it is guaranteed to
halt on every input. This is because the property of being windable allows other
heads to have unrealistic, inconsistent readings that may be never realized with
any input string.

5 Recognizing Some Languages in NL with
Constant-Randomness and Reducible-Error Verifiers

Consider a language L ∈ NL with a 2nfa(k) recognizer M that halts on every
input. In designing the randomness-restricted 2pfa(1) verifier V2, the following
three cases will be considered:

All Heads Are Reliable. In this case, V1 suffices by itself to attain reducible error.
Without any windable heads in the underlying 2nfa(k), each round of V1 will
terminate. The certificate can only make V1 falsely accept, and the chances for
that can be reduced arbitrarily by increasing m.

All Heads Are Windable. In this case, unless the worst-case assumptions are
alleviated, any verification algorithm using a simulation principle similar to V1

will be wound up on the first round. The head with the minimum probability of
getting chosen will be the weakest link of V2, thus the head the certificate will
be lying about. The failure to reject rate is equal 1 minus that probability. This
rate is the lowest when the probabilities are equal, and is then (k − 1)/k.

192 M. U. Gezer

It Is a Mix. Let kW, kR denote the windable and reliable head counts, respec-
tively. Thus kW + kR = k. The new verifier algorithm V2 is similar to V1, but
instead of choosing a head to simulate with equal probability, it will do a biased
branching. With biased branching, V2 favors the reliable heads over the windable
heads while choosing a head to verify.

Let PW, PR denote the desired probability of choosing a windable and reliable
head, respectively. Note that PW + PR = 1. The probabilities of choosing a
head within types (windable or reliable) are kept equal. Denote the probability
of choosing a particular windable head as pW = PW/kW, and similarly pr =
PR/kR. Assume PW, PR are finitely representable in binary, and with b digits
after the decimal point. Then, the algorithm of V2 is the same as V1, with the
only difference at step 1c:

1c.′ Randomly choose a head of M by biased branching:

– Instead of flipping 	log k
 coins, flip b + 	log(max(kW, kR))
 coins. Let
z1, z2, . . . , zb be the outcomes of the first b coins.

– If
∑b

i=1 2−izi < PW, choose one of the windable heads depending on the
outcomes of the next 	log kW
 coins. Otherwise, similarly choose a reliable
head via 	log kR
 coins.

For an Input String w ∈ L. Verifier V2 is still perfectly accurate. Certificate may
provide any route that leads M to acceptance. Repeating this for m-many times,
V2 will accept after m rounds of validation.

For an Input String w /∈ L. To keep V2 from rejecting, the certificate will need
to lie about at least one of the heads. Switching the head to lie about in between
rounds cannot be of any benefit to the certificate on its mission, since the rounds
are identical both from V2’s and the certificate’s points of view. Hence, it is
reasonable to assume that the certificate repeats itself in each round, and simplify
our analysis.

The worst-case assumption is that the certificate can lie about a single (arbi-
trary) head alone and deceive V2 in the worst means possible, depending on the
head it chooses:

– If it chooses the head being lied about, V2 detects the lie rather than being
deceived.

– Otherwise, if a windable head was chosen, V2 loops indefinitely.
– Otherwise (i.e. a reliable head was chosen), V2 runs for another round or

accepts w.

The head which the certificate fixes to lie about is either a windable head or
a reliable one. Given a V2 algorithm with its parameter PW set, let FW(PR) be
the probability of V2 failing to reject against a certificate that lies about any one
windable head. Failure to reject would either be a result of up to m − 1 rounds

Windable Heads and Recognizing NL with Constant Randomness 193

of false-acceptance followed by getting wound up in an infinite loop, or by m
rounds of false-acceptance.

FW(PR) =
m−1∑

i=0

P i
R(PW − pW) + Pm

R

= (1 − Pm
R) ·

(
1 − 1

kW

)
+ Pm

R

= 1 − 1 − Pm
R

kW

Let FR(PR) similarly be the probability for the reliable counterpart.

FR(PR) =
m−1∑

i=0

(PR − pR)iPW + (PR − pR)m

=
1 − (PR − pR)m

1 − (PR − pR)
· PW + (PR − pR)m

=
PW

PW + pR
+

(
1 − PW

PW + pR

)
(PR − pR)m

The most evil certificate would lie about the head that yields a higher error.
Thus, the worst-case failure to reject probability is given by

F (PR) = max(FW(PR), FR(PR)).

The objective is to find the optimum PR, denoted P ∗
R, minimizing the error

F (PR). We note that F (1) is 1. Hence, P ∗
R < 1.

Constant m may be chosen arbitrarily large. For PR < 1, and m very large,
approximations of FW and FR are, respectively, given as

F ∗
W(PR) = 1 − 1

kW
F ∗
R(PR) =

PW

PW + pR
.

Error F ∗
W is a constant between 0 and 1. For 0 ≤ PR ≤ 1, error F ∗

R decreases
from 1 to 0, and in a strictly monotonous fashion:

dF ∗
R

dPR
=

−pR − PW/kW

(PW + pR)2
< 0

These indicate that F ∗
W(PR) and F ∗

R(PR) are equal for a unique PR = P ∗
R. The

optimality of P ∗
R will be proved shortly. It is easy to verify that

P ∗
R =

kR
k − 1

. (5)

Using P ∗
R we can define F ∗ as the following partial function:

F ∗(PR) =

{
F ∗
R(PR) for PR ≤ P ∗

R

F ∗
W(PR) for PR ≥ P ∗

R

194 M. U. Gezer

Since F ∗
R is a decreasing function, F (PR) > F (P ∗

R) for any PR < P ∗
R. The

approximation F ∗
W is a constant function. Function FW, however, is actually

an increasing one. Therefore, given m large, probability P ∗
R approximates the

optimum for V2 choosing a reliable head among the k heads of the M , while
verifying for the language L (M) ∈ NL. Consequently the optimum error for V2

is
F (P ∗

R) = 1 − 1
kW

. (6)

This points to some important facts.

Theorem 1. The minimum error for V2 depends only on the number of wind-
able heads of the 2nfa(k) M recognizing L ∈ NL.

Definition 10 (Reducible strong error subset of NL). For ε > 0 approach-
ing zero, the reducible strong error subset of NL is defined as

rNL = NL ∩ Lstrong,ε (IP(2pfa, constant-randomness)) .

Theorem 2. For kW ≤ 1 and kR arbitrary,

L (2nfa(kW + kR)) ⊆ rNL.

Equations (5) and (6), and their consequent Theorems 1 and 2, constitute the
main results of this study.

Similar to how V ′
1 was obtained, the algorithm for V ′

2 is as follows:

1. Randomly reject with (kW − 1)/2kW probability by flipping 	log kW
 + 1 coins.
2. Continue as V2.

The strong error of V ′
2 is then given by εstrong(V ′

2) ≤ 1/2 − 1/2kW.

5.1 Example Languages from rNL and Potential Outsiders

Let wa denote the amount of symbols a in a string w.
The following two are some example languages with 2nfa(kW +kR) recogniz-

ers, where kW = 0:

A1 = { anbncndn | n ≥ 0 }
A2 = { w ∈ { a, b, c } | wa = wb = wc }

An example language with a kW ≤ 1 recognizer is the following:

A3 =
{
a1a2 · · · an#a+1 a

+
2 · · · a+n

∣
∣ n ≥ 0

}

Lastly, it is an open question whether the following language is inside or outside
rNL:

A4 = { w ∈ { a, b, c } | wa · wb = wc }

Windable Heads and Recognizing NL with Constant Randomness 195

6 Open Questions

It is curious to us whether L (2nfa(kW + kR)) coincides with any known class of
languages for kW = 0 or 1, or kW ≤ 1. The minimum number or windable heads
required for a language in NL to be recognized by a halting 2nfa(k), could estab-
lish a complexity class. Conversely, one might be able to discover yet another
infinite hierarchy of languages based on the number of windable heads, alongside
the hierarchy in Lemma 1. For some c > 0 and k′

W = kW+c, this hierarchy might
be of the form

L (2nfa(k = kW + kR)) � L (2nfa(k′ = k′
W + k′

R))

for k = k′, kR = k′
R, or without any further restriction.

References

1. Condon, A.: The complexity of space bounded interactive proof systems. In:
Ambos-Spies, A., et al. (eds.) Complexity Theory: Current Research, pp. 147–189.
Cambridge University Press, Cambridge (1992). https://www.cs.ubc.ca/∼condon/
papers/ips-survey.pdf

2. Hartmanis, J.: On non-determinancy in simple computing devices. Acta Informatica
1(4), 336–344 (1972). https://doi.org/10.1007/BF00289513

3. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
origins and directions. Theoret. Comput. Sci. 412(1–2), 83–96 (2011). https://doi.
org/10.1016/j.tcs.2010.08.024

4. Monien, B.: Transformational methods and their application to complexity prob-
lems. Acta Informatica 6(1), 95–108 (1976). https://doi.org/10.1007/BF00263746

5. Monien, B.: Two-way multihead automata over a one-letter alphabet.
RAIRO Informatique Théorique 14(1), 67–82 (1980). https://doi.org/10.1051/ita/
1980140100671

6. Say, C., Yakaryılmaz, A.: Finite state verifiers with constant randomness. Log.
Methods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:6)2014.
arXiv:1102.2719

https://www.cs.ubc.ca/~condon/papers/ips-survey.pdf
https://www.cs.ubc.ca/~condon/papers/ips-survey.pdf
https://doi.org/10.1007/BF00289513
https://doi.org/10.1016/j.tcs.2010.08.024
https://doi.org/10.1016/j.tcs.2010.08.024
https://doi.org/10.1007/BF00263746
https://doi.org/10.1051/ita/1980140100671
https://doi.org/10.1051/ita/1980140100671
https://doi.org/10.2168/LMCS-10(3:6)2014
http://arxiv.org/abs/1102.2719

Alternating Finite Automata
with Limited Universal Branching

Chris Keeler(B) and Kai Salomaa

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. We consider measures that limit universal parallelism in
computations of an alternating finite automaton (AFA). Maximum pared
tree width counts the largest number of universal branches in any com-
putation and acceptance width counts the number of universal branches
in the best accepting computation, i.e., in the accepting computation
with least universal parallelism. We give algorithms to decide whether
the maximum pared tree width or the acceptance width of an AFA are
bounded by an integer k. For a constant k the algorithm for maximum
pared tree width operates in polynomial time. An AFA with m states
and acceptance width k can be converted to an NFA with (m + 1)k

states. We consider corresponding lower bounds for the transformation.
The tree width of an AFA counts the number of all (existential and uni-
versal) branches of the computation. We give upper and lower bounds
for converting an AFA of bounded tree width to a DFA.

1 Introduction

Deterministic and nondeterministic finite automata (DFA and NFA) are well
understood models for which a significant number of results are known. As a
generalization of nondeterminism, alternation was introduced in [1], and has
since been studied extensively for Turing machines [5,6,23], and pushdown
automata [1,20].

The power of alternation in finite automata (AFAs) was first studied by Chan-
dra, Kozen, and Stockmeyer [1], later by King [15] and Hromkovič [10], and state
complexity trade-offs with NFAs and DFAs were given by Fellah et al. [3]. How-
ever, results on alternating finite automata remain relatively sparse compared
to alternating pushdown automata and alternating (infinite) automata, and lit-
tle effort has been made towards examining restricted computations within the
context of alternation.

Restricted amounts of nondeterminism have been measured in various ways,
including but not limited to ambiguity [19], tree width [11,22], and string path
width [13]. These so-called “measures of nondeterminism” examine some aspect
of an automaton’s computations. For example, the number of partial, or accept-
ing computations on a given string. For a particular regular language and model,
the state complexity is a measure of how complicated it is for that model to cap-
ture that language. The state complexity is combined with these measures of
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 196–207, 2020.
https://doi.org/10.1007/978-3-030-40608-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_13

Limited Universal Branching in AFAs 197

restricted nondeterminism, yielding tradeoffs between the amount of nondeter-
minism and the number of states required.

An automaton is said to alternate when it switches from an existential state to
a universal state (or vice versa) [1]. There exists an exponential state complexity
blow-up between two-way AFAs with at most k alternations and two-way AFAs
with at most k + 1 alternations, and in general this hierarchy is infinite [7]. The
emptiness problem for AFAs was shown to be PSPACE-Complete for general
alphabets [8,12]. More recently, the state complexity of various operations on
AFAs has also been studied [9].

In this paper, we focus on the original model of AFAs (introduced by Chan-
dra, Kozen, and Stockmeyer) where the states are either existential or univer-
sal [1,7,10,12,15,23], rather than the one where states are labeled with boolean
functions [18]. However, both of these models recognize exactly the regular lan-
guages. We also do not consider states or transitions with negation, though
there is only a linear blow-up between our model and the one which can perform
negation [3].

This paper is organized as follows. Section 2 recalls several definitions, and
fixes our model for alternating finite automata. Section 2.1 introduces the notions
of acceptance width and maximal pared tree width, and provides several initial
results and bounds for these new metrics. Section 3 gives a polynomial transfor-
mation for an NFA to simulate an AFA with bounded parallelism, shows that
the decidability of several decision problems for AFAs with finite acceptance
width, and gives algorithms to decide whether an AFA’s maximal pared tree
width or acceptance width is bounded by a given constant. Section 4 presents
unary witness languages with finite acceptance width (with respect to the num-
ber of states) which require only a small number of states to be recognized by
an AFA, but require an exponential number of states to be recognized by an
NFA or DFA. Finally, Sect. 4.1 introduces a non-unary witness language, and
provides another exponential state complexity blow-up; this time between AFAs
with bounded tree width (with respect to the number of states), and NFAs and
DFAs.

2 Preliminaries

An AFA is a 6-tuple, A = (Qe, Qu, Σ, δ, q0, F) where Qe (the existential state set)
and Qu (the universal state set) are finite sets of states such that Qe ∩ Qu = ∅,
Σ is the input alphabet, δ : (Qe ∪ Qu) × Σ → 2Qe∪Qu is the transition function,
q0 ∈ Qe∪Qu is the initial state, and F ⊆ Qe∪Qu is the set of final states. We use
ε to mean the empty string, and Aq to mean A with a different specified starting
state, q ∈ Qe ∪ Qu. Note that the standard NFA model can be seen as an AFA
where Qe contains all of the states, and Qu is empty. We must further specify
the language of an AFA, to account for the differences caused by universal states.
We do this by defining them bottom-up with respect to their states.

Definition 1. Let A = (Qe, Qu, Σ, δ, q0, F) be an AFA, and Aq be a copy of the
AFA with q ∈ Qe ∪Qu as the initial state. We point out that ε ∈ L(Aq) if q ∈ F .

198 C. Keeler and K. Salomaa

Consider q ∈ Qe ∪ Qu, a ∈ Σ where δ(q, a) = {p1, . . . , pn}. Then for x ∈ Σ∗,
define:

– If q ∈ Qu, then ax ∈ L(Aq) if and only if x ∈ L(Api
) for all 1 ≤ i ≤ n.

– If q ∈ Qe, then ax ∈ L(Aq) if and only if x ∈ L(Api
) for some 1 ≤ i ≤ n.

The language of A is defined as L(A) = L(Aq0).

The computation tree of an AFA A on ε from q ∈ Qe ∪ Qu, denoted TA,q,ε is the
singleton node (q, ε). The computation tree of an AFA A on cv from q, denoted
TA,q,cv, such that q ∈ Qe ∪ Qu, c ∈ Σ, v ∈ Σ∗ is defined inductively as the tree:

– whose internal nodes are labeled by a tuple (p, a), for p ∈ Q, a ∈ Σ (i.e., each
internal node is labeled by a state and character)

– which is rooted by a node (q, c)
– where the trees rooted at the children of (q, c) are

• the computation trees (TA,p1,v, . . . , TA,pn,v) if δ(q, c) = {p1, . . . , pn}, and
• the failure node ⊥ if δ(q, c) = ∅ (that is, if δ(q, c) is undefined).

If a computation tree of an AFA A on a string x starts on the initial state of A,
then we omit the state label, denoting it as TA,x. We use the notation leaves(T)
to mean the (depth-first) ordered tuple of leaves in the computation tree T . The
computation tree of an NFA is defined similarly, except its nodes are always
labeled by existential states [11].

We define the paring of a computation tree, which serves as the transforma-
tion around which our new measures are defined. For an AFA A = (Qe, Qu, Σ, δ,
q0, F) and a string x ∈ Σ∗, a pared computation tree of TA,x is defined as a tree
where for each node (q, a) ∈ TA,x:

– if q ∈ Qe then keep only one child node, and
– if q ∈ Qu then keep all child nodes.

Since there is a choice made on each of the existential nodes, the same compu-
tation tree can result in many different pared computation trees. A pared tree
represents a possible computation of the AFA A. At nodes labeled by existential
states, the pared tree follows one (nondeterministically chosen) way to continue
the computation. The nodes labeled by universal states have children labeled
by all states reachable from that state in the next computation step. Note that
every pared tree of an NFA will only have one leaf, since all of its states are exis-
tential. We denote the set of all pared computation trees on a tree T as ✂(T).
A pared computation tree is accepting if all of its leaves are labeled by accepting
states (implying that no leaf is the failure node), and a string x is accepted by
an AFA if and only if A has an accepting pared computation tree in ✂(TA,x).

Without loss of generality, we assume that all of an AFA’s universal states are
reachable. However, since emptiness for AFAs is PSPACE-Complete, we cannot
assume that all of an AFA’s states are useful in the sense that they can be used
in an accepting computation. Since a universal state with at most one outgoing
transition per character is no different than using an existential state, we also

Limited Universal Branching in AFAs 199

assume that every universal state has multiple outgoing transitions on at least
one character.

For a regular language L, sc(L), (respectively, nsc(L), asc(L)), is the state
complexity, (respectively, nondeterministic and alternating state complexity)
of L.

2.1 Tree Width of Alternating Machines

The tree width [11] of an AFA A on a string x, denoted tw(A, x), is the number
of leaves in the computation tree of A on x. That is, tw(A, x) = |leaves(TA,x)|.

Since the notion of tree width is originally based on the computation tree
of an NFA, and our AFA definition extends the original notion of computation
trees, it seems natural to look at “alternating tree widths”.

Definition 2. Let A = (Qe, Qu, Σ, δ, q0, F) be an AFA. Then the acceptance
width of A on a string x ∈ Σ∗, denoted aw(A, x), is the minimum number of
leaves of any accepting pared computation tree of TA,x. The maximum pared tree
width of A on a string x ∈ Σ∗, denoted mptw(A, x), is the maximum number of
leaves of any pared computation tree of TA,x. Formally, these are:

aw(A, x) = min{|leaves(T)| | T ∈ ✂(TA,x), leaves(T) ⊆ F}

mptw(A, x) = max{|leaves(T)| | T ∈ ✂(TA,x)}

Since the (original) tree width does not perform the paring operation, we
get that for any AFA A and string x, aw(A, x) ≤ mptw(A, x) ≤ tw(A, x). We
also get the following condition for equality between the measures, which occurs
when the paring operation does not change the computation tree.

Remark 1. Let A be an AFA, and x a string. Then mptw(A, x) = tw(A, x) if and
only if each node in TA,x with more than one child is labeled by some universal
state in A.

We extend the acceptance width and maximum pared tree width functions
as functions on integers in the normal manner:

aw(A, �) = max{aw(A, x) | x ∈ Σ�},

mptw(A, �) = max{mptw(A, x) | x ∈ Σ�}.

aw(A) = sup
�∈N

{aw(A, �)}, and mptw(A) = sup
�∈N

{mptw(A, �)}.

If, for a string x, there are no accepting computation trees, then aw(A, x) = 0.
Since the emptiness problem is PSPACE-complete for AFAs [8], and these results
hold even for unary languages, then we get the following equivalence.

200 C. Keeler and K. Salomaa

Remark 2 ([8]). Let A be an AFA. Then it is PSPACE-complete to decide
whether or not aw(A) = 0.

If an m-state AFA has finite tree width, then its tree width is at most 2m−2

[22]. Since, on any string, the acceptance width and maximal pared tree width of
an AFA are upper-bounded by the tree width, we get the following conditional
upper bound.

Corollary 1 ([22]). Let A be an m-state AFA with finite tree width. Then
aw(A) ≤ mptw(A) ≤ 2m−2.

Alternatively, we could replace the computation trees by directed acyclic
graphs by merging any nodes on the same state on the same level. However,
in this case, the acceptance width and maximal pared tree width of an m-state
AFA would be at most m.

3 Decision Problems for Pared Tree Width
and Acceptance Width

Normally, an NFA may require an exponential state blow-up to simulate an
AFA [3]. However, an NFA can simulate any finite acceptance width AFA with
at most a polynomial blow-up in the number of states. An m-state AFA A with
acceptance width k can be simulated by an NFA where the states are k-tuples of
states of A and transitions of the NFA simulate at most k parallel computations
of A.

Lemma 1. Let A be an m-state AFA, such that aw(A) ≤ k, for some constant
k. Then (m + 1)k states are sufficient for an NFA to simulate A.

It is known that the emptiness problem for NFAs can be solved in linear
time, with respect to the number of states, using a breadth first search [4]. The
transformation from Lemma 1 then yields a polynomial-time algorithm to decide
emptiness for a finite acceptance width AFA.

Corollary 2. Let A be an m-state AFA with finite acceptance width k, for some
constant k. Then in O(mk) time we can decide whether L(A) = ∅.

Using the transformation from Lemma 1, but modifying which states of the
NFA are accepting, we can also decide whether the maximal pared tree width
of an AFA is bounded.

Theorem 1. Let A be an m-state AFA and k a constant. Then we can decide
whether or not the maximal pared tree width of A is at most k in O(mk) time.

Using similar ideas from the characterization of NFAs with finite tree width
[22], we are able to characterize AFAs with finite maximal pared tree width.

Corollary 3. Let A = (Qu, Qe, Σ, δ, q0, F) be an AFA. Then mptw(A) > 2m−2

if and only if there exists some state q ∈ Qu and character c ∈ Σ such that
|δ(q, c)| ≥ 2 and q is involved in a cycle.

Limited Universal Branching in AFAs 201

Modifying existing algorithms for deciding finiteness of an NFA’s tree width
[14], we are also able to decide finiteness of an AFA’s maximal pared tree width
in polynomial time.

Corollary 4 ([14]). Let A = (Qu, Qe, Σ, δ, q0, F) be an m-state AFA. Then we
can decide whether or not the maximal pared tree width of A is bounded by some
constant k in O(m3 · |Σ|) time1.

The general membership problem is P-complete for AFAs [12], and this holds
even for finite unary languages. In fact, this P-completeness is even stronger, as
it holds for all cycle-free AFAs.

Since an m-state cycle-free AFA has at most m − 1 states being evaluated in
parallel, then the membership problem for AFAs with bounded parallel compu-
tations is also P-complete.

Corollary 5 ([12]). Let A be a finite maximal pared tree width AFA. Then for
a string x, it is P-complete to decide whether x ∈ L(A).

We can also decide whether the pared acceptance width of an AFA is finitely
bounded by some number.

Theorem 2. Let A be an AFA, and k ∈ N. Then it is decidable whether the
acceptance width of A is bounded by k.

While it is decidable whether the acceptance width of an AFA is bounded by
an integer k, the algorithm presented in Theorem2 is not an efficient one and we
cannot expect to have an efficient algorithm for this problem2. For a given AFA A
and k ∈ Nwe can construct an AFA A′ that begins the computation by a universal
step with k+1 choices, where the first computation simulates A and the remaining
k computations always accept deterministically. Then aw(A′) ≤ k if and only if
L(A) = ∅ and deciding the emptiness of an AFA is PSPACE-complete [8].

For any AFA A with finite tree width, the acceptance width of A must also
be finite. Under this restriction, we can decide whether the acceptance width of
A is finite using the construction from Theorem2.

Corollary 6. Let A be an m-state AFA with finite tree width. By Corollary 1,
the acceptance width is then at most 2m−2. Since the acceptance width of A is
finite if and only if it is at most 2m−2, then it is decidable whether the acceptance
width of A is finite. We do this by using Theorem2 with an input value of 2m−2.

Since the acceptance width of an AFA is only upper bounded by its tree
width, it is possible that an AFA has infinite tree width and finite acceptance
width. In this case, we do not have an upper bound for the acceptance width.

1 The DCFS proceedings has a slightly worse bound of O(m4 · |Σ|), and the specifics
of the improved version will appear in a future paper.

2 This observation, with a justification different from the below one, was suggested by
an anonymous referee.

202 C. Keeler and K. Salomaa

Question 1. Let A be an m-state AFA with infinite tree width and finite accep-
tance width k. Is there any expression in m which bounds k?

As a result, it is not immediately obvious whether the finiteness of an AFA’s
acceptance width is decidable in general.

Question 2. For an AFA A such that tw(A) /∈ O(1), does there exist an algo-
rithm to decide whether or not aw(A) ∈ O(1)?

4 State Complexity

Let I be a set of integers, and LCM(I) be the least common multiple of all
elements in I. We define L∀I as the set of all unary strings whose lengths are
the product of all integers in I.

L∀I = {ay | (∀i ∈ I) y ≡ 0 (mod i)} (1)

Equivalently, we have L∀I = {ay·z | z ≥ 0, y = LCM(I)}.

Lemma 2. Let I be a set of integers. Then sc(L∀I) = nsc(L∀I) = LCM(I).

The state complexity is, of course, maximal with respect to the size of the
input set when its elements are pairwise coprime.

Lemma 3. Let I = {p1, . . . , pn} be a set of n integers. If the elements of I are

pairwise coprime, then there exists an AFA A recognizing L∀I with 1 +
n∑

i=1

pi

states and tree width n such that sc(L(A)) = nsc(L(A)) =
n∏

i=1

pi.

0, u

1

2

n

f1

f2

fn

...
...

a

a

a

a

a

a

a

ap1−1

ap2−1

apn−1

Fig. 1. AFA for L∀P where P = {p1, . . . , pn}. Universal states are marked with an
additional label ‘u’, and existential states are given as normal.

Limited Universal Branching in AFAs 203

Proof. Let I = {p1, . . . , pn} be a set of integers whose elements are pairwise
coprime. We give the AFA recognizing L∀I in Fig. 1, whose tree width and
number of states matches the claim. Since I’s elements are pairwise coprime,

LCM(I) =
n∏

i=1

pi. And by Lemma 2, sc(L∀I) = nsc(L∀I) = LCM(I).
�

Recognizing that the state complexity blow-up in Lemma 3 is exactly Lan-
dau’s function [2,21], we get the following exponential state complexity trade-off
between AFAs with finite tree width (and therefore also finite acceptance width)
and NFAs. A similar idea and result was also given by Kupferman et al. [17],
though it was formulated to capture the unary language an+i, for i ≥ 0.

Theorem 3 ([2,17,21]). Let I be a set of pairwise coprime integers, and A
be an (m − 1)-state AFA recognizing L∀I with tree width |I|. Then any NFA
equivalent to A will require at least e(1+o(1))·√m lnm states.

While Landau’s function gives a lower bound for the state complexity blow-
up of simulating a restricted tree width AFA with an NFA, it is only given in
terms of the number of states.

Lemma 4. Let I = {p1, . . . , pn} be a set of pairwise coprime integers, for some
n ∈ N. Let A be an m-state AFA such that A has acceptance width n and
recognizes L∀I . Then any NFA equivalent to A will require at least (m

n·pn
)n states.

In the general case, for every m, there exists an m-state AFA which cannot
be simulated by any NFA with fewer than 2m states [3], and any equivalent DFA
needs 22

m

states [1]. However, to get this double-exponential state complexity
blow-up, the m-state AFA needs a tree width much larger than m.

Let P = {p1, . . . , pn} be a set of n prime numbers. We define L2P , the set
of all unary strings whose lengths are a product of at least two distinct primes
from P.

L2P = {ax | (∃i, j) 1 ≤ i < j ≤ n, such that pi and pj divide x} (2)

Lemma 5. There exists an AFA A recognizing L2P with 1+ n(n−1)
2 +

n∑

i=1

(pi −1)

states3 and a maximal pared tree width of 2.

We extend L2P , defining LkP as the set of all unary strings whose lengths
are a product of at least k distinct primes from P, for some constant k.

LkP ={ay | (∃r1, . . . , rk) {r1, . . . , rk} ⊆ P, (3)
such that (∀i) 1 ≤ i ≤ k, y ≡ 0 (mod ri)

Using similar ideas as the proof from Lemma 5 but operating on an arbitrary
number of elements instead of only two, we get the following result.

Lemma 6. For every k ≥ 2, there exists an AFA A recognizing LkP with 1 +
(
n
k

)
+

n∑

i=1

(pi − 1) states and a maximal pared tree width of k.

3 We need one extra state each if 2 or 3 ∈ P.

204 C. Keeler and K. Salomaa

4.1 Universal Infix Language

For two strings v, v′ ∈ Σ∗, we say that v and v′ are disjoint if they do not share
any symbols. We extend this notion to tuples of strings, such that a tuple of
strings W is disjoint if and only if all pairs of strings x, x′ ∈ W are disjoint.

A bitstring b1 · · · bn ∈ {0, 1}n is a string for representing some boolean value
across a set of n elements. We define the cardinality of a bistring as the number
of 1s appearing in that bitstring.

The universal infix language of an ordered string tuple W consists of strings
that contain each x ∈ W as an infix. We define a labeling function hW : Σ∗ →
{0, 1}n which takes as input a string s ∈ Σ∗ and an n-tuple W, and produces
the bitstring b1 · · · bn, where bi = 1 if and only if the ith element of W is an infix
of s, for 1 ≤ i ≤ n. More formally, the universal infix language over a tuple of
strings W and an alphabet Σ is defined as:

LαW = {s ∈ Σ∗ | (∀x ∈ W) x is a substring of s} (4)

An AFA with small amounts of alternation can recognize this language with
relatively few states, and limited universal branching.

Lemma 7. Let W = (x1, . . . , xn) be an ordered, disjoint tuple of strings. Then

there exists an AFA recognizing LαW with 2 +
n∑

i=1

|xi| states and tree width n.

Proof. Let W = (x1, . . . , xn) be an ordered, disjoint tuple of strings, and let xi[j]
be the jth character of the ith string. We give the general structure for an AFA in

Fig. 2, which recognizes LαW with 1 universal and 1 +
n∑

i=1

|xi| existential states.

This AFA has tree width n, and only alternates between universal and existential
states once. The only final state is the one at the end of all the branches. And,
excepting the initial state, we define the transition function deterministically.
If the machine is reading xi, has read up to xi[j], and then encounters some
mismatched symbol, then the computation path currently in state i.j will return
to state i, indicating that the infix must be restarted.
�

However, a DFA for L∀W needs exponentially more states than an AFA.

Lemma 8. Let W = (x1, . . . , xn) be a disjoint tuple of strings. Then

sc(LαW) = 2n + 2n−1 ·
n∑

i=1

(|xi| − 1).

Furthermore, the addition of nondeterminism does not improve this bound.

Lemma 9. Let W = (x1, . . . , xn) be a disjoint tuple of strings. Then

nsc(LαW) = 2n + 2n−1 ·
n∑

i=1

(|xi| − 1).

Limited Universal Branching in AFAs 205

0, u f

1

n

· · · · · ·

1.1

n.1

1.2

n.2

Σ \ {x1[1]}

Σ \ {xn[1]}

x1[1]

xn[1]

Σ \ {x1[1]}

Σ \ {xn[1]}

x1[1]

xn[1]

Σ \ {x1[2]}

Σ \ {xn[2]}

Σ \ {x1[3]}

Σ \ {xn[3]}

x1[2]

xn[2]

· · ·

· · ·

Σ

Fig. 2. AFA for a universal infix language over (x1, . . . , xn)

Combining Lemmas 7, 8, and 9, we get the following theorem.

Theorem 4. There exists an m-state AFA A (where m can be arbitrarily large)
with tree width n such that any equivalent NFA needs (m − n) · 2n−1 states. The
AFA A can be chosen to alternate only once between universal and existential
states. We note that the alphabet size of A depends on n.

We give the following constructive example to help clarify the state blow-up
from Theorem 4.

Example 1. Let W = (aa, b, c), and A = (Q, {a, b, c}, δ, q0, {111}) be the DFA
given in Fig. 3, which recognizes Lα(aa,b,c).

To make counting of states easier, below we assume that an AFA computation
step always has at most two choices (i.e. computation step is either undefined, is
deterministic, or has exactly two existential or universal choices). This assump-
tion can be made with only a constant factor blow-up of the automaton’s state
complexity [16].

Lemma 10. Let A be an m-state AFA with tree width n. Then A has an equiv-
alent DFA B with at most (m + 1)n · (2n − 1) states.

Combining the upper and lower bounds from Lemmas 8, 9 and 10, we get the
following state complexity range for simulating a finite tree width AFA with a
DFA.

206 C. Keeler and K. Salomaa

000

a

100

010

001

ba

ca

011 bca

110

101

111

a

a

b

c

b

c

b

c

a

a

b
c

c

b

a

a

c
b

a

b

c

a, b

b, c

a, c

a, b, c

c

b

a

b, c

a

Fig. 3. 12-State DFA for Lα(aa,b,c)

Corollary 7. Let A be an m-state AFA with tree width n. Then

2n−1 · (m − n) ≤ sc(L(A)) ≤ (2n − 1) · (m + 1)n.

Acknowledgments. Research supported by NSERC grant OGP0147224.
We thank the referees for their helpful and thoughtful comments. But, due to the

short deadline for submitting the proceedings version, we will try to implement some
revisions for a later journal version.

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

3. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
Int. J. Comput. Math. 35(1–4), 117–132 (1990)

4. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time
hypothesis. Algorithms 10(1), 24 (2017)

5. Fijalkow, N.: The state complexity of alternating automata. In: Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, 09–12 July 2018, pp. 414–421 (2018)

Limited Universal Branching in AFAs 207

6. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004)

7. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445,
1–24 (2012)

8. Holzer, M.: On emptiness and counting for alternating finite automata. In: Devel-
opments in Language Theory II, At the Crossroads of Mathematics, Computer
Science and Biology, Magdeburg, Germany, 17–21 July 1995, pp. 88–97 (1995)

9. Hospodár, M., Jirásková, G., Krajňáková, I.: Operations on boolean and alternat-
ing finite automata. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol.
10846, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90530-3 16

10. Hromkovič, J.: On the power of alternation in automata theory. J. Comput. Syst.
Sci. 31(1), 28–39 (1985)

11. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172(2), 202–217 (2002)

12. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision prob-
lems for finite automata. Inf. Process. Lett. 40(1), 25–31 (1991)

13. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 16

14. Keeler, C., Salomaa, K.: Nondeterminism growth and state complexity. In: Hos-
podár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612,
pp. 210–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-
4 16

15. King, K.N.: Alternating multihead finite automata (extended abstract). In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 506–520. Springer, Heidelberg
(1981). https://doi.org/10.1007/3-540-10843-2 40

16. King, K.N.: Measures of parallelism in alternating computation trees (extended
abstract). In: Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, 11–13 May 1981, Milwaukee, Wisconsin, USA, pp. 189–201 (1981)

17. Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata. Short Paper
Presented at the 15th Annual IEEE Symposium on Logic in Computer Science
(LICS 2000) (2000)

18. Leiss, E.L.: Succinct representation of regular languages by boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981)

19. Leung, H.: Descriptional complexity of nfa of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

20. Moriya, E.: A grammatical characterization of alternating pushdown automata.
Theor. Comput. Sci. 67(1), 75–85 (1989)

21. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012)

22. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width nfas.
J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

23. Ruzzo, W.L.: Tree-size bounded alternation. J. Comput. Syst. Sci. 21(2), 218–235
(1980)

https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-319-60252-3_16
https://doi.org/10.1007/978-3-030-23247-4_16
https://doi.org/10.1007/978-3-030-23247-4_16
https://doi.org/10.1007/3-540-10843-2_40

Pebble-Intervals Automata
and FO2 with Two Orders

Nadia Labai(B), Tomer Kotek, Magdalena Ortiz, and Helmut Veith

TU Wien, Vienna, Austria
labai@dbai.tuwien.ac.at

Abstract. We introduce a novel automata model, which we call pebble-
intervals automata (PIA), and study its power and closure properties.
PIAs are tailored for a decidable fragment of FO that is important for rea-
soning about structures that use data values from infinite domains: the
two-variable fragment with one total preorder and its induced successor
relation, one linear order, and an arbitrary number of unary relations.
We prove that the string projection of every language of data words
definable in the logic is accepted by a pebble-intervals automaton A ,
and obtain as a corollary an automata-theoretic proof of the ExpSpace
upper bound for finite satisfiability due to Schwentick and Zeume.

Keywords: Automata and logic · Pebble-intervals automata ·
Emptiness testing · Decidability · Two-variable fragment · Data words

1 Introduction

Finding decidable fragments of First Order Logic (FO) that are expressive
enough for reasoning in different applications is a major line of research. A
prominent such fragment is the two-variable fragment FO2of FO, which has
a decidable finite satisfiability problem [13,21] and is well-suited for handling
graph-like structures. It captures many description logics, which are promi-
nent formalisms for knowledge representation, and several authors have recently
applied fragments based on FO2 to verification of programs [1,7,8,16,26]. Unfor-
tunately, FO2 has severe limitations, e.g., it cannot express transitivity, and in
the applications to verification above, it cannot reason about programs whose
variables range over data values from infinite domains. This has motivated the
exploration of decidable extensions of FO2 with special relations which are not
axiomatizable in FO2. For example, finite satisfiability of FO2 with a linear
order was shown to be NExpTime-complete in [24], even in the presence of
the induced successor relation [12], and equivalence relations have been used to

N. Labai—This work was supported by the Austrian Science Fund (FWF) projects
P30360, P30873, and W1255.
This article is dedicated to the memory of Helmut Veith, who passed away tragically
while this manuscript was being prepared.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 208–221, 2020.
https://doi.org/10.1007/978-3-030-40608-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_14

Pebble-Intervals Automata and FO2 with Two Orders 209

model data values which can be tested for equality [3,4,10,23]. However, related
extensions of FO2 with preorders easily become undecidable [3,19]. Recently the
logic FO2(≤1,�2, S2), that is FO2 with a linear order ≤1, a total preorder �2

and its induced successor S2, and any number of unary relations from a finite
alphabet, was shown to have an ExpSpace-complete satisfiability problem [27].
This logic can compare data values in terms of which is smaller than which and
whether they are consecutive in �2, making it suitable to model linearly ordered
data domains, and a good candidate for extending existing verification methods
which use two-variable logics. We continue the study of FO2(≤1,�2, S2), and
in particular, focus on a suitable automata model for it. Establishing a connec-
tion to suitable automata for fragments of FO that can talk about values from
infinite domains is an active area of research. Automata are also important in
automated verification, where they are used, for example, to reason about tem-
poral properties of program traces [9,30]. We make the following contributions:

– As an automata model for FO2(≤1,�2, S2) we propose pebble-intervals
automata (PIAs). Similarly to classical finite-state automata, PIAs are read-
once automata for strings. However, they read the input in varying order.
Using a fixed set of pebbles [m] = {1, . . . , m}, a PIA reads a position p by
choosing three pebbles i, j, k ∈ [m] and non-deterministically moving k to
position p between the positions of i and j.

– We study the computational power and closure properties of PIAs. We
describe a restricted class of PIAs that accept exactly the regular languages,
and show that some context-free languages, and even languages which are not
context-free, are accepted by PIAs. We prove that PIAs are effectively closed
under union, concatenation, Kleene star, shuffle, and iterated shuffle, but not
effectively closed under intersection, even with regular languages, nor under
complement.

– We show that the emptiness problem for PIA is NL-complete if the number of
pebbles is logarithmic in the size of the automaton, and is PSpace in general.

– We show that PIAs contain FO2(≤1,�2, S2) in the following sense: for each
sentence ψ, there is a PIA whose language coincides with the projection lan-
guage of ψ, obtained by omitting �2 and S2 from the structures satisfying ψ.

– As a corollary, we get an automata-theoretic proof for ExpSpace membership
of finite satisfiability for FO2(≤1,�2, S2) that was established in [27].

Due to space limitations, we have omitted the proofs from the body of the paper.
They can be found in the extended version.

2 Pebble-Intervals Automata

In this section, we introduce pebble-intervals automata (PIA). We study their
emptiness problem, their expressive power, and closure properties of the lan-
guages they accept.

210 N. Labai et al.

Let [n] = {1, . . . , n}. A string of length n ≥ 0 over alphabet Σ is a mapping
w : [n] → Σ, written also w = w(1) · · · w(n). Note that [0] = ∅ and w : [0] → Σ
is the empty string ε. We often use s, u, v, and w for strings, and |w| for the
length of w.

A PIA is equipped with a finite number m of pebbles. It begins its compu-
tation with no pebbles on the input w, and uses move transitions to place and
replace pebbles. In a k-movei,j transition, the pebble k (which may or may not
have been previously placed on w) is non-deterministically placed on a previously
unread position in the interval between pebbles i and j. The input boundaries
can be used as interval boundaries, e.g., a k-movei,� transition places pebble
k to the right of pebble i. For convenience we allow silent transitions that go
to a new state without moving any pebbles. As pebbles can only be placed on
unread positions, each position of w is read at most once. In an accepting run
all positions must be read, and the run must end at an accepting state.

Definition 1 (Pebble-intervals automata). A PIA A is a tuple
(Σ,m,Q, qinit, F, δ), where Σ is the (finite) alphabet, m ∈ N, Q is the finite
set of states, qinit ∈ Q is the initial state, F ⊆ Q are the accepting states,
and δ ⊆ (Q × Q) ∪ (Q × movem × Σ × Q) is the transition relation with
movem = {k-movei,j | i ∈ [m] ∪ {�}, j ∈ [m] ∪ {�}, k ∈ [m], i 	= j}. We
may omit m when it is clear from the context. Transitions in Q×move×Σ ×Q
are move transitions, and transitions in Q × Q are silent transitions. The size
of A is |δ| + |Σ| + |Q|.

The positions of m pebbles on a string of length n during a run of a PIA are
described by an (m,n)-pebble assignment, which is a function τ : [m] → [n]∪{⊥}
with either τ(i) 	= τ(j) or τ(i) = τ(j) = ⊥ for each 1 ≤ i < j ≤ m; the pebbles
j with τ(j) = ⊥ are unassigned. We define ρ⊥ as ρ⊥(i) = ⊥ for every i ∈ [m].
By τ̂ : [m] ∪ {�,�} → {0} ∪ [n + 1] we denote the extension of τ with τ̂(�) = 0
and τ̂(�) = n + 1.

Definition 2 (Semantics of PIAs). Consider a PIA A = (Σ,m,Q, qinit, F,
δ). A configuration of A on string u ∈ Σ� is a triple (q, ρ,N) where q ∈ Q is the
current state, ρ : [m] → [|u|]∪{⊥} is the current pebble assignment, and N ⊆ [|u|]
is the set of already-read positions. The initial configuration πinit is (qinit, ρ⊥, ∅).
A configuration (q, ρ,N) is accepting if q ∈ F and N = [|u|]. Let π = (q, ρ,N)
and π′ = (q′, ρ′, N ′) be configurations on u. We call them consecutive and write
π

t� π′ if there exists a transition t in δ such that either:

1. t is a silent transition of the form (q, q′), N = N ′, and ρ = ρ′; or
2. t is a move transition (q, k-movei,j , u(), q′) with ρ̂(i) < 	 < ρ̂(j) and 	 ∈

[|u|] − N , and additionally ρ′ = ρ[k �→] and N ′ = N ∪ {	}. That is, pebble k
is placed on position 	 in the open interval between i and j, reading the letter
u().

Let t̄ = (t1, . . . , tr) and π̄ = (π0, . . . , πr) be sequences of transitions and
configurations. We call (t̄, π̄) a computation of A on u if π0 = πinit and πi−1

ti�

Pebble-Intervals Automata and FO2 with Two Orders 211

πi for every i ∈ [r], and write π0
t̄� πr. We call (t̄, π̄) accepting if πr is accepting.

We write π
�� π′ if π

t̄� π′ for some t̄. The automaton A accepts u if there is
an accepting computation of A on u. The set of all u accepted by A is denoted
L(A), and called a PI language.

Computational Power of Pebble-Intervals Automata. PIAs generalize
standard non-deterministic finite-state automata. A PIA A = (Σ, 1, Q, qinit, F, δ)
with one pebble is unidirectional if qinit has no incoming transitions, and the
move transitions from other states use 1-move1,� only.

Proposition 1. A language L is accepted by a standard non-deterministic
finite-state automaton iff L = L(A) for a unidirectional PIA A with the same
number of states.

PI languages also contain non-regular languages, and even some non-context-free
ones.

Examples 1. The following are examples of PI languages:

1. There is a PIA ADyck with one pebble that accepts the Dyck language LDyck

of well-nested brackets, which is context-free but not regular. The alphabet
has two letters [and], and the states are q[and q]. The initial and only
accepting state is q]. The transition relation contains (q], 1-move�,�, [, q[)
and (q[, 1-move1,�,], q]). ADyck accepts a string iff there are as many left as
right brackets, and no prefix has more right than left brackets.

2. A similar one pebble PIA accepts the language Ltwo of all strings of two types
of parentheses, where each type is well-nested with respect to itself, but not
necessarily to the other type. E.g., ([)] ∈ Ltwo, but (] /∈ Ltwo. Ltwo is not
context-free.

3. {an$bn#cn | n ≥ 0}, which is not context-free, is accepted by a PIA with 3
pebbles. Pebbles 1 and 2 read the $ and the #, and then the PIA keeps doing
the following: pebble 3 reads an a to the left of pebble 1, a b between pebbles
1, 2, and a c to the right of pebble 2.

4. {w$w | w ∈ {0, 1}+} is not context-free, and is accepted by a PIA with 3
pebbles. Pebble 1 reads the $, pebble 2 reads a letter σ to the left of pebble 1, and
pebble 3 also reads σ to the right of pebble 1. Then the PIA repeats: (i) a letter
σ is non-deterministically chosen, (ii) pebble 2 reads σ between its current
position and pebble 1, and (iii) pebble 3 reads σ to the right of its current
position. Similar languages are PI languages, e.g., {wwRww | w ∈ Σ�},
where wR is w in reverse.

We conjecture that not all context-free language are PI languages; e.g, the
Dyck language of two types of well-nested parentheses seems not to be PI.

Closure Properties. We provide a construction of suitable PIAs in the
appendix to show the following.

212 N. Labai et al.

Theorem 1. The class of PI languages is effectively closed under union, con-
catenation, Kleene-�, shuffle, and iterated shuffle. It is not effectively closed
under intersection, even with regular languages, nor under complement.

From the construction used in the proof of the above theorem, we also obtain:

Corollary 1. The universality and inclusion problems for PIAs are undecidable.

Emptiness. For deciding whether L(A) 	= ∅ for a given PIA, we use feasible
sequences of transitions, which are those that correspond to an actual computa-
tion of a PIA. One can show that for a given PIA with m pebbles, L(A) 	= ∅ iff
there is a feasible sequence of transitions t̄ of length at most |A | ·2O(m log m), and
that the existence of the latter can be guessed and verified using a bounded
amount of information (roughly a counter, two transitions, and two pebble
assignments). This gives us the upper bounds below, which hold also if A is not
given explicitly, as long as δ can be computed non-deterministically in log(|A |)
space. For the case where A has O(log |A |) pebbles, NL-hardness follows from
the same result for standard finite state automata and Proposition 1.

Theorem 2. If a PIA A has O(log |A |) pebbles, its emptiness problem is NL-
complete. In general, the emptiness problem for PIA is in PSpace.

Related Automata Models. Jumping finite automata [20] are probably the
closest to PIAs: they are essentially PIAs with one pebble, which is placed on
an arbitrary unvisited position without specifying an interval. In the context of
languages with infinite alphabets, various automata models have been proposed
that run on data words: string words where values from an infinite domain are
attached to each position. Register automata are finite-state machines on data
words which use registers to compare whether data values are equal [6,17,22];
their string projection languages are regular. Pebble automata [22] use pebbles
in a stack discipline to test for equality of data values. Data automata [3–5]
are an extension of register automata introduced to prove the decidability of
satisfiability of FO2 on words with a linear order, a successor relation, and an
equivalence relation. Their projection languages are accepted by multicounter
automata, which are finite automata on strings extended with counters, that
are equivalent to Vector Addition Systems or Petri Nets [11]. Class Memory
Automata [2] have the same expressive power as data automata. Variable Finite
Automata [15] extend finite state automata with variables from an infinite alpha-
bet. Many works have studied these automata models and their variations, see
[28] and [18, Chapter 4] for surveys.

3 PIAs and FO2(≤1,�2, S2)

To establish the relation between FO2(≤1,�2, S2) and PIAs, we need some pre-
liminaries. Recall that a total preorder � is a transitive total relation which can

Pebble-Intervals Automata and FO2 with Two Orders 213

be seen as an equivalence relation whose equivalence classes are linearly ordered.
We use x ∼2 y as shorthand for (x �2 y) ∧ (y �2 x). The induced successor
relation S of a total preorder � is such that S(x, y) if x � y and there is no z
such that x � z � y.

Two-variable logic (FO2) is the restriction of FO to formulas that only use
two variables x and y, and FO2(≤1,�2, S2) is FO2 with a linear order ≤1, a total
preorder �2 and its induced successor S2, and any number of unary relations
from a finite alphabet.

All structures and strings in this paper are finite. For a structure A, we
denote its universe by A and its size by |A|. The empty structure has A = ∅ and
is denoted ∅voc.
Data Words. Let Σ a finite alphabet. Its extension for data words is
vocDW(Σ) = 〈≤1,�2, S2, σ : σ ∈ Σ〉. A data word over Σ is a finite vocDW(Σ)-
structure D with universe D where σ : σ ∈ Σ are interpreted as unary relations
that partition D. We use D, D′, etc. to denote data words. The empty word is
denoted by ∅DW(Σ), and the class of all data words over Σ by DW(Σ). A set of
data words is called a data language.

Let ϕ1, ϕ2 be FO2(vocDW(Σ)) formulas. We write ϕ1 |=DW(Σ) ϕ2 if D |=
ϕ1 implies D |= ϕ2 for every D ∈ DW(Σ), and define equivalence ≡DW(Σ)

analogously. We may omit Σ if clear from context. The data value valueD(d) of
an element d ∈ D is the number of equivalence classes E of ∼2 whose elements
d′ ∈ E satisfy d′ �2 d, and maxvalD = maxd∈D valueD(d). The string projection
of D, denoted string(D), is the string w of length |w| = |D| where for all 	 ∈ [|w|],
w() = σ if and only if D |= σ(d) where d is the unique element of D such that
	 = |{d′ ∈ D | D |= d′ ≤1 d}|. The projection of the empty structure ∅vocDW(Σ),
and only of ∅vocDW(Σ), is ε. The projection language of a data language Δ is the
string language L(Δ) = {w | w = string(D) for some D ∈ Δ}. If a formula ψ
defines Δ, we write L(ψ) for L(Δ).

Example 1. To avoid ambiguity, in our running examples we use underlined
symbols. Let Ξ = {ξ

1
, ξ

2
} be a set of unary relations and let D be the

data word with universe D = {a, b, c, d, e, f} where ≤1 is the lexicographic
order, the interpretation of ξ

1
is {a, b, c, e}, the interpretation of ξ

2
is {d, f},

and b �2 a �2 e �2 c �2 d ∼2 f . Note e.g. that D |= S2(a, e) and
D |= ¬S2(b, e)∧(b �2 e). The string projection of D is string(D) = ξ

1
ξ
1
ξ
1
ξ
2
ξ
1
ξ
2
.

The goal of this section is to prove the following theorem.

Theorem 3. If ψ is a FO2(≤1,�2, S2) sentence, there is a PIA A with L(ψ) =
L(A).

To prove this, we rely on the normal form defined next. A 1-type ν(x) over a
vocabulary vocDW(Σ) is a maximal consistent conjunction of atomic and negated
atomic formulas with the free variable x. A 2-type θ(x, y) is defined similarly.
Given a FO2(vocDW(Σ)) formula ψ, we obtain a ϕ in normal form by taking the
Scott Normal Form [14, Theorem 2.1] of ψ, and expanding the quantifier-free
formulas to Disjunctive Normal Form, and in fact to disjunctions of 2-types θ.

214 N. Labai et al.

The Scott Normal Form of ψ introduces linearly many new symbols, resulting in
an extended Σ′. We let Ξ = {ξa | a ∈ [A]} be an alphabet containing a symbol
for every 1-type over Σ′.

Theorem 4 (Normal Form). Let ψ ∈ FO2(vocDW(Σ)). Then there exist
A,B,C ∈ N, an alphabet Ξ = {ξa | a ∈ [A]}, a formula ϕ ∈ FO2(vocDW(Ξ))
of the form ϕ = ϕ∀ ∧ ϕ∃ and a letter-to-letter substitution h : Ξ → Σ such that
L(ψ) = h(L(ϕ)),

ϕ∀ = ∀x∀y
∨

θ∈Θ∀

θ(x, y) ϕ∃ = ϕε ∧ ∀x
∧

a∈[A]

ξa(x) →
∧

b∈[B]

∃y
∨

c∈[C]

θabc(x, y)

with θ and θabc 2-types over vocDW(Ξ), and ϕε = True if ∅vocDW(Σ) |=DW(Σ) ψ
and ϕε = ∃x (True) if ∅vocDW(Σ) 	|=DW(Σ) ψ. Moreover, ϕ is computable in
ExpSpace and is of length exponential in |ψ|.

We let Θ∃ = {θabc | a ∈ [A], b ∈ [B], c ∈ [C]} and Θ = Θ∀ ∪ Θ∃. Given a ∈ [A],
a witness type set for a is a choice of 2-types satisfying the right-hand side
of the implication for ξa. That is, a set of 2-types ω ⊆ Θ∃ that contains one
θabc for every b ∈ [B], representing a choice of the existential constraints an
element needs to fulfill. Denote by Ωa the set of witness type sets for a and let
Ω =

⋃
a∈[A] Ωa. For a witness type set ω ∈ Ω, let ω(x) =

∧
θ∈ω ∃y θ(x, y) be its

existential constraints. Note that ω(x) is always satisfiable and that there is a
unique letter ξω ∈ Ξ such that ω(x) |=DW(Ξ) ξω(x).

Example 2. Consider the following formula ϕ given in normal form

∀x∀y χ(x, y) ∧ ∀x
(
ξ1(x) → ∃y (θ1(x, y) ∨ θ3(x, y)) ∧ ξ

2
(x) → ∃y (θ2(x, y) ∨ θ4(x, y))

)

where χ(x, y) is the disjunction of 2-types equivalent to (ξ
2
(x)∧ξ

2
(y)) → x ∼2 y,

and the θi are given as the following 2-types (omitted clauses are negated):

θ1 =x <1 y ∧ S2(x, y) ∧ ξ
1
(x) ∧ ξ

2
(y) θ3 =x <1 y ∧ ¬S2(x, y) ∧ x �2 y ∧ ξ

1
(x) ∧ ξ

2
(y)

θ2 = y <1 x ∧ S2(y, x) ∧ ξ
2
(x) ∧ ξ

1
(y) θ4 = y <1 x ∧ ¬S2(y, x) ∧ y �2 x ∧ ξ

2
(x) ∧ ξ

1
(y)

A data word satisfies ϕ iff it is the empty structure, or (a) the largest element
of ≤1 has letter ξ

2
, (b) the smallest element of ≤1 has letter ξ

1
, (c) all elements

with ξ
2

have maximal value, and (d) no element with ξ
1

has maximal value.
Note that D |= ϕ. The projection language L(ϕ) is the regular language with

regular expression ξ
1
(ξ

1
+ξ

2
)�ξ

2
+ε. We have Θ∃ = {θ1, θ2, θ3, θ4}. For ϕ, we have

A = 2, B = 1, and C = 2. The witness type sets of ϕ are {θ111}, {θ112}, {θ211},
and {θ212}, where θ111 = θ1, θ112 = θ3, θ211 = θ2, and θ212 = θ4. Hence, we have
Ω = {{θ1}, {θ2}, {θ3}, {θ4}}, and ξ{θ1} = ξ{θ3} = ξ

1
, and ξ{θ2} = ξ{θ4} = ξ

2
.

We construct a PIA Aϕ that accepts a string w iff it can be extended into a
data word D that satisfies the normal form ϕ of a given sentence ψ. Note that
ψ and ϕ have different alphabets, but since there is a letter-to-letter substitu-
tion h such that L(ψ) = h(L(Aϕ)), and PIAs are closed under letter-to-letter
substitutions, this proves Theorem 3.

Pebble-Intervals Automata and FO2 with Two Orders 215

For constructing our PIA, we first focus on the existential part, i.e., whether
w can be extended into a D that satisfies ϕ∃. This is achieved in two steps:
(S1) We reduce the existence of D to the existence of a sequence of consecutive
task words, data words that store additional information of already satisfied
vs. ‘promised’ subformulas; the sequence should lead to a completed task word
where all promises are fulfilled. (S2) We do not have a bound on the length
of task words and their data values, so we use extremal strings to decide the
existence of the desired sequence with the limited memory of PIAs. After these
two steps, we introduce perfect extremal strings to guarantee the satisfaction of
ϕ∀. Our PIA will then decide if a sequence of perfect extremal strings exists.

Task Words for ϕ∃. We start by defining task words, which are like data words
but do more book-keeping. Additionally to data values, elements in task words
are assigned tasks, which are witness type sets where each 2-type may be marked
as completed if its satisfaction has already been established, or as promised other-
wise. We reduce the satisfaction of ϕ∃ to the existence of a sequence of T1, . . . , Tn

of consecutive task words, where we keep assigning new data values and updating
promised into completed tasks, until we reached a completed task word Tn.

Definition 3 (Tasks). For θ ∈ Θ∃, we call Cθ a completed task and Pθ a
promised task. Let TasksC = {Cθ | θ ∈ Θ∃}, TasksP = {Pθ | θ ∈ Θ∃} and
Tasks = TasksC ∪ TasksP.

For each task set ts ⊆ Tasks, there is at most one witness type set ω ∈ Ω
that ts realizes, which means that for every θ ∈ Θ∃, (1) |{Pθ, Cθ} ∩ ts| ≤ 1, and
(2) |{Pθ, Cθ} ∩ ts| = 1 if and only if θ ∈ ω. If there is such an ω, we denote it
ω(ts), and call ts an Ω-realization. The set of all Ω-realizations is 2TasksΩ , and
2TasksCΩ = 2TasksΩ ∩ 2TasksC and 2TasksPΩ = 2TasksΩ ∩ 2TasksP .

Example 3. Since the witness type sets in Ω are singletons, so are the ts ∈ 2TasksΩ .
Let tsC

i = {Cθi
} and tsP

i = {Pθi
} for i ∈ [4]. Then we have 2TasksΩ = {tsC

i | i ∈
[4]} ∪ {tsP

i | i ∈ [4]}, and {Cθi
} and {Pθi

} are {θi}-realizations for i ∈ [4].

D-task words are data words that assign tasks to the elements of D. More
precisely, each d ∈ D is assigned, instead of a letter ξa, a task set ts that realizes
a witness type set ω which contains Cθ for each θ ∈ ω that d satisfies, and Pθ

for the remaining θ ∈ ω.

Definition 4 (Task word). Let D be a data word over Ξ. A D-task word
is a data word T over 2TasksΩ that has the same universe and order relations as
D, and for every d ∈ D with T |= ts(d), (1) D |= ξω(ts)(d), and (2) for every
θ ∈ ω(ts), Cθ ∈ ts iff D |= ∃y θ(d, y). A task word T is a D-task word for some
D, and it is completed if T |= ϕε ∧ ∀x

∨
ts∈2

TasksC
Ω

ts(x).

Example 4. We define a D-task word T ; its vocabulary is 2TasksΩ , its universe is
{a, b, c, d, e, f}, and ≤1, �2, and S2 are the same as in D. The interpretation
of the letter tsC

1 is {c}, that of tsC
2 is {d}, that of tsC

3 is {a, b, e}, and that of

216 N. Labai et al.

tsC
4 is {f}; the other letters are empty. As D |= ϕ, all existential constraints are

satisfied and T is completed.

The satisfaction of ϕ∃ coincides with the existence of a completed task word.

Lemma 1. Let D ∈ DW(Ξ). There exists a completed D-task word iff D |= ϕ∃.

We now characterize the notion of consecutive task words using trimmings.

Definition 5 (Trimming, consecutiveness). The trimming of a data word
D, denoted D\1, is the substructure of D induced by removing the elements with
the maximal data value. For task words, trimmings are obtained by removing
the elements with the largest data value and updating the tasks of the remaining
elements correctly. That is, a trimming of a D-task word T is a D\1-task word
T1 such that ω(ts) = ω(ts1) for every d and every ts, ts1 ∈ 2TasksΩ with T |= ts(d)
and T1 |= ts1(d). We say that T1, T are consecutive if T1 is a trimming of T .

The trimming of a task word is unique, and we denote it T \\1.

Example 5. D\1 is obtained from D by removing d and f . The D\1-task word
T \\1 has universe {a, b, c, e} and order relations as in D\1. Note that d and f

contributed in D to the satisfaction of ϕ∃, so T \\1 has promised tasks and is
no longer completed, with interpretations tsP

1 = {c}, tsP
3 = {a, b, e}, and the

remaining letters empty. Note that the tasks for the shared elements of T and
T \\1 realize the same witness type sets.

We have achieved (S1): reducing satisfaction of ϕ∃ to finding a sequence of task
words.

Proposition 2. There exists a data word D |= ϕ∃ if and only if there is a
sequence T1 . . . , Tn of consecutive task words, where Tn is a completed D-task
word.

Now to (S2): as the limited memory of PIAs hinders the manipulation of
task words with unbounded length and data values, we operate on their extremal
strings instead.

First, in data abstractions of task words, we do not distinguish all data values,
but only the top layer elements with maximal value, the second to top layer,
and the rest. We let Layers = {1top, 2top, rest}, and define the alphabet Γ =
Layers × 2TasksΩ . We also define its restrictions to completed and promised tasks
as ΓC = Layers × 2TasksCΩ and ΓP = Layers × 2TasksPΩ , while Γh = {h} × 2TasksΩ is
the restriction of Γ to some specific h ∈ Layers. For a symbol γ = (h, ts) in Γ ,
we denote ts(γ) = ts and ω(γ) = ω(ts).

Definition 6 (Data abstraction). Let T be a D-task word. For every d ∈ D,
let tsd be such that T |= tsd(d), and let A be the data word over Γ with same
universe and order relations as T , and with A |= γh(d) where γh = (h, tsd) iff (a)
h = 1top and valueD(d) = maxvalD, (b) h = 2top and valueD(d) = maxvalD−1,
or (c) h = rest and valueD(d) ∈ [maxvalD − 2]. The data abstraction abst(T)
of T is the string projection string(A).

Pebble-Intervals Automata and FO2 with Two Orders 217

Extremal strings are obtained from data abstractions by keeping only the
maximal and minimal positions in each layer with respect to the tasks. We
extend to them the notions of consecutive and completed.

Definition 7 (extremal strings). For w ∈ Γ �, define its extremal positions
extPos(w):

posh,θ(w) = {� ∈ [|w|] | w(�) = (h, ts), θ ∈ ω(ts)}
posrest,Pθ

(w) = {� ∈ [|w|] | w(�) = (rest, ts), Pθ ∈ ts}
extPosh,θ(w) = {� | � = max(posh,θ(w)) or � = min(posh,θ(w))}

If θ |= x ≤1 y, extPosθ(w) =
{
� | � = max(posrest,Pθ

(w))
}

If θ |= y <1 x, extPosθ(w) =
{
� | � = min(posrest,Pθ

(w))
}

extPos(w) =
⋃

θ∈Θ∃

(
extPosθ(w)

⋃

h∈Layers

extPosh,θ(w)
)

If extPos(w) = {	1, . . . , 	r} and 	1 < · · · < 	r, then the extremal string of w
is ext(w) = w(1) · · · w(r). EXT(Γ) = {ext(w) | w ∈ Γ �} denotes the set of
extremal strings. Note that s = ext(w) implies ext(s) = s and ext(ε) = ε. An
extremal string s is completed if s ∈ Γ+

C , or if s = ε and ∅DW(Σ) |=DW(Σ) ψ.
We occasionally write ext(T) to mean ext(abst(T)).

A pair s′, s of extremal strings is consecutive if s′ = ext(T \\1) and s = ext(T)
for some task word T .

For an extremal string s and 	 ∈ [|s|], the set of letters that can augment
s at position 	 without being extremal is Γ not ext(s,) = {γ ∈ Γ | ext(s) =
ext(s(1) · · · s(−1)γs() · · · s(|s|))}, and we define Γ not ext

h (s,) = Γh∩Γ not ext(s,)
for h ∈ Layers.

Example 6. Let w be the following 6-letter string over Γ = Layers × 2TasksΩ :
(rest, tsC

3)(rest, tsC
3)(2top, tsC

1)(1top, tsC
2)(rest, tsC

3)(1top, tsC
4).

Then extPos(w) = {1, 3, 4, 5, 6}, since the letter at position 2 appears both to
the left, at position 1, and to the right, at position 5, and s = ext(w) is the
substring obtained from w by removing the non-extremal position 2.

The concludes (S2), reducing the existence of D to a sequence of extremal
strings.

Corollary 2. There is a data word D |= ϕ∃ if and only if there is a sequence of
consecutive extremal strings where the last one is completed.

Perfect Extremal Strings for ϕ∀. We define in the appendix a formula which
intuitively ‘extracts’ the 2-type of elements in a data word. Let α = (hα, tsα) and
β = (hβ , tsβ) in Γ with at least one of them in Γ1top. The formula perfα,β(x, y)
implies for every atomic formula either itself or its negation. For example, if
hα = hβ = 1top, then perfα,β,�2

(x, y) implies x �2 y, y �2 x, ¬S2(x, y), and
¬S2(y, x). Hence for all α, β ∈ Γ with at least one of them in Γ1top, there
exists a 2-type θ(x, y) such that perfα,β(x, y) ≡DW(Ξ) θ(x, y). This allows us to
describe the 2-type of elements in task words via perfα,β formulas. For any two

218 N. Labai et al.

elements of the data word, there is a (possibly iterated) trimming in which both
appear and one of them has the maximal data value, and their perfect formula,
which is equivalent to their 2-type, determines whether they satisfy the universal
constraint χ. Thus we can ensure satisfaction of χ using perfα,β(x, y) formulas
from all the trimmings.

Definition 8 (Perfect string, perfect task word). Let w ∈ Γ �. We say w
is a perfect string if for every two positions 	1 < 	2 in w such that {w(1),
w(2)} ∩ Γ1top 	= ∅ we have perfw(
1),w(
2)(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x). Note
that the empty string ε is perfect. A task word T is perfect if it is empty, or if
ext(T) and ext(T \\1) are perfect.

Example 7. Let α = (2top, tsC
1) and β = (1top, tsC

2). Then perfα,β(x, y) is given
by: perfα,β(x, y) = ξ

1
(x) ∧ ξ

2
(y) ∧ (x <1 y) ∧ (x �2 y) ∧ S2(x, y).

The 2-type θ to which perfα,β(x, y) is equivalent over DW(Ξ) is given by the
conjunction of perfα,β(x, y) with ¬ξ

2
(x)∧¬ξ

1
(y)∧(y 	<1 x)∧(y 	�2 x)∧¬S2(y, x).

We have that w is a perfect string, and perfα,β(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x).

We characterize satisfiability in terms of perfect completed task words.

Lemma 2. Let T be a D-task word. T is perfect if and only if D |= ϕ∀.

As a corollary of Lemma 2 and Lemma 1, we get:

Proposition 3. For every data word D ∈ DW(Ξ), D |= ϕ if and only if there
exists a perfect completed D-task word. There is D |= ϕ if and only if there is a
sequence of consecutive perfect extremal strings where the last one is completed.

We are almost ready to define Aϕ. Intuitively, it will guess a sequence of
extremal strings as in Proposition 3, placing pebbles from an extremal string to
a consecutive one. This requires the automaton to verify consecutiveness, and
to know which positions in consecutive extremal strings correspond to the same
position in the input. This is easy if we have the underlying task word; indeed,
given a task word T and an extremal string s′ = ext(T), there is a bijective
mapping from the extremal elements of T that s′ stores, to their positions in
s′. The same holds for T \\1 and s = ext(T \\1). By composing these mappings
after inverting the latter, and restricting its domain to positions that remain
extremal after updating the abstracted data values (that is, shifting the top
layer to second top, and the second top into the remaining layer), we obtain a
partial embedding from s to s′ via T that keeps track of the matching positions;
the precise definition is in the appendix. But one major hurdle remains: these
notions are defined in terms of a task word T , and our PIA cannot store task
words, only their extremal strings. We overcome this through a merely syntactic
characterization of consecutiveness, which can be verified without a concrete task
word. This rather technical step relies on the fact that if s, s′ are consecutive,
then s′ can be obtained by guessing a substring r that will get new data values,
interleaving it into the proper positions g of s, which can also be guessed, and
updating the abstracted data values. Also the partial embedding that keeps track
of matching the positions can be obtained without a concrete T , using r and g.

Pebble-Intervals Automata and FO2 with Two Orders 219

Lemma 3. We can decide whether two given extremal strings s, s′ are consec-
utive in ExpSpace. If they are, then we can also obtain in ExpSpace a partial
embedding PEmbs↪→s′ from positions in s to positions in s′ that coincides with the
partial embedding from s to s′ via T for every task word T such that s′ = ext(T)
and s = ext(T \\1).

The Automaton. We give a high-level description of Aϕ = (Ξ,m +
1, Q, qinit, F, δ), and refer to the extended version for a full definition. We have
m = 7 · |Θ∃|: there is one pebble for each existential constraint in Θ∃ and each
layer in Γ , plus an additional pebble per constraint, and one designated pebble
m + 1 to read non-extremal positions. Q = Qe ∪ Qp has two types of states:

– Qe contains states (s, τ) with s a perfect extremal string and τ an (m+1, |s|)-
pebble assignment, which intuitively describes the assignment after reading s.

– Qp contains states of the forms (s, s̃, τ, 0) and (s, s̃, τ, 1) for every perfect
extremal string s, non-empty prefix s̃ of s, and (m+1, |s|)-pebble assignment
τ that satisfies certain conditions that hold when only the prefix s̃ has been
read.

The initial state is qinit = (ε, ρ⊥) ∈ Qe and the final states are F = {(s, τ) ∈
Qe | s is completed}. The transition δ is roughly as follows. Aϕ should transition
from (s, τ) ∈ Qe to (s′, τ ′) ∈ Qe for consecutive s, s′, but since it can only move
one pebble at a time, we have intermediate states in Qp which allow it to read
s′ from left to right by iterating over all its prefixes. We start reading s′ by
moving to (s′, s′(1), τ ′

q′ , 0) ∈ Qp, where τ ′
q′ stores the pebble assignment induced

by PEmbs′↪→s. Once the whole extremal string s′ has been read, we move to the
next extremal state.

This finishes the construction of the automaton Aϕ with L(Aϕ) = L(ϕ), and
thus the proof of Theorem3. Concerning the upper bound on finite satisfiability,
by Theorem 4 and EXT(Γ) ⊆ Γ 7|Θ∃|, we get that Aϕ has size at most double
exponential in |ψ|. For the ExpSpace upper bound, we need to show that the
transition relation of Aϕ is ExpSpace-computable (Lemma 3 in the appendix).
This with Theorem 2 gives an alternative proof of the upper bound in [27]:

Corollary 3. Finite satisfiability of FO2(≤1,�2, S2) is in ExpSpace.

Relation to the Proof of Schwentick and Zeume [27]. Naturally, there are
similarities between the techniques; our extremal strings and tasks are similar
to their profiles and directional constraints. However, a key difference is that in
their ‘geometric’ view, elements of the data word are assigned points (a, b) in
the plane with a a position in ≤1, and b a data value. Existential constraints
are indicated by marking the witnesses with the letters they should have, and
many profiles in a consistent sequence can contain points with the same a value.
In contrast, our ‘temporal’ view arises from the computation of the PIA. We
mark elements with existential constraints they need to satisfy and that they
have satisfied, which is compatible with the read-once nature of PIA. It does
not seem possible to use their proof techniques without modifying PIA to allow

220 N. Labai et al.

multiple readings of the input. The modified model would work for the logic-to-
automata relation established here, but we suspect it would be too strong for
the other direction.

4 Discussion and Conclusion

We introduced pebble-intervals automata (PIA) and studied their computational
power. We proved that the projections of data languages definable in FO2(≤1,
�2, S2) are PI languages, and as a by-product, obtained an alternative proof
that finite satisfiability is in ExpSpace. The main question that remains is the
converse of our main result: whether every PI language is the projection of an
FO2(≤1,�2, S2) definable data language. We believe this is the case. Our work
also gives rise to other questions. We suspect that our results can be extended to
ω-languages, and we would like to adapt them to C2, which extends FO2 with
counting quantifiers [25,29]. We also plan to explore further the computational
power of our automata model, for instance, to establish a pumping lemma that
allows us to prove that some context-free languages are not PI languages.

Acknowledgments. We thank the anonymous reviewers for their helpful remarks.

References

1. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. ACM Trans. Comput. Logic 18(4), 27:1–
27:35 (2017)

2. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4–5), 702–715 (2010)

3. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: PODS, pp. 10–19. ACM (2006)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. TOCL 12(4), 27 (2011)

5. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: LICS, pp. 7–16. IEEE (2006)

6. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and
timed languages. Inf. Comput. 182(2), 137–162 (2003)

7. Calvanese, D., Kotek, T., Šimkus, M., Veith, H., Zuleger, F.: Shape and content.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 3–17. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10181-1 1

8. Calvanese, D., Ortiz, M., Simkus, M.: Verification of evolving graph-structured
data under expressive path constraints. In: ICDT, pp. 15:1–15:19 (2016)

9. Clarke, E., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

10. David, C., Libkin, L., Tan, T.: On the satisfiability of two-variable logic over data
words. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
248–262. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8 18

https://doi.org/10.1007/978-3-319-10181-1_1
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-16242-8_18
https://doi.org/10.1007/978-3-642-16242-8_18

Pebble-Intervals Automata and FO2 with Two Orders 221

11. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

12. Etessami, K., Vardi, M., Wilke, T.: First-order logic with two variables and unary
temporal logic. Inform. Comput. 179(2), 279–295 (2002)

13. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-
order logic. Bull. Symb. Log. 3(01), 53–69 (1997)

14. Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1),
73–113 (1999)

15. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite
alphabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13089-2 47

16. Itzhaky, S., et al.: On the automated verification of web applications with embed-
ded SQL. In: ICDT. LIPIcs, vol. 68, pp. 16:1–16:18 (2017)

17. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

18. Kara, A.: Logics on data words. Ph.D. thesis, Technical University of Dortmund
(2016)

19. Manuel, A., Zeume, T.: Two-variable logic on 2-dimensional structures. In: CSL,
pp. 484–499 (2013)

20. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012)

21. Mortimer, M.: On languages with two variables. Math. Log. Q. 21(1), 135–140
(1975)

22. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. TOCL 5(3), 403–435 (2004)

23. Niewerth, M., Schwentick, T.: Two-variable logic and key constraints on data
words. In: ICDT, pp. 138–149. ACM (2011)

24. Otto, M.: Two variable first-order logic over ordered domains. J. Symb. Logic
66(2), 685–702 (2001)

25. Pratt-Hartmann, I.: Logics with counting and equivalence. In: CSL-LICS, pp. 76:1–
76:10. ACM (2014)

26. Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 401–415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24725-8 28

27. Schwentick, T., Zeume, T.: Two-variable logic with two order relations. Log. Meth.
Comput. Sci. 8(1) (2012)

28. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 3

29. Tan, T.: Extending two-variable logic on data trees with order on data values and
its automata. ACM Trans. Comput. Log. 15(1), 8:1–8:39 (2014)

30. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE (1986)

https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/11874683_3

Limited Two-Way Deterministic Finite
Automata with Advice

Ahmet Bilal Uçan(B)

Bogazici University, Istanbul, Turkey
ahmet.ucan@boun.edu.tr

Abstract. External assistance in the form of strings called advice is
given to an automaton in order to make it a non-uniform model of com-
putation. Automata with advice are then examined to better understand
the limitations imposed by uniformity, which is a typical property shared
by all feasible computational models. The main contribution of this paper
is to introduce and investigate an extension of the model introduced by
Küçük et al. [6]. The model is called circular deterministic finite automa-
ton with advice tape (cdfat). In this model the input head is allowed to
pass over input multiple times. The number of allowed passes over the
input, which is typically a function of input length, is considered as a
resource besides the advice amount. The results proved for the model
include a hierarchy for cdfat with real-time heads, simulation of 1w/1w
cdfat by 1w/rt cdfat, lower bounds of resources provided to a cdfat in
order to make it powerful enough to recognize any language, utilizable
advice limit regardless of the allowed pass limit, a relation between uti-
lizable pass limit and advice limit, and some closure properties.

Keywords: Formal languages · Automata theory · Advised
computation

1 Introduction

Advised computation, where external trusted assistance is provided to a machine
to help it for computational tasks, was introduced by Karp and Lipton [4] in 1982.
Damm and Holzer [1] considered giving advice to restricted versions of Turing
machines. Recent work on finite automata with advice include the papers of
Yamakami [8–11], Tadaki et al. [7], Freivalds et al. [3], Küçük et al. [6] and Ďurǐs
et al. [2]. Today, there are many different models in literature, partly because of
the several options available for a machine to access its advice. However, all such
models share some common properties. There is an advice function, which maps
input lengths to advice strings and not needed to be computable. Advice strings
are composed of characters from an advice alphabet. The machine has to use the
same advice string when operating on inputs of the same length. We investigate
the class of languages recognized by a machine when it consults some advice
function having some bounded growing rate. We then play with that upper bound

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 222–232, 2020.
https://doi.org/10.1007/978-3-030-40608-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_15&domain=pdf
http://orcid.org/0000-0002-7504-1048
https://doi.org/10.1007/978-3-030-40608-0_15

Limited Two-Way Deterministic Finite Automata with Advice 223

to see what happens to the aforementioned class. An advised automaton takes
advantage of an advice string by reading the character under the advice head and
choosing appropriate transition from its transition function accordingly. So the
same machine may recognize different languages using different advice functions.

We focus on the advice tape model introduced by Küçük et al. in [6]. Since
that model becomes extremely powerful (able to recognize all languages) when
allowed to use a 2-way input head, and is remarkably limited for the 1-way head
case, [2, Theorem 2], [6, Theorem 13], we examine a limited version of two-way
input access.

Some common terminology to be used in this paper are as follows: n denotes
input length, M denotes an automaton, L denotes a language, h denotes an
advice function, w denotes a string, Σ denotes input alphabet, Γ denotes advice
alphabet, � means any, ALL denotes the set of all languages, and |w|c denotes
the number of occurrences of character c in string w.

Here are some definitions of concepts that will be used in our discussion,

Definition 1 [6]. w1 ≡L,n,k w2 ⇐⇒ w1, w2 ∈ Σk ∧ ∀z ∈ Σn−k[w1z ∈ L ⇐⇒
w2z ∈ L].

Definition 2 [2, Definition 5]. Let {Rn}∞
n=1 be a family of relations Rn ⊆ Σn ×

Σf(n) for some f : N → N such that ∀x0, x1 ∈ Σn, x0
= x1, there is a y ∈
Σf(n) such that Rn(xi, y) and ¬Rn(x1−i, y) for some i ∈ {0, 1}. Let LR be
the language LR := {xy|x ∈ Σ�, |y| = f(|x|), R|x|(x, y)}. We call LR a prefix-
sensitive language for relation family R.

Definition 3. We call L a prefix-sensitive language iff there exists a relation
family R such that LR is a prefix-sensitive language for relation family R.

2 Our Model

We defined this model and decided to work on it because the model seems to
provide a smooth passage from one-way input head to two-way input head. The
name of the new model is circular deterministic finite automaton with advice tape
(cdfat) which may have real-time or 1-way input and advice heads (4 possible
versions). Circular machines read their input circularly, that is, when the input
endmarker has seen and the next transition dictates machine to move its input
head to right, the input head immediately returns to the beginning position.
Advice head is not allowed to perform such a move.

Note that when restricted to a single pass on input, this model is exactly the
same with the standard deterministic finite automaton with advice tapes model
(except the two-way input head version) introduced by Küçük et al. [6].

2.1 Definition

A circular deterministic finite automaton is a 9-tuple (Q,Σ, Γ, TI , TA, δ,
q0, qacc, qrej) where

224 A. B. Uçan

(i) Q is a finite set of internal states,
(ii) Σ is a finite set of symbols called the input alphabet that does not contain

the endmarker symbol, $, such that $ /∈ Σ and Σ′ = Σ ∪ {$},
(iii) Γ is a finite set of symbols called advice alphabet that does not contain

the endmarker symbol, $, such that $ /∈ Γ and Γ ′ = Γ ∪ {$},
(iv) TI ∈ {{S,R}, {R}} represents the set of allowed input head movements

where S and R means stay-put and right respectively,
(v) TA ∈ {{S,R}, {R}} represents the set of allowed advice head movements

where S and R means stay-put and right respectively,
(vi) q0 ∈ Q is the initial state on which the execution begins,
(vii) qacc ∈ Q is the accept state on which the execution halts and accepts,
(viii) qrej ∈ Q is the reject state on which the execution halts and rejects,
(ix) δ : Q × Σ × Γ → Q × TI × TA is the transition function such that,

δ(q1, σ, γ) = (q2, tI , tA) implies that when the automaton is in state q1 ∈ Q
and it scans σ ∈ Σ′ on its input tape and γ ∈ Γ ′ on its advice tape,
a transition occurs which changes the state of the automaton to q2 ∈
Q, meanwhile moving the input and advice tape heads in the directions
specified respectively by tI ∈ TI and tA ∈ TA,

A cdfat M = (Q,Σ, Γ, TI , TA, δ, q0, qacc, qrej) is said to accept (reject) a string
x ∈ Σ∗ with the help of an advice string a ∈ Γ ∗ if and only if M , when started at
its initial state q0 with x$ on the input tape and a$ on the advice tape and while
the tape heads scan the first symbols, reaches the accepting (rejecting) state,
qacc (qrej), by changing states and moving the input and advice tape heads as
specified by its transition function, δ.

A language L defined on the alphabet Σ, is said to be recognized by such a
cdfat M with the help of an advice function h : N → Γ ∗ if and only if

– L = {x | M accepts x with the help of h(|x|)}, and
– L̄ = {x | M rejects x with the help of h(|x|)}.

A language L is said to be recognized by a cdfat, M, using O(g(n))-length
advice if there exists an advice function h with the following properties:

– |h(n)| ∈ O(g(n)), and
– M recognizes L with the help of h(n).

A language L is said to be recognized by a cdfat, M, using f(n) passes over
the input if and only if during the execution of any input of length n, transitions
of the form δ(, $,) = (, R,) are used at most f(n) times in total.

Note that it is not allowed for a cdfat to have a transition of the form
δ(, , $) = (, , R), however, there can be transitions δ(, $,) = (, R,). The
endmarker of the input is for informing the machine. It may be a different model
if we omit it, for the sake of backward compatibility we continue to use it.

For the notational purposes, L{rt−f(n)} denotes the set of languages recog-
nized by cdfat with real-time heads, (n + 1)f(n) length advice and f(n) passes.
When a head is allowed to stay-put on its tape, we use a different notation. For
instance L{1 − [f(n)]/g(n)} denotes the set of languages recognized by cdfat
with 1-way input head and real-time advice head, using g(n) length advice and
f(n) passes.

Limited Two-Way Deterministic Finite Automata with Advice 225

2.2 Results

Theorem 1. A language L is prefix-sensitive if and only if for all k ∈ N, there
exists n ∈ N such that ≡L,n,k has |Σ|k equivalence classes.

Proof. Assume that for some language L it holds that for all k ∈ N, there
exists n ∈ N such that ≡L,n,k has |Σ|k equivalence classes. Let f be a function
which maps any k ∈ N to an n so that ≡L,n,k has |Σ|k equivalence classes.
Define an infinite family of relations {Rk}∞

k=1 such that Rk ⊆ Σk × Σf(k)−k

and for all x ∈ Σk and all y ∈ Σf(k)−k, xy ∈ L ⇐⇒ Rk(x, y). It holds
that ∀x0, x1 ∈ Σk, x0
= x1, there is a y ∈ Σf(k)−k such that Rk(xi, y) and
¬Rk(x1−i, y) for some i ∈ {0, 1}. Because if there were no such y for some
x0 and x1, then x0 ≡L,f(k),k x1 would be true and the number of equivalence
classes would not be |Σ|k. According to the Definition 2, we concluded that L is
prefix-sensitive.

For the other direction, let L be a prefix-sensitive language. According to
the Definition 2, L = {xy|x ∈ Σ�, R|x|(x, y)} where f : N → N is a function
and {Rk}∞

k=1 is an infinite sequence of relations such that Rk ⊆ Σk × Σf(k) and
∀x0, x1 ∈ Σk, x0
= x1, there is a y ∈ Σf(k) such that Rk(xi, y) and ¬Rk(x1−i, y)
for some i ∈ {0, 1}. It holds that for all k ∈ N, ≡L,k+f(k),k has |Σ|k equiva-
lence classes. Because if the number of equivalence classes of ≡L,k+f(k),k is less
than |Σ|k for some k, then there would be two strings x0 and x1 such that
x0 ≡L,k+f(k),k x1 and that would imply that there is no y of length f(k) such
that Rk(xi, y) and ¬Rk(x1−i, y) for some i ∈ {0, 1}. �

Theorem 2. L{rt − 2O(n)} = ALL.

Proof. Let h(n) = w1c1w2c2 . . . w|Σ|ncΣn where each wi is a distinct input word
of length n and each ci /∈ Σ is either the accept or the reject symbol. Devise a
machine M such that, it tries to match the input word and advice character by
character in real-time execution. If a mismatch occurs while trying to match the
input word, machine M will advance its input head until it is at the beginning
position again. Note that the advice head will be at the first character of the
next word on advice at the end of this process. Then it tries to match the next
word and so on. At some point matching ends with success, that is, machine M
will see the endmarker of input while trying to match the characters. At that
point it will accept or reject the string depending on which ci character it is
seeing on the advice. �

Theorem 3. For any function f : N → N, L{rt − f(n)} = L{rt − O(f(n))}.
Proof. The idea is that for any given machine M , one can devise a new machine
M ′ such that M ′ uses k times less passes than M for all n and for an arbitrary
k ∈ N, and still recognizes the same language with the help of some other advice
function. Let us group the passes of machine M so that ith group consists of
passes from (i−1)k +1 to ik. With a single pass, machine M ′ simulates a group
of k passes of M . First pass simulates the first group and second pass simulates

226 A. B. Uçan

the second group and so on. Since M ′ does not know which state to begin with a
pass without knowing the result of the previous one, it simulates all possibilities
and remembers the final state of the previous group of passes using again its
states. Therefore the size of the state set of M ′ is sks+1 where s is the number
of states of M .

The new advice function h′ is a compressed version of the old one. Let Γ ′

be the new advice alphabet whose symbols represent the k permutations of the
symbols of Γ . |Γ ′| = |Γ |k holds. Let |h′(n)| = |h(n)|/k for all n > 0. Note that
without loss of generality we assume that |h(n)| is an integer multiple of k. We
prepare the new advice strings so that h′(1) represents all strings from h(1) to
h(k), h′(2) represents all strings from h(k + 1) to h(2k) and so on. �

Theorem 4. For any function f : N → N, L1, L2 ∈ L{rt − f(n)} =⇒ L1L2 ∈
L{rt − nf(n)}.
Proof. Let M1,M2 be machines recognizing L1, L2 with the help of advice func-
tions h1, h2 respectively. Let M3 be the machine which is claimed to recognize
the concatenation language L1L2 with the help of advice function h3. The idea
is to predict the words w1 ∈ L1 and w2 ∈ L2 such that w1w2 is the input word.
Machine M3 doesn’t know from where to divide the input, so it just tries all
the possibilities. We replace the advice characters whose locations correspond to
the last character of the first portion of the input with their marked versions in
order to inform the machine M3.

In the first pass over the input, machine M3 first simulates M1 on the first
portion of the input and stores the last internal state of that execution. Then it
simulates M2 on the rest of the input and stores the last state of that execution
too. Then it begins the second pass simulating M1 again but this time starting
from the last saved state of that thread and when it completes, M3 will update
the last state of the thread and so on. Throughout the execution of M3, two
separate threads of execution are simulated at the same time. At the end of at
most f(n) passes, if both threads end with accepting their respective sub-inputs,
M3 accepts the input. Otherwise, M3 continues the computation with a different
division of the input. Note that, given an input word of length n, there are n+1
different pairs of words such that their concatenation is the input word. At the
end of at most (n + 1)f(n) passes, if no division works, M3 rejects the input.
According to the Theorem 3, asymptotic rate of the passes is the important part
so nf(n) passes can do the same job.

Note that we should double the old advice alphabet size and introduce
marked versions of the old symbols in order to mark the position of input sepa-
ration on the advice h3. Also note that advice string h3(n) will be an interleaved
version of the h1(k) and h2(n − k) concatenated for all k ∈ [0, n]Z. �

Corollary 1. L{rt − poly} is closed under concatenation.

Lemma 1. Let L ∈ L{rt − f(n)}. Then for all n and for all k smaller than n,
≡L,n,k has 2O(f(n)) equivalence classes.

Limited Two-Way Deterministic Finite Automata with Advice 227

Proof. Let s = |Q| and let Q′ = {q1, q2, . . . qs−2} be the set of all states except
the accept and reject states. Let αw,i : Q′ → Q′ be a mapping which maps
the internal state of machine when input head is for the first time on the first
character of w and advice head is at the ith position to the internal state of
machine when input head is for the first time on the first character right after
the w. Besides its parameters w and i, this mapping depends on the content
of the advice and transition function of the machine. Here we consider a single
machine working on inputs of the same length n therefore the mapping depends
only on its parameters.

Consider execution of a real-time circular machine on two different inputs of
length n, namely w1z and w2z. If we can find two words w1 and w2 such that
αw1,i = αw2,i for all i ∈ {1, 1 + (n + 1), . . . 1 + (f(n) − 1)(n + 1)} then the two
inputs must have the same fate for all z.

Given a single i, there are less than ss distinct functions αw,i. Considering all
f(n) functions mentioned above for a word w, there are less than (ss)f(n) differ-
ent permutations. Assuming that the number of equivalence classes of relation
≡L,n,k is greater than (ss)f(n) for some k and n, there would be two words w1

and w2 such that they are in different equivalence classes and have all the same
mappings. This is a contradiction. �

Theorem 5. Let f(n), g(n) ∈ O(n) and f(n) ∈ o(g(n)). Then L{rt − f(n)} �

L{rt − g(n)}.
Proof. Consider the language family Lρ = {wρ(|w|)| w ∈ Σ∗, ρ : N → N}. Note
that ρ is assumed to be a non-decreasing function and the input length n =
|w|ρ(|w|). Inputs consist of repetitions of a substring w. Define φ(mρ(m)) = m
for all m ∈ N

+. Depending on the choice of ρ, φ(n) ∈ ω(1) ∩ O(n). We will give
three lemmas. Two of them show a hierarchy for the range ω(1) ∩ O(n) and the
last one is to put the Θ(1) in.

Lemma 2. Lρ ∈ L{rt − φ(n)}.
Since given the input length n and the function ρ we can deduct the period
of input, we can check a position of the repeating substring w for each pass.
Therefore our machine will need |w| = φ(n) many passes.

The advice strings are of the form (parentheses are meta-characters),

h(n) = (10|w|−1)ρ(|w|)#(010|w|−2)ρ(|w|) . . . #(0|w|−11)ρ(|w|)

Our machine will first search for the first 1 on advice tape and when it has
been found, the machine saves the corresponding input character in its states
and continue searching for the next 1. When it sees the next 1 it checks the
corresponding input character with the one it saved before. If they mismatch
input is rejected. The machine then continue searching for 1s and do the same
checking till the end of the first pass. It then start with the second pass and do
the same procedure again, checking the equality of next character position in
substring w. If the endmarker of advice is reached, input is accepted.

228 A. B. Uçan

Lemma 3. Lρ /∈ L{rt − o(φ(n))}.
Observe that any Lρ is prefix-sensitive. Thinking each word as concatenation of
first period w and the rest, in other words selecting k to be φ(n) for all n, ≡Lρ,n,k

has |Σ|φ(n) equivalence classes. According to the Lemma 1, Lρ /∈ L{rt−o(φ(n))}.

Lemma 4. No prefix-sensitive language is in L{rt − O(1)}.
According to the Lemma 1, for any language L ∈ L{rt − O(1)}, ≡L,n,k has
2O(1) = O(1) equivalence classes. Therefore according to Theorem 1, L is not
prefix sensitive. �

Theorem 6. Let L1 ∈ L{1 − [f(n)]/1 − [g(n)]} and L2 ∈ L{1 − [f ′(n)]/1 −
[g′(n)]}. Then L1 ∪ L2 ∈ L{1 − [f(n) + f ′(n)]/1 − [g(n) + g′(n)]}.
Proof. Let M1, M2 be machines recognizing languages L1, L2 with the help of
advice functions h1 and h2 respectively. Devise a new advice function,

h3(n) = h1(n)#h2(n)

for all n where # is a brand new advice character that occurs nowhere else.
Let M3 be the machine recognizing the union language with the help of h3.
Machine M3 first simulates the M1 and during this simulation it treats the #
character in advice as an endmarker. When this simulation ends, which may take
at most f(n) passes over the input, M3 stores the result in its states and start
simulating M2 after adjusting its heads to proper positions, that is input head
to the beginning and advice head to the next character after #. After at most
f ′(n) passes over the input, it completes the execution and store the result in its
states. In this way it may end up in 4 different states for 4 possible acceptance
status of M1 and M2. Via combining some of those states into the accept state
and the rest into the reject state; union, intersection or difference of L1 and L2

are all recognizable. �

Corollary 2. L{1 − [O(f(n))]/1 − [O(g(n))]} is closed under union and
intersection.

Theorem 7. For any function f : N → N, L{1 − [f(n)]/1 − [�]} = L{1 −
[f(n)]/1 − [2O(n)]}.
Proof. The proof is an easy modification of the proof given by Ďurǐs et al. for
[2, Theorem 3]. �

Theorem 8. For any function g : N → N, L{1 − [�]/1 − [g(n)]} = L{1 −
[O(g(n))]/1 − [g(n)]}.
Proof. Consider the execution of an s-state cdfat with one-way heads. Pausing
the advice head, passing on the input more than s times forces the machine to
enter an infinite loop. Thus, a machine must advance its advice head before that
threshold. Therefore at most sg(n) passes are possible for an execution which
eventually halts. �

Limited Two-Way Deterministic Finite Automata with Advice 229

Theorem 9. For any functions f, g : N → N, L{1 − [f(n)]/1 − [g(n)]} ⊆ L{1 −
[f(n)]/O(nf(n)g(n))}.
Proof. It is possible to simulate the one-way advice head with real-time advice
head using additional advice. The idea is to replicate each advice character
(n+1)f(n) times and use separator characters # to mark the transition locations.
That is, for all n,

h(n) = c1c2 . . . ck =⇒ h′(n) = c
(n+1)f(n)
1 #c

(n+1)f(n)
2 # . . . c

(n+1)f(n)
k #c

(n+1)f(n)
$

where ci ∈ Γ for all i ∈ {1, 2 . . . k} and the c$ is a new advice character
which is for repeating the endmarker (it is not allowed to have more than one
real endmarker character). When the new machine reads c$ on h′, it behaves
exactly like the old machine seeing endmarker on h.

Instead of stay-putting advice head in old machine, let it move right one step
in new machine. Instead of moving advice head one step in old machine, enter a
subprogram which takes advice head to the next # character in new machine.

This trick works because a cdfat with one-way heads must forward its advice
head within (n + 1)f(n) computational steps. This is because without loss of
generality we can assume at least one head is moving in each step and of course
input head can move at most (n + 1)f(n) times in an execution. �

Corollary 3. For any function f : N → N, L{1 − [f(n)]/1 − [poly]} = L{1 −
[f(n)]/poly}.

It is already known that dfat with 2-way input head is equal in power with
the prefix advice model when provided with constant advice [5, Theorem 3.8].
Since our model is sandwiched in between the 2-way input model and advice
prefix model when it comes to power, we deduce that L{1 − [i]/1 − [k]} =
L{1 − [i + 1]/1 − [k]} for all i ∈ N. Therefore an interesting question to ask
is what is the minimum advice for which more passes over input enlarges the
class of languages recognized. Küçük and others showed that when provided
with polynomial advice, 2-way input head is more powerful than 1-way head
[6, Theorem 14]. We proved a stronger result and gave an ultimate answer to
the aforementioned question. It turns out that even 2 passes over input is more
powerful than a single pass when the machine is provided with an increasing
advice.

Theorem 10. Let f : N → N be any function in ω(1). Then L{1 − [1]/1 −
[f(n)]} � L{1 − [2]/1 − [f(n)]}.
Proof. Consider the language family Lρ = {w|w ∈ {1, 2, 3}∗, |w|1 = |w|2 =
ρ(|w|)}. The following two lemmas establish the proof.

Lemma 5. Lρ /∈ L{1 − [1]/1 − [O(ρ(n))]}.
Proof. Küçük et al. proved that for any advice length function f , if L ∈ L{1 −
[1]/1 − [f(n)]}, then for all n and all k ≤ n, ≡L,n,k has O(f(n)) equivalence

230 A. B. Uçan

classes, [6, Lemma 6]. It can be shown that for all n, there exists k ≤ n such
that ≡Lρ,n,k has Θ(ρ2(n)) equivalence classes. Since ρ(n) ∈ ω(1) =⇒ ρ(n) ∈
o(ρ2(n)), we conclude that Lρ /∈ L{1 − [1]/1 − [O(ρ(n))]}.

Lemma 6. Lρ ∈ L{1 − [2]/1 − [O(ρ(n))]}.
Proof. The idea is to devise a machine which in first pass counts the character
1 and in second pass counts the character 2. Let L1 = {w|w ∈ {1, 2, 3}∗, |w|1 =
ρ(|w|)} and L2 = {w|w ∈ {1, 2, 3}∗, |w|2 = ρ(|w|)}. Observe that L1 or L2 can
easily be recognized by a cdfat with a single pass. In order to recognize L1 for
instance, let h(n) = 1ρ(n) be the advice function, then consider a machine which
stay-puts its advice head when it sees a character other than 1 on its input and
advances its advice head when it sees 1 on input. It will accept a string iff both
endmarkers are read at the same time. L2 can be recognized similarly. Since
L1, L2 ∈ L{1 − [1]/1 − [O(ρ(n))]}, according to Theorem6, L1 ∩ L2 = Lρ ∈
L{1 − [2]/1 − [O(ρ(n))]}. �

Lemma 7. Let L ∈ L{1−[f(n)]/1−[g(n)]}. Then for all n and for all k smaller
than n, ≡L,n,k has 2O(g(n) log g(n)) equivalence classes.

Proof. Define a configuration ci of a machine to be the pair of internal state and
advice position. Define a non-stopping configuration c = (q,m) of a machine to
be any configuration where q is a state other than accept and reject states. Let
C = {c1, c2, . . . , c(s−2)(g(n)+1)} be the set of all non-stopping configurations for a
machine and for input length n (s = |Q|). Without loss of generality assume our
machines always end their execution when input head is on the endmarker. Let
w be a substring of input (not containing the endmarker) and let αw : C → C
be a mapping which maps the configuration of machine when the first character
of word w is read first time on input tape to the configuration of machine when
the character right after the word w is read first time on input tape. Function
α depends on transition function of the machine, the specific word w being
processed and the advice content. We focus on a single machine and inputs of
the same length n, therefore in our case α depends only on w.

Consider execution of a circular machine on two different inputs of length
n, namely w1z and w2z. Both inputs start execution at the initial configuration
and after each pass they start with a new configuration. If we can find two words
w1 and w2 such that αw1 = αw2 then the two inputs w1z and w2z must have
the same fate for all z.

There are less than 2sg(n)2sg(n) distinct functions α. Assuming that the
number of equivalence classes of ≡L,n,k is greater than 2sg(n)2sg(n) for some k
and n, there would be two words w1, w2 in two different equivalence classes such
that they have the same mapping. This is a contradiction. �

Theorem 11. Let f(n) ∈ ω(1) ∩ o(log n). Then the classes L{rt − f(n)} and
L{1 − [1]/1 − [�]} are incomparable.

Proof. Recall that L{1− [1]/1− [�]} is nothing but our way of notating the class
of languages recognized by the model introduced by Küçük et al. in [6] given

Limited Two-Way Deterministic Finite Automata with Advice 231

access to unlimited advice. According to Theorem 5, a prefix-sensitive language
is in L{rt−f(n)} no matter how slow f(n) grows. However we know from Ďurǐs
et al. [2, Theorem 2] that no prefix-sensitive language is in L{1 − [1]/1 − [�]}.
Therefore L{rt − f(n)} � L{1 − [1]/1 − [�]}.

On the other hand, as stated in proof of Lemma6, the language L = {w|w ∈
{1, 2, 3}∗, |w|1 = ρ(|w|)} can be easily recognized by a machine with one-way
heads, given access to Θ(ρ(n)) length advice. It is easy to see that for all n,
there exists k such that ≡Lρ,n,k has Θ(ρ(n)) equivalence classes. When the ρ(n)
is selected to be linear in n, according to Lemma 1, L /∈ L{rt− f(n)}. Therefore
L{1 − [1]/1 − [�]} � L{rt − f(n)}. �

An interesting question to ask is what is the minimum advice or pass needed
in order for a model to recognize any language. We can show some lower bounds
using Lemmas 1 and 7. PAL is the language of even palindromes.

Corollary 4. g(n) log g(n) ∈ o(n) =⇒ PAL /∈ L{1 − [f(n)]/1 − [g(n)]}.
Corollary 5. f(n) ∈ o(n) =⇒ PAL /∈ L{rt − f(n)}.

3 Conclusions and Open Questions

We showed that cdfat with real-time heads can utilize up to linearly many passes
over input. We showed that with exponential pass, the real-time machine can
recognize any language. However we do not know if the machine can utilize more
than linear passes. There may be a clever algorithm for recognizing any language
with linear passes.

We showed that even the most powerful version of the cdfat, that is the
one having one-way input and advice heads, cannot recognize some languages
when there is not enough advice (a nearly linear bound). However we are not
aware of an algorithm for this machine which uses less than exponential resources
to recognize any language. It would be nice to know the minimum amount of
resources needed to recognize any language.

We compared the class of languages recognized by single pass deterministic
finite automaton with one-way heads and unlimited advice with the growing
class of languages recognized by a real-time cdfat as we allow more passes over
input. Since we know that the former class is bigger than the latter when we
allow only constant amount of pass over input and the reverse is true when we
allow exponential passes over input, we wonder how that growing takes place
and is there any pass limit for which the two classes are equal. It turned out
that this is not the case. As long as the allowed pass limit is not constant and
sub-logarithmic, two classes are not subsets of each other. However we do not
know exactly when the latter class encompasses the former one.

Acknowledgements. Thanks to Prof. Cem Say who have helped editing the paper
and correcting my mistakes and to my family for their constant support and love.

232 A. B. Uçan

References

1. Damm, C., Holzer, M.: Automata that take advice. In: Wiedermann, J., Hájek,
P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60246-1 121

2. Ďurǐs, P., Korbaš, R., Královič, R., Královič, R.: Determinism and nondeterminism
in finite automata with advice. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.)
Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp.
3–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4 1

3. Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. The-
oret. Comput. Sci. 411(38–39), 3436–3443 (2010). https://doi.org/10.1016/j.tcs.
2010.05.038

4. Karp, R., Lipton, R.: Turing machines that take advice. Enseign. Math. 28, 191–
209 (1982)

5. Küçük, U.: Finite and small-space automata with advice. Ph.D. thesis, Boğaziçi
University (2018)

6. Küçük, U., Say, A.C.C., Yakaryılmaz, A.: Finite automata with advice tapes. In:
Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 301–312. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5 27

7. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time turing
machines. Theoret. Comput. Sci. 411(1), 22–43 (2010). https://doi.org/10.1016/j.
tcs.2009.08.031

8. Yamakami, T.: Swapping lemmas for regular and context-free languages with
advice. CoRR abs/0808.4122 (2008). http://arxiv.org/abs/0808.4122

9. Yamakami, T.: The roles of advice to one-tape linear-time turing machines and
finite automata. Int. J. Found. Comput. Sci. 21(6), 941–962 (2010). https://doi.
org/10.1142/S0129054110007659

10. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theo-
ret. Comput. Sci. 412(45), 6432–6450 (2011). https://doi.org/10.1016/j.tcs.2011.
07.013

11. Yamakami, T.: One-way reversible and quantum finite automata with advice. In:
Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 526–537.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28332-1 45

https://doi.org/10.1007/3-540-60246-1_121
https://doi.org/10.1007/978-3-319-98355-4_1
https://doi.org/10.1016/j.tcs.2010.05.038
https://doi.org/10.1016/j.tcs.2010.05.038
https://doi.org/10.1007/978-3-642-38771-5_27
https://doi.org/10.1016/j.tcs.2009.08.031
https://doi.org/10.1016/j.tcs.2009.08.031
http://arxiv.org/abs/0808.4122
https://doi.org/10.1142/S0129054110007659
https://doi.org/10.1142/S0129054110007659
https://doi.org/10.1016/j.tcs.2011.07.013
https://doi.org/10.1016/j.tcs.2011.07.013
https://doi.org/10.1007/978-3-642-28332-1_45

Complexity

On the Size of Depth-Two Threshold Circuits
for the Inner Product Mod 2 Function

Kazuyuki Amano(B)

Department of Computer Science, Gunma University,
1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan

amano@gunma-u.ac.jp

Abstract. In this paper, we study the size of depth-two threshold circuits com-
puting the inner product mod 2 function IP2n(x1, . . . , xn, y1, . . . , yn) :=

∑
i xiyi

(mod 2). First, we reveal that IP2n can be computed by a depth-two threshold
circuit of size significantly smaller than a folklore construction of size O(2n).
Namely, we give a construction of such a circuit (denoted by THR ◦ THR cir-
cuit) of size O(1.682n). We also give an upper bound of O(1.899n) for the case
that the weights of the top threshold gate are polynomially bounded (denoted by
MAJ ◦ THR circuit). Second, we give new lower bounds on the size of depth-
two circuits of some special form; the top gate is an unbounded weight threshold
gate and the bottom gates are symmetric gates (denoted by THR ◦ SYM circuit).
We show that any such circuit computing IP2n has size Ω((1.5 − ε)n) for every
constant ε > 0. This improves the previous bound of Ω(

√
2n/n) based on the

sign-rank method due to Forster et al. [JCSS ’02, FSTTCS ’01]. Our technique
has a unique feature that the lower bound is obtained by giving an explicit fea-
sible solution to (the dual of) a certain linear programming problem. In fact, the
problem itself was presented by the author over a decade ago [MFCS ’05], and
finding a good solution is an actual contribution of this work.

Keywords: Circuit complexity · Threshold circuits · Linear programming ·
Upper bounds · Lower bounds

1 Introduction

The problem of proving strong lower bounds on the size (i.e., the number of gates) of
depth-two threshold circuits computing an explicit Boolean function is a big challenge
in complexity theory. Currently, we cannot refute that every function in the class NEXP
(non-deterministic exponential time) can be computed by a polynomial-size depth-two
circuit consisting of threshold gates with unbounded weights (denoted by THR ◦ THR
circuit). There is a long line of research aiming for understanding the computational
power and the limitation of depth-two threshold circuits (e.g, [5,9,10,13,14] or see an
excellent book [12, Chapter 11.10]). The strongest known lower bound on the size of
THR ◦ THR circuits for a function in NP is Ω(n3/2) due to Kane and Williams [13].

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 235–247, 2020.
https://doi.org/10.1007/978-3-030-40608-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_16&domain=pdf
http://orcid.org/0000-0003-2322-6072
https://doi.org/10.1007/978-3-030-40608-0_16

236 K. Amano

In this paper, we focus on the size complexity of depth-two threshold circuits for
the inner product mod 2 function:

IP2n(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

(xi ∧ yi) (mod 2).

The inner product mod 2 function IP2n has been widely studied in the context of depth-
two threshold circuits (e.g., [7,10,13]).

It is a long standing open question whether IP2n has a polynomial size depth-two
threshold circuit with unbounded weights threshold gates in both layers. If we restrict
the weights of threshold gates in one of two layers to be polynomial, then strong lower
bounds are known. Let MAJ denote the class of threshold functions whose weights are
bounded to be Z ∩ [−poly(n), poly(n)]. Hajnal et al. [10] proved that every MAJ ◦ THR
circuit computing IP2n has size Ω(2(1/3−ε)n) using the discriminator method. An expo-
nential lower bound were also shown by Nisan [16] using a communication complexity
argument. Forster et al. [7,8] proved that every THR ◦MAJ circuit computing IP2n has
size Ω(

√
2n/poly(n)) by lowerbounding the sign-rank of the communication matrix of

IP2n.
Note that IP2n has an O(n) size threshold circuit of depth-three; in the first layer, we

use n gates to compute xi ∧ yi for each i, and then in the second and third layer, we use
O(n) gates to compute the parity of the outputs of them. If the gates at the bottom layer
are restricted to be And, Exclusive-or or Symmetric gates, stronger lower bounds for
IP2n are known (see Table 1). Remark that, in recent years, several results providing the
separation between depth-two and depth-three threshold circuits were given for real-
valued functions (e.g., [6,18]). However, to the best of our knowledge, the arguments
used in these works can not directly be applied for Boolean functions.

Table 1. Known upper and lower bounds on the size of depth-two circuits using threshold gates
that computes IP2n. Entries marked with (*) are shown in this paper. Unmarked results are folk-
lore.

Circuit type Lower bound Upper bound

THR ◦ AND 2n [3] 2n

THR ◦ XOR 2n [4] O(2.966n) [2,19]

THR ◦ SYM Ω((1.5 − ε)n) (*) 2n

THR ◦ MAJ Ω((
√
2n/poly(n)) [7,8] 2n

THR ◦ THR Ω(n) [17] O(1.682n) (*)

MAJ ◦ THR Ω(2(1/3−ε)n) [10] O(1.899n) (*)

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 237

1.1 Our Contributions

The contribution of this work is twofold.
First, we consider upper bounds on the size of depth-two threshold circuits for IP2n.

Although we know that lower bounds are more preferable, we pursuit upper bounds
because we think that the lack of knowledge on good upper bounds for the problem is
one of the reasons why we could not obtain a good lower bound.

It is folklore that IP2n can be computed by a THR ◦ AND circuit (hence also by a
THR ◦ THR circuit) of size 2n by applying the inclusion-exclusion formula. Namely,

IP2n(x1, . . . , xn, y1, . . . , yn) =
∑

∅�S⊆{1,...,n}
(−2)|S |−1

∏

i∈S
xiyi.

To the best of our knowledge, no asymptotically better bound has not been published.
Note that IP2n has 2n input variables and the construction via the DNF representation
of IP2n needs ∼ 3n gates.

In this work, we show that IP2n has a depth-two threshold circuit of size signifi-
cantly smaller than 2n. Namely, we give an explicit construction of a THR◦THR circuit
of size O(1.682n) as well as a MAJ ◦ THR circuit of size O(1.899n) computing IP2n.

The second contribution of this work is to give a new lower bound on the size
of depth-two threshold circuits with some special restriction on the bottom gates. A
symmetric gate is a gate that takes Boolean inputs whose output is depending only on
the number of one’s in inputs. Let THR ◦ SYM denote depth-two circuits consisting of
a threshold gate with unbounded weights at the top and symmetric gates at the bottom.

In [7], Forster established a breakthrough result that the sign-rank of the 2n × 2n

Hadamard matrix is Ω(
√
2n). Here the sign-rank of a matrix M = (Mi, j) with nonzero

entries is the least rank of a matrix A = (Ai, j) with Mi, jAi, j > 0 for all i and j. By
combining this result and a simple fact that the communication matrix of any symmetric
function has rank at most n + 1, Forster et al. [8] established an Ω(

√
2n/n) lower bound

on the size of THR ◦ SYM circuits for IP2n.
In this paper, we improve their bound to Ω((1.5 − ε)n). Although the improvement

is somewhat limited, our method has a unique feature; the lower bound is obtained by
giving an explicit feasible solution to a certain linear programming problem.

Over a decade ago, building on the work of Basu et al. [3], the author developed
an LP-based method to obtain a lower bound on the size of THR ◦ SYM circuits for
IP2n [1]. In [1], we showed that the problem of obtaining a lower bound on the size
of such circuits can be reduced to the problem of solving a certain linear programming
problem. Then we solved an obtained linear programming problem over 216 variables
using an LP solver to establish a lower bound of Ω(1.3638n) on the size of THR ◦ SYM
circuits for IP2n. However, the problem of determining a highest lower bound that can
be obtained by our LP-based method was left as an open problem in [1].

In this work, we show that this limit is in factΩ((1.5−ε)n), surpassing theΩ(√2n/n)
bounds obtained by the sign-rank method. We achieve this by giving an explicit feasible
solution to the dual of the linear programming problem presented in [1] and estimating
the value of the objective function. Showing this is an actual contribution of the second
part of this work.

238 K. Amano

The rest of the paper is organized as follows. In Sect. 2, we introduce some nota-
tions. In Sect. 3, we give new upper bounds on the size of depth-two threshold circuits
for IP2n. Then in Sect. 4, we review an LP-based lower bounds method presented in our
previous work [1], and establish a new lower bound on the size of THR ◦ SYM circuits
for IP2n.

2 Preliminaries

For an integer n ≥ 1, [n] denotes the set {1, 2, . . . , n}. The inner product mod 2 function
IP2n is a Boolean function over 2n variables defined by

IP2n(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

(xi ∧ yi) (mod 2).

For a Boolean predicate P, let �P� denote the Iverson bracket function defined as �P� =
1 if P is true and �P� = 0 if P is false.

Let x1, . . . , xn ∈ {0, 1} be Boolean variables. A linear threshold function is a Boolean
function of the form

�w1x1 + · · · + wnxn ≥ t�,

for some w1, . . . ,wn, t ∈ R. Similarly, an exact threshold function is a Boolean function
of the form

�w1x1 + · · · + wnxn = t�.

We call w1, . . . ,wn the weights and t the threshold. It is well known that, without loss
of generality, we can assume that the weights and the threshold are integers of absolute
value 2O(n log n) [15]. Hence, hereafter, we assume that the weights and the threshold are
all integers. A gate that computes a linear threshold function is called a threshold gate.
The class of all linear threshold functions (exact threshold functions, respectively) is
denoted by THR (ETHR, respectively).

As usual, a depth-two circuit such that the top gate computes a function in C, and
every bottom gate computes a function in D is called a C ◦ D circuit. For example, a
THR ◦ THR circuit is a depth-two circuit with threshold gates of unbounded weights
in both layers. The size of a depth-two circuit is defined to be the number of gates in
the bottom layer. The size complexity of a Boolean function f for C ◦ D circuits is the
minimum size of a C ◦ D circuit computing f .

A majority gate is a gate computing a linear threshold function with additional
restriction that wi ∈ {−1, 1} for all i. Here the threshold t can be an arbitrary value, i.e.,
is not restricted to be the half of the number of input variables. The class of functions
computed by a majority gate is denoted by MAJ. In our definition, a majority gate is
allowed to read a variable multiple times. For example, we can say that the function

�x1 − 2x2 + 3x3 ≥ 2�

is computed by a majority gate of fan-in 1 + 2 + 3 = 6. Remark that a majority gate
is often defined as a gate that computes a linear threshold function with polynomially

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 239

bounded weights. If we adapt this definition of majority gates, the size complexity may
be reduced by at most a polynomial factor. However, such a difference will not affect
all the results described in this paper.

A function f : {0, 1}n → R is called symmetric if the value of f depends only on
the number of ones in the input. A gate that computes a symmetric function is called a
symmetric gate and the class of all symmetric functions is denoted by SYM. Note that
a symmetric gate is usually defined as a Boolean gate, i.e., it outputs a binary value. In
this paper, we extend the domain from {0, 1} to R. By this extension, the set of symmet-
ric functions turns out to be closed under linear combinations. This property is useful
when we view a threshold-of-symmetric circuit as (the sign of) a real polynomial (see
Sect. 4.1). Note also that a symmetric gate can simulate all of AND, OR, the modulo
gate. It can also simulate a restrict version of the majority gate where the gate reads
each variable at most once and all the weights are restricted to be 1.

3 Upper Bounds

In this section, we give upper bounds on the size of depth-two threshold circuits for
IP2n, which is significantly smaller than a folklore bound of O(2n).

We begin with two simple lemmas about exact threshold functions. Both lemmas
were appeared in [11].

Lemma 1 [11]. Suppose that a Boolean function f can be computed by a THR◦ETHR
circuit of size s. Then, f can be computed by a THR ◦ THR circuit of size at most 2s.
The same relationship holds for MAJ ◦ ETHR and MAJ ◦ THR circuits.

Lemma 2 [11]. The AND of an arbitrary number of exact threshold functions is also
an exact threshold function. In other words, the class of exact threshold functions is
closed under the AND operation.

Before stating our upper bounds, we describe an idea of our construction. Consider
the function IP22(x1, x2, y1, y2). Define two exact threshold functions g1 and g2 as fol-
lows.

g1(x1, x2, y1, y2) = �x1 + x2 + y1 + y2 = 1�,

g2(x1, x2, y1, y2) = �x1 − x2 + y1 − y2 = 0�.

It is easy to verify that

IP22(x1, x2, y1, y2) = sgn(2 · g1(x1, x2, y1, y2) + 2 · g2(x1, x2, y1, y2) − 1),
where sgn(v) is defined to be 0 if v > 0 and is 1 if v < 0.

Then, when n is even, IP2n(x1, . . . , xn, y1, . . . , yn) is given by

sgn

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

i∈[n2]
(2 · g1(x2i−1, x2i, y2i−1, y2i) + 2 · g2(x2i−1, x2i, y2i−1, y2i) − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

240 K. Amano

By expanding the product in Eq. (1), we can obtain a polynomial of 3n/2 terms in which
each term is an AND of exact threshold functions. By Lemma 2, we can express each
term by a single ETHR gate. Therefore, we have a THR◦ETHR circuit of sizeO(3n/2) =
O(1.733n) for IP2n, and also have a THR ◦ THR circuit of the same order by Lemma 1.

It is natural to expect that we can obtain a better bound by considering IP2k for
k > 2 as a base case. These ideas can be summarized as the following theorem.

Theorem 3. Let k be a positive integer. We write x = (x1, . . . , xk) ∈ {0, 1}k and y =
(y1, . . . , yk) ∈ {0, 1}k. Suppose that IP2k can be represented by the sign of the linear
combination of � exact threshold functions where all weights are integers, i.e.,

IP2k(x, y) = sgn

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

i∈[�]
wiCi(x, y)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where wi ∈ Z and Ci ∈ ETHR for i ∈ [�]. Then,
1. The size complexity of IP2n for THR ◦ETHR circuits as well as THR ◦THR circuits

is O((�1/k)n),
2. The size complexity of IP2n for MAJ ◦ THR circuits is O((

∑
i∈[�] |wi|)n/k).

Proof (Sketch). First, observe that IP2n is just a PARITY of n/k copies of IP2k. Replace
each IP2k with a constructed �-gate THR ◦ ETHR circuit. The PARITY of n/k THR of
� ETHRs can be written as the sign of the product of n/k sums of � ETHRs. Applying
distributivity to the product of sums, we get a sum of �n/k products of ETHRs. But the
product of a bunch of ETHRs can be written as one ETHR, so we get a THR of �n/k

ETHRs, completing the proof of Statement 1 of the theorem. The proof for Statement 2
is similar.
�

With the aid of computers, we found a formula of length 8 for IP24 as well as a
formula of total weight 13 for IP24 that lead us to the following theorems.

Theorem 4. The size complexity of IP2n for THR ◦ETHR circuits (and also for THR ◦
THR circuits) is O(8n/4) = O(1.682n).

Theorem 5. The size complexity of IP2n for MAJ ◦ THR circuits is O(13n/4) =
O(1.899n).

Proof of Theorem 4. Let {x1, . . . , x4, y1, . . . , y4} denote the input variables for IP24. For
i ∈ [4], we write zi := xi+yi. We introduce the following seven exact threshold functions
and write them as g1, . . . , g7.

�−z1 + z2 + z3 + z4 = 1�, �z1 − z2 + z3 + z4 = 1�,
�z1 + z2 − z3 + z4 = 1�, �z1 + z2 + z3 − z4 = 1�,
�z1 − z2 − z3 + z4 = 0�, �z1 − z2 + z3 − z4 = 0�,
�z1 + z2 − z3 − z4 = 0�.

It is elementary to verify that

IP24(x1, . . . , x4, y1, . . . , y4) = sgn

⎛
⎜⎜⎜⎜⎜⎜⎝−3 + 2

∑

i∈[7]
gi(z1, z2, z3, z4)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 241

This gives a desired bound by Theorem 3.
�
Proof of Theorem 5. Let {x1, . . . , x4, y1, . . . , y4} denote the input variables for IP24. For
i ∈ [4], we write zi := xi + yi. We introduce the following twelve exact threshold
functions and write them as g1, . . . , g12.

�3z1 − 3z2 + 2z3 + 4z4 = 8�, �3z1 − 3z2 + 4z3 + 2z4 = 8�,
�−3z1 + 3z2 + 2z3 + 4z4 = 8�, �−3z1 + 3z2 + 4z3 + 2z4 = 8�,
�2z1 + 4z2 + 3z3 − 3z4 = 8�, �4z1 + 2z2 + 3z3 − 3z4 = 8�,
�2z1 + 4z2 − 3z3 + 3z4 = 8�, �4z1 + 2z2 − 3z3 + 3z4 = 8�,
�3z1 + 3z2 + 2z3 + 4z4 = 11�, �3z1 + 3z2 + 4z3 + 2z4 = 11�,
�2z1 + 4z2 + 3z3 + 3z4 = 11�. �4z1 + 2z2 + 3z3 + 3z4 = 11�.

It is elementary to verify that

IP24(x1, . . . , x4, y1, . . . , y4) = sgn

⎛
⎜⎜⎜⎜⎜⎜⎝−1 +

∑

i∈[12]
gi(z1, z2, z3, z4)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

This gives a desired bound by Theorem 3.
�
It is plausible that our bounds can further be improved by considering IP2k for k ≥ 5

as a base case. We remark that, for the case of MAJ ◦ THR circuits, the following argu-
ment says that there is a barrier at O(

√
2n): The proof of Theorem 5 actually gives a

construction of MAJ ◦ ETHR circuits for IP2n. By applying the “discriminator lemma”
developed in [10] carefully, we can prove an Ω(2(1/2−ε)n) lower bound on the size com-
plexity of IP2n for MAJ ◦ ETHR circuits. Currently, we do not know such a barrier for
THR ◦ THR circuits.

4 Lower Bounds for THR ◦ SYM Circuits

In this section, we show Ω((1.5− ε)n) lower bounds on the size of depth-two circuits for
IP2n where the top gate is a threshold gate and the bottom gates are symmetric gates. In
Sect. 4.1, we review our LP-based method presented in our previous work [1], and then
we establish the lower bound in Sect. 4.2.

Throughout this section, we label the input variables of IP2n as {x1, . . . , x2n} and
define IP2n(x1, . . . , x2n) :=

∑
i∈[n] x2i−1x2i (mod 2). This indexing is different from the

one used in the previous section, but will be convenient for a later discussion.

4.1 LP-Based Method for Lower Bounds on Circuit Size

As defined before, we call a depth-two circuit with unbounded weights threshold gate
at the top and symmetric gates at the bottom as a THR ◦ SYM circuit. For a Boolean
function f , the size complexity of IP2n for THR ◦ SYM circuits is simply denoted by
s(f). Throughout of this section, we treat a THR ◦ SYM circuit as the sign of a real
polynomial.

242 K. Amano

Definition 6. We say that a real polynomial P(x1, . . . , xn) sign represents a Boolean
function f on n variables if, for every (x1, . . . , xn) ∈ {0, 1}n,

f (x1, . . . , xn) = 0 =⇒ P(x1, . . . , xn) > 0,

f (x1, . . . , xn) = 1 =⇒ P(x1, . . . , xn) < 0.
�
We consider a polynomial P : {0, 1}X → R

P(X) =
∑

S⊆X
wS hS (X), (2)

where wS ∈ R and hS is a symmetric function over the set of variables S . The support of
P is defined by supp(P) := {S ⊆ X | wS � 0}. Obviously, s(f) is equal to the minimum
size of the support of a polynomial P of the form (2) that sign represents f .

A point of our method is to define the parameter zk, which gives a lower bound on
s(f), by introducing a certain linear programming problem.

Recall that the input variables of IP2n is X := {x1, . . . , x2n}.
Let z0 = z1 = 1. For k ≥ 2, the parameter zk is defined inductively (on k) such that

zk is the minimum value of the objective function of the following linear programming
problem. Let Xk = {x1, x2, . . . , x2k} be the first 2k variables of X. The program has 22k

real-valued variables {qT }T⊆Xk and 2k + 4
(
k
2

)
constraints.

Minimize
∑

T⊆Xk

qT ,

Subject to
∑

T :v∈T
qT ≥ zk−1 (v ∈ Xk),

∑

T :|{u,v}∩T |=1
qT ≥ zk−2

(
i, j ∈ [k], i � j
u ∈ {x2i−1, x2i}, v ∈ {x2 j−1, x2 j}

)

,

qT ≥ 0 (T ⊆ Xk).

(3)

The key observation is the following.

Fact 7 ([1]). Suppose that k ≥ 2. Let zk−1 and zk−2 be real numbers such that s(IP2n) ≥
zk−1 · s(IP2n−(k−1)) and s(IP2n) ≥ zk−2 · s(IP2n−(k−2)) for every n. Let zk be the minimum
value of the objective function of the LP problem (3). Then s(IP2n) ≥ zk · (IP2n−k)

The following corollary is immediate from Fact 7.

Corollary 8 ([1]). For every k ≥ 1, s(IP2n) ≥ (z1/kk)n.
�
In the following, we give a sketch of the proof of Fact 7 for completeness.
Let f : {0, 1}X → R be a real function and ρ : X → {0, 1, ∗} be a partial assignment

to X. Let res(ρ) denote the set of variables that assigned a constant by ρ, i.e., res(ρ) :=
{v ∈ X | ρ(v) � ∗}. The restriction of f by ρ, denoted by f |ρ, is the function obtained by
setting xi to ρ(xi) if xi ∈ res(ρ) and leaving xi as a variable otherwise.

The restriction of a polynomial P of the form (2), denoted by P|ρ, is defined simi-
larly. First, replace each hS in P by hS |ρ, which is a symmetric function over the set of

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 243

variables S − res(ρ). Then, if there are two (or more) functions hS 1 |ρ and hS 2 |ρ such that
S 1\res(ρ) = S 2\res(ρ), then they are merged into a single symmetric function. This is
possible by the fact that the linear combination of two (or more) symmetric functions
over the same set of variables is also a symmetric function.

For a polynomial P of the form (2), we decompose P into PT ’s for T ⊆ Xk in such a
way that

PT (X) :=
∑

S∈supp(P)
S∩Xk=T

wS hS (X).

Let q̃T be the number of terms in PT . Note that

P(X) =
∑

T⊆Xk

PT (X),

and

|supp(P)| =
∑

T⊆Xk

q̃T .

We use the following fact that is easy to verify but useful.

Fact 9 ([1]). Let ρ1 and ρ2 be two partial assignments such that res(ρ1) = res(ρ2).
Then,

∑
v∈T∩res(ρ1) ρ1(v) =

∑
v∈T∩res(ρ2) ρ2(v) implies PT |ρ1 − PT |ρ2 ≡ 0.
�

Proof of Fact 7 (sketch). Suppose that a polynomial P of the form (2) sign-represents
IP2n. In what follows, we consider two types of pairs of partial assignments.

Type 1. Choose i ∈ [k] and then choose u ∈ {x2i−1, x2i}. The unchosen variable in
{x2i−1, x2i} is denoted by v. Let ρ1 and ρ2 be two partial assignments such that res(ρ1) =
res(ρ2) = {x2i−1, x2i}, (ρ1(v), ρ1(u)) = (0, 1) and (ρ2(v), ρ2(u)) = (1, 1).

A key observation is that for every such pair of partial assignments (ρ1, ρ2), we have
IP2n|ρ1 ≡ IP2n−1 and IP2n|ρ2 ≡ IP2n−1. This implies that the polynomial P|ρ1 − P|ρ2 sign
represents IP2n−1. Fact 9 says that PT |ρ1 − PT |ρ2 is vanished if v � T . Hence, we have

∑

T :v∈T
q̃T ≥ |supp(P|ρ1 − P|ρ2)| ≥ s(IP2n−1) ≥ zk−1 · s(IP2n−k), (4)

where the last inequality follows from the assumption in the statement of Fact 7. Let
qT := q̃T /s(IP2n−k) for T ⊆ Xk. By dividing both side of (4) by s(IP2n−k), we have

∑

T :v∈T
qT ≥ zk−1,

which is the first constraint in the LP problem (3).
We also consider another type of partial assignments.

Type 2. Choose i, j ∈ [k] such that i � j, and then choose v ∈ {x2i−1, x2i}
and u ∈ {x2 j−1, x2 j}. Let v′ and u′ be the unchosen variables in {x2i−1, x2i}
and {x2 j−1, x2 j}, respectively. Let ρ1 and ρ2 be two partial assignments such that

244 K. Amano

res(ρ1) = res(ρ2) = {x2i−1, x2i, x2 j−1, x2 j}, (ρ1(v), ρ1(v′), ρ1(u), ρ1(u′)) = (0, 1, 1, 0) and
(ρ2(v), ρ2(v′), ρ2(u), ρ2(u′)) = (1, 1, 0, 0).

Similar to the case of Type 1, we have IP2n|ρ1 ≡ IP2n−2 and IP2n|ρ2 ≡ IP2n−2, and
hence P|ρ1−P|ρ2 sign represents IP2n−2. In addition, PT |ρ1−PT |ρ2 is vanished if |T∩{u, v}|
is zero or two. Hence, we have

∑

T :|{u,v}∩T |=1
q̃T ≥ |supp(P|ρ1 − P|ρ2)| ≥ s(IP2n−2) ≥ zk−2 · s(IP2n−k), (5)

where the last inequality follows from the assumption of the statement in Fact 7. This
inequality is equivalent to

∑

T :|{u,v}∩T |=1
qT ≥ zk−2,

which is the second constraint in the LP problem (3).
If P is an optimal polynomial for IP2n, then

s(IP2n) =
∑

T⊆Xk

q̃T ,

which is equivalent to

s(IP2n) =
∑

T⊆Xk

qT · s(IP2n−k).

Therefore, the minimum value zk of the objective function of the LP program (3) satis-
fies s(IP2n) ≥ zk · s(IP2n−k). This completes the proof of Fact 7.
�

The LP problem (3) can easily be generated and solved by using a computer when k
is small. In our previous work [1], we have succeeded to solve these problems by an LP
solver for k ≤ 8 (see Table 2). During this work, we could extend the table up to k = 10.
The best lower bound obtained in this way is Ω(1.3808n), but still weaker than a bound
of s(IP2n) = Ω(

√
2n/n) due to Forster et al. [7,8].

Obviously, the best possible lower bound that could be obtained by our approach is
s(IP2n) ≥ zn∞ where z∞ := limk→∞(zk)1/k. However, finding the value of z∞ was left as
an open problem in [1].

Table 2. The values of zk and z1/kk for k ≤ 10. The numbers shown in the table are truncated (not
rounded) at the third or fourth decimal places.

n 2 3 4 5 6 7 8 9 10

zk 1.5 2 2.833 4.027 5.750 8.254 11.970 17.335 25.207

z1/kk 1.2247 1.2599 1.2974 1.3213 1.3384 1.3519 1.3638 1.3729 1.3808

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 245

4.2 New Lower Bounds on THR ◦ SYM Circuits

In this section, we show that z∞ ≥ 1.5 establishing a new lower bound on the size
complexity of IP2n for THR ◦ SYM circuits.

Theorem 10. For every k ≥ 1,

zk ≥ 1.5k
(

1 − 1√
k

)k

.

Hence, s(IP2n) = Ω((1.5 − ε)n) for every ε > 0.

Although we only prove the lower bound, we strongly believe that our bound on
z∞ is tight, i.e., z∞ = 1.5. Note that s(IP2n) ≤ 2n by the construction described in
Introduction and the fact that AND is contained in SYM. To the best of our knowledge,
this is the best known upper bound on s(IP2n)1.

Proof of Theorem 10. The proof is done by giving a feasible solution to the dual of the
LP problem (3), and then estimating the value of the objective function.

We define Zk to be

Zk := {{2i + a, 2 j + b} | i, j ∈ [k], i � j and a, b ∈ {0, 1}}.
For x ∈ {0, 1}2k and v ∈ [2k], let xv denote the v’s bit of x.

The dual of (3) is given by

Maximize zk−1
∑

v∈[2k]
sv + zk−2

∑

{u,v}∈Zk
tu,v,

Subject to
∑

v∈[2k]:xv=1
sv +

∑

{u,v}∈Zk :xu�xv
tu,v ≤ 1&(x ∈ {0, 1}2k),

sv ≥ 0 (v ∈ [2k]),
tu,v ≥ 0 ({u, v} ∈ Zk).

(6)

The LP duality theorem guarantees that the maximum value of the objective func-
tion in this dual program (6) equals to zk. Since LP (6) is a maximization problem, any
feasible solution gives a lower bound on zk.

Here we present a feasible solution to LP (6) that will be analyzed in the proof.
Define

s ◦ t = (sv)v∈[2k] ◦ (tu,v){u,v}∈Zk ∈ R2k+4(k2)

as follows: For v = 1, . . . , 2k, let sv = 3
4k if v is odd and sv = 0 if v is even. For

{u, v} ∈ Zk, let tu,v = 9
4k2 if both of u and v are odd and tu,v = 0 otherwise. Note that we

inspired this solution through actually solving LP (6) using an LP solver.
In order to show the feasibility of s ◦ t, it is enough to verify that the first constraint

in LP (6) is satisfied. For x ∈ {0, 1}2k, let

αx =
|{v | v ∈ {1, 3, 5, . . . , 2k − 1} and xv = 1}|

k
.

1 Actually, this is true only in an asymptotic sense. For example, an exhaustive computation
shows s(IP22) = 2, s(IP23) ≤ 4, s(IP24) ≤ 7 and s(IP25) ≤ 14.

246 K. Amano

Then, for x ∈ {0, 1}2k, the first constraint in LP (6) can be written as

3
4k
αxk +

9
4k2
αxk(1 − αx)k − 1 ≤ 0.

This can easily be verified by observing that the LHS of this equation is equal to

−
(
3
2αx − 1

)2
, completing the proof of the feasibility of s ◦ t.

We proceed to the estimation of the value of the objective function.
The proof is by the induction on k. For k ≤ 10, we can verify the theorem by a

direct calculation (see Table 2). Suppose that k ≥ 11. By the definition of s ◦ t and the
inductive assumption, we have

zk ≥ zk−1
3
4k

k + zk−2
9
4k2

(
k
2

)

≥ 3
4
· 1.5k−1

(

1 − 1√
k − 1

)k−1
+
9
8
· 1.5k−2

(

1 − 1√
k − 2

)k−2 (
1 − 1

k

)

=
1
2
· 1.5k

⎧
⎪⎪⎨
⎪⎪⎩

(

1 − 1√
k − 1

)k−1
+

(

1 − 1√
k − 2

)k−2 (
1 − 1

k

)⎫⎪⎪⎬
⎪⎪⎭
. (7)

By an elementary but somewhat lengthy calculation, we can show that

zk ≥ 1.5k
(

1 − 1√
k

)k

as desired. The detailed calculations are omitted due to the page restriction and will
appear in the full version of the paper.
�

Acknowledgement. The author would like to thank anonymous referees for their helpful
comments and suggestions. This work is supported in part by JSPS Kakenhi 18K11152 and
18H04090.

References

1. Amano, K., Maruoka, A.: On the complexity of depth-2 circuits with threshold gates. In:
Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 107–118.
Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 11

2. Amano, K., Tate, S.: On XOR lemmas for the weight of polynomial threshold functions. Inf.
Comput. 269, 104439 (2019)

3. Basu, S., Bhatnagar, N., Gopalan, P., Lipton, R.: Polynomials that sign represent parity and
descartes’ rule of signs. Comput. Complex. 17(3), 377–406 (2008). (Conference version in
CCC ’04)

4. Bruck, J.: Harmonic analysis of polynomial threshold functions. SIAM J. Discrete Math.
3(2), 168–177 (1990)

5. Chattopadhyay, A., Mande, N.: A short list of equalities induces large sign rank. In: Proceed-
ings of FOCS 2018, pp. 47–58 (2018)

6. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In: Proceedings
of COLT 2016, pp. 907–940 (2016)

https://doi.org/10.1007/11549345_11

On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function 247

7. Forster, J.: A linear lower bound on the unbounded error probabilistic communication com-
plexity. J. Comput. Syst. Sci. 65(4), 612–625 (2002)

8. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations
between communication complexity, linear arrangements, and computational complexity. In:
Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 171–182.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X 15

9. Goldmann, M., Håstad, J., Razborov, A.: Majority gates vs. general weighted threshold gates.
Comput. Complex. 2, 277–300 (1992)

10. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded
depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)

11. Hansen, K., Podolskii, V.: Exact threshold circuits. In: Proceedings of CCC 2010, pp. 270–
279 (2010)

12. Jukna, S.: Boolean Function Complexity, Advances and Frontiers. Algorithms and Combi-
natorics, vol. 27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

13. Kane, D., Williams, R.: Super-linear gate and super-quadratic wire lower bounds for depth-
two and depth-three threshold circuits. In: Proceedings of STOC 2016, pp. 633–643 (2016)

14. Krause, M., Pudlák, P.: On the computational power of depth-2 circuits with threshold and
modulo gates. Theor. Comput. Sci. 174(1–2), 137–156 (1997)

15. Muroga, S.: Threshold Logic and Its Applications. Wiley, Hoboken (1971)
16. Nisan, N.: The communication complexity of threshold gates. In: Proceedings of “Combina-

torics, Paul Erdős is Eighty”, pp. 301–315 (1994)
17. Roychowdhury, V., Orlitsky, A., Siu, K.Y.: Lower bounds on threshold and related circuits

via communication complexity. IEEE Trans. Inf. Theory 40(2), 467–474 (1994)
18. Safran, I., Eldan, R., Shamir, O.: Depth separations in neural networks: what is actually

being separated?. In: Proceedings of COLT 2019, pp. 2664–2666 (2019). (full version at
Arxiv:1904.06984)

19. Sezener, C., Oztop, E.: Minimal sign representation of boolean functions: algorithms and
exact results for low dimensions. Neural Comput. 27(8), 1796–1823 (2015)

https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.1007/978-3-642-24508-4
http://arxiv.org/abs/1904.06984

Complexity Issues of String to Graph
Approximate Matching

Riccardo Dondi1(B), Giancarlo Mauri2, and Italo Zoppis2

1 Università degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

2 Università degli Studi di Milano-Bicocca, Milan, Italy
{mauri,zoppis}@disco.unimib.it

Abstract. The problem of matching a query string to a directed graph,
whose vertices are labeled by strings, has application in different fields,
from data mining to computational biology. Several variants of the prob-
lem have been considered, depending on the fact that the match is exact
or approximate and, in this latter case, which edit operations are con-
sidered and where are allowed. In this paper we present results on the
complexity of the approximate matching problem, where edit operations
are symbol substitutions and are allowed only on the graph labels or
both on the graph labels and the query string. We introduce a variant
of the problem that asks whether there exists a path in a graph that
represents a query string with any number of edit operations and we
show that is NP-complete, even when labels have length one and in the
case the alphabet is binary. Moreover, when it is parameterized by the
length of the input string and graph labels have length one, we show
that the problem is fixed-parameter tractable and it is unlikely to admit
a polynomial kernel. The NP-completeness of this problem leads to the
inapproximability (within any factor) of the approximate matching when
edit operations are allowed only on the graph labels. Moreover, we show
that the variants of approximate string matching to graph we consider
are not fixed-parameter tractable, when the parameter is the number of
edit operations, even for graphs that have distance one from a DAG. The
reduction for this latter result allows us to prove the inapproximability
of the variant where edit operations can be applied both on the query
string and on graph labels.

Keywords: Algorithms on strings · Computational complexity ·
Graph query · Parameterized complexity · Patterns · String to graph
matching

1 Introduction

Given a query string s and a directed graph G whose vertices are labeled with
strings (referred as labeled graph), the matching and the approximate matching

Riccardo Dondi dedicates the paper to the memory of his beloved father, Gilberto, who
passed away on November 26, 2019.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 248–259, 2020.
https://doi.org/10.1007/978-3-030-40608-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_17

Complexity Issues of String to Graph Approximate Matching 249

of s to G ask for a path (not necessarily simple) in G that represents s, that
is by concatenating the labels of the vertices on the path we obtain s or an
approximate occurrence of s.

The matching and the approximate matching of a query string to a labeled
graph have applications in different areas, from graph databases and data mining
to genome research. The problems have been introduced in the context of pattern
matching in hypertext [1,3,10,15], but have found recently new applications.
Indeed in computational biology a representation of variants of related sequences
is often provided by a labeled graph [11,17] and the query of a string in a labeled
graph has found application in computational pan-genomics [13,18].

The exact matching problem is known to be in P [1,3,15]. Furthermore,
conditional lower bounds for this problem has been recently given in [7].

The approximate string to graph matching problem, referred to String to
Graph Approximate Matching, has the goal of minimizing the number of edit
operations (of the query string or of the labels of the graph) such that there exists
a path p in G whose labels match the query string. String to Graph Restricted
Approximate Matching denotes the variant where edit operations are allowed
only on the graph labels. String to Graph Approximate Matching and String to
Graph Restricted Approximate Matching are known to be NP-hard [12], even for
binary alphabet [9]. When the edit operations are allowed only on the query
string, then String to Graph Approximate Matching is polynomial-time solvable
[9]. Moreover, when the input graph is a Directed Acyclic Graph (DAG), String to
Graph Approximate Matching and String to Graph Restricted Approximate Matching
are polynomial-time solvable [10].

In this contribution, we consider the String to Graph Approximate Matching
problem and the String to Graph Restricted Approximate Matching problem, with
the goal of deepening the understanding of their complexity. Notice that the edit
operations we consider are symbol substitutions of the graph labels or of the
query string. Other variants with different edit operations have been considered
in literature [3,9].

We introduce a variant of String to Graph Restricted Approximate Matching,
called String to Graph Compatibility Matching, that asks whether it is possible
to find an occurrence of a query string in a graph with any number of edit
operations of the graph labels. This decision problem is helpful to characterize
whether a feasible solution of String to Graph Restricted Approximate Matching
exists or not. We show in Sect. 3 that String to Graph Compatibility Matching is
NP-complete, even when the labels of the graph have length one or when the
alphabet is binary. The reduction shows also that String to Graph Compatibility
Matching when parameterized by the length of the query string is unlikely to
have a polynomial kernel1 (for details on kernelization we refer to [6,14]). A
consequence of the intractability of String to Graph Compatibility Matching is
that String to Graph Restricted Approximate Matching cannot be approximated

1 A problem parameterized by parameter t admits a polynomial kernel if there exists
a polynomial-time algorithm that reduces the instance of the problem so that it has
a size which is a polynomial in t.

250 R. Dondi et al.

within any factor in polynomial time. Notice that if we allow edit operations of
the query string, then the existence of a path that represents an approximate
matching of the query string can be decided in polynomial time. Indeed, it is
enough to check whether the input graph contains a (non necessarily simple)
path p in G that represents a string of length |s|.

We consider in Sect. 4 the parameterized complexity of String to Graph
Restricted Approximate Matching and of String to Graph Approximate Matching
and we show that they are W[2]-hard when parameterized by the number of
edit operations, even for a labeled graph having distance one from a DAG. This
result shows that, while String to Graph Restricted Approximate Matching and
String to Graph Approximate Matching are solvable in polynomial time when the
labeled graph is a DAG [10], even for graphs that are very close to DAG they
become hard. The reduction designed to prove this latter result allows us to
show that String to Graph Approximate Matching is not approximable within fac-
tor Ω(log(|V |)) and Ω(log(|s|)), for a labeled graph G = (V,E) and a query
string s.

In Sect. 5, we provide a fixed-parameter tractable algorithm for String to
Graph Compatibility Matching, when parameterized by size of the query string
and when the graph labels have length one. We conclude the paper in Sect. 6
with some open problems, while in Sect. 2 we introduce some definitions and the
problems we are interested in. Some of the proofs are not included due to page
limit.

2 Definitions

Given an alphabet Σ and a string s over Σ, we denote by |s| the length of s, by
s[i], with 1 ≤ i ≤ |s|, the i-th symbol of s and by s[i, j], with 1 ≤ i ≤ j ≤ |s|,
the substring of s that starts at position i and ends at position j.

Every graph we consider in this paper is directed. Given a graph G = (V,E)
and a vertex v ∈ V , we define N+(v) = {u ∈ V : (v, u) ∈ E} and N−(v) = {w ∈
V : (w, v) ∈ E}.

A labeled graph G = (V,E, σ) is a graph whose vertices are labeled with
strings, formally assigned by a labeled function σ : V → Σ∗, where Σ is an
alphabet of symbols. Notice that σ(v), with v ∈ V , denotes the string associated
by σ to vertex v. Let p = v1v2 . . . vz be a path (non necessarily simple) in G,
the set of vertices that induces p is denoted by V (p) and the string associated
with p is defined as σ(p) = σ(v1)σ(v2) . . . σ(vz), that is σ(p) is obtained by
concatenating the strings that label the vertices of path p.

Consider a string s on alphabet Σ and a labeled graph G = (V,E, σ). We
say that a path p in G is an occurrence of s if σ(p) = s; in this case we call σ(p)
an exact matching of s and we say that p matches s.

An edit operation of a string s is a substitution of the symbol in a position
i, with 1 ≤ i ≤ |s|, of s with a different symbol in Σ. An edit operation of
G = (V,E, σ) is an edit operation of a string σ(v), with v ∈ V . A path p in G
is an approximate matching of s if, after k1 ≥ 0 edit operations of labels of G,

Complexity Issues of String to Graph Approximate Matching 251

σ(p) = s′, where s′ is a string obtained with k2 ≥ 0 edit operations of s. In this
case, we say that the approximate matching requires k = k1+k2 edit operations.
We say that p in G is a restricted approximate matching of s, if, after after k ≥ 0
edit operations to labels of G, s = σ(p) (that is the edit operations are allowed
only on the labels of G).

Consider a path p that matches (exactly, approximately or restricted approx-
imately) the query string s. If position i, 1 ≤ i ≤ |s|, in s and the j-th position,
1 ≤ j ≤ |σ(u)|, of the label of vertex u in p match (possibly after an edit oper-
ation), we say that position i is mapped in σ(u)[j]; if |σ(u)| = 1, by slightly
abusing the notation, we say that position i is mapped in u.

Next, we define the first combinatorial problem we are interested in.

Problem 1. String to Graph Approximate Matching
Input: A labeled graph G = (V,E, σ) and a query string s, both on alphabet Σ.
Output: An approximate matching p of s that requires the minimum number
of edit operations.

We define now the variant of the problem, called String to Graph Restricted
Approximate Matching, where edit operations are allowed only on the labels of
the labeled graph.

Problem 2. String to Graph Restricted Approximate Matching
Input: A labeled graph G = (V,E, σ) and a query string s, both on alphabet Σ.
Output: A restricted approximate matching p of s that requires the minimum
number of edit operations.

Consider a labeled graph G = (V,E, σ) and a query string s over Σ. If there
exists a path p in G which is a restricted approximate matching of s, we say
that p is compatible with s. Notice that the definition of compatibility does
not put any bound on the number of edit operations of graph labels and that
no edit operation is allowed on the query string. In this paper, we introduce a
decision problem, called String to Graph Compatibility Matching, related to String
to Graph Restricted Approximate Matching, that asks whether there exists a path
in G = (V,E, σ) compatible with s.

Problem 3. String to Graph Compatibility Matching
Input: A labeled graph G = (V,E, σ), a query string s, both on alphabet Σ.
Output: Does there exist a path in G that is compatible with s?

3 Hardness of String to Graph Compatibility Matching

In this section we consider the computational complexity of String to Graph
Compatibility Matching and we prove that the problem is indeed NP-complete
and it is unlikely to admit a polynomial kernel. This result, as discussed in
Theorem 3, is not only interesting to characterize the complexity of String to
Graph Compatibility Matching, but also to give insights into the approximation
complexity of String to Graph Restricted Approximate Matching.

252 R. Dondi et al.

We start by proving that String to Graph Compatibility Matching is NP-
complete when the labels of the graph have length one, via a reduction from
the h-Path problem. The reduction is inspired by that in [3] to prove the NP-
hardness of String to Graph Restricted Approximate Matching. Then we modify
the reduction so that it holds also for binary alphabet. We recall the definition
of h-Path, which is known to be NP-complete [8].

Problem 4. h-Path
Input: A directed graph G = (VL, EL).
Output: Does there exist a simple path in GL of length h?

3.1 Graph Labels of Length One

Consider a graph GL = (VL, EL), with VL = {vl
1, . . . , v

l
n}, which is an instance of

h-Path, we define an instance of String to Graph Compatibility Matching consisting
of a labeled graph G = (V,E, σ) and a query string s.

First, define the alphabet Σ as follows: Σ = {xi : 1 ≤ i ≤ n}∪{yi : 1 ≤ i ≤ h}.
The labeled graph G = (V,E, σ) is defined as follows:

V = {vi : vl
i ∈ V, 1 ≤ i ≤ n}, E = {(vi, vj) : (vl

i, v
l
j) ∈ EL}.

The labelling function σ : V → Σ∗ of the graph vertices is defined as follows:
σ(vi) = xi, for each i with 1 ≤ i ≤ n.

Finally, we define the query string s = y1y2 . . . yh.
The following lemma allows us to prove the hardness of String to Graph

Compatibility Matching.

Lemma 1. Let GL = (VL, EL) be a graph instance of h-Path and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Compatibility Match-
ing. There exists a simple path of length h in GL if and only if there exists a
path in G compatible with s.

Proof. Consider a simple path vl
i1

vl
i2

. . . vl
ih

in GL. Then consider the corre-
sponding path vi1vi2 . . . vih in G and edit the symbol of each vertex vij , with
1 ≤ j ≤ h, so that it is associated with symbol yi. It follows that p matches s.
Then vi1vi2 . . . vih is a path of G compatible with s.

Consider a path p = vi1vi2 . . . vih in GL compatible with s. Notice that p
must be a simple path, since s consists of h distinct symbols. As a consequence,
the corresponding path vl

i1
vl
i2

. . . vl
ih

in GL is a simple path of length h. ��
Lemma 1 and the NP-completeness of h-Path [8] allow to prove the following
result.

Theorem 1. String to Graph Compatibility Matching is NP-complete even when
the labels of the graph have length one.

Complexity Issues of String to Graph Approximate Matching 253

Notice that the reduction we have described is also a Polynomial Parameter
Transformation [5] from h-Path parameterized by h to String to Graph Compatibil-
ity Matching parameterized by |s|, as |s| = h. Since h-Path when parameterized
by h does not admit a polynomial kernel unless NP ⊆ coNP/Poly [4], the
reduction leads to the following result.

Corollary 1. The String to Graph Compatibility Matching problem parameterized
by |s| does not admit a polynomial kernel unless NP ⊆ coNP/Poly even when
the labels of the graph have length one.

3.2 Binary Alphabet

Next, we show that the String to Graph Compatibility Matching problem is NP-
complete even on binary alphabet. The reduction is similar to the reduction of
the Sect. 3.1, except for the definition of the query string s and the labeling
σ : V → Σ∗ of the labeled graph.

Consider a graph GL = (VL, EL), with VL = {vl
1, . . . , v

l
n}, that is an instance

of h-Path, we define a corresponding instance (G = (V,E, σ), s) of String to
Graph Compatibility Matching. The alphabet is binary, hence Σ = {0, 1}. Next,
we define the labeled graph G = (V,E, σ). The sets V of vertices and E of edges
are defined as in Sect. 3.1. For each vi ∈ V , with 1 ≤ i ≤ h, σ(vi) = 0h, namely
it is a string consisting of h occurrences of symbol 0.

The construction of the query string s requires the introduction of strings si,
with 1 ≤ i ≤ h, having length h and defined as follows:

si[i] = 1; si[j] = 0, with 1 ≤ j ≤ h and j
= i.

Finally, s is defined as the concatenation of s1, s2, . . . sn, that is s =
s1 s2 . . . sn.

Next, we prove the correctness of the reduction.

Lemma 2. Let GL = (VL, EL) be a graph instance of h-Path and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Compatibility Match-
ing on binary alphabet. There exists a simple path of length h in GL if and only
if there exists a path compatible with s in G.

Proof. Consider a simple path vl
i1

vl
i2

. . . vl
ih

in GL. Then consider the correspond-
ing path vi1vi2 . . . vih in G and edit the label of each vertex vij , with 1 ≤ j ≤ h,
such that is associated with string sj . Then the resulting string is an exact match
of s, hence vi1vi2 . . . vih is a path compatible with s.

Consider a path p = vi1vi2 . . . vih in G that is compatible with s. Since σ(p)
must match s after some symbol substitutions and, by construction, |σ(vj)| =
|sl|, for each 1 ≤ j ≤ n and 1 ≤ l ≤ h, it follows that the positions of sl,
1 ≤ l ≤ h, are mapped to the positions of σ(vit), for some t with 1 ≤ t ≤ h.
Moreover, since sl
= sq, with t
= q, all the vertices in p are distinct and p
is a simple path in G of length h. As a consequence the corresponding path
vl
i1

vl
i2

. . . vl
ih

in GL is a simple path of length h, thus concluding the proof. ��

254 R. Dondi et al.

Thus, based on Lemma 2, we can prove the following result.

Theorem 2. String to Graph Compatibility Matching is NP-complete even on
binary alphabet.

The results of Theorems 1 and 2 have a consequence not only on the com-
plexity of String to Graph Compatibility Matching, but also on the approximation
of String to Graph Restricted Approximate Matching.

Theorem 3. The String to Graph Restricted Approximate Matching problem can-
not be approximated within any factor in polynomial time, unless P = NP, even
when the labels of the graph have length one or when the alphabet is binary.

Proof. The NP-completeness of String to Graph Compatibility Matching implies
that, given an instance (G = (V,E, σ), s), even deciding whether there exists
a feasible solution of String to Graph Restricted Approximate Matching, with
any number of edit operations in G, is NP-complete. Hence if there exists
a polynomial-time approximation algorithm A for String to Graph Restricted
Approximate Matching, with some approximation factor α, it follows that A can
be used to decide the String to Graph Compatibility Matching problem: if A returns
an approximated solution for String to Graph Restricted Approximate Matching
with input (G, s), then it follows that there exists a path in G compatible with
s, if A does not return an approximated solution for String to Graph Restricted
Approximate Matching with input (G, s), then there is no path in G compatible
with s. Since String to Graph Compatibility Matching is NP-complete, when the
labels of the graph have length one (by Theorem 1) and on binary alphabet (by
Theorem 2), then there does not exist a polynomial-time approximation algo-
rithm with any approximation factor for String to Graph Restricted Approximate
Matching when the graph labels have length one or when the alphabet is binary,
unless P = NP. ��

4 Hardness of Parameterization

In this section, we consider the parameterized complexity of String to Graph
Restricted Approximate Matching and String to Graph Approximate Matching. The
reduction we present allows us to prove that String to Graph Restricted Approx-
imate Matching and String to Graph Approximate Matching, when parameterized
by the number of edit operations, are W[2]-hard for a labeled graph having dis-
tance one from a DAG. Moreover, the same reduction will allow us to prove
that String to Graph Approximate Matching is not approximable within factor
Ω(log(|V |)) and Ω(log(|s|)).

We prove these results by presenting a reduction, that is parameterized [6,14]
and approximate preserving [19], from the Minimum Set Cover problem. We recall
here the definition of Minimum Set Cover.

Problem 5. Minimum Set Cover
Input: A collection C = {S1, . . . , Sm} of sets over a universe U = {u1, . . . , un}.

Complexity Issues of String to Graph Approximate Matching 255

Output: A subcollection C ′ of C of minimum cardinality such that for each
ui ∈ U , with 1 ≤ i ≤ n, there exists a set in C ′ containing ui.

First, we focus on String to Graph Restricted Approximate Matching, then we
show that the same reduction can be applied to String to Graph Approximate
Matching.

Given an instance (U,C) of Minimum Set Cover, in the following we define
an instance (G = (V,E, σ), s) of String to Graph Restricted Approximate Matching
(see Fig. 1 for an example). We start by defining the alphabet Σ:

Σ = {xi : 0 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ n} ∪ {z}.

Then, we define the labeled graph G = (V,E, σ):

V = {vi : 0 ≤ i ≤ m} ∪ {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}

E = {(v0, vi) : 1 ≤ i ≤ m} ∪ {(vi, vi,j) : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}
∪ {(vi,j , v0) : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}.

Now, we define the labeling σ of the vertices of G:

– σ(vi) = xi, 0 ≤ i ≤ m
– σ(vi,l) = yj , 1 ≤ i ≤ m, 1 ≤ l ≤ |Si| and 1 ≤ j ≤ n, where the l-th element

of Si is uj (based on some ordering of the elements in Si)

The query string s is defined as follows: s = x0 z y1 x0 z y2 . . . x0 z yn.

x0

x1

x2

y4y1 y3

y2 y3

x3 y2 y4

v0

v1

v2

v3

v1,1 v1,2
v1,3

v2,1 v2,2

v3,1 v3,2

s = x0 z y1 x0 z y2 x0 z y3 x0 z y4

Fig. 1. A labeled graph G and a query string s associated with the following instance
of Minimum Set Cover: U = {u1, u2, u3, u4}; S1 = {u1, u3, u4}, S2 = {u2, u3}, S3 =
{u2, u4}. Inside each vertex we represent its label.

First, we prove that the labeled graph G, has distance one from a DAG, that
is by removing a vertex of G (namely, v0), we obtain a DAG.

256 R. Dondi et al.

Lemma 3. Let (C,U) be an instance of Minimum Set Cover and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Restricted Approxi-
mate Matching. Then, G has distance one from a DAG.

Next, we present the main result to prove the correctness of the reduction.

Lemma 4. Let (C,U) be an instance of Minimum Set Cover and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Restricted Approxi-
mate Matching. There exists a cover C ′ of U of cardinality h < n if and only if
there exists a solution of String to Graph Restricted Approximate Matching that
requires h edit operations.

Proof. We present only one direction of the proof. Consider a path p in G such
that p is a restricted approximate matching of s requiring at most h edit oper-
ations of the labels of vertices in p. First, we prove some properties of G. If v0
is removed from G, then the resulting graph G′ contains paths consisting of at
most 2 vertices. Since |s| = 3n, there is no path in G′ that can be a restricted
approximate matching of s. This implies that at least one position of s is mapped
in v0.

Now, assume that the first vertex of p is not v0. Assume that the first
position of s is mapped in vi, for some i with 1 ≤ i ≤ m. By construction,
p = vi vi,j v0 vl vl,t v0 . . . , since N+(vi) = {vi,j : 1 ≤ j ≤ |Sj |}, N+(vi,j) = {v0}
and N+(v0) = {vi : 1 ≤ i ≤ m}. Then each occurrence of a symbol yq, 1 ≤ q ≤ n,
in s is mapped in v0, while the symbol associated with v0 can be at most one of
y1, . . . , yn, thus there is no path in G that starts with a vertex vi and that is a
restricted approximate matching of s.

Assume that the first vertex of p is some vertex vi,j , with 1 ≤ i ≤ m and
1 ≤ j ≤ |Si|. By construction, p = vi,j v0 vl vl,t v0 Hence each position of
s containing z is mapped in vertex v0, while each position of s containing yt,
1 ≤ t ≤ n, is mapped in a vertex vq, with 1 ≤ q ≤ m. This last mapping requires
n > h edit operations of labels of vertices of G, violating the hypothesis that at
most h < n edit operations are applied.

We can conclude that if p is a restricted approximate matching of s requiring
h < n edit operations, then v0 must be the first vertex of p. It follows that each
label of a vertex vi, 1 ≤ i ≤ n, in path p must be edited to z. Consider the case
that position t of s, 1 ≤ t ≤ |s|, where s[t] = yq, 1 ≤ q ≤ n, is mapped to some
vertex vi,j , with 1 ≤ i ≤ m and 1 ≤ j ≤ |Si|, such that σ(vi,j)
= yq, and that
hence the label of vi,j is edited to yq. Let va, with 1 ≤ a ≤ m, be the vertex that
precedes vi,j in p. Then, we can modify p, so that the number of edit operations
are not increased, by replacing va with a vertex vb, with 1 ≤ b ≤ m, and vi,j
with vb,l, with 1 ≤ l ≤ |Sb|, so that σ(vb,l) = yq, and by editing the label of vb
(if it is no already edited) to z. This implies that the only vertices of p whose
labels are edited are vertices vi, 1 ≤ i ≤ m.

Now, we can define a solution C ′ of Minimum Set Cover consisting of h sets as
follows: C ′ = {Si : the label of vertex vi in p is edited to z, 1 ≤ i ≤ m}. Since
at most h labels of vertices of p are edited (to z), it follows that at most h
sets belong to C ′. Furthermore, since each vertex with label yj , 1 ≤ j ≤ n, is

Complexity Issues of String to Graph Approximate Matching 257

connected to a vertex vi in p, 1 ≤ i ≤ m, by construction it follows that each
element of U belongs to some set in C ′. ��

Based on Lemma 3 and on Lemma 4, we can prove the following result.

Theorem 4. The String to Graph Restricted Approximate Matching problem is
W[2]-hard when parameterized by the number of edit operations, even when the
input graph has distance one from a DAG.

Proof. Notice that, by Lemma 3, G has distance one from a DAG. The W[2]-
hardness of String to Graph Approximate Matching follows from Lemma 4 and
from the W[2]-hardness of Minimum Set Cover [16]. ��

Next, we show that the same reduction allows us to prove the W[2]-hardness
and the inapproximability of String to Graph Approximate Matching. Essentially,
we will prove that we can avoid edit operations of the query string.

Theorem 5. The String to Graph Approximate Matching problem is W[2]-hard
when parameterized by the number of edit operations, even when the input graph
has distance one from a DAG. Moreover, String to Graph Approximate Matching
cannot be approximated within factor Ω(log(|V |)) and Ω(log(|s|)), unless P =
NP , even when the input graph has distance one from a DAG.

5 String to Graph Compatibility Matching Parameterized by |s|
We present a fixed-parameter algorithm for String to Graph Compatibility Match-
ing when parameterized by |s|. We consider the case where each vertex of G is
labeled with exactly one symbol (notice that in this case, by Theorem 1, String
to Graph Compatibility Matching is NP-complete and, by Corollary 1, String to
Graph Compatibility Matching parameterized by |s| does not admit a polynomial
kernel unless NP ⊆ coNP/Poly).

We start by proving an easy property of an instance of String to Graph Com-
patibility Matching.

Lemma 5. |Σ| ≤ |s|.
The fixed-parameter algorithm is based on the color-coding technique [2] and

on dynamic programming. Consider a path p in G that is compatible with s and
the set V (p) of vertices that induces p, where |V (p)| = k. It holds k ≤ |s|, since
each position of s is mapped in at least one vertex of p.

We consider a coloring of V with a set of colors {c1, . . . , ck}, where, given a
vertex v ∈ V , we denote by c(v) the color assigned to v. Based on color-coding
(see Definition 1), we assume that the coloring is colorful, that is each vertex of
V (p) is assigned a distinct color in {c1, . . . , ck}.

Now, each color ci, with 1 ≤ i ≤ k, is associated by a function r:
{c1, . . . , ck} → Σ, with a symbol in Σ, that represents the fact that the ver-
tices of p that are colored by ci, with 1 ≤ i ≤ k, must match a position of s

258 R. Dondi et al.

containing symbol r(ci). In this case we say that p satisfies r. The algorithm
iterates over the possible colorings of graph G based on a family of perfect hash
functions and over the possible functions r.

Now, given a coloring of G and a function r, define a function Mr[i, v], with
1 ≤ i ≤ |s| and v ∈ V , as follows. Mr[i, v] is equal to 1 if there exists a path p
of G that is compatible with s[1, i] and such that (1) position i of s is mapped
in v, and (2) p satisfies r; else Mr[i, v] = 0. Notice that, since s[1, i] is mapped
in v, it follows that v is the last vertex of p. Next, we describe the recurrence to
compute Mr[i, v]. For i ≥ 2, if r(c(v))
= s[i], then Mr[i, v] = 0; if r(c(v)) = s[i],
then:

Mr[i, v] =
∨

u∈V :(u,v)∈E

Mr[i − 1, u]

In the base case, it holds Mr[1, v] = 1 if and only if r(c(v)) = s[1], else
Mr[1, v] = 0. Next, we prove the correctness of the recurrence.

Lemma 6. Mr[i, v] is equal to 1 if and only if there exists a path p of G that is
compatible with s[1, i] and such that (1) position i of s is mapped in v, and (2)
p satisfies r.

In order to compute a colorful coloring of G, we consider a perfect family of
hash functions for the set of vertices of G.

Definition 1. Let G = (V,E, σ) be a labeled graph and let C = {c1, . . . , ck} be
a set of colors. A family F of hash functions from V to C is called perfect if for
each subset V ′ ⊆ V , with |V ′| = k, there exists a function f ∈ F such that for
each x, y ∈ V ′, with x
= y, f(x) = ci, f(y) = cj, with 1 ≤ i, j ≤ k and i
= j.

It has been shown in [2] that a perfect family F of hash functions from V
to C, having size 2O(k)O(log |V |), can be computed in time 2O(k)O(|V | log |V |).
From Lemma 6 and by using a perfect family of hash functions to color the
vertices in G, we can prove the main result of this section.

Theorem 6. The String to Graph Compatibility Matching problem can be decided
in time 2O(|s|)O(|s||s|+1|V |2 log |V |).

6 Conclusion

In this contribution we have presented results on the tractability of the approx-
imate matching of a query string to a labeled graph. There are several open
questions related to variants of this problem. It will be interesting to further
investigate the approximability of String to Graph Approximate Matching, since
it can be trivially approximated within factor |s| in polynomial time, while it
cannot be approximated within factor Ω(log(|s|)), unless P = NP. Another inter-
esting open question is to investigate the parameterized complexity of String to
Graph Approximate Matching when the edit operations are not restricted to sym-
bol substitutions, but include symbol insertions and deletions.

Complexity Issues of String to Graph Approximate Matching 259

References

1. Akutsu, T.: A linear time pattern matching algorithm between a string and a tree.
In: 4th Annual Symposium on Combinatorial Pattern Matching, CPM 93, Padova,
Italy, 2–4 June 1993, Proceedings, pp. 1–10 (1993)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algo-

rithms 35(1), 82–99 (2000)
4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-

out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)
5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle

problems. Theor. Comput. Sci. 511, 117–136 (2013)
6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. In:

Gries, D., Hazzan, O. (eds.) TCS. Springer, London (2013). https://doi.org/10.
1007/978-1-4471-5559-1

7. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string
matching for graphs. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S.
(eds.) 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, Patras, Greece, 9–12 July 2019. LIPIcs, vol. 132, pp. 55:1–55:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman & Co., New York (1979)

9. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence to graph
alignment. In: Cowen, L.J. (ed.) RECOMB 2019. LNCS, vol. 11467, pp. 85–100.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17083-7 6

10. Manber, U., Wu, S.: Approximate string matching with arbitrary cost for text
and hypertext. In: Advances in Structural and Syntactic Pattern Recognition, pp.
22–33 (1992)

11. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl 2),
ii79–ii85 (2005)

12. Navarro, G.: Improved approximate pattern matching on hypertext. Theor. Com-
put. Sci. 237(1–2), 455–463 (2000)

13. Nguyen, N., et al.: Building a pan-genome reference for a population. J. Comput.
Biol. 22(5), 387–401 (2015)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

15. Park, K., Kim, D.K.: String matching in hypertext. In: Galil, Z., Ukkonen, E. (eds.)
CPM 1995. LNCS, vol. 937, pp. 318–329. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60044-2 51

16. Paz, A., Moran, S.: Non deterministic polynomial optimization problems and their
approximations. Theor. Comput. Sci. 15, 251–277 (1981)

17. Pevzner, P., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA frag-
ment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–97533 (2001)

18. The Computational Pan-Genomics Consortium: Computational pan-genomics: sta-
tus, promises and challenges. Brief. Bioinform. 19(1), 118–135 (2018)

19. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, New York (2011)

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-030-17083-7_6
https://doi.org/10.1007/3-540-60044-2_51
https://doi.org/10.1007/3-540-60044-2_51

Complexity of Automatic Sequences

Hans Zantema1,2(B)

1 Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB, Eindhoven, The Netherlands

h.zantema@tue.nl
2 Radboud University Nijmegen, P.O. Box 9010,

6500 GL, Nijmegen, The Netherlands

Abstract. Automatic sequences can be defined by DFAs with output
(DFAO) in two natural ways. We propose to consider the minimal size
of a corresponding DFAO as the complexity measure of the automatic
sequence, for both variants. This paper compares these complexity mea-
sures and investigates their properties like the relationships with kernel
and morphic sequences. There exist automatic sequences for which the
one complexity is exponentially greater than the other one, in both direc-
tions. For both complexity measures we investigate the effect of taking
basic operations on sequences like removing or adding an element in
front, and observe that these operations may increase the complexity by
at most a quadratic factor.

1 Introduction

Automatic sequences form an important class of infinite sequences over a finite
alphabet; roughly speaking it is a first regular class going beyond ultimately
periodic sequences. They have been extensively studied, in particular in the
book [1] that serves as the main reference for research in this area. More recent
references on the topic include [5,9].

Automatic sequences depend on a base k > 1, with special interest for k = 2.
Two well-known 2-automatic sequences are the Thue-Morse sequence and the
regular paper folding sequence, to be defined in Sect. 2. Automatic sequences
admit several equivalent characterizations, many of which are closely related to
the following two. In the first one the ith element ai of the sequence a is the
output of a DFAO when taking as input the k-ary notation of i. The second one
is similar, but then the reverse of the k-ary notation of i is taken as input. It is
natural to consider the minimal size of a corresponding DFAO as the complexity
measure of the automatic sequence, for both variants, and we denote them by
‖a‖k and ‖a‖R

k . These complexity measures are the main topic of this paper. We
show how they relate to other characterizations; in particular, ‖a‖R

k is closely
related to the size of the kernel of a, and ‖a‖k is closely related to the size of
the smallest alphabet needed to describe a as a morphic sequence with respect
to a k-uniform morphism. In doing so, we follow constructions as presented in
[1] for which we investigate the precise effect on the measures ‖a‖k and ‖a‖R

k .
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 260–271, 2020.
https://doi.org/10.1007/978-3-030-40608-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_18

Complexity of Automatic Sequences 261

A first result states that there is an exponential gap between both measures:
there exist sequences of automatic sequences a, b for which ‖a‖R

k is exponential
in ‖a‖k, and ‖b‖k is exponential in ‖b‖R

k .
A next natural question is about the effect of taking basic operations on

sequences. For instance, for any sequence a its tail tail(a) is obtained by removing
its first element. We show that ‖tail(a)‖R

k ≤ 2‖a‖R
k and ‖tail(a)‖k ≤ (‖a‖k)2 for

all k-automatic sequences, and that the last inequality is sharp. Similar results
hold for adding an element in front rather than removing. Also other operations
are considered, like pointwise combining two sequences and taking particular
subsequences. About all of these basic operations f the main observation is
that their sizes do not increase more than quadratically: ‖f(a)‖k ≤ (‖a‖k)2 and
‖f(a)‖R

k ≤ (‖a‖R
k)2 for all a.

Another interesting question is what happens for periodic sequences. In the
current paper we only derive a quadratic upper bound for ‖·‖R

k and a linear
upper bound for ‖·‖k, so opposite to the effect of tail. Whether and when these
upper bounds are reached is a much more involved question that is investigated
in [2]. The research project on this topic is a joined project of Wieb Bosma and
the current author; as this analysis for periodic sequences requires arguments of
a completely different combinatorial flavor than the automata based arguments
in this paper, we decided to present the current paper and [2] separately.

Throughout the paper we make several claims about the exact values of
‖a‖k and ‖a‖R

k for particular sequences a. To compute these values we wrote
a program to search for a DFAO of minimal size n having the corresponding
property for ai for all i < N for N being typically around 210. This was done
by expressing the requirements as a satisfiability problem and then call a SAT
solver. The smallest n for which the formula is satisfiable then is given. As only
the requirements for i < N are checked, this only yields a lower bound, but for
N large enough it gives the exact value. According to [6], corollary 3.1 (page
59) two states in a DFAO of n states are equivalent are equivalent if and only
if for every string of length ≤ n − 1 they produce the same output. This can
be improved to ≤ n − 2. Applying this for the union of the found automaton
and the real automaton with bounds derived in this paper, this shows that for
N = 2n−2 the exact value is obtained.

This paper is organized as follows. In Sect. 2 we give the basic definitions and
a general lemma for proving lower bounds. In Sect. 3 we investigate the exponen-
tial gap between ‖·‖k and ‖·‖R

k . In Sect. 4 we define the kernel of an automatic
sequence and investigate its relationship with ‖·‖R

k . In Sect. 5 we present how to
define automatic sequences as morphic sequences with respect to uniform mor-
phisms, and investigate the relationship with ‖·‖k. In Sect. 6 we investigate the
effect of basic operations like tail on ‖·‖k and ‖·‖R

k . In Sect. 7 we give the upper
bounds of ‖·‖k and ‖·‖R

k for periodic sequences. We conclude in Sect. 8.

262 H. Zantema

2 Basic Definitions

Let k ≥ 2 and Σk = {0, 1, . . . , k − 1}.
The set of infinite sequences a = a0a1a2a3 · · · over a finite alphabet Γ is

denoted by ΓN.
A DFA M with output (DFAO) is defined to be a tuple M = (Q,Σ, δ,

q0, Γ, τ), where

– Q is the finite set of states,
– Σ is the finite input alphabet,
– δ : Q × Σ → Q is the transition function,
– q0 ∈ Q is the initial state,
– Γ is the finite output alphabet,
– τ : Q → Γ is the output function.

DFAOs are denoted by states and arrows just as is usual for DFAs; the extra
information that τ(q) = x is denoted by writing q/x in the state q.

As in DFAs, δ extends to δ : Q × Σ∗ → Q by δ(q, ε) = q, δ(q, xu) =
δ(δ(q, x), u). A DFAO M defines a function fM : Σ∗ → Γ defined by fM (u) =
τ(δ(q0, u)). A function f : Σ∗ → Γ is called a finite state function if a DFAO M
exists such that f = fM . For every finite state function f there exists a unique
(up to renaming of states) DFAO M with a minimal number of states such that
f = fM .

A DFAO of which the input alphabet Σ is equal to Σk = {0, 1, . . . , k − 1}, is
called a k-DFAO.

Every natural number n has a unique representation (n)k ∈ Σ∗
k , where (0)k =

ε and

(n)k = d0d1 · · · dr ⇐⇒ n = d0k
r + d1k

r−1 + · · · + dr−1k + dr ∧ d0 > 0

for n > 0. So (0)2 = ε and (11)2 = 1011. Note that non-empty strings of which
the leftmost symbol is 0 do not occur as (n)k for some number n.

Conversely, every u ∈ Σ∗
k represents a number [u]k:

[d0d1 · · · dr]k = d0k
r + d1k

r−1 + · · · + dr−1k + dr.

For any Σ and any string u ∈ Σ∗ the reverse uR of u is defined by
(u1u2 · · · un)R = unun−1 · · · u1.

An infinite sequence a ∈ ΓN is called k-automatic if a k-DFAO
M = (Q,Σk, δ, q0, Γ, τ) exists such that a[w]k = τ(δ(q0, w)) for all w ∈ Σ∗

k .
According to Theorem 5.2.1 from [1] a is k-automatic if and only if a k-DFAO
M = (QM , Σk, δM , q0, Γ, τM) exists such that τM (δM (q0, (i)k)) = ai for all i ∈ N.
According to Theorem 5.2.3 from [1] a is k-automatic if and only if a k-DFAO
M = (QM , Σk, δM , q0, Γ, τM) exists such that τM (δM (q0, (i)R

k)) = ai for all i ∈ N.
Now we are ready to define the two natural measures ‖.‖k, ‖.‖R

k for
k-automatic sequences that we investigate in this paper.

Complexity of Automatic Sequences 263

Definition 1. For any k-automatic sequence a = a0a1a2a3 · · · its size ‖a‖k is
defined to be the size of a smallest k-DFAO M = (QM , Σk, δM , q0, Γ, τM) such
that τM (δM (q0, (i)k)) = ai for all i ∈ N.

For any k-automatic sequence a = a0a1a2a3 · · · its reversed size ‖a‖R
k is

defined to be the size of a smallest k-DFAO M = (QM , Σk, δM , q0, Γ, τM) such
that τM (δM (q0, (i)R

k)) = ai for all i ∈ N.

Conversely, every k-DFAO M = (QM , Σk, δM , q0, Γ, τM) defines two infinite
sequences seqk(M) and seqR

k (M) over Γ :

seqk(M)i = τM (δM (q0, (i)k)) and seqR
k (M)i = τM (δM (q0, (i)R

k))

for all i ∈ N. From the above definition it is immediate that ‖seqk(M)‖k ≤ |QM |
and ‖seqR

k (M)‖R
k ≤ |QM |.

The Thue-Morse sequence thue =
0110100110010110 · · · is defined by thuei = 0 if the
number of 1s in (i)2 is even, and thuei = 1 if the
number of 1s in (i)2 is odd, see, e.g., [1] Section 1.6,
or OEIS A010060. We have ‖thue‖2 = ‖thue‖R

2 = 2,
both justified by the DFAO on the right.

Mthue :

q0/0 q1/1

0 0

1

1

The regular paper-folding sequence paper = 001001100011011 · · · (or dragon
curve sequence is defined by paperi = m mod 2 for every i ≥ 0 for the unique
representation i = (2m+1)2j −1, see, e.g., [1] Example 5.16., or OEIS A014577.
We have ‖paper‖2 = ‖paper‖R

2 = 4, respectively justified by the following two
DFAOs.

Mpaper :

q0/0 q1/0

q2/1

q3/10

1

1

0
0

0 1

1

MpaperR :

q0/0 q1/0

q2/0

q3/11

0
0

1

0, 1

0, 1

The following lemma is the basic tool for lower bounds on ‖a‖k and ‖a‖R
k .

Lemma 1. Let a be a k-automatic sequence, and m1, . . . ,mn ∈ N such that for
every i
= j there exists v ∈ Σ∗

k satisfying a[(mi)kv]k
= a[(mj)kv]k , then ‖a‖k ≥ n.
Let a be a k-automatic sequence, and m1, . . . ,mn ∈ N such that for every

i
= j there exists v ∈ Σ∗
k satisfying a[v(mi)k]k
= a[v(mj)k]k , then ‖a‖R

k ≥ n.

Proof. For the first claim let M = (QM , Σk, δM , q0, Γ, τM) be a smallest k-
DFAO such that τM (δM (q0, (i)k)) = ai for all i ∈ N. For i = 1, 2, . . . , n define
qi = δM (q0, (mi)k). For i
= j from the assumption we obtain τM (δM (qi, v))
=
τM (δM (qj , v)), so qi
= qj . This shows |Q| ≥ n, so ‖a‖k ≥ n.

The proof of the second claim is similar. ��

264 H. Zantema

3 The Exponential Gap

The following theorem shows that there can be an exponential gap between ‖a‖k

and ‖a‖R
k , in both directions. Its proof is inspired by the folklore result that the

language (0 + 1) ∗ 1(0 + 1)n−1 has an NFA of size n + 1, and its reverse has a
DFA of size n + 1, but its smallest DFA has size at least 2n. We found it in
[8], Sect. 3.2, page 67, exercise 3. Many similar results on state complexity are
known, e.g., in [7], it is proved that all values until 2n can be reached as sizes.

Theorem 1. For every n > 1 there exist k-automatic sequences a, b such that
‖a‖k ≤ n+k and ‖a‖R

k ≥ (k−1)kn−1, and ‖b‖R
k ≤ n+k and ‖b‖k ≥ (k−1)kn−1.

Proof. Define a by ai = 0 for i < kn, and ai = j if and only if the nth
digit of (i)k is j, for j = 0, 1, . . . , k − 1, i ≥ kn. The following DFAO satis-
fies τM (δM (q0, (i)k)) = ai by construction:

q0/0 q1/0 q2/0 . . .

. . .

qn−1/0 r0/0

r1/1

rk−1/k − 1

0
1

k − 1

in which all unlabeled arrows are assumed to be labeled by all symbols
0, 1, . . . , k − 1. Since this DFAO has n + k states we obtain ‖a‖k ≤ n + k.

For proving ‖a‖R
k ≥ (k − 1)kn−1 we apply Lemma 1. For i = 1, 2, . . . ,

(k − 1)kn−1 define mi = kn + i − 1, so the numbers mi are exactly the numbers
of k-ary length n, starting in a digit
= 0. For any two distinct such numbers
mi and mj there is a position p on which they differ, so by choosing v = 1n−p,
the strings v(mi)k and v(mj)k differ in their n-th position. So the condition of
Lemma 1 holds and we conclude ‖a‖R

k ≥ (k − 1)kn−1.
Define b by bi = 0 for i < kn, and ai = j if and only if the nth element

of (i)R
k is j, for j = 0, 1, . . . , k − 1, i ≥ kn. A similar argument using the same

automaton proves the claim for b. ��

4 The k-kernel

For j ∈ Σk we define pj(a) = ajak+ja2k+ja3k+j · · · by (pj(a))i = aik+j for all
i ∈ N. So for k = 2 we have p0(a) = even(a) = a0a2a4 · · · and p1(a) = odd(a) =
a1a3a5 · · · .

For an infinite sequence a = a0a1a2a3 · · · over Γ we define its k-kernel Kk(a)
to be the smallest set Kk(a) ⊆ ΓN such that

Complexity of Automatic Sequences 265

– a ∈ Kk(a),
– for every b ∈ Kk(a) and every j ∈ Σk we have pj(b) ∈ Kk(a).

We recall from [4], Prop. V.3.3, or [1], Theorem 6.6.2, that a is k-automatic if
and only if Kk(a) is finite.

For a k-automatic sequence a = a0a1a2a3 · · · over the alphabet Γ its k-kernel
Kk(a) has a natural DFAO structure: the DFAO Kk(a) = (Kk(a), Σk, δ, a, Γ, τ),
where

– the input alphabet is Σk,
– Kk(a) is the set of states,
– δ : Kk(a) × Σk → Q is defined by δ(q, j) = pj(q),
– a is the initial state,
– the output alphabet is Γ ,
– the output function τ : Kk(a) → Σk is defined by τ(b0b1b2 · · ·) = b0.

Recall that for k = 2 we have p0 = even and p1 = odd, so in K2(a) the
0-steps describe even and the 1-steps describe odd. For thue the 2-kernel exactly
coincides with the DFAO Mthue given in Sect. 2, in which q0 coincides with thue
and q1 coincides with the sequence obtained from thue by swapping symbols 0
and 1. For paper the 2-kernel exactly coincides with the given DFAO MpaperR , in
which q0 coincides with paper, q1 with (01)ω = 010101 · · · , q2 with 0ω = 000 · · ·
and q3 with 1ω = 111 · · · .

The following theorem is straightforwardly proved by induction on i:

Theorem 2. For every k-automatic sequence a = a0a1a2a3 · · · and every i ∈ N

we have τ(δ(a, (i)R
k)) = ai where τ, δ refer to Kk(a) = (Kk(a), Σk, δ, a, Γ, τ).

As a consequence, by only giving the DFAO Kk(a) the sequence a is fully
defined.

Theorem 3. The DFAO Kk(a) is the unique DFAO of minimal size such that
τ(δ(a, (i)R

k 0j)) = ai for every i, j ∈ N.

Proof. Let Kk(a) = (Kk(a), Σk, δ, a, Γ, τ). Combining Theorem 2 with the fact
that τ(q) = τ(δ(q, 0)) for all q ∈ Kk(a) yields τ(δ(a, (i)R

k 0j)) = ai for every
i, j ∈ N. Assume it is not of minimal size with this property. Then there are two
distinct states q, q′ such that τ(δ(q, u)) = τ(δ(q′, u)) for all u ∈ Σ∗

k . Since q, q′

are sequences over Σk, applying Theorem 2 to Kk(q) and Kk(q′) yield qi = q′
i

for all i ∈ N. But then q, q′ are equal as sequences, contradicting that they are
distinct. ��

Recall that ‖a‖R
k is the minimal size |Q| for which a DFAO M =

(Q,Σ, δ, q0, Γ, τ) exists such that τ(δ(q0, (i)R
k)) = ai for every i ∈ N. We observe

that a DFAO with this property does not need to be unique. For instance,
for a = 01ω the DFAO Kk(a) is a minimal DFAO with this property, hav-
ing two states a and b = 1ω, and δ(a, 0) = a, δ(a, 1) = δ(b, 0) = δ(b, 1) = b,
τ(a) = 0, τ(b) = 1. But the DFAO with the same two states a, b and
δ(b, 0) = a, δ(a, 0) = δ(a, 1) = δ(b, 1) = b, τ(a) = 0, τ(b) = 1 produces the
same sequence a = 01ω.

266 H. Zantema

Next we observe that ‖a‖R
k can be strictly

smaller than |Kk(a)|, the size of the state space of
Kk(a). Define ai = 1 if the number of zeros in (i)2
is odd, and ai = 0 if this number is even. Clearly
it admits the following DFAO, in which as usual
τ(q) = x is denoted by q/x in the state q:

0/0 1/10

1

0

1

0

Hence ‖a‖R
k ≤ 2; we obtain ‖a‖R

k = 2 since the sequence contains both 0 and
1. However, |Kk(a)| = 4, since Kk(a) is the following DFAO:

a/0 b/0

c/1d/1

0

1

0

1

1

1

0

0

The sequences a, b, c, d are as follows:

a = 001001101 · · · , b = 010110010 · · · ,

c = 110110010 · · · , d = 101001101 · · · .

Observe that a and d differ only at the first
position, and similarly for b and c. The next
lemma states that this always occurs if |Kk(a)|
is greater then ‖a‖R

k .

Lemma 2. Let a be an infinite sequence over Γ with kernel Kk(a) =
(Kk(a), Σk, δ, a, Γ, τ). Let (QM , Σk, δM , q0, Γ, τM) such that τM (δM (q0, (i)R

k)) =
ai for all i ∈ N. Assume that δM (q0, u) = δM (q0, v) for u, v ∈ Σ∗

k . Then

δ(a, u)i = δ(a, v)i for all i > 0.

Proof. Let i > 0. For any w ∈ Σ∗
k define the numbers mw by (mw)k = (i)kwR;

this is possible since (i)kwR does not start in 0 since i > 0. For any b ∈ Kk(a)
we obtain bi = τ(δ(b, (i)R

k)) by considering Kk(b). Hence

δ(a,w)i = τ(δ(δ(a,w), (i)R
k)) = τ(δ(a,w(i)R

k)) = τ(δ(a, (mw)R
k)) = amw

.

We obtain: δ(a, u)i = amu
= τM (δM (q0, (mu)R

k))
= τM (δM (q0, u(i)R

k))
= τM (δM (δM (q0, u), (i)R

k))
= τM (δM (δM (q0, v), (i)R

k))
= τM (δM (q0, (mv)R

k)) = amv
= δ(a, v)i.

��
Theorem 4. Let a be a k-automatic sequence over an alphabet Γ . Then

‖a‖R
k ≤ |Kk(a)| ≤ |Γ | ∗ ‖a‖R

k .

Moreover, if a is periodic then ‖a‖R
k = |Kk(a)|.

Proof. The inequality ‖a‖R
k ≤ |Kk(a)| holds since the automaton Kk(a) sat-

isfies τ(δ(a, (i)R
k)) = ai for every i ∈ N. For the other inequality let M =

(Q,Σ, δ, q0, Γ, τ) be a DFAO of minimal size ‖a‖R
k such that τ(δ(q0, (i)R

k)) = ai

Complexity of Automatic Sequences 267

for every i ∈ N. For every b ∈ Kk(a) choose ub ∈ Σ∗
K such that b = δ(a, ub).

Define ∼ on Kk(a) by b ∼ c ⇐⇒ δM (q0, ub) = δM (q0, uc).
According to Lemma 2 b ∼ c implies that bi = ci for all i > 0, so the difference

between b and c may only be caused by b0
= c0. Hence every equivalence class
of ∼ has at most |Γ | elements, while the number of equivalence classes is |Q| =
‖a‖R

k . This proves |Kk(a)| ≤ |Γ | ∗ ‖a‖R
k .

In case a is periodic then all elements of Kk(a) are periodic too, and bi = ci

for all i > 0 implies b = c. Hence in that case all equivalence classes consist of a
single element, proving ‖a‖R

k = |Kk(a)|. ��

5 Morphic Sequences

Recall that ‖a‖k = |QM | for the smallest QM being the set of states of a DFAO
M = (QM , Σk, δM , q0, Γ, τM) for which τM (δM (q0, (i)k)) = ai for every i ∈ N.
Again this DFAO of minimal size is not unique: for a = 01ω the DFAO Kk(a) as
given above also satisfies τM (δM (q0, (i)k)) = ai for all i ∈ N, but after changing
δ(a, 0) = a to δ(a, 0) = b this property still holds, since (i)k never starts by 0.

Just like ‖a‖R
k is strongly related to the kernel of a as described in Theorem

4, ‖a‖k is strongly related to the number of symbols needed to describe a as
a morphic sequence with respect to a k-uniform morphism. A sequence a over
an alphabet Γ is called morphic with respect to a morphism h : Δ → Δ∗ and
a coding τ : Δ → Γ if a = τ(hω(x)) for some x ∈ Δ satisfying h(x) = xu,
by which hω(x) = xuh(u)h2(u)h3(u) · · · is a fixed point of h. The morphism
h : Δ → Δ∗ is called k-uniform if the string h(y) ∈ Δ∗ has length k for every
y ∈ Δ. It is well-known (Cobham [3], see also [1] Theorem 6.3.2) that a is k-
automatic if and only if it is morphic with respect to a k-uniform morphism.
For instance, thue = hω(0) for h(0) = 01, h(1) = 10, and paper = τ(gω(0)) for
g(0) = 02, g(1) = 31, g(2) = 32, g(3) = 01, τ(0) = τ(2) = 0, τ(1) = τ(3) = 1.

Theorem 5. Let a be a k-automatic sequence. Let d(a) be the minimal size of
the alphabet Δ such that a = τ(hω(x)) for a k-uniform morphism h : Δ → Δ∗

and a coding τ : Δ → Γ . Then ‖a‖k ≤ d(a) ≤ ‖a‖k + 1.

Proof. The k-DFAO M = (Δ,Σk, δ, q0, Γ, τ) with q0 = x and δ(q, y) = h(q)y,
where we write h(q) = h(q)0 · · · h(q)k−1, satisfies τ(δ(q0, (i)k)) = ai for all i ≥ 0
as is showed in the proof of Theorem 6.3.2 of [1]. As ‖a‖k is the smallest size of
a k-DFAO with this property we obtain ‖a‖k ≤ d(a).

Conversely, if M = (QM , Σk, δM , q0, Γ, τM) is a k-DFAO of size ‖a‖k with
τM (δM (q0, (i)k)) = ai for all i ≥ 0, then by choosing a fresh state q′

0 and defining
Q = QM ∪{q′

0}, δ(q, y) = δM (q, y) for q ∈ QM , δ(q′
0, 0) = q′

0, δ(q′
0, y) = δM (q0, y)

for y
= 0, τ(q′
0) = τM (q0), τ(q) = τM (q) for q ∈ QM , we obtain the k-DFAO

(Q,Σk, δ, q′
0, Γ, τ) of size ‖a‖k + 1 with τ(δ(q′

0, (i)k)) = ai for all i ≥ 0. Using
the fact that δ(q′

0, 0) = q′
0 we obtain a = τ(hω(q′

0)) for h defined by h(q) =
δ(q, 0)δ(q, 1) · · · δ(q, k−1) as is shown in the proof of Theorem 6.3.2 of [1]. Hence
d(a) ≤ ‖a‖k + 1. ��

268 H. Zantema

6 The Effect of Basic Operations

For any sequence a = a0a1a2a3 · · · we define its tail tail(a) = a1a2a3a4 · · · by
(tail(a))i = ai+1 for all i ∈ N.

Theorem 6. For any k-automatic sequence a we have ‖tail(a)‖R
k ≤ 2‖a‖R

k and
‖tail(a)‖k ≤ (‖a‖k)2. For every n > 1 there exists a k-automatic sequence a such
that ‖a‖k = n and ‖tail(a)‖k = n2.

Proof. For the first claim take a DFAO M = (Q,Σk, δ, q0, Γ, τ) of size ‖a‖R
k

with τ(δ(q0, (i)R
k)) = ai for all i ≥ 0. Let m ≤ ‖a‖R

k be the smallest number
m > 0 such that j < m exists with δ(q0, 0m) = δ(q0, 0j). Introduce fresh states
r0, . . . , rm−1 and define the DFAO M ′ = (Q∪{r0, . . . , rm−1}, Σk, δ′, r0, Γ, τ ′) by

δ′(q, x) = δ(q, x) for q ∈ Q,x ∈ Σk,

δ′(ri, k − 1) = ri+1 for i = 1, . . . ,m − 2,

δ′(rm−1, k − 1) = rj for j < m with δ(q0, 0m) = δ(q0, 0j),

δ′(ri, x) = δ(q0, 0i(x + 1)) for i = 0, . . . ,m − 1, x < k − 1.

By construction we have δ′(r0, (k−1)ix) = δ(q0, 0i(x+1)) for all i ∈ N, x < k−1.
So by defining τ ′(q) = τ(q) for q ∈ Q and τ ′(ri) = τ(δ(q0, 0i)) for i = 0, . . . , m−1
we obtain

τ ′(δ′(r0, (vx(k − 1)i)R)) = τ(δ(q0, (v(x + 1)0i)R))

and
τ ′(δ′(r0, (k − 1)i)) = τ(δ(q0, (10i)R))

for all i ∈ N, v ∈ Σ∗
k . Since [vx(k−1)i]k +1 = [v(x+1)0i]k, and [(k−1)i]k +1 =

[10i]k, and every number in N is either of the shape [vx(k − 1)i]k or [(k − 1)i]k,
this proves that M ′ is a DFAO for tail(a). Since |Q∪{r0, . . . , rm−1}| ≤ 2|Q| this
yields ‖tail(a)‖R

k ≤ 2‖a‖R
k .

For the second claim take a DFAO M = (Q,Σk, δ, q0, Γ, τ) of size ‖a‖k with
τ(δ(q0, (i)k)) = ai for all i ≥ 0. Define the DFAO M = (Q × Q,Σk, δ, q0, Γ, τ) of
size (‖a‖k)2 by

q0 = (q0, δ(q0, 1)), τ(q, q′) = τ(q′),

δ((q, q′), k − 1) = (δ(q, k − 1), δ(q′, 0)),

δ((q, q′), x) = (δ(q, x), δ(q, x + 1)),

for all q, q′ ∈ Q, x < k − 1. For every i ∈ N we have either (i)k = (k − 1)m

or (i)k = vx(k − 1)m, for some m ≥ 0, v ∈ Σ∗
k , x < k − 1. In the first case

we have (i + 1)k = 10m, in the second case (i + 1)k = v(x + 1)0m. The DFAO
M has been constructed in such a way that τ(δ(q0, (k − 1)m) = τ(δ(q0, 10m)
and τ(δ(q0, vx(k − 1)m) = τ(δ(q0, v(x + 1)0m). Hence for all i ∈ N we have
τ(δ(q0, (i)k) = τ(δ(q0, (i + 1)k)) = ai+1 = tail(a)i, proving the second claim.

As ‖tail(a)‖k ≤ n2, for the last claim it suffices to prove ‖tail(a)‖k ≥ n2.
We define a by ai = 1 if the number of zeros in (i)k is divisible by n, and

Complexity of Automatic Sequences 269

ai = 0 otherwise. A DFAO consisting of a single n-cycle easily produces a, so
‖a‖k ≤ n, and since a smaller one is not possible we obtain ‖a‖k = n. Let
b = tail(a), so bi = ai+1 for all i ∈ N. We prove ‖tail(a)‖k ≥ n2 by Lemma 1.
Choose m1,m2, . . . ,mn2 to be the numbers [10p(k−1)q]k for p, q = 1, . . . , n. Let
mi = [10p(k − 1)q]k and mj = [10p′

(k − 1)q′
]k for i
= j, then (p, q)
= (p′, q′).

First we consider the case where p + q and p′ + q′ are distinct modulo n,
choose r such that p + q + r − 1 is divisible by n and p′ + q′ + r − 1 is not.
Choose v = (k − 1)r. Then b[(mi)kv]k = a[(mi)kv]k+1 = a[10p−110q+r]k = 1
= 0 =
a[10p′−110q′+r]k

= b[(mj)kv]k .
In the remaining case p+ q and p′ + q′ are equal modulo n, and since (p, q)
=

(p′, q′) we obtain that p and p′ are distinct modulo n. Choose r such that p+r is
divisible by n and p′ +r is not. Choose v = 0r+1, then b[(mi)kv]k = a[(mi)kv]k+1 =
a[10p(k−1)q0r1]k = 1
= 0 = a[10p′ (k−1)q′0r1]k = b[(mj)kv]k .

So the conditions of Lemma 1 hold, and ‖tail(a)‖k ≥ n2. ��
For our examples thue and paper we have ‖tail(thue)‖2 = 4, ‖tail(thue)‖R

2 = 3,
‖tail(paper)‖2 = 8 and ‖tail(paper)‖R

2 = 6.
For any sequence a = a0a1a2a3 · · · over Γ , and x ∈ Γ the sequence x · a =

xa0a1a2a3 · · · is defined by (x · a)0 = x and (x · a)i = ai−1 for all i > 0. The
next theorem states that the effect of x· is similar to tail.

Theorem 7. For any k-automatic sequence a over Γ , and x ∈ Γ we have
‖x · a‖R

k ≤ 2‖a‖R
k and ‖x · a‖k ≤ (‖a‖k)2. For every n > 1 there exists a k-

automatic sequence a such that ‖a‖k = n and ‖x · a‖k ≥ n2.

Proof. Similar to the proof of Theorem 6, with the roles of the symbols 0 and
k − 1 swapped, exploiting the property [vx0i]k − 1 = [v(x − 1)(k − 1)i]k for any
string v and any x > 0. ��
For our examples thue and paper we have ‖0 · thue‖2 = 4, ‖0 · thue‖R

2 = 4,
‖0 · paper‖2 = 4 and ‖0 · paper‖R

2 = 4.
Recall that for j ∈ Σk the operator pj on sequences a is defined by (pj(a))i =

aik+j for all i ∈ N.

Theorem 8. For any k-automatic sequence a and j ∈ Σk we have ‖pj(a)‖k ≤
‖a‖k and ‖pj(a)‖R

k ≤ ‖a‖R
k .

Proof. Let M = (Q,Σk, δ, q0, Γ, τ) be a DFAO of size ‖a‖k with τ(δ(q0, (i)k)) =
ai for all i ≥ 0. Define M ′ = (Q,Σk, δ, q0, Γ, τ ′) by τ ′(q) = τ(δ(q, j)) for all
q ∈ Q. Then

(pj(a))i = aki+j = τ(δ(q0, (i)kj)) = τ(δ(δ(q0, (i)k), j)) = τ ′(δ(q0, (i)k))

for all i ∈ N, so M ′ is a DFAO of size ‖a‖k producing pj(a), so ‖pj(a)‖k ≤ ‖a‖k.
For the other claim let M = (Q,Σk, δ, q0, Γ, τ) be a DFAO of size ‖a‖R

k with
τ(δ(q0, (i)R

k)) = ai for all i ≥ 0. Define M ′ = (Q,Σk, δ, δ(q0, j), Γ, τ). Then

(pj(a))i = aki+j = τ(δ(q0, j(i)k)R) = τ(δ(δ(q0, j), (i)k)R)

for all i ∈ N, so M ′ is a DFAO of size ‖a‖R
k producing pj(a), so ‖pj(a)‖k ≤

‖a‖k. ��

270 H. Zantema

For our examples thue and paper we have ‖even(thue)‖2 = 2, ‖odd(thue)‖R
2 = 2,

‖even(paper)‖2 = 2 and ‖odd(paper)‖R
2 = 4.

When applying an operator f : Γ1 × Γ2 → Γ3 on two sequences a ∈ ΓN
1 ,

b ∈ ΓN
2 , by f(a, b) ∈ ΓN

3 we mean the sequence defined by f(a, b)i = f(ai, bi) for
all i ∈ N. For instance, ∧ applied on boolean sequences denotes the elementwise
conjunction of the two boolean sequences.

Theorem 9. For any two k-automatic sequences a ∈ ΓN
1 , b ∈ ΓN

2 and every
function f : Γ1 × Γ2 → Γ3 we have ‖f(a, b)‖k ≤ ‖a‖k‖b‖k and ‖f(a, b)‖R

k ≤
‖a‖R

k ‖b‖R
k .

Proof. Let (Q1, Σk, δ1, q10, Γ1, τ1) be a DFAO of size ‖a‖k with τ1(δ(q10, (i)k)) =
ai for all i ≥ 0. Let (Q2, Σk, δ2, q20, Γ2, τ2) be a DFAO of size ‖b‖k with
τ2(δ(q20, (i)k)) = bi for all i ≥ 0. Then (Q1 × Q2, Σk, δ, (q10, q20), Γ3, τ) for δ, τ
defined by δ((q1, q2), x) = (δ1(q1, x), δ2(q2, x)) and τ(q1, q2) = f(τ1(q1), τ2(q2))
for all q1 ∈ Q1, q2 ∈ Q2, x ∈ Σk, is a DFAO of size ‖a‖k‖b‖k for f(a, b). The
proof for the reversed version is similar. ��
Combining our examples thue and paper we have ‖thue ∧ paper‖2 = 8 and
‖thue ∧ paper‖R

2 = 7.

7 Periodic Sequences

Theorem 10. Let a = vω be a periodic sequence with |v| = n. Then ‖a‖k ≤ n
and ‖a‖R

k ≤ n(n − 1).

Proof. Writing v = v0v1 · · · vn−1 we obtain ai = vi mod n for all i ∈ N. Define
(Q,Σk, δ, q0, Γ, τ) by Q = {0, 1, . . . , n − 1}, q0 = 0, δ(q, x) = (kq + x) mod n,
τ(q) = vq, for all q ∈ Q,x ∈ Σk. Then by induction on the length of (i)k

one proves that δ(q0, (i)k) = (i mod n) for every i ∈ N. Hence τ(δ(q0, (i)k)) =
τ(i mod n) = vi mod n = ai for all i ∈ N, proving that ‖a‖k ≤ n.

For the other claim we prove that |Kk(a)| ≤ n(n− 1), then the result follows
from Theorem 4. The states of Kk(a) are sequences b for which there are numbers
q, j such that bi = aikq+j = v(ikq+j) mod n for all i ∈ N. We have to show that
there are at most n(n − 1) such sequences b. This follows from the fact that this
only i depends on the n values for (j mod n) and the at most n − 1 values for
(kq mod n). The latter follows since if k, n are relatively prime, then the values
of (kq mod n) are among the n − 1 values 1, . . . , n − 1, and otherwise there is
some p > 1 dividing both n and k, and the values are among the n/p multiples
of p modulo n. ��

A natural question is for which cases the bounds of Theorem 10 can be
reached, in particular the quadratic bound for ‖a‖R

k . This question is beyond the
scope of this paper, but has been addressed in [2]. A main result of [2] is that if
n > 5 is prime and 2 is a primitive root modulo n (on which Artin’s conjecture
states that this holds for infinitely many primes), then ‖vω‖R

k = n(n − 1) for
v = 10110n−4.

Complexity of Automatic Sequences 271

8 Conclusions

We investigated two natural complexity measures for a k-automatic sequence
a: ‖a‖k closely related to the alphabet size required to present a as a morphic
sequence with respect to a k-uniform morphism, and ‖a‖R

k closely related to the
size of the kernel of a. We saw how there can be an exponential gap between
‖a‖k and ‖a‖R

k , but basic operations like tail, adding an element in front, or
applying a binary operator elementwise, never increases ‖·‖k or ‖·‖R

k by more
than a quadratic factor. Many other operations, like changing the tenth element
of a sequence, can be obtained by combining such basic operations, and hence
yield a polynomial upper bound too. Probably these polynomial bounds can be
improved strongly. Other open questions include a further investigation of when
these upper bounds can be reached. Conversely, our SAT based tool provides
values that are likely to be exact, but formally are only lower bounds. It would
make sense to further investigate how to be sure to have the exact value, either
depending on particular ways to define automatic sequences, or by giving general
criteria for exactness depending on known upper bounds.

On periodic sequences this paper only contains some very basic observations;
more involved observations are given in [2].

We want to thank Wieb Bosma for fruitful collaboration on this topic and
careful proof reading. We want to thank Jeffrey Shallit for giving pointers to
state complexity.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Bosma, W.: Complexity of periodic sequences (2019). https://www.math.ru.nl/
∼bosma/pubs/periodic.pdf

3. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
4. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New

York (1974)
5. Endrullis, J., Grabmayer, C., Hendriks, D.: Mix-automatic sequences. In: Dediu,

A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 262–
274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37064-9 24

6. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New
York (1962)

7. Jiraskova, G.: The ranges of state complexities for complement, star and reversal of
regular languages. Int. J. Found. Comput. Sci. 25(1), 101–124 (2014)

8. Lawson, M.V.: Finite Automata. Chapman and Hall/CRC, Boca Raton (2004)
9. Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In:

Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0 5

https://www.math.ru.nl/~bosma/pubs/periodic.pdf
https://www.math.ru.nl/~bosma/pubs/periodic.pdf
https://doi.org/10.1007/978-3-642-37064-9_24
https://doi.org/10.1007/978-3-642-38536-0_5

Grammars

Context-Sensitive Fusion Grammars
Are Universal

Aaron Lye(B)

Department of Mathematics, University of Bremen,
P.O.Box 33 04 40, 28334 Bremen, Germany

lye@math.uni-bremen.de

Abstract. Context-sensitive fusion grammars are a special case of
context-dependent fusion grammars where a rule has only a single posi-
tive context condition instead of finite sets of positive and negative con-
text conditions. They generate hypergraph languages from start hyper-
graphs via successive applications of context-sensitive fusion rules and
multiplications of connected components, as well as a filtering mecha-
nism to extract terminal hypergraphs from derived hypergraphs in a cer-
tain way. The application of a context-sensitive fusion rule consumes two
complementarily labeled hyperedges and identifies corresponding attach-
ment vertices provided that the context condition holds. In this paper,
we show that the Post correspondence problem can be formulated very
intuitively by such a grammar. Furthermore, we prove that these gram-
mars can generate all recursively enumerable string languages (up to
representation of strings as graphs) and are universal in this respect.

Keywords: Graph transformation · Context-sensitive fusion
grammars · Recursively enumerable languages · Chomsky grammar ·
Post correspondence problem

1 Introduction

In 2017 we introduced fusion grammars as generative devices on hypergraphs
(cf. [2]). They are motivated by the observation, that one encounters various
fusion processes in various scientific fields like DNA computing, chemistry, tiling,
fractal geometry, visual modeling and others. The common principle is that a
few small entities may be copied and fused to produce more complicated enti-
ties. Besides hypergraph language generation they can be used to model and
solve interesting decision problems, e.g., in [3] it is shown that the Hamiltonian
path problem can be solved efficiently by a respective fusion grammar due to
the massive parallelism in a way that mimics Adleman’s famous experiment in
DNA computing (cf. [1]). In this paper, we show that the Post correspondence
problem (PCP, cf. [6]), which is well-known to be undecidable, can be expressed
very intuitively by means of fusion and its solvability by using context-sensitive
fusion rules. Hence, undeciability results carry over to context-sensitive fusion
grammars. Recently, we showed that context-dependent fusion grammars (intro-
duced in [4]) are powerful enough to simulate Turing machines (cf. [5]). In this
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 275–286, 2020.
https://doi.org/10.1007/978-3-030-40608-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_19

276 A. Lye

paper, we show that one can do much better. We show that rules with a single
positive context condition are sufficient. To prove this, a known result of formal
language theory is used, which is, that each recursively enumerable string lan-
guage is a (left) quotient of two linear languages. In our construction we employ
the same recognition mechanism as the one for PCP. Throughout in the proofs
we are actually operating on graphs. As graphs are a subclass of hypergraphs
the results hold for the general case.

The paper is organized as follows. In Sect. 2, basic notions and notations of
hypergraphs are recalled. Section 3 introduces the notions of context-sensitive
fusion grammars. In Sect. 4 we present a reduction of the Post correspondence
problem to the membership and emptiness problem for context-sensitive fusion
grammars. Afterwards, we prove that context-sensitive fusion grammars can
generate all recursively enumerable string languages (up to representation) in
Sect. 5. Section 6 concludes the paper pointing out some open problems.

2 Preliminaries

A hypergraph over a given label alphabet Σ is a system H = (V,E, s, t, lab)
where V is a finite set of vertices, E is a finite set of hyperedges, s, t : E → V ∗

are two functions assigning to each hyperedge a sequence of sources and targets,
respectively, and lab : E → Σ is a function, called labeling. The components
of H = (V,E, s, t, lab) may also be denoted by VH , EH , sH , tH , and labH

respectively. The class of all hypergraphs over Σ is denoted by HΣ .
Let H ∈ HΣ , and let ≡ be an equivalence relation on VH . Then the fusion

of the vertices in H with respect to ≡ yields the (quotient) hypergraph H/≡ =
(VH/≡, EH , sH/≡, tH/≡, labH) with the set of equivalence classes VH/≡ = {[v] |
v ∈ VH} and sH/≡(e) = [v1] · · · [vk1], tH/≡(e) = [w1] · · · [wk2] for each e ∈ EH

with sH(e) = v1 · · · vk1 , tH(e) = w1 · · · wk2 .
Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two

mappings gV : VH → VH′ and gE : EH → EH′ such that sH′(gE(e)) = g∗
V (sH(e)),

tH′(gE(e)) = g∗
V (tH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where

g∗
V : V ∗

H → V ∗
H′ is the canonical extension of gV , given by g∗

V (v1 · · · vn) = gV (v1)
· · · gV (vn) for all v1 · · · vn ∈ V ∗

H .
Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′, denoted by H ⊆ H ′, if

VH ⊆ VH′ , EH ⊆ EH′ , sH(e) = sH′(e), tH(e) = tH′(e), and labH(e) = labH′(e)
for all e ∈ EH .

Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of (V,E)
from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, sH , tH , labH) with
sH(e) = sH′(e), tH(e) = tH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E
defines a subgraph H ⊆ H ′ if sH′(e), tH′(e) ∈ (VH′ − V)∗ for all e ∈ EH′ − E.
We will use removals of the form (∅, E) below.

Let H ∈ HΣ and let att(e) be the set of source and target vertices for
e ∈ EH . H is connected if for each v, v′ ∈ VH , there exists a sequence of triples
(v1, e1, w1) . . . (vn, en, wn) ∈ (VH × EH × VH)∗ such that v = v1, v

′ = wn and
vi, wi ∈ att(ei) for i = 1, . . . , n and wi = vi+1 for i = 1, . . . , n − 1. A subgraph

Context-Sensitive Fusion Grammars Are Universal 277

C of H is a connected component of H if it is connected and there is no larger
connected subgraph, i.e., C ⊆ C ′ ⊆ H and C ′ connected implies C = C ′. The
set of connected components of H is denoted by C(H).

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
It is defined by the disjoint union of the underlying sets (also denoted by +).
The disjoint union of H with itself k times is denoted by k · H. We use the
multiplication of H defined by means of C(H) as follows. Let m : C(H) → N be
a mapping, called multiplicity, then m · H =

∑

C∈C(H)

m(C) · C.

A string is represented by a simple path where the sequence of labels along
the path equals the given string. Let Σ be a label alphabet. Let w = x1 . . . xn ∈
Σ∗ for n ≥ 1 and xi ∈ Σ for i = 1, . . . , n. Then the string graph of w is
defined by sg(w) = ({0} ∪ [n], [n], sw, tw, labw) with sw(i) = i − 1, tw(i) = i and
lab(i) = xi for i = 1, . . . , n. The string graph of the empty string λ, denoted by
sg(λ), is the discrete graph with a single node 0. Obviously, there is a one-to-
one correspondence between Σ∗ and sg(Σ∗) = {sg(w) | w ∈ Σ∗}. For technical
reasons, we need the extension of a string graph sg(w) for some w ∈ Σ∗ by a
s-labeled edge bending from the begin node 0 to the end node n, where n is the
length of w. The resulting graph is denoted by sg(w)s.

3 Context-Sensitive Fusion Grammars

In this section, we introduce context-sensitive fusion grammars. These grammars
generate hypergraph languages from start hypergraphs via successive applica-
tions of context-sensitive fusion rules, multiplications of connected components,
and a filtering mechanism. Such a rule is applicable if the positive context-
condition holds. Its application consumes the two hyperedges and fuses the
sources of the one hyperedge with the sources of the other as well as the targets
of the one with the targets of the other.

Definition 1. F ⊆ Σ is a fusion alphabet if it is accompanied by a comple-
mentary fusion alphabet F = {A | A ∈ F} ⊆ Σ, where F ∩ F = ∅ and A
= B
for A,B ∈ F with A
= B and a type function type : F ∪ F → (N × N) with
type(A) = type(A) for each A ∈ F .

For each A ∈ F , the fusion rule fr(A) is the hypergraph with Vfr(A) =
{vi, v

′
i | i = 1, . . . , k1} ∪ {wj , w

′
j | j = 1, . . . , k2}, Efr(A) = {e, e}, sfr(A)(e) =

v1 · · · vk1 , sfr(A)(e) = v′
1 · · · v′

k1
, tfr(A)(e) = w1 · · · wk2 , tfr(A)(e) = w′

1 · · · w′
k2
,

and labfr(A)(e) = A and labfr(A)(e) = A.
The application of fr(A) to a hypergraph H ∈ HΣ proceeds according to

the following steps: (1) Choose a matching hypergraph morphism g : fr(A) →
H. (2) Remove the images of the two hyperedges of fr(A) yielding X = H −
(∅, {g(e), g(e)}). (3) Fuse the corresponding source and target vertices of the
removed hyperedges yielding the hypergraph H ′ = X/≡ where ≡ is generated by
the relation {(g(vi), g(v′

i)) | i = 1, . . . , k1} ∪ {(g(wj), g(w′
j)) | j = 1, . . . , k2}. The

application of fr(A) to H is denoted by H =⇒
fr(A)

H ′ and called a direct derivation.

278 A. Lye

A context-sensitive fusion rule is a tuple csfr = (fr(A), c : fr(A) → C) for
some A ∈ F where c is a hypergraph morphism with domain fr(A) mapping into
a finite context C.

The rule csfr is applicable to some hypergraph H via a matching morphism
g : fr(A) → H if there exists a hypergraph morphism h : C → H such that h is
injective on the set of hyperedges and h ◦ c = g.

If csfr is applicable to H via g, then the direct derivation H =⇒
csfr

H ′ is the

direct derivation H =⇒
fr(A)

H ′.

Remark 1. 1. In this paper, we only make use of the case where every hyperedge
has one source and one target vertex. Hence, fusion rules are of the form

A A . The type is therefore omitted throughout the paper.
2. The applications of fr(A) and (fr(A), id) are equivalent. We use the first as

an abbreviation for the latter. We call these rules context-free fusion rules.

Example 1. Let F = {a1, a2, a3}. Define reduce(x) = (fr(x), fr(x) →
c1

c2

c3

x

x)
for each x ∈ F where the morphism is uniquely defined by the labels and maps
the vertices as follows: v1
→ c1, v2
→ c1, w

′
1
→ c2, w1
→ c3. Consider the

graph G =
g1

g2

g3

g4

g5

g6

g7
a1 a2 a3

a1 a3 a2 . Only reduce(a1) is applicable because
the other complementarily labeled edges do not share a common source ver-
tex. The matching morphism g maps the edges labeled a1, a1, resp. in fr(a1) to
the a1-labeled (resp, a1-labeled) edges in G; vertices are mapped respectively:
v1
→ g1, v2
→ g1, w

′
1
→ g2, w1
→ g3. The morphism h : C → G exists (inclusion

morphism). Then G =⇒
reduce(a1)

[g1] [g2]
[g4]

[g5]

[g6]

[g7]
a2 a3

a3 a2 where g2 ≡ g3. After-

wards, no further context-sensitive fusion rule is applicable.

Given a finite hypergraph, the set of all possible successive fusions is finite as
fusion rules never create anything. To overcome this limitation, arbitrary multi-
plications of disjoint components within derivations are allowed. The generated
language consists of the terminal part of all resulting connected components
that contain no fusion symbols and at least one marker symbol, where marker
symbols are removed in the end. These marker symbols allow us to distinguish
between wanted and unwanted terminal components.

Definition 2. A context-sensitive fusion grammar is a system CSFG =
(Z,F,M, T, P) where Z ∈ HF∪F∪T∪M is a start hypergraph consisting of a
finite number of connected components, F is a finite fusion alphabet, M with
M ∩ (F ∪ F) = ∅ is a finite set of markers, T with T ∩ (F ∪ F) = ∅ = T ∩ M
is a finite set of terminal labels, and P is a finite set of context-sensitive fusion
rules.

Context-Sensitive Fusion Grammars Are Universal 279

A direct derivation H =⇒H ′ is either a context-sensitive fusion rule appli-
cation H =⇒

csfr
H ′ for some csfr ∈ P or a multiplication H =⇒

m
m · H for some

multiplicity m : C(H) → N. A derivation H
n=⇒H ′ of length n ≥ 0 is a sequence

of direct derivations H0 =⇒H1 =⇒ . . . =⇒Hn with H = H0 and H ′ = Hn. If
the length does not matter, we may write H

∗=⇒H ′.
L(CSFG) = {remM (Y) | Z

∗=⇒H,Y ∈ C(H) ∩ (HT∪M \ HT)} is the gener-
ated language where remM (Y) is the terminal hypergraph obtained by removing
all hyperedges with labels in M from Y .

Remark 2. Let CSFG = (Z,F,M, T, P) be a context-sensitive fusion grammar.
If for every A ∈ F a rule in P exists and every rule is context-free, then all rules
are specified F and CSFG is a fusion grammar as defined in [2]. P is obsolete.

4 A Context-Sensitive Fusion Grammar for the Post
Correspondence Problem

In this section, we model Post correspondence problems (PCPs) by means of
context-sensitive fusion grammars in such a way that a PCP is solvable if the
generated language of the corresponding grammar consists of a single vertex and
that a PCP is not solvable if the language is empty. Therefore, it turns out that
the emptiness problem and the membership problem for context-sensitive fusion
grammars are undecidable.

The Post correspondence problem is defined as follow. Given a finite set of
pairs {(u1, v1), (u2, v2), . . . , (uk, vk)} with ui, vi ∈ Σ∗ for some finite alphabet Σ.
Does there exist a sequence of indices i1 · · · in with n > 0 such that ui1 · · · uin =
vi1 · · · vin? In terms of fusion, the pairs may be copied and fused in order to
concatenate the strings. However, one needs a recognition mechanism to decide
whether ui1 · · · uin = vi1 · · · vin or not. This recognition procedure is expressible
by means of context-sensitive fusion.

Construction 1. Let S = {(u1, v1), (u2, v2), . . . , (uk, vk)} with k ∈ N, ui, vi ∈
Σ∗ be an instance of PCP. Let F = Σ + {A} be a fusion alphabet with A /∈ Σ.
Let P = {fr(A)}∪{reduce(x) | x ∈ Σ} where reduce(x) be as in Example 1. For
each (a, b) ∈ Σ∗ × Σ∗ where a = a1 · · · an and b = b1 · · · bm define init(a, b) =

a1 . . . an

b1 . . . bm
A

and cont(a, b) =
A

a1 . . . an

b1 . . . bm
A

. Let

Aμ = A
µ

and ZS =
∑

(a,b)∈S

init(a, b) + cont(a, b) + Aμ. Then CSFG(S) =

(ZS , F, {μ}, ∅, P) is the to S corresponding context-sensitive fusion grammar.

Theorem 1. 1. • ∈ L(CSFG(S)) if and only if there exists a solution to S.
2. L(CSFG(S)) is either {•} or ∅.
Corollary 1. The membership and the emptiness problem for context-sensitive
fusion grammars are undecidable.

280 A. Lye

The proof of the theorem is based on the following lemmata.

Lemma 1. Let G = dsg(u1 · · · un, u1 · · · un) be the hypergraph consisting of two
string graphs sg(u1 · · · un) and sg(u1 · · · un) with u1, . . . , un ∈ Σ where the first

vertex of both string graphs is the same. i.e.,

u1 . . . un

u1 . . . un . Then
G

n=⇒[n + 1] by applying reduce(u1), . . . , reduce(un), where [n + 1] denotes the
discrete graph with n + 1 vertices and no edges.

Proof. Induction base: n = 0. dsg(λ, λ) = [1] because by definition sg(λ) is the
discrete graph [1] by construction of dsg these two vertices are identified yielding
the discrete graph [1]. Hence, dsg(λ, λ) 0=⇒[1].

Induction step: Given G = dsg(u1 · · · un+1, u1 · · · un+1). Then reduce(u1) can
be applied because by construction of dsg(u1 · · · un+1, u1 · · · un+1) the two com-
plementary u1- and u1-labeled hyperedges share a common source vertex yielding

G′ =
u2 . . . un+1

u2 . . . un+1
= [1] + dsg(u2 · · ·un+1, u2 · · ·un+1)

. Then
by induction hypothesis G′ n=⇒[1] + [n + 1] = [n + 2]. ��
Lemma 2. Let X1 =⇒

reduce(x)
X2 =⇒

fr(A)
X3 be a derivation in CSFG(S). Then the

two direct derivations can be interchanged yielding X1 =⇒
fr(A)

X ′
2 =⇒

reduce(x)
X3 for

some X ′
2.

Proof. The statement follows directly from the fact that the two rules do not
share fusion symbols such that they matches are hyperedge disjoint and that the
context conditions of reduce(x) only requires a commonly shared source for the
two hyperedges. ��
Proof (of Theorem 1). Let S = {(u1, v1), (u2, v2), . . . , (uk, vk)}. Let i1 · · · in be a
solution to S, i.e., ui1 · · · uin = vi1 · · · vin . Let m1, . . . ,mk be the number of occur-
rences of (uj , vj) in the sequence except the first. Then there exists a derivation
ZS =⇒

m
init(ui1 , vi1) + cont(ui2 , vi2) + . . .+ cont(uin , vin) +Aµ

n−1=⇒
fr(A)

init(ui1ui2 · · ·uin , vi1vi2 · · · vin) +Aµ =⇒
fr(A)

x1 . . . xw

x1 . . . xw

µ

=⇒
reduce(x1)

. . . =⇒
reduce(xw)

[w] + µ

where (1) m(c) = 1 for c ∈ {init(ui1 , vi1), Aμ},m(cont(uj , vj)) = mj for
1 ≤ j ≤ k and m(c) = 0 otherwise; (2) the order in which the connected
components are fused by applications of fr(A) does not matter; (3) x1 · · · xw =
ui1 · · · uin = vi1 · · · vin with xj ∈ Σ because i1 . . . in is a solution to S; and (4) the
two connected complementary strings graphs can be erased by successive appli-
cations of reduce(x) for suitable x due to Lemma 1. Hence, • ∈ L(CSFG(S)).

Context-Sensitive Fusion Grammars Are Universal 281

Now let • ∈ L(CSFG(S)). Then there exists a derivation ZS
∗= X + µ

for some hypergraph X. Aμ is the only connected component with marker in the
start hypergraph, therefore, µ must stem from Aμ. The only possibility to get
rid of the A-hyperedge without attaching a new one is the application of fr(A)
to Aμ and some init(x1x2 · · · xw1 , y1y2 · · · yw2) with xj , yj ∈ Σ where the latter
connected component is obtained from respective multiplications and the suc-
cessive fusion wrt fr(A) to some init(ui1 , vi1)+cont(ui2 , vi2)+. . .+cont(uin , vin)
for some n and possibly applications of reduce(x) for suitable x. Due to Lemma 2
all the applications of reduce(x) can be shifted behind the applications of fr(A)
and due to [2, Corollary 1] all the multiplications can be done as initial deriva-
tion step. To obtain µ the two connected complementary strings graphs
must be erased by successive applications of reduce(x1), . . . , reduce(xw1). If
x1 · · · xw1 is a proper prefix of y1 · · · yw2 , i.e., y1 · · · yw2 = x1 · · · xw1yw1+1 · · · yw2 ,
then one gets µ yw1+1 . . . yw2 , and analogously if y1 · · · yw2 is
a proper prefix of x1 · · · xw1 , then one gets µxw2+1 . . . xw1 .
This implies w1 = w2 and yi = xi for 1 ≤ i ≤ w1 must hold. Because
x1 · · · xw1 = ui1 · · · uin = vi1 · · · vin and n > 0, i1 · · · in is a solution to S.

The second statement is a direct consequence of the first. Other con-
nected components do not contribute to the language due to the lack of
μ-hyperedges. ��

5 Transformation of Chomsky Grammars into
Context-Sensitive Fusion Grammars

In this section, we prove that context-sensitive fusion grammars can generate all
recursively enumerable string languages. For every Chomsky grammar one can
construct a corresponding context-sensitive fusion grammar such that the gen-
erated languages of the corresponding grammars coincide up to representation.

Construction 2. Let G = (N,T, P, S) be a Chomsky grammar. Let T ′ = {t′ |
t ∈ T}. Then CSFG(G) = (Z, {Y0, Y1,X0,X1,X2,X3, c} + N + T ′, {μ}, T,R) is
the corresponding context-sensitive fusion grammar where

Z = dsg(X0, Y0)µ + Z= + ZP , dsg(X0, Y0)µ = µX0Y0 ,
Z= = sg(Y1ccc)Y0

+ sg(cScc)Y1
+

∑

x∈N∪T∪{c}
sg(xY1x)Y1

,

ZP =
1∑

i=0

∑

x∈T

sg(x′Xix)Xi
+

∑

u::=v∈P,v∈T∗
u=u1···un
v=v1···vm

sg(u1 · · ·unX1vm · · · v1)X0

+ sg(cX2ccc)X1
+

3∑

i=2

∑

x∈N∪T

sg(xXix)Xi
+

∑

u::=v∈P
u=u1···un
v=v1···vm

sg(u1 · · ·unX3vm · · · v1)X2

+ sg(cX3c)X2
+ sg(cc)X3

and
R = fr(A) A Y0, Y1, X0, X1, X2, X3 reduce(x) x N T ′ c .

282 A. Lye

Y0

Y1 c c c

(a) sg(Y1ccc)Y0

Y1

x Y1 x

(b) sg(xY1x)Y1

Y1

c S c c

(c) sg(cScc)Y1

Xi

x′ Xi

x

(d) sg(x′Xix)Xi

X0

u1 . . . un X1 vm
. . .

v1

(e) sg(u1 · · ·unX1vm · · · v1)X0

X2

u1 . . . un X3 vm . . . v1

(f) sg(u1 · · ·unX3vm · · · v1)X2

X3

c X2 c

(g) sg(cX3c)X2

Fig. 1. Schematic drawings of some connected components of the start hypergraph of
CSFG(G)

Schematic drawings of some connected components of the start hypergraph
are depicted in Fig. 1.

Theorem 2. L(CSFG(G)) = {sg(w) | w ∈ L(G)}.
The proof is based on the following fact. We recall some details of the proof

because we will refer to them in the proof of Theorem2.

Fact 1. Any recursively enumerable string language L0 is left quotient of two
linear languages LP , L=, i.e., L0 = LP \L= = {x | y ∈ LP ∧ yx ∈ L=} (cf. [7,
Theorem 3.13.]).

Remark 3. L0 = rev(rev(L0)) = rev(L(G)) = L=\LP , where rev(L0) = {r(w) |
w ∈ L0} where r(w) = xn · · · x1 for w = x1 · · · xn and G = (N,T, P, S) is a
Chomsky grammar with L(G) = rev(L0).

L= = {zmc . . . cz1cSccr(z1)c . . . cr(zm)ccc | m ≥ 1, zi ∈ (N ∪ T)∗, i = 1, . . . , m}
LP = {xnunync . . . cx1u1y1ccr(y1)r(v1)r(x1)c . . .

. . . cr(yn−1)r(vn−1)r(xn−1)cccr(yn)r(vn)r(xn) |
n ≥ 2, xi, yi ∈ (N ∪ T)∗, ui:: = vi ∈ P, i = 1, . . . , n − 1, xnvnyn ∈ T ∗}

where c /∈ N ∪ T . The basic idea is that for each w ∈ L(G) exists a deriva-
tion S = w1 → w2 → · · · →wn−1 →wn →wn+1 = w with wi = xiuiyi and

Context-Sensitive Fusion Grammars Are Universal 283

wi+1 = xiviyi where ui:: = vi ∈ P for i = 1, . . . , n , i.e., S = x1u1y1 → x1v1y1 =
x2u2y2 → · · · →xn−1vn−1yn−1 = xnunyn → xnvnyn = w. L= captures the rela-
tion xiviyi = xi+1ui+1yi+1 and LP captures the relation xiuiyi → xiviyi.1

L= and LP are linear. The following grammars generate them.

G= = ({Y0, Y1}, N ∪ T ∪ {c}, P=, Y0) with
P= = {Y0:: = Y1ccc, Y1:: = cScc} ∪ {Y1:: = xY1x | x ∈ N ∪ T ∪ {c}}
GP = ({X0,X1.X2,X3}, N ∪ T ∪ {c}, PP ,X0) with
PP = {X0:: = xX0x | x ∈ T} ∪ {X0:: = uX1r(v) | u:: = v ∈ P, v ∈ T ∗}

∪ {X1:: = xX1x | x ∈ T} ∪ {X1:: = cX2ccc}
∪ {X2:: = xX2x | x ∈ N ∪ T} ∪ {X2:: = uX3r(v) | u:: = v ∈ P}
∪ {X3:: = xX3x | x ∈ N ∪ T} ∪ {X3:: = cX2c,X3:: = cc}.

Example 2. Let G = ({A}, {a.b}, {(A:: = aAb), (A:: = ab)}, A). Then

G= = ({Y0, Y1}, {A, a, b, c}, P=, Y0)
P= = {Y0:: = Y1ccc, Y1:: = cAcc | aY1a | bY1b | AY1A | cY1c}
GP = ({X0,X1.X2,X3}, {A, a, b, c}, PP ,X0)
PP = {X0:: = aX0a | bX0b | AX1ba}

∪ {X1:: = aX1a | bX0b | cX2ccc}
∪ {X2:: = aX2a | bX2b | AX2A | AX3bAa | AX3ba}
∪ {X3:: = aX3a | bX3b | AX3A | cX2c | cc}

Two derivations may be X0 =⇒ aX0a=⇒ aAX1baa=⇒ aAbX1bbaa=⇒
aAbcX2cccbbaa=⇒ aAbcAX3bAacccbbaa=⇒ aAbcAccbAacccbbaa = d and
Y0 =⇒Y1ccc=⇒ aY1accc=⇒ aAY1Aaccc=⇒ aAbY1bAaccc=⇒ aAbcAccbAaccc =
z. Removing the prefix z from d yields bbaa.

Every context-free string grammars can be transformed into fusion grammars
generating the same language up to representation of strings as graphs as the
following construction shows.

Construction 3. Let G = (N,T, P, S) be a context-free string grammar.
Then FG(G) = (sgμ(S) +

∑

r∈P

hgr(r), N, {μ}, T) with sgμ(S) =µ S ,

hgr(r) = sg(u)A for r = (A:: = u) ∈ P and μ /∈ N ∪ T is the corresponding
fusion grammar.
1 1. W.l.o.g. assume (S:: = S) ∈ P such that each derivation is of length ≥ 2.
2. For technical reasons each word contains the derivation twice, the middle is sepa-
rated by cc, wn+1 is separated by ccc, the first is in reverse order and the second is re-
versed. This yields wncwn−1c . . . cw2cw1ccr(w2)cr(w3)c . . . cr(wn)cccr(wn+1). String
in LP are of the form d = (wncwn−1c . . . cw2cw1ccr(w2)c . . . cr(wn)cccr(wn+1)),
where n ≥ 2, wi →wi+1 in G and wn+1 ∈ T ∗; and strings in L= are of the form
z = (zmc . . . cz2cSccr(z2)c . . . cr(zm)ccc), where zi ∈ (N∪T)∗. Therefore, d = zz′ for
some z′ if and only if n = m+1, S = w1, zi = wi for i = 1, . . . ,m and z′ = r(wn+1).
Consequently, r(w) = r(wn+1) = r(yn)r(vn)r(xn) ∈ L=\LP .

284 A. Lye

Example 3. Let G = ({A}, {a.b}, {r1, r2}, A) with r1 = (A:: = aAb) and
r2 = (A:: = ab). Then the rules are represented by hgr(r1) = sg(aAb)A and
(Z, {A}, {μ}, {a, b}) with Z = sgμ(A)+ sg(aAb)A + sg(ab)A is the corresponding
fusion grammar.

Lemma 3. 1. L(FG(G)) = L(G).
2. A derivation w1 →

r1
. . . →

rn−1
wn in G exists if and only if a derivation Z =⇒

m
m ·

Z = sgμ(w1) + hgr(r1) + . . . + hgr(rn−1)=⇒ sgμ(w2) + hgr(r2) + . . . +
hgr(rn−1)=⇒ . . . =⇒ sgμ(wn) in FG(G) exists.

Proof. 1. Each context-free string grammar G can be transformed into a hyper-
edge replacement grammar with connected right hand sides. Hence, the trans-
formation of hyperedge replacement grammars into fusion grammars (cf. [2])
can be applied yielding FG(G).

2. Proof by induction on the length of the derivation. ��
Remark 4. The connected components in the start hypergraphs of the context-
sensitive fusion grammar in Construction 2 are hypergraph representation of the
rules of the two linear string grammars (cf. Construction 3) slightly modified.
The connected components in Z= are constructed for the linear rules in G=

such that each symbol in N ∪ T ∪ {c} is complemented and for each T -symbol
the primed copy is used instead. The connected components for the linear rules
in GP containing X0 and X1 are constructed such that they contain fusion
symbols left and terminal symbols right of the Xi-labeled hyperedge. Again for
each terminal symbol the primed copy is used instead. The other connected
components use the standard construction and are therefore only fusion symbol
labeled (replacing also terminal symbols by their primed copy).

Proof (of Theorem 2). Let w ∈ L(G). Then w ∈ L=\LP by Fact 1 and there are
derivations in G= and GP with Y0

∗→u and X0
∗→ uw with u = u1 · · · un and w =

w1 · · · wm. For each of these derivations exists byLemma 3 a derivation in the corre-
sponding fusion grammar (FG(G=),FG(GP), resp. where G= and GP are defined
in Remark 3). Because the nonterminal alphabets of G= and GP are disjoint
and the connected component dsg(X0, Y0)μ contains two hyperedges one labeled
with each start symbol of the two linear string grammars there is a derivation

Z
∗=⇒

u1 . . . un

X0 µ
+ZP

∗=⇒
. . .

u1 . . . un

u1 . . . un
w1 wm

µ
=H

applying context-free fusion rules2. Then the two complementary strings graphs
canbe erasedby successive applications of reduce(x) for suitablexdue toLemma 1,

i.e., H =⇒
reduce(u1)

. . . =⇒
reduce(un)

. . .
w1 wm

µ +[n].. Consequently, sg(w1 · · · wm) ∈
L(CSFG(G)).

2 Applying first fr(A) with A ∈ {Y0, Y1} and then A ∈ {X0, X1, X2, X3} is arbitrary.
The rules may be applied in any order.

Context-Sensitive Fusion Grammars Are Universal 285

Now, let X ∈ L(CSFG(G)). Then there is a derivation Z
∗=⇒H with

X = remM (Y), Y ∈ C(H) ∩ (HT∪M \ HT)}. Because only dsg(X0, Y0)μ con-
tains a μ-hyperedge this connected component is substantial for some derived
connected component contributing to the generated language. W.l.o.g. one can
assume that dsg(X0, Y0)μ is never multiplied due to the following reasoning. Let
C be a connected component derivable from Z. Let #μ : HΣ → N be a mapping
of hypergraphs over Σ to the number of μ-labeled hyperedges in the respective
hypergraph. Then #μ(C) ≤ 1, i.e., no two or more copies of dsg(X0, Y0)μ con-
tribute to C as the following reasoning indicates. For each C ∈ C(Z) #μ(C) ≤ 1
by construction. For each C /∈ C(Z) assume Z

∗=⇒C1+C2+[k] =⇒
r

C+[l] for some

k, l ∈ N where C1 and C2 are two connected components and #μ(Ci) ≥ 1 for
i = 1, 2. #μ(Ci) ≥ 1 implies Ci
= [1]. Hence, Z

∗=⇒Ci, i = 1, 2. Further, r must
be a context-free fusion rule because the positive context conditions of reduce(x)
restrict that both hyperedges must be attached to a common source vertex which
is not possible if C1 and C2 are two connected components. Let fr(A) be the
applied context-free fusion rule, A ∈ {Y0, Y1,X1,X2,X3,X4}. W.l.o.g. let A be
the label of the hyperedge in C1 and let A be the label of the hyperedge in C2.
Furthermore, it is sufficient to analyze the case #μ(Ci) = 1 for i = 1, 2. However,
#μ(Ci) = 1 implies that dsg(X0, Y0)μ contributes to Ci but because the linear
structure of the rules in P= and PP carries over to the connected components
C2 cannot contain both a μ- and a A-labeled hyperedge. Hence, the assumption
must be false.

The fusion rules wrt Y0, Y1,X0,X1,X2,X3 are context free and thus one
connected component or two connected components with two complementarily
labeled hyperedges from this subset can be fused arbitrarily. This may produce
connected components without markers where all the hyperedges labeled with
Y0, Y0, Y1, . . . , X3,X3 are fused. E.g. sg(xY1x)Y1

may be multiplied several times
and all the complementary Y1- and Y1-hyperedges can be fused yielding two circles.
However this connected component is not fusible to some other connected compo-
nent because now it is only labeled with fusion symbols {N ∪ T ∪ {c}} but for
these symbols the fusion is restricted to take only place if the two complementary
hyperedges are attached to the same vertex. A similar argument can be applied to
other cases wrt connected components with Xi-hyperedges.

The direct derivations steps can be interchanged3 in such a way that one gets
a derivation of the following form:
Z =⇒

m
dsg(X0, Y0)µ +m′ · Z= +m′′ · ZP for some multiplicities m′,m′′

∗=⇒
fr(A) . . .

u1 . . . un

u1 . . . un
w1 wm

µ
with A ∈ {Y0, Y1, X0, X1, X2, X3}

=⇒
reduce(u1)

. . . =⇒
reduce(un)

. . .
w1 wm

µ + [n] = H.

3 For the case of two context-free fusion rules see [2]; for the case involving reduce
see Lemma 2. All multiplications can be done initially (using the same argument as
in [2]).

286 A. Lye

Hence, Y = sg(w1 · · · wm)μ. The linear structure of the connected components
gives us w1 · · · wm ∈ L(G). ��

6 Conclusion

In this paper, we have continued the research on context-dependent fusion gram-
mars. We have introduced context-sensitive fusion grammars and have showed
that the Post correspondence problem can be formulated very intuitively by
such a grammar. Afterwards, we have showed that every Chomsky grammar
can be simulated by a corresponding context-sensitive fusion grammar. Hence,
they can generate all recursively enumerable string languages (up to represen-
tation of strings as graphs). This improves the previous result presented in [5]
showing that context-dependent fusion grammars (with positive and negative
context-conditions) are another universal computing model. However, further
research is needed including the following open question. Is it true, that fusion
grammars without context-conditions are not universal? Are also only negative
context conditions powerful enough to simulate Chomsky grammars? If so is also
a single negative context-condition sufficient? One may also investigate fusion
grammar with other regulations like priorities or regular expressions.

Acknowledgment. We are grateful to Hans-Jörg Kreowski and Sabine Kuske for
valuable discussions. We also thank the reviewers for their valuable comments.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: a novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

3. Kreowski, H.-J., Kuske, S., Lye, A.: Relating DNA computing and splitting/fusion
grammars. In: Guerra, E., Orejas, F. (eds.) ICGT 2019. LNCS, vol. 11629, pp.
159–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23611-3 10

4. Kreowski, H.-J., Kuske, S., Lye, A.: Transformation of petri nets into context-
dependent fusion grammars. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.)
LATA 2019. LNCS, vol. 11417, pp. 246–258. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-13435-8 18

5. Lye, A.: Transformation of turing machines into context-dependent fusion gram-
mars. In: Post-Proceedings of 10th International Workshop on Graph Computa-
tion Models, (GCM 2019). Electronic Proceedings in Theoretical Computer Science
(EPTCS) (2019). https://doi.org/10.4204/EPTCS

6. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52,
264–269 (1946). https://doi.org/10.1090/s0002-9904-1946-08555-9

7. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing – New Computing Para-
digms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03563-4

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-030-23611-3_10
https://doi.org/10.1007/978-3-030-13435-8_18
https://doi.org/10.1007/978-3-030-13435-8_18
https://doi.org/10.4204/EPTCS
https://doi.org/10.1090/s0002-9904-1946-08555-9
https://doi.org/10.1007/978-3-662-03563-4

Cyclic Shift on Multi-component
Grammars

Alexander Okhotin1(B) and Alexey Sorokin2,3

1 St. Petersburg State University, Saint Petersburg, Russia
alexander.okhotin@spbu.ru

2 Moscow State University, Moscow, Russia
alexey.sorokin@list.ru

3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Abstract. Multi-component grammars, known in the literature as
“multiple context-free grammars” and “linear context-free rewriting sys-
tems”, describe the structure of a string by defining the properties of
k-tuples of its substrings, in the same way as ordinary formal grammars
(Chomsky’s “context-free”) define properties of substrings. It is shown
that, for every fixed k, the family of languages described by k-component
grammars is closed under the cyclic shift operation. On the other hand,
the subfamily defined by well-nested k-component grammars is not closed
under the cyclic shift, yet their cyclic shifts are always defined by well-
nested (k + 1)-component grammars.

1 Introduction

The cyclic shift operation on formal languages, defined as shift(L) = {vu |uv ∈
L} for a language L, is notable for several interesting properties. The closure of
the class of regular languages under this operation is likely folklore, and proving
it is a standard exercise in automata theory [2, Exercise 3.4(c)]. An interesting
detail is that the cyclic shift incurs a huge blow-up in the number of states in a
DFA, which is of the order 2n2+n log n−O(n). [3,9] An analogous (quite an unob-
vious one) result for context-free grammars was first discovered by Maslov [10]
and by Oshiba [12], and a direct construction of a grammar was later presented
in the textbook by Hopcroft and Ullman [2, Exercise 6.4(c)]. In their proof, a
grammar describing a language L is transformed to a grammar for the cyclic
shift of L, and the transformation turns the grammar inside out, so that each
parse tree in the new grammar simulates a parse tree in the original grammar,
while reversing the order of nodes on one of its paths.

In contrast to this remarkable closure result, all noteworthy subfamilies of
the ordinary grammars—that is, unambiguous, LR, LL, linear, input-driven,
etc.—are not closed under the cyclic shift. A non-closure result for the lin-
ear conjunctive languages [11] was established by Terrier [17]. For conjunctive
grammars [11], whether they are closed under the cyclic shift, remains an open

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 287–299, 2020.
https://doi.org/10.1007/978-3-030-40608-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_20&domain=pdf
http://orcid.org/0000-0002-1615-2725
http://orcid.org/0000-0003-3877-4223
https://doi.org/10.1007/978-3-030-40608-0_20

288 A. Okhotin and A. Sorokin

problem. A summary of these results can be found in a fairly recent survey [11,
Sect. 8.2].

This paper investigates the cyclic shift operation on one of the most well-
known families of formal grammars, the multi-component grammars. These
grammars describe the syntax of a string by defining the properties of k-tuples of
its substrings, in the same way as ordinary formal grammars and their basic vari-
ants, such as conjunctive grammars, define properties of individual substrings. In
their modern form, multi-component grammars were independently introduced
by Seki, Matsumura, Fujii and Kasami [14] (as “multiple context-free gram-
mars”, MCFG), and by Vijay-Shankar, Weir and Joshi [18] (as “linear context-
free rewriting systems”, LCFRS). These grammars are subject to much ongoing
research [1,7,8,19]. Also much attention is given to their special case: the well-
nested multi-component grammars, in which all components of any intermediate
k-tuple are listed in the order, in which they occur in the final string, and the
grammar rules combine these k-tuples. This family is believed to correspond to
the natural language syntax better than other grammar formalisms.

The first result of this paper is the closure of the language family defined by
k-component grammars under the cyclic shift operation. The proof, presented in
Sect. 3, proceeds by transforming an arbitrary k-component grammar to another
k-component grammar describing the cyclic shift of the original language.

However, this construction does not preserve well-nestedness. A new con-
struction adapted for well-nested grammars is presented in Sect. 4, and it incurs
the increase of the number of components by one. In the final Sect. 5, it is shown
that, whereas the language {am

1 bn
1 cn

1dm
1 . . . am

k bn
kcn

kdm
k | m,n � 0} is defined by a

well-nested k-component grammar, its cyclic shift is defined by no grammar from
this class, and accordingly requires k + 1 components. This points out a pecu-
liar difference between the general and the well-nested cases of multi-component
grammars.

2 Multi-component Grammars

Definition 1. (Vijay-Shankar et al. [18]; Seki et al. [14]). A multi-
component grammar is a quintuple G = (Σ,N,dim, R, S), where

– Σ is the alphabet of the language being described;
– N is the set of syntactic categories defined in the grammar, usually called

“nonterminal symbols”;
– dim: N → N is a function that defines the number of components in each

nonterminal symbol, so that if dim A = k, then A describes k-tuples of sub-
strings;

– R is a set of grammar rules, each of the form

A(α1, . . . , αdimA) ← B1(x1,1, . . . , x1,dimB1), . . . , B�(x�,1, . . . , x�,dimB�
), (*)

where � � 0, the variables xi,j are pairwise distinct, α1, . . . , αdimA are strings
over symbols from Σ and variables xi,j, and each variable xi,j occurs in
α1 . . . αdimA exactly once;

Cyclic Shift on Multi-component Grammars 289

– a nonterminal symbol S ∈ N of dimension 1 is the “initial symbol”, that is,
the category of all well-formed sentences defined by the grammar.

A grammar is a logical system for proving elementary propositions of the form
A(w1, . . . , wk), with k = dimA and w1, . . . , wk ∈ Σ∗, meaning that the given
k-tuple of strings has the property A. A proof proceeds using the rules in R, with
each rule (*) treated as a schema for derivation rules, for any strings substituted
for all variables xi,j.

B1(x1,1, . . . , x1,dimB1), . . . , B�(x�,1, . . . , x�,dimB�
) � A(α1, . . . , αdimA)

The language generated by the grammar, denoted by L(G), is the set of all such
strings w that the proposition S(w) can be derived in one or more such steps.

Whenever a string w is generated by G, the derivation of a proposition
S(w) forms a parse tree. Each node in the tree is labelled with a proposition
A(w1, . . . , wk), where k = dimA and w1, . . . , wk are substrings of w. Every
node has a corresponding rule (*), by which the proposition is derived, and
the direct successors of this node are labelled with B1(x1,1, . . . , x1,dimB1), . . . ,
B�(x�,1, . . . , x�,dimB�

), as in the definition of a derivation step.
The dimension of a grammar, dim G, is the largest dimension of a nonter-

minal symbol. A multi-component grammar of dimension k shall be called a
k-component grammar.

A special case of these grammars are well-nested multi-component gram-
mars, in which, whenever multiple constituents are joined in a single rule,
their components cannot be intertwined, unless one’s components are completely
embedded within another’s components. Thus, patterns such as A(x1y1, x2y2) ←
B(x1, x2)C(y1, y2) are prohibited.

Definition 2. A multi-component grammar is called well-nested, if every
rule (*), satisfies the following conditions.

1. (non-permuting condition) For every i, the variables xi,1, . . . , xi,dimBi
occur

inside α1 . . . αdimA in this particular order.
2. For all i, i′ the concatenation α1 . . . αdimA satisfies one of the following pat-

terns:
– . . . xi,di

. . . xi′,1
– . . . xi′,di′ . . . xi,1
– . . . xi,r . . . xi′,1 . . . xi′,di′ . . . xi,r+1

Example 1. A language L = {ambncmdn |m,n ∈ N} is defined by a 2-component
grammar with the rules

S(x1y1x2y2) ← A(x1, x2), B(y1, y2),
A(ax1, cx2) ← A(x1, x2),
B(by1, dy2) ← B(y1, y2).

290 A. Okhotin and A. Sorokin

A well-nested 2-component grammar for the same language is

S(x1x2) ← A(x1, x2),
A(x1, bx2d) ← A(x1, x2),

A(x1, x2) ← B(x1, x2),
B(ax1, cx2) ← B(x1, x2).

A well-nested multi-component grammar can be transformed to the following
form resembling the Chomsky normal form.

Proposition 1. ([15], Thm. 1). Each well-nested k-component grammar is
equivalent to a well-nested k-component grammar, in which all rules are of the
following form.

A(x1, . . . , xm−1, xmy1, y2, . . . , yn) ← B(x1, . . . , xm), C(y1, . . . , yn)
A(x1, . . . , xi, xiy1, y2, . . . ynxi+1, xi+2, . . . , xm) ← B(x1, . . . , xm), C(y1, . . . , yn)

A(a) ←
S(ε) ←

Rules of the first kind generalize the concatenation. The operation implemented
in the rules of the second kind, defined for i ∈ {1, . . . , m − 1}, is known as
displacement or discontinuous product.

A multi-component grammar of dimension 1 is an ordinary grammar, or
“context-free” in Chomsky’s terminology. A well-nested multi-component gram-
mar of dimension 2 is known in the literature as a “head grammar” [13]; these
grammars are equivalent in power to tree-adjoining grammars [4].

3 Cyclic Shift on k-component Grammars

Let G be a non-permuting k-component grammar, the goal is to construct a new
k-component grammar G′ that describes the language shift(L(G)).

Whenever G generates a string w, G′ should generate vu for every parti-
tion w = uv. Consider a parse tree of uv according to G, that is, a proof tree
of the proposition S(uv). Each node in the tree is labelled with a proposition
A(w1, . . . , wk), where k = dim A and w1, . . . , wk are substrings of w. We call a
node split, if one of its components ws spans over the boundary between u and
v, that is, contains both the last symbol of u and the first symbol of v.

In the proposed construction of a grammar for the cyclic shift, each split node
A(w1, . . . , wk) is represented by another node of dimension k, which, however,
specifies an entirely different k-tuple of strings. Consider that, whenever the
original split node A(w1, . . . , wk) is used in a parse tree of a string uv, this
string contains w1, . . . , wk as substrings, in any order. The corresponding node
in the parse tree of vu according to the grammar for the cyclic shift shall contain
all symbols of uv except the symbols in w1, . . . , wk. For the moment, assume
that w1, . . . , wk occur in uv in the order listed, and that some ws spans over

Cyclic Shift on Multi-component Grammars 291

the boundary between u and v. Then, uv = y0w1y1w2y2 . . . yk−1wkyk, and the
symbols not in w1, . . . , wk are arranged into k+1 substrings y0, . . . , yk. However,
note that in the string vu generated by the new grammar, yk and y0 come
concatenated as a single substring yky0, and there is no need to represent them
as separate components. Therefore, the new grammar can represent this split
node A(w1, . . . , wk) by another node ˜A(yky0, y1, . . . , yk−1) of the same dimension
k, where ˜A is a new nonterminal symbol representing the whole string with a gap
for a k-tuple generated by A.

To see how this transformation can be done, the structure of split nodes in
the original parse tree ought to be examined, As long as u �= ε and v �= ε, the root
S(uv) is split. Each split node has at most one split node among its immediate
successors, because the last symbol of u and the first symbol of v cannot be in
two successors at once. If a node is not split, then none of its successors are split.
Thus, split nodes form a path in a parse tree, beginning in the root and ending
somewhere inside the tree. This path shall be called the main path, and the new
grammar G′ retraces this path using the nonterminal symbols of the form ˜A.

In the original grammar, whenever a rule A(. . .) ← B(. . .), C(. . .) is used in
one of the nodes on the main path, where B is the next node along the path,
shorter substrings described by B are concatenated to something taken from
C to form longer substrings described by A. In the new grammar, a nontermi-
nal symbol ˜A generates all symbols of the string except those generated by A,
whereas ˜B generates all symbols except the symbols generated by B. Therefore,
˜B can be defined by a rule that partially fills the gap for A in ˜A, replacing it
with a smaller gap for B in ˜B. This is achieved by a rule ˜B(. . .) ← ˜A(. . .), C(. . .).
The node ˜B is accordingly higher up than ˜A in the parse tree of vu, and the
main path of the original parse tree is retraced in the reverse direction. Each
rule along the path is inverted, and the parse tree is effectively turned inside out.

Theorem 1. For every k-component grammar G with n nonterminal symbols,
there exists another k-component grammar with at most (k! + 1)n nonterminal
symbols that describes the language shift(L(G)).

Proof. Let G = (Σ,N,dim, R, S), The new grammar is defined as G′ = (Σ,N ∪
˜N ∪ {S′},dim, R ∪ R′, S′), where every new nonterminal symbol in ˜N is of the
form ˜Ap1,...,pk

, where A ∈ N is a symbol of dimension k, and (p1, . . . , pk) is a
permutation of (1, . . . , k); the dimension of this new symbol is also k.

Each symbol from N is defined in G′ by the same rules as in G, and hence
LG′(A) = LG(A) for all A ∈ N . For each new symbol ˜Ap1,...,pk

in ˜N , with k =
dim A, the intention is that it generates all such k-tuples (w0, . . . , wk−1) that, for
some partition w0 = v0u0, a proposition S(u0xp1w1xp2w2 . . . wk−1xpk

v0) can be
derived using an assumption A(x1, . . . , xk). In other words, a k-tuple generated
by ˜Ap1,...,pk

is a string from L(G) with k gaps, which should be filled by a k-
tuple generated by A, Note that the components of ˜Ap1,...,pk

(w0, w1, . . . , wk−1)
occur in the final string generated by the grammar G exactly in the given order,
though w0 is split into a suffix and a prefix. On the other hand, the components

292 A. Okhotin and A. Sorokin

of A(x1, . . . , xk) may occur in the final string in L(G) in any order, and this
order is specified in the permutation p1, . . . , pk.

The grammar G′ has three kinds of rules for the new symbols. The first rule
creates an empty string with one gap for a string generated by S.

˜S1(ε) ← (1)

Indeed, using an assumption S(x), one can derive S(x) in zero steps.
For the second type of rules in G′, consider any rule in G, which defines a

symbol A of dimension k, and fix any nonterminal symbol B on its right-hand
side. Let y1, . . . , y� be the variables of B. Denote the remaining nonterminal
symbols referenced in this rule by C1, . . . , Cq.

A(α1, . . . , αk) ← B(y1, . . . , y�), C1(. . .), . . . , Cq(. . .)

For every i-th argument of A, consider all occurrences of variables y1, . . . , y� in
αi, and accordingly let αi = βi,0yri,1βi,1 . . . βi,mi−1yri,mi

βi,mi
, where mi � 0 is

the number of these occurrences, βi,j are strings over the alphabet Σ and over
the variables of C1, . . . , Cq, and ri,j ∈ {1, . . . , �}, for each i. Since each variable is
referenced exactly once, m1+. . .+mk = � and (r1,1, . . . , r1,m1 , . . . , r1,j , . . . , rk,mk

)
is a permutation of (1, . . . , �).

To see how to transform this rule, consider any proposition
˜Ap1,...,pk

(w0, w1, . . . , ww−1), where (p1, . . . , pk) is a permutation of (1, . . . , k).
This symbol represents a full string generated by G, with a gap for A. If A is
derived from B and C1, . . . Cq using the above rule for A, then the substrings
obtained from C1, . . . , Cq partially fill the gaps for A, leaving smaller gaps for B.
The resulting symbol ˜Bp′

1,...,p′
�

has � gaps for B, and the permutation (p′
1, . . . , p

′
�)

of (1, . . . , �) is defined by listing the numbers of the variables of B in the order
they occur as gaps: the sequence yrp1,1 , . . . , yrp1,mp1

, . . . , yrpk,1 , . . . , yrpk,mpk
is

the same as p′
1, . . . , p

′
�.

The corresponding transformed rule in the new grammar has to fill the gaps
in the right order. Let z0, z1, . . . , zw−1 be the variables of ˜Ap1,...,pk

. Then the
circular sequence z0αp1z1 . . . zk−1αpk

containing variables of ˜Ap1,...,pk
, B and

C1, . . . , Cj represents the entire string, and every occurrence of a variable of
B becomes a gap in the new rule. Accordingly, the sequence between any two
subsequent variables of B forms an argument of ˜Bp′

1,...,p′
�
. The first argument is

the one containing z0. The variables of B become gaps between the variables of
˜Bp′

1,...,p′
�
, and the resulting rule is defined as follows.

˜Bp′
1,...,p′

�
(βpk,mpk

z0βp1,0, βp1,1, . . . , βp1,mp1−1, βp1,mp1
z1βp2,0, βp2,1, . . . ,

βpk−1,mpk−1−1, βpk−1,mpk−1
zk−1βpk,0, βpk,1, . . . , βpk,mpk

−1) ←
← ˜Ap1,...,pk

(z0, . . . , zk−1), C1(. . .), . . . , Cq(. . .) (2)

Rules of the third and the last type are defined for the initial symbol of
the new grammar. They correspond to the bottom split node on the main path
of the parse tree in G, where the last symbol of u and the first symbol of v

Cyclic Shift on Multi-component Grammars 293

are finally assigned to different substrings. Denote the bottom split node by
A(x1, . . . , xk), and let u0xp1w1xp2w2 . . . wk−1xpk

v0 be the entire string gener-
ated by the original grammar. In the new grammar, the node A(x1, . . . , xk)
is represented by a proposition ˜Ap1,...,pk

(v0u0, w1, . . . , wk−1). Let xps
, with

s ∈ {1, . . . , k}, be the split component of A(x1, . . . , xk). The plan is to fill
the gaps in ˜Ap1,...,pk

(v0u0, w1, . . . , wk−1) with the symbols in the subtree of
A(x1, . . . , xk). However, it is not possible to do this directly in a rule of the
form S′(. . .) ← ˜Ap1,...,pk

(. . .), A(x1, . . . , xk), because the component xps
is split.

Consider the rule used to derive A(x1, . . . , xk) in the new grammar, and let
C1, . . . , C� be all nonterminal symbols on its right-hand side.

A(α1, . . . , αk) ← C1(. . .), . . . , Cq(. . .)

The split component αps
generates a substring xps

= x̂1x̂2, where the first part
x̂1 is a suffix of u and the second part x̂2 is a prefix of v. Let αps

= ηθ be a
partition of αps

into the symbols generating x̂1 and the symbols generating x̂2.
Then the new grammar has the following rule, where the components of A are
inserted into the gaps in ˜Ap1,...,pk

, and the resulting string is cyclically shifted
to begin in the middle of the component αps

.

S′(θzsαps+1zs+1 . . . zk−1αpk
z0αp1z1 . . . zs−2αps−1zs−1η) ←

← ˜Ap1,...,pk
(z0, . . . , zk−1), C1(. . .), . . . , Cq(. . .) (3)

Overall, for every two strings u and v, the string uv is in L(G) if and only if
vu belongs to L(G′).

It can be easily observed that our construction does not preserve well-
nestedness. Consider the well-nested rule A(x1, ax2b) ← A(x1, x2), by our con-
struction it produces the rule S′(ax2by2x1y1) ← A(x1, x2), ˜A(12)(y1, y2), which
is not well-nested.

4 Cyclic Shift on Well-Nested k-component Grammars

The construction for the cyclic shift in the case of well-nested grammars is gen-
erally easier, since it does not involve turning parse trees inside out. All paths in
the transformed trees continue in the same direction, at the expense of using one
extra component. On the other hand, special care has to be taken to preserve
the order of components and their well-nestedness.

Theorem 2. If a language is defined by a well-nested k-component grammar,
then its cyclic shift can be defined by a well-nested (k + 1)-component grammar.

Proof. Assume that all rules in the original grammar G are as in Proposition 1. If
G defines a string w = uv, the new grammar G′ should generate vu. In the parse
tree of uv according to G, a node A(w1, . . . , wk) is split, if one of its components
ws spans over the boundary between u and v. Let ws = w′

sw
′′
s , where u ends with

294 A. Okhotin and A. Sorokin

w′
s, and v begins with w′′

s . Then, the new grammar shall have a new nonterminal
symbol ̂As, which defines a (k+1)-tuple ̂As(w′′

s , ws+1, . . . , wk, w1, . . . , ws−1, w
′
s).

For a non-split node, let w1, . . . , ws be in u and let ws+1, . . . wk be in v. Then
the new grammar has a new nonterminal symbol As with defines a shifted k-
tuple As(ws+1, . . . , wk, w1, . . . , ws). In particular, the nonterminal ̂S1, where S is
the initial symbol of G, generates the language LG′(̂S1) = {(v, u) |uv ∈ L, u, v �=
ε}. Adding a new initial nonterminal S′ and the rules S′(xy) ← ̂S1(x, y) and
S′(w) ← S1(w) then yields the grammar for the language shift(L(G)). What
remains is to equip the newly introduced nonterminals with the rules that match
their definitions.

For each concatenation rule A(x1, . . . , xm−1, xmy1, y2, . . . , yn) ← B(x1, . . . ,
xm), C(y1, . . . , yn) in the original grammar, first, there are m + n − 1 non-split
shifts, which simply rotate the order of the components. They are using the
rules below corresponding to different shifts; note that in each case one of B,C
remains unshifted, and the other is shifted and wrapped around it.

Ai(xi+1, . . . , xm−1, xmy1, y2, . . . , yn, x1, . . . , xi) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i < m)

Am+i(yi+1, . . . , yn, x1, . . . , xm−1, xmy1, y2, . . . , yi) ←
B(x1, . . . , xm), Ci(yi+1, . . . , yn, y1, . . . , yi) (i � 1)

Secondly, the cyclic shift may split one of the components of this (m + n − 1)-
tuple. This is implemented in ̂Ai: then, one of B,C is unshifted, and the other
is split. There are the following cases.

̂Ai(x′′
i , xi+1, . . . , xm−1, xmy1, y2, . . . , yn, x1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i < m)

̂Am+i(y′′
i , yi+1, . . . , yn, x1, . . . , xm−1, xmy1, y2, . . . , yi−1, y

′
i) ←

B(x1, . . . , xm), ̂Ci(y′′
i , yi+1, . . . , yn, y1, . . . , yi−1, y

′
i) (1 � i � n)

Consider a displacement rule A(x1, . . . , xj−1, xjy1, . . . ynxj+1, . . . , xm) ←
B(x1, . . . , xm), C(y1, . . . , yn) in G, with j ∈ {1, . . . , m − 1}. Again, there are
non-split and split shifts. Non-split shifts fall into the following three cases.

Ai(xi+1, . . . , xj−1, xjy1, y2, . . . ynxj+1, xj+2, . . . , xm, x1, . . . , xi) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i < j)

Aj+i(yi+1, . . . , yn, xj+1, . . . , xm, x1, . . . , xi, y1, y2, . . . , yi) ←
B(x1, . . . , xm), Ci(yi+1, . . . , yn, y1, . . . , yi) (1 � i � n)

Am−1+i(xi+1, . . . , xm, x1, . . . , xjy1, y2, . . . ynxj+1, . . . , xi−1) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i > j)

Cyclic Shift on Multi-component Grammars 295

If one of the components is split, the corresponding rule for ̂Ai is one of the
following.

̂Ai(x′′
i , xi+1, . . . , xjy1, y2, . . . ynxj+1, . . . , xm, x1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i < j)

̂Am+i(y′′
i , yi+1, . . . , ynxj+1, . . . , xm, x1, . . . , xjy1, . . . , yn−1, y

′
i) ←

B(x1, . . . , xm), ̂Ci(y′′
i , yi+1, . . . , yn, y1, . . . , yi−1, y

′
i) (1 � i � n)

̂Ai(x′′
i , xi+1, . . . , xm, x1, . . . , xjy1, y2, . . . ynxj+1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i > j)

A correctness proof for the construction proceeds by induction on the size of
derivations in the respective grammars, formalizing the above explanations. �	

5 Number of Components in Well-Nested Grammars1

Theorem 2 shows how to represent the cyclic shift of a well-nested k-component
grammar by a well-nested (k+1)-component grammar. On the other hand, with-
out the well-nestedness restriction, a k-component grammar can be constructed
by Theorem 1. The growth in the number of components is caused by keeping a
split substring as two components. The question is, whether this weakness is an
artefact of the construction, or is determined by the fundamental properties of
well-nested grammars. In this section we prove, that for any k � 2, there exists
a well-nested k-component grammar, whose cyclic shift lies outside this class;
thus the result of the previous section cannot be strengthened.

As such a counterexample, we take a very simple language EmbBal(2, k),
containing all the strings of the form am

1 bn
1 cn

1dm
1 . . . am

k bn
kcn

kdm
k , with m,n � 0,

which is defined by a well-nested k-component grammar (see Example 2).
It is claimed that the cyclic shift of this language cannot be represented
by a well-nested k-component grammar. Since this language family is closed
under rational transductions, it suffices to demonstrate that the language
NonEmbBal(2, k) = {am

1 bm
1 cn

1dn
1 . . . am

k bm
k cn

kdn
k | m,n > 0} cannot be generated

by a well-nested k-component grammar, because this language is obtained from
CyclicShift(EmbBal(2, k)) by intersection with a regular language b+1 Σ∗a+

1 , and
with a circular letter renaming bi → ai, ci → bi, di → ci, ai → di−1, a1 → dk.

Example 2. The language EmbBal(2, k), containing all the strings of the form
am
1 bn

1 cn
1dm

1 . . . am
k bn

kcn
kdm

k , with m,n � 0, is defined by the following well-nested
k-component grammar.

S(x1 . . . xk) ← A(x1, . . . , xk)
A(a1x1d1, . . . , akxkdk) ← A(x1, . . . , xk)

A(x1, . . . , xk) ← B(x1, . . . , xk)
B(b1x1c1, . . . , bkxkck) ← B(x1, . . . , xk)

B(ε, . . . , ε) ←
1 Most of the proofs are omitted due to space restrictions.

296 A. Okhotin and A. Sorokin

The definitions below are taken from Kanazawa [5].

Definition 3. An r-pump D is a nonempty derivation of the form
D : A(x1, . . . , xr) � A(y1, . . . , yr).

Note that in case of a well-nested grammar in Chomsky normal form, x1 . . . xr

is a proper subsequence of y1 . . . yr. For each pump D, we define the sequence

of its pumping strings: strings(D) =
r
⋃

i=1

[wi,j |yi = wi,0xswi,1 . . . xs+twi,t]. For

example, the derivation A(x1, x2, x3) � A(ax1bcx2, a, bx2) produces the pumping
sequence [a, bc, ε, a, b, ε]. Informally, the pumping strings are maximal contiguous
strings that the pump subtree injects into the derived string. It is easy to prove
that the pumping sequence of an r-pump consists of exactly 2r strings.

Definition 4. An even r-pump is a nonempty derivation of the form
D : A(x1, . . . , xr) � A(u1x1v1, . . . , urxrvr).

Obviously, for an even pump D the pumping strings are strings(D) =
[u1, v1, . . . , un, vn].

We use the term “pump” not only for derivations, but also for derivation
trees. Given a derivation tree, we call a letter occurrence covered if it occurs in
the yield of some pump, and evenly covered if this pump is even.

In what follows we consider only grammars in the Chomsky normal form, as
in Proposition 1. The following lemma is a mathematical folklore for context-free
grammars, the proof for well-nested multicomponent grammars is the same.

Lemma 1. For every language L defined by a well-nested grammar, there exists
a number p, such that for every w ∈ L at most p − 1 letters are not covered.

In the case of ordinary grammars (well-nested 1-component grammars), this
lemma implies a weak version of the Ogden property [6,16] However, as shown
by Kanazawa and Salvati [8], that is not the case for well-nested grammars of
higher dimensions. Namely, the existence of an uneven pump does not imply the
k-pumping lemma. However, in our case we may get rid of uneven pumps.

Definition 5. A language is called bounded if it is a subset of the language
a+
1 . . . a+

m, for some symbols a1, . . . , am ∈ Σ. A language is strictly bounded if all
the symbols a1, . . . , am are distinct.

For a bounded language L ⊆ a+
1 . . . a+

m, its decoration is the language
Dec(L) = {ar1

1 $1ar2
2 $2 . . . arm

m |ar1
1 ar2

2 . . . arm
m ∈ L}. We call decorations of

bounded languages decorated bounded and decorations of strictly bounded lan-
guages decorated strictly bounded. Obviously, Dec(L) is rationally equivalent to
L. Therefore, in what follows we consider the decorated strictly bounded lan-
guage NonEmbBalD(2, k) = Dec(NonEmbBal(2, k)).

Lemma 2. Let G be a grammar in Chomsky normal form without useless non-
terminals for a decorated strictly bounded language. Let τL(w) = i if w[0] ∈
{ai, $i}, and τR(w) = i if w[−1] ∈ {ai, $i−1} (both functions are undefined for
the empty string). Let A �G (u1, . . . , ur) and A �G (v1, . . . , vr). Then, for every
j, it holds that

Cyclic Shift on Multi-component Grammars 297

1. if vj �= ε and uj �= ε, then τL(uj) = τL(vj) and τR(uj) = τR(vj);
2. if uj = ε, then vj = ak

i for some i and k.

Lemma 3. If there exists a well-nested k-component grammar for
NonEmbBalD(2, k) in Chomsky normal form without useless nonterminals, then
its derivations contain only even pumps.

The next result follows from the definition of well-nestedness by simple geo-
metrical considerations.

Lemma 4. Let �G A(u1, . . . , ur) �G S(w0u0w1 . . . urwr) and �G B(u′
1, . . . ,

u′
s) �G S(w′

0u
′
0w

′
1 . . . u′

sw
′
s) be two derivations corresponding to the same deriva-

tion tree of the string w = w0u0w1 . . . urwr = w′
0u

′
0w

′
1 . . . u′

sw
′
s. Then one of the

following is the case:

1. u0w1 . . . wr−1ur is a substring of u′
0w

′
1 . . . w′

s−1u
′
s.

2. u′
0w

′
1 . . . w′

s−1u
′
s is a substring of u0w1 . . . wr−1ur.

3. u0w1 . . . wr−1ur and u′
0w

′
1 . . . w′

s−1u
′
s are two disjunct substrings of w.

Informally speaking, the “continuous spans” of two constituents either are
embedded or do not intersect. Now we are ready to prove our main theorem.

Theorem 3. The language L = NonEmbBalD(2, k) is not defined by any well-
nested k-component grammar.

Proof. Assuming the contrary, let such a grammar exist. Then, by Lemma 1,
there exists a number p such that at most p − 1 letters in every string w ∈ L
are uncovered. For the string w = ap

1b
p
1c

p
1d

p
1 . . . ap

1b
p
1c

p
1d

p
1 ∈ L, at least one c1 in

this string is covered by some pump D1. By Lemma 3, this pump must be of the
form

A(cm1
1 dn1

1 , . . . , cmk

k dnk

k) � A(cm1+r
1 dn1+r

1 , . . . , cmk+r
k dnk+r

k) � S(w)

for some nonterminal A, and natural numbers mj , nj � 0 and r > 0. By analo-
gous arguments applied to the occurrences of a1, we obtain another derivation

A(am′
1

1 b
n′
1

1 , . . . , a
m′

k

k b
n′

k

k) � A(am′
1+r

1 b
n′
1+r

1 , . . . , a
m′

k+r
k b

n′
k+r

k) � S(w).

However, the continuous spans of these two derivations contradict Lemma 4.

Theorem 4. The family defined by well-nested k-component grammars is not
closed under the cyclic shift.

6 Conclusion

This paper has settled the closure under the cyclic shift for both general and
well-nested multi-component grammars, as well as pointed out an interesting

298 A. Okhotin and A. Sorokin

difference between these two grammar families. This contributes to the general
knowledge on multi-component grammars.

This result has an interesting consequence: since the identity language of
any group is closed under cyclic shift, and rational transformations preserve this
closure property, no group identity language can be a rational generator of well-
nested k-component grammars, for any k � 2. This is not the case for k = 1,
where the Chomsky-Schützenberger theorem states that any such language can
be obtained from the language D2, that includes the words equal to 1 in a
free group with two generators, by a composition of intersection with regular
language and a homomorphism.

References

1. Clark, A., Yoshinaka, R.: An algebraic approach to multiple context-free grammars.
In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 57–69. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43742-1 5

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Adison-Wesley, Reading (1979)

3. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO-Theoret.
Inform. Appl. 42(2), 335–360 (2008)

4. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst.
Sci. 10(1), 136–163 (1975)

5. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–
325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6 25

6. Kanazawa, M.: Ogden’s lemma, multiple context-free grammars, and the control
language hierarchy. Inf. Comput. (2019)

7. Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure
of the strong pumping lemma for multiple context-free languages. Theory Comput.
Syst. 55(1), 250–278 (2014)

8. Kanazawa, M., Salvati, S.: Mix is not a tree-adjoining language. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 666–674 (2012)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk 194(6), 1266–1268 (1970)

10. Maslov, A.N.: Cyclic shift operation for languages. Problemy Peredachi Informatsii
9(4), 81–87 (1973)

11. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the
context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013)

12. Oshiba, T.: Closure property of family of context-free languages under cyclic shift
operation. Electron. Commun. Jpn 55(4), 119–122 (1972)

13. Pollard, C.J.: Generalized phrase structure grammars, head grammars, and natural
language. Ph.D. dissertation, Stanford University (1984)

14. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoret. Comput. Sci. 88(2), 191–229 (1991)

15. Sorokin, A.: Normal forms for multiple context-free languages and displacement
Lambek grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol.
7734, pp. 319–334. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35722-0 23

https://doi.org/10.1007/978-3-662-43742-1_5
https://doi.org/10.1007/978-3-642-02737-6_25
https://doi.org/10.1007/978-3-642-35722-0_23
https://doi.org/10.1007/978-3-642-35722-0_23

Cyclic Shift on Multi-component Grammars 299

16. Sorokin, A.: Ogden property for linear displacement context-free grammars. In:
Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 376–391. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27683-0 26

17. Terrier, V.: Closure properties of cellular automata. Theoret. Comput. Sci. 352(1–
3), 97–107 (2006)

18. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th Annual
Meeting on Association for Computational Linguistics, pp. 104–111. Association
for Computational Linguistics (1987)

19. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization
of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C.
(eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13089-2 50

https://doi.org/10.1007/978-3-319-27683-0_26
https://doi.org/10.1007/978-3-642-13089-2_50

Languages

The Automatic Baire Property
and an Effective Property of ω-Rational

Functions

Olivier Finkel(B)

Institut de Mathématiques de Jussieu - Paris Rive Gauche,
CNRS et Université Paris 7, Paris, France

Olivier.Finkel@math.univ-paris-diderot.fr

Abstract. We prove that ω-regular languages accepted by Büchi or
Muller automata satisfy an effective automata-theoretic version of the
Baire property. Then we use this result to obtain a new effective property
of rational functions over infinite words which are realized by finite state
Büchi transducers: for each such function F : Σω → Γω, one can con-
struct a deterministic Büchi automaton A accepting a dense Π0

2-subset
of Σω such that the restriction of F to L(A) is continuous.

Keywords: Decision problems · Regular languages of infinite words ·
Infinitary rational relations · ω-rational functions · Topology ·
Automatic Baire property · Points of continuity

1 Introduction

Infinitary rational relations were first studied by Gire and Nivat [8,10]. The ω-
rational functions over infinite words, whose graphs are (functional) infinitary
rational relations accepted by 2-tape Büchi automata, have been studied by
several authors [1,4,16,18].

In this paper we are mainly interested in the question of the continuity of
such ω-rational functions. Recall that Prieur proved that one can decide whether
a given ω-rational function is continuous [16,17]. On the other hand, Carton,
Finkel and Simonnet proved that one cannot decide whether a given ω-rational
function f has at least one point of continuity [3]. Notice that this decision
problem is actually Σ1

1-complete, hence highly undecidable [6]. It was also proved
in [3] that one cannot decide whether the continuity set of a given ω-rational
function f (its set of continuity points) is a regular (respectively, context-free)
ω-language. Notice that the situation was shown to be quite different in the
case of synchronous functions. It was proved in [3] that if f : Aω → Bω is an
ω-rational synchronous function, then the continuity set C(f) of f is ω-rational.
Moreover, if X is an ω-rational Π0

2 subset of Aω, then X is the continuity set
C(f) of some rational synchronous function f of domain Aω. Notice that these
previous works on the continuity of ω-rational functions had shown that decision
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 303–314, 2020.
https://doi.org/10.1007/978-3-030-40608-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_21&domain=pdf
http://orcid.org/0000-0002-6461-2941
https://doi.org/10.1007/978-3-030-40608-0_21

304 O. Finkel

problems in this area may be decidable or not, while it is well known that most
problems about regular languages accepted by finite automata are decidable.

We establish in this paper a new effective property of rational functions
over infinite words. We first prove that ω-regular languages accepted by Büchi
or Muller automata satisfy an effective automata-theoretic version of the Baire
property. Then we use this result to obtain a new effective property of rational
functions over infinite words which are realized by finite state Büchi transducers:
for each such function F : Σω → Γω, one can construct a deterministic Büchi
automaton A accepting a dense Π0

2-subset of Σω such that the restriction of F
to this dense set L(A) is continuous.

The paper is organized as follows. We recall basic notions on automata and
on the Borel hierarchy in Sect. 2. The automatic Baire property for regular ω-
languages is proved in Sect. 3. We prove our main new result on ω-rational func-
tions in Sect. 4. Some concluding remarks are given in Sect. 5.

2 Recall of Basic Notions

We assume the reader to be familiar with the theory of formal (ω)-languages
[18,20]. We recall some usual notations of formal language theory.

When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is |x| = k. The set of finite words (including the empty word ε whose length
is zero) over Σ is denoted Σ�.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n).

The usual concatenation product of two finite words u and v is denoted u · v
and sometimes just uv. This product is extended to the product of a finite word u
and an ω-word v. The infinite word u ·v is then the ω-word such that: (u ·v)(k) =
u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|. The concatenation product
can be extended in an obvious way to the concatenation of an infinite sequence
of finite words. The concatenation of a set U of finite words with a set V of
infinite words is the set of infinite words U · V = {u.v | u ∈ U and v ∈ V }. If u
is a finite word and V is a set of infinite words then u · V = {u · v | v ∈ V }.

The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language
over an alphabet Σ is a subset of Σω.

Definition 1. A finite state machine (FSM) is a quadruple M = (K,Σ, δ, q0),
where K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial
state and δ is a mapping from K × Σ into 2K . A FSM is called deterministic
iff: δ : K × Σ → {{q} | q ∈ K}. (As usual, by a clear identification, we might
consider in that case that δ : K × Σ → K).

A Büchi automaton (BA) is a 5-tuple A = (K,Σ, δ, q0, F) where M =
(K,Σ, δ, q0) is a finite state machine and F ⊆ K is the set of final states.

A Muller automaton (MA) is a 5-tuple A = (K,Σ, δ, q0,F) where M =
(K,Σ, δ, q0) is a FSM and F ⊆ 2K is the collection of designated state sets.

The Automatic Baire Property & Effective Property of ω-Rational Functions 305

A Büchi or Muller automaton is said to be deterministic if the associated
FSM is deterministic.

Let σ = a1a2 . . . an . . . be an ω-word over Σ.
A sequence of states r = q1q2 . . . qn . . . is called an (infinite) run of M =

(K,Σ, δ, q0) on σ, starting in state p, iff: 1) q1 = p and 2) for each i ≥ 1,
qi+1 ∈ δ(qi, ai).

In case a run r of M on σ starts in state q0, we call it simply “a run of M
on σ”. For every (infinite) run r = q1q2 . . . qn . . . of M, In(r) is the set of states
in K entered by M infinitely many times during run r: In(r) = {q ∈ K | ∃∞i ≥
1 qi = q}.

For A = (K,Σ, δ, q0, F) a BA, the ω-language accepted by A is:
L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∩ F 	= ∅}.
For A = (K,Σ, δ, q0, F) a MA, the ω-language accepted by A is:
L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∈ F}.

By R. Mc Naughton’s Theorem, see [15], the expressive power of deterministic
MA (DMA) is equal to the expressive power of non deterministic MA which is
also equal to the expressive power of non deterministic BA.

Theorem 2. For any ω-language L ⊆ Σω, the following conditions are equiva-
lent:

1. There exists a DMA that accepts L.
2. There exists a MA that accepts L.
3. There exists a BA that accepts L.

An ω-language L satisfying one of these conditions is called a regular ω-language.

Recall that, from a Büchi (respectively, Muller) automaton A, one can effec-
tively construct a deterministic Muller (respectively, non-deterministic Büchi)
automaton B such that L(A) = L(B).

A way to study the complexity of ω-languages accepted by various automata
is to study their topological complexity.

We assume the reader to be familiar with basic notions of topology which
may be found in [11,15,18]. If X is a finite alphabet containing at least two
letters, then the set Xω of infinite words over X may be equipped with the
product topology of the discrete topology on X. This topology is induced by a
natural metric which is called the prefix metric and is defined as follows. For
u, v ∈ Xω and u 	= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer
n such that u(n + 1) is different from v(n + 1). The topological space Xω is
a Cantor space. The open sets of Xω are the sets of the form W · Xω, where
W ⊆ X�. A set L ⊆ Xω is a closed set iff its complement Xω − L is an open
set. Closed sets are characterized by the following:

Proposition 3. A set L ⊆ Xω is a closed set of Xω iff for every σ ∈ Xω,
[∀n ≥ 1,∃u ∈ Xω such that σ[n] · u ∈ L] implies that σ ∈ L.

Define now the next classes of the Borel hierarchy:

306 O. Finkel

Definition 4. The classes Σ0
n and Π0

n of the Borel Hierarchy on the topological
space Xω are defined as follows: Σ0

1 is the class of open sets of Xω, Π0
1 is

the class of closed sets of Xω. And for any integer n ≥ 1: Σ0
n+1 is the class

of countable unions of Π0
n-subsets of Xω, and Π0

n+1 is the class of countable
intersections of Σ0

n-subsets of Xω.

Remark 5. The hierarchy defined above is the hierarchy of Borel sets of finite
rank. The Borel Hierarchy is also defined for transfinite levels (see [11]) but we
shall not need this in the sequel. Recall that the class of Borel subsets of a Cantor
space is the closure of the class of open sets under countable unions and countable
intersections.

It turns out that there is a characterization of Π0
2-subsets of Xω, involving the

notion of W δ which we now recall, see [15,18].

Definition 6. For W ⊆ X�, we set: W δ = {σ ∈ Xω | ∃∞i such that σ[i] ∈ W}.
(σ ∈ W δ iff σ has infinitely many prefixes in W.)

Then we can state the following proposition.

Proposition 7. A subset L of Xω is a Π0
2-subset of Xω iff there exists a set

W ⊆ X� such that L = W δ.

It is easy to see, using the above characterization of Π0
2-sets, that every ω-

language accepted by a deterministic Büchi automaton is a Π0
2-set. Thus every

regular ω-language is a finite Boolean combination of Π0
2-sets, because it is

accepted by a deterministic Muller automaton and this implies that it is a finite
boolean combination of ω-languages accepted by deterministic Büchi automata.

Landweber studied the topological properties of regular ω-languages in [13].
He characterized the regular ω-languages in each of the Borel classes Σ0

1,Π
0
1,

Σ0
2,Π

0
2, and showed that one can decide, for an effectively given regular ω-

language L, whether L is in Σ0
1,Π

0
1, Σ0

2, or Π0
2. In particular, it turned out that

a regular ω-language is in the class Π0
2 iff it is accepted by a deterministic Büchi

automaton.
Recall that, from a Büchi or Muller automaton A, one can construct some

Büchi or Muller automata B and C, such that L(B) is equal to the topological
closure of L(A), and L(C) is equal to the topological interior of L(A), see [15,18].

3 The Automatic Baire Property

In this section we are going to prove an automatic version of the result stating
that every Borel (and even every analytic) set has the Baire property.

We firstly recall some basic definitions about meager sets, see [11]. In a topo-
logical space X , a set A ⊆ X is said to be nowhere dense if its closure Ā has
empty interior, i.e. Int(Ā)= ∅. A set A ⊆ X is said to be meager if it is the
union of countably many nowhere dense sets, or equivalently if it is included in

The Automatic Baire Property & Effective Property of ω-Rational Functions 307

a countable union of closed sets with empty interiors. This means that A is mea-
ger if there exist countably many closed sets An, n ≥ 1, such that A ⊆

⋃
n≥1 An

where for every integer n ≥ 1, Int(An)= ∅. A set is comeager if its complement
is meager, i.e. if it contains the intersection of countably many dense open sets.
Notice that the notion of a meager set is a notion of a small set, while the notion
of a comeager set is a notion of a big set.

Recall that a Baire space is a topological space X in which every intersec-
tion of countably many dense open sets is dense, or equivalently in which every
countable union of closed sets with empty interiors has also an empty interior.
It is well known that every Cantor space Σω is a Baire space. In the sequel we
will consider only Cantor spaces.

We now recall the notion of Baire property. For any sets A,B ⊆ Σω, we
denote by AΔB the symmetric difference of A and B, and we write A =� B if
and only if AΔB is meager.

Definition 8. A set A ⊆ Σω has the Baire property (BP) if there exists an open
set U ⊆ Σω such that A =� U .

An important result of descriptive set theory is the following result, see [11,
page 47].

Theorem 9. Every Borel set of a Cantor space has the Baire property.

We are going to prove an automatic version of the above theorem. We first
give the following definition.

Definition 10. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi
or Muller automaton A. The ω-language L is said to have the automatic Baire
property if one can construct from A some Büchi automata B and C such that
L(B) ⊆ Σω is open, L(C) ⊆ Σω is a countable union of closed sets with empty
interior, i.e. a meager Σ0

2-set, and L(A)ΔL(B) ⊆ L(C).

We already know that the regular ω-languages have the Baire property since
they are Borel. We now state the following theorem which gives an automatic
version of this result.

Theorem 11. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi
or Muller automaton A. Then one can construct Büchi automata B and C such
that L(B) ⊆ Σω is open, L(C) ⊆ Σω is a meager Σ0

2-set, and L(A)ΔL(B) ⊆ L(C),
i.e. the ω-language L(A) has the automatic Baire property.

In order to prove this result, we first prove the following lemmas.

Lemma 12. Every regular ω-language which is open or closed has the automatic
Baire property.

Proof. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi or
Muller automaton A.

308 O. Finkel

If L = L(A) is an open set then we immediately see that we get the result
with B = A and C is any Büchi automaton accepting the empty set.

If L = L(A) is a closed set then L \ Int(L) is a closed set with empty inte-
rior. Moreover it is known that one can construct from the Büchi automaton A
another Büchi automaton B accepting Int(L), and then also a Büchi automaton
C accepting L \ Int(L). Then we have L(A)ΔL(B) = L \ Int(L) = L(C), with
L(B) open and L(C) is a closed set with empty interior. �

Lemma 13. Every regular ω-language which is a Σ0
2-set has the automatic

Baire property.

Lemma 14. Let L ⊆ Σω be a regular ω-language which has the automatic Baire
property. Then its complement Σω \ L has also the automatic Baire property.

Lemma 15. The class of regular ω-languages having the automatic Baire prop-
erty is closed under finite union and under finite intersection.

End of Proof of Theorem 11. We now return to the general case of a regular
ω-language L ⊆ Σω, accepted by a Büchi or Muller automaton. We know that we
can construct a deterministic Muller automaton A = (K,Σ, δ, q0,F) accepting L.
Recall that F ⊆ 2K is here the collection of designated state sets. For each state
q ∈ K, we now denote by A(q) the automaton A but viewed as a (deterministic)
Büchi automaton with the single accepting state q, i.e. A(q) = (K,Σ, δ, q0, {q}).
We know that the languages L(A(q)) are Borel Π0

2-sets and thus satisfy the
automatic Baire property by Lemmas 13 and 14. Moreover we have the following
equality:

L(A) =
⋃

F∈F
[
⋂

q∈F

L(A(q)) \
⋃

q/∈F

L(A(q))]

This implies, from the previous lemmas about the preservation of the automatic
Baire property by Boolean operations, that we can construct Büchi automata
B and C, such that L(B) is open and L(C) is a meager Σ0

2-set, which satisfy
L(A)ΔL(B) ⊆ L(C). Thus the ω-language L has the automatic Baire property.

�

Corollary 16. On can decide, for a given Büchi or Muller automaton A,
whether L(A) is meager.

Proof. Let A be a Büchi or Muller automaton. The ω-language L(A) has the
automatic Baire property and we can construct Büchi automata B and C, such
that L(B) is open and L(C) is a countable union of closed sets with empty
interiors, which satisfy L(A)ΔL(B) ⊆ L(C). It is easy to see that L(A) is meager
if and only if L(B) is empty, since any non-empty open set is non-meager, and
it can be decided from the automaton B whether L(B) is empty. �

Remark 17. The above Corollary followed already from Staiger’s paper [19],
see also [14]. So we get here another proof of this result, based on the automatic
Baire property.

The Automatic Baire Property & Effective Property of ω-Rational Functions 309

4 An Application to ω-Rational Functions

4.1 Infinitary Rational Relations

We now recall the definition of infinitary rational relations, via definition by
Büchi transducers:

Definition 18. A 2-tape Büchi automaton is a 6-tuple T = (K,Σ, Γ,Δ, q0, F),
where K is a finite set of states, Σ and Γ are finite sets called the input and the
output alphabets, Δ is a finite subset of K × (Σ ∪ ε) × (Γ ∪ ε) × K called the set
of transitions, q0 is the initial state, and F ⊆ K is the set of accepting states.
A computation C of the automaton T is an infinite sequence of consecutive tran-
sitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F
and infinitely many integers i ≥ 0 such that qi = qf . The input word and output
word of the computation are respectively u = u1.u2.u3 . . . and v = v1.v2.v3 . . .
The input and the output words may be finite or infinite. The infinitary rational
relation R(T) ⊆ Σω × Γω accepted by the 2-tape Büchi automaton T is the set
of pairs (u, v) ∈ Σω × Γω such that u and v are the input and the output words
of some successful computation C of T .

The 2-tape Büchi automaton T = (K,Σ, Γ,Δ, q0, F) is said to be synchronous
if the set of transitions Δ is a finite subset of K×Σ×Γ×K, i.e. if each transition
is labelled with a pair (a, b) ∈ Σ×Γ. An infinitary rational relation recognized by
a synchronous 2-tape Büchi automaton is in fact, via the natural identification
of Σω × Γω with (Σ × Γ)ω, an ω-language over the product alphabet Σ × Γ which
is accepted by a Büchi automaton. It is called a synchronous infinitary rational
relation. An infinitary rational relation is said to be asynchronous if it can not
be recognized by any synchronous 2-tape Büchi automaton.

Remark 19. In the above definition, we could have defined the set of transitions
Δ as a subset of K ×Σ� ×Γ� ×K. We have chosen to define Δ as a finite subset
of K × (Σ∪ ε)× (Γ ∪ ε)×K to simplify the proofs. However this is done without
loss of generality because it is easy to see that this convention does not change
the class of infinitary rational relations.

If R(T) ⊆ Σω × Γω is an infinitary rational relation recognized by the 2-tape
Büchi automaton T then we denote

Dom(R(T)) = {u ∈ Σω | ∃v ∈ Γω (u, v) ∈ R(T)}

and
Im(R(T)) = {v ∈ Γω | ∃u ∈ Σω(u, v) ∈ R(T)}.

It is well known that, for each infinitary rational relation R(T) ⊆ Σω × Γω, the
sets Dom(R(T)) and Im(R(T)) are regular ω-languages and that one can con-
struct, from the Büchi transducer T , some (non-deterministic) Büchi automata
A and B accepting the ω-languages Dom(R(T)) and Im(R(T)).

Recall now the following undecidability result of Frougny and Sakarovitch.

310 O. Finkel

Theorem 20 ([7]). One cannot decide whether a given infinitary rational rela-
tion is synchronous.

We proved in [5] that many decision problems about infinitary rational rela-
tions are highly undecidable. In fact many of them, like the universality problem,
the equivalence problem, the inclusion problem, the cofiniteness problem, the
unambiguity problem, are Π1

2-complete, hence located at the second level of the
analytical hierarchy.

4.2 Continuity of ω-Rational Functions

Recall that an infinitary rational relation R(T) ⊆ Σω×Γω is said to be functional
iff it is the graph of a function, i.e. iff

[∀x ∈ Dom(R(T)) ∃!y ∈ Im(R(T)) (x, y) ∈ R(T)].

Then the functional relation R(T) defines an ω-rational (partial) function FT :
Dom(R(T)) → Γω by: for each u ∈ Dom(R(T)), FT (u) is the unique v ∈ Γω

such that (u, v) ∈ R(T).
An ω-rational (partial) function f : Σω → Γω is said to be synchronous if

there is a synchronous 2-tape Büchi automaton T such that f = FT .
An ω-rational (partial) function f : Σω → Γω is said to be asynchronous if

there is no synchronous 2-tape Büchi automaton T such that f = FT .
Recall the following previous decidability result.

Theorem 21 (Gire [9]). One can decide whether an infinitary rational relation
recognized by a given 2-tape Büchi automaton T is a functional infinitary rational
relation.

It is very natural to consider the notion of continuity for ω-rational functions
defined by 2-tape Büchi automata.

We recall that a function f : Dom(f) ⊆ Σω → Γω, whose domain is Dom(f),
is said to be continuous at point x ∈ Dom(f) if :

∀n ≥ 1 ∃k ≥ 1 ∀y ∈ Dom(f) [δ(x, y) < 2−k ⇒ δ(f(x), f(y)) < 2−n]

The continuity set C(f) of the function f is the set of points of continuity
of f . Notice that the continuity set C(f) of a function f : Σω → Γω is always a
Borel Π0

2-subset of Σω, see [3].
The function f is said to be continuous if it is continuous at every point

x ∈ Dom(f), i. e. if C(f) = Dom(f).
Prieur proved the following decidability result.

Theorem 22 (Prieur [16,17]). One can decide whether a given ω-rational
function is continuous.

On the other hand the following undecidability result was proved in [3].

The Automatic Baire Property & Effective Property of ω-Rational Functions 311

Theorem 23 (see [3]). One cannot decide whether a given ω-rational function
f has at least one point of continuity.

The exact complexity of this undecidable problem was given in [6]. It is Σ1
1-

complete to determine whether a given ω-rational function f has at least one
point of continuity.

We now consider the continuity set of an ω-rational function and its possible
complexity. The following undecidability result was proved in [3].

Theorem 24 (see [3]). One cannot decide whether the continuity set of a given
ω-rational function f is a regular (respectively, context-free) ω-language.

The situation is quite different in the case of synchronous functions. The
following results were proved in [3].

Theorem 25 ([3]). Let f : Aω → Bω be a rational synchronous function. The
continuity set C(f) of f is rational.

Theorem 26 ([3]). Let X be a rational Π0
2 subset of Aω. Then X is the con-

tinuity set C(f) of some rational synchronous function f of domain Aω.

We are now going to prove another effective result about ω-rational functions.
We first recall the following result of descriptive set theory, in the particular

case of Cantor spaces Σω and Γω. A Borel function f : Σω → Γω is a function for
which the inverse image of any Borel subset of Γω, or equivalently of any open
set of Γω, is a Borel subset of Σω.

Theorem 27 (see Theorem 8.38 of [11]). Let Σ and Γ be two finite alphabets
and f : Σω → Γω be a Borel function. Then there is a dense Π0

2-subset G of Σω

such that the restriction of f to G is continuous.

We now state an automatic version of this theorem.

Theorem 28. Let Σ and Γ be two finite alphabets and f : Σω → Γω be an
ω-rational function. Then one can construct, from a 2-tape Büchi automaton
accepting the graph of the function f , a deterministic Büchi automaton accepting
a dense Π0

2-subset G of Σω such that the restriction of f to G is continuous.

Proof. Let Σ and Γ be two finite alphabets and f : Σω → Γω be an
ω-rational function whose graph is accepted by a 2-tape Büchi automaton
A = (K,Σ, Γ,Δ, q0, F).

Notice that one can also consider the 2-tape automaton A reading pairs of
finite words (v, u) ∈ Σ� × Γ�. A partial computation of the 2-tape automaton A
reading such a pair (v, u) is simply a finite sequence of consecutive transitions

(q0, a1, b1, q1), (q1, a2, b2, q2), . . . (qi−1, ai, bi, qi), (qi, ai+1, bi+1, qi+1)

such that v = a1a2 . . . ai+1 and u = b1b2 . . . bi+1. This computation ends in state
qi+1.

312 O. Finkel

We assume that we have an effective enumeration of the finite words over
the alphabet Γ given by (un)n≥1, un ∈ Γ�. For q ∈ K we also denote Aq the
automaton A in which we have changed the initial state so that the initial state
of Aq is q instead of q0.

Let us now consider the basic open set of the space Γω given by Un = un ·Γω.
We first describe f−1(Un). An ω-word x ∈ Σω belongs to the set f−1(Un) iff x
can be written in the form x = v ·y for some words v ∈ Σ� and y ∈ Σω, and there
is a partial computation of the automaton A reading (v, un) for which A is in
state q after having read the initial pair (v, un) ∈ Σ� ×Γ� (where the finite words
v and un might have different lengths if the automaton A is not synchronous),
and y ∈ Dom(R(Aq)). Recall that R(Aq) ⊆ (Σ × Γ)ω is an infinitary rational
relation and that Dom(R(Aq)) is then a regular ω-language and that one can
construct from A a deterministic Muller automaton accepting this ω-language
Dom(R(Aq)) which will be denoted Lq. We also denote T (un, q) the set of finite
words v over Σ such that the automaton A may be in state q after having read
the initial pair (v, un) ∈ Σ� × Γ�. Then the following equality holds:

f−1(Un) =
⋃

q∈K

T (un, q) · Lq

We can now apply the automatic Baire property stated in the above Theorem11.
Then for each regular ω-language Lq, one can construct a deterministic Muller
automaton accepting an open set Oq and a deterministic Muller automaton
accepting a countable union Wq of closed sets with empty interiors, such that
for each q ∈ K,

LqΔOq ⊆ Wq

Now we set

Vn =
⋃

q∈K

T (un, q) · Oq and Fn =
⋃

q∈K

T (un, q) · Wq

Notice that each set T (un, q) is countable and that for each finite word u ∈
T (un, q) it is easy to see that the set u · Oq is open and that the set u · Wq is a
countable union of closed sets with empty interiors. Thus it is easy to see that
Vn is open, and that Fn is a countable union of closed sets with empty interiors.
Moreover it is easy to see that Vn and Fn are regular ω-languages since each set
T (un, q) is a regular language of finite words over the alphabet Σ. Moreover it
holds that:

f−1(Un)ΔVn ⊆ Fn

We now prove that F =
⋃

n≥1 Fn is itself a regular ω-language. It holds that

F =
⋃

n≥1

Fn =
⋃

n≥1

⋃

q∈K

T (un, q) · Wq =
⋃

q∈K

⋃

n≥1

T (un, q) · Wq

Consider now the 2-tape automaton Bq which is like the 2-tape automaton A
but reads only pairs of finite words in Σ� × Γ� and has the state q as unique

The Automatic Baire Property & Effective Property of ω-Rational Functions 313

accepting state. Let then Cq be a finite automaton which reads only finite words
over the alphabet Σ and such that L(Cq) = ProjΣ�(L(Bq)) is the projection of the
language L(Bq) on Σ�. We can construct, from the automaton A, the automata
Bq and Cq for each q ∈ K. Now it holds that:

F =
⋃

n≥1

Fn =
⋃

q∈K

⋃

n≥1

T (un, q) · Wq =
⋃

q∈K

L(Cq) · Wq

On the other hand, for each finite word u ∈ Σ�, the set u ·Wq is a meager Σ0
2-set,

since Wq is a meager Σ0
2-set. Thus the set

F =
⋃

q∈K

L(Cq) · Wq

is also a countable union of closed sets with empty interiors, since K is finite and
each language L(Cq) is countable. Moreover the ω-language F is regular and we
can construct, from the automata Cq and from the deterministic Muller automata
accepting the ω-languages Wq, a deterministic Muller automaton accepting F .

We can now set Gn = Σω \ Fn and G =
⋂

n≥1 Gn = Σω \
⋃

n≥1 Fn = Σω \ F .
Then G is a countable intersection of dense open subsets of Σω, hence also a
dense Π0

2-subset G of Σω. Moreover we can construct a deterministic Muller
automaton and even a deterministic Büchi automaton (since G is a Π0

2-set, see
[15, page 41]) accepting G. We can now see that the restriction fG of the function
f to G is continuous. This follows from the fact that the inverse image of every
basic open set of Γω by the function fG is an open subset of G because for each
integer n ≥ 1, it holds that f−1

G (Un) = f−1(Un) ∩ G = Vn ∩ G. �

Remark 29. The above dense Π0
2-subset G of Σω is comeager and thus

Theorem28 shows that one can construct a deterministic Büchi automaton
accepting a “big” ω-rational subset of Σω on which the function f is contin-
uous.

5 Concluding Remarks

We have proved a new effective property of ω-rational functions. We hope this
property will be useful for further studies involving ω-rational functions. For
instance an ω-automatic structure is defined via synchronous infinitary rational
relations, see [2,12]. On the other hand, any (synchronous) infinitary rational
relation is uniformizable by a (synchronous) ω-rational function, see [4]. Thus we
can expect that our result will be useful in particular in the study of ω-automatic
structures.

We also hope that the automatic Baire property will be useful in other stud-
ies involving regular ω-languages like the study of infinite games specified by
automata.

314 O. Finkel

References

1. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theor. Comput. Sci.
292(1), 45–63 (2003)

2. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata
and interpretations. Theory Comput. Syst. 37(6), 641–674 (2004)

3. Carton, O., Finkel, O., Simonnet, P.: On the continuity set of an omega rational
function. Theor. Inform. Appl. 42(1), 183–196 (2008)

4. Choffrut, C., Grigorieff, S.: Uniformization of rational relations. In: Karhumäki, J.,
Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, Contributions
on Theoretical Computer Science in Honor of Arto Salomaa, pp. 59–71. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-60207-8 6

5. Finkel, O.: Highly undecidable problems for infinite computations. RAIRO-Theor.
Inform. Appl. 43(2), 339–364 (2009)

6. Finkel, O.: Three applications to rational relations of the high undecidability of
the infinite Post correspondence problem in a regular ω-language. Int. J. Found.
Comput. Sci. 23(7), 1481–1498 (2012)

7. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite
words. Theor. Comput. Sci. 108(1), 45–82 (1993)

8. Gire, F.: Relations rationnelles infinitaires. Ph.D. thesis, Université Paris VII
(1981)

9. Gire, F.: Two decidability problems for infinite words. Inf. Process. Lett. 22(3),
135–140 (1986)

10. Gire, F., Nivat, M.: Relations rationnelles infinitaires. Calcolo XXI, 91–125 (1984)
11. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995).

https://doi.org/10.1007/978-1-4612-4190-4
12. Kuske, D., Lohrey, M.: First-order and counting theories of omega-automatic struc-

tures. J. Symb. Logic 73(1), 129–150 (2008)
13. Landweber, L.: Decision problems for ω-automata. Math. Syst. Theory 3(4), 376–

384 (1969)
14. Michalewski, H., Mio, M., Skrzypczak, M.: Monadic second order logic with mea-

sure and category quantifiers. Logical Methods Comput. Sci. 14(2) (2018)
15. Perrin, D., Pin, J.E.: Infinite Words, Automata, Semigroups, Logic and Games,

Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)
16. Prieur, C.: How to decide continuity of rational functions on infinite words. Theor.

Comput. Sci. 250(1–2), 71–82 (2001)
17. Prieur, C.: How to decide continuity of rational functions on infinite words. Theor.

Comput. Sci. 276(1–2), 445–447 (2002)
18. Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal

Languages, vol. 3, pp. 339–387. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59126-6 6

19. Staiger, L.: Rich ω-words and monadic second-order arithmetic. In: Nielsen, M.,
Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 478–490. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028032

20. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 135–191.
Elsevier, Amsterdam (1990)

https://doi.org/10.1007/978-3-642-60207-8_6
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-3-642-59126-6_6
https://doi.org/10.1007/978-3-642-59126-6_6
https://doi.org/10.1007/BFb0028032

The Power of Programs over Monoids in J

Nathan Grosshans1,2(B)

1 DI ENS, ENS, CNRS, PSL University, Paris, France
nathan.grosshans@polytechnique.edu

2 Inria, Paris, France
https://www.di.ens.fr/~ngrosshans/

Abstract. The model of programs over (finite) monoids, introduced by
Barrington and Thérien, gives an interesting way to characterise the
circuit complexity class NC1 and its subclasses and showcases deep con-
nections with algebraic automata theory. In this article, we investigate
the computational power of programs over monoids in J, a small variety
of finite aperiodic monoids. First, we give a fine hierarchy within the
class of languages recognised by programs over monoids from J, based
on the length of programs but also some parametrisation of J. Second,
and most importantly, we make progress in understanding what regu-
lar languages can be recognised by programs over monoids in J. We
show that those programs actually can recognise all languages from a
class of restricted dot-depth one languages, using a non-trivial trick, and
conjecture that this class suffices to characterise the regular languages
recognised by programs over monoids in J.

1 Introduction

In computational complexity theory, many hard still open questions concern
relationships between complexity classes that are expected to be quite small in
comparison to the mainstream complexity class P of tractable languages. One
of the smallest such classes is NC1, the class of languages decided by Boolean
circuits of polynomial length, logarithmic depth and bounded fan-in, a relevant
and meaningful class, that has many characterisations but whose internal struc-
ture still mostly is a mystery. Indeed, among its most important subclasses, we
count AC0, CC0 and ACC0: all of them are conjectured to be different from each
other and strictly within NC1, but despite many efforts for several decades, this
could only be proved for the first of those classes.

In the late eighties, Barrington and Thérien [3], building on Barrington’s
celebrated theorem [2], gave an interesting viewpoint on those conjectures, rely-
ing on algebraic automata theory. They defined the notion of a program over
a monoid M : a sequence of instructions (i, f), associating through function f
some element of M to the letter at position i in the input of fixed length. In that
way, the program outputs an element of M for every input word, by multiplying
out the elements given by the instructions for that word; acceptance or rejection
then depends on that outputted element. A language of words of arbitrary length
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 315–327, 2020.
https://doi.org/10.1007/978-3-030-40608-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_22

316 N. Grosshans

is consequently recognised in a non-uniform fashion, by a sequence of programs
over some fixed monoid, one for each possible input length; when that sequence
is of polynomial length, it is said that the monoid p-recognises that language.
Barrington and Thérien’s discovery is that NC1 and almost all of its signifi-
cant subclasses can each be exactly characterised by p-recognition over monoids
taken from some suitably chosen variety of finite monoids (a class of finite mono-
ids closed under basic operations on monoids). For instance, NC1, AC0, CC0 and
ACC0 correspond exactly to p-recognition by, respectively, finite monoids, finite
aperiodic monoids, finite solvable groups and finite solvable monoids. Under-
standing the internal structure of NC1 thus becomes a matter of understanding
what finite monoids from some particular variety are able to p-recognise.

It soon became clear that regular languages play a central role in understand-
ing p-recognition: McKenzie, Péladeau and Thérien indeed observed [12] that
finite monoids from a variety V and a variety W p-recognise the same languages
if and only if they p-recognise the same regular languages. Otherwise stated, most
conjectures about the internal structure of NC1 can be reformulated as a state-
ment about where one or several regular languages lie within that structure. This
is why a line of previous works got interested into various notions of tameness,
capturing the fact that for a given variety of finite monoids, p-recognition does
not offer much more power than classical morphism-recognition when it comes
to regular languages (see [8,10,11,13,14,20–22]).

This paper is a contribution to an ongoing study of what regular languages
can be p-recognised by monoids taken from “small” varieties, started with the
author’s Ph.D. thesis [7]. In a previous paper by the author with McKenzie and
Segoufin [8], a novel notion of tameness was introduced and shown for the “small”
variety of finite aperiodic monoids DA. This allowed them to characterise the
class of regular languages p-recognised by monoids from DA as those recognised
by so called quasi-DA morphisms and represented a first small step towards
a new proof that the variety A of finite aperiodic monoids is tame. This is a
statement equivalent to Furst’s, Saxe’s, Sipser’s [6] and Ajtai’s [1] well-known
lower bound result about AC0. In [8], the authors also observed that, while DA
“behaves well” with respect to p-recognition of regular languages, the variety J, a
subclass of DA, does, in contrast, “behave badly” in the sense that monoids from
J do p-recognise regular languages that are not recognised by quasi-J morphisms.

Now, J is a well-studied and fundamental variety in algebraic automata the-
ory (see, e.g., [15,16]), corresponding through classical morphism-recognition to
the class of regular languages in which membership depends on the presence or
absence of a finite set of words as subwords. This paper is a contribution to the
understanding of the power of programs over monoids in J, a knowledge that
certainly does not bring us closer to a new proof of the tameness of A (as we are
dealing with a strict subvariety of DA), but that is motivated by the importance
of J in algebraic automata theory and the unexpected power of programs over
monoids in J. The results we present in this article are twofold: first, we exhibit
a fine hierarchy within the class of languages p-recognised by monoids from
J, depending on the length of those programs and on a parametrisation of J;

The Power of Programs over Monoids in J 317

second, we show that a whole class of regular languages, that form a subclass
of dot-depth one languages [15], are p-recognised by monoids from J while, in
general, they are not recognised by any quasi-J morphism. This class roughly
corresponds to dot-depth one languages where detection of a given factor does
work only when it does not appear too often as a subword. We actually even con-
jecture that this class of languages with additional positional modular counting
(that is, letters can be differentiated according to their position modulo some
fixed number) corresponds exactly to all those p-recognised by monoids in J, a
statement that is interesting in itself for algebraic automata theory.

Organisation of the Paper. Following the present introduction, Sect. 2 is ded-
icated to the necessary preliminaries. In Sect. 3, we present the results about
the fine hierarchy and in Sect. 4 we expose the results concerning the regular
languages p-recognised by monoids from J. Section 5 gives a short conclusion.

Note. This article is based on unpublished parts of the author’s Ph.D. thesis [7].

2 Preliminaries

2.1 Various Mathematical Materials

We assume the reader is familiar with the basics of formal language theory,
semigroup theory and recognition by morphisms, that we might designate by
classical recognition; for those, we only specify some things and refer the reader
to the two classical references of the domain by Eilenberg [4,5] and Pin [16].

General Notations and Conventions. Let i, j ∈ N. We shall denote by [[i, j]] the
set of all n ∈ N verifying i ≤ n ≤ j. We shall also denote by [i] the set [[1, i]].
Given some set E, we shall denote by P(E) the powerset of E. All our alphabets
and words will always be finite; the empty word will be denoted by ε.

Varieties and Languages. A variety of monoids is a class of finite monoids closed
under submonoids, Cartesian product and morphic images. A variety of semi-
groups is defined similarly. When dealing with varieties, we consider only finite
monoids and semigroups, each having an idempotent power, a smallest ω ∈ N>0

such that xω = x2ω for any element x. To give an example, the variety of finite
aperiodic monoids, denoted by A, contains all finite monoids M such that, given
ω its idempotent power, xω = xω+1 for all x ∈ M .

To each variety V of monoids or semigroups we associate the class L(V) of
languages such that, respectively, their syntactic monoid or semigroup belongs
to V. For instance, L(A) is well-known to be the class of star-free languages.

Quasi V Languages. If S is a semigroup we denote by S1 the monoid S if S is
already a monoid and S ∪ {1} otherwise.

The following definitions are taken from [17]. Let ϕ be a surjective morphism
from Σ∗ to a finite monoid M . For all k consider the subset ϕ(Σk) of M (where

318 N. Grosshans

Σk is the set of words over Σ of length k). As M is finite there is a k such
that ϕ(Σ2k) = ϕ(Σk). This implies that ϕ(Σk) is a semigroup. The semigroup
given by the smallest such k is called the stable semigroup of ϕ. If S is the stable
semigroup of ϕ, S1 is called the stable monoid of ϕ. If V is a variety of monoids or
semigroups, then we shall denote by QV the class of such surjective morphisms
whose stable monoid or semigroup, respectively, is in V and by L(QV) the class
of languages whose syntactic morphism is in QV.

Programs over Monoids. Programs over monoids form a non-uniform model of
computation, first defined by Barrington and Thérien [3], extending Barrington’s
permutation branching program model [2]. Let M be a finite monoid and Σ an
alphabet. A program P over M on Σn is a finite sequence of instructions of the
form (i, f) where i ∈ [n] and f ∈ MΣ ; said otherwise, it is a word over ([n]×MΣ).
The length of P , denoted by |P |, is the number of its instructions. The program
P defines a function from Σn to M as follows. On input w ∈ Σn, each instruction
(i, f) outputs the monoid element f(wi). A sequence of instructions then yields a
sequence of elements of M and their product is the output P (w) of the program.
A language L ⊆ Σn is consequently recognised by P whenever there exists
F ⊆ M such that L = P−1(F).

A language L over Σ is recognised by a sequence of programs (Pn)n∈N over
some finite monoid M if for each n, the program Pn is on Σn and recognises
L=n = L ∩ Σn. We say (Pn)n∈N is of length s(n) for s : N → N whenever
|Pn| = s(n) for all n ∈ N and that it is of length at most s(n) whenever there
exists α ∈ R>0 verifying |Pn| ≤ α · s(n) for all n ∈ N.

For s : N → N and V a variety of monoids, we denote by P(V, s(n)) the class
of languages recognised by sequences of programs over monoids in V of length
at most s(n). The class P(V) =

⋃
k∈N

P
(
V, nk

)
is then the class of languages

p-recognised by a monoid in V, i.e. recognised by sequences of programs over
monoids in V of polynomial length.

The following is an important property of P(V).

Proposition 1 ([12, Corollary 3.5]). Let V be a variety of monoids, then
P(V) is closed under Boolean operations.

Given two alphabets Σ and Γ , a Γ -program on Σn for n ∈ N is defined
just like a program over some finite monoid M on Σn, except that instructions
output letters from Γ and thus that the program outputs words over Γ . Let now
L ⊆ Σ∗ and K ⊆ Γ ∗. We say that L program-reduces to K if and only if there
exists a sequence (Ψn)n∈N of Γ -programs (the program-reduction) such that Ψn

is on Σn and L=n = Ψ−1
n (K=|Ψn|) for each n ∈ N. The following proposition

shows closure of P(V) also under program-reductions.

Proposition 2 ([7, Proposition 3.3.12 and Corollary 3.4.3]). Let Σ and
Γ be two alphabets. Let V be a variety of monoids. Given K ⊆ Γ ∗ in P(V, s(n))
for s : N → N and L ⊆ Σ∗ from which there exists a program-reduction to K of
length t(n), for t : N → N, we have that L ∈ P(V, s(t(n))). In particular, when
K is recognised (classically) by a monoid in V, we have that L ∈ P(V, t(n)).

The Power of Programs over Monoids in J 319

2.2 Tameness and the Variety J

We won’t introduce any of the proposed notions of tameness but will only state
that the main consequence for a variety of monoids V to be tame in the sense
of [8] is that P(V)∩ Reg ⊆ L(QV). This consequence has far-reaching implica-
tions from a computational-complexity-theoretic standpoint when P(V) happens
to be equal to a circuit complexity class. For instance, tameness for A implies
that P(A) ∩ Reg ⊆ L(QA), which is equivalent to the fact that AC0 does not
contain the language MODm of words over {0, 1} containing a number of 1s not
divisible by m for any m∈N,m≥2 (a central result in complexity theory [1,6]).

Let us now define the variety of monoids J. A finite monoid M of idempotent
power ω belongs to J if and only if (xy)ω = (xy)ωx = y(xy)ω for all x, y ∈ M .
It is a strict subvariety of the variety DA, containing all finite monoids M of
idempotent power ω such that (xy)ω = (xy)ωx(xy)ω for all x, y ∈ M , itself a
strict subvariety of A. The variety J is a “small” one, well within A.

We now give some specific definitions and results about J that we will use,
based essentially on [9], but also on [16, Chapter 4, Section 1].

For some alphabet Σ and each k ∈ N, let us define the equivalence relation ∼k

on Σ∗ by u ∼k v if and only if u and v have the same set of k-subwords (subwords
of length at most k), for all u, v ∈ Σ∗. The relation ∼k is a congruence of finite
index on Σ∗. For an alphabet Σ and a word u ∈ Σ∗, we shall write u�Σ∗ for the
language of all words over Σ having u as a subword. In the following, we consider
that � has precedence over ∪ and ∩ (but of course not over concatenation).

We define the class of piecewise testable languages PT as the class of regular
languages such that for every alphabet Σ, we associate to Σ∗ the set PT (Σ∗)
of all languages over Σ that are Boolean combinations of languages of the form
u�Σ∗ where u ∈ Σ∗. In fact, PT (Σ∗) is the set of languages over Σ equal to a
union of ∼k-classes for some k ∈ N (see [18]). Simon showed [18] that a language
is piecewise testable if and only if its syntactic monoid is in J, i.e. PT = L(J).

We can define a hierarchy of piecewise testable languages in a natural way.
For k ∈ N, let the class of k-piecewise testable languages PT k be the class of
regular languages such that for every alphabet Σ, we associate to Σ∗ the set
PT k(Σ∗) of all languages over Σ that are Boolean combinations of languages
of the form u�Σ∗ where u ∈ Σ∗ with |u| ≤ k. We then have that PT k(Σ∗) is
the set of languages over Σ equal to a union of ∼k-classes. Let us define Jk the
inclusion-wise smallest variety of monoids containing the quotients of Σ∗ by ∼k

for any alphabet Σ: we have that a language is k-piecewise testable if and only
if its syntactic monoid belongs to Jk, i.e. PT k = L(Jk). (See [9, Section 3].)

3 Fine Hierarchy

The first part of our investigation of the computational power of programs over
monoids in J concerns the influence of the length of programs on their compu-
tational capabilities.

We say two programs over a same monoid on the same set of input words are
equivalent if and only if they recognise the same languages. Tesson and Thérien

320 N. Grosshans

proved in [23] that for any monoid M in DA, there exists some k ∈ N such that
for any alphabet Σ there is a constant c ∈ N>0 verifying that any program over
M on Σn for n ∈ N is equivalent to a program over M on Σn of length at most
c · nk. Since J ⊂ DA, any monoid in J does also have this property. However,
this does not imply that there exists some k ∈ N working for all monoids in J,
i.e. that P(J) collapses to P

(
J, nk

)
.

In this section, we show on the one hand that, as for DA, while P(J, s(n))
collapses to P(J) for any super-polynomial function s : N → N, there does not
exist any k ∈ N such that P(J) collapses to P

(
J, nk

)
; and on the other hand

that P(Jk) does optimally collapse to P
(
Jk, n�k/2�) for each k ∈ N.

3.1 Strict Hierarchy

Given k, n ∈ N, we say that σ is a k-selector over n if σ is a function of P([n])[n]
k

that associates a subset of [n] to each vector in [n]k. For any sequence Δ =
(σn)n∈N such that σn is a k-selector over n for each n ∈ N—a sequence we will
call a sequence of k-selectors—, we set LΔ =

⋃
n∈N

Kn,σn
, where for each n ∈ N,

the language Kn,σn
is the set of words over {0, 1} of length (k+1) ·n that can be

decomposed into k+1 consecutive blocks u(1), u(2), . . . , u(k), v of n letters where
the first k blocks each contain 1 exactly once and uniquely define a vector ρ in
[n]k, where for all i ∈ [k], ρi is given by the position of the only 1 in u(i) (i.e.
u
(i)
ρi = 1) and v is such that there exists j ∈ σn(ρ) verifying that vj is 1. Observe

that for any k-selector σ0 over 0, we have K0,σ0 = ∅.
We now proceed similarly to what has been done in Subsection 5.1 in [8] to

show, on one hand, that for all k ∈ N, there is a monoid Mk in J2k+1 such that
for any sequence of k-selectors Δ, the language LΔ is recognised by a sequence
of programs over Mk of length at most nk+1; and, on the other hand, that for all
k ∈ N there is a sequence of k-selectors Δ such that for any finite monoid M and
any sequence of programs (Pn)n∈N over M of length at most nk, the language
LΔ is not recognised by (Pn)n∈N.

We obtain the following proposition.

Proposition 3. For all k ∈ N, we have P
(
J, nk

)
⊂ P

(
J, nk+1

)
. More precisely,

for all k ∈ N and d ∈ N, d ≤
⌈

k
2

⌉
− 1, we have P

(
Jk, nd

)
⊂ P

(
Jk, nd+1

)
.

3.2 Collapse

Looking at Proposition 3, it looks at first glance rather strange that, for each
k ∈ N, we can only prove strictness of the hierarchy inside P(Jk) up to exponent⌈

k
2

⌉
. We now show, in a way similar to Subsection 5.2 in [8], that in fact P(Jk)

does collapse to P
(
Jk, n�k/2�) for all k ∈ N, showing Proposition 3 to be optimal

in some sense.

Proposition 4. Let k ∈ N. Let M ∈ Jk and Σ be an alphabet. Then there exists
a constant c ∈ N>0 such that any program over M on Σn for n ∈ N is equivalent
to a program over M on Σn of length at most c · n�k/2�.

In particular, P(Jk) = P
(
Jk, n�k/2�) for all k ∈ N.

The Power of Programs over Monoids in J 321

4 Regular Languages in P(J)

The second part of our investigation of the computational power of programs
over monoids in J is dedicated to understanding exactly what regular languages
can be p-recognised by monoids in J.

4.1 Non-tameness of J

It is shown in [8] that P(J) ∩ Reg � L(QJ), thus giving an example of a well-
known subvariety of A for which p-recognition allows to do unexpected things
when recognising a regular language. How far does this unexpected power go?

The first thing to notice is that, though none of them is in L(QJ), all lan-
guages of the form Σ∗u and uΣ∗ for Σ an alphabet and u ∈ Σ+ are in P(J).
Indeed, each of them can be recognised by a sequence of constant-length pro-
grams over the syntactic monoid of u�Σ∗: for every input length, just output
the image, through the syntactic morphism of u�Σ∗, of the word made of the
|u| first or last letters. So, informally stated, programs over monoids in J can
check for some constant-length beginning or ending of their input words.

But they can do much more. Indeed, the language (a+b)∗ac+ does not belong
to L(QJ) (compute the stable monoid), yet it is in P(J). The crucial insight is
that it can be program-reduced in linear length to the piecewise testable language
of all words over {a, b, c} having ca as a subword but not the subwords cca, caa
and cb by using the following trick (that we shall call “feedback-sweeping”) for
input length n ∈ N: read the input letters in the order 2, 1, 3, 2, 4, 3, 5, 4, . . . , n, n−
1, output the letters read. This has already been observed in [8, Proposition 5].

Lemma 1. (a + b)∗ac+ ∈ P(J, n).

Using variants of the “feedback-sweeping” reading technique, we can prove
that the phenomenon just described is not an isolated case.

Lemma 2. The languages (a + b)∗ac+, (a + b)∗ac+a(a + b)∗, c+a(a + b)∗ac+,
(a + b)∗bac+ and (a + b)∗ac+(a + b)∗ac+ do all belong to P(J) \ L(QJ).

Hence, we are tempted to say that there are “much more” regular languages
in P(J) than just those in L(QJ), even though it is not clear to us whether
L(QJ) ⊆ P(J) or not. But can we show any upper bound on P(J) ∩ Reg? It
turns out that we can, relying on two known results.

First, since J ⊆ DA, we have P(J) ⊆ P(DA), so Theorem 6 in [8], that
states P(DA) ∩ Reg = L(QDA), implies that P(J) ∩ Reg ⊆ L(QDA).

Second, let us define an important superclass of the class of piecewise testable
languages. Let Σ be an alphabet and u1, . . . , uk ∈ Σ+ (k ∈ N>0); we define
[u1, . . . , uk] = Σ∗u1Σ

∗ · · · Σ∗ukΣ∗. The class of dot-depth one languages is the
class of Boolean combinations of languages of the form Σ∗u, uΣ∗ and [u1, . . . , uk]
for Σ an alphabet, k ∈ N>0 and u, u1, . . . , uk ∈ Σ+. The inclusion-wise small-
est variety of semigroups containing all syntactic semigroups of dot-depth one
languages is denoted by J ∗ D and verifies that L(J ∗ D) is exactly the class of

322 N. Grosshans

dot-depth one languages. (See [11,15,19].) It has been shown in [11, Corollary
8] that P(J ∗ D) ∩ Reg = L(Q(J ∗ D)) (if we extend the program-over-monoid
formalism in the obvious way to finite semigroups). Now, we have J ⊆ J ∗D, so
that P(J) ⊆ P(J ∗ D) and hence P(J) ∩ Reg ⊆ L(Q(J ∗ D)).

To summarise, we have the following.

Proposition 5. P(J) ∩ Reg ⊆ L(QDA) ∩ L(Q(J ∗ D)).

In fact, we conjecture that the inverse inclusion does also hold.

Conjecture 1. P(J) ∩ Reg = L(QDA) ∩ L(Q(J ∗ D)).

Why do we think this should be true? Though, for a given alphabet Σ, we
cannot decide whether some word u ∈ Σ+ of length at least 2 appears as a factor
of any given word w in Σ∗ with programs over monoids in J (because Σ∗uΣ∗ /∈
L(QDA)), Lemma 2 and the possibilities offered by the “feedback-sweeping”
technique give the impression that we can do it when we are guaranteed that u
appears at most a fixed number of times in w, which seems somehow to be what
dot-depth one languages become when restricted to belong to L(QDA). This
intuition motivates the definition of threshold dot-depth one languages.

4.2 Threshold Dot-Depth One Languages

The idea behind the definition of threshold dot-depth one languages is that we
take the basic building blocks of dot-depth one languages, of the form [u1, . . . , uk]
for an alphabet Σ, for k ∈ N>0 and u1, . . . , uk ∈ Σ+, and restrict them so that,
given l ∈ N>0, membership of a word does really depend on the presence of a
given word ui as a factor if and only if it appears less than l times as a subword.

Definition 1. Let Σ be an alphabet. For all u ∈ Σ+ and l ∈ N>0, we define [u]l
to be the language of words over Σ containing ul as a subword or u as a factor,
i.e. [u]l = Σ∗uΣ∗ ∪ ul

�Σ∗. Then, for all u1, . . . , uk ∈ Σ+ (k ∈ N, k ≥ 2) and
l ∈ N>0, we define [u1, . . . , uk]l = [u1]l · · · [uk]l.

Obviously, for each Σ an alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+, the lan-
guage [u1, . . . , uk]1 equals u1 · · · uk � Σ∗. Over {a, b, c}, the language [ab, c]3
contains all words containing a letter c verifying that in the prefix up to that
letter, ababab appears as a subword or ab appears as a factor. Finally, the lan-
guage (a + b)∗ac+ over {a, b, c} of Lemma 1 is equal to [c, a]2

� ∩ [c, b]2
� ∩ [ac]2.

We then define a threshold dot-depth one language as any Boolean combina-
tion of languages of the form Σ∗u, uΣ∗ and [u1, . . . , uk]l for Σ an alphabet, for
k, l ∈ N>0 and u, u1, . . . , uk ∈ Σ+.

Confirming the intuition briefly given above, the technique of “feedback-
sweeping” can indeed be pushed further to prove that the whole class of threshold
dot-depth one languages is contained in P(J), and we dedicate the remainder of
this section to prove it. Concerning Conjecture 1, our intuition leads us to believe
that, in fact, the class of threshold dot-depth one languages with additional posi-
tional modular counting is exactly L(QDA)∩L(Q(J ∗ D)). We simply refer the

The Power of Programs over Monoids in J 323

interested reader to Section 5.4 of the author’s Ph.D. thesis [7], that contains a
partial result supporting this belief, too technical and long to be presented here.

Let us now move on to the proof of the following theorem.

Theorem 1. Every threshold dot-depth one language belongs to P(J).

As P(J) is closed under Boolean operations (Proposition 1), our goal is to
prove, given an alphabet Σ, given l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0), that
[u1, . . . , uk]l is in P(J); the case of Σ∗u and uΣ∗ for u ∈ Σ+ is easily handled
(see the discussion at the beginning of Subsect. 4.1). To do this, we need to
put [u1, . . . , uk]l in some normal form. It is readily seen that [u1, . . . , uk]l =
⋃

q1,...,qk∈{1,l} L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

where the L
(l)
(ui,qi)

’s are defined thereafter.

Definition 2. Let Σ be an alphabet.

For all u ∈ Σ+, l ∈ N>0 and α ∈ [l], set L
(l)
(u,α) =

{
Σ∗uΣ∗ if α < l

ul
�Σ∗ otherwise

.

Building directly a sequence of programs over a monoid in J that decides
L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

for some alphabet Σ and q1, . . . , qk ∈ {1, l} seems however
tricky. We need to split things further by controlling precisely how many times
each ui for i ∈ [k] appears in the right place when it does less than l times. To do
this, we consider, for each α ∈ [l]k, the language Rα

l (u1, . . . , uk) defined below.

Definition 3. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α ∈ [l]k, we set

Rα
l (u1, . . . , uk) =(u1

α1 · · · uk
αk)�Σ∗∩

⋂

i∈[k],αi<l

(
(u1

α1 · · · ui
αi+1 · · · uk

αk)�Σ∗)� .

Now, for a given α ∈ [l]k, we are interested in the words of Rα
l (u1, . . . , uk)

such that for each i ∈ [k] verifying αi < l, the word ui indeed appears as a factor
in the right place. We thus introduce a last language Sα

l (u1, . . . , uk) defined as
follows.

Definition 4. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α ∈ [l]k, we set

Sα
l (u1, . . . , uk) =

⋂

i∈[k],αi<l

(
(u1

α1 · · · ui−1
αi−1)�Σ∗)

ui

(
(ui+1

αi+1 · · · uk
αk)�Σ∗)

.

We now have the normal form we were looking for to prove Theorem 1:
[u1, . . . , uk]l is equal to the union, over all α ∈ [l]k, of the intersection of
Rα

l (u1, . . . , uk) and Sα
l (u1, . . . , uk). Though rather intuitive, the correctness of

this decomposition is not so straightforward to prove and, actually, we can only
prove it when for each i ∈ [k], the letters in ui are all distinct.

324 N. Grosshans

Lemma 3. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such
that for each i ∈ [k], the letters in ui are all distinct. Then,

⋃

q1,...,qk∈{1,l}
L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

=
⋃

α∈[l]k

(
Rα

l (u1, . . . , uk) ∩ Sα
l (u1, . . . , uk)

)
.

Our goal now is to prove, given an alphabet Σ, given l ∈ N>0 and u1, . . . , uk ∈
Σ+ (k ∈ N>0) such that for each i ∈ [k], the letters in ui are all distinct, that for
any α ∈ [l]k, the language Rα

l (u1, . . . , uk)∩ Sα
l (u1, . . . , uk) is in P(J); closure of

P(J) under union (Proposition 1) consequently entails that [u1, . . . , uk]l ∈ P(J).
The way Rα

l (u1, . . . , uk) and Sα
l (u1, . . . , uk) are defined allows us to reason as

follows. For each i ∈ [k] verifying αi < l, let Li be the language of words w over
Σ containing xi,1ui

αixi,2 as a subword but not xi,1ui
αi+1xi,2 and such that w =

y1uiy2 with y1 ∈ xi,1�Σ∗ and y2 ∈ xi,2�Σ∗, where xi,1 = u1
α1 · · · ui−1

αi−1 and
xi,2 = ui+1

αi+1 · · · uk
αk . If we manage to prove that for each i ∈ [k] verifying αi <

l we have Li ∈ P(J), we can conclude that Rα
l (u1, . . . , uk) ∩ Sα

l (u1, . . . , uk) =
(u1

α1 · · · uk
αk) � Σ∗ ∩

⋂
i∈[k],αi<l Li does belong to P(J) by closure of P(J)

under intersection, Proposition 1. The lemma that follows, the main lemma in
the proof of Theorem 1, exactly shows this. The proof crucially uses the “feedback
sweeping” technique, but note that we actually don’t know how to prove it when
we do not enforce that for each i ∈ [k], the letters in ui are all distinct.

Lemma 4. Let Σ be an alphabet and u ∈ Σ+ such that its letters are all distinct.
For all α ∈ N>0 and x1, x2 ∈ Σ∗, we have

(x1u
αx2)�Σ∗ ∩

(
(x1u

α+1x2)�Σ∗)� ∩ (x1 �Σ∗)u(x2 �Σ∗) ∈ P(J) .

Proof (Sketch). Let Σ be an alphabet and u ∈ Σ+ such that its letters are all
distinct. Let α ∈ N>0 and x1, x2 ∈ Σ∗. We let

L = (x1u
αx2)�Σ∗ ∩

(
(x1u

α+1x2)�Σ∗)� ∩ (x1 �Σ∗)u(x2 �Σ∗) .

If |u| = 1, the lemma follows trivially because L is piecewise testable and hence
belongs to L(J), so we assume |u| > 1.

For each letter a ∈ Σ, we shall use 2 |u| − 1 distinct decorated letters of the
form a(i) for some i ∈ [[0, 2 |u|−2]], using the convention that a(0) = a; of course,
for two distinct letters a, b ∈ Σ, we have that a(i) and b(j) are distinct for all
i, j ∈ [[0, 2 |u| − 2]]. We denote by A the alphabet of these decorated letters. The
main idea of the proof is, for a given input length n ∈ N, to build an A-program
Ψn over Σn such that, given an input word w ∈ Σn, it first ouputs the |u| − 1
first letters of w and then, for each i going from |u| to n, outputs wi, followed
by w

(1)
i−1 · · · w(|u|−1)

i−|u|+1 (a “sweep” of |u| − 1 letters backwards down to position i −
|u|+1, decorating the letters incrementally) and finally by w

(|u|)
i−|u|+2 · · · w(2|u|−2)

i

(a “sweep” forwards up to position i, continuing the incremental decoration of
the letters). The idea behind this way of rearranging and decorating letters is
that, given an input word w ∈ Σn, as long as we make sure that w and thus

The Power of Programs over Monoids in J 325

Ψn(w) do contain x1u
αx2 as a subword but not x1u

α+1x2, then Ψn(w) can be
decomposed as Ψn(w) = y1zy2 where y1 ∈ x1�Σ∗, y2 ∈ x2�Σ∗, and |y1| , |y2|
are minimal, with z containing uβu

(1)
|u|−1 · · · u(|u|−1)

1 u
(|u|)
2 · · · u(2|u|−2)

|u| uα−β as a
subword for some β ∈ [α] if and only if w ∈ (x1�Σ∗)u(x2�Σ∗). This means we
can check whether w ∈ L by testing whether w belongs to some fixed piecewise
testable language over A.

As explained before stating the previous lemma, we can now use it to prove the
result we were aiming for.

Proposition 6. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0)
such that for each i ∈ [k], the letters in ui are all distinct. For all α ∈ [l]k, we
have Rα

l (u1, . . . , uk) ∩ Sα
l (u1, . . . , uk) ∈ P(J).

We thus derive the awaited corollary.

Corollary 1. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈Σ+ (k ∈ N>0) such
that for each i ∈ [k], the letters in ui are all distinct. Then, [u1, . . . , uk]l ∈ P(J).

However, what we really want to obtain is that [u1, . . . , uk]l ∈ P(J) without
putting any restriction on the ui’s. But, in fact, to remove the constraint that
the letters must be all distinct in each of the ui’s, we simply have to decorate
each of the input letters with its position minus 1 modulo a big enough d ∈ N>0.
This finally leads to the following proposition.

Proposition 7. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0).
Then [u1, . . . , uk]l ∈ P(J).

This finishes to prove Theorem 1 by closure of P(J) under Boolean combi-
nations (Proposition 1) and by the discussion at the beginning of Subsect. 4.1.

5 Conclusion

Although P(J) is very small compared to AC0, we have shown that programs
over monoids in J are an interesting subject of study in that they allow to
do quite unexpected things. The “feedback-sweeping” technique allows one to
detect presence of a factor thanks to such programs as long as this factor does
not appear too often as a subword: this is the basic principle behind threshold
dot-depth one languages, that our article shows to belong wholly to P(J).

Whether threshold dot-depth one languages with additional positional mod-
ular counting do correspond exactly to the languages in L(QDA)∩L(Q(J ∗ D))
seems to be a challenging question, that we leave open. In his Ph.D. thesis [7],
the author proved that all strongly unambiguous monomials (the basic building
blocks in L(DA)) that are imposed to belong to L(J ∗ D) at the same time are in
fact threshold dot-depth one languages. However, the proof looks much too com-
plex and technical to be extended to, say, all languages in L(DA) ∩ L(J ∗ D).
New techniques are probably needed, and we might conclude by saying that
proving (or disproving) this conjecture could be a nice research goal in algebraic
automata theory.

326 N. Grosshans

Acknowledgements. The author thanks the anonymous referees for their helpful
comments and suggestions.

References

1. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983)
2. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-

nize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)
3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.

ACM 35(4), 941–952 (1988)
4. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New

York (1974)
5. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New

York (1976)
6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-

archy. Math. Syst. Theory 17(1), 13–27 (1984)
7. Grosshans, N.: The limits of Nečiporuk’s method and the power of programs over

monoids taken from small varieties of finite monoids. Ph.D. thesis, University of
Paris-Saclay, France (2018)

8. Grosshans, N., McKenzie, P., Segoufin, L.: The power of programs over monoids in
DA. In: MFCS 2017, Aalborg, Denmark, 21–25 August 2017, pp. 2:1–2:20 (2017)

9. Klíma, O., Polák, L.: Hierarchies of piecewise testable languages. Int. J. Found.
Comput. Sci. 21(4), 517–533 (2010)

10. Lautemann, C., Tesson, P., Thérien, D.: An algebraic point of view on the Crane
Beach property. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 426–440.
Springer, Heidelberg (2006). https://doi.org/10.1007/11874683_28

11. Maciel, A., Péladeau, P., Thérien, D.: Programs over semigroups of dot-depth one.
Theor. Comput. Sci. 245(1), 135–148 (2000)

12. McKenzie, P., Péladeau, P., Thérien, D.: NC1: the automata-theoretic viewpoint.
Comput. Complex. 1, 330–359 (1991)

13. Péladeau, P.: Classes de circuits booléens et variétés de monoïdes. Ph.D. thesis,
Université Pierre-et-Marie-Curie (Paris-VI), Paris, France (1990)

14. Péladeau, P., Straubing, H., Thérien, D.: Finite semigroup varieties defined by
programs. Theor. Comput. Sci. 180(1–2), 325–339 (1997)

15. Pin, J.: The dot-depth hierarchy, 45 years later. In: The Role of Theory in Com-
puter Science - Essays Dedicated to Janusz Brzozowski, pp. 177–202 (2017)

16. Pin, J.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
17. Pin, J., Straubing, H.: Some results on C-varieties. ITA 39(1), 239–262 (2005)
18. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.

LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4_23

19. Straubing, H.: Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra
36, 53–94 (1985)

20. Straubing, H.: When can one finite monoid simulate another? In: Birget, J.C.,
Margolis, S., Meakin, J., Sapir, M. (eds.) Algorithmic Problems in Groups and
Semigroups, pp. 267–288. Springer, Boston (2000). https://doi.org/10.1007/978-
1-4612-1388-8_15

21. Straubing, H.: Languages defined with modular counting quantifiers. Inf. Comput.
166(2), 112–132 (2001)

https://doi.org/10.1007/11874683_28
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-1-4612-1388-8_15
https://doi.org/10.1007/978-1-4612-1388-8_15

The Power of Programs over Monoids in J 327

22. Tesson, P.: Computational complexity questions related to finite monoids and semi-
groups. Ph.D. thesis, McGill University, Montreal (2003)

23. Tesson, P., Thérien, D.: The computing power of programs over finite monoids. J.
Autom. Lang. Comb. 7(2), 247–258 (2001)

Geometrically Closed Positive Varieties
of Star-Free Languages

Ondřej Kĺıma1 and Peter Kostolányi2(B)

1 Department of Mathematics and Statistics, Masaryk University,
Kotlářská 2, 611 37 Brno, Czech Republic

klima@math.muni.cz
2 Department of Computer Science, Comenius University in Bratislava,

Mlynská dolina, 842 48 Bratislava, Slovakia
kostolanyi@fmph.uniba.sk

Abstract. A recently introduced operation of geometrical closure on
formal languages is investigated. It is proved that the geometrical clo-
sure of a language from the positive variety V3/2, the level 3/2 of the
Straubing-Thérien hierarchy of star-free languages, always falls into the
variety RLT , which is a new variety consisting of specific R-trivial lan-
guages. As a consequence, each class of regular languages lying between
RLT and V3/2 is geometrically closed.

Keywords: Language varieties · Geometrical closure ·
Straubing-Thérien hierarchy · R-trivial monoid

1 Introduction

A geometrical closure is an operation on formal languages introduced recently
by Dubernard, Guaiana, and Mignot [8]. It is defined as follows: Take any lan-
guage L over some k-letter alphabet and consider the set called the figure of L
in [8], which consists of all elements of N

k corresponding to Parikh vectors of
prefixes of words from L. The geometrical closure of L is the language γ(L) of all
words w such that the Parikh vectors of all the prefixes of w lie in the figure of L.
This closure operator was inspired by the previous works of Blanpain, Cham-
parnaud, and Dubernard [4] and Béal et al. [3], in which geometrical languages
are studied – using the terminology from later paper [8], these can be described
as languages whose prefix closure is equal to their geometrical closure. Note that
this terminology was motivated by the fact that a geometrical language is com-
pletely determined by its (geometrical) figure. In the particular case of binary
alphabets, these (geometrical) figures were illustrated by plane diagrams in [8].

The class of all regular languages can be easily observed not to be geometri-
cally closed – that is, one can find a regular language such that its geometrical

The first author was supported by Grant 19-12790S of the Grant Agency of the Czech
Republic. The second author was supported by the grant VEGA 2/0165/16.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 328–340, 2020.
https://doi.org/10.1007/978-3-030-40608-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_23&domain=pdf
http://orcid.org/0000-0002-5474-8781
https://doi.org/10.1007/978-3-030-40608-0_23

Geometrically Closed Positive Varieties of Languages 329

closure is not regular [8] (see also the end of Sect. 2). One possible research aim
could be to characterise regular languages L for which γ(L) is regular, or to
describe some robust classes of languages with this property. Another problem
posed in [8] is to find some subclasses of regular languages that are geomet-
rically closed. As we explain in Sect. 3, non-empty group languages have their
geometrical closure equal to the universal language Σ∗. For this reason, it makes
sense to look for more interesting geometrically closed subclasses among star-free
languages, which are known to be “group-free”. More precisely, a language L is
star-free if and only if the syntactic monoid ML of L is aperiodic, that is, if ML

does not contain non-trivial groups as subsemigroups.
It is well known that the star-free languages are classified into the Straubing-

Thérien hierarchy based on polynomial and Boolean operations. In particular,
the variety V1 (i.e., the variety of languages of level 1) is formed by piecewise
testable languages and the positive variety V3/2 is formed by polynomials built
from languages of level 1. We refer to the survey paper by Pin [12] for an introduc-
tion to the Straubing-Thérien hierarchy of star-free languages and the algebraic
theory of regular languages in general. This theory is based on Eilenberg cor-
respondence between varieties of regular languages and pseudovarieties of finite
monoids. Note that one well-known instance of Eilenberg correspondence, which
plays an essential role in our contribution, is given by the pseudovariety of finite
R-trivial monoids, for which the corresponding variety of languages is denoted
by R. Nevertheless, we emphasise that our contribution is rather elementary, and
it does not use sophisticated tools developed in the algebraic theory of regular
languages.

It was proved by Dubernard, Guaiana, and Mignot [8] that the class of all
binary languages from the positive variety V3/2 is geometrically closed. They have
obtained this result by decomposing the plane diagram of the figure of a given
language into specific types of basic subdiagrams, and using this decomposition
to construct a regular expression for the language γ(L).

We prove a generalisation of the above mentioned result in this contribution.
Our approach is to concentrate on the form of languages that may arise as γ(L)
for L taken from V3/2(Σ). In other words, we do not construct a concrete reg-
ular expression for γ(L), but we determine what kind of expression exists for
such a language. In particular, we introduce a new variety of languages RLT ,
which is a subvariety of the variety R. Note that there is a transparent descrip-
tion of languages from R and also an effective characterisation via the so-called
acyclic automata (both are recalled in Sect. 4). The variety of languages RLT is
then characterised in the same manner: a precise description by specific regular
expressions and also an automata-based characterisation are given. The letters
LT in the notation RLT refer to a characteristic property of acyclic automata
in which “loops are transferred” along paths.

We show that the geometrical closure of a language from the positive variety
V3/2 always falls into the variety RLT . As a consequence, each class of regular
languages lying between RLT and V3/2 is geometrically closed. In particular, the
positive variety V3/2 is geometrically closed regardless of the alphabet, as well
as is the variety R.

330 O. Kĺıma and P. Kostolányi

2 Preliminaries

All automata considered in this paper are understood to be deterministic and
finite. An automaton is thus a five-tuple A = (Q,Σ, ·, ι, F), where Q is a finite
set of states, Σ is a non-empty finite alphabet, · : Q × Σ → Q is a complete
transition function, ι ∈ Q is the unique initial state, and F ⊆ Q is the set of
final states. The minimal automaton of a given language L is denoted by DL.

By a (positive) variety of languages, we always understand what is called
a (positive) ∗-variety in [12]. We recall this notion for a reader’s convenience
briefly. A class of languages C is an operator, which determines, for each finite
non-empty alphabet Σ, a set C(Σ∗) of languages over Σ. A positive variety
is a class of regular languages V such that V(Σ∗) is closed under quotients,
finite unions and intersections, and the whole class is closed under preimages in
homomorphisms. A positive variety V is a variety if each V(Σ∗) is closed under
complementation. Note that an alphabet could be fixed in our contribution, so
homomorphisms among different alphabets play no role, and we could consider
lattices of languages [9] instead of varieties of languages. However, we prefer to
stay in the frame of the theory of (positive) varieties of languages as a primary
aim of this paper is to describe robust classes closed under geometrical closure.

Given words u, v over an alphabet Σ, we write u ≤ v if u is a prefix of v. We
also write, for each L ⊆ Σ∗,

pref↑(L) := {u ∈ Σ∗ | ∃w ∈ L : u ≤ w} = L · (Σ∗)−1,

pref↓(L) := {w ∈ Σ∗ | ∀u ∈ Σ∗ : u ≤ w =⇒ u ∈ L}.

We call these languages the prefix closure and the prefix reduction of L, respec-
tively. Both are prefix-closed, while pref↑(L) ⊇ L and pref↓(L) ⊆ L.

Proposition 1. Each positive variety V is closed under the operator pref↑.

Proof. It is well known that each regular language has finitely many right quo-
tients by words. Thus, for each alphabet Σ and each L ∈ V(Σ∗), the language

pref↑(L) = L · (Σ∗)−1 =
⋃

w∈Σ∗
Lw−1

is a finite union of right quotients of L, and its membership to V(Σ∗) follows. ��
Let Σ = {a1, . . . , ak} be a linearly ordered alphabet. The Parikh vector of

a word w in Σ∗ is then given by Ψ(w) = (|w|a1 , . . . , |w|ak
), where |w|a denotes

the number of occurrences of the letter a in w. This notation extends naturally
to languages: we write Ψ(L) = {Ψ(w) | w ∈ L} for L ⊆ Σ∗. We denote by [w] the
equivalence class of the kernel relation of Ψ , i.e. [w] = {u ∈ Σ∗ | Ψ(u) = Ψ(w)}.
Then we also write, for each language L ⊆ Σ∗,

[L] =
⋃

w∈L

[w] = {u ∈ Σ∗ | Ψ(u) ∈ Ψ(L)}

Geometrically Closed Positive Varieties of Languages 331

and we call [L] the commutative closure of L. A language L such that L = [L] is
called commutative. A class of languages C is said to be closed under commutation
if for each alphabet Σ, the language [L] belongs to C(Σ∗) whenever L ∈ C(Σ∗).

In the previous paragraph we consider the mapping Ψ : Σ∗ → N
k, where N is

the set of all non-negative integers. Following the ideas of [8], we introduce some
technical notations concerning N

k, whose elements are called vectors. We denote
by 0 the null vector of Nk. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be vectors
and s ∈ {1, . . . , k} be an index. We write x →s y if ys −xs = 1 and, at the same
time, yi = xi for all i
= s. Moreover, x → y means that x →s y for some index
s. A path in N

k is a finite sequence π = [x0, . . . ,xn] of vectors from N
k such that

x0 = 0 and xi−1 → xi for i = 1, . . . , n; more specifically, we say that π is a path
leading to xn. This means that a path always begins in 0 and each other vector
of the path is obtained from the previous one by incrementing exactly one of its
coordinates by one. If in addition x0, . . . ,xn all belong to a set F ⊆ N

k, we say
that π is a path in F and write π ⊆ F .

Given a word w = ai1 . . . ain
in Σ∗, we write π(w) for the unique path

[x0, . . . ,xn] in N
k such that 0 = x0 →i1 x1 →i2 . . . →in

xn. Conversely, for each
path π = [x0, . . . ,xn] in N

k, there is a unique word w such that π(w) = π. We
denote this unique word w by ‖π‖. For each F ⊆ N

k, we denote ‖F‖ the set
{‖π‖ | π ⊆ F}. Note that the language ‖F‖ is prefix-closed.

Moreover, we put fig(L) = Ψ(pref↑(L)) for each L ⊆ Σ∗. The set fig(L) ⊆ N
k

is a connex figure in the sense of [8], i.e., for each x ∈ fig(L), there is a path π
leading to x such that π ⊆ fig(L).

Finally, the geometrical closure of L is a language γ(L) = ‖fig(L)‖. A class
of languages C is said to be geometrically closed if the language γ(L) belongs to
C(Σ∗) whenever L does, for each alphabet Σ.

Note that the class of all regular languages is not geometrically closed, as
observed in [8]. For instance, the language L = a∗(ab)∗ is regular, while its
geometrical closure γ(L) = {w ∈ {a, b}∗ | ∀u ≤ w : |u|a ≥ |u|b} is the prefix
closure of the Dyck language.

3 A Characterisation of the Geometrical Closure

We now characterise the operation of geometrical closure via three simpler oper-
ations: the prefix closure, the commutative closure, and the prefix reduction.
This characterisation is a key to our later considerations.

Proposition 2. If L is a language over Σ, then γ(L) = pref↓
([

pref↑(L)
])

.

Proof. By definition,

γ(L) = ‖fig(L)‖ =
∥∥∥Ψ(pref↑(L))

∥∥∥ .

332 O. Kĺıma and P. Kostolányi

If w ∈ γ(L), then there is a path π = [x0, . . . ,xn] ⊆ Ψ(pref↑(L)) such that
w = ‖π‖. For an arbitrary prefix u of w, we have π(u) = [x0, . . . ,xm] for some
m ≤ n. It follows that Ψ(u) = xm belongs to Ψ(pref↑(L)). Hence u ∈ [pref↑(L)]
and w belongs to pref↓([pref↑(L)]).

On the other hand, if w belongs to pref↓([pref↑(L)]), then all prefixes u of w
belong to [pref↑(L)]. Thus Ψ(u) is in Ψ(pref↑(L)) for each u ≤ w, and π(w) is
a path in Ψ(pref↑(L)), implying that w is in ‖Ψ(pref↑(L))‖ = γ(L). ��

As a direct consequence of Propositions 1 and 2, we obtain the following
sufficient condition, under which a positive variety of languages is geometrically
closed.

Corollary 3. Each positive variety of regular languages closed under prefix
reduction and commutation is geometrically closed.

Some positive varieties of languages V are geometrically closed for trivial
reasons – for instance all V such that γ(L) = Σ∗ for all non-empty L ∈ V(Σ∗).
Let us observe that this is the case for L whenever pref↑(L) = Σ∗. The proof of
the following lemma is easy to see. We just note that by an absorbing state we
mean a state p satisfying p · a = p for every a ∈ Σ.

Lemma 4. Let L be a regular language over an alphabet Σ and DL be the min-
imal automaton of L. Then the following conditions are equivalent:

(i) pref↑(L) = Σ∗;
(ii) for each state p in DL, there exists a final state reachable from p;
(iii) every absorbing state p in DL is final.

The conditions of Lemma 4 are satisfied in particular for all non-empty group
languages. The variety G, consisting of all languages L such that the syntactic
monoid ML is a group, is geometrically closed as a consequence. This result can
be extended to languages of the form L = L0a1L1 . . . a�L�, where each ai is
a letter, and each Li is a non-empty group language. Indeed, for every u ∈ Σ∗,
there is some w ∈ L0 such that u ≤ w, and one can find at least one wi ∈ Li for
every i = 1, . . . , �. Then u is a prefix of the word wa1w1 . . . a�w� ∈ L. This implies
that pref↑(L) = Σ∗. We may thus conclude that the variety G1/2, consisting of
languages of level 1/2 in the group hierarchy, is geometrically closed. (The reader
not familiar with the group hierarchy is referred to [12]).

In the rest of the paper, we move our attention to star-free languages.

4 Languages Recognised by LT-acyclic Automata

We now introduce the class of languages RLT , which plays a central role in our
main result. For every alphabet Σ, the set RLT (Σ∗) consists of languages which
are finite unions of languages of the form

L = Σ∗
0a1Σ

∗
1a2 . . . anΣ∗

n, (1)
where Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn ⊆ Σ and ai ∈ Σ \ Σi−1 for i = 1, . . . , n.

Geometrically Closed Positive Varieties of Languages 333

The previous definition is similar to definitions of other classes of languages
that have already been studied in literature. First of all, if we omit the condition
Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn, we get a definition of languages from the variety R
corresponding to R-trivial monoids, which we recall in more detail later. Let
us conclude here just that RLT ⊆ R. Secondly, if we also require ai ∈ Σi+1

in (1) for i = 1, . . . , n − 1, then we obtain a variety of languages considered by
Pin, Straubing, and Thérien [13] and corresponding to a pseudovariety of finite
monoids denoted R1. Finally, if we drop in (1) the condition ai
∈ Σi−1 and then
we generate a variety, then we obtain the variety of languages corresponding to
the pseudovariety JMK considered by Almeida [1, p. 236].

Since we want to characterise languages from RLT in terms of automata,
we recall the characterisation of languages from R first. An automaton A =
(Q,Σ, ·, ι, F) is acyclic if every cycle in A is a loop. This means that if p · w = p
for some p ∈ Q and w ∈ Σ∗, then also p · a = p for every letter a occurring in w.
The defining condition means that one can number the states in Q as 1, . . . , |Q|
in such a way that the state p · a, with p ∈ Q and a ∈ Σ, is always greater than
or equal to p. For this reason, these automata are called extensive in [11, p. 93].
It is known that they recognise precisely R-trivial languages [6].

We say that an acyclic automaton A = (Q,Σ, ·, ι, F) has a loop transfer
property, if p · a = p implies (p · b) · a = p · b for every p ∈ Q and a, b ∈ Σ.
We then call A an LT-acyclic automaton for short. This means that if there is
an a-labelled loop in a state p in an LT-acyclic automaton, then there is also
an a-labelled loop in each state reachable from p. We may thus equivalently
take b ∈ Σ∗ in the previous definition. The first aim of this section is to show
that languages recognised by LT-acyclic automata are precisely those from RLT .
We do so via a series of elementary lemmas.

Lemma 5. For a language L of the form (1), the automaton DL is LT-acyclic.

Proof. Let L be a language L = Σ∗
0a1Σ

∗
1a2 . . . anΣ∗

n of the form (1). For every
i = 1, . . . , n, we denote Γi−1 = Σ \ (Σi−1 ∪ {ai}) and we also put Γn = Σ \ Σn.
Then it is an easy exercise to show that the automaton in Fig. 1 is the minimal
automaton of L and that it is an LT-acyclic automaton. ��

Lemma 6. Let L, K be languages over an alphabet Σ recognised by LT-acyclic
automata. Then L ∪ K is also recognised by an LT-acyclic automaton.

Proof. The language L ∪ K can be recognised by the direct product of a pair of
automata that recognise the languages L and K. It is a routine to check that
a finite direct product of LT-acyclic automata is an LT-acyclic automaton. ��

The previous two lemmas show that every language from RLT is recognised
by an LT-acyclic automaton. The following lemma strengthens this observation
by implying that the minimal automaton of a language from RLT is LT-acyclic.

Lemma 7. Let L be a language recognised by an LT-acyclic automaton. Then
the minimal automaton of L is also LT-acyclic.

334 O. Kĺıma and P. Kostolányi

. . .

Σ0 Σ1 Σn−1 Σn

Σ

a1 a2 an−1 an

Γ0

Γ1
Γn−1

Γn

Fig. 1. An LT-acyclic automaton for the language of the form (1).

Proof. Let A = (Q,Σ, ·, ι, F) be an LT-acyclic automaton such that ‖A‖ = L.
The minimal automaton DL is a homomorphic image of some subautomaton of
A [14]. It is clear that a subautomaton of an LT-acyclic automaton is LT-acyclic.
Thus we may assume that A has all states reachable from the initial state ι.

Let ϕ : Q → P be a surjective mapping, which is a homomorphism from the
automaton A onto an automaton B = (P,Σ, •, ϕ(ι), ϕ(F)). We claim that B is
acyclic. To prove this claim, let p ∈ P and w ∈ Σ∗ be such that p•w = p. Then we
choose some state q′ from ϕ−1(p). For that q′, we have q′ ·wm ∈ ϕ−1(p) for every
natural number m. Since the sequence q′, q′ · w, q′ · w2, . . . contains only finitely
many states, there are natural numbers n and m such that q′ ·wn+m = q′ ·wn = q.
Since A is acyclic, we have q·a = q for every letter a occurring in w. Consequently,
p • a = ϕ(q) • a = ϕ(q · a) = ϕ(q) = p. We showed that B is acyclic.

Now let p ∈ P and a ∈ Σ be such that p • a = p. It follows from the previous
paragraph that there is q ∈ ϕ−1(p) such that q · a = q. Since A is LT-acyclic, we
see that (q · b) · a = q · b for every b ∈ Σ. Thus p • ba = ϕ(q · ba) = ϕ(q · b) =
p • b. We showed that B is an LT-acyclic automaton. In particular, it is true
for DL. ��

Let us also prove a converse to the statements established above.

Lemma 8. Let A be an LT-acyclic automaton over an alphabet Σ. Then ‖A‖
belongs to RLT (Σ∗).

Proof. Let A = (Q,Σ, ·, ι, F) and let R be the set of all valid runs in the automa-
ton A, which do not use loops:

R = {(q0, a1, q1, a2, . . . , an, qn) | n ∈ N; q0, . . . , qn ∈ Q; a1, . . . , an ∈ Σ;
q0 = ι; qn ∈ F ;∀j ∈ {1, . . . , n} : qj−1
= qj ∧ qj−1 · aj = qj}.

Geometrically Closed Positive Varieties of Languages 335

We see that the set R is finite. Moreover, for each q in Q, let Σq denote the
alphabet Σq = {c ∈ Σ | q · c = q}. Then

Lw := Σ∗
q0a1Σ

∗
q1a2 . . . anΣ∗

qn
⊆ ‖A‖

is a language of the form (1) for each w = (q0, a1, q1, a2, . . . , an, qn) in R and

‖A‖ =
⋃

w∈R

Lw.

Hence the language ‖A‖ belongs to RLT (Σ∗). ��
The following theorem provides a summary of the previous lemmas.

Theorem 9. For a language L ⊆ Σ∗, the following statements are equivalent:

(i) L belongs to RLT (Σ∗).
(ii) L is recognised by an LT-acyclic automaton.
(iii) The minimal automaton of L is LT-acyclic.

Proof. The statement (i) implies (ii) by Lemmas 5 and 6. The statement (ii)
implies (iii) by Lemma 7. Finally, (iii) implies (i) by Lemma 8. ��

One may prove that RLT is a variety of languages in several different ways.
It is possible to prove directly that the class RLT is closed under basic language
operations. It is also possible to prove that the class of LT-acyclic automata
forms a variety of actions in the sense of [7]. Here we complete the previous
characterisation by showing the algebraic counterpart of the class RLT ; namely,
we characterise the corresponding pseudovariety of finite monoids by pseudoiden-
tities. We do not want to recall the notion of pseudoidentities in general. Let us
only recall the implicit operation xω here. If we substitute for x some element s
in a finite monoid M , then the image of xω is sω, which is a unique idempotent
in the subsemigroup of M generated by s. It could be useful to know that, for
a fixed finite monoid M , there is a natural number m such that sω = sm for
each s ∈ M .

Theorem 10. Let Σ be an alphabet, L ⊆ Σ∗, and ML the syntactic monoid
of L. The following statements are equivalent:

(i) L belongs to RLT (Σ∗).
(ii) ML satisfies the pseudoidentities (xy)ωx = (xy)ω and xωyx = xωy.
(iii) ML satisfies the pseudoidentity (xy)ωzx = (xy)ωz.

Proof. Let DL = (Q,Σ, ·, ι, F) be the minimal automaton of the language L.
Then ML can be viewed as the transition monoid of DL (see [12, p. 692]).
Elements of ML are thus transitions of DL determined by words from Σ∗. More
formally, for u ∈ Σ∗, we denote by fu the transition given by the rule p �→ p · u
for each p ∈ Q. Let m be a natural number such that sω = sm for each s in ML.

336 O. Kĺıma and P. Kostolányi

Let us prove that (i) implies (ii). Suppose that L belongs to RLT (Σ∗). Then
DL is an LT-acyclic automaton by Theorem 9. In particular, the language L
is R-trivial as we already mentioned. Hence, the monoid ML is R-trivial, i.e.,
ML satisfies the pseudoidentity (xy)ωx = (xy)ω. Next, let x, y be mapped to
elements in ML which are given by words v, w ∈ Σ∗. We now need to check that
fvmfwfv = fvmfw. Since DL is acyclic, we have (p · vm) · a = p · vm for every
p ∈ Q and a ∈ Σ occurring in v. Since DL is an LT-acyclic automaton, the loop
labelled by a in state p · vm is transferred to every state reachable from p · vm.
In particular, for every letter a occurring in v, there is a loop labelled by a in
the state (p · vm) · w. The equality fvmfwfv = fvmfw follows.

Next, let us show that the pseudoidentity (xy)ωzx = (xy)ωz is a consequence
of pseudoidentities from item (ii). We may interpret x, y, z as arbitrary elements
of any finite monoid M satisfying these pseudoidentities. Let m be such that
sω = sm for each s ∈ M . Then we use the second pseudoidentity from (ii)
repetitively, and we get

(xy)ωz = (xy)ωzxy = (xy)ωz(xy)2 = . . . = (xy)ωz(xy)m = (xy)ωz(xy)ω. (2)

By the first pseudoidentity from (ii), we get (xy)ωz(xy)ω = (xy)ωz(xy)ωx. Then
we obtain (xy)ωz(xy)ωx = (xy)ωzx using the equality (2). Thus we get (xy)ωz =
(xy)ωz(xy)ω = (xy)ωz(xy)ωx = (xy)ωzx.

Finally, in order to prove that (iii) implies (i), suppose that ML satisfies
the pseudoidentity (xy)ωzx = (xy)ωz. Taking z = 1, it follows that ML satisfies
the pseudoidentity (xy)ωx = (xy)ω. Hence, L is R-trivial and DL is acyclic.
Moreover, let p ∈ Q and a ∈ Σ be such that p · a = p, and take arbitrary
b ∈ Σ. Then faωfb in ML maps p to p · b. Similarly, faωfbfa in ML maps p to
p · ba. However, taking x �→ a, y �→ 1, and z �→ b in (xy)ωzx = (xy)ωz gives us
faωfbfa = faωfb. Therefore, p · ba = p · b. So, we see that there is a loop labelled
by a in the state p · b. We proved that DL is an LT-acyclic automaton and L
belongs to RLT (Σ∗) by Theorem 9. ��
Corollary 11. The class RLT is a variety of languages corresponding to the
pseudovariety of finite monoids RLT given by

RLT = �(xy)ωzx = (xy)ωz� = �(xy)ωx = (xy)ω, xωyx = xωy�.

Let us also note that �xωyx = xωy� is known to describe the pseudovariety
of finite monoids MK; cf. Almeida [1, p. 212], who attributes this result to Pin.
Therefore, RLT = R ∩ MK.

5 The Main Result

Let us now return to the geometrical closure and prove the main result of this
paper: each class of languages lying between the variety of languages RLT and the
positive variety V3/2 is geometrically closed. This strengthens the result from [8]
mentioned in the Introduction.

The route that we take to this result (Theorem 16) consists of three steps:

Geometrically Closed Positive Varieties of Languages 337

1. We recall that the class V3/2 is closed under commutation [5,10]. Although
it is not necessary to obtain our main result, we refine this observation by
proving that a commutative closure of a V3/2-language is piecewise testable.

2. We prove that each commutative V3/2-language belongs to RLT .
3. We observe that the variety RLT is closed under prefix reduction.

These three observations imply that the geometrical closure of a V3/2-language
belongs to RLT , from which our main result follows easily.

Recall the result of Arfi [2], according to which a language belongs to V3/2

if and only if it is given by a finite union of languages Σ∗
0a1Σ

∗
1a2 . . . anΣ∗

n,
where a1, . . . , an are letters from Σ and Σ0, . . . , Σn are subalphabets of Σ. It
follows by a more general result of Guaiana, Restivo, and Salemi [10], or of
Bouajjani, Muscholl, and Touili [5] that V3/2 is closed under commutation, and
this observation is a first step to Theorem 16.

Let us show that a commutative closure of a V3/2-language is in fact piecewise
testable.

Lemma 12. A commutative closure of a V3/2-language is piecewise testable.

Proof. Let an alphabet Σ be fixed. It is clear that if L1, . . . , Lm ⊆ Σ∗ are
languages, then [

m⋃

i=1

Li

]
=

m⋃

i=1

[Li].

As a result, it is enough to prove piecewise testability of [L] for all languages
L = Σ∗

0a1Σ
∗
1a2 . . . anΣ∗

n, with a1, . . . , an ∈ Σ and Σ0, . . . , Σn ⊆ Σ.
Let L be of this form. Denote Σ′ = Σ0 ∪ . . . ∪ Σn, and x = a1 . . . an. We

claim that

[L] = {w ∈ Σ∗ | ∀a ∈ Σ′ : |w|a ≥ |x|a; ∀b ∈ Σ \ Σ′ : |w|b = |x|b } . (3)

Indeed, if w is in [L], then Ψ(w) = Ψ(u) for some u ∈ L, while clearly |u|a ≥ |x|a
for each a in Σ′, and |u|b = |x|b for each b in Σ \ Σ′. Conversely, let w in Σ∗ be
such that |w|a ≥ |x|a for each a in Σ′, and |u|b = |x|b for each b in Σ \ Σ′. Then
Ψ(w) = Ψ(v) for v in Σ∗ given by v = v0a1v1a2 . . . anvn, where vi (i = 0, . . . , n)
is given as follows: if Σi \ (Σ0 ∪ . . . ∪ Σi−1) = {b1, . . . , bj}, then

vi = b
|w|b1−|x|b1
1 . . . b

|w|bj
−|x|bj

j .

The word v is in L by construction, hence w belongs to [L].
It remains to observe that the language [L] given by (3) is piecewise testable.

However, this language is equal to

[L] =
⋂

a∈Σ′
(Σ∗a)|x|aΣ∗ ∩

⋂

b∈Σ\Σ′

(
(Σ∗b)|x|bΣ∗ ∩

(
(Σ∗b)|x|b+1Σ∗

)C
)

. (4)

The language on the right-hand side of (4) is piecewise testable. ��

338 O. Kĺıma and P. Kostolányi

We now proceed to prove that the geometrical closure of each language from
V3/2 belongs to RLT .

Lemma 13. Every commutative language L from V3/2 belongs to RLT .

Proof. If we take into account the proof of Lemma 12 and the fact that RLT

is closed under finite unions, it is enough to prove that every language of the
form (3) belongs to RLT . We may also use the expression (4) for that language.
For each letter a ∈ Σ and a natural number m, we may write (Σ∗a)mΣ∗ =
((Σ \ {a})∗a)mΣ∗. This shows that the language (Σ∗a)mΣ∗ belongs to RLT .
Since RLT is a variety, we see that also the language ((Σ∗a)mΣ∗)C belongs to
RLT . Altogether, the language (4) belongs to the variety RLT . ��

Finally, let us observe that the variety RLT is closed under prefix reduction.

Lemma 14. Let L be a language from RLT (Σ∗) for some alphabet Σ. Then
pref↓(L) belongs to RLT (Σ∗) as well.

Proof. Let L be recognised by some LT-acyclic automaton A = (Q,Σ, ·, ι, F). If
ι
∈ F , then L does not contain the empty word, and consequently pref↓(L) = ∅,
which belongs to RLT (Σ∗). So we may assume that ι ∈ F .

Now, simply saying, we claim that the language pref↓(L) is recognised by
the automaton A′ constructed from A by replacing all non-final states with
a single absorbing non-final state τ . More precisely, we construct an automaton
A′ = (F ∪ {τ}, Σ, •, ι, F), where τ is a new state, for which we define τ • a = τ
for each a ∈ Σ. Furthermore, for each p ∈ F and a ∈ Σ, we put p • a = p · a if
p · a ∈ F , and p • a = τ otherwise. As A contains no cycle other than a loop,
the constructed automaton A′ has the same property. Moreover, any state of
A′ reachable in A′ from some p in F ∪ {τ} is either reachable from p in A, or
equal to τ . As τ • c = τ for each c in Σ, this implies that A′ is an LT-acyclic
automaton and pref↓(L) belongs to RLT (Σ∗) by Theorem 9. ��
Theorem 15. Let Σ be an alphabet and L ∈ V3/2(Σ∗). Then γ(L) ∈ RLT (Σ∗).

Proof. We have γ(L) = pref↓([pref↑(L)]) by Proposition 2. As V3/2 is a positive
variety of languages, pref↑(L) belongs to V3/2(Σ∗) whenever L belongs to this set
by Proposition 1. The language [pref↑(L)] is thus a commutative V3/2-language
by [5,10]. (Note that the language [pref↑(L)] is actually commutative piecewise
testable, by Lemma 12.) It follows by Lemma 13 that [pref↑(L)] belongs to
RLT (Σ∗), and by Lemma 14 that the language γ(L) = pref↓([pref↑(L)]) belongs
to RLT (Σ∗) as well. ��

We are now prepared to state the main result of this article merely as an
alternative formulation of the theorem above.

Geometrically Closed Positive Varieties of Languages 339

Theorem 16. Let C be a class of languages containing RLT , which is contained
in V3/2. Then C is geometrically closed.

There are many important (positive) varieties studied in the literature for
which the main result can be applied.

Corollary 17. The following classes are geometrically closed: the positive vari-
ety V3/2, the variety R, the variety RLT , the variety of all JMK-recognisable
languages, the variety of all DA-recognisable languages.

The variety of all DA-recognisable languages coincides with the intersection
of V3/2 and its dual. This class has a natural interpretation in terms of logical
descriptions of levels in Straubing-Thérien hierarchy (see Section 5 in [15]).

6 Conclusions

We have introduced a new variety of languages RLT and we have proved that
geometrical closures of languages from V3/2 fall into RLT . As a consequence,
we have seen that many natural classes of star-free languages are geometrically
closed, namely those between the variety RLT and the positive variety V3/2. On
the contrary, the variety of all piecewise testable languages V1 is not geometri-
cally closed. The example is not included in the paper due to space limitations.

There are some interesting questions in connection to the paper. First of all,
one may ask how to effectively construct a regular expression for the geometrical
closure γ(L) for a given language L from V3/2. Note that it is effectively testable,
for a given deterministic finite automaton A, whether the language ‖A‖ belongs
to V3/2 (see [12, p. 725]). It is not clear to us whether a regular expression for
‖A‖ can be effectively computed from A.

Nevertheless, the main open question related to the topic is to clarify
the behaviour of the geometrical closure outside the class V3/2.

References

1. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore
(1994)

2. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theor. Comput.
Sci. 91(1), 71–84 (1991)

3. Béal, M.-P., Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H., Lombardy, S.:
Decidability of geometricity of regular languages. In: Yen, H.-C., Ibarra, O.H. (eds.)
DLT 2012. LNCS, vol. 7410, pp. 62–72. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31653-1 7

4. Blanpain, B., Champarnaud, J.M., Dubernard, J.P.: Geometrical languages. In:
LATA 2007, pp. 127–138 (2007)

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic
verification. Inf. Comput. 205(2), 199–224 (2007)

6. Brzozowski, J.A., Fich, F.E.: Languages of R-trivial monoids. J. Comput. Syst.
Sci. 20(1), 32–49 (1980)

https://doi.org/10.1007/978-3-642-31653-1_7
https://doi.org/10.1007/978-3-642-31653-1_7

340 O. Kĺıma and P. Kostolányi

7. Chaubard, L., Pin, J.É., Straubing, H.: Actions, wreath products of C-varieties
and concatenation product. Theor. Comput. Sci. 356(1–2), 73–89 (2006)

8. Dubernard, J.-P., Guaiana, G., Mignot, L.: Geometrical closure of binary V3/2

languages. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS,
vol. 11417, pp. 302–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-13435-8 22

9. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, (Track B). LNCS, vol.
5126, pp. 246–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70583-3 21

10. Guaiana, G., Restivo, A., Salemi, S.: On the trace product and some families of
languages closed under partial commutations. J. Autom. Lang. Comb. 9(1), 61–79
(2004)

11. Pin, J.É.: Varieties of Formal Languages. North Oxford Academic Publishers, Lon-
don (1986)

12. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/
10.1007/978-3-642-59136-5 10

13. Pin, J.É., Straubing, H., Thérien, D.: Small varieties of finite semigroups and exten-
sions. J. Aust. Math. Soc. 37(2), 269–281 (1984)

14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

15. Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Semigroups,
Algorithms, Automata and Languages, pp. 475–499. World Scientific (2002)

https://doi.org/10.1007/978-3-030-13435-8_22
https://doi.org/10.1007/978-3-030-13435-8_22
https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10

Intersection and Union Hierarchies
of Deterministic Context-Free Languages

and Pumping Lemmas

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. We study the computational complexity of finite inter-
sections and unions of deterministic context-free languages. Earlier,
Wotschke (1978) demonstrated that intersections of (d+1) deterministic
context-free languages are in general more powerful than intersections of
d deterministic context-free languages for any positive integer d based
on the hierarchy separation of Liu and Weiner (1973). The argument of
Liu and Weiner, however, works only on bounded languages of particular
forms, and therefore Wotschke’s result cannot be extended to disprove
any other language to be written in the form of an intersection of d deter-
ministic context-free languages. To deal with the non-membership of a
wide range of languages, we circumvent their proof argument and instead
devise a new, practical technical tool: a pumping lemma for finite unions
of deterministic context-free languages. Since the family of deterministic
context-free languages is closed under complementation, this pumping
lemma enables us to show a non-membership relation of languages made
up with finite intersections of even non-bounded languages as well. We
also refer to a relationship to Hibbard’s limited automata.

Keywords: Deterministic pushdown automata · Intersection and
union hierarchies · Pumping lemma · Limited automata

1 A Historical Account and an Overview of Contributions

1.1 Intersection and Union Hierarchies and Historical Background

In formal language theory, context-free languages constitute a fundamental fam-
ily CFL, which is situated in between the family REG of regular languages
and that of context-sensitive languages. It has been well known that this family
CFL is closed under an operation of union but not closed under intersection.
As a quick example, the language Labc = {anbncn | n ≥ 0} is not context-free
but it can be expressed as an intersection of two context-free languages. This
non-closure property can be further generalized to any intersection of d (≥ 1)
context-free languages. For later notational convenience, we here write CFL(d)
for the family of such languages, namely, the d intersection closure of CFL (see,
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 341–353, 2020.
https://doi.org/10.1007/978-3-030-40608-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_24

342 T. Yamakami

e.g., [13]). With this notation, the above language Labc belongs to CFL(2)−CFL.
Similarly, the language Ld = {an1

1 an2
2 · · · and

d bn1
1 bn2

2 · · · bnd

d | n1, n2, . . . , nd ≥ 0}
over an alphabet {a1, a2, . . . , ad, b1, b2, . . . , bd} falls into CFL(d) because Ld

can be expressed as an intersection of d context-free languages of the form
{an1

1 an2
2 · · · and

d bm1
1 bm2

2 · · · bmd

d | n1, n2, . . . , nd,m1,m2, . . . ,md ≥ 0, nk = mk}
(1 ≤ k ≤ d). In 1973, Liu and Weiner [8] gave a contrived proof to their key
statement that (*) Ld is outside of CFL(d − 1) for any index d ≥ 2. Therefore,
the collection {CFL(d) | d ≥ 1} truly forms an infinite hierarchy.

Deterministic context-free (dcf) languages have been a focal point in CFL
since a systematic study of Ginsburg and Greibach [1]. The importance of such
languages can be exemplified by the facts that dcf languages are easy to parse
and that every context-free language is simply the homomorphic image of a dcf
language. Unlike CFL, the family DCFL of dcf languages is closed under neither
union nor intersection. We use the terms of d-intersection deterministic context-
free (dcf) languages and d-union deterministic context-free (dcf) languages to
express intersections of d dcf languages and unions of d dcf languages, respec-
tively. For brevity, we write DCFL(d) and DCFL[d] respectively for the family
of all d-intersection dcf languages and that of all d-union dcf languages, while
Wotschke [11,12] earlier referred DCFL(d) to the d-intersection closure of DCFL.
In particular, we obtain DCFL(1) = DCFL[1] = DCFL. Since DCFL is closed
under complementation, it follows that the complement of DCFL(d) coincides
with DCFL[d]. For our convenience, we call two hierarchies {DCFL(d) | d ≥ 1}
and {DCFL[d] | d ≥ 1} the intersection and union hierarchies of dcf languages,
respectively. Concerning these hierarchies, we set DCFL(ω) to be the intersection
closure of DCFL, which is

⋃
d≥1 DCFL(d). In a similar way, we write DCFL[ω]

for the union closure of DCFL, that is,
⋃

d≥1 DCFL[d].
Wotschke [11,12] noted that the aforementioned result (*) of Liu and Weiner

leads to the conclusion that {DCFL[d] | d ≥ 1} truly forms an infinite hierarchy.
To be more precise, since the language Ld belongs to DCFL(d), the statement (*)
implies DCFL(d) � CFL(d−1), which instantly yields DCFL(d−1) �= DCFL(d).
Wotschke’s argument, nonetheless, heavily relies on the separation result of Liu
and Weiner, who employed a notion of stratified semi-linear set to prove the
statement (*). Notice that the proof technique of Liu and Weiner was developed
only for a particular form of bounded languages1 and it is therefore applicable
to specific languages, such as Ld. In fact, the key idea of the proof of Liu and
Weiner for Ld is to focus on the number of the occurrences of each base symbol in
{a1, . . . , ad, b1, . . . , bd} appearing in each given string w and to translate Ld into
a set Ψ(Ld) of Parikh images (#a1(w),#a2(w), . . . ,#ad

(w),#b1 , . . . ,#bd(w)) in
order to exploit the semi-linearity of Ψ(Ld), where #σ(w) expresses the total
number of symbols σ in a string w.

Because of the aforementioned limitation of Liu and Weiner’s proof tech-
nique, the scope of their proof cannot be extended to other forms of languages.
Simple examples of such languages include L

(≤)
d = {an1

1 · · · and

d bm1
1 · · · bmd

d |
∀i ∈ [d](ni ≤ mi)}, where [d] denotes the set {1, 2, . . . , d}. This is a bounded

1 A bounded language satisfies L ⊆ w∗
1w

∗
2 · · ·w∗

k for fixed strings w1, w2, . . . , wk.

Intersection and Union Hierarchies and Pumping Lemmas 343

language expanding Ld but its Parikh images do not have semi-linearity. As
another example, let us take a look at a “non-palindrome” language NPal#d =
{w1#w2# · · · #wd#v1#v2# · · · #vd | ∀i ∈ [d](wi, vi ∈ {0, 1}∗∧vi �= wR

i)}, where
wR

i expresses the reversal of wi. This NPal#d is not even a bounded language.
Therefore, Liu and Weiner’s argument is not directly applicable to verify that
neither L

(≤)
d nor NPal#d belongs to CFL(d− 1) unless we dextrously pick up its

core strings that form a certain bounded language. With no such contrived argu-
ment, how can we prove L

(≤)
d and NPal#d to be outside of DCFL(d)? Moreover,

given a language, how can we verify that it is not in DCFL(ω)? We can ask simi-
lar questions for d-union dcf languages and the union hierarchy of dcf languages.
Ginsburg and Greibach [1] remarked with no proof that the context-free lan-
guage Pal = {wwR | w ∈ Σ∗} for any non-unary alphabet Σ is not in DCFL[ω].
It is natural to call for a formal proof of the remark of Ginsburg and Greibach.
Using a quite different language Lwot = {wcx | w, x ∈ {a, b}∗, w �= x}, however,
Wotschke [11,12] actually proved that Lwot does not belong to DCFL(ω) (more
strongly, the Boolean closure of DCFL) by employing the closure property of
DCFL(d) under inverse gsm mappings as well as complementation and intersec-
tion with regular languages. Wotschke’s proof relies on the following two facts.
(i) The language Ld+1 can be expressed as the inverse gsm map of the language
Dupc = {wcw | w ∈ {a, b}∗}, restricted to a+

1 a+
2 · · · a+

d+1a
+
1 a+

2 · · · a+
d+1. (ii) Dupc

is expressed as the complement of Lwot, restricted to a certain regular language.
Together with these facts, the final conclusion comes from the aforementioned
result (*) of Liu and Weiner because Dupc ∈ DCFL(d) implies Ld+1 ∈ DCFL(d)
by (i) and (ii). To our surprise, the fundamental results on DCFL(d) that we
have discussed so far are merely “corollaries” of the main result (*) of Liu and
Weiner!

For further study on DCFL(d) and answering more general non-membership
questions to DCFL(d), we need to divert from Liu and Weiner’s contrived argu-
ment targeting the statement (*) and to develop a completely different, new,
more practical technical tool. The sole purpose of this exposition is, therefore,
set to (i) develop a new proof technique, which can be applicable to many other
languages, (ii) present an alternative proof for the fact that the intersection and
union hierarchies of DCFL are infinite hierarchies, and (iii) present other lan-
guages in CFL that do not belong to DCFL(ω) (in part, verifying Ginsburg and
Greibach’s remark for the first time).

In relevance to the union hierarchy of dcf languages, there is another known
extension of DCFL using a different machine model called limited automata,2

which are originally invented by Hibbard [3] and later discussed extensively in,
e.g., [9,14]. Of all such machines, a d-limited deterministic automaton (or a d-
lda, for short) is a deterministic Turing machine that can rewrite each tape cell
in between two endmarkers only during the first d visits (except that making a

2 Hibbard [3] actually defined a rewriting system, called “scan-limited automata.”
Later, Pighizzini and Pisoni [9] re-formulated Hibbard’s system as restricted linear
automata.

344 T. Yamakami

turn of a tape head counts as double visits). We can raise a question of whether
there is any relationship between the union hierarchy and d-lda’s.

1.2 Overview of Main Contributions

In Sect. 1.1, we have noted that fundamental properties associated with DCFL(d)
heavily rely on the single separation result (*) of Liu and Weiner. However, Liu
and Weiner’s technical tool that leads to their main result does not seem to
withstand a wide variety of direct applications. It is thus desirable to develop a
new, simple, and practical technical tool that can find numerous applications for
a future study on DCFL(d) and DCFL[d]. Thus, our main contribution of this
exposition is to present a simple but powerful, practical technical tool, called
the pumping lemma of languages in DCFL[d] with d ≥ 1, which also enriches
our understanding of DCFL[d] as well as DCFL(d). Notice that there have been
numerous forms of so-called pumping lemmas (or iteration theorems) for variants
of context-free languages in the past literature, e.g., [2,4–7,10,15]. Our pumping
lemma is a crucial addition to the list of such lemmas.

For a string x of length n and any number i ∈ [n], x[i] stands for the ith
symbol of x and xi for the i repetitions of x.

Lemma 1 (Pumping Lemma for DCFL[d]). Let d be any positive integer
and let L be any d-union dcf language over an alphabet Σ. There exist a constant
c > 0 such that, for any d + 1 strings w1, w2, . . . , wd+1 ∈ L, if wi has the form
xy(i) for strings x, y(i) ∈ Σ∗ with |x| > c and y(i)[1] = y(j)[1] for any pair
i, j ∈ [d + 1], then there exists two distinct indices j1, j2 ∈ [d + 1] for which the
following conditions (1)–(2) hold. Let k ∈ [d + 1].

1. If k /∈ {j1, j2}, then either (a) or (b) holds.
(a) There is a factorization x = u1u2u3u4u5 with |u2u4| ≥ 1 and |u2u3u4| ≤ c

such that u1u
i
2u3u

i
4u5y

(k) is in L for any number i ≥ 0.
(b) There are two factorizations x = u1u2u3 and y(k) = y1y2y3 with |u2| ≥ 1

and |u2u3| ≤ c such that u1u
i
2u3y1y

i
2y3 is in L for any number i ≥ 0.

2. In the case of k ∈ {j1, j2}, either (a) or (b) holds.
(a) There is a factorization x = u1u2u3u4u5 with |u2u4| ≥ 1 and |u2u3u4| ≤ c

such that, for each z ∈ {y(j1), y(j2)}, u1u
i
2u3u

i
4u5z is in L for any i ≥ 0.

(b) Let x′y = xy(j1) and x′ŷ = xy(j2). There are three factorizations x′ =
u1u2u3, y = y1y2y3, and ŷ = z1z2z3 with |u2| ≥ 1 and |u2u3| ≤ c such
that u1u

i
2u3y1y

i
2y3 and u1u

i
2u3z1z

i
2z3 are in L for any number i ≥ 0.

As a special case of d = 1, we obtain Yu’s pumping lemma [15, Lemma
1] from Lemma 1. Since there have been few machine-based analyses to prove
various pumping lemmas in the past literature, one of the important aspects
of this exposition is a clear demonstration of the first alternative proof to Yu’s
pumping lemma, which is solely founded on an analysis of behaviors of 1dpda’s
instead of derivation trees of LR(k) grammars as in [15]. The proof of Lemma 1,
in fact, exploits early results of [14] on an ideal shape form (Sect. 2.3) together

Intersection and Union Hierarchies and Pumping Lemmas 345

with a new approach of ε-enhanced machines by analyzing transitions of crossing
state-stack pairs (Sect. 2.4). These notions will be explained in Sect. 2 and their
basic properties will be explored therein.

Using our pumping lemma (Lemma 1), we can expand the scope of the state-
ment (*) of Liu and Weiner [8] targeting specific bounded languages to other
types of languages, including L

(≤)
d and NPal#d for each index d ≥ 2.

Theorem 1. Let d ≥ 2 be any index.

1. The language L
(≤)
d is not in DCFL(d − 1).

2. The language NPal#d is not in DCFL(d − 1).

Since Lemma 1 concerns with DCFL[d], in our proof of Theorem 1, we first
take the complements of the above languages, restricted to suitable regular lan-
guages, and we then apply Lemma 1 appropriately to them. The proof sketch of
this theorem will be given in Sect. 3. From Theorem 1, we instantly obtain the
following consequences of Wotschke [11,12].

Corollary 1. [11,12] The intersection hierarchy of dcf languages and the union
hierarchy of dcf languages are both infinite hierarchies.

Concerning the limitation of DCFL(ω) and DCFL[ω] in recognition power,
since all unary context-free languages are also regular languages and the fam-
ily REG of regular languages is closed under intersection, all unary languages
in DCFL(ω) are regular as well. It is thus easy to find languages that are not
in DCFL(ω). Such languages, nevertheless, cannot serve themselves to separate
CFL from DCFL(ω) ∪ DCFL[ω]. As noted in Sect. 1.1, Ginsburg and Greibach
[1] remarked with no proof that the context-free language Pal = {wwR | w ∈
{0, 1}∗} does not belong to DCFL(ω) (as well as DCFL[ω]). As another direct
application of our pumping lemma, we give a formal written proof of their
remark.

Theorem 2. The context-free language Pal is not in DCFL(ω) ∪ DCFL[ω].

As an immediate consequence of the above theorem, we obtain Wotschke’s
separation of DCFL(ω) from CFL. Here, we stress that, unlike the work of
Wotschke [11,12], our proof does not depend on the main result (*) of Liu and
Weiner.

Corollary 2. [11,12] CFL � DCFL(ω) and DCFL[ω] � CFL.

We turn our interest to limited automata. Let us write d-LDA for the family
of all languages recognized by d-limited deterministic automata, in which their
tape heads are allowed to rewrite tape symbols only during the first d accesses
(except that, in the case of tape heads making a turn, we treat each turn as double
visits). Hibbard [3] demonstrated that d-LDA �= (d − 1)-LDA for any d ≥ 3. A
slightly modified language of his, which separates d-LDA from (d−1)-LDA, also
belongs to the 2d−2-th level of the union hierarchy of dcf languages but not in
the (2d−2 − 1)-th level. We thus obtain the following separation.

346 T. Yamakami

Proposition 1. For any d ≥ 3, d-LDA ∩ DCFL[2d−2] � (d − 1)-LDA ∪
DCFL[2d−2 − 1].

The proofs of all the above assertions will be given after introducing necessary
notions and notation in the subsequent section.

2 Preparations: Notions and Notation

2.1 Fundamental Notions and Notation

The set of all natural numbers (including 0) is denoted by N. An integer interval
[m,n]Z for two integers m,n with m ≤ n is the set {m,m + 1,m + 2, . . . , n}.
In particular, for any integer n ≥ 1, [1, n]Z is abbreviated as [n]. For any string
x, |x| indicates the total number of symbols in x. The special symbol ε is used
to denote the empty string of length 0. For a language L over alphabet Σ, L
denotes Σ∗ − L, the complement of L. Given a family F of languages, co-F
expresses the complement family, which consists of languages L for any L ∈ F .

2.2 Deterministic Pushdown Automata

A one-way deterministic pushdown automaton (or a 1dpda, for short) M is a
tuple (Q,Σ, {|c, $}, Γ, δ, q0, Z0, Qacc, Qrej), where Q is a finite set of inner states,
Σ is an input alphabet with Σ̌ = Σ ∪ {ε, |c, $}, Γ is a stack alphabet, δ is a
deterministic transition function from Q × Σ̌ × Γ to Q × Γ ∗, q0 is the initial
state in Q, Z0 is the bottom marker in Γ , and Qacc and Qrej are subsets of Q. The
symbols |c and $ respectively express the left-endmarker and the right-endmarker.
Let Γ (−) = Γ − {Z0}. We assume that, if δ(p, ε, a) is defined, then δ(p, σ, a) is
undefined for all symbols σ ∈ Σ̌ − {ε}. Moreover, we require δ(q, σ, Z0) �= (p, ε)
for any p, q ∈ Q and σ ∈ Σ̌. Each content of a stack is expressed as a1a2 · · · ak

in which a1 is the topmost stack symbol, ak is the bottom marker Z0, and all
others are placed in order from the top to the bottom of the stack.

Given d ∈ N
+, a d-intersection deterministic context-free (dcf) language is an

intersection of d deterministic context-free (dcf) languages. Let DCFL(d) denote
the family of all d-intersection dcf languages. Similarly, we define d-union dcf
languages and DCFL[d] by substituting “union” for “intersection” in the above
definitions. Note that DCFL[d] = co-(DCFL(d)) because DCFL = co-DCFL.

For two language families F1 and F2, the notation F1 ∧ F2 (resp., F1 ∨ F2)
denotes the family of all languages L for which there are two languages L1 ∈ F1

and L2 ∈ F2 over the same alphabet satisfying L = L1 ∩ L2 (resp., L = L1 ∪ L2).

Lemma 2. [11,12] DCFL(d) is closed under union, intersection with REG. In
other words, DCFL(d) ∧ REG ⊆ DCFL(d) and DCFL(d) ∨ REG ⊆ DCFL(d).
A similar statement holds for DCFL[d].

Lemma 3. Let d ≥ 1 be any natural number.

1. DCFL(d) = DCFL(d + 1) iff DCFL[d] = DCFL[d + 1].
2. If L ∈ DCFL(d), then it follows that A ∩ L ∈ DCFL[d] for any A ∈ REG.

Intersection and Union Hierarchies and Pumping Lemmas 347

From Lemma 3(1) follows Corollary 1, provided that Theorem 1 is true. The-
orem 1 itself will be proven in Sect. 3.

2.3 Ideal Shape

Let us recall from [14] a special “pop-controlled form” (called an ideal shape),
in which the pop operations always take place by first reading an input symbol
and then making a series (one or more) of the pop operations without reading
any further input symbol. This notion was originally introduced for one-way
probabilistic pushdown automata (or 1ppda’s); however, in this exposition, we
apply this notion only to 1dpda’s. To be more formal, a 1dpda in an ideal shape
is a 1dpda restricted to take only the following transitions. (1) Scanning σ ∈ Σ,
preserve the topmost stack symbol (called a stationary operation). (2) Scanning
σ ∈ Σ, push a new symbol u (∈ Γ (−)) without changing any other symbol in the
stack. (3) Scanning σ ∈ Σ, pop the topmost stack symbol. (4) Without scanning
an input symbol (i.e., ε-move), pop the topmost stack symbol. (5) The stack
operations (4) comes only after either (3) or (4).

It was shown in [14] that any 1ppda can be converted into its “error-
equivalent” 1ppda in an ideal shape. In Lemma 4, we restate this result for
1dpda’s. We say that two 1dpda’s are (computationally) equivalent if, for any
input x, their acceptance/rejection coincide. The push size of a 1ppda is the
maximum length of any string pushed into a stack by any single move.

Lemma 4 (Ideal Shape Lemma for 1dpda’s). (cf. [14]) Let n ∈ N
+.

Any n-state 1dpda M with stack alphabet size m and push size e can be con-
verted into another (computationally) equivalent 1dpda N in an ideal shape with
O(en2m2(2m)2enm) states and stack alphabet size O(enm(2m)2enm).

2.4 Boundaries and Crossing State-Stack Pairs

We want to define two basic notions of boundaries and crossing state-stacks.
For this purpose, we visualize a single move of a 1dpda M as three consecutive
actions: (i) firstly replacing the topmost stack symbol, (ii) updating an inner
state, and (iii) thirdly either moving a tape head or staying still.

A boundary is a borderline between two consecutive tape cells. We index all
such boundaries from 0 to ||cx$| as follows. The boundary 0 is located at the left of
cell 0 and boundary i+1 is in between cell i and i+1 for every index i ≥ 0. When
a string xy is written in |xy| consecutive cells, the (x, y)-boundary indicates the
boundary |x| + 1, which separates between x and y. A boundary block between
boundaries t1 and t2 with t1 ≤ t2 is a consecutive series of boundaries between
t1 and t2 (including t1 and t2). These t1 and t2 are called ends of this boundary
block. For brevity, we write [t1, t2] to denote a boundary block between t1 and t2.
For two boundaries t1, t2 with t1 < t2, the (t1, t2)-region refers to the consecutive
cells located in the boundary block [t1, t2]. When an input string x is written in
the (t1, t2)-region, we conveniently call this region the x-region unless the region
is unclear from the context.

348 T. Yamakami

The stack height of M at boundary t is the length of the stack content while
passing the boundary t. E.g., a stack content a1a2 · · · ak has stack height k.

A boundary block [t1, t2] is called convex if there is a boundary s between
t1 and t2 (namely, s ∈ [t1, t2]) such that there is no pop operation in the (t1, s)-
region and there is no push operation in the (s, t2)-region. A boundary block
[t1, t2] is flat if the stack height does not change in the (t1, t2)-region. A boundary
block [t1, t2] with t1 < t2 is pseudo-convex if the stack height at every boundary
s ∈ [t1, t2] does not go below h2 − h1−h2

t2−t1
(s − t1), where hi is the stack height

at boundary ti for any i ∈ {1, 2}. By their definitions, either convex or flat
boundary blocks are also pseudo-convex.

A peak is a boundary t such that the stack heights at the boundaries t−1 and
t+1 are smaller than the stack height at the boundary t. A plateau is a boundary
block [t, t′] such that any stack height at a boundary i ∈ [t, t′] is the same. A hill
is a boundary block [t, t′] such that (i) the stack height at the boundary t and
the stack height at the boundary t′ coincide, (ii) there is at least one peak at a
certain boundary i ∈ [t, t′], and (iii) both [t, i] and [i, t′] are convex. The height
of a hill is the difference between the topmost stack height and the lowest stack
height.

Given strings over alphabet Σ, ε-enhanced strings are strings over the
extended alphabet Σε = Σ ∪ {ε}, where ε is treated as a special input sym-
bol expressing the absence of symbols in Σ. An ε-enhanced 1dpda (or an ε-1dpa,
for short) is a 1dpda that takes ε-enhanced strings and works as a standard
1dpda except that a tape head always moves to the right without stopping. This
tape head movement is sometimes called “real time”.

Lemma 5. For any 1dpda M , there exists an ε-1dpda N such that, for any
input string x, there is an appropriate ε-enhanced string x̂ for which M accepts
(resp., rejects) x iff N accepts (resp., rejects) x̂. Moreover, x̂ is identical to x
except for the ε symbol and is uniquely determined from x and M .

Let M be either a 1dpda or an ε-1dpda, and assume that M is in an ideal
shape. A crossing state-stack pair at boundary i is a pair (q, γ) of inner state q
and stack content γ. In a computation of M on input x, a crossing state-stack
pair (q, γ) at boundary i refers to the machine’s current status where (1) M is
reading an input symbol, say, σ at cell i − 1 in a certain state, say, p with the
stack content aγ′ and then M changes its inner state to q, changing a by either
pushing another symbol b satisfying γ = baγ′ or popping a with γ = γ′. Any
computation of M on x can be expressed as a series of crossing state-stack pairs
at every boundary in the |cx$-region.

Two boundaries t1 and t2 with t1 < t2 are mutually correlated if there are
two crossing state-stack pairs (q, γ) and (p, γ) at the boundaries t1 and t2, respec-
tively, for which the boundary block [t1, t2] is pseudo-convex. Moreover, assume
that t1 < t2 < t3 < t4. Two boundary blocks [t1, t2] and [t3, t4] are mutually corre-
lated if (i) [t1, t2], [t2, t3], and [t3, t4] are all pseudo-convex, (ii) (q, γ) and (p, αγ) are
crossing state-stack pairs at the boundaries t1 and t2, respectively, and (iii) (s, αγ)
and (r, γ) are also crossing state-stack pairs at the boundaries t3 and t4, respec-
tively, for certain p, q, r, s ∈ Q, γ ∈ (Γ (−))∗Z0, and α ∈ (Γ (−))∗.

Intersection and Union Hierarchies and Pumping Lemmas 349

If an ε-1dpda is in an ideal shape, then it pops exactly one stack symbol
whenever it reads a single symbol of a given ε-enhanced input string.

Lemma 6. Let w be any string.

1. Let t1, t2 ∈ N with 1 ≤ t1 < t2 ≤ |w| + 1. Let w = x1x2x3 be a factorization
such that t1 is the (x1, x2)-boundary and t2 is the (x2, x3)-boundary. If the
boundaries t1 and t2 are mutually correlated and inner states at the boundaries
t1 and t2 coincide, then it follows that w ∈ L iff x1x

i
2x3 ∈ L for any i ∈ N.

2. Let t1, t2, t3, t4 ∈ N with 1 ≤ t1 < t2 < t3 < t4 ≤ |w|+1. Let w = x1x2x3x4x5

such that each ti is (xi, xi+1)-boundary for each i ∈ [4]. If two boundary blocks
[t1, t2] and [t3, t4] are mutually correlated, inner states at the boundaries t1
and t2 coincide, and inner states at the boundaries t3 and t4 coincide, then
it follows that w ∈ L iff x1x

i
2x3x

i
4x5 ∈ L for any number i ∈ N.

3 Proof Sketches of Three Separation Claims

We intend to present the proof sketches of three separation claims (Theorems 1
and 2 and Proposition 1) before verifying the pumping lemma. To understand
our proofs better, we demonstrate a simple and easy example of how to apply
Lemma 1 to obtain a separation between DCFL[d] and DCFL[d − 1].

Proposition 2. Let d ≥ 2 and let L(d) = {anbkn | k ∈ [d], n ≥ 0}. It then
follows that L(d) ∈ DCFL[d] − DCFL[d − 1].

Proof. Let d ≥ 2. Clearly, L(d) belongs to DCFL[d]. Assuming L(d) ∈ DCFL[d−
1], we apply the pumping lemma (Lemma 1) to L(d). There is a constant c > 0
that satisfies the lemma. Let n = c + 1 and consider wi = anbin for each index
i ∈ [d]. Since each wi belongs to L(d), we can take an index pair j, k ∈ [d] with
j < k such that wj and wk satisfy the conditions of the lemma.

Since Condition (1) of the lemma is immediate, we hereafter consider Con-
dition (2). Let x′ = anbjn−1, y = b, and ŷ = b(k−j)n+1. Firstly, we consider
Case (a) with a factorization x′ = x1x2x3x4x5 with |x2x4| ≥ 1 and |x2x3x4| ≤ c.
Since x1x

i
2x3x

i
4x5y ∈ L(d) for any number i ∈ N, we conclude that x2 ∈ {a}∗ and

x4 ∈ {b}∗. Let x2 = am and x4 = br for certain numbers m, r ∈ [c]. Note that
x1x

i
2x3x

i
4x5y equals an+(i−1)mbjn+(i−1)r. Hence, n + (i − 1)m = g(jn + (i − 1)r)

for a certain g ∈ [d]. This implies that (jg−1)n = (m−gr)(i−1). We then obtain
jg − 1 = m − gr = 0, which further implies that j = g = 1 and m = r. Similarly,
from x1x

i
2x3x

i
4x5ŷ ∈ L(d), it follows that n + (i − 1)m = g′(kn + (i − 1)r). Thus,

(kg′ − 1)n = (m − g′r)(i − 1). This implies k = g′ = 1 and m = r. Since j �= k,
we obtain a contradiction.

Next, we consider Case (b) with appropriate factorizations x′ = x1x2x3, y =
y1y2y3, and ŷ = z1z2z3 with |x2| ≥ 1 and |x2x3| ≤ c such that x1x

i
2x3y1y

i
2y3 ∈

L(d) and x1x
i
2x3z1z

i
2z3 ∈ L(d) for any number i ∈ N. Since |x2x3| ≤ c, we obtain

x2 ∈ {b}∗. Assume that x2 = bm for a certain number m ∈ [c]. This is impossible
because x1x

i
2x3y1y

i
2y3 has the form anbjn+(i−1)m and the exponent of b is not

of the form rn for any number r ∈ [d].

350 T. Yamakami

Proof Sketch of Theorem 1(1). Let d ≥ 2 be any integer and consider L
(≤)
d

over Σd = {a1, a2, . . . , ad,1 , b2, . . . , bd}. It is not difficult to check that L
(≤)
d ∈

DCFL(d). Our goal is, therefore, to show that L
(≤)
d is not in DCFL(d − 1). To

lead to a contradiction, we assume that L
(≤)
d ∈ DCFL(d − 1).

Take A = a∗
1a

∗
2 · · · a∗

db
∗
1b

∗
2 · · · b∗

d in REG and consider L′ = A∩(Σ∗
d −L

(≤)
d), that

is, L′ = {an1
1 · · · and

d bm1
1 · · · bmd

d | ∃i ∈ [d](ni > mi)}. Note by Lemma 3(2) that,
since L

(≤)
d ∈ DCFL(d − 1), we obtain L′ ∈ DCFL[d − 1]. Take a pumping-lemma

constant c > 0 that satisfies Lemma 1.We set n = c+1and consider the set {xy(k) |
k ∈ [d]}, where x = an

1a2n
2 · · · adn

d and y(k) = bn
1 b2n

2 · · · b(k−1)n
k−1 bkn−1

k b
(k+1)n
k+1 · · · bdn

d

for each index k ∈ [d]. Lemma 1 guarantees the existence of a specific distinct pair
{j1, j2} with 1 ≤ j1 < j2 ≤ d.

By Lemma 1, since |x′| > c, there are two conditions to consider separately.
Condition (1) is not difficult. Next, we consider Condition (2).
Let x′ = an

1 · · · adn
d bn

1 · · · b(j1−1)n
j1−1 bj1n−1

j1
, y = bj1b

(j1+1)n
j1+1 · · · bdn

d , and ŷ =

b
(j1+1)n
j1+1 · · · b(j2−1)n

j2−1 bj2n−1
j2

b
(j2+1)n
j2+1 · · · bdn

d . Note that x′y = xy(j1) and x′ŷ = xy(j2).
There are three factorizations x′ = u1u2u3 with |u2| ≥ 1 and |u2u3| ≤ c, y =
y1y2y3, and ŷ = z1z2z3 satisfying both u1u

i
2u3y1y

i
2y3 ∈ L′ and u1u

i
2u3z1z

i
2z3 ∈ L′

for any number i ∈ N. From |u2u3| ≤ c follows u2 ∈ {bj1}+. Let u2 = be
j1

for a
certain e ≥ 1. In particular, take i = 2. Note that u1u

2
2u3y1y

2
2y3 has factors aj1n

j1

and bj1n−1+2e
j1

. Thus, we obtain j1n = j1n + 2e − 1, a clear contradiction.
�
We omit from this exposition the proofs of Theorems 1(2), 2, and Proposition 1.

These proofs will be included in its complete version.

4 Proof Sketch of the Pumping Lemma for DCFL[d]

We are now ready to provide the proof of the pumping lemma for DCFL[d]
(Lemma 1). Our proof has two different parts depending on the value of d. The
first part of the proof targets the basis case of d = 1. This special case directly
corresponds to Yu’s pumping lemma [15, Lemma 1]. To prove his lemma, Yu
utilized a so-called left-part theorem of his for LR(k) grammars. We intend to
re-prove Yu’s lemma using only 1dpda’s with no reference to LR(k) grammars.
Our proof argument is easily extendable to one-way nondeterministic pushdown
automata (or 1npda’s) and thus to the pumping lemma for CFL. The second
part of the proof deals with the general case of d ≥ 2. Hereafter, we give the
sketches of these two parts.

Basis Case of d = 1: Let Σ be any alphabet and take any infinite
dcf language L over Σ. Let us consider an appropriate ε-1dpda M =
(Q,Σ, {|c, $}, Γ, δ, q0, Z0, Qacc, Qrej) in an ideal shape that recognizes L by Lem-
mas 4–5. For the desired constant c, we set c = 2|Q|. Firstly, we take two arbitrary
strings xy and xŷ over Σ with y[1] = ŷ[1] = a and |x| > c.

Our goal is to show that Condition (2) in the basis case of d = 1 holds.
There are four distinct cases to deal with. Hereafter, we intend to discuss them

Intersection and Union Hierarchies and Pumping Lemmas 351

separately. Note that, since M is one-way, every crossing state-stack pair at any
boundary in the x-region does not depend on the choice of y and ŷ.

Case 1: Consider the case where there are two boundaries t1, t2 with 1 ≤ t1 <
t2 ≤ |xa| and |t2 − t1| ≤ c such that (i) the boundaries t1 and t2 are mutually
correlated and (ii) inner states at the boundaries t1 and t2 coincide. In this case,
we factorize x into x1x2x3 so that t1 = |x1| and t2 = |x1x2|. By Lemma 6(1), it
then follows that, for any number i ∈ N, x1x

i
2x3y ∈ L and x1x

i
2x3ŷ ∈ L.

Case 2: Consider the case where there are four boundaries t1, t2, t3, t4 with 1 ≤
t1 < t2 < t3 < t4 ≤ |xa| and |t4 − t1| ≤ c and there are p, q ∈ Q, γ ∈ (Γ (−))∗Z0,
and α ∈ (Γ (−))∗ for which (i) (q, γ) and (q, αγ) are the crossing state-stack pairs
respectively at the boundaries t1 and t2, (ii) (p, αγ) and (p, γ) are the crossing state-
stack pairs respectively at the boundaries t3 and t4, and (iii) the boundary block
[ti, ti+1] for each index i ∈ [3] is pseudo-convex. We then take a factorization x =
x1x2x3x4x5 such that ti = |x1x2 · · · xi| for each i ∈ [4]. Note that |x2x4| ≥ 2
because of t1 < t2 and t3 < t4. By an application of Lemma 6(2), we conclude that,
for any z ∈ {y, ŷ}, x1x

i
2x3x

i
4x5z ∈ L for all i ∈ N.

Case 3: Assume that Cases 1–2 fail. For brevity, we set R = (|xa| − c, |xa|).
Consider the case where there is no pop operation in the R-region. Since R-
region contains more than |Q|3 boundaries, the R-region includes a certain
series of boundaries s1, s2, . . . , sm such that, for certain q ∈ Q, γ ∈ (Γ (−))∗Z0,
and α′

1, . . . , α
′
m−1 ∈ (Γ (−))∗, there are crossing state-stack pairs of the form

(q, γ), (q, α′
1γ), . . . , (q, α′

m−1 · · · α1γ) at the boundaries s1, s2 . . . , sm, respectively.
Note that the boundary blocks [s1, s2], [s2, s3], . . . , [sm−1, sm] are all convex.
Clearly, m > |Q|2. We choose {ti}i∈[m] and {ri}i∈[m] so that (i) for each index
i ∈ [m], ti and ri are boundaries in the y-region and in the ŷ-region, respectively,
satisfying that t1 < t2 < · · · < tm and r1 < r2 < · · · < rm, and (ii) for each index
i ∈ [m − 1], [si, si+1] is mutually correlated to [ti, ti+1] in the y-region and also
to [ri, ri+1] in the ŷ-region. Note that the boundary blocks [t1, t2], . . . , [tm−1, tm],
[r1, r2], . . . , [rm−1, rm] are all pseudo-convex. Since m > |Q|2, it follows that
there is a pair j1, j2 ∈ [m] with j1 < j2 such that inner states at the boundaries
rj1 and rj2 coincide. Using Lemma 6(2), we can obtain the desired conclusion.

Case 4: Assume that Cases 1–3 fail. In this case, we define a notion of “true
gain” in the R-region and estimate its value. Choose s1 and s2 so that |xa|−c ≤
s1, s2 ≤ |xa|, and the boundary block [s1, s2] is pseudo-convex. Let G(s1, s2)
denote the set of boundary blocks [t1, t′1], [t2, t

′
2], . . . , [tm, t′m] with s1 ≤ t1, t′m ≤

s2, ti < t′i for every i ∈ [m], and t′j < tj+1 for every j ∈ [m−1] such that (i) [ti, t′i]
is pseudo-convex but cannot be flat, (ii) [t′j , tj+1] is pseudo-convex (and could
be flat), (iii) there are crossing state-stack pairs (qi, γ), (q′

i, γ) at the boundaries
ti, t

′
i for every i ∈ [m], (iv) the stack height at the boundary t′i is higher than the

stack height at the boundary ti, (v) the boundary ti is a pit (i.e., the lowest point
within its small vicinity). Define the true gain tg(s1, s2) to be

∑m
i=1 |t′i − ti|. It

is possible to prove that tg(s1, s2) > |Q|3. Using this inequality, we can employ
an argument similar to Case 3 to obtain the lemma.

352 T. Yamakami

General Case of d ≥ 2: We begin with proving this case by considering
d 1dpda’s M1,M2, . . . ,Md. The language recognized by each machine Mi is
denoted by L(Mi). Let us assume that L =

⋃d
i=1 L(Mi). Take d + 1 strings

w1, w2, . . . , wd+1 in L and assume that each wk has the form xy(k) with |x| > c.
Since all wk’s are in L, define a function f as follows. Let f(k) denote the minimal
index ik satisfying that wk ∈ L(Mik) but wk /∈ L(Mj) for all j �= ik. Since there
are at most d different languages, there are two distinct indices j1, j2 ∈ [d + 1]
such that f(j1) = f(j2). In what follows, we fix such a pair (j1, j2).

Consider the case of w = xy(j1) and w′ = xy(j2). Take arbitrary factorizations
w = x′y and w′ = x′ŷ. We apply the basis case of d = 1 again and obtain
one of the following (a)–(b). (a) There is a factorization x = x1x2x3x4x5 with
|x2x4| ≥ 1 and |x2x3x4| ≤ c such that x1x

i
2x3x

i
4x5y ∈ L and x1x

i
2x3x

i
4x5y ∈ L

for any number i ∈ N. (b) There are factorizations x′ = x1x2x3, y = y1y2y3, and
ŷ = z1z2z3 such that |x2| ≥ 1, |x2x3| ≤ c, x1x

i
2x3y1y

i
2y3 ∈ L, and x1x

i
2x3z1z

i
2z3 ∈

L for any number i ∈ N.

References

1. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9,
620–648 (1966)

2. Harrison, M.A.: Iteration theorems for deterministic families of languages. Funda-
menta Informaticae 9, 481–508 (1986)

3. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11, 196–
238 (1967)

4. Igarashi, Y.: A pumping lemma for real-time deterministic context-free languages.
Theor. Comput. Sci. 36, 89–97 (1985)

5. King, K.N.: Iteration theorems for families of strict deterministic languages. Theor.
Comput. Sci. 10, 317–333 (1980)

6. Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free
languages. Acta Inform. 45, 177–191 (2008)

7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer, New York (1994)

8. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Math. Syst. Theory 7, 185–192 (1973)

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

10. Wise, D.S.: A strong pumping lemma for context-free languages. Theor. Comput.
Sci. 3, 359–369 (1976)

11. Wotschke, D.: The Boolean closures of the deterministic and nondeterministic
context-free languages. In: Brauer, W. (ed.) GI Gesellschaft für Informatik e. V.
LNCS, pp. 113–121. Springer, Heidelberg (1973). https://doi.org/10.1007/978-3-
662-41148-3 11

12. Wotschke, D.: Nondeterminism and Boolean operations in pda’s. J. Comput. Syst.
Sci. 16, 456–461 (1978)

13. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B.,
Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 45.
A complete version is found at arXiv:1303.1717 under a slightly different title

https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-319-04298-5_45
http://arxiv.org/abs/1303.1717

Intersection and Union Hierarchies and Pumping Lemmas 353

14. Yamakami, T.: Behavioral Strengths and weaknesses of various models of limited
automata. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOF-
SEM 2019. LNCS, vol. 11376, pp. 519–530. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10801-4 40

15. Yu, S.: A pumping lemma for deterministic context-free languages. Inf. Process.
Lett. 31, 47–51 (1989)

https://doi.org/10.1007/978-3-030-10801-4_40
https://doi.org/10.1007/978-3-030-10801-4_40

Trees and Graphs

On the Weisfeiler-Leman Dimension
of Fractional Packing

Vikraman Arvind1, Frank Fuhlbrück2(B), Johannes Köbler2,
and Oleg Verbitsky2

1 The Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

2 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
{fuhlbfra,koebler,verbitsky}@informatik.hu-berlin.de

Abstract. The k-dimensional Weisfeiler-Leman procedure (k-WL) has
proven to be immensely fruitful in the algorithmic study of Graph Iso-
morphism. More generally, it is of fundamental importance in under-
standing and exploiting symmetries in graphs in various settings. Two
graphs are k-WL-equivalent if dimention k does not suffice to distinguish
them. 1-WL-equivalence is known as fractional isomorphism of graphs,
and the k-WL-equivalence relation becomes finer as k increases.

We investigate to what extent standard graph parameters are pre-
served by k-WL-equivalence, focusing on fractional graph packing num-
bers. The integral packing numbers are typically NP-hard to compute,
and we discuss applicability of k-WL-invariance for estimating the inte-
grality gap of the LP relaxation provided by their fractional counterparts.

Keywords: Computational complexity · The Weisfeiler-Leman
algorithm · Fractional packing

1 Introduction

The 1-dimensional version of the Weisfeiler-Leman procedure is the classical color
refinement applied to an input graph G. Each vertex of G is initially colored by
its degree. The procedure refines the color of each vertex v ∈ V (G) in rounds,
using the multiset of colors of vertices u in the neighborhood N(v) of the vertex
v. In the 2-dimensional version [25], all vertex pairs xy ∈ V (G) × V (G) are clas-
sified by a similar procedure of coloring them in rounds. The extension of this
procedure to a classification of all k-tuples of G is due to Babai (see historical
overview in [4,5]) and is known as the k-dimensional Weisfeiler-Leman proce-
dure, abbreviated as k-WL. Graphs G and H are said to be k-WL -equivalent
(denoted G ≡k-WL H) if they are indistinguishable by k-WL.

The WL Invariance of Graph Parameters. Let π be a graph parameter. By
definition, π(G) = π(H) whenever G and H are isomorphic (denoted G ∼= H).

O. Verbitsky was supported by DFG grant KO 1053/8–1. He is on leave from the
IAPMM, Lviv, Ukraine.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 357–368, 2020.
https://doi.org/10.1007/978-3-030-40608-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_25

358 V. Arvind et al.

We say that π is a k-WL -invariant graph parameter if the equality π(G) = π(H)
is implied even by the weaker condition G ≡k-WL H. The smallest such k will
be called the Weisfeiler-Leman (WL) dimension of π.

If no such k exists, we say that the WL dimension of π is unbounded. Knowing
that a parameter π has unbounded WL dimension is important because this
implies that π cannot be computed by any algorithm expressible in fixed-point
logic with counting (FPC), a robust framework for study of encoding-invariant
(or “choiceless”) computations; see the survey [7].

The focus of our paper is on graph parameters with bounded WL dimension.
If π is the indicator function of a graph property P, then k-WL-invariance of
π precisely means that P is definable in the infinitary (k + 1)-variable counting
logic Ck+1

∞ω . While minimizing the number of variables is a recurring theme in
descriptive complexity, our interest in the study of k-WL-invariance has an addi-
tional motivation: If we know that a graph parameter π is k-WL-invariant, this
gives us information not only about π but also about k-WL. For example, the
largest eigenvalue of the adjacency matrix has WL dimension 1 (see [24]), and
the whole spectrum of a graph has WL dimension 2 (see [8,13]), which implies
that 2-WL subsumes distinguishing non-isomorphic graphs by spectral methods.

Fractional Graph Parameters. In this paper, we mainly consider frac-
tional graph parameters. Algorithmically, a well-known approach to tackling
intractable optimization problems is to consider an appropriate linear program-
ming (LP) relaxation. Many standard integer-valued graph parameters have frac-
tional real-valued analogues, obtained by LP-relaxation of the corresponding
0–1 linear program; see, e.g., the monograph [24]. The fractional counterpart of
a graph parameter π is denoted by πf . While π is often hard to compute, πf

provides, sometimes quite satisfactory, a polynomial-time computable approxi-
mation of π.

The WL dimension of a natural fractional parameter πf is a priori bounded,
where natural means that πf is determined by an LP which is logically inter-
pretable in terms of an input graph G. A striking result of Anderson, Dawar,
Holm [1] says that the optimum value of an interpretable LP is expressible in
FPC. It follows from the known immersion of FPC into the finite-variable infini-
tary counting logic Cω

∞ω =
⋃∞

k=2 Ck
∞ω (see [21]), that each such πf is k-WL-

invariant for some k. While this general theorem is applicable to many graph
parameters of interest, it is not easy to extract an explicit value of k from this
argument, and in any case such value would hardly be optimal.

We are interested in explicit and, possibly, exact bounds for the WL dimen-
sion. A first question here would be to pinpoint which fractional parameters πf

are 1-WL-invariant. This natural question, using the concept of fractional iso-
morphism [24], can be recast as follows: Which fractional graph parameters are
invariant under fractional isomorphism? It appears that this question has not
received adequate attention in the literature. The only earlier result we could
find is the 1-WL-invariance of the fractional domination number γf shown in
the Ph.D. thesis of Rubalcaba [23].

On the Weisfeiler-Leman Dimension of Fractional Packing 359

We show that the fractional matching number νf is also a fractional param-
eter preserved by fractional isomorphism. Indeed, the matching number is an
instance of the F -packing number πF of a graph, corresponding to F = K2.
Here and throughout, we use the standard notation Kn for the complete graphs,
Pn for the path graphs, and Cn for the cycle graph on n vertices. In general,
πF (G) is the maximum number of vertex-disjoint subgraphs F ′ of G that are iso-
morphic to the fixed pattern graph F . While the matching number is computable
in polynomial time, computing πF is NP-hard whenever F has a connected com-
ponent with at least 3 vertices [19], in particular, for F ∈ {P3,K3}. Note that
K3-packing is the optimization version of the archetypal NP-complete problem
Partition Into Triangles [14, GT11]. We show that the fractional P3-packing
number νP3

f , like νf = πK2
f , is 1-WL-invariant, whereas the WL dimension of the

fractional triangle packing is 2.
In fact, we present a general treatment of fractional F -packing numbers πF

f .
We begin in Sect. 2 with introducing a concept of equivalence between two linear
programs L1 and L2 ensuring that equivalent L1 and L2 have equal optimum
values. Next, in Sect. 3, we consider the standard optimization versions of Set
Packing and Hitting Set [14, SP4 and SP8], two of Karp’s 21 NP-complete prob-
lems. These two generic problems generalize F -Packing and Dominating Set
respectively. Their fractional versions have thoroughly been studied in hyper-
graph theory [12,20]. We observe that the LP relaxations of Set Packing (or Hit-
ting Set) are equivalent whenever the incidence graphs of the input set systems
are 1-WL-equivalent. This general fact readily implies Rubalcaba’s result [23] on
the 1-WL-invariance of the fractional domination number and also shows that,
if the pattern graph F has � vertices, then the fractional F -packing number πF

f

is k-WL-invariant for some k < 2 �. This bound for k comes from a logical defi-
nition of the instance of Set Packing corresponding to F -Packing in terms of an
input graph G (see Corollary 6). Though the bound is quite decent, it does not
need to be optimal. We elaborate on a more precise bound, where we need to use
additional combinatorial arguments even in the case of the fractional matching.
We present a detailed treatment of the fractional matching in this exposition
(Theorem 4), while the proof of our general result on the fractional F -packing
numbers (Theorem 5), which includes the aforementioned cases of F = K3, P3,
is postponed to the full version of the paper [2].

The edge-disjoint version of F -Packing is another problem that has inten-
sively been studied in combinatorics and optimization. Since it is known to be
NP-hard for any pattern F containing a connected component with at least 3
edges [10], fractional relaxations have received much attention in the literature
[17,26]. We show that our techniques work well also in this case. In particular,
the WL dimension of the fractional edge-disjoint triangle packing number ρK3

f

is 2 (Theorem 7).

Integrality Gap via Invariance Ratio. Furthermore, we discuss the approx-
imate invariance of integral graph parameters expressible by integer linear
programs. For a first example, recall Lovász’s inequality [12, Theorem 5.21]
νf (G) ≤ 3

2 ν(G). As νf is 1-WL-invariant, it follows that ν(G)/ν(H) ≤ 3/2

360 V. Arvind et al.

for any pair of nonempty 1-WL-equivalent graphs G and H. This bound is tight,
as seen for the 1-WL-equivalent graphs G = C6s and H = 2sC3. Consequently,
the above relation between ν(G) and νf (G) is also tight. This simple example
demonstrates that knowing, first, the exact value k of the WL dimension of
a fractional parameter πf and, second, the discrepancy of the integral param-
eter π over k-WL-invariant graphs implies a lower bound for the precision of
approximating π by πf .

Specifically, recall that the maximum maxG
πf (G)
π(G) , (respectively maxG

π(G)
πf (G)

for minimization problems) is known as the integrality gap of πf . The integrality
gap is important for a computationally hard graph parameter π, as it bounds
how well the polynomial-time computable parameter πf approximates π.

On the other hand, we define the k-WL-invariance ratio for the parameter π

as maxG,H
π(G)
π(H) , where the quotient is maximized over all k-WL-equivalent graph

pairs (G,H). If π is k-WL-invariant, then the k-WL-invariance ratio bounds the
integrality gap from below. The following question suggests itself: How tight is
this lower bound? In this context, we now consider the fractional domination
number γf .

A general bound by Lovász [20] on the integrality gap of the fractional cover-
ing number for hypergraphs implies that the integrality gap for the domination
number is at most logarithmic, specifically, γ(G)

γf (G) ≤ 1 + lnn for a non-empty
graph G with n vertices. This results in an LP-based algorithm for approxima-
tion of γ(G) within a logarithmic factor, which is essentially optimal as γ(G) is
hard to approximate within a sublogarithmic factor assuming NP �= P [22]. As
shown by Rubalcaba [23], γf is 1-WL-invariant. Along with the Lovász bound,
this implies that the 1-WL-invariance ratio of γ is at most logarithmic. On the
other hand, Chappell et al. [6] have shown that the logarithmic upper bound
for the integrality gap of γf is tight up to a constant factor. In Sect. 6 we prove
an Ω(log n) lower bound even for the 1-WL-invariance ratio of γ over n-vertex
graphs. This implies the integrality gap lower bound [6], reproving it from a dif-
ferent perspective. In Sect. 6 we also discuss the additive integrality gap of the
fractional edge-disjoint triangle packing.

Related Work. Atserias and Dawar [3] have shown that the 1-WL-invariance
ratio for the vertex cover number τ is at most 2. Alternatively, this bound also
follows from the 1-WL-invariance of νf (which implies the 1-WL-invariance of
τf as τf = νf by LP duality) combined with a standard rounding argument.
The approach of [3] uses a different argument, which alone does not yield 1-WL-
invariance of the fractional vertex cover τf .

The bound of 2 for the 1-WL-invariance ratio of τ is optimal. Atserias and
Dawar [3] also show that the k-WL-invariance ratio for τ is at least 7/6 for each
k. This implies an unconditional inapproximability result for Vertex Cover in
the model of encoding-invariant computations expressible in FPC.

Notation and Formal Definitions. For x̄ = (x1, . . . , xk) in V (G)k, let
WL0

k(G, x̄) be the k × k matrix (mi,j) with mi,j = 1 if xixj ∈ E(G),
mi,j = 2 if xi = xj and mi,j = 0 otherwise. We also augment WL0

k(G, x̄)

On the Weisfeiler-Leman Dimension of Fractional Packing 361

by the vector of the colors of x1, . . . , xk if the graph G is vertex-colored.
WL0

k(G, x̄) encodes the ordered isomorphism type of x̄ in G and serves as
an initial coloring of V (G)k for k-WL. In each refinement round, 1-WL com-
putes WLr+1

1 (G, x) = (WLr
1(G, x), {{WLr

1(G, y) : y ∈ N(x)}}), where N(x) is the
neighborhood of x and {{ }} denotes a multiset. If k ≥ 2, k-WL refines the coloring
by WLr+1

k (G, x) = (WLr
k(G, x̄), {{(WLr

k(G, x̄u
1), . . . ,WLr

k(G, x̄u
k) : u ∈ V (G)}}),

where x̄u
i is the tuple (x1, . . . , xi−1, u, xi+1, . . . , xk). If G has n vertices, the color

partition stabilizes in at most nk rounds. We define WLk(G, x̄) = WLnk

k (G, x̄)
and WLk(G) = {{WLk(G, x̄) : x̄ ∈ V (G)k}}. Now, G ≡k-WL H if WLk(G) =
WLk(H).

The color partition of V (G) according to WL1(G, x) is equitable: for any
color classes C and C ′, each vertex in C has the same number of neighbors in
C ′. Moreover, if G is vertex-colored, then the original colors of all vertices in
each C are the same. If V (G) = V (H), then G ≡k-WL 1H exactly when G and
H have a common equitable partition [24, Theorem 6.5.1].

Let G and H be graphs with vertex set {1, . . . , n}, and let A and B be the
adjacency matrices of G and H, respectively. Then G and H are isomorphic
if and only if AX = XB for some n × n permutation matrix X. The linear
programming relaxation allows X to be a doubly stochastic matrix. If such an
X exists, G and H are said to be fractionally isomorphic. If G and H are colored
graphs with the same partition of the vertex set into color classes, then it is
additionally required that Xu,v = 0 whenever u and v are of different colors. It
turns out that two graphs are indistinguishable by color refinement if and only
if they are fractionally isomorphic [24, Theorem 6.5.1].

2 Reductions Between Linear Programs

A linear program (LP) is an optimization problem of the form “maximize (or
minimize) atx subject to Mx ≤ b”, where a ∈ R

n, b ∈ R
m, M is an m×n matrix

M ∈ R
m×n, and x varies over all vectors in R

n with nonnegative entries (which
we denote by x ≥ 0). Any vector x satisfying the constraints Mx ≤ b, x ≥ 0 is
called a feasible solution and the function x �→ atx is called the objective function.
We denote an LP with parameters a,M, b by LP (a,M, b, opt), where opt = min,
if the goal is to minimize the value of the objective function, and opt = max,
if this value has to be maximized. The optimum of the objective function over
all feasible solutions is called the value of the program L = LP (a,M, b, opt) and
denoted by val(L). Our goal now is to introduce an equivalence relation between
LPs ensuring equality of their values.

Equivalence of LPs. Let L1 = LP (a,M, b, opt) and L2 = LP (c,N, d, opt) be
linear programs (in general form), where a, c ∈ R

n, b, d ∈ R
m, M,N ∈ R

m×n

and opt ∈ {min,max}. We say that L1 reduces to L2 (L1 ≤ L2 for short), if
there are matrices Y ∈ R

m×m and Z ∈ R
n×n such that

– Y,Z ≥ 0
– atZ ♦ ct, where ♦ =

{
≤, opt = min
≥, opt = max

362 V. Arvind et al.

– MZ ≤ Y N
– Y d ≤ b

L1 and L2 are said to be equivalent (L1 ≡ L2 for short) if L1 ≤ L2 and L2 ≤ L1.

Theorem 1. If L1 ≡ L2, then val(L1) = val(L2).

Proof. Let L1 = LP (a,M, b, opt) and L2 = LP (c,N, d, opt) and assume L1 ≤ L2

via (Y,Z). We show that for any feasible solution x of L2 we get a feasible solution
x′ = Zx of L1 with atx′ ♦ ctx, where ♦ is as in the definition:

Mx′ = MZ︸︷︷︸
≤Y N

x ≤ Y Nx︸︷︷︸
≤d

≤ Y d ≤ b and atx′ = atZ︸︷︷︸
♦ ct

x ♦ ctx.

Thus, L1 ≤ L2 implies val(L1) ♦ val(L2) and the theorem follows. ��
LPs with Fractionally Isomorphic Matrices. Recall that a square matrix
X ≥ 0 is doubly stochastic if its entries in each row and column sum up to 1. We
call two m × n matrices M and N fractionally isomorphic if there are doubly
stochastic matrices Y ∈ R

m×m and Z ∈ R
n×n such that

MZ = Y N and NZt = Y tM. (1)

Grohe et al. [16, Eqs. (5.1)–(5.2) in arXiv version] discuss similar definitions.
They use fractional isomorphism fractional isomorphism to reduce the dimension
of linear equations and LPs. The meaning of (1) will be clear from the proof of
Theorem 3 below.

Lemma 2. If M and N are fractionally isomorphic m × n matrices, then

LP (1n,M,1m, opt) ≡ LP (1n, N,1m, opt),

where 1n denotes the n-dimensional all-ones vector.

Proof. Since the matrices Y and Z in (1) are doubly stochastic, Y 1m = 1m

and 1t
nZ = 1t

n. Along with the first equality in (1), these equalities imply that
L1 ≤ L2. The reduction L2 ≤ L1 follows similarly from the second equality in
(1) as Y t and Zt are doubly stochastic. ��

3 Fractional Set Packing

The Set Packing problem is, given a family of sets S = {S1, . . . , Sn}, where
Sj ⊂ {1, . . . ,m}, to maximize the number of pairwise disjoint sets in this fam-
ily. The maximum is called in combinatorics the matching number of hyper-
graph S and denoted by ν(S). The fractional version is given by LP (S) =
LP (1n,M,1m,max) where M is the m × n incidence matrix of S, namely

max
n∑

i=1

xi under

xi ≥ 0 for every i ≤ n,
∑

i :Si�j

xi ≤ 1 for every j ≤ m.

On the Weisfeiler-Leman Dimension of Fractional Packing 363

The optimum value νf (S) = val(LP (S)) is called the fractional matching number
of S.

Let I(S) denote the incidence graph of S. Specifically, this is the vertex-
colored bipartite graph with biadjacency matrix M on two classes of vertices;
m vertices are colored red, n vertices are colored blue, and a red vertex j is
adjacent to a blue vertex i if j ∈ Si.

Theorem 3. Let S1 and S2 be two families each consisting of n subsets of the
set {1, . . . , m}. If I(S1) ≡1-WL I(S2), then νf (S1) = νf (S2).

Proof. Denote the incidence matrices of S1 and S2 by M and N respectively.
Let

A1 =
(

0 M
M t 0

)

and A1 =
(

0 N
N t 0

)

be the adjacency matrices of I(S1) and I(S2) respectively. Since I(S1) and I(S2)
are indistinguishable by color refinement, by [24, Theorem 6.5.1] we conclude
that these graphs are fractionally isomorphic, that is, there is a doubly stochastic
matrix X such that

A1X = XA2 (2)

and Xuv = 0 whenever u and v are from different vertex color classes. The latter
condition means that X is the direct sum of an n × n doubly stochastic matrix
Y and an n × n doubly stochastic matrix Z, that is, Equality (2) reads

(
0 M

M t 0

) (
Y 0
0 Z

)

=
(

Y 0
0 Z

)(
0 N

N t 0

)

,

yielding MZ = Y N and M tY = ZN t. Thus, M and N are fractionally isomor-
phic. Lemma 2 implies that LP (S1) ≡ LP (S2). Therefore, these LPs have equal
values by Theorem 1. ��

4 1-WL-invariance of the Fractional Matching Number

Recall that a set of edges M ⊆ E(G) is a matching in a graph G if every vertex
of G is incident to at most one edge from M . The matching number ν(G) is
the maximum size of a matching in G. Note that this terminology and notation
agrees with Sect. 3 when graphs are considered hypergraphs with hyperedges of
size 2. Fractional Matching is defined by the LP

max
∑

uv∈E(G)

xuv under

xuv ≥ 0 for every uv ∈ E(G),
∑

v∈N(u)

xuv ≤ 1 for every u ∈ V (G),

whose value is the fractional matching number νf (G). The above LP is exactly
the linear program LP (SG) for the instance SG = E(G) of Fractional Set Packing
formed by the edges of G as 2-element subsets of V (G), that is, νf (G) = νf (SG).

364 V. Arvind et al.

Theorem 4. The fractional matching number is 1-WL-invariant.

Proof. Given G ≡1-WL H, we have to prove that νf (G) = νf (H) or, equivalently,
νf (SG) = νf (SH) where SG is as defined above. By Theorem 3, it suffices to
show that I(SG) ≡1-WL I(SH). To this end, we construct a common equitable
partition of I(SG) and I(SH), appropriately identifying their vertex sets. Recall
that V (I(SG)) = V (G) ∪ E(G) and a red vertex x ∈ V (G) is adjacent to a blue
vertex e ∈ E(G) if x ∈ e.

For x ∈ V (G), let cG(x) = WL1(G, x) and define cH on V (H) similarly. First,
we identify V (G) and V (H) (i.e., the red parts of the two incidence graphs) so
that cG(x) = cH(x) for every x in V (G) = V (H), which is possible because
1-WL-equivalent graphs have the same color palette after color refinement. The
color classes of cG now form a common equitable partition of G and H.

Next, extend the coloring cG to E(G) (the blue part of I(SG)) by cG({x, y}) =
{cG(x), cG(y)}, and similarly extend cH to E(H). Denote the color class of cG

containing {x, y} by CG({x, y}), the color class containing x by CG(x) etc. Note
that |CG({x, y})| is equal to the number of edges in G between CG(x) and CG(y)
(or the number of edges within CG(x) if cG(x) = cG(y)). Since {CG(x)}x∈V (G) is
a common equitable partition of G and H, we have |CG({x, y})| = |CH({x′, y′})|
whenever cG({x, y}) = cH({x′, y′}) (note that {x, y} does not need to be an edge
in H, nor {x′, y′} needs to be an edge in G). This allows us to identify E(G)
and E(H) so that cG(e) = cH(e) for every e in E(G) = E(H).

Now, consider the partition of V (G) ∪ E(G) into the color classes of cG (or
the same in terms of H) and verify that this is an equitable partition for both
I(SG) and I(SH). Indeed, let C ⊆ V (G) and D ⊆ E(G) be color classes of cG

such that there are x ∈ C and e ∈ D adjacent in I(SG), that is, e = {x, y}
for some vertex y of G. Note that, if considered on V (H) ∪ E(H), the classes
C and D also must contain x′ ∈ C and e′ = {x′, y′} ∈ D adjacent in I(SH)
(take x′ = x and any y′ adjacent to x in H such that cH(y′) = cG(y)). Denote
C ′ = CG(y) (it is not excluded that C ′ = C). The vertex x has exactly as many
D-neighbors in I(SG) as it has C ′-neighbors in G. This number depends only
on C and C ′ or, equivalently, only on C and D. The same number is obtained
also while counting the D-neighbors of x′ in I(SH).

On the other hand, e has exactly one neighbor x in C if C ′ �= C and exactly
two C-neighbors x and y if C ′ = C. What is the case depends only on D and
C, and is the same in I(SG) and I(SH). Thus, we do have a common equitable
partition of I(SG) and I(SH). ��

As was discussed in Sect. 1, we are able to generalize Theorem 4 to any frac-
tional F -packing number πF

f . For a graph G, let SF,G be the family of subsets
of V (G) consisting of the vertex sets V (F ′) of all subgraphs F ′ of G isomor-
phic to the pattern graph F . Now, πF

f (G) = νf (SF,G). Dell et al. [9] establish a
close connection between homomorphism counts and k-WL equivalence, which
motivates the following definition. The homomorphism-hereditary treewidth of a
graph F , denoted by htw(F), is the maximum treewidth tw(F ′) over all homo-
morphic images F ′ of F . The proof of the following result can be found in the
full version of the paper [2].

On the Weisfeiler-Leman Dimension of Fractional Packing 365

Theorem 5. If htw(F) ≤ k, then πF
f is k-WL-invariant.

First-Order Interpretability. Our approach to proving Theorem 4 was, given
an instance graph G of Fractional Matching Problem, to define an instance SG

of Fractional Set Packing Problem having the same LP value. The following
definition concerns many similar situations. Given a correspondence G �→ SG,
we say that an istance SG of Fractional Set Packing is definable over a graph G
with excess e if G ≡(1+e)-WL H implies I(SG) ≡1-WL I(SH).

This definition includes a particular situation when I(SG) is first-order inter-
pretable in G in the sense of [11, Chapter 12.3], which means that for the color
predicates (to be red or blue respectively) as well as for the adjacency relation of
I(SG) we have first order formulas defining them on V (G)k for some k in terms
of the adjacency relation of G. The number k is called width of the interpreta-
tion. In this case, if there is a first-order sentence over s variables that is true on
I(SG) but false on I(SH), then there is a first-order sentence over sk variables
that is true on G but false on H. Cai, Fürer, and Immerman [5] showed that two
structures are ≡k-WL-equivalent iff they are equivalent in the (k + 1)-variable
counting logic Ck+1. Therefore, Theorem 3 has the following consequence.

Corollary 6. Let πf be a fractional graph parameter such that πf (G) = νf (SG),
where SG admits a first-order interpretation of width k in G (even possibly with
counting quantifiers). Under these conditions, SG is definable over G with excess
2(k − 1) and, hence, πf is (2k − 1)-WL-invariant.

To obtain 1-WL-invariance via Corollary 6, we would need an interpretation
of width 1. This is hardly possible in the case of the fractional matching number,
and an interpretation of width 2 could only give us 3-WL-invariance of νf . Thus,
our purely combinatorial argument for Theorem 4 is preferable here.

5 Fractional Edge-Disjoint Triangle Packing

We now show that the approach we used in the proof of Theorem 4 works as
well for edge-disjoint packing. Given a graph G, let T (G) denote the family
of all sets {e1, e2, e3} consisting of the edges of a triangle subgraph in G. We
regard T (G) as a family SG of subsets of the edge set E(G). The optimum value
of Set Packing Problem on SG, which we denote by ρK3(G), is equal to the
maximum number of edge-disjoint triangles in G. Let ρK3

f (G) = νf (SG) be the
corresponding fractional parameter.

Theorem 7. The fractional packing number ρK3
f is 2-WL-invariant.

Proof. Given a graph G, we consider the coloring cG of E(G) ∪ T (G) defined
by cG({x, y}) = {WL2(G, x, y),WL2(G, y, x)} on E(G) and cG({e1, e2, e3}) =
{{cG(e1), cG(e2), cG(e3)}} on T (G). Like in the proof of Theorem 4, the upper
case notation CG(w) will be used to denote the color class of w ∈ E(G) ∪ T (G).

Suppose that G ≡2-WL H. This condition means that we can identify the
sets E(G) and E(H) so that cG(e) = cH(e) for every e in E(G) = E(H).

366 V. Arvind et al.

Moreover, the 2-WL-equivalence of G and H implies that |CG(t)| = |CH(t′)| for
any t ∈ T (G) and t′ ∈ T (H) with cG(t) = cH(t′). This allows us to identify T (G)
and T (H) so that cG(t) = cH(t) for every t in T (G) = T (H). As in the proof of
Theorem 4, it suffices to argue that {CG(w)}w∈E(G)∪T (G) is a common equitable
partition of the incidence graphs I(SG) and I(SH). The equality ρK3

f (G) =
ρK3

f (H) will then follow by Theorem 3.
Let C ⊆ E(G) and D ⊆ T (G) be color classes of cG such that there is an

edge between them in I(SG), that is, there are e ∈ C and t ∈ D such that
t = {e, e2, e3}. If considered on E(H) ∪ T (H), the classes C and D also must
contain e′ ∈ C and t′ = {e′, e′

2, e
′
3} ∈ D adjacent in I(SH) (take, for example,

the edge e′ = e of H and extend it to a triangle with other two edges e′
2 and e′

3

such that cH(e′
2) = cG(e2) and cH(e′

3) = cG(e3), which must exist in H because
H and G are 2-WL-equivalent). Denote C ′ = CG(e2) and C ′′ = CG(e3) (it is
not excluded that some of the classes C, C ′, and C ′′ coincide).

Let x, y, and z be the vertices of the triangle t in G, and suppose that
e = {x, y}. The number of D-neighbors that e has in I(SG) is equal to the number
of vertices z′ such that (WL2(G, x, z′),WL2(G, z′, y)) is one of the 8 pairs in
(cG({x, z})×cG({y, z}))∪(cG({y, z})×cG({x, z})), like (WL2(G, z, y),WL2(G, x,
z)) (some of these pairs can coincide). Since the partition of V (G)2 by the
coloring WL2(G, ·, ·) is not further refined by 2-WL, this number depends only
on C and D. We obtain the same number also while counting the D-neighbors
of e′ in I(SH).

On the other hand, t has exactly one neighbor e in C if C differs from both
C ′ and C ′′, exactly two C-neighbors if C coincides with exactly one of C ′ and
C ′′, and exactly three C-neighbors e, e2, and e3 if C = C ′ = C ′′. Which of the
three possibilities occurs depends only on D and C, and is the same in I(SG) and
I(SH). This completes our verification that we really have a common equitable
partition. ��

6 Invariance Ratio and Integrality Gap

Recall the discussion in the introduction about the domination number γ(G).

Theorem 8. For infinitely many n, there are n-vertex 1-WL-equivalent graphs
G and H such that γ(G)/γ(H) > 1

20 ln n − 1.

Proof. It suffices to show that the variation of the domination number among
n-vertex d-regular graphs is logarithmic for an appropriate choice of the degree
function d = d(n).

Assuming that dn is even, let R(n, d) denote a random d-regular graph on n
vertices. Given p ∈ (0, 1), let G(n, p) denote the Erdős–Rényi random graph with
edge probability p. Kim and Vu [18] proved for certain degree functions d = d(n)
that the distribution R(n, d) can be approximated from below and above, with
respect to the subgraph relation, by distributions G(n, p1) and G(n, p2) with
p1 = (1 − o(1)) d

n and p2 = (1 + o(1)) d
n . We need the part of this sandwiching

result about the approximation from above.

On the Weisfeiler-Leman Dimension of Fractional Packing 367

For our purposes, we consider pairs n, d such that n = (2d)4 and, thus,
d = n1/4/2. Applied to this case, the Kim-Vu theorem says that there is a joint
distribution of R(n, d) and G(n, p) with p = (1 + o(1)) d

n = (12 + o(1))n−3/4 such
that Δ(R(n, d) \G(n, p)) ≤ 4 with probability 1 − o(1) as n increases. It follows
that

γ(G(n, p)) ≤ 5 γ(R(n, d))

with probability 1 − o(1). Glebov et al. [15] proved that γ(G(n, p)) = ln(np)
p (1 +

o(1)) with probability 1−o(1) whenever p → 0 and pn → ∞. Hence γ(R(n, d)) ≥
1
5

n
d ln d with probability 1−o(1). As a consequence, there is an n-vertex d-regular

graph G with γ(G) ≥ 1
5

n
d ln d.

On the other hand, consider H = n
2d Kd,d, where Ks,t stands for the complete

bipartite graph with vertex classes of size s and t, and note that γ(H) = n
d .

Therefore, γ(G)/γ(H) ≥ 1
5 ln d, which readily gives us the desired bound. ��

We conclude with a discussion of Edge-Disjoint Triangle Packing. Haxell
and Rödl [17] proved that ρK3 is well approximated by ρK3

f on dense graphs as
ρK3

f (G)−ρK3(G) = o(n2) for n-vertex G. On the other hand, Yuster [26] showed
that ρK3

f (G) − ρK3(G) = Ω(n1.5) for infinitely many G, and it is open whether
this lower bound is tight. Define the invariance discrepancy of ρK3 as the function
DK3(n) = max |ρK3(G) − ρK3(H)| where the maximum is taken over 2-WL-
equivalent n-vertex graphs G and H. As follows from Theorem 7, this function
provides a lower bound for the maximum integrality gap ρK3

f (G) − ρK3(G) over
n-vertex graphs. In this respect, it is reasonable to ask what the asymptotics of
DK3(n) is. The following fact is a step towards this goal.

Proposition 9. DK3(n) = Ω(n).

Proof. Consider G = tS and H = tR, where S and R are the Shrikhande and
4 × 4 rook’s graphs respectively. Both have vertex set Z4 × Z4, and (i, j) and
(i′, j′) are adjacent in S if (i = i′ and j′ = j + 1) or (j = j′ and i′ = i + 1) or
(i′ = i+1 and j′ = j +1), where equality is in Z4, while they are adjacent in R if
i = i′ (row 4-clique) or j = j′ (column 4-clique). S is completely decomposable
into edge-triangles {(i, j), (i + 1, j), (i + 1, j + 1)} and, hence, ρK3(S) = 16. On
the other hand, in R the edges of each K3 all belong to the same row or column
4-clique. Since a packing can take at most one K3 from each row/column K4,
we have ρK3(R) = 8. This yields ρK3(G) − ρK3(H) = 8t as desired. ��

References

1. Anderson, M., Dawar, A., Holm, B.: Solving linear programs without breaking
abstractions. J. ACM 62(6), 48:1–48:26 (2015)

2. Arvind, V., Fuhlbrück, F., Köbler, J., Verbitsky, O.: On the Weisfeiler-Leman
dimension of Fractional Packing. Technical report, arxiv.org/abs/1910.11325
(2019)

3. Atserias, A., Dawar, A.: Definable inapproximability: new challenges for duplicator.
In: Proceedings of CSL 2018. LIPIcs, vol. 119, pp. 7:1–7:21 (2018)

http://arxiv.org/abs/org/abs/1910.11325

368 V. Arvind et al.

4. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of STOC
2016, pp. 684–697 (2016)

5. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identifications. Combinatorica 12(4), 389–410 (1992)

6. Chappell, G., Gimbel, J., Hartman, C.: Approximations of the domination number
of a graph. J. Combin. Math. Combin. Comput. 104, 287–297 (2018)

7. Dawar, A.: The nature and power of fixed-point logic with counting. SIGLOG
News 2(1), 8–21 (2015)

8. Dawar, A., Severini, S., Zapata, O.: Pebble games and cospectral graphs. Electron.
Notes Discrete Math. 61, 323–329 (2017)

9. Dell, H., Grohe, M., Rattan, G.: Lovász meets Weisfeiler and Leman. In: Proceed-
ings of ICALP 2018. LIPIcs, vol. 107, pp. 40:1–40:14 (2018)

10. Dor, D., Tarsi, M.: Graph decomposition is NP-complete: a complete proof of
Holyer’s conjecture. SIAM J. Comput. 26(4), 1166–1187 (1997)

11. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer Monographs in Math-
ematics. Springer, Berlin (2006)

12. Füredi, Z.: Matchings and covers in hypergraphs. Graphs Comb. 4(1), 115–206
(1988)

13. Fürer, M.: On the power of combinatorial and spectral invariants. Linear Algebra
Appl. 432(9), 2373–2380 (2010)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco (1979)

15. Glebov, R., Liebenau, A., Szabó, T.: On the concentration of the domination num-
ber of the random graph. SIAM J. Discrete Math. 29(3), 1186–1206 (2015)

16. Grohe, M., Kersting, K., Mladenov, M., Selman, E.: Dimension reduction via colour
refinement. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp.
505–516. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-
2 42. arXiv version: arxiv.org/abs/1307.5697

17. Haxell, P.E., Rödl, V.: Integer and fractional packings in dense graphs. Combina-
torica 21(1), 13–38 (2001)

18. Kim, J., Vu, V.: Sandwiching random graphs: universality between random graph
models. Adv. Math. 188(2), 444–469 (2004)

19. Kirkpatrick, D.G., Hell, P.: On the complexity of general graph factor problems.
SIAM J. Comput. 12(3), 601–609 (1983)

20. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13(4), 383–390 (1975)

21. Otto, M.: Bounded Variable Logics and Counting: A Study in Finite Models. Lec-
ture Notes in Logic, vol. 9. Cambridge University Press, Cambridge (2017)

22. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proceedings of STOC
1997, pp. 475–484. ACM (1997)

23. Rubalcaba, R.R.: Fractional domination, fractional packings, and fractional iso-
morphisms of graphs. Ph.D. thesis, Auburn University (2005)

24. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. A Rational Approach
to the Theory of Graphs. Wiley, Hoboken (1997)

25. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the
algebra which appears therein. NTI Ser. 2 9, 12–16 (1968). English translation is
available at https://www.iti.zcu.cz/wl2018/pdf/wl paper translation.pdf

26. Yuster, R.: Integer and fractional packing of families of graphs. Random Struct.
Algorithms 26(1–2), 110–118 (2005)

https://doi.org/10.1007/978-3-662-44777-2_42
https://doi.org/10.1007/978-3-662-44777-2_42
http://arxiv.org/abs/org/abs/1307.5697
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Input Strictly Local Tree Transducers

Jing Ji(B) and Jeffrey Heinz

The Department of Linguistics and The Institute of Advanced
Computational Science, Stony Brook University, Stony Brook, USA

{jing.ji,jeffrey.heinz}@stonybrook.edu

Abstract. We generalize the class of input strictly local string functions
(Chandlee et al. 2014) to tree functions. We show they are characterized
by a subclass of frontier-to-root, deterministic, linear tree transducers.
We motivate this class from the study of natural language as it provides
a way to distinguish local syntactic processes from non-local ones. We
give examples illustrating this kind of analysis.

Keywords: Strictly local · Computational syntax · Tree transducers

1 Introduction

Locally Testable sets of strings in the strict sense (Strictly Local, SL) are a
subclass of the regular languages with interesting properties [16,20]. Rogers [18]
presents a generalization of SL to sets of trees and shows they characterize the
derivations of context-free languages. Chandlee et al. [2,3] generalize SL formal
languages in another direction. They present classes of strictly local string-to-
string functions. In this paper, we generalize the SL class to a class of functions
over trees. In particular, we present a characterization in terms of frontier-to-
root, deterministic, linear tree transducers [5,7].

One motivation comes from computational and theoretical linguistics, where
the goal of one program is to identify and understand the minimally powerful
classes of formal grammars which can describe aspects of natural language [4].
To this end, subregular sets and functions over strings have been used to dis-
tinguish and characterize phonological generalizations [11]. More recent research
has begun studying natural language syntax from the perspective of subregular
sets and functions over trees, as opposed to strings [9,10].

One rationale for studying subclasses of regular string/tree sets and relations
is that it is known that finite-state methods are sufficient to describe aspects
of natural language. For phonology and morphology, finite-state methods over
strings appear sufficient [1,17]. For syntax, finite-state methods over trees sim-
ilarly appear sufficient. Rogers [19] showed that a syntactic theory of English
can be understood in terms of Monadic Second Order (MSO) definable con-
straints over trees. Languages with more complex constructions can be under-
stood in terms of regular tree languages undergoing regular tree transductions

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 369–381, 2020.
https://doi.org/10.1007/978-3-030-40608-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_26

370 J. Ji and J. Heinz

[8,14]. Tree transducers also have found broad application in machine transla-
tion [13,15]. It remains an open question, however, whether the full power of
regular computations are necessary [11].

Another rationale for identifying subregular classes of languages is that learn-
ing problems may be easier to solve in the sense of requiring less and time and
resources than otherwise [12].

By defining and characterizing the Input Strictly Local class of tree trans-
ducers, we hope to take a first step in developing a more fine-grained perspective
on the syntactic transformations present in natural languages. The structure of
the paper is as follows.

Section 2 defines trees and associated properties and functions based on their
recursive structure. In this way we follow the tree transducer literature [5,7].
However, we note that we do not adopt the convention of ranked alphabets.
Instead we obtain their effects by bounding the largest number of children a tree
in some tree set can have and by requiring that the pre-image of the transition
function of the tree automata is finite. While this is unconventional, we believe
it simplifies our presentation and proofs. Section 2 also reviews strictly local
treesets and reviews the proof of the abstract characterization of them [18].

Section 3 presents the main theoretical results. Deterministic, frontier-to-
root, finite-state, linear tree transducers (abbreviated DFT) are defined, Input
Strictly Local (ISL) tree functions are defined abstractly and then characterized
in terms DFTs. Section 4 concludes.

2 Preliminaries

Assume a finite alphabet Σ and let Σ∗ denote the set of all strings of finite
length that can be obtained via concatenation of the elements of Σ. We denote
the empty string with λ.

Consider an alphabet Σ and symbols [] which do not belong to it. A tree is
defined inductively as follows:

– Base Case: For each a ∈ Σ, a[] is a tree. The tree a[] is also called a leaf.
We also write a[λ] for a[].

– Inductive Case: If a ∈ Σ and t1t2 . . . tn is a string of trees of length n (n ≥
1), then a[t1t2 . . . tn] is a tree.

For a trees t = a[t1t2 . . . tn], the trees t1, t2, . . . tn are the children of t and ti
denotes the ith child. ΣT denotes the set of all trees of finite size from Σ.

The depth, size, yield, root, branch, and the set of subtrees of a tree t,
written dp(t), |t|, yld(t), root(t), branch(t) and sub(t), respectively, are defined
as follows. For all a ∈ Σ:

– If t = a[], then dp(t) = 1, |t| = 1, yld(t) = a, root(t) = a, branch(t) = 0,
and sub(t) = {t}.

– If t = a[t1t2 . . . tn] then dp(t) = max{dp(ti)|1 ≤ i ≤ n} + 1, and |t| =
1 +

∑n
i=1 |ti|, and yld(t) = yld(t1)yld(t2) . . . yld(tn), and root(t) = a, and

branch(t) = n, and sub(t) =
⋃{sub(ti)|1 ≤ i ≤ n} ∪ {t}.

Input Strictly Local Tree Transducers 371

The roots of the subtrees of a tree t are called nodes. The root of a tree is also
called its root node. Leaves are also called frontier nodes.

The branching degree of a tree t is branch degree(t) = max{branch(u) | u ∈
sub(t)}. Let ΣT

n denotes the set of trees {t ∈ ΣT | branch degree(t) ≤ n}.

Example 1. Suppose Σ = {S, a, b}. S [a S [a b] b] denotes a tree rooted in S
with branch degree of 3.

Let N∗ be the set of all sequences of finite length of positive natural numbers.
For �n = 〈n1, n2, . . . , nm〉 ∈ N∗ (m ≥ 1), the subtree of t at �n is written t.�n, and
it is defined inductively:

– Base Case: t.�n = t iff �n = λ.
– Inductive Case: Suppose t = a[t1t2 . . . tn] and �n �= λ. Then t.�n =

t.〈n1, n2 . . . nm〉 = tn1 .〈n2, n3 . . . nm〉.
– Note: t.�n is undefined otherwise.

These sequences are the Gorn addresses of the subtrees of t. For example, The
first child of t is given by t.〈1〉 (if it exists); the second child by t.〈2〉 (if it exists);
the second child of the first child by t.〈1, 2〉 (if it exists); and of course t.〈 〉 = t.

The Gorn addresses provide a natural ordering of the subtrees of t in terms
of the length-lexicographic ordering. For distinct �n = 〈n1, n2, . . . , nk〉, �m =
〈m1,m2, . . . ,m�〉, �n precedes �m iff either k < �, or k = � and n1 < m1, or
k = � and n1 = m1 and 〈n2, . . . , nk〉 < 〈m2, . . . ,m�〉. This essentially orders
subtrees of t such that the ones closer to the root of t are ordered earlier, and
those ‘on the same level’ in t are ordered ‘left to right.’ We make use of this
ordering in our proof of Theorem 1.

The largest common subtrees of a set of trees T , denoted lcs(T), is {d ∈⋂
t∈T sub(t) | ∀d ′ ∈ ⋂

t∈T sub(t), |d′| ≤ |d|}.
The k-stem (k ≥ 1) of a tree t, written stemk(t), is defined as follows.

– Base Case: For all a ∈ Σ, if t = a[], then stemk(t) = a[].
– Inductive Case: For all a ∈ Σ, if t = a[t1t2 . . . tn], then

• stem1(t) = root(t)[], and
• stemk(t) = a[stemk−1(t1)stemk−1(t2) . . . stemk−1(tn)].

The stems of a tree t, denoted stem(t) is the set {stemk(t) | k ≥ 1}.

Example 2. The 2-stems of the tree in Example 1 is {S [a S b], S [a b], a[], b[]}.

It is useful to incorporate boundary markers into the roots and leaves of
trees. Informally, given a Σ-tree t, boundary markers are added above the root
and below the leaves. Formally, we employ symbols �, � �∈ Σ for this purpose.
We let Σ̂ = Σ ∪ {�, �}.

Thus for all a ∈ Σ, t ∈ ΣT , let add � (t) = �[t], and add � (a[]) = a[�[]],
and add�(a[t1 . . . tn]) = a[�(t1) · · ·�(tn)]. Then for any Σ-tree t, its augmented
counterpart t̂ = add � (add � (t)).

The k-factors of a tree t are defined as the set of k-depth stems of subtrees
of t̂. For all t ∈ ΣT , let Fk(t) =

⋃{stemk(u) | u ∈ sub(t̂)}.
We lift the definition of k-factors to treesets in the natural way. For all T

⊆ ΣT , Fk(T) =
⋃

t∈T Fk(t).

372 J. Ji and J. Heinz

Example 3. The 2-factors of the tree in Example 1 is the set {�[S []],
S [a []S [] b []], S [a [] b []], a [�[]], b [�[]], �[]}.

A strictly k-local grammar G = (Σ,S) where S is a finite subset of Fk(ΣT)
and the tree language of G is defined as: L((Σ,S)) = {t | Fk(t) ⊆ S}.

Note that since S is finite, there exists a smallest number n such that S ⊆ Σ̂T
n .

It follows that L((Σ,S)) is of branching degree n. A treeset T ⊆ ΣT is strictly
k-local if there exists a k and a strictly k-local grammar G such that L(G) = T .
Such treesets form exactly strictly k-local treesets (SLk). Strictly local stringsets
are a special case of strictly local treesets where all the branching degree is 1; so
every node (except leaves) are unary branching.

Strictly 2-local treesets have been called local treesets in previous literature
[18]. Every Strictly 2-local tree language can be generated by a context free
grammar [7,18].

Comparable to the characterization of strictly local string sets, which is Suffix
Substitution Closure [20], each strictly 2-local tree language satisfies Subtree
Substitution Closure[18]. To explain this characterization, we first introduce the
notion of subtree-substitution.

For t, s ∈ ΣT and �n = 〈n1, n2, . . . , nm〉 ∈ N∗ (m ≥ 1), the operation of
substituting the subtree of t at �n by s, written as t.�n ← s, is defined as follows.

– Base Case: t.�n ← s = s iff �n = λ.
– Inductive Case: If t = a[t1t2 . . . tn] then t.�n ← s = a[t1t2 . . . (tn1 .

〈n2, n3 . . . nm〉 ← s) . . . tn].

We also define substitution of all the subtrees of t rooted at x (x ∈ Σ) by s,
which we write as t

x←s.

– Base Case: If root(t) = x, t
x←s = s.

– Base Case: If root(t) �= x and t = a[] (a ∈ Σ), t
x←s = t.

– Inductive Case: If root(t) �= x and t = a[t1t2 . . . tn] (a ∈ Σ), t
x←s =

a[s1s2 . . . sn] where si = ti
x←s (1 ≤ i ≤ n).

Rogers [18] proves the following result and we repeat the proof to set the
stage for the sequel.

Theorem 1 (Subtree Substitution Closure). A treeset T ⊆ ΣT is strictly
2-local iff there is n such that T is of branching degree n and for all A,B ∈ T,
whenever there exist two vectors �n1, �n2 ∈ �N , such that root(A. �n1) = root(B. �n2)
then A. �n1 ← B. �n2 ∈ T .

Proof. If T is strictly 2-local, then there exists a corresponding strictly 2-local
grammar G that satisfies L(G) = T . Thus there exists a finite set S ⊂ Fk(ΣT)
such that L((Σ,S)) = T .

Consider any A,B ∈ T and �n1, �n2 ∈ �N such that root(A. �n1) = root(B. �n2).
Let t = A. �n1 ← B. �n2. We show t ∈ T . First notice that F2(A) ⊆ S and
F2(B) ⊆ S because A,B ∈ T and T = L((Σ,S)). Next consider any element
u ∈ F2(t). By definition of t and 2-factor, u must be a 2-stem of a subtree of

Input Strictly Local Tree Transducers 373

A. �n1 ← B. �n2. If u is the 2-stem of a subtree of B. �n2 then u ∈ F2(B) ⊂ S. If not,
then u is a 2-stem of a subtree of A and so u ∈ F2(A) ⊂ S. Either way, u ∈ S
and so F2(t) ⊆ S. It follows that t ∈ T .

Conversely, consider a treeset T such that whenever there exist two vectors
�n1, �n2 ∈ �N , such that root(A. �n1) = root(B. �n2) then A. �n1 ← B. �n2 ∈ T . We
refer to this property as the SSC. To show T is Strictly 2-Local, we present a
finite set S ⊂ Fk(ΣT) such that L((Σ,S)) = T . Let S = F2(T). Since T is of
branching degree n, S is finite. In order to prove L((Σ,S)) = T , we need to
show both L((Σ,S)) ⊆ T and T ⊆ L((Σ,S)). It is obvious that T ⊆ L((Σ,S))
because for any t ∈ T , F2(t) ⊆ S = F2(T).

The following proves that L((Σ,S)) ⊆ T by recursive application of SSC.
Consider any t ∈ L((Σ,S)). Let t1 = t.�n1, t2 = t. �n2, . . . tm = t.�nm be an enu-
meration of the m subtrees of t by their Gorn addresses in length-lexicographic
order. (Note that t1 = t).

The base step of the induction is to choose a tree s0 ∈ T that has the same
root as t. Such a s0 ∈ T exists because �[root(t)[]] ∈ S.

Next we assume by the induction hypothesis that si−1 ∈ T and we will
construct si which is also in T . For each 1 ≤ i ≤ m, if ti is a leaf then let u =
ti[�[]], otherwise let u = stem2(ti). Choose a tree x ∈ T such that u ∈ F2(x).
Such a tree x ∈ T exists because u ∈ S = F2(T). It follows there is �m such that
stem2(x.�m) = u. Let si = si−1. �ni ← x.�m. Since root(si−1. �ni) = root(x.�m) and
si−1, x ∈ T , it follows that si ∈ T by SSC. Informally, this construction ensures
the nodes and children of si are identical to those of t from the root of t to the
root of the subtree ti.

Since each si is built according to si−1 and s0 ∈ T we conclude that sm ∈
T . Furthermore, since the subtrees are ordered length-lexicographically and we
substitute a 2-stem of a subtree of t to build si, it follows that sm = t. As t was
arbitrary in L((Σ,S)), we obtain L((Σ,S)) ⊆ T . �

The catenation operation of two trees u · t is defined by substitution in the
leaves. Let $ be a new symbol, i.e., $ �∈ Σ. Let ΣT

$ denote the set of all trees
over Σ ∪ $ which contain exactly one occurrence of label $ in the leaves. The
operation of catenation is defined inductively:

– Base Case: For t ∈ ΣT , $[] · t = t.
– Base Case: For all a ∈ Σ, if u = a[], u · t = a[].
– Inductive Case: For all a ∈ Σ, if u = a[t1t2 . . . tn], u · t = a[(t1 · t)(t2 ·

t) . . . (tn · t)].

Example 4. Suppose Σ = {S, a, b}. Let u = S [a[] $[] b[]] and t = S [a[] b[]].
u·t = S [(a[]·t) ($[]·t) (b[]·t)] = S [a[] S [a[] b[]] b[]].

Notice that the classical catenation of strings can be viewed as a special case
of catenation of trees with unary branching. This operation can also be used to
represent subtrees. For t ∈ ΣT ∪ ΣT

$, if t = u · s, then s is a subtree of t.
If U ⊆ ΣT

$ and T ⊆ ΣT ∪ΣT
$, then U ·T = {u·t | u ∈ U, t ∈ T}. Furthermore,

for any t ∈ T and any tree language T ⊆ ΣT , the quotient of t w.r.t. T is defined

374 J. Ji and J. Heinz

as qtT (t) = {u ∈ ΣT
$ | u · t ∈ T}. Canonical finite-state tree recognizers can be

defined in terms of these quotients.

3 Input Strictly Local Tree Transducers

In this section we define functions that map trees to trees. After reviewing some
basic terminology, we introduce deterministic, frontier-to-root, linear, finite-state
Tree Transducers (DFT). We then define Input Strictly Local Tree Transducers
(ISLTT) in a grammar-independent way, and then prove they correspond exactly
to a type of DFTs. Examples are provided along the way.

A function f with domain X and co-domain Y can be written f : X → Y .
The image of f is the set {f(x) ∈ Y |x ∈ X, f(x) is defined} and the pre-image
of f is the set {x ∈ X|f(x) is defined}. Tree transducers compute functions that
map trees to trees f : ΣT

n → ΓT .
DFTs are defined as a tuple (Q,Σ, Γ, F, δ), where Q is a finite set of states,

F ⊆ Q is a set of final states, and δ is a transition function that maps a sequence
of states paired with an element of Σ to a state and a variably-leafed tree. A
variably-leafed tree is a tree which may include variables in the leaves of the tree.
Let X = {x1, x2, . . .} be a countable set of variables. If Σ is a finite alphabet
then ΣT [X] denotes the set of trees t formed with the alphabet Σ ∪ X such
that if the root of a subtree s of t is a variable then s is a leaf (so variables are
only allowed in leaves). Thus formally the transition function is δ : Q∗ × Σ →
ΓT [X]×Q. Importantly, the pre-image of the transition function must be finite.
We sometimes write (q1q2 . . . qm, a, t, q) ∈ δ to mean δ(q1q2 . . . qm, a) = (t, q).

In the course of computing a tree transduction, the variables in variably-
leafed trees are substituted with trees. Assume t1, t2, . . . tm ∈ ΓT and s ∈ ΓT [X],
which is a variable leafed tree with any subset of the variables {x1, x2, ..., xm}.
We define a substitution function φ such that φ(t1t2 . . . tm, s) = s

xi← ti for
1 ≤ i ≤ m.

We define the process of transducing a tree recursively using a function π,
which maps ΣT

n to Q × ΓT , which itself is defined inductively with δ.

– Base Case: π(a[]) = (q, v) iff δ(λ, a) = (v, q)
– Inductive Case: π(a[t1t2 . . . tm]) = (q, φ(v1v2 . . . vm, s)) iff δ(q1q2 . . . qm, a)

= (s, q) and π(ti) = (qi, vi) for each 1 ≤ i ≤ m.

The tree-to-tree function the transducer M recognizes is the set of pairs
L(M) = {(t, s) | t ∈ ΣT

n , s ∈ ΓT , π(t) = (q, s), q ∈ F}. We also write M(t) = s
whenever (t, s) ∈ L(M).

A DFT is linear provided whenever δ(q1q2 . . . qm, a) = (s, q), no variable
occurs more than once in s.

Example 5. Wh-movement refers to a syntactic analysis of question words such
as English what and who. It is common to analyze this as a relation between
tree structures [21]. The input structure describes the relation of the wh-word to
its verb (cf. “John thinks Mary believes Bill buys what?”) and the yield of the

Input Strictly Local Tree Transducers 375

output structure reflects the pronunciation (cf. “What does John think Mary
believe Bill buys”).

We use a simplified transformation to make the point. In the alphabet, S
represents the root node of a input tree, W stands for a wh-word and P for every-
thing else (P is for phrase). A transducer of wh-movement can be constructed as a
tuple Mwh = (Q,Σ,F, δ) where Q = {qw, qp, qs}, F = {qs}, Σ = {S, P,W}, and
δ = {(λ, P, P [], qp), (λ,W,W [], qw), (qpqp, P, P [x1x2], qp), (qwqp, P, P [x1x2], qw),
(qpqw, P, P [x1x2], qw), (qpqw, S, S[W []S[x1x2]], qs), (qwqp, S, S[W []S[x1x2]], qs),
(qpqp, S, S[x1x2], qs)}.

Figure 1 illustrates some of the transformations computed by the finite-state
machine Mwh. The tree with a wh-word in Fig. (1a) is transformed into the
tree in Fig. (1b). (Mwh keeps the original wh-word in-situ but it could easily be
removed or replaced with a trace). The trees in Fig. (1c) and (d) are the same
because there is no wh-word in the input tree and so Mwh leaves it unchanged.

S

P P

P P

P P

P W

(a)

�→

S

W S

P P

P P

P P

P W

(b)

S

P P

P P

P P

P P

(c)

�→

S

P P

P P

P P

P P

(d)

Fig. 1. Mwh maps the tree in (a) to the tree in (b) and likewise maps the tree in (c)
to itself in (d).

Next we describe the canonical form of deterministic tree transducers. The
quotient of a tree t ∈ ΣT with respect to a tree-to-tree function f : ΣT → ΓT

is a key idea. It will be useful to develop some notation for the largest common
subtree of the image under f of the set of trees which includes t as a subtree.
Let lcsif (t) = lcs

(
f
(
ΣT

$ · {t}))
. When f is understood from context, we just

write lcsi(t). Then the quotient is defined as follows:

qtf (t) =
{

(u, v) | f(u · t) = v · s, s = lcsif (t)
}

. (1)

When f is clear from context, we write qt(t) instead of qtf (t).
It is worth noting that for a tree t ∈ ΣT

n , the largest common subtree of
the image of a linear transducer with the input of ΣT

$ · {t} is unique if it exists
because if there is more than one tree that belongs to lcs(f(ΣT

$ ·{t})), they must
be produced by copying, which is not allowed by linear DFT. If trees t1, t2 ∈ ΣT

376 J. Ji and J. Heinz

have the same quotient with respect to a function f , they are quotient-equivalent
with respect to f and we write t1 ∼f t2. Clearly, ∼f is an equivalence relation
which partitions ΣT .

As in the string case, to each regular tree language T , there is a canonical
DFT accepting T . The characterization given by the Myhill-Nerode theorem can
be transferred to the tree case [6]. For any treeset T , the quotients of trees w.r.t.
T can be used to partition ΣT into a finite set of equivalence classes.

Analogous to the smallest subsequential finite state transducer for a subse-
quential function, we can construct the smallest linear DFT for a deterministic
tree-to-tree function f and refer to this transducer as the canonical transducer
for f , Ψ c

f . For t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and a ∈ Σ, let the contribution of a

w.r.t. t1t2 . . . tm be contf (a, t1t2 . . . tm) = v ∈ ΓT [X], which satisfies

φ
(
lcsi(t1)lcsi(t2) . . . lcsi(tm), v

)
= lcsi

(
a[t1t2 . . . tm]

)
. (2)

The term contf (a, t1t2 . . . tm) is well-defined since each lcsi(t1), lcsi(t2), . . .
lcsi(tm), and lcsi(a[t1t2 . . . tm]) are unique.

Then the canonical DFT for a deterministic tree-to-tree function f is:

– Q = {qtf (t) |∈ ΣT
n },

– F ⊆ Q,
– For a ∈ Σ, there exists v ∈ ΓT that satisfies (λ, a, v, qtf (a[])) ∈ δ,

– For t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and a ∈ Σ,

(
qtf (t1) qtf (t2) . . . qtf (tm),

a, contf (a, t1t2 . . . tm), qtf (a[t1t2 . . . tm])
)

∈ δ.

The presentation here differs from Friese et al. [6], but the only thing we require
in the proof of Theorem 2 below is the existence of the canonical DFT whenever
∼f is of finite index.

We define ISLTT as a subclass of linear DFTs.

Definition 1 (Input Strictly Local Tree-to-tree Function). A function
f is Input Strictly Local (ISL) if there is a k and n such that for all t1, t2 ∈ ΣT

n ,
if stemk−1(t1) = stemk−1(t2) then quotientf (t1) = quotientf (t2).

In the same way ISL string functions can be used to probe the locality prop-
erties of phonological processes, ISL tree functions can used to probe the locality
properties of syntactic transformations.

To show that a syntactic transformation is not ISL one need only construct
a counterexample to Definition 1.

Example 6. We can show the function computed by Mwh from Example 5 is
not ISL for any k because there is no bound on the distance the wh-word can
‘travel.’ Suppose there is a k and n such that for all t1, t2 ∈ ΣT

n , if stemk−1(t1) =
stemk−1(t2) then qtf (t1) = qtf (t2). Let u1 = u2 . . . = uk−1 = P [P$]. Also let uk

= P [P P], s = S[P$] and w = P [PW]. We construct two sentence structures:
s · t1 and s · t2, where t1 = u1 · u2 . . . uk−1 · w and t2 = u1 · u2 . . . uk−1 · uk.

Input Strictly Local Tree Transducers 377

It is obvious that stemk−1(t1) = stemk−1(t2). However, qtf (t1) �= qtf (t2) since
(s, s) ∈ qtf (t2) but (s, s) /∈ qtf (t1). As we can always find such a pair of trees
t1 and t2 for any k, it is thus proved that wh-movement is not ISL for any k.

Our main result, Theorem 2 below, establishes an automata-theoretic char-
acterization of ISL tree-to-tree functions. As we illustrate after the proof, one
can show that a tree transformation is ISL using this theorem.

Theorem 2 (ISL Tree Transducers). A function f is ISL iff there is some
k and n such that f can be described with a DFT for which

1. Q = {stemk−1(t) | t ∈ ΣT
n)} and F ⊆ Q,

2. ∀q1q2 . . . qm ∈ Q∗(1 ≤ m ≤ n), a ∈ Σ, u ∈ ΓT [X], it is the case that
(q1q2 . . . qm, a, u, q′) ∈ δ ⇒ q′ = stemk−1(a[q1q2 . . . qm]).

The transducer is finite since Σ is finite and n bounds the branching degree of
the pre-image of f which ensures the finiteness of both Q and δ.

Before our proof of the Theorem, we prove a lemma based on these remarks.

Remark 1. For all k,m ∈ N with k ≤ m, and for all t ∈ ΣT
n , stemk(stemm(t)) =

stemk(t) since both t and stemm(t) share the same k-stem from the root.

Remark 2. For all k ∈ N, and for all a ∈ Σ and t1, t2, . . . tm ∈ ΣT
n (m ≤ n),

stemk−1(a[t1t2 . . . tm]) = stemk−1(a[stemk−1(t1) stemk−1(t2) . . . stemk−1(tm)]).
This is a direct consequence of Remark 1.

Lemma 1. Let Ψ be a ISLTT with the properties defined in Theorem2. If t ∈ ΣT
n

and u ∈ ΓT , π(t) = (q, u), then q = stemk−1(t).

Proof. The proof is by induction on the depth of the trees to which π is applying.
The base case follows from the facts that for (λ, a, v, q) ∈ δ iff π(a[]) = (q, v)
and q = stemk−1(a[]).

Next assume for all t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and v1, v2 . . . , vm ∈ ΓT

such that π(t1) = (q1, v1) implies q1 = stemk−1(t1), π(t2) = (q2, v2) implies
q2 = stemk−1(t2), . . . , π(tm) = (qm, vm) implies qm = stemk−1(tm). We show
that ∀a ∈ Σ that there is a v ∈ ΓT [X] such that π(a[t1t2 . . . tm]) =(
q, φ(v1v2 . . . vm, v)

)
and q = stemk−1(a[t1t2 . . . tm]). Based on the assump-

tion, we know that π(t1) = (stemk−1(t1), v1), π(t2) = (stemk−1(t2), v2),
. . . , π(tm) = (stemk−1(tm), vm), so there exists v ∈ ΓT [X] such that
(stemk−1(t1)stemk−1(t2)stemk−1(tm), a, v, q) ∈ δ. By the construction, q is
defined to be equal to stemk−1(a[stemk−1(t1)stemk−1(t2)stemk−1(tm)]), which
by Remark 2, equals stemk−1(a[t1t2 . . . tm]).

Now we can prove the theorem.

Proof (Theorem 2). (⇐) Assume k ∈ N and let f be a function described by
Ψ = {Q, Σ, Γ , F, δ} constructed as in Theorem. Let t1, t2 ∈ ΣT

n such that
stemk−1(t1) = stemk−1(t2). By Lemma 1, both t1 and t2 lead to the same state,
so qtf (t1) = qtf (t2). Therefore, f is k-ISL.

378 J. Ji and J. Heinz

(⇒) Consider any ISL tree-to-tree function f . Then there is some k and
n such that ∀t1, t2 ∈ ΣT

n , we have stemk−1(t1) = stemk−1(t2) ⇒ qtf (t1) =
qtf (t2). We show that the corresponding ISL tree transducer Ψ ISL

f exists. Since
stemk−1(ΣT

n) is a finite set, the equivalence relation ∼f partitions ΣT into
at most stemk−1(ΣT

n) blocks. Thus there exists a canonical linear DFT Ψ c
f =

{Qc, Fc, Σ, Γ, δc}. πc is the process function derived from δc that maps ΣT
n to

Qc × ΓT .
Construct Ψ = {Q, F, Σ,Γ, δ} as follows:

– Q = stemk−1(ΣT
n)

– ∀q ∈ Q, q ∈ F iff qt(q) ∈ Fc.
– For a ∈ Σ and v ∈ ΓT [X], (λ, a, v, q) ∈ δ iff (λ, a, v, qt(q)) ∈ δc.
– ∀q1q2 . . . qm ∈ Q∗(1 ≤ m ≤ n), a ∈ Σ, u ∈ ΓT [X], we have (q1q2 . . . qm,

a, v, stemk−1(a[q1q2 . . . qm])) ∈ δ if and only if (qt(q1)qt(q2) . . . qt(qm), a, v,
qt(a[q1q2 . . . qm])) ∈ δc.

Ψ is ISL by construction, as the states and transitions of Ψ meet requirements
(1) and (2) of Theorem 2.

The following proof show that Ψ computes the same function as Ψ c
f by show-

ing that Ψ and Ψ c
f generate the same function. In other words we show ∀t ∈ ΣT

n ,
u ∈ ΓT , π(t) = (stemk−1(t), u) iff πc(t) = (qt(t), u) and stemk−1(t) ∈ F iff
qt(t) ∈ Fc.

First, we show that π(t) = (stemk−1(t), u) iff πc(t) = (qt(t), u). Clearly,
the base case is satisfied. For all a ∈ Σ and v ∈ ΓT [X], (λ, a, v, q) ∈ δ iff
(λ, a, v, qt(q)) ∈ δc. Thus πc(a[]) = (qt(a[]), v) and π(a[]) = (stemk−1(a[]), v).

Next assume that there exist t1, t2, . . . , tm ∈ ΣT
n and u1, u2, . . . , um ∈ ΓT

such that π(ti) = (stemk−1(ti), ui) iff πc(ti) = (qt(t1), ui) for each 1 ≤
i ≤ m. We show ∀a ∈ Σ and ∀v ∈ ΣT [X] such that π(a[t1t2 . . . tm])
= (stemk−1(a[t1t2 . . . tm]), we have (φ(u1u2 . . . um], v)) iff πc(a[t1t2 . . . tm]) =
(qt(a[t1t2 . . . tm]), φ(u1u2 . . . um], v)).

Suppose πc(a[t1t2 . . . tm]) = (qt(a[t1t2 . . . tm]), (φ(u1u2 . . . um, v))). By
assumption, πc(ti) = (qt(t1), ui) for each 1 ≤ i ≤ m. Hence,

(
qt(t1) . . . qt(tm),

a, v, qt(a[t1t2 . . . tm])
) ∈ δc.

Let qi = stemk−1(ti) for each 1 ≤ i ≤ m. Observe that each stemk−1(ti) =
stemk−1(qi) by Remark 1. Consequently, since f is k-ISL, qt(ti) = qt(qi). Simi-
larly, stemk−1(a[t1t2 . . . tm]) = stemk−1(a[q1q2 . . . qm]) and so qt(a[t1t2 . . . tm]) =
qt(a[q1q2 . . . qm]). By substitution then, we have πc(ti) = (qt(qi), ui) for each
1 ≤ i ≤ m and

(
qt(q1)qt(q2) . . . qt(qm), a, v, qt(a[q1q2 . . . qm])

) ∈ δc.
By construction of Ψ ,

(
q1q2 . . . qm, a, x, stemk−1(a[q1q2 . . . qm])

) ∈ δ. Since
π(ti) = (stemk−1(ti), ui) for each 1 ≤ i ≤ m, it follows that
π(a[t1t2 . . . tm]) =

(
stemk−1(a[q1q2 . . . qm]), (φ(u1u2 . . . um, v))

)
which equals(

stemk−1(a[t1t2 . . . tm]), (φ(u1u2 . . . um, v))
)
.

Conversely, consider any a ∈ Σ and v ∈ ΣT [X] and suppose π(a[t1t2 . . . tm]) =(
stemk−1(a[t1t2 . . . tm]), (φ(u1u2 . . . um], v))

)
. By assumption, π(ti) equals

(stemk−1(ti), ui) for each 1 ≤ i ≤ m. Thus
(
stemk−1(t1)stemk−1(t2) . . .

Input Strictly Local Tree Transducers 379

stemk−1(tm), a, v, stemk−1(a[t1t2 . . . tm])
) ∈ δ. Let qi = stemk−1(ti) for each

1 ≤ i ≤ m as before. It follows that stemk−1(ti) = stemk−1(qi), so
qt(ti) = qt(qi). Likewise, stemk−1(a[t1t2 . . . tm]) = stemk−1(a[q1q2 . . . qm]), so
qt(a[t1t2 . . . tm]) = qt(a[q1q2 . . . qm]). Therefore,

(
stemk−1(q1)stemk−1(q2) . . .

stemk−1(qm), a, v, stemk−1(a[q1q2 . . . qm])
) ∈ δ.

By construction of Ψ , this means
(
qt(q1)qt(q2) . . . qt(qm), a, v,

qt(a[q1q2 . . . qn])
) ∈ δc. Since πc(ti) = (qt(ti), ui) for each i by assumption, it

follows that πc(a[t1t2 . . . tm]) =
(
qt(a[q1q2 . . . qn]), (φ(u1u2 . . . un, v)

)
.

We need to further show that stemk−1(t) ∈ F iff qt(t) ∈ Fc. By construc-
tion, we know that q ∈ F iff qt(q) belongs to Fc. Thus stemk−1(t) ∈ F iff
qt(stemk−1(t)) ∈ Fc. By Remark 1, stemk−1(t) = stemk−1(stemk−1(t)). Hence
qt(t) = qt(stemk−1(t)). Therefore, stemk−1(t) ∈ F iff qt(t) ∈ Fc.

This concludes the proof that Ψ and Ψ c
f generate the same function. �

As mentioned earlier, the value of Theorem 2 is that it can be used to establish
that certain tree transformations are ISL by presenting a transducer for the
transformation which satisfies the properties specified by the theorem.

Example 7. This example shows that reversing the branch order of a regular tree
set T ⊆ ΣT

n is ISL. We illustrate with the classic tree language whose yield is the
string language anbn. In other words we wish to show that the transformation
that maps t1 = S[a[]b[]] to t′1 = S[b[]a[]] and S[a[]t1b[]] to S[b[]t′1a[]] and so
on is ISL.

The DFT can be represented as a tuple (Q, Σ, F, δ) where the states are
expressed by the 1-stems of the subtrees of the pre-image: Q = {a[], b[], S[]},
and F = {S[]}, and Σ = {a, b, S}, and δ = {(λ, a, a[], a[]), (λ, b, b[], b[]),
(a[]b[], S, S[x2, x1], S[]), (a[]S[]b[], S, S[x3x2x1], S[])}.

The reader can verify that this transducer correctly reverses the branch order
of the trees in its pre-image. Further, this construction shows the function is ISL
since it satisfies the requirements in Theorem 2.

4 Conclusion

This paper took a first step in characterizing local syntactic transformations by
generalizing Input Strictly Local string functions to trees. Future work includes
defining Output SL tree functions (cf. [3]) and studying whether these classes
of tree functions can be learned more quickly and with fewer resources, and
characterizing subclasses of tree transducers which characterize the types of non-
local processes found in syntax and machine translation.

References

1. Beesley, K., Kartunnen, L.: Finite State Morphology. CSLI Publications, Stanford
(2003)

380 J. Ji and J. Heinz

2. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. Assoc. Comput. Linguist. 2, 491–503 (2014)

3. Chandlee, J., Eyraud, R., Heinz, J.: Output strictly local functions. In: Kuhlmann,
M., Kanazawa, M., Kobele, G.M. (eds.) Proceedings of the 14th Meeting on the
Mathematics of Language (MoL 2015), Chicago, USA, pp. 112–125, July 2015

4. Chomsky, N.: The Minimalist Program. The MIT Press, Cambridge (1995)
5. Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.

gforge.inria.fr/. Release 12 Oct 2007
6. Friese, S., Seidl, H., Maneth, S.: Minimization of deterministic bottom-up tree

transducers. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol.
6224, pp. 185–196. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14455-4 18

7. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (2015).
http://arxiv.org/abs/1509.06233. Originally published in 1984

8. Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,
S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22221-4 7

9. Graf, T.: Curbing feature coding: strictly local feature assignment. In: Proceedings
of the Society for Computation in Linguistics (SCiL) 2020 (2020, to appear)

10. Graf, T., Shafiei, N.: C-command dependencies as TSL string constraints. In:
Jarosz, G., Nelson, M., O’Connor, B., Pater, J. (eds.) Proceedings of SCiL 2019,
pp. 205–215 (2019)

11. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology, Chap. 5, pp. 126–195. Phonetics and
Phonology, De Gruyter Mouton (2018)

12. Heinz, J., de la Higuera, C., van Zaanen, M.: Grammatical Inference for Computa-
tional Linguistics. Synthesis Lectures on Human Language Technologies, Morgan
and Claypool (2015)

13. Knight, K., May, J.: Applications of weighted automata in natural language pro-
cessing. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted
Automata, Chap. 14. EATCS, pp. 571–596. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01492-5 14

14. Kobele, G.M.: Minimalist tree languages are closed under intersection with rec-
ognizable tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS
(LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22221-4 9

15. Maletti, A.: Survey: tree transducers in machine translation. In: Bordihn,
H., Freund, R., Hinze, T., Holzer, M., Kutrib, M., Otto, F. (eds.) Proceedings of
the 2nd International Workshop on Non-Classical Models of Automata and Appli-
cations. books@ocg.at, vol. 263, pp. 11–32. Österreichische Computer Gesellschaft
(2010)

16. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

17. Roark, B., Sproat, R.: Computational Approaches to Morphology and Syntax.
Oxford University Press, Oxford (2007)

18. Rogers, J.: Strict LT2: regular :: local : recognizable. In: Retoré, C. (ed.) LACL
1996. LNCS, vol. 1328, pp. 366–385. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052167

19. Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI Pub-
lications, Stanford (1998)

http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1007/978-3-642-14455-4_18
https://doi.org/10.1007/978-3-642-14455-4_18
http://arxiv.org/abs/1509.06233
https://doi.org/10.1007/978-3-642-22221-4_7
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-22221-4_9
https://doi.org/10.1007/978-3-642-22221-4_9
https://doi.org/10.1007/BFb0052167
https://doi.org/10.1007/BFb0052167

Input Strictly Local Tree Transducers 381

20. Rogers, J., Pullum, G.: Aural pattern recognition experiments and the subregular
hierarchy. J. Log. Lang. Inf. 20, 329–342 (2011)

21. Sportiche, D., Koopman, H., Stabler, E.: An Introduction to Syntactic Analysis
and Theory. Wiley, Hoboken (2013)

Words and Codes

Lyndon Words versus Inverse Lyndon
Words: Queries on Suffixes

and Bordered Words

Paola Bonizzoni1 , Clelia De Felice2 , Rocco Zaccagnino2,
and Rosalba Zizza2(B)

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano - Bicocca, Viale Sarca 336, Milano, Italy

bonizzoni@disco.unimib.it
2 Dipartimento di Informatica, Università degli Studi di Salerno,

Via Giovanni Paolo II 132, Fisciano (Salerno), Italy
{cdefelice,rzaccagnino,rzizza}@unisa.it

Abstract. The Lyndon factorization of a word has been extensively
studied in different contexts and several variants of it have been pro-
posed. In particular, the canonical inverse Lyndon factorization ICFL,
introduced in [5], maintains the main properties of the Lyndon factoriza-
tion since it can be computed in linear time and it is uniquely determined.
In this paper we investigate new properties of this factorization with the
purpose of exploring its use in string queries.

As a main result, we prove an upper bound on the length of the longest
common extension (or longest common prefix) for two factors of a word
w. This bound is at most the maximum length of two consecutive factors
of ICFL(w). A tool used in the proof is a property that we state for fac-
tors with nonempty borders in ICFL(w): a nonempty border of a factor
mi cannot be a prefix of the next factor mi+1. Another interesting result
relates sorting of global suffixes, i.e., suffixes of a word w, and sorting of
local suffixes, i.e., suffixes of the factors in ICFL(w).

Finally, given a word w and a factor x of w, we prove that their Lyn-
don factorizations share factors, except for the first and last term of the
Lyndon factorization of x. This property suggests that, given two words
sharing a common overlap, their Lyndon factorizations could be used to
capture the common overlap of these two words.

Keywords: Lyndon words · Lyndon factorization · Combinatorial
algorithms on words

1 Introduction

The Lyndon factorization CFL(w) of a word w is the unique factorization of w
into a sequence of Lyndon words in nonincreasing lexicographic ordering. This
factorization is one of the most well-known and extensively studied in different

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 385–396, 2020.
https://doi.org/10.1007/978-3-030-40608-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_27&domain=pdf
http://orcid.org/0000-0001-7289-4988
http://orcid.org/0000-0002-1789-1706
http://orcid.org/0000-0001-9144-3074
https://doi.org/10.1007/978-3-030-40608-0_27

386 P. Bonizzoni et al.

contexts, from formal languages to algorithmic stringology and string compres-
sion. In particular the notion of a Lyndon word has been shown to be useful in
theoretical applications, such as the well known proof of the Runs Theorem [2] as
well as in string compression analysis. A connection between the Lyndon factor-
ization and the Lempel-Ziv (LZ) factorization has been given in [18], where it is
shown that in general the size of the LZ factorization is larger than the size of the
Lyndon factorization, and in any case the size of the Lyndon factorization cannot
be larger than a factor of 2 with respect to the size of LZ. This result has been
further extended in [28] to overlapping LZ factorizations. The Lyndon factoriza-
tion has recently revealed to be a useful tool also in investigating queries related
to suffixes of a word and sorting such suffixes [25] with strong potentialities [26]
for string comparison that have not been completely explored and understood.
Relations between Lyndon words and the Burrows-Wheeler Transform (BWT)
have been discovered first in [11,23] and, more recently, in [19]. The main interest
in such a factorization is also due to the fact that it can be efficiently computed.
Linear-time algorithms for computing this factorization can be found in [15,16]
whereas an O(lg n)-time parallel algorithm has been proposed in [1,13].

Most recently, variants of the Lyndon factorization have been introduced and
investigated with different motivations. In [5], the notion of an inverse Lyndon
word (a word which is strictly greater than each of its proper suffixes) has been
introduced to define new factorizations, called inverse Lyndon factorizations.
An inverse Lyndon factorization has the property that a word is factorized in
a sequence of inverse Lyndon words, in an increasing and prefix-order-free lex-
icographic ordering, where prefix-order-free means that a factor cannot be a
prefix of the next one. A word w which is not an inverse Lyndon word may have
several inverse Lyndon factorizations but it admits a canonical inverse Lyndon
factorization. This special inverse Lyndon factorization has been introduced in
[5] and denoted ICFL(w) because it is the counterpart of the Lyndon factoriza-
tion CFL(w) of w, when we use (I)inverse words as factors. Indeed, in [5] it has
been proved that ICFL(w) can be computed in linear time and it is uniquely
determined for a word w.

In this paper we further investigate ICFL(w). The main results stated here
are the following: (1) we find un upper bound on the length of the longest
common prefix of two distinct factors in ICFL(w), namely the maximal length
of two consecutive factors in ICFL(w) (Proposition 6), (2) we are able to relate
sorting of global suffixes, i.e., suffixes of the word w, and local suffixes, i.e.,
suffixes of the factors in ICFL(w) (Lemma 3).

Differently from Lyndon words, inverse Lyndon words may be bordered. As
an intermediate result, we show that if a factor mi in ICFL(w) has a nonempty
border, then such a border cannot be inherited by the next factor, since it cannot
be the prefix of the next factor mi+1 (Proposition 5). This result is proved by
a further investigation on the connection between the Lyndon factorization and
the canonical inverse Lyndon factorization of a word, given in [5] through the
grouping property. Indeed, given a word w which is not an inverse Lyndon word,
the factors in ICFL(w) are obtained by grouping together consecutive factors

Lyndon vs. Inverse Lyndon Words: Queries on Suffixes 387

of the anti-Lyndon factorization of w that form a chain for the prefix order
(Proposition 7.7 in [5]).

Another natural question is the following.

Given two words having a common overlap, can we use their Lyndon fac-
torizations to capture the similarity of these words?

A partial positive answer to this question is provided here: given a word w and
a factor x of w, we prove that their Lyndon factorizations share factors, except
for the first and last term of the Lyndon factorization of x.

For the detailed proofs of the results in this paper we refer the reader to [6].

2 Words, Lyndon Words and the Lyndon Factorization

Throughout this paper we follow [4,10,20,22,27] for the notations. We fix the
finite non-empty (totally ordered) alphabet Σ. We denote by Σ∗ the free monoid
generated by Σ and we set Σ+ = Σ∗ \ 1, where 1 is the empty word. For a word
w ∈ Σ∗, we denote by |w| its length. A word x ∈ Σ∗ is a factor of w ∈ Σ∗ if there
are u1, u2 ∈ Σ∗ such that w = u1xu2. If u1 = 1 (resp. u2 = 1), then x is a prefix
(resp. suffix) of w. A factor (resp. prefix, suffix) x of w is proper if x �= w. Given
a language L ⊆ A∗, we denote by Pref(L) the set of all prefixes of its elements.
Two words x, y are incomparable for the prefix order if neither x is a prefix of
y nor y is a prefix of x. Otherwise, x, y are comparable for the prefix order. We
write x ≤p y if x is a prefix of y and x ≥p y if y is a prefix of x. We recall that,
given a nonempty word w, a border of w is a word which is both a proper prefix
and a suffix of w [12]. The longest proper prefix of w which is a suffix of w is also
called the border of w [12,22]. A word w ∈ Σ+ is bordered if it has a nonempty
border. Otherwise, w is unbordered. A nonempty word w is primitive if w = xk

implies k = 1. An unbordered word is primitive. A sesquipower of a word x is a
word w = xnp where p is a proper prefix of x and n ≥ 1.

The lexicographic (or alphabetic order) ≺ on (Σ∗, <) is defined by setting
x ≺ y if x is a proper prefix of y, or x = ras, y = rbt, a < b, for a, b ∈ Σ
and r, s, t ∈ Σ∗. For two nonempty words x, y, we write x � y if x ≺ y and x
is not a proper prefix of y [3]. We also write y 	 x if x ≺ y. Two words x, y
are called conjugate if there exist words u, v such that x = uv, y = vu. The
conjugacy relation is an equivalence relation. A conjugacy class is a class of this
equivalence relation. A Lyndon word w ∈ Σ+ is a word which is primitive and
the smallest one in its conjugacy class for the lexicographic order. A class of
conjugacy is also called a necklace and often identified with the minimal word
for the lexicographic order in it. Thus, a nonempty word is a necklace if and only
if it is a power of a Lyndon word. A prenecklace is a prefix of a necklace, hence
any nonempty prenecklace w has the form w = (uv)ku, where uv is a Lyndon
word, u ∈ Σ∗, v ∈ Σ+, k ≥ 1, that is, w is a sesquipower of a Lyndon word uv.
A characterization of the structure of the prefixes of the Lyndon words is given
in [15]. It states that a word is a nonempty prefix of a Lyndon word if and only
if it is a sesquipower of a Lyndon word distinct of the maximal letter.

388 P. Bonizzoni et al.

It is known that each Lyndon word w is unbordered. Moreover, a word w ∈
Σ+ is a Lyndon word if and only if w ≺ s, for each nonempty proper suffix
s of w. Different characterizations and variations of Lyndon words are given
[3,14,21]. In the following L = L(Σ∗,<) will be the set of Lyndon words, totally
ordered by the relation ≺ on (Σ∗, <). We know that any word w ∈ Σ+ can be
written in a unique way as a nonincreasing product w = �1�2 · · · �h of Lyndon
words, i.e., in the form w = �1�2 · · · �h, with �j ∈ L and �1
 �2
 . . .
 �h

[9]. The sequence CFL(w) = (�1, . . . , �h) is called the Lyndon decomposition (or
Lyndon factorization) of w. Uniqueness of the above factorization is proved in
[15] and allows us to state a recursive definition of CFL(w), for a nonempty
word w. Precisely, if w is not a Lyndon word, then CFL(w) = (�1, �′

1, . . . , �
′
h),

where (�′
1, . . . , �

′
h) = CFL(w′), w = �1w

′ and �1 is the longest prefix of w which
is a Lyndon word. Sometimes we need to emphasize consecutive equal factors in
CFL. We write CFL(w) = (�n1

1 , . . . , �nr
r) to denote a tuple of n1+. . .+nr Lyndon

words, where r > 0, n1, . . . , nr ≥ 1. Precisely �1 	 . . . 	 �r are Lyndon words,
also named Lyndon factors of w. There is a linear time algorithm to compute the
pair (�1, n1) and thus, by iteration, the Lyndon factorization of w [16,22]. Linear
time algorithms may also be found in [15] and in the more recent paper [17].

3 Anti-Lyndon Words, Inverse Lyndon Words
and Anti-prenecklaces

The inverse lexicographic or inverse alphabetic order on (Σ∗, <), denoted ≺in,
is the lexicographic order on (Σ∗, <in). Here <in means that the order of the
alphabet is reversed, that is b <in a ⇔ a < b, for all a, b ∈ Σ. We denote
by Lin = L(Σ∗,<in) the set of the Lyndon words on Σ∗ with respect to the
inverse lexicographic order. A word w ∈ Lin will be named an anti-Lyndon
word. Correspondingly, an anti-prenecklace will be a prefix of an anti-necklace,
which in turn will be a necklace with respect to the inverse lexicographic order.
We have that a word w ∈ Σ+ is in Lin if and only if w is primitive and w 	 vu,
for each u, v ∈ Σ+ such that w = uv. Alternatively, a word w ∈ Σ+ is in Lin if
and only if w is unbordered and w 	 v, for each proper nonempty suffix v. We
denote by CFLin(w) the Lyndon factorization of w with respect to the inverse
order <in. The following definition plays a fundamental role in our results.

Definition 1. A word w ∈ Σ+ is an inverse Lyndon word if s ≺ w, for each
nonempty proper suffix s of w.

It is easy to see that a, b, aaaaa, bbba, baaab, bbaba and bbababbaa are inverse
Lyndon words on {a, b}, with a < b. On the contrary, aaba is not an inverse
Lyndon word since aaba ≺ ba. Moreover, baaab is not an anti-Lyndon word
since it is bordered. In [5] it has been proved that a nonempty word is an anti-
Lyndon word if and only if it is an unbordered inverse Lyndon word. Finally, the
set of the inverse Lyndon words coincides with the set of the anti-prenecklaces,
hence any nonempty prefix of an inverse Lyndon word is still an inverse Lyndon
word [5].

Lyndon vs. Inverse Lyndon Words: Queries on Suffixes 389

4 A Canonical Inverse Lyndon Factorization: ICFL(w)

For the material in this section see [5]. An inverse Lyndon factorization of a
word w ∈ Σ+ is a sequence (m1, . . . , mk) of inverse Lyndon words such that
m1 · · · mk = w and mi � mi+1, 1 ≤ i ≤ k − 1. A word may have different
inverse Lyndon factorizations (see Example 2) but it has a unique canonical
inverse Lyndon factorization, denoted ICFL(w). If w is an inverse Lyndon word,
then ICFL(w) = w. Otherwise, ICFL(w) is recursively defined. The first factor
of ICFL(w) is obtained by a special factorization of the shortest nonempty prefix
z of w such that z is not an inverse Lyndon word.

Definition 2 [5]. Let w ∈ Σ+, let p be an inverse Lyndon word which is a
nonempty proper prefix of w = pv. The bounded right extension p of p (relatively
to w), if it exists, is a nonempty prefix of v such that:

(1) p is an inverse Lyndon word,
(2) pz′ is an inverse Lyndon word, for each proper nonempty prefix z′ of p,
(3) pp is not an inverse Lyndon word,
(4) p � p.

Moreover, we set Prefbre(w) = {(p, p) | p is an inverse Lyndon word which is a
nonempty proper prefix of w.

It has been proved that Prefbre(w) is empty if and only if w is an inverse
Lyndon word (Proposition 4.2 in [5]). If w is not an inverse Lyndon word, then
Prefbre(w) contains only one pair and the description of this pair is given below
(Propositions 4.1 and 4.3 in [5]).

Proposition 1. Let w ∈ Σ+ be a word which is not an inverse Lyndon word.
Let z be the shortest nonempty prefix of w which is not an inverse Lyndon word.
Then,

(1) z = pp, with (p, p) ∈ Prefbre(w).
(2) p = ras and p = rb, where r, s ∈ Σ∗, a, b ∈ Σ and r is the shortest prefix of

pp such that pp = rasrb, with a < b.

Example 1. Let Σ = {a, b} with a < b. Let us consider w = babaaabb and the
prefixes p1 = bab and p2 = babaaa of w. First, w is not an inverse Lyndon word.
Thus, Prefbre(w) contains only one pair. Moreover each proper nonempty prefix
of w is an inverse Lyndon word. By item (1) in Proposition 1, we have w = pp.
By item (2) in Proposition 1, the bounded right extension of p1 = bab does not
exist (we should have p1 = aaabb in contradiction with p1 � p1). Since w starts
with b, the shortest common prefix r of p and p has a positive length. Indeed,
p = p2 = babaaa and p = p2 = bb.

The canonical inverse Lyndon factorization has been also recursively defined.

390 P. Bonizzoni et al.

Definition 3. Let w ∈ Σ+.
(Basis Step) If w is an inverse Lyndon word, then ICFL(w) = (w).
(Recursive Step) If w is not an inverse Lyndon word, let (p, p) ∈ Prefbre(w) and
let v ∈ Σ∗ such that w = pv. Let ICFL(v) = (m′

1, . . . , m
′
k) and let r, s ∈ Σ∗,

a, b ∈ Σ such that p = ras, p = rb with a < b.

ICFL(w) =

{
(p, ICFL(v)) if p = rb ≤p m′

1

(pm′
1,m

′
2, . . . , m

′
k) if m′

1 ≤p r

Example 2 [5]. Let Σ = {a, b, c, d} with a < b < c < d, w = dabadabdabdadac.
We have CFLin(w) = (daba, dab, dab, dadac), ICFL(w) = (daba, dabdab, dadac).
Another inverse Lyndon factorizations of w is (dabadab, dabda, dac). Con-
sider z = dabdadacddbdc. It is easy to see that (dab, dadacd, db, dc), (dabda,
dac, ddbdc), (dab, dadac, ddbdc) are all inverse Lyndon factorizations of z. The
first factorization has four factors whereas the others have three factors. More-
over ICFL(z) = CFLin(z) = (dab, dadac, ddbdc).

5 Groupings and Borders

Let w ∈ Σ+ be a word which is not an inverse Lyndon word, let ICFL(w) =
(m1, . . . , mk). The aim of this section is to state that any nonempty border of
mi is not a prefix of mi+1, 1 ≤ i ≤ k −1 (Proposition 5). The proof of this result
is strongly based on a property of ICFL(w), proved in [5] and defined through
the notion of groupings of CFLin(w).

Let CFLin(w) = (�1, . . . , �h), where �1
in �2
in . . .
in �h. Consider the
partial order ≥p, where x ≥p y if y is a prefix of x. Recall that a chain is a set of a
pairwise comparable elements. We say that a chain is maximal if it is not strictly
contained in any other chain. A non-increasing (maximal) chain in CFLin(w) is
the sequence corresponding to a (maximal) chain in the multiset {�1, . . . , �h} with
respect to ≥p. We denote by PMC a non-increasing maximal chain in CFLin(w).
Looking at the definition of the (inverse) lexicographic order, it is easy to see that
a PMC is a sequence of consecutive factors in CFLin(w). Moreover CFLin(w)
is the concatenation of its PMC. Formally, if C is a PMC in CFLin(w), then
there are indexes r, s with 1 ≤ r < s ≤ h such that C = (�r, . . . , �s), with
�r ≥p �r+1 ≥p . . . ≥p �s, and �r−1 �≥p �r if r > 1, �s �≥p �s+1 if s < h.

Example 3 [5]. Let Σ = {a, b, c, d} with a < b < c < d, w = dabadabdabdadac. In
Example 2, we observed that CFLin(w) = (daba, dab, dab, dadac). This sequence
has two PMC, namely (daba, dab, dab), (dadac). Let z = dabdadacddbdc. Then
CFLin(z) = (dab, dadac, ddbdc) has three PMC: (dab), (dadac), (ddbdc).

A grouping of CFLin(w) is an inverse Lyndon factorization (m1, . . . , mk) of w
such that any factor is a product of consecutive factors in a PMC of CFLin(w).
ICFL(w) is always a grouping of CFLin(w) but, as showed below, it is not always
its unique grouping.

Lyndon vs. Inverse Lyndon Words: Queries on Suffixes 391

Example 4 [5]. Let Σ = {a, b, c, d}, a < b < c < d, and w = dabadabdabdadac.
We have CFLin(w) = (daba, dab, dab, dadac), ICFL(w) = (daba, dabdab, dadac)
(see Example 2). ICFL(w) is a grouping of CFLin(w) but (dabadab, dabda, dac)
is not a grouping. Next, let y = dabadabdabdabdadac. We have CFLin(y) =
(daba, dab, dab, dab, dadac) and ICFL(w) = (daba, (dab)3, dadac). The inverse
Lyndon factorization (dabadab, (dab)2, dadac) is another grouping of CFLin(y).

The proof of Proposition 5 is organized as follows. We firstly state that any
nonempty border x of a non-increasing chain in CFLin(w) cannot cut any �i and
admits a shortest border.

Proposition 2. Let w ∈ Σ+, let CFLin(w) = (�1, . . . , �h) and let (�r, . . . , �s),
1 ≤ r < s ≤ h, be a non-increasing chain in CFLin(w). For any nonempty border
x of y = �r · · · �s there is t, r ≤ t < s, such that x = �t+1 · · · �s. Consequently, �s

is a nonempty border of any other nonempty border of �r · · · �s.

The next step is to prove that p in the pair (p, p̄) ∈ Prefbre(w) has a grouping-
like property. Indeed we show that p is always a product of consecutive factors
in a PMC of CFLin(w). Thus, thanks to Proposition 2, p has a shortest border.
This shortest border determines the relation p � p̄.

Proposition 3. Let w ∈ Σ+ be a word which is not an inverse Lyndon word,
let (p, p̄) ∈ Prefbre(w) and let ICFL(w) = (m1, . . . , mk). Let CFLin(w) =
(�n1

1 , . . . , �nh

h), with h > 0, n1, . . . , nh ≥ 1 and let (�n1
1 , . . . , �

nq
q) be a PMC

in CFLin(w), 1 ≤ q ≤ h. Then the following properties hold.

(1) p = �n1
1 · · · �ng

g , for some g, 1 ≤ g ≤ q.
(2) �g = ugvg = ugagv

′
g, p̄ = ugb, ag < b.

Now, we can state that, for each nonempty border z of p = ras, we have that
z and p = rb are incomparable for the prefix order. We use the same notations
as in Propositions 2, 3. The word p cannot be a prefix of z because p is not a
prefix of p. Thus z should be a prefix of p. By Proposition 2, the shortest border
�g = ugagv

′
g of p should be a prefix of z, thus of p̄ = ugb, ag < b, a contradiction.

Proposition 4. Let w ∈ Σ+ be a word which is not an inverse Lyndon word
and let (p, p̄) ∈ Prefbre(w). For each nonempty border z of p, one has that z and
p are incomparable for the prefix order.

Finally, we can explicitly prove, by induction on |w|, that if z is a nonempty
border of m1, then z is not a prefix of m2. We use the recursive definition of
ICFL(w), with the same notations as in Definition 3, and a proof by induction.
We distinguish the two cases m1 = p and m1 = pm′

1. In the first case, p is a
prefix of m′

1 = m2. Thus, if z were a prefix of m2, we would be in contradiction
with Proposition 4. In the second case, we have m2 = m′

2 and again two cases:
|z| ≥ |m′

1| or |z| < |m′
1|. If z were a prefix of m2 with |z| ≥ |m′

1|, m′
1 would

be a prefix of m′
2 in contradiction with m′

1 � m′
2. If z were a prefix of m2

with |z| < |m′
1|, z would be a border of m′

1, in contradiction with the induction
hypothesis. Then, again by induction on |w|, we extend this argument to prove
the general result stated below.

392 P. Bonizzoni et al.

Proposition 5. Let w ∈ Σ+ be a word which is not an inverse Lyndon word
and let ICFL(w) = (m1, . . . , mk). If z is a nonempty border of mi, then z is not
a prefix of mi+1, 1 ≤ i ≤ k − 1.

6 A Bound on the Length of the Longest Common Prefix

Given a word w and two factors x, y of w, we denote by lcp(x, y) the longest
common prefix of x, y and we set LCP(x, y) = |lcp(x, y)|. Proposition 5 in the
previous section is extremely useful to obtain a bound on the length of the
longest common prefix of two factors of a word w, when w is not an inverse
Lyndon word (Proposition 6). Precisely, we state that LCP(x, y) is at most the
maximum length of two consecutive factors in ICFL(w). As a direct corollary,
we obtain the same bound for LCP(x, y), when x, y are suffixes of w [6].

We also follow the notations used in [5,24,25]. Let w, x, u, v ∈ Σ∗, and let x
be a nonempty factor of w = uxv. Let first(x) and last(x) denote the position
of the first and the last symbol of x in w, respectively. If w = a1 · · · an, ai ∈ Σ,
1 ≤ i ≤ j ≤ n, then we also set w[i, j] = ai · · · aj . A local suffix of w is a suffix
of a factor of w, specifically sufx(i) = w[i, last(x)] denotes the local suffix of w
at the position i with respect to x, i ≥ first(x). The corresponding global suffix
sufx(i)v of w at the position i is denoted by sufw(i) = w[i, last(w)] (or simply
suf(i) when it is understood). We say that sufx(i)v is associated with sufx(i).

When we consider ICFL(w) = (m1, . . . , mk), given a factor mj of ICFL(w)
we have that a local suffix x of mj is a suffix of mj and the associated global
suffix xw of w is x ·mj+1 . . . mk. The following lemmas are crucial for proving our
upper bound. Lemma1 shows that, given two local suffixes x and y of the same
factor mi−1, then the longest common prefix of the associated global suffixes is
the longest common prefix between xr and yr. Here r is the longest common
prefix between mi−1 and mi. Lemma 2 handles the case of local suffixes x and y
of different factors. In this case the result leads to a bound on LCP(xw, yw).

Lemma 1. Let w ∈ Σ+ be a word which is not an inverse Lyndon word. Let
ICFL(w) = (m1, . . . , mk). Let r, s, t ∈ Σ∗, a, b ∈ Σ be such that mi−1 = ras,
mi = rbt, a < b, 1 < i ≤ k. If x, y are nonempty suffixes of mi−1, then
lcp(xw, yw) = lcp(xr, yr).

Lemma 2. Let w ∈ Σ+ be a word which is not an inverse Lyndon word and let
ICFL(w) = (m1, . . . , mk). Let i, j be integers such that 1 < i < j ≤ k. If x is a
nonempty suffix of mi−1 and y is a nonempty suffix of mj−1, then lcp(xw, yw)
is a prefix of ymj.

Let w ∈ Σ+ be a word which is not an inverse Lyndon word and let
ICFL(w) = (m1, . . . , mk). We set M = max{|mimi+1| | 1 ≤ i < k}. As a
main consequence of the previous lemmas, we state that M is an upper bound
on LCP(u, v), where u, v are factors of w.

Proposition 6. Let w ∈ Σ+ be a word which is not an inverse Lyndon word
and let ICFL(w) = (m1, . . . , mk). For each nonempty proper factors u, v of w,
we have LCP(u, v) = |lcp(u, v)| ≤ M.

Lyndon vs. Inverse Lyndon Words: Queries on Suffixes 393

Observe that Lemmas 1 and 2 could lead to a more specialized version of the
compatibility property, proved in [5,24,25], which relates sorting local suffixes
of a concatenation of factors to sorting the corresponding global suffixes (see
Theorem 1). Indeed the above mentioned lemmas could be applied to sort suffixes
of a word by sorting factors of w of bounded size.

We recall that the sorting of the nonempty local suffixes of w with respect to a
nonempty factor x is compatible with the sorting of the corresponding nonempty
global suffixes of w if for all i, j with first(x) ≤ i < j ≤ last(x), sufx(i) ≺
sufx(j) ⇐⇒ suf(i) ≺ suf(j).

Theorem 1 [24,25]. Let w ∈ Σ+ and let CFL(w) = (�1, . . . , �h) be its Lyndon
factorization. Then, for any r, s, 1 ≤ r ≤ s ≤ h, the sorting of the nonempty
local suffixes of w with respect to x = �r · · · �s is compatible with the sorting of
the corresponding nonempty global suffixes of w.

Lemma 3 states a property similar to the compatibility property when we deal
with ICFL(w). Shortly speaking, consider ICFL(w) = (m1,m2, . . . , mk) and take
two indexes j1, j2 both contained in x = mrmr+1 · · · ms, 1 ≤ r < s ≤ k. Consider
the local suffixes starting from j1, j2 and let us compare them with respect to
≺. If sufx(j1) ≺ sufx(j2), then two cases are possible: sufx(j1) � sufx(j2)
or sufx(j1) ∈ Pref(sufx(j2)). In the first case obviously suf(j1) � suf(j2).
Lemma below covers both the cases.

Lemma 3. Let w ∈ Σ+ be a word which is not an inverse Lyndon word and
let ICFL(w) = (m1, . . . , mk). Let x = mimi+1 · · · mh with 1 ≤ i < h ≤ k.
Assume that sufx(j1) ≺ sufx(j2), where first(x) ≤ j1 ≤ last(x), first(x) ≤
j2 ≤ last(x), j1 �= j2. If sufx(j1) is a proper prefix of sufx(j2) and h < k then
suf(j2) ≺ suf(j1), otherwise suf(j1) ≺ suf(j2).

Example 5. Let w = a12bbab ∈ {a, b}+ with a < b. We have ICFL(w) =
(m1,m2) = (a12, bbab). Let x = m1 = a12. Consider sufx(4) = a9 and
sufx(12) = a. We have sufx(12) = a ≺ a9 = sufx(4). We are in the first
case of Lemma 3 and then suf(4) = a9bbab ≺ abbab = suf(12).

Example 6. Let w = dabadabdabdadac ∈ {a, b, c, d}+ with a < b < c < d.
We have ICFL(w) = (m1,m2,m3) = (daba, dabdab, dadac). Let x = m2. Con-
sider sufm2(8) = dab and sufm2(5) = dabdab. We have sufm2(8) = dab ≺
sufm2(5) = dabdab = (dab)2. We are in the first case of Lemma 3 and then
suf(5) = dabdabdadac ≺ suf(8) = dabdadc. Consider now sufm2(9) = ab ≺
sufm2(8) = dab. Since sufm2(9) is not a proper prefix of sufm2(8)), we are in the
second case of Lemma 3 and we have suf(9) = abdadac ≺ suf(8) = dabdadac.

7 Lyndon Factorizations of Factors of a Word
and Overlapping Factors

Let w ∈ Σ+ be a word and let CFL(w) = (�1, . . . , �k) be its Lyndon factorization,
k ≥ 1. Let x be a proper factor (resp. prefix, suffix) of w. We say that x is a

394 P. Bonizzoni et al.

simple factor of w if, for each occurrence of x as a factor of w, there is j, with
1 ≤ j ≤ k, such that x is a factor of �j . Informally speaking, every occurrence of
x needs to be within some �j . We say that x is a simple prefix (resp. suffix) of w
if x is a proper prefix (resp. suffix) of �1 (resp �k). In this section we compare the
Lyndon factorization of w and that of its non-simple factors. Lemma4 handles
a trivial case: if x = �i�i+1 · · · �j is a concatenation of consecutive factors of
CFL(w), then CFL(x) is the sequence (�i, �i+1, . . . , �j).

Lemma 4. Let w ∈ Σ+ be a word and let CFL(w) = (�1, . . . , �k) be its Lyndon
factorization. For any i, j, with 1 ≤ i ≤ j ≤ k, one has CFL(�i�i+1 · · · �j) =
(�i, �i+1, . . . , �j).

If x is a non-simple factor of w and x does not satisfy the hypotheses of
Lemma 4, then there are i, j with 1 ≤ i < j ≤ k, a suffix �′′

i of �i and a prefix �′
j

of �j , with �′′
i �′

j �= 1, such that x = �′′
i �i+1 · · · �j−1�

′
j , where it is understood that

if j = i + 1, then �i+1, · · · , �j−1 = 1 and �′′
i �= 1, �′

j �= 1, �′′
i �′

j �= �i�j . We say that
the sequence �′′

i , �i+1, . . . , �j−1, �
′
j is associated with x. The following result gives

relations between CFL(x) and CFL(w).

Lemma 5. Let w ∈ Σ+ be a word and let CFL(w) = (�1, . . . , �k) be its Lyndon
factorization. Let x be a non-simple factor of w such that x does not satisfy the
hypotheses of Lemma 4 and let �′′

i , �i+1, . . . , �j−1, �
′
j be the sequence associated

with x. Let CFL(�′′
i) = (g1, . . . , gk′′) and CFL(�′

j) = (g′
1, . . . , g

′
k′) We have

CFL(x) = (g1, . . . , gk′′ , �i+1, . . . , �j−1, g
′
1, . . . , g

′
k′)

where it is understood that if �′′
i = 1 (resp. �′

j = 1), then the first k′′ terms (resp.
last k′ terms) in CFL(x) vanish.

Let x, y, z, w,w′ ∈ Σ+. Lemma 5 gives relations between the Lyndon factor-
izations of two overlapping words w,w′, i.e., such that w = xy, w′ = yz, and
the Lyndon factorization of the overlap y, when y is non-simple (as a suffix of
w and as a prefix of w′). Indeed observe that both w and w′ are substrings
of the same word xyz. As a consequence of Lemma 5, the words w,w′ may
share common Lyndon factors between them and with xyz. Moreover, some
of these factors may be in y. More precisely, let CFL(w) = (�1, . . . , �k) and
CFL(w′) = (f1, f2, . . . , fh). If y is a non-simple suffix of w and a non-simple
prefix of w′, then there are indexes i, j, with 1 ≤ i < k, 1 < j ≤ h, such that
y = �′′

i �i+1 · · · �k = f1 · · · fj−1f
′
j , where �′′

i is a suffix of �i and f ′
j is a prefix of

fj . Let CFL(�′′
i) = (g1, . . . , gk′′) and CFL(f ′

j) = (g′
1, . . . , g

′
k′). By Lemma 5 we

have CFL(y) = (g1, . . . , gk′′ , �i+1, . . . , �k) = (f1, . . . , fj−1, g
′
1, . . . , g

′
k′). Since the

Lyndon factorization can be computed in linear time, the above result could
lead to efficient measures of similarities between words. These measures could
be used to capture words that may be overlapping.

8 Conclusions and Open Problems

In this paper we investigate new properties of the Lyndon factorization and of
the canonical inverse Lyndon factorization, aimed to answer to string queries

Lyndon vs. Inverse Lyndon Words: Queries on Suffixes 395

by using these factorizations. Our main result, Proposition 6, gives an upper
bound on the length of the longest common prefix of two factors of a word
and this upper bound has relationships with the factors in ICFL. This result
could also be applied to investigate parallel approaches to sorting suffixes of a
word w with a nontrivial inverse Lyndon factorization. Indeed, the above men-
tioned bound could relate sorting suffixes of w to sorting factors of w of bounded
length. In addition, we state a property showing that substrings of the same word
could share common factors of the Lyndon factorization (Lemma5). This prop-
erty could be extended to two words that share a common overlap to capture
the suffix-prefix relationship between them. It is an open problem if Lemma5
extends to ICFL(w). This extension, if it exists, may be of interest in the well
known problem of efficient computation of the suffix-prefix relationship. This is
an interesting problem in the analysis of sequencing data [7,8] and in the con-
struction of overlap graphs for a collection of strings. We believe that the above
results could shed new light in further applications of the Lyndon and the inverse
Lyndon factorization and this is the goal of our future research work.

Acknowledgments. The authors thank the anonymous referees for their helpful
suggestions.

References

1. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applica-
tions. Math. Syst. Theory 28(2), 89–108 (1995)

2. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “Runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

3. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A
new characterization of maximal repetitions by Lyndon trees. In: Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, 4–6 January 2015, pp. 562–571 (2015)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of
Mathematics and its Applications, vol. 129. Cambridge University Press, Cam-
bridge (2009)

5. Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Inverse Lyndon words and
inverse Lyndon factorizations of words. Adv. Appl. Math. 101, 281–319 (2018)

6. Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Lyndon words versus inverse
Lyndon words: queries on suffixes and bordered words. CoRR abs/1911.01851
(2019). http://arxiv.org/abs/1911.01851

7. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: An external-
memory algorithm for string graph construction. Algorithmica 78(2), 394–424
(2017)

8. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: FSG: fast string
graph construction for de novo assembly. J. Comput. Biol. 24(10), 953–968 (2017)

9. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient
groups of the lower central series. Ann. Math. 68, 81–95 (1958)

10. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 329–438. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59136-5 6

http://arxiv.org/abs/1911.01851
https://doi.org/10.1007/978-3-642-59136-5_6

396 P. Bonizzoni et al.

11. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler
transformation. Theoret. Comput. Sci. 332(1), 567–572 (2005)

12. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

13. Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factor-
izing words. Theor. Comput. Sci. 127(1), 53–67 (1994)

14. Dolce, F., Restivo, A., Reutenauer, C.: On generalized Lyndon words. Theor. Com-
put. Sci. 777, 232–242 (2019)

15. Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381
(1983)

16. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Brujin
sequences. Discrete Math. 23(3), 207–210 (1978)

17. Ghuman, S.S., Giaquinta, E., Tarhio, J.: Alternative algorithms for Lyndon factor-
ization. In: Proceedings of the Prague Stringology Conference 2014, Prague, Czech
Republic, 1–3 September 2014, pp. 169–178 (2014)

18. Kärkkäinen, J., Kempa, D., Nakashima, Y., Puglisi, S.J., Shur, A.M.: On the size of
Lempel-Ziv and Lyndon factorizations. In: 34th Symposium on Theoretical Aspects
of Computer Science, STACS 2017, Hannover, Germany, 8–11 March 2017, pp.
45:1–45:13 (2017)

19. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Pro-
ceedings of the Prague Stringology Conference 2009, Prague, Czech Republic, 31
August–2 September 2009, pp. 65–79 (2009)

20. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, vol. 90. Cambridge University Press, Cambridge (1997)

21. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

22. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cam-
bridge (2005)

23. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

24. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Sorting suffixes of a text via its
Lyndon factorization. In: Proceedings of the Prague Stringology Conference 2013,
Prague, Czech Republic, 2–4 September 2013, pp. 119–127 (2013)

25. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Suffix array and Lyndon fac-
torization of a text. J. Discrete Algorithms 28, 2–8 (2014)

26. Mucha, M.: Lyndon words and short superstrings. In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, 6–8 January 2013, pp. 958–972 (2013)

27. Reutenauer, C.: Free lie algebras. Oxford University Press (1993)
28. Urabe, Y., Kempa, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: On

the size of overlapping Lempel-Ziv and Lyndon factorizations. In: 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, 18–20 June 2019,
Pisa, Italy. LIPIcs, vol. 128, pp. 29:1–29:11. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2019)

Reducing the Ambiguity
of Parikh Matrices

Jeffery Dick, Laura K. Hutchinson(B), Robert Mercaş, and Daniel Reidenbach

Department of Computer Science, Loughborough University, Loughborough, UK
{J.Dick,L.Hutchinson,R.G.Mercas,D.Reidenbach}@lboro.ac.uk

Abstract. The Parikh matrix mapping allows us to describe words
using matrices. Although compact, this description comes with a level of
ambiguity since a single matrix may describe multiple words. This work
looks at how considering the Parikh matrices of various transformations
of a given word can decrease that ambiguity. More specifically, for any
word, we study the Parikh matrix of its Lyndon conjugate as well as
that of its projection to a smaller alphabet. Our results demonstrate
that ambiguity can often be reduced using these concepts, and we give
conditions on when they succeed.

Keywords: Combinatorics · Parikh matrix · Ambiguity · Lyndon
conjugate

1 Introduction

An approach for a more compact representation of data can be provided by
histograms, which are also a well established statistical tool used in a wide range
of applications. The concept of a Parikh vector [15] represents a type of such
histograms that is specific to the analysis of sequences of symbols (or: words),
considering the number of occurrences of each letter that exists in a word.

Parikh vectors can be easily computed and are guaranteed to be logarithmic
in the size of the word they represent, but they are ambiguous; that is, multiple
words typically share the same Parikh vector. Following this, in [14] the authors
look at a refinement of the vector notion which is meant to reduce this ambiguity,
and introduce an extension for it in the form of a Parikh matrix. A Parikh matrix
not only contains the Parikh vector of the word, but also information regarding
some of the word’s (scattered) subwords. Such a matrix has the same asymp-
totic compactness as a Parikh vector and is associated to a significantly smaller
number of words. However, it does not normally remove ambiguity entirely.

The bulk of the work done on the Parikh matrix mapping concerns the ambi-
guity that Parikh matrices exhibit. A lot of effort is spent on identifying an alter-
native to the Parikh matrix concept that would make a mapping from a word
injective, or less ambiguous in general [1,2,8–11,18]. These include even more
refined versions of the matrices by inclusion of polynomials, various extensions
on the mappings, or both. For Parikh matrices explicitly, due to the difficulty
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 397–411, 2020.
https://doi.org/10.1007/978-3-030-40608-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_28

398 J. Dick et al.

arising from this ambiguity, the primary focus was on investigating this property
on binary [4–7,17] and ternary [3,13,16,19] alphabets, leaving alphabets of size
greater than three relatively unexplored.

In terms of reducing the ambiguity of a word, the investigation was based
on either gathering more information about the specific word by altering the
order of the alphabet, known as the dual order [6,14], or by considering the
reverse image of the word [6]. Hence an under-studied aspect that may reduce
the ambiguity of a matrix concerns the information acquired by altering the word
itself, or considering other alterations of the alphabet. In this work we present
and investigate two different methods that reduce the ambiguity of the original
Parikh matrices in the form of P-Parikh matrices and L-Parikh matrices.

The first of the two transformations, the P-Parikh matrix mapping, con-
siders the Parikh matrices associated to a projection morphism of the initial
word, where the considered alphabet is reduced to the subset of the alphabet
used within the defined transformation. These represent a particular case of the
extended mapping presented in [18], where we only consider a subset of the orig-
inal alphabet. For example, consider the words abcaabaac and abacabcaa. It is
easy to see that both share the same number of letters, and subwords ab, bc and
abc, respectively, making their Parikh matrices equal and therefore ambiguous.
The P-Parikh matrices associated to them with respect to {a, c} consider the
number of subwords ac, which is 6 in the former, but only 5 in the latter of the
words. Hence, there exist P-Parikh matrices not shared by the words.

We show that, using P-Parikh matrices, we can reduce the ambiguity of the
vast majority of words. We also explore when P-Parikh matrices do not reduce
ambiguity, as well as provide some insight into the types of words that cannot
be uniquely described by a P-Parikh matrix.

However, since P-Parikh matrices are defined for a subset of the initial alpha-
bet, they prove useless when dealing with binary sequences. We therefore con-
sider an alternative transformation of words: the Lyndon conjugate, first intro-
duced in [20], which is defined as the lexicographically smallest circular rota-
tion of a word. Lyndon conjugates were used previously as a tool for ambiguity
reduction. In [17], the authors define the Lyndon image of a Parikh matrix
as the lexicographically smallest word describing such a matrix. Hence every
Parikh matrix has exactly one distinct Lyndon image, which therefore allows
each Parikh matrix to be described uniquely. In the context of this paper, we
use the Lyndon conjugate differently, i. e., we consider the Parikh matrix of the
Lyndon conjugate of a word, and we call the resulting matrix the L-Parikh
matrix of the original word.

Consider the Parikh matrix of the Lyndon conjugates of the two previously
given words. Observe that aabaacabc has 7 occurrences of ab, whereas aaabacabc
has 8, making their Parikh matrices different. Hence, the ambiguity of their
Parikh matrix can be reduced using L-Parikh matrices.

While L-Parikh matrices are a useful concept for any alphabet size, we focus
on the cases where they reduce ambiguity in the binary alphabet and show
that this happens in most cases. We give specific conditions of when L-Parikh

Reducing the Ambiguity of Parikh Matrices 399

matrices do not help reduce the ambiguity of the given word, and investigate
the words for which these criteria apply. This leads us to our main result of
the paper, a characterisation of words whose ambiguity can be reduced using
L-Parikh matrices.

We end this section with a brief breakdown of our paper. In Sect. 2 we present
some basic definitions and notions. Section 3 examines the first of the two notions
we introduce, the P-Parikh matrix, establishing conditions for when they can or
cannot achieve ambiguity reduction. In Sect. 4, we study equivalent questions for
L-Parikh matrices, largely focusing on binary alphabets in some cases. We end
our paper with conclusions as well as directions for future work.

2 Preliminaries

It is assumed the reader is familiar with the basics of combinatorics on words.
If needed, [12] can be consulted. Throughout this paper, N refers to the set of
natural numbers starting with 1.

We refer to a string of arbitrary letters as a word which is formed by con-
catenation of letters. The set of all letters used to create our words is called an
alphabet. We represent an ordered alphabet as Σk = {a1 < · · · < ak}, where
k ∈ N is the size of the alphabet, and by convention ai is the ith letter in the
Latin alphabet. Whenever the alphabet size is irrelevant or understood, we omit
this from notation using only Σ. All alphabets referred to in this paper have an
order imposed on them.

We define the concatenation of two words u and v as uv. The length of a word
is the total number of not necessarily distinct letters it contains and the empty
word of length zero is denoted ε. The Kleene star, denoted ∗, is the operation
that, once applied to a given alphabet, generates the set of all finite words that
result from concatenating any words in that alphabet. Further, we denote the
ith letter in a word w as w[i].

The reversal of a word, denoted rev, is defined as rev(w) = w[m]w[m −
1] · · · w[1], where w = w[1]w[2] · · · w[m] is a word with w[i] ∈ Σ. We say that a
factor v is in w if and only if w can be written as w = w1vw2, where w1, w2 ∈ Σ∗.
We say that u = u[1]u[2] · · · u[m] is a subword of v if we have a factorisation
v = v0u[1]v1u[2] · · · vm−1u[m]vm where v0, . . . , vm ∈ Σ∗, u[1], . . . , u[m] ∈ Σ. We
use |v|u to denote the number of distinct occurrences of u as a subword in v.

The Parikh vector [15] φ associated with a word w is obtained through a
mapping φ : Σ∗ → N

k, defined as φ(w) = [|w|a1 , |w|a2 , . . . , |w|ak
]. For a matrix

M of size k × k, the j-diagonal is defined as all elements of M that are in the
position Mi,i+j for i = 1, . . . , k − j. A word is associated with a matrix, called
its Parikh matrix, if the matrix is obtained from that word following the process
detailed in the following explanatory definition. For a technical version of the
definition we refer to [14].

Definition 1 (Explanatory). Let w ∈ Σ∗
k . The Parikh matrix, denoted Ψ(w),

that w is associated with has size (k +1)× (k +1). The diagonal of the matrix is

400 J. Dick et al.

populated with 1’s and all elements below it are 0. The count of all subwords that
consist of consecutive letters in Σk and are of length n in the word are found on
the n-diagonal, for 1 ≤ n ≤ k.

One notion we introduce in this paper relies on a change in alphabet size. As
such, to emphasise the size n of the alphabet used for a Parikh matrix, we write
Ψn(w). We say that a Parikh matrix describes a word if the word is associated
to the matrix. Notice that due to the associativity of matrix multiplication, the
Parikh matrix of a word can be constructed from the Parikh matrices of its
factors. For a word w = u1u2, we have Ψn(w) = Ψn(u1)Ψn(u2).

Example 1. Consider the word w = abca defined over the alphabet Σ3 = {a <
b < c}. Then by definition our Parikh matrix is of size 4 × 4 and we have

Ψ(abca) =
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
·
(

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
·
(

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
·
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
=

(
1 2 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)
.

For the rest of this work we refine our notation for a Parikh matrix where we
remove the elements not depending on the associated word. By definition a
Parikh matrix is an upper triangular matrix with 1’s on the diagonal regardless
of the word described. For aesthetics, removing the redundant part leaves us with
a triangular structure that holds the same information as the original matrix,

Ψ(abca) =
〈

2 1 1
1 1
1

〉
. �

Two words w and w′ are conjugates if we can write w = uv and w′ = vu. For
a word w, we say that the conjugacy class of w, denoted C(w) is the class of all
of its possible conjugates. A conjugacy class is associated to a Parikh matrix if
at least one word belonging to that class is associated to the matrix.

Example 2. The matrix 〈 4 4
2 〉 has only the words aabbaa, abaaba, baaaab associ-

ated to it. The words aabbaa and baaaab are members of the same conjugacy
class, while abaaba belongs to a different conjugacy class. Hence this matrix has
two conjugacy classes associated to it. �

A Parikh matrix can be associated to multiple words, as seen above, although
cases exist where a matrix describes a single word, e. g., aabb is the unique word
associated to 〈 2 4

2 〉. We say that two words are amiable if they are associated to
the same Parikh matrix. If two or more words are associated to a single Parikh
matrix, we say that the matrix is ambiguous. Later in this paper, we reduce
the ambiguity of a word using both its Parikh matrix and the Parikh matrix
of an altered form of that word to describe it. As such, we introduce a formal
definition of the ambiguity that multiple functions may have based on the set of
all words that satisfy all functions. We are then able to use this when considering
the ambiguity of the notions we introduce later.

Definition 2. For a word w and functions f1, . . ., fn we define A(w, f1, . . .,
fn) = {v|fi(v) = fi(w) for 1 ≤ i ≤ n}. If |A(w, f1, . . ., fn)| = 1, then we

Reducing the Ambiguity of Parikh Matrices 401

call w unambiguous on f1, . . ., fn, and say that f1(w), . . ., fn(w) uniquely define
w. However, if |A(w, f1, . . ., fn)| > |A(w, f1, . . ., fm)| for m > n and func-
tions fn+1, . . ., fm, then we say that fn+1, . . ., fm reduce the ambiguity of w
on f1, . . ., fn.

Observe that we always have |A(w, f1, . . ., fn)| ≥ |A(w, f1, . . ., fm)|. Fur-
thermore, if |A(w, f1, . . ., fn)| = |A(w, f1, . . ., fm)| = 1, then A(w, f1, . . ., fn) is
unambiguous and it is not possible to further reduce ambiguity.

First we introduce the P-Parikh matrix. This matrix is in essence the Parikh
matrix of a projection of a word, and represents a particular case of the extension
of the Parikh matrix mapping presented in [19]. For n ∈ N, w ∈ Σ∗

n and S ⊂ Σn,
the P-Parikh matrix of w with respect to S is defined as follows.

Definition 3. For m,n ∈ N with 1 ≤ m ≤ n, let S ⊂ Σn such that S =
{ak1 , ak2 , . . . akm

}, where 0 < k1 < · · · < km ≤ n. We define the P-Parikh
matrix of the word w with respect to S as ΨS

n (w) := Ψ|S|(πS(w)), where the
morphism π : Σ∗

n → Σ∗
m is defined as

πS(aj) :=

{
ai : aj = aki

ε : aj /∈ S
.

To gain some intuition about the above definition, consider an example.

Example 3. Let Σ5 = {a, b, c, d, e}, S = {a, d, e}, and w = bacbebda. For the
index sequence of S, since a is the lexicographically smallest letter in S, we
obtain k1 = 1, k2 = 4 and k3 = 5. Hence πS(a) = a, πS(d) = b and πS(e) = c.

With the transformation defined we apply this to the word, and calculate the
corresponding P-Parikh matrix as the Parikh matrix of the transformed word,

πS(w) = πS(b)πS(a)πS(c)πS(b)πS(e)πS(b)πS(d)πS(a) = εaεεcεba = acba

Ψ
{a,d,e}
5 (bacbebda) = Ψ3(π{a,d,e}(bacbebda)) = Ψ3(acba) =

〈
2 1 0
1 0
1

〉
. �

The Lyndon conjugate of a word is the conjugate that is lexicographically
smallest based on the order on the alphabet. The Lyndon conjugate of a word
w is denoted L(w). In an attempt to reduce the ambiguity of Parikh matrices,
we modify the original Parikh matrix mapping to gain more information about
a given word. Next, we introduce the L-Parikh matrix associated to a word.

Definition 4. Given a word w, we define its L-Parikh matrix, ΨL, as the Parikh
matrix associated with its Lyndon conjugate, L(w).

It was shown in [4] that there exist transformations that, when applied to
a word, create a new word that is amiable with the original. For non-binary
alphabets, a Type 1 transformation is given.

Lemma 1 ([4]). Let w,w′ ∈ Σ∗
n with n ≥ 3. Then w transforms into w′ using a

Type 1 transformation if w = u1aiaju2 and w′ = u1ajaiu2, where u1, u2 ∈ Σ∗
n,

ai, aj ∈ Σn, and |i − j| ≥ 2.

402 J. Dick et al.

For binary alphabets, a second type of transformation is described, referred
to as a Type 2, that allows us to check if certain words are amiable without
constructing their matrices.

Lemma 2 ([4]). Let w,w′ ∈ Σ∗
2 . Then w transforms into w′ through a Type 2

transformation if w = xa1a2ya2a1z and w′ = xa2a1ya1a2z, or vice-versa, where
x, y, z ∈ Σ∗

2 and a1, a2 ∈ Σ2.

3 P-Parikh Matrices

In this section, we examine when and how much P-Parikh matrices reduce the
ambiguity of a given word. When we refer to a reduction in ambiguity using
P-Parikh matrices, we mean that the number of words described by the orig-
inal Parikh matrix and their respective P-Parikh matrices is strictly less than
the total number of words described by the original Parikh matrix alone, i. e.,
|A{w,Ψn, ΨS

n }| < |A{w,Ψn}|, for some S ⊂ Σn. First we present an example of
P-Parikh matrices removing the ambiguity of a Parikh matrix entirely.

Example 4. Consider the word w = abca from Example 1, which is amiable with
the word w′ = abac and no others. Then we choose our set S = {a, c}, and get
that: Ψ

{a,c}
3 (w) = Ψ2(aba) = 〈 2 1

1 〉 and Ψ
{a,c}
3 (w′) = Ψ2(aab) = 〈 2 2

1 〉 . Thus w
and w′ have different P-Parikh matrices and we can uniquely describe them. �

We first introduce some terms that are useful when describing how effective
a given P-Parikh matrix is at reducing ambiguity.

Definition 5. Given a word w ∈ Σ∗
n, we call Ψ(w) P-distinguishable if either

|A(w,Ψ)| = 1 or there exists a word u ∈ Σ∗
n and a set S ⊂ Σn such that

Ψ(w) = Ψ(u) and ΨS
n (w) 	= ΨS

n (u). In the latter case we say that w and u are P-
distinct. Furthermore, we call w P-unique if there exist sets S1, S2, . . . , Sm ⊂ Σn

such that |A(w,Ψ, ΨS1
n , ΨS2

n , . . . , ΨSm
n)| = 1.

Now we use these terms to examine words whose ambiguity can be reduced
using P-Parikh matrices, namely those that contain any length two factor where
those two letters are not equal or consecutive in the alphabet.

Proposition 1. For any word w ∈ Σ∗
n with a factor aiaj where |i − j| > 1, we

have that Ψ(w) is P-distinguishable.

Proof. Since |i − j| > 1, if w = u1aiaju2 where u1, u2 ∈ Σ∗
n, then w′ = u1ajaiu2

is also associated to w, following Lemma 1. Without loss of generality, take S =
{ai < aj}. Then ΨS

n (w) 	= ΨS
n (w′), since |w|aiaj

and |w′|aiaj
are elements in

ΨS
n (w) and ΨS

n (w′), respectively, and |w|aiaj
	= |w′|aiaj

.
�
It is simple to identify words that have such factors by comparing adjacent

positions in the word. We can use this to find a lower bound for the proportion
of words that are uniquely identified for a given alphabet and word length.

Reducing the Ambiguity of Parikh Matrices 403

Proposition 2. The number of words of length m in Σn that are reduced in
ambiguity by P-Parikh matrices is bounded below by (nm) − (n × 3m−1).

Notice especially that as n and m get larger, the proportion of words which
are reduced in ambiguity by P-Parikh matrices also gets larger. We therefore
conclude that the use of P-Parikh matrices reduces ambiguity for a larger ratio
of words for bigger alphabets rather than smaller.

There also exist words for which P-Parikh matrices do not reduce ambiguity.
Our following result says that if our choice of a subset consists of only consecutive
letters of the initial alphabet, the P-Parikh matrices are not P-distinguishable.

Remark 6. If all elements of the set S ⊂ Σn are consecutive in the alphabet
Σn, then |A(w,Ψn)| = |A(w,Ψn, ΨS

n)|.
The result of Remark 6 strengthens the one of Proposition 1 by telling us

that the ambiguity of words defined over binary alphabets is not reducible by
P-Parikh matrices.

Corollary 1. There does not exist a Parikh matrix that describes binary words
whose ambiguity can be reduced by P-Parikh matrices.

Furthermore, there exist non-binary words for which P-Parikh matrices do
not remove ambiguity, namely those that are not P-unique. Finally, we end this
section by giving two classes of words which are not uniquely described by P-
Parikh matrices, no matter how we choose the set S.

Proposition 3. Take two words w,w′ ∈ Σ∗
n with the form w = u1aiajvajaiu2

and w′ = u1ajaivaiaju2, where ai ≤ aj ∈ Σn and u1, u2 ∈ Σ∗
n. If v ∈ {ak ∈

Σn|ai ≤ ak ≤ aj}∗, then for all S ⊆ Σn, we have ΨS
n (w) = ΨS

n (w′).

Proof. Firstly, if ai = ak = aj , equivalence follows, as w = w′. Now, let ai < aj .
In the case where S contains either ai or aj , then πS(w) = πS(w′) since

ai and aj are the only letters that swap places in w′ compared to w. Since
πS(w) = πS(w′), clearly ΨS

n (w) = ΨS
n (w′) follows.

If S = {ai, aj}, then, πS(w) is a binary word and can be transformed via a
Type 2 transformation, from Lemma 2, into πS(w′), so ΨS

n (w) = ΨS
n (w′).

Next consider that {ai, aj} ⊂ S, |S| > 2, and S has no elements between ai

and aj . Then πS(w)=πS(u1)aiajajaiπS(u2) and πS(w′)=πS(u1)ajaiaiajπS(u2).
Using an extension from [3] of the Type 2 transformations we can transform
πS(w) into πS(w′), and get that ΨS

n (w) = ΨS
n (w′).

Finally, consider the case where S contains ai, aj , and at least one letter that
comes lexicographically between ai and aj . Then, πS(w) can be transformed
into πS(w′) via two Type 1 transformations on ai and aj , since ai and aj are
not lexicographically adjacent in S (see Lemma 1).
�

The ideas from Proposition 3 give rise to another class of words that are not
P-unique, by loosening the condition on v and extending the length of the word.

404 J. Dick et al.

Proposition 4. Take two words of the form w = u1aiajv1ajaiajaiv2aiaju2,
and w′ = u1ajaiv1aiajaiajv2ajaiu2, where ai < aj ∈ Σn and u1, u2, v1, v2 ∈ Σ∗

n.
Let v1 = v1[1]v1[2] · · · v1[x] and v2 = v2[1]v2[2] · · · v2[y]. Then, w and w′ are not
P-distinct if and only if |v1|a�

= |v2|a�
for all a� /∈ {ak|ai ≤ ak ≤ aj}, and at

least one of the following conditions is true:

1. v1, v2 ∈ {ak|ak ≤ aj}∗, and for � < p, if v2[p], v2[�] ∈ {ak|ak < ai}, then
v2[p] ≤ v2[�], and if v1[p], v1[�] ∈ {ak|ak < ai}, then v1[p] ≥ v1[�];

2. v1, v2 ∈ {ak|ak ≥ ai}∗, and for � < p, if v2[p], v2[�] ∈ {ak|ak > aj}, then
v2[p] ≥ v2[�], and if v1[p], v1[�] ∈ {ak|ak > aj}, then v1[p] ≤ v1[�].

In other words, the above statement says that two words are not P-distinct
if both v1 and v2 are defined on the subset of the alphabet which is either lexi-
cographically bigger than ai or smaller than aj , and they share the same Parikh
vector for the subset of letters which are not in between ai and aj . Further-
more, if v1 ∈ {ai+1, . . . , an}∗, then all the letters which are lexicographically
greater than aj must occur in v1 in decreasing lexicographical order and in v2
in increasing order. On the other hand, if v1 ∈ {a1, . . . , aj−1}∗, then all the let-
ters which are lexicographically smaller than ai must occur in v1 in increasing
lexicographically order and in v2 in decreasing lexicographical order.

4 L-Parikh Matrices

Proposition 2 shows that in many cases, the set of words that share both a
Parikh matrix and a P-Parikh matrix is smaller than the set of those that share
only a Parikh matrix. However, following Corollary 1 we also know that this
never happens for binary alphabets. Hence we now study L-Parikh matrices as
an alternative method of ambiguity reduction. While they can be effective for
any non-unary alphabet, we focus on binary alphabets specifically. We begin
this section by explaining the motivation for choosing the Lyndon conjugate of
a word and then build to our main result where we characterise words whose
ambiguity is reduced by the use of L-Parikh matrices.

As indicated by Definition 4, the concept of L-Parikh matrices is based on
a modification to a word that results in a change in the order of letters. The
following theorem implies that the strategy of altering a word is not always a
successful method of ambiguity reduction. Note that Ψrev refers to the Parikh
matrix of the reversal of a word.

Theorem 1 ([4]). For a word w, we have that A(w,Ψ) = A(w,Ψ, Ψrev).

Unlike Theorem 1, L-Parikh matrices use the conjugate of a word. The next
proposition implies that such conjugates need to be chosen wisely.

Proposition 5. Given words v, w ∈ Σ∗ with Ψ(v) = Ψ(w), for any fac-
torisations v = v1v2 and w = w1w2 such that |v2| = |w2|, we have that
Ψ(v2v1) = Ψ(w2w1) implies φ(v2) = φ(w2). For Σ2, the reverse direction also
stands, namely φ(v2) = φ(w2) implies Ψ(v2v1) = Ψ(w2w1).

Reducing the Ambiguity of Parikh Matrices 405

Proof Outline. We can prove the statement that holds for every size alphabet by
contradiction, by assuming that Ψ(v) = Ψ(w), Ψ(v2v1) = Ψ(w2w1) and φ(v2) 	=
φ(w2). We examine the total number of ab subwords in v, w, v2v1 and w2w1 to
obtain a set of equations. We then consider the total number of b’s in v2 and w2

to find a contradiction within these equations.
For the statement that holds just for the binary alphabet we examine the total

number of ab subwords in v2v1, w2w1, v1, v2, w1 and w2 and get a contradiction in
the equations we obtain by initially assuming that φ(v2) = φ(w2), Ψ(v) = Ψ(w)
and Ψ(v2v1) 	= Ψ(w2w1).
�

Below example shows that |v2| = |w2| is necessary for Proposition 5.

Example 5. Consider the words v = aabaabbb with v2 = aabbb and w =
aaabbabb with w2 = abb. One can easily find that Ψ(v2v1) = Ψ(w2w1) = 〈 4 10

4 〉.
Furthermore, we have that Ψ(v) = Ψ(w), Ψ(v2v1) = Ψ(w2w1) and |v2| 	= |w2|.
However φ(v2) 	= φ(w2), since φ(v2) = [2, 3] and φ(w2) = [1, 2], and therefore
|v2| = |w2| is a necessary condition in the context of Proposition 5. �

An example for the ternary alphabet where Ψ(v2v1) 	= Ψ(w2w1) even though
we have that Ψ(v) = Ψ(w) and φ(v2) = φ(w2) is given below. Note that if
φ(v2) = φ(w2), then we must also have |w2| = |v2|. Since any alphabet of size
greater than 3 would rely on the result of the ternary alphabet always being
true, we can deduce that the backwards direction from Proposition 5 only holds
for the binary alphabet.

Example 6. Let v = cbbaaabb and w = cabbbaab. We have that Ψ(v) = Ψ(w).
Now let v2 = aabb and w2 = baab. Then we have that |w2| = |v2| and φ(v2) =
φ(w2). Note that Ψ(v2) 	= Ψ(w2), since |v2|ab = 4 and |w2|ab = 2. But this gives
us Ψ(v2v1) = Ψ(aabbcbba) 	= Ψ(baabcabb) = Ψ(w2w1). �

Proposition 5 shows that when looking for a modification that we can apply to
a word to find a new and different Parikh matrix, we need to consider conjugates
of amiable words where it is less likely that the Parikh vectors of their right
factors are the same, i. e., conjugates obtained by shifting the original words a
different number of times, respectively.

Let us now consider how using L-Parikh matrices reduces ambiguity. The
rest of this section ignores any word w where |A(w,Ψ)| = 1, since there is no
ambiguity to be reduced here. For a word w, we calculate Ψ(w) and ΨL(w) and
use both of these matrices to describe the original word. The ambiguity of a word
w, with respect to its Parikh and L-Parikh matrices, according to Definition 2,
is the total number of words that share a Parikh matrix and an L-Parikh matrix
with w, namely |A(w,Ψ, ΨL)|. We use the next definitions and propositions to
build to our main result where we characterise binary words whose ambiguity
is reduced using L-Parikh matrices. In line with Definition 5 we introduce the
following definitions.

Definition 7. Given a word w ∈ Σ∗, we call Ψ(w) L-distinguishable if either
|A(w,Ψ)| = 1 or there exists a word u ∈ Σ∗ with Ψ(w) = Ψ(u), such that

406 J. Dick et al.

ΨL(w) 	= ΨL(u). In the latter case we say that w and u are L-distinct. A word
w is L-unique if |A(w,Ψ, ΨL)| = 1.

Note that if w and v are L-distinct, then A(w,Ψ) = A(v, Ψ) and
A(w,Ψ, ΨL) 	= A(v, Ψ, ΨL). The example below demonstrates the effectiveness
of L-Parikh matrices for ambiguity reduction.

Example 7. Consider the words w = babbbaa, u = bbababa and v = bbbaaab
with Ψ(w) = Ψ(u) = Ψ(v). However, for the conjugates L(w) = aababbb, L(u) =
abababb and L(v) = aaabbbb we have that ΨL(w) = 〈 3 11

4 〉, ΨL(u) = 〈 3 9
4 〉,

and ΨL(v) = 〈 3 12
4 〉. Thus their L-Parikh matrices are all different and we can

uniquely describe each of the words by using L-Parikh matrices. �

L-distinguishability is necessary for ambiguity reduction in this case.

Corollary 2. For w ∈ Σ∗, |A(w,Ψ)|>|A(w,Ψ, ΨL)| if and only if Ψ(w) is
L-distinguishable.

The above characterisation of ambiguity reduction leads us to investigate
sufficient conditions for a matrix to be ambiguous, and therefore for any pair of
words it describes not to be L-distinct. Our next results consider the situations
when the Parikh matrix of a word is not L-distinguishable. We show that words
that meet the criteria outlined in each proposition within the binary alphabet
are rare either later in the paper or directly following the next proposition.

Proposition 6. For a word w ∈ Σ∗, if all words in A(w,Ψ) belong to the same
conjugacy class, then Ψ(w) is not L-distinguishable.

Example 8. Let w = aababa and w′ = abaaab. These two words are amiable
with each other and nothing else. Furthermore, L(w) = aaabab = L(w′), and
since both words share a Lyndon conjugate, both words also share an L-Parikh
matrix. Therefore Ψ(w) is not L-distinguishable. �

Now we move on to explore, for binary alphabets, the case where all words
in A(w,Ψ) belong to the same conjugacy class in more detail. Recall that C(w)
refers to the conjugacy class of w.

Proposition 7. Let w ∈ Σ∗
2 . Then L(u) = L(w), for all u ∈ A(w,Ψ), if and

only if L(w) ∈ {aabb, ababbb, aababb, aabbab, aaabab}.
Proof Outline. The forwards direction is proven by examining every element
of the conjugacy class of w. We can first prove that if L(u) = L(w), for all
u ∈ A(w,Ψ), then words in the conjugacy class of w are only amiable with other
conjugates of w. We then show that this is only true when L(w) is in the set
{aabb, ababbb, aababb, aabbab, aaabab}. For this we define a block of a letter to be
a unary factor of a word which is not extendable to the right or left and argue
that applying a Type 2 transformation to any Lyndon conjugate that is not in
the above set either alters the size of the block of a’s at the start of the word, or

Reducing the Ambiguity of Parikh Matrices 407

changes the total number of blocks of a’s in the word altogether. This therefore
gives us a word that is amiable to, but not a conjugate of, the original.

The backwards direction is proven by finding the Parikh matrices of all con-
jugates of words in the set {aabb, ababbb, aababb, aabbab, aaabab}. We then find
that the only words described by these matrices are these conjugates.
�

We now look at the case where all words associated to a Parikh matrix are
the Lyndon representatives of their respective conjugacy classes, which again
makes this matrix not L-distinguishable.

Proposition 8. For a word w ∈ Σ∗, if |A(w,Ψ)| ≥ 2 and A(w,Ψ) = A(w,ΨL),
then Ψ(w) is not L-distinguishable.

Example 9. The words w = aaaabaabbb and w′ = aaaaabbabb are only amiable
with each other, Ψ(w) = Ψ(w′), and both are the Lyndon representatives of their
respective conjugacy classes. Therefore, Ψ(w) = Ψ(w′) = ΨL(w) = ΨL(w′) and
Ψ(w) is not L-distinguishable. �

For binary alphabets, we examine in greater detail when all words in A(w,Ψ)
are the Lyndon representatives of their conjugacy classes. The next result pro-
vides a necessary and sufficient condition, and therefore the complete character-
isation, for this case to occur for the binary alphabet.

Proposition 9. Let w ∈ Σ∗
2 . Then the following statements are equivalent.

– For all u ∈ A(w,Ψ), we have that u = L(u).
– w = a∗vb∗ and for n = |v|ba we have that |v|a = 2n and |v|b = n + 1.

Proof Outline. To show that these two statements are equivalent, we begin by
showing that the second statement implies the former. We do this by first show-
ing that if a word is of the form w = a∗vb∗ and, for n = |v|ba, we have that
|v|a = 2n and |v|b = n + 1, then w = L(w), and next move on to prove that
only words of this form are described by Ψ(w). We prove that w = L(w) by
observing that v = L(v). Adding more a’s to the start of v and more b’s to the
end means that the Lyndon conjugate is still the word itself, and hence obtain
w = L(w). We prove that words of the form described in the second point are
only amiable with each other by calculating the total number of ab subwords in
v and extrapolating this to w.

To prove that the first statement implies the second, we use the fact that our
words share a Parikh matrix and that they must begin with the largest number
of consecutive a’s in the word and end with at least one b. We also rewrite
w = a+w′

ib
+ where w′

i begins with the first occurrence of a b and ends with the
last occurrence of an a in w, and examine the form that this must take given the
fixed number of ab subwords we must have in w. This gives us the total number
of a’s and b’s in a word relative to the total number of ba subwords.
�

The next example shows how the above result can be used to identify the form
of the words that always share a Parikh matrix with other Lyndon conjugates.

408 J. Dick et al.

Example 10. Following Proposition 9, Lyndon representatives of different con-
jugacy classes share a Parikh matrix only if they are of the form a∗vb∗, where
for n = |v|ba we have that |v|a = 2n and |v|b = n + 1. Let us find all words
of this form where n = 3. We begin by finding all binary words that con-
tain 3 subwords ba. These are baaa, baba and bbba. Next add a’s to the front
and b’s to the end of each word, respectively, so that we have a total of 6
a’s and 4 b’s per word: aaabaaabbb, aaaabababb, aaaaabbbab. Finally, any num-
ber of a’s and b’s can be added to the front and end of each word, respec-
tively: a∗aaabaaabbbb∗, a∗aaaabababbb∗, a∗aaaaabbbabb∗. Hence we know that
any word of this form is the Lyndon representative of its conjugacy class and
shares a Parikh matrix with the two other words stated above. For example,
Ψ(a2aaabaaabbbb3) = Ψ(a2aaaabababbb3) = Ψ(a2aaaaabbbabb3) = 〈 8 53

7 〉. �

Thus far, we presented sufficient conditions for two amiable words not to
be L-distinct. Our main result shows that these conditions are in fact also the
necessary ones. The following lemmas are used in the proof of the final result,
but are included here as they are also interesting results on their own. The
first lemma tells us that if the Parikh vectors of the proper right factors of two
amiable words are different, then the size of these factors must also be unequal.

Lemma 3. Consider the words w = w1w2 = xabybaz and v = v1v2 = xbayabz
with w, v ∈ Σ2, such that w1, w2, v1, v2 	= ε and w2w1 = L(w) 	= L(v) = v2v1. If
φ(w2) 	= φ(v2), then |w2| 	= |v2|.

Furthermore, if two amiable binary words are not the Lyndon representa-
tives of their conjugacy classes, then to either of them we can apply a Type 2
transformation to obtain an amiable word whose Lyndon conjugate begins in a
different position from the original one.

Lemma 4. Let w = w1w2 ∈ Σ∗
2 with L(w) = w2w1 	= w. If |A(w,Ψ)| ≥ 2,

then there exists u = u1u2 ∈ A(w,Ψ), where L(u) = u2u1, such that |u2| 	= |w2|.
Proof Outline. The statement can be proven by contradiction, by first assum-
ing that the Lyndon conjugate of every word associated to Ψ(w) begins in the
same position within those words. We then show that for the Lyndon conjugate
to begin at any position within a given binary word, it is possible to apply a
Type 2 transformation to obtain a new word whose Lyndon conjugate begins in
a different position.
�

Next we show that all words that are conjugates of any word w such that
A(w,Ψ) = A(w,ΨL) are also amiable with a word that is not a conjugate of any
of the words in A(w,Ψ).

Lemma 5. Let w, u, v ∈ Σ∗
2 , where A(w,Ψ) = A(w,ΨL). For any u ∈ C(w)

there exists v ∈ A(u, Ψ) such that A(w,ΨL) ∩ C(v) = ∅.
Proof Outline. This statement can be proven by considering every form that a
word w can take, such that A(w,Ψ) = A(w,ΨL), from Proposition 9 and then

Reducing the Ambiguity of Parikh Matrices 409

examining all conjugates of these words. We show that a Type 2 transformation
can be applied to every conjugate to obtain a word that is not a conjugate of
any word in our original set A(w,Ψ).
�

We end this section by giving our main result that characterises all binary
words whose Parikh matrix is not L-distinguishable.

Theorem 2. For Σ2, a Parikh matrix is not L-distinguishable if and only if
any of the words it describes meet at least one of the following criteria:

– w ∈ {aabb, ababbb, aababb, aabbab, aaabab, bbabbaaa, bbbaabaa}
– w = a∗vb∗ and for n = |v|ba we have that |v|a = 2n and |v|b = n + 1

Proof Outline. For the set of words B = {bbabbaaa, bbbaabaa}, the forward
direction is easily proven by finding these words’ Parikh and L-Parikh matrices,
respectively. The backward direction is proved using the fact that for words
w,w′ ∈ Σ∗

2 such that w is the reverse of w′ and A(w′, Ψ) = A(w′, ΨL), then
w ∈ B if and only if A(w,Ψ) = A(w,Ψ, ΨL).

For the rest of the words, the ‘if’ direction was mostly proven earlier when
Propositions 6, 7, 8 and 9, describing these situations, were introduced.

The ‘only if’ direction is proven by first examining the consequences of Propo-
sition 5, which tells us that two words are L-distinct if their Lyndon conjugates
begin in different positions, respectively. We use Lemmas 3 and 4 to conclude
that no set of amiable binary words exists where the Lyndon conjugates of all
words in the set begin in the same position of each word, respectively. Hence all
Parikh matrices would be L-distinguishable if it were not for some cases that
arise as a result of us using the Lyndon conjugate. These cases are namely the
ones where the set of amiable words are all Lyndon conjugates, are all members
of the same conjugacy class, or are all conjugates of words whose Lyndon con-
jugates share a Parikh matrix. We showed in Propositions 7 and 9 that the first
two cases are characterised by words of the form w = a∗vb∗ where for n = |v|ba

we have that |v|a = 2n and |v|b = n + 1, and by words where their Lyndon con-
jugate is in the set {aabb, ababbb, aababb, aabbab, aaabab}, respectively. We use
Lemma 5 to conclude that no words exist such that the third case is true.
�

5 Conclusion and Future Work

In this paper, we have shown that using P-Parikh matrices and L-Parikh matrices
reduces the ambiguity of a word in most cases. From Corollary 1, we learn that
P-Parikh matrices cannot reduce the ambiguity of a Parikh matrix that describes
words in a binary alphabet, but are very powerful when it comes to reducing the
ambiguity of words in larger alphabets (Proposition 2). On the other hand, we
find that L-Parikh matrices reduce the ambiguity of most binary words, with the
few exceptions from Theorem 2, which have all been shown to be rare occurrences
within the binary alphabet. Thus, using both tools together leads to a reduction
in ambiguity in most cases.

410 J. Dick et al.

Going forward, we wish to characterise words that are described uniquely
by both types of matrices, respectively, as well as quantifying the ambiguity
reduction permitted by both notions. Theorem2 tells us that there are very few
binary words whose Parikh matrix ambiguity cannot be reduced by L-Parikh
matrices. Future research on L-Parikh matrices could also include an analysis
similar to the one done in Proposition 2.

Finally we present a conjecture on the types of words that might be described
by a Parikh matrix that is P-distinguishable. We know that the presence of
a certain type of factor, described in Proposition 1, in a word means that its
Parikh matrix is P-distinguishable. This conjecture implies that the presence of
this factor is the only way that the ambiguity of a word could be reduced by
P-Parikh matrices.

Conjecture 8. For any word w ∈ Σ∗
n, if Ψ(w) is P-distinguishable, then there

exists a word amiable with w which contains a factor aiaj, where |i − j| > 1.

References

1. Alazemi, H.M.K., Černý, A.: Counting subwords using a trie automaton. Int. J.
Found. Comput. Sci. 22(6), 1457–1469 (2011)

2. Alazemi, H.M.K., Černý, A.: Several extensions of the Parikh matrix L-morphism.
J. Comput. Syst. Sci. 79(5), 658–668 (2013)

3. Atanasiu, A.: Parikh matrix mapping and amiability over a ternary alphabet. In:
Discrete Mathematics and Computer Science, pp. 1–12 (2014)

4. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theoret.
Comput. Sci. 390(1), 102–109 (2008)

5. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: Codifiable languages and the Parikh
matrix mapping. J. UCS 7, 783–793 (2001)

6. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fund. Inform. 49(4), 289–299 (2002)

7. Atanasiu, A., Teh, W.C.: A new operator over Parikh languages. Int. J. Found.
Comput. Sci. 27(06), 757–769 (2016)

8. Bera, S., Mahalingam, K.: Some algebraic aspects of Parikh q-matrices. Int. J.
Found. Comput. Sci. 27(4), 479–500 (2016)

9. Egecioglu, Ö.: A q-matrix encoding extending the Parikh matrix mapping. Tech-
nical report 14, Department of Computer Science at UC Santa Barbara (2004)

10. Egecioglu, O., Ibarra, O.H.: A matrix q-analogue of the Parikh map. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 125–138.
Springer, Boston (2004). https://doi.org/10.1007/1-4020-8141-3 12

11. Egecioglu, Ö., Ibarra, O.H.: A q-analogue of the Parikh matrix mapping. In: For-
mal Models, Languages and Applications [this volume commemorates the 75th
birthday of Prof. Rani Siromoney]. In: Series in Machine Perception and Artificial
Intelligence, vol. 66, pp. 97–111 (2007)

12. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

13. Mahalingam, K., Subramanian, K.G.: Product of Parikh matrices and commuta-
tivity. Int. J. Found. Comput. Sci. 23(01), 207–223 (2012)

https://doi.org/10.1007/1-4020-8141-3_12

Reducing the Ambiguity of Parikh Matrices 411

14. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: On an extension of the Parikh
mapping. Turku Centre for Computer Science (2000)

15. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
16. Poovanandran, G., Teh, W.C.: Strong (2·t) and strong (3·t) transformations for

strong M-equivalence. Int. J. Found. Comput. Sci. 30(05), 719–733 (2019)
17. Salomaa, A., Yu, S.: Subword occurrences, Parikh matrices and Lyndon images.

Int. J. Found. Comput. Sci. 21, 91–111 (2010)
18. Şerbănuţă, T.F.: Extending Parikh matrices. Theor. Comput. Sci. 310(1–3), 233–

246 (2004)
19. Şerbănuţă, V.N.: On Parikh matrices, ambiguity, and prints. Int. J. Found. Com-

put. Sci. 20(01), 151–165 (2009)
20. Širšov, A.I.: Subalgebras of free Lie algebras. Mat. Sbornik N.S. 33(75), 441–452

(1953)

On Collapsing Prefix Normal Words

Pamela Fleischmann1(B), Mitja Kulczynski1, Dirk Nowotka1,
and Danny Bøgsted Poulsen2

1 Department of Computer Science, Kiel University, Kiel, Germany
{fpa,mku,dn}@informatik.uni-kiel.de

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
dannybpoulsen@cs.aau.dk

Abstract. Prefix normal words are binary words in which each pre-
fix has at least the same number of 1s as any factor of the same length.
Firstly introduced in 2011, the problem of determining the index (amount
of equivalence classes for a given word length) of the prefix normal equiv-
alence relation is still open. In this paper, we investigate two aspects of
the problem, namely prefix normal palindromes and so-called collapsing
words (extending the notion of critical words). We prove characteriza-
tions for both the palindromes and the collapsing words and show their
connection. Based on this, we show that still open problems regarding
prefix normal words can be split into certain subproblems.

1 Introduction

Two words are called abelian equivalent if the amount of each letter is identical in
both words, e.g. rotor and torro are abelian equivalent albeit banana and ananas
are not. Abelian equivalence has been studied with various generalisations and
specifications such as abelian-complexity, k-abelian equivalence, avoidability of
(k-)abelian powers and much more (cf. e.g., [6,10,11,13,17,22–24]). The number
of occurrences of each letter is captured in the Parikh vector (also known as
Parikh image or Parikh mapping) [21]: given a lexicographical order on the
alphabet, the ith component of this vector is the amount of the ith letter of the
alphabet in a given word. Parikh vectors have been studied in [12,16,19] and
are generalised to Parikh matrices for saving more information about the word
than just the amount of letters (cf. eg., [20,25]).

A recent generalisation of abelian equivalence, for words over the binary
alphabet {0, 1}, is prefix normal equivalence (pn-equivalence) [14]. Two binary
words are pn-equivalent if their maximal numbers of 1s in any factor of length
n are equal for all n ∈ N. Burcsi et al. [5] showed that this relation is indeed an
equivalence relation and moreover that each class contains exactly one uniquely
determined representative - called a prefix normal word. A word w is said to be
prefix normal if the prefix of w of any length has at least the number of 1s as
any of w’s factors of the same length. For instance, the word 110101 is prefix
normal but 101101 is not, witnessed by the fact that 11 is a factor but not a
prefix. Both words are pn-equivalent. In addition to being representatives of the
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 412–424, 2020.
https://doi.org/10.1007/978-3-030-40608-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_29&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_29

On Collapsing Prefix Normal Words 413

pne-classes, prefix normal words are also of interest since they are connected to
Lyndon words, in the sense that every prefix normal word is a pre-necklace [14].
Furthermore, as shown in [14], the indexed jumbled pattern matching problem
(see e.g. [2,4,18]) is connected to prefix normal forms: if the prefix normal forms
are given, the indexed jumbled pattern matching problem can be solved in linear
time O(n) of the word length n. The best known algorithm for this problem
has a run-time of O(n1.864) (see [7]). Consequently there is also an interest in
prefix normal forms from an algorithmic point of view. An algorithm for the
computation of all prefix normal words of length n in run-time O(n) per word
is given in [8]. Balister and Gerke [1] showed that the number of prefix normal
words of length n is 2n−Θ(log2(n)) and the class of a given prefix normal word
contains at most 2n−O(

√
n log(n)) elements. A closed formula for the number of

prefix normal words is still unknown. In “OEIS” [15] the number of prefix normal
words of length n (A194850), a list of binary prefix normal words (A238109),
and the maximum size of a class of binary words of length n having the same
prefix normal form (A238110), can be found. An extension to infinite words is
presented in [9].

Our Contribution. In this work we investigate two conspicuities mentioned in
[3,14]: palindromes and extension-critical words. Generalising the result of [3] we
prove that prefix normal palindromes (pnPal) play a special role since they are
not pn-equivalent to any other word. Since not all palindromes are prefix normal,
as witnessed by 101101, determining the number of pnPals is an (unsolved) sub-
problem. We show that solving this sub-problem brings us closer to determining
the index, i.e. number of equivalence classes w.r.t. a given word length, of the pn-
equivalence relation. Moreover we give a characterisation based on the maximum-
ones function for pnPals. The notion of extension-critical words is based on an
iterative approach: compute the prefix normal words of length n + 1 based on
the prefix normal words of length n. A prefix normal word w is called extension-
critical if w1 is not prefix normal. For instance, the word 101 is prefix normal
but 1011 is not and thus 101 is called extension-critical. This means that all non-
extension-critical words contribute to the class of prefix normal words of the next
word-length. We investigate the set of extension-critical words by introducing an
equivalence relation collapse, grouping all extensional-critical words that are pn-
equivalent w.r.t. length n+1. Finally we prove that (prefix normal) palindromes
and the collapsing relation (extensional-critical words) are related. In contrast to
[14] we work with suffix-normal words (least representatives) instead of prefix-
normal words. It follows from Lemma 1 that both notions lead to the same
results.

Structure of the Paper. In Sect. 2, the basic definitions and notions are pre-
sented. In Sect. 3, we present the results on pnPals. Finally, in Sect. 4, the itera-
tive approach based on collapsing words is shown. This includes a lower bound
and an upper bound for the number of prefix normal words, based on pnPals and
the collapsing relation. Due to space restrictions all proofs are in the appendix.

414 P. Fleischmann et al.

2 Preliminaries

Let N denote the set of natural numbers starting with 1, and let N0 = N ∪ {0}.
Define [n] = {1, . . . , n}, for n ∈ N, and set [n]0 = [n] ∪ {0}.

An alphabet is a finite set Σ, the set of all finite words over Σ is denoted
by Σ∗, and the empty word by ε. Let Σ+ = Σ∗\{ε} be the free semigroup for
the free monoid Σ∗. Let w[i] denote the ith letter of w ∈ Σ∗ that is w = ε
or w = w[1] . . . w[n]. The length of a word w = w[1] . . . w[n] is denoted by |w|
and let |ε| = 0. Set w[i..j] = w[i] . . . w[j] for 1 ≤ i ≤ j ≤ |w|. Set Σn = {w ∈
Σ∗| |w| = n} for all n ∈ N0. The number of occurrences of a letter x ∈ Σ in
w ∈ Σ∗ is denoted by |w|x. For a given word w ∈ Σn the reversal of w is defined
by wR = w[n] . . . w[1]. A word u ∈ Σ∗ is a factor of w ∈ Σ∗ if w = xuy holds for
some words x, y ∈ Σ∗. If x = ε then u is called a prefix of w and a suffix if y = ε.
Let Fact(w),Pref(w),Suff(w) denote the sets of all factors, prefixes, and suffixes
respectively. Define Factk(w) = Fact(w)∩Σk and Prefk(w),Suffk(w) are defined
accordingly. Notice that |Prefk(w)| = |Suffk(w)| = 1 for all k ≤ |w|. The powers
of w ∈ Σ∗ are recursively defined by w0 = ε, wn = wwn−1 for n ∈ N.

Following [14], we only consider binary alphabets, namely Σ = {0, 1} with
the fixed lexicographic order induced by 0 < 1 on Σ. In analogy to binary
numbers we call a word w ∈ Σn odd if w[n] = 1 and even otherwise.

For a function f : [n] → Δ for n ∈ N0 and an arbitrary alphabet Δ the con-
catenation of the images defines a finite word serialise(f) = f(1)f(2) . . . f(n) ∈
Δ∗. Since serialise is bijective, we will identify serialise(f) with f and use in both
cases f (as long as it is clear from the context). This definition allows us to
access f ’s reversed function g : [n] → Δ; k �→ f(n − k + 1) easily by fR.

Definition 1. The maximum-ones functions is defined for a word w ∈ Σ∗ by
fw : [|w|]0 → [|w|]0; k �→ max { |v|1 | v ∈ Factk(w)} , giving for each k ∈ [|w|]0
the maximal number of 1s occuring in a factor of length k. Likewise the
prefix-ones and suffix-ones functions are defined by pw : [|w|]0 → [|w|]0; k �→
|Prefk(w)|1 and sw : [|w|]0 → [|w|]0; k �→ |Suffk(w)|1.
Definition 2. Two words u, v ∈ Σn are called prefix-normal equivalent (pn-
equivalent, u ≡n v) if fu = fv holds and v’s equivalence class is denoted by
[v]≡ = {u ∈ Σn|u ≡n v}. A word w ∈ Σ∗ is called prefix (suffix) normal iff
fw = pw (fw = sw resp.) holds. Let σ(w) =

∑
i∈[n] fw(i) denote the maximal-

one sum of a w ∈ Σn.

Remark 1. Notice that sw = pwR , fw = fwR , pw(i), sw(i) ≤ fw(i) for all i ∈ N0.
By pwR = sw and fw = fwR follows immediately that a word w ∈ Σ∗ is prefix
normal iff its reversal is suffix normal.

Fici and Lipták [14] showed that for each word w ∈ Σ∗ there exists exactly one
w′ ∈ [w]≡ that is prefix normal - the prefix normal form of w. We introduce the
concept of least representative, which is the lexicographically smallest element of
a class and thus also unique. As mentioned in [5] palindromes play a special role.
Immediately by w = wR for w ∈ Σ∗, we have pw = sw, i.e. palindromes are the

On Collapsing Prefix Normal Words 415

Table 1. Prefix normal palindromes (pnPals).

Word length Prefix normal palindromes # prefix normal words

1 0, 1 2

2 02, 12 3

3 03, 101, 13 5

4 04, 1001, 14 8

5 05, 10001, 10101, 11011, 15 14

6 06, 100001, 110011, 16 23

7 07, 1021021, 1051, 1010101, 1201012, 120312, 13013, 17 41

8 08, 1061, 10102101, 120412, 12012012, 130213, 18 70

only words that can be prefix and suffix normal. Recall that not all palindromes
are prefix normal witnessed by 101101.

Definition 3. A palindrome is called prefix normal palindrome (pnPal) if it is
prefix normal. Let NPal(n) denote the set of all prefix normal palindromes of
length n ∈ N and set npal(n) = |NPal(n)|. Let Pal(n) be the set of all palin-
dromes of length n ∈ N.

3 Properties of the Least-Representatives

Before we present specific properties of the least representatives (LR) for a given
word length, we mention some useful properties of the maximum-ones, prefix-
ones, and suffix-ones functions (for the basic properties we refer to [5,14] and
the references therein). Since we are investigating only words of a specific length,
we fix n ∈ N0. Beyond the relation pw = swR the mappings pw and sw are
determinable from each other. Counting the 1s in a suffix of length i and adding
the 1s in the corresponding prefix of length (n− i) of a word w, gives the overall
amount of 1s of w, namely

pw(n) = pw(n − i) + sw(i) and sw(n) = pw(i) + sw(n − i).

For suffix (resp. prefix) normal words this leads to pw(i) = fw(n) − fw(n − i)
resp. sw(i) = fw(n) − fw(n − i) witnessing the fact pw = sw for palindromes
(since both equation hold). Before we show that indeed pnPals form a singleton
class w.r.t. ≡n, we need the relation between the lexicographical order and prefix
and suffix normality.

Lemma 1. The prefix normal form of a class is the lexicographically largest
element in the class and the suffix-normal of a class is a LR.

Lemma 1 implies that a word being prefix and suffix normal forms a singleton
class w.r.t. ≡n. As mentioned pw = sw only holds for palindromes.

416 P. Fleischmann et al.

Proposition 1. For a word w ∈ Σn it holds that |[w]|≡ = 1 iff w ∈ NPal(n).

The general part of this section is concluded by a somewhat artificial equation
which is nevertheless useful for pnPals : by sw(i) = pR

w(i) − pR
w(i + 1) + sw(i − 1)

with pR
w(n + 1) = 0 for i ∈ [n] and sw = pwR we get

pwR(i) = pR
w(i) − pR

w(i + 1) − pwR(i − 1).

The rest of the section will cover properties of the LRs of a class.

Remark 2. For completeness, we mention that 0n is the only even LR w.r.t. ≡n

and the only pnPal starting with 0. Moreover, 1n is the largest LR. As we show
later in the paper 0n and 1n are of minor interest in the recursive process due
to their speciality.

The following lemma is an extension of [5, Lemma 1] for the suffix-one function
by relating the prefix and the suffix of the word sw for a least representative.
Intuitively the suffix normality implies that the 1s are more at the end of the word
w rather than at the beginning: consider for instance sw = 1123345 for w ∈ Σ7.
The associated word w cannot be suffix normal since the suffix of length two
has only one 1 (sw(2) = 1) but by sw(5) = 3, sw(6) = 4, and sw(7) = 5 we get
that within two letters two 1s are present and consequently fw(2) ≥ 2. Thus, a
word w is only least representative if the amount of 1s at the end of sw does not
exceed the amount of 1s at the beginning of sw.

Lemma 2. Let w ∈ Σn be a LR. Then we have

sw(i) ≥
{

sw(n) − sw(n − i + 1) if sw(n − i + 1) = sw(n − i),
sw(n) − sw(n − i + 1) + 1 otherwise.

The remaining part of this section presents results for prefix normal palindromes.
Notice that for w ∈ NPal(n) with w = xvx with x ∈ Σ, v is not necessarily
a pnPal; consider for instance w = 10101 with 010 ∈ Pal(3)\NPal(3). The
following lemma shows a result for prefix normal palindromes which is folklore
for palindromes substituting fw by pw or sw.

Lemma 3. For w ∈ NPal(n)\{0n}, v ∈ Pal(n) with w = 1v1 we have

fw(k) =

⎧
⎪⎨

⎪⎩

1 if k = 1,

fv(k − 1) + 1 if 1 < k ≤ |w| − 1,

fw(|v| + 1) + 1 if k = |w|.
In the following we give a characterisation of when a palindrome w is prefix
normal depending on its maximum-ones function fw and a derived function fw.
In particular we observe that fw = fw

R
if and only if w is a prefix normal

palindrome. Intuitively fw captures the progress of fw in reverse order. This is
an intriguing result because it shows that properties regarding prefix and suffix
normality can be observed when fw, sw, pw are considered in their serialised
representation.

On Collapsing Prefix Normal Words 417

Table 2. Number of pnPals. [15] (A308465)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 3 3 5 4 8 7 12 11 21 18 36 31 57

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

55 104 91 182 166 308 292 562 512 1009 928 1755 1697 3247 2972

Definition 4. For w ∈ Σn define fw : [n] → [n] by fw(k) = fw(k−1)−(fw(k−
1)− fw(k − 2)) with the extension fw(−1) = fw(0) = 0 of f and fw(0) = fw(n).
Define pw and sw analogously.

Example 1. Consider the pnPal w = 11011 with fw = 12234. Then fw is 43221
and we have fw = f

R

w. On the other hand for v = 101101 ∈ Pal(6)\NPal(6) we
have pv = 112334 and fv = 122334 and fv = 432211 and thus f

R

v �= fv.

The following lemma shows a connection between the reversed prefix-ones func-
tion and the suffix-ones function that holds for all palindromes.

Lemma 4. For w ∈ Pal(n) we have sw ≡ pR
w.

By Lemma 4 we get pw ≡ pR
w since pw ≡ sw for a palindrome w. As advocated

earlier, our main theorem of this part (Theorem1) gives a characterisation of
pnPals. The theorem allows us to decide if a word is a pnPal by only looking at
the maximum-ones-function, thus a comparison of all factors is not required.

Theorem 1. Let w ∈ Σn \ { 0n }. Then w is a pnPal if and only if fw = f
R

w.

Table 2 presents the amount of pnPals up to length 30 These results support the
conjecture in [5] that there is a different behaviour for even and odd length of
the word.

4 Recursive Construction of Prefix Normal Classes

In this section we investigate how to generate LRs of length n + 1 using the
LRs of length n. This is similar to the work of Fici and Lipták [14] except
they investigated appending a letter to prefix normal words while we explore
the behaviour on prepending letters to LRs. Consider the words v = 1001 and
w = 0011, both being (different) LRs of length 4. Prepending a 1 to them leads
to 11001 and 10011 which are pn-equivalent. We say that v and w collapse and
denote it by v ↔ w. Hence for determining the index of ≡n based on the least
representatives of length n−1, only the least representative of one class matters.

Definition 5. Two words w, v ∈ Σn collapse if 1w ≡n+1 1v holds. This is
denoted by w ↔ v.

418 P. Fleischmann et al.

Prepending a 1 to a non LR will never lead to a LR. Therefore It is sufficient to
only look at LRs. Since collapsing is an equivalence relation, denote the equiva-
lence class w.r.t. ↔ of a word w ∈ Σ∗ by [w]↔. Next, we present some general
results regarding the connections between the LRs of lengths n and n + 1. As
mentioned in Remark 2, 0n and 1n are for all n ∈ N LRs. This implies that they
do not have to be considered in the recursive process.

Remark 3. By [14] a word w0 ∈ Σn+1 is prefix-normal if w is prefix-normal.
Consequently we know that if a word w ∈ Σn is suffix normal, 0w is suffix
normal as well. This leads in accordance to the näıve upper bound of 2n + 1 to
a näıve lower bound of |Σn/ ≡n | for |Σn+1/ ≡n+1 |.
Remark 4. The maximum-ones functions for w ∈ Σ∗ and 0w are equal on all
i ∈ [|w|] and f0w(|w| + 1) = fw(|w|) since the factor determining the maximal
number of 1’s is independent of the leading 0. Prepending 1 to a word w may
result in a difference between fw and f1w, but notice that since only one 1 is
prepended, we always have f1w(i) ∈ {fw(i), fw(i) + 1} for all i ∈ [n]. In both
cases we have sw(i) = sxw(i) for x ∈ {0, 1} and i ∈ [|w|] and s0w(n + 1) = sw(n)
as well as s1w(n + 1) = sw(n) + 1.

Firstly we improve the näıve upper bound to 2|Σn/ ≡n | by proving that only
LRs in Σn can become LRs in Σn+1 by prepending 1 or 0.

Proposition 2. Let w ∈ Σn not be LR. Neither 0w nor 1w are LRs in Σn+1.

By Proposition 1 prefix (and thus suffix) normal palindromes form a singleton
class. This implies immediately that a word w ∈ Σn such that 1w is a prefix
normal palindrome, does not collapse with any other v ∈ Σn\{w}. The next
lemma shows that even prepending once a 1 and once a 0 to different words
leads only to equivalent words in one case.

Lemma 5. Let w, v ∈ Σn be different LRs. Then 0w ≡n 1v if and only if v = 0n

and w = 0n−11.

By Lemma 5 and Remark 3 it suffices to investigate the collapsing relation on
prepanding 1s. The following proposition characterises the LR 1w among the
elements 1v ∈ [1w]≡ for all LRs v ∈ Σn with w ↔ v for w ∈ Σn.

Proposition 3. Let w ∈ Σn be a LR. Then 1w ∈ Σn+1 is a LR if and only if
f1w(i) = fw(i) holds for i ∈ [n] and f1w(n + 1) = fw(n) + 1.

Corollary 1. Let w ∈ NPal(n). Then fw1(i) = fw(i) for i ∈ [n] and fw1(n +
1) = fw(n) + 1. Moreover sw1(i) = sw(i) for i ∈ [n] and sw1(n + 1) = sw(n) + 1.

This characterization is unfortunately not convenient for determining either the
number of LRs of length n + 1 from the ones from length n or the collapsing
LRs of length n. For a given word w, the maximum-ones function fw has to be
determined, fw to be extended by fw(n) + 1, and finally the associated word
- under the assumption f1w ≡ s1w has to be checked for being suffix normal.

On Collapsing Prefix Normal Words 419

For instance, given w = 100101 leads to fw = 11223, and is extended to f1w =
112234. This would correspond to 110101 which is not suffix normal and thus w
is not extendable to a new LR. The following two lemmata reduce the amount
of LRs that needs to be checked for extensibility.

Lemma 6. Let w ∈ Σn be a LR such that 1w is a LR as well. Then for all LRs
v ∈ Σn\{w} collapsing with w, fv(i) ≤ fw(i) holds for all i ∈ [n], i.e. all other
LRs have a smaller maximal-one sum.

Corollary 2. If w, v ∈ Σn and 1w ∈ Σn+1 are LRs with w ↔ v and v �= w
then w ≤ v.

Remark 5. By Corollary 2 the lexicographically smallest LR w among the col-
lapsing leads to the LR of [1w]. Thus if w is a LR not collapsing with any
lexicographically smaller word then 1w is LR.

Before we present the theorem characterizing exactly the collapsing words for a
given word w, we show a symmetry-property of the LRs which are not extendable
to LRs, i.e. a property of words which collapse.

Lemma 7. Let w ∈ Σn be a LR. Then f1w(i) �= fw(i) for some i ∈ [n] iff
f1w(n − i + 1) �= fw(n − i + 1).

By [5, Lemma 10] a word w1 is prefix normal if and only if |Suffk(w)|1 <
|Prefk+1(w)|1 for all k ∈ N. The following theorem extends this result for deter-
mining the collapsing words w′ for a given word w.

Theorem 2. Let w ∈ Σn be a LR and w′ ∈ Σn\{w} with |w|1 = |w′|1 = s ∈ N.
Let moreover v �↔ w for all v ∈ Σ∗ with v ≤ w. Then w ↔ w′ iff

1. fw′(i) ∈ {fw(i), fw(i) − 1} for all i ∈ [n],
2. fw′(i) = fw(i) implies f1w′(i) = fw(i),

3. fw′(i) ≥
{

fw′(n) − fw′(n − i + 1) if fw′(n − i + 1) = fw′(n − i),
fw′(n) − fw′(n − i + 1) + 1 otherwise.

Theorem 2 allows us to construct the equivalence classes w.r.t. the least rep-
resentatives of the previous length but more tests than necessary have to be
performed: Consider, for instance w = 11101100111011111 which is a smallest
LR of length 17 not collapsing with any lexicographically smaller LR. For w we
have fw = 1 · 2 · 3 · 4 · 5 · 5 · 6 · 7 · 8 · 8 · 8 · 9 · 10 · 10 · 11 · 12 · 13 where the dots just
act as separators between letters. Thus we know for any w′ collapsing with w,
that fw′(1) = 1 and fw′(17) = 13. The constraints fw′(2) ∈ {fw′(2), fw′(2) + 1}
and fw′(2) ≤ fw(2) implies fw′(2) ∈ {1, 2}. First the check that fw′(10) = 4 is
impossible excludes fw′(2) = 1. Since no collapsing word can have a factor of
length 2 with only one 1, a band in which the possible values range can be defined
by the unique greatest collapsing word w′. It is not surprising that this word is
connected with the prefix normal form. The following two lemmata define the
band in which the possible collapsing words fw are.

420 P. Fleischmann et al.

Lemma 8. Let w ∈ Σn\{0n} be a LR with v �↔ w for all v ∈ Σn with v ≤ w.
Set u := (1w[1..n − 1])R. Then w ↔ u and for all LRs v ∈ Σn\{u} with v ↔ w
and all i ∈ [n] fv(i) ≥ fu(i), thus σ(u) =

∑
i∈[n] fu(i) ≤ ∑

i∈[n] fv(i) = σ(v).

Notice that w′ = (1w[1..n − 1])R is not necessarily a LR in Σn/ ≡n witnessed
by the word of the last example. For w we get u = 1110111001101111 with
fu(8) = fw(8) and fu(10) = 7 �= 8 = fw(10) violating the symmetry property
given in Lemma 7. The following lemma alters w′ into a LR which represents
still the lower limit of the band.

Lemma 9. Let w ∈ Σn be a LR such that 1w is also a LR. Let w′ ∈ Σn with
w ↔ w′, and I the set of all i ∈ [
n

2 �] with

(fw′(i) = fw(i) ∧ fw′(n − i + 1) �= fw(n − i + 1)) or
(fw′(i) �= fw(i) ∧ fw′(n − i + 1) = fw(n − i + 1))

and fw(j) = fw′(j) for all j ∈ [n]\I. Then ŵ defined such that fŵ(j) = fw′(j)
for all j ∈ [n]\I and fŵ(n − i + 1) = fw′(n − i + 1) + 1 (fŵ(i) = fŵ(i) + 1 resp.)
for all i ∈ I holds, collapses with w.

Remark 6. Lemma 9 applied to (1w[1..n−1])R gives the lower limit of the band.
Let ŵ denote the output of this application for a given w ∈ Σn according to
Lemma 9.

Continuing with the example, we firstly determine ŵ for w = 1111011
1001101111. We get with u = w[n − 1..1]1 Since for all collapsing w′ ∈ Σn

we have fŵ(i) ≤ fw′(i) ≤ fw(i), w′ is determined for i ∈ [17]\{5, 9, 13}. Since
the value for 5 determines the one for 13 there are only two possibilities, namely
fw′(5) = 5 and fw′(9) = 7 and fw′(5) = 4 and fw′(9) = 8. Notice that the
words w′ corresponding to the generated words fw′ are not necessarily LRs of
the shorter length as witnessed by the one with fw′(5) = 5 and fw′(9) = 7. In
this example this leads to at most three words being not only in the class but
also in the list of former representatives. Thus we are able to produce an upper
bound for the cardinality of the class. Notice that in any case we only have
to test the first half of w′’s positions by Lemma 7. This leads to the following
definition.

Table 3. f for w = 11110111001101111.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

fw 1 2 3 4 5 5 6 7 8 8 8 9 10 10 11 12 13

fu 1 2 3 4 4 5 6 7 7 7 8 9 9 10 11 12 13

fŵ 1 2 3 4 4 5 6 7 7 8 8 9 9 10 11 12 13

On Collapsing Prefix Normal Words 421

Definition 6. Let hd : Σ∗ × Σ∗ → N0 be the Hamming-distance. The palin-
dromic distance pd : Σ∗ → N0 is defined by pd(w) = hd(w[1..
n

2 �], (w[�n
2 � +

1..|w|])R). Define the palindromic prefix length p� : Σ∗ → N0 by p�(w) =
max { k ∈ [|w|] | ∃u ∈ Prefk(w) : pd(u) = 0 }.
The palindromic distance gives the minimal number of positions in which a bit
has to be flipped for obtaining a palindrome. Thus, pd(w) = 0 for all palindromes
w, and, for instance, pd(110011001) = 2 since the first half of w and the reverse
of the second half mismatch in two positions. The palindromic prefix length
determines the length of w’s longest prefix being a palindrome. For instance
p�(1101) = 2 and p�(01101) = 4. Since a LR w determines the upper limit of the
band and w[n − 1..1]1 the lower limit, the palindromic distance of ww[n − 1..1]1
is in relation to the positions of fw in which collapsing words may differ from w.

Theorem 3. If w ∈ Σn and 1w are both LRs then |[w]↔| ≤ 2� pd(ww[n−1..1]1
2 	.

For an algorithmic approach to determine the LRs of length n, we want to
point out that the search for collapsing words can also be reduced using the
palindromic prefix length. Let w1, . . . , wm be the LRs of length n − 1. For each
w we keep track of |w| − p�(w). For each wi we check firstly if |wi| − p�(wi) = 1
since in this case the prepended 1 leads to a palindrome. Only if this is not the
case, [wi]↔ needs to be determined. All collapsing words computed within the
band of wi and ŵi are deleted in {wi+1, . . . , wm}.

In the remaining part of the section we investigate the set NPal(n) w.r.t.
NPal(�) for � < n. This leads to a second calculation for an upper bound and a
refinement for determining the LRs of Σn/ ≡n faster.

Lemma 10. If w ∈ NPal(n)\{1n} then 1w is not a LR but w1 is a LR.

Remark 7. By Lemma 10 follows that all words w ∈ NPal(n) collapse with a
smaller LR. Thus, for all n ∈ N, an upper bound for |Σn+1/ ≡n+1 | is given by
2|Σn/ ≡n | − npal(n).

For a closed recursive calculation of the upper bound in Remark 7, the exact
number npal(n) is needed. Unfortunately we are not able to determine npal(n)
for arbitrary n ∈ N. The following results show relations between prefix normal
palindromes of different lengths. For instance, if w ∈ NPal(n) then 1w1 is a
prefix normal palindrome as well. The importance of the pnPals is witnessed by
the following estimation.

Theorem 4. For all n ∈ N≥2 and � = |Σn/ ≡n | we have

� + npal(n − 1) ≤ |Σn+1/ ≡n+1 | ≤ � + npal(n + 1) +
� − npal(n + 1)

2
.

The following results only consider pnPals that are different from 0n

and 1n. Notice for these special palindromes that 0n0n, 1n1n, 1n11n, 0n00n,
11n1n1, 10n0n1 ∈ NPal(k) for an appropriate k ∈ N but 0n10n �∈ NPal(2n + 1).

422 P. Fleischmann et al.

Lemma 11. If w ∈ NPal(n)\{1n, 0n} then neither ww nor w1w are prefix nor-
mal palindromes.

Lemma 12. Let w ∈ NPal(n)\{0n} with n ∈ N≥3. If w0w is also a prefix
normal palindrome then w = 1k or w = 1k01u101k for some u ∈ Σ∗ and k ∈ N.

A characterisation for w1w being a pnPal is more complicated. By w ∈ NPal(n)
follows that a block of 1s contains at most the number of 1s of the previous
block. But if such a block contains strictly less 1s the number of 0s in between
can increase by the same amount the number of 1s decreased.

Lemma 13. Let w ∈ NPal(n)\{1n, 0n}. If 1ww1 is also a prefix normal palin-
drome then 10 ∈ Pref(w).

Lemmas 11, 12, and 13 indicate that a characterization of prefix normal palin-
dromes based on smaller ones is hard to determine.

5 Conclusion

Based on the work in [14], we investigated prefix normal palindromes in Sect. 3
and gave a characterisation based on the maximum-ones function. At the end of
Sect. 4 results for a recursive approach to determine prefix normal palindromes
are given. These results show that easy connections between prefix normal palin-
dromes of different lengths cannot be expected. By introducing the collapsing
relation we were able to partition the set of extension-critical words introduced in
[14]. This leads to a characterization of collapsing words which can be extended
to an algorithm determining the corresponding equivalence classes. Moreover we
have shown that palindromes and the collapsing classes are related.

The concrete values for prefix normal palindromes and the index of the col-
lapsing relation remain an open problem as well as the cardinality of the equiv-
alence classes w.r.t. the collapsing relation. Further investigations of the prefix
normal palindromes and the collapsing classes lead directly to the index of the
prefix equivalence.

Acknowledgments. We would like to thank Florin Manea for helpful discussions and
advice.

References

1. Balister, P., Gerke, S.: The asymptotic number of prefix normal words. J. Comb.
Theory 784, 75–80 (2019)

2. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. CS 23(2), 357–374 (2012)

3. Burcsi, P., Fici, G., Lipták, Z., Ruskey, F., Sawada, J.: On combinatorial generation
of prefix normal words. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM
2014. LNCS, vol. 8486, pp. 60–69. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07566-2 7

https://doi.org/10.1007/978-3-319-07566-2_7
https://doi.org/10.1007/978-3-319-07566-2_7

On Collapsing Prefix Normal Words 423

4. Burcsi, P., Fici, G., Lipták, Z., Ruskey, F., Sawada, J.: Normal, abby normal, prefix
normal. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496,
pp. 74–88. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07890-8 7

5. Burcsi, P., Fici, G., Lipták, Z., Ruskey, F., Sawada, J.: On prefix normal words
and prefix normal forms. TCS 659, 1–13 (2017)

6. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers
in binary words with bounded Abelian complexity. Int. J. Found. CS 22(04), 905–
920 (2011)

7. Chan, T.M., Lewenstein, M.: Clustered integer 3SUM via additive combinatorics.
In: 47th ACM Symposium on TOC, pp. 31–40. ACM (2015)

8. Cicalese, F., Lipták, Z., Rossi, M.: Bubble-flip—a new generation algorithm for
prefix normal words. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA
2018. LNCS, vol. 10792, pp. 207–219. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77313-1 16

9. Cicalese, F., Lipták, Z., Rossi, M.: On infinite prefix normal words. In: Proceedings
of the SOFSEM, pp. 122–135 (2019)

10. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. TCS 7(2),
138–153 (1973)

11. Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity.
Adv. Appl. Math. 47(1), 116–124 (2011)

12. Dassow, J.: Parikh mapping and iteration. In: Calude, C.S., PĂun, G., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 85–101. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45523-X 5

13. Ehlers, T., Manea, F., Mercas, R., Nowotka, D.: k-Abelian pattern matching. J.
Discrete Algorithms 34, 37–48 (2015)

14. Fici, G., Lipták, Z.: On prefix normal words. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 228–238. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22321-1 20

15. OEIS Foundation Inc.: The on-line encyclopedia of integer sequencess (2019).
http://oeis.org/

16. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. Control
47(3), 155–165 (1980)

17. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.
1007/3-540-55719-9 62

18. Lee, L.-K., Lewenstein, M., Zhang, Q.: Parikh matching in the streaming model. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 336–341. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34109-0 35

19. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: On an extension of the Parikh
mapping, 06 September 2000. http://citeseer.ist.psu.edu/440186.html

20. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J. Com-
put. Syst. Sci. 68(1), 1–21 (2004)

21. Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966)
22. Puzynina, S., Zamboni, L.Q.: Abelian returns in Sturmian words. J. Comb. Theory

120(2), 390–408 (2013)

https://doi.org/10.1007/978-3-319-07890-8_7
https://doi.org/10.1007/978-3-319-77313-1_16
https://doi.org/10.1007/978-3-319-77313-1_16
https://doi.org/10.1007/3-540-45523-X_5
https://doi.org/10.1007/978-3-642-22321-1_20
https://doi.org/10.1007/978-3-642-22321-1_20
http://oeis.org/
https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/978-3-642-34109-0_35
https://doi.org/10.1007/978-3-642-34109-0_35
http://citeseer.ist.psu.edu/440186.html

424 P. Fleischmann et al.

23. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity of minimal subshifts.
J. Lond. Math. Soc. 83(1), 79–95 (2010)

24. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the
Tribonacci word. Adv. Appl. Math. 45(2), 212–231 (2010)

25. Salomaa, A.: Connections between subwords and certain matrix mappings. TCS
340(2), 188–203 (2005)

Simplified Parsing Expression Derivatives

Aaron Moss(B)

University of Portland, Portland, USA
mossa@up.edu

Abstract. This paper presents a new derivative parsing algorithm for
parsing expression grammars; this new algorithm is both simpler and
faster than the existing parsing expression derivative algorithm presented
by Moss [12]. This new algorithm improves on the worst-case space and
runtime bounds of the previous algorithm by a linear factor, as well as
decreasing runtime by about half in practice.

Keywords: Parsing · Parsing expression grammar · Derivative parsing

1 Introduction

A derivative parsing algorithm for parsing expression grammars (PEGs) was first
published by Moss [12]; this paper presents a simplified and improved algorithm,
as well as a practical comparison of the two algorithms both to each other and
to other PEG parsing methods. This new algorithm preserves or improves the
performance bounds of the earlier algorithm, trimming a linear factor off the
worst-case time and space bounds, while preserving the linear time and constant
space bounds for the class of “well-behaved” inputs defined in [12].

2 Parsing Expression Grammars

Parsing expression grammars are a language formalism similar in power to
the more familiar context-free grammars (CFGs). PEGs are a formalization
of recursive-descent parsing with limited backtracking and infinite lookahead;
Fig. 1 provides definitions of the fundamental parsing expressions. a is a charac-
ter literal, matching and consuming a single character of input; ε is the empty
expression which always matches without consuming any input, while ∅ is the
failure expression, which never matches. A is a nonterminal, which is replaced by
its corresponding parsing expression R(A) to provide recursive structure in the
formalism. The negative lookahead expression !α provides much of the unique
power of PEGs, matching only if its subexpression α does not match, but con-
suming no input1. The sequence expression αβ matches α followed by β, while the
alternation expression α/β matches either α or β. Unlike the unordered choice
in CFGs, if its first alternative α matches, an alternation expression never back-
tracks to attempt its second alternative β; this ordered choice is responsible for
the unambiguous nature of PEG parsing.
1 The positive lookahead expression &α can be expressed as !!α.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 425–436, 2020.
https://doi.org/10.1007/978-3-030-40608-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_30&domain=pdf
http://orcid.org/0000-0003-4569-976X
https://doi.org/10.1007/978-3-030-40608-0_30

426 A. Moss

a(s) =

{
s′ s = a s′

fail otherwise

ε(s) = s

∅(s) = fail

!α(s) =

{
s α(s) = fail

fail otherwise

A(s) = (R(A))(s)

αβ(s) =

{
β(α(s)) α(s) �= fail

fail otherwise

α/β(s) =

{
α(s) α(s) �= fail

β(s) otherwise

Fig. 1. Formal definitions of parsing expressions; R(A) is the expansion of A

Parsing expressions are functions that recognize prefixes of strings, producing
either the un-consumed suffix of a match, or fail on failure. The language L(ϕ)
of a parsing expression ϕ over strings from an alphabet Σ is the set of strings
matched by ϕ; precisely, L(ϕ) = {s ∈ Σ∗ : ∃s′ ∈ Σ∗, ϕ(s) = s′}. This paper uses
the notation ε for the empty string (distinct from the empty expression ε) and
s[i] for the suffix sisi+1 · · · sn−1 of some string s = s0s1 · · · sn−1.

2.1 Related Work

A number of recognition algorithms for parsing expression grammars have been
presented in the literature, though none have combined efficient runtime per-
formance with good worst-case bounds. Ford [4] introduced both the PEG for-
malism and two recognition algorithms: recursive descent (a direct translation
of the functions in Fig. 1) and packrat (memoized recursive descent). The recur-
sive descent algorithm has exponential worst-case runtime, though it behaves
well in practice (as shown in Sect. 6); packrat improves the runtime bound to
linear, but at the cost of best-case linear space usage. Ford [5] also showed that
there exist PEGs to recognize non-context-free languages (e.g. anbncn), and
conjectured that some context-free languages exist for which there is no PEG.
Mizushima et al. [11] have demonstrated the use of manually-inserted “cut opera-
tors” to trim memory usage of packrat parsing to a constant, while maintaining
the asymptotic worst-case bounds; Kuramitsu [8] and Redziejowski [14] have
built modified packrat parsers that use heuristic table-trimming mechanisms to
achieve similar real-world performance without manual grammar modifications,
but which sacrifice the polynomial worst-case runtime. Medeiros and Ierusal-
imschy [9] have developed a parsing machine for PEGs, similar in concept to
a recursive descent parser, but somewhat faster in practice. Henglein and Ras-
mussen [7] have proved linear worst-case time and space bounds for their pro-
gressive tabular parsing algorithm, with some evidence of constant space usage in
practice for a simple JSON grammar, but their work lacks empirical comparisons
to other algorithms.

Simplified Parsing Expression Derivatives 427

Moss [12] and Garnock-Jones et al. [6] have developed derivative parsing
algorithms for PEGs. This paper extends the work of Moss, improving the theo-
retical quartic time and cubic space bounds by a linear factor each, and halving
runtime in practice. Garnock-Jones et al. do not include empirical performance
results for their work, but their approach elegantly avoids defining new pars-
ing expressions through use of a nullability combinator to represent lookahead
followers as later alternatives of an alternation expression.

3 Derivative Parsing

Though the backtracking capabilities of PEGs are responsible for much of their
expressive power and ease-of-use, backtracking is also responsible for the worst-
case resource bounds of existing algorithms. Recursive-descent parsing uses expo-
nential time in the worst case to perform backtracking search, while packrat pars-
ing trades this worst-case time for high best-case space usage. Derivative parsing
presents a different trade-off, with low common-case memory usage paired with a
polynomial time bound. A derivative parsing approach pursues all backtracking
options concurrently, eliminating the repeated backtracking over the same input
characteristic of worst-case recursive-descent, but also discarding bookkeeping
information for infeasible options, saving space relative to packrat.

The essential idea of derivative parsing, first introduced by Brzozowski [3],
is to iteratively transform an expression into an expression for the “rest” of the
input. For example, given γ = foo/bar/baz , db(γ) = ar/az , the suffixes that can
follow b in L(γ). After one derivative, the first character of the input has been
consumed, and the grammar mutated to account for this missing character. Once
repeated derivatives have been taken for every character in the input string, the
resulting expression can be checked to determine whether or not it represents a
match, e.g. dz◦da◦db(γ) = ε, a matching result. Existing work shows how to com-
pute the derivatives of regular expressions [3], context-free grammars [10], and
parsing expression grammars [6,12]. This paper presents a simplified algorithm
for parsing expression derivatives, as well as a formal proof of the correctness of
this algorithm, an aspect lacking from the earlier presentations.

The difficulty in designing a derivative parsing algorithm for PEGs is simulat-
ing backtracking when the input must be consumed at each step, with no ability
to re-process earlier input characters. Consider !(ab)a; ab and a must be parsed
concurrently, and an initial match of a must be reversed if ab later matches.
Alternations introduce further complications; consider (!(ab)/a!c)a: the final a
must be parsed concurrently with !(ab), but also “held back” until after the a
in a!c has been matched. To track the connections among such backtracking
choices, Moss [12] used a system of “backtracking generations” to label possible
backtracking options for each expression, as well as a complex mapping algo-
rithm to translate the backtracking generations of parsing expressions to the
corresponding generations of their parent expressions. The key observation of

428 A. Moss

the simplified algorithm presented here is that an index into the input string is
sufficient to label backtracking choices consistently across all parsing expressions.

Typically [3,10,12], the derivative dc(ϕ) is a function from an expression
ϕ and a character c ∈ Σ to a derivative expression. Formally, L (dc(ϕ)) =
{s ∈ Σ∗ : c s ∈ L(ϕ)}. This paper defines a derivative dc,i(ϕ), adding an index
i for the current location in the input. This added index is used as a label to
connect backtracking decisions across derivative subexpressions by annotation of
certain parsing expressions. A sequence expression αβ must track possible indices
where α may have stopped consuming characters and β began to be parsed; to
this end, αβ is annotated with a list of lookahead followers [βi1 · · · βik], where βij

is the repeated derivative of β starting at each index ij where α may have stopped
consuming characters. To introduce this backtracking, ε and !α, neither of which
consume any characters, become εj , a match at index j, and !jα, a lookahead
expression at index j. These annotated expressions are formally defined in Fig. 2;
note that they produce either a string or fail under the same conditions as their
equivalents in Fig. 1. Considered in isolation these extensions appear to introduce
a dependency on the string s into the expression definition (given that s[k] is a
suffix of s[j]), but within the context of the derivative parsing algorithm any εj

or !j must be in the α subexpression of a sequence expression αβ[βi1 · · · βik] and
paired with a corresponding βj lookahead follower such that β(s[j]) = βj(s[k]),
eliminating the dependency. Figure 3 defines a normalization function 〈•〉i to
annotate parsing expressions with their indices; derivative parsing of ϕ starts by
taking 〈ϕ〉0.

εj(s[k]) = s[j]

!jα(s[k]) =

{
s[j] α(s[k]) = fail

fail otherwise

αβ[βi1 · · · βik](s[k]) = αβ(s[k])

Fig. 2. Formal definitions of added parsing expressions

〈a〉i = a

〈ε〉i = εi

〈∅〉i = ∅

〈!α〉i = !i 〈α〉i

〈A〉i = 〈R(A)〉i

〈αβ〉i =

{
〈α〉i β[βi = 〈β〉i] ε ∈ L(α)
〈α〉i β[] otherwise

〈α/β〉i = 〈α〉i / 〈β〉i

Fig. 3. Definition of normalization function

Expressions that are known to always match their input provide opportuni-
ties for short-circuiting a derivative computation. For instance, if ν is an expres-
sion that is known to match, ν/β never tries the β alternative, while !ν always

Simplified Parsing Expression Derivatives 429

fails, allowing these expressions to be replaced by the simpler ν and ∅, respec-
tively. A similar optimization opportunity arises when expressions that have
stopped consuming input are later invalidated; the augmented sequence expres-
sion αβ[βi1 · · · βik] keeps an ongoing derivative βj of β for each start position j
that may be needed, so discarding unreachable βj is essential for performance.
Might et al. [10] dub this optimization “compaction” and demonstrate its impor-
tance to derivative performance; this work includes compaction in the derivative
step based on functions back and match defined in Fig. 4 over normalized pars-
ing expressions. By these definitions, based on [12], back(ϕ) is the set of indices
where ϕ may have stopped consuming input, while match(ϕ) is the set of indices
where ϕ matched. Note that |match(ϕ)| ≤ 1 and the definition of match(α/β)
depends on the invariant that the β alternative is discarded if α matches.

back(a) = {}
back(εi) = {i}
back(∅) = {}

back(!iα) = {i}
back(αβ[βi1 · · · βik])

= ∪j∈[i1···ik]back(βj)

back(α/β) = back(α) ∪ back(β)

match(a) = {}
match(εi) = {i}
match(∅) = {}

match(!iα) = {}
match(αβ[βi1 · · · βik])

= ∪j∈match(α)match(βj)

match(α/β) = match(β)

Fig. 4. Definitions of back and match

With these preliminaries established, the derivative is defined in Fig. 5. The
derivative consumes character literals, while preserving εj matches and ∅ fail-
ures. To a first approximation, the derivative distributes through lookahead and
alternation, though match and failure results trigger expression simplification.
The bulk of the work done by the algorithm is in the sequence expression αβ
derivative. At a high level, the sequence derivative takes the derivative of α,
then updates the appropriate derivatives of β, selecting one if α matches. Any
index j in back(dc,i (α)) where α may have stopped consuming input needs to be
paired with a corresponding backtrack follower βj ; introducing a new follower βi

involves a normalization operation. Testing for a match at end-of-input is tra-
ditionally [3,6,10] handled in derivative parsing with a nullability combinator δ
which reduces the grammar to ε or ∅; this work uses the derivative with respect
to an end-of-input character # /∈ Σ to implement this combinator. As such, if
α matches at end-of-input, dn,# (〈β〉n) must also be evaluated. As in previous
work [10,12], 〈•〉i, dc,i, back, and match are all memoized for performance.

The derivative with respect to a character can be extended to the deriva-
tive with respect to a string s = s1s2 · · · sn by repeated application: ds,i(ϕ) =(
dsn,i+n ◦ dsn−1,i+n−1 ◦ · · · ◦ ds1,i+1

)
(ϕ). After augmentation with an initial nor-

malization step and final end-of-input derivative, the overall derivative parsing

430 A. Moss

dc,i (a) =

{
εi c = a

∅ otherwise

dc,i (εj) = εj

dc,i (∅) = ∅

dc,i (!jα) =

⎧⎪⎨
⎪⎩

∅ match(dc,i (α)) �= {}
εj dc,i (α) = ∅

!jdc,i (α) otherwise

dc,i (αβ[βi1 · · · βik]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ dc,i (α) = ∅

〈β〉i dc,i (α) = εi ∧ c �= #
dc,i 〈β〉i

)
dc,i (α) = εi ∧ c = #

dc,i (βj) dc,i (α) = εj ∧ j < i

dc,i (α)β[β†
j : j ∈ back(dc,i (α))] otherwise, where

β†
i = 〈β〉i ,

β†
j = dc,i (βj) , j < i

dc,i (α/β) =

⎧⎪⎨
⎪⎩

dc,i (β) dc,i (α) = ∅

dc,i (α) dc,i (β) = ∅ ∨ match(dc,i (α)) �= {}
dc,i (α) /dc,i (β) otherwise

Fig. 5. Definition of derivative step; # is end-of-input

algorithm is then ϕ(n) = d#,n+1 ◦ ds,0 (〈ϕ〉0). If ϕ(n) = εj , then ϕ(s) = s[j],
otherwise ϕ(s) = fail. As an example, see Fig. 6.

4 Correctness

There is insufficient space in this paper to include a formal proof of the correct-
ness of the presented algorithm. The author has produced such a proof, however;
the general approach is outlined here.

γ = (!(ab)/a!c)a

〈γ〉0 = (!0(ab[])/a!c[])a[β0 = a]

da,1 〈γ〉0
)
= (!0b/!1c)a[β0 = ε1, β1 = a]

dc,2 ◦ da,1 〈γ〉0
)
= ε1 [Note: β0 from !0b success]

d#,3 ◦ dc,2 ◦ da,1 〈γ〉0
)
= ε1

Fig. 6. Derivative execution example on string ac

Simplified Parsing Expression Derivatives 431

The proof makes extensive use of structural induction, thus it must also
show that such induction terminates when applied to recursively-expanded non-
terminals. If evaluation of a parsing expression involves a left-recursive call to a
nonterminal, this evaluation never terminates; as such, left-recursive grammars
are generally excluded from consideration. Ford [5, § 3.6] introduced the notion
that a parsing expression is well-formed if it does not occur anywhere in its own
recursive left-expansion or have any subexpression that does; Fig. 7 formalizes
the immediate left-expansion LE and the recursive left-expansion LE+ consis-
tently with Ford’s definition. The normalization step presented in this paper
expands nonterminals left-recursively, eliminating recursive structure from the
parsing expressions considered by the derivative algorithm; this expansion is safe
for well-formed grammars.

LE(a) = {}
LE(ε) = {}
LE(εj) = {}
LE(∅) = {}
LE(A) = {R(A)}

LE(!α) = {α}
LE(!jα) = {α}

LE(αβ) =

{
{α, β} ε ∈ L(α)
{α} otherwise

LE(α/β) = {α, β}

LE(αβ[βi1 · · · βik]) = {α, βi1 , · · · βik}
LE+(ϕ) = LE(ϕ) ∪γ∈LE(ϕ) LE

+(γ)

Fig. 7. Definition of LE left-expansion function and its transitive closure LE+; LE
computed by iteration to a fixed point.

To prove the equivalence of derivative parsing with recursive descent, it must
be shown that normalization does not change the semantics of a parsing expres-
sion, that the derivative step performs the expected transformation of the lan-
guage of an expression, and that the end-of-input derivative correctly implements
the behavior of an expression on the empty string. In each of these cases, the
proof proceeds by treating the relevant parsing expressions as functions over
their input and proving that they produce equivalent results.

Proof of correctness of the derivative step depends on a number of invari-
ant properties of the normalized parsing expressions (e.g. there is a lookahead
follower βj in αβ[βi1 · · · βik] for every εj that may arise from derivatives of α);
these properties must be shown to be established by the 〈•〉i function and main-
tained by dc,i. Other lemmas needed to support the proof describe the dynamic
behavior of the derivative algorithm (e.g. match(ϕ) implies that the derivative
of ϕ eventually becomes a εj success result).

Without appealing to a formal proof of correctness, it should be noted that
the experimental results in Sect. 6 demonstrate successful matching of a large
number of strings, and thus a low (possibly zero) false-negative rate for the

432 A. Moss

derivative algorithm; further automated correctness tests are available with the
source distribution [13].

5 Analysis

In [12], Moss demonstrated the polynomial worst-case space and time of his
algorithm with an argument based on bounds on the depth and fanout of the
DAG formed by his derivative expressions. These bounds, cubic space and quartic
time, were improved to constant space and linear time for a broad class of “well-
behaved” inputs with constant-bounded backtracking and depth of recursive
invocation. This paper includes a similar analysis of the algorithm presented
here, improving the worst-case bounds of the previous algorithm by a linear
factor, to quadratic space and cubic time, while maintaining the optimal constant
space and linear time bounds for the same class of “well-behaved” inputs.

For an input string of length n, the algorithm runs O(n) derivative steps;
the cost of each derivative step dc,i (ϕ) is the sum of the cost of the derivative
algorithm in Fig. 5 on each expression node in the recursive left-expansion LE+

of ϕ. Since by convention the size of the grammar is a constant, all operations
on any expression γ from the original grammar (particularly 〈γ〉i) run in con-
stant time and space. It can be observed from the derivative step and index
equations in Figs. 5 and 4 that once the appropriate subexpression derivatives
have been calculated, the cost of a derivative step on a single expression node δ
is proportional to the size of the immediate left-expansion of δ, LE (δ). Let b be
the maximum |LE (δ)| over all δ ∈ LE+(ϕ); by examination of Fig. 7, |LE (δ)| is
bounded by the number of backtracking followers βij in the annotated sequence
expression. Since no more than one backtracking follower may be added per
derivative step, b ∈ O(n). Assuming 〈•〉i is memoized for each i, only a constant
number of expression nodes may be added to the expression at each derivative
step, therefore |LE+(ϕ)| ∈ O(n). By this argument, the derivative parsing algo-
rithm presented here runs in O(n2) worst-case space and O(n3) worst-case time,
improving the previous space and time bounds for derivative parsing of PEGs
by a linear factor each. This linear improvement over the algorithm presented in
[12] is due to the new algorithm only storing O(b) backtracking information in
sequence nodes, rather than O(b2) as in the previous algorithm.

In practical use, the linear time and constant space results presented in [12]
for inputs with constant-bounded backtracking and grammar nesting (a class
that includes most source code and structured data) also hold for this algorithm.
If b is bounded by a constant rather than its linear worst-case, the bounds
discussed above are reduced to linear space and quadratic time. Since b is a
bound on the size of LE (ϕ), it can be seen from Fig. 7 that this is really a bound
on sequence expression backtracking choices, which existing work including [12]
has shown is often bounded by a constant in practical use.

Given that the bound on b limits the fanout of the derivative expression
DAG, a constant bound on the depth of that DAG implies that the overall
size of the DAG is similarly constant-bounded. Intuitively, the bound on the

Simplified Parsing Expression Derivatives 433

depth of the DAG is a bound on recursive invocations of a nonterminal by itself,
applying a sort of “tail-call optimization” for right-recursive invocations such as
Rα∗ := α Rα∗ / ε. The conjunction of both of these bounds defines the class
of “well-behaved” PEG inputs introduced by Moss in [12], and by the constant
bound on derivative DAG size this algorithm also runs in constant space and
linear time on such inputs.

6 Experimental Results

In addition to being easier to implement than the previous derivative parsing
algorithm, the new parsing expression derivative also has superior performance.

To test this performance, the simplified parsing expression derivative (SPED)
algorithm was compared against the parser-combinator-based recursive descent
(Rec.) and packrat (Pack.) parsers used in [12], as well as the parsing expression
derivative (PED) implementation from that paper. The same set of XML, JSON,
and Java inputs and grammars used in [12] are used here; the inputs originally
come from [11]. Code and test data are available online [13]. All tests were
compiled with g++ 6.2.0 and run on a Windows system with 8 GB of RAM, a
2.6 GHz processor, and SSD main storage.

Figure 8 shows the runtime of all four algorithms on all three data sets,
plotted against the input size; Fig. 9 shows the memory usage of the same runs,
also plotted against the input size, but on a log-log scale.

0

5

10

15

20

25

30

0 500 1000150020002500

R
un

ti
m
e
(s
)

Input Size (KB)

Rec. XML
Rec. JSON
Rec. Java

Pack. XML
Pack. JSON
Pack. Java
PED XML
PED JSON
PED Java

SPED XML
SPED JSON
SPED Java

Fig. 8. Algorithm runtime with respect to input size; lower is better.

Contrary to its poor worst-case asymptotic performance, the recursive
descent algorithm is actually best in practice, running most quickly on all tests,

434 A. Moss

1

10

100

1000

10 100 1000

M
ax

im
um

R
A
M

U
se

(M
B
)

Input Size (KB)

Rec. XML
Rec. JSON
Rec. Java

Pack. XML
Pack. JSON
Pack. Java
PED XML
PED JSON
PED Java

SPED XML
SPED JSON
SPED Java

Fig. 9. Maximum algorithm memory use with respect to input size; lower is better.

and using the least memory on all but the largest inputs (where the derivative
parsing algorithms’ ability to not buffer input gives them an edge). Packrat pars-
ing is consistently slower than recursive descent, while using two orders of mag-
nitude more memory. The two derivative parsing algorithms have significantly
slower runtime, but memory usage closer to recursive descent than packrat.

Though on these well-behaved inputs all four algorithms run in linear time
and space (constant space for the derivative parsing algorithms), the constant
factor differs by both algorithm and grammar complexity. The XML and JSON
grammars are of similar complexity, with 23 and 24 nonterminals, respectively,
and all uses of lookahead expressions !α and &α eliminated by judicious use of
the more specialized negative character class, end-of-input, and until expressions
described in [12]. It is consequently unsurprising that the parsers have similar
runtime performance on those two grammars. By contrast, the Java grammar is
significantly more complex, with 178 nonterminals and 54 lookahead expressions,
and correspondingly poorer runtime performance.

Both the packrat algorithm and the derivative parsing algorithm presented
here trade increased space usage for better runtime. Naturally, this trade-off
works more in their favour for more complex grammars, particularly those with
more lookahead expressions, as suggested by Moss [12]. Grouping the broadly
equivalent XML and JSON tests together and comparing mean speedup, recur-
sive descent is 3.3x as fast as packrat and 18x as fast as SPED on XML and
JSON, yet only 1.6x as fast as packrat and 3.7x as fast as SPED for Java. Pack-
rat’s runtime advantage over SPED also decreases from 5.5x to 2.3x between
XML/JSON and Java.

Though the packrat algorithm is a modest constant factor faster than the
derivative parsing algorithm across the test suite, it uses as much as 300x as

Simplified Parsing Expression Derivatives 435

much peak memory on the largest test cases, with the increases scaling linearly in
the input size. Derivative parsing, by contrast, maintains a grammar-dependent
constant memory usage across all the (well-behaved) inputs tested. This constant
memory usage is within a factor of two on either side of the memory usage of the
recursive descent implementation on all the XML and JSON inputs tested, and
3–5x more on the more complex Java grammar. The higher memory usage on
Java is likely due to the lookahead expressions, which are handled with runtime
backtracking in recursive descent, but extra concurrently-processed expressions
in derivative parsing.

Derivative parsing in general is known to have poor runtime performance [1,
10], as these results also demonstrate. However, this new algorithm does provide
a significant improvement on the current state of the art for parsing expression
derivatives, with a 40% speedup on XML and JSON, a 50% speedup on Java,
and an up to 13% decrease in memory usage. This improved performance may
be beneficial for use cases that specifically require the derivative computation,
such as the modular parsers of Brachthäuser et al. [2] or the sentence generator
of Garnock-Jones et al. [6].

7 Conclusion and Future Work

This paper has introduced a new derivative parsing algorithm for PEGs based
on the previously-published algorithm in [12]. Its key contributions are simplifi-
cation of the earlier algorithm and empirical comparison of this new algorithm
to previous work. The simplified algorithm also improves the worst-case space
and time bounds of the previous algorithm by a linear factor. The author has
produced a formal proof of correctness for this simplified algorithm, but was
unable to include it in this paper due to space constraints.

While extension of this recognition algorithm to a parsing algorithm remains
future work, any such extension may rely on the fact that successfully recognized
parsing expressions produce a εe expression in this algorithm, where e is the index
where the last character was consumed. As one approach, 〈•〉b might annotate
parsing expressions with b, the index where they began to consume characters.
By collecting subexpression matches and combining the two indices b and e on a
successful match, this algorithm should be able to return a parse tree on match,
rather than simply a recognition decision. The parser derivative approach of
Might et al. [10] may be useful here, with the added simplification that PEGs,
unlike CFGs, have no more than one valid parse tree, and thus do not need to
store multiple possible parses in a single node.

References

1. Adams, M.D., Hollenbeck, C., Might, M.: On the complexity and performance of
parsing with derivatives. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, pp. 224–236.
ACM, New York (2016)

436 A. Moss

2. Brachthäuser, J.I., Rendel, T., Ostermann, K.: Parsing with first-class derivatives.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
pp. 588–606. ACM, New York (2016)

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM (JACM) 11(4), 481–
494 (1964)

4. Ford, B.: Packrat parsing: a practical linear-time algorithm with backtracking.
Master’s thesis, Massachusetts Institute of Technology, September 2002

5. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: ACM SIGPLAN Notices, vol. 39, no. 1, pp. 111–122. ACM (2004)

6. Garnock-Jones, T., Eslamimehr, M., Warth, A.: Recognising and generating terms
using derivatives of parsing expression grammars. arXiv preprint arXiv:1801.10490
(2018)

7. Henglein, F., Rasmussen, U.T.: PEG parsing in less space using progressive tabling
and dynamic analysis. In: Proceedings of the 2017 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2017, pp. 35–46. ACM, New
York (2017)

8. Kuramitsu, K.: Packrat parsing with elastic sliding window. J. Inf. Process. 23(4),
505–512 (2015)

9. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: Proceedings of
the 2008 Symposium on Dynamic Languages, DLS 2008, pp. 2:1–2:12. ACM, New
York (2008)

10. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: ACM SIGPLAN Notices, vol. 46, no. 9, pp. 189–195. ACM (2011)

11. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat parsers can handle practical
grammars in mostly constant space. In: Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering. pp.
29–36. ACM (2010)

12. Moss, A.: Derivatives of parsing expression grammars. In: Proceedings of the 15th
International Conference on Automata and Formal Languages, AFL 2017, Debre-
cen, Hungary, 4–6 September 2017, pp. 180–194 (2017). https://doi.org/10.4204/
EPTCS.252.18

13. Moss, A.: Egg (2018). https://github.com/bruceiv/egg/tree/deriv
14. Redziejowski, R.R.: Parsing expression grammar as a primitive recursive-descent

parser with backtracking. Fundam. Inform. 79(3–4), 513–524 (2007)

http://arxiv.org/abs/1801.10490
https://doi.org/10.4204/EPTCS.252.18
https://doi.org/10.4204/EPTCS.252.18
https://github.com/bruceiv/egg/tree/deriv

Complete Variable-Length Codes: An
Excursion into Word Edit Operations

Jean Néraud(B)

Université de Rouen, Laboratoire d’Informatique, de Traitement de l’Information et
des Systèmes, Avenue de l’Université, 76800 Saint-Étienne-du-Rouvray, France

jean.neraud@univ-rouen.fr, neraud.jean@gmail.com

http://neraud.jean.free.fr

Abstract. Given an alphabet A and a binary relation τ ⊆ A∗ × A∗, a
language X ⊆ A∗ is τ -independent if τ(X) ∩ X = ∅; X is τ -closed if
τ(X) ⊆ X. The language X is complete if any word over A is a factor
of some concatenation of words in X. Given a family of languages F
containing X, X is maximal in F if no other set of F can strictly contain
X. A language X ⊆ A∗ is a variable-length code if any equation among
the words of X is necessarily trivial. The study discusses the relationship
between maximality and completeness in the case of τ -independent or
τ -closed variable-length codes. We focus to the binary relations by which
the images of words are computed by deleting, inserting, or substituting
some characters.

Keywords: Closed · Code · Complete · Deletion · Detection ·
Dependent · Distribution · Edition · Embedding · Independent ·
Insertion · Levenshtein · Maximal · String · Substitution · Substring ·
Subword · Variable-length · Word

1 Introduction

In formal language theory, given a property F , the embedding problem with
respect to F consists in examining whether a language X satisfying F can be
included into some language X̂ that is maximal with respect to F , in the sense
that no language satisfying F can strictly contain X̂. In the literature, maxi-
mality is often connected to completeness: a language X over the alphabet A is
complete if any string in the free monoid A∗ (the set of the words over A) is a
factor of some word of X∗ (the submonoid of all concatenations of words in X).
Such connection takes on special importance for codes: a language X over the
alphabet A is a variable-length code (for short, a code) if every equation among
the words (i.e. strings) of X is necessarily trivial.

A famous result due to M.P. Schützenberger states that, for the family of the
so-called thin codes (which contains regular codes and therefore also finite ones),
being maximal is equivalent to being complete. In connection with these two
concepts lots of challenging theoretical questions have been stated. For instance,
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 437–448, 2020.
https://doi.org/10.1007/978-3-030-40608-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_31&domain=pdf
http://orcid.org/0000-0002-9630-461X
https://doi.org/10.1007/978-3-030-40608-0_31

438 J. Néraud

to this day the problem of the existence of a finite maximal code containing a
given finite one is not known to be decidable. From this latter point of view, in
[16] the author asked the question of the existence of a regular complete code
containing a given finite one: a positive answer was brought in [4], where was
provided a now classical formula for embedding a given regular code into some
complete regular one. Famous families of codes have also been concerned by those
studies: we mention prefix and bifix codes [2, Theorem 3.3.8, Proposition 6.2.1],
codes with a finite deciphering delay [3], infix [10], solid [11], or circular [13].

Actually, with each of those families, a so-called dependence system can be
associated. Formally, such a system is a family F of languages constituted by
those sets X that contain a non-empty finite subset in F . Languages in F are
F-dependent, the other ones being F-independent. A special case corresponds to
binary words relations τ ⊆ A∗ × A∗, where a dependence systems is constituted
by those sets X satisfying τ ∩ (X×X) �= ∅: X is τ -independent if we have τ(X) ∩
X = ∅ (with τ(X) = {y : ∃x ∈ X, (x, y) ∈ τ}). Prefix codes certainly constitute
the best known example: they constitute those codes that are independent with
respect to the relation obtained by removing each pair (x, x) from the famous
prefix order. Bifix, infix or solid codes can be similarly characterized.

As regards to dependence, some extremal condition corresponds to the so-
called closed sets: given a word relation τ ⊆ A∗ × A∗, a language X is closed
under τ (τ -closed, for short) if we have τ(X) ⊆ X. Lots of topics are concerned
by the notion. We mention the framework of prefix order where a one-to-one cor-
respondence between independent and closed sets is provided in [2, Proposition
3.1.3] (cf. also [1,18]). Congruences in the free monoid are also concerned [15],
as well as their connections to DNA computing [7]. With respect to morphisms,
involved topics are also provided by the famous L-systems [17] and, in the case
of one-to-one (anti)-automorphisms, the so-called invariant sets [14].

As commented in [6], maximality and completeness concern the economy of
a code. If X is a complete code then every word occurs as part of a message,
hence no part of X∗ is potentially useless. The present paper emphasizes the
following questions: given a regular binary relation τ ⊆ A∗ ×A∗, in the family of
regular τ -independent (-closed) codes, are maximality and completeness equiv-
alent notions? Given a non-complete regular τ -independent (-closed) code, is it
embeddable into some complete one?

Independence has some peculiar importance in the framework of coding the-
ory. Informally, given some concatenation of words in X, each codeword x ∈ X
is transmitted via a channel into a corresponding y ∈ A∗. According to the com-
binatorial structure of X, and the type of channel, one has to make use of codes
with prescribed error-detecting constraints: some minimum-distance restraint is
generally applied. In this paper, where we consider variable length codewords, we
address to the Levenshtein metric [12]: given two different words x, y, their dis-
tance is the minimal total number of elementary edit operations that can trans-
form x into y, such operation consisting in a one character deletion, insertion, or
substitution. Formally, it is the smallest integer p such that we have y ∈ Λp(x),
with Λp =

⋃
1≤k≤p(δ1 ∪ ι1 ∪ σ1)k, where δk, ιk, σk are further defined below.

Complete Variable-Length Codes: An Excursion into Word Edit Operations 439

From the point of view of error detection, X being Λp-independent guarantees
that y ∈ Λp(x) implies y �= x. In addition, a code satisfies the property of error
correction if its elements are such that Λp(x)∩Λp(y) = ∅ unless x = y: accord-
ing to [9, chap. 6], the existence of such codes is decidable. Denote by Subw(x)
the set of the subsequences of x:

– δk, the k-character deletion, associates with every word x ∈ A∗, all the words
y ∈ Subw(x) whose length is |x| − k. The at most p-character deletion is
Δp =

⋃
1≤k≤p δk;

– ιk, the k-character insertion, is the converse relation of δk and we set Ip =⋃
1≤k≤p ιk (at most p-character insertion);

– σk, the k-character substitution, associates with every x ∈ A∗, all y ∈ A∗ with
length |x| such that yi (the letter of position i in y), differs of xi in exactly k
positions i ∈ [1, |x|]; we set Σp =

⋃
1≤k≤p σk;

– We denote by Λp the antireflexive relation obtained by removing all pairs
(x, x) from Λp (we have Λ1 = Λ1).

For short, we will refer the preceding relations to edit relations. For reasons
of consistency, in the whole paper we assume |A| ≥ 2 and k ≥ 1. In what follows,
we draw the main contributions of the study:

Firstly, we prove that, given a positive integer k, the two families of languages
that are independent with respect to δk or ιk are identical. In addition, for k ≥ 2,
no set can be Λk-independent. We establish the following result:

Theorem A. Let A be a finite alphabet, k ≥ 1, and τ ∈ {
δk, ιk, σk,

Δk, Ik, Σk, Λk

}
. Given a regular τ -independent code X ⊆ A∗, X is complete

if, and only if, it is maximal in the family of τ -independent codes.

A code X is Λk-independent if the Levenshtein distance between two dis-
tinct words of X is always larger than k: from this point of view, Theorem A
states some noticeable characterization of maximal k-error detecting codes in
the framework of the Levenshtein metric.

Secondly, we explore the domain of closed codes. A noticeable fact is that
for any k, there are only finitely many δk-closed codes and they have finite
cardinality. Furthermore, one can decide whether a given non-complete δk-closed
code can be embedded into some complete one. We also prove that no closed
code can exist with respect to the relations ιk, Δk, Ik.

As regard to substitutions, beforehand, we focus to the structure of the set
σ∗

k(w) =
⋃

i∈N
σi

k. Actually, excepted for two special cases (that is, k = 1 [5,19],
or k = 2 with |A| = 2 [8, ex. 8, p.77]), to our best knowledge, in the literature
no general description is provided. In any event we provide such a description;
furthermore we establish the following result:

Theorem B. Let A be a finite alphabet and k ≥ 1. Given a complete σk-closed
code X ⊆ A∗, either every word in X has length not greater than k, or a unique
integer n ≥ k + 1 exists such that X = An. In addition for every Σk(Λk)-closed
code X, some positive integer n exists such that X = An.

440 J. Néraud

In other words, no σk-closed code can simultaneously possess words in A≤k

and words in A≥k+1. As a consequence, one can decide whether a given non-
complete σk-closed code X ⊆ A∗ is embeddable into some complete one.

2 Preliminaries

We adopt the notation of the free monoid theory. Given a word w, we denote by
|w| its length; for a ∈ A, |w|a denotes the number of occurrences of the letter
a in w. The set of the words whose length is not greater (not smaller) than
n is denoted by A≤n (A≥n). Given x ∈ A∗ and w ∈ A+, we say that x is a
factor of w if words u, v exist such that w = uxv; a subword of w consists in any
(perhaps empty) subsequence wi1 · · · win of w = w1 · · · w|w|. We denote by F(X)
(Subw(X)) the set of the words that are factor (subword) of some word in X
(we have X ⊆ F(X) ⊆ Subw(X)). A pair of words w,w′ is overlapping-free if no
pair u, v exist such that uw′ = wv or w′u = vw, with 1 ≤ |u| ≤ |w| − 1 and
1 ≤ |v| ≤ |w′| − 1; if w = w′, we say that w itself is overlapping-free.

It is assumed that the reader has a fundamental understanding with the
main concepts of the theory of variable-length codes: we suggest, if necessary,
that he (she) report to [2]. A set X is a variable-length code (a code for short) if
for any pair of sequences of words in X, say (xi)1≤i≤n, (yj)1≤j≤p, the equation
x1 · · · xn = y1 · · · yp implies n = p, and xi = yi for each integer i (equivalently
the submonoid X∗ is free). The two following results are famous ones from the
variable-length codes theory:

Theorem 1. Schützenberger [2, Theorem 2.5.16] Let X ⊆ A∗ be a regular code.
Then the following properties are equivalent:

(i) X is complete;
(ii) X is a maximal code;
(iii) a positive Bernoulli distribution π exists such that π(X) = 1;
(iv) for every positive Bernoulli distribution π we have π(X) = 1.

Theorem 2. [4] Given a non-complete code X, let y ∈ A∗ \ F(X∗) be an
overlapping-free word and U = A∗ \ (X∗ ∪ A∗yA∗). Then Y = X ∪ y(Uy)∗ is a
complete code.

With regard to word relations, the following statement comes from the defini-
tions:

Lemma 3. Let τ ∈ A∗ × A∗ and X ⊆ A∗. Each of the following properties
holds:

(i) X is τ -independent if, and only if, it is τ−1-independent (τ−1 denotes the
converse relation of τ).

(ii) X is δk(Δk)-independent if, and only if, it is ιk(Ik)-independent.
(iii) X is τ -closed if, and only if, it is τ∗-closed.

Complete Variable-Length Codes: An Excursion into Word Edit Operations 441

3 Complete Independent Codes

We start by providing a few examples:

Example 4. For A = {a, b}, k = 1, the prefix code X = a∗b is not δk-independent
(we have an−1b ∈ δk(anb)), whereas the following codes are δ1-independent:

– the regular code: Y = {a2}+{b, aba, abb}. Note that since it contains {a2}+,
δ1(Y) is not a code.

– the non-complete finite bifix code Z = {ab2, ba2}: actually, δ1(Z) is the com-
plete uniform code A2.

– for every pair of different integers n, p ≥ 2, the prefix code T = aAn ∪ bAp.
We have δ1(T) = An ∪ Ap, which is not a code, although it is complete.

In view of establishing the main result of Sect. 3, we will construct some peculiar
word:

Lemma 5. Let k ≥ 1, i ∈ [1, k], τ ∈ {δi, ιi, σi}. Given a non-complete code
X ⊆ A∗ some overlapping-free word y ∈ A∗ \ F(X∗) exists such that τ(y) does
not intersect X and y /∈ τ(X).

Proof. Let X be a non-complete code, and let w ∈ A∗ \ F(X∗). Trivially, we
have wk+1 /∈ F(X∗). Moreover, in a classical way a word u ∈ A∗ exists such
that y = wk+1u is overlapping-free (e.g. [2, Proposition 1.3.6]). Since we assume
i ∈ [1, k], each word in τ(y) is constructed by deleting (inserting, substituting) at
most k letters from y, hence by construction it contains at least one occurrence
of w as a factor. This implies τ(y) ∩ F(X∗) = ∅, thus τ(y) does not intersect X.

By contradiction, assume that a word x ∈ X exists such that y ∈ τ(x).
It follows from δ−1

k = ιk and σ−1
k = σk that y = wk+1u is obtained by

deleting (inserting, substituting) at most k letters from x: consequently at least
one occurrence of w appears as a factor of x ∈ X ⊆ F(X∗): this contradicts
w /∈ F(X∗), therefore we obtain y /∈ τ(X) (cf. Fig. 1). ��

Fig. 1. Proof of Lemma 5: y ∈ τ(X) implies w ∈ F(X); for i = k = 3 and y = w4u,
the action of the substitution τ = σ3 is represented in some extremal condition.

As a consequence, we obtain the following result:

Theorem 6. Let k ≥ 1 and τ ∈ {δk, ιk, σk}. Given a regular τ -independent code
X ⊆ A∗, X is complete if, and only if, it is maximal as a τ -independent codes.

442 J. Néraud

Proof. According to Theorem 1, every complete τ -independent code is a maximal
code, hence it is maximal in the family of τ -independent codes. For proving
the converse, we make use of the contrapositive. Let X be a non-complete τ -
independent code, and let y ∈ A∗ \ F(X∗) satisfying the conditions of Lemma5.
With the notation of Theorem 2, necessarily X ∪ {y}, which is a subset of
Y = X ∪ y(Uy)∗, is a code. According to Lemma 5, we have τ(y) ∩ X =
τ(X) ∩ {y} = ∅. Since X is τ -independent and τ antireflexive, this implies
τ(X ∪ {y}) ∩ (X ∪ {y}) = ∅, thus X non-maximal as a τ -independent code. ��
We notice that for k ≥ 2 no Λk-independent set can exist (indeed, we have
x ∈ σ2

1(x) ⊆ Λk(x)). However, the following result holds:

Corollary 7. Let τ ∈ {Δk, Ik, Σk, Λk}. Given a regular τ -independent code
X ⊆ A∗, X is complete if, and only if, it is maximal as a τ -independent code.

Proof. As indicated above, if X is complete, it is maximal as a τ -independent
code. For the converse, once more we argue by contrapositive that is, with the
notation of Lemma 5, we prove that X ∪{y} remains independent. By definition,
for each τ ∈ {Δk, Ik, Σk, Λk}, we have τ ⊆ ⋃

1≤i≤k τi, with τi ∈ {δi, ιi, σi}.
According to Lemma 5, since τi is antireflexive, for each i ∈ [1, k] we have τi(X ∪
{y}) ∩ (X ∪ {y}) = ∅: this implies (X ∪ {y}) ∩ ⋃

1≤i≤k τi(X ∪ {y}) = ∅, thus
X ∪ {y} is τ -independent. ��
With regard to the relation Λk, Corollary 7 expresses some interesting property
in term of error detection. Indeed, as indicated in Sect. 1, every code is Λk-
independent if the Levenshtein distance between its (distinct) elements is always
larger than k. From this point of view, Corollary 7 states some characterization
of the maximality in the family of such codes.

It should remain to develop some method in view of embedding a given non-
complete Λk-code into a complete one. Since the construction from the proof
Theorem 2 does not preserve independence, this question remains open.

4 Complete Closed Codes with Respect to Deletion or
Insertion

We start with the relation δk. A noticeable fact is that corresponding closed
codes are necessarily finite, as attested by the following result:

Proposition 8. Given a δk-closed code X, and x ∈ X, we have |x| ∈ [1, k2 −
k − 1] \ {k}.
Proof. It follows from ε /∈ X and X being δk-closed that |x| �= k. By contra-
diction, assume |x| ≥ (k − 1)k and let q, r be the unique pair of integers such
that |x| = qk + r, with 0 ≤ r ≤ k − 1. Since we have 0 ≤ rk ≤ (k − 1)k ≤ |x|,
an integer s ≥ 0 exists such that |x| = rk + s, thus words x1, · · · , xk, y exist
such that x = x1 · · · xky, with |x1| = · · · = |xk| = r and |y| = s. By con-
struction, every word t ∈ Sub(x) with |t| ∈ {r, s} belongs to δ∗

k(x) ⊆ X (indeed,
we have r = |x| − qk and s = |x| − rk). This implies x1, · · · , xk, y ∈ X, thus
x ∈ Xk+1 ∩ X: a contradiction with X being a code. ��

Complete Variable-Length Codes: An Excursion into Word Edit Operations 443

Example 9. (1) According to Proposition 8, no code can be δ1-closed. This can
be also drawn from the fact that, for every set X ⊆ A+ we have ε ∈ δ∗

1(X).
(2) Let A = {a, b} and k = 3. According to Proposition 8, every word in any

δk-closed code has length not greater than 5. It is straightforward to verify
that X = {a2, ab, b2, a4b, ab4} is a δk-closed code. In addition, a finite number
of examinations lead to verify that X is maximal as a δk-closed code. Taking
for π the uniform distribution we have π(X) = 3/4 + 1/16 < 1: thus X is
non-complete.

According to Example 9(2), no result similar to Theorem 6 can be stated in the
framework of δk-closed codes. We also notice that, in Proposition 8 the bound
does not depend of the size of the alphabet, but only depends of k.

Corollary 10. Given a finite alphabet A and a positive integer k, one can decide
whether a non-complete δk-closed code X ⊆ A∗ is included into some complete
one. In addition there are a finite number of such complete codes, all of them
being computable, if any.

Proof. According to Proposition 8 only a finite number of δk-closed codes over
A can exist, each of them being a subset of A≤k2−k−1 \ Ak. ��

We close the section by considering the relations Δk, ιk and Ik:

Proposition 11. No code can be ιk-closed, Δk-closed, nor Ik-closed.

Proof. By contradiction assume that some ιk-closed code X ⊆ A∗ exists. Let
x ∈ X, n = |x| and u, v ∈ A∗ such that x = uv. It follows from |(vu)k| = kn,
that u(vu)kv ∈ ι∗k(x). According to Lemma 3(iii), we have ι∗k(X) ⊆ X, thus
u(vu)kv ∈ X. Since u(vu)kv = (uv)k+1 = xk+1 ∈ Xk+1, we have Xk+1 ∩ X �=
∅: a contradiction with X being a code. Consequently no Ik-closed codes can
exist. According to Example 9(1), given a code X ⊆ A∗, we have δ1(X) �⊆ X:
this implies Δk(X) �⊆ X, thus X not Δk-closed. ��

5 Complete Codes Closed Under Substitutions

Beforehand, given a word w ∈ A+, we need a thorough description of the set
σ∗

k(w). Actually, it is well known that, over a binary alphabet, all n-bit words can
be computed by making use of some Gray sequence [5]. With our notation, we
have An = σ∗

1(w). Furthermore, for every finite alphabet A, the so-called |A|-
arity Gray sequences allow to generate An [8,19]: once more we have σ∗

1(w) =
An. In addition, in the special case where k = 2 and |A| = 2, it can be proved
that we have |σ2(w)| = 2n−1 [8, Exercise 8, p. 28]. However, except in these
special cases, to the best of our knowledge no general description of the structure
of σ∗

k(w) appears in the literature. In any event, in the next paragraph we provide
an exhaustive description of σk(w). Strictly speaking, the proofs, that we have
reported in Sect. 5.2, are not involved in σk-closed codes: we suggest the reader
that, in a first reading, after Sect. 5.1 he (she) directly jumps to Sect. 5.3.

444 J. Néraud

5.1 Basic Results Concerning σ∗
k(w)

Proposition 12. Assume |A| ≥ 3. For each w ∈ A≥k, we have σ∗
k(w) = A|w|.

In the case where A is a binary alphabet, we set A = {0, 1}: this allows a well-
known algebraic interpretation of σk. Indeed, denote by ⊕ the addition in the
group Z/2Z with identity 0, and fix a positive integer n; given w,w′ ∈ An,
define w ⊕ w′ as the unique word of An such that, for each i ∈ [1, n], the letter
of position i in w ⊕ w′ is wi ⊕ w′

i. With this notation the sets An and (Z/2Z)n

are in one-to-one correspondence. Classically, we have w′ ∈ σ1(w) if, and only
if, some u ∈ An exists such that w′ = w ⊕ u with |u|1 = 1 (thus |u|0 = n − 1).
From the fact that σk(w) ⊆ σk

1 (w), the following property holds:

w′ ∈ σk(w) ⇐⇒ ∃u ∈ An : w = w′ ⊕ u, |u|1 = k. (1)

In addition w ⊕ u = w′ is equivalent to u = w ⊕ w′. Let d = |{i ∈ [1, n] : wi =
w′

i = 1}|. The following property follows from |u|1 = (|w|1 − d) + (|w′|1 − d)
and |w|1 + |w′|1 = |w1| + |w′|1 − 2|w′|1 (mod 2):

|w|1 + |w′|1 = |w1| − |w′|1 (mod 2) = |u|1 (mod 2). (2)

Finally, for a ∈ A we denote by a its complementary letter that is, a = a ⊕ 1;
for w ∈ An we set w = w1 · · · wn.

Lemma 13. Let A = {0, 1}, n ≥ k + 1. Given w,w′ ∈ An the two following
properties hold:

(i) If k is even and w′ ∈ σ∗
k(w) then |w′|1 − |w|1 is an even integer;

(ii) If |w′|1 − |w|1 is even then we have w′ ∈ σ∗
k(w), for every k ≥ 1.

Given a positive integer n, we denote An
0 (An

1) the set of the words w ∈ An such
that |w|1 is even (odd).

Proposition 14. Assume |A| = 2. Given w ∈ A≥k exactly one of the following
conditions holds:

(i) |w| ≥ k + 1, k is even, and σ∗
k(w) ∈ {A|w|

0 , A
|w|
1 };

(ii) |w| ≥ k + 1, k is odd, and σ∗
k(w) = A|w|;

(iii) |w| = k and σ∗
k(w) = {w,w}.

5.2 Proofs of the Statements 12, 13 and 14

Actually, Proposition 12 is a consequence of the following property:

Lemma 15. Assume |A| ≥ 3. For every word w ∈ A≥k we have σ1(w) ⊆ σ2
k(w).

Proof. Let w′ ∈ σ1(w) and n = |w| = |w′| ≥ k. We prove that w′′ ∈ A∗ exists
with w′′ ∈ σk(w) and w′ ∈ σk(w′′). By construction, i0 ∈ [1, n] exists such that:

Complete Variable-Length Codes: An Excursion into Word Edit Operations 445

(a) w′
i = wi if, and only if, i �= i0.

It follows from k ≤ n that some (k − 1)-element subset I ⊆ [1, n] \ {i0}
exists. Since we have |A| ≥ 3, some letter c ∈ A \ {wi0 , w

′
i0

} exists. Let
w′′ ∈ An such that:

(b) w′′
i0

= c and, for each i �= i0: w′′
i �= wi if, and only if, i ∈ I.

By construction we have w′′ ∈ σk(w), moreover c �= w′
i0

implies w′
i0

�= w′′
i0

.
According to (a) and (b), we obtain:

(c) w′
i0

�= c = w′′
i0

,
(d) w′

i = wi �= w′′
i if i ∈ I, and:

(e) w′
i = wi = w′′

i if i /∈ I ∪ {i0}.

Since we have |I ∪ {i0}| = k, this implies w′ ∈ σk(w′′). ��
Proof of Proposition 12. Let w′ ∈ An \ {w}: we prove that w′ ∈ σ∗

k(w). Let
I = {i0, · · · , ip} = {i ∈ [1, n] : w′

i �= wi} and let (w(ij))0≤j≤p be a sequence of
words such that w = w(i0), w(ip) = w′ and, for each j ∈ [0, p−1]: w

(ij+1)
� �= w

(ij)
�

if, and only if, � = ij+1. Since we have w(ij+1) ∈ σ1(w(ij)) (1 ≤ j < p), by
induction over j we obtain w′ ∈ σ∗

1(w) thus, according to Lemma 15: w′ ∈ σ∗
k(w).

��
In view of proving Lemma 13 and Proposition 14, we need some new lemma:

Lemma 16. Assume |A| = 2. For every w ∈ A≥k+1, we have σ2(w) ⊆ σ2
k(w).

Proof. Set A = {0, 1}. It follows from σ2 ⊆ σ2
1 that the result holds for k = 1.

Assume k ≥ 2 and let n = |w|, w′ ∈ σ2(w). By construction, there are distinct
integers i0, j0 ∈ [1, n] such that the following holds:

(a) w′
i = wi if, and only if, i ∈ {i0, j0}.

Since some (k − 1)-element set I ⊆ [1, n] \ {i0, j0} exists, w′′, w′′′ ∈ An exist
with:

(b) w′′
i = wi if, and only if, i ∈ {i0} ∪ I, and:

(c) w′′′
i = w′′

i if, and only if, i ∈ {j0} ∪ I.
By construction, we have w′′ ∈ σk(w) and w′′′ ∈ σk(w′′), thus w′′′ ∈ σ2

k(w).
Moreover, the fact that we have w′′′ = w′ is attested by the following
equations:

(d) w′′′
j0

= w′′
j0

= wj0 = w′
j0

,
(e) w′′′

i0
= w′′

i0
= wi0 = w′

i0
, and:

(f) for i /∈ {i0, j0}: w′′′
i = w′′

i = wi = w′
i if, and only if, i ∈ I. ��

Proof of Lemma 13. Assume k even. According to Property (1) we have w′ =
w ⊕ u with |u|1 = k. According to (2), |w′|1 − |w|1 is even: hence (i) follows.
Conversely, assume |w′|1 − |w|1 even and let u = w ⊕ w′. According to (2), |u|1
is also even, moreover according to (1) we obtain w′ = σ|u|1(w): this implies
w′ ∈ σ∗

2(w). According to Lemma 16, we have w′ ∈ σ∗
k(w): this establishes (ii).

��
Proof of Proposition 14. Let w ∈ A≥k and n = |w|. (iii) is trivial and (i) follows
from Lemma 13(i): indeed, since k is even, σ∗

k(w) is the set of the words w′ ∈ An

446 J. Néraud

such that |w′|1−|w|1 is even. Assume k odd, and let w′ ∈ An\{w}; we will prove
that w′ ∈ σ∗

k(w). If |w′|1 − |w|1 is even, the result comes from Lemma 13(ii).
Assume |w′|1 − |w|1 odd and let t ∈ σ1(w′), thus w′ ∈ σ1(t) ⊆ σk ◦ σk−1(t)
that is, w′ ∈ σk(t′) for some t′ ∈ σk−1(t). It follows from w′ ∈ σ1(t) that
|t|1 − |w′|1 is odd, whence |t|1 − |w|1 = (|t|1 − |w′|1) + (|w′|1 − |w|1) is even:
according to Lemma 13(ii), this implies t ∈ σ∗

k(w). But since k − 1 is even, we
have t′ ∈ σk−1(t) ⊆ σ∗

2(t): according to Lemma 16, this implies t′ ∈ σ∗
k(t) (we

have |t| = |w′| = n). We obtain w′ ∈ σk(t′) ⊆ σ∗
k(t) ⊆ σ∗

k(σ∗
k(w)) = σ∗

k(w): this
completes the proof. ��

5.3 The Consequences for σ-Closed Codes

Given a σk-closed code X ⊆ A∗, we say that the tuple (k,A,X) satisfies Condi-
tion (3) if each of the three following properties holds:

(a) k is even, (b) |A| = 2, (c) X �⊆ A≤k.

We start by proving the following technical result:

Lemma 17. Assume |A| = 2 and k even. Given a pair of words v, w ∈ A+, if
|w| ≥ max{|v| + 1, k + 1} then the set σ∗

k(w) ∪ {v} cannot be a code.

Proof. Let v, w ∈ A+, and n = |w| ≥ max{|v| + 1, k + 1} (hence v /∈ σ∗
k(w) ⊆

A|w|). By contradiction, we assume that σ∗
k(w) ∪ {v} is a code. We are in Con-

dition (i) of Proposition 14 that is, we have σ∗
k(w) ∈ {An

0 , An
1}. On a first hand,

since An−1 is a right-complete prefix code [2, Theorem 3.3.8], it follows from
|v| ≤ n − 1 that a (perhaps empty) word s exists such that vs ∈ An−1. On
another hand, it follows from An−1A = An = An

0 ∪ An
1 that, for each u ∈ An−1,

a unique pair of letters a0, a1, exists such that ua0 ∈ An
0 , ua1 ∈ An

1 with
a1 = a0 that is, a ∈ A exists with vsa ∈ σ∗

k(w). According to Lemma 13(i),
|sav|1 − |w|1 = |vsa|1 − |w|1 is even; according to Lemma 13(ii), this implies
sav ∈ σ∗

k(w). Since we have (vsa)v = v(sav), the set σ∗
k(w) ∪ {v} cannot be a

code. ��
As a consequence of Lemma 17, we obtain the following result:

Lemma 18. Given a σk-closed code X ⊆ A∗, if (k,A,X) satisfies Condition (3)
then either we have X ⊆ A≤k, or we have X ∈ {An

0 , An
1 , An} for some n ≥ k+1.

Proof. Firstly, consider two words v, w ∈ X ∩ A≥k+1 and by contradiction,
assume |v| �= |w| that is, without loss of generality |v| + 1 ≤ |w|. Since X is
σk-closed, we have σ∗

k(w) ⊆ X, whence the set σ∗
k(w) ∪ {v}, which a subset

of X is a code: this contradicts the result of Lemma 17. Consequently, we have
X ⊆ A≤k ∪An, with n = |v| = |w| ≥ k+1. Secondly, once more by contradiction
assume that words v ∈ X ∩A≤k, w ∈ X ∩A≥k+1 exist. As indicated above, since
X is σk-closed, σ∗

k(w)∪{v} is a code: since we have |w| ≥ k+1 and |w| ≥ |v|+1,
once more this contradicts the result of Lemma 17. As a consequence, necessarily
we have X ⊆ An, for some n ≥ k+1. With such a condition, according to Propo-
sition 14 for each pair of words v, w ∈ X, we have σ∗

k(v), σ∗
k(w) ∈ {An

0 , An
1}: this

implies X ∈ {An
0 , An

1 , An}. ��

Complete Variable-Length Codes: An Excursion into Word Edit Operations 447

According to Lemma 18, with Condition (3) no σk-closed code can simultane-
ously possess words in A≤k and words in A≥k+1.

Lemma 19. Given a σk-closed code X ⊆ A∗, if (k,A,X) does not satisfy Con-
dition (3) then either we have X ⊆ A≤k, or we have X = An, with n ≥ k + 1.

Proof. If Condition (3) doesn’t hold then exactly one of the three following
conditions holds:

(a) X ⊆ A≤k;
(b) X �⊆ Ak and |A| ≥ 3;
(c) X �⊆ A≤k with |A| = 2 and k odd.

With each of the two last conditions, let w ∈ X ∩ A≥k+1. Since X is σk-closed,
according to the propositions 12 and 14(ii), we have An = σ∗

k(w) ⊆ σ∗
k(X). Since

An is a maximal code, it follows from Lemma 3(iii) that X = An.
��

As a consequence, every σk-closed code is finite. In addition, we state:

Theorem 20. Given a complete σk (Σk, Λk)-closed code X, exactly one of the
following conditions holds:

(i) X is a subset of A≤k;
(ii) a unique integer n ≥ k + 1 exists such that X = An.

In addition, every Σk(Λk)-closed code is equal to An, for some n ≥ 1.

Proof. Let X be a complete σk-closed code. If Condition (3) does not hold, the
result is expressed by Lemma 19. Assume that Condition (3) holds. According to
Lemma 18, in any case some integer n ≥ k+1 exists such that X ∈ {An

0 , An
1 , An}.

Taking for π the uniform distribution, we have π(An
0) = π(An

1) = 1/2 and
π(An) = 1 thus, according to Theorem 1: X = An. Recall that we have σ∗

1(w) =
A|w| (e.g. [8]). Assume X Σk-closed, and let w ∈ X, n = |w|: we have An =
σ∗
1(X) ⊆ Σ∗

k(X) ⊆ X thus X = An (indeed, An is a maximal code). Since
Σk ⊆ Λk, if X is Λk-closed then it is Σk-closed, thus we have X = An. ��
As a corollary, in the family of Σk(Λk)-closed codes, maximality and complete-
ness are equivalent notions. With regard to σk-closed codes, things are otherwise:
indeed, as shown in [16], there are finite codes that have no finite completion.
Let X be one of them, and k = max{|x| : x ∈ X}. By definition X is σk-closed.
Since every σk-closed code is finite, no complete σk-closed code can contain X.

Proposition 21. Let X be a (finite) non-complete σk-closed code. Then one can
decide whether some complete σk-closed code containing X exists. More precisely,
there is only a finite number of such codes, each of them being computable, if
any.

448 J. Néraud

Proof Sketch. We draw the scheme of an algorithm that allows to compute every
complete σk-closed code X̂ containing X. In a first step, we compute Y = X ∩
A≤k. If Y = X, according to Theorem 20, we have X̂ ⊆ A≤k: X̂, if any, can
be computed in a finite number of steps. Otherwise, X̂ exists if, and only if, for
some n ≥ k + 1 we have X ⊆ An: this can be straightforwardly checked. ��

Acknowledgment. We would like to thank the anonymous reviewers for their fruitful
suggestions and comments.

References

1. Berstel, J., Felice, C.D., Perrin, D., Reutenauer, C., Rindonne, G.: Bifix codes and
Sturmian words. J. Algebra 369, 146–202 (2012)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, New York (2010)

3. Bruyère, V., Wang, L., Zhang, L.: On completion of codes with finite deciphering
delay. Eur. J. Comb. 11, 513–521 (1990)

4. Ehrenfeucht, A., Rozenberg, S.: Each regular code is included in a regular maximal
one. RAIRO Theoret. Inf. Appl. 20, 89–96 (1986)

5. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations. J. ACM 20, 500–513 (1973)

6. Jürgensen, H., Konstantinidis, S.: Codes1. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, pp. 511–607. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59136-5 8

7. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of linguistic, DNA
computing and formal languages: characterizing RE using insertion-deletion sys-
tems. In: Proceedings of Third DIMACS Workshop on DNA Based Computing,
pp. 318–333 (1997)

8. Knuth, D.: The Art of Computer Programming, Volume 4, Fascicule 2 : Generating
All Tuples and Permutations. Addison Wesley, Boston (2005)

9. Konstantinidis, S.: Error correction and decodability. Ph.D. thesis, The University
of Western Ontario, London, Canada (1996)

10. Lam, N.: Finite maximal infix codes. Semigroup Forum 61, 346–356 (2000)
11. Lam, N.: Finite maximal solid codes. Theoret. Comput. Sci. 262, 333–347 (2001)
12. Levenshtein, V.: Binary codes capable of correcting deletions, insertion and rever-

sals. Sov. Phys. Dokl. 163, 845–848 (1965). (Engl. trans. in: Dokl. Acad. Nauk.
SSSR)

13. Néraud, J.: Completing circular codes in regular submonoids. Theoret. Comp. Sci.
391, 90–98 (2008)

14. Néraud, J., Selmi, C.: Embedding a θ-invariant code into a complete one. Theoret.
Comput. Sci. 806, 28–41 (2020). https://doi.org/10.1016/j.tcs.2018.08.022

15. Nivat, M., et al.: Congruences parfaites et semi-parfaites. Séminaire Dubreil.
Algèbre et théorie des nombres 25, 1–9 (1971)

16. Restivo, A.: On codes having no finite completion. Discrete Math. 17, 309–316
(1977)

17. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L-Systems. Academic
Press, New York (1980)

18. Rudi, K., Wonham, W.M.: The infimal prefix-closed and observable superlanguage
of a given language. Syst. Control Lett. 15, 361–371 (1990)

19. Savage, C.: A survey of combinatorial gray codes. SIAM Rev. 39(4), 605–629 (1997)

https://doi.org/10.1007/978-3-642-59136-5_8
https://doi.org/10.1007/978-3-642-59136-5_8
https://doi.org/10.1016/j.tcs.2018.08.022

Author Index

Allender, Eric 3
Amano, Kazuyuki 235
Arvind, Vikraman 357

Berdinsky, Dmitry 115
Bès, Alexis 128
Bhaskar, Siddharth 157
Bonizzoni, Paola 385

Chandlee, Jane 157
Choffrut, Christian 128

Daviaud, Laure 17
De Felice, Clelia 385
Dick, Jeffery 397
Donatelli, Susanna 170
Dondi, Riccardo 248

Finkel, Olivier 303
Fleischmann, Pamela 412
Fuhlbrück, Frank 357

Gao, Ziyuan 141
Gezer, Mehmet Utkan 184
Grosshans, Nathan 315

Haase, Christoph 33
Haddad, Serge 170
Heinz, Jeffrey 369
Hutchinson, Laura K. 397

Jain, Sanjay 141
Jardine, Adam 157
Jeż, Artur 44
Ji, Jing 369

Keeler, Chris 196
Klíma, Ondřej 328
Köbler, Johannes 357
Kostolányi, Peter 328
Kotek, Tomer 208
Kruengthomya, Prohrak 115
Kulczynski, Mitja 412

Labai, Nadia 208
Lye, Aaron 275

Mauri, Giancarlo 248
Mercaş, Robert 397
Moss, Aaron 425

Néraud, Jean 437
Nowotka, Dirk 412

Oakden, Christopher 157
Okhotin, Alexander 287
Ortiz, Magdalena 208

Pin, Jean-Éric 68
Place, Thomas 89
Poulsen, Danny Bøgsted 412

Qi, Ji 141

Reidenbach, Daniel 397

Salomaa, Kai 196
Schlicht, Philipp 141
Sorokin, Alexey 287
Stephan, Frank 141

Tarr, Jacob 141

Uçan, Ahmet Bilal 222

Veith, Helmut 208
Verbitsky, Oleg 357

Yamakami, Tomoyuki 341

Zaccagnino, Rocco 385
Zantema, Hans 260
Zizza, Rosalba 385
Zoppis, Italo 248

	Preface
	Organization
	Contents
	Invited Papers
	The New Complexity Landscape Around Circuit Minimization
	1 Introduction
	2 Meta-complexity, MCSP and Kolmogorov Complexity
	3 Connections to Learning Theory
	4 Completeness, Hardness, Reducibility
	4.1 Completeness in EXP and Other Classes
	4.2 NP-Hardness

	5 Average Case Complexity, One-Way Functions
	6 Complexity Classes and Noncomputable Complexity Measures
	7 Magnification
	References

	Containment and Equivalence of Weighted Automata: Probabilistic and Max-Plus Cases
	1 Introduction
	2 Weighted Automata
	2.1 Preliminaries
	2.2 Graphical Definition
	2.3 Matrix Representation
	2.4 Classic Examples

	3 Decision Problems
	3.1 The Equivalence and Containment Problems
	3.2 Undecidability of the Containment Problem
	3.3 Equivalence
	3.4 Decidability: Restricting the Ambiguity

	4 Approximations
	4.1 Probabilistic Case
	4.2 Approximating Max-Plus and Min-Plus Automata

	5 Conclusion
	References

	Approaching Arithmetic Theories with Finite-State Automata
	1 Introduction
	2 Preliminaries
	2.1 Büchi Arithmetic
	2.2 Finite-State Automata and p-automata
	2.3 Semi-linear Sets

	3 Existential Büchi Arithmetic
	4 Presburger Arithmetic with Valuation Constraints
	5 Conclusion
	References

	Recompression: Technique for Word Equations and Compressed Data
	1 Introduction
	1.1 Word Equations
	1.2 Compression and Word Equations
	1.3 Recompression
	1.4 Algorithms for Grammar-Based Compression

	2 Recompression for Word Equations
	3 Extensions of the Algorithm for Word Equations
	3.1 O(n logn) Space
	3.2 Equations with Regular Constraints and Inversion; Equations in Free Groups
	3.3 Context Unification

	4 Recompression and Compressed Data
	4.1 Straight Line Programs and Recompression
	4.2 SLP Equality and Fully Compressed Pattern Matching

	References

	How to Prove that a Language Is Regular or Star-Free?
	1 Background
	1.1 Regular and Star-Free Languages
	1.2 Early Results and Their Consequences
	1.3 Recognition by a Monoid and Syntactic Monoid

	2 Iteration Properties
	2.1 Pumping
	2.2 Periodicity and Permutation
	2.3 Iteration Properties

	3 Rewriting Systems and Well Quasi-orders
	3.1 Rewriting Systems
	3.2 Suffix Rewriting Systems
	3.3 Deleting Rewriting Systems
	3.4 Rules of the Form un to um
	3.5 Well Quasi-orders
	3.6 Equations and Inequalities

	4 Logic
	4.1 Logic on Words
	4.2 Linear Temporal Logic
	4.3 Rabin's Tree Theorem

	5 Transductions
	5.1 Rational and Recognisable Sets
	5.2 Matrix Representations of Transductions
	5.3 Decompositions of Languages

	6 Profinite Topology
	6.1 Uniformly Continuous Functions and Recognisable sets
	6.2 Transductions and Recognisable Sets

	7 Further Examples and Conclusion
	References

	Deciding Classes of Regular Languages: The Covering Approach
	1 Introduction
	2 Preliminaries
	3 The Covering Problem
	3.1 Definition
	3.2 Application to Membership

	4 Star-Free Languages and Schützenberger's Theorem
	4.1 Definition
	4.2 Schützenberger's Theorem

	5 Piecewise Testable Languages and Simon's Theorem
	5.1 Definition
	5.2 Simon's Theorem

	6 Conclusion
	References

	Algebraic Structures
	Nonstandard Cayley Automatic Representations for Fundamental Groups of Torus Bundles over the Circle
	1 Introduction and Preliminaries
	2 Nies–Semukhin FA–Presentations of (Zn,+)
	3 FA–Recognizable Automorphisms of Zn
	4 Conclusion and Open Questions
	References

	"426830A R, +,<,1 "526930B Is Decidable in "426830A R, +,< ,Z"526930B
	1 Introduction
	2 Preliminaries
	3 Strata
	4 Local Properties
	4.1 Local Neighborhoods
	4.2 Application: Expressing the Singularity of a Point in a "426830A R, +,< ,Z"526930B -Definable Relation

	5 Relations Between Neighborhoods
	5.1 Compatibility
	5.2 Intersection of a Line and Equivalence Classes

	6 Characterization and Effectivity
	6.1 Characterization of "426830A R, +,<,1 "526930B in "426830A R, +,< ,Z"526930B
	6.2 Decidability

	7 Conclusion
	References

	Ordered Semiautomatic Rings with Applications to Geometry
	1 Introduction
	2 Grids with Special Properties
	3 Applications to Geometry
	4 Cube Roots
	5 Representing All Reals
	References

	Automata
	Boolean Monadic Recursive Schemes as a Logical Characterization of the Subsequential Functions
	1 Introduction
	2 Preliminaries
	3 Subsequential Functions and Transducers
	3.1 Abstract Definition
	3.2 Subsequential Finite-State Transducers

	4 Boolean Monadic Recursive Schemes
	4.1 Syntax and Semantics
	4.2 Schemes as Definitions of String Transductions
	4.3 Convergence and Well-Definedness

	5 Equivalence
	5.1 Subsequential Functions Are BMRS-Definable
	5.2 BMRSp and BMRSs-Definable String Functions Are Subsequential
	5.3 Main Theorem

	6 Discussion
	7 Conclusion
	References

	Expressiveness and Conciseness of Timed Automata for the Verification of Stochastic Models
	1 Introduction
	2 Context and Definitions
	3 Autonomous Transitions and Expressiveness
	4 Autonomous Transitions and Conciseness
	5 Conclusion and Future Work
	References

	Windable Heads and Recognizing NL with Constant Randomness
	1 Introduction
	2 Finite Automata with k Heads
	3 Interactive Proof Systems
	3.1 Reducing Weak Error Arbitrarily Using Constant-Randomness Verifier
	3.2 Bringing Strong Error Below 12 Using Constant-Randomness Verifier

	4 Windable Heads
	5 Recognizing Some Languages in NL with Constant-Randomness and Reducible-Error Verifiers
	5.1 Example Languages from rNL and Potential Outsiders

	6 Open Questions
	References

	Alternating Finite Automata with Limited Universal Branching
	1 Introduction
	2 Preliminaries
	2.1 Tree Width of Alternating Machines

	3 Decision Problems for Pared Tree Width and Acceptance Width
	4 State Complexity
	4.1 Universal Infix Language

	References

	Pebble-Intervals Automata and FO2 with Two Orders
	1 Introduction
	2 Pebble-Intervals Automata
	3 PIAs and FO2(1,2,S2)
	4 Discussion and Conclusion
	References

	Limited Two-Way Deterministic Finite Automata with Advice
	1 Introduction
	2 Our Model
	2.1 Definition
	2.2 Results

	3 Conclusions and Open Questions
	References

	Complexity
	On the Size of Depth-Two Threshold Circuits for the Inner Product Mod 2 Function
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Upper Bounds
	4 Lower Bounds for THRSYM Circuits
	4.1 LP-Based Method for Lower Bounds on Circuit Size
	4.2 New Lower Bounds on THRSYM Circuits

	References

	Complexity Issues of String to Graph Approximate Matching
	1 Introduction
	2 Definitions
	3 Hardness of String to Graph Compatibility Matching
	3.1 Graph Labels of Length One
	3.2 Binary Alphabet

	4 Hardness of Parameterization
	5 String to Graph Compatibility Matching Parameterized by |s|
	6 Conclusion
	References

	Complexity of Automatic Sequences
	1 Introduction
	2 Basic Definitions
	3 The Exponential Gap
	4 The k-kernel
	5 Morphic Sequences
	6 The Effect of Basic Operations
	7 Periodic Sequences
	8 Conclusions
	References

	Grammars
	Context-Sensitive Fusion Grammars Are Universal
	1 Introduction
	2 Preliminaries
	3 Context-Sensitive Fusion Grammars
	4 A Context-Sensitive Fusion Grammar for the Post Correspondence Problem
	5 Transformation of Chomsky Grammars into Context-Sensitive Fusion Grammars
	6 Conclusion
	References

	Cyclic Shift on Multi-component Grammars
	1 Introduction
	2 Multi-component Grammars
	3 Cyclic Shift on k-component Grammars
	4 Cyclic Shift on Well-Nested k-component Grammars
	5 Number of Components in Well-Nested Grammars
	6 Conclusion
	References

	Languages
	The Automatic Baire Property and an Effective Property of -Rational Functions
	1 Introduction
	2 Recall of Basic Notions
	3 The Automatic Baire Property
	4 An Application to -Rational Functions
	4.1 Infinitary Rational Relations
	4.2 Continuity of -Rational Functions

	5 Concluding Remarks
	References

	The Power of Programs over Monoids in
	1 Introduction
	2 Preliminaries
	2.1 Various Mathematical Materials
	2.2 Tameness and the Variety

	3 Fine Hierarchy
	3.1 Strict Hierarchy
	3.2 Collapse

	4 Regular Languages in P()
	4.1 Non-tameness of
	4.2 Threshold Dot-Depth One Languages

	5 Conclusion
	References

	Geometrically Closed Positive Varieties of Star-Free Languages
	1 Introduction
	2 Preliminaries
	3 A Characterisation of the Geometrical Closure
	4 Languages Recognised by LT-acyclic Automata
	5 The Main Result
	6 Conclusions
	References

	Intersection and Union Hierarchies of Deterministic Context-Free Languages and Pumping Lemmas
	1 A Historical Account and an Overview of Contributions
	1.1 Intersection and Union Hierarchies and Historical Background
	1.2 Overview of Main Contributions

	2 Preparations: Notions and Notation
	2.1 Fundamental Notions and Notation
	2.2 Deterministic Pushdown Automata
	2.3 Ideal Shape
	2.4 Boundaries and Crossing State-Stack Pairs

	3 Proof Sketches of Three Separation Claims
	4 Proof Sketch of the Pumping Lemma for DCFL[d]
	References

	Trees and Graphs
	On the Weisfeiler-Leman Dimension of Fractional Packing
	1 Introduction
	2 Reductions Between Linear Programs
	3 Fractional Set Packing
	4 1-WL-invariance of the Fractional Matching Number
	5 Fractional Edge-Disjoint Triangle Packing
	6 Invariance Ratio and Integrality Gap
	References

	Input Strictly Local Tree Transducers
	1 Introduction
	2 Preliminaries
	3 Input Strictly Local Tree Transducers
	4 Conclusion
	References

	Words and Codes
	Lyndon Words versus Inverse Lyndon Words: Queries on Suffixes and Bordered Words
	1 Introduction
	2 Words, Lyndon Words and the Lyndon Factorization
	3 Anti-Lyndon Words, Inverse Lyndon Words and Anti-prenecklaces
	4 A Canonical Inverse Lyndon Factorization: ICFL(w)
	5 Groupings and Borders
	6 A Bound on the Length of the Longest Common Prefix
	7 Lyndon Factorizations of Factors of a Word and Overlapping Factors
	8 Conclusions and Open Problems
	References

	Reducing the Ambiguity of Parikh Matrices
	1 Introduction
	2 Preliminaries
	3 P-Parikh Matrices
	4 L-Parikh Matrices
	5 Conclusion and Future Work
	References

	On Collapsing Prefix Normal Words
	1 Introduction
	2 Preliminaries
	3 Properties of the Least-Representatives
	4 Recursive Construction of Prefix Normal Classes
	5 Conclusion
	References

	Simplified Parsing Expression Derivatives
	1 Introduction
	2 Parsing Expression Grammars
	2.1 Related Work

	3 Derivative Parsing
	4 Correctness
	5 Analysis
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Complete Variable-Length Codes: An Excursion into Word Edit Operations
	1 Introduction
	2 Preliminaries
	3 Complete Independent Codes
	4 Complete Closed Codes with Respect to Deletion or Insertion
	5 Complete Codes Closed Under Substitutions
	5.1 Basic Results Concerning k*(w)
	5.2 Proofs of the Statements [Asps2spscardspsSk]12, [C]13 and [cardspsSk]14
	5.3 The Consequences for -Closed Codes

	References

	Author Index

