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Abstract. Retinal imaging is a valuable tool in diagnosing many eye
diseases but offers opportunities to have a direct view to central nervous
system and its blood vessels. The accurate measurement of the charac-
teristics of retinal vessels allows not only analysis of retinal diseases but
also many systemic diseases like diabetes and other cardiovascular or
cerebrovascular diseases. This analysis benefits from precise blood ves-
sel characterization. Automatic machine learning methods are typically
trained in the supervised manner where a training set with ground truth
data is available. Due to difficulties in precise pixelwise labeling, the
question of the reliability of a trained model arises. This paper addresses
this question using Bayesian deep learning and extends recent research
on the uncertainty quantification of retinal vasculature and artery-vein
classification. It is shown that state-of-the-art results can be achieved by
using the trained model. An analysis of the predictions for cases where
the class labels are unavailable is given.

Keywords: Bayesian deep learning · Blood vessels segmentation ·
Artery-vein classification

1 Introduction

A number of eye and systemic diseases influence the vasculature of the retina
in different ways. The blood vessel characteristics in retinal images may provide
visible evidence about numerous diseases such as hypertensive retinopathy, dia-
betic retinopathy, as well as other cardio- and cerebrovascular diseases [12]. The
related characteristics include the shape and size of retinal vessels, arteriovenous
ratio and arteriovenous crossing [14]. These characteristics may be obtained by
using blood vessel segmentation masks produced by automatic machine learning
techniques [5].
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The topic of blood vessels segmentation is well studied by the community [1].
However, the artery-vein (AV) classification task remains challenging not only
for machines, but also for humans. Despite the fact that discriminative features
based on color and geometry are described, it is still difficult to distinguish
arteries from veins [14] due to imperfect imaging conditions and limited visibility
of the retinal blood vessels.

Recently, deep convolutional neural networks have become a common trend
for retinal vasculature segmentation and AV classification because of the abil-
ity to automatically learn meaningful features. Welikala et al. [16] proposed a
method based on a convolutional neural network (CNN) classifying arteries and
veins in a patch-wise manner. The authors considered the problem as a multi-
class classification task placing a softmax layer at the end of the network. The UK
Biobank database was used from which 100 images were labeled and classification
accuracy of 82.26% for arteries and veins was reported. Girard et al. [5] proposed
to use a modified U-Net [15] with likelihood score propagation in the minimum
spanning tree effectively utilizing information about the global vessel topology.
The approach was tested on the DRIVE data set [8] and it achieved 94.93% accu-
racy for the AV classification. Badawi et al. [2] proposed to train a CNN with
multiloss function consisting of pixelwise cross entropy loss and segment-level
loss to overcome training issues appearing because of inconsistent thickness of
blood vessels. The authors also created a new data set consisting of labeled sub-
sets of EPIC and MESSIDOR [3] data sets and classification accuracy of 96.5%
was reported. Hemelings et al. [7] applied the U-Net architecture for the task
of AV classification stating the problem as a multi-class classification problem
predicting labels for four classes (background, vein, artery, and unknown) with
classification accuracy of 94.42% and 94.11% for arteries and veins, respectively.
Zhang et al. [18] proposed cascade refined U-net which modifies the original
model with multi-scale loss training and includes sub-networks for simultaneous
AV and blood vessel segmentation. The authors achieved 97.27% arteriovenous
classification accuracy evaluated on the automatically detected vessels.

In this work, a multi-label classification approach is considered with the
uncertainty quantification experiments presented. Our approach is most simi-
lar to the method proposed by Zhang et al. [18] in a way how three-component
loss is used. The main difference is that in this work, classification of arteries
and veins are not conditioned on blood vessel predictions, but vessel labels are
conditioned on arteries and veins. Using the multi-label classification approach,
there is no need to separately model the AV crossings and background. To the
best of authors’ knowledge, this work is the first presenting uncertainty quantifi-
cation experiments for the of AV classification. For the experiments, the RITE
data set is utilized.
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2 Data and Methods

2.1 DRIVE and RITE Data Sets

The DRIVE database is a common benchmark for the retinal blood vessel seg-
mentation task [8]. It contains 20 train and 20 test images with two sets of
manual blood vessel segmentations. The RITE data set [9] extends DRIVE with
an AV reference standard containing four types of labels: arteries (red), veins
(blue), overlapping (green), and uncertain vessels (white). An example test image
is shown in Fig. 1.

2.2 AV Classification

Let f be a model with parameters θθθ that maps an input image x to a map of
logits with the same spatial dimensionality as the original image:

ŷ = f (x, θθθ) . (1)

Given predicted logits ŷ = [ŷartery ŷvein], probabilities of assigning labels to
arteries and veins can be calculated as follows:

partery = sigmoid (ŷartery) , (2)
pvein = sigmoid (ŷvein) . (3)

In the multi-label setup, the same pixel can be classified with both artery and
vein labels, which is meaningful in the case of AV crossings. A vessel probability
label can then be naturally inferred by a simple formula:

pvessel = partery + pvein − parterypvein. (4)

Since the data set contains the masks for both the AV classification and blood
vessel segmentation, it is possible to state the following optimization problem

θ̂θθ = arg minθθθ [Lartery (θθθ) + Lvein (θθθ) + Lvessel (θθθ)] , (5)

where L denotes the binary cross entropy loss for the corresponding labels. This
way even if the labels for arteries and veins are not given for uncertain vessel
labels, it is possible to enforce a model to predict correct labels for the blood
vessels.

2.3 Aleatoric and Epistemic Uncertainties

The approach described in the previous section gives only point estimates for the
label probabilities and the model parameters are considered to be deterministic.
In order to better capture imperfect data labeling and image noise, one can
consider the model outputs and the parameters to be random variables. The
first approach captures the heteroscedastic aleatoric uncertainty that depends
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(a) (b)

Fig. 1. The RITE data set: (a) An example test image and (b) corresponding artery-
vein reference standard. (Color figure online)

on the input data, whereas the second represents the epistemic uncertainty that
models a distribution of the learned parameters. More detailed explanations for
the uncertainties can be found in [13] and [4]. In this work, a brief explanation
for the AV classification task is given below.

Aleatoric uncertainty can be captured by modifying the original model to
predict the mean and standard deviations of logits:

[ŷ,σσσ] = f (x, θθθ) . (6)

In order to predict standard deviations, a second layer similar and parallel to
the one used for logits is added to the output of the network. In order to ensure
that the predicted standard deviations are positive, an additional absolute value
activation is added to the output of the layer. The probabilities of the labels can
then be calculated as follows:

p̂ = sigmoid (ŷ + σσσ � εεε) , εεε ∼ N (0, I) , (7)

where � stands for the Hadamard product and εεε are sampled during inference.
The main inference scheme for AV remains the same with the exception that

instead of a point estimate, the model now yields NA samples that are then used
to calculate the loss (5). The final minimized loss is just an average over the
predicted losses for each sample.

Epistemic uncertainty can be captured by considering the model parameters
to be a random variable and considering the following posterior predictive:

p (y | x,D) =
∫

p (y | x, θθθ) p (θθθ | D) dθθθ, (8)



On the Uncertainty of Retinal Artery-Vein Classification 91

where D denotes a data set of input-output pairs. Typically, the parameter’s
posterior p (θθθ | D) for complex models such as deep neural networks is intractable
and variational approximations are used. The posterior in (8) can be replaced by
a simpler distribution q (θθθ) and the training procedure can then be formulated as
the minimization of the Kullback-Leibler divergence between the true posterior
and the approximation.

In this work, the model f is parameterized as a dense fully-convolutional
network (Dense-FCN) and Monte-Carlo dropout [4] is used for the variational
approximation. The description of the utilized architecture is given below.

2.4 Architecture

The architecture utilized in this work is a Dense-FCN. It has been shown that
Dense-FCNs have less parameters and may outperform other fully-convolutional
network (FCN) architectures in a variety of different segmentation tasks [11].
Here we adapt the Dense-FCN architecture for the AV classification tasks.

The main building block of Dense-FCN is a dense convolutional block (DCB)
where the input of each layer is a concatenation of the outputs of the previous
layers. The block consists of repeating batch normalization (BN), ReLU, convo-
lution and dropout p = 0.5 layers resulting in g feature maps (growth rate).

The main concept of Dense-FCN is similar to other encoder-decoder archi-
tectures in the sense that the input is first compressed to a hidden representation
by the downsampling part, and then the segmentation masks are recovered by
an upsampling part. The downsampling part consists of DCBs and downsam-
pling transitions with skip connections to the upsampling part. The upsampling
part consists of DCBs and upsampling transitions. An example of two blocks
in downsampling and upsampling paths of a Dense-FCN is given in Fig. 2. The
architectural parameters used are given below:

– Growth rate for all DCBs: g = 16.
– Downsampling path consists of five DCBs with depths Ddown =

[4, 5, 7, 10, 12, 15].
– Upsampling also consists of five DCBs with depths Dup = [12, 10, 7, 5, 4].
– The first and last convolution layers are the same as in Fig. 2.

2.5 Image Preprocessing

It was noticed in the experimental part of the work that simple preprocessing
involving contrast enhancement and channel normalization improves the conver-
gence and performance of the trained models. First, contrast-limited adaptive
histogram equalization [19] with the clip limit of 2 and the grid size of 8 × 8 is
applied and then each image channel is normalized to values between 0 and 255.
The preprocessing scheme was used to reduce the effects of uneven illumination
fields of the channel images (Fig. 3).
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Fig. 2. Dense-FCN architecture: Dense stands for a DCB; C is a tensor concatenation;
H is a block consisting of BN, ReLU and a convolutional layer with growth rate g; Down
is a transition down block with F output feature maps; Up is a transition up with F
output feature maps and 2 × 2 stride. logits std denotes standard deviations of logits.

2.6 Training Details

The Dense-FCN was pretrained for 200 epochs with 1000 steps per epoch on
random patches 224×224 with the batch size equal to 5. Then it was fine-tuned
for 50 epochs with 500 steps per epoch on full size images with the batch size
equal to 1.

The weights were initialized using HeNormal [6]. In addition to dropout, l2
regularization with the weight decay factor 10−4 was used. As the optimizer,
Adadelta [17] with the learning rate l = 1 and the decay rate ρ = 0.95 was used
for both the pretraining and fine-tuning. The learning rate was dropped by a
factor of 10 if the training loss was not decreased by 0.005 for 10 epochs. Data
augmentation by using flipping, reflecting and rescaling (with scale rates 0.8 and
1.2) was applied in both cases. During the fine-tuning stage, the images were
randomly padded to size 608 × 608 so that the size is divisible by 32 and could
be properly compressed by the downsampling path. The parameter values were
determined empirically based on initial experiments with the RITE database.
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3 Experiments and Results

3.1 Training and Evaluation Strategies

Considering the given reference standard, the question arises of how to use the
uncertain class labels and its effect on the final training results. Possible ways
for utilizing this information are to consider these pixels to be arteries and veins
simultaneously including uncertain (IU), or to exclude them from the training
completely excluding uncertain (EU). In this work, a comparison of both training
strategies is provided. The crossing labels are considered to be veins and arteries
simultaneously. Both strategies are evaluated against the reference standard with
excluded uncertain labels, and the vessels classification metrics are given by
evaluating against the reference standard provided by the second expert.

(a) (b)

Fig. 3. Two examples of preprocessed RITE images.

Since the AV classification problem stated being multilabel, binary classi-
fication metrics were calculated for each class separately: area under receiver
operating characteristic curve (ROC-AUC), accuracy, sensitivity and specificity.

During the inference stage, the model parameters are sampled 100 times and
the number of inferred samples is NA = 50. The final posterior predictive mean
is calculated over all predicted samples, and the outputs aleatoric uncertainty
UA and epistemic uncertainty UE are calculated as in [10]:

UA = Eq

[
Vp(y | x,θθθ) [y]

]
, (9)

UE = Vq

[
Ep(y | x,θθθ) [y]

]
, (10)

where E and V denote expectation and variance, respectively.
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3.2 Experimental Results

The receiver operating characteristic (ROC) curves calculated after training with
both strategies are shown in Fig. 4. The corresponding performance metrics are
given in Tables 1 and 2. From the tables, it is clear that the AV classification
performances are high, not far from the vessel pixel classification performance.
Including uncertain labels into the training set leads to reduced classification
accuracy for arteries and veins, but it slightly improves the performance of vessel
classification. It is also clear that the Including uncertain strategy increases
classification sensitivity, since the training procedure now takes all labeled vessels
into account during the AV inference stage.

(a) (b)

Fig. 4. ROC curves for arteries (red), veins (blue) and vessels (orange): (a) Excluding
uncertain and (b) including uncertain strategies. (Color figure online)

Table 1. Evaluation results for the excluding uncertain strategy.

Label ROC-AUC Accuracy Sensitivity Specificity

Arteries 0.973 0.970 0.607 0.992

Veins 0.976 0.970 0.669 0.992

Vessels 0.980 0.960 0.749 0.989

The segmentation results for two example images from the test set are illus-
trated in Fig. 5. Comparing the results for the training strategies shows that the
network trained with the EU strategy tends to be more discriminative for arter-
ies and veins in the areas closer to the optic disc. The common issue for both
strategies is the learned bias about the thin vessels being arteries and incapacity
to capture connectivity patterns of the predicted segmentation masks inferring
vein branches to be arteries.

The aforementioned problems can also be visualized as predicted epistemic
and aleatoric uncertainties which are presented in Fig. 6 for the same images
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shown in Fig. 5. From the figure, it is clear that the epistemic uncertainty is
larger near the optic disc where blood vessels cross. Further away from the optic
disc it is concentrated mostly on the vessels’ edges with a pattern similar to the
one of the aleatoric uncertainty. Similar observations can be made from Fig. 7
where the uncertainties are compared for the two training strategies. The regions
of highest uncertainty include vessel crossings and thin vessels even in the case
correct classification.

3.3 Comparison with the State of the Art

The Table 3 shows a comparison of the proposed method with recently proposed
methods. It is troublesome to directly compare the methods, since the evaluation
methods and metrics used by different authors vary. The method proposed by
Zhang et al. [18] is clearly superior compared to all the other methods, including
the method studied in this work, but the authors use 5-fold cross-validation split,
meaning that they have at least 32 images in the training set, whereas in this
work the experiments were carried out using standard split with 20 images in the
training set. Nevertheless, the performance obtained in this work is comparable
with those recently published by Girard et al. [5] and Hemelings et al. [7].

Table 2. Evaluation results for the including uncertain strategy.

Label ROC-AUC Accuracy Sensitivity Specificity

Arteries 0.973 0.968 0.636 0.988

Veins 0.976 0.966 0.752 0.982

Vessels 0.981 0.961 0.797 0.984

Fig. 5. Visualization of inference result: from left to right, the original image, reference
standard, posterior predictive mean obtained with the excluding uncertain strategy
with the including uncertain strategy.
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Table 3. Comparison of evaluation results. The datasets are specified with splitting
methods used by authors.

Method Vessels

accuracy

Arteries

accuracy

Veins

accuracy

Dataset

Girard et al. [5] 0.948 N/A N/A CT-DRIVE

Badawi et al. [2] 0.960 N/A N/A DRIVE (standard)

Hemelings et al. [7] N/A 0.948 0.930 DRIVE (standard)

Zhang et al. [18] N/A 0.977 0.975 DRIVE (5-fold CV)

This work 0.960 0.970 0.970 DRIVE (standard)

Fig. 6. Visualization of estimated uncertainty: from left to right, targets with removed
uncertain labels and crossings, posterior predictive mean, epistemic uncertainty and
aleatoric uncertainty. The results are obtained using the excluding uncertain strategy.

Fig. 7. Visualization of estimated uncertainty: from left to right, targets with removed
uncertain labels and crossings, posterior predictive mean, epistemic uncertainty, and
aleatoric uncertainty. The results are obtained using the excluding uncertain (top row)
and including uncertain (bottom row) strategy.
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4 Conclusion

In this work, multilabel classification of arteries and veins using a Bayesian
fully-convolutional network was studied. It was shown that the misclassified
areas on the images can be visualized using uncertainty estimates. The proposed
approach is comparable with recent state-of-the-art approaches for blood vessel
segmentation and AV classification methods.

The main topics for the future research are how to reduce the epistemic
uncertainty and more careful study on the classification of uncertain labels in the
RITE database. Retinal vasculature segmentation and AV classification meth-
ods typically include preprocessing procedures that affect the data. One of the
opened questions, how different preprocessing techniques change the aleatoric
uncertainty estimates. Other possible directions include differentiable end-to-
end methods for modeling the connectivity and regularizations similar to [5]
and [2].
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