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1 Introduction

The use of crystal plasticity (CP) to model grain-scale mechanical behavior of
metallic microstructures has become widely used, especially in the finite element
context. A major motivation has been observations made during experiment regard-
ing the microstructure dependence of crack initiation on microstructural features
and the general understanding that microstructure variation underpins variability
observed at larger length scales. CP models aid in the fundamental understanding
of those observations through their capability to model the effect of microscale
heterogeneity by capturing the orientation-dependent behavior of each grain in
a polycrystalline material. The aggregate effect of each grain, assembled in a
polycrystal model, can then be analyzed upon CP model implementation within
numerical methods for the solution of differential equations with complex geometry
and imposed boundary conditions, e.g., finite element or fast Fourier transform
methods.
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Recently, the importance of CP-based models for engineering applications has
been highlighted, especially in aerospace applications where increased demands on
efficiency and speed are driving increased complexity in structural configuration
and reductions in thickness for fracture-critical components [31, 36]. While this
change in paradigm is exciting and is enabling a new era in aerospace vehicles,
it also defines specific challenges for researchers. A major challenge currently
is that traditional standard practice models for material constitutive behavior and
crack growth rates become invalidated for these next-generation applications. For
example, the application of traditional fracture mechanics approaches does not
apply when crack growth is in the microstructurally small regime throughout life
with only several grains through thickness.

At the center of these engineering challenges is CP-based modeling for grain-
scale constitutive and cracking behavior. An ultimate goal of the Integrated Compu-
tational Materials Engineering community is to provide physics-based models for
materials, enabled through multiscale modeling of fundamental material behavior,
propagated to a continuum representation of a material. However, until CP model
parameters can be provided without a need for any experimental measurements,
calibration will play a fundamental role in the application of CP models for
engineering applications.

Simply put, parameter calibration is an inverse problem that aims to determine
a set of material model parameters that minimize some measure of error between
a model, which is a function of the parameters, and measured data. The field of
applying inverse problem methodologies for the calibration of material parameters is
broad. Many of the approaches to date are based on the same variational and virtual
work principles upon which the fundamental principles of continuum solid mechan-
ics are based, such as the reciprocity gap or error in constitutive equations methods.
For an overview of the more general area of inverse problem methodologies applied
to material parameter calibration, see [3]. For understanding the work in this chapter,
it is important to identify the additional complexities imposed by working with CP
models specifically. As the material model becomes more complex or requires more
parameters, which is characteristic of CP models, the computational demand of
calibration increases. Additionally, more data is required in such cases to mitigate
issues of uniqueness. This notion becomes especially important upon consideration
of the need to identify distributions of material parameters, where it is expected that
the parameters are not single deterministic values.

The current literature, pertaining to discussion in this chapter, typically involves
a hybrid approach to CP model parameter calibration, in which local strains from
digital image correlation (DIC) and global (homogenized) stresses from testing are
combined to form a cost function. An interesting approach to calibration using
such data is the integrated DIC (IDIC) method. Early work of Leclerc et al. [24]
formulated a two-stage process, whereby the correlation and parameter identifica-
tion optimization was solved simultaneously. While the formulation is general, that
work studied identification of elastic material parameters and presented a study of
the effect of signal-to-noise ratio on the calibrated parameters. That initial work
was later extended to the calibration of elastic-plastic material model parameters,
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with comparison to the commonly used finite element model updating (FEMU)
method [26]. Local DIC strain data was also used to calibrate spatial variations
of yield stress within a weld nugget and heat-affected zone using uniform stress
and virtual fields methods [39]. Recently, Rokoš et al. [32] addressed the known
issue of boundary condition sensitivity within the IDIC method, by formulating a
procedure to combine material parameters with kinematic boundary conditions as
degrees of freedom at the model boundary. For an in-depth description of parameter
identification methods using local DIC strain and global stress data, see [1].

The application of parameter identification methods to CP models is relatively
limited. Early work of Hoc et al. [17] studied the calibration of CP parameters for
an ARMCO oligocrystal specimen using deterministic optimization. In that work,
the local DIC strain field was homogenized to produce a statistical distribution of
their component values. Additionally, global stress values were measured during
experiment. A cost function was formed by a weighted sum of both sets of data:
summing the differences between the measured and computed strain distributions,
at eight sampling points, and the measured and computed global stresses. More
recently, local DIC strain and global stress data have been used to calibrate CP
parameters from in situ tensile tests. By comparing two different CP models with
experimental data at various length scales (global stress-strain curve and strain map
from DIC), Sangid et al. [37] showed that although the two CP models agreed with
each other and the experimental data with regard to the global stress-strain behavior,
their local agreement was relatively poor at the spatial length scale of the slip
system. Guery et al. [15] used FEMU to calibrate CP parameters for AISI 316LN
steel using 2D simulations of microstructures with varying grain size. Grain size-
dependent CP parameters were calibrated and illustrated the ability to reproduce the
expected Hall-Petch behavior. Bertin et al. [2] also studied CP parameter calibration,
using the IDIC method. In comparison with the study previously mentioned, the
work of Bertin et al. was on a smaller scale, focused on the deformation of a bicrystal
tensile sample fabricated using a focused ion beam (FIB).

The use of CP models within the finite element framework has largely focused
on the propagation of uncertainty via representative volume elements (RVEs),
formed by statistical instantiations of microstructure morphology. In these studies,
the CP model parameters are, however, deterministic, and their variations are
not considered in the ultimate prediction of variation in mechanical behavior.
This is likely due to two fundamental difficulties. First, there are currently no
proven methods for the non-deterministic identification of CP model parameters,
and preliminary developments are required. Second, the inclusion of CP model
parameter uncertainties adds to an already computationally intensive problem, when
considering variations in microstructure morphology. A goal of this chapter is to
illustrate that there are now methods available for the non-deterministic calibration
of CP model parameters and that those parameters can be considered in the forward
propagation from microscale uncertainties to predicted variation in component scale
mechanical behavior.
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This chapter first covers the common methods for acquiring and processing
experimental data, when calibrating CP model parameters. The methods are orga-
nized into global and local approaches. Subsequently, a brief introduction to CP
is given, mainly to provide sufficient understanding of the CP parameters to be
calibrated and how they are involved in the model. Common numerical methods
for CP model parameter calibration are then discussed in context of the global
and local data that can be acquired and processed. The fundamental concepts
of uncertainty quantification, with focus on the context of CP model parameter
calibration, are then provided. Lastly, each of the discussed methods for calibration
is evaluated on a simulated experiment with known CP parameters. This provides a
clear quantification of the practical issues of uniqueness of the identified parameters.

2 Acquiring and Processing Experiment Data

The experimental measurements that must be made and post-processing methods
to prepare the acquired data are overviewed here. There are two general categories,
global and local, by which the acquiring and processing methods can be binned.
The fundamental definitions for each of these types of acquired data are given
here because they are important for understanding of the subsequently described
calibration methods.

2.1 Global Data

Global data here is defined by any measurement or post-processing method that
quantifies the bulk behavior of a mechanical test coupon. An example of a directly
measured global data set would be the applied or reaction force provided by a load
cell during testing. Similarly, this data could then be post-processed to produce
either the engineering or true stress by considering the initial or current cross-section
area, respectively. While displacements can similarly be obtained from the stroke of
the test stand during testing, typically a displacement or strain gauge is attached to
the test coupon for this data. Using gauges in this way means that any test-stand
compliance is inherently filtered out of the displacement or strain data. Because
these gauges homogenize underlying coupon deformation over their length, they
are also considered global data.

2.2 Local Data

Local data here is defined as any measurement or post-processing method that
extracts data as a field across the coupon surface or volume. An example of a directly
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Fig. 1 Digital image correlation example

measured local data set would be displacements or strain obtained through the use
of DIC, which is explained in Sect. 2.2.1. The full-field data could also be used
to produce global data by extracting displacements or strains from virtual strain
gauges, which extract averaged values over their length during post-processing of
the DIC data. In the context of deformation of polycrystalline materials, local DIC
data can be used to quantify deformations within each grain in the polycrystalline
aggregate. This approach requires that the underlying microstructural features be
aligned with the DIC data. The underlying microstructure morphology can be mea-
sured using electron backscatter diffraction (EBSD), which provides quantification
of the surface grain shapes and their orientations. Additionally, high-resolution
EBSD (HREBSD) can be used to compute the elastic deformation gradient locally
on the surface of a specimen. An overview of EBSD and HREBSD is provided in
Sect. 2.2.2.

2.2.1 Digital Image Correlation

DIC is a metrological tool used for quantifying motion/deformation that occurs
between a reference image f (x, y) and a deformed image g(x′, y′) (see Fig. 1).
By maximizing the correlation of features within f and g, a mapping can be
found between (x, y) and (x′y′). Ultimately, that mapping comes in the form
of a displacement field (usually a spatial array of displacements) [28, 40]. The
displacements can be further processed to give estimates of local strains. A
limitation in the above-described two-dimensional DIC is that displacements can
only be measured in the plane of the image, i.e., displacements and strains with
components in the Z-direction are not identified. Stereo-DIC is able to identify out-
of-plane motion with the use of a two-camera setup. However, because images can
only be taken of the surface of a specimen, strains with respect to the through-
thickness dimension, i.e., into the specimen, are still not identified.
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A fundamental aspect of DIC is that the specimen surface must contain sufficient
features such that obtained images can be used to perform the correlation. While
there are examples of using natural surface variation for DIC in the literature, cf.
[19, 46], it is more common that a pattern must be applied to the specimen to make
up for sparse natural features. The applied surface pattern plays a large role in DIC,
namely, it affects the possible spatial resolution and accuracy of the measurements.
There are several patterning options available for measurements of deformations at
the grain scale, e.g., microstamping, lithography, and nanoparticle placement. For
a full review of available techniques, the reader is referred to the recent review
article of Dong and Pan [10]. Most importantly, the pattern needs to be visible
to the image capturing device; optical cameras and scanning electron microscopes
(SEM) are the two most common means of image capture for appropriately scaled
DIC of polycrystalline metals. Furthermore, those methods require different pattern
characteristics, e.g., pattern features must be opaque to electrons for optimal image
contrast in SEM and opaque to visible light with optical cameras.

2.2.2 High-Resolution EBSD

EBSD is a well-established scanning electron microscope-based diffraction tech-
nique that may be used to determine local crystallographic orientation on a specimen
surface. With respect to modeling, it may be used to determine the grain structure
of a specific specimen [47] or to acquire statistical data about grain texture and
morphology for a given material [8, 45]. HREBSD is a means of extracting the
elastic deformation gradient of one diffraction pattern compared to another via
cross-correlation [44]. This deformation gradient, F, is related to a feature shift
between the patterns measured by cross-correlation, q, as follows:

q = F(x − PC)
−PC · ẑ

F(x − PC) · ẑ
− x + PC, (1)

where x is the location of the feature on the reference pattern, PC is the location of
origin of the diffraction pattern relative to the detector (also known as the pattern
center), and ẑ is a unit vector normal to the detector surface. If shifts are measured
from four or more non-collinear points, eight of the nine components of F may
be calculated via least squares. The missing degree of freedom is approximately
the relative dilatory strain (it may not be recovered as a consequence of projecting
the diffraction pattern onto a 2D detector) and is recovered by assuming zero
traction or by determining only the deviatoric component of the strain. Note that
HREBSD recovers the relative deformation gradient between two patterns. In order
to determine the absolute deformation gradient of a material, it is necessary to
simulate a strain-free reference pattern of known orientation [18, 20]. This method
is more sensitive to error in PC and requires careful calibration [5]. Once recovered,
the local elastic deformation gradient may be used to determine a number of useful
variables concerning the local material state, including elastic strain, orientation



Non-deterministic Calibration 171

(much more accurately than conventional EBSD), and stress via Hooke’s law (if
the elastic parameters of the material are well-known). By looking at the curl of the
deformation gradient, HREBSD measurements may even be used to calculate Nye’s
tensor, a continuum representation of geometrically necessary dislocation density
[34].

2.2.3 Combining DIC and HREBSD

Recently, a new measurement method has been developed which allows for the
simultaneous acquisition of DIC and HREBSD on a specimen surface. The inte-
gration of these two, previously mutually exclusive, experimental methods is made
possible by the application of an amorphous DIC-pattern material, such as urethane
rubber [35], that provides good contrast for DIC in a SEM at low acceleration
voltage (at about 5 keV) using secondary electron imaging, but has negligible
interference with the primary electrons that form diffraction patterns at high-
accelerating voltage (20 keV). An example of this stamp, imaged in two different
modes, is shown in Fig. 2. This combination of methods enables decomposition
of deformation within the same surface domain during loading. In other words,
DIC can be used to quantify the total deformation, while HREBSD can be used
to quantify the elastic part of that total deformation, allowing for a decomposition
of the elastic and plastic parts. Note that the current feature size of the stamp
is approximately 1 micron and the spatial resolution of the patterning technique
is expected to improve with further development. The implications of this new
measurement method on calibration methods are provided in Sect. 6.3.

3 Crystal Plasticity

As motivated in Sect. 1 of this chapter, CP models are becoming increasingly used
when microstructure dependence in engineering use cases is observed. There are at
least two driving factors for that increased adoption. First, CP models are reaching
maturity where even complex micromechanism multiphysics simulations can be
completed in a reasonable amount of time and with well-supported computational
toolsets. Second, in many engineering applications, component size reduction
is common. Examples of such applications are microelectromechanical systems,
electronic devices, and thinning of structural components in aerospace vehicle
components. Furthermore, material processing of Ni- and Al-based metals in
aerospace applications, e.g., turbine blades and pressure vessels, can result in grain
growth resulting in grain sizes approaching the structural scale. In these cases, and
others like them, the micromechanics plays a governing role in the behavior, size
effect, and variability in component performance and reliability and, hence, must be
considered during design and certification.
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Fig. 2 Images on of a
urethane residual layer stamp
applied to an aluminum
oligocrystal sample imaged at
5 keV using secondary
electron imaging (a) and at
20 keV using backscattered
electrons (b)

While the general area of CP modeling and their applications is large, a focus
here is given to phenomenological models. Such models are characterized by the
consideration of the shear stress resolved on each crystallographic slip system,
τα , and its current strength, gα , that causes plastic slip, γ α , to occur. Similarly,
the discussion is limited to CP models that represent a single phase with lattice
dislocations as the sole deformation mechanism. The objective of this section
is to provide sufficient background for CP modeling such that the subsequent
discussion of non-deterministic calibration of CP parameters can be understood.
For an encompassing review of CP modeling, see [33].



Non-deterministic Calibration 173

3.1 Concepts

For the remainder of this chapter, consideration is given to CP as a model for the
homogenization of the underlying motion of dislocations on each slip system. As
such, the primary parts of a CP model are the kinematics of slip and a constitutive
model relating the external forces to slip rates through resolved shear stress. The
mathematical model of the kinematics of finite deformation relates the original
reference configuration of a continuum to a current configuration that is obtained
through the application of external loads and displacements. The total deformation
gradient, F , relates the reference and current configurations directly.

The decomposition of F into its elastic and plastic parts can be thought of
as a multiplicative transformation, Eq. 3. Therein, Fe represents the reversible
component of deformation, while Fp represents the deformation that remains upon
removal of the external forces and displacements. If irreversible deformation is
present, an intermediate configuration is obtained upon removal of external forces
and displacements. This intermediate configuration is related to the reference
configuration by Fp. Furthermore, the lattice orientation remains unchanged in the
intermediate configuration, resulting in a stress-free configuration. Effectively, this
relies on an assumption that any dislocations formed must be passed beyond its local
neighborhood. The intermediate and current configurations are related by Fe, where
lattice distortions lead to material stresses. This concept that the stress is induced
by the elastic portion of the deformation is fundamental both to the development
of the following constitutive equations and to the calibration method presented in
Sect. 4.4.

F = FeFp. (2)

However, this decomposition does not yet have information regarding the
underlying crystallography essential for CP modeling. To capture crystallographic
kinematics, the plastic velocity gradient, Lp, is defined as a tensor that transforms
the plastic deformation gradient, Fp, to its time rate of change:

Ḟp = LpFp. (3)

Since the consideration here is limited to dislocation slip as the only plastic
deformation process, Lp is formulated as the sum of rates of slip on each system,
γ̇ α , along with the slip direction for each system, mα , and its corresponding plane
normal, nα:

Lp =
n∑

α=1

γ̇ αmα ⊗ nα. (4)

It is with this definition that the crystallographic kinematics are modeled.
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The constitutive models in CP relate Fe to the resolved shear stress on each
system, τα , through the elastic stiffness tensor, C, using second Piola-Kirchhoff
stress and Green elastic strain:

τα = 0.5C[FT
e Fe − I ] : mα ⊗ nα, (5)

where T denotes the transpose. With τα computed, the rate of slip on each system,
γ̇ α , is computed herein as:

γ̇ α = γ̇o

τα

gα

∣∣∣∣
τα

gα

∣∣∣∣

1
m

−1

. (6)

And, lastly, the evolution of hardening on each system, ġα , is integrated as a function
of the current hardness, gα; the saturation hardness, gs ; and the initial hardness, go.

ġα = Go

(
gs − gα

gs − go

) ∣∣γ̇ tot
∣∣ . (7)

In Eq. 7, γ̇ tot refers to the total slip rate across all the slip systems and can be
represented mathematically per Eq. 8:

γ̇ tot =
NSS∑

α=1

γ̇ α, (8)

where NSS refers to the number of slip systems, which is 12 for an FCC system.
Since Eq. 7 incorporates the total accumulated slip rate, the hardening on each
system is equivalent.

Further, the saturation hardness term, gs , in Eq. 7 can be expressed as:

gs = gso

∣∣∣∣
γ̇ tot

γ̇s

∣∣∣∣
ω

, (9)

where gso, γ̇s , and ω are three input parameters for the reference saturation hardness,
the reference saturation slip rate, and the saturation rate exponent, respectively.

For the purpose of simplicity and tractability of both global-local and local
calibration studies, the saturation hardness, gs , can further be expressed as:

gs = (go + g∗
s )

∣∣γ̇ tot
∣∣ω, (10)

where g∗
s is a normalized reference saturation hardness. Although g∗

s is a function
of both gso and γ̇s , for the purpose of calibration studies, it is expressed as
an independent variable. Additionally, parameters γ̇o and ω are treated as “fixed
parameters” – not included as calibration parameters – as their respective influence
on slip rates and hardening of each slip system can be emulated by parameters m and
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g∗
s , respectively. Therefore, the set of calibration parameters involved in the current

work include go, m, Go, and g∗
s .

The CP model presented in this section is used throughout the remainder of the
chapter. First, the model is used to represent a collection of grains, Sect. 4.2, within
a Taylor model where the grains deform independently. Subsequently, in Sects. 4.3
and 4.4, these equations are implemented within a finite element framework for
higher-fidelity modeling of the interaction among grains in a polycrystal. This
aggregation of the deformation of multiple grains with varying crystallographic
orientations leads to an anisotropic behavior with heterogeneous stress and strain
fields throughout the continuum. As discussed in the subsequent sections, these
heterogeneities are important aspects of the calibration process.

Finally, model selection is an important preliminary step to calibrating parame-
ters. In other words, no calibration process can function adequately if an inaccurate
or invalid model is selected. Consequently, care should be taken in identifying an
appropriate model, before the calibration process is considered. In this chapter,
simulated experiments are completed to serve as a surrogate for physical test data.
As such, the model selection is inherently prescribed, which allows for a focus on
issues regarding non-deterministic calibration (and not model selection).

4 Calibration

In this section, an overview of the general methods for CP material model calibration
is provided in the context of local and global, measured and computed, data.
Subsequently, in Sect. 6, issues of uniqueness and precision are illustrated through
application of several calibration methods, using a simulated experiment.

4.1 General Process

The core of model calibration is the inference of model parameters, θ , adjusted to
match some set of measured data. The inference is centered on the comparison of
the predicted model response and measured response, where the model is subjected
to some measured loading (see the flowchart in Fig. 3). To put this in context of the
uncertainty quantification framework, which is described in Sect. 5, the comparison
is used in the calculation of the likelihood of a set of calibration parameters.

The measurements, model, and comparison parts of the process are where
customization for a particular calibration method are made. The experimental
measurements, which provide loading and geometry input to the model, can be
global, local, or a combination. Similarly, the model itself can be global, local, or
a combination in its scale. The comparison of the model and measured response
can be either deterministic or non-deterministic in its formulation. In this section,
a discussion of available experimental measurement and modeling approaches are
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Fig. 3 Model calibration flowchart

discussed in the context of global and local variations. Subsequently, in Sect. 5, a
method for non-deterministic comparison is presented.

Model choice plays an important role in the ability to generate accurate and
precise calibrations. The inability of a model to fit a given data set during calibration
suggests that the model is missing necessary physics and will exhibit poor predictive
performance. This is known as model discrepancy and is discussed in detail in [22].
It is the responsibility of the analyst to check for model discrepancy as part of the
calibration process.

In the context of CP calibration, three general categories of models can be used.
The categories are differentiated by the types of data that are used for both the input
loading and output response. Global and local calibration methods are differentiated
by their use of global and local data, respectively (see Sect. 2). Global-local methods
use a combination of global and local data.

4.2 Global Methods

In the case of isotropic materials, calibrating material parameters is readily achieved
using a uniaxial, one-dimensional, stress-strain curve. However, because of the
anisotropic nature of CP models, the resulting yield surface being evolved during
computational simulation is six-dimensional. In the case of anisotropic material
models, as is the focus here, the reduction of a six-dimensional yield surface to a
measured scalar (one-dimensional) surface can be problematic. For example, Fig. 4
illustrates global uniaxial tension stress-strain behavior measured on a pure Al
coupon. Also shown are the computed stress-strain results, using a Taylor model,
from two disparate sets of CP parameters; see Table 1. Note, the parameters in
Table 1 are chosen to illustrate this issue of uniqueness, where ω is permitted to vary
(unlike other calibration exercises in this chapter). Upon studying the goodness of fit
produced by either set of CP parameters, it would be reasonable to accept either set
as accurately reproducing the measured data because both produce a nearly identical
aggregate response. Consequently, more advanced methods should be considered
for calibration of CP parameters to resolve this issue of uniqueness.
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Fig. 4 Multiple CP parameters sets with nearly identical one-dimensional stress-strain response

Table 1 Two disparate sets
of CP model parameter
definitions. These sets were
used to produce the global
stress-strain curves in Fig. 4

Parameter (units) Set 1 Set 2

m 0.037 0.121

go (MPa) 19.477 30.460

Go (MPa) 292.28 365.89

ω 2.682 × 10−4 3.343 × 10−4

g∗
s (MPa) 47.912 419.168

Mean absolute error (MPa) 0.19 0.35

Nonetheless, global methods are commonly used for CP model calibration. It
is largely the practicality of these methods that make them attractive: less sample
preparation and specialized equipment is required to complete the calibrations.
In the most typical form, calibration is performed based on the stress-strain
relationship of a polycrystalline coupon in uniaxial tension. In cases where only bulk
behavior is of interest, the lack of uniqueness poses no real issue. However, when
local, microstructurally controlled quantities are of interest, the lack of uniqueness
becomes more problematic. The fundamental problem is that the local response may
be very different between predictions made with two sets of CP parameters despite
the fact that their global response is similar.

4.2.1 Data Flow

In a global calibration method, both the measured and computed data are the
result of a homogenization; see Fig. 5. Typically, the experimental measurement is
force and displacement over the gauge length for a uniaxial mechanical test. This
provides a one-dimensional slice of the larger yield surface. To inform the CP model,
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Fig. 5 Example of a global calibration based on a Taylor model

crystallographic texture must also be measured, for example, using EBSD. The
measured force or displacement (or stress and strain) is used, along with the current
iterate for material parameters as input to the computational model, discussed in
Sect. 4.2.2. The output of the model must produce data that is directly comparable
to the measured data to enable the computation of difference and drive updates to
iterated material parameters.

4.2.2 Computational Model

In global calibration methods, two approaches can be used. First, simplified (not
explicitly representing specific grain structure or compatibility) models, like that
developed by Taylor [41], are often used because of their relative simplicity
and computational efficiency. In this case, the equations presented in Sect. 3 are
integrated using the measured strains and texture as input. Orientations are then
sampled for each material point to be modeled with the measured strain applied to
each sampled orientation. After integrating the constitutive equations, to evolve slip
rates and resistance to slip, stresses are computed for each material point. Those
stresses are then averaged to compute an homogenized, global scalar value to be
compared to the measured stress-strain curve.

Second, a higher-fidelity model of the polycrystalline aggregate can be gen-
erated using finite element (FE) models. In this approach, either a statistically
representative volume can be instantiated by sampling measured microstructure
morphology distributions, or a replicated volume can be produced by measuring
the specific microstructure of the coupon. The advantage of these models, over
the Taylor model, is that the complex interactions among grains in the polycrystal
is inherently captured. The disadvantage is that these models are computationally
more demanding. Consequently, calibration will take longer, will require additional
computational resources, and limits the number of grains that can be modeled. Upon
an iterative update to the CP material parameters being calibrated, the global forces
and displacements are post-processed from reactions at the boundary for comparison
with measured data.

Taylor approximations and FE models represent bounding scenarios between
ease of use (Taylor) and high fidelity (FE). However, approaches such as the
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visco-plastic self-consistent (VPSC) model [23] can provide accurate results by
accounting for the effect of grain shape while maintaining a tractable computational
effort. Additionally, while not exercised in this chapter, it is important to note that
stress-strain curves could be extracted from a variety of directions with respect to
the bulk material texture. This additional data would serve to improve the global
calibration approach.

4.3 Global-Local Methods

Like purely global methods, hybrid global-local methods use homogenized stress
as a target for the calibration method. A major difference, and improvement, comes
from the acquiring and integration of full-field displacement or strain data from
DIC. This additional full-field data fundamentally changes the numerical aspects
of the calibration. Instead of fitting a relatively simple (approximately a second-
order polynomial) global stress-strain curve using many (often greater than 5) CP
parameters, the DIC dataset helps alleviate the issue of uniqueness that plagues
global methods. Because of this, global-local methods are an improvement over
global methods.

4.3.1 Data Flow

In a global-local calibration method, the measured global force is combined with
local DIC data; see Fig. 6. Consequently, compared to the standard global methods,
global-local methods require additional DIC hardware and software to acquire and
process the acquired images. To inform the CP model, it is ideal to measure the
particular microstructure throughout the test coupon. Most commonly, this data
is acquired before mechanical testing using EBSD. While acquiring EBSD data
provides data beneficial to the calibration process, it is incomplete in the sense that
only surface microstructure is measured, leaving uncertainty about the underlying
microstructure. This not only means that subsurface grain orientations are unknown
but further means that subsurface defects could also influence the acquired surface
strain data. While volumetric methods for measuring microstructure are possible,
their availability is currently lacking in general common usage and less commonly
used for calibration.

4.3.2 Computational Model

Because the DIC data acquired in this method is local, local values for displacement
or strain must be computed using a FE model. To most closely match the acquired
DIC data, the FE model should be constrained on its boundaries with measured DIC
displacement data within a region of interest (ROI). Rokoš et al. [32] have recently
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Fig. 6 Example of a global-local calibration based on a finite element model

studied the high sensitivity of calibrated CP parameters on applied boundary
conditions and investigated methods to mitigate this source of noise. The FE model
should also be defined to replicate the measured grains and their orientations.
Upon simulation of the FE model, the computed global stress can be homogenized
and compared in the same manner as global methods. Additionally, the local
displacement or strain data should also be compared and requires the spatial
alignment of the measured and computed displacement or strain data. Alignment
of multiple data sets in this context is typically done using fiducial markers as
discussed in Lim et al. [25] and Chen et al. [9]. The relative error is typically defined
mathematically as a weighted summation of the global and local components.

4.4 Local Methods

Purely local methods are characterized by utilization of local DIC data and local
stress data. These methods are somewhat specific to calibrating CP models for
crystalline structures in that HREBSD is used to compute local stress; recall
Sect. 2.2.2. This improves upon both previously discussed methods in that no global
homogenization of mechanical behavior is required. Also, since local stresses and
strains are acquired coincidentally, there is no need to generate a FE model to
compute homogenized stress. The main disadvantage of the purely local approach is
that acquiring and processing HREBSD data is time-consuming, which means that
the test must be periodically paused for relatively long periods to acquire the data,
which can have implications for rate-dependent materials.

4.4.1 Data Flow

The local calibration method requires that the mechanical test be paused periodically
to acquire and process HREBSD and compute local stress at various microstructure
locations; see Fig. 7. At the same time, DIC data is acquired to provide local strain
data. The DIC data is used as input to the CP model, where each local strain tensor
is used to drive deformation. The CP model is then used to compute stress at
each coincident point. Those computed stress values are compared directly with
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Fig. 7 Example of a local calibration based on a direct use of a CP model

the local stress values acquired by HREBSD. In this process, the CP model must
be constrained to follow the same local strain and strain rate as the test. This way,
there is no discrepancy in the history between acquired and computed data. Lastly,
because acquiring HREBSD data is relatively time-consuming, it is practical to
repeat this measurement only several times during loading. The increment in time
between these measurements will likely be large relative to the numerical integration
time stepping required by the CP model. However, the CP model need not increment
in one step to times where DIC data was acquired, but may instead subdivide that
increment into sufficiently small time steps to achieve convergence.

4.4.2 Computational Model

Since no FE model is required for the local method, there is also no need to
extract boundary conditions from DIC for application to the FE model, and the
previously discussed issues regarding sensitivity of calibrated CP parameters to
boundary conditions in the global and global-local methods are precluded. Instead,
each material point is completely defined, in terms of deformation gradient and
stress, as decoupled material tests. Because these material points exist throughout a
heterogeneous stress-strain field, each of these decoupled material behavior datasets
is under different loading scenarios, with respect to their local crystallography. In
effect, this is equivalent to running many mechanical tests and measuring the stress-
strain response.

5 Uncertainty Quantification Model for Calibration

Model calibration in the presence of uncertainty requires a non-deterministic
approach to parameter estimation. For cases where measurement errors, εi , are unbi-
ased, independent, and identically distributed (iid), the statistical model describing
the relationship between measurements, model, and errors can be defined as:

Yi = Mi (�) + εi, (11)
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for i = 1, . . . ,M , where Yi , �, and εi are random variables representing
the measurements, model parameters, and measurement errors, respectively. In
the context of the CP model calibration herein, � = [g0,m,G0, g

∗
s ] and the

measurements are local or global observations, as discussed in previous sections.
M is the total number of measurements available, and Mi (�) denotes the model
response corresponding to a time and location, represented by i, at which the
measurements were obtained.

The goal of model calibration is to solve the inverse problem posed by Eq. 11;
that is, determine the probability distribution of the model parameters given a set
of measurements. Formally, this involves determining the posterior density, π(θ |y),
where y and θ are realizations of the random variables Y and �, respectively. Using
Bayes’ theorem, the posterior density can be expressed as:

π(θ |y) = π(y|θ)π(θ)

π(y)
= π(y|θ)π(θ)∫

Rp π(y|θ)π(θ)dθ
. (12)

The numerator of Eq. 12 is a multiplication of two densities, the likelihood
function, π(y|θ), and the prior density, π(θ). The latter represents any a priori
knowledge regarding the parameters, �. The prior density is assumed to be known
and is often derived from expert knowledge or previous experiments. If unknown, a
noninformative prior can be used such that the prior is an improper uniform density
over the known parameter support; e.g., a parameter known to be positive would be
distributed uniformly over the space bounded by zero and infinity.

The likelihood function is dependent on assumptions about the errors in Eq. 11.
A common assumption is that errors are iid and εi ∼ N(0, σ 2) where the variance,
σ 2, is fixed. In this case, the likelihood function becomes:

π(y|θ) = 1

(2πσ 2)M/2
exp

(
− 1

2σ 2

M∑

i=1

[
yi − Mi (θ)

]2
)

, (13)

which is a function of the sum of squared errors between the model and the
measurements. Therefore, both the prior density and the likelihood function can
be evaluated at any given point in the parameter space.

The denominator, on the other hand, is more complex as it involves integration
over the entire parameter space, with θ ∈ R

p and p denoting the dimensionality of
θ . Computing this denominator and, hence, the posterior density can be challenging
if not intractable, especially as p increases. While classical quadrature can be used
in some cases, an alternative is to construct a Markov chain through the parameter
space that has a stationary distribution equal to the posterior density. This approach
is called Markov chain Monte Carlo (MCMC) and was chosen in this work to obtain
an approximation of the posterior density, π(θ |y).

A detailed explanation of MCMC is beyond the scope of this section, but
interested readers are referred to [21, 38] for more information on implementation.
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In short, MCMC avoids computing the denominator of Eq. 12 and instead utilizes
the proportionality:

π(θ |y) ∝ π(y|θ)π(θ), (14)

which can be computed at any point θ ∈ R
p. An iterative sampling procedure is

implemented to form the Markov chain. Since realizations of the chain are samples
of the posterior by definition, a sample-based approximation of the posterior
density can be obtained. As with standard Monte Carlo sampling, this sample-based
estimate of the posterior density converges as the number of samples in the chain,
N → ∞. In practice, N << ∞, and thus MCMC yields an approximation of the
posterior density.

A multitude of algorithms exist for forming this Markov chain. In general, they
involve a proposal distribution, J (θ∗|θk−1), that depends only on the previous
sample in the chain, θk−1. A common choice is J (θ∗|θk−1) = N(θk−1, V ), a
normal distribution centered at the previous sample with some covariance, V . The
candidate sample, θ∗, is either accepted or rejected based on the value of the
acceptance ratio:

A(θ∗, θk−1) = π(θ∗|y)

π(θk−1|y)
= π(y|θ∗)π(θ∗)

π(y|θk−1)π(θk−1)
. (15)

A new sample yielding A(θ∗, θk−1) > 1 is always accepted into the chain as it has
a high posterior probability than the previous sample. Accepting a sample implies
θk = θ∗. If not, the new sample is accepted with probability A(θ∗, θk−1), meaning
that the sample is more likely to be accepted the closer π(θ∗|y) is to π(θk−1|y). If
rejected, θk = θk−1. This process is iterated until chain convergence.1

The dependence of J (·) on θk−1 means MCMC algorithms require initialization.
In this work, a least squares optimization was conducted to deterministically fit the
model parameters to available data and generate an initial guess in a region of high
posterior probability. This method accelerates chain convergence by reducing the
time spent searching for this region of high probability by a random walk over the
parameter space. Adaptive tuning of the proposal covariance V is typically required
during the initial stage of chain development as well. The resulting, non-stationary
period of searching and tuning is referred to as the burn-in period. The end of the
burn-in is defined by the point at which the Markov chain reaches a stationary
condition. By definition, samples obtained from the burn-in period are not drawn
from the targeted posterior distribution. In practice, an initial percentage of the chain
is attributed to burn-in and discarded.

1Diagnosing chain convergence can be challenging, and readers are referred to [6, 13] for more
information.
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Fig. 8 Flowchart of the MCMC-based model calibration

A flowchart of the calibration process is shown in Fig. 8. Upon completion of
MCMC sampling, approximations of � are available. If the variance in the assumed
measurement error distribution is unknown, it can be included in the parameter
vector and estimated; e.g., � = [g0,m,G0, g

∗
s , σ 2]. The end result is a non-

deterministic calibration of the CP model as well as an estimate of measurement
noise. Then, according to Eq. 11, samples drawn from the joint posterior parameter
density can be fed through the model to form a non-deterministic prediction of a
given quantity of interest via Monte Carlo simulation. Examples of a quantity of
interest in the context of CP model calibration might be mechanical response at a
larger scale or under new boundary conditions.

6 Demonstration Using Simulated Experiments

A numerical experiment was performed in order to generate a synthetic dataset on
which a calibration can be performed. An advantage to a numerical experiment
and synthetic data is that the true values of the parameters will be known. The
proceeding calibration demonstrations can thus be judged relative to the known
values.

A coarse-grain microstructure model representing an aluminum oligocrystal
was created using DREAM.3D [14], an open-source microstructure modeling and
analysis package. Zhao et al. [47] observed that a significant portion of grain
boundaries in an oligocrystal sample remained perpendicular to the surface of the
sample, thereby maintaining a nearly columnar shape. For simplicity, an idealized
perfectly columnar grain structure is considered in the current study, thereby
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Fig. 9 (a) Front view of the
2.5D microstructure model
used in the current work.
Each unique color represents
an individual grain. (b) {001}
pole figure showing the
overall orientation
distribution of all the grains
in the polycrystal model. (c)
{111} pole figure showing
the overall orientation
distribution of all the grains
in the polycrystal model

resulting in the generation of a 2.5D microstructure. The columnar grain assumption
serves to reduce a source of uncertainty that arises due to the through-thickness
variation in grain structure [30, 42]. Based on the observations of Zhao et al. [47], the
texture of the microstructure was assumed to be random, and an average grain size
of 3.5 mm was used in creating the microstructure model. A 2.5D microstructure
model of an aluminum oligocrystal (shown in Fig. 9a) was used in the current
study. Figure 9b, c are the {001} and {111} pole figures, respectively, showing the
orientations assigned to the 51 grains in the microstructure model. The dimensions
of the microstructure model shown in Fig. 9a are 200 × 800 × 20 voxels, with each
voxel having a resolution of 70µm.

To prepare the geometry for finite element simulation, the “quick mesh” filter in
DREAM.3D is applied to convert the grid geometry of the voxelated microstructure
to a triangle geometry by inserting a pair of triangles on the face of each voxel or
cell. Following the “quick mesh” filter, the “Laplacian smoothing” filter is applied to
smooth out the stair stepped grain boundary profiles. The smoothed surface mesh of
each grain is then output to a binary stereolithography file. Surface meshes of all the
grains were input into Gmsh [12] to generate a volume mesh of the microstructure.
The finite element volume mesh of the microstructure model was discretized into
5.837 million quadratic tetrahedral elements and contained 8.509 million nodes. The
volume mesh is then input into the finite element code, ScIFEi [43], to carry out the
computationally intensive CP simulations to solve for the heterogeneous stress and
strain state within the microstructure.
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Fig. 10 (a) Front view of the microstructure domain showing the boundary conditions on +X, +Y,
−X, and −Y faces. (b) Side view of the microstructure domain showing the boundary conditions
on the +Z and −Z faces

The microstructure model is subjected to a 1% global strain by prescribing
displacement-controlled loading conditions along with the other boundary condi-
tions as depicted schematically in Fig. 10. Fully fixed constraints were applied on
the bottom (−Y) face, whereas the top (+Y) face, on which the displacement was
prescribed, was constrained from any displacements in the X- and Z-directions. The
remaining four faces (+X, −X, +Z, and −Z) of the cuboidal microstructure domain
were set to deform freely. The simulation was run in parallel on 400 processors using
NASA Langley’s K cluster for about 38 h.

The complex heterogeneous stress and strain fields developed within the
microstructure are computed using a built-in anisotropic elasticity and CP
framework in ScIFEi, Sect. 3.1. The grains were assigned anisotropic elastic
properties, through three cubic elastic constants C11,C12, and C44, which were
assigned the values 101.9, 58.9, and 26.3 GPa, respectively. Rate-dependent and
length scale-independent CP kinematics (flow and hardening laws), discussed in
Sect. 3, were assigned to the grains. The values of the calibration constants used for
the CP model were chosen in such a way that they are in the range of the values
assigned for corresponding parameters in CP models of aluminum alloys [4, 47],
but do not pertain to any specific study.

As discussed in Sect. 3, the six fitting parameters present in the CP equations
shown in Eq. 6 through Eq. 10 include go, ω, Go, γ̇o, g∗

s , and m. The values of the
six fitting parameters that serve as the target for calibration studies are shown in
Table 2. It must be noted that since the non-deterministic local calibration model
is insensitive to the values of the fitting parameters used, the chosen values will
not influence the output of the calibration model. In order to mimic the lower yield
strength of oligocrystal alloy, go and Go were assigned lower values compared to the
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Table 2 Fitting parameters
used in the CP model

Parameter (units) Value

m 0.05

go (MPa) 130.0

γ̇ ( 1
s

) 1.0

Go (MPa) 100.41

g∗
s (MPa) 113.91

ω 0.001

Fig. 11 (a) Strain map on the
free surface of the
microstructure model
showing the strain component
in the loading direction
obtained at a global strain of
1%. (b) Stress map on the
free surface of the
microstructure model
showing stress component in
the loading direction obtained
at a global strain of 1%

relatively finer grain material, Al 7075-T651 [4]. The lower go and Go signify the
lower yield strength of the aluminum oligocrystal, which is the material of choice
in the current study.

The heterogeneous distributions of stress and strain components in the loading
direction, obtained at 1% global strain, are shown in Fig. 11. The stress and strain
data obtained from the free surface of the microstructure model serves as the
simulated DIC data.

In all of the proceeding calibration demonstrations, model inputs that are
derived from the simulated experiments (i.e., geometry and loading) are noise-free.
Measurement noise has been lumped into the measurement fields Yi . For example,
the stress-strain curve used in the global calibration has Gaussian noise added to
the homogenized stress with a standard deviation of 0.5% of the maximum stress,
Fig. 12. The strain values and the grain orientations for that case are noise-free and
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Fig. 12 Stress-strain curve from simulated experiment, including added measurement noise

taken directly from the simulation. Gaussian noise with standard deviations of 0.07
microns and 5 MPa are added to each component of the simulated experiment’s
DIC displacement and HREBSD stress, respectively, when these are used as data
for model calibration. Note that the stress fields in simulated HREBSD have more
added noise than the homogenized stress (standard deviation of 5 MPa compared to
about 1.2 MPa, respectively) to reflect higher measurement error in the local method.

6.1 Using Global Calibration

The demonstration of non-deterministic global calibration was performed using
the Taylor model (see Sect. 4.2.2) and the uncertainty quantification framework
described in Sect. 5. In this case, the measurements, Yi , are the homogenized
stresses from the simulated experiment. The model response Mi (�) is the homog-
enized stresses of the Taylor model.

Before approximating the posterior parameter distribution with MCMC sam-
pling, a deterministic optimization was performed to initialize the Markov chain.
A Broyden-Fletcher-Goldfarb-Shanno (BFGS) [27] optimization was chosen with
the initial guesses of the parameters at 105% of their true values. The open-
source python package PyMC [29] was used to perform MCMC sampling with
the delayed rejection adaptive Metropolis (DRAM) [16] step method. In total,
25,000 samples were generated, with the first 10,000 samples discarded as burn-
in. The covariance of the proposal distribution was adapted every 1,000 accepted
samples to accelerate convergence of the Markov chain to a stationary condition.
The calibration took about 82 h on a single core of a 3.50 GHz Intel Xeon E5-1650
v3 CPU, corresponding to about 12 s per sample, although it should be noted that
up to two samples can be evaluated for each new addition to the Markov chain due
to the delayed rejection aspect of the DRAM algorithm.
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Fig. 13 The result of global calibration. The marginal probability density functions of the
calibration parameters, including the estimate of the variance of the error. The triangle denotes
the true values of each calibration parameter

The resulting marginal probability density functions of � are illustrated in
Fig. 13. In general and with respect to the initial bounds, the distributions of the
parameters are wide, corresponding to high uncertainty in the parameter values.
Also, all of the distributions of the calibrated parameters are biased away from the
true values (black triangles). This bias has been linked to model discrepancy [7],
which generally leads to a violation of assumptions made in Sect. 5. The overestima-
tion of the measurement noise variance supports this and points toward an inability
of the Taylor model to accurately reproduce the measurements. Additionally, the
lack of uniqueness of the calibration parameters and their corresponding high degree
of correlation also plays a part in the large uncertainty in the parameters.

The marginal probability density function for g∗
s is relatively flat and spans

the complete range specified by the bounds of the uninformative (uniform) prior.
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Essentially, the uncertainty in g∗
s is similar to the prior, which indicates that the test

used in the calibration did not provide significant insight on g∗
s . Because g∗

s is related
to saturation hardness, the above might indicate that the applied strain loading of
the experiment was too small to see saturation; repeating the test to higher strains
might help identify g∗

s . It is worth noting that, if a deterministic calibration was
performed, a single value of g∗

s would result, without knowing that the parameter
was essentially unidentifiable by the test. Apart from gathering additional data to
aid identification, a more informative prior could have been used to regularize
the inverse problem. However, this was beyond the scope of this work, and the
uncertainty in the calibrated g∗

s was accepted as uniform over the given bounds.

6.2 Using Global-Local Calibration

The global-local calibration was set up using a finite element model with the same
geometry as the simulated experiment. In order to remove the effect of erroneous
boundary conditions, the same boundary conditions were applied as the simulated
experiment.

The model was coarsened to decrease the model evaluation time. The coarse
mesh contained 25,500 quadratic tetrahedral elements and 45,700 nodes. The time
discretization of the model was also decreased by a factor of 2 compared to the
simulated experiment. Model evaluation of the coarsened finite element model took
approximately 9 min on 40 cores of a Dual socket 20 core 2.40 GHz Intel Gold
6148 Skylake Processor. Because a non-deterministic calibration akin to the one in
Sect. 6.1 would take at least 156 days, a deterministic optimization was pursued
instead. This means that a single deterministic set of calibration parameters is
obtained, without an idea of how certain that calibration is.

The error metric for the optimization was the weighted sum of the error norms of
the global (homogenized stress) and local (displacement) fields. The weighting was
performed in the fashion of [26] which weights the errors at each scale based on the
resolution of the measurement technique. In this case, the magnitude of the added
measurement noise was used. After normalization of the two fields, equal weight
was placed on global and local measurements.

The optimization was performed via Nelder-Mead simplex method [11] with the
initial guesses of the parameters at 105% of their true values. The optimization
took about 50 h to complete. The resulting optimal parameters are shown in
Table 3. Example comparisons of the global and local response from the simulated
experiment and optimal parameters are shown in Figs. 14 and 15. The global
response is close to the simulated data with a slight under prediction. Presumably
the bias seen in the global response was compensated by a more accurate local field,
i.e., a balance of the global and local errors would be found.

From Figs. 14 and 15, it can be seen that overall the calibration was somewhat
successful in matching the global and local behavior of the model; however, it is
difficult to place confidence in the calibration without a measure of uncertainty.
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Table 3 Results of
global-local deterministic
calibration

Optimized True Relative

Parameter value value error

m 0.04837 0.05 3.2%

g∗
s 350.1 113.9 207%

g0 128.1 130.0 1.4%

G0 41.55 100.4 58%
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Fig. 14 Global response comparison of the global-local optimization using finite element model
updating. For these data, the mean absolute error is 1.32 MPa

Furthermore, there is no guarantee that the optimized values represent global
optimal values; it is possible they only correspond to a local optimum. No insight
on g∗

s is gained besides a single optimum value.

6.3 Using Local Calibration

The demonstration of non-deterministic local calibration was performed by directly
integrating the CP model given a local grain orientation from EBSD and local
deformation gradients stemming from simulated DIC. In this case, the measure-
ments, Yi , are the deviatoric stresses fields from the simulated experiment (i.e.,
simulated HREBSD). The model response, Mi (�), is the deviatoric part of the
stress resulting from the CP model integration. It is worth noting that in this
demonstration, the full deformation gradient is imposed on the CP model, which
assumes unrealistically that all components of strain can be identified with DIC.
With addition of a plane-stress constraint, the result is not expected to be altered
significantly by the restriction of the DIC information to the planar strains.

The local calibration was again non-deterministic. As in the global calibration,
a deterministic optimization was performed to initialize the Markov chain prior to
MCMC sampling. The same optimization and MCMC options were used for this
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Fig. 15 Local response comparisons for the global-local optimization using finite element model
updating. Displacement fields are shown at the point locations of the simulated DIC (reference)

local calibration as before. This includes the generation of 25,000 samples with a
10,000 sample burn-in. The calibration took about 116 h to run on a single core of
a 3.50 GHz Intel Xeon E5-1650 v3 CPU, corresponding to about 17 s per sample.
Again, the effect of rejection on this per-sample estimate should be noted.

The resulting marginal probability density functions of � are illustrated in
Fig. 16. The distributions are now much tighter when compared to the global
posterior. More importantly, these distributions now encompass the true values. The
local calibration is better able to identify the parameters for two reasons: first, an
increased amount of data acquired and second, the CP model is directly probed
rather than utilizing homogenized values, which diminishes the model discrepancy.
As in the local calibration, the probability density function of g∗

s looks similar to the
uniform prior, illustrating that the simulated experiment was not very informative
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Fig. 16 The results of local calibration. The marginal probability density functions of the
calibration parameters, including the estimate of the variance of the error. The triangle denotes
the true values of each calibration parameter

for this parameter. The σ 2 probability density functions in Fig. 16 should not be
compared to those shown in Fig. 13 because they correspond to noise estimates of
different data sets (i.e., noise in homogenized stress vs. noise in HREBSD stress).

7 Summary

The objective of this chapter is to motivate the use of CP models in microstructure-
dependent engineering problems and to provide a comprehensive study of calibrat-
ing CP model parameters. Historical perspective and background is provided for
understanding what methods have been published, in terms of both generalized
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parameter identification methods and specific methods studied for use with CP
models. A review of the literature illustrates that the methods for CP parameter
calibration studied to date have largely focused on global-local methods, where
a combination of global (homogenized) stresses are combined with local DIC
displacements or strain to form the comparison between measured and computed
data.

Various methods for acquiring and post-processing data are also overviewed.
Global data, as would come directly from test-stand data or attached gauges, are
relatively cheap and easy to apply. Consequently, especially when many tests are
being performed, acquiring global data may be the only affordable method. Acquir-
ing local DIC displacement and strain data provides a significant improvement on
the measured data set. But, this comes with a cost of additional equipment and
setup time. Additionally, application of this data in the global-local approach also
implies the need to acquire EBSD data before testing. Local stress data can also
be measured using HREBSD to analyze shifts in diffraction patterns. Combining
both local methods, DIC and HREBSD, is now possible with selectively transparent
stamping as the means to apply a DIC speckle pattern to the test specimen surface.
However, this method requires the highest level of infrastructure and time since both
HREBSD and DIC must be completed multiple times during testing.

Three classes of calibration methods can be used, differing by the type of
acquired data. While global data is the easiest and cheapest to acquire, CP model
parameter calibration using that data has fundamental issues. Namely, because many
sets of CP model parameters can reproduce nearly equivalent global stress-strain
curves, there should be no expectation that the calibrated parameters are unique.
Adding local DIC displacement data aids in the mitigation of this uniqueness
issue, but there are still local minima that exist in this case. Because of the
hybrid approach, with both global and local data, the computational model in this
case must represent the particular microstructure being tested. Running these full
simulations, for example, as a finite element model, is computationally intensive
and intractable for a non-deterministic approach. Additionally, this leads to the need
for assumptions or direct measurement of the microstructure underlying the surface
and high sensitivities to applied boundary conditions. Purely local data enables a
computationally tractable method for non-deterministic calibration. Furthermore,
this method precludes issues of generating a model of the microstructure aggregate,
does not incorporate boundary conditions, and helps resolve the issue of uniqueness.
However, as illustrated by the calibration of g∗

s , the model parameters cannot be
determined accurately without adequate data that has sensitivity to the parameter.

As complexity in acquiring data is added, the computational cost of the cali-
bration and issues surrounding uniqueness can be resolved. The combination of
the results from Fig. 13, Table 3, and Fig. 16 is shown in Fig. 17; it illustrates the
calibrated parameters from each approach. The two distributions represent the cali-
brated parameters for the purely global (red) and purely local (blue) methods. This
clarifies the relative uncertainty and inaccuracy in calibrating CP model parameters
using only global data. On the other hand, the purely local method results in very
little uncertainty and accurately reproduces the correct parameters (black triangles).
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Fig. 17 The results of all calibrations. The marginal probability density functions of the calibra-
tion parameters for the global calibration (red) and local calibration (blue). The upward-pointing
black triangle denotes the true values of each calibration parameter. The downward-pointing
magenta triangle denotes the deterministic result of global-local optimization

Because it is computationally intractable to run the global-local calibration because
of the costly computational model required, the single deterministic value for each
parameter is shown (downward-pointing magenta triangle). As mentioned above,
the inclusion of local DIC data improves significantly the calibrated result of a
purely global approach, but still suffers from inaccuracy because of local minima.

8 Outlook

The ability to make high-resolution and volumetric observations and measure-
ments of material microstructures is ever-increasing. The measurement techniques
described in this chapter were chosen to represent methods that could be employed
in a common materials research laboratory at the present. Consequently, data
acquisition methods were mainly focused on high-resolution surface measurements,
EBSD and DIC, along with load-displacement data acquired through mechanical
testing. However, volumetric acquisition methods, such as X-ray computed tomog-
raphy (CT) and high-energy X-ray diffraction (HEDM), are becoming increasingly
valuable and available.

With these improved data acquisition methods, the various global and local
calibration methods presented in this chapter may still be used. Utilizing only
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surfaced-based approaches includes uncertainties to the calibration process due to
unknown subsurface features, such as grain variations and defects. For example, a
subsurface defect can influence the local strain on the surface as measured by DIC.
Using only a surface-based approach, this would manifest as additional (inaccurate)
variation in the calibrated parameter distribution. However, if that same subsurface
feature was detected using X-ray CT and included in the computational model, a
more accurate calibrated parameter distribution would be expected. Consequently,
an important next step is to quantify the improvement in calibration that can be
expected with volumetric acquisition methods and weigh those against the added
costs and time associated with acquiring that data.
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