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Abstract. Nowadays, adoption of face recognition for biometric authen-
tication systems is widespread, mainly because this is one of the most
accessible biometric characteristic. Techniques intended on deceive these
kinds of systems by using a forged biometric sample, such as a printed
paper or a recorded video of a genuine access, are known as presentation
attacks. Presentation Attack Detection is a crucial step for preventing
this kind of unauthorized accesses into restricted areas or devices. In
this paper, we propose a new method that relies on a combination of
the intrinsic properties of the image with deep neural networks to detect
presentation attack attempts. Exploring depth, salience and illumina-
tion properties, along with a Convolutional Neural Network, proposed
method produce robust and discriminant features which are then classi-
fied to detect presentation attacks attempts. In a very challenging cross-
dataset scenario, proposed method outperform state-of-the-art methods
in two of three evaluated datasets.

Keywords: Presentation attack · Spoofing attack · Transfer learning ·
CNN · Intrinsic image properties

1 Introduction

Biometrics consists in identify a given individual by its physiological traits
(e.g., face, iris or fingerprint) or behavioral patterns (e.g., keystroke dynam-
ics, gait) and it have been used on different types of devices for authentication
purpose. Attacks to biometric systems are known as presentation or spoofing
attacks. It consists in present a synthetic biometric sample, simulating biomet-
ric pattern of a valid user, to the system in order to obtain access as a legitimate
user.

To fight back presentation attacks, different literature methods have been
proposed in the last years. According to Pan et al. [10], techniques for Pre-
sentation Attack Detection (PAD) can be grouped into four major groups:
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user behavior modeling, data-driven characterization, user cooperation and
hardware-based.

Techniques based on behaviour modeling for PAD consists in models user’s
behaviors, such as head movements and eye blinking. Data-driven techniques
are based on finding artifacts in attempted attacks by exploiting data that came
from a standard acquisition sensor. User cooperation based techniques focus on
interaction between user and authentication system, such as asking the user to
execute some movements. Finally, there are techniques that use extra hardware,
such as depth sensors and infrared cameras, to obtain more information about
the scenario to finding cues that reveal an attempted attack1.

Schwartz et al. [16] presented an anti-spoofing method by exploring the use
of several visual descriptors for characterizing facial region according its color,
texture, and shape properties. To deal with the high dimensionality in final
representation vector, the authors proposed to use Partial Least Squares (PLS)
classifier, an statistical approach for dimensionality reduction and classification,
which was designed to distinguish a genuine biometric sample from a fraudulent
one.

Pinto et al. [15] proposed a data-driven method for video PAD based on
Fourier analysis in residual noise signature extracted from input videos. Use
of well-known texture feature descriptors, such as Local Binary Patterns was
also considered in the literature by Maata et al. [9], which focuses on detecting
micro-texture patterns that are added into the fake biometric samples during the
acquisition process. Approaches based on Differences of Gaussian (DoG) [12,18]
and Histogram of Oriented Gradients (HOG) [7,19] were also proposed, but at
the cost of final results is affected by illumination conditions and the capture
sensor, due to their nature.

Yeh et al. [21] proposed an effective approach against face presentation
attacks, based on perceptual image quality assessment, by adopting a Blind
Image Quality Evaluatior (BIQE) along with a Effectivate Pixel Similary Devia-
tion (EPSD), to generate new features to use on a multi-scale descriptor, showing
it’s efficacy when compared to previous works.

In this paper we introduce a new PAD technique which requires no additional
hardware components (e.g., depth sensor, infrared sensor). Different intrinsic
image properties are estimated and combined with a Convolutional Neural Net-
work (CNN) and applying a transfer learning process we are able to extract
robust and discriminative features. These features are then fed into a Extreme
Gradient Boosting (XGBoost) classifier and a classification process with two
steps is applied in order to classify samples into attack attempt or genuine sam-
ple.

Proposed method outperformed many existing literature approaches for face
PAD problem, presenting better results in two of three datasets evaluated.

The main contributions of this paper include: (1) proposition of a
new method for face PAD, which is based on a combination between

1 Since this paper focus on data-driven techniques, we focused our literature review
on this kind of methods.
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intrinsic image properties and deep neural networks; (2) evaluation
of different intrinsic properties (e.g., saliency, depth and illumination
maps) for the PAD problem, which to the best of our knowledge,
have never been evaluated in this context; (3) expressive results for
both cross and intra dataset protocol in different public datasets; (4)
effective application of transfer-learning approach in a PAD context.

2 Proposed Method

The method proposed in this paper can be divided in four main steps as depicted
on Fig. 1. First state consists on estimate intrinsic properties from images. Then,
we use a ResNet50 to extract bottleneck features which are submitted to the first
classification step by an XGBoost classifier. This step calculates probabilities for
each video frame to be, or not, part of an attack attempt. Then, these probabili-
ties are used in a final stage, which performs a meta-learning process combining
information from illumination, depth, and saliency maps, resulting in a new
artifact, referred in this paper as fusion vector. Finally, this fusion vector feed a
second XGBoost classifier responsible for the final prediction.

2.1 Intrinsic Images Properties Estimation

In order to extract intrinsic image information from video samples, for each
frame, intrinsic image properties are extracted, which generates intermediate
level image representations as depicted on Fig. 2.
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Fig. 1. Overview of the proposed method. Each video sample is split into frames and
from each frame, intrisic image properties are calculated. Then, using a ResNet50,
proposed method extracts bottleneck features, which are classified by an XGBoost
according probability to be an attack. Probabilities of different intrinsic properties are
then combined, by using a window of N frames, where N is the small number of frames
in a video of evaluated datasets, into a final feature vector which is classified according
it average probability of all frames.
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Depth Maps. Due to the fact of presentation attacks being frequently repro-
duced over a flat surface, such as a sheet of paper or a tablet, we believe that
the depth estimation from a given biometric sample can provide relevant infor-
mation about its authenticity. Our hypothesis is that when presented with a flat
surface, depth map estimated from a sample should differ from a real face.

Proposed method estimates depth maps by using Godard et al. [5] method,
which uses stereo images to train a fully convolutional deep neural network
associated with a modified loss function to estimates image depth. This trained
network is then used to estimate depth maps from a single image. As described in
Sect. 2.2, here we also take advantage of transfer learning approach, transferring
weights from the method proposed by Godard et al. to our estimator.

Godard et al. method’s learn a function f which can predict the depth from
a given pixel on a single image. Using an unsupervised learning approach, the
authors propose to reconstruct a given image from another, based on a calibrated
pair of binocular cameras, thus allowing the learning of 3D cues of the original
image. This is performed by finding depth field from the left image, and then
reconstructing the correspondent right image. By using a modified loss function
that outputs the disparity maps, which combines the smoothness, reconstruction
and left-right consistency, the method estimates depth map from a single image.

Illumination Maps. In digital forensics, illumination inconsistencies have been
frequently used to detect image forgeries [1,2]. Inspired by these works, proposed
method also take advantage of illuminant maps to encode illumination informa-
tion into PAD context. Our hypothesis is that generated illumination maps from
a real face will show differences in its reflection when compared to the generated
illumination map from a face depicted in a flat surface.

To capture illumination information, we calculate illuminant maps from each
frame using the approach proposed by Riess and Angelopoulou [14]. This method
estimates illuminant maps by using the Inverse Intensity-Chromaticity Space
where the intensity fc(x) and the chromaticity χc(x) of a color channel c ∈
{R,G,B} at position x is represented by

χc(x) = m(x)
1

∑
i∈{R,G,B} fi(x)

+ γc . (1)

In Eq. 1, γc represents the chromaticity of the illuminant in channel c, whereas
m(x) mainly captures geometric influences, i.e. light position, surface orientation
and camera position, and is approximate as described in [17].

Saliency Maps. As in depth and illumination cases, proposed method also
takes advantage of saliency information using the same hypothesis that flat
objects used in PAD will spoil quality in saliency estimation.

Saliency maps are estimated using the method proposed by Zhu et al. [24]
which have two major steps: (1) a background modeling using boundary con-
nectivity, which characterizes the spatial layout of image regions with respect to
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Fig. 2. Intrinsic image properties representation. Comparison between a presentation
attack (upper left) with a genuine user (upper right). Below each picture is presented
the generated map for depth, illumination, and saliency, respectively.

image boundaries; (2) a principled optimization framework to integrate multiple
low-level cues, including proposed background measure. The following equation
denotes the method proposed by Zhu et al. [24], to generate a saliency map from
a single image.

BndCon(R) =
|{p|p ∈ R, p ∈ Bnd}|

√|{p|p ∈ R}| (2)

where p is a given image patch and Bnd is the set of image boundary patches.

2.2 Features Extraction

Once intrinsic image properties maps are estimated, next step of proposed
method consists in extract features from each intermediate representation map.
To accomplish this task, first we perform an alignment at eye’s level on all of our
frames and their property maps, followed by a crop on the face region, avoiding
background and scene information2.

Next, proposed method takes advantage of a combination between an well
know CNN architecture and the transfer learning process [22]. We choose
ResNet50 [6], a robust and effective CNN architecture, associated with Ima-
geNet weights, to extract features from previously generated maps. Removing
top layer, ResNet50 works as a feature extractor, which provides feature vec-
tors commonly known as bottleneck features. As the final output of this step, a
2 A classifier which consider scene information could lead to undesirable features and

an unfair comparison against literature methods.
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feature vector of 2,048 dimensions will be generated, which we will be later on
referred to as the bottleneck feature vector.

2.3 Classification

Proposed method uses a two-stages classification pipeline, in which the first clas-
sifier is used for frames classification, while the latter one is used for classifying
samples (videos) itself.

Stage 1. First stage use an XGBoost [3] classifier, due to its robustness in the
task of binary classification when using multiple features. Given a bottleneck
feature vector, our classifier returns for each frame, the probability of that frame
belong to an attack video, or not. This stage results in 8 probabilities for each
frame (probability to be an attack, or not, from frame itself, probability to be
an attack, or not, from illuminant map, probability to be an attach, or not, from
depth map and probability to be an attack, or not, from salience map).

Stage 2 (Fusion). Given an input video VP , which already have intrinsic prop-
erties estimated, composed by n frames fP

1 , fP
2 , · · · , fP

n , and where P denotes
the intrinsic property extracted from the video (P ∈ {D, I, S}). In previous
stage, we estimated probability for each frame belonging to a class or another,
denoted by fP

i .
Using a fusion-based approach, we combine information from all intrinsic

image properties in a way to use all these information together, resulting in a
Probability Feature Vector (PFV ) defined by

PFV = {pD, pI , pS} (3)

where pP is given by

pP = fP
1 , fP

2 , · · · , fP
m P ∈ {D, I, S} (4)

where m is given by the number of frames into the video with small number of
frames in dataset, D, I and S represents depth, illumination and salience maps,
respectively.

Finally, PFV vectors are classified using a second XGBoost classifier.

3 Experiments and Results

To evaluate proposed method, different rounds of experiments were performed
using three public anti-spoofing datasets, containing samples from genuine
accesses and presentation attacks. The adoption of protocols focused in intra-
dataset evaluation, where one dataset is tested within the same scenario was per-
formed by following the protocols suggested by datasets’ creators. Evaluation of
different datasets scenarios, commonly known as inter-dataset or cross-dataset,
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was also conducted, to assess the performance of proposed method in unknown
scenarios. This latter one is the most challenging in the literature, due to the
differences in capture conditions that one dataset shows from another one.

Furthermore, it is also paramount to realize that, since we are interested
in evaluate the efficiency of each intrinsic property individually, final results
reported for depth, illumination, and saliency reflects a majority vote process
among all the frames classified on Stage 1.

3.1 Datasets, Metrics, and Setup

To address the efficiency of the proposed method, three publicly available anti-
spoofing datasets were selected. The criteria for selection of these datasets among
many others available was due to their major adoption in previous works that
tackle PAD.

Replay-Attack [4]. Consisting of 1300 video clips from both photo and video
attacks from 50 subjects, the Replay-Attack (RA) dataset shows itself as a reli-
able dataset for the evaluation of the hereby proposed method, once it is pre-
sented with different lighting and environmental conditions. In this dataset, three
different types of attack are provided: print attacks, mobile attacks, and video
attacks. It is separated into three subsets: training set (containing 360 videos);
development set (containing 360 videos); testing set (containing 480 videos); and
enrollment set (containing 100 videos);

CASIA-FASD [23]. The CASIA-FASD dataset contains a total amount of 600
videos from 50 different subjects, created to provide samples from many of the
existent types of presentation attacks. The videos are presented in twelve dif-
ferent scenarios, where each of them is composed by three genuine accesses and
three attacks from the same person. Three different resolutions were used to cap-
ture (low, normal and high), along with three different types of attack (normal,
printed attacks, printed and warped, printed with cut on the eyes region and
video-based attacks).

NUAA Photograph Imposter Dataset [18]. The NUAA Photograph
Imposter Dataset is composed of 15 subjects, comprising a total of 5,105 valid
access images and 7,509 presentation attacks collected through a generic web-
cam at 20 fps with a resolution of 640 × 480 pixels. The subjects were captured
over three sections in different places and lighting conditions. The production of
the attack samples was made by shooting a high-resolution photograph with a
Canon digital camera.

Metrics. To allow the comparison of the results obtained in this work, we
adopt the Half Total Error Rate (HTER), which is measured by the mean
value between the False Acceptance Rate (FAR), denoted by the rate of attack
attempts misclassified as authentic, and the False Rejection Rate (FRR), which
is denoted by the rate of authentic samples misclassified as attack. The HTER
is measured by
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HTER =
FAR + FRR

2
(5)

where FAR is the False Acceptance Rate and FRR is the False Rejection Rate.

Experimental Setup. For illumination maps and its segmentation, parameters
are the same as the presented in the work of Carvalho et al. [2]. For the depth
and saliency maps, proposed method uses default parameters as suggested by
Godard et al. [5] and Zhu et al. [24], respectively.

For Stage 1 and Stage 2, classification steps, proposed method uses XGBoost
with a gamma of 0, a max depth of 6, gbtree as booster and a learning rate of
0.3.

Experiments have been conducted by using Python programming language
(version 3.6), along with the Keras3 (version 2.2) and TensorFlow4 (version 1.8).

3.2 Intra-dataset Evaluation

In intra-dataset evaluation evaluation protocol, we apply the same protocols
proposed by each databases’ authors, and use HTER metric to measure perfor-
mance.

As displayed in Table 1, the usage of the fusion outperformed single properties
results in Replay Attack, with an HTER value of 3.75%. For CASIA dataset,
best results have been achieved using fusion, yielding an HTER result of 9.63%.
Finally, results in NUAA dataset using depth maps outperformed all the other
features, yielding an HTER of 18.31%.

Table 1. Results (in %) considering the Intra-Dataset protocol for the RA, CASIA
and NUAA datasets.

Method RA HTER CASIA HTER NUAA HTER

Raw 6.00 15.74 26.35

Depth 30.25 44.44 18.31

Illumination 16.12 16.11 43.65

Saliency 18.37 29.25 31.24

Fusion 3.75 9.63 26.34

These results present the importance of individual features and increase our
hypothesis that different intrinsic properties can be used together to detect
attacks. In special, depth maps depicted special representation value in attack
detection process.
3 https://keras.io.
4 https://www.tensorflow.org.

https://keras.io
https://www.tensorflow.org
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3.3 Cross-Dataset Evaluation

Building a method that is highly adaptable from one face anti-spoofing database
to another unknown one has been posed as a major challenge in previous works,
and it’s an essential ability for real-world applications that rely on face recogni-
tion for authentication.

This experiment presents results for the cross-dataset (inter-dataset) evalu-
ation protocol, when one dataset have been used for training while a different
one have been used for testing. Table 2 present results when testing method over
RA, CASIA and NUAA datasets, respectively.

Table 2. Results (in %) considering the Cross-Dataset Protocol using as test dataset
RA (left), CASIA (middle), and NUAA (right).

Train/Test Set Method HTER

NUAA/RA

Raw 57.14
Depth 49.00

Illumination 56.28
Saliency 62.92
Fusion 58.64

CASIA/RA

Raw 51.57
Depth 55.71

Illumination 45.21
Saliency 48.42
Fusion 46.71

Train/Test Set Method HTER

NUAA/CASIA

Raw 38.33
Depth 44.81

Illumination 54.07
Saliency 48.33
Fusion 35.37

RA/CASIA

Raw 55.55
Depth 51.11

Illumination 50.92
Saliency 50.74
Fusion 59.44

Train/Test Set Method HTER

CASIA/NUAA

Raw 38.13
Depth 34.11

Illumination 50.22
Saliency 48.37
Fusion 35.67

RA/NUAA

Raw 51.67
Depth 60.35

Illumination 52.21
Saliency 58.18
Fusion 51.88

From presented tables is not difficult to realize that different intrinsic help
in different ways for cross-dataset scenario. This fact expose that different kinds
of intrinsic properties collaborate differently for each scenario but always aggre-
gating some important information.

Again, better HTERs are achieved when using Depth (training on CASIA
dataset and testing on NUAA dataset) and Fusion approaches (training on
NUAA dataset and testing on CASIA).

3.4 Comparison with State-of-the-art

Since cross-dataset represents more challenging scenario, this experiment com-
pares achieved results against some state of the art methods. Table 3 summa-
rize best results (HTER) obtained for proposed method compared against some
state-of-the-art methods.

When compared against state-of-the-art methods, proposed method out-
performed literature in two of three datasets for cross-dataset protocol. Test-
ing on NUAA dataset, proposed method achieved an HTER value of 34.11%
when trained on the CASIA dataset, outperforming results obtained in pre-
vious works [12,18]. For the CASIA dataset, the best results were attained
with the usage of the features fusion, with an HTER of 35.37% when trained
on NUAA dataset. The best results for the RA dataset were achieved by the
usage of the illumination maps, with an HTER of 45.21%, but outperformed by
Yang et al. [20].
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Table 3. Comparison among existing approaches for cross-dataset evaluation protocol.

Method CASIA RA NUAA

Yeh et al. [21] 39.00 38.10 –

Pinto et al. [13] 47.16 49.72 –

Yang et al. [20] 42.04 41.36 –

Patel et al. [11] – 31.60 –

Tan et al. [18] – – 45.85

Peixoto et al. [12] – – 49.85

Raw image 38.33 51.57 38.13

Depth 44.81 49.00 34.11

Illumination 50.92 45.21 50.22

Saliency 48.33 48.42 48.37

Fusion 35.37 46.71 35.67

(a) Raw (b) Illumination (c) Saliency

(d) Depth (e) Fusion

Fig. 3. t-SNE features extracted from Replay Attack dataset. Each figure depicts fea-
tures for an specific intrinsic properties, where blue points represents genuine access
samples and red points represent attack samples. Each intrinsic property perform a
different degree of separability between samples. Fusion of all of the intrinsic features
perform a considerably separability between classes. (Color figure online)
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3.5 Intrinsic Properties and Features Analysis

Last experiment performed on proposed method focus on show how each one
of intrinsic properties contribute to improve classes separability. This analysis
is performed using T-distributed Stochastic Neighbor Embedding (tSNE) [8],
which project into a 2D feature space bottleneck features (originally with 2048
dimensions) extracted from each intrinsic property map. Figure 3 depicts feature
vectors extracted from Replay Attack dataset. Each figure depicts features for
an specific intrinsic properties, where blue points represents genuine access sam-
ples and red points represent attack samples. Each intrinsic property perform
a different degree of separability between samples. Fusion of all of the intrinsic
features perform a considerably separability between classes.

4 Conclusions and Research Directions

In this paper, we have proposed a new method that, by using a two-step classifi-
cation model, along with intrinsic image properties, such as depth, illumination,
and saliency, learn representative features for the task of presentation attack
detection. Evaluating the hereby proposed method in three different databases,
we reach results outperforming previous works for PAD problem. Findings pro-
vided by this paper, such as the efficacy of using image intrinsic properties,
can lead to a better understanding on the study and development of new anti-
spoofing methods, as well as to provide better insights for development of new
datasets. Our results also confirm our hypothesis that by adopting transfer learn-
ing techniques along intrinsic image properties, are capable to detect attempts
of presentation attacks.

For future works, we intend to investigate other types of intrinsic properties,
to better understand the features that may help in the task of distinguishing
between an authentic facial biometric sample and a fraudulent one. We also
believe that by performing a finetuning step, we could achieve even better results,
once that the results attained in this work were achieved by adopting the weights
of a pretrained network on data that does not share many similarities with the
problem of PAD.

Acknowledgments. We would like to thank São Paulo Research Foundation
(FAPESP) (#2017/12631-6), to the National Council for Scientific and Technologi-
cal Development - CNPq (#423797/2016-6), and to NVIDIA for the donation of a
TITAN XP GPU to be used on this research.

References

1. Carvalho, T., Faria, F.A., Pedrini, H., da Silva Torres, R., Rocha, A.: Illuminant-
based transformed spaces for image forensics. IEEE Trans. Inf. Forensics Secur.
11(4), 720–733 (2016). https://doi.org/10.1109/TIFS.2015.2506548

https://doi.org/10.1109/TIFS.2015.2506548


164 R. Bresan et al.

2. de Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H., de Rezende Rocha, A.:
Exposing digital image forgeries by illumination color classification. IEEE Trans.
Inf. Forensics Secur. 8(7), 1182–1194 (2013). https://doi.org/10.1109/TIFS.2013.
2265677

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

4. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in
face anti-spoofing. In: 2012 BIOSIG - Proceedings of the International Conference
of Biometrics Special Interest Group (BIOSIG), pp. 1–7, September 2012

5. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estima-
tion with left-right consistency. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6602–6611, July 2017. https://doi.org/10.1109/
CVPR.2017.699

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

7. Komulainen, J., Hadid, A., Pietikinen, M.: Context based face anti-spoofing. In:
2013 IEEE Sixth International Conference on Biometrics: Theory, Applications
and Systems (BTAS), pp. 1–8, September 2013. https://doi.org/10.1109/BTAS.
2013.6712690

8. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

9. Maatta, J., Hadid, A., Pietikinen, M.: Face spoofing detection from single images
using micro-texture analysis. In: 2011 International Joint Conference on Biometrics
(IJCB), pp. 1–7, October 2011. https://doi.org/10.1109/IJCB.2011.6117510

10. Pan, G., Wu, Z., Sun, L.: Liveness detection for face recognition. In: Delac, K.,
Grgic, M., Bartlett, M.S. (eds.) Recent Advances in Face Recognition, chap. 9, pp.
235–252. IntechOpen, Rijeka (2008). https://doi.org/10.5772/6397

11. Patel, K., Han, H., Jain, A.K.: Cross-database face antispoofing with robust feature
representation. In: You, Z., et al. (eds.) CCBR 2016. LNCS, vol. 9967, pp. 611–619.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46654-5 67

12. Peixoto, B., Michelassi, C., Rocha, A.: Face liveness detection under bad illumina-
tion conditions. In: 2011 18th IEEE International Conference on Image Processing,
pp. 3557–3560, September 2011. https://doi.org/10.1109/ICIP.2011.6116484

13. Pinto, A., et al.: Counteracting presentation attacks in face, fingerprint, and iris
recognition. In: Deep Learning in Biometrics, p. 245 (2018)

14. Riess, C., Angelopoulou, E.: Scene illumination as an indicator of image manipu-
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