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1 Introduction

Integrated computational materials engineering (ICME) represents a grand chal-
lenge within materials research and development. Effective ICME involves coupling
materials characterization and experimentation with simulation tools to produce a
holistic understanding of the materials system, promising to accelerate the materials
development enterprise. Under the Center of Excellence on Integrated Materials
Modeling (CEIMM), significant strides were made in developing state-of-the-art
experimental methods and simulation techniques for interrogating material structure
and behavior across multiple scales. In parallel to these method developments,
several advances were made in designing data structures and workflow tools that
possess the required flexibility and extensibility to operate on the data produced
by such advanced methods. Such software tools are a critical enabling component
for effective ICME; the National Academy of Sciences noted cyberinfrastructure
as a crucial factor for ICME, to include databases, software, and computational
hardware [1]. Additionally, these tools enable workflows that properly integrate
models and experimentation at each stage of the materials development lifecycle.
Figure 1 schematically shows such a workflow for optimization of microstructure
and properties in a titanium forging.
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Fig. 1 Schematic of an ICME workflow for optimizing the microstructure and properties in a
titanium forging. Blue boxes represent data generation tools, while green boxes represent output
information from said tools

In the workflow shown in Fig. 1, an initial part design serves as an envelope
for a forging process simulation, which yields continuum field variables: materials
information, such as temperature or strain, which vary as a function of space
and time. These variables feed a data-driven model that zones the component
geometry, identifying those regions that have undergone a similar process history.
Features of the process zones, defined by their constituent continuum field variables,
serve as input to a microstructural evolution model. This process yields mean
field microstructural measures, such as grain-size distribution and texture, at each
zone. In turn, this microstructural information feeds a property model, predicting
mechanical behavior for each zone. This mechanical information is finally looped
back to the designer, informing modifications of the overall component geometry.
Additionally, the model outputs are continuously validated by fusion with charac-
terization measurements. Note the interplay between model and experimental data
at each stage of the workflow and the transition of information across length and
time scales. The cornerstone of an effective ICME workflow tool is the ability to
seamlessly integrate these information streams, allowing an investigator freedom to
explore the complex materials design space.

Designing and implementing ICME software tools is complicated by the variety
of data streams available for modern materials research. Key features that define the
breadth of ICME data include:

• Geometry: Simulation and characterization methods are capable of producing
spatial data organized on varying topologies. These include unstructured point
clouds, surface and volumetric meshes, and image/grid-like geometries.
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Fig. 2 Schematic of the four key features that define ICME data. Note that a single dataset will
often exhibit variation in all four quadrants

• Type: Data streams may be of any fundamental data type, such as floating point
numbers, integers, or strings, each with various precisions or encodings.

• Kind: The data may be representative of various materials phenomena. For
example, spectroscopy measurements represent chemical composition, whereas
crystal plasticity simulations output localized stress and strain tensors.

• Dimensionality: Materials data are inherently multidimensional, both in space,
time, and kind. Second-rank tensorial data contains up to nine unique elements,
whereas image intensity values are scalar.

Figure 2 graphically shows these four key features with schematic examples.
The challenge of ICME software development is properly generalizing to capture

such disparate data streams in a cohesive manner. Once catalogued together, the
data can be used to develop analyses that extend beyond the limits of single
modalities. For example, validating ICME models requires coupling the model
outputs to experimental measurements. Enacting this process robustly is a complex
workflow challenge that requires a core structure capable of handling the different
data streams. This chapter seeks to elaborate on such challenges in ICME software
development. It is organized as follows:
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• A select overview of various ICME software tools currently in use, including
both commercial and open-source solutions

• A description of the requirements that a successful ICME workflow manager
must meet

• An example implementation of such a workflow manager
• Presentation of a case study that highlights the utility of an ICME software

infrastructure for solving modern materials problems

This chapter does not discuss details regarding data storage or infrastructure
systems, such as Materials Commons [2], The Materials Data Facility (MDF) [3],
or the Materials Project [4], or visualization tools, such as ParaView [5]. Instead, the
focus is on tools used to generate and analyze materials data in an ICME context.

2 ICME Software Tools

We consider the following general categories for ICME tools: simulation, in which
a physics-based model is used to generate information about a material process,
evolution, or behavior, and analytics, where simulation and characterization data
are postprocessed to produce additional information streams. A key distinguishing
feature in this definition of simulation tools is the use of physics-informed models.
Analytics tools may also be used to model materials, but we distinguish these from
simulation tools as being data-driven. Such data-driven approaches typically use
characterization or simulation data to fit surrogate models that approximate the
underlying material physics without the need for explicit parameterization.

3 Simulation Tools

Materials modeling and simulation has a rich history that extends beyond the
genesis of ICME. Within metals processing, DEFORM® has been commercially
used since the early 1990s to simulate hot forging processes in both 2D and 3D [6].
Further capabilities include simulation of cold forming, machining, heat treatments,
and microstructure evolution [6]. Similarly, ProCAST is a commercially available
simulation package for casting processes, with support for die casting, investment
casting, and continuous casting [7].

Behavior modeling of structural materials typically consists of solving a set of
constitutive equations with supplied boundary conditions using a numerical method.
The most commonly used numerical approach is the finite element method (FEM),
in which a material volume is discretized into distinct elements on which local
solutions are computed. Commercially available FEM packages include Abaqus [8]
and ANSYS [9], both of which are used extensively within the aerospace supply
chain to simulate material response. Several open-source FEM solutions also exist.
Albany is a modular, general FEM solver for partial differential equations built
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using reusable libraries [10, 11]. The Multiphysics Object Oriented Simulation
Environment (MOOSE) is a similar package that relies on a generic software archi-
tecture, utilizing Jacobian-free Newton-Krylov methods [12, 13]. Other approaches
besides FEM exist for solving systems of partial differential equations. For example,
problems may be recast into convolutional forms, allowing for solutions using
spectral (Fourier-based) solvers. Examples include simulating the elastic response
of composite materials [14, 15], eigenstrains in thermal barrier coatings [16],
and the viscoplastic response of polycrystals [17, 18]. The Düsseldorf Advanced
Materials Simulation Kit (DAMASK) implements the spectral approach for solving
the polycrystalline elasto-viscoplastic problem in an open-source format [19].

First principle and small-scale simulation tools also have a wide use within
research and development. The Vienna Ab initio Simulation Package (VASP) is
a broad toolset for electronic structure calculations, with capabilities for computing
energy functionals, optical properties, and many-body problems [20]. The Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-
source tool developed by Sandia National Laboratories for molecular dynamics
problems [21]. For investigating dislocation dynamics, the open-source ParaDiS tool
is available from Lawrence Livermore National Laboratory [22].

While the above software packages are only a small sampling of the toolsets
available to a materials researcher, their outputs produce highly disparate data
streams. For example, data from an FEM simulation are topologically organized
onto a mesh, which may consist of a variety of unit element types (triangles,
quadrilaterals, tetrahedra, hexahedra, etc.). However, a spectral solver requires
data on a regular grid. Data may even exist on line segments, as in dislocation
dynamics, or points, as in molecular dynamics. Additionally, data may be scalar
(e.g., temperature fields from a DEFORM® forging simulation), vector (e.g.,
atomic displacement vectors from LAMMPS), or tensorial (e.g., strain tensors
from polycrystalline viscoplasticity evaluated using DAMASK). Simulation data
are also typically time dependent; this results in an additional dimension, which,
in certain models, may also result in a change in geometry. The same variety
of data is observed for characterization information. For example, atom probe
tomography yields information about points in space (i.e., atoms), while computed
tomography produces volumetric images. Electron backscatter diffraction (EBSD)
scans yield orientation data on regular grids, which can be represented in only three
numbers. However, the original Kikuchi patterns, which are of significant interest in
applications such as high-resolution strain imaging, may be images that are upwards
of 1024×1024 in dimension. If storage of these original patterns is desired, then the
EBSD scan would store a pattern image at each grid location. The diversity of data
forms generated by simulation packages and characterization techniques presents a
unique integration challenge for downstream analytic tools.

3.1 Analytic Tools

Unlike the wealth of tools available for materials simulation, software specifically
for materials analytics is a relatively nascent field. Historically, processing data
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from materials characterization or simulation was typically accomplished using
bespoke solutions tailored to a particular problem type. However, with the advent of
relatively inexpensive computational infrastructure, availability of modern statistical
and machine learning algorithms, and the popularity of open-source development,
several tools for materials data analytics have gained traction within the industrial
and research communities.

Since much of the characterization data collected in materials research take
the form of n-D images, many analytics tools have been developed specifically
tailored for image processing. Avizo™ is a commercial software package that
provides image processing and analytics capabilities for materials images, including
segmentation, computation of feature statistics such as size and shape, and meshing
[23]. Similarly, the commercial GeoDict® software provides solutions for computed
tomography processing, fiber analysis, and synthetic composite simulation [24]. For
3D EBSD data, ESPRIT QUBE commercially provides solutions for reconstruction
and alignment, misorientation segmentation, and texture analysis [25].

Several open-source tools provide more general capabilities than the commercial
products described above. The Materials Knowledge System in Python (PyMKS) is
an open-source Python framework intended to provide data science approaches for
solving various materials problems [26]. PyMKS has support for a variety of analyt-
ics tailored to materials, such as microstructure quantification using 2-point statistics
[27] and fitting surrogate convolutional kernels to FEM data, producing highly
accelerated elastic models [28]. A similar toolset is the Materials-Agnostic Platform
for Informatics and Exploration (Magpie), an open-source Java-based library for
fitting various machine learning models to materials data [29]. Specifically for
texture analysis, the MATLAB toolbox MTEX provides capabilities for plotting
pole figures, segmenting grains, and computing orientation distribution functions
[30, 31]. Also leveraging MATLAB, the Materials Image Processing and Automated
Reconstruction (MIPAR™) software provides proprietary routines customized for
2D and 3D materials image analysis [32].

3.2 Example Tools from Other Fields

Materials is not the only field that must contend with multiscale, multimodal,
hierarchical information. Specifically, the medical and biomedical communities
often handle multimodal information streams, however with a focus on n-D images.
One of the most widely used tools for scientific biomedical image analysis is ImageJ
[34, 35]. Publically funded by the National Institutes of Health, ImageJ is a Java-
based library and application that contains a wide variety of common and advanced
image processing methods. Fiji is a popular open-source distribution of ImageJ that
contains several additional plugins for advanced image analysis and segmentation
[36, 37]. Another popular library for medical image analysis is the open-source
Insight Segmentation and Registration Toolkit (ITK) [38, 39]. ITK, by taking
advantage of generic template programming techniques in C++, provides highly



Data Structures and Workflows for ICME 25

flexible image processing techniques applicable to n-D images, including robust
approaches for multimodal image registration. ITK utilizes a pipeline construct
to build workflows for image processing problems and is particularly suited to
processing 3D medical imaging modalities, such as computed tomography and
magnetic resonance imaging. ITK on its own is a pure library; the open-source
3D Slicer application provides a graphical front end to many ITK functionalities,
including registration, with capabilities for 3D visualization and volume rendering
[40, 41]. 3D Slicer leverages the Visualization Toolkit (VTK), which provides
a platform-agnostic rendering engine along with a wide variety of geometric
processing tools, such as connectivity, smoothing, and mesh fairing [42, 43].

Another open-source software tool for analyzing biomedical information is
SCIRun, supported by the Center for Integrative Biomedical Computing [44, 45].
SCIRun provides a graphical programming interface for building simulation and
analysis workflows tailored to biomedical data, with a focus on bioelectric fields.
This visual programming approach is similar to the interface paradigm adopted
by DREAM.3D. For application-agnostic data mining and machine learning tasks,
the open-source Orange application provides a visual programming front end built
on top of Python’s rich set of available analytics libraries [46, 47]. A tool with
similar capabilities to Orange is the open-source Java-based Waikato Environment
for Knowledge Analysis (Weka) [48, 49]. Weka provides several machine learning
functionalities, and it also provides plugin support for data-driven image segmenta-
tion in Fiji.

The above examples motivate a more generic need for extensible data processing
and handling in scientific analysis. As the materials community begins to broadly
adopt the ICME paradigm, it is prudent to take advantage of the strides made in other
fields in implementing workflow tools, particularly in medical and biomedical image
analysis. Leveraging the lessons learned from these previous tools can accelerate the
development of materials applications, allowing for the allocation of development
resources toward addressing fundamental materials data problems that are not
shared in other fields.

4 Building an Extensible ICME Data Schema and Workflow
Tool

We now consider the critical aspects that define a successful ICME workflow
tool: a scalable, efficient data structure; modularity and plug-and-play capability
for building workflows; and standardized data access and metadata labeling. The
primary interest is for processing data that is accessible via a spatiotemporal index.
We refer to this sort of data in general as field data. These kind of data are
naturally generated by many types of materials characterization and simulation
approaches. Note that we do not directly consider scalar material properties,
such as thermophysical constants. While these constants are integrally important
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for automated materials discovery workflows, the present focus is placed on the
processing and analysis of materials field data.

4.1 Data Handling Requirements

Given the wide variety of data types produced by characterization and software
tools, a successful implementation of an ICME workflow manager must utilize
a flexible data structure to properly ingest and handle the different materials
information streams. The previously introduced critical aspects that help define
the diversity of materials data are: geometry, type, kind, and dimensionality. An
ICME data schema must implement a structure capable of handling variety in each
of these categories. Practically, this translates to a requirement to represent data on
different topology types, including point clouds, 2D and 3D meshes, and regular and
irregular rectilinear grids. A crucial component of representing these geometries is a
capability to store them together within a consistent spatial reference frame, which
enables direct correlation between different datasets. Such correlative workflows
are a cornerstone of effective ICME, allowing for direct validation of simulation
results using experimental measurements or simultaneous analysis of multimodal
information.

A result of this capability is an additional requirement to store data on any
unit element that composes a geometry. More generally, an effective data structure
should be flexible enough to store information on any component of a set of
simplicial complexes. Figure 2 showcases a simplified example of this need for
output from a crystal viscoplasticity simulation. Output from such a simulation
may be geometrically represented as a set of connected tetrahedra that tile the 3D
volume. Resulting stress and strain tensors could be stored on the vertices of the
tetrahedra, while crystal orientations might be stored on the tetrahedra themselves.
Additionally, further connectivity analysis may require information storage on the
faces or edges that compose the tetrahedra. For example, it may be advantageous
to store information about misorientations across grain boundaries, which would
naturally be stored on tetrahedral faces. Similarly, identification of triple lines would
be stored on tetrahedral edges where three grains meet. Importantly, what kind of
information, and where it should be stored, may not be known a priori for any given
problem; thus, the data structure should be extensible enough to handle changing
user requirements.

While cursory, the example in Fig. 3 demonstrates the requirement for flexibility
in geometric data storage. It also communicates a need for efficient storage of
multidimensional information. Triple line identifiers are scalar, while orientations
and full misorientations are at least three components. Stress and strain tensors,
as symmetric second-rank tensors, require storage of at least six components. In
principle, the number and shape of components is arbitrary, tailorable to the specific
application or analysis workflow. A common example of this specificity is the
number of time steps for a given simulation, which imposes an additional dimension
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Fig. 3 A schematic example
of two grains from a crystal
plasticity simulation, each
meshed by a set of tetrahedra.
The data structure should be
capable of storing
information on all unit
elements of the mesh: points,
edges, faces, and tetrahedra,
with support for various
component dimensions. The
data in this example are stress
and strain tensors (σ ij and
εij), triple line identifiers (t),
misorientation (Δg), and
grain orientation (g)

on the data. Thus, a scalable approach to storing multicomponent data is necessary.
Another practical requirement is the fundamental type used to represent the data.
Identifiers may be stored as integers, while orientations may be stored as floating
point numbers. Precision may also vary (e.g., 32-bit or 64-bit floating point), while
integers must consider being signed or unsigned. Data type handling is partly tied
to the implementation: certain languages, such as C and C++, utilize strong typing,
whereas Python utilizes the weaker duck typing. Regardless, a successful data
schema must be capable of representing data of various types, with adjustments
as needed for the given language.

A final data handling requirement stems from the natural structure of materials.
Materials are inherently hierarchical: physical phenomena couple across multiple
length scales to yield observed behavior and performance at the macroscale. Rep-
resenting this natural hierarchy is critical to fully capturing the space of materials
information. Figure 4 shows an example of this hierarchy for a cast Ni-base superal-
loy blade. Note the inherent coupling and reciprocity across the scale continuum. An
ICME data structure must be capable of allowing users to efficiently move across
these scales; thus, a mapping scheme is required that shifts reference up and down
the hierarchy. For field data, this translates to an ability for arbitrarily grouping the
various simplicial complexes that comprise the data geometry, which can then be
continuously grouped further until all data are members of a unifying set.

4.2 Modular Workflow Requirements

Beyond efficient storage of materials field data, a user should be capable of
interacting with that data through a standardized interface. Ideally, this interface
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Fig. 4 An example of the hierarchy of materials structure in a cast Ni-base superalloy blade.
Note that the physics of one scale are tightly coupled to the phenomena at another scale. Properly
compositing this multiscale and hierarchical information together requires a flexible and extensible
data structure. (Figure reproduced courtesy Dennis Dimiduk and Michael Uchic)

defines the parameters through which the data structure may be accessed, to
include: creating new data structure objects, interrogating the properties of existing
objects, and modifying existing objects as needed for the present context. To
facilitate this interaction, it is desirable to not only standardize the application
interface for the data structure itself but also the functional interface by which such
interactions are implemented. This functional interface should enable the storage
and retrieval of each parameter setting, which is needed for workflow archival and
reproducibility. Thus, a workflow for analyzing a collection of materials field data
can be conveniently represented as a sequence of these standardized functions.

Representing a workflow in this manner also immediately satisfies an additional
requirement for flexibility: since materials problems and the data informing them
are constantly evolving, users should not be restricted in building ICME workflows.
By composing a workflow from self-contained functions, a user is free to add,
delete, swap, and move these functions as appropriate for the given application. This
flexibility imposes a complication for testing internal consistency for a constructed
workflow. Confirming a workflow is valid for a given set of parameters is trivial
if the workflow is constructed a priori. But for on-the-fly development, explicit
validation is subject to combinatorial explosion as the number of available functions
increases. To solve this issue, the functions within an ICME workflow manager must
be capable of performing self-consistency checks, pursuant to the overall application
interface of the global data structure. Thus, the overall workflow can be validated
by examining the consistency of each individual function.

After construction of a workflow, it is desirable to serialize the workflow. This
addresses two needs: the ability to archive workflows for future use and the ability to
share workflows with collaborators. An important aspect of this serialization process
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is the storage of the parameter settings used in each function of the workflow. Since
the constructed workflow may be complex, and itself hierarchical, a sufficiently
flexible format must be used for serialization. Ideally, this format would also be
human-readable and should be standardized for broad access outside of materials-
specific tools.

4.3 Data Access and Metadata Labeling Requirements

After a successful execution of a workflow, the computed data should be serializable
into an accessible data format. Since the implemented data structure is highly
generic and flexible, the chosen data format must also be equally flexible. Similar to
the format for workflow serialization, the data format must also belong to an open
standard, allowing access outside of materials toolsets. Ideally, this format should
also be size and speed efficient, allowing for fast reading and writing, an enabler
for the large datasets inherent in many ICME workflows. Stored information may
be either heavy, the dense data comprising the bulk of the content in terms of size,
or light, consisting of metadata such as material name, component dimensions, data
type, time step, etc. The format must therefore be capable of storing either heavy
or light data. It is desirable to store the processing history of a set of data along
with the data itself; thus, the history remains innately coupled with the data, which
allows for reproducibility and transparency. Therefore, the data format must enable
the workflow to be stored alongside the data and additionally allow for further
functions and their parameter settings to be appended to the workflow should future
processing be necessary.

5 SIMPL and DREAM.3D: Enabling ICME Workflows

To satisfy the above requirements for an ICME workflow tool, the Air Force
Research Laboratory in partnership with BlueQuartz Software developed a software
framework known as the Digital Representation Environment for the Analysis of
Microstructure in 3D (DREAM.3D). DREAM.3D is an open-source software tool
explicitly designed to enable the creation of generic materials analytics workflows
that are adaptable to any kind of input, regardless of geometric topology or
data type [33]. Specific capabilities include 2D and 3D EBSD reconstruction and
analysis, n-D image processing, feature identification and quantification, surface
meshing, texture analysis, and synthetic microstructure generation. DREAM.3D’s
unique capabilities stem from an underlying data structure and management library:
The Spatial Information Management Protocol Library (SIMPL). SIMPL is an
open-source C++ library that implements an abstract data structure, including a
well-defined application programming interface [50]. Additionally, SIMPL defines
a functional interface for interacting with the data structure. This interface is
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Fig. 5 The dependency tree for DREAM.3D. Items in blue are open-source dependent libraries.
Note that this modular design allows for libraries to be added or swapped where necessary, granting
flexibility to the overall software architecture

characterized by filters, self-contained functions that perform a unit operation on the
data structure state. Filters may be sequenced to form a pipeline, the fundamental
execution unit of a SIMPL workflow. SIMPL also allows for extensions via a plugin
interface. Users may add their own functionalities to SIMPL by adhering to the
plugin architecture. DREAM.3D constitutes an open-source collection of SIMPL
plugins tailored for analysis of materials data, along with facilities for processing
materials-specific information [33, 51]. Additionally, DREAM.3D utilizes a graph-
ical front end called SIMPLView [52]. All the various projects associated with
DREAM.3D are distributed under the permissive 3-clause BSD license. This open-
source development has enabled collaborations and contributions across academia,
government, and industry.

Figure 5 shows the overall software architecture of DREAM.3D, including
dependent libraries. Dependencies generally progress up from the bottom of Fig. 5.
SIMPL makes heavy use of the Qt library for various functionalities, such as
container objects, string representations, and platform-agnostic file system access
[53]. Additionally, Qt provides the facilities for producing the front-end graphical
interface in SIMPLView. SIMPL utilizes the HDF5 file format and library for data
serialization [54]. Eigen is leveraged for highly efficient linear algebra and matrix
manipulations [55]. Optionally, Intel’s Threading Building Blocks provides thread-
based parallelism [56], while pybind11 automatically creates Python bindings for
SIMPL classes and filters [57]. For all projects, CMake is used to enable easy cross-
platform building [58].



Data Structures and Workflows for ICME 31

A key component of the DREAM.3D software architecture is its modular
nature; this allows for dependencies to be added or swapped as needed for a
given application. Most commonly, this approach is taken for adding new plugin
dependencies. For example, an image processing plugin in DREAM.3D leverages
ITK as an underlying dependency, bringing the power and flexibility of a tool
originally designed for medical image analysis into the materials domain.

The following sections overview the structure of both SIMPL and DREAM.3D,
including: data structure; filter, pipeline, and plugin infrastructure; graphical inter-
face; and analysis capabilities.

5.1 SIMPL Data Structure

The SIMPL data structure is inspired by approaches in other well-known libraries,
such as VTK, along with methods in combinatorics and topology. The data structure
was designed to directly address those requirements stated in the Data Handling
Requirements section above. Principally, the data structure takes the form of a tree;
since trees are hierarchical, the data structure is able to naturally conform to the
grouping requirements needed for materials data. Items within the data structure are
generally termed objects, with four primary types of objects available:

• Data Container Array: The root node of the data structure. The data container
array has access to create and retrieve all descended children objects and check
the structure for validity.

• Data Container: The direct descendant of data container array, data containers
store attribute matrix objects that correspond to a unique geometry. Data
containers are therefore distinguished by what geometry they represent.

• Attribute Matrix: Stored within data containers, attribute matrices contain the
objects that store the dense data on each geometry. Attribute matrices are
distinguished by a type identifier which signifies at what specific grouping
hierarchy the data should be associated. Additionally, attribute matrices define
the shape of the underlying dense data.

• Attribute Array: Attribute arrays are the leaves of the data structure tree and store
the heavy field data for a given dataset.

Objects within the data structure have an associated name; similar to a standard
file system, no two objects at the same level of the tree are allowed to have the
same name. Additionally, objects deeper within the tree have a unique path, the
concatenation of all parent object names with the child. An example data structure is
shown in Fig. 6. In this example, two data containers are stored in the data container
array, one that represents an image and one that represents a surface mesh.

Geometries are a special kind of data structure object, represented by the red
boxes in Fig. 6. A data container may only store one geometry, and usually this
geometry is unique within the overall data structure. The child attribute matrices



32 S. P. Donegan and M. A. Groeber

Fig. 6 An example SIMPL data structure, representing storage of an image and a surface mesh.
(Figure reproduced from the DREAM.3D user manual)

and attribute arrays for a given data container store information that corresponds
to the data container’s geometry object. Geometries are distinguished by the
dimensionality of the fundamental unit element that serves as that geometry’s
primary building block. There are four primary unit element types: vertices (0-
dim), edges (1-dim), faces (2-dim), and cells (3-dim). In principle, the data structure
allows storage of higher dimensional simplices; however, for materials data analysis,
it is rare for such higher dimensional elements to be needed. For a given geometry,
data may be stored on any of the unit elements that comprise the geometry, as shown
in Fig. 7.

Data may be stored on any of the unit elements that form a given geometric
object. For example, if the fundamental geometric object is a quadrilateral, data
may be stored on the vertices, edges, or faces of the polygons, but not cells, since
no object within the geometry is volumetric.

SIMPL defines an interface to which implemented geometries must adhere. This
abstract interface class enforces that geometries store their connectivity, understand
how to compute derivatives, import and export themselves, etc. Filters are able to
leverage this generalization, which enables algorithms to operate across different
geometries. Currently, SIMPL implements eight geometric classes, along with a
special null geometry. These geometries are shown in Table 1.

Similar to the overall data structure, geometries in SIMPL adhere to a hierarchy,
as shown in Fig. 8. Geometries may be generally categorized as either structured,
where explicit definition of point coordinates is not needed, or unstructured, where
point coordinates must be explicitly stored. The structured geometries are the image
and rectilinear geometries, commonly referred to as grids. An n-D image is defined
implicitly by just three values: its position in space, defined by the origin; the
resolution along each dimension; and the number of elements in each dimension.
Thus, an n-D image needs only 3n numbers to be fully defined. A rectilinear grid,
however, may admit variable resolution along each orthogonal direction. For an
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Fig. 7 Schematic showing building-block unit elements for SIMPL geometries. Note how data
may be stored on any unit element that comprises a given simplex. (Figure reproduced courtesy
Groeber and Jackson [33])

n-D rectilinear grid, the total number of values, v, needed for complete definition is
given by the following equation:

v =
n∑

i=0

Ni + 1

where Ni is the number of elements along the ith dimension.
The unstructured geometries require explicit definition of point coordinates.

Additionally, for any geometry other than vertex, the connectivity between points
must be stored. SIMPL represents unstructured geometries using shared element
lists. In the shared element list schema, only unique unit elements are stored; for
example, if two triangles share an edge, then the two vertices that comprise that
edge are shared, and need not be stored twice. Despite their simplicity, shared
element lists offer a number of benefits: highly efficient storage of the geometric
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Table 1 Currently implemented SIMPL geometries, along with their topology and associated
data types

NAME Topology Associated data Description

Unknown N/A Any The null geometry, used when the
underlying data have no spatial indices

Vertex 0 Vertex A set of points, or point cloud
Edge 1 Edge/vertex A set of edges, forming lines
Triangle 2 Face/edge/vertex A set of triangles, forming a surface mesh
Quadrilateral 2 Face/edge/vertex A set of quadrilaterals, forming a surface

mesh
Image 3 Cell A structured rectilinear grid composed of

pixels/voxels of constant resolution
Rectgrid 3 Cell An unstructured rectilinear grid,

composed of pixels/voxels of variable
resolution

Tetrahedral 3 Cell/face/edge/vertex A set of tetrahedra, forming a volume
mesh

Hexahedral 3 Cell/face/edge/vertex A set of hexahedra, forming a volume
mesh

Fig. 8 The inheritance hierarchy of SIMPL geometries. By providing abstract interfaces, repre-
sented in green, SIMPL allows for generic algorithm programming, reducing code replication

information, fast static access of the geometry, and the ability to store nonmanifold
simplices. However, shared element lists suffer from inefficient manipulations of
the geometry. For example, a shared element architecture is not suited toward mesh
refinement or decimation.
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Fig. 9 Schematic of an Nx1 attribute matrix. Objects may be elements, features, or ensembles.
(Figure reproduced from the DREAM.3D user manual)

SIMPL represents hierarchy within a given geometric dataset through the
concepts of features and ensembles. Features are groups of geometric elements.
For example, an EBSD scan may have its pixels grouped into grains under some
threshold for misorientation. Data may then be associated with these features,
such as size, shape, and average orientation. Features may also be grouped into
ensembles. In the EBSD example, grains may be grouped together based on their
crystal structure. Note that ensembles may also be grouped together recursively; all
subsequent groupings are also referred to as ensembles. Data are mapped between
levels of the scale hierarchy using an identifier array; this array denotes to which
feature or ensemble an object lower in the hierarchy belongs.

Associating data with geometries, features, and ensembles is organized through
attribute matrices. Attribute matrices themselves do not store heavy data; instead,
they serve to define the type of data being stored and its shape. Dense data are stored
in attribute array objects, which are contained within attribute matrices. There are
three general types of attribute matrices: element, which store data associated to
the unit elements of a geometry; feature, which store data for groups of elements;
and ensemble, which store data for groups of features. There are four types of
element attribute matrices, corresponding to the four basic unit elements: vertex,
edge, face, and cell. Other than a type, an attribute matrix also has a shape; in the
SIMPL ontology, this shape is referred to as the tuple dimensions. Figure 9 shows
an example attribute matrix of N objects, where the tuple dimensions are Nx1.
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For a raveled attribute matrix with scalar dimensions, the rows are comprised
of specific attribute arrays, while the columns represent particular objects. This
storage scheme generalizes to higher dimensions, where attribute arrays are stored
in hyper-rows and objects are denoted by the hyper-columns. Note that an attribute
matrix is extensible: new attribute arrays may simply be appended to the matrix
without the need for resizing. Attribute matrices may be interrogated in either
direction: obtaining arrays along (hyper)-rows, which return information about a
given attribute for each object, or property vectors along each (hyper)-column,
yielding a list of attributes for a specific objet.

Attribute arrays, the (hyper-)rows of attribute matrices, are the final leaves
of the overall data tree. These arrays store dense, heavy data. Arrays may be
multicomponent, defining a depth dimension at each tuple. The overall array shape,
tuple dimensions, is inherited from the dimensions of its parent attribute matrix.
SIMPL allows for any fundamental data type to be stored within an attribute array,
including various precision integers and floating point numbers. Attribute arrays
are stored compactly within attribute matrices, even if the arrays do not share the
same component dimensions: therefore, an attribute matrix is sparse in its depth
dimension, as shown in Fig. 9.

The SIMPL data structure is highly flexible and customizable. In order to
serialize it to storage, a data format must be used that is similarly flexible. SIMPL
utilizes the Hierarchical Data Format, or HDF5, as its data format [54]. HDF5 is
a binary file format whose data model allows for explicit hierarchy by organizing
information into groups, similar to folders on a file system, while dense data are
stored in datasets. SIMPL takes advantage of this model by mapping its data
container arrays, data containers, and attribute matrices to groups in an HDF5 file,
with attribute arrays being stored in datasets. An example mapping for a SIMPL
data file is shown in Fig. 10. HDF5 is an open standard which enables easy cross-
platform data sharing and data transfer to toolsets other than SIMPL or DREAM.3D.

Similar to SIMPL, HDF5 allows for dense data to have arbitrary shape and
component dimensions and store any fundamental data type. Critically, the analysis
workflow used to generate the SIMPL data structure is stored along with the data
within the SIMPL file, enabling reproducibility and archival.

5.2 Filters, Pipelines, and Plugins

SIMPL defines a standard interface for interacting with the data structure through
the concept of filters. A filter is simply a self-contained function that performs some
operational interaction with the data structure, such as creating a new object (i.e.,
computing some new information) or modifying an existing object. Filters adhere
to a standardized interface defined in an abstract base class. A critical feature of
filters is their ability to request parameters from a user and translate these requests
into queries of the data structure. For example, a user may select an attribute array
by supplying a filter with a path; the filter interface will then utilize this path to
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Fig. 10 Schematic of a SIMPL data structure storage scheme in an HDF5 file

access the array in the data structure and make it available for computation when the
filter runs. Importantly, filters are also capable of performing validity checks when
processing their parameters. This validation procedure is referred to as a preflight
state. During preflight, a filter performs the necessary validation checks, modifying
the data structure as needed by proxy: memory is not allocated and computations
are not run during preflight, but any object creation or removal is represented in the
data structure.

By creating a sequence of filters, a user instantiates a workflow that creates,
modifies, and saves a SIMPL data structure. This sequence of filters is referred
to as a pipeline. Pipelines orchestrate the task of requesting filters to preflight
themselves, ensuring that the overall pipeline is in a valid state before allowing
execution. Additionally, pipelines may be serialized using the JSON file format.
JSON enables a human-readable transfer format for saving user-defined pipelines;
the constituents of a JSON pipeline file are simply the sequence of filters with their
explicit parameter settings. Note that a JSON file can be encoded as a string; this
capability is leveraged to store the pipeline within the HDF5 SIMPL file schema as
a string dataset.

SIMPL provides an interface for defining self-contained groups of filters called
plugins. Programmatically, plugins are dynamically loaded libraries that comprise
a collection of SIMPL filters, along with any additional support code necessary for
the filters’ operation. DREAM.3D itself is simply a collection of SIMPL plugins
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with capabilities customized for materials data analysis. Since all interaction with
the SIMPL data structure is governed by a standardized interface, filters are able
to leverage functionalities across plugins, which results in less code duplication.
A canonical example is computing the size of features: this problem essentially
reduces to summing the volumes of each constituent element that belong to a set
of features. This computation is the same, regardless if the features define a set
of grains or a collection of pores. Thus, when adding new filters via plugins, a
developer can avoid re-implementing such a generic algorithm as size computation
and instead focus on designing those functions that are specific to the problem space.

5.3 SIMPLView: The Standard SIMPL Graphical Interface

SIMPL on its own does not require a user interface. SIMPL may be used as a
library, in which the data structure, filters, and pipelines would be accessible via
code; or using a command-line interface. SIMPL does contain a set of pre-defined
graphical widgets that allow developers to rapidly generate user interfaces. The
most widely used implementation of this feature is SIMPLView [52]. SIMPLView
is a basic interface to the functionalities of SIMPL, allowing users to construct
pipelines using a visual programming style. SIMPLView is most widely recognized
as the interface of DREAM.3D. Note, however, that SIMPLView may be swapped
with any other graphical interface implementation as needed; therefore, the user
experience is highly customizable to the particular application. SIMPLView is under
active development; the current incarnation of the interface is shown in Fig. 11.

The major components of SIMPLView are comprised of panes: the toolbox
pane, pipeline view, filter parameters, data structure, and pipeline issues and
output. The toolbox lists all available filters, both alphabetically and categorized by
functionality. Additionally, the toolbox stores bookmarks, which are the locations
of saved JSON pipeline files. The pipeline view is the main focus window of the
interface: here the user constructs a pipeline by building a sequence of filters. The
filter parameters pane shows the user what variables may be set for a selected filter
in the pipeline view. By using the data structure pane, the user may view the status
of the current SIMPL data structure, inspecting attributes such as geometry types
and array dimensions. Finally, any pipeline issues or output are shown in their
corresponding panes. When constructing a pipeline, SIMPLView communicates
the current pipeline state to SIMPL, which orchestrates the preflight procedure to
validate the settings provided by the user. If issues arise, the user is presented with
an error message in the pipeline issues pane. Recall that during preflight, no actual
computations are undertaken; the user must finish constructing a valid pipeline that
completes preflight without errors before execution is allowed. While SIMPLView
exposes only the basic operations of SIMPL, it does offer customization features: all
panes can be hidden or moved, and support is available for skinning the interface.

SIMPLView does not have present capabilities for visualization. Instead,
SIMPL leverages the open-source ParaView application to provide visualization
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Fig. 11 The current version of SIMPLView, as implemented in the DREAM.3D distribution, with
major components of the interface labeled. In this rendering, the pipeline issues and output are
hidden

capabilities. When exporting a SIMPL data file, the user may elect to write a
companion XDMF file, which is essentially an XML document that explains how
the data are organized in the HDF5 file [59]. ParaView has facilities to import this
XDMF file, allowing for efficient volumetric visualization of the data processed by
SIMPL.

5.4 DREAM.3D: An ICME Workflow Tool

DREAM.3D is essentially a set of SIMPL plugins customized to process materials
data. As such, it inherits all the benefits of the SIMPL data structure described above.
DREAM.3D contains a number of capabilities, including:

• Import and export of a variety of file formats, including many image formats,
FEM file formats, generic ASCII and binary files, HDF5 files, and the SIMPL
file format

• Feature identification approaches, such as expectation maximization, connected
components segmentation including metrics such as misorientation, and cluster-
ing approaches

• Texture analysis, including pole figure plotting, orientation distribution function
sampling, disorientation and average orientation computations, and fundamental
zone reductions

• Reconstruction of 3D data from 2D slices, for both images and crystallographic
EBSD measurements
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• Data processing and cleanup functionalities, including robust image processing
courtesy ITK

• Statistical computations such as feature size and shape distributions, histograms,
and distribution fitting

• Surface and volumetric meshing
• Instantiation of synthetic microstructures from morphological and crystallo-

graphic statistics, provided either from generative statistical models or experi-
mental measurements

Leveraging the above functionalities in concert with the flexibility of SIMPL, a user
can construct arbitrarily complex workflows for difficult ICME problems. In the
following section, such a problem is introduced as a case study to demonstrate the
utility of DREAM.3D.

6 Case Study: Ti-6242Si Pancake Forging

This section presents a case study for an ICME workflow concerned with quan-
titatively relating processing parameters in a titanium disk forging to measured
microstructure characteristics. Unless otherwise noted, all processing and analysis
steps presented were performed using DREAM.3D. This problem is a subset of the
workflow shown in Fig. 1. Specifically, we are interested in those procedures shown
in Fig. 12. A cylinder of Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242Si) with diameter
25.4 mm and height 38.1 mm was forged into a pancake with an average true
height strain of 1.07. After forging, the pancake was cross-sectioned radially
and characterized using both backscatter electron (BSE) imaging and EBSD.
Concurrently, the forging process was simulated using DEFORM®. This forging
was part of a larger study in which additional cylinders were excised from the same
parent billet and isothermally compressed. Specific experimental and simulation
details may be found in Pilchak et al. [60].

This work was motivated to develop quantitative relationships between process
history and resulting microstructure. Specifically, microstructure features of interest
are microtexture regions (MTRs). MTRs are relatively large (i.e., millimeters, to
centimeters) regions of similar crystallographic orientation that form in near-alpha
titanium alloys [61]. These regions have been identified as prime factors implicated
in dwell fatigue debits of titanium forgings [62, 63]. In order to understand the
impact the process state has on MTRs, the model output from DEFORM® was
fused with the characterization data. Then, the model data was zoned using an
approach from unsupervised machine learning, partitioning the forging geometry
into discrete regions of self-similar processing history. With the characterization
information colocated with these zones, an assessment can be made concerning the
types of microstructure expected for a given process. This zoning procedure has
the additional benefit of signifying to a designer which regions of a component
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Fig. 12 The specific workflow items for the titanium disk case study. Model data from a process
simulation produce continuum field variables, which are then reduced to zones. These data are
fused to characterization measurements, allowing for microstructure to be assessed per zone

are most distinct, serving as an indication for where additional measurements may
be prudent. For example, a zoning scheme may indicate where samples should be
excised for further mechanical testing. Here, we focus on the problem of relating
the zoned geometry to microstructure, instead of determining an optimal component
cutup.

6.1 Zoning Process Histories

The pancake forging process was simulated using DEFORM®. Since the geometry
is radially and axially symmetric, a single half cross-section was simulated in 2D.
The underlying quadrilateral FEM mesh was dynamically remeshed as appropriate
as the component was strained. DEFORM® optionally allows for tracking the initial
material points until the final time step. The total evolution of an example pancake
forging model is shown in Fig. 13.

For the present analysis, several field values were computed, including effective
strains, full stress and strain tensors, and damage accumulation. Together, these
fields yield a high-dimensional description of the forging process history. We wish to
develop a scheme that effectively zones this process history into discrete categories.
In the parlance of machine learning, this procedure can be considered an application
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Fig. 13 Evolution of an example 2D DEFORM® pancake forging model. The points represent the
tracked material points across all time steps, while the underlying mesh is for the final time step.
Elements are colored by their effective strain

of cluster analysis. Cluster analysis seeks to classify an input space such that points
that are most similar, according to some metric, are categorized in the same cluster
[64]. In the context of zoning, the clustering procedure would ideally be performed
on a latent space that best captures the process history relevant for the given
response. For this example, that response is the representation of microstructure
obtained from the EBSD and BSE measurements. While the relevant process history
may be some linear combination of the various time-dependent fields produced
from the DEFORM® simulation, we demonstrate a zoning procedure using only
the strain tensors from the final time step for simplicity. For the relevant simulation,
these strains are shown in Fig. 14. While the overall sample volume is conserved,
individual element volumes may not be preserved; hence, the 2D strain tensor at
a given element may not be uniquely symmetric. Thus, for this example, all four
components of the 2D strain tensor are used.

To produce a zoning of the strain tensors, we utilize the k-medoids algorithm
from cluster analysis [65]. k-medoids labels a set of points into k classes such that
each datum is placed into the cluster with the closest medoid value, where the
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Fig. 14 The strain components from the final time step of the DEFORM® simulation. The
underlying mesh has been emphasized to better show the quadrilateral geometry

medoid is a representative datum for that cluster. This approach is reminiscent of
the classic k-means algorithm, in which data are placed in clusters with the closets
cluster mean [66]. For a set of d-dimensional data points X = {xi} and k clusters
C = {ck}, k-medoids attempts to solve the following minimization:

min
C

k∑

i=1

∑

xi∈ck

d (xi,mk)

where mk is the medoid of cluster ck and d(a, b) is some distance metric between
points a and b. A benefit of k-medoids is the ability to customize the choice
of metric, which is useful for problems where the standard l2 norm may be
inappropriate. This optimization is computationally intensive; however, several
heuristic algorithms exist that perform well in practice. We utilize the partition
around medoids algorithm, which iteratively minimizes the total distances within
each cluster by recursively checking medoid candidates for a given partition,
reassigning points to new clusters as medoids are moved [65]. k-medoids has the
advantage of being unsupervised: the clustering model does not require training
data other than the input. However, the choice of k is problem dependent, and
imprudent choices of k may lead to spurious results. Various quality metrics exist
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Fig. 15 The clustering of the 4-dimensional strain space with k = 5 (left) and the corresponding
silhouette (right)

for determining the fitness of a particular choice for k. For a given set of clusters
C = {ck} and points X = {xi}, we define the following quantities:

ai =
∑

xj ∈ck,i
d

(
xi, xj

)

nk,i

where nk, i is the number of points in cluster k to which xi belongs and

bi = min
C

∑
xj /∈c,i

d
(
xi, xj

)

nk,j

Thus, ai represents the average distance of datum xi to all other points in their parent
cluster, and bi is the minimum average distance of xi to all other points in any other
cluster. The silhouette metric is then defined as follows [67]:

si = bi − ai

max {ai, bi}
The range of possible silhouette is thus −1 ≤ si ≤ 1. For a well-clustered datum,
ai � bi and si ≈ 1, whereas a datum that has been placed in an incorrect cluster
will have si ≈ − 1. Using k-medoids with a squared l2 norm, we cluster the 4-
dimensional strain space with k = 5 and compute the corresponding silhouette, as
shown in Fig. 15.

From the silhouette map in Fig. 15, we see that most data are effectively grouped
in their parent cluster. The data that are poorly clustered tend to lie along the
boundaries of zones, which is reasonable given the continuous nature of the strain
field.
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Fig. 16 The stitched cross-sectional EBSD montage of the pancake forging, colored using 001
IPF colors

6.2 Processing Characterization Data

In order to relate the zoned process history to microstructure, the collected char-
acterization data must be processed and relevant statistics extracted. The physical
pancake forging corresponding to the DEFORM® simulation in the above section
was cross-sectioned and imaged using both EBSD and BSE. Due to the size of
the specimen, both modalities required montage collections. Individual EBSD tiles
were collected with a step size of 15 µm and stitched together using the AnyStitch
software [68]. The stitched EBSD montage is shown in Fig. 16. After stitching,
alpha particles within the EBSD data were identified by segmenting using a 5◦
misorientation. These alpha particle orientations were then clustered into five zones
using k-medoids, and the resulting partition was spatially segmented to identify
individual MTRs. Additionally, several statistics about the MTR features were
computed, including areas, axis lengths, and morphological orientations.

The BSE imaging produced 979 2048×2048 image tiles with a pixel resolution
of 0.5 µm, collected with roughly 20% tile overlap. The total BSE montage was
constructed using the image stitching plugin in Fiji [69]. After stitching, the two-
phase structure was segmented by applying a simple threshold. An example BSE
tile and its segmented counterpart are shown in Fig. 17.

6.3 Registration and Fusion

In order to quantitatively assess the relationship between the process zones and the
resulting microstructure, the DEFORM® simulation must be registered and fused
with the EBSD and BSE characterizations. First, the EBSD and BSE montages are
cropped to only the right half of the images, since the DEFORM® simulation was
only run for one symmetric half of the forging. The DEFORM® and BSE montages
were then resampled onto image grids with 15 µm pixel spacing, the same as the
EBSD. The DEFORM mesh was resampled using nearest neighbor interpolation.
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Fig. 17 Original BSE tile (left) and corresponding binary segmented image (right)

Fig. 18 The mask of the identified component in each of the resampled datasets: EBSD (right),
BSE (middle), and DEFORM® (right)

For the BSE montage, a 15 µm window was passed over the segmented high-
resolution montage and the average value of the binary segmentation was computed
within this window. This procedure yields an alpha area fraction at each 15 µm
pixel.

The resampling procedure conveniently brings all datasets onto the same geomet-
ric topology; however, they are still misaligned relative to one another. To register
the datasets together, the component was first identified in each of the modalities.
Figure 18 shows these component masks.

Since the goal is to determine correspondence between process zones and
microstructure, we do not wish to a priori assume any relationships that would bias
the registration. Instead, we identify the component geometry in each modality since
we expect it to be relatively invariant between each dataset. Thus, the component
geometry itself can be used as a registration datum. To obtain points for registration,
the exterior of the masks shown in Fig. 18 are regularly sampled. These sampled
points are shown in Fig. 19.
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Fig. 19 Sampled exterior points, used for registration, from each of the modalities

We compute the transform that best brings sampled points into alignment using
a least-squares approach that is robust to noise [70]. The goal is to estimate the
rotation R, translation t, and scaling s that best minimize the squared error between
two sets of points, X ∈ R

d and Y ∈ R
d:

ε2 (R, t, s) = 1

2

∑n

i=1
‖yi − (sRxi + t)‖2

The above minimization is possible for solutions in R, t, s from the following
equations:

R = USV T

t = μy − sRμx

s = 1

σ 2
x

tr(DS)

where UDVT is the singular value decomposition of XYT and

S =
{

I, det
(
XY T

) ≥ 0
diag (1, 1, . . . , 1,−1) , det

(
XY T

)
< 0

μx and μy are the average positions of X and Y, and σ 2
x is the variance of X.

Using the above approach, the EBSD registration points were first transformed to
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Fig. 20 Zoned regions of process history colored by MTR areas (left) and alpha area fraction
(right)

the DEFORM® reference frame, with both datasets followed by being transformed
to the BSE reference frame. After applying the transformations on the resampled
image geometries, the resulting aligned images were fused on the same grid using
nearest neighbor interpolation. On this new resampled geometry, the strain tensors
from the DEFORM® simulation were rezoned using k = 5. After performing this
fusion, it is possible to assess microstructure characteristics per zone. Figure 19
shows the process zones colored by different aspects of the microstructure. In
Fig. 20, the average MTR area, as measured from the EBSD, and alpha area fraction,
determined from the segmentation of the BSE image montage, are shown for each
zone. Note that since the data have been fused onto the same geometry, this approach
presents a direct comparison between the zoned process variables and the resulting
microstructure. The average MTRs are much larger in the zones that correspond to
regions of large strain, as compared to the zones central to the forging. The alpha
area fraction, however, does not vary substantially with the strain zones.

This visualization demonstrates the power of a flexible ICME tool: the ability to
simultaneously represent various geometries (i.e., images, meshes, and points), data
shapes (i.e., tensorial strains, vector orientations, and scalar image intensities), and
complex hierarchy (i.e., zoned process variables, identified MTRs, and segmented
BSE images) allows for novel analyses to be conducted. DREAM.3D, by leveraging
SIMPL, is able to effectively manage these disparate data streams and orchestrate
their fusion to produce actionable information. Thanks to the reusability of filters
via plugins, characterization steps such as computing sizes of features or finding
average values within features did not require reimplementation, freeing the devel-
opment time to be spent on devising a robust zoning and registration procedure.
Additionally, since SIMPL archives pipeline information along with the raw data,
researchers are able to confidently store data and reproduce workflows as needed.
Indeed, the authors greatly benefited from this functionality in constructing figures
for this use case.
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7 Summary

We have presented an overview of the ICME software applications available to a
modern materials researcher, with a focus on simulation and analytics tools that
generate and process field data. In order to properly handle the myriad kinds of
information these tools produce, we have sketched an outline of the requirements
that an ICME workflow manager should aspire to address. We define requirements
on such a tool’s data structure, modularity, data access, and workflow capabili-
ties. As an example of one tool that satisfies these requirements, we showcased
SIMPL, the Spatial Information Management Protocol Library, along with its
most prominent user, the Digital Representation Environment for the Analysis
of Microstructure in 3D, or DREAM.3D. To demonstrate how DREAM.3D can
leverage SIMPL’s features, a case study was outlined that shows how to address a
common problem in ICME workflows: quantitatively relating process simulation to
measure microstructure. This worked example showed how process variables from
a forging simulation of a Ti-6242Si cylinder could be directly coupled with resulting
microstructure characterized using EBSD and BSE imaging.

As a community, materials research and development must still make progress on
developing easily shareable toolsets for analysis, driven by the continuing adoption
of ICME techniques and data-driven methods. Other fields, such as bioinformatics,
have made this transition successfully; the materials community should heed the
lessons learned from these other sister fields and seek to grow tools that foster devel-
opment on those problem spaces unique to materials. Additionally, teaching the next
generation of materials researchers how to reason through materials problems with
an ICME lens is paramount. Developing robust, standardized, and open tools for the
growing community ensures that the goals of ICME are achievable.
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