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Abstract. The human ear is full of distinctive features, and its rigid-
ness to facial expressions and ageing has made it attractive to biometric
research communities. Accurate and robust ear detection is one of the
essential steps towards biometric systems, substantially affecting the effi-
ciency of the entire identification system. Existing ear detection methods
are prone to failure in the presence of typical day-to-day circumstances,
such as partial occlusions due to hair or accessories, pose variations, and
different lighting conditions. Recently, some researchers have proposed
different state-of-the-art deep neural network architectures for ear detec-
tion in two-dimensional (2D) images. However, the ear detection directly
from three-dimensional (3D) point clouds using deep neural networks is
still an unexplored problem. In this work, we propose a deep neural net-
work architecture named EpNet for 3D ear detection, which can detect
ear directly from 3D point clouds. We also propose an automatic pipeline
to annotate ears in the profile face images of UND J2 public data set. The
experimental results on the public data show that our proposed method
can be an effective solution for 3D ear detection.

Keywords: Ear biometric · Ear detection · 3D Pointcloud · Deep
learning

1 Introduction

The ear is a magnificent organ of the human body that is generally used to
detect, transmit and transduce sound. The outer shape of human ears contains
distinguishing features that differ significantly among different subjects, even the
ear of an identical twin is different from the other [1]. Researchers have shown
that ear image analysis has numerous advantages over other biometric traits
such as fingerprints, palmprints, iris, and face [2,3]. For instance, the acquisition
technique is noninvasive, and the ear is not affected by expression variation.
Furthermore, the structure of ears remains steady for a long age duration [4,5].

An essential task for ear biometrics is to detect ears from profile images.
The 2D ear image-based techniques are regarded as the most popular for ear
region localization as it involves less computations [6]. However, these 2D image-
based techniques need to be performed in a constrained environment because
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2D images are sensitive to changes in lighting conditions and pose variations.
Furthermore, a 2D image can not differentiate between shapes and rotation
angles. Recent developments in 3D imaging techniques overcome most of the
limitations of 2D imaging [3]. Generally, a 3D scanner produces 3D data in the
format of an unordered collection of points known as a point cloud.

The basic convolutional neural network (CNN) architectures require
Euclidean structured input data formats such as multiview or 3D voxels for
sharing weights and optimizing kernels. Since point clouds or meshes are a
non-Euclidean data format, most of the work generally converts such data to
Euclidean structured data before sending it to CNN architecture. Not only does
representation conversion introduce unnecessarily voluminous data, but it also
wraps natural invariances of the data, due to generation of quantization artefacts.
To overcome this problem, we propose a deep neural architecture named EpNet,
which is the modified version of the PointNet [7]. The EpNet is implemented
directly on to 3D point clouds. An extensive review of the literature indicates
that we are the first researchers applying a deep learning-based method for ear
detection directly in 3D point clouds. The contribution of this work can be sum-
marised as follows,

– A deep neural architecture for ear detection in 3D point clouds is proposed.
– A novel pipeline for automatic ear annotation from 3D profile images is intro-

duced.

The rest of the paper is organized as follows: Sect. 2 briefly describes the
related work, Sect. 3 explains the proposed methodology, Sect. 4 discusses the
experimental results, and Sect. 5 draws the conclusion.

2 Related Work

Depending on the data type used, existing ear detection methods can be catego-
rized as 2D, 3D, and the multimodal approach (using both 3D and the coregis-
tered 2D image). An example of different data representation is shown in Fig. 1.
In this paper, we mainly focus on 3D ear detection methods and explore the
applicability of deep learning-based methods for ear detection.

Studies have been conducted for ear detection in profile image using 3D data.
One of the pioneering work is presented by Chen et al. [8]. The authors extracted
step edges from the 3D image and applied a modified iterative closest point (ICP)
algorithm to detect helix and antihelix of the ear. However, their approach is
sensitive to scale and pose variation. Zhou et al. [9] have proposed a method
named histograms of categorized shapes (HCS) which used a 3D shape model
combined with a support vector machine (SVM) classifier to detect ear from a 3D
image. However, their approach fails to detect ear when prior knowledge about
the given ear is not provided. Prakash et al. [10] introduced an edge connectivity
graph to detect ear from 3D images. Resultingly, they were unable to handle
the effect of off-plain rotation and performed poorly on the UND J2 dataset.
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Fig. 1. Different representations of a sample profile image from UND J2 data set: (a)
point cloud, (b) depth image, (c) 3D mesh, (d) 2D gray image, and (e) 2D colour image.
(Color figure online)

A binarized mean curvature map-based method was presented by Pflug et al. [11]
for detecting edges on 3D profile images. However, their algorithm failed to
detect ear in the presence of occlusion. Lei et al. [12] proposed a novel ear tree-
structured graph (ETG) method to detect ear from 3D profile images. Their
method required manual annotations in the 2D depth images.

Recently, deep convolutional neural network-based approaches have been pro-
posed for ear biometrics [13–17]. However, none of these methods used 3D images
for ear detection.

3 Proposed Ear Detection Method

Our proposed ear detection method takes 3D point clouds as the input and
outputs a set of 3D points that represents the ear location in the face image.
Firstly, the input 3D point cloud is downsampled to N number of points. Each
point has x, y, z coordinate values. The input dimension of each point is I = C
+ P , where C is the coordinate and P is the part id (here, face = 0 and ear =
1). We modify the PointNet network by eliminating some fully connected layers.
The block diagram of our proposed method is shown in Fig. 2.

Fig. 2. Flowchart of our proposed method.

3.1 Data Acquisition

In this work, we collect 3D ear data named UND J2 from the University of Notre
Dame [18]. This data set contains 1800 images from 415 different subjects with
a resolution of 640× 480. These include 681 images of 176 females and 1119
images of 239 males. All of these images were acquired using a laser scanner
known as Minolta Vivid 900. The illumination conditions and poses are different
among these images. The subjects are from different age groups with a variety of
ethnic background. Additionally, some images contain occlusions with hair and
earrings.
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3.2 Preprocessing

Our preprocessing step consists of two parts: noise removing and downsampling.
The raw profile face data of UND J2 data set contains noises that are removed
using the median filter. A smoothing filter is then applied to eliminate the white
noise.

The number of points in each image is 921,600. PointNet architecture com-
putation depends on the number of points. Correspondingly, it is an essential
step to downsample the data without losing the geometric shape of the object.
We applied three different sampling techniques, including uniform box grid, non-
uniform box grid and rand sampling technique. In this work, the non-uniform
box grid filter is selected because it shows better sampling quality compared with
the others. The sample output of different sampling technique is demonstrated
in Fig. 3.

Fig. 3. Results of different downsampling techniques. Here, the first row is the point
clouds and second row is the respective 3D mesh representation. Different techniques
are: (a) box grid filter, (b) non-uniform box grid filter, and (c) random sampling.

3.3 EpNet Architecture

PointNet [7] is the first neural network that works directly on point clouds. The
architecture of this network is simple, but it can efficiently extract discriminate
features from input points. Firstly, the input points are passed through the trans-
form network (T-net) and mapped into a feature vector. Then, a max pooling
operator is used on this feature vectors to transform a permutation invariant
global feature vector. Finally, the point feature vector and the global feature
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Fig. 4. The architecture of the proposed EpNet. T-net stands for transform network
which makes the points invariant to permutation. Here, mlp represents the multi-layer
perceptron and the number inside the mlp represents the number of layers.

vector are aggregated and mapped into an output vector using multilayer per-
ceptron (MLP) networks. The output provides the scores for each point to a part
id.

Our proposed EpNet architecture is based on PointNet part segmentation
network [7]. The part segmentation network is designed for 16 different cate-
gories, where each category consists of numerous parts. The total number of
parts for 16 categories are 50. In our ear detection problem, we have only one
category which has only two parts: face (non-ear region) and ear. For this reason,
we empirically decrease the number of MLP layers. So, our network is smaller
compared with PointNet, which allows faster learning. In this work, we train the
EpNet from scratch. The architecture of EpNet is shown in Fig. 4. The T-net
stands for transform network, which offers the point sets invariant to permu-
tation. We adopt the same transform network structure of PointNet. The final
output shows the n×m scores for each of n points and m parts. In this paper,
we apply the Adam optimizer [19] to train the EpNet.

3.4 Data Annotation

To the best of our knowledge, there is no annotated point cloud data for ear
available in profile face images. As it requires significant controlled time—which
increases the probability of operating errors related to operator visual fatigue,
or susceptibility to distractions, or confusion during the annotating process—
manual annotation is not viable for a large sample. Accordingly, we propose a
novel technique to annotate the data automatically using the Basel face model
(BFM) [20]. Firstly, we have generated 20,000 synthetic 3D faces using the BFM.
The BFM was produced from geometric deformation of 100 male and 100 female
faces. Thus, all of these generated images are different from each other. To make
a similar view as the UND J2 data set, we then rotate the face point cloud by
−90◦ and delete the hidden points from the current viewpoint using the hidden
point removal algorithm [21]. This procedure gives the left view of the synthetic
image. All the generated images from BFM are hairless. So, we add random
points to include hair occlusion in the 10,000 profile-faced point cloud. Next,
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we normalized the data to have values between 0 to 1. After normalization, we
downsampled the data using non-uniform box grid filter sampling technique.
The reason for downsampling is to reduce the computation for EpNet. Next, we
labeled ears as the region of interest (ROI) in each 3D point cloud. Here, ground
truth location of the ear region is known (because the face data is generated
from the statistical model). Finally, we split the data into two groups: training
and validation. We took 80% data for training and 20% data for validation. The
number of epoch for training the network was 100 where the initial learning rate
was 0.001, and the batch size was 12.

Algorithm 1: Fixing the over or under segmentation
Result: Annotated Ear
Calculate the difference (diff) between the initial ground truth and prediction
if diff <15% then

Increase the ymin and ymax using the mean value from correctly annotated
ear;

end
if diff >30% then

Decrease the ymin and ymax using the mean value from correctly annotated
ear;

end

We have tested all 3D images from the UND J2 data set on the trained
model. As our problem of ear detection is a binary class (points belong to non-
ear is 0 and points belong to ear is 1) segmentation problem, and the significant
portion of the points belongs to the non-ear, so initially we annotate all points
in the point cloud as a non-ear. Thus, our ground truth values are all 0. After
the testing with all images, we calculated the difference between the prediction
and the initial ground truth, where the prediction contains both 0 (non-ear)
and 1 (ear), and the initial ground truth includes only 0. In our observation, we
found that if the difference is between 15–30%, then the ear points are localized
accurately. Apart from the correct localization, we have also seen some over-
segmented (difference more than the 30%) and under-segmented (difference less
than the 15%) images. In our experiment, we found that all of the incorrect
segmentations are in y direction. To correct the under-segmentation, we increase
the ymin and ymax of the ear region with the mean values from the correctly
segmented images. The over-segmented images are fixed by decreasing the value
of ymin and ymax according to the mean values from the correctly segmented
images (see Algorithm 1). The whole pipeline of data annotation is shown in
Fig. 5.

3.5 Evaluation Metrics

In this work, we report four different standard evaluation metrics, including
accuracy, intersection over union, precision and recall for object detection. All of
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Fig. 5. Flow diagram of data annotation on the UND J2 data set.

these measurements are computed using the annotated ground truth. We use five
different terms including true positive (TP ), true negative (TN), false positive
(FP ), false negative (FN) and Total points. Here, TP represents the number
of points correctly classified as part of an ear. TN represents the number points
classified as non-ear points. FP represents the number of ear points classified
as non-ear points. FN represents the number of non-ear points classified as ear
points. Total points represents the number of points exist in a given test image.

The first measurement accuracy is calculated using the following equation,

Accuracy =
TP + TN

Total points
(1)

The accuracy measurement shows the segmentation quality. However, this result
is mostly influenced by the non-ear points that cover the majority portion of test
images. Thus, even if most points are categorized as belonging to the non-ear
class, our accuracy measurement is shown to have high values.

The next measurement, intersection over union (IoU) is computed as follows,

IoU =
TP

TP + FP + FN
(2)

The IoU shows the ratio between the number of points present in both the
detected ear areas and the ground truth, and the number of points in the union
of the detected and annotated ear areas.
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The precision and recall is calculated using the following equations,

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

The precision shows the percentage of correctly detected ear points and the
ground truth ear points. This metric indicates how many ear points are iden-
tified from the actual ear points. The recall shows the percentage of correctly
detected ear points from the predicted ear points. Detection accuracy is not
defined generally. Different studies provide different measurement for calculat-
ing the detection rate. In this work, we used the IoU for defining the detection
accuracy.

4 Results and Discussion

The input point cloud data is downsampled to 4096 points. This number is
selected experimentally to retain the least visibility of the overall shape of point
clouds. We choose 1100 data for training and 200 data for validation. For testing,
we use 500 data which are not used during the training process. The network is
trained using tensorflow where the number of the epoch is 100, and the batch
size is 12. The test result is shown in Table 1.

Table 1. The average results on the UND J2 3D data set. The standard deviation
is also given in each average results. All of these values are calculated using 500 test
images.

Accuracy (%) IoU (%) Precision (%) Recall (%)

93.09 ± 2.67 63.45 ± 11.14 75.56 ± 12.07 80.44 ± 10.30

Table 2. The average performance metrics between our method and the PED-CED
[17]. The standard deviation is also given in each average results. Although the methods
use different data set for evaluation, this comparison is to show the overall picture of
the performance metrics.

Performance metrics PED-CED [17] Point-point (Ours)

IoU (%) 48.31 ± 23.01 63.45 ± 11.14

Precision (%) 60.83 ± 25.97 75.56 ± 12.07

Recall (%) 75.86 ± 33.11 80.44 ± 10.30
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Table 3. Comparison of detection rate between our proposed method and other state-
of-the-art methods.

Authors Manual intervention Detection accuracy (%)

Chen et al. [8] No 92.6

Prakash et al. [10] No 99.38

Yan et al. [18] Yes >97.6

Zhou et al. [9] Yes 100

Pflug et al. [11] Yes 95.65

Proposed method No 100

Fig. 6. Examples of our detection results on the UND J2 data set. (Color figure online)

The accuracy value is 93.09%, which is higher than other evaluation metrics,
because both ear points, and non-ear points are contributed in the calculation.
In the test image, the significant portion of the points as 81.16% are occupied
by non-ear points while ear points occupy only 18.84% points. Accordingly, the
accuracy metrics show the number of points is correctly detected in the given
test image. However, it does not show the number of points that belong to ears
as classified accurately (Table 2).

The IoU metrics show the actual performance of the detection, which is not
affected by the points distribution of ear and non-ear classes. The false positive
and false negative values have a direct impact on IoU measurement. The mean
IoU is reported as 63.45%. This result can be improved by training with more
diverse images because the typical errors occur due to the occlusions and pose
variations. The reported precision in this work is 75.56%, which represents the
percentage of detected points from the ground truth ear points. The recall value
is 80.44%, that means 19.56% non-ear points are detected as ear points.

We also show some qualitative sample images of our test results in Fig. 6.
Here, the blue colour represents the detected ear region. The qualitative results
of the IoU values are illustrated in Fig. 7. Accordingly, the first column is the
ground truth, the second column is the predicted results, and the third column
is the difference between ground truth and prediction. The first row shows the
output of the lowest IoU as 40.53%. We can see that most of the ear region is
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Fig. 7. The qualitative evaluation of our detection results using different IoU values.
The first column is ground truth (gt), the second column is prediction (p), and the
third column is the difference between ground truth and prediction. In the first two
columns, the purple colour represents ear points, and the 3rd column red colour means
the miss-match. (Color figure online)

detected accurately, where only the miss-match observed in the outer top and
bottom area. The second row shows the output of IoU value as 62.98%. Here, the
significant portion of the ear region detected correctly, although few miss-match
is observed in the outer boundary region. The third row shows the output of the
highest IoU as 91.09%, where most of the ear region is detected accurately. In
this experiment, we have found that IoU of 40% can be used to detect the ear
region. So, we consider the detection rate is 100% if the IoU is greater than or
equal to 40%.

We also evaluate the performance between EpNet and PointNet++. The val-
idation accuracy shows only 0.64% increase in case of PointNet++. However, the
computation is higher in PointNet++, and it does not show significant improve-
ment in our experiment.

It is essential to mention that in the existing literature, there is no standard
evaluation method proposed for ear detection. Most of the work in this area
reports different criteria for detection rate. Thus, direct comparison is not sug-
gested as shown in Table 3. Here, we consider only those papers that used 3D
images for ear detection.
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5 Conclusion

In this paper, we present a method based on the deep neural network named
EpNet for ear detection. To the best of our knowledge, this is the first study which
applies the deep neural network-based approach for ear detection directly from
3D point cloud data. We have tested our trained model on the largest publicly
available profile data set named UND J2. The experimental results show the
effectiveness of our proposed EpNet for ear detection in 3D point cloud data.
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