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Preface

The Integrated Computational Materials Engineering (ICME) thrust is an inte-
gral part of the Materials Genome Initiative (MGI) that has been launched to
advance multi-scale materials modeling for addressing complex materials structure-
property-performance-processing relationships. It is viewed as the integration of
computational tools for materials discovery, design, and sustained development,
with information technologies, component design systems, and manufacturing
process simulations, to foster improved product performance, manufacturability,
and sustainability. The ICME thrust is aimed at novel innovations in fundamental
science and engineering of materials for providing significant tools that can bridge
the gap between materials engineering and component design. Robust theoretical,
computational, and experimental methods pertaining to materials, performances,
and process models are emerging as a consequence of this thrust. High-performance
structural applications that have been hitherto restricted to available structural
materials with limited ability to integrate new materials into the design process are
now opening up to new possibilities with the advances made in this thrust.

While structural engineering has greatly benefited from the introduction of
effective computational tools, such as finite element, finite difference, and boundary
element methods, advances in computational and experimental methods have
been more piecemeal for the materials community. This is due to the underlying
complexities in processing-structure-property relationships for different classes of
materials like metals, polymer matrix composites, and ceramics. The materials
science paradigm for structural materials relates the internal structure, produced
through processing, to the desired properties and response. The ICME approach
has helped create synergistic advances in materials research, blending advanced
computational mechanics with materials characterization, multi-scale modeling,
and experimental property acquisition, providing a strong computational backbone
for integrating computational tools and data handling methods with high pedigree
experimental methods for accelerating materials transition into component design
to achieve improved product manufacturability, performance, and sustainability.
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viii Preface

In the spirit of fostering foundational advances in computational and experimen-
tal methodologies supporting the ICME theme, the Materials and Manufacturing
Directorate of the Air Force Research Laboratory at Wright Patterson Air Force
Base and the Air Force Office of Scientific Research jointly initiated the Center
of Excellence on Integrated Materials Modeling (CEIMM) in 2012, with Johns
Hopkins University as the lead institution. Other major partners were the University
of California at Santa Barbara and the University of Illinois at Urbana-Champaign.
CEIMM was focused on the development of fundamental science and common
threads of computational and experimental methods pertaining to structural mate-
rials. The central philosophy was to overcome limitations of empiricism-based
phenomenological models through physics-based 4-D spatiotemporal multi-scaling
approaches, transcending materials classes and boundaries between computational
materials science and computational mechanics. Research in CEIMM has developed
novel theoretical, computational, and experimental methods for advancing the
state of the art in science and engineering of ICME-related fields without being
material-specific. This includes mechanical modeling of high-temperature metals
and composite materials including predicting spatial and temporal response and
properties like strength, crystal plasticity, fracture, and fatigue. Significant advances
have been made in computational multi-scale modeling, materials characterization,
and experiments to efficiently describe the evolution of heterogeneities and outlier
structures and their effect on the balance of structural properties. A suite of methods
and models have been developed for two classes of structural materials, namely,
nickel-based superalloys and epoxy-matrix carbon fiber composites. The unifying
platform is accomplished through the incorporation of fundamental physics-based
multi-spatial and temporal scale modeling, in lieu of conventional empiricism.

This book discusses significant research advancements in ICME that have
taken place under the aegis of CEIMM. It includes contributions from other
thought leaders in the field, who are leading researchers in ICME from prominent
academic institutions and government laboratories. It also introduces theoretical,
computational, and experimental methods, advancing the state of the art in science
and engineering of the ICME fields for structural materials. A special focus is on
two structural materials listed below:

1. Ni-based superalloys, e.g., René 88DT, characterized by polycrystalline
microstructures with sub-grain heterogeneities in the form of secondary γ − γ ′
phases;

2. Polymer matrix composites with carbon fibers in epoxy matrix.

Four themes are broadly addressed in this book. They are:

• Multi-scale Data Acquisition, Characterization, and Image-Based Virtual Mod-
els: This introduces methods of acquiring high-fidelity materials microstructural
data and methods of advanced microstructural characterization and addresses the
generation of three-dimensional statistically equivalent virtual models.
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• Physics-Based Multi-scale Model Development: The development of image-
based micromechanical computational models with morphological and crys-
tallographic details is discussed. The models represent dominant deformation
and failure mechanisms at each scale. Comprehensive methods of identifying
representative volume elements (RVEs) based on microstructure and materials
response or properties are detailed. Associated boundary conditions for RVEs
with non-uniform microstructures are derived. Hierarchical multi-scale models
for connecting mechanisms at different scales are discussed. Spatial scales
encompass atomistic scales, mesoscales of coarse-grained models and discrete
dislocations, and microscales of polyphase and polycrystalline microstructures.

• Experimental Methods for Constitutive Models and Failure Processes: Novel
experiments for aiding the development of computational models, with infor-
mation on mechanisms and data for calibration and validation are addressed.
Experiments characterize relevant properties and microstructural responses over
a range of operating conditions.

• Probabilistic Modeling and Uncertainty Quantification: This discusses proba-
bilistic models accounting for stochastic distributions of materials microstructure
and properties.

The relations between microstructural morphology, crystallography, and
mechanisms to the materials response at different scales are investigated.

This book is a collection of 14 chapters that discuss aspects of ICME develop-
ments, ranging from physics-based multi-scale computational methods to experi-
mental data acquisition and uncertainty quantification. The first eight chapters deal
with experiments and modeling of polycrystalline alloys, with a focus on Ni-based
superalloys. Chapter 1 details methods of 3D microstructural data acquisition for
predicting monotonic and cyclic properties of superalloys. It provides information
on the distribution of important structural features, namely, precipitates, annealing
twins and grains. Data structures and workflow tools for generating and analyzing
materials data in an ICME context are discussed in Chap. 2. Chapter 3 details funda-
mental aspects of statistically equivalent virtual microstructures and microstructure
and property-based statistically equivalent representative volume elements (M-
SERVE and P-SERVE) of Ni-based superalloys at multiple scales. The two specific
scales considered are the sub-grain scale of intragranular γ − γ ′ microstructures
and the polycrystalline scale of grain ensembles with annealing twins. Chapter 4
provides an overview of micro-tensile experiments and characterizations for the
superalloy René 88DT. A computational micromechanics model of the polycrys-
talline superalloys application to Inconel 718 is presented in Chap. 5. A combination
of simulations and tests, together with computational homogenization strategies,
is used to predict the mechanical behavior of these superalloys. A comparison
of deterministic and non-deterministic calibration methods for crystal plasticity
model parameters is made in Chap. 6. Chapter 7 reports on the soft-coupled linkage
between a macroscale damage model and mesoscale calculations of a suite of
polycrystal instantiations of tantalum. A macroscale model is used to represent a
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tantalum on tantalum plate impact experiment and predict the point in time in the
loading profile when porosity is likely to initiate. Chapter 8, the last chapter in the
category, projects a framework for quantifying effects of characterization error on
the predicted local elastic response in polycrystalline materials.

Chapter 9 presents a unique materials agnostic data-driven framework to develop
structure-property linkages and addresses curation of materials’ knowledge from
the available data sets in computationally efficient manner to extract and use
the processing-structure-property relationships. Chapters 10 through 13 focus on
the development of ICME-related techniques for polymer matrix composites.
Chapter 10 provides a review of multi-scale modeling efforts involving molecular
dynamics modeling of epoxy and epoxy-based composites for structural, ther-
mal, mechanical, and interfacial properties. In Chap. 11, a novel microstructural
statistics-informed boundary condition has been developed for statistically equiv-
alent representative volume elements (serve) of polydispersed elastic composites.
Chapters 12 and 13 relate to transverse failure of unidirectional composites,
including sensitivity to interfacial properties and geometric modeling. Chapter 14,
the final chapter, deals with the challenges in modeling dynamic behavior of
granular media, reactive powder mixtures, energetic and composite materials, and
multiphase materials. It discusses possible ways of exploring topology, property
contrasts, and microstructural morphology to link dynamic response to micro- and
mesoscale behavior.

It is our expectation that this book will address many of the current gaps in the
ICME theme and will be a leading resource for practitioners of ICME. The materials
presented in this book will enable researchers in academia, government labora-
tories, and industries to comprehend and approach ICME-related issues involved
in predicting materials performance and failure with a focus on the structure-
materials interaction. The book is expected to be an important scientific compilation
of high value to the ICME community, especially in mechanical engineering,
materials science and engineering, aerospace engineering, civil engineering, and
other disciplines. We gratefully acknowledge the research support from the Air
Force Office of Scientific Research (Program Managers Drs. Fariba Fahroo and
Ali Sayir) and the Air Force Research Laboratories (Chief Scientists Dr. Barry
Farmer and Timothy J. Bunning). This work would not have been possible without
the financial and technical support of Johns Hopkins University and the Air Force
Research Laboratory’s Materials and Manufacturing Directorate. Chris Woodward
recognizes the insightful discussions with Dr. Jeff Bauer during the conceptual
phases of the center and the significant contributions and guidance of Dr. Tim
Breitzman during the first 2 years of the project.

We, the editors, would like to extend our sincere thanks and appreciation to all
the contributing authors of this volume for embracing our vision and providing
excellent state-of-the-art articles on different topics in the general field. We are
also thankful to the Springer editorial staff for their support with the production
of this book. Somnath Ghosh expresses his love and deep appreciation to his wife,
Chandreyee, for her constant encouragement and support throughout this project.
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Acquisition of 3D Data for Prediction
of Monotonic and Cyclic Properties
of Superalloys

McLean P. Echlin, William C. Lenthe, Jean-Charles Stinville,
and Tresa M. Pollock

1 Superalloys and Fatigue

Turbine engines have continuously improved in performance and efficiency due
to advances in materials and coatings, combined with the application of advanced
thermomechanical, heat transfer, and aerodynamic design methodologies. Turbine
disks are among the most safety-critical components in an aircraft engine and have
therefore been the subject of extensive development and characterization studies
[1–3]. Polycrystalline nickel-base superalloys are the typical material of choice
for turbine disks due to their high fatigue resistance and ultimate tensile strength
and good thermomechanical and thermochemical stability at elevated temperatures
[4, 5]. Powder metallurgy processing is used to produce disk components with
highly controlled grain size distributions, controlled inclusion (carbide and nitride)
content via powder stock filtering, and near net shape part geometries [1–5].
Inclusion content and grain structure have both been shown to be influential in the
fatigue life of disk alloys [6, 7]. An improved predictive capability of the mechanical
performance of these alloys is required to enhance life prediction and reliability as
well as guide the development of new alloys and processing paths.

Predicting fatigue properties of superalloys is particularly challenging, due to
the localized character of the plasticity during cycling and its strong dependence
on material structure. The schematic in Fig. 1 shows the microstructure of a
polycrystalline superalloy, containing annealing twins as well as the L12 γ

′
precipitate strengthening phase, and the approximate length scales at which they
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2 M. P. Echlin et al.

Fig. 1 Turbine disks (left) are often made from supersolvus nickel superalloys, such as René
88DT. This class of polycrystalline superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm as shown on the right) to twin related domain
structure (10’s–100 μm as shown in the center) with grains containing multiple, fine twinned
structures of varying sizes that are crystallographically related to the parent material. They are
strengthened by L12 γ

′ precipitates, which can exist over a range of length scales, depending on
the processing conditions. Populations of secondary and tertiary γ ′ particles exist within the γ
matrix phase (right), with the secondary particles typically being around 100 nm in diameter in
René 88DT

exist. The fraction of �3 annealing twin boundaries, a product of the processing
path, can approach 46% by 2D measurement [8] or 70% by 3D measurement of
the total boundary length fraction [9]. There is relatively limited crystallographic
texture in these materials as a result of powder metallurgy processing or forging
under nominally superplastic conditions. Depending on the alloy composition and
processing route, populations of secondary and tertiary γ ′ particles exist within the
γ matrix phase. The γ ′ precipitates inhibit the passage of dislocations through
the γ matrix [5, 10], by requiring them to either shear through or bow around
the ordered precipitates or cross-slip to continue to glide, effectively strengthening
the material up to the solvus temperature of the precipitates. Typically, powder
metallurgy consolidated components are oil quenched from near 1150 ◦C and then
aged at 760 ◦C to produce a volume fraction near 40% of secondary and tertiary γ ′
precipitates [3].

In powder metallurgy superalloys such as René 88DT [1–3] cracks initiate in
large grains that are in the tail of the size distribution and contain favorably oriented
annealing twin boundaries [8, 11, 12] or at nonmetallic inclusions [7, 13, 14].
Though the annealing twin boundaries form during thermomechanical processing,
the mechanisms by which they form are still not understood well enough to fully
control their size and distribution. The relatively small grain size combined with
moderate levels of L12 ordered precipitates imparts yield strengths above 1 GPa [4].
The relatively small grain size also limits the maximum length over which strain
localization and slip events can occur over [6, 15, 16], before impinging on the
adjacent high angle grain boundary, causing dislocation pileups.
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Fatigue cracks typically initiate at the “weakest link” of the material structure.
Rigorous models for fatigue thus require knowledge of the volume of the material
that must be interrogated to capture the “rare” combinations of material structure
that result in early strain localization and subsequent crack initiation [6, 7]. This,
in turn, requires three-dimensional information on the distribution of important
structural features: precipitates, annealing twins, grains, and in some cases carbides,
nitrides, and oxides.

Nickel-base superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm) to twin related domain structure
(10’s–100 μm) with grains containing multiple, fine twinned structures of varying
sizes that are crystallographically related to the parent material.

2 Importance of 3D Data

Many materials can be characterized using targeted 2D sections to analyze the
microstructure, especially when the microstructure is isotropic and its features can
be captured with well-known distributions [17, 18]. However, 2D inferences about
structure and crystallography will be incomplete when investigating materials with
rare features or heterogeneously distributed microstructure [17, 19, 20].

Nickel-base superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm) to twin related domain structure
(10’s–100 μm) with grains containing multiple, fine twinned structures of varying
sizes that are crystallographically related to the parent material. Full 3D characteri-
zation is required to quantify the geometrical characteristics of the twins as well as
to capture the five grain boundary parameters (three orientation parameters and two
boundary normal parameters) [21–23]. The twin structures, which have been shown
to be critical for the localization of strain [15, 16] and eventually the initiation of
fatigue cracks [8, 11, 12], can be thin compared to the grain structure (μm thick)
and may or may not extend across the entire grain.

A range of 3D tomography techniques have emerged in recent years that utilize
femtosecond pulsed lasers [24, 25], mechanical polishing [26–29], broad ion beams
[30], focused ion beams (FIB) [31–33], plasma FIBs [21, 34], and microtomes or
serial block face SEM imaging [35, 36] to remove material in a serial sectioning
approach. If only grain information is needed, then a combination of near-field [37–
39] and far-field X-ray imaging allows for direct, nondestructive 3D characterization
[40–44]. With current data collection and reconstruction methods, the X-ray
diffraction methods have difficulty reconstructing crystallographic features that are
below 5–10 μm in size, including fine twin structure, and also with crystals with
preexisting strain gradients such as in samples that have been plastically deformed.
Here we focus on serial sectioning approaches, due to the presence of thin micron-
scaled annealing twins which are challenging to characterize with X-ray techniques.

Manual serial sectioning polishing techniques are effective for relatively coarse
sectioning resolutions, especially if fiducial depth markers are incorporated; how-
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ever much more advanced robotic polishing systems have been developed for
optical imaging [45] and electron microscopy [26–29]. Currently, cm3 volumes have
been captured using the AFRL/RoboMet LEROY sectioning systems, as well as
entire turbine blade components [46] using manual polishing approaches. For SEM
imaging combined with robotic serial sectioning, the vacuum cycling and sample
transfer time sets a limit on the minimum cycle time, which makes experiments
with limited SEM imaging more time-consuming compared to other electron-optics-
based serial sectioning systems.

FIB and Xe-plasma FIBs (PFIB) are rather limited with respect to the total
accessible volume that can be analyzed as well as the types of material and speed
at which materials can be sectioned. Microtomes have been shown to be useful,
but primarily for biological samples and soft structural materials such as aluminum
and polymers, and microanalytical analysis is challenging due to the extreme
mechanical deformation imparted at the cut face.

X-rays have proven difficult to access large volumes of material with μm-scale
microstructural features, although the techniques for software reconstruction are
rapidly improving allowing access to deformed metallic samples [47, 48] and in situ
dislocation imaging [49]. The advantages of X-ray diffraction contrast tomography
(DCT) and the TriBeam femtosecond laser-based technique can be found elsewhere
[50]. The resolution of synchrotron DCT and the high energy diffraction microscopy
(HEDM) have dramatically improved [47], especially due to new reconstruction
algorithms that identify grains and diffraction spots. These codes are actively being
improved by the growing community of DCT users and scientists, facilitated by the
open repositories at the beamlines and the open-sourced nature of the code. Routine
access to synchrotron facilities can be challenging and requires careful preparation,
motivating efforts for the development of a range of lab-based X-ray techniques that
can be made available more broadly and with short notice. The available lab-scaled
DCT systems [51, 52] are most effective for in situ experiments on materials with
coarser grains than those accessible by synchrotron X-ray diffraction experiments
and mostly for undeformed samples; however the reconstruction codes and scanning
speeds are improving rapidly.

3 The TriBeam

The TriBeam microscope, shown in Fig. 2, is a modified FEI/Thermo Fisher
Scientific Versa 3D focused ion beam scanning electron microscope (FIB-SEM)
designed for high-speed, low-damage, bulk (mm3-scaled) serial sectioning [24, 25].
A femtosecond laser beam has been incorporated into the FIB-SEM chamber
with scanning lens, optics, and an alignment system. Multimodal data may be
collected between material removal steps using a range of detectors for grain orien-
tation information (electron backscatter diffraction – EBSD), chemical information
(energy dispersive X-ray spectroscopy – EDS), atomic density (backscatter electron
detector), and topographical and morphological information (secondary electron
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Fig. 2 The TriBeam microscope. The optics and beamline is contained within the red box on the
right. The electron and focused ion beam are indicated. The femtosecond laser and beamline are
directly aligned into the FIB-SEM via a coupled floating optics table

detector). Previous studies have shown that the damage resulting from femtosecond
laser ablation is limited to dislocation injection in structural materials [53, 54]. To
date, a wide range of materials including metals [55–57], ceramics [50], composites
[58], and semiconductors [59] have been imaged in 3D using the TriBeam. The
stock mechanically driven microscope stages are used to position the sample into
the scanned laser beam (down to 0.5–1 μm slice thickness), or custom attocube
piezoelectric stages can be utilized for slice thicknesses below 1 μm. However, the
reliability and stiffness of the stock microscope stages are superior.

A typical 3D nickel dataset contains several hundred slices, with each slice
requiring 1–100 min for acquisition, depending on the imaging modalities, imaging
resolution, and whether FIB cleanup is required. The femtosecond laser ablation
material removal step (1–3 min) is a very small fraction of the total slice time, which
is typically dominated by the resolution at which EBSD data is gathered and whether
FIB cleanup is performed.

The data in Table 1 shows the slice times that would be required for a hypothetical
collection of a 1 mm3 volume TriBeam dataset, with and without FIB cleanup
and with 1 μm cubic voxels. Ga+ FIB cleaning requires approximately 1 min per
every 20,000 μm2 at glancing angles between 3 and 10◦. The time required for
cleanup does not change with glancing angle because the FIB dosage per area
is held constant, resulting in increased dwell times at more glancing FIB beam
angles. Experiments that do not require a FIB cleanup step reduce the total cycle
time significantly, as shown in the last column in Table 1. Materials that do not
require FIB cleanup in order to obtain acceptable quality EBSD patterns generally
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Table 1 Times and percent of total cycle time required for imaging steps, material removal, stage
moves, and surface cleanup that would be required during a 1 mm3 experiment with 1 μm cubic
voxel resolution

Operation Slice time (min) % of total cycle time % of total cycle time (no FIB)

EBSD 30 33.7 76.9

Glancing FIB 50 56.1 -

SEM imaging 3 3.4 7.7

Fs laser Abl. 3 3.4 7.7

Stage moves 3 3.4 7.7

have good thermo-mechanical properties [53, 54]. Furthermore, new TriBeam
instruments [60] that are based on a Xe-plasma FIB (PFIB) platform can perform
focused ion beam cleanup with 30 kV and μA’s of current, reducing the cleanup
time by at least a factor of 20×. However, PFIB ion columns are still 3–4 orders
of magnitude slower in terms of material removal speeds than a femtosecond laser,
affirming the need for a multibeam system. The EBSD collection times described
can easily scale to be much longer if the mapping resolution in x and y is finer than
1μm over a 1 mm2 mapping area.

The latest CMOS-based EBSD cameras can collect patterns at rates up to 3000–
5000 points per second. These cameras attain high pattern collection speeds through
binning modes, whereby the full resolution of the camera is reduced by averaging
the intensity from square regions of pixels. Binning increases the electron collection
per binned pixel area and therefore allows for the reduction in exposure times,
increasing pattern collection speed. Furthermore, the binned pattern resolutions
are reduced, expediting the transfer rates between the hardware and decreasing
computational times for indexing. These very high speeds are useful for gathering
information suitable for grain mapping of single phase materials that diffract well,
using Hough-based EBSD pattern indexing [61, 62]. In practice, larger EBSD
pattern sizes are required for gathering more detailed information than grain maps
while using Hough indexing, such as subgrain misorientation gradients, multiple
phase indexing, and overlapping pattern information near grain boundaries. In
this case, a longer exposure time and lower binning modes are necessary (slower
collection speeds) for enhanced EBSD band contrast, typically yielding speeds of
500–800 EBSD patterns collected per second (50–80% of maximum). For instance,
in order to collect a 3D EBSD dataset with well-defined subgrain orientation
gradients, then the EBSD collection rate would likely need to be under 1500 pps.
New methods such as dictionary indexing (DI) [63–67] and EMSphInx [68] are
able to index EBSD patterns with relatively small resolutions (72 × 72 pixels),
high noise, and low band contrast while maintaining angular orientation indexing
resolution of 0.2–0.8◦ [69]. DI is substantially slower than Hough indexing however,
currently limiting it to be an offline post-processing indexing mode, although the
emerging EMSphInx method promises to increase the indexing speeds substantially
[68].
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The following actions may be incorporated into the workflow for a 3D exper-
iment, depending on the data necessitated: femtosecond laser ablation and pole
piece shutter insert/retract, glancing angle FIB milling (cleanup), stage movements,
precision stage positioning by fiducial alignments with image processing scripts,
detector insert/retracts (EBSD, EDS, BSE), EBSD data collection, EDS mapping,
SE/BSE image collection, image processing for on-the-fly feature identification and
FIB cleanup, automated electron beam tilt alignment and current measurements, and
laser beam stability and power measurements. The example data collection times in
Table 1 have been simplified to the primary detector imaging modes, laser ablation,
FIB cleaning, and stage movements. More details about the TriBeam tomography
setup can be found here [24].

3D datasets of nickel disk material were collected at different resolutions, as
shown in Fig. 3, in order to characterize the γ ′ precipitates, high-resolution twin
structure regions, and large volumes for grain and twin scale information. The
resolution and sizes of the TriBeam datasets are summarized in Table 2.

A γ ′ precipitate dataset was collected from René 88DT using a FEI Quanta 3D
DualBeam FIB-SEM with a ion beam sectioning resolution of 20 nm. A total volume
of 5 × 4.25 × 4.5 μm was reconstructed from 221 slices. BSE images from this
dataset were segmented in the ImageJ/FIJI software package [70] and reconstructed
to measure precipitate characteristics in this René 88DT polycrystalline superalloy.

Fig. 3 TriBeam and FIB serial section datasets were collected from Ni-base disk material at
resolutions to capture (left) large volumes of grain and twin data, (center) a high-resolution dataset
containing detailed twin boundary regions, and (right) the γ ′ precipitates. The precipitate dataset
coloring is showing individual precipitates as different random colors, whereas the grain and twin
scale datasets are colored by IPF coloring

Table 2 Resolution, size, and dimensions of René 88DT 3D EBSD serial section datasets
collected using the TriBeam microscope

Name Resolution (μm) Size (voxels) Dimensions (μm)

Twin scale 0.10 × 0.10 × 0.50 742 × 993 × 140 60 × 70 × 70

Grain scale 0.30 × 0.30 × 0.75 802 × 482 × 199 240 × 145 × 130

Crack 0.30 × 0.30 × 0.75 429 × 757 × 127 120 × 200 × 90

Inclusion 0.55 × 0.55 × 0.75 534 × 802 × 143 400 × 600 × 105
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Fig. 4 The 3D EBSD data that is produced by the TriBeam requires a number of post-
processing steps, which are described schematically here. Each dataset requires somewhat different
parameters; however the core structure of that processing is relatively constant

A series of 3D EBSD TriBeam datasets were collected at various resolutions
and at targeted features, including a fatigue crack initiation site and from a region
where high-resolution digital image correlation (DIC) strain information had been
collected [15, 71]. The characteristics of these René 88DT datasets are listed in
Table 2, as well as an identifying name.

The workflow for acquiring, reconstructing, and analyzing 3D datasets is shown
in Fig. 4. Briefly, this workflow includes defining data collection parameters that
are closely tied to an understanding of the problem to be solved. These parameters
include the 3D resolution necessary to capture the relevant microstructural features,
which imaging modalities are required, or very specific parameters such as EBSD
dwell time for pattern diffraction quality or potential pseudosymmetry complica-
tions [72–74]. Reconstruction of the 3D data happens next in the workflow, where
a finalized dataset will be defined for analysis. Slice alignment, data cleanup, image
segmentation, artifact removal, and distortion correction may be performed during
this step. Data cleanup and artifact removal are always rooted in an understanding
of the material via detailed 2D characterization. For instance, a minimum grain
size filter may be applied if it is well-known that grains of a very small size do
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not exist. Analysis of the data may be either based on voxelized or meshed data
formats, depending on whether access to microstructural descriptors is desired, or
direct property simulation. However, some microstructural descriptors may require
meshed data formats as well, such as grain boundary inclinations.

For TriBeam EBSD datasets, DREAM.3D [75] is used to perform all reconstruc-
tion steps except for distortion corrections, which are performed using the methods
described for strontium titanate [50] and a nickel superalloy [76]. The reconstruction
steps can be clustered into four major groups: slice alignment, data cleanup, grain
or feature segmentation, and artifact removal.

Although generating a preliminary dataset reconstruction is trivial with modern
software tools, creating a high-quality reconstruction is still a significant challenge
and often requires more time than dataset collection. Procedures that reduce
noise or improve data quality greatly enhance the ability to extract high fidelity
information from the dataset for modeling. Alignment and segmentation are by far
the most difficult tasks. Alignment can be particularly challenging for small datasets
where the morphology of a few dominant features dictates shifts computed during
registration. Creating sample pedestals like the one fabricated using wire EDM
shown in Fig. 5 that are small enough to collect data from the entire sample surface
makes alignment significantly easier, and recovering the original sample shape
provides a simple validation of alignment quality [20]. The pedestal fabrication
procedure is a coarser scaled equivalency to the FIB procedures pioneered by Uchic.
In many instances the pedestals used to collect data shown here were of the order
of 1 × 1 mm in cross section by several mm in height. Orientation gradients and
systemic misindexing due to pseudosymmetry are the most serious challenge for
segmentation, when present.

Dataset volumes can become many terabytes in size, mostly due to the collection
of raw EBSD patterns (EBSPs) or full spectrum EDS maps. The approximate scale

Fig. 5 Wire EDM is often
used to create custom
mm-scaled sample pedestals
for targeted and untargeted
TriBeam sectioning. The
roughly 10 μm EDM
heat-affected zone is
mechanically polished away
before TriBeam experiments
or is located adjacent to a
region where data will not be
collected. The pedestal
geometry is used in order to
reduce material redeposition
during laser ablation and to
prevent shadowing of the
EBSD signal at high sample
tilt angles
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Fig. 6 Data usage is shown for the imaging modalities available during a hypothetical TriBeam
experiment all scaled up for collection of 1 mm3 of material at 1 μm cubic voxel size. Raw EBSPs,
indexed EBSD maps, and EDS data take up the majority of the total data stored, with the rest being
attributed to SEM images and metadata

of data usage is described in Fig. 6, where imaging data takes up much less than
1%, and the balance being EBSD indexed data, raw EBSPs, and full spectrum
EDS data. EBSPs are stored so that re-indexing of the grain orientations can be
performed with EMsoft dictionary indexing [63–66, 77], EMSphInx [68], or with
higher-resolution Hough indexing parameters in the EDAX software OIM Analysis
[78, 79]. EBSPs can scale to much larger sizes, depending on the EBSD detector
resolution and whether a binning mode is used. For instance, using a EDAX Hikari
camera to capture EBSPs at each mapping location can generate patterns of size
76 × 76 pixels for 6× binning (as shown in the example in Fig. 6) up to full
resolution patterns of roughly 480 × 480 pixels. Full spectrum EDS mapping also
can require massive amounts of data storage, with 1000 channels typically recorded
per 10 kV electron beam energy. Depending on the data type chosen to store the
arrays and assuming 30 kV electron accelerating voltage, 3–12 KB is consumed for
each spectrum, resulting in 3–12 GB per mm2 mapping area at 1 μm resolution. The
challenges with gathering such large full spectrum EDS data and detailed analysis
are described in more detail elsewhere [80]. During an experiment, metadata such
as the detector configurations and calibrations, stage position logs, hardware error
logging (microscope, femtosecond laser and output, optics beamline, EBSD, EDS),
and script parameters are all stored in HDF5 data containers similar to those
formulated by Jackson and De Graef [81].
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4 Targeted 3D Data

The microstructural configuration (neighborhood) is demonstrated to be influential
to the initiation of fatigue cracks [6, 7, 9, 82]. A postmortem analysis of fatigue
samples is a good way to identify systematic microstructural characteristics that
result in fatigue cracks. Samples of René 88DT were cycled with fully reversed
loading and then interrupted at 80% lifetime (R = −1, 1 Hz, peak load 758 MPa)
such that the regions surrounding the initiated fatigue cracks could be investigated.
Previous work has shown that this polycrystalline superalloy spends much of its life
(80%) initiating cracks [82], before they propagate into the next few grains and then
begin short crack-type growth.

A dataset was gathered in the TriBeam system from a region where a typical
fatigue crack had initiated. The FIB was used to clean a 250-μm-wide region after
femtosecond laser ablation using a 15 nA, 30 kV Ga+ beam at an angle of 3◦ to
the surface. Although EBSD maps containing high-quality diffraction patterns are
obtainable from the laser-ablated surface in René 88DT, FIB cleaning was still
performed in order to guarantee that small and thin twin features (<1 μm) were
well resolved. The total collection time per slice was 53 min, with 28 min EBSD
collection, 20 min FIB, and the balance stage movements and SEM imaging. The
dataset is comprised of 127 slices collected at a 0.75 μm slice thickness and 0.3 μm
EBSD resolution.

Both the 3D fatigue crack location and the microstructural neighborhood at the
surface and subsurface were reconstructed. Twin boundaries are visible adjacent to
the crack initiation location in Fig. 7, as expected based on the room temperature

Fig. 7 A region containing a crack (a) was identified and a targeted 3D dataset collected beneath
(b) in order to investigate the microstructure and local loading conditions leading to failure. The
3D dataset is 200 × 120 × 90 μm with a 0.75 μm slice thickness and 0.3 μm EBSD resolution.
The crack initiating twin related domain (c) and the crack path (d) are shown along with the
microstructure surrounding the crack path (e)
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Fig. 8 (Left) reconstruction of a targeted TriBeam dataset containing the grain structure surround-
ing a nonmetallic inclusion (center) and a volume mesh of the inclusion for use in finite element
modeling (right)

fatigue crack initiation criterion developed previously for polycrystalline superal-
loys [9, 82]. Briefly, this criterion predicts crack initiation in highly loaded grains
(large Schmid factor) where the slip trace is parallel to a large twin boundary, and
the elastic mismatch between the twin and parent grain are large.

Nonmetallic inclusions have been shown to initiate cracks in polycrystalline
nickel superalloys, particularly at elevated temperatures (400–650 ◦C) during high
cycle fatigue at stresses near 768–965 MPa [6, 7]. The crystallographic configuration
surrounding an inclusion, particularly in the vicinity of peak stress concentrations, is
of particular importance to the localization of strain and eventually the initiation of
cracks [6, 7, 13, 14, 83]. A targeted 3D dataset was collected for a volume containing
a crack initiating nonmetallic inclusion, shown in Fig. 8. The inclusion was volume
meshed according to the details in [84], and mechanical loading was simulated using
Abaqus. Direct comparisons between the simulation and DIC strain measurements
showed good qualitative agreement, particularly when the interface between the
matrix and inclusion is considered to be debonded [83]. The DIC measurements
capture the localization of strain into bands along twin boundaries, whereas the
elastic regime Abaqus simulations show a continuum representation. The exact
details of this comparison can be found elsewhere [83, 84].

While not discussed here, the third phase of the workflow is analysis of the 3D
dataset. This often requires development of algorithms and specialized routines to
extract information from the dataset. Given the size of these datasets, it should
be emphasized that manual analysis of features is rarely feasible. In addition to
traditional stereological measurements, 3D data enables calculations not possible
in 2D. Some unique 3D measurements are well established but nontrivial, e.g.,
degree of coherence of the twins in these René 88DT datasets requiring careful
surface meshing to measure boundary normals [9, 84]. Significant capacity for
novel analyses also exists, e.g., characterizing twin related domains via connectivity
networks.
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5 Future Needs

The most obvious limitation of the TriBeam approach, like most other 3D tech-
niques, is the cost and time required for acquisition and reconstruction of the
dataset. Crystallographic orientation mapping in SEM is usually performed via
EBSD, which has seen recent speed improvements with the replacement of CCDs
with CMOS cameras into standard phosphor-optics-type setups. It is likely that rates
will continue somewhat with direct electron (DE) detectors, which may also have
the advantage of enhanced electron sensitivity. We expect these CMOS and DE
systems combined with emerging indexing algorithms [63–66, 68, 77] will decrease
collection times and increase data mapping quality. The other significant time
restriction is (if necessary) the glancing angle surface cleaning of the femtosecond
laser-ablated surfaces. Currently the TriBeam uses a Ga+ FIB with 65 nA beam
current. Xenon plasma FIBs are available and have been integrated into a new
prototype TriBeam [60] to produce currents up to 20 times higher than a Ga+ FIB
[85], which can scale to a similar 20× surface cleanup rate increase, depending on
the material.

Data sharing, provenance, and portability have become a key issue for the
large-scale and collaborative efforts required to tackle scientific problems with 3D
data. A new software and data infrastructure, BisQue [86–88], has been useful for
addressing the data challenges and providing a platform on which data versions can
be synchronized between collaborative institutions and parallelized, parameterized
processing of data workflows is possible.

Data merging from various modalities including HR-DIC, synchrotron X-ray
DCT, and TriBeam tomography is challenging due to the complex distortions
associated with each experimental method. For instance, SEMs can have spatial
distortions and drift distortions from the electron optics and sample charging effects
[71, 89]. New algorithms are being developed to perform and address data merging
including those used for combining synchrotron diffraction contrast tomography
and TriBeam tomography [50] and a generalized multimodal data merging approach
using an evolutionary optimization machine learning algorithm [76].

Furthermore, developments in digital image correlation (DIC) via high-
resolution DIC and Heaviside-DIC [90] and coupling with EBSD data are being
used to predict strain localization, slip transmission across boundaries, and how
strain can create “microvolumes” [91], where non-Schmid-type loading conditions
are imposed on adjacent grains across a grain boundary. Opportunities for the
targeted investigation of the influence of the subsurface 3D grain structure on strain
localization and transmission phenomenon are also emerging.

At the precipitate scale, the glide of dislocations that locally shear precipitates
results in strain localization along twin boundaries [15, 16, 71, 92, 93]. These are
ultimately sites for crack initiation, and their intersection with grain boundaries
dominates the early stages of crack growth [6, 12, 94–98]. The new 3D characteri-
zation capabilities described here, in combination with multiscale plasticity models,
ultimately enable much higher fidelity prediction of properties such as yield strength
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and fatigue crack initiation life. New capabilities for the in situ monitoring of
dislocation activity in thin samples during loading in the SEM, using a stem detector
(tSEM), are likely to reveal additional details about the early stages of localization
[99, 100].

Advances in microscopes, techniques, and analysis software for 3D data have
enabled the process of assessing targeted volumes for direct input to modeling. New
access to large and targeted volumes of multimodal data, such as the René 88DT
datasets shown, enables integration of tools for measuring and predicting strain
and the simulation capabilities that are demonstrated in the companion chapters.
Ultimately integration of all of these experimental techniques with advanced
computational approaches promises significant advances in our capability to predict
the life of critical components such as the turbine disk.
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Data Structures and Workflows
for ICME

Sean P. Donegan and Michael A. Groeber

1 Introduction

Integrated computational materials engineering (ICME) represents a grand chal-
lenge within materials research and development. Effective ICME involves coupling
materials characterization and experimentation with simulation tools to produce a
holistic understanding of the materials system, promising to accelerate the materials
development enterprise. Under the Center of Excellence on Integrated Materials
Modeling (CEIMM), significant strides were made in developing state-of-the-art
experimental methods and simulation techniques for interrogating material structure
and behavior across multiple scales. In parallel to these method developments,
several advances were made in designing data structures and workflow tools that
possess the required flexibility and extensibility to operate on the data produced
by such advanced methods. Such software tools are a critical enabling component
for effective ICME; the National Academy of Sciences noted cyberinfrastructure
as a crucial factor for ICME, to include databases, software, and computational
hardware [1]. Additionally, these tools enable workflows that properly integrate
models and experimentation at each stage of the materials development lifecycle.
Figure 1 schematically shows such a workflow for optimization of microstructure
and properties in a titanium forging.
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Fig. 1 Schematic of an ICME workflow for optimizing the microstructure and properties in a
titanium forging. Blue boxes represent data generation tools, while green boxes represent output
information from said tools

In the workflow shown in Fig. 1, an initial part design serves as an envelope
for a forging process simulation, which yields continuum field variables: materials
information, such as temperature or strain, which vary as a function of space
and time. These variables feed a data-driven model that zones the component
geometry, identifying those regions that have undergone a similar process history.
Features of the process zones, defined by their constituent continuum field variables,
serve as input to a microstructural evolution model. This process yields mean
field microstructural measures, such as grain-size distribution and texture, at each
zone. In turn, this microstructural information feeds a property model, predicting
mechanical behavior for each zone. This mechanical information is finally looped
back to the designer, informing modifications of the overall component geometry.
Additionally, the model outputs are continuously validated by fusion with charac-
terization measurements. Note the interplay between model and experimental data
at each stage of the workflow and the transition of information across length and
time scales. The cornerstone of an effective ICME workflow tool is the ability to
seamlessly integrate these information streams, allowing an investigator freedom to
explore the complex materials design space.

Designing and implementing ICME software tools is complicated by the variety
of data streams available for modern materials research. Key features that define the
breadth of ICME data include:

• Geometry: Simulation and characterization methods are capable of producing
spatial data organized on varying topologies. These include unstructured point
clouds, surface and volumetric meshes, and image/grid-like geometries.
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Fig. 2 Schematic of the four key features that define ICME data. Note that a single dataset will
often exhibit variation in all four quadrants

• Type: Data streams may be of any fundamental data type, such as floating point
numbers, integers, or strings, each with various precisions or encodings.

• Kind: The data may be representative of various materials phenomena. For
example, spectroscopy measurements represent chemical composition, whereas
crystal plasticity simulations output localized stress and strain tensors.

• Dimensionality: Materials data are inherently multidimensional, both in space,
time, and kind. Second-rank tensorial data contains up to nine unique elements,
whereas image intensity values are scalar.

Figure 2 graphically shows these four key features with schematic examples.
The challenge of ICME software development is properly generalizing to capture

such disparate data streams in a cohesive manner. Once catalogued together, the
data can be used to develop analyses that extend beyond the limits of single
modalities. For example, validating ICME models requires coupling the model
outputs to experimental measurements. Enacting this process robustly is a complex
workflow challenge that requires a core structure capable of handling the different
data streams. This chapter seeks to elaborate on such challenges in ICME software
development. It is organized as follows:
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• A select overview of various ICME software tools currently in use, including
both commercial and open-source solutions

• A description of the requirements that a successful ICME workflow manager
must meet

• An example implementation of such a workflow manager
• Presentation of a case study that highlights the utility of an ICME software

infrastructure for solving modern materials problems

This chapter does not discuss details regarding data storage or infrastructure
systems, such as Materials Commons [2], The Materials Data Facility (MDF) [3],
or the Materials Project [4], or visualization tools, such as ParaView [5]. Instead, the
focus is on tools used to generate and analyze materials data in an ICME context.

2 ICME Software Tools

We consider the following general categories for ICME tools: simulation, in which
a physics-based model is used to generate information about a material process,
evolution, or behavior, and analytics, where simulation and characterization data
are postprocessed to produce additional information streams. A key distinguishing
feature in this definition of simulation tools is the use of physics-informed models.
Analytics tools may also be used to model materials, but we distinguish these from
simulation tools as being data-driven. Such data-driven approaches typically use
characterization or simulation data to fit surrogate models that approximate the
underlying material physics without the need for explicit parameterization.

3 Simulation Tools

Materials modeling and simulation has a rich history that extends beyond the
genesis of ICME. Within metals processing, DEFORM® has been commercially
used since the early 1990s to simulate hot forging processes in both 2D and 3D [6].
Further capabilities include simulation of cold forming, machining, heat treatments,
and microstructure evolution [6]. Similarly, ProCAST is a commercially available
simulation package for casting processes, with support for die casting, investment
casting, and continuous casting [7].

Behavior modeling of structural materials typically consists of solving a set of
constitutive equations with supplied boundary conditions using a numerical method.
The most commonly used numerical approach is the finite element method (FEM),
in which a material volume is discretized into distinct elements on which local
solutions are computed. Commercially available FEM packages include Abaqus [8]
and ANSYS [9], both of which are used extensively within the aerospace supply
chain to simulate material response. Several open-source FEM solutions also exist.
Albany is a modular, general FEM solver for partial differential equations built
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using reusable libraries [10, 11]. The Multiphysics Object Oriented Simulation
Environment (MOOSE) is a similar package that relies on a generic software archi-
tecture, utilizing Jacobian-free Newton-Krylov methods [12, 13]. Other approaches
besides FEM exist for solving systems of partial differential equations. For example,
problems may be recast into convolutional forms, allowing for solutions using
spectral (Fourier-based) solvers. Examples include simulating the elastic response
of composite materials [14, 15], eigenstrains in thermal barrier coatings [16],
and the viscoplastic response of polycrystals [17, 18]. The Düsseldorf Advanced
Materials Simulation Kit (DAMASK) implements the spectral approach for solving
the polycrystalline elasto-viscoplastic problem in an open-source format [19].

First principle and small-scale simulation tools also have a wide use within
research and development. The Vienna Ab initio Simulation Package (VASP) is
a broad toolset for electronic structure calculations, with capabilities for computing
energy functionals, optical properties, and many-body problems [20]. The Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-
source tool developed by Sandia National Laboratories for molecular dynamics
problems [21]. For investigating dislocation dynamics, the open-source ParaDiS tool
is available from Lawrence Livermore National Laboratory [22].

While the above software packages are only a small sampling of the toolsets
available to a materials researcher, their outputs produce highly disparate data
streams. For example, data from an FEM simulation are topologically organized
onto a mesh, which may consist of a variety of unit element types (triangles,
quadrilaterals, tetrahedra, hexahedra, etc.). However, a spectral solver requires
data on a regular grid. Data may even exist on line segments, as in dislocation
dynamics, or points, as in molecular dynamics. Additionally, data may be scalar
(e.g., temperature fields from a DEFORM® forging simulation), vector (e.g.,
atomic displacement vectors from LAMMPS), or tensorial (e.g., strain tensors
from polycrystalline viscoplasticity evaluated using DAMASK). Simulation data
are also typically time dependent; this results in an additional dimension, which,
in certain models, may also result in a change in geometry. The same variety
of data is observed for characterization information. For example, atom probe
tomography yields information about points in space (i.e., atoms), while computed
tomography produces volumetric images. Electron backscatter diffraction (EBSD)
scans yield orientation data on regular grids, which can be represented in only three
numbers. However, the original Kikuchi patterns, which are of significant interest in
applications such as high-resolution strain imaging, may be images that are upwards
of 1024×1024 in dimension. If storage of these original patterns is desired, then the
EBSD scan would store a pattern image at each grid location. The diversity of data
forms generated by simulation packages and characterization techniques presents a
unique integration challenge for downstream analytic tools.

3.1 Analytic Tools

Unlike the wealth of tools available for materials simulation, software specifically
for materials analytics is a relatively nascent field. Historically, processing data



24 S. P. Donegan and M. A. Groeber

from materials characterization or simulation was typically accomplished using
bespoke solutions tailored to a particular problem type. However, with the advent of
relatively inexpensive computational infrastructure, availability of modern statistical
and machine learning algorithms, and the popularity of open-source development,
several tools for materials data analytics have gained traction within the industrial
and research communities.

Since much of the characterization data collected in materials research take
the form of n-D images, many analytics tools have been developed specifically
tailored for image processing. Avizo™ is a commercial software package that
provides image processing and analytics capabilities for materials images, including
segmentation, computation of feature statistics such as size and shape, and meshing
[23]. Similarly, the commercial GeoDict® software provides solutions for computed
tomography processing, fiber analysis, and synthetic composite simulation [24]. For
3D EBSD data, ESPRIT QUBE commercially provides solutions for reconstruction
and alignment, misorientation segmentation, and texture analysis [25].

Several open-source tools provide more general capabilities than the commercial
products described above. The Materials Knowledge System in Python (PyMKS) is
an open-source Python framework intended to provide data science approaches for
solving various materials problems [26]. PyMKS has support for a variety of analyt-
ics tailored to materials, such as microstructure quantification using 2-point statistics
[27] and fitting surrogate convolutional kernels to FEM data, producing highly
accelerated elastic models [28]. A similar toolset is the Materials-Agnostic Platform
for Informatics and Exploration (Magpie), an open-source Java-based library for
fitting various machine learning models to materials data [29]. Specifically for
texture analysis, the MATLAB toolbox MTEX provides capabilities for plotting
pole figures, segmenting grains, and computing orientation distribution functions
[30, 31]. Also leveraging MATLAB, the Materials Image Processing and Automated
Reconstruction (MIPAR™) software provides proprietary routines customized for
2D and 3D materials image analysis [32].

3.2 Example Tools from Other Fields

Materials is not the only field that must contend with multiscale, multimodal,
hierarchical information. Specifically, the medical and biomedical communities
often handle multimodal information streams, however with a focus on n-D images.
One of the most widely used tools for scientific biomedical image analysis is ImageJ
[34, 35]. Publically funded by the National Institutes of Health, ImageJ is a Java-
based library and application that contains a wide variety of common and advanced
image processing methods. Fiji is a popular open-source distribution of ImageJ that
contains several additional plugins for advanced image analysis and segmentation
[36, 37]. Another popular library for medical image analysis is the open-source
Insight Segmentation and Registration Toolkit (ITK) [38, 39]. ITK, by taking
advantage of generic template programming techniques in C++, provides highly
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flexible image processing techniques applicable to n-D images, including robust
approaches for multimodal image registration. ITK utilizes a pipeline construct
to build workflows for image processing problems and is particularly suited to
processing 3D medical imaging modalities, such as computed tomography and
magnetic resonance imaging. ITK on its own is a pure library; the open-source
3D Slicer application provides a graphical front end to many ITK functionalities,
including registration, with capabilities for 3D visualization and volume rendering
[40, 41]. 3D Slicer leverages the Visualization Toolkit (VTK), which provides
a platform-agnostic rendering engine along with a wide variety of geometric
processing tools, such as connectivity, smoothing, and mesh fairing [42, 43].

Another open-source software tool for analyzing biomedical information is
SCIRun, supported by the Center for Integrative Biomedical Computing [44, 45].
SCIRun provides a graphical programming interface for building simulation and
analysis workflows tailored to biomedical data, with a focus on bioelectric fields.
This visual programming approach is similar to the interface paradigm adopted
by DREAM.3D. For application-agnostic data mining and machine learning tasks,
the open-source Orange application provides a visual programming front end built
on top of Python’s rich set of available analytics libraries [46, 47]. A tool with
similar capabilities to Orange is the open-source Java-based Waikato Environment
for Knowledge Analysis (Weka) [48, 49]. Weka provides several machine learning
functionalities, and it also provides plugin support for data-driven image segmenta-
tion in Fiji.

The above examples motivate a more generic need for extensible data processing
and handling in scientific analysis. As the materials community begins to broadly
adopt the ICME paradigm, it is prudent to take advantage of the strides made in other
fields in implementing workflow tools, particularly in medical and biomedical image
analysis. Leveraging the lessons learned from these previous tools can accelerate the
development of materials applications, allowing for the allocation of development
resources toward addressing fundamental materials data problems that are not
shared in other fields.

4 Building an Extensible ICME Data Schema and Workflow
Tool

We now consider the critical aspects that define a successful ICME workflow
tool: a scalable, efficient data structure; modularity and plug-and-play capability
for building workflows; and standardized data access and metadata labeling. The
primary interest is for processing data that is accessible via a spatiotemporal index.
We refer to this sort of data in general as field data. These kind of data are
naturally generated by many types of materials characterization and simulation
approaches. Note that we do not directly consider scalar material properties,
such as thermophysical constants. While these constants are integrally important
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for automated materials discovery workflows, the present focus is placed on the
processing and analysis of materials field data.

4.1 Data Handling Requirements

Given the wide variety of data types produced by characterization and software
tools, a successful implementation of an ICME workflow manager must utilize
a flexible data structure to properly ingest and handle the different materials
information streams. The previously introduced critical aspects that help define
the diversity of materials data are: geometry, type, kind, and dimensionality. An
ICME data schema must implement a structure capable of handling variety in each
of these categories. Practically, this translates to a requirement to represent data on
different topology types, including point clouds, 2D and 3D meshes, and regular and
irregular rectilinear grids. A crucial component of representing these geometries is a
capability to store them together within a consistent spatial reference frame, which
enables direct correlation between different datasets. Such correlative workflows
are a cornerstone of effective ICME, allowing for direct validation of simulation
results using experimental measurements or simultaneous analysis of multimodal
information.

A result of this capability is an additional requirement to store data on any
unit element that composes a geometry. More generally, an effective data structure
should be flexible enough to store information on any component of a set of
simplicial complexes. Figure 2 showcases a simplified example of this need for
output from a crystal viscoplasticity simulation. Output from such a simulation
may be geometrically represented as a set of connected tetrahedra that tile the 3D
volume. Resulting stress and strain tensors could be stored on the vertices of the
tetrahedra, while crystal orientations might be stored on the tetrahedra themselves.
Additionally, further connectivity analysis may require information storage on the
faces or edges that compose the tetrahedra. For example, it may be advantageous
to store information about misorientations across grain boundaries, which would
naturally be stored on tetrahedral faces. Similarly, identification of triple lines would
be stored on tetrahedral edges where three grains meet. Importantly, what kind of
information, and where it should be stored, may not be known a priori for any given
problem; thus, the data structure should be extensible enough to handle changing
user requirements.

While cursory, the example in Fig. 3 demonstrates the requirement for flexibility
in geometric data storage. It also communicates a need for efficient storage of
multidimensional information. Triple line identifiers are scalar, while orientations
and full misorientations are at least three components. Stress and strain tensors,
as symmetric second-rank tensors, require storage of at least six components. In
principle, the number and shape of components is arbitrary, tailorable to the specific
application or analysis workflow. A common example of this specificity is the
number of time steps for a given simulation, which imposes an additional dimension
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Fig. 3 A schematic example
of two grains from a crystal
plasticity simulation, each
meshed by a set of tetrahedra.
The data structure should be
capable of storing
information on all unit
elements of the mesh: points,
edges, faces, and tetrahedra,
with support for various
component dimensions. The
data in this example are stress
and strain tensors (σ ij and
εij), triple line identifiers (t),
misorientation (Δg), and
grain orientation (g)

on the data. Thus, a scalable approach to storing multicomponent data is necessary.
Another practical requirement is the fundamental type used to represent the data.
Identifiers may be stored as integers, while orientations may be stored as floating
point numbers. Precision may also vary (e.g., 32-bit or 64-bit floating point), while
integers must consider being signed or unsigned. Data type handling is partly tied
to the implementation: certain languages, such as C and C++, utilize strong typing,
whereas Python utilizes the weaker duck typing. Regardless, a successful data
schema must be capable of representing data of various types, with adjustments
as needed for the given language.

A final data handling requirement stems from the natural structure of materials.
Materials are inherently hierarchical: physical phenomena couple across multiple
length scales to yield observed behavior and performance at the macroscale. Rep-
resenting this natural hierarchy is critical to fully capturing the space of materials
information. Figure 4 shows an example of this hierarchy for a cast Ni-base superal-
loy blade. Note the inherent coupling and reciprocity across the scale continuum. An
ICME data structure must be capable of allowing users to efficiently move across
these scales; thus, a mapping scheme is required that shifts reference up and down
the hierarchy. For field data, this translates to an ability for arbitrarily grouping the
various simplicial complexes that comprise the data geometry, which can then be
continuously grouped further until all data are members of a unifying set.

4.2 Modular Workflow Requirements

Beyond efficient storage of materials field data, a user should be capable of
interacting with that data through a standardized interface. Ideally, this interface
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Fig. 4 An example of the hierarchy of materials structure in a cast Ni-base superalloy blade.
Note that the physics of one scale are tightly coupled to the phenomena at another scale. Properly
compositing this multiscale and hierarchical information together requires a flexible and extensible
data structure. (Figure reproduced courtesy Dennis Dimiduk and Michael Uchic)

defines the parameters through which the data structure may be accessed, to
include: creating new data structure objects, interrogating the properties of existing
objects, and modifying existing objects as needed for the present context. To
facilitate this interaction, it is desirable to not only standardize the application
interface for the data structure itself but also the functional interface by which such
interactions are implemented. This functional interface should enable the storage
and retrieval of each parameter setting, which is needed for workflow archival and
reproducibility. Thus, a workflow for analyzing a collection of materials field data
can be conveniently represented as a sequence of these standardized functions.

Representing a workflow in this manner also immediately satisfies an additional
requirement for flexibility: since materials problems and the data informing them
are constantly evolving, users should not be restricted in building ICME workflows.
By composing a workflow from self-contained functions, a user is free to add,
delete, swap, and move these functions as appropriate for the given application. This
flexibility imposes a complication for testing internal consistency for a constructed
workflow. Confirming a workflow is valid for a given set of parameters is trivial
if the workflow is constructed a priori. But for on-the-fly development, explicit
validation is subject to combinatorial explosion as the number of available functions
increases. To solve this issue, the functions within an ICME workflow manager must
be capable of performing self-consistency checks, pursuant to the overall application
interface of the global data structure. Thus, the overall workflow can be validated
by examining the consistency of each individual function.

After construction of a workflow, it is desirable to serialize the workflow. This
addresses two needs: the ability to archive workflows for future use and the ability to
share workflows with collaborators. An important aspect of this serialization process
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is the storage of the parameter settings used in each function of the workflow. Since
the constructed workflow may be complex, and itself hierarchical, a sufficiently
flexible format must be used for serialization. Ideally, this format would also be
human-readable and should be standardized for broad access outside of materials-
specific tools.

4.3 Data Access and Metadata Labeling Requirements

After a successful execution of a workflow, the computed data should be serializable
into an accessible data format. Since the implemented data structure is highly
generic and flexible, the chosen data format must also be equally flexible. Similar to
the format for workflow serialization, the data format must also belong to an open
standard, allowing access outside of materials toolsets. Ideally, this format should
also be size and speed efficient, allowing for fast reading and writing, an enabler
for the large datasets inherent in many ICME workflows. Stored information may
be either heavy, the dense data comprising the bulk of the content in terms of size,
or light, consisting of metadata such as material name, component dimensions, data
type, time step, etc. The format must therefore be capable of storing either heavy
or light data. It is desirable to store the processing history of a set of data along
with the data itself; thus, the history remains innately coupled with the data, which
allows for reproducibility and transparency. Therefore, the data format must enable
the workflow to be stored alongside the data and additionally allow for further
functions and their parameter settings to be appended to the workflow should future
processing be necessary.

5 SIMPL and DREAM.3D: Enabling ICMEWorkflows

To satisfy the above requirements for an ICME workflow tool, the Air Force
Research Laboratory in partnership with BlueQuartz Software developed a software
framework known as the Digital Representation Environment for the Analysis of
Microstructure in 3D (DREAM.3D). DREAM.3D is an open-source software tool
explicitly designed to enable the creation of generic materials analytics workflows
that are adaptable to any kind of input, regardless of geometric topology or
data type [33]. Specific capabilities include 2D and 3D EBSD reconstruction and
analysis, n-D image processing, feature identification and quantification, surface
meshing, texture analysis, and synthetic microstructure generation. DREAM.3D’s
unique capabilities stem from an underlying data structure and management library:
The Spatial Information Management Protocol Library (SIMPL). SIMPL is an
open-source C++ library that implements an abstract data structure, including a
well-defined application programming interface [50]. Additionally, SIMPL defines
a functional interface for interacting with the data structure. This interface is
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Fig. 5 The dependency tree for DREAM.3D. Items in blue are open-source dependent libraries.
Note that this modular design allows for libraries to be added or swapped where necessary, granting
flexibility to the overall software architecture

characterized by filters, self-contained functions that perform a unit operation on the
data structure state. Filters may be sequenced to form a pipeline, the fundamental
execution unit of a SIMPL workflow. SIMPL also allows for extensions via a plugin
interface. Users may add their own functionalities to SIMPL by adhering to the
plugin architecture. DREAM.3D constitutes an open-source collection of SIMPL
plugins tailored for analysis of materials data, along with facilities for processing
materials-specific information [33, 51]. Additionally, DREAM.3D utilizes a graph-
ical front end called SIMPLView [52]. All the various projects associated with
DREAM.3D are distributed under the permissive 3-clause BSD license. This open-
source development has enabled collaborations and contributions across academia,
government, and industry.

Figure 5 shows the overall software architecture of DREAM.3D, including
dependent libraries. Dependencies generally progress up from the bottom of Fig. 5.
SIMPL makes heavy use of the Qt library for various functionalities, such as
container objects, string representations, and platform-agnostic file system access
[53]. Additionally, Qt provides the facilities for producing the front-end graphical
interface in SIMPLView. SIMPL utilizes the HDF5 file format and library for data
serialization [54]. Eigen is leveraged for highly efficient linear algebra and matrix
manipulations [55]. Optionally, Intel’s Threading Building Blocks provides thread-
based parallelism [56], while pybind11 automatically creates Python bindings for
SIMPL classes and filters [57]. For all projects, CMake is used to enable easy cross-
platform building [58].
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A key component of the DREAM.3D software architecture is its modular
nature; this allows for dependencies to be added or swapped as needed for a
given application. Most commonly, this approach is taken for adding new plugin
dependencies. For example, an image processing plugin in DREAM.3D leverages
ITK as an underlying dependency, bringing the power and flexibility of a tool
originally designed for medical image analysis into the materials domain.

The following sections overview the structure of both SIMPL and DREAM.3D,
including: data structure; filter, pipeline, and plugin infrastructure; graphical inter-
face; and analysis capabilities.

5.1 SIMPL Data Structure

The SIMPL data structure is inspired by approaches in other well-known libraries,
such as VTK, along with methods in combinatorics and topology. The data structure
was designed to directly address those requirements stated in the Data Handling
Requirements section above. Principally, the data structure takes the form of a tree;
since trees are hierarchical, the data structure is able to naturally conform to the
grouping requirements needed for materials data. Items within the data structure are
generally termed objects, with four primary types of objects available:

• Data Container Array: The root node of the data structure. The data container
array has access to create and retrieve all descended children objects and check
the structure for validity.

• Data Container: The direct descendant of data container array, data containers
store attribute matrix objects that correspond to a unique geometry. Data
containers are therefore distinguished by what geometry they represent.

• Attribute Matrix: Stored within data containers, attribute matrices contain the
objects that store the dense data on each geometry. Attribute matrices are
distinguished by a type identifier which signifies at what specific grouping
hierarchy the data should be associated. Additionally, attribute matrices define
the shape of the underlying dense data.

• Attribute Array: Attribute arrays are the leaves of the data structure tree and store
the heavy field data for a given dataset.

Objects within the data structure have an associated name; similar to a standard
file system, no two objects at the same level of the tree are allowed to have the
same name. Additionally, objects deeper within the tree have a unique path, the
concatenation of all parent object names with the child. An example data structure is
shown in Fig. 6. In this example, two data containers are stored in the data container
array, one that represents an image and one that represents a surface mesh.

Geometries are a special kind of data structure object, represented by the red
boxes in Fig. 6. A data container may only store one geometry, and usually this
geometry is unique within the overall data structure. The child attribute matrices
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Fig. 6 An example SIMPL data structure, representing storage of an image and a surface mesh.
(Figure reproduced from the DREAM.3D user manual)

and attribute arrays for a given data container store information that corresponds
to the data container’s geometry object. Geometries are distinguished by the
dimensionality of the fundamental unit element that serves as that geometry’s
primary building block. There are four primary unit element types: vertices (0-
dim), edges (1-dim), faces (2-dim), and cells (3-dim). In principle, the data structure
allows storage of higher dimensional simplices; however, for materials data analysis,
it is rare for such higher dimensional elements to be needed. For a given geometry,
data may be stored on any of the unit elements that comprise the geometry, as shown
in Fig. 7.

Data may be stored on any of the unit elements that form a given geometric
object. For example, if the fundamental geometric object is a quadrilateral, data
may be stored on the vertices, edges, or faces of the polygons, but not cells, since
no object within the geometry is volumetric.

SIMPL defines an interface to which implemented geometries must adhere. This
abstract interface class enforces that geometries store their connectivity, understand
how to compute derivatives, import and export themselves, etc. Filters are able to
leverage this generalization, which enables algorithms to operate across different
geometries. Currently, SIMPL implements eight geometric classes, along with a
special null geometry. These geometries are shown in Table 1.

Similar to the overall data structure, geometries in SIMPL adhere to a hierarchy,
as shown in Fig. 8. Geometries may be generally categorized as either structured,
where explicit definition of point coordinates is not needed, or unstructured, where
point coordinates must be explicitly stored. The structured geometries are the image
and rectilinear geometries, commonly referred to as grids. An n-D image is defined
implicitly by just three values: its position in space, defined by the origin; the
resolution along each dimension; and the number of elements in each dimension.
Thus, an n-D image needs only 3n numbers to be fully defined. A rectilinear grid,
however, may admit variable resolution along each orthogonal direction. For an
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Fig. 7 Schematic showing building-block unit elements for SIMPL geometries. Note how data
may be stored on any unit element that comprises a given simplex. (Figure reproduced courtesy
Groeber and Jackson [33])

n-D rectilinear grid, the total number of values, v, needed for complete definition is
given by the following equation:

v =
n∑

i=0

Ni + 1

where Ni is the number of elements along the ith dimension.
The unstructured geometries require explicit definition of point coordinates.

Additionally, for any geometry other than vertex, the connectivity between points
must be stored. SIMPL represents unstructured geometries using shared element
lists. In the shared element list schema, only unique unit elements are stored; for
example, if two triangles share an edge, then the two vertices that comprise that
edge are shared, and need not be stored twice. Despite their simplicity, shared
element lists offer a number of benefits: highly efficient storage of the geometric
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Table 1 Currently implemented SIMPL geometries, along with their topology and associated
data types

NAME Topology Associated data Description

Unknown N/A Any The null geometry, used when the
underlying data have no spatial indices

Vertex 0 Vertex A set of points, or point cloud
Edge 1 Edge/vertex A set of edges, forming lines
Triangle 2 Face/edge/vertex A set of triangles, forming a surface mesh
Quadrilateral 2 Face/edge/vertex A set of quadrilaterals, forming a surface

mesh
Image 3 Cell A structured rectilinear grid composed of

pixels/voxels of constant resolution
Rectgrid 3 Cell An unstructured rectilinear grid,

composed of pixels/voxels of variable
resolution

Tetrahedral 3 Cell/face/edge/vertex A set of tetrahedra, forming a volume
mesh

Hexahedral 3 Cell/face/edge/vertex A set of hexahedra, forming a volume
mesh

Fig. 8 The inheritance hierarchy of SIMPL geometries. By providing abstract interfaces, repre-
sented in green, SIMPL allows for generic algorithm programming, reducing code replication

information, fast static access of the geometry, and the ability to store nonmanifold
simplices. However, shared element lists suffer from inefficient manipulations of
the geometry. For example, a shared element architecture is not suited toward mesh
refinement or decimation.
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Fig. 9 Schematic of an Nx1 attribute matrix. Objects may be elements, features, or ensembles.
(Figure reproduced from the DREAM.3D user manual)

SIMPL represents hierarchy within a given geometric dataset through the
concepts of features and ensembles. Features are groups of geometric elements.
For example, an EBSD scan may have its pixels grouped into grains under some
threshold for misorientation. Data may then be associated with these features,
such as size, shape, and average orientation. Features may also be grouped into
ensembles. In the EBSD example, grains may be grouped together based on their
crystal structure. Note that ensembles may also be grouped together recursively; all
subsequent groupings are also referred to as ensembles. Data are mapped between
levels of the scale hierarchy using an identifier array; this array denotes to which
feature or ensemble an object lower in the hierarchy belongs.

Associating data with geometries, features, and ensembles is organized through
attribute matrices. Attribute matrices themselves do not store heavy data; instead,
they serve to define the type of data being stored and its shape. Dense data are stored
in attribute array objects, which are contained within attribute matrices. There are
three general types of attribute matrices: element, which store data associated to
the unit elements of a geometry; feature, which store data for groups of elements;
and ensemble, which store data for groups of features. There are four types of
element attribute matrices, corresponding to the four basic unit elements: vertex,
edge, face, and cell. Other than a type, an attribute matrix also has a shape; in the
SIMPL ontology, this shape is referred to as the tuple dimensions. Figure 9 shows
an example attribute matrix of N objects, where the tuple dimensions are Nx1.
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For a raveled attribute matrix with scalar dimensions, the rows are comprised
of specific attribute arrays, while the columns represent particular objects. This
storage scheme generalizes to higher dimensions, where attribute arrays are stored
in hyper-rows and objects are denoted by the hyper-columns. Note that an attribute
matrix is extensible: new attribute arrays may simply be appended to the matrix
without the need for resizing. Attribute matrices may be interrogated in either
direction: obtaining arrays along (hyper)-rows, which return information about a
given attribute for each object, or property vectors along each (hyper)-column,
yielding a list of attributes for a specific objet.

Attribute arrays, the (hyper-)rows of attribute matrices, are the final leaves
of the overall data tree. These arrays store dense, heavy data. Arrays may be
multicomponent, defining a depth dimension at each tuple. The overall array shape,
tuple dimensions, is inherited from the dimensions of its parent attribute matrix.
SIMPL allows for any fundamental data type to be stored within an attribute array,
including various precision integers and floating point numbers. Attribute arrays
are stored compactly within attribute matrices, even if the arrays do not share the
same component dimensions: therefore, an attribute matrix is sparse in its depth
dimension, as shown in Fig. 9.

The SIMPL data structure is highly flexible and customizable. In order to
serialize it to storage, a data format must be used that is similarly flexible. SIMPL
utilizes the Hierarchical Data Format, or HDF5, as its data format [54]. HDF5 is
a binary file format whose data model allows for explicit hierarchy by organizing
information into groups, similar to folders on a file system, while dense data are
stored in datasets. SIMPL takes advantage of this model by mapping its data
container arrays, data containers, and attribute matrices to groups in an HDF5 file,
with attribute arrays being stored in datasets. An example mapping for a SIMPL
data file is shown in Fig. 10. HDF5 is an open standard which enables easy cross-
platform data sharing and data transfer to toolsets other than SIMPL or DREAM.3D.

Similar to SIMPL, HDF5 allows for dense data to have arbitrary shape and
component dimensions and store any fundamental data type. Critically, the analysis
workflow used to generate the SIMPL data structure is stored along with the data
within the SIMPL file, enabling reproducibility and archival.

5.2 Filters, Pipelines, and Plugins

SIMPL defines a standard interface for interacting with the data structure through
the concept of filters. A filter is simply a self-contained function that performs some
operational interaction with the data structure, such as creating a new object (i.e.,
computing some new information) or modifying an existing object. Filters adhere
to a standardized interface defined in an abstract base class. A critical feature of
filters is their ability to request parameters from a user and translate these requests
into queries of the data structure. For example, a user may select an attribute array
by supplying a filter with a path; the filter interface will then utilize this path to
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Fig. 10 Schematic of a SIMPL data structure storage scheme in an HDF5 file

access the array in the data structure and make it available for computation when the
filter runs. Importantly, filters are also capable of performing validity checks when
processing their parameters. This validation procedure is referred to as a preflight
state. During preflight, a filter performs the necessary validation checks, modifying
the data structure as needed by proxy: memory is not allocated and computations
are not run during preflight, but any object creation or removal is represented in the
data structure.

By creating a sequence of filters, a user instantiates a workflow that creates,
modifies, and saves a SIMPL data structure. This sequence of filters is referred
to as a pipeline. Pipelines orchestrate the task of requesting filters to preflight
themselves, ensuring that the overall pipeline is in a valid state before allowing
execution. Additionally, pipelines may be serialized using the JSON file format.
JSON enables a human-readable transfer format for saving user-defined pipelines;
the constituents of a JSON pipeline file are simply the sequence of filters with their
explicit parameter settings. Note that a JSON file can be encoded as a string; this
capability is leveraged to store the pipeline within the HDF5 SIMPL file schema as
a string dataset.

SIMPL provides an interface for defining self-contained groups of filters called
plugins. Programmatically, plugins are dynamically loaded libraries that comprise
a collection of SIMPL filters, along with any additional support code necessary for
the filters’ operation. DREAM.3D itself is simply a collection of SIMPL plugins
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with capabilities customized for materials data analysis. Since all interaction with
the SIMPL data structure is governed by a standardized interface, filters are able
to leverage functionalities across plugins, which results in less code duplication.
A canonical example is computing the size of features: this problem essentially
reduces to summing the volumes of each constituent element that belong to a set
of features. This computation is the same, regardless if the features define a set
of grains or a collection of pores. Thus, when adding new filters via plugins, a
developer can avoid re-implementing such a generic algorithm as size computation
and instead focus on designing those functions that are specific to the problem space.

5.3 SIMPLView: The Standard SIMPL Graphical Interface

SIMPL on its own does not require a user interface. SIMPL may be used as a
library, in which the data structure, filters, and pipelines would be accessible via
code; or using a command-line interface. SIMPL does contain a set of pre-defined
graphical widgets that allow developers to rapidly generate user interfaces. The
most widely used implementation of this feature is SIMPLView [52]. SIMPLView
is a basic interface to the functionalities of SIMPL, allowing users to construct
pipelines using a visual programming style. SIMPLView is most widely recognized
as the interface of DREAM.3D. Note, however, that SIMPLView may be swapped
with any other graphical interface implementation as needed; therefore, the user
experience is highly customizable to the particular application. SIMPLView is under
active development; the current incarnation of the interface is shown in Fig. 11.

The major components of SIMPLView are comprised of panes: the toolbox
pane, pipeline view, filter parameters, data structure, and pipeline issues and
output. The toolbox lists all available filters, both alphabetically and categorized by
functionality. Additionally, the toolbox stores bookmarks, which are the locations
of saved JSON pipeline files. The pipeline view is the main focus window of the
interface: here the user constructs a pipeline by building a sequence of filters. The
filter parameters pane shows the user what variables may be set for a selected filter
in the pipeline view. By using the data structure pane, the user may view the status
of the current SIMPL data structure, inspecting attributes such as geometry types
and array dimensions. Finally, any pipeline issues or output are shown in their
corresponding panes. When constructing a pipeline, SIMPLView communicates
the current pipeline state to SIMPL, which orchestrates the preflight procedure to
validate the settings provided by the user. If issues arise, the user is presented with
an error message in the pipeline issues pane. Recall that during preflight, no actual
computations are undertaken; the user must finish constructing a valid pipeline that
completes preflight without errors before execution is allowed. While SIMPLView
exposes only the basic operations of SIMPL, it does offer customization features: all
panes can be hidden or moved, and support is available for skinning the interface.

SIMPLView does not have present capabilities for visualization. Instead,
SIMPL leverages the open-source ParaView application to provide visualization
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Fig. 11 The current version of SIMPLView, as implemented in the DREAM.3D distribution, with
major components of the interface labeled. In this rendering, the pipeline issues and output are
hidden

capabilities. When exporting a SIMPL data file, the user may elect to write a
companion XDMF file, which is essentially an XML document that explains how
the data are organized in the HDF5 file [59]. ParaView has facilities to import this
XDMF file, allowing for efficient volumetric visualization of the data processed by
SIMPL.

5.4 DREAM.3D: An ICME Workflow Tool

DREAM.3D is essentially a set of SIMPL plugins customized to process materials
data. As such, it inherits all the benefits of the SIMPL data structure described above.
DREAM.3D contains a number of capabilities, including:

• Import and export of a variety of file formats, including many image formats,
FEM file formats, generic ASCII and binary files, HDF5 files, and the SIMPL
file format

• Feature identification approaches, such as expectation maximization, connected
components segmentation including metrics such as misorientation, and cluster-
ing approaches

• Texture analysis, including pole figure plotting, orientation distribution function
sampling, disorientation and average orientation computations, and fundamental
zone reductions

• Reconstruction of 3D data from 2D slices, for both images and crystallographic
EBSD measurements
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• Data processing and cleanup functionalities, including robust image processing
courtesy ITK

• Statistical computations such as feature size and shape distributions, histograms,
and distribution fitting

• Surface and volumetric meshing
• Instantiation of synthetic microstructures from morphological and crystallo-

graphic statistics, provided either from generative statistical models or experi-
mental measurements

Leveraging the above functionalities in concert with the flexibility of SIMPL, a user
can construct arbitrarily complex workflows for difficult ICME problems. In the
following section, such a problem is introduced as a case study to demonstrate the
utility of DREAM.3D.

6 Case Study: Ti-6242Si Pancake Forging

This section presents a case study for an ICME workflow concerned with quan-
titatively relating processing parameters in a titanium disk forging to measured
microstructure characteristics. Unless otherwise noted, all processing and analysis
steps presented were performed using DREAM.3D. This problem is a subset of the
workflow shown in Fig. 1. Specifically, we are interested in those procedures shown
in Fig. 12. A cylinder of Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242Si) with diameter
25.4 mm and height 38.1 mm was forged into a pancake with an average true
height strain of 1.07. After forging, the pancake was cross-sectioned radially
and characterized using both backscatter electron (BSE) imaging and EBSD.
Concurrently, the forging process was simulated using DEFORM®. This forging
was part of a larger study in which additional cylinders were excised from the same
parent billet and isothermally compressed. Specific experimental and simulation
details may be found in Pilchak et al. [60].

This work was motivated to develop quantitative relationships between process
history and resulting microstructure. Specifically, microstructure features of interest
are microtexture regions (MTRs). MTRs are relatively large (i.e., millimeters, to
centimeters) regions of similar crystallographic orientation that form in near-alpha
titanium alloys [61]. These regions have been identified as prime factors implicated
in dwell fatigue debits of titanium forgings [62, 63]. In order to understand the
impact the process state has on MTRs, the model output from DEFORM® was
fused with the characterization data. Then, the model data was zoned using an
approach from unsupervised machine learning, partitioning the forging geometry
into discrete regions of self-similar processing history. With the characterization
information colocated with these zones, an assessment can be made concerning the
types of microstructure expected for a given process. This zoning procedure has
the additional benefit of signifying to a designer which regions of a component
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Fig. 12 The specific workflow items for the titanium disk case study. Model data from a process
simulation produce continuum field variables, which are then reduced to zones. These data are
fused to characterization measurements, allowing for microstructure to be assessed per zone

are most distinct, serving as an indication for where additional measurements may
be prudent. For example, a zoning scheme may indicate where samples should be
excised for further mechanical testing. Here, we focus on the problem of relating
the zoned geometry to microstructure, instead of determining an optimal component
cutup.

6.1 Zoning Process Histories

The pancake forging process was simulated using DEFORM®. Since the geometry
is radially and axially symmetric, a single half cross-section was simulated in 2D.
The underlying quadrilateral FEM mesh was dynamically remeshed as appropriate
as the component was strained. DEFORM® optionally allows for tracking the initial
material points until the final time step. The total evolution of an example pancake
forging model is shown in Fig. 13.

For the present analysis, several field values were computed, including effective
strains, full stress and strain tensors, and damage accumulation. Together, these
fields yield a high-dimensional description of the forging process history. We wish to
develop a scheme that effectively zones this process history into discrete categories.
In the parlance of machine learning, this procedure can be considered an application
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Fig. 13 Evolution of an example 2D DEFORM® pancake forging model. The points represent the
tracked material points across all time steps, while the underlying mesh is for the final time step.
Elements are colored by their effective strain

of cluster analysis. Cluster analysis seeks to classify an input space such that points
that are most similar, according to some metric, are categorized in the same cluster
[64]. In the context of zoning, the clustering procedure would ideally be performed
on a latent space that best captures the process history relevant for the given
response. For this example, that response is the representation of microstructure
obtained from the EBSD and BSE measurements. While the relevant process history
may be some linear combination of the various time-dependent fields produced
from the DEFORM® simulation, we demonstrate a zoning procedure using only
the strain tensors from the final time step for simplicity. For the relevant simulation,
these strains are shown in Fig. 14. While the overall sample volume is conserved,
individual element volumes may not be preserved; hence, the 2D strain tensor at
a given element may not be uniquely symmetric. Thus, for this example, all four
components of the 2D strain tensor are used.

To produce a zoning of the strain tensors, we utilize the k-medoids algorithm
from cluster analysis [65]. k-medoids labels a set of points into k classes such that
each datum is placed into the cluster with the closest medoid value, where the
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Fig. 14 The strain components from the final time step of the DEFORM® simulation. The
underlying mesh has been emphasized to better show the quadrilateral geometry

medoid is a representative datum for that cluster. This approach is reminiscent of
the classic k-means algorithm, in which data are placed in clusters with the closets
cluster mean [66]. For a set of d-dimensional data points X = {xi} and k clusters
C = {ck}, k-medoids attempts to solve the following minimization:

min
C

k∑

i=1

∑

xi∈ck
d (xi,mk)

where mk is the medoid of cluster ck and d(a, b) is some distance metric between
points a and b. A benefit of k-medoids is the ability to customize the choice
of metric, which is useful for problems where the standard l2 norm may be
inappropriate. This optimization is computationally intensive; however, several
heuristic algorithms exist that perform well in practice. We utilize the partition
around medoids algorithm, which iteratively minimizes the total distances within
each cluster by recursively checking medoid candidates for a given partition,
reassigning points to new clusters as medoids are moved [65]. k-medoids has the
advantage of being unsupervised: the clustering model does not require training
data other than the input. However, the choice of k is problem dependent, and
imprudent choices of k may lead to spurious results. Various quality metrics exist
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Fig. 15 The clustering of the 4-dimensional strain space with k = 5 (left) and the corresponding
silhouette (right)

for determining the fitness of a particular choice for k. For a given set of clusters
C = {ck} and points X = {xi}, we define the following quantities:

ai =
∑
xj∈ck,i d

(
xi, xj

)

nk,i

where nk, i is the number of points in cluster k to which xi belongs and

bi = min
C

∑
xj /∈c,i d

(
xi, xj

)

nk,j

Thus, ai represents the average distance of datum xi to all other points in their parent
cluster, and bi is the minimum average distance of xi to all other points in any other
cluster. The silhouette metric is then defined as follows [67]:

si = bi − ai
max {ai, bi}

The range of possible silhouette is thus −1 ≤ si ≤ 1. For a well-clustered datum,
ai � bi and si ≈ 1, whereas a datum that has been placed in an incorrect cluster
will have si ≈ − 1. Using k-medoids with a squared l2 norm, we cluster the 4-
dimensional strain space with k = 5 and compute the corresponding silhouette, as
shown in Fig. 15.

From the silhouette map in Fig. 15, we see that most data are effectively grouped
in their parent cluster. The data that are poorly clustered tend to lie along the
boundaries of zones, which is reasonable given the continuous nature of the strain
field.
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Fig. 16 The stitched cross-sectional EBSD montage of the pancake forging, colored using 001
IPF colors

6.2 Processing Characterization Data

In order to relate the zoned process history to microstructure, the collected char-
acterization data must be processed and relevant statistics extracted. The physical
pancake forging corresponding to the DEFORM® simulation in the above section
was cross-sectioned and imaged using both EBSD and BSE. Due to the size of
the specimen, both modalities required montage collections. Individual EBSD tiles
were collected with a step size of 15 μm and stitched together using the AnyStitch
software [68]. The stitched EBSD montage is shown in Fig. 16. After stitching,
alpha particles within the EBSD data were identified by segmenting using a 5◦
misorientation. These alpha particle orientations were then clustered into five zones
using k-medoids, and the resulting partition was spatially segmented to identify
individual MTRs. Additionally, several statistics about the MTR features were
computed, including areas, axis lengths, and morphological orientations.

The BSE imaging produced 979 2048×2048 image tiles with a pixel resolution
of 0.5 μm, collected with roughly 20% tile overlap. The total BSE montage was
constructed using the image stitching plugin in Fiji [69]. After stitching, the two-
phase structure was segmented by applying a simple threshold. An example BSE
tile and its segmented counterpart are shown in Fig. 17.

6.3 Registration and Fusion

In order to quantitatively assess the relationship between the process zones and the
resulting microstructure, the DEFORM® simulation must be registered and fused
with the EBSD and BSE characterizations. First, the EBSD and BSE montages are
cropped to only the right half of the images, since the DEFORM® simulation was
only run for one symmetric half of the forging. The DEFORM® and BSE montages
were then resampled onto image grids with 15 μm pixel spacing, the same as the
EBSD. The DEFORM mesh was resampled using nearest neighbor interpolation.
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Fig. 17 Original BSE tile (left) and corresponding binary segmented image (right)

Fig. 18 The mask of the identified component in each of the resampled datasets: EBSD (right),
BSE (middle), and DEFORM® (right)

For the BSE montage, a 15 μm window was passed over the segmented high-
resolution montage and the average value of the binary segmentation was computed
within this window. This procedure yields an alpha area fraction at each 15 μm
pixel.

The resampling procedure conveniently brings all datasets onto the same geomet-
ric topology; however, they are still misaligned relative to one another. To register
the datasets together, the component was first identified in each of the modalities.
Figure 18 shows these component masks.

Since the goal is to determine correspondence between process zones and
microstructure, we do not wish to a priori assume any relationships that would bias
the registration. Instead, we identify the component geometry in each modality since
we expect it to be relatively invariant between each dataset. Thus, the component
geometry itself can be used as a registration datum. To obtain points for registration,
the exterior of the masks shown in Fig. 18 are regularly sampled. These sampled
points are shown in Fig. 19.
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Fig. 19 Sampled exterior points, used for registration, from each of the modalities

We compute the transform that best brings sampled points into alignment using
a least-squares approach that is robust to noise [70]. The goal is to estimate the
rotation R, translation t, and scaling s that best minimize the squared error between
two sets of points, X ∈ R

d and Y ∈ R
d:

ε2 (R, t, s) = 1

2

∑n

i=1
‖yi − (sRxi + t)‖2

The above minimization is possible for solutions in R, t, s from the following
equations:

R = USV T

t = μy − sRμx

s = 1

σ 2
x

tr(DS)

where UDVT is the singular value decomposition of XYT and

S =
{

I, det
(
XY T

) ≥ 0
diag (1, 1, . . . , 1,−1) , det

(
XY T

)
< 0

μx and μy are the average positions of X and Y, and σ 2
x is the variance of X.

Using the above approach, the EBSD registration points were first transformed to
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Fig. 20 Zoned regions of process history colored by MTR areas (left) and alpha area fraction
(right)

the DEFORM® reference frame, with both datasets followed by being transformed
to the BSE reference frame. After applying the transformations on the resampled
image geometries, the resulting aligned images were fused on the same grid using
nearest neighbor interpolation. On this new resampled geometry, the strain tensors
from the DEFORM® simulation were rezoned using k = 5. After performing this
fusion, it is possible to assess microstructure characteristics per zone. Figure 19
shows the process zones colored by different aspects of the microstructure. In
Fig. 20, the average MTR area, as measured from the EBSD, and alpha area fraction,
determined from the segmentation of the BSE image montage, are shown for each
zone. Note that since the data have been fused onto the same geometry, this approach
presents a direct comparison between the zoned process variables and the resulting
microstructure. The average MTRs are much larger in the zones that correspond to
regions of large strain, as compared to the zones central to the forging. The alpha
area fraction, however, does not vary substantially with the strain zones.

This visualization demonstrates the power of a flexible ICME tool: the ability to
simultaneously represent various geometries (i.e., images, meshes, and points), data
shapes (i.e., tensorial strains, vector orientations, and scalar image intensities), and
complex hierarchy (i.e., zoned process variables, identified MTRs, and segmented
BSE images) allows for novel analyses to be conducted. DREAM.3D, by leveraging
SIMPL, is able to effectively manage these disparate data streams and orchestrate
their fusion to produce actionable information. Thanks to the reusability of filters
via plugins, characterization steps such as computing sizes of features or finding
average values within features did not require reimplementation, freeing the devel-
opment time to be spent on devising a robust zoning and registration procedure.
Additionally, since SIMPL archives pipeline information along with the raw data,
researchers are able to confidently store data and reproduce workflows as needed.
Indeed, the authors greatly benefited from this functionality in constructing figures
for this use case.
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7 Summary

We have presented an overview of the ICME software applications available to a
modern materials researcher, with a focus on simulation and analytics tools that
generate and process field data. In order to properly handle the myriad kinds of
information these tools produce, we have sketched an outline of the requirements
that an ICME workflow manager should aspire to address. We define requirements
on such a tool’s data structure, modularity, data access, and workflow capabili-
ties. As an example of one tool that satisfies these requirements, we showcased
SIMPL, the Spatial Information Management Protocol Library, along with its
most prominent user, the Digital Representation Environment for the Analysis
of Microstructure in 3D, or DREAM.3D. To demonstrate how DREAM.3D can
leverage SIMPL’s features, a case study was outlined that shows how to address a
common problem in ICME workflows: quantitatively relating process simulation to
measure microstructure. This worked example showed how process variables from
a forging simulation of a Ti-6242Si cylinder could be directly coupled with resulting
microstructure characterized using EBSD and BSE imaging.

As a community, materials research and development must still make progress on
developing easily shareable toolsets for analysis, driven by the continuing adoption
of ICME techniques and data-driven methods. Other fields, such as bioinformatics,
have made this transition successfully; the materials community should heed the
lessons learned from these other sister fields and seek to grow tools that foster devel-
opment on those problem spaces unique to materials. Additionally, teaching the next
generation of materials researchers how to reason through materials problems with
an ICME lens is paramount. Developing robust, standardized, and open tools for the
growing community ensures that the goals of ICME are achievable.

Acknowledgments The authors would like to acknowledge Mike Jackson, for his vision and
programming expertise in enabling the implementation of the SIMPL architecture; Dennis
Dimiduk, for his consistent support and fruitful discussions; Adam Pilchak, for motivating the
demonstrated ICME use case and providing the data and material; Mike Uchic, for providing
characterization support and contribution to the vision of SIMPL; and Chris Woodward, for his
unyielding support in the early stages of designing DREAM.3D.

References

1. National Research Council, Integrated Computational Materials Engineering: A Transfor-
mational Discipline for Improved Competitiveness and National Security (The National
Academies Press, Washington, DC, 2008). https://doi.org/10.17226/12199.

2. B. Puchala, G. Tarcea, E.A. Marquis, M. Hedstrom, H.V. Jagadish, J.E. Allison, The materials
commons: a collaborative platform and information repository for the global materials
community. JOM 68(8), 2035–2044 (2016). https://doi.org/10.1007/s11837-016-1998-7

3. B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, The materials data
facility: data services to advance materials science research. JOM 68(8), 2045–2052 (2016).
https://doi.org/10.1007/s11837-016-2001-3

http://dx.doi.org/10.17226/12199.
http://dx.doi.org/10.1007/s11837-016-1998-7
http://dx.doi.org/10.1007/s11837-016-2001-3


50 S. P. Donegan and M. A. Groeber

4. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D.
Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome
approach to accelerating materials innovation. APL Mater 1(1) (2013). https://doi.org/10.1063/
1.4812323

5. J. Ahrens, B. Gevecki, C. Law, ParaView: an end-user tool for large data visualization, in
Visualization Handbook, (Elsevier, Amsterdam, 2005)

6. Applications. (Scientific Forming Technologies Corporation) [Online]. Available: https://
www.deform.com/applications/. Accessed Mar 2019

7. Casting Applications. (ESI Group) [Online]. Available: https://www.esi-group.com/software-
solutions/virtual-manufacturing/casting/applications. Accessed Mar 2019

8. Abaqus Unified FEA. (Dassault Systemes) [Online]. Available: https://www.3ds.com/
products-services/simulia/products/abaqus/. Accessed Mar 2019

9. ANSYS. (ANSYS) [Online]. Available: https://www.ansys.com/. Accessed Mar 2019
10. Albany. (Sandia National Laboratories, Center for Computing Research) [Online]. Available:

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/project.cfm?proj=28.
Accessed Mar 2019

11. A.G. Salinger, R.A. Bartlett, A.M. Bradley, Q. Chen, I.P. Demeshko, X. Gao, G.A. Hansen, A.
Mota, R.P. Muller, E. Nielsen, J.T. Ostien, R.P. Pawlowski, M. Perego, E.T. Phipps, W. Sun,
I.K. Tezaur, Albany: using component-based design to develop a flexible, generic multiphysics
analysis code. Int J Multiscale Comput Eng 14(4), 415–438 (2016). https://doi.org/10.1615/
IntJMultCompEng.2016017040

12. MOOSE: Multiphysics Object Oriented Simulation Environment. (Idaho National Laboratory)
[Online]. Available: https://mooseframework.org/. Accessed Mar 2019

13. D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandie, MOOSE: A parallel computational
framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778
(2009)

14. H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear
composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–
94 (1998). https://doi.org/10.1016/S0045-7825(97)00218-1

15. J.C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non-linear
composites with arbitrary phase contrast. Numer Methods Eng 52(1–2), 139–160 (2001).
https://doi.org/10.1002/nme.275

16. S.P. Donegan, A.D. Rollett, Simulation of residual stress and elastic energy density in thermal
barrier coatings using fast Fourier transforms. Acta Mater. 96, 212–228 (2015). https://doi.org/
10.1016/j.actamat.2015.06.019

17. R. A. Lebensohn, N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Trans-
form. Acta Mater. 49(14), 2723–2737 (2001). https://doi.org/10.1016/S1359-6454(01)00172-
0

18. P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters, A spectral method solution to crystal
elasto-viscoplasticity at finite strains. Int. J. Plast. 46, 37–53 (2013). https://doi.org/10.1016/
j.ijplas.2012.09.012

19. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi,
T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K.G.F. Janssens, N.
Jia, P.J.J. Kok, D. Ma, F. Meiner, E. Werner, M. Stricker, D. Weygand, D. Raabe, DAMASK –
The Dusseldorf advanced material simulation kit for modeling multi-physics crystal plasticity,
thermal, and damage phenomena from the single crystal up to the component scale. Comput.
Mater. Sci. 158, 420–478 (2019)

20. What is VASP? (VASP Software GmbH) [Online]. Available: https://www.vasp.at/index.php/
about-vasp/59-about-vasp. Accessed Mar 2019

21. LAMMPS Molecular Dynamics Simulator. (Sandia National Laboratories) [Online]. Avail-
able: https://lammps.sandia.gov/. Accessed Mar 2019

22. ParaDiS. (Lawrence Livermore National Laboratory) [Online]. Available: http://
paradis.stanford.edu/site/home. Accessed Mar 2019

http://dx.doi.org/10.1063/1.4812323
https://www.deform.com/applications/
https://www.esi-group.com/software-solutions/virtual-manufacturing/casting/applications
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.ansys.com/
https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/project.cfm?proj=28
http://dx.doi.org/10.1615/IntJMultCompEng.2016017040
https://mooseframework.org/
http://dx.doi.org/10.1016/S0045-7825(97)00218-1
http://dx.doi.org/10.1002/nme.275
http://dx.doi.org/10.1016/j.actamat.2015.06.019
http://dx.doi.org/10.1016/S1359-6454(01)00172-0
http://dx.doi.org/10.1016/j.ijplas.2012.09.012
https://www.vasp.at/index.php/about-vasp/59-about-vasp
https://lammps.sandia.gov/
http://paradis.stanford.edu/site/home


Data Structures and Workflows for ICME 51

23. Avizo for Materials Science. (ThermoFisher Scientific) [Online]. Available: https://
www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-
instruments-workflow-solutions/3d-visualization-analysis-software/avizo-materials-
science.html. Accessed Mar 2019

24. GeoDict – The Digital Material Laboratory. (Math2Market GmbH) [Online]. Available: https:/
/www.math2market.com/Solutions/aboutGD.php. Accessed Mar 2019

25. ESPRIT QUBE – Advanced 3D analysis of EBSD/EDS Data. (Bruker Corporation) [Online].
Available: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/eds-
wds-ebsd-sem-micro-xrf-and-sem-micro-ct/quantax-ebsd/esprit-qube.html. Accessed Mar
2019

26. D. Wheeler, D. Brough, T. Fast, S. Kalidindi, A. Reid, PyMKS: Materials Knowledge System
in Python (2014). https://doi.org/10.6084/m9.figshare.1015761

27. S.R. Niezgoda, D.T. Fullwood, S.R. Kalidindi, Delineation of the space of 2-point correlations
in a composite material system. Acta Mater. 56(18), 5285–5292 (2008). https://doi.org/
10.1016/j.actamat.2008.07.005

28. T. Fast, S.R. Kalidindi, Formulation and calibration of higher-order elastic localization
relationships using the MKS approach. Acta Mater. 59(11), 4595–4605 (2011)

29. Magpie. (Wolverton Research Group) [Online]. Available: https://bitbucket.org/wolverton/
magpie. Accessed Mar 2019

30. MTEX Toolbox [Online]. Available: http://mtex-toolbox.github.io/. Accessed Mar 2019
31. F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX – Free and open source

software toolbox. Solid State Phenom. 160, 63–68 (2010)
32. J.M. Sosa, D.E. Huber, B. Welk, H.L. Fraser, Development and application of MIPAR: A novel

software package for two- and three-dimensional microstructural characterization. Integr Mater
Manuf Innov 3(10), 123 (2014). https://doi.org/10.1186/2193-9772-3-10

33. M.A. Groeber, M.A. Jackson, DREAM.3D: A digital representation environment for the
analysis of microstructure in 3D. Integr Mater Manuf Innov 3(5), 56 (2014). https://doi.org/
10.1186/2193-9772-3-5

34. ImageJ: Image Processing and Analysis in Java. (National Institutes of Health) [Online].
Available: https://imagej.nih.gov/ij/index.html. Accessed Mar 2019

35. C.A. Schneider, W.S. Rasband, K.W. Eliceri, NIH image to ImageJ: 25 years of image analysis.
Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

36. Fiji [Online]. Available: https://fiji.sc/. Accessed Mar 2019
37. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,

C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri,
P. Tomancak, A. Cardona, Fiji: An open-source platform for biological image analysis. Nat.
Methods 9, 676–682 (2012). https://doi.org/10.1038/nmeth.2019

38. ITK. (Kitware, Inc.) [Online]. Available: https://itk.org/. Accessed Mar 2019
39. T.S. Yoo, M.J. Ackerman, W.E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas,

R. Whitaker, Engineering and algorithm design for an image processing Api: A technical report
on ITK – The insight toolkit. Stud. Health Technol. Inform., 586–592 (2002). https://doi.org/
10.3233/978-1-60750-929-5-586.

40. 3D Slicer [Online]. Available: https://www.slicer.org/. Accessed Mar 2019
41. R. Kikinis, S.D. Pieper, K.G. Vosburgh, 3D slicer: A platform for subjet-specific image

analysis, visualization, and clinical support, in Intraoperative Imaging and Image-Guided
Therapy, (2014), pp. 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19

42. VTK (Kitware, Inc.) [Online]. Available: https://vtk.org/. Accessed Mar 2019
43. W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th edn. (Kitware, 2006)
44. SCIRun. (The NIH/NIGMS Center for Integrative Biomedical Computing) [Online]. Available:

http://www.sci.utah.edu/cibc-software/scirun.html. Accessed Mar 2019
45. S.G. Parker, C.R. Johnson, SCIRun: a scientific programming environment for computational

steering, in Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, San Diego,
1995. https://doi.org/10.1109/SUPERC.1995.241689

https://www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/avizo-materials-science.html
https://www.math2market.com/Solutions/aboutGD.php
https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/eds-wds-ebsd-sem-micro-xrf-and-sem-micro-ct/quantax-ebsd/esprit-qube.html
http://dx.doi.org/10.6084/m9.figshare.1015761
http://dx.doi.org/10.1016/j.actamat.2008.07.005
https://bitbucket.org/wolverton/magpie
http://mtex-toolbox.github.io/
http://dx.doi.org/10.1186/2193-9772-3-10
http://dx.doi.org/10.1186/2193-9772-3-5
https://imagej.nih.gov/ij/index.html
http://dx.doi.org/10.1038/nmeth.2089
https://fiji.sc/
http://dx.doi.org/10.1038/nmeth.2019
https://itk.org/
http://dx.doi.org/10.3233/978-1-60750-929-5-586.
https://www.slicer.org/
http://dx.doi.org/10.1007/978-1-4614-7657-3_19
https://vtk.org/
http://www.sci.utah.edu/cibc-software/scirun.html
http://dx.doi.org/10.1109/SUPERC.1995.241689


52 S. P. Donegan and M. A. Groeber

46. Orange – Data Mining Fruitful & Fun. (University of Ljubljana) [Online]. Available: https://
orange.biolab.si/. Accessed Mar 2019

47. J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovic, M. Mozina, M. Polajnar,
M. Toplak, A. Staric, M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, B. Zupan,
Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353 (2013)

48. Weka 3: Data Mining Software in Java. (University of Waikato) [Online]. Available: https://
www.cs.waikato.ac.nz/ml/weka/index.html. Accessed Mar 2019

49. E. Frank, M.A. Hall, I.H. Witten, The WEKA workbench, in Data Mining: Practical Machine
Learning Tools and Techniques, (Morgan Kaufmann, 2016)

50. SIMPL. (BlueQuartz Software, LLC) [Online]. Available: https://github.com/
BlueQuartzSoftware/SIMPL. Accessed Mar 2019

51. DREAM3D. (BlueQuartz Software, LLC) [Online]. Available: https://github.com/
BlueQuartzSoftware/DREAM3D. Accessed March 2019

52. SIMPLView. (BlueQuartz Software, LLC) [Online]. Available: https://github.com/
BlueQuartzSoftware/SIMPLView. Accessed Mar 2019

53. QT | Cross-platform software development for embedded & desktop [Online]. Available:
https://www.qt.io/. Accessed Mar 2019

54. Hierarchical Data Format, version 5. (The HDF Group, 1997–2019) [Online]. Available: http:/
/www.hdfgroup.org/HDF5/

55. G. Guennebaud, B. Jacob, Eigen v3. (2010) [Online]. Available: http://eigen.tuxfamily.org.
Accessed March 2019

56. Intel Threading Building Blocks. (Intel Corporation) [Online]. Available: https://
www.threadingbuildingblocks.org/. Accessed Mar 2019

57. W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – Seamless operability between C++11 and
Python. (2019). [Online]. Available: https://github.com/pybind/pybind11. Accessed Mar 2019

58. CMake. (Kitware, Inc.) [Online]. Available: https://cmake.org/. Accessed Mar 2019
59. Xdmf [Online]. Available: http://xdmf.org/index.php/Main_Page. Accessed Mar 2019
60. A.L. Pilchak, J. Shank, J.C. Tucker, S. Srivatsa, P.N. Fagin, S.L. Semiatin, A dataset for the

development, verification, and validation of microstructure-sensitive process models for near-
alpha titanium alloys. Integr Mater Manuf Innov 5(14), 259 (2016). https://doi.org/10.1186/
s40192-016-0056-1

61. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, B. Yamrom, Effect of Microstruc-
ture on Dwell Fatigue Behavior of Ti-6242, in Titanium ’95: Science and Technology,
(Birmingham, 1996)

62. A.L. Pilchak, A. Huston, W.J. Porter, D.J. Buchanan, R. John, Growth of small and long fatigue
cracks in Ti-6Al-4V subjected to cyclic and dwell fatigue, in Proceedings of the 13th World
Conference on Titanium, Warrendale, 2016.

63. A.L. Pilchak, A simple model to account for the rolw of microtexture on fatigue and dwell
fatigue lifetimes of titanium alloys. Scr. Mater. 74, 68–71 (2014). https://doi.org/10.1016/
j.scriptamat.2013.10.024

64. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review. ACM Comput. Surv. 31(3), 265–
323 (1999). https://doi.org/10.1145/331499.331504

65. L. Kaufman, P.J. Rousseeuw, Clustering by means of medoids, in Proceedings of Statistical
Data Analysis Based on the L1 Norm, Neuchatel, 1987

66. A.K. Jain, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666
(2010). https://doi.org/10.1016/j.patrec.2009.09.011

67. P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster anal-
ysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-
7

68. A.L. Pilchak, A.R. Shiveley, J.S. Tiley, D.L. Ballard, AnyStitch: A tool for combining electron
backscatter diffraction data sets. J. Microsc. 244(1), 38–44 (2011). https://doi.org/10.1111/
j.1365-2818.2011.03496.x

https://orange.biolab.si/
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://github.com/BlueQuartzSoftware/SIMPL
https://github.com/BlueQuartzSoftware/DREAM3D
https://github.com/BlueQuartzSoftware/SIMPLView
https://www.qt.io/
http://www.hdfgroup.org/HDF5/
http://eigen.tuxfamily.org
https://www.threadingbuildingblocks.org/
https://github.com/pybind/pybind11
https://cmake.org/
http://xdmf.org/index.php/Main_Page
http://dx.doi.org/10.1186/s40192-016-0056-1
http://dx.doi.org/10.1016/j.scriptamat.2013.10.024
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1111/j.1365-2818.2011.03496.x


Data Structures and Workflows for ICME 53

69. S. Preibisch, S. Saalfeld, P. Tomancak, Globally optimzal stitching of tiled 3D micro-
scopic image acquisitions. Bioinformatics 25(11), 1463–1465 (2009). https://doi.org/10.1093/
bioinformatics/btp184

70. S. Umeyama, Least-squares estimation of transformation parameters between two point
patterns. IEEE Trans Pattern Anal Mach Intell 13, 376–380 (1991). https://doi.org/10.1109/
34.88573

http://dx.doi.org/10.1093/bioinformatics/btp184
http://dx.doi.org/10.1109/34.88573


Multi-scale Microstructure and
Property-Based Statistically Equivalent
RVEs for Modeling Nickel-Based
Superalloys

Somnath Ghosh, George Weber, Maxwell Pinz, Akbar Bagri,
Tresa M. Pollock, Will Lenthe, Jean-Charles Stinville, Michael D. Uchic,
and Christopher Woodward

1 Introduction

Nickel-based superalloys are widely used in propulsion components of the
aerospace industry such as turbine engine blades, disks, casings, and liners. These
superalloys are able to maintain their strength at a range of low to high temperatures,
which allow engines to operate at high efficiency without mechanical failure [1, 2].
Large economic gains can be achieved by improving reliability and life of their
aerospace applications through better predictability of relevant properties. These
alloys possess a desirable combination of high-temperature strength and toughness,
oxidation, creep resistance, and high-temperature stability that is attributed to the
existence of a two-phase γ−γ ′ matrix-precipitate microstructure as shown in Fig. 1.
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Fig. 1 Schematic representation of multiple scales in the development of a crystal plasticity finite
element model for Ni-based superalloys: polycrystalline microstructure, subgrain microstructure
in a single grain, discretized subgrain microstructural RVE, and homogenized crystal plasticity FE
model for a grain

The continuous γ -matrix phase has a face-centered cubic (FCC) lattice structure
and is an alloy of Ni and Cr with a small fraction of other alloying elements. The
γ ′ precipitate phase is a coherent, ordered intermetallic Ni3Al reinforcing phase
of L12 crystal structure, which appears as a distribution of cuboidal precipitates in
a solid solution. The presence of the γ ′ precipitate phase in the γ matrix causes
strengthening mechanisms for the two-phase system. In FCC and L12 crystal
structures, dislocations have Burgers vectors with the same 〈101〉 directions but
different magnitudes. A full dislocation in the L12 structure must transverse twice
the distance compared to that of FCC in order to maintain the ordered lattice, which
creates many additional consequences for the dislocation core. Figure 1 shows the
polycrystalline microstructure, the subgrain γ − γ ′ microstructure in a single grain,
the discretized subgrain γ − γ ′ microstructural representative volume element or
RVE, and the homogenized crystal plasticity finite element model for a grain.

The shape and size of the γ ′-phase depend largely on the cooling rate and internal
stress gradients during processing [3–5]. Slower cooling rates lead to the formation
of bimodal populations of large (≥500 nm) secondary and small (≤50 nm) tertiary
γ ′ precipitates, while higher cooling rates yield a predominantly unimodal distribu-
tion of secondary γ ′ precipitates (∼50–500 nm). The γ ′ precipitates act as effective
obstacles to the motion of dislocations by virtue of their shape and ordered structure.
The volume fraction of γ ′ precipitates, their mean size, and spacing have a major
effect on the mechanical properties of these superalloys [6, 7]. Micro-mechanisms
controlling creep in polycrystalline Ni-based superalloys are complex [6, 8]. At
intermediate temperatures 650 ◦C ≤ θ ≤ 800 ◦C and moderate stress levels
650 MPa, dominant deformation mechanisms include antiphase boundary (APB)
shearing and micro-twinning. The probability of occurrence of a given mechanism
depends on the load, crystal orientation, and microstructural morphology. At lower
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temperatures θ ≤ 650 ◦C and higher stresses, creep is governed by different types of
dislocation-based shearing processes, while at higher temperatures θ ≥ 800 ◦C, the
creep deformation is controlled by Orowan looping and cross-slip mechanisms [9].
Deformation behavior under various loading and temperature conditions has been
studied both for single crystal and polycrystalline Ni-based superalloys [10, 11].

Phenomenological crystal plasticity models, based on the power law or thermally
activated models of plasticity, have been implemented to model creep and deforma-
tion response of single crystal and polycrystalline Ni-based superalloys in [12–16].
These are generally single-scale models and lack information on the underlying
microstructural characteristics at the intragranular or subgrain scale, which affect
the single crystal and polycrystalline behavior. Three scales are relevant, when
modeling polycrystalline behavior of Ni-based superalloys using crystal plasticity
models. They are:

1. Intragranular, subgrain scale, characterized by the size of γ ′ precipitates and their
spacing designated as the γ -matrix channel-width;

2. Grain-scale of single crystals characterized by the grain-boundary distance;
3. Scale corresponding to representative volume elements of polycrystalline aggre-

gates.

It is computationally intractable to simulate the behavior of polycrystalline
microstructures with explicit representation of the subgrain-scale microstructure.
To represent the effects of lower-scale morphology and deformation mechanisms
on higher-scale response models, it is necessary to develop crystal plasticity models
that hierarchically incorporate microstructural information from the lower scales.
In [17], hardening parameters are expressed as functions of the average size of
precipitates. Hierarchical approaches for Ni-based superalloys have been proposed
in [18], where artificial neural network algorithms are used to develop grain size
and volume fraction-dependent dislocation density-based crystal plasticity models
for creep and fatigue. Ghosh et. al. have homogenized subgrain scale response to
develop hierarchical grain-scale crystal plasticity models for Ni-based superalloys
in [19–23]. Parametric forms of subgrain-scale morphological characteristics are
incorporated in grain-level constitutive relations in these models.

An important aspect of hierarchical modeling is the establishment of the
“representative volume element” or RVE [24] for conducting direct numerical
simulations (DNS) of the micromechanical problem. The RVE is defined as a
microstructural domain that optimally represents the morphological characteristics
and effective response of the entire microstructure. However, it is difficult to define
an RVE in the strictest sense for microstructures with nonuniformly dispersed
heterogeneities as shown in Fig. 1, due to the lack of uniformity or periodicity
[25]. To facilitate a computational domain for nonuniform microstructures, the
statistically equivalent RVE or SERVE has been introduced in [26–28]. It is
designated as an optimal microstructural domain, for which statistical distribution
functions of morphological parameters, as well as material properties converge to
those for the entire microstructure. The associated exterior statistics-based boundary
conditions are discussed in another chapter of this book.
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The SERVE is further classified into a microstructure-based SERVE or M-
SERVE and a property-based SERVE or P-SERVE in [29–31]. Similar clarifications
have been proposed in [32]. The M-SERVE is defined as one for which mor-
phological and crystallographic characteristics of the microstructure are the sole
determinants of the representative volume. Convergence tests are needed for
determining the minimum SERVE size necessary for the statistics of characteristic
microstructural descriptors to converge. The M-SERVE is the foundation of the
DREAM.3D software [33, 34]. On the other hand, the P-SERVE is determined from
convergence of material response functions and properties.

Development of the M-SERVE and P-SERVE is preceded by the creation of
3D statistically equivalent virtual microstructures or SEVMs. The statistics of
morphological descriptors in SEVMs must be equivalent to those derived from
high-fidelity datasets obtained from experiments involving electron backscatter
diffraction (EBSD) [34, 35], scanning electron microscopy (SEM), or computed
tomography (CT). Deterministic models, e.g., in [36], are not well-suited for
microstructures with significant spatial variations. Various methods of generating
polycrystalline or polyphase microstructures have been proposed in the literature,
e.g., in [37–43]. These methods account for spatial variations in microstructural
morphology and represent the microstructure with statistical distributions functions
equivalent to those obtained from experimental observations. Conversely, other
methodologies rely on a multiphase field approach to generate microstructural
statistics for both polycrystalline and polyphase microstructures [44, 45]. These
methods focus on the modeling and subsequent statistics of the formation of
microstructural geometries and complement the top-down approach of observing
and matching the microstructural statistics. In [34, 35], statistically equivalent
polycrystalline microstructures have been developed to capture the statistics of grain
shape and size, crystallographic orientations, misorientations, and their correlations.
The DREAM.3D code resulting from this work [33] is very successful in generating
SEVMs for polycrystalline materials.

This chapter is devoted to a discussion on the development of the M-SERVE
and P-SERVE of the Ni-based superalloy René 88DT [46] at multiple scales, as
depicted in Fig. 1. Section 2 focuses on the M-SERVE and P-SERVE development
for intragranular γ − γ ′ microstructures at the subgrain scales. It involves a
sequence of tasks, viz., serial sectioning, image processing, feature extraction, and
statistical characterization, followed by micromechanical analysis and convergence
tests for establishing the M-SERVE and P-SERVE. Subsequently the M-SERVE
and P-SERVE development for the higher-scale polycrystalline microstructure,
characterized by grains containing annealing twins, is discussed in Sect. 3.
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2 M-SERVE and P-SERVE for Intragranular
Microstructures at the Subgrain Scale

The scanning electron microscopy image of a section of intragranular γ − γ ′
microstructure of the Ni-based superalloy René 88DT is shown in Fig. 2a. The
following sections discuss the process of experimental image extraction, microstruc-
tural characterization, and statistical analysis, followed by micromechanical analy-
sis for establishing the M-SERVE and P-SERVE. Details of these developments are
given in [30, 47].

Fig. 2 (a) A scanning electron microscope image of Rene’88DT acquired by FIB serial sectioning,
(b) final segmented image following thresholding and despeckling, and (c) visualization of the 3D
microstructure by stacking section images after binarization and post-processing. (Reprinted from:
Pinz et al. [30], with permission from Elsevier)
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2.1 Experimental Data Acquisition and Image Processing

Acquisition of high-fidelity micro- and nano-scale 3D data for a single crystal
Rene’88DT superalloy with γ − γ ′ microstructure is done using an automated,
high-throughput focused ion beam (FIB) coupled with a high-resolution scanning
electron microscope (SEM) in a TriBeam system [48]. The resulting dataset used in
microstructure reconstruction is available in [46]. The FIB process serially sections
layers of the specimen in the [001] direction, ablating approximately 20 nm of
material in each pass. Individual section images are subsequently extracted using the
SEM with a backscattered electron detector, repeating the process until the desired
volume is scanned. The dataset used in the generation of a 3 × 4 × 5 μm virtual
material volume is from 182 grayscale section images, each containing 1996×1596
pixels. This yields a resolution of 2.5 nm between pixels and 20 nm between slices.

A pipeline of automated image processing techniques is necessary to generate 3D
virtual microstructures from this dataset. This pipeline converts the experimentally
derived image stack into a fully segmented 3D voxelized representation following
a four-step procedure that includes (i) slice registration and alignment; (ii) voxel
level cleanup; (iii) feature segmentation; and (iv) artifact removal. Once a 3D virtual
representation of the experimental data is processed and segmented, statistical
distributions of microstructural descriptors, viz., feature size, shape, orientation,
neighbor distance, etc., are generated from the dataset. The fidelity of the statistical
distributions depends on the robustness of the preliminary image processing.

The collection of image slices from serial-sectioning must be assimilated into
a 3D voxelized binary structure, representing γ matrix and γ ′ precipitate phases.
To achieve this objective, the slices in the image stack must be aligned, followed
by preliminary image processing and thresholding for binarization. Major steps
in this process include (i) image slice alignment; (ii) background subtraction; (iii)
local smoothing; (iv) contrast enhancement through unsharp masking; (v) minimum
cross-entropy thresholding; and (vi) scanning direction normalization with image
interpolation. A representative slice, corresponding to the output of the segmentation
process, is shown in Fig. 2b. The difference in data resolution between the sectioning
direction (z) (∼20 nm) and the in-plane directions (x, y) (∼2.5 nm) necessitates
additional image slices to ensure the same distance between voxels in all directions.
Consistent resolution in the x, y, and z directions allows the usage of filters that
operate with uniform spacing, such as the watershed algorithm and microstructural
statistics extraction. The aligned and binarized images should subsequently undergo
an image interpolation method to equalize section spacing in all directions. A
consistent resolution of 2.5 nm between voxels in all directions is obtained by
inserting (

dbp
dip

− 1) additional slices between images. Here dbp = 20 nm is the
resolution between planes, and dip = 2.5 is the in-plane resolution. The surrounding
images of the new slices are converted into distance to boundary maps, representing
the distance to the nearest boundary of a precipitate. These are then linearly
interpolated and thresholded as detailed in [30, 47].
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Fig. 3 (a) Spurious connectivity ensuing with the 3D SEM-FIB serial sectioning and segmentation
process, (b) illustration of coordinate systems during ODM mapping algorithm. A single observed
point x with its relation to xo, x̂, and x̄. The dotted line represents the current iterate of the
super-ellipsoid with the surface of the blue object representing a collection of m observed
points. (Reprinted from: Pinz et al. [30], with permission from Elsevier)

Due to imperfect image processing, as well as the finite interaction volume
of the SEM, spurious connections between precipitates exist as shown in Fig. 3a.
A watershed segmentation procedure [49] is employed to eliminate this spurious
connectivity and separate conjoined precipitates. The method uses a pseudo-
gradient field defined as:

G(i, j, k) = Bint(i, j, k)

∑Nx
ī=0

∑Ny

j̄=0

∑Nz

k̄=0
Dint(ī, j̄ , k̄)e

−
[(

(ī−i)2
2σ2

)
+
(
(j̄−j)2

2σ2

)
+
(
(k̄−k)2

2σ2

)]

∑Nx
ī=0

∑Ny

j̄=0

∑Nz

k̄=0
e
−
[(
(ī−i)2

2σ2

)
+
(
(j̄−j)2

2σ2

)
+
(
(k̄−k)2

2σ2

)]

(1)

where Nx , Ny , and Nz represent the number of voxels in the x, y, and z directions,
respectively, and ī, j̄ , k̄ are dummy indices. Dint is a map from each voxel to the
value of its distance to the nearest boundary in the plane. It is interpolated to the
new slices from the original distance-to-boundary map. Bint is a binarized map
relative to Dint and is an indicator function of whether a voxel (i, j, k) is in a
precipitate or not. The standard deviation σ of the Gaussian blur is set to 1

10 th
of the mean particle radius. This gradient field is chosen to reduce disconnected
over-segmentation by the watershed algorithm. The 3D Gaussian blur mitigates
the effects from voxelization of precipitate edges. After application to initially
connected inclusions, the watershed segmentation algorithm produces a final binary
voxelized map Bfinal. The resulting experimentally obtained microstructure from the
volume sampled contains approximately 6000 precipitates.
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2.2 Parametric Representation of Precipitate Morphology and
Statistical Distributions

The morphology of the γ ′ precipitate phase is generally quite complex that requires
a high dimensional shape representation. To avert surface profile representations
with large datasets, the order of the precipitate morphology representation is reduced
through parametric mapping functions with optimal number of parameters. Such
parametrization enables direct incorporation of the morphological parameters in
parametrically homogenized constitutive models [19, 20]. For each precipitate,
coefficients of the parametrized mapping function are calibrated via an orthogonal
distance minimization (ODM) algorithm [50], in which the 3D voxelization is
reduced to a list of (x, y, z) coordinates for surface voxels. The equation of a
generalized superellipsoid (GSE) is selected to parametrically represent the γ ′
precipitate morphology, given as:

(
x̄

a

)n1

+
(
ȳ

b

)n2

+
(
z̄

c

)n3

= 1 (2)

where the set (a, b, c) corresponds to the lengths of principal axes of the GSE and
the exponents (n1, n2, n3)manifest the shape of the GSE. The position vector {x̄} =
{x̄, ȳ, z̄}T describes the location of a GSE surface point

{
x̂
} = {

x̂, ŷ, ẑ
}T relative

to its centroid {x0} = {x0, y0, z0}T in its principal coordinate system. The latter is
represented by the Bunge Euler angles (φ1,	, φ2) as shown in Fig. 3b. The relative
coordinates are expressed as {x̄} = [R]

{
x̂ − x0

}
, where the Bunge rotation matrix

is defined as:

[R] =
⎡

⎢⎣
c(φ1)c(φ2)− s(φ1)s(φ2)c(	) s(φ1)c(φ2)+ c(φ1)s(φ2)c(	) s(φ2)s(	)

−c(φ1)s(φ2)− s(φ1)c(φ2)c(	) − s(φ1)s(φ2)+ c(φ1)c(φ2)c(	) c(φ2)s(	)

s(φ1)s(	) − c(φ1)s(	) c(	)

⎤

⎥⎦

(3)

where c = cos and s = sin. The parametrized function in Eq. (2) is capable of
adequately describing precipitates of varying size, shape, orientation, aspect ratio,
and roundness. An ordered parameter set needs to be evaluated for representing each
precipitate, given as:

Ypar = (x0, y0, z0, n1, n2, n3, a, b, c, φ1,	, φ2) (4)

The shape and location of each precipitate in the microstructure is fully char-
acterized by an instantiation of the set Ypar. This parameter set, describing a
single GSE, is determined by solving an optimization problem that minimizes the
orthogonal distance betweenNpoints voxelized surface points of each precipitate and
its parametrized representation. For p ∈ [1, Npoints], the orthogonal distance Dp
between an observed surface point xp of a voxelized precipitate and the conjugate
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surface point x̂p on the parametrized GSE is given by:

Dp = ‖xp − x̂p‖ =
√(
xp − x̂p

)2 + (yp − ŷp
)2 + (zp − ẑp

)2 (5)

To determine an optimal value of the set Ypar, the minimization problem is stated
as:

Minimize
Ypar

Npoints∑

p=1

D2
p (6a)

subject to the constraint that each point x̂p belongs to the GSE surface

(
x̄p

a

)n1

+
(
ȳp

b

)n2

+
(
z̄p

c

)n3

= 1 ∀ p ∈ [1, Npoints] (6b)

A two-level optimization process is executed to solve the orthogonal distance
minimization (ODM) problem, given as:

1. Level 1: For every point on the precipitate surface, locate the nearest point on the
surface of the test GSE;

2. Level 2: Update Ypar through a Newton-Raphson scheme to determine a new test
GSE that reduces the total orthogonal distance over all surface points.

In Level 1, each point x̄p on the parametrized surface is identified for a given
parameter set Ypar. The constrained minimization problem for the pth point is
solved as:

Minimize
x̂p

D2
p = (xp − x̂p

)2 + (yp − ŷp
)2 + (zp − ẑp

)2 (7)

subject to the constraint that the point belongs to the known GSE surface given in
Eq. (6b). The nonlinear MATLAB solver fmincon is used to solve this problem. It
avoids instabilities especially as the shape exponents n1, n2, n3 increase [50]. Once
all the nearest points x̂p are identified, the global optimization problem in Eq. (6) is
solved in Level 2 for the next iterate of the parameter set Ypar. The Newton-Raphson
iterative solver is implemented to evaluate the update to the test GSE surface. For
the ith iteration, the equation to be solved is:

[
∂D
∂Ypar

]i {
Yi+1

par − Yipar

}
= −Di (8)

where D is the vector ofDp for all p ∈ [1, Nslice]. The algorithm is terminated when

the update size
{
Yi+1

par − Yipar

}
drops below a convergence threshold.
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This method is implemented for the microstructure with 6000 γ ′ precipitates to
generate a database contributing to the 12-dimensional parameter space of Ypar in
Eq. (4). It has been further observed in [30, 47] that the parameter set can be further
reduced using the constraint n = n1 = n2 = n3 with minimal loss in statistical
error. In addition, the principal axis half-lengths are replaced by the normalized
aspect ratios a

b
, b
c

and the half-length of the intermediate principal axis b. These
modifications yield the re-parametrization:

Ŷpar =
(
x0, y0, z0, n,

a

b
,
b

c
, b, φ1,	, φ2

)
(9)

Optimally selected analytical forms for the probability density functions of each
parameter of Ŷpar are chosen and fit the experimental data. For example, the aspect
ratios are approximately fit to a shifted beta prime distribution function B ′(s) =
s−α−β(s−1)α−1

B̄(α,β)
, where s corresponds to an aspect ratio, (α, β) are fitting parameters,

and B̄ is the beta function, as shown in Fig. 4a. The shape exponent, on the other

hand, is fit to a log-normal distribution function f (n) = 1
(n−2)

√
2πσ
e−

(ln(n−2)−μ)2

2σ

with the origin shifted to n = 2, and (μ, σ ) are fitting parameters as shown in
Fig. 4b.

(a) (b)

Fig. 4 (a) Comparison of the cumulative distribution of the evaluated aspect ratio b
c

for 6000
precipitates with the fitted shifted beta prime distribution and (b) probability distribution function
of the reduced shape exponent n for all 6000 precipitates and a maximum likelihood estimation of
a shifted log-normal distribution. (Reprinted from: Pinz et al. [30], with permission from Elsevier)
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2.3 Generating Intragranular Statistically Equivalent Virtual
Microstructures

The parametrically represented γ ′ precipitates or GSEs are next dispersed in the
computational volume to generate statistically equivalent virtual microstructures or
(SEVMs). A first step is the initialization of SEVMs with Np GSE precipitates.
For each Np, distributions of morphological parameters, viz., aspect ratios ( a

b
, b
c
),

the intermediate axis length b, shape exponent n, and the orientation distribution
functions (φ1,	, φ2), are sampled from the distribution functions created. The
aspect ratio a

c
can be determined in terms of the other two aspect ratios. However,

a
c

can be matched to its representative distribution by swapping the relative
position of the aspect ratio a

b
. In a similar manner, the cross-correlations of the

sampled parameters are aligned with those of the ODM obtained statistics by a
shuffling method. Finally, the Np precipitates are spatially dispersed inside the
cubic computational domain with a volume fraction known from the experimental
statistics. The placement of GSEs in the computational domain is done by an
iterative algorithm. It initially disperses the statistically equivalent GSE at a very
low volume fraction and subsequently conducts gradual dilation and shuffling to
avoid precipitate contact, until the target volume fraction is reached.

2.3.1 Finalizing SEVMs Through Optimization of the Two-Point
Correlation Function

Following initialization of the SEVM with matching volume fraction, the spatial
positions of the γ ′ precipitates are optimized with respect to the two-point correla-
tion function S2. A genetic algorithm (GA) optimization method [51] is employed
to determine the optimal placement of the GSEs, with the objective of matching S2
of the SEVM to that of the 6000 precipitates in the experimental microstructure.
The 3D correlation function S2(r, θ, φ) in spherical coordinates is a known measure
of microstructural heterogeneity [41, 42]. For isotropic microstructures, S2(r, θ, φ)

reduces to a r dependent radial distribution function, which may be approximated
by a parametrized function as [39]:

S2(r) = Vf 2 + Vf (1 − Vf )
sin
(

2πr
a0

)

2πr
a0

e
− r
r0 (10)

where Vf is the precipitate volume fraction and (a0, r0) are parameters to be
calibrated. A volume fraction independent, scaled S2(r) may be obtained as:

S̄2(r) = S2(r)− Vf 2

Vf − Vf 2
=

sin
(

2πr
a0

)

2πr
a0

e
− r
r0 (11)
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A fitness function is introduced in terms of the variables (atarget
0 , r target

0 ) in S̄2(r) to
assess the fitness of the placement of GSEs in an instantiation of the SEVM.

� =
(
ao − atarget

o

a
target
o

)2

+
(
ro − r target

o

r
target
o

)2

(12)

This represents an error metric between the best fit parameters of the experimental
microstructure and a candidate SEVM.

The GA search process minimizes � for a given microstructure. Only mutation
operators are considered in GA for evolving the population, as crossover operators
between microstructures tend to bias the morphological distributions and generate
frequent overlaps between precipitates. Candidate microstructures are updated
through mutation in one of two possible ways, viz., either perturbation of the GSE
centroids or swapping of Euler angles between two GSEs in the microstructure. For
viability of the perturbation method, the microstructure is checked for precipitate
to precipitate overlap. In the event of an unacceptable overlap, a different random
perturbation is attempted. The algorithm is terminated when the fitness function �
falls below a threshold. Figure 5 shows examples of reconstructed microstructures
for Np = 10, 50, 100, and 200 precipitates corresponding to the same volume
fraction.

2.3.2 Validation of SEVM Generation Method by Convergence Tests

The SEVM generation process for the γ − γ ′ microstructure invokes minimization
of the S2 best fit equation (12). In [30, 47], it has been shown that the error between
the two-point correlation function of the created SEVM and that of the experimental
microstructure is reduced with iterations of the GA optimization. The absolute
values of S̄2(r) for the three cases, viz., (i) experimental (FIB-SEM) microstructure,
(ii) its best fit equation (10), and (iii) median of an ensemble of 30 SEVMs each with
Np = 200, are plotted in Fig. 6b. The figure illustrates that the spatial positioning
of γ ′ precipitates of the virtual microstructure closely match that of the experiment.

Fig. 5 Statistically equivalent virtual microstructures withNp = 10, 50, 100, and 200 precipitates
for the same volume fraction. (Reprinted from: Pinz et al. [30], with permission from Elsevier)
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(a)

|

(b)

Fig. 6 (a) S̄2(r) of the experimental microstructure, its best fit equation and the median of 30
SEVM instantiations (Np = 200) and (b) CDF of the distance to surface distribution for ensemble
median of 30 SEVM instantiations and experimental data. (Reprinted from: Pinz et al. [30], with
permission from Elsevier)

Additionally, the statistics of the distance to surface distribution is tested against
experimental values. This metric is not used in the SEVM generation process. The
distance to surface measure corresponds to the distribution of distances from γ

voxels to the nearest γ ′ voxel. The cumulative ensemble distribution of the distance
to surface distribution for 30 instantiations of SEVMs with Np = 200 is compared
with the experimental FIB-SEM distribution in Fig. 6b. The error in distributions
may be estimated by a Kolmogorov-Smirnov (KS) test [52], in which the test
statistic is the maximum difference between two cumulative distribution functions.
A KS test statistic shows a value of 0.038 between the two distributions in Fig. 6b,
demonstrating effective convergence.

2.4 Determining the M-SERVE from Statistical Convergence

The microstructure-based SERVE or M-SERVE is defined in the introduction as a
statistically equivalent RVE for which morphological, spatial, and crystallographic
characteristics of the microstructure are the sole determinants of the representative
volume. Representing the morphological and spatial statistics of a microstructure in
a smaller representative volume requires establishment of sufficiency of the volume
for equivalence of a variety of statistical distributions. The M-SERVE represents this
minimum volume for statistical fidelity of one or more microstructural descriptors.
In this context, distributions for shape, size, orientation of precipitates, and grains
are referred to as morphological distributions, while those for relative positions
of material features are referred to as spatial distributions. The convergence of
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morphological parameters of the GSE is determined by a sampling error associated
with finite number of sampling from a distribution, whereas the convergence of
spatial microstructural statistics is calculated by generating 30 instantiations of
SEVMs with Np = 10, 50, 100, and 200 precipitates and subsequently comparing
their spatial distribution with those from experimental data.

2.4.1 Convergence of Morphological Distributions

Within the SEVM generation procedure framework, a small sample size may incur
large discrepancies between the sampled dataset and representative distributions.
This sampling error is reliably determined with respect to Np by the KS test
statistic Dn, defined as the maximum absolute difference between two cumulative
distribution functions. By specifying the number of samples Np and the frequency
fb of observing aDn or greater, the number of required samplesNp is solved for as:

fb =
√

2π√
NpDn

∞∑

k=1

exp

(
− (2k − 1)2 π2

8NpD2
n

)
(13)

The cases of fb = 0.5, 0.95 are displayed in Fig. 7a. At Np ≈ 50, 95% of all
sampled datasets have a KS statistic of less than 0.2, corresponding to the minimum
acceptable M-SERVE population for morphological distributions.

2.4.2 Convergence of Spatial Distributions

While morphological distributions can all be characterized similarly with the KS
test, the spatial distributions are unique, and each test may require a different error
metric. Therefore, each test is analyzed independently, and the largest required
minimum size is taken to be the M-SERVE for all spatial metrics. Where applicable,
a 2% error threshold is applied, and the resultant number of precipitates required for
that threshold are given.

For non-ellipsoidal precipitates the local volume fraction is calculated by
assigning γ matrix voxels to the nearest γ ′ precipitate and then by dividing the
number of γ ′ precipitate voxels by the total number of voxels assigned to that
precipitate. This method generates Np data-points per microstructure, which gives
rise to large variability across microstructural instantiations of the same statistics.
The ensemble statistics of its distribution is employed to estimate convergence.
The ensemble distribution of the local volume fraction is computed for the same
30 instantiations of SEVMs for Np = 10, 20, 50, 100, 200. Their cumulative
distribution functions are shown in Fig. 7d. The KS test values, computed between
distribution for Np = 200 and those for Np = 10, 20, 50, 100, are, respectively,
0.0743, 0.0493, 0.0224, 0.0213. For 2% error, the local volume fraction measure
requires Np > 100 to converge.
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Fig. 7 (a) 50th and 95th percentile expected KS test statistic for various Np (red and blue lines
indicate the number of samples required to achieve a 95% probability of observing a KS test
statistic of less than 0.2 and 0.1, respectively); (b) ensemble error metric between SEVMs with
Np = 200 and those with Np = 10, 20, 50, 100, 200 respectively; (c) variability related to the
differences in S2; and (d) ensemble CDFs of the local volume fraction for SEVMs with Np =
10, 20, 50, 100, 200. (Reprinted from: Pinz et al. [30], with permission from Elsevier)

2.5 Determining the Property-Based Statistically Equivalent
RVE (P-SERVE)

The mechanical response of Ni-based superalloys is highly dependent on the
subgrain-scale intragranular γ − γ ′ microstructure. Microstructural simulations
for evolving variables and overall response fields must incorporate large-enough
computational RVEs to account for variabilities in evolving fields caused by spa-
tial and morphological heterogeneities. The property-based statistically equivalent
representative volume element (P-SERVE) corresponds to the minimum simulation
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volume needed for convergence of mechanical properties and response functions
to within a prescribed level of accuracy. Such properties may be classified into a
spatially averaged and a local category. Spatially averaged properties are mean-field
values over the entire SERVE, such as overall yield strength or hardening rate. Local
properties on the other hand are described in terms of the spatial distribution or the
extreme values of a response variable. Both classes are important when performing
a P-SERVE analysis. In this study, the P-SERVE is determined from convergence
of evolving fields and properties in the microstructure that are evaluated from
dislocation density-based crystal plasticity finite element (DD-CPFE) simulations.
While methods like discrete dislocation dynamics may be more appropriate at
the nm scales of γ channels, their current capabilities are not yet adequate for
simulating the large heterogeneous domains required for this problem.

A sequence of steps is executed to generate microstructure realizations and per-
form dislocation density-based crystal plasticity finite element (CPFE) simulations.
The steps are summarized below.

• Microstructure Generation: The SEVMs and M-SERVEs of the γ − γ ′
microstructure are generated.

• Precipitate Smoothing and Meshing: The voxelized precipitates are smoothed
using the Simmetrix code [53] to remove spurious artifacts. The cubic SERVE
is then meshed with four-noded tetrahedral (TET4) elements, capturing the
precipitate geometries.

• Pre-processing: FE input files are generated for the microstructure and loading
conditions.

• FE Simulation: Dislocation density-based crystal plasticity FE simulations with
locking-free TET4 elements are performed for multiple SEVMs.

• Output Extraction: The averaged and local fields are extracted from the CPFE
simulation results for use in analyzing properties.

2.5.1 Crystal Plasticity Models for Ni-Based Superalloys

Finite element simulations of the SEVMs for determining the P-SERVE are con-
ducted with a dislocation density-based crystal plasticity constitutive law, developed
for intragranular γ − γ ′ microstructures of Ni-based superalloys in [19, 23]. A brief
summary of these constitutive equations is provided here. Plastic slip on each slip
system α is governed by a flow rule derived from the Orowan equation for thermally
activated flow, given as:

γ̇ α = ραMbλν exp

(
− Q

kBT

)
sinh

( |τα| − ταpass

ταcut

)
sign (τα) (14)

where ραM is the mobile dislocation density, b is the Burgers vector, λ is the
jump width, ν is the jump frequency, Q is the activation energy for slip, T is the
temperature, τα is the resolved shear stress, ταpass is the passing stress, and ταcut
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is the cutting stress. The passing and cutting stresses are explicit functions of the
dislocation density, whose evolution is governed by the time-rate of dislocation
density evolution due to mechanisms like multiplication, locking, and annihilation.
In addition to statistically stored dislocations, geometrically necessary dislocations
are considered for local closure of the Burgers circuit, derived from the time rate
of the Nye tensor. The critical resolved shear stress of the γ ′ precipitate phase for
octahedral slip systems is given as [23]:

ταc = ταc (ταpe, ταse, ταcb, T , �111, �100) (15)

where �111 is the antiphase boundary or APB energy on the octahedral plane,
�100 is the APB energy on the cube plane, and ταpe, τ

α
se, and ταcb are the resolved

shear stresses for partial dislocations on the primary, secondary, and cube planes,
respectively. This resistance stress for the precipitates accounts for APB shearing
and Kear-Wilsdorf locks and manifests non-Schmid effects, tension-compression
asymmetry, and anomalous yield strength.

2.5.2 CPFE Simulations for Analyzing Response Variables

The automated computational sequence probes a large number of statistically
equivalent virtual γ − γ ′ microstructures generated from the experimental dataset.
Mechanical response of various intragranular microstructures is analyzed with
increasing volume, measured in terms of number of precipitates considered. As with
the M-SERVE determinations, 20–25 instantiations of SEVMs are simulated, each
with Np = 10, 20, 50, 100, 200 precipitates, respectively. The CPFE simulations are
all performed under a constant strain-rate loading of 10−4s−1 in the [001] direction
at a temperature of 300K, until 10% total strain is attained. These simulations
permit the quantification of the diminishing effect of microstructural variations on
mechanical properties with increasing material volume.

A number of spatially averaged and local response variables are identified for
extraction from the results of CPFE simulations. The spatially averaged quantities
are (i) the initial yield strength σY defined as the 0.2% offset yield stress of the
overall stress-strain curve and (ii) the hardening rate H that corresponds to the
average slope from σY to the stress at 10% strain (relatively constant over this
range). The local field variable considered is the equivalent plastic strain εp at every
quadrature point of the FE mesh. This field variable is compared to its bulk mean
value through an error metric defined as:

eP =
∣∣∣∣
P − μP

μP

∣∣∣∣ , P ∈ {σY ,H, ρ, τ1%} (16)

where μP is the limiting mean of a given property P as the size of the SEVM
approaches the bulk behavior. In this study, this value is approximated by calculating
the ensemble mean of 200 precipitates.
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2.5.3 Spatially Averaged Mechanical Fields

Both the initial yield strength σY and the hardening rate H are computed from the
mean stress and strain fields for each microstructural instantiations with differentNp
values. Figure 8 demonstrates the convergence of the spatially averaged responses,
along with the decaying effect of microstructural variation with increasing size.
Even with relatively low number of precipitates, the yield strength varies within
only 2.5% of the average. This result implies that the higher moments of precipitate
morphology and spatial distribution do not play significant roles for the yield
strength. Lower moments like the averaged volume fraction or shape characteristics
are sufficient to quantify this property. Analogous effects are also seen for the
hardening rate. Bounds on the variation vary from 8% to 2% with increase in Np

Fig. 8 Convergence of (a)
the yield strength and (b) the
hardening rate with
increasing Np . The upper and
lower bounding lines
represent two standard
deviation bounds from the
mean for each ensemble, and
the scattered markers depict
individual simulations. The
final bounds on the relative
error at 200 precipitates are
shown for each
case. (Reprinted from:
Pinz et al. [30], with
permission from Elsevier)

(a)

(b)
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from 10 to 50. As with the yield strength, the hardening rate also converges quickly
with microstructural volume. For both these properties, the P-SERVE is estimated
at Np = 10–20, where the bounding curves fall below 5% relative error.

2.5.4 Local Response Field Variables

Mechanical response fields, obtained from intragranular crystal plasticity simula-
tions, exhibit significant variations in the microstructure consisting of precipitates
and matrix channels. The gradients and extreme values of these fields are often
used as indicators of critical events such as fracture. P-SERVEs that represent the
computational domain for analyses must be sufficient to depict these local features
and gradients. The spatial distribution of three evolving state variables, viz., the
equivalent plastic strain, dislocation density, and stress measures like the von Mises
stress, are studied here for their influence on the estimation of P-SERVEs.

The equivalent plastic strain εp :=
√

2
3E
p : Ep, where Ep := FpTFp− I and Fp

is the plastic deformation gradient, yields a scalar measure of plasticity experienced
at a local site. The probability distribution of the plastic strain field is plotted over
the spatial domain in Fig. 9 for Np varying from 10 to 200 precipitates.

This spatial distribution shows significant variation for different microstructure
realizations when the simulation volume is small and is highly dependent on the
precipitate configuration. The variance in the tails of the distributions is driven by
the largest channel width, accounting for the passage of dislocations through the
domain with weak obstacle interactions. A prolonged and heavy distribution tail
indicates a relatively large set of regions undergoing large and localized plastic
deformation. The spatial distribution of plastic strains converges to approximately a
log-normal distribution, with decay in the variance of extreme values. Convergence

(a) (b)

Fig. 9 Convergence of the spatial distribution of the plastic strain field εp with (a) 10 and (b) 200
precipitates. The corresponding contour plots are shown in the inset, with plastic strain ranging
from 0 to 0.2. (Reprinted from: Pinz et al. [30], with permission from Elsevier)
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with a relative error of 5% in the second moment of the distribution corresponds to
a P-SERVE of approximately 100–200 precipitates. This is much larger than that
for the yield strength and hardening rate, due to the requirements of convergence of
higher order moments of the distribution.

2.6 Summary of the Subgrain-Scale Analysis

This section develops the microstructure and property-based SERVEs, viz., M-
SERVE and P-SERVE for intragranular microstructures of Ni-based superalloys,
characterized by γ -γ ′ phase distribution. Steps to the development of the M-
SERVE and P-SERVE include the development of statistically equivalent virtual
microstructures or SEVMs, for which statistical distribution functions are equivalent
to those from experimental data. The main difference between the M-SERVE and
the SEVMs is that the M-SERVE is the optimal domain with respect to a chosen
microstructural feature.

An important outcome of parametric representation of the morphology, e.g.,
in Eq. (4), is the capability of explicit representation of these parameters in para-
metrically homogenized constitutive models [20]. These constitutive models can
relate the sensitivity of various response fields to these morphological parameters
and hence facilitate material design. P-SERVEs are established with respect to
a few global and local material properties from evolving variables in dislocation
density-based crystal plasticity FE (DD-CPFE) simulations. It is observed that
the convergence with respect to the global properties occurs in the vicinity of
≈10–20 precipitates for relative error bounds of 5%. When local variables are
considered, a higher number of precipitates withNp ≈ 100–200 becomes necessary
for convergence. Spatially averaged quantities converge quicker than the local dis-
tributions, independent of whether the quantity is microstructure or property-based.
The convergence characteristics of the M-SERVE and P-SERVE can generally be
used to delineate the relation between morphological characteristics and certain
response functions in the microstructure.

3 M-SERVE and P-SERVE for Polycrystalline
Microstructures of Ni-Based Superalloys

This section establishes M-SERVEs and P-SERVEs for the scale corresponding to
polycrystalline microstructures of Ni-based superalloys, as shown in Fig. 10. This
scale is characterized by an ensemble of grains containing annealing twins that
are generated as a consequence of the thermomechanical process. An algorithmic
development is pursued to generate 3D statistically equivalent virtual polycrystalline
microstructures (3D-SEVMs) from experimental observations by employing sta-



M-SERVE and P-SERVE 75

(a) (b) (c)

Fig. 10 (a) Serial sectioned EBSD images, (b) computer assembled sections of EBSD images
manifesting polycrystalline microstructure including twins, and (c) polycrystalline microstructure
of parent grains only after removing twins, for the Ni-based superalloy René88-DT. (Reprinted
from: Bagri [29], with permission from Springer)

tistical methods, probability distribution functions of parent grains, as well as the
correlation of twins and parent grains in EBSD microstructure. The M-SERVE and
P-SERVE are consequently established from convergence studies of microstructural
statistics and crystal plasticity finite element simulation-based response functions.
Details of the methods are available in [29].

3.1 Image Extraction from Electron Backscattered Diffraction
Maps

Electron backscattered diffraction or (EBSD) images are used to extract statistical
crystallographic and morphological information of the microstructure. The EBSD
dataset, described in [46], is collected over a large volume to characterize the
structure of twin-related domains. A 10 × 5 × 1 mm sample is sectioned from a
forging of the superalloy René-88 DT using wire electrical discharge machining
(EDM). The sectioning facilitates data collection over a number of parallel sections
as shown in Fig. 10a. A series of 600 μm wide pedestals are fabricated with the
wire EDM and then mechanically polished to 600 μm thickness, creating a series of
600×600 μm pedestals. The EBSD images are collected from a 240×145 μm area
using a 25 kV electron beam and 8 × 8 camera binning with a 300 nm step size. A
total volume of 240 × 145 × 130 μm is collected from 199 ablated slices.

A 3D microstructure is assembled by stacking the EBSD images from all the
slices, as shown in Fig. 10b. The grains are segmented with a 2◦ tolerance. Those
smaller than 75 voxels are removed and followed by isotropic neighbor dilation.
Twin-related domains are grouped with a 5◦ tolerance on both the disorientation axis
and the disorientation angle. Slices are aligned using the twin domain centroids. The
aligned dataset is next re-segmented with a 5◦ disorientation tolerance, and grains
smaller than 75 voxels are removed with isotropic neighbor dilation. Finally twin-
related domains are grouped with a 5◦ tolerance on both the disorientation axis
and angle. The resulting stacked and assembled 3D polycrystalline microstructure
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containing annealing twins is shown in Fig. 10b. The ensemble contains 440 �3
type twins in 300 parent grains for a total of 740 twins and grains. The 3D assembly
and microstructure reconstruction is performed in the DREAM.3D software [33]
in four sequential steps, viz., (i) slice registration and alignment; (ii) voxel level
cleanup; (iii) feature segmentation; and (iv) artifact removal. Corresponding to the
angular resolution of orientation measures in the EBSD scans, the segmentation
tolerance in the DREAM.3D code is chosen to be 1◦–5◦. Noisy voxels are identified
by thresholding misorientations with neighboring voxels and assigning thresholds
on the minimum acceptable grain size. If these criteria are not met, morphological
dilation of the voxels or small grains into surrounding grains is conducted.

3.2 Statistically Equivalent Virtual Microstructure (SEVM)
Generation from Characterization and Statistical Analysis

The EBSD data in Fig. 10a and the assembled 3D microstructure in Fig. 10b show
that the René88-DT polycrystalline microstructure contains an abundance of large
aspect ratio, annealing �3 twins that develop during material processing. These
twins have a 60◦ misorientation angle with respect to the < 111 > crystal
lattice axis, whereas most of the parent grain boundaries are randomly oriented.
Microstructure characterization further reveals that the majority of annealing twin
boundaries are coherent with boundaries formed along planes with {111} Miller-
index facet.

The generation of polycrystalline SEVMs proceeds in two stages. Statistics of
the parent grain without twins, that have random grain boundary orientations, are
first generated. This is followed by the incorporation of twins in the parent grains.
The following steps are executed in sequence to generate statistically equivalent
volumes of twinned polycrystalline microstructures.

1. Process the EBSD section data and construct the digitally assembled polycrys-
talline ensemble including twins;

2. Identify and remove twins from the digitally assembled microstructure to
manifest the parent grains, shown in Fig. 10c;

3. Extract the statistics of parent grains from the EBSD data;
4. Create statistically equivalent virtual parent grain microstructures from the 3D

EBSD data;
5. Extract correlation statistics of twins with respect to parent grains from the EBSD

data in the digitally assembled microstructure;
6. Insert twins in the parent polycrystalline microstructure to match the statistical

correlations.

The DREAM.3D software [33] is employed in steps 1–4 to create the digital
polycrystalline ensembles from EBSD data in Fig. 10b, remove twins in Fig. 10c and
subsequently extract statistics of the parent grains. The statistics of characteristic
features in the twin-free parent grains in Fig. 10c, including probability distributions
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Fig. 11 Statistics of the parent grain microstructure after removing twins: (a) grain size distribu-
tion, (b) misorientation angle distribution, (c) orientation distribution of grains along [001] sample
axis shown through the pole figure, and (d) histogram of parent grain size in a 3D-SEVM of size
250 × 250 × 250 μm that is created by DREAM.3D. (Reprinted from: Bagri [29], with permission
from Springer)

of grain size, orientation, and misorientation angle, are acquired in this step.
The corresponding probability density distributions of grain size, misorientation
angle, and orientation (pole figure) are shown in Fig. 11. These distributions are
fundamental to the creation of the statistically equivalent virtual parent grain
microstructures. A virtual simulated parent grain microstructure is subsequently
created from this 3D data [35]. Figure 11d shows a parent grain size histogram in a
3D-SEVM of size 250×250×250 μm with a maximum grain size of approximately
90 μm.

Sample statistics are extracted from the EBSD data to generate probability
distribution and correlation functions of twins with respect to parent grains in step
5. These are used to insert twins in the virtual parent microstructure as described
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Fig. 12 (a) Schematic of the correlation between twins and parent grain; the parent grain has
equivalent diameter d and contains twins with thickness of t , located at a distance x from the parent
grain centroid, and (b) joint probability distribution of the parent grain size (μm) and number of
twins. (Reprinted from: Bagri [29], with permission from Springer)

in [29]. A schematic representing the relation of a twin with the parent grain is
shown in Fig. 12a. There is a wide range of variation in the size and crystallographic
orientations of the twinned grains, as well as the number of twins per grain and their
thickness. Statistical analysis identifies four variables are needed to characterize the
distributions of twins within grains, viz., the parent grain effective diameter d, the
number of twins in parent grain n, the minimum distance x of the twin from the
parent grain centroid, and the twin thickness t . A four dimensional joint probability
distribution P0(x, t, n, d) is employed to describe the probability of observing a
twin, given these four parameters. Due to the dependency between these twin
descriptor variables, this joint probability distribution cannot be easily approximated
by sampling from four independent marginal distributions, and therefore, the full
joint distribution must be used to capture the appropriate intercorrelations.

A novel algorithm is developed in [29] for inserting twins in parent grain
microstructure following the joint and conditional probability distribution functions
derived from the 3D EBSD assembly maps. The joint probability distribution of
parent grain size and number of twins and the conditional probability distributions
of both twin distance from parent centroid and twin thickness are expressed as:

P1(d, n) =
∫ ∫

P0(d, n, t, x) dt dx joint PD (17)

P2(x|d = D,n = N) and P3(t |d = D,n = N) conditional PD (18)

where PD refers to the probability distribution.
The process first samples the joint probability distribution space for the number

of twins and the conditional probability distribution space for the twin thickness
and twin distance using statistics from the EBSD data. The four dimensional
probability distribution P0(d, n, t, x) necessitates a large dataset to be constructed.
Alternatively, a marginal probability function may be used when a smaller set of
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statistical information is available. The marginal probability function corresponds
to a joint probability function of the parent grain size and the number of twins and
the conditional probability distributions of the twin distance and the twin thickness,
respectively. In this step the joint probability distribution in Fig. 12b is used for
parent grain and number of twins per parent, while the conditional probability
distributions are employed for the twin distance from the parent centroid and twin
thickness, respectively. In [29] it is demonstrated that for a given d and n, t is
uncorrelated with x and is assumed independent. The four dimensional distribution
space may then be approximated as:

P0(d, n, t, x) ≈ P1(d, n) P2(x|d = D,n = N)P3(t |d = D,n = N) (19)

where D and N correspond to maximum sample sizes for grain size and number of
twins, respectively.

For generating twin descriptors in step 6, the probability distributions P1, P2, P3
are sampled, and a twin is inserted into the parent grain SEVM with selected
characteristics described in [29]. The steps in this algorithm are as follows:

1. With an acceptance-rejection algorithm [54], sample the joint probability distri-
bution for the number of twins and grain diameter and the conditional probability
distributions for the twin thickness and twin distance, using the statistics obtained
from the EBSD data.

2. Upon determination of n, d , t and x, the plane represented by the Miller index
(111) at a distance x from the parent centroid is located.

3. The voxels that belong to selected parent grain and are within a distance t
2 from

the mid-thickness (111) plane are identified via a search algorithm.
4. The rotation matrix of the twin in the specimen frame R is obtained from the

rotation matrix of the parent grain Rparent and the rotation matrix of the twin with
respect to the parent grain Rtwin as:

R = RparentRtwin (20)

5. The Bunge Euler angles of voxels that belong to the twins are determined by the
components of R.

6. By repeating the above steps, a set of twins is inserted in the parent grain
microstructure. Finally, the statistically equivalent virtual microstructure is
reconstructed using the new set of voxel Euler angles.

This virtual microstructure generation procedure becomes the basis for the
construction of the polycrystalline M-SERVE.

3.2.1 Validation of the SEVM Generation Method

The statistically equivalent virtual microstructure generation algorithm is imple-
mented in a computer code that interfaces with the DREAM.3D software. The
model and algorithms are validated using the EBSD data of the Ni-based superalloy



80 S. Ghosh et al.

specimen, discussed in Sect. 3.2. 3D statistically equivalent virtual polycrystalline
microstructures (3D-SEVM) of various sizes are created using the method. The
DREAM.3D generated parent grain microstructure in a 250×250×250 μm domain,
containing 760 grains is depicted in Fig. 13a. The resulting virtual microstructural
domain of size 250 × 250 × 250 μm consisting of a total of 1700 parent grains and
twins is shown in Fig. 13b. The statistical data presented in Figs. 14, 15 and 16 are
extracted from this 3D-SEVM.

A few probability distributions are selected to compare the statistics of the 3D-
SEVM with the assembled EBSD image data,. The distribution of misorientation
angle in the parent grain microstructure only and the grain microstructure with

Fig. 13 Simulated 3D statistically equivalent virtual polycrystalline microstructure (3D-SEVM)
of a Ni-based superalloy: (a) parent grains created by the DREAM.3D software, (b) grains with
statistically equivalent twins inserted in the parent grains, and (c) inverse pole figure (IPF) color
scheme for the FCC standard triangle. (Reprinted from: Bagri [29], with permission from Springer)
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Fig. 14 Probability distribution of (a) misorientation angle in parent grain microstructure,
(b) misorientation angle in microstructure with twins. The 3D-SEVM size is 250 × 250 ×
250 μm. (Reprinted from: Bagri [29], with permission from Springer)
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(a) (b)

(c) (d)

Fig. 15 Misorientation axes for all grain boundaries with misorientation angle of 60◦ in: (a) EBSD
images and (b) 3D-SEVM of size 250 × 250 × 250 μm; and grain boundary plane normals for �3
GBs from the (c) EBSD and (d) 3D-SEVM. The populations in (a, b) are represented as multiples
of a random distribution (MRD), while they are shown as the natural logarithm of multiples of a
random in (c, d) for clarity. The positions of tilt boundaries in (c, d) are shown by dashed dark
lines and labeled with a “tilt” and the (111) pole is marked by a red triangle. The data are plotted
in stereographic projections along [001] axis. (Reprinted from: Bagri [29], with permission from
Springer)

twins are compared with the assembled 3D-EBSD data in Fig. 14. For comparison,
the Fig. 14a without twins also includes the misorientation angle distribution of
a randomly textured cubic material from [55]. A reasonably good agreement
is observed between the misorientation distributions of the virtual parent grain
microstructure and the 3D EBSD image. For grains with twins in Fig. 14b, the
misorientation angle distributions depicts a prominent peak at 60◦ that reflects the
twin orientation. To investigate further the origin of this peak, the inverse pole figure
of the stereographic projection of the misorientation axis distribution is plotted
for the twin boundaries with the misorientation angles of 60◦ in Fig. 15a, b. A
clear peak exists at the [111] axis for grain boundaries with misorientation angle
of 60◦. This is an indication of presence of �3 twin boundaries in both the 3D-
SEVM and 3D EBSD image, not easily reproduced by codes like DREAM.3D.
Finally, the distribution of grain boundary plane normals for the �3 boundaries on
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Fig. 16 Comparison of the cumulative distribution function (CDF) of (a) number of twins per
parent grain n and (b) twin distance d from parent centroid in the 3D-SEVM and assembled EBSD
with a size of 250 μm. (Reprinted from: Bagri [29], with permission from Springer)

a stereographic projection along the [001] axis are shown in Fig. 15c, d. For clarity,
the natural logarithm of the frequency of occurrence is plotted in these figures.
The peaks of the distributions in Fig. 15c, d, which appear in small regions of the
plotted areas, occur at (111). The strong peak at twist boundaries (111) indicates
that the majority of �3 boundaries are coherent twins. The population of grain
boundaries in Fig. 15 are measured in units of multiples of a random distribution
(MRD). Values greater than 1 indicate grain boundaries observed more frequently
than those expected in a polycrystalline material with randomly oriented grains [38].

The results can be further validated by comparing the overall distributions in
the 3D-SEVM and assembled EBSD data. The cumulative distribution functions
(CDFs) of number of twins per parent grain and twin distance from parent centroid
are depicted in Fig. 16. Figure 16a implies that about 50% of the parent grains
remain untwinned in both the 3D-SEVM and assembled EBSD. With the exception
of the twin thickness at higher values, the CDFs are in general very good agreement.
The comparison plots of probability distributions in Figs. 14, 15, and 16 validate the
virtual generation method for polycrystalline microstructures containing twins.

3.3 Estimating M-SERVEs for Polycrystalline Microstructure
with Twins

To estimate the optimal size of a microstructure-based SERVE or M-SERVE that
can capture the statistics of the EBSD image data, the CDFs are compared through
the Kolmogorov-Smirnov (KS) test [52]. The KS test quantifies the maximum
absolute difference in the CDFs for the simulated and experimental volumes.
It is a useful tool for seeking the convergence of statistical distributions as a
function of the M-SERVE size. The CDFs of n and d are compared in Fig. 16.
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Fig. 17 Results of the Kolmogorov-Smirnov (KS) test for convergence of the probability distribu-
tions of (a) number of twins n and (b) twin thickness t , as a function of the virtual microstructure
size for determining the M-SERVE. The dashed lines show the upper and lower bounds of the
student t-test. (Reprinted from: Bagri [29], with permission from Springer)

The maximum difference in the CDFs of the simulated and experimental volumes
is expected to decrease with increasing the M-SERVE size, as shown in the KS
test plots of Fig. 17. At least five different realizations of the virtual polycrystalline
microstructure of varying sizes are created to assess the convergence of M-SERVE
characteristics. The Student’s t-test, where the statistic follows a Student’s t-
distribution under null hypothesis, is adopted. The convergence of the M-SERVE
statistics is determined using a standard 95% confidence interval bound. This
translates into having a population of samples at any given size, whose KS-test
values are within μ ± 0.1μ, where μ is the KS test mean value of a large sample.
Using this criterion it is observed that all the CDF’s of M-SERVEs converge in
the range 150 μm → 250 μm. Beyond this range, the probability distributions of
morphological and crystallographic parameters of the M-SERVE and EBSD image
are in good agreement. It is inferred that the M-SERVE size of this Ni-based
superalloy for the adopted characteristics is about 150 μm. This volume contains
160 parent grains with a total of 400 parent grains and twins. This is an effective
procedure for generating the M-SERVE from 3D-SEVMs that can hence be used in
analysis of the microstructure for various response functions.

3.4 Estimating the P-SERVE Through Convergence Studies

As for the subgrain microstructure, the optimal size of the P-SERVE is determined
from the convergence of statistics of material properties and response functions.
For polycrystalline Ni-based superalloys, crystal plasticity finite element modeling
(CPFEM) is performed for estimating the P-SERVE. An activation energy-based
crystal plasticity (AE-CP) model developed in [19, 20, 23] is adopted for simulating
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the polycrystalline SERVEs. The parameters of the AE-CP constitutive model are
calibrated from experimental data on polycrystalline superalloy Rene88-DT. Details
of the constitutive model and crystal plasticity parameter calibration are given in
[29].

The plastic slip-rate γ̇ α in this model is governed by the Orowan’s equation,
reflecting a thermal activation relationship. For a given slip system,

γ̇ α =
⎧
⎨

⎩

0 for ταeff ≤ 0

γ̇ α0 exp

(
− Q
kBT

[
1 −

(
ταeff
sα∗,tot

)p1
]p2
)

sign(τα) for 0 < ταeff ≤ sα∗,tot

(21)
where γ̇ α0 is the reference slip rate, Q is the activation energy, kB is the Boltzmann
constant, T is the temperature, and p1 and p2 are material constants. The effective
shear stress in any slip system, ταeff = |τα| − sαa , is defined as the difference of
resolved shear stress τα and the athermal obstacle resistance sαa due to parallel
dislocations. The total thermal slip resistance is comprised of two parts, i.e. sα∗,tot =
sα∗ + sαcross. The thermal slip resistance sα∗ provides an impeding effect of obstacles
that can be overcome by thermally activated processes such as forest dislocations.
The cross-slip resistance sαcross develops due to sessile dislocation segments creating
pinning points by formation of Kear-Wilsdorf (KW) configurations. The initial
values of athermal and thermal resistances, i.e. sαa0 and sα∗0 due to the presence
of statistically stored dislocations (SSDs) are determined through the experimental
calibration process.

The time evolution of the athermal and thermal slip resistances is a function of
the plastic slip-rate, in and out of the slip plane, corresponding to the effects of
parallel and forest dislocations respectively. The slip resistances evolve as:

ṡαa =
N∑

β=1

hαβa |γ̇ βsin(nα, tβ)| and ṡα∗ =
N∑

β=1

h
αβ∗ |γ̇ βcos(nα, tβ)| (22)

where N is the number of slip systems, mα is the slip direction, nα is the slip plane
normal, tα = mα × nα is the transverse direction. The interaction coefficients are
taken to be the same for both the athermal and thermal resistances, i.e. hαβ = hαβa =
h
αβ∗ . The hardening coefficients for self and latent hardening are expressed as:

hαβ = qαβhβ , where hβ = h0

∣∣∣∣∣1 − sβ

s
β
sat

∣∣∣∣∣

r

sign

(
1 − sβ

s
β
sat

)
(23)

where h0 is a material constant, sα is the shear resistance, sαsat is the saturation slip
resistance, r is an exponent controlling the rate of saturation, and qαβ = q + (1 −
q)δαβ and δαβ is the Kronecker delta. Parameter q = 1.4 in this study. sαcross is
another term contributing to the total thermal slip system resistance. This resistance
is associated with the accumulation of pinned screw dislocations after cross slip.
The evolution of the cross-slip resistance is computed for both the octahedral and
cube slip systems as:
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sαcross =
{
sαcross,oct=sαcross,oct(τ

α
pe, τ

α
se, τ

α
cb, T , �111, �100) on octahedral slip systems

sαcross,cube=sαcross,cube(T ) on cube slip systems
(24)

The cross-slip resistance on the octahedral planes accounts for the non-Schmid shear
stresses and anisotropy in the antiphase boundary (APB) energy function and is
expressed as:

sαcross,oct = ξ0exp

(
A

T − Tc
)

μ

√

ρ0exp

(
− Hα

kBT

)
(25)

where Hα = cH
⎧
⎨

⎩h+ k1(t
α
pe − k2t

α
se)+

√(
1√
3

− �010

�111 + |tαcb|
)
b

B

⎫
⎬

⎭

and ξ0, A, h, k1, k2 are material constants, Tc is the critical temperature, Hα is
the enthalpy for the cross slip event, and ρ0 is the initial cross-slipped dislocation
density. Furthermore,

tαxx = ταxx

�111/b
, B = μb2

2π�111 , cH = μb3

4π
(26)

The cross-slip resistance in cube slip system is a function of temperature and is
defined as:

sαcross,cube =
{
scc1 for T ≤ 915K

scc1 − scc2(T − 915) for T > 915K
(27)

where scc1 and scc2 are material properties. It should be noted that the cube slip
systems are only activated when the temperature rises. Details of this model are
given in [23].

3.4.1 P-SERVE Convergence Studies with the Crystal Plasticity Model

The size of the P-SERVE is estimated through convergence studies of material prop-
erties and response functions. CPFE simulations are conducted for a large number of
simulated SERVEs of different sizes with variations in the microstructural statistics
using the calibrated material parameters. For each size, at least five realizations
are generated for simulations. For smaller sizes, where high scatter in material
properties is expected, larger number of SERVEs are simulated. For example, up
to 15 samples are simulated with a size of 25 μm.

Results of the CPFE simulations are used to determine the volume-averaged,
macroscopic strain energy, yield strength, and the hardening rate. The yield strength
is measured as 0.2% flow stress in the stress-strain plot and the hardening rate
is derived as average slope of the stress-strain plot in the post-yield plastic
deformation. The values of these CPFEM simulated volume-averaged quantities are
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Fig. 18 Convergence of (a) normalized difference of the strain energy obtained by CPFEM
simulations and experiments, (b) yield strength, and (c) post-yield hardening rate as a function
of the SERVE size. (Reprinted from: Bagri [29], with permission from Springer)

shown in Fig. 18 with discrete points (red stars). The scatter in the data corresponds
to variations in the morphological and crystallographic parameters of the SERVEs
that are analyzed by CPFEM. For each SERVE size, the upper bound, lower bound,
and the mean value of the volume-averaged quantities are also plotted in Fig. 18.
Figure 18a plots the normalized difference of strain energy obtained by simulations
and experiment as a function of the SERVE size. The normalized error decreases as
the SERVE size increases. Additionally, the scatter in simulated values of the strain
energy difference reduces with increase in the SERVE size, indicating convergence
of the simulated results. This is also implied in the convergence of the upper and
lower bounds with increasing SERVE size. Figure 18b, c shows similar convergence
trends in the effective yield strength and post-yield hardening rate with SERVE size
respectively. The convergence results in Fig. 18 with respect to upper and lower
bounds of material properties are consistent with the experimental observations in
[32]. Similar lower bound convergence had also been predicted for the yield strength
in micro-tensile tests of [56].

A Student’s t-test is conducted and convergence of material properties is
established using a 95% confidence interval bound. This corresponds to a sample
population of a given size, for which material properties are in the range μ ±
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0.1μ, where μ is the mean value property. Reasonable agreement is seen with
experimental results. With this criterion, convergence is achieved for SERVEs for
which the upper and lower bound values of material properties are within 10% of
the mean value. Room temperature simulation results for the largest SERVE with
a size of ∼ 150 μm are used for the identification of the P-SERVE. The results in
Fig. 18 indicate that convergence is achieved for a SERVE size of 100 μm. This
implies that the P-SERVE size is ≈ 100 μm, above which material properties are
convergent. This is also corroborated with experimental results. In comparison, the
M-SERVE size in Sect. 3.3 is found to be 150 μm. The smaller P-SERVE compared
to the M-SERVE indicates that the characteristic features of twins implemented in
determining the M-SERVE are more stringent than those necessary for determining
material properties like strength and hardness. This exercise implicitly establishes
a relation between the M-SERVE and P-SERVE. Finally, while the M-SERVE and
P-SERVE are relatively small compared to the scale of the grain structure for these
properties, other properties such as fatigue [57] may require larger volumes of the
material to be analyzed.

3.5 Summary of the Polycrystalline Scale Analysis

This section establishes microstructure-based statistically equivalent RVEs or M-
SERVEs and property-based statistically equivalent RVEs or P-SERVEs from
statistically equivalent virtual polycrystalline microstructures of polycrystalline
Ni-based superalloys containing annealing twins. Results from the Kolmogorov-
Smirnov (KS) convergence test show that the minimum size of the M-SERVE
that captures the experimentally obtained statistics is ≈ 150 μm. On the other
hand, a P-SERVE size of ≈ 100 μm is adequate to reproduce the macroscopic
experimental material response. The smaller P-SERVE size compared to the M-
SERVE size implies that the characteristic features of twins needed for determining
the M-SERVE are more stringent than those necessary for determining material
properties like strength and hardness. This M-SERVE-P-SERVE study implicitly
establishes a dependency of a property on the microstructure, i.e., microstructure
property relations. In conclusion, the methodologies developed in this paper provide
a solid foundation for micromechanical analysis leading to the evaluation of multi-
scale properties of complex polycrystalline materials.

In summary, this chapter develops a cogent framework for statistically equivalent
virtual microstructures and subsequently M-SERVEs and P-SERVEs of nickel-
based superalloy microstructures at multiple scales. The framework couples exper-
imental methods, image extraction, statistical analysis and finite element modeling
for establishing a robust methodology that can be applied to a wide variety of
heterogeneous materials. This framework lays the foundation for the development of
parametrically homogenized constitutive models as functions of the microstructural
morphology and crystallography.
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Microscale Testing and Characterization
Techniques for Benchmarking Crystal
Plasticity Models at Microstructural
Length Scales

David W. Eastman, Paul A. Shade, Michael D. Uchic, and Kevin J. Hemker

1 Introduction

The desire to improve the performance and lifetime of polycrystalline components
has fueled the development of advanced micromechanical modeling tools. Mul-
tiscale modeling approaches, such as Crystal Plasticity Finite Element Methods
(CPFEM), now possess the ability to illuminate the link between material process-
ing, microstructure, and properties [1]. Whereas traditional FE modeling relies on
convergent macroscale properties, the ability of CPFEM to explicitly represent the
morphology and local crystallographic orientations of polycrystalline microstruc-
tures requires scale-specific, quantitative microstructural information for both input
and validation. The development and implementation of experimental techniques for
capturing behavior and microstructural properties at salient length scales are needed
to inform the determination of representative volume elements (RVEs). Here,
accurately capturing microstructural details and observing size effects on material
properties are both important. Simply extrapolating from average microstructure
descriptors does not provide information about the relative importance of specific
grain size, shape, and configuration with neighbors. These are features that can be
captured experimentally through advanced characterization techniques, such as 3D
serial sectioning [2].

Whereas traditional modeling efforts have made use of existing data in the
literature to model a certain material behavior, the inverse, namely, designing
and tailoring experiments to obtain local microstructurally specific benchmarks,
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is needed to guide and benchmark corresponding models. The work presented
in this chapter was undertaken as part of the Air Force Office of Scientific
Research (AFOSR)-sponsored Center of Excellence in Integrated Materials Mod-
eling (CEIMM), and its overall goal was to provide experimental benchmarks
and validation routes for multiscale CPFEM models of the Ni-base superalloy
René 88DT, specifically through the development of scale-specific mechanical
benchmarks by capturing the mechanical response of microtensile samples, in which
explicit measures of their microstructure can also be obtained. As part of this effort,
multiple test sample geometries were designed to characterize sample volumes
that were small enough to be modeled while still providing a true polycrystalline
response. Significant effort went into developing machining processes, and the test
equipment and techniques required for obtaining the requisite data, at the various
length scales that each of these samples represented. In addition, after observing a
size effect on yield strength, a further study was done to investigate this phenomenon
by testing samples of different sizes and elucidating mesoscale trends in the behavior
of René 88DT.

2 Background

The need to connect modeling and experiments is intrinsic to the Integrated
Computational Materials Engineering (ICME) paradigm, but the ability to do so
has been limited by the need for more computational power as well as more
detailed explicit microstructural information from experimental results. In terms
of experimentally coupling 3D microstructures with mechanical properties, earlier
efforts were limited by their simplicity. This was due not only to limitations with
the state of experimental techniques available but also the technology and ability to
process the large amounts of data necessary. Becker et al. utilized only the surface
orientation data of an Al sample to develop two finite element models: a plane
strain model and a quasi-3D model with a mesh that was only one element thick
[3]. Cheong et al. performed a similar modeling effort using experimental data
collected by Zhang for a polycrystalline sample of Al–0.5% Mg [4]. The model
utilized a finite element mesh of 35 × 31 × 3 elements on a subsection of the
sample gage and compared distributions of plastic axial strain with experimental
measurements of strain as well as the macroscopic stress–strain behavior [5]. These
studies are examples of early efforts to connect experiments and modeling; however,
the drawback of not being able to model the full 3D structure of the sample is
significant.

To avoid the need for full 3D characterization of a sample microstructure,
other investigators have focused on materials with microstructures that can be
characterized well using only 2D methods. These materials tend to have either very
coarse microstructures or columnar structures, achieved by the processing methods
used to produce the material (such as directional solidification [6], the extraction
of oligocrystals [7], or the use of heat treatments to coarsen the material [8, 9]).
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A multitude of ICME studies on oligocrystalline structures have been published
on materials that include Zirconium alloys and near-gamma titanium aluminides
[10], polycrystalline columnar Al [6, 8, 11], single and bicrystal stainless steel [6],
hot worked waspaloy-ingot specimens [12], and coarse-grained tantalum [9]. The
ability to model the full sample gage of these samples in 3D had allowed for a
more accurate approximation of the true boundary conditions experienced by the
sample during an experiment and a more accurate prediction of the deformation
response. Another technique that has been utilized when only 2D microstructural
data is available is the use of statistics to extrapolate a 3D microstructure from a
2D Electron Backscatter Diffraction (EBSD) scan, such as the work of St-Pierre
in modeling TiAl and grade 702 zirconium [13]. This novel modeling approach is
however difficult to truly compare one-to-one with experimental results, as even
slight changes in the subsurface microstructure can lead to significant deviations in
the observed behavior at the sample surface.

The most prevalent experimental technique for building a 3D dataset involves
serial sectioning of samples by deconstructing the sample layer by layer and
characterizing each newly exposed surface before performing the next sectioning
step. The acquired 2D scans can be stitched together to provide a 3D representation
of the sample microstructure. Musienko was one of the first to characterize and
model a sample using this methodology on a tested Cu microtension sample [14].
A small subsection of the gage, containing about 100 grains, was characterized in
this manner and used to generate a finite element simulation of the 3D structure.
Although this small subsection did not represent the full physical volume of the
sample required to capture requisite boundary conditions for a true one-to-one
model, this was one of the first times that a modeling effort was performed on a
sample characterized in 3D. Spanos, Lewis, Rowenhorst, and coworkers at the Naval
Research Laboratory combined serial sectioning using a Buehler Minimet system
and characterization with EBSD to develop 3D datasets of stainless steels and Ti
alloys to connect with FEM models [15]. More automated methodologies using
mechanical sectioning, such as the Alkemper-Voorhees micromiller, developed at
Northwestern University [16], or the Robomet.3D system, developed at the Air
Force Research Lab [17, 18], were major advances in streamlining workflows for
3D dataset collection.

Within the last decade or so, the use of more advanced sectioning tools and
methods has enabled significant advances in studying microstructure in 3D. In
dual beam systems equipped with both a scanning electron microscope (SEM) and
focused ion beam (FIB), serial sectioning via FIB and EBSD can be performed and
automated in a routine manner. Uchic et al. and Groeber et al. were some of the first
to demonstrate this technique in sectioning samples of the nickel-base superalloy
IN100 [19, 20]. Shortly thereafter, Zaafarani et al. used FIB serial sectioning to
characterize the microstructure surrounding a nanoindent in Cu and to develop
a finite element model from the collected data [21]. In terms of utilizing this
technique for characterizing and modeling a full sample volume, the applications
have been limited by the low material removal rate of the FIB. One study that
did yield positive results despite such limitations was carried out by Shade et al.
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on microtensile samples of polycrystalline Ni [22, 23]. Using a dual beam FIB-
SEM system, multiple samples of a width of 21 μm, a thickness of 38 μm, and a
gage length of 80 μm were characterized in 3D and in combination with surface
strain maps collected during testing used to later benchmark a finite element model
using these explicit representations of microstructure [24]. While these examples
demonstrate the ability of the FIB as a sectioning tool, it is clear that sample size
and material limitations due to the material removal rate of the FIB can limit what
can be done despite the nanometer level of precision that can be achieved.

While the traditional Ga FIB has become a widely used tool in microscale
machining and materials research, the more recent development of the Plasma
FIB (PFIB), using Xe rather than Ga as in a traditional FIB, allows for material
removal rates at orders of magnitude higher. The PFIB can potentially even incur
less damage than a traditional FIB, as reported by Kwakman et al., than compared
to Ga FIB machining; the damage layer when using Xe FIB could be reduced by up
to 25% [25]. Xiao et al. demonstrated that micropillars of Al, a material particularly
susceptible to the effects of Ga implantation, machined with a Ga FIB showed a
lower yield strength than micropillars fabricated with Xe FIB [26]. Burnett et al.
have demonstrated the use of PFIB in serial sectioning and 3D characterization of
a 150 × 120 × 80 μm3 WC-Co sample using 790 slices of 100 nm thickness with
a pixel resolution of 30 nm [27]. The step forward that these two tools provide in
terms of 3D characterization is very promising, and optimization for sectioning at a
smaller length scales could allow for the collection of statistics and 3D datasets for
benchmarking at a rate that was previously inaccessible.

A more recently introduced tool for the collection of 3D microstructural data at
a larger scale is the TriBeam system, which incorporates a femtosecond laser into
a FIB-SEM dual beam platform. The material removal rate of the laser allows for
material ablation two orders of magnitude faster than is possible with traditional
FIB. In addition, the ablation rate of the femtosecond laser is more materials
agnostic [28]. As a result, the TriBeam is an incredibly versatile system in terms
of both speed and scale. One successful application of the TriBeam is in its use by
Stinville et al. to characterize crack nucleation in René 88DT, in which tested fatigue
samples were subsequently sectioned and characterized in the TriBeam to determine
what features in the microstructure led to crack nucleation and propagation [29].

Another promising technique for characterizing material in 3D is the nondestruc-
tive technique of High-Energy Diffraction Microscopy (HEDM). HEDM utilizes
diffraction patterns produced by a monochromatic beam from a synchrotron source
to interrogate a volume of material. Two sets of detectors are used to collect
information from the sample. One detector is located only a few mm from the
sample and is used for near-field HEDM, which provides orientation maps with
spatial locations of grains as well as their morphology and misorientation relative
to neighboring grains [30]. The second detector is placed much farther away and
is used for far-field HEDM, which provides grain centroids and elastic strain
tensors [30]. These combined datasets provide a robust representation for the sample
microstructure, as well as subgrain information [31]. Many examples of using
this technique for 3D characterization have been demonstrated [32–37], and its
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benefits are that it is nondestructive and can be used to capture 3D microstructural
information in situ rather than from a postmortem sample. For example, Marguiles
et al. demonstrated the use of HEDM to investigate deformation of a single grain
within a Cu sample during incremental loading and scanning [38]. Oddershede et
al. performed an HEDM experiment on a steel sample in a similar manner, but
oriented the tensile axis to be vertical with respect to the beam [39]. In addition,
this experiment did not simply study a single grain during testing, but rather about
200 grains, demonstrating a marked improvement in this characterization technique.
More recently, Schuren et al. and Shade et al. developed a load frame for in situ
HEDM experiments, known as the rotation and linear axial motion system (RAMS)
[40, 41]. This load frame allows for the use of μ-CT, far-field HEDM, and near-field
HEDM concurrently during a tension or compression experiment, while also being
able to rotate the sample 360 degrees. In terms of ICME efforts, in one instance, this
tool was utilized to collect a HEDM dataset for a Ti-7Al sample, which was then
used to instantiate a CPFEM simulation [42]. The model showed a good correlation
with experimental results, and this work also highlighted the importance of the stress
states of buried grains.

In addition to the determination of global mechanical response and the capturing
of an explicit microstructure representation of tested samples to be used for
benchmarking, the local deformation behavior needs to be determined for direct
comparison with simulation results. Hemker and Sharpe summarized numerous
efforts to measure the mechanical response of materials for microscale microelec-
tromechanical systems (MEMS) in their review on small-scale mechanical testing
[43]. Espinosa et al. performed tensile tests on very thin films by pushing an Au
freestanding film that was fixed at each end, measuring the vertical deflection of the
film with interferometry and converting the deflection into elongation. While this
is a novel concept, this technique is only able to be applied to a very specific thin
film geometry [44, 45]. Haque and Saif constructed a micro-machined test system
that combines the load frame and the thin film specimen into a single part that can
be tested in an SEM and elongation determined by tracking the displacement of
markers deposited on the samples [46].

For a geometry as small as a microtensile specimen, traditional contact methods
for measuring strain (such as strain gauges or extensometers) are insufficient, and
other methods have developed over time. Attempts to determine strain from grip
displacement are made difficult by the compliance of a test machine relative to
the small sample geometry being tested, particularly with the large machines used
in macroscale testing. Greek and Johansson proposed a method for removing the
effects of sample compliance, but use of this technique requires large differences in
stiffness and it is generally accepted that strain is better measured in the gage of the
specimen rather than corrected grip displacement measurements [47]. As described
in the review on small-scale mechanical testing [43], one of the first noncontact
methods developed for measuring strain in microtensile samples employed an
interferometric strain displacement gage (ISDG). In this technique, two reflective
markers are placed on a sample and illuminated with a laser, generating fringe
patterns. As the sample changes shape, the motion of the fringe pattern can be



96 D. W. Eastman et al.

sensed with photodiode arrays and converted into strain [48]. This technique enables
measurements of normal and transverse strains and allows for the direct measure of
Young’s modulus and Poisson’s ratio.

The most prominent noncontact method for measuring strain is digital image
correlation (DIC), which has been under development since the 1980s [49]. In
DIC, markers or speckle patterns are applied to the sample surface and the region
of interest is divided into subsets. Each of these subsets is tracked as the sample
deforms, and its correlation to the subset in the original image is determined using
a grayscale intensity function. The correlation coefficients of subsets of consecutive
images are calculated and plotted versus their position. The maximum correlation
coefficient is then located that is representative of the optimal fit between the subsets
of the two images. From this correlation, displacements can be determined and both
local and global strains can be calculated.

Recent progress in developing high-resolution speckle patterns has led to the
ability to observe strains at very localized intragranular regions. Kammers et al. used
gold nanoparticles to create speckle patterns with features on the order of 30 nm.
By imaging these particles in an SEM, DIC with an unprecedented resolution of
4 nm/pixel was reported [50]. One important consideration in performing DIC with
high resolution SEM images is distortions in SEM images, which require proper
control and the use of high magnification, low accelerating voltages, large spot
sizes, long dwell times, and low working distances [50]. Stinville et al. developed
a novel technique using the γ’ particles after a heat treatment in René 88DT as the
speckle pattern [51]. The nanometer-sized features allowed for high resolution DIC
in a fatigue sample to observe crack nucleation. Montgomery et al. developed a
technique that uses multilayered Au, Ti, and Ag-sputtered coatings reconfigured in
an NaCl solution to form DIC speckle patterns, allowing for submicron resolution
[52]. This technique was demonstrated to be applicable for multiple classes of
materials, including metal alloys, epoxies, and composites. These high-resolution
methods along with others provide a way to improve the resolution of DIC
measurements, and further improvements to the technique could be made with
higher resolution imaging with reduction in noise.

The material that was investigated as part of CEIMM is the polycrystalline Ni-
base superalloy René 88DT. The material has a nominal composition (wt %) of:
56.46 Ni, 13 Co, 16 Cr, 4 Mo, 4 W, 2.1 Al, 3.7 Ti, 0.7 Nb, 0.03 C, and 0.015 B. This
alloy is processed through a powder metallurgy route and as such contains a high
volume fraction of annealing twins. It exhibits exceptional strength, even at very
high temperatures, making it ideal for its primary use in turbine engines [53].

René 88DT is an interesting candidate for multiscale modeling because of the
features that exist within the material at multiple length scales. At the subgrain,
or intragranular, scale, the two-phase microstructure gives rise to properties that
affect the higher order scales, especially in terms of the high temperature properties
related to dislocation activity [53]. At the polycrystalline scale, the large volume
fraction of twins adds complexity in terms of being able to model these finer features
as well as the various boundaries that exist. A description of a CPFEM model to
approach this multiscale problem is given in [54]. The model endeavors to represent
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the morphology of the subgrain structure in order to subsequently homogenize and
develop a single crystal model. This single crystal model is then brought up to the
polycrystalline scale at which individual grains and twins are organized together to
represent the microstructure of the material. The simulation predictions observed at
this scale can be directly compared and benchmarked, with the experimental results
captured at the mesoscale.

Alongside the ability to machine and test samples at an expanding number
of sizes and for a multitude of materials, characterization methods such as DIC
to observe strain and local deformation behavior, as well as 3D techniques for
characterizing microstructure, have led to the ability to interrogate material behavior
at extremely fine length scales. In addition, these advances in property and
microstructural characterization have supported the development of more informed
models, and modeling techniques such as CPFEM have allowed for the explicit
representation of microstructure in silico. Though significant progress has been
made in terms of ICME to date, most work has been done on pure materials;
structurally complex materials such as René 88DT and other Ni-base superalloys
remain a challenge. As such, the continued development of techniques to machine,
test, and characterize microtensile samples of commercially relevant materials is
needed to promote model development.

3 Machining Methods for Microscale Samples

Miniaturized mechanical testing is fast becoming a widespread technique for
capturing the influence of microstructure and measurements of local properties
[43, 55, 56]. Capturing these scale-specific properties is critical to benchmarking
and development of multiscale CPFEM models. However, at smaller length scales,
sample quality has a significant effect on its measured response. Defects and surface
roughness can lead to premature failure during tensile loading and inaccurate results,
which can be especially troublesome when there is uncertainty in the expected
outcome of an experiment. ASTM standards give some guidelines in terms of a
target of quality and dimensions of tensile samples, but do not necessarily provide a
methodology and best practices for fabricating samples, especially at the microscale
[57]. At this length scale, traditional machining methods are not applicable because
of inherent limits in the dimensional tolerance of the surface finish.

The three microtensile sample preparation techniques that were utilized in the
current study of René 88DT are: focused ion beam (FIB) milling, femtosecond laser
machining, and wire electric discharge machining (EDM). Before machining of the
final microtensile sample geometries, thin foils were excised from a bulk piece of
René 88DT and polished to the proper thickness and surface finish. The foils were
prepared to have a specific final thickness that would allow for machining of samples
with a square cross section. The initial slices were machined using wire EDM. Due
to the recast layer created by the wire EDM, foils were cut to be 100 μm thicker
than the final desired thickness and subsequently polished on both sides using SiC
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polishing papers ranging from 600 to 1200 grit. This process resulted in precise
foil thicknesses, removal of surface defects, and a near-mirror finish, which also
made it easier to employ digital image correlation (DIC). Once a foil of the correct
thickness was achieved, microtensile samples were machined from it using one of
the three techniques. For samples with thicknesses and widths of about 20 μm, FIB
machining was employed as the final machining tool, whereas wire EDM was used
for samples with thicknesses and widths of 200 μm or larger, and femtosecond laser
machining was employed for intermediate samples with thicknesses and widths of
50–100 μm.

3.1 Focused Ion Beam Machining

The focused ion beam (FIB) has become a widely used tool in microscale sample
fabrication due to its precise milling capabilities. FIB milling occurs by sputtering,
accelerating, and focusing charged ions, typically Ga. The interaction of these
ions with atoms in the sample results in ablation at a relatively slow rate, but the
nature of this process allows for delicate and precise machining and procedures,
such as the extraction of TEM samples using FIB lift out. One of the first major
applications of FIB machining for microscale test samples was its use in milling
micropillars for compression testing [58]. This methodology, which has inspired
many subsequent microscale machining efforts, showed the viability of the FIB as a
microscale machining tool and opened the opportunity for the precise machining of
samples at the single digit micron scale. FIB-induced damage of microscale samples
associated with Ga implantation and amorphization has been reported and shown to
vary with material. While this effect is commonly observed, especially in lower
atomic mass metals, it has been suggested that it only plays a major role at the
outer layer of the sample and with careful control of the beam size and current can
be limited to 100 nm or less in most materials [59]. While this level of damage
will not play a significant role in microtensile samples with dimensions that are
orders of magnitude greater than this, caution is still warranted when FIB milling
microsamples.

High throughput use of an FIB as a machining technique for complex geometries
and three-dimensional samples, such as micropillars, relies on the ability to
automate the machining process. One way in which this can be done is through the
use of a fiducial marker and image processing to realign the sample for machining
between each cut. For micropillars, a lathe milling process can be used as the sample
is rotated around the fiducial marker. A similar process, which will be discussed later
in this section, can be used for machining more complex microtensile geometries
even though most of the milling is done in a two-dimensional plane [23].

Two of the main parameters that affect the quality of an FIB cut are the beam
current, which affects the material removal rate, and the beam focus, which affects
the shape of the beam. For bulk milling, a higher beam current is used to increase the
rate of material removal, and therefore the focus and shape of the beam become less
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important [60]. By contrast, finer milling processes use a lower current and a more
sharply focused beam to achieve precision in the final geometry. Combining them
in a two-step process provides the most efficient path for machining microtensile
samples.

Another technique that can lead to more efficient FIB machining is to design
the machining path based on the shape of the ion beam. Even when the focus of
the beam is corrected as much as possible, there is still a possibility of beam tails.
These regions of the beam can be problematic because material can be removed in
undesired regions, which can cause damage or undesired taper, and the sputtering
rate in this region can be higher or lower than the rest of the beam [61]. Although
it seems like minimizing the tail would be the best method, it can actually be
more effective to take advantage of the shape of the beam with the tail in order
to simultaneously use a higher current and achieve faster milling rates without
sacrificing machining quality. In addition, by calibrating the beam to have the tail
occur only on one edge of the beam and having a clean cut with the other edge, it is
actually possible to have the beam cut even better than simply minimizing the effect
of the tail for a symmetric beam.

In the current study, an automated procedure for machining microtensile samples
with the FIB was developed using Python scripts to control a Tescan Lyra dual beam
system for both imaging and milling. For each thin foil sample to be machined, a
circular fiducial marker was first milled within 200 μm of the edge of the foil to
provide a reference of where the top sample grip section was to be located. Using
image processing through Python, the fiducial marker was identified and used for
automated realignment of the beam as the sample was rotated for cutting. The
sample geometry was discretized into a set of cutting steps, with corresponding
rotation angles and positions relative to the fiducial marker and beam size, for each
cut that was made. The sample stage was rotated to the appropriate angle, where
the image was centered on the fiducial marker, and then subsequently moved to
where the cut was to be made and the cutting process performed. This procedure
was repeated for each step of the sample geometry to complete one pass of the
geometry. Each subsequent pass was performed to cut a geometry that approached
the final shape and used less current to minimize damage in the final sample. Using
a beam current of 3–5 nA for initial bulk passes and then reducing to 500 pA was
effective for minimizing surface damage. Images of a sample after the first cut of
this machining process and the final sample are shown in Fig. 1.

This combination of using bulk and fine milling, optimizing the beam shape, and
taking advantage of the asymmetric shape of the beam rather than working around it
provide an effective and automatable method for producing the complex geometries
found in microtensile samples, as well as in micropillars and microcantilevers.

Despite the precision and widespread use of FIB milling, it does have limitations.
One of the major limitations is the scale at which samples can be fabricated.
Slow material removal rates, typically on the order of 1 μm3/nAs or less, make
it impractical to FIB-machine samples with dimensions larger than 50 μm in a
reasonable amount of time [59, 61–63]. In addition, machining of larger samples
requires more care, as machining across longer distances makes it difficult to
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Fig. 1 Images of an FIB cut sample (a) after a first cut in the milling procedure and (b) cut to the
final sample geometry

maintain beam focus, which can lead to taper or curtaining and result in uneven
material removal [64]. It is possible to shift the focus of the beam, but that requires
more time and effort to reposition the beam multiple times to make one cut.

Another drawback of using the FIB for sample fabrication is the difficulty
in machining nonconductive samples. Due to the use of charged particles in
both FIB and SEM imaging, it can be difficult to image samples that are not
conductive. Charging makes it difficult to perform precise machining and utilize
image processing for automated processes. Another aspect that makes working with
the FIB difficult, especially with sensitive samples, is that imaging a sample with
the FIB can cause ion irradiation damage at the sample surface and can continue to
ablate material if the current is too high while imaging. For this reason, most FIB
systems are combined with an SEM for imaging to prevent this damage. However,
this becomes a challenge when trying to automate machining using a fiducial
marker, because the fiducial mark needs to be in the plane of the machining path.
The electron column views the fiducial mark at an angle, and image recognition is
more difficult in projection. When imaging with the FIB, capturing a single quick
image rather than imaging continuously is preferred, if the imaging conditions can
be maintained throughout the machining process without damaging the sample.

3.2 Wire EDM Machining

A machining technique that is more commonly used for macroscale component
fabrication, but can also be applied at the microscale, is wire electrical discharge
machining (EDM). During EDM, the sample and wire are first submerged in a
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Fig. 2 Image of wire EDM
machined René 88
microsample with gage
dimensions of 500 × 500 μm

dielectric fluid, usually deionized water. The charged wire is then guided along
a programmed path to cut the desired shape, acting as one electrode while the
workpiece acts as a second electrode [65, 66].

Due to the nature of the wire EDM, there are limits to the level of quality that
can be achieved in sample machining. However, there are multiple ways to improve
the quality of samples. The typical EDM cutting process can cause significant
surface roughness and damage in the form of a recast layer because of the melting,
vaporization, and resolidification of material that occurs. The main parameters that
can be adjusted for EDM are the cutting speed, power, and water flow. The wire
EDM system used in this study was built by Fanuc Robocut. In initial setup, the
user selects a material type and the thickness of object being cut, and the machine
provides suggested machine parameters. Although these parameters cut the material
well at the macroscale, the surface quality is rarely suitable for microtensile samples.
In some cases, if a foil of material being machined is too thin, the machine may not
be able to recommend a setting at all or will give an incorrect setting. Figure 2 shows
an image of the dogbone sample geometry machined using a wire EDM operating
with optimized settings to minimize sample surface roughness. These optimized
settings included using multiple passes, starting with a rough cutting pass, followed
by a finer cutting pass using less voltage, as well as minimization of water flow to
reduce sample vibration during cutting.

As a machine typically used for larger parts, there are drawbacks to the wire
EDM as a tool for manufacturing microtensile samples. Samples have to be
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conductive in order to be able to pass a current to melt the material. As with the
FIB, there is a limit to the scale of microtensile samples that can be machined
using wire EDM. It becomes difficult to cut samples below a certain size because of
two main factors: the tension of the wire on the sample during the cutting process
and the surface roughness. In order for the wire EDM to cut, contact of the wire
with the sample must be maintained during machining, and the wire must be kept
tight in tension and a flow of water must also be maintained. For smaller, thinner
samples or more delicate materials, this can lead to the sample being bent during
the EDM process. One means of mitigating this is fixing the sample to a rigid
substrate using a conductive epoxy. Doing so protects the sample from bending
while still maintaining conductivity. However, there can still be challenges in using
this technique, as air gaps in the epoxy or between the epoxy and sample can cause
a short that will prevent the wire from cutting. Using a thicker, more rigid substrate
also requires more power in order to cut through both materials, which will limit
the quality of the actual sample. In addition, if the sample has to be sandwiched
between two plates to fully protect it, it can be difficult to align the sample prior to
machining.

Figure 3 presents side surface profiles captured using laser confocal microscopy
of three samples. Two of these samples were prepared using EDM, one with
machine settings and one with optimized settings, and the third is a surface
profile from a femtosecond laser-machined sample for reference. Using optimized
parameters and employing a multiple pass methodology for machining microtensile
samples reduces the average surface roughness from 22 to 2 μm [65, 67–70]. By
comparison, the surface roughness of a femtosecond laser-machined sample was
less than 1 μm.

The previously demonstrated surface roughness also poses a challenge when
machining microtensile samples as this roughness will have a much greater effect
at decreased sample sizes, as will be demonstrated in a later section. The roughness
can cause artifacts in the experimental data due to premature failure at surface flaws
or the creation of local stress concentrations. For most materials, the limit of the
sample size that can be created using wire EDM is only a few hundred microns,
if the roughness can be controlled and bending avoided. In the current study, the
smallest dogbone microtensile samples that were machined had a gage width and
thickness of 200 μm.

3.3 Femtosecond Laser Machining

Where the FIB is a valuable tool for machining microtensile samples with dimen-
sions of less than 50 μm, and wire EDM is useful in machining microtensile samples
above a few hundred microns to the macroscale, there exists an intermediate length
scale where neither technique is effective. One tool that has shown potential for
machining samples at this intermediate length scale, however, is the femtosecond
laser. The use of femtosecond lasers for various material-removal processes has
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Fig. 3 Surface roughness profiles obtained with confocal laser microscopy for: (a) EDM-
machined surface with machine recommended parameters, (b) EDM-machined surface with
optimized parameters, and (c) femtosecond laser-machined surface

been demonstrated by multiple groups [2, 71–75], and the use of femtosecond
laser for microscale sample fabrication has been demonstrated to be an effective
method for precise machining at material removal rates orders of magnitude greater
than FIB machining [74–78]. It is also worth noting that, compared to nanosecond
and picosecond lasers, femtosecond lasers create much less damage and develop
virtually no heat-affected zone in the material being machined [79].

A femtosecond laser-based machining setup was developed as part of CEIMM,
in order to fabricate intermediately sized microscale samples. The main component
in the setup is a Clark-MXR CPA femtosecond laser which outputs the laser beam
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that will be eventually used for ablation of the target material. The maximum output
of the laser is 1 W, but the actual power used in machining is 0.1 W or less and can
be controlled from the main laser system console. The laser beam is directed into
a custom built safety enclosure, where the laser optics and machining components
reside. The beam first passes through a waveplate polarizer, which allows for more
precise attenuation of the beam as well as the ability to automate the attenuation
process. A software interface on the system computer allows for precise rotation
of the waveplate to carefully control the laser energy. The beam is then directed
within the containment using a series of laser steering mirrors that reflect it to a final
dichroic mirror. A dichroic mirror reflects the beam downward to a 10x Mitutoyo
NIR objective lens, which focuses the beam to a spot size of about 30 μm for
microscale machining. Figures 4 and 5 demonstrate the optical components used
from attenuation of laser power and beam steering as well as the optical setup of the
camera and dichroic mirror for imaging.

The laser beam has a wavelength of 780 nm, which allows it to be reflected by the
dichroic mirror, while visible light still passes through the mirror, allowing for the
imaging of the sample with a camera. This makes alignment and positioning of the
beam at the beginning of a machining process much easier, as long as the vertical
offset between the focal plane of the camera and the focal plane of the laser beam
are known. In the current setup, the offset is typically 2.7 ± 0.15 mm. In addition
to the various optical components of the setup, there is also a set of Aerotech brand
stages that allows for motion on three axes. The objective lens is mounted to a stage
that controls the motion in the vertical (Z) direction. The main purpose of this stage
is to control the focus of the camera during imaging and the laser during machining.
Once the initial height of the objective lens has been established, most stage motion
occurs through the two axis X-Y stage. The sample sits on this dual axis stage, and
during machining the path that the stage travels is programmed using an Aerobasic

Fig. 4 (a) Image of beam ejection site from laser and equipment for beam attenuation and (b)
optics for switching between laser machining and SEM-based in situ serial sectioning setups
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Fig. 5 Image of three-axis
stage system and laser
machining optics

script in the stage controller software. The laser beam remains focused in the same
spot during machining and the sample is moved to trace out the desired shape rather
than having the beam move on the sample to perform the machining. The reason for
this is that the beam will cut the same way every time since it is stationary, resulting
in a consistent machining procedure.

As with any laser system, safety is an important consideration, but especially
so in this case because the 780 nm wavelength of the laser beam is invisible to
the human eye. Laser safety eyewear must be worn at all times, the laser safety
containment box must remain closed during laser machining and a set of safety
interlocks installed on the doors to the lab. These interlocks will trip and close the
laser shutter if the doors are opened.

As with the other microtensile machining tools described in this chapter, there
are many special techniques that can be used with femtosecond laser machining
to improve sample quality. Once the spot size of the beam has been properly
minimized by adjusting the focal plane, the main parameters that can be changed
in the laser machining setup are the energy of the laser and the speed at which
the stage moves. The laser energy is a critical aspect to material removal because
the ablation threshold must be reached for vaporization of each material [80–83].
Increasing the energy of the beam will result in a higher rate of material removal and
a larger effective spot size, because more of the beam at the edges of its Gaussian
profile will be above the ablation threshold. However, increasing the energy will
also impose more damage in the sample. Care must be taken to select a correct
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Fig. 6 Schematic of laser
machining path for
microtensile sample
demonstrating trepanning
method. Similar to the
method presented with the
FIB, the sample geometry is
cut closer to the final
geometry with each pass. For
this final shaping of the
sample, the laser energy
remains the same for each
pass and is on the order of
20 μJ for machining René
88DT

energy that is above the ablation threshold of the material, but is not high enough to
cause significant damage in the subsurface layer of the material [83–86]. The stage
speed and number of passes can also be varied to affect the effective number of
laser pulses that hit the sample during machining. A slower speed with fewer passes
removes more total material from the sample, but a higher speed with more passes
provides a higher quality sample because less redeposited material builds up on it.

Another challenge of laser machining is the taper of the machined sample edges.
There are a few techniques that can be used to minimize the effect of taper. One is
to use a two-step process, as has been described for FIB and wire EDM machining.
An outer series of passes of the sample geometry at higher energy is first used to
remove most of the material that needs to be cut away. Then, a series of subsequent
passes with less energy is used in a trepanning method in order to achieve the final
sample geometry. A diagram showing this trepanning method is shown in Fig. 6.
In the current study, each sample was cut using 60 total passes with a beam energy
of 50 μJ. Every 10 passes the beam was moved 5 μm closer to the final sample
geometry. The first 30 passes were performed using a stage speed of 0.5 mm/s, and
the final 30 passes were performed at a faster speed of 2.0 mm/s. This methodology
reduces the taper and creates less damage in the final specimen. The taper in a
sample can also be reduced by tilting the objective lens that focuses the laser beam
on the sample. The objective lens is mounted on a rotator that can be manually
adjusted to tilt the incoming beam by about 1 degree, allowing the edge of the beam
to cut parallel to the sample edge, rather than at the tapered angle. A drawback of
this technique is that changing the cut direction requires changing the tilt of the
objective lens on the fly.

Laser machining, and femtosecond laser machining in particular, is a promising
technique in sample fabrication with numerous benefits. A main reason the tech-
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nique is so promising is that the precision at which samples can be manufactured
is close to that of what is possible with an FIB, but laser machining is orders
of magnitude faster. The use of a femtosecond laser provides a much cleaner cut
than picosecond or nanosecond lasers, because vaporization is more complete and
redeposition much lower. The ablation of material through the use of femtosecond
laser is difficult to image experimentally, but molecular dynamics (MD) simulations
suggest that during femtosecond machining, material is vaporized more rapidly and
less heat is stored in the sample, where the former reduces particle redeposition and
the latter minimizes the heat-affected zone [79]. Moreover, unlike FIB and EDM,
femtosecond laser machining is material agnostic, can be applied to a broad range
of materials, and can be used in laboratory air [28].

However, the use of femtosecond laser machining is still under development, and
there are drawbacks. One of the most difficult things to control is the redeposition
of material that accompanies ablation. A plume of material is released from the
sample and tends to redeposit back on the sample or on surrounding surfaces. This
can result in redeposited material collecting on other samples or on laser optics. The
redeposition can be managed during machining by blowing air over the sample, but
this may not be possible for fragile materials or sample geometries. Another option
is to use more passes of the sample geometry at a higher speed, which can generate
less redeposition, as less material is ejected from the sample and therefore can more
easily be removed via vacuum during each pass. In an open-air laboratory setting,
environmental effects can also have a nontrivial effect on machining. Fluctuations
in temperature and humidity can affect the positioning of optics both internal and
external to the laser, which may require recalibration. For this reason, the laser
must be maintained within a stable climate to guarantee consistent performance.
Additionally, imaging during femtosecond laser machining can be difficult because
of the offset between the focal planes of the camera and laser. A second camera and
objective could be implemented to observe machining of the sample from the side
or at an angle, but it would not provide the best view of the machining process.
Finally, as with the FIB, there is a limit to the size of the sample that can be
machined using the femtosecond laser. Although ablation rates are significantly
higher than with the FIB, there is still a limit at which laser milling becomes
inefficient. Making trenches past a certain depth becomes impractical because there
is less potential for redeposited material to escape and because of the depth of
field of the objective lens. Femtosecond laser machining shows a lot of promise
for samples with thickness between 10–300 μm, with great speed and precision at a
length scale that is unreachable by other machining techniques, and works for many
classes of materials.

3.4 Comparison of Machining Techniques

FIB machining is viable for microtensile samples on the order of tens of microns,
laser machining for samples on the order of tens to a few hundreds of microns,
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Fig. 7 SEM images of (a) bulk-machined microtensile sample of René 88DT with femtosecond
laser and (b) final milling of the same sample with FIB

and wire EDM for samples larger than that. However, there is some overlap
between techniques regarding the scale at which they can be used. In order to
better assess how well each technique performs relative to the others, samples of
René 88DT machined using each of the techniques were compared. As illustrated
by confocal microscopy, the average surface roughness was less than 1 μm for
the femtosecond laser, 2 μm for optimized wire EDM cutting, and 20 μm for
the commercially recommended wire EDM parameters. Although not measured
by confocal microscopy here, the surface roughness of FIB machining was less
than 1 μm [63, 87–89]. Although the surface roughness of the laser appears to
be minimal in Fig. 3, there is a machining artifact that develops the at the ablated
edge of the sample known as Laser Induced Periodic Surface Structures (LIPSS)
[90, 91]. The formation of LIPSS is important to note because it limits the scale at
which laser machining can be used. LIPSS artifacts, though relatively small, prevent
the technique from being used for fine applications, such as TEM foil lift out. The
appearance of LIPSS in the material cannot be avoided, but it is possible to affect
its orientation by polarization of the laser. The roughness of these structures is on
the order of about 100 nm, so for the size of sample being machined in this study it
does not impact the mechanical response.

A two-step technique that minimizes the amount of material that must be
removed with the FIB can also be employed to produce microtensile samples. An
image of a sample that was roughed out of a bulk thin film with the femtosecond
laser is shown in Fig. 7a, and that same sample subsequently trimmed using an
automated FIB process is shown in Fig. 7b.

It is clear that each of these three machining techniques is relevant at a specific
length scale in terms of the rate of material removal, as well as the level of damage
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that each imparts. The FIB has been demonstrated to be quite useful for machining
sensitive materials or machining at length scales of tens of microns or less with high
precision and very low damage. The femtosecond laser, though still a relatively
new machining tool, has already been applied in enough cases to demonstrate its
utility in machining samples with a thickness ranging from tens of microns to a
few hundred microns, with damage scaling with laser beam energy, but able to be
controlled to less than a micron in most cases. Although wire EDM is a technique
typically applied at the macro scale, with proper optimization it can also be applied
at a scale on the order of a few hundred micrometers up to much larger scales, with
damage on the order of single-digit microns.

Understanding the capabilities of these three techniques allows a methodology
that facilitates machining of materials at multiple length scales in order to study size
effects. It can also be applied to develop sample geometries not only for microtensile
testing but for developing other microscale samples, such as microcantilevers for
studying fatigue or microbending samples for studying fracture toughness. The true
benefit of being able to apply these complimentary techniques lies in combining the
various techniques to improve the throughput of test samples in a way that has not
been achieved previously.

Developing techniques with different material-removal rates and applicable
length scales, and optimizing these techniques, is critical to the manufacture
and testing of microtensile samples. Sample quality has a significant impact on
microtensile results, especially at smaller length scales. There is an inherent
stochasticity that arises from testing materials at smaller length scales, specifically
in the single crystal and mesoscale regimes where microstructural features give rise
to a multitude of material responses. In order to properly study these microstructural
and size-scale effects, artifacts from factors such as surface roughness must be
mitigated. Due to the variations in the scale of microstructure, it is helpful to have
a variety of techniques that can be applied over a range of length scales to provide
benchmarks and advance our understanding of microscale mechanical behavior.

4 Sample Size Effects on Strength in René 88DT

It is well known that microstructure plays a significant role in governing the
deformation of metals and determining their mechanical properties. Examining the
microstructure at different length scales reveals unique mechanisms, such as intra-
granular interactions of dislocations, phase morphologies at the single crystal scale,
and interactions between neighboring grains and twins at the polycrystalline scale.
The ability to measure material properties at different length scales is critical to the
development of multiscale property prediction models. In this type of modeling, the
use of a representative volume element (RVE), which can be further characterized
as a property volume element (PVE) or microstructural volume element (MVE),
is a key building block for the multiscale framework [92, 93]. These elements
represent the volume of material that must be considered to reach a convergence
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in a material property, ensuring the results of the model at a larger volume have
no side effects with respect to this property of interest. However, there is a lot to
be gained in understanding what factors microstructurally affect the convergence of
properties to verify that the models capture this behavior at multiple length scales.
Observing these trends experimentally and investigating the role of microstructure
across length scales are needed to further develop and benchmark well-informed
models, such as the crystal plasticity finite element method (CPFEM), that account
for the microstructure of materials at the polycrystalline scale [54, 94].

Considerable work has been done to investigate size-scale effects on sample
strength in pure metals [95–103], but work on size-scale effects in structural alloys
such as René 88DT is more rare. In the current study, samples were tested across
multiple length scales, ranging from one grain through the sample thickness up to
bulk material, and their yield strengths were determined in order to evaluate the
divergence from the bulk strength. It was expected that variability in the data would
increase with decreasing sample size as discrete microstructures were realized.
Such scatter in mechanical response has been reported in the literature [60] for
various experimental designs [2, 93]. Experimentally capturing the size effects
over many length scales can provide a systematic approach to defining a RVE,
particularly in materials that have not been previously modeled in this manner [99].
The data collected in these experiments provide a better understanding of the role
of microstructure and size-scale effects in René 88DT and other FCC materials.
Additionally, these methodical studies aid in the development and benchmarking of
models that capture mechanical behavior.

Three different sample geometries were manufactured from foils of René 88DT.
Each had a uniform gage length, but different gripping strategies were employed.
The largest dog bone-shaped samples, with thickness and width ranging from
200–500 μm, were manufactured using wire EDM. Intermediate sized samples,
with thicknesses and widths between 50 and 100 μm, were machined using the
femtosecond laser. The smallest samples, with thickness and width of 20 μm,
were manufactured using automated FIB machining. The volumes tested in the
laser and FIB-machined samples provide discrete representation of mesoscale
microstructures for René 88DT.

In the Hemker research lab at Johns Hopkins University, there are multiple
microtensile testing setups that utilize similar configurations. These load frames
have varying load capacities of up to 1200 N and consist of 4 main components: an
air bearing, a load cell, a linear actuator, and a mechanism for gripping the samples
during a test. The air bearing assures alignment and eliminates friction from the
pull bar as it slides during the test. In-line load cells record load data at a rate of
10 points/second, and the screw-driven Zaber linear actuator retracts at a constant
speed to achieve nominal strain rate of 10−4 per second.

For the dogbone-shaped samples sized 200 μm and larger, a custom set of high
strength titanium grips were utilized. One grip was attached to a pull bar that slid
within the air bearing while the other grip was mounted on a stationary block. At
the beginning of the uniaxial tension test, the sample self-aligned as the shoulders of
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Fig. 8 (a) Schematic of femtosecond laser-machined mesoscale sample of René 88 and (b)
magnified view of sample gage section

the sample slid into place of the custom-designed grips. Once the sample and grips
were in full contact, a tensile load was applied by the retraction of the actuator.

For the laser-machined mesoscale samples (2–10 grains through thickness), the
same load frame was employed, but a different set of grips was designed for these
tests. Despite the gage section of these samples only being 400 μm long, the overall
geometry of these samples was 7 mm in length and composed of two large grip
sections on either end of the sample. An image of this sample is shown in Fig. 8. This
modified grip geometry allowed for the samples to be more easily handled despite
the small gage section. Additionally, since the grip geometry remains invariant for
these intermediate gage size samples, the same set of grips can be used across all
samples machined using this methodology. Unlike the pocket grips used for testing
the dogbone samples, the geometry of these grips was plate-like, with a 2 mm
alignment ledge cut out at the end. The grips were aligned by placing them in contact
with each other, and then the moveable grip was retracted enough to set the sample
in place. The sample rests on each end of the cut-out ledges and is affixed to the test
plates with Loctite 420 adhesive. The mechanical strength of the dried adhesive is
strong enough to hold the sample fixed on each plate as it is pulled in tension.

A 6.6 MP PixeLink camera was mounted above the sample during testing to
collect images of the sample during testing that can be postprocessed using digital
image correlation (DIC) to calculate strain. Images were acquired once every second
during testing for several reasons: to ensure an exposure time of 0.2 s, allow the
computer to save images accurately without being slowed down, and simplify the
process of obtaining the stress-strain response of tested samples. The latter will be
discussed in more detail in this chapter.

For the dogbone-shaped samples, the camera was equipped with an Edmund
Optics R-200 rear assembly and OBJ-9 front objective, giving a 5.25 × 3.86 mm2

view field. For the laser-machined mesoscale samples, an Edmund Optics R-6 lens
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was used in conjunction with a Mitutoyo 10× microscope objective, allowing for a
significantly smaller field of view of 1.05 × 0.77 mm2.

For the 20 μm FIB-machined samples, a separate custom-built load frame was
utilized. The frame was displacement-controlled using a piezoelectric actuator,
load was measured with a strain gage-based load cell, and mechanical testing was
performed in situ in a FEI Quanta SEM. The foil that the samples were machined in
was attached to a bulk sample holder that was mounted to an Attocube-controlled x-
y-z micro-positioning stage that allowed for precise movement and positioning. The
samples were placed into a SiC grip that was 8 mm long and 0.1 mm in diameter
and connected directly to a load cell. Stepped quasi-static tests were conducted
at an average strain rate of 10−4; the samples were loaded at a constant actuator
voltage ramp rate and then held fixed for acquisition of an SEM image. A detailed
description of the in-SEM load frame and testing procedure can be found in [104,
105]. The entire process of performing the mechanical testing and collecting SEM
images was automated using custom LabVIEW scripts. A periodic grid of 250 nm
circular markers, each 200 nm deep with 1 μm spacing, was FIB-milled onto the
surface of the samples after final machining [60]. The grid of markers extended
along the entire length of the sample gage.

Once the load data from a test was collected, the nominal (engineering) stress was
determined from the recorded load and the measured undeformed cross-sectional
area of the sample. Each image had a strain and time stamp and each recorded load
value had a stress and time stamp, enabling the stress-strain response to be obtained
by stitching these two datasets together. To stitch these datasets, the time stamp was
matched every 1 s and the associated stress and strain values were extracted. The
elastic modulus of the sample was determined from the plot of engineering stress
versus strain using the slope of the linear elastic loading of the curve. Alternatively,
the elastic modulus can be measured in the plastic region if unload and reload of the
sample is performed during testing. The yield strength of each sample was defined
by the 0.2% offset.

Figure 9 presents a summary of this yield strength data from the tested samples
as a function of the normalized sample width and thickness. This normalized width
and thickness was calculated by dividing by the average grain size (20 μm) of the
material. Using this parameter gives an idea of the number of grains through the
thickness and width of the sample, and thus the total number of grains within a
sample gage volume.

The largest samples were 500 μm thick (normalized thickness of 25) and their
yield strength is consistent and comparable to bulk values from the literature [51,
106]. As the sample thickness decreases to 300 μm (normalized thickness of 15),
the average yield strength decreases slightly but remains consistent from sample
to sample, varying by less than 3%. Below this size, however, we begin to see
significant variations in sample strength, down to a value of 650 MPa for samples
with a normalized thickness of 1.

Two literature values of the bulk strength are compared with the experimental
data in Fig. 9 [107, 108], and it was found that the variations in the experimental
measurements are much greater, sometimes by an order of magnitude. The error
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Fig. 9 Plot of sample yield strength vs normalized sample thickness and reference data from
literature. The error bars on each data point represent the maximum potential error of each
measurement

bars for each sample in Fig. 9 represent the maximum potential error for the
measurement. The maximum total error, calculated from the maximum error of
all sources of measurement errors in the experimental design, was found to be
6.6%, corresponding to a stress of 40–50 MPa. This indicates that experimental
error cannot account for the data scatter, and that the scatter in the experimentally
measured yield strengths is an effect of the sampled microstructure. The overall
increase in scatter with decreasing sample size matches the expectation that smaller
samples are dominated by a limited number of grains, and therefore microstructure
plays a more significant role in determining the strength of the sample. By
comparison, larger samples have many grains and the microstructural effects are
averaged out.

Although the scatter matches the predicted variability of yield strength as a
function of sample size, no increase in yield strength was observed at any sample
size as was initially expected. In order to understand this behavior in more detail,
a numerical study was performed, in collaboration with George Weber et al., to
investigate the potential role of grain orientation on the distribution of resolved
shear stresses for polycrystalline samples of variable size [60]. This simple model
was based on Schmid factor analysis and conducted to gain insight into how
finite sampling of grain orientation would affect the measured strength. This is a
qualitative approach, since it ignores grain-to-grain interactions and the complex
nonuniaxial loading states that may arise within individual grains [20].

For this estimate, the gage volume of a tensile sample was modeled with cubic
grains of a uniform size, and the sample was taken to have a square cross-section
and a 5:1 aspect ratio. Each grain within the gage was assigned a random orientation
and its maximum Schmid factor was calculated, defining the corresponding strength
of that grain. The strength of a sample was determined as follows. The individual
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strength of each cross-sectional layer, which contains grains loaded in parallel, was
defined to be equal to the strength of the grain with the lowest Schmid factor in
that layer. Then, the yield strength of the sample was defined using a weakest link
approximation along the length of the gage. The strength of the layers loaded serially
was taken to be the same as the weakest layer.

In developing this model, an interesting trend with regards to Schmid factor
distributions in a randomly textured FCC alloy was observed. When considering
<110>{111} FCC slip systems, randomly oriented grains generate a high propensity
for high Schmid factors; 50% of grains have a maximum resolved Schmid factor
of 0.45 or higher [60]. By contrast, the probability of finding a grain with a low
maximum resolved Schmid factor is much smaller. The chance of having a sample
with all layers dominated by grains with low maximum resolved Schmid factors
(high strength) is in fact very rare and decreases with increasing sample size.

Calculations were conducted for thousands of synthetic samples, from as small
as one grain through the thickness to up to 30 grains through the thickness. The
results showed that while it is geometrically possible to arrange the grains in small
samples such that they have a higher-than-average resolved Schmid factor, and thus
a lower-than-average overall strength, the converse is much less likely [60]. This
outcome helps explain the increased scatter that is observed in the experimentally
measured yield strength with decreasing sample size, as well as why the strength of
oligocrystals (with finite numbers of grains) can be weaker, but not stronger, than the
bulk strength of the polycrystalline alloy. Although this simple numerical analysis
contains many assumptions and ignores the effects of load shedding, free surfaces,
and grain size and shape, the qualitative influence of how the finite sampling of grain
orientations results in decreasing strength and increasing scatter with decreasing
sample size is demonstrated.

Physics-based CPFEM offers a more quantitative approach for modeling the
strength of oligocrystals, and the experimentally measured size dependence of
strength can be used to benchmark and validate such models. The use of oligocrys-
tals allows for measurements that are much more sensitive to microstructural
variations than bulk samples. One such example involves the work of Bagri et al.,
who employed statistically equivalent representative volume elements (SERVEs)
to determine convergence of properties as a function of the size of a sample
microstructural volume [109]. This approach is typically used to find a measurement
of the proper size RVE needed for convergence of a property and can also be used
to predict the effect of sample size on strength. Starting from a large SERVE that
produces a bulk value for yield strength, and then decreasing the SERVE size,
leads to an increased scatter in strength that is also seen experimentally. However,
theses simulations predict that the sample strength will both increase and decrease at
smaller sample sizes, while the experiments only documented a decrease in strength
at smaller sample sizes. There is a difference in the SERVE geometry as compared
to the tested sample geometry, which may account for the difference between
simulation and experiment. The SERVE geometry is a cube, whereas the sample
geometry has a rectangular shape in order to comply with ASTM tensile testing
standards. The influence of microstructure is different for cubes and rectangles, with
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the weakest link effect being more prominent in the latter. The cube volume of a
SERVE is more likely to capture single crystal-like behavior and show the full range
of feasible single crystal orientations and strengths. Conversely, the rectangular
microtensile geometry has multiple grains along the sample length and is much
less likely to exhibit strength values that exceed the bulk strength. The small cubes
also contain a higher fraction of surface grains, which must be properly accounted
for in the free boundary condition of the SERVE. These combined factors provide
some understanding for the observed discrepancy and may be used to develop more
detailed physics-based CPFEM models.

The progress reported in this chapter is summarized as follows. An experimental
methodology for machining and testing microtensile samples of Ni-base superalloy
René 88DT across multiple length scales was developed, with the intention of
studying the effect of sample size on yield strength. The expectation that sample
microstructure plays a larger role at smaller sample sizes was confirmed. The
yield strength was observed to decrease with sample size, and increased scatter
in yield strength values was correlated with decreased sample size. Contrary to
initial expectations, none of the tested samples exhibited greater strength than
the bulk value for this material. The trends seen in the experimental data were
studied using simulations with varying levels of complexity. It was shown that the
distribution of maximum Schmid factor for randomly orientated grains in an FCC
alloy is biased towards high Schmid factors, and that geometric averaging of these
grains in ever smaller volumes leads to decreased strength and increased scatter.
The geometry of the sample can also have an effect, as seen by comparison of
the SERVE predictions and the experimental results. These results provide insight
into the influence of polycrystalline microstructure on the mechanical properties
of an alloy and a means of quantifying this behavior to inform selection of RVEs
and the creation of multiscale models. Further work on mesoscale oligocrystals
shows great promise in facilitating explicit comparisons of CPFEM simulations and
experimental results. An end goal for benchmarking the CPFEM models would be
the measurement and modeling of an explicit oligocrystalline specimen where every
grain orientation, size, and shape is known and can be recreated in silico.

5 Orientation and Deformation Maps

Traditional methods for qualifying structural materials using bulk material testing
provide global properties but fail to capture the detailed underlying microstructural
dependencies that can now be included in high-fidelity multiscale models. Measured
global properties such as yield strength, elastic modulus, or strain to failure are
valuable benchmarks for deformation modeling, but recent advances in charac-
terization techniques have made it possible to obtain local microstructural details
and scale-specific benchmarks. Here, we focus on efforts undertaken to perform
detailed microstructural characterization of René 88DT samples in 2D and 3D.
The distribution of local surface strains is a direct output of CPFEM and is also
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measurable experimentally through the use of 2D digital image correlation (DIC)
surface strain mapping. The creation of strain maps allows for the quantification
of strain localization on the sample surface and provides insight into how local
microstructural features influence deformation, both of which can be used as explicit
benchmarks for CPFEM. Local measurements such as these are needed to inform
and benchmark CPFEM modeling efforts.

The procedure for performing DIC on the FIB microtensile samples included
tracking of circular markers, machined into the sample surface with the FIB. Fem-
tosecond laser-machined specimens were speckled with 50 nm diameter alumina
particles and distortions in the speckle pattern recorded at successive stages of
deformation. VIC2D was used to analyze the captured images and make 2D strain
maps. Correlating the strain maps with EBSD orientation maps allowed us to
identify the features in the microstructure that were present when plastic strain
developed and how the plastic deformation spread throughout the sample. Further
insights were gained by calculating the Schmid factor and elastic modulus for each
grain with the TSL OIM software.

An example of the surface strain evolution of a sample with a 50 × 50 μm cross
section is shown in Fig. 10. The strain plotted on this map is the local axial strain
in the loading direction. The snapshots presented in this figure demonstrate how
the strain in the sample first starts to nucleate and then eventually concentrates in
one location in the sample as the test proceeds. The global strain that the sample
experiences is labeled at the corner of each image and can be used to determine
how much greater the local strain is at these local hotspots. This behavior captures
the heterogeneous distribution of strain in a polycrystalline sample and can provide
both a qualitative and quantitative benchmark for CPFEM simulations. Correlating
these strain maps with the orientation information obtained from EBSD allows one
to identify microstructural characteristics that influence deformation in the sample.

To further look at the deformation behavior of these samples, these strain maps
were correlated with orientation information obtained from EBSD to investigate
microstructural features that lead to deformation. A summary of results for the
sample shown in Fig. 10 is shown in Fig. 11. Starting from the top of Fig. 11
and working down, what is being presented for this sample are: (a) a 2D map of
the surface orientation data collected from EBSD with each grain and twin colored
according to its out of plane orientation, (b) a 2D map with each grain and twin
colored according to its Schmid factor calculated based on the sample loading
direction and the EBSD data, (c) a 2D map of each grain and twin colored according
to its Young’s modulus calculated along the sample loading direction from the
EBSD data and the stiffness constants of the material, and (d) an overlay of the
2D strain map from Fig. 12 on an outline of the grain boundaries determined from
the EBSD orientation data. Each map is accompanied by a scale for the information
plotted on the maps.

The information compiled in Fig. 11 indicates that, in this sample, the strain
hotspot shown in Fig. 11d formed in the grain at the center of the sample that is
denoted by a blue color in the elastic modulus map of Fig. 11c. This grain had a
relatively high Schmid factor of 0.45 (greater than 60% of grains within the sample)
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Fig. 10 Progression of surface strain in microsample of René 88 at different levels of global strain

and low elastic modulus of 72 GPa (less than 95% of grains within the sample).
The high Schmid factor points to the importance of resolved shear stresses on
primary slip systems; however, it is important to note that this is not the grain with
the highest Schmid factor, and that simply looking at individual grain orientations
is not sufficient. Clearly, other factors such as load sharing or shedding amongst
neighboring grains play an important role in strain localization [29, 110, 111].

Closer examination of Fig. 11 indicates that the region of the sample to the left
of the strain concentration is composed of a grain that exhibits both a low Schmid
factor (0.3) and a high elastic modulus (210 GPa), the opposite characteristics from
the grain in which strain is concentrated. In addition, the twins in this grain also
exhibit an elastic mismatch with the parent grain. Studies investigating the fatigue
behavior of René 88DT, for example, Stinville et al. [29, 51, 112] and Alam et al.
[110], have elucidated that crack nucleation occurs in twins in which there is a high
Schmid factor and a mismatch in elastic modulus between the twin and the parent
grain. These characteristics have been shown to result in a stress concentration and
to facilitate the formation of fatigue cracks. Similarly, the mismatches of elastic
modulus illustrated in Fig. 11c appear to result in a stress concentration. Modern
CPFEM models may be expected to capture and quantify these stress concentrations
and predict the onset and propagation of local intragranular plasticity in favorably
oriented grains in appropriate neighborhoods.
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Fig. 11 Surface maps of a 50 × 50 μm tested microsample showing: (a) grain orientations using
standard IPF coloring for FCC, (b) Maximum Schmid factors for each grain, (c) the Young’s
modulus along the loading direction for each grain, and (d) a comparison of the surface strain with
the grains that make up the polycrystalline microstructure

The combination of 2D surface strain mapping and microstructural character-
ization is a powerful tool for benchmarking microstructurally dependent models.
However, subsurface grains can significantly affect observations made at the sample
surface, as shown in microtensile samples of pure Ni [22, 24]. A 3D dataset of
the full sample microstructure would avoid such complications, and using explicit
3D microstructural datasets as input for CPFEM simulations would facilitate direct
one-to-one comparisons and provide a significant step forward.

Although still in their adolescence, laser-based and mechanical serial sectioning
techniques, and emerging nondestructive characterization techniques such as high
energy diffraction microscopy (HEDM), provide a means to digitally capture 3D
volumes that could be utilized to instantiate a simulation and directly compare with
experimental results. Figure 12 presents a roadmap and initial proof-of-concept
results for collecting and using 3D digital microstructures to instantiate CPFEM
simulations. Once collected, the digital microstructural dataset must be properly
segmented in order to properly identify grains and twins. Once identified, each
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Fig. 12 Progression from experimentally captured digital microstructure to meshed structure
ready for simulation. Digital segmentation based on identifying individual features such as grains is
performed, followed by assigning properties to each feature and generating a mesh for performing
a CPFEM simulation

of these features can be assigned properties based on their orientation, and a
finite element mesh can be developed to model the microstructure using the CPFE
method.

While this framework for generating explicit benchmarks from combined
mechanical testing and 3D dataset generation seems straightforward, the collection
of experimental data to instantiate a simulation is nontrivial. Two major limitations
reside in the amount of data that can be handled in 3D datasets and the volumes that
can be captured in computational models. CPFEM requires a fine mesh to capture
grain-level details and an even finer mesh to account for intragranular features such
as twins that are common in René 88DT. For René 88DT, this creates the challenge
to design and test a sample volume that contains a reasonable number of grains
to model at the spatial resolution of about 0.5 μm necessary to accurately capture
the twin structures present. Designing and mechanically testing appropriately
sized samples is the primary focus of this chapter, but initial attempts at pairing
of these tests with explicit 3D datasets of the entire sample shows considerable
promise. Realizing this promise will require development of a technique to
protect and section freestanding samples using protective layers that eliminate
sectioning artifacts. 3D serial sectioning methods and emerging nondestructive
characterization techniques like HEDM have considerable promise, especially with
the on-going development of infrastructure for big data management.
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6 Chapter Summary

Microtensile testing protocols and unique characterization routes have been devel-
oped and employed to obtain multiscale, microstructurally dependent benchmarks
for CPFEM models of commercial polycrystalline alloys, such as René 88DT. Initial
microtensile testing was performed on samples with gage cross sections on the
order of a few hundred microns machined via Wire EDM and on much smaller
samples with gage cross sections of 20 × 20 μm machined using a FIB. The
samples machined with wire EDM exhibited a mechanical response that was very
similar to the bulk material. The much smaller FIB-machined samples were more
tractable for CPFEM simulations but were found to be too small to capture a true
polycrystalline response. A femtosecond laser machining protocol was developed
and used to machine microtensile samples with cross-sectional dimensions of 50–
100 microns at a rate that was an order of magnitude faster than FIB milling;
machining of samples 25 times larger than could be achieved with the FIB was
accomplished in a matter of minutes.

Testing samples of different sizes revealed an inherent effect of sample size
on yield strength. It was seen that the sample strength decreased with decreasing
sample size and that the variability of the measured strengths increased as the
sample size decreased. These variations are attributed to the influence of geometric
averaging of oligocrystalline specimens. Combining the microtensile tests with
local strain and orientation mapping provided robust microstructural benchmarks
for direct comparisons with CPFEM simulations. More than just acquiring the bulk
stress-strain response of a sample, investigating local response of the material and
the corresponding microstructural features that lead to this behavior provides a new
level of benchmarking for ever-improving CPFEM modeling capabilities. Local
strain maps can be used to compare directly with simulations instantiated with the
microstructural data of these samples. This explicit benchmark is both quantitative
in terms of the local magnitudes of strain observed as well as qualitative in terms
of where in the microstructure these concentrations are located. Moreover, the
correlation of microstructural information with strain maps enhances mechanistic
understanding and provides detailed microstructural benchmarks. Ensuring that this
behavior is captured in CPFEM simulations should be a key goal of future model
development.

The long-term goal of this work was to be able to explicitly characterize tested
samples in 3D to be able to instantiate simulations and collect attendant 3D
benchmarks of mechanical behavior. The development and availability of advanced
characterization and mechanical testing techniques, like the ones outlined in this
chapter, make it possible to marry experimental and modeling like never before.
While challenges of benchmarking with 3D data within the ICME paradigm still
exist, such as error propagation from experimental results and the handling of large
datasets, the need and opportunity for making this level of analysis more routine and
readily available for model development is clear.
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Computational Micromechanics
Modeling of Polycrystalline Superalloys:
Application to Inconel 718

Aitor Cruzado, Javier Llorca, and Javier Segurado

1 Introduction

Ni-based superalloys stand for the state-of-art structural materials for many appli-
cations working under high temperature such as parts of energy generation systems
or jet engines. Their complex chemical composition and microstructure have been
slowly improved during the last 70 years to meet the demands of the operation
conditions which require to support high stresses and temperatures (which may
vary with time, leading to thermomechanical fatigue) in an aggressive environment.
Further developments of Ni-based alloys have been hindered by the complexity
of the current alloys, which makes very inefficient the traditional “trial-and-error”
approach, and this has led to extensive use of computational tools to guide the
development of the next generation of superalloys [49, 56]. Similarly, the design
allowables have been established by means of costly experimental campaigns on
standard specimens and have to be repeated every time that the alloy composition
or microstructure changes, leading to further limitations in the innovation rate.
In this respect, approaches that combine simulation tools based on computational
homogenization of polycrystals with micromechanical experiments are opening new
perspectives to make accurate predictions of the mechanical behavior of complex
alloys that can take into account the effect of the microstructure. They will lead to
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a dramatic reduction in the number of experimental tests to characterize new alloys
and will also provide more accurate design allowables because the microstructural
effects can be accounted for.

Computational homogenization of polycrystals is a simulation strategy in which
the effective or macroscopic properties of the polycrystal are obtained by means
of the numerical simulation of a representative volume element (RVE) of the
microstructure [63]. The two key ingredients to make accurate predictions within
this framework are the description of the microstructure (including the grain size
and shape distribution and the texture) and the mechanical properties of the single
crystals. The former can be easily obtained nowadays using different experimen-
tal characterization techniques (including X-ray diffraction, optical and scanning
electron microscopy, electron back scattering diffraction, X-ray microtomography),
while crystal plasticity provides a very accurate model of the kinematics of the
plastic deformation of single crystals. In the case of complex alloys, phenomeno-
logical crystal plasticity models are normally used to determine the initial value
of the critical resolved shear stress to produce plastic deformation in each slip
system as well as the hardening rate. These model parameters have to be estimated
using different approaches. For instance, they are optimized from a set of estimated
starting values using an inverse optimization strategy by comparison of the predicted
mechanical properties with experimental results on polycrystals [17, 27, 29] or
on single crystals (extracted from the polycrystal) deformed by nanoindentation
[47, 60, 77] or by micropillar compression [14].

In this chapter, a systematic application of computational homogenization of
polycrystals to predict the mechanical behavior of IN718 Ni-based superalloy is
presented. Section 2 describes the microstructure of the alloy, while the experimen-
tal techniques to measure the mechanical properties of the single crystals and of the
polycrystals are detailed in Sect. 3. The computational homogenization framework,
including the digital representation of the microstructure, the crystal plasticity
models, and the details of the numerical simulations, is explained in Sect. 5.
Applications to predict the mechanical behavior of IN718 under monotonic tension
and fatigue are presented in Sect. 6, while the main conclusions are summarized in
Sect. 7.

2 Material Description

Polycrystalline IN718 is a Ni-Fe-based superalloy widely used for structural
applications up to 650–700 ◦C because of its good castability and weldability, high
strength, and corrosion resistance. The microstructure of the wrought IN718 is
made up by a Ni FCC solid solution which contains a dispersion of nm-sized γ ′
(Ni3(Al,Ti)) and γ ′′ (Ni3Nb) coherent precipitates within the grains together with
μm-sized metal carbides and δ phase (Ni3Nb) particles at grain boundaries (Fig. 1)
[55, 68]. The volume fractions of γ ′ and γ ′′ phases are in the range 3–5% and 10–
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Fig. 1 Microstructure of coarse-grained IN718 Ni-based superalloy. (a) Polycrystal grain struc-
ture showing the distribution of metal carbides and δ phase at the grain boundaries, (b) distribution
of γ ′ and γ ′′ precipitates within the Ni FCC solid solution. (Reprinted from [14])

20%, respectively, depending on the bulk alloy composition, the heat treatment, and
the degree of element segregation [20]. The strength of the alloy in this case (and in
the case of many other Ni-based superalloys) is provided by the interaction of the
dislocations with the fine distribution of γ ′ and γ ′′. The precipitate size and spacing
is of the order of 10–20 nm in wrought IN718 (Fig. 1b), which stands for the critical
length scale that controls the mechanical behavior.

Two alloys with different average grain size were studied. The grains were
equiaxed in both alloys, and the texture was random. The grain size was 8.5
according to the ASTM standard (≈20 μm) in the fine microstructure alloy and
3 (≈125 μm) in the coarse microstructure alloy. The amount of δ phase was <1%
in the coarse-grained material and around 10% in the fine-grained material. All the
other microstructural features were equivalent.

3 Experimental Characterization

The following section aims to describe the results of the mechanical characterization
carried out on a wrought Inconel 718 superalloy at two different length scales.
At the microscale, room temperature (RT) compression tests were performed on
pillars built in grains of the two microstructures considered, coarse and fine.
These tests aim to obtain the monotonic single crystal behavior and also to
detect differences in the crystal response for the two microstructures considered.
At the macroscopic level, uniaxial tensile tests were carried on both microstruc-
tures at different temperature ranges, from RT to 550 ◦C. In addition low cycle
fatigue (LCF) tests were performed at 400 ◦C. This experimental data will be
the basis to understand the mechanisms involved in the mechanical response
of the superalloy and develop the corresponding computational micromechanics
model.
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3.1 Micromechanical Characterization

3.1.1 Experimental Procedure

Compression tests were performed on micropillars machined out of grains of a
coarse-grained Inconel 718 alloy. The micropillars were milled in the center of
selected grains to avoid grain boundary effects, using FIB (FEI Helios Nanolab
600i) following an annular milling strategy, with a final polishing step using a
current of 230 pA to minimize FIB surface damage. The micropillar aspect ratio
(length/diameter) was selected to be 2.4 to avoid buckling during compression [54].
The annular milling parameters used resulted in a minimum taper (<1.5◦) of the
pillars. The pillars were compressed inside an instrumented nanoindentation system
(Hysitron TI950) using a circular diamond flat punch of 10 μm in diameter.

Tests were carried out under displacement control at three different strain rates
(10−4, 10−3, and 10−2 s−1), and the diameter was varied between 1 and 7.5 μm
to determine the effect of the diameter on the mechanical response. Inconel 718
crystals deform according to the lattice structure of the γ phase, along 12 octahedral
{111} 〈110〉 slip systems. Therefore, different crystallographic orientations were
selected for testing in order to promote single, double (coplanar and noncoplanar),
and multiple slip systems. The crystallographic orientation of the pillars was
determined by EBSD, using an Oxford AZTEC system. The Sneddon correction
[66] was applied in the obtained load displacement curves to account for the extra
compliance associated with the elastic deflection of the matrix at the base of the
pillar.

3.1.2 Results

The effect of the pillar diameter in the mechanical behavior was first assessed by
performing micropillar compression on pillars with diameters ranging between 1
and 7.5 μm built in grains with similar crystallographic orientation. In this study
grains favorably oriented for single slip, in either 〈245〉 or 〈235〉, with Schmid
factors (SF) of 0.445 and 0.4512, respectively, were selected.

The corresponding resolve shear stress (RSS) vs. strain curves are shown in
Fig. 2a. The pillars ranging between 3 and 7.5 μm present similar response, while
the micropillar with diameter of 1 μm presents stiffer and stronger response. A small
difference is also presented in the initial slope, which shows a much stiffer behavior
as the pillar diameter decreases. This is consequence of the initial contact between
the punch and the micropillar, affected by the surface asperities or the incorrect
alignment between the flat punch and the head of the pillar, as described in [67].
These results confirm that, opposite to what is found when single crystals of pure
metals are tested [73], the micropillar behavior is size independent for diameters
above 3 μm. The independence of the pillar response with the diameter size is the
consequence of the γ ′′ + γ ′ precipitate spacing (≈50 nm), which is much smaller
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Fig. 2 RSS vs. strain in micropillar compression tests. (a) Micropillars of different diameters
range from 1 to 7.5 μm oriented for single slip (either 〈245〉 or 〈235〉). (b) Micropillar of 5 μm in
diameter oriented in multiple slip (〈546〉) for two microstructures with different grain sizes: ASTM
3 and ASTM 8.5

than the pillar dimension, thus being the characteristic length scale that controls
the strength. Based on this observation, micropillars of size 5 μm in diameter are
selected for the rest of this work to obtain the plastic behavior of Inconel 718
crystals.

The effect of the grain size in the crystal behavior is analyzed using micropillars
of 5 μm in diameter milled in grains favorably oriented in 〈546〉 for the two
microstructures considered, ASTM 3 and ASTM 8.5, as shown in Fig. 2b. Regard-
less of the initial slope, which is affected by the initial contact, the RSS-strain
curves present almost the same behavior. This result confirms that the single crystal
behavior is independent of the polycrystalline alloy grain size and can be considered
representative of the single crystal bulk behavior. The identical response for pillars
built from alloys with different grain sizes confirms the sub-grain microstructure
of the crystal (precipitate volume fraction, sizes, shapes, and compositions) which
controls the pillar response, and this substructure is almost independent of the grain
size of the polycrystalline alloy.

Next, the strain rate sensitivity of Inconel 718 is analyzed testing micropillars
favorably oriented in single slip with similar Schmid factor 〈123〉 (SF = 0.467) or
〈235〉 (SF = 0.451) at strain rates that ranges from 10−4 to 10−2 s−1 (Fig. 3). To
reduce inaccuracies in the elastic behavior and the initiation of plastic yielding
(mainly due to the tip-pillar contact), the force-displacement registers obtained in
the tests are transformed into plastic strain-resolved shear stress (RSS) following
the methodology described in detail in [14, 32]. The RSS-plastic strain rate curves
plotted in Fig. 3a show a small strain rate dependency. These curves are then used to
obtain the strain rate sensitivity exponent for Inconel 718 grains, assuming that the
crystals behave as elasto-viscoplastic solids in which the plastic slip rate γ̇ α for a
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Fig. 3 Strain rate sensitivity analysis of micropillars of 5 μm in diameter oriented for single slip
at room temperature. (a) RSS vs. plastic strain for three different strain rates: 10−2, 10−3, and
10−4 s−1 and (b) linear regression curve to obtain the strain rate sensitivity m parameter

given slip plane α can be expressed as γ̇ α = γ̇0(|τα|/ταc |)1/msgn(τα). Here γ̇0 is the
reference strain rate, ταc the critical resolved shear stress at the reference strain rate,
and m the rate sensitivity exponent. Taking the natural logarithm of the viscoplastic
flow, the following equation is derived:

ln

(
γ̇ α

γ̇ α0

)
= 1

m
ln

∣∣∣∣
ταs

ταc

∣∣∣∣ (1)

so that the rate sensitivity exponent m can be obtained as the slope of the linear

regression between ln
(
γ̇ α

γ̇ α0

)
and ln

∣∣∣ τ
α
s

ταc

∣∣∣. The average strain rate γ̇ α for each slip

system is accounted, and the average strain of the micropillar divided by SF and
the corresponding CRSS ταs was taken at a plastic strain of 0.04. These results are
normalized against the reference strain rate considered in this work as 10−3 s−1.
The linear regression performed in Fig. 3b renders a strain rate sensitivity exponent
of m = 0.017. This exponent indicates a very small rate sensitivity of the material at
room temperature.

The SEM micrographs of micropillars deformed in single and multiple slip
orientation are shown in Fig. 4, respectively. The micropillar oriented along 〈235〉
clearly deforms through slip in a single plane, while the micropillar 〈001〉 shows the
activation of multiple slip systems. The rest of the parameters involved in the crystal
plasticity model that will be described in Sect. 5 have to be calibrated comparing
the results obtained in tests performed on pillars with crystallographic orientations
deforming under single and double slip with the corresponding numerical simula-
tions. In particular, this method allowed to identify the critical resolved shear stress
and the parameters defining the strain hardening of the crystal [14], accounted here
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(a) (b)

Fig. 4 SEM micrograph of 5 μm diameter deformed micropillar at an average strain rate of
10−3 s−1 oriented in: (a) 〈235〉 showing single slip and (b) 〈001〉 showing multiple slip

by the Voce hardening law [72]. The resulting values will be reported in Sect. 5,
after the presentation of the crystal plasticity model.

3.2 Macromechanical Characterization

3.2.1 Uniaxial Monotonic Tests

Experimental Procedure

Uniaxial tensile tests were performed on a universal testing machine at a constant
strain rate of 5 10−3 s−1. The tests were carried for three different temperatures,
RT, 400, and 550 ◦C for both coarse-grained (ASTM 3) and fine-grained (ASTM
8.5) microstructures. Cylindrical smooth specimens with a diameter of 5.08 mm
and a gauge length of 12.7 mm were used for the ASTM 8.5 microstructure, while
specimens with a diameter of 6.35 mm and a gauge length of 12.7 mm were used for
the ASTM 3 alloy.

Monotonic Behavior

The tensile stress-strain curves for the two microstructures and the three tempera-
tures considered are plotted in Fig. 5. Note that these curves are normalized by a
reference stress σ0 and a reference strain �εmin due to the confidential agreement
signed with the industrial partners funding this study. σ0 corresponds to the yield
stress of the ASTM 8.5 microstructure at 400 ◦C ,while �εmin corresponds to the
smallest of the strain range applied in the experimental campaign. In Fig. 5a, a grain
size effect in the alloy strength of the type smaller is stronger is clearly observed.
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Fig. 5 Experimental uniaxial stress-strain behavior of In 718. (a) Effect of the average grain size
in the mechanical response of ASTM 3 and ASTM 8.5 alloy at 400 ◦C. Effect of the temperature in
the mechanical response for (b) ASTM 8.5 Alloy and (c) ASTM 3 Alloy. Stresses are normalized
by σ0 and strains by �εmin

The tensile yield stress increased by ≈10% as the grain size decreases from ASTM
3 to ASTM 8.5. As shown in Sect. 5, the crystals do not present any grain size
dependency, and this phenomenon is attributed to grain boundary strengthening.
The grain boundaries act as a barrier which hinders the movement of dislocations
between different grains leading to dislocation pileups.

The influence of temperature in the stress-strain for the two microstructures in a
temperature range from RT to 550 ◦C is shown in Fig. 5b, c, respectively. An abrupt
decrease in the yield stress ≈18% for the ASTM 3 microstructure and ≈12% for the
ASTM 8.5 microstructure is shown from RT to 400 ◦C. Finally, small differences are
presented from 400 to 550 ◦C, showing the stability of both microstructures in this
range of temperature.
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3.2.2 Low Cycle Fatigue Tests

Experimental Procedure

A set of uniaxial strain control LCF tests were carried out for the two microstruc-
tures analyzed in this work, ASTM 3 and ASTM 8.5, and a fixed temperature of
400 ◦C. The tests were performed according to the standard ASTM E606-04 on
a MTS servo hydraulic fatigue load frame with a 100 kN load cell. Cylindrical
smooth specimens with a diameter of 6.35 mm for the ASTM 3 Alloy and a diameter
of 5.08 mm for the ASTM8, with a gauge length of 12.7 mm, were used. The
axial displacement in the central zone of the specimen was measured with a MTS
extensometer directly mounted on the gauge length. The specimens present the same
grain size in the surface and in the interior, and the grain sizes observed in both
longitudinal and transversal directions were also very similar. A trapezoidal wave
form was applied according to 1 s (dwell) – 5 10−3 s−1 (ramp up) – 1 s (dwell)- 5
10−3 s−1 (ramp down).

For the ASTM 8.5 Alloy, tests were carried with cyclic strain ranges of
�ε/�εmin = 1, 1.5, 2, 2.5, 3, and 3.5 for a strain ratio of Rε = −1 and with cyclic
strain ranges of �ε/�εmin = 1, 1.25, 1.5, 1.75, 2.25 and 2.75 for a strain ratio of
Rε = 0. The normalizing factor, �εmin, is the same value used for the monotonic
behavior (Fig. 5) and corresponds to the smallest cyclic strain range applied in the
experimental tests. For the ASTM 3 alloy, only fully reversed cyclic deformation
tests Rε = −1 under cyclic strain ranges of�ε/�εmin = 1, 1.5, 2, 2.5, 3 and 3.5 were
performed. The cyclic stress-strain curves derived from these tests are used first to
describe the cyclic behavior of Inconel 718.

Cyclic Behavior

The characteristics of the macroscopic cyclic plastic behavior of Inconel 718 are
obtained from the cyclic stress-strain response obtained at different number of
cycles during a strain-controlled LCF tests. Those characteristics will be described
using the particular case of LCF tests at 400 ◦C for the ASTM 8.5 microstructure.
The alloy presents a strong Bauschinger effect [11] or strain-hardening asymmetry
(i.e., kinematic hardening). This effect can be observed in Fig. 6a, which shows that
yielding in compression starts well before the applied stress has reached −σ1, equal
to the flow stress in the previous tensile deformation up to ε1. However, the actual
yield stress in compression of Inconel 718 is smaller (in absolute value) than the
prediction of pure kinematic hardening. This is associated with an initial softening
that suffers the material during the initial unloading [23]. The physical origin of
kinematic hardening can be associated with two mechanisms acting at different
length scales. At the grain level, back stresses on the mobile dislocations are due
to the development of dislocation substructures as a result of the interaction of the
dislocations with the shearable γ ′ and γ ′′ precipitates as well as with the grain
boundaries [38, 65]. At the polycrystal level, kinematic hardening is induced by the
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Fig. 6 Experimental cyclic behavior of Inconel 718 alloy at 400 ◦C deformed under strain control.
(a) Stress-strain curve of the first cycle with εmax = ε1 and Rε = 0. (b) Evolution of mean stress
(σm) with the number of cycles N . (c) Evolution of maximum (σmax) and minimum stress (σmin)
with the number of cycles N . (d) Effect of the mean grain size in the stabilized cyclic stress-strain
curve normalized by σ0 and strains by �εmin for obtained from tests performed at different strain
ranges and Rε = −1. σ0 and σ1 stand for, respectively, the yield strength in tension and the flow
stress at ε1 in the first cycle

differences in the yield stress between “hard” and “soft” grains depending on the
orientation of the slip systems.

Associated to the kinematic hardening, there is another characteristic of the
material cyclic response, the mean stress relaxation, that consists in a progressive
reduction of the mean stress during a cycle (σm = (σmax + σmin)/2) in experiments
performed under strain control and nonsymmetric cyclic deformation (e.g., Rε =
εmin/εmax = 0), Fig. 6b. Under nonsymmetric stress-controlled cyclic loading (mean
stress different from 0), the effect of nonlinear kinematic hardening results in cyclic
creep or ratcheting [11, 46].

The last characteristic of the cyclic plastic response of Inconel 718 is the
progressive reduction of the stress range, �σ = σmax − σmin, with the number
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of cycles shown in Fig. 6c. This mechanism is known as cyclic softening and is
attributed to the successive shearing by dislocations of the coherent and ordered γ ′′
precipitates, during the cyclic deformation. The shearing leads into a progressive
reduction of the precipitate size up to a point in which they can no longer offer
any resistance to the movement of dislocations [31, 76]. The deformation is thus
localized in planar slip bands free of precipitates, and the “mechanical scrambling”
of the precipitates is responsible for the cyclic softening. A detailed analyses of the
influence of temperature and cyclic plastic strain amplitude on the cyclic softening
can be found in various papers [3, 21, 31]. Cyclic hardening was found to take
place during a few cycles at ambient temperature and was followed by a continuous
cyclic softening until failure. The short period of cyclic hardening disappeared at
high temperature and cyclic softening was dominant throughout the test at high
temperature.

The effect of the grain size is finally analyzed form the stabilized cyclic stress-
strain curve in Fig. 6d. There are two remarkable differences from the monotonic
uniaxial tensile stress-strain curves: (1) the size effect found under monotonic
loading is strongly reduced being the stabilized curve very similar for the two
grain sizes considered and (2) the flow stress under cyclic deformation is below
its monotonic counterpart. Note that this second effect is consequence of the cyclic
softening previously described.

Low Cycle Fatigue Response

The low cycle fatigue (LCF) performance of the two microstructures studied is
represented in Fig. 7, where the cyclic plastic strain range is plotted as function of
the number of cycles to have a reduction of 5% in the maximum load during cyclic
loading. As suggested by [5, 75], this reduction in the strength can be associated
with the nucleation of a fatigue crack, and it has been observed that this number of
cycles was very near in all the cases to the final rupture so they can be considered as
an estimation of the fatigue life. The results show that this alloy follows a bilinear
Coffin-Manson law and the transition between both slopes takes place for N ≈ 2000.
This bilinear Coffin-Manson behavior presented in Inconel 718 has been reported by
many researchers [50–52, 61] and has been attributed to many different mechanisms.
Recently, using micromechanical models [17] showed that this effect is associated
with the transition from highly localized plasticity at low strain ranges to more
homogeneous deformation at high cyclic strain ranges.

The influence of the grain size in the fatigue crack nucleation for the two
microstructures considered can be observed in Fig. 7a. When the plastic strain range
is large, both microstructures present similar fatigue lives. However for small values
of the plastic strain range, when the cyclic stress-strain curves are nearly elastic, the
fine-grained microstructure exhibits much larger fatigue life. Note that the transition
to the grain size-controlled regime coincides with the transition point of the dual
slope Coffin-Manson behavior and thus can be associated with the different strain
localization observed in the two regimes.
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Fig. 7 (a) Cyclic plastic strain amplitude, �εp/2, vs. the number of cycles to crack initiation, Ni ,
in Inconel 718 alloy at 400 ◦C. (a) Effect of the grain size in the fatigue life of Inconel 718 at
Rε = −1 and (b) effect of strain ratio under fully reversed Rε = −1 and nonsymmetrical strain
ratio Rε = 0 for ASTM 8.5 alloy. The number of cycles for crack initiation Ni corresponds to the
5% load drop. Cyclic plastic strain amplitudes and strain ranges are normalized by �εmin

Finally the effect of the strain ratio is analyzed in Fig. 7b. It is shown that for the
majority of the strain ranges analyzed in this work, there is small influence in the
fatigue life. However for the smallest values of the cyclic strain range, the fatigue
life for a strain ratio Rε = 0 is four times smaller than for a strain ratio of Rε = −1.

4 Polycrystalline Homogenization Framework

The micromechanical framework to establish the relation between the microstruc-
ture and crystal behavior of a polycrystalline superalloy Inconel 718 with its
macroscopic response is the computational homogenization of polycrystals [63].
Under this approach, the macroscopic response of the alloy and the microscopic
fields are obtained from the numerical simulation of the mechanical response
of a representative volume element (RVE) of the polycrystalline microstructure.
The alloy microstructure is explicitly considered in the RVE that contains a
distribution of grain sizes, shapes, and orientations statistically equivalent to the
actual microstructure. Although this methodology is computationally expensive –
involves the solution of a boundary value problem with a large number of degrees
of freedom – it provides more accurate estimations of macroscopic behavior and
microstructure evolution than mean-field models such as VPSC [34]. Moreover, it
provides very accurate information of the local values of the stress and strain fields
as well as of the state variables throughout the microstructure. This information is
critical for predicting damage localization and failure of heterogeneous materials.
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Three key ingredients are the basis of a successful simulation of a polycrystal
using computational homogenization: (1) the numerical approach to solve the
boundary value problem, (2) the representation of the microstructure, and (3) the
constitutive description of the single crystal behavior. The particular homogeniza-
tion framework used for the simulation of the mechanical behavior of the alloy
Inconel 718 will be reviewed below, attending to these three aspects.

4.1 Boundary Value Problem and Boundary Conditions

Two approaches are normally used to solve the boundary problem in a homog-
enization problem, the finite element (FE) method or methods based on the fast
Fourier transform (FFT). FE is still the most common approach for polycrystalline
homogenization and has been profusely used to simulate the behavior of any type
of metals [57, 58]. FFT-based homogenization, proposed in the 1990s by [43],
soon attracted the attention of the homogenization community for its computational
efficiency and because meshing of the RVE is avoided. The use of FFT methods
for polycrystalline microstructures was proposed in [33], and the method has been
used since then mainly to simulate the response of polycrystalline alloys under
monotonic loading [19, 35]. Only very recently these methods have been applied
to obtain the cyclic and fatigue response of superalloys like Inconel100 [59] or
Inconel 718 [37].

In this work, the micromechanical simulations of the behavior of the alloy
Inconel 718 [14–17] have been performed using the FE method. The FE framework
for polycrystalline simulations shares many aspects with standard macroscopic
plasticity simulations, as the use of the same type of elements, linearization
schemes, or linear solvers, and relies very often in the use of commercial FE
packages as ABAQUS or MARC. The two main differences with standard plasticity
simulations are the constitutive equation used and the boundary conditions. Under
the framework of computational homogenization of polycrystals, each material
point is modeled using crystal plasticity, and the load history corresponds to the
macroscopic stress or strain that is introduced using special boundary conditions as
uniform displacement, uniform stress, or periodic boundary conditions.

Periodic boundary conditions are used for the micromechanical simulation
of Inconel 718. These boundary conditions fulfill the Hill-Mandel principle of
macro-homogeneity [30], and, among the boundary conditions compatible with this
principle, the results obtained under these conditions (even in the case of nonpe-
riodic microstructures) show the fastest convergence toward the actual effective
response with increasing the RVE size [25]. Periodic boundary conditions assume
that the RVE deforms as a jigsaw puzzle. A cubic periodicity of the RVE is assumed
(Fig. 8a). Let li = liei be the three orthogonal vectors defining the cubic periodicity,
and let ei be the corresponding unit vectors defining the basis. If x1, x2, x3 are the
coordinates of a point in the RVE in the system defined by ei , the periodic boundary
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Fig. 8 Deformation of a periodic RVE of a polycrystal under periodic boundary conditions in 2D.
(a) Undeformed configuration. (b) Deformed shape under biaxial deformation

conditions link the local displacement vector u of the nodes on opposite faces of the
RVE with the far-field macroscopic deformation gradient F̄ according to

u(x1, x2, 0)− u(x1, x2, L3) = (F̄ − 1)l3 (2)

u(x1, 0, x3)− u(x1, L2, x3) = (F̄ − 1)l2 (3)

u(0, x2, x3)− u(L1, x2, x3) = (F̄ − 1)l1 (4)

The resulting deformed cell preserves the cubic periodicity, but the new vectors
defining the periodicity are given by F̄li , Fig. 8b. When the meshes of opposite
faces of the RVE boundaries are identical, periodic boundary conditions are easily
implemented coupling the displacements of the boundary nodes with equations
(Eq. 4). In particular, a master node Mi (i = 1, 2, 3) is defined for each pair of
opposite cube faces, and the value of the far-field macroscopic deformation gradient
is imposed to the RVE through the displacement of those master nodes according to

u(Mi) = (F̄ − 1)li . (5)

If some components of the far-field deformation gradient are not known a priori,
the corresponding effective stress component σ̄ij are set instead (e.g., the transverse
components of the stress tensor are set to zero for a uniaxial tensile loading). This
task is carried out applying nodal forces P to the corresponding master node i and
degree of freedom j according to

Pj (Mi) = (σ̄ei )jAi (6)

where Ai is the area of the cell perpendicular to direction ei . Under small strains,
the area Ai corresponds to the undeformed geometry, and Eq. (6) is used to obtain
the value of the forces to be applied as function of the target stress.
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4.2 Microstructure Representation

In computational homogenization of polycrystals, the RVEs should contain a
statistical representation of the most important features of the actual microstructure
[63]. For the same composition and precipitate content, the microstructural aspects
that mostly influence the elastoplastic response of Inconel 718 are the grain size,
shape, and orientation distributions of the alloy. In the case of the fatigue response,
the effect of second phases or twin boundaries can also be determinant under
small loads (high cycle fatigue). However, for relatively large deformations (low
cycle fatigue), range in which we will study Inconel 718, the effect of these
microstructural features is negligible compared with the strain localization due to
grain orientation and neighborhood. Therefore, all the RVEs generated for this study
are representative of the grain distributions experimentally measured but do not
explicitly include other microstructural features.

Two wrought microstructures are analyzed in this study, containing both a
relatively homogeneous grain size distributions – well represented using log-
normal grain size distributions – but with different average grain size. For a given
microstructure, the grain size distribution was measured using optical images of
cross sections of the material including approximately 300 grains. The experimental
2D grain size distributions were transformed to a 3D distribution assuming spherical
grains [26], and these 3D grain radii distribution were approximated by a log-
normal function. An example of the resulting 3D grain size distribution obtained
for one of the Inconel 718 microstructures studied is represented in Fig. 9, where
the parameters obtained for the log-normal distribution were σ = 0.70862, μ= 3.65
and a correlation coefficient of 0.93 [14].

Two different types of RVEs are generated, tessellation-based RVE with unstruc-
tured meshes (Fig. 10a) and voxelized RVEs (Fig. 10b). The first type of RVEs was

Fig. 9 Log-normal grain size
distribution of polycrystalline
Inconel 718 (solid line) and
the corresponding grain size
distribution in the RVE of the
microstructure, from [14]
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Fig. 10 Representative volume elements (RVEs) of a polycrystalline microstructure. (a) Voronoi
tessellation-based RVE. (b) Voxelized RVE generated using [18]

generated from the tessellation of a set of points, which divided the initial volume in
a number of polyhedra. In particular, because the grain size distributions considered
in this study are log-normal distributions and grains are equiaxial, simple Voronoi
tessellations are used. A Monte Carlo algorithm was developed to generate the
position of the set of points used for the tessellation, so the resulting polyhedra
in which the RVE is divided fulfill the experimental grain size distribution (e.g.,
the distribution in Fig. 9). The tessellations during the Monte Carlo process were
carried out using an extended cloud of points obtained using periodic copies of the
original cloud in the three directions of space in order to preserve the periodicity
of the microstructure in the RVE. Although RVEs present cubic periodicity, the
final shape of the RVE was not a cube because grains intersecting the cube faces
were not cut and copied into the opposite face but were maintained in their original
positions. This strategy avoided meshing problems related with the development
of very small grains near the cube surfaces. The periodic RVE was finally meshed
with the open source program Gmsh [22]. Ten-node quadratic tetrahedral elements
(C3D10M with full integration in [1]) were used for the discretization. It must be
noted that this strategy leads to planar grain boundaries because the actual geometry
defined by the tessellation is preserved in the discretization. The second type of
RVEs (Fig. 10b), voxelized RVEs, corresponds to the rasterization of a periodic
synthetic microstructure generated in a regular grid by compacting in the RVE
volume a set of ellipsoids which sizes fulfill the experimental grain size distribution.
These types of synthetic microstructures are generated using the software [18] and
do not necessarily correspond to any tessellation of points. After the rasterization,
each voxel of the synthetic microstructure was transformed to a linear hexahedral
element (C3D8 in Abaqus).
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The texture is included in any of the two RVE typologies by assigning to each
grain a given initial orientation defined by a rotation tensor. The rotation of each
grain is selected to fulfill statistically the orientation distribution function experi-
mentally obtained [27, 62]. In the case of the Inconel 718, all the microstructures
studied presented a random texture, and therefore, grain orientations have been
randomly generated in the rotation group SO(3).

The computational cost and local accuracy of the two RVEs typologies are
different, and their use depends on the application. For simulating the monotonic
response, only a small number of different RVEs are needed, and each simulation
requires only a limited number of load increments. In this case, Voronoi RVEs
are used because they are computationally affordable and the local solution near
grain boundaries can be more accurate. On the contrary, for simulating of the
cyclic response and fatigue performance, many different RVEs have to be simu-
lated, and each simulation comprises a large number of cycles. In this situation,
voxelized RVEs are preferred due to their simple generation and better numerical
performance.

4.3 Single Crystal Behavior

The behavior of the Inconel 718 grains is accounted using crystal plasticity theory.
A unified kinematic crystal plasticity framework is used for all the regimes studied,
but, for simplicity, slightly different flow and hardening rules are used for monotonic
and cyclic behavior. In this section, we will review the general equations of the
crystal plasticity models used, while the particular flow and hardening rules will be
incorporated in each section.

With respect to the number and type of slip systems available in Inconel 718,
slip trace analysis performed in [4] and the micromechanical tests presented in the
previous section indicate that plastic deformation only takes place in octahedral
111 < 110 > slip systems, as in a single-phase FCC alloy. This is due to the low
volume fraction (<20%) of γ ′ and γ ′′, and, therefore, only those 12 slip systems are
considered in the crystal plasticity modeling of the alloy.

The kinematic description of the model is based on the multiplicative decom-
position of the deformation gradient, F, into the elastic Fe and plastic components
Fp,

F = FeFp (7)

The plastic velocity gradient in the intermediate configuration, Lp, is given by the
sum of the shear rates γ̇ α on all the slip systems α, according to

Lp = ḞpFp−1 =
∑

α

γ̇ αsα ⊗ mα (8)
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where sα and mα stand for the unit vectors in the slip direction and the normal to
the slip plane, respectively, in the reference configuration.

The Green-Lagrange measure of deformation is used to characterize the elastic
deformation, Ee,

Ee = 1

2

(
FeT Fe − I

)
(9)

being I the second order identity tensor. The symmetric second Piola-Kirchhoff
stress tensor in the intermediate configuration, S, is related with the Green-Lagrange
strain tensor according to

S = C : Ee (10)

where C is for the fourth-order elastic stiffness tensor of the single crystal. The
driving force for the plastic slip is the resolved shear stress τα on the slip plane α,
and it is obtained as the projection of the second Piola-Kirchhoff stress on the slip
system according to

τα = S : (sα ⊗ mα) (11)

Finally, the Cauchy stress is obtained as

σ = 1

J e
FeSFeT (12)

where J e is the determinant of Fe.
The laws defining the slip rate as function of the resolved shear stress and the

internal variables depend on the particular regime considered, monotonic or cyclic,
and are included in its respective sections of this chapter.

5 Monotonic Behavior

The mechanical response of Inconel 718 under uniaxial monotonic loading is simu-
lated using the computational homogenization framework presented in the previous
section. The grain size distributions extracted from experimental microstructures are
used as input for the RVEs. The strategy followed to model the crystal behavior of
a coarse-grained Inconel 718 (ASTM 3) was using a simple crystal plasticity model
in which the crystal parameters were experimentally measured from microme-
chanical tests. To extend the model to other microstructures, the crystal plasticity
model was modified to include the effect of grain size in the crystal strength
combining in this case microscopic data with macroscopic results for different
microstructures.
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Table 1 Single crystal elastic constants of Inconel 718 at room temperature

C11(GPa) C12(GPa) C44(GPa)

259.6 179 109.6

5.1 Elastic Behavior

Inconel 718 crystals present cubic symmetry, and three constants, C11, C12, and
C44, are used to reproduce the elastic response of a crystal (Eq. 10). These three
constants correspond to the components C1111, C1122, and C1212 of the stiffness
tensor, and their values are obtained from the literature [40] and given in the next
table (Table 1).

5.2 Elastoplastic Behavior

The approach followed to model the behavior of a coarse-grained Inconel 718 alloy
consists in using a simple crystal plasticity model and identifies all the crystal
parameters from microtesting at the grain level (Sect. 3.1) without using any fitting
parameter. The study is performed in an alloy with the grain size distribution shown
in Fig. 9. The crystal is assumed to behave as an elasto-viscoplastic solid with
isotropic hardening. It is known that the macroscopic behavior presents Bauschinger
effect, but since kinematic hardening cannot be distinguished from isotropic in the
micropillar compression test results, the hardening is simplified to isotropic. The
expression used for the plastic slip rate is a power law according to

γ̇ α = γ̇0

( |τα|
gα

) 1
m

sign(τα) (13)

where γ̇0 is the reference strain rate, gα the critical resolved shear stress of α slip
system, and m the rate sensitivity parameter. The evolution of the CRSS of a given
slip system, ġα , is expressed as

ġα =
∑

β

h qαβ
∣∣γ̇ β
∣∣ (14)

where h stands for the self-hardening modulus and qαβ are the latent hardening
parameters that stand for the influence of hardening between different slip systems.
The self-hardening was described according to the Voce model [72],

h (�) = hs +
(
h0 − hs + h0hs�

τs − τ0
)

exp

{ −�h0

τs − τ0
}

(15)
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Table 2 Viscoplastic and hardening parameters obtained from pillar compression

τ0 (Mpa) τs (MPa) h0 (GPa) hs (GPa) qαβ

465.5 598.5 6.0 0.3 1

Fig. 11 Experimental result
and numerical simulation
obtained by computational
homogenization of an RVE of
the true stress-strain curve in
compression of Inconel 718
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where h0 is the initial hardening modulus, τ0 is the initial yield shear stress, τs is the
saturation yields shear stress, hs is the saturation hardening modulus at large strains,
and � stands for the accumulated shear strain in all slip systems, which is given by

� =
∑

α

∫
|γ̇ α|dt . (16)

The strain rate sensitivity found from pillar compression wasm = 0.017, and the
Voce hardening parameters obtained also using this technique are given in Table 2.

The crystal plasticity model described was used as constitutive equation in
a Voronoi RVE (Fig. 10a) with 210 grains and around 600 finite elements per
grain. This RVE size was enough to capture macroscopic behavior, based on
volume averaged fields, and only small differences were observed between different
realizations of the same size. In order to account for the scatter obtained using
several RVEs of the same microstructure, the numerical predictions were obtained
using four different realizations of the random grain orientation distribution.

Uniaxial compression was simulated using the framework described, and the
stress-strain curve obtained as the average of the four realizations is represented
in Fig. 11 together with the experimental result of a compression test performed
under the same conditions.
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The differences in the mechanical response between the four different models
were below 1.3%, that is, an estimation of the error in the prediction of the macro-
scopic response for a given crystal behavior. The agreement between experimental
behavior and simulation results (Fig. 11) was fairly good: the maximum difference
in the compressive flow stress was below 4%, and the strain hardening rate predicted
was identical to the experimental value. This accurate prediction is remarkable
because no fitting parameters have been used being all the crystal parameters
obtained from tests at lower length scales (with scatter near 5%). An interesting
consequence of this good agreement is that the contribution of the grain boundaries
to the strengthening of the alloy is minimal for this coarse-grained microstructure.
If dislocation pilling up in front of grain boundaries would play a role, the stress-
strain curve of the polycrystal predicted using parameters from micropillar (without
grain boundaries) would underestimate the experimental response. The reason of
this negligible effect of grain boundaries is probably the small distance between
precipitates (tens of nanometers) that controls the dislocation arrangement within
the microstructure, minimizing the effect of grain boundaries for this grain size.

The computational homogenization approach presented, based on obtaining all
the crystal properties by microtesting, is interesting from the academic view-
point. However, this strategy implies a very demanding microscopic experimental
campaign limiting its technological application since the resulting macroscopic
models are only valid for the particular temperature in which the material has
been tested and neglect grain boundary effects that might not be negligible for
smaller grain sizes. For this reason, the model is extended using a crystal plasticity
phenomenological formulation that includes the effect of grain size to provide more
general macroscopic predictions.

5.3 Grain Size-Dependent Model

The mechanical behavior of Inconel 718 is mainly controlled by its precipitate sizes
and distances, but grain boundaries also play a role for fine-grained microstructures,
and in this range, Inconel 718 shows a typical grain size effect of the type the smaller
the stronger (Fig. 5). This effect has been classically parameterized using Hall-Petch
expressions [24, 48] that relates the polycrystalline flow stress with σy with the
average grain size d as

σy = σ∞ + H√
d

(17)

being σ∞ the flow stress of the coarse-grained alloy and H a material parameter.
Hall-Petch law reflects the strengthening effect of the alloy due to the accumulation
of dislocations in front of grain boundaries, and this effect is accounted at the grain
level in the present approach. To this aim, the initial value of the critical resolved
shear stress used in the crystal plasticity model (Eq. 13) is modified for each crystal
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Fig. 12 Experimental result
and numerical simulation
obtained by computational
homogenization of the
stress-strain curves at room
temperature under uniaxial
tension for microstructures
with grain sizes ASTM 8.5
and 3. Results are normalized
by σ0 and �εmin

to include the strengthening due to the dislocations pileups in the grain boundaries
as

gα(� = 0) = τ∞ + h√
d

(18)

being τ∞ the critical resolved shear stress for a large grain and h a material
parameter equivalent to H at the grain level. It must be noted that the value of
τ∞ does not correspond exactly to the value obtained by pillar compression for a
coarse-grained microstructure, probably due to the differences in the nanostructure
of grains with very different sizes and also to tension/compression asymmetry. For
this reason, the Hall-Petch parameters τ∞ and h and the hardening constants are
fitted from experimental results for the two different homogeneous microstructures,
ASTM 8.5 and ASTM 3. The resulting polycrystalline model is able to reproduce
the grain size effect observed experimentally as it can be observed in Fig. 12.

6 Cyclic Behavior

In this section, polycrystalline computational homogenization will be used to predict
the cyclic behavior of Inconel 718. As shown in the experimental characterization
(Sect. 3), the alloy presents a strong Bauschinger effect, combination of isotropic
and kinematic hardening, and cyclic softening. To model this complex behavior,
an alternative flow rule is proposed for the crystal plasticity model [15] including
softening and kinematic hardening rules that provide an accurate control of cyclic
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softening and mean-stress relaxation with a relatively small number of parameters
in comparison with to macroscopic models [10–12, 45].

6.1 Crystal Plasticity Model for Cyclic Behavior

The crystal plasticity framework presented in Sect. 4.3 is used with a plastic slip rate
adapted for cyclic loading and given by

γ̇ α = γ̇0

( |τα − χα|
gα

) 1
m

sign(τα − χα) (19)

where γ̇0 is the reference strain rate, gα the critical resolved shear stress of α slip
system, χα the back stress andm the rate sensitivity parameter. The back stress term
is introduced to account for the effect of the dislocation substructures on the stress
necessary to move dislocations when reverting load direction [6, 36, 41, 42, 69]. In
this study an evolution law for the back stress is proposed based on a simplification
of the Ohno-Wang macroscopic model limited to the first two terms and containing
only three material parameters. This relatively simple model at the crystal level
is able to reproduce the complex cyclic behavior of the polycrystal because the
contribution to kinematic hardening of the residual microstresses due to plastic
incompatibilities between grains is naturally accounted for during the homogeniza-
tion of the polycrystal. The model proposed for kinematic hardening includes two
terms. The first one corresponds to the strain hardening [2], and the second one
represents the dynamic recovery and is given by

χ̇α = cγ̇ α − dχα|γ̇ α|
( |χα|
c/d

)k
(20)

where c and d are parameters of the Frederick-Armstrong model and k is an
extra parameter that controls the mean stress relaxation velocity. The details of the
backstress evolution law can be found in [15].

The critical resolved shear stress (gα in Eq. 19) also includes two contributions
that determine the amount of hardening or softening under monotonic (gαm) and
cyclic (gc) deformation according to

gα = gαm + gc (21)

where gαm controls the evolution under monotonic deformation and gc determines
the cyclic softening due to a progressive reduction of the critical resolved shear
stress induced by changes in the direction of plastic shear. The monotonic term, gαm,
has an initial value of τ0 (the initial critical resolved shear stress), and the evolution
with the applied strain, ġαm, is obtained from the contribution of the shear strain of
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all the slip systems β in the crystal according to Eq. 14. The self-hardening rule
selected here was the Asaro-Needleman model, given by

h (�) = h0sech2
∣∣∣∣
h0�

τs − τ0
∣∣∣∣ (22)

where h0 is the initial hardening (or softening) modulus, τs is the saturation stress,
and � is the accumulated shear strain in all slip systems of the crystal, (Eq. 16). The
second contribution to the evolution of the critical resolved shear stress in Eq. (21) is
the cyclic softening, gc. This softening is caused by the successive shearing of the γ ′′
precipitates due to the reciprocating movement of the dislocations, and, therefore, it
is activated when the shear deformation is reversed. For simplicity, it is considered
that the softening induced by this mechanism is the same for all the slip systems.
Experimental data on Inconel 718 show that cyclic softening develops very rapidly
in the first cycles but the stress amplitude is stabilized afterward. Therefore, the
Voce type law [72] (Eq. 15) with a negative slope to consider softening was adopted
to simulate this behavior according to

gc = − (τ cycs + h2γcyc
)
(

1 − exp
−h1�cyc

τ
cyc
s

)
(23)

where τ cycs is the saturation softening (the maximum reduction of the critical
resolved shear stress due to cyclic softening), h1 and h2 are the cyclic softening
parameters, and �cyc, the cyclic accumulated plastic strain, is an internal variable
defined to capture the cyclic softening under a general loading history. �cyc is given
by

�cyc =
∑

α

∫ t

0
|γ̇ α|dt −

∑

α

∣∣∣∣
∫ t

0
γ̇ αdt

∣∣∣∣ , (24)

and is zero under monotonic loading while it increases when the direction of shear
plastic strain changes, storing information about the number of changes in the
direction of plastic shear and the magnitude of the shear strain accumulated before
each change.

6.1.1 Model Parameter Identification

The parameters of the crystal plasticity model for the cyclic behavior are chosen to
represent the cyclic response of the fine-grained (ASTM 8.5) Inconel 718 at 400 ◦C.
The reference strain rate, γ̇0, and strain rate sensitivity exponent, m, are taken from
the micropillar characterization and are independent of the temperature in the range
RT-500 ◦C. The elastic constants of the Inconel 718 single crystals at 400 ◦C were
obtained from the values at room temperature assuming a linear reduction with
temperature and can be found in Table 3.
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Table 3 Single crystal elastic constants of Inconel 718 at 400C

C11(GPa) C12(GPa) C44(GPa)

240 165 101

Table 4 Optimized crystal plasticity parameters for a wrought Inconel 718 at 400 ◦C

Isotropic hardening τ0 (MPa) τs h0 qαβ

τ0 0.71τ0 −57.13τ0 1

Kinematic hardening c d mk

58.9τ0 198.3 17.7

Cyclic softening τ
cyc
s h1 h2

0.076τ0 0.07τ0 2.33 10−6 τ0

The remaining parameters of the crystal plasticity model were obtained by means
of the inverse optimization procedure developed in [27, 28]. This inverse technique
is a minimum squares approach based on minimizing the differences between a
set of experimental stress-strain curves with respect to the response obtained by
means of computational homogenization using the Levenberg-Marquardt method.
The experimental data used in the optimization process are the stress-strain loops
obtained under uniaxial cyclic tension with strain control at three different strain
amplitudes, �ε/�εmin = 1, 1.75, and 2.25 (small, medium, and high) with respect
to the normalizing value �εmin and with Rε = 0. The details of the fitting procedure
can be found in [15], and the resulting parameters are summarized in Table 4,
normalized by the initial critical resolved shear stress τ0.

6.2 Simulation of the Cyclic Behavior

The numerical simulation of the fine-grained Inconel 718 polycrystal alloy at 400 ◦C
was carried out using a voxelized RVE (Fig. 10b) and the crystal plasticity model
presented above. The RVE contained 30 × 30 × 30 cubic elements, which ≈300
grains and ≈90 elements per grain. Voxelized RVEs were used (Fig. 10), and
the microstructures were synthetically generated using the Dream3D software to
fulfill the log-normal distribution obtained from microscope images of the material.
Similar to the case of the monotonic behavior, the macroscopic behavior was
relatively independent of the particular RVE realization [15], and a set of five
different grain realizations was used to obtain the macroscopic cyclic behavior.

The cyclic stress-strain curves under uniaxial tension with cyclic strain ampli-
tudes �ε/�εmin = 1.25, 1.5, and 2.75 with Rε = 0 and Rε = −1 were simulated
using the polycrystalline homogenization approach. The experimental results of the
two extremal cases, �ε/�εmin = 1.25 and 2.75, are plotted in Fig. 13 together with
the numerical predictions provided by computational homogenization. Figure 13
includes the cyclic stress-strain curves in the first cycle and in a cycle at ≈75% of
the fatigue life as well as the evolution of the stress amplitude,�σ , and of the mean
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Fig. 13 Experimental results and numerical predictions of the cyclic response of Inconel
718 at 400 ◦C tested under uniaxial tension with Rε = 0. (a) Cyclic stress-strain loops for
�ε/�εmin = 1.25. (b) Evolution of the stress amplitude, �σ/τ0, and of the mean stress, σm/τ0,
with the number of cycles for �ε/�εmin = 1.25. (c) Idem as (a) for �ε/�εmin = 2.75 (d) Idem as
(b) for �ε/�εmin = 2.75. Experimental data are given by open circles, while the results provided
by computational homogenization using the crystal plasticity parameters obtained with the inverse
optimization method are shown by the broken lines

stress, σm, (normalized by σ0) with the number of fatigue cycles. The results show
that the computational homogenization approach was able to predict very accurately
the hysteresis cycle when �ε/�εmin = 1.5 and 2.75, while the stresses are slightly
underestimated when �ε/�εmin = 1.25. The predictions of the evolution of stress
amplitude and of the mean stress with the number of cycles were also very accurate
until failure in all cases. Thus, the simulation strategy was able to capture the shape
of the hysteresis loops as well as the Bauschinger effect, the cyclic softening, and
the mean stress relaxation of Inconel 718 as a function of the fatigue cycles.
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Fig. 14 Experimental results and numerical predictions of the cyclic response of Inconel
718 at 400 ◦C tested under uniaxial tension with Rε = −1. (a) Cyclic stress-strain loops for
�ε/�εmin = 1.5. (b) Evolution of the stress amplitude, �σ/σ0, and of the mean stress, σm/σ0,
with the number of cycles for �ε/�εmin = 1.5. (c) Idem as (a) for �ε/�εmin = 3.5 (d) Idem as
(b) for �ε/�εmin = 3.5. Experimental data are given by open circles, while the results provided
by computational homogenization using the crystal plasticity parameters obtained with the inverse
optimization are shown by the broken lines

A second test of the predictive capabilities of the model was attempted by
simulating the cyclic behavior of the same alloy under strain control at Rε = −1
also at 400 ◦C and three different strain ranges �ε/�εmin = 1.5, 3, and 3.5. The
experimental cyclic stress-strain curves with Rε = −1 are plotted for two different
cycles (the first one and another at ≈75% of the fatigue life) in Fig. 14a, c for
the tests carried out at �ε/�εmin = 1.5 and 3.5, respectively. In addition, the
evolution of the stress amplitude, �σ , and of the mean stress, σm, (normalized
by σ0) with the number of fatigue cycles is plotted in Fig. 14b, d for the tests
carried out at �ε/�εmin = 1.5 and 3.5, respectively. The corresponding numerical
results are plotted in these figures, and the agreement between the experiments



154 A. Cruzado et al.

and the simulations is excellent in all cases, with the only exception of the cyclic
stress amplitude in the tests carried out at �ε/�εmin = 1.5, which was slightly
underestimated.

6.3 Grain Size-Dependent Cyclic Behavior

The approach followed to include grain size dependency in the cyclic behavior of
Inconel 718 alloy is an extension of the phenomenological approach introduced to
reproduce grain size dependency in the monotonic behavior. In this case, in addition
to the modification of the initial CRSS (Eq. 18), the dependency on the grain size
D is also introduced in the backstress. The parameters c and d controlling the
kinematic hardening evolution, given by Eq. (20), are redefined as

c = c′ + kc√
D

(25)

c

d
=
( c
d

)′ + kc/d√
D

(26)

where c′ and (c/d)′ stand for the direct hardening modulus and saturation hardening,
respectively, corresponding to a very large grain (where no dislocation pileups are
formed) and kc and kc/d stand for the Hall-Petch parameters that introduce the effect
of grain size. The fitting procedure and resulting values of these new parameters can
be found in [16]. The result of the cyclic deformation simulations for two different
strain ranges (�ε/�εmin = 3 and �ε/�εmin = 1.5) at T = 400 ◦C and the two
different grain sizes considered, ASTM 3 and ASTM 8.5, are represented in Fig. 15
together with the experimental results.

The stabilized stress-strain hysteresis loops predicted by the model were able
to accurately reproduce the experimental behavior for both strain ranges. This
agreement supports the simplistic strategy to account for the grain size effect by
introducing Hall-Petch-type relations in both the initial critical resolved shear stress
and back stress evolution. Moreover, it is expected that the small effect of the grain
size at the macroscale level will be amplified at the microscopic level, providing a
non-negligible effect of grain size in the fatigue response.

7 Microstructure-Dependent Fatigue Life Simulation

7.1 Microstructure-Sensitive Crack Initiation Model

The prediction of crack initiation of Inconel 718 alloy as a function of its
microstructure is carried out using a micromechanics-based fatigue life estimation
approach. This approach consists first in simulating the cyclic response of the
alloy considered using computational homogenization until reaching the stabilized
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Fig. 15 Experimental results and numerical predictions of the stabilized cyclic stress-strain
loops of Inconel 718 alloy at 400 ◦C tested under uniaxial cyclic deformation with Rε = −1. (a)
�ε/�εmin = 3 for ASTM 8.5 grain size. (b) Idem as (a) for ASTM 3 grain size. (c)�ε/�εmin = 1.5
for ASTM 3 grain size. (d) Idem as (c) for ASTM 3 grain size

cycle. The simulation accounts for the alloy microstructure through the RVE
and is performed for the particular cyclic loading condition studied (strain/stress
range, strain rates, R ratio, etc.). The evolution during the stable cycle of the
mechanical fields and internal variables at the microscopic level is used then to
obtain some fatigue indicator parameters (FIP) which describe the main driving
force that controls crack formation. These parameters are finally linked, using
phenomenological relations, to some stage of the fatigue life of the alloy under
study. Opposite to the homogenization of the averaged response, a large set of
RVEs should be used since the microscopic fields are very sensitive to the particular
RVE [64]. The reason is that the FIP of a RVE is based on the extreme value of
the FIP distribution inside that RVE, and the tail of this distribution is strongly
dependent on the particular RVE. This RVE ensemble is sometimes called SVE
(statistical volume element, [64]) or M-SERVES (microstructure representative
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volume elements [13]) depending on the author. Therefore, the phenomenological
expression for life predictions will be applied to all the RVE ensemble, resulting in
a statistical distribution of fatigue lives.

The simulation of the cyclic response using computational micromechanics
was covered in the previous section, and the microscopic fields resulting of these
simulations are used here to obtain the FIP distributions. Among the different FIPs
proposed in the literature for the study of the fatigue life [7, 8, 39, 44, 53, 64, 69–
71, 74, 75], the local crystallographic strain energy dissipated per cycle Wb

cyc was
used in this study to obtain the fatigue life on Inconel 718 alloy. This FIP is
expressed as

Wα
cyc(x) =

∫

cyc

τα(x)γ̇α(x)dt (27)

where τα and γ̇α are the resolved shear stress and the shear strain rate on the slip
system α, respectively, for a given location x in the polycrystal. The local value of
the FIP, as described in Eq. 27, is calculated in the centroid of each element in the
RVE. However, this local value is not representative of a fatigue damage region,
as the formation of persistent slip bands which leads into crack incubation affects
a particular finite volume of the material. To overcome this issue, the local FIPs
are averaged along narrow bands parallel to the slip planes, similar to the approach
proposed by Castelluccio et al. [9]. Under these assumptions, the FIP representative
of an RVE subjected to cyclic deformation, Wb

cyc, is obtained as the maximum of
the band-averaged local FIP throughout the RVE, according to

Wb
cyc = max

i=1,nb

{
max
βi

1

Vi

∫

Vi

Wβi
cyc(x)dVi

}
(28)

where βi (= 1, 2, 3) corresponds to the three different slips systems contained in
the slip plane parallel to the band i, Vi is the volume of that band, and nb is the
total number of bands considered, which is four times the number of elements in the
RVE. This volume-averaging approach also presents the advantage of mitigating
spurious stress concentrations and mesh size effects.

The fatigue crack initiation is then related to the stabilized value of the cyclic FIP
Wb
cyc. Cruzado et al. [17] showed that a linear relation between the number of cycles

for crack nucleation and the FIP value – approach followed in many microstructure-
based models [39, 71, 74] – did not work for Inconel 718. The deficient predicting
capacity of a linear law in Inconel 718 was attributed to the dual slope Coffin-
Manson behavior, described in Sect. 3.2.2, which is a consequence of a change in the
deformation mechanism that controls the nucleation of fatigue cracks from localized
deformation in a few grain at small cyclic strain amplitudes to homogeneous plastic
deformation at large cyclic strain amplitudes. Under these conditions, a power law
relation of the fatigue life Ni withWb

cyc was proposed
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Ni = WNL
crit

(Wb
cyc)

m
(29)

where the fatigue life depends on the stabilized cyclic FIP, Wb
cyc, through two

material parameters, WNL
crit and m. In order to obtain the stabilized cyclic FIP,

it was observed that 5 cycles were enough, except for the smallest strain range
�ε/�εmin = 1 and the strain ratio of Rε = −1 in which cyclic simulations were
extended up to ≈12% of the fatigue life. This slow convergence to the stable
cyclic behavior is a consequence of the cyclic softening that, for the small amount
of plasticity accommodated in each cycle, extends the reduction of the stress
range until a large number of cycles. It must be noted that the parameters of the
crack initiation law should be in principle independent of the alloy microstructure
and therefore the effect of the grain size distribution and other microstructural
features enter in the model through the FIP values, obtained in the polycrystalline
simulations.

7.2 Results

The parameters of the fatigue initiation law described in Eq. 29 were fitted
using two different fatigue tests (�ε/�εmin = 1 and 3.5) performed in an alloy
with fine-grained microstructure (ASTM 8.5). The cyclic FIP, Wb

cyc, for the two
loading conditions was obtained from the average value of the simulation of
a RVE ensemble (SVE) with 20 different RVEs. The resulting parameters are
WNL
crit = 4.8485 × 104 MJ/m3 and m= 1.4755.
As in the rest of the chapter, two microstructures are considered, ASTM 3 and

ASTM 8.5, in order to check the ability of the model to reproduce size effects in the
fatigue life. The cyclic response of four different RVEs (selected to be representative
of the SVE distribution of FIPs) for each strain range and microstructure is simulated
using the framework previously presented. A value of the FIP, Wb

cyc, is obtained
from each simulation. The life estimation for each RVE and load condition is
obtained then by introducing the FIP in Eq. (29), so four different values are
computed for each loading conditions that represent somehow the scatter in life.

The resulting fatigue life initiation predictions for the two grain sizes considered
are summarized in Fig. 16. Figure 16a, b shows the predictions of the LCF life for
the fine-grained microstructure and Rε = −1 and Rε = 0, respectively. The bars in
the graph represent the scatter of the 20 models used for fitting the fatigue life
initiation law, and the stars represent each of the 4 individual realizations of a fatigue
simulation. It is shown that the model is able to predict very accurately the fatigue
life for very different strain ranges and also under different strain ratios. Moreover,
considering that the two tests necessary for fitting the model were obtained from
tests at Rε = −1, the results with Rε = 0 are pure predictions and perfectly capture
the experimental response.
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Fig. 16 Experimental results and numerical predictions of the number of cycles for fatigue crack
initiation in Inconel 718 alloy at 400 ◦C as a function of the strain range �ε normalized by the
minimum cyclic strain range �εmin. (a) For Rε = −1 and ASTM 8.5 grain size. (b) For Rε = 0 and
ASTM 8.5. (c) Idem as (a) for ASTM 3 grain size

The fatigue model fitted with the fine-grained LCF experiments was then used to
predict the fatigue life of the coarser microstructure, ASTM 3. The results obtained
are represented in Fig. 16c. The fatigue initiation predictions are in general very
accurate, with only a slight underestimation of life for strain ranges in the middle of
the range explored. It must be noted that this material microstructure has not been
used to fit the fatigue life initiation and the effect of grain size is a direct consequence
of the differences in the plastic response.

Figure 17 presents together the results of the simulations obtained for the two
grain sizes considered. It can be observed that the model is able to capture the grain
size effect in crack initiation observed in the experiments; for the largest values
of the cyclic strain range (where the accumulated plasticity is homogeneous), the
scatter is low, and the fatigue lives were independent of the grain size. Nevertheless,
at the lowest strain ranges, where the localization of strain in the most favorable
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Fig. 17 Effect of the grain
size in the predicted number
of cycles for fatigue crack
initiation (mean and standard
deviation) as a function of the
applied cyclic strain range,
�ε (normalized by �εmin)

grain takes place, the scatter in fatigue life is larger, and the microstructure with
smallest grain size (ASTM 8.5) presents a better performance.

The ability of the model to accurately predict the crack initiation for different
strain ranges, strain ratios, and grain sizes is a consequence of the microstructural
basis of the approach used in this work. The resolution of the local fields allows
to capture the different localization patterns presented in this material taking into
account the effect of this distribution in the fatigue life estimations.

8 Conclusions

The application of a virtual testing methodology, based on the principles of inte-
grated computational materials engineering, has been presented and demonstrated
for an Inconel 718 Ni-based superalloy. The mechanical behavior of the polycrystal
is obtained by means of computational homogenization of a representative volume
element of the microstructure. The microstructural information (grain size distribu-
tion and texture) to generate the representative volume element was obtained from
standard metallographic characterization techniques. The properties of each crystal
were given by a phenomenological crystal plasticity model, whose parameters
were obtained using two different strategies, depending on the particular behavior
considered. Micropillar compression tests were used to determine the single crystal
properties under monotonic deformation, while an inverse optimization strategy
using the experimental results of the cyclic stress-strain curve was used in the case
of cyclic deformation.

The results of the simulations for the effective properties of the polycrystals
under monotonic and cyclic deformation were in good agreement with the experi-
mental data. Moreover, the values of the local fields (resolved stresses, accumulated
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plastic strains, etc.) throughout the representative volume element were used to
generate fatigue indicator parameters, which were able to determine the most critical
points in the microstructure to initiate a fatigue crack. These fatigue indicator
parameters were calibrated by comparison with a few experimental fatigue tests
and then used to predict the effect of loading conditions (different strain ratios) and
microstructure (small and coarse grain size) on the fatigue life of the superalloy.
Overall, the strategy shows how a balanced combination of micromechanical
tests and macromechanical tests together with the application of computational
homogenization strategies can be used to predict the mechanical behavior of Ni-
based superalloys taken into account the influence of the microstructure.
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Non-deterministic Calibration of Crystal
Plasticity Model Parameters

Jacob Hochhalter, Geoffrey Bomarito, Saikumar Yeratapally, Patrick Leser,
Tim Ruggles, James Warner, and William Leser

1 Introduction

The use of crystal plasticity (CP) to model grain-scale mechanical behavior of
metallic microstructures has become widely used, especially in the finite element
context. A major motivation has been observations made during experiment regard-
ing the microstructure dependence of crack initiation on microstructural features
and the general understanding that microstructure variation underpins variability
observed at larger length scales. CP models aid in the fundamental understanding
of those observations through their capability to model the effect of microscale
heterogeneity by capturing the orientation-dependent behavior of each grain in
a polycrystalline material. The aggregate effect of each grain, assembled in a
polycrystal model, can then be analyzed upon CP model implementation within
numerical methods for the solution of differential equations with complex geometry
and imposed boundary conditions, e.g., finite element or fast Fourier transform
methods.
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Recently, the importance of CP-based models for engineering applications has
been highlighted, especially in aerospace applications where increased demands on
efficiency and speed are driving increased complexity in structural configuration
and reductions in thickness for fracture-critical components [31, 36]. While this
change in paradigm is exciting and is enabling a new era in aerospace vehicles,
it also defines specific challenges for researchers. A major challenge currently
is that traditional standard practice models for material constitutive behavior and
crack growth rates become invalidated for these next-generation applications. For
example, the application of traditional fracture mechanics approaches does not
apply when crack growth is in the microstructurally small regime throughout life
with only several grains through thickness.

At the center of these engineering challenges is CP-based modeling for grain-
scale constitutive and cracking behavior. An ultimate goal of the Integrated Compu-
tational Materials Engineering community is to provide physics-based models for
materials, enabled through multiscale modeling of fundamental material behavior,
propagated to a continuum representation of a material. However, until CP model
parameters can be provided without a need for any experimental measurements,
calibration will play a fundamental role in the application of CP models for
engineering applications.

Simply put, parameter calibration is an inverse problem that aims to determine
a set of material model parameters that minimize some measure of error between
a model, which is a function of the parameters, and measured data. The field of
applying inverse problem methodologies for the calibration of material parameters is
broad. Many of the approaches to date are based on the same variational and virtual
work principles upon which the fundamental principles of continuum solid mechan-
ics are based, such as the reciprocity gap or error in constitutive equations methods.
For an overview of the more general area of inverse problem methodologies applied
to material parameter calibration, see [3]. For understanding the work in this chapter,
it is important to identify the additional complexities imposed by working with CP
models specifically. As the material model becomes more complex or requires more
parameters, which is characteristic of CP models, the computational demand of
calibration increases. Additionally, more data is required in such cases to mitigate
issues of uniqueness. This notion becomes especially important upon consideration
of the need to identify distributions of material parameters, where it is expected that
the parameters are not single deterministic values.

The current literature, pertaining to discussion in this chapter, typically involves
a hybrid approach to CP model parameter calibration, in which local strains from
digital image correlation (DIC) and global (homogenized) stresses from testing are
combined to form a cost function. An interesting approach to calibration using
such data is the integrated DIC (IDIC) method. Early work of Leclerc et al. [24]
formulated a two-stage process, whereby the correlation and parameter identifica-
tion optimization was solved simultaneously. While the formulation is general, that
work studied identification of elastic material parameters and presented a study of
the effect of signal-to-noise ratio on the calibrated parameters. That initial work
was later extended to the calibration of elastic-plastic material model parameters,
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with comparison to the commonly used finite element model updating (FEMU)
method [26]. Local DIC strain data was also used to calibrate spatial variations
of yield stress within a weld nugget and heat-affected zone using uniform stress
and virtual fields methods [39]. Recently, Rokoš et al. [32] addressed the known
issue of boundary condition sensitivity within the IDIC method, by formulating a
procedure to combine material parameters with kinematic boundary conditions as
degrees of freedom at the model boundary. For an in-depth description of parameter
identification methods using local DIC strain and global stress data, see [1].

The application of parameter identification methods to CP models is relatively
limited. Early work of Hoc et al. [17] studied the calibration of CP parameters for
an ARMCO oligocrystal specimen using deterministic optimization. In that work,
the local DIC strain field was homogenized to produce a statistical distribution of
their component values. Additionally, global stress values were measured during
experiment. A cost function was formed by a weighted sum of both sets of data:
summing the differences between the measured and computed strain distributions,
at eight sampling points, and the measured and computed global stresses. More
recently, local DIC strain and global stress data have been used to calibrate CP
parameters from in situ tensile tests. By comparing two different CP models with
experimental data at various length scales (global stress-strain curve and strain map
from DIC), Sangid et al. [37] showed that although the two CP models agreed with
each other and the experimental data with regard to the global stress-strain behavior,
their local agreement was relatively poor at the spatial length scale of the slip
system. Guery et al. [15] used FEMU to calibrate CP parameters for AISI 316LN
steel using 2D simulations of microstructures with varying grain size. Grain size-
dependent CP parameters were calibrated and illustrated the ability to reproduce the
expected Hall-Petch behavior. Bertin et al. [2] also studied CP parameter calibration,
using the IDIC method. In comparison with the study previously mentioned, the
work of Bertin et al. was on a smaller scale, focused on the deformation of a bicrystal
tensile sample fabricated using a focused ion beam (FIB).

The use of CP models within the finite element framework has largely focused
on the propagation of uncertainty via representative volume elements (RVEs),
formed by statistical instantiations of microstructure morphology. In these studies,
the CP model parameters are, however, deterministic, and their variations are
not considered in the ultimate prediction of variation in mechanical behavior.
This is likely due to two fundamental difficulties. First, there are currently no
proven methods for the non-deterministic identification of CP model parameters,
and preliminary developments are required. Second, the inclusion of CP model
parameter uncertainties adds to an already computationally intensive problem, when
considering variations in microstructure morphology. A goal of this chapter is to
illustrate that there are now methods available for the non-deterministic calibration
of CP model parameters and that those parameters can be considered in the forward
propagation from microscale uncertainties to predicted variation in component scale
mechanical behavior.
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This chapter first covers the common methods for acquiring and processing
experimental data, when calibrating CP model parameters. The methods are orga-
nized into global and local approaches. Subsequently, a brief introduction to CP
is given, mainly to provide sufficient understanding of the CP parameters to be
calibrated and how they are involved in the model. Common numerical methods
for CP model parameter calibration are then discussed in context of the global
and local data that can be acquired and processed. The fundamental concepts
of uncertainty quantification, with focus on the context of CP model parameter
calibration, are then provided. Lastly, each of the discussed methods for calibration
is evaluated on a simulated experiment with known CP parameters. This provides a
clear quantification of the practical issues of uniqueness of the identified parameters.

2 Acquiring and Processing Experiment Data

The experimental measurements that must be made and post-processing methods
to prepare the acquired data are overviewed here. There are two general categories,
global and local, by which the acquiring and processing methods can be binned.
The fundamental definitions for each of these types of acquired data are given
here because they are important for understanding of the subsequently described
calibration methods.

2.1 Global Data

Global data here is defined by any measurement or post-processing method that
quantifies the bulk behavior of a mechanical test coupon. An example of a directly
measured global data set would be the applied or reaction force provided by a load
cell during testing. Similarly, this data could then be post-processed to produce
either the engineering or true stress by considering the initial or current cross-section
area, respectively. While displacements can similarly be obtained from the stroke of
the test stand during testing, typically a displacement or strain gauge is attached to
the test coupon for this data. Using gauges in this way means that any test-stand
compliance is inherently filtered out of the displacement or strain data. Because
these gauges homogenize underlying coupon deformation over their length, they
are also considered global data.

2.2 Local Data

Local data here is defined as any measurement or post-processing method that
extracts data as a field across the coupon surface or volume. An example of a directly
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Fig. 1 Digital image correlation example

measured local data set would be displacements or strain obtained through the use
of DIC, which is explained in Sect. 2.2.1. The full-field data could also be used
to produce global data by extracting displacements or strains from virtual strain
gauges, which extract averaged values over their length during post-processing of
the DIC data. In the context of deformation of polycrystalline materials, local DIC
data can be used to quantify deformations within each grain in the polycrystalline
aggregate. This approach requires that the underlying microstructural features be
aligned with the DIC data. The underlying microstructure morphology can be mea-
sured using electron backscatter diffraction (EBSD), which provides quantification
of the surface grain shapes and their orientations. Additionally, high-resolution
EBSD (HREBSD) can be used to compute the elastic deformation gradient locally
on the surface of a specimen. An overview of EBSD and HREBSD is provided in
Sect. 2.2.2.

2.2.1 Digital Image Correlation

DIC is a metrological tool used for quantifying motion/deformation that occurs
between a reference image f (x, y) and a deformed image g(x′, y′) (see Fig. 1).
By maximizing the correlation of features within f and g, a mapping can be
found between (x, y) and (x′y′). Ultimately, that mapping comes in the form
of a displacement field (usually a spatial array of displacements) [28, 40]. The
displacements can be further processed to give estimates of local strains. A
limitation in the above-described two-dimensional DIC is that displacements can
only be measured in the plane of the image, i.e., displacements and strains with
components in the Z-direction are not identified. Stereo-DIC is able to identify out-
of-plane motion with the use of a two-camera setup. However, because images can
only be taken of the surface of a specimen, strains with respect to the through-
thickness dimension, i.e., into the specimen, are still not identified.
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A fundamental aspect of DIC is that the specimen surface must contain sufficient
features such that obtained images can be used to perform the correlation. While
there are examples of using natural surface variation for DIC in the literature, cf.
[19, 46], it is more common that a pattern must be applied to the specimen to make
up for sparse natural features. The applied surface pattern plays a large role in DIC,
namely, it affects the possible spatial resolution and accuracy of the measurements.
There are several patterning options available for measurements of deformations at
the grain scale, e.g., microstamping, lithography, and nanoparticle placement. For
a full review of available techniques, the reader is referred to the recent review
article of Dong and Pan [10]. Most importantly, the pattern needs to be visible
to the image capturing device; optical cameras and scanning electron microscopes
(SEM) are the two most common means of image capture for appropriately scaled
DIC of polycrystalline metals. Furthermore, those methods require different pattern
characteristics, e.g., pattern features must be opaque to electrons for optimal image
contrast in SEM and opaque to visible light with optical cameras.

2.2.2 High-Resolution EBSD

EBSD is a well-established scanning electron microscope-based diffraction tech-
nique that may be used to determine local crystallographic orientation on a specimen
surface. With respect to modeling, it may be used to determine the grain structure
of a specific specimen [47] or to acquire statistical data about grain texture and
morphology for a given material [8, 45]. HREBSD is a means of extracting the
elastic deformation gradient of one diffraction pattern compared to another via
cross-correlation [44]. This deformation gradient, F, is related to a feature shift
between the patterns measured by cross-correlation, q, as follows:

q = F(x − PC)
−PC · ẑ

F(x − PC) · ẑ − x + PC, (1)

where x is the location of the feature on the reference pattern, PC is the location of
origin of the diffraction pattern relative to the detector (also known as the pattern
center), and ẑ is a unit vector normal to the detector surface. If shifts are measured
from four or more non-collinear points, eight of the nine components of F may
be calculated via least squares. The missing degree of freedom is approximately
the relative dilatory strain (it may not be recovered as a consequence of projecting
the diffraction pattern onto a 2D detector) and is recovered by assuming zero
traction or by determining only the deviatoric component of the strain. Note that
HREBSD recovers the relative deformation gradient between two patterns. In order
to determine the absolute deformation gradient of a material, it is necessary to
simulate a strain-free reference pattern of known orientation [18, 20]. This method
is more sensitive to error in PC and requires careful calibration [5]. Once recovered,
the local elastic deformation gradient may be used to determine a number of useful
variables concerning the local material state, including elastic strain, orientation
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(much more accurately than conventional EBSD), and stress via Hooke’s law (if
the elastic parameters of the material are well-known). By looking at the curl of the
deformation gradient, HREBSD measurements may even be used to calculate Nye’s
tensor, a continuum representation of geometrically necessary dislocation density
[34].

2.2.3 Combining DIC and HREBSD

Recently, a new measurement method has been developed which allows for the
simultaneous acquisition of DIC and HREBSD on a specimen surface. The inte-
gration of these two, previously mutually exclusive, experimental methods is made
possible by the application of an amorphous DIC-pattern material, such as urethane
rubber [35], that provides good contrast for DIC in a SEM at low acceleration
voltage (at about 5 keV) using secondary electron imaging, but has negligible
interference with the primary electrons that form diffraction patterns at high-
accelerating voltage (20 keV). An example of this stamp, imaged in two different
modes, is shown in Fig. 2. This combination of methods enables decomposition
of deformation within the same surface domain during loading. In other words,
DIC can be used to quantify the total deformation, while HREBSD can be used
to quantify the elastic part of that total deformation, allowing for a decomposition
of the elastic and plastic parts. Note that the current feature size of the stamp
is approximately 1 micron and the spatial resolution of the patterning technique
is expected to improve with further development. The implications of this new
measurement method on calibration methods are provided in Sect. 6.3.

3 Crystal Plasticity

As motivated in Sect. 1 of this chapter, CP models are becoming increasingly used
when microstructure dependence in engineering use cases is observed. There are at
least two driving factors for that increased adoption. First, CP models are reaching
maturity where even complex micromechanism multiphysics simulations can be
completed in a reasonable amount of time and with well-supported computational
toolsets. Second, in many engineering applications, component size reduction
is common. Examples of such applications are microelectromechanical systems,
electronic devices, and thinning of structural components in aerospace vehicle
components. Furthermore, material processing of Ni- and Al-based metals in
aerospace applications, e.g., turbine blades and pressure vessels, can result in grain
growth resulting in grain sizes approaching the structural scale. In these cases, and
others like them, the micromechanics plays a governing role in the behavior, size
effect, and variability in component performance and reliability and, hence, must be
considered during design and certification.
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Fig. 2 Images on of a
urethane residual layer stamp
applied to an aluminum
oligocrystal sample imaged at
5 keV using secondary
electron imaging (a) and at
20 keV using backscattered
electrons (b)

While the general area of CP modeling and their applications is large, a focus
here is given to phenomenological models. Such models are characterized by the
consideration of the shear stress resolved on each crystallographic slip system,
τα , and its current strength, gα , that causes plastic slip, γ α , to occur. Similarly,
the discussion is limited to CP models that represent a single phase with lattice
dislocations as the sole deformation mechanism. The objective of this section
is to provide sufficient background for CP modeling such that the subsequent
discussion of non-deterministic calibration of CP parameters can be understood.
For an encompassing review of CP modeling, see [33].
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3.1 Concepts

For the remainder of this chapter, consideration is given to CP as a model for the
homogenization of the underlying motion of dislocations on each slip system. As
such, the primary parts of a CP model are the kinematics of slip and a constitutive
model relating the external forces to slip rates through resolved shear stress. The
mathematical model of the kinematics of finite deformation relates the original
reference configuration of a continuum to a current configuration that is obtained
through the application of external loads and displacements. The total deformation
gradient, F , relates the reference and current configurations directly.

The decomposition of F into its elastic and plastic parts can be thought of
as a multiplicative transformation, Eq. 3. Therein, Fe represents the reversible
component of deformation, while Fp represents the deformation that remains upon
removal of the external forces and displacements. If irreversible deformation is
present, an intermediate configuration is obtained upon removal of external forces
and displacements. This intermediate configuration is related to the reference
configuration by Fp. Furthermore, the lattice orientation remains unchanged in the
intermediate configuration, resulting in a stress-free configuration. Effectively, this
relies on an assumption that any dislocations formed must be passed beyond its local
neighborhood. The intermediate and current configurations are related by Fe, where
lattice distortions lead to material stresses. This concept that the stress is induced
by the elastic portion of the deformation is fundamental both to the development
of the following constitutive equations and to the calibration method presented in
Sect. 4.4.

F = FeFp. (2)

However, this decomposition does not yet have information regarding the
underlying crystallography essential for CP modeling. To capture crystallographic
kinematics, the plastic velocity gradient, Lp, is defined as a tensor that transforms
the plastic deformation gradient, Fp, to its time rate of change:

Ḟp = LpFp. (3)

Since the consideration here is limited to dislocation slip as the only plastic
deformation process, Lp is formulated as the sum of rates of slip on each system,
γ̇ α , along with the slip direction for each system, mα , and its corresponding plane
normal, nα:

Lp =
n∑

α=1

γ̇ αmα ⊗ nα. (4)

It is with this definition that the crystallographic kinematics are modeled.
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The constitutive models in CP relate Fe to the resolved shear stress on each
system, τα , through the elastic stiffness tensor, C, using second Piola-Kirchhoff
stress and Green elastic strain:

τα = 0.5C[FTe Fe − I ] : mα ⊗ nα, (5)

where T denotes the transpose. With τα computed, the rate of slip on each system,
γ̇ α , is computed herein as:

γ̇ α = γ̇o τ
α

gα

∣∣∣∣
τα

gα

∣∣∣∣

1
m

−1

. (6)

And, lastly, the evolution of hardening on each system, ġα , is integrated as a function
of the current hardness, gα; the saturation hardness, gs ; and the initial hardness, go.

ġα = Go
(
gs − gα
gs − go

) ∣∣γ̇ tot
∣∣ . (7)

In Eq. 7, γ̇ tot refers to the total slip rate across all the slip systems and can be
represented mathematically per Eq. 8:

γ̇ tot =
NSS∑

α=1

γ̇ α, (8)

where NSS refers to the number of slip systems, which is 12 for an FCC system.
Since Eq. 7 incorporates the total accumulated slip rate, the hardening on each
system is equivalent.

Further, the saturation hardness term, gs , in Eq. 7 can be expressed as:

gs = gso
∣∣∣∣
γ̇ tot

γ̇s

∣∣∣∣
ω

, (9)

where gso, γ̇s , and ω are three input parameters for the reference saturation hardness,
the reference saturation slip rate, and the saturation rate exponent, respectively.

For the purpose of simplicity and tractability of both global-local and local
calibration studies, the saturation hardness, gs , can further be expressed as:

gs = (go + g∗
s )
∣∣γ̇ tot

∣∣ω, (10)

where g∗
s is a normalized reference saturation hardness. Although g∗

s is a function
of both gso and γ̇s , for the purpose of calibration studies, it is expressed as
an independent variable. Additionally, parameters γ̇o and ω are treated as “fixed
parameters” – not included as calibration parameters – as their respective influence
on slip rates and hardening of each slip system can be emulated by parameters m and
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g∗
s , respectively. Therefore, the set of calibration parameters involved in the current

work include go, m, Go, and g∗
s .

The CP model presented in this section is used throughout the remainder of the
chapter. First, the model is used to represent a collection of grains, Sect. 4.2, within
a Taylor model where the grains deform independently. Subsequently, in Sects. 4.3
and 4.4, these equations are implemented within a finite element framework for
higher-fidelity modeling of the interaction among grains in a polycrystal. This
aggregation of the deformation of multiple grains with varying crystallographic
orientations leads to an anisotropic behavior with heterogeneous stress and strain
fields throughout the continuum. As discussed in the subsequent sections, these
heterogeneities are important aspects of the calibration process.

Finally, model selection is an important preliminary step to calibrating parame-
ters. In other words, no calibration process can function adequately if an inaccurate
or invalid model is selected. Consequently, care should be taken in identifying an
appropriate model, before the calibration process is considered. In this chapter,
simulated experiments are completed to serve as a surrogate for physical test data.
As such, the model selection is inherently prescribed, which allows for a focus on
issues regarding non-deterministic calibration (and not model selection).

4 Calibration

In this section, an overview of the general methods for CP material model calibration
is provided in the context of local and global, measured and computed, data.
Subsequently, in Sect. 6, issues of uniqueness and precision are illustrated through
application of several calibration methods, using a simulated experiment.

4.1 General Process

The core of model calibration is the inference of model parameters, θ , adjusted to
match some set of measured data. The inference is centered on the comparison of
the predicted model response and measured response, where the model is subjected
to some measured loading (see the flowchart in Fig. 3). To put this in context of the
uncertainty quantification framework, which is described in Sect. 5, the comparison
is used in the calculation of the likelihood of a set of calibration parameters.

The measurements, model, and comparison parts of the process are where
customization for a particular calibration method are made. The experimental
measurements, which provide loading and geometry input to the model, can be
global, local, or a combination. Similarly, the model itself can be global, local, or
a combination in its scale. The comparison of the model and measured response
can be either deterministic or non-deterministic in its formulation. In this section,
a discussion of available experimental measurement and modeling approaches are
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Fig. 3 Model calibration flowchart

discussed in the context of global and local variations. Subsequently, in Sect. 5, a
method for non-deterministic comparison is presented.

Model choice plays an important role in the ability to generate accurate and
precise calibrations. The inability of a model to fit a given data set during calibration
suggests that the model is missing necessary physics and will exhibit poor predictive
performance. This is known as model discrepancy and is discussed in detail in [22].
It is the responsibility of the analyst to check for model discrepancy as part of the
calibration process.

In the context of CP calibration, three general categories of models can be used.
The categories are differentiated by the types of data that are used for both the input
loading and output response. Global and local calibration methods are differentiated
by their use of global and local data, respectively (see Sect. 2). Global-local methods
use a combination of global and local data.

4.2 Global Methods

In the case of isotropic materials, calibrating material parameters is readily achieved
using a uniaxial, one-dimensional, stress-strain curve. However, because of the
anisotropic nature of CP models, the resulting yield surface being evolved during
computational simulation is six-dimensional. In the case of anisotropic material
models, as is the focus here, the reduction of a six-dimensional yield surface to a
measured scalar (one-dimensional) surface can be problematic. For example, Fig. 4
illustrates global uniaxial tension stress-strain behavior measured on a pure Al
coupon. Also shown are the computed stress-strain results, using a Taylor model,
from two disparate sets of CP parameters; see Table 1. Note, the parameters in
Table 1 are chosen to illustrate this issue of uniqueness, where ω is permitted to vary
(unlike other calibration exercises in this chapter). Upon studying the goodness of fit
produced by either set of CP parameters, it would be reasonable to accept either set
as accurately reproducing the measured data because both produce a nearly identical
aggregate response. Consequently, more advanced methods should be considered
for calibration of CP parameters to resolve this issue of uniqueness.
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Fig. 4 Multiple CP parameters sets with nearly identical one-dimensional stress-strain response

Table 1 Two disparate sets
of CP model parameter
definitions. These sets were
used to produce the global
stress-strain curves in Fig. 4

Parameter (units) Set 1 Set 2

m 0.037 0.121

go (MPa) 19.477 30.460

Go (MPa) 292.28 365.89

ω 2.682 × 10−4 3.343 × 10−4

g∗
s (MPa) 47.912 419.168

Mean absolute error (MPa) 0.19 0.35

Nonetheless, global methods are commonly used for CP model calibration. It
is largely the practicality of these methods that make them attractive: less sample
preparation and specialized equipment is required to complete the calibrations.
In the most typical form, calibration is performed based on the stress-strain
relationship of a polycrystalline coupon in uniaxial tension. In cases where only bulk
behavior is of interest, the lack of uniqueness poses no real issue. However, when
local, microstructurally controlled quantities are of interest, the lack of uniqueness
becomes more problematic. The fundamental problem is that the local response may
be very different between predictions made with two sets of CP parameters despite
the fact that their global response is similar.

4.2.1 Data Flow

In a global calibration method, both the measured and computed data are the
result of a homogenization; see Fig. 5. Typically, the experimental measurement is
force and displacement over the gauge length for a uniaxial mechanical test. This
provides a one-dimensional slice of the larger yield surface. To inform the CP model,
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Fig. 5 Example of a global calibration based on a Taylor model

crystallographic texture must also be measured, for example, using EBSD. The
measured force or displacement (or stress and strain) is used, along with the current
iterate for material parameters as input to the computational model, discussed in
Sect. 4.2.2. The output of the model must produce data that is directly comparable
to the measured data to enable the computation of difference and drive updates to
iterated material parameters.

4.2.2 Computational Model

In global calibration methods, two approaches can be used. First, simplified (not
explicitly representing specific grain structure or compatibility) models, like that
developed by Taylor [41], are often used because of their relative simplicity
and computational efficiency. In this case, the equations presented in Sect. 3 are
integrated using the measured strains and texture as input. Orientations are then
sampled for each material point to be modeled with the measured strain applied to
each sampled orientation. After integrating the constitutive equations, to evolve slip
rates and resistance to slip, stresses are computed for each material point. Those
stresses are then averaged to compute an homogenized, global scalar value to be
compared to the measured stress-strain curve.

Second, a higher-fidelity model of the polycrystalline aggregate can be gen-
erated using finite element (FE) models. In this approach, either a statistically
representative volume can be instantiated by sampling measured microstructure
morphology distributions, or a replicated volume can be produced by measuring
the specific microstructure of the coupon. The advantage of these models, over
the Taylor model, is that the complex interactions among grains in the polycrystal
is inherently captured. The disadvantage is that these models are computationally
more demanding. Consequently, calibration will take longer, will require additional
computational resources, and limits the number of grains that can be modeled. Upon
an iterative update to the CP material parameters being calibrated, the global forces
and displacements are post-processed from reactions at the boundary for comparison
with measured data.

Taylor approximations and FE models represent bounding scenarios between
ease of use (Taylor) and high fidelity (FE). However, approaches such as the
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visco-plastic self-consistent (VPSC) model [23] can provide accurate results by
accounting for the effect of grain shape while maintaining a tractable computational
effort. Additionally, while not exercised in this chapter, it is important to note that
stress-strain curves could be extracted from a variety of directions with respect to
the bulk material texture. This additional data would serve to improve the global
calibration approach.

4.3 Global-Local Methods

Like purely global methods, hybrid global-local methods use homogenized stress
as a target for the calibration method. A major difference, and improvement, comes
from the acquiring and integration of full-field displacement or strain data from
DIC. This additional full-field data fundamentally changes the numerical aspects
of the calibration. Instead of fitting a relatively simple (approximately a second-
order polynomial) global stress-strain curve using many (often greater than 5) CP
parameters, the DIC dataset helps alleviate the issue of uniqueness that plagues
global methods. Because of this, global-local methods are an improvement over
global methods.

4.3.1 Data Flow

In a global-local calibration method, the measured global force is combined with
local DIC data; see Fig. 6. Consequently, compared to the standard global methods,
global-local methods require additional DIC hardware and software to acquire and
process the acquired images. To inform the CP model, it is ideal to measure the
particular microstructure throughout the test coupon. Most commonly, this data
is acquired before mechanical testing using EBSD. While acquiring EBSD data
provides data beneficial to the calibration process, it is incomplete in the sense that
only surface microstructure is measured, leaving uncertainty about the underlying
microstructure. This not only means that subsurface grain orientations are unknown
but further means that subsurface defects could also influence the acquired surface
strain data. While volumetric methods for measuring microstructure are possible,
their availability is currently lacking in general common usage and less commonly
used for calibration.

4.3.2 Computational Model

Because the DIC data acquired in this method is local, local values for displacement
or strain must be computed using a FE model. To most closely match the acquired
DIC data, the FE model should be constrained on its boundaries with measured DIC
displacement data within a region of interest (ROI). Rokoš et al. [32] have recently
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Fig. 6 Example of a global-local calibration based on a finite element model

studied the high sensitivity of calibrated CP parameters on applied boundary
conditions and investigated methods to mitigate this source of noise. The FE model
should also be defined to replicate the measured grains and their orientations.
Upon simulation of the FE model, the computed global stress can be homogenized
and compared in the same manner as global methods. Additionally, the local
displacement or strain data should also be compared and requires the spatial
alignment of the measured and computed displacement or strain data. Alignment
of multiple data sets in this context is typically done using fiducial markers as
discussed in Lim et al. [25] and Chen et al. [9]. The relative error is typically defined
mathematically as a weighted summation of the global and local components.

4.4 Local Methods

Purely local methods are characterized by utilization of local DIC data and local
stress data. These methods are somewhat specific to calibrating CP models for
crystalline structures in that HREBSD is used to compute local stress; recall
Sect. 2.2.2. This improves upon both previously discussed methods in that no global
homogenization of mechanical behavior is required. Also, since local stresses and
strains are acquired coincidentally, there is no need to generate a FE model to
compute homogenized stress. The main disadvantage of the purely local approach is
that acquiring and processing HREBSD data is time-consuming, which means that
the test must be periodically paused for relatively long periods to acquire the data,
which can have implications for rate-dependent materials.

4.4.1 Data Flow

The local calibration method requires that the mechanical test be paused periodically
to acquire and process HREBSD and compute local stress at various microstructure
locations; see Fig. 7. At the same time, DIC data is acquired to provide local strain
data. The DIC data is used as input to the CP model, where each local strain tensor
is used to drive deformation. The CP model is then used to compute stress at
each coincident point. Those computed stress values are compared directly with
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Fig. 7 Example of a local calibration based on a direct use of a CP model

the local stress values acquired by HREBSD. In this process, the CP model must
be constrained to follow the same local strain and strain rate as the test. This way,
there is no discrepancy in the history between acquired and computed data. Lastly,
because acquiring HREBSD data is relatively time-consuming, it is practical to
repeat this measurement only several times during loading. The increment in time
between these measurements will likely be large relative to the numerical integration
time stepping required by the CP model. However, the CP model need not increment
in one step to times where DIC data was acquired, but may instead subdivide that
increment into sufficiently small time steps to achieve convergence.

4.4.2 Computational Model

Since no FE model is required for the local method, there is also no need to
extract boundary conditions from DIC for application to the FE model, and the
previously discussed issues regarding sensitivity of calibrated CP parameters to
boundary conditions in the global and global-local methods are precluded. Instead,
each material point is completely defined, in terms of deformation gradient and
stress, as decoupled material tests. Because these material points exist throughout a
heterogeneous stress-strain field, each of these decoupled material behavior datasets
is under different loading scenarios, with respect to their local crystallography. In
effect, this is equivalent to running many mechanical tests and measuring the stress-
strain response.

5 Uncertainty Quantification Model for Calibration

Model calibration in the presence of uncertainty requires a non-deterministic
approach to parameter estimation. For cases where measurement errors, εi , are unbi-
ased, independent, and identically distributed (iid), the statistical model describing
the relationship between measurements, model, and errors can be defined as:

Yi =Mi (�)+ εi, (11)
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for i = 1, . . . ,M , where Yi , �, and εi are random variables representing
the measurements, model parameters, and measurement errors, respectively. In
the context of the CP model calibration herein, � = [g0,m,G0, g

∗
s ] and the

measurements are local or global observations, as discussed in previous sections.
M is the total number of measurements available, and Mi (�) denotes the model
response corresponding to a time and location, represented by i, at which the
measurements were obtained.

The goal of model calibration is to solve the inverse problem posed by Eq. 11;
that is, determine the probability distribution of the model parameters given a set
of measurements. Formally, this involves determining the posterior density, π(θ |y),
where y and θ are realizations of the random variables Y and�, respectively. Using
Bayes’ theorem, the posterior density can be expressed as:

π(θ |y) = π(y|θ)π(θ)
π(y)

= π(y|θ)π(θ)∫
Rp
π(y|θ)π(θ)dθ . (12)

The numerator of Eq. 12 is a multiplication of two densities, the likelihood
function, π(y|θ), and the prior density, π(θ). The latter represents any a priori
knowledge regarding the parameters, �. The prior density is assumed to be known
and is often derived from expert knowledge or previous experiments. If unknown, a
noninformative prior can be used such that the prior is an improper uniform density
over the known parameter support; e.g., a parameter known to be positive would be
distributed uniformly over the space bounded by zero and infinity.

The likelihood function is dependent on assumptions about the errors in Eq. 11.
A common assumption is that errors are iid and εi ∼ N(0, σ 2) where the variance,
σ 2, is fixed. In this case, the likelihood function becomes:

π(y|θ) = 1

(2πσ 2)M/2
exp

(
− 1

2σ 2

M∑

i=1

[
yi −Mi (θ)

]2
)
, (13)

which is a function of the sum of squared errors between the model and the
measurements. Therefore, both the prior density and the likelihood function can
be evaluated at any given point in the parameter space.

The denominator, on the other hand, is more complex as it involves integration
over the entire parameter space, with θ ∈ R

p and p denoting the dimensionality of
θ . Computing this denominator and, hence, the posterior density can be challenging
if not intractable, especially as p increases. While classical quadrature can be used
in some cases, an alternative is to construct a Markov chain through the parameter
space that has a stationary distribution equal to the posterior density. This approach
is called Markov chain Monte Carlo (MCMC) and was chosen in this work to obtain
an approximation of the posterior density, π(θ |y).

A detailed explanation of MCMC is beyond the scope of this section, but
interested readers are referred to [21, 38] for more information on implementation.
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In short, MCMC avoids computing the denominator of Eq. 12 and instead utilizes
the proportionality:

π(θ |y) ∝ π(y|θ)π(θ), (14)

which can be computed at any point θ ∈ R
p. An iterative sampling procedure is

implemented to form the Markov chain. Since realizations of the chain are samples
of the posterior by definition, a sample-based approximation of the posterior
density can be obtained. As with standard Monte Carlo sampling, this sample-based
estimate of the posterior density converges as the number of samples in the chain,
N → ∞. In practice, N << ∞, and thus MCMC yields an approximation of the
posterior density.

A multitude of algorithms exist for forming this Markov chain. In general, they
involve a proposal distribution, J (θ∗|θk−1), that depends only on the previous
sample in the chain, θk−1. A common choice is J (θ∗|θk−1) = N(θk−1, V ), a
normal distribution centered at the previous sample with some covariance, V . The
candidate sample, θ∗, is either accepted or rejected based on the value of the
acceptance ratio:

A(θ∗, θk−1) = π(θ∗|y)
π(θk−1|y) = π(y|θ∗)π(θ∗)

π(y|θk−1)π(θk−1)
. (15)

A new sample yieldingA(θ∗, θk−1) > 1 is always accepted into the chain as it has
a high posterior probability than the previous sample. Accepting a sample implies
θk = θ∗. If not, the new sample is accepted with probabilityA(θ∗, θk−1), meaning
that the sample is more likely to be accepted the closer π(θ∗|y) is to π(θk−1|y). If
rejected, θk = θk−1. This process is iterated until chain convergence.1

The dependence of J (·) on θk−1 means MCMC algorithms require initialization.
In this work, a least squares optimization was conducted to deterministically fit the
model parameters to available data and generate an initial guess in a region of high
posterior probability. This method accelerates chain convergence by reducing the
time spent searching for this region of high probability by a random walk over the
parameter space. Adaptive tuning of the proposal covariance V is typically required
during the initial stage of chain development as well. The resulting, non-stationary
period of searching and tuning is referred to as the burn-in period. The end of the
burn-in is defined by the point at which the Markov chain reaches a stationary
condition. By definition, samples obtained from the burn-in period are not drawn
from the targeted posterior distribution. In practice, an initial percentage of the chain
is attributed to burn-in and discarded.

1Diagnosing chain convergence can be challenging, and readers are referred to [6, 13] for more
information.
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Fig. 8 Flowchart of the MCMC-based model calibration

A flowchart of the calibration process is shown in Fig. 8. Upon completion of
MCMC sampling, approximations of� are available. If the variance in the assumed
measurement error distribution is unknown, it can be included in the parameter
vector and estimated; e.g., � = [g0,m,G0, g

∗
s , σ

2]. The end result is a non-
deterministic calibration of the CP model as well as an estimate of measurement
noise. Then, according to Eq. 11, samples drawn from the joint posterior parameter
density can be fed through the model to form a non-deterministic prediction of a
given quantity of interest via Monte Carlo simulation. Examples of a quantity of
interest in the context of CP model calibration might be mechanical response at a
larger scale or under new boundary conditions.

6 Demonstration Using Simulated Experiments

A numerical experiment was performed in order to generate a synthetic dataset on
which a calibration can be performed. An advantage to a numerical experiment
and synthetic data is that the true values of the parameters will be known. The
proceeding calibration demonstrations can thus be judged relative to the known
values.

A coarse-grain microstructure model representing an aluminum oligocrystal
was created using DREAM.3D [14], an open-source microstructure modeling and
analysis package. Zhao et al. [47] observed that a significant portion of grain
boundaries in an oligocrystal sample remained perpendicular to the surface of the
sample, thereby maintaining a nearly columnar shape. For simplicity, an idealized
perfectly columnar grain structure is considered in the current study, thereby
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Fig. 9 (a) Front view of the
2.5D microstructure model
used in the current work.
Each unique color represents
an individual grain. (b) {001}
pole figure showing the
overall orientation
distribution of all the grains
in the polycrystal model. (c)
{111} pole figure showing
the overall orientation
distribution of all the grains
in the polycrystal model

resulting in the generation of a 2.5D microstructure. The columnar grain assumption
serves to reduce a source of uncertainty that arises due to the through-thickness
variation in grain structure [30, 42]. Based on the observations of Zhao et al. [47], the
texture of the microstructure was assumed to be random, and an average grain size
of 3.5 mm was used in creating the microstructure model. A 2.5D microstructure
model of an aluminum oligocrystal (shown in Fig. 9a) was used in the current
study. Figure 9b, c are the {001} and {111} pole figures, respectively, showing the
orientations assigned to the 51 grains in the microstructure model. The dimensions
of the microstructure model shown in Fig. 9a are 200 × 800 × 20 voxels, with each
voxel having a resolution of 70 μm.

To prepare the geometry for finite element simulation, the “quick mesh” filter in
DREAM.3D is applied to convert the grid geometry of the voxelated microstructure
to a triangle geometry by inserting a pair of triangles on the face of each voxel or
cell. Following the “quick mesh” filter, the “Laplacian smoothing” filter is applied to
smooth out the stair stepped grain boundary profiles. The smoothed surface mesh of
each grain is then output to a binary stereolithography file. Surface meshes of all the
grains were input into Gmsh [12] to generate a volume mesh of the microstructure.
The finite element volume mesh of the microstructure model was discretized into
5.837 million quadratic tetrahedral elements and contained 8.509 million nodes. The
volume mesh is then input into the finite element code, ScIFEi [43], to carry out the
computationally intensive CP simulations to solve for the heterogeneous stress and
strain state within the microstructure.
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Fig. 10 (a) Front view of the microstructure domain showing the boundary conditions on +X, +Y,
−X, and −Y faces. (b) Side view of the microstructure domain showing the boundary conditions
on the +Z and −Z faces

The microstructure model is subjected to a 1% global strain by prescribing
displacement-controlled loading conditions along with the other boundary condi-
tions as depicted schematically in Fig. 10. Fully fixed constraints were applied on
the bottom (−Y) face, whereas the top (+Y) face, on which the displacement was
prescribed, was constrained from any displacements in the X- and Z-directions. The
remaining four faces (+X, −X, +Z, and −Z) of the cuboidal microstructure domain
were set to deform freely. The simulation was run in parallel on 400 processors using
NASA Langley’s K cluster for about 38 h.

The complex heterogeneous stress and strain fields developed within the
microstructure are computed using a built-in anisotropic elasticity and CP
framework in ScIFEi, Sect. 3.1. The grains were assigned anisotropic elastic
properties, through three cubic elastic constants C11,C12, and C44, which were
assigned the values 101.9, 58.9, and 26.3 GPa, respectively. Rate-dependent and
length scale-independent CP kinematics (flow and hardening laws), discussed in
Sect. 3, were assigned to the grains. The values of the calibration constants used for
the CP model were chosen in such a way that they are in the range of the values
assigned for corresponding parameters in CP models of aluminum alloys [4, 47],
but do not pertain to any specific study.

As discussed in Sect. 3, the six fitting parameters present in the CP equations
shown in Eq. 6 through Eq. 10 include go, ω, Go, γ̇o, g∗

s , and m. The values of the
six fitting parameters that serve as the target for calibration studies are shown in
Table 2. It must be noted that since the non-deterministic local calibration model
is insensitive to the values of the fitting parameters used, the chosen values will
not influence the output of the calibration model. In order to mimic the lower yield
strength of oligocrystal alloy, go andGo were assigned lower values compared to the
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Table 2 Fitting parameters
used in the CP model

Parameter (units) Value

m 0.05

go (MPa) 130.0

γ̇ ( 1
s

) 1.0

Go (MPa) 100.41

g∗
s (MPa) 113.91

ω 0.001

Fig. 11 (a) Strain map on the
free surface of the
microstructure model
showing the strain component
in the loading direction
obtained at a global strain of
1%. (b) Stress map on the
free surface of the
microstructure model
showing stress component in
the loading direction obtained
at a global strain of 1%

relatively finer grain material, Al 7075-T651 [4]. The lower go and Go signify the
lower yield strength of the aluminum oligocrystal, which is the material of choice
in the current study.

The heterogeneous distributions of stress and strain components in the loading
direction, obtained at 1% global strain, are shown in Fig. 11. The stress and strain
data obtained from the free surface of the microstructure model serves as the
simulated DIC data.

In all of the proceeding calibration demonstrations, model inputs that are
derived from the simulated experiments (i.e., geometry and loading) are noise-free.
Measurement noise has been lumped into the measurement fields Yi . For example,
the stress-strain curve used in the global calibration has Gaussian noise added to
the homogenized stress with a standard deviation of 0.5% of the maximum stress,
Fig. 12. The strain values and the grain orientations for that case are noise-free and
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Fig. 12 Stress-strain curve from simulated experiment, including added measurement noise

taken directly from the simulation. Gaussian noise with standard deviations of 0.07
microns and 5 MPa are added to each component of the simulated experiment’s
DIC displacement and HREBSD stress, respectively, when these are used as data
for model calibration. Note that the stress fields in simulated HREBSD have more
added noise than the homogenized stress (standard deviation of 5 MPa compared to
about 1.2 MPa, respectively) to reflect higher measurement error in the local method.

6.1 Using Global Calibration

The demonstration of non-deterministic global calibration was performed using
the Taylor model (see Sect. 4.2.2) and the uncertainty quantification framework
described in Sect. 5. In this case, the measurements, Yi , are the homogenized
stresses from the simulated experiment. The model responseMi (�) is the homog-
enized stresses of the Taylor model.

Before approximating the posterior parameter distribution with MCMC sam-
pling, a deterministic optimization was performed to initialize the Markov chain.
A Broyden-Fletcher-Goldfarb-Shanno (BFGS) [27] optimization was chosen with
the initial guesses of the parameters at 105% of their true values. The open-
source python package PyMC [29] was used to perform MCMC sampling with
the delayed rejection adaptive Metropolis (DRAM) [16] step method. In total,
25,000 samples were generated, with the first 10,000 samples discarded as burn-
in. The covariance of the proposal distribution was adapted every 1,000 accepted
samples to accelerate convergence of the Markov chain to a stationary condition.
The calibration took about 82 h on a single core of a 3.50 GHz Intel Xeon E5-1650
v3 CPU, corresponding to about 12 s per sample, although it should be noted that
up to two samples can be evaluated for each new addition to the Markov chain due
to the delayed rejection aspect of the DRAM algorithm.
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Fig. 13 The result of global calibration. The marginal probability density functions of the
calibration parameters, including the estimate of the variance of the error. The triangle denotes
the true values of each calibration parameter

The resulting marginal probability density functions of � are illustrated in
Fig. 13. In general and with respect to the initial bounds, the distributions of the
parameters are wide, corresponding to high uncertainty in the parameter values.
Also, all of the distributions of the calibrated parameters are biased away from the
true values (black triangles). This bias has been linked to model discrepancy [7],
which generally leads to a violation of assumptions made in Sect. 5. The overestima-
tion of the measurement noise variance supports this and points toward an inability
of the Taylor model to accurately reproduce the measurements. Additionally, the
lack of uniqueness of the calibration parameters and their corresponding high degree
of correlation also plays a part in the large uncertainty in the parameters.

The marginal probability density function for g∗
s is relatively flat and spans

the complete range specified by the bounds of the uninformative (uniform) prior.
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Essentially, the uncertainty in g∗
s is similar to the prior, which indicates that the test

used in the calibration did not provide significant insight on g∗
s . Because g∗

s is related
to saturation hardness, the above might indicate that the applied strain loading of
the experiment was too small to see saturation; repeating the test to higher strains
might help identify g∗

s . It is worth noting that, if a deterministic calibration was
performed, a single value of g∗

s would result, without knowing that the parameter
was essentially unidentifiable by the test. Apart from gathering additional data to
aid identification, a more informative prior could have been used to regularize
the inverse problem. However, this was beyond the scope of this work, and the
uncertainty in the calibrated g∗

s was accepted as uniform over the given bounds.

6.2 Using Global-Local Calibration

The global-local calibration was set up using a finite element model with the same
geometry as the simulated experiment. In order to remove the effect of erroneous
boundary conditions, the same boundary conditions were applied as the simulated
experiment.

The model was coarsened to decrease the model evaluation time. The coarse
mesh contained 25,500 quadratic tetrahedral elements and 45,700 nodes. The time
discretization of the model was also decreased by a factor of 2 compared to the
simulated experiment. Model evaluation of the coarsened finite element model took
approximately 9 min on 40 cores of a Dual socket 20 core 2.40 GHz Intel Gold
6148 Skylake Processor. Because a non-deterministic calibration akin to the one in
Sect. 6.1 would take at least 156 days, a deterministic optimization was pursued
instead. This means that a single deterministic set of calibration parameters is
obtained, without an idea of how certain that calibration is.

The error metric for the optimization was the weighted sum of the error norms of
the global (homogenized stress) and local (displacement) fields. The weighting was
performed in the fashion of [26] which weights the errors at each scale based on the
resolution of the measurement technique. In this case, the magnitude of the added
measurement noise was used. After normalization of the two fields, equal weight
was placed on global and local measurements.

The optimization was performed via Nelder-Mead simplex method [11] with the
initial guesses of the parameters at 105% of their true values. The optimization
took about 50 h to complete. The resulting optimal parameters are shown in
Table 3. Example comparisons of the global and local response from the simulated
experiment and optimal parameters are shown in Figs. 14 and 15. The global
response is close to the simulated data with a slight under prediction. Presumably
the bias seen in the global response was compensated by a more accurate local field,
i.e., a balance of the global and local errors would be found.

From Figs. 14 and 15, it can be seen that overall the calibration was somewhat
successful in matching the global and local behavior of the model; however, it is
difficult to place confidence in the calibration without a measure of uncertainty.
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Table 3 Results of
global-local deterministic
calibration

Optimized True Relative

Parameter value value error

m 0.04837 0.05 3.2%

g∗
s 350.1 113.9 207%

g0 128.1 130.0 1.4%

G0 41.55 100.4 58%
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Fig. 14 Global response comparison of the global-local optimization using finite element model
updating. For these data, the mean absolute error is 1.32 MPa

Furthermore, there is no guarantee that the optimized values represent global
optimal values; it is possible they only correspond to a local optimum. No insight
on g∗

s is gained besides a single optimum value.

6.3 Using Local Calibration

The demonstration of non-deterministic local calibration was performed by directly
integrating the CP model given a local grain orientation from EBSD and local
deformation gradients stemming from simulated DIC. In this case, the measure-
ments, Yi , are the deviatoric stresses fields from the simulated experiment (i.e.,
simulated HREBSD). The model response, Mi (�), is the deviatoric part of the
stress resulting from the CP model integration. It is worth noting that in this
demonstration, the full deformation gradient is imposed on the CP model, which
assumes unrealistically that all components of strain can be identified with DIC.
With addition of a plane-stress constraint, the result is not expected to be altered
significantly by the restriction of the DIC information to the planar strains.

The local calibration was again non-deterministic. As in the global calibration,
a deterministic optimization was performed to initialize the Markov chain prior to
MCMC sampling. The same optimization and MCMC options were used for this
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Fig. 15 Local response comparisons for the global-local optimization using finite element model
updating. Displacement fields are shown at the point locations of the simulated DIC (reference)

local calibration as before. This includes the generation of 25,000 samples with a
10,000 sample burn-in. The calibration took about 116 h to run on a single core of
a 3.50 GHz Intel Xeon E5-1650 v3 CPU, corresponding to about 17 s per sample.
Again, the effect of rejection on this per-sample estimate should be noted.

The resulting marginal probability density functions of � are illustrated in
Fig. 16. The distributions are now much tighter when compared to the global
posterior. More importantly, these distributions now encompass the true values. The
local calibration is better able to identify the parameters for two reasons: first, an
increased amount of data acquired and second, the CP model is directly probed
rather than utilizing homogenized values, which diminishes the model discrepancy.
As in the local calibration, the probability density function of g∗

s looks similar to the
uniform prior, illustrating that the simulated experiment was not very informative
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Fig. 16 The results of local calibration. The marginal probability density functions of the
calibration parameters, including the estimate of the variance of the error. The triangle denotes
the true values of each calibration parameter

for this parameter. The σ 2 probability density functions in Fig. 16 should not be
compared to those shown in Fig. 13 because they correspond to noise estimates of
different data sets (i.e., noise in homogenized stress vs. noise in HREBSD stress).

7 Summary

The objective of this chapter is to motivate the use of CP models in microstructure-
dependent engineering problems and to provide a comprehensive study of calibrat-
ing CP model parameters. Historical perspective and background is provided for
understanding what methods have been published, in terms of both generalized
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parameter identification methods and specific methods studied for use with CP
models. A review of the literature illustrates that the methods for CP parameter
calibration studied to date have largely focused on global-local methods, where
a combination of global (homogenized) stresses are combined with local DIC
displacements or strain to form the comparison between measured and computed
data.

Various methods for acquiring and post-processing data are also overviewed.
Global data, as would come directly from test-stand data or attached gauges, are
relatively cheap and easy to apply. Consequently, especially when many tests are
being performed, acquiring global data may be the only affordable method. Acquir-
ing local DIC displacement and strain data provides a significant improvement on
the measured data set. But, this comes with a cost of additional equipment and
setup time. Additionally, application of this data in the global-local approach also
implies the need to acquire EBSD data before testing. Local stress data can also
be measured using HREBSD to analyze shifts in diffraction patterns. Combining
both local methods, DIC and HREBSD, is now possible with selectively transparent
stamping as the means to apply a DIC speckle pattern to the test specimen surface.
However, this method requires the highest level of infrastructure and time since both
HREBSD and DIC must be completed multiple times during testing.

Three classes of calibration methods can be used, differing by the type of
acquired data. While global data is the easiest and cheapest to acquire, CP model
parameter calibration using that data has fundamental issues. Namely, because many
sets of CP model parameters can reproduce nearly equivalent global stress-strain
curves, there should be no expectation that the calibrated parameters are unique.
Adding local DIC displacement data aids in the mitigation of this uniqueness
issue, but there are still local minima that exist in this case. Because of the
hybrid approach, with both global and local data, the computational model in this
case must represent the particular microstructure being tested. Running these full
simulations, for example, as a finite element model, is computationally intensive
and intractable for a non-deterministic approach. Additionally, this leads to the need
for assumptions or direct measurement of the microstructure underlying the surface
and high sensitivities to applied boundary conditions. Purely local data enables a
computationally tractable method for non-deterministic calibration. Furthermore,
this method precludes issues of generating a model of the microstructure aggregate,
does not incorporate boundary conditions, and helps resolve the issue of uniqueness.
However, as illustrated by the calibration of g∗

s , the model parameters cannot be
determined accurately without adequate data that has sensitivity to the parameter.

As complexity in acquiring data is added, the computational cost of the cali-
bration and issues surrounding uniqueness can be resolved. The combination of
the results from Fig. 13, Table 3, and Fig. 16 is shown in Fig. 17; it illustrates the
calibrated parameters from each approach. The two distributions represent the cali-
brated parameters for the purely global (red) and purely local (blue) methods. This
clarifies the relative uncertainty and inaccuracy in calibrating CP model parameters
using only global data. On the other hand, the purely local method results in very
little uncertainty and accurately reproduces the correct parameters (black triangles).
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Fig. 17 The results of all calibrations. The marginal probability density functions of the calibra-
tion parameters for the global calibration (red) and local calibration (blue). The upward-pointing
black triangle denotes the true values of each calibration parameter. The downward-pointing
magenta triangle denotes the deterministic result of global-local optimization

Because it is computationally intractable to run the global-local calibration because
of the costly computational model required, the single deterministic value for each
parameter is shown (downward-pointing magenta triangle). As mentioned above,
the inclusion of local DIC data improves significantly the calibrated result of a
purely global approach, but still suffers from inaccuracy because of local minima.

8 Outlook

The ability to make high-resolution and volumetric observations and measure-
ments of material microstructures is ever-increasing. The measurement techniques
described in this chapter were chosen to represent methods that could be employed
in a common materials research laboratory at the present. Consequently, data
acquisition methods were mainly focused on high-resolution surface measurements,
EBSD and DIC, along with load-displacement data acquired through mechanical
testing. However, volumetric acquisition methods, such as X-ray computed tomog-
raphy (CT) and high-energy X-ray diffraction (HEDM), are becoming increasingly
valuable and available.

With these improved data acquisition methods, the various global and local
calibration methods presented in this chapter may still be used. Utilizing only
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surfaced-based approaches includes uncertainties to the calibration process due to
unknown subsurface features, such as grain variations and defects. For example, a
subsurface defect can influence the local strain on the surface as measured by DIC.
Using only a surface-based approach, this would manifest as additional (inaccurate)
variation in the calibrated parameter distribution. However, if that same subsurface
feature was detected using X-ray CT and included in the computational model, a
more accurate calibrated parameter distribution would be expected. Consequently,
an important next step is to quantify the improvement in calibration that can be
expected with volumetric acquisition methods and weigh those against the added
costs and time associated with acquiring that data.
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Local Stress and Damage Response
of Polycrystal Materials to Light Shock
Loading Conditions via Soft
Scale-Coupling

C. A. Bronkhorst, P. W. Marcy, S. A. Vander Wiel, H. Cho, V. Livescu,
and G. T. Gray III

1 Introduction

Research in the past six decades has shown tremendous progress in the ability to
represent the process of ductile damage under dynamic loading conditions. Even
though good progress has been made, many challenges remain in effectively repre-
senting this complex physical process accurately, and without numerical artifacts.
Work discussed in this chapter is a current representation of developments which
have taken place over several years, beginning with the work of Johnson [31] and the
development of a constitutive model for shock loaded copper representing nonlinear
elasticity, plasticity, and evolution of local porosity. Johnson [31] recognized the
significance of the aggregate nature of polycrystalline metallic materials and used a
unit cell analysis of the elastic–plastic response of the material under rapidly loaded
conditions. Inertial effects were recognized as important but were not included
in the analysis of copper presented. The model was applied to problems of plate
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impact, explosively loaded material, and an expanding ring. Much later, this model
was also applied to the study of loading pulse duration in copper [33]. Addessio
and Johnson [1] adapted the work of Johnson [31, 32] by proposing a modified
Gurson [26]-type model, which also employed an overstress equation for the plastic
flow rule of the material. This equation introduces a length scale into the series of
equations and assists in regularizing the problem. This helps to alleviate issues of
numerical stability and severe mesh sensitivity. The authors also clearly recognized
the possibility that relying upon deformation rate sensitivity within the model would
not always solve the regularization issue, but that additional length scales (e.g.,
spatial gradients in physically based internal state variables) may be required in
general. A void nucleation model was not proposed, and the model was tested
against copper plate impact experiments. It was demonstrated that for the problems
examined, the use of the overstress model reduced the mesh sensitivity of the
simulated results. The model of Addessio and Johnson [1] was expanded upon
by Maudlin et al. [40] to include the effect of nonisotropic plastic flow. They
also included the ability to account for the anisotropic nature of the void as it
grows, but this capability is not exercised in the work presented here. Significant
advancements were made to the solution algorithm to improve the numerical
efficiency. This model was used on several dynamic loading boundary value
problems with success. The numerical algorithm initially developed in this work
was later published by Zuo and Rice [48]. Bronkhorst et al. [10] demonstrated the
limitations of such a model and general computational limitations for ductile dam-
age against differing shock loading conditions. Recently, Versino and Bronkhorst
[46] proposed a computational framework to facilitate material variability for rep-
resentation of porosity nucleation more accurately within a macroscale continuum
setting.

Material microstructure has long been known to play a key role in the process of
ductile damage where porosity is the dominant damage mechanism (e.g. [43, 47]).
Polycrystalline metallic materials at a local scale produce highly inhomogeneous
deformation fields upon mechanical loading (e.g. [8, 12]) and provide the conditions
for establishing a pore field. There remains tremendous potential to bring to bear
computational crystal plasticity tools to explore the physics of porosity-based
ductile damage in ways which are not approachable through experimental means
alone. This chapter has a focus on the ductile damage response of tantalum for
lightly loaded shock conditions. Tantalum is a body-centered cubic material whose
plastic deformation is dominated by the motion of screw dislocations. The natural
state of the screw dislocation within tantalum is not planar as in other cubic materials
but rather the core is split along additional planes [2, 3]. Recently a model for
representation of the deformation behavior of tantalum single crystals was proposed
[16] and will be employed to explore here the micromechanics of deformation
leading to the onset of porosity initiation in tantalum polycrystals.

The purpose of this chapter is to present the above discussion in the context of a
theoretical framework for models of porosity-based damage and failure. Numerical
results are presented in the context of experimental results presented by Gray et al.
[24]. This chapter begins by first presenting a simple macroscale ductile damage
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model for metallic materials and the representation of the abovementioned tantalum
on tantalum plate impact experiment. A single crystal model is then discussed for
representation of tantalum with non-Schmid effects. Numerical models of tantalum
are then presented, and load coupling with the macroscale model is described.
Numerical results of polycrystal calculations are then presented with an analysis
of the results in the context of relationship with shock loading conditions. Finally,
the results are discussed and concluding statements are offered.

2 Nomenclature

Standard direct notation is used throughout this paper. Second rank tensors are
denoted by boldface uppercase letters. Fourth rank tensors are denoted by under-
scored boldface uppercase letters. The following variables are used: I identity, F
deformation gradient, D stretch, T Cauchy stress, ρ density, and θ temperature. The
prime symbol A

′
indicates a deviatoric quantity. The inner product of two second

rank tensors A and B is defined by A·B = trace(ATB). The over-tilde Ã represents
the quantity A in the undamaged material.

3 Experimental Overview

The dynamic behavior of materials under shock loading conditions is commonly
studied with plate impact experiments. These are conceptually simple in that a
stationary circular disk (the target sample) is impacted by another circular disk
(the flyer) moving at high velocity. The flyer is accelerated through a gun barrel
by either compressed gas or in some cases gunpowder. The flyer is soft-mounted
on a sabot, which travels through the barrel. The primary diagnostic used in plate
impact experiments is the measurement of the velocity of the back of the target
sample subsequent to the impact of the two plates – free-surface velocity. Under
certain conditions, it is possible to recover the deformed sample for subsequent
metallographic analysis. Both of these sources of information are used in the present
work. Details of the plate impact experiment technique and focus on tantalum can
be found in Gray [19, 20], Gray and Vecchio [21], and Gray et al. [22, 23].

Here we focus on a single experiment where both the flyer plate material and
the sample plate material were fabricated from the same high-purity tantalum. The
details of the experiments and the conditions under which they were conducted can
be found in Gray et al. [24] and Bronkhorst et al. [10]. The flyer plate velocity was
249 m/s. The free-surface velocity trace for this experiment is given in Fig. 1. The
cross-sectional image of the recovered sample showing the porosity field is given in
Fig. 2. A higher magnification view of a region of the cross-sectioned sample which
displays early-stage coalescence behavior within the incipient spalled region of the
sample is given in Fig. 3. Although discussion of these details is outside the scope
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Fig. 1 Free-surface velocity
versus time trace for the
tantalum on tantalum plate
impact experiment considered
in this study
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Fig. 2 Cross-section image
of the soft-recovered tantalum
sample showing the field of
damage developed in the
sample. The dark regions are
voided areas

Fig. 3 Local-scale damage
field (dark regions are pores)
on the cross-sectional view of
the recovered sample showing
the beginning of the
coalescence process between
existing voids via localized
deformation regions
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of the current chapter, the results clearly indicate that pore locations are dominated
at grain boundaries within the high-purity tantalum material used in this study.

4 Macroscale Damage Modeling

The model presented here is in the long line of modified Gurson-Tvergaard-
Needleman [7, 26, 44]-type models for the representation of porosity-based ductile
damage. The model presented here has been adapted for application to shock
loading situations with high stress triaxiality conditions.

4.1 Damage Constitutive Model

The constitutive model used in this study is derived from the work of Addessio and
Johnson [1], Maudlin et al. [39, 40], Zou [49], and Bronkhorst et al. [10]. The model
is applied to tantalum plate impact loading as presented earlier and is summarized
here.

The Cauchy stress in the damaged state is given by

T = MT̃, (1)

where the stress in the undamaged material is T̃ and the general fourth rank isotropic
damage tensor is given by

M = (1 − φ) I, (2)

with the scalar internal state variable φ representing the isotropic state of porosity
at the material point used in this study. In general, the tensor M allows for the
anisotropic representation of damage evolution within the material. However, for
the present study, this dependence is assumed to remain isotropic given that pores
remain close to spherical. Time integration is performed in the unrotated frame
relative to the current configuration defined by the rotation R given by the polar
decomposition

F = RU = VR. (3)

The Cauchy stress time rate of change defined in the unrotated frame relative to
the current configuration is given by

Ṫ = ML̃′ (D′ − Dp′)+ M
(

JK̃s trDe − ρ̃

ρ
Γ̃T · Dp

)
I + ṀM

−1
T, (4)
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where L̃ is the fourth order elastic stiffness tensor, J = ρ̃0/ρ̃, K̃s is the isentropic
solid bulk modulus, Γ̃ is the Gruneisen coefficient and

P̃ = −1

3
trT̃. (5)

Equation (4) contains four terms defining the time evolution of Cauchy stress,
each with a specific physical significance. The first term is the contribution to the
evolution of the stress due to deviatoric elastic deformation. The second term is
due to the influence of mean volumetric elastic deformation in the material given
that finite elastic strains and substantial pressures must be accounted for. The third
term is due to the thermal expansion or contraction of the material through the
Gruneisen parameter and thermal energy produced via plastic work. The fourth and
final term is due to the evolution of stress due to the effects of damage evolution.
The deformation rate D is additively decomposed as

D = De + Dp = De +
(
Dd + Dp′) , (6)

where the plastic contribution (Dp) to the rate of deformation is separated into
spherical (Dd) and deviatoric (Dp’) components. The spherical component and the
contribution due to damage [1] is given by

φ̇ = (1 − φ) trDd . (7)

The plastic flow rule is given by

Dp = 1

τr

(
T − Tproj

)
. (8)

This overstress style approach uses a relaxation constant τ r, with the tensorial
quantity Tproj being the current Cauchy stress projected onto the plastic flow surface
given below in Eq. (10). Based upon Addessio and Johnson [1] and Maudlin et al.
[40], the approximate length scale implied by τ r is given by

l = τr√
ρ0

(
K + 4

3G
) , (9)

where K and G are the ambient condition solid bulk and shear moduli, respectively,
and l is the implied length scale represented by the overstress expression Eq. (8) for
equation regularization.

Therefore Eq. (8) allows for the possibility of states of stress external to the
flow surface. The porosity-modulated plastic flow surface employed here is that
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developed by Gurson [26] and extended by Addessio and Johnson [1] and Maudlin
[40] and given by

τ − σf
(
ε̇p, θ

)2 [
1 + q3φ

2 − 2q1φ cosh δ
]

= 0, (10)

where

τ = 1

2
T′ · αT′ (11)

is a quadratic relationship allowing for plastic anisotropy using the anisotropy tensor
α and σf

(
ε̇p, θ

)
is the rate and temperature sensitive scalar flow stress with

ε̇p =
√

2

3
Dp′ · Dp′, (12)

δ = −3q2P̃

2σs
. (13)

The quantities q1, q2, and q3 are material parameters, and the saturation flow
stress σ s is defined below (Eq. (26)).

The criterion for computational cell failure as a function of porosity and plastic
strain is a modified Hancock-Mackenzie [29] relationship and is defined as

F =
(
φ

φf

)2

+
(
εp

γf

)2

≥ 1, (14)

where εp = ∫ ε̇pdt , φf is the failure porosity and

γf = γ0 + γ1e
γ2
P̃
τ , (15)

where P is the tensile hydrostatic pressure and γ 0, γ 1, and γ 2 are material
parameters evaluated from notched bar tensile experiments.

Equation (14) represents combined effects of porosity and plastic deformation so
that when F reaches a value of 1.0, the material at that particular material point no
longer retains load bearding ability. We only consider monotonic states of damage;
recompaction of damaged regions is not considered here. A polynomial Mie-
Gruneisen equation of state is used for the volumetric component of compressive
states of stress as a function of density

P̃ =
(
K1β̃ +K2β̃

2 +K3β̃
3
) (

1 − Γ̃ β̃/2
)

+ Γ̃ Ẽs
(

1 + β̃
)
, (16)
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where

β̃ = ρ̃

ρ̃0
− 1, (17)

ρ = (1 − φ) ρ̃, (18)

Ẽs =
∫ (

σ ε̇ − P̃ tr
(
De + Dd

))
Jdt, (19)

σ =
√

3

2
T′ · T′. (20)

K1, K2, and K3 are coefficients.
The rate and temperature sensitivity of the plastic deformation response is

represented through the flow stress. The deformation of tantalum at rates observed
here has been shown to be well represented by several constitutive models [11,
12, 15, 38, 41] which are based upon the thermal activation kinetics developed
by Kocks et al. [36]. We employ here the isotropic mechanical threshold strength
(MTS) model, which has been well established for tantalum and is evolved from the
work of Follansbee and Kocks [18], Chen and Gray [15], and Maudlin et al. [39].
The MTS model is based on the concept of a superposition of resistances to the
glide of dislocations. Generally, they are grouped as athermal barriers (e.g., grain
boundaries) and thermally influenced barriers (e.g., Peierls stress – intrinsic lattice
resistance, forest dislocations, dislocation structure, solute atoms). The mechanical
threshold stress is the deformation resistance at 0 K. The flow stress used here is
the stress adjusted to current temperature and strain rate. The reader is referred to
Follansbee and Kocks [18] and Chen and Gray [15] for more details.

The relationship for the solid material flow stress is given by

σf
(
ε̇p, θ

) = σa + μ

μ0

(
Si
(
ε̇p, θ

)
σ̂i + Sε

(
ε̇p, θ

)
σ̂ε
)
, (21)

where σ a is the constant athermal resistance, σ̂i is the constant intrinsic lattice
resistance at 0 K, and σ̂ε is the resistance due to dislocation structure at 0 K,
which evolves with deformation. The relationship for shear modulus as a function
of temperature is given [45] as

μ = μ0 − D0

exp
(
θ0
θ

)
− 1

, (22)
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The rate and temperature kinetics are represented by the two premultiplying
terms

Si
(
ε̇p, θ

) =

⎛

⎜⎜⎝1 −
[

kθ

μb3g0i
ln

(
ε̇0i

ε̇p

)]1
/

qi

⎞

⎟⎟⎠

1
/

pi

, (23)

and

Sε
(
ε̇p, θ

) =

⎛

⎜⎜⎝1 −
[

kθ

μb3g0ε
ln

(
ε̇0ε

ε̇p

)]1
/

qε

⎞

⎟⎟⎠

1
/

pε

, (24)

and k is Boltzmann’s constant, b is the magnitude of the Burgers vector, g0 are
normalized activation energies, ε̇0 are reference strain rates, and p and q are
exponents which determine the shape of the energy barrier profile. Kocks et al. [36]
suggest that p ∈ [0, 1] and q ∈ [1, 2].

The resistance due to the evolution of the dislocation structure changes with
strain as

dσ̂ε

dεp
= h0

(
1 − σ̂ε

σ̂εs

)κ
, (25)

where the saturation stress as a function of rate and temperature is given by Kocks
[37]

σ̂εs = σ̂εs0
(
ε̇p

ε̇0εs

) kθ

μb3g0εs
. (26)

The saturation stress σ s, used in Eq. (13), is taken as the current value of the flow
stress given in Eq. (21), with the quantity σ̂ε replaced by its saturation value σ̂εs ,
given by Eq. (26). The local mechanical work done to the material changes the local
temperature by the following relationship

θ̇ = 1

ρCp

˙̃
Es, (27)

where Ẽs is the internal energy in the undamaged material (Eq. (19)) and Cp is the
specific heat at constant pressure. The material parameters for this model used in
the calculations presented here can be found in Bronkhorst et al. [10].
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4.2 Numerical Simulation Results

Simulations of the tantalum on tantalum plate impact experiment described above
were performed with the explicit finite element code EPIC-06 [30]. The two-
dimensional simulations assumed axi-symmetry and preserved the anisotropy of
the geometry. Since cross-sectional metallography of the recovered samples was
an integral part of this study, simulation of the full experimental geometry, with
radial momentum trapping rings [19], was necessary. The exact geometry of the
experimental impact and sample plates was replicated numerically. Frictionless
contact surfaces between each of the independent members of the assembly were
assumed and have generally been found to be an accurate assumption for these
types of loading conditions. The details of the simulation used here can be found in
Bronkhorst et al. [10]. The simulation result with a computational cell size of 50 μm
is used in our analysis here. The comparison between simulation and experiment is
shown in Fig. 4. The numerical results represent well the response of the material
through the region of interest here, which is up to the first pullback in the velocity
signal.

Using the numerical results shown in Fig. 4, we can derive an estimate of the
time in the simulation where the macroscale model indicates an appreciable increase
in porosity. The time indicated by the results is at a simulation time of 2.166 μs.
Since the experimental conditions are designed in a way such that the maximum
tensile stress will occur at the center of the sample, we can use that location in the
computational model to also derive the stress history within the material up to this
point in time. At the simulation time of 2.166 μs, the stress in the direction of shock

Fig. 4 Experimental (black)
and macroscale simulation
(red) free-surface velocity vs
time curves for the tantalum
on tantalum flyer plate
experiment. The time in the
profile where porosity growth
initiation in the macroscale
model simulations is
indicated. Note that zero time
for this plot is arbitrary
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Fig. 5 Stress profile derived
from the macroscale model
simulation of the tantalum on
tantalum flyer plate case up to
the point of porosity growth
initiation. The points
superposed on the curves
indicate the piece-wise linear
stress profile applied to the
local-scale statistical volume
element
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loading was computed to be 6.083 GPa, and in both principal directions transverse
to the shock direction the value of stress was 5.402 GPa. The computed stress-time
profile for this loading history at the center of the sample is given in Fig. 5.

5 Local-Scale Modeling

Using the results of the macroscale simulations of the plate impact experiment, we
now seek to probe the micromechanics of deformation within a series of polycrystal
calculations. The loading profiles given in Fig. 5 will be the applied stress boundary
conditions for the polycrystal models discussed later and represent the soft-scale
coupling procedure advocated herein. To enable this, we first discuss a single crystal
model for tantalum that has been developed to also represent the non-Schmid effects
in that material.

5.1 Single Crystal Model

The single crystal model used in this work is one, which has been developed over a
number of years and is cast in a large deformation framework. The formulation
outlined here is derived from prior work by Asaro and Rice [5], Acharya and
Beaudoin [6], Kothari and Anand [38], Busso [13], Busso and McClintock [14],
Kocks [37], Kalidindi et al. [34], Bronkhorst et al. [9], Anand [4], Bronkhorst et al.
[12], Gurtin [27], Gurtin et al. [28], and Cho et al. [16] (Fig. 6).
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Fig. 6 Schematic of the kinematical structure used in the current single crystal model

Within a finite deformation kinematical framework, the deformation gradient is
decomposed as

F = FeFp (28)

The second Piola-Kirchoff stress is given as a function of the energy conjugate
Green-Lagrange elastic strain and the thermal expansion term

T∗ = C
[
Ee − A (θ − θ0)

]
, (29)

where in relation to the Cauchy stress, T∗ in the deformed configuration

T∗ = (detFe
)
Fe

−1
TFe

−T
. (30)

The elastic stiffness tensor as a function of temperature θ is given as a linear
expression with temperature

Cijkl = Cijkl0 +mCijkl θ. (31)

The elastic Green-Lagrange strain is given by

Ee = 1

2

(
Fe

T
Fe − 1

)
. (32)
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The thermal expansion coefficient is given by

Aij = αδij . (33)

The plastic velocity gradient is given as a function of the plastic slip rates γ̇ α on
the α slip systems

Lp = ḞpFp
−1 =

∑

α

γ̇ αSα0 , (34)

where the Schmid tensor in the reference configuration via the slip direction mα0 and
slip plane normal nα0 is given by

Sα0 = mα0 ⊗ nα0 . (35)

The plastic slip rate is given by an expression which represents the thermally
activated motion of dislocations and also accounts for the non-Schmid behavior of
the screw dislocations in BCC materials

γ̇ α = γ̇0 exp

(
−ΔG
kBθ

〈
1 −

〈
ταeff

s̃αl

〉p〉q)
for τα > 0, otherwise γ̇ α = 0, (36)

where γ̇0 is the reference shear rate, �G is the activation energy, kB is Boltzmann’s
constant, p ∈ [0, 1], q ∈ [1, 2] are exponents which define the shape of the atomic
level energy barrier to dislocation motion, and τα = T∗ : Sα0 . The effective resolved
shear stress on slip system α is given by

ταeff = τ̃ α − s̃α, (37)

s̃α = sα μ
μ0
, s̃αl = sαl

μ

μ0
, (38)

where sα is the dislocation structure dependent resistance, sαl is the intrinsic lattice
resistance, and the temperature-dependent shear modulus μ is given by

μ (θ) =
√
C44 (θ)

C11 (θ)− C12 (θ)

2
, (39)

and μ0 is the shear modulus at 0 K. The resolved shear stress is now inclusive of
both the traditional Schmid tensor Sα0 and additional terms S̃α0 representing the non-
Schmid effects of the split core of screw dislocations in BCC materials

τ̃ α = T∗ :
(
Sα0 + S̃α0

)
, (40)



212 C. A. Bronkhorst et al.

Fig. 7 Spatial relationship of
the three vectors used in the
non-Schmid terms of Eqs. 41
and 42 for a single slip
system in tantalum

S̃α0 =
3∑

i=1

ωi S̃
i,α
0 , (41)

S̃1,α
0 = mα0 ⊗ n′α

0 , S̃
2,α
0 = (nα0 × mα0

)⊗ nα0 , S̃
3,α
0 = (n′α

0 × mα0
)⊗ n′α

0 . (42)

The quantities ωi in Eq. (41) are weighting factors for each of the three terms
defined in Eq. (42). The additional plane represented by normal vector n′α

0 is shown
schematically in Fig. 7.

Within BCC materials in general, there are three different close-packed planes
{110}, {112}, and {123} with the common 〈111〉 direction. In keeping with observa-
tions made by a number of authors [12, 38, 39, 42], we will restrict ourselves to the
{110} and {111} planes in our single crystal model for BCC materials. Values for all
material parameters and slip systems used for this study can be found in Cho et al.
[16].

5.2 Polycrystal Numerical Results

We employ here 10 statistical volume elements that were constructed based upon
the tools and methodology reported by Knezevic et al. [35]. The tantalum mate-
rial microstructure was characterized by electron-backscatter diffraction (EBSD)
metallography of the three principal plate directions. These EBSD data sets were
then used within the open-source code Dream.3D [25] to construct statistically
equivalent 3D numerical microstructure cubes with between 65 and 100 grains
represented within each volume. The methodology discussed in Knezevic et al.
[35] uses STL files produced by Dream.3D [17] and representing each grain
to construct tetrahedral mesh tessellations of each grain and allows for grain
boundary conforming representation. This is important in our study of damage in
polycrystalline materials. A cross-sectional example of one of the 10 such numerical
realizations used for the polycrystal simulations is given in Fig. 8. Each of the 10
polycrystal realizations was loaded by applying the stress profile computed using the
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Fig. 8 Cross-sectional image
of one of the polycrystal
numerical realizations used
for the simulations in this
work. This particular
realization contained a total
of 70 grains

macroscale damage model representing the plate impact experiment in the previous
section (Fig. 5) and applied to the primary faces of each cube. These results are
presented below.

Combining the results from all 10 numerical realization calculations, the pressure
distribution at all computational points is given in Fig. 9 for the cases where non-
Schmid effects are accounted for. This plot compares results between calculations
without non-Schmid effects on both {110} and {112} plane slip systems and
calculation with the non-Schmid effects applied to the {110} without slip on
the {112} plane systems. In the same way, vonMises stress results are shown in
Fig. 10, giving the same two comparisons. These results are at the maximum tensile
stress point in the loading profile given in Fig. 5. These results then account for
the deformation history for that loading profile. The density estimates (smoothed
histograms) given in both Figs. 9 and 10 are derived from a combined total of
approximately 8.5 million computational (Gauss) points.

Two individual grains within one of the 10 realizations are examined in more
detail through the results presented in Figs. 11, 12, 13, and 14 and are shown for
calculations performed without the non-Schmid effect accounted for with slip on
{110} and {112} plane systems. The results in Figs. 11 and 12 show the magnitude
of vonMises stress versus distance from grain boundary surface and distance from
grain boundary triple line, respectively, for a single grain (grain 45). Each point in
these figures represents a single computational point. Figures 13 and 14 show the
same information for another grain in the simulation (grain 53). These results are
interesting in that they clearly demonstrate and quantify the influence of these two



214 C. A. Bronkhorst et al.

Fig. 9 Density estimates (smoothed histograms) of pressure at all computational points in the 10
statistical volume element polycrystal simulations at the conclusion of the loading profile given in
Fig. 5

structural features on the stress variability within the grain. These results suggest
that the variation of vonMises stress within the grain is much more heterogeneous
in the vicinity of the grain boundary with some locations about 40% higher than the
more stable mean value towards the grain center. The variability drop is more rapid
in the case of the grain boundary surface than for the grain boundary triple line. It
is also interesting to note that the converging vonMises stress magnitude is different
for the two grains. This magnitude is approximately 740 MPa for grain 45 and
approximately 800 MPa for the case of grain 53. This is likely due to neighborhood
effects within the polycrystal and also differences in crystallographic orientation
between the two grains. The results shown in Fig. 5 show that the loading is not
purely hydrostatic, but the stress magnitude in the shock direction is 10% higher
than the two other principal directions.
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Fig. 10 Density estimates of vonMises stress at all computational points in the 10 statistical
volume element polycrystal simulations at the conclusion of the loading profile given in Fig. 5

The experimental results shown earlier suggest that grain boundaries can provide
the conditions to enable pore formation for lightly loaded shock conditions.
Certainly, there is much which we do not yet understand about grain boundaries
which leads to grain boundaries being critical defects in some high purity materials.
The results given in Figs. 11, 12, 13, and 14 demonstrate high stress conditions at
some points on grain boundaries computed for the 10 statistical volume elements
used in this study. The results given in Figs. 15 and 16 feature the normal and shear
components of traction stresses on all grain boundaries within the 10 polycrystal
calculations as a function of angle of inclination of the grain boundary segment
relative to the shock direction. In both figures, angles of 0 and 180 are the points on
the curves where the grain boundary normal is parallel to the direction of shock. The
results in Fig. 15 show that the normal traction on grain boundaries perpendicular
to the shock direction display a high-tensile traction loading. Since the loading for
the shock conditions is overall hydrostatic, the results demonstrate that the normal
traction is tensile on all grain boundary surfaces. The shear traction component
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Fig. 11 vonMises stress
versus distance from grain
boundary surface within grain
45 in one of the 10
polycrystal realizations. Each
point represents the stress
conditions at a single
computational point
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Fig. 12 vonMises stress
versus distance from a grain
boundary triple line within
grain 45 in one of the 10
polycrystal realizations. Each
point represents the stress
conditions at a single
computational point
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Fig. 13 vonMises stress
versus distance from grain
boundary surface within grain
53 in one of the 10
polycrystal realizations. Each
point represents the stress
conditions at a single
computational point
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Fig. 14 vonMises stress
versus distance from a grain
boundary triple line within
grain 53 in one of the 10
polycrystal realizations. Each
point represents the stress
conditions at a single
computational point
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Fig. 15 Normal component
of traction at all grain
boundary mesh elements in
the 10 statistical volume
element polycrystal
simulations at the conclusion
of the loading profile given in
Fig. 5. Each point represents
the stress conditions at a
single computational point
near the centroid of a grain
boundary. Angles 0 and 180
degrees are grain boundary
orientations where the grain
boundary normal is parallel
with the shock direction
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Fig. 16 Shear component of
traction at all computational
points in the 10 statistical
volume element polycrystal
simulations at the conclusion
of the loading profile given in
Fig. 5. Each point represents
the stress conditions at a
single computational point on
a grain boundary. Angles 0
and 180 degrees are grain
boundary orientations where
the grain boundary normal is
parallel with the shock
direction
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of loading results is given in Fig. 16. These results show that shear traction is
maximum at 45 and 135 degrees and zero at the grain boundary orientation angles
of 0, 90, and 180 degrees. At any given angle in both Figs. 15 and 16, the
variability in stress magnitude is significant. This is currently being studied in more
detail; however, we expect that different misorientation angles for different grain
boundaries and neighborhood effects influencing details of local stress conditions
as being responsible for this high degree of variability.
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6 Conclusion

The microstructure of polycrystalline metallic materials is known to affect the
nature of porosity-based damage initiation and growth for shock loading condi-
tions. Experimental results have suggested that for high-purity materials, such as
the tantalum of interest here, grain boundaries are prominent locations for pore
nucleation. The polycrystal calculations performed for this study have provided
insight into the stress conditions within the microstructure and the conditions at
the grain boundaries. Each of the polycrystal realizations are soft-coupled to the
macroscale model via the computed stress conditions predicted for a tantalum on
tantalum plate impact experiment. The computational results presented can provide
information which is supplemental to those derived by experiment due to the
diagnostic limitation of current experimental capability. This information can then
in turn be used to further advance our macroscale ductile damage models to improve
both physical and computational performance for component scale simulations.
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A Framework for Quantifying Effects of
Characterization Error on the Predicted
Local Elastic Response in Polycrystalline
Materials

Noah Wade, Michael D. Uchic, Amanda Criner, and Lori Graham-Brady

1 Introduction

Advances in integrated computational materials engineering (ICME) are funda-
mentally dependent on acquisition of quality microstructural material information
in three dimensions (3D). DeHoff emphasized the importance of characterizing
microstructures in 3D in 1983, and since then a number of other authors have
illustrated the benefits of collecting detailed 3D microstructural data sets [1, 2].
This recognition has spurred the development of a whole suite of tools and methods
for collecting data across many different length scales [3], which in turn has led to
the development of more integrated material property-structure relationships. While
simplified microstructures are commonly applied to computational models [4], more
recent advances in computational power and automated sectioning techniques have
allowed the ICME community to begin exploring property-structure relationships
which were previously unattainable. This has encouraged significant investment of
equipment and time in collecting detailed 3D microstructures.

One example of this has been the development of focused ion beam (FIB) milling
within a scanning electron microscope (SEM) for rapid collection of 3D electron
backscatter diffraction (EBSD) data sets. Many papers have been published about
the development and advantages of this technique [5–11]. Uchic et al. highlighted
one of the main advantages of FIB-SEM as filling a critical length-scale gap between
mechanical serial sectioning and electron tomography [12], and this technology has
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enabled the study of many fine- and ultrafine-grained alloys. Materials scientists
have been tasked with the challenge of using this improved resolution to evaluate
materials that have property-structure relationships that scale across several orders
of magnitude. For example, Rene-88 DT has parent grain sizes on the order of 20–
100 μm but has features that exist at smaller length scales, like annealing twins that
are approximately 100 nm–1 μm thick and precipitate phases that are approximately
10 nm–1 μm in diameter. Previous work has shown that all of these features,
as well as the overall grain boundary networks, play a role in crack initiation
and propagation [13], meaning that microstructural data needs to be collected at
100 nm–1 μm resolutions across 1 mm length scales, pushing the limits of FIB and
mechanical serial sectioning.

As research continues to advance this technology, there is a growing tendency
toward generating large data sets, without a full understanding of the associated
limitations. For example, high-resolution data sets provide more detailed informa-
tion about small-scale features, but they may not capture a representative volume
due to resource limitations. This trade-off must be reconciled in the context of the
properties one hopes to infer from the data set. In fact, a whole field of research has
emerged studying the effects of various properties as a function of the representative
volume element from which they are derived, with the ultimate goal of determining
the minimum volume from which to collect data without bias. Early data collection
efforts provided rough guidelines such as collecting enough slices to encompass a
volume at least twice the diameter of the largest grain [14], although more recent
efforts have suggested that larger volumes than this are needed. One common
statistical approach is to compare the variance of apparent properties through
a Monte Carlo (MC) simulation of increasing RVE sizes [15, 16] or stochastic
characterization of response quantities [17].

Other efforts have looked at how the spatial resolution should be selected to
ensure good convergence of properties, with some suggesting a minimum of ten
samples across a feature diameter is a reasonable resolution to resolve statistical
properties [18]. A later study looked at the effect of voxel resolution on the accuracy
of ensemble statistics by systematic downsampling of a synthetic microstructure,
suggesting different values for various types of desired statistics [19].

In other circumstances, researchers have looked at ways to improve interpretation
of the data, thereby reducing the overall experimental cost. For example, DeGraef
et al. introduced a dictionary-based indexing of diffraction patterns, which reduces
the number of unindexed or misindexed pixels resulting from the lack of clearly
identifiable Kikuchi bands [20].

In summary, each of these efforts has tried to identify ways of optimally
allocating resources to obtain the highest-quality data sets. This can be recast as
an effort to reduce the error in collecting data from a physical sample and building a
digital reconstruction of the material. Any error introduced during the generation of
these digital reconstructions is propagated to the material model. Understanding the
effects of this error will help in the effort to develop more accurate computational
models.
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Throughout these studies, several authors have noted that estimation of the
uncertainty of 3D microstructures has been underdeveloped and is key to imple-
menting ICME [19, 21]. This work aims to introduce a framework for which the
error associated with a given choice of characterization parameters is evaluated.
Ultimately, such a framework will enable identification of the optimal data collec-
tion and cleanup parameters for a given class of materials. The approach makes
use of synthetically generated phantom microstructures that represent “ground
truth” specimens. Section 2 describes the method for simulating the data collection
process. Section 3 evaluates the error in the resulting reconstructed microstructures,
resulting from variations in four sources of error: resolution, interaction volume,
random noise, and data processing parameters. Section 4 addresses the effect of
data collection errors on the predictions from computational models developed from
the associated reconstructed microstructure, specifically for linear elastic stresses.
Section 5 provides some conclusions and thoughts on possible future work.

2 Methods

The overall framework for the current work is shown in Fig. 1. A synthetic
microstructure that is presumed to be reasonably representative of the material of
interest serves as the basis for the analysis, providing a phantom microstructure
that is viewed as the “ground truth.” The serial-sectioned EBSD data collection
process is represented by simulations that capture the effects of noise, resolution,
and interaction volume. The resulting data from this virtual collection process is
cleaned up using standard protocols in DREAM.3D [22]. A comparison between
this virtually reconstructed microstructure and the phantom microstructure provides
a number of possible measures of microstructural error, including volumetric
mismatch or differences in grain size distribution. Finally, the virtually reconstructed
microstructure is meshed and modeled using ABAQUS [23], to predict elastic stress.
Because the phantom microstructure can be modeled directly, there is a set of

Fig. 1 A general workflow of the main stages of the framework. The three stages are highlighted
starting with the generation of a synthetic material (green), material data collection and processing
modeling (blue), and model evaluation and error computation (yellow)
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“ground truth” results to which the virtually reconstructed results are compared.
This provides a quantitative way to measure the error associated with different
choices of data collection and processing parameters on computational models
associated with the microstructure. This framework is meant to be general and
can be adapted for a number of serial sectioning techniques and/or computational
models of interest. Each of these steps is described in greater detail in the subsequent
subsections.

2.1 Step 1: Synthetic Material Generation – Phantoms

One of the challenges associated with 3D serial sectioning techniques is the inher-
ently destructive nature of the process. Reevaluation of the sample is impossible,
which makes comparisons between measurement strategies difficult. This motivates
our use of a virtual material which can be copied and resampled repeatedly [19].
This virtual material, or phantom, should reasonably represent the true physical
material of interest through statistical similarities of key microstructural properties,
such as the grain size, orientation distributions, neighbor distributions, etc. The
intention is that while the phantom may not be an exact instantiation of a physical
material, its properties are presumed to be similar enough that it can be assumed that
parameter studies based on the phantom will generalize to the material of interest.

The generation of synthetic volumes has seen many developments. A review of
several possible techniques for polycrystalline materials can be found in [24]. For
the examples described in this work, phantoms are generated using a DREAM.3D
[22] synthetic microstructure generation pipeline. A simple example of this process
can be found in the DREAM.3D software tutorials [25]. Various phantoms were
used but in general phantoms featured on the order of 1000’s of grains and typically
5000 voxels per grain. Figure 2 is a visual representation of a typical phantom, with
some basic statistical information. Additional phantom microstructures of various
types can also be seen in Fig. 6.

Fig. 2 An example of a
typical equiaxed phantom
generated using DREAM.3D.
Typical grain sizes range
between 103–803 voxels

Phantom statistics:
6003 voxel volume
4377 total grains
(3348 interior)

Mean feature size:
43.73 voxels
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2.2 Step 2: Simulation of Data Collection

To model the serial sectioning data collection process, a simulation-based model
is employed. Some efforts have been made to model more specific aspects of
the EBSD process [18–20]; however, these efforts focused primarily on a single
aspect such as simulating the diffraction pattern. In the current work, the efforts
focus on the effects of resolution, sample size, interaction volume, and random
noise. Of course, the framework allows expansion to any number of data collection
parameters.

2.2.1 Resolution

One of the most important experimental determinations to be made is assessing
where to collect data and at what resolution. To model this, the EBSD simulation
allows users to individually vary sample spacing in the x−, y− and z− directions.
The sampling points are not limited to uniform spacing. A common example of
this could be randomly varying the slice thicknesses removed from the sample
due to variations in the serial sectioning process, for example, as often observed
in metallographic polishing.

2.2.2 Interaction Volume

The physics of EBSD is a complicated but well-understood process [26]. In short,
the diffraction process occurs within a region of material in which electrons from an
incident beam are forward scattered out of the sample, with some of these electrons
collected on a detector. The pattern of scattered electrons, comprised of what are
known as Kikuchi bands, is analyzed to assign a crystallographic orientation to the
interrogation point. It is important to note that the diffraction pattern represents a
finite volume of the material (known as the interaction volume), and it is not truly a
point process. This interaction volume is related to the incident beam energy, which
is one of the tuned parameters available to the user in serial-sectioned EBSD. One
common method of approximating this interaction volume was proposed by Kanaya
and Okayama in 1972. Their estimate of the interaction volume was given as the
radius of a hemisphere centered on the beam impact point and can be modeled as:

Rko = 27.6(A/Z0.89ρ)E1.67
o (1)

where A is the atomic weight, Z is the atomic number, ρ is the density, and
Eo is the incident beam energy [27]. The Kanaya-Okayama model provides
good estimates for interaction volumes in pure metals exposed to a perpendicular
electron source, the results of which can be seen for various metals in Table 1.
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Table 1 The
Kanaya-Okayama equation
evaluated for various metals.
Typical interaction volumes
range from 80 nm–10 μm[27]

5 KeV 10 Kev 20 KeV 30 KeV

C 450 nm 1.4 μm 4.5 μm 8.9 μm

Al 413 nm 1.3 μm 4.2 μm 8.2 μm

Fe 159 nm 505 nm 1.6 μm 3.2 μm

Ni 138 nm 438 nm 1.4 μm 2.7 μm

Au 85 nm 270 nm 860 nm 1.7 μm

Because the current work is attempting to present an overall framework that
is not specific to a particular material, the integration volume is left as a free
parameter which defines the semi-ellipsoid over which the EBSD process operates.
In simplifying the Kanaya-Okayama model, we removed the inherent accounting
of differing absorption properties of metals and replaced it with a single variable,
the equivalent material radius. In reality, the interaction volume is a semi-ellipsoid
because of the angle of the incident beam relative to the surface of the sample.
For the purposes of the analysis performed here, however, an equivalent radius
representing this semi-ellipsoidal interaction volume is a reasonable representation.
This equivalent material radius could be calibrated to reflect a specific material’s
absorption properties, but for the current work, interaction volumes were selected to
be consistent with the ranges shown in Table 1.

2.2.3 Random Noise

Another parameter that affects the interpretation of EBSD data is the dwell time,
a key factor in the ability to correctly index an interrogation point through clearly
identifiable Kikuchi bands. During EBSD, data collection error can be grouped into
two primary types: (1) geometric noise, which results from double diffraction near
grain boundaries or where too much surface damage or deformation has disrupted
the regular crystal structure, and (2) random noise, where indexing was not possible
due to poor diffraction patterns or pseudosymmetry, leading to misindexing [28].
Different levels of random noise for one microstructure are illustrated in Fig. 3,
where the unindexed pixels are shown in black. The number of unindexed pixels
can be shown to be inversely related to the dwell time of the electron beam. Figure 4
shows an estimate of the unindexed pixels as a function of dwell time, based on data
collected on a Tescan Vega SEM with Bruker eFlash 1000 EBSD detector at AFRL.
By fitting a curve to this data, a noise model was developed for the simulated EBSD
data collection process, where unindexed pixels are randomly generated. To reflect
a decrease in dwell time, increased random noise is included in the simulation
(see Fig. 3).
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Fig. 3 Effect of increasing random error on simulated microstructures. Pixels shown in black
represent bad data points where no orientation assignment is made

Fig. 4 Data collected with various interrogation point dwell times, showing the nonlinear rela-
tionship between the ability to compute orientation data and the time spent collecting a diffraction
pattern

2.2.4 Summary of Data Collection Model

The primary goal of the EBSD model is to develop a computationally cheap
approximation of the data collection process. By evaluating different combinations
of parameters, the process allows for both a general estimate of the magnitude of
the expected error and a quantitative means to evaluate the cost/benefits of different
experimental resource allocations. The detail to which the processes are analyzed
can easily be scaled through user inputs, by adding new modules or fixing certain
parameters which are of less interest. The relatively cheap approximations used here
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were chosen to demonstrate the utility of modeling processes for error estimation
and to allow for the incorporation of many different parameters to be analyzed
within a reasonable time frame. Nonetheless, the results presented in the following
sections can offer some insights into important trends and will serve to demonstrate
the potential of the framework.

2.3 Additional Notes on Methodology

One goal in developing the framework was to create a simple tool which can
help inform the choice of data collection parameters, even in an in situ manner.
It provides an outline for analyzing how changes to the data collection and data
processing of microstructural data sets, and to do so it was necessary to develop
simple models relying on several simplifying assumptions. However, additional
capabilities or refined models can easily be implemented to meet the desires of
the user. If users feel model assumptions may not generally hold for their specific
application, models can easily be calibrated and/or refined to more accurately model
the process in any given system. For example, the data collected as part of Sect. 2.2.3
is instrument specific, and users might want to collect data to develop a model for
their specific instrument setup. Similarly, an improved physics-based model of the
interaction volume (Sect. 2.2.2) that accounts for chemical compositions could also
be implemented. Ultimately, the model framework was designed to allow for the
variation of individual input variables. As such, any doubt surrounding the effects of
a certain quantitative input (e.g., the size interaction volume) can be studied through
direct variation of said parameter. By varying a parameter of interest over a range of
reasonable values, and examining the output, a sensitivity to said parameter can be
developed. Model assumptions relating to parameters with high sensitivity can then
be refined as needed.

Additionally, the framework is intended to be able to incorporate computational
models in its evaluation of the error between true and measured microstructures. For
this a third step is added where the computational model is applied. An example of
such an evaluation is included as part of Sect. 4.

3 Individual Parameter Variation Examples

One benefit of the framework is that it is possible to quantitatively analyze the
effect of various characterization parameters. This allows for the sensitivity to be
quantified and compared for any parameter, allowing for a more detailed study
of the evolution and propagation of error in the sample. In this section, several
simulations of EBSD data collection are conducted over a range of typical values
for the parameters of interest. Each simulation was analyzed and compared directly
to the phantom, using only the interior non-biased features. The exact size of the
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simulation and the total number of features varied, but typically ∼1000 features
were used for the determination of error, ensuring good statistical convergence. The
results illustrate several key observations and demonstrate how the framework is
useful in analyzing different types of error.

3.1 Step 3: Error Measurements

One of the primary motivations of the proposed framework is the ability to explicitly
compute various error metrics. Using the phantom microstructure as a baseline, one
measure of error is the percent of mismatched voxels (MMV) defined as:

MMV =
∑l
i=1
∑m
j=1

∑n
k=1 P(i, j, k) �= S(i, j, k)
lmn

(2)

where, P , the phantom, and S, the simulation, are l × m × n matrices of general
microstructural properties voxel such as crystal orientation or phase assignments.
Other measures can address error in statistical quantities that describe features of
the microstructure, such as the grain size distribution:

L2 =
√∑n

i=1[Pgs(xi)− Sgs(xi)]2

√∑n
i=1 Pgs(xi)

2
(3)

where Pgs(xi) and Sgs(xi) are the CDFs of grain size xi for the phantom and
simulation, respectively, and n is the total number of grain sizes considered. Another
measure of error is the number of lost features, which occurs when none of the
voxels in the reconstructed microstructure are assigned the address associated with
a feature in the phantom microstructure.

As an example, Table 2 shows the three measures of error resulting from
a comparison between the phantom microstructure in Fig. 5a and a simulated
reconstruction of the microstructure in Fig. 5b. In this table, the resulting errors are
separated into four different groups based on the percentile value associated with
the grain size. Because the smallest grains are the most poorly resolved, it is not

Table 2 Changes in various
error metrics across various
percentiles of grain size.
More error is found in the
smallest 25% of grains, for all
3 error measures

Percentile range MMV L2 grain size Lost features

0–25th 13.62% 0.054 1

25th–50th 1.12% 0.015 0

50th–75th 0.58% 0.010 0

75th–100th 0.53% 0.0044 0

Total 5.02% 0.034 1
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Fig. 5 Slice of (a) Phantom microstructure and (b) simulation sampled with normalized resolution
of 0.14

surprising that these grains exhibit the most error, in terms of mismatched volume,
grain size distribution, and lost features.

More complex error metrics can be defined such as the PDF of the grain aspect
ratio distribution. For most data sets, the most appropriate error metric is typically
dependent on the desired application. For data collection, efforts seeking to identify
unique sites within a microstructure might prefer a counting metric, such as the
number of triple lines or quad points where three or more grains meet. In each
case any desired error metric can be computed directly by examining the difference
between phantom and simulation volumes. For microstructures collected to support
computational models, the best error metric might be differences between the
predicted response from the model based on the phantom and the model based on
the simulated microstructure, as will be described in Sect. 4.

3.2 Resolution

One of the most important parameters in data collection is the resolution at which
data is collected. The resolution or spacing between interrogation points sets a
minimum feature size threshold, which in practice should be larger than the spacing
itself, in order to resolve that feature. The accuracy resolving shape, size, and feature
boundaries is dependent on the resolution. Moreover, the appropriate resolution
should be determined relative to microstructural features of interest, and for this
reason the current discussion normalizes resolution by the average feature size.
Often a minimum of ten samples across a feature diameter is recommended to
resolve statistical properties [18]. By varying the spacing of interrogation points,
we can examine in more detail this rule of thumb and develop an estimate of the
error associated with changing resolution.

Figure 6 shows the effect of varying resolution in a single coordinate direction for
various material types. This is analogous to varying the slice thickness during serial
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Fig. 6 Plot of mismatched volume (MMV) vs. normalized 1D sample spacing, based on simula-
tions from various types of microstructures: (a) large-grained equiaxed structure, (b) fine-grained
equiaxed structure, (c) large-grained equiaxed structure with inserted twins, (d) composite with
circular fiber inclusions, and (e) non-equiaxed structure. Images of a single slice of each phantom
are shown for comparison. Results from the 1D analytical model described in Sect. 3.2.1 are
included for comparison

sectioning. In each simulation the in-plane resolution is one-to-one resampling of
the phantom. In other words, the sample spacing in the 1D out-of-plane direction
is the sole source of error. When averaged over a large number of phantoms
(30), an approximately linear trend of increasing mismatched volume (MMV)
with increasing sample spacing is clearly present. Normalizing by the average
feature size, this trend can be generalized for various material types. In Fig. 6
large (603 voxels) and small (153 voxels) equiaxed materials all show the same
dependence on increasing resolution along one direction. Considering the general
rule of thumb of ten samples across a feature diameter (0.1 normalized resolution),
this translates to an estimated 2–3% error in the geometric volume. Other less
equiaxed microstructure types showed similar linearly increasing trends, although
with different slopes. This can be attributed to the various length scales that exist
within the microstructure, which may not be reflected through normalization by
the average feature size. For example, in a composite microstructure (see Fig. 6d),
the mean fiber size is used as the normalizing feature size; however, the distance to
the nearest neighbor fibers can be smaller than the fiber diameter. This would create
a smaller relative length scale where sampling resolution is not sufficient to resolve
matrix between fibers, leading to a larger error.
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Fig. 7 Illustration of how a line slice of a phantom (a) could be represented as a 1D piecewise
function (b)

The general linear trend for various material types suggests that resolving
resolution is geometrically dependent on an underlying length scale. To evaluate
this, a simplified analytical model is described in the next section.

3.2.1 Analytical Model of Error Associated with Sample Spacing

In order to develop an analytical model based on sample spacing, we start by
considering 1D samples of the microstructure. Specifically, consider the grain
identification number (grain ID) along a line through the microstructure. The grain
ID along this line is represented by a piecewise constant function, where the value
within each constant region is the identification number of the grain through which
the line travels (see Fig. 7b). The measured grain ID along this line is a function of
the sample spacing. If the sample spacing approaches zero, then the microstructure
is captured exactly, although the required number of sample points becomes infinite.
If the sample spacing is very large, then there is significant misassignment of grain
ID along the line.

The analysis is further simplified by assuming that all grains are of equal
length Lg . If the sample spacing �x is equal to the grain size, then the fraction
of mismatched volume is derived following the illustrations in Fig. 8. If the sample
points happen to fall in the middle of the grains, then the microstructure is captured
with zero mismatch (Fig. 8a). At the other extreme, if the sample points happen
to fall on the grain boundaries (either just to the left or just to the right of the grain
boundary), then there will be a 0.5 mismatch in the sampled microstructure (Fig. 8b).
If the sample points fall somewhere between the grain boundary and the grain
center, then the mismatch will scale linearly with the distance from the grain center
(Fig. 8c). Therefore, the lineal fraction of mismatched grain ID is a function of the
sample location x∗:
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Fig. 8 Detailed view illustrating how the location of a sample point relative to the feature will
produce varying amounts of mismatched length. By integrating over all possible locations relative
to the feature, the expected mismatch length can be determined in 1D

m(x∗) = 0.5
|x∗ −Xcg|
Lg/2

(4)

where Xcg is the location of the nearest grain center to x∗. Assuming that x∗ is a
uniform random variable on the interval [−Lg/2, Lg/2], then the average fraction
of the line with mismatched grain ID (MML) is derived as:

MML = 0.5

Lg

∫ Lg/2

−Lg/2
|x∗ −Xcg|
Lg/2

dx∗ = 0.25 (5)

The mismatch is zero when sample spacing �x = 0, which corresponds to exact
resolution. Assuming that the mismatch scales linearly with the sample spacing,
then a reasonable approximation to the probability of mismatch is therefore:

Pm = 0.25
�x

Lg
(6)

where Lg is the average grain size and �x is the sample spacing. Noting that
this 1D model of MML is the equivalent to a 3D model of MMV if we assume
full resolution in the other two dimensions, these results are compared to the
MMV that is obtained when performing 1D sampling from lines extracted from
the microstructures in Fig. 6. This figure shows that the results from this simple
1D analytical approximation are a good match to those from the simulations for
equiaxed microstructures, though it is not as good an approximation for twinned,
non-equiaxed, and composite microstructures.
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Assuming finite sampling occurs in only one coordinate direction is not physi-
cally realistic, since infinite sampling in the other two directions is infeasible. The
analytical model is therefore extended to consider the effect of sample spacing in all
three coordinate directions in a 3D microstructure. This is enabled by assuming that
the probability of a correctly assigned grain ID is independent in all three directions.
In other words, the grain ID at a point is only matched correctly if there is no
mismatch due to sample spacing in any of the 3 coordinate directions. Therefore,
the probability p3 of a correctly matched value at a given 3D location is the cubed
probability of a correctly matched grain ID at a 1D location:

p3 =
(

1 − 0.25
�x

Lg

)3

(7)

The probability of an incorrectly matched grain ID at a 3D location (or the
mismatched volumeMMV ) is simply the complement of p3:

MMV = 1 − p3 = 0.75
�x

Lg
− 0.1875

(
�x

Lg

)2

+ .015625

(
�x

Lg

)3

(8)

Figure 9 shows a comparison between this approximation and simulated mis-
matched volume, indicating reasonable agreement. While the analytical model

Fig. 9 Mismatched volume (MMV) vs. normalized sample spacing based on one- and three-
dimensional sampling, from both the simulations and the analytical models. The simulated values
were obtained from an equiaxed microstructure. The 1D model predicts a slope of 0.25, while the
simulated values are 0.266. The 3D model predicts a less linear function than that found from the
simulated values, but the values from both compare reasonably well
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Fig. 10 Mismatched volume (MMV) as a function of the interaction volume normalized by the
average feature size, assuming that sample spacing ∼0 so that resolution error is zero

is based on a number of assumptions, it provides a useful approximation that
can be applied to determine a reasonable resolution without undergoing lengthy
simulations.

3.3 Interaction Volume

As discussed in Sect. 2, changing the size of the interaction volume (IV) in the
simulation is a representation of changing beam energy. More realistic predictions
of the relationship between interaction volume and beam energy in a specific
SEM configuration for a given material require calibration or the use of simplified
models such as Eq. 1. The example shown here serves only to illustrate how relative
increases or decreases in interaction volume affect error.

As was done in the resolution study, the size of the interaction volume is
normalized by the average feature size. Figure 10 shows the mismatched volume
MMV as a function of the normalized interaction volume, with zero resolution error.
It is worth mentioning that for large features (>10 μm) interaction volumes on the
order of 10–25% are infeasible in modern SEM; however, for small features they are
certainly possible. The MMV values for the smaller values of normalized interaction
volume are lower than the typical MMV values associated with typical sampling
resolution, suggesting that the error due to interaction volume may be lower than
that due to resolution in many situations.
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3.4 Unindexed Pixels

During EBSD data collection, it is common that some interrogation points will
return diffraction patterns that are unable to be indexed to the local crystal
orientation. These points become unindexed pixels or “bad data” which often needs
to be accounted for after data collection is completed. As described in Sect. 2.2.3, the
primary way that these unindexed pixels enter our model is through the assignment
of a dwell time which produces a corresponding level of random noise. A second
means by which unindexed pixels can be accounted for is through the assignment of
a threshold to the interaction volume (i.e., if a certain percentage of the interaction
volume is not dominated by a single grain, an unindexed pixel is assigned). As
both of these methods are dependent on user input, quantifying the resulting error
is trivial. For example, an assigned dwell time associated with 10% noise produces
10% mismatched volume. However, the incorporation of unindexed pixels into the
simulation is very important, since this supports a study of how well these pixels are
corrected during the data processing step.

3.5 Data Processing Parameters

Data processing algorithms come in many forms. There are algorithms for address-
ing known errors in the collected data set, e.g., assigning values to unindexed
interrogation points, and those which transform or alter the data to be used in other
ways, e.g., creating a meshing for finite element analysis (FEM). Depending on the
data, and its desired use, different algorithms may be applied, with each algorithm
potentially having many of its own parameters. Figure 11 highlights some details in
the data processing section of the outlined framework (see Fig. 1), focusing on one

Fig. 11 Details of how data processing error εdp is categorized. Erode/dilate is a data cleaning
process whereby small noisy elements are shrunk in size and then filled in by their nearest neighbor
elements. Items 1–3 are some of the parameters which can be used to define the process and are
provided as examples for what parameters could be changed
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Fig. 12 A partial slice of an equiaxed phantom simulated with 7% random noise, (a) before and
(b) after the DREAM.3D erode/dilate filter was applied. Each black pixel represents a data point
where an orientation assignment could not be made. Each of these points has been “cleaned” by
the filter, resulting in a reduction of the mismatched volume, from 7.1% to 0.3%

common post processing technique known as erode/dilate, which is used to assign
values to missing or incorrectly assigned points in the data set. In the context of the
framework for analyzing errors introduced through data processing, each algorithm
and its parameters are varied and individually applied to simulated data sets. The
reconstructed data sets are then compared in order to determine which algorithms
and parameter combinations are most effective in correcting data collection errors.

The erode/dilate filters can effectively remove unindexed pixels and spurious
data points. Classical versions of these filters typically work by first eroding feature
surfaces, effectively creating an unassigned property region between features, and
then dilating features to fill these regions with data assignments from the closest
feature to each voxel. DREAM.3D offers an erode/dilate filter that essentially does
the reverse, first dilating the bad data and then eroding the bad data through feature
assignment (for details see [25]). The effect is that features smaller than the half
erosion length, such as those resulting from a single bad data point, vanish and are
replaced with the assignment of their surrounding feature (see Fig. 12).

For data with less than 10% noise that is evenly distributed over the vol-
ume, nearly all noise can be removed by erode/dilate filters. However, in certain
microstructures with small or highly asymmetric features and/or with noise more
prevalent in local regions such as grain boundaries, erode/dilate filters can introduce
more error. Figure 13 shows results from two different simulations where 7% noise
was added to an equiaxed and twinned microstructure. An isotropic erode/dilate
filter was applied to assign orientations to the unindexed pixels. The result was
that for the equiaxed microstructure (largely isotropic), almost no noticeable error
in the grain size distribution was observed, while the twinned microstructure
(strongly anisotropic) had many of its small plate-like features removed, altering the
feature size distribution significantly. This resulted in a total MMV for the twinned
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Fig. 13 Comparison of the cumulative distribution function (CDF) of feature size, before and after
7% random noise was cleaned from an equiaxed and a twinned microstructure, using erode/dilate
filters

microstructure of 7.2%, which is significantly higher than the MMV of 0.3% for the
equiaxed microstructure.

These results demonstrate how the erode/dilate filters can introduce error, despite
being effective in removing random noise. Application of the filter was able to
reduce noise error although a biasing toward parent grains was observed during
reassignment.

3.6 Brief Discussion on Data Collection and Processing Error

The selection of experimental parameters is important to data collection, and the
ability to study the individual effects of varying parameters will undoubtedly prove
useful. The observation of linear dependence of mismatched volume on resolution is
useful for estimating expected errors or biases. Furthermore, the application of data
processing filters, which is highly dependent on the needs of a collected data set,
can have both positive and negative effects. The ability to quantify the application
of different filters to compare their outputs to an expected norm will prove useful
for analyzing which filters to use and where new filters need to be developed.

While examining the relative effects and magnitudes of individual parameters
is of interest, some of these conclusions can be trivial and misleading without
the context of the data collection process as a whole. Changing a data collection
parameter to address one source of error may require different choices of other
data collection parameters that lead to new sources of error. For example, electron
beam energy is indirectly related to the dwell time, as the overall strength of a
diffraction pattern is related to both. The electron beam energy can be reduced
in order to reduce the interaction volume, which would decrease the error that
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arises from potential ambiguity in the diffraction pattern associated with a finite
sampling volume. However, if the dwell time is not increased, then this would result
in a decrease in the overall strength of the output signal, which will diminish the
quality of the diffraction patterns. If there are resource limitations that limit the total
characterization time, then the choice to increase dwell time would have to be offset
by a decreased number of interrogation points. This could be achieved by decreasing
resolution or decreasing sample size, both of which can increase error. Given typical
constraints on instrumentation time, this interaction illustrates the balance and trade-
offs that must be made during the data collection process.

4 Case Study: Application to Finite Element Model

To this point the work has focused on purely geometric measures of the error of the
simulated microstructure compared to the ground truth phantom. While this form of
error is important, it might not fully reflect how these reconstructions are ultimately
used. In practice these reconstructions are often used to inform computational
models, either as direct inputs or through the extraction of key statistics. To analyze
this interaction requires extending the analysis to apply the microstructural data to
a computational model. The extension is relatively straightforward, because data
processing tools such as DREAM.3D that perform meshing allow direct modeling
of the simulated microstructures. This addition allows computational models to
serve as the context for measuring error. Given that the results from computational
models are the primary outcome, evaluating their sensitivity to microstructural data
set inputs and subsequently the data collection processes used to collect them is
clearly of interest. This is shown in this section through an example case study.

To illustrate how the proposed framework can help in determining the error
associated with resolution, a simple example was performed. An outline of the
computational framework is shown in Fig. 14. For this example, a 500 × 500 × 500
voxel equiaxed phantom encompassing ∼1500 interior grains, with an average grain
diameter of 18.2 voxels, was generated using DREAM.3D. Data collection was
then performed at various interrogation point spacings, over various volumes, and
with different levels of noise. A pictorial representation of the problem is shown in
Fig. 15. Each simulated microstructure and the larger phantom were meshed using
standard DREAM.3D filters and exported as ABAQUS input files. Individual grains
were assigned elastic material properties based on their crystallographic orientation.
The average von Mises stress in each interior grain at a global strain of 2% was
evaluated. The error in this average grain stress between the phantom microstructure
and the simulated microstructure was then averaged across all interior grains.
Results are shown in Fig. 16 for various normalized sample sizes and resolutions.

Figure 16 shows a greater dependence of the mean average stress on the total
number of grains resolved (i.e., sample size). In small samples, boundary conditions
dominate the grain-averaged stresses. For this reason, increasing the total number of
interrogation points without also increasing the volume over which they were placed
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Fig. 14 Outline of the computational framework for error evaluation. The total number of
parameters to be evaluated is left open, as well as the inclusion/choice of computational model
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Fig. 15 An illustration of data collection over at different resolutions. (a) Shows wide interroga-
tion point spacing over a large volume, (b) shows the same number of interrogation points with a
narrower spacing over the same area of (c), the phantom

does not result in any significant improvement in the error. Similarly, increased or
decreased dwell times (as reflected by random noise) had no meaningful effect on
computed error (see Table 3).

There are several arguments for these findings. First, the Laplacian smoothing
applied to the mesh in DREAM.3D resulted in a partial correction of the error
introduced through limited resolution. Second, Fig. 17 shows a 2D projection of
nodes from the 3D mesh. The lower resolution mesh (shown in blue) has minimal
differences within the region of overlap from the high-resolution mesh (shown in
red); meaning that within this region, both simulations had similar representation of
the volume. Third, the effectiveness of the data cleanup algorithms in removing bad
data points where orientation could not be assigned neutralized the effects of random
noise. This was possible in part because of the equiaxed nature of the phantom and
may not be true for other mircostructure types. Finally, the choice of a linear elastic
model leads to minimal localizations and other behaviors that would increase the
sensitivity of the computational model to local microstructural features such as grain
boundary geometry.
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Fig. 16 Percentage of error in grain-averaged elastic von Mises stress as a function of the volume
of the sample (Vs ) normalized by the average grain size (Vg). Various simulations on a single
phantom highlighted the importance of selecting a sufficient sample size in reducing error

4.1 Conclusions from the Case Study

Several conclusions can be drawn from this case study. First, the potential for
oversampling can be mitigated. While it’s not universally true, in this case little
is gained by Herculean efforts to collect highly resolved data. As shown, collecting
data at over 10× the number of interrogation points did not ultimately have any
meaningful effect on the error in the mean grain stress. Second, proper data
processing can be very effective at reducing errors introduced during data collection.
Finally, the size of the sample has a strong influence on the predicted elastic stresses.

The mean elastic stress of interior grains is a relatively simple measure from the
computational model, and it is highly insensitive to the details of the microstructure.
While other measures could be used in future studies, this averaged elastic stress
serves as a reasonable baseline measure. For example, a failure to represent the
mean elastic stress values would lead to decreased accuracy for more complicated
models of inelastic behavior.

These conclusions may not hold for different microstructural data collection
efforts, but they are an example of how a priori analysis of the data collection
process as a whole can inform data collection efforts. Using the results of this
study, efficient data collection parameters such as a large sample volume, short
dwell times, and wide resolution spacing could be selected, resulting in a more
efficient use of experimental resources. Given the relatively low cost in terms of
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Fig. 17 2D projections of two meshes based on 729,000 interrogation points, collected across a
sample of 8 full grains across the face (blue) and across a sample of 4 full grains across the face
(red). Even though smaller mesh is better resolved, the resulting meshes are very similar

Table 3 Results for variation of random noise levels (associated with dwell time). Changes in the
level of random noise had negligible effect on total error compared to the sample size

Sample size 1–4.4 grains Sample size 2–8.1 grains

Level of random noise Total error after simulation

3 percent 4.181% 1.384%

5 percent 4.182% 1.384%

15 percent 4.185% 1.389%

computational effort and physical time that such an analysis requires, there are
certainly gains to be made in the efficiency and accuracy of microstructural data
set collection.

5 Conclusions

Growth in the capabilities to collect 3D microstructural data and apply this
information to computational models has been a key research focus, but quantitative
analysis of error propagation to the models from data collection has lagged behind.
The proposed framework based on a phantom microstructure provides a means for
analyzing the error associated with individual data collection and data processing
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parameters all the way through to computational models. The approach can easily
introduce new modules and/or additional complexity as needed.

We show how the framework can provide detailed insight into the influence of
data collection parameters, such as resolution, electron beam energy, and dwell
time. The resolution study showed that increasing sample point spacing results in
an approximately linear increase in mismatched volume, and an analytical model
was developed that provides basic insights into this behavior. Additional studies
showed how changes to the interaction volume (i.e., electron beam energy) or
increased levels of random noise (i.e., shorter dwell times) also affect error. It was
also demonstrated that through proper data processing parameters, much of this
error can be mitigated; however, an improperly applied erode/dilate data processing
filter can increase error for certain microstructural types. Finally, an example was
provided in which the framework was used to analyze the propagation of error from
characterization through to a simple finite element model based on the characterized
microstructure. For the particular study here, it was shown that sample size was
more critical to accurate evaluation of mean elastic stress in each grain than either
resolution or integration volume. Such conclusions provide input as to the most
efficient data collection parameters that will lead to accurate results from the
associated computational models.

A natural extension of the framework presented here will be more formal
optimization of data collection parameters, balancing cost, and accuracy. Defining
an objective function based on costs, subject to the constraints of acceptable
error levels, such an optimization is feasible. Furthermore, the framework can be
extended to more detailed physically based characterization parameters and/or to
more challenging computational models, such as those that attempt to predict the
onset and growth of fatigue cracks.
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Material Agnostic Data-Driven
Framework to Develop
Structure-Property Linkages

Dipen Patel, Triplicane Parthasarathy, and Craig Przybyla

1 Introduction

Integration of advanced material systems into most engineering applications
requires a detailed understanding of the structural and functional behavior of such
materials. Most advanced materials such as metallic alloys, ceramics, polymers,
hybrids, and composites exhibit hierarchical internal structure with rich details at
multiple length scales of interest. Such microstructures have significant impact
on their behavior. Relating the processing variables, structure and behavior is the
objective of most materials models, which are directed towards use in design or in
optimization, as envisioned by Integrated Computational Materials Engineering
(ICME) [1]. A reliable and robust material modelling framework is required
that satisfies the goals of ICME, captures the physics behind structure-property
relationships at every length scale, accounts for the effects of interactions between
different length scales, and provides a way to integrate these into a computationally
efficient macro-level model. Current physics-based, multiscale models are limited in
their use due to their computational expense, and when constraints are imposed, they
capture only partial interactions. For accelerated design and material optimization,
computationally efficient models that can capture all the salient effects are needed.

In this review, we explore the status of data science as an approach that could play
a significant role in the current and future of ICME-based materials engineering. As
the name implies this approach relies on data. Thus, it is important to understand
the availability of materials data in current engineering practice and identify areas
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where data science may be best applicable. The current state-of-the-art materials
engineering practice relies on reliable synthesis and/or manufacturing process with
quality control checks and extensive laboratory data on performance characteristics
as a metric to guide design processes. The material structure is mostly characterized
via nondestructive tests, rather than traditional microscopy. X-ray CT, eddy current
test, and ultrasound imaging are some of these techniques. On the other hand,
most materials models require detailed microstructural information at all length
scales using optical, SEM, and TEM imaging techniques. When required, the
industry employs such destructive methods on coupons from each batch of material
manufactured. In some cases, processing-microstructure-property relationships are
semi-empirically derived (physics-based but fast acting) and used in engineering
design to achieve desired properties. This is especially true for applications that
can benefit significantly from ICME. It is those applications that are best suited for
the use of data science or machine learning (ML) [2]. In this work we focus on such
applications, and we show that the ML approach has potential as a structure-property
linkage model and is materials agnostic. It must be noted that the ML frame-
work can incorporate the physics behind the linkages, despite staying materials
agnostic.

We review the data-driven, material agnostic framework towards possible use
in ICME-based applications. We illustrate the application of the framework across
different materials, without sacrificing the physics behind the linkages. In particular,
the data-driven methods are shown to successfully establish the process-structure or
structure-property (P-S-P) linkages applied to a wide range of materials, including
metallic alloys [3], ceramics [4], composites [5], and polymeric materials [6].

2 Material Agnostic Data-Driven Framework
to Process-Structure-Property Linkages

A key element to data science in materials science is a inherent versatile framework
which is amenable to data acquisition, curation, dissemination, and reuse of high-
value knowledge in a highly efficient compact manner at a desirable cost at the
relevant length scale. The reason the approach is material agnostic is that the
treatment is entirely mathematical in how data is represented and relationships
are established. The physics are captured in the preprocessing stage. With respect
to microstructure, preprocessing involves representation, data reduction, feature
extraction, and/or simulations. With respect to properties, this involves use of
physics-based simulations to generate sufficient data for ML learning. The same
is true for processing-structure relations. While the physics-based simulations carry
the computationally expensive physics, the ML tool derived from them is fast acting
and amenable for inverse solutions.

The approach can be easily coupled with multiscale materials’ modeling effort
where the data-driven (P-S-P) models can be integrated to reduce the computational
cost associated with the physics-based model while improving the efficacy of the
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Fig. 1 A general schema of the framework illustrating the data science approach enhanc-
ing/augmenting the current materials science effort to explore the process-structure-property
linkages

surrogate models being built. A general strategy/schema of data-driven framework
is described in Fig. 1. The current approach to developing P-S-P linkages in
computational material science explores physics-based models, as described in
Fig. 1, top row. Physics-based models entail the use of highly complex physics
coupled with an iterative numerical solver, which in turn drastically increases the
computational cost to explore the space.

As depicted in Fig. 1, data science tools can be utilized to learn the structure-
property relationships between the inputs parameters that describe the structure and
the simulated output. In the context of multiscale modeling effort, the calibration of
data-driven models to processing-structure-property (P-S-P) linkages is carried out
via rigorous mathematical form utilizing advance machine learning techniques.

The P-S-P linkages form surrogate models (or metamodels) which enable
inversion due to their relatively simple mathematical representation compared to the
complex physics-based nonlinear models. This in turn implies the development of
formal data science methods as refining and reusing P-S-P linkages from available
ensembles of simulated datasets.

It is important to note that with all data-driven approaches, the underlying physics
of the structure-property relationships modeled are not always clear or interpretable
based on the resulting surrogate model. However, when coupled with experiments
or physics-based models, these data-driven techniques can provide meaningful
insights on the connection between the structure and its derived properties. The
approach allows one to seek physical understanding of the structural-property
linkages derived through machine learning if the variables employed in the machine
learning algorithms are able to completely define the state of the system. However,
such a rigorous definition is not always necessary or readily available in order to
understand the underlying physics.
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The broad implementation of data-driven approach requires validated and widely
adopted methods to describe and quantify hierarchical material structure(s) referred
to as microstructure(s). The performance behavior of materials is largely char-
acterized and governed by the microstructure of the sample material; hence,
microstructure plays a significant role in the formulation of P-S-P linkages and
forms an input and/or output to the surrogate models. Accurate quantification of
microstructure is essential to determining the macroscopic constitutive response of
the materials subjected to various loading/processing conditions. It is imperative to
seek proper quantification of microstructures before addressing the formulation of
P-S-P linkages.

2.1 Microstructure Quantification

The success of materials design efforts hinges on how the salient microstructural
features of materials are quantified and tracked during various process/loading
conditions. Conventionally, the approach to microstructure quantification is moti-
vated largely by our current partial understanding of physics, which includes
measures such as mean volume fraction, average grain size (and sometimes shape),
and rarely ensemble distributions. It is now increasingly recognized that there
are significant variations of all these parameters and they also miss important
topological information. Therefore, it is increasingly recognized that the statistical
information about the structure that includes topology is important to predict the
design allowables that depend on the variability of properties of interest.

Recently, various methods have been proposed and applied to quantify the
microstructure of heterogeneous materials at relevant length scales. For example,
correlation functions such as pair correlation functions [7], radial distribution func-
tions [8], chord length distribution functions [9, 10], and n-point spatial correlation
functions [3, 9–12] at different length scales have been utilized to represent diverse
material systems ranging from solids to gaseous phases. A correlation function of
a variable of interest is a measure of the spatial order/disorder in a system with
respect to that variable. In addition, correlation functions quantify how different
variables covary with one another spatially. Studies have shown that these spatial
correlation functions are the microstructural features that naturally emerge in some
of the most sophisticated composite models/theories for effective, homogenized,
properties [13].

Although the quantification of microstructures using various correlation func-
tions provides a means to capture the salient features and its interactions, the
statistical representation of the microstructure often span an unwieldy dimensional
space in comparison to the other variable(s) in the P-S-P linkages formulation [3, 5,
10–12]. From a practical perspective, the statistical representation of microstructure
needs to be cast in a compressed form for it to serve any useful purpose in order
to produce simple and easily applicable P-S-P linkages. Traditional approaches to
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Fig. 2 A schematic representation of PCA analysis summarizing the procedural logic of dimen-
sionality reduction based on variance of data

data reduction involve hand-selecting features based on scientific insight. As an
example, one might quantify the polycrystalline microstructure using grain size or
shape distributions while studying yield strength in metals due to Hall-Petch effect
[14]. However, such approaches do not have a common set of low-dimensional
representations that can be applied universally across all material systems.

The recent explosion of dataset size, in terms of both number of records and
number of features/attributes, has triggered the advancement of dimensionality
reduction algorithms [2]. Dimensionality reduction techniques, such as Random
Forest/Ensemble Trees, Principal Component Analysis, and Backward/Forward
Feature Elimination, are extensively employed for image analysis in computer
vision technology as well as other scientific fields. One such data dimensional-
ity reduction technique heavily employed in material science field is principal
component analysis (PCA), extensively used in formulating P-S-P linkages. PCA
is a statistical analysis that transforms the original k coordinates of datasets
into a new set of n coordinates called principal components. As a result of the
transformation, the first principal component has the largest possible variance; each
succeeding component has the highest possible variance under the constraint that
it is orthogonal (i.e., uncorrelated) to the preceding components. In other words,
PCA is a distance-preserving linear map, which involves the derivation of a new
set of orthonormal feature vectors (basis) that are linear combinations of existing
feature vectors, whose optimization is determined by maximizing the variance of
the data along the principal component vectors (see Fig. 2). PCA, as a statistical
modeling tool, is capable of efficient representation of complex, nonlinear data
without the need for a separate identification of the parameter typically required
for conventional modeling. For example, Cord et al. employed PCA to reduce pixel
texture descriptions of metallic surfaces and then employ a supervised learning
approach to distinguish between nominal background and anomalous or defect
structures on the imaged surfaces [15].
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Fig. 3 A generic workflow to extracting process-structure-property linkages using data-science
AI tools. Circles describe step-by-step protocol, while the corresponding rectangle box lists the
possible approach employed within each step

2.2 Data-Driven Workflow for Extracting P-S-P Linkages

The data-driven workflow is a four-step protocol designed for establishing process-
structure and structure-property linkages (see Fig. 3). The main steps are listed in
blue circles. The accompanying boxes show specific methods and/or procedures that
might be employed in that step.

This workflow has been designed to serve as a generic template that is applicable
to the broad class of microstructure evolution phenomena that are likely to be
studied by a variety of techniques (these could include modeling techniques such
as phase-field models, cellular automata, and level-set methods or experimental
techniques such as X-ray computed tomography) as well as to predict property given
microstructure.

The data-driven workflow is a four-step protocol designed for establishing
process-structure and structure property linkages (see Fig. 3). The main steps
are listed in blue circles. The accompanying boxes show specific methods and/or
procedures that might be employed in that step.

This workflow has been designed to serve as a generic template that is applicable
to the broad class of microstructure evolution phenomena that are likely to be
studied by a variety of techniques (these could include modeling techniques such
as phase-field models [16], cellular automata [17], and level-set methods [18] or
experimental techniques such as X-ray computed tomography).

The first step in the workflow is a preprocessing step aimed at ensuring quality
and consistency of the dataset. While the identification of the phases, boundaries, or
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other features of interest in simulated data is trivial in most cases, experimental data
often requires segmentation of images to properly identify a given feature of interest.
As needed, one might set criterion to eliminate spurious or questionable data (e.g.,
the data that does not conform to known physics). In this step, the inputs (process
parameters) are also clearly associated with the outputs (microstructure data).

It is acknowledged that the robustness of this preprocessing step is a direct
function of the uncertainties introduced during data collection, experimentation, and
data processing techniques. For example, measurement uncertainty is immediately
introduced with data collection due to instrument accuracy and human error.
Additional uncertainty is introduced as these data are processed into human and
computer interpretable forms using various data processing algorithms. For exam-
ple, the uncertainty associated with imaging and image processing of microscopic
data has been studied and published for a variety of techniques. Uncertainty is
introduced at each stage of the processes depending on the methods and algorithms
employed. While understanding these uncertainties is important to the success of
the framework proposed here, there is much ongoing research in this area, and this
topic is not addressed in detail here but in another chapter in this volume.

In the second step, microstructures are quantified to obtain salient statistical
measures of microstructures. In a data science approach, it is desirable to capture
a very large set of measures at this stage. Consequently, it is preferable to adopt a
microstructure quantification framework that allows one to increase systematically
the numbers of potential features included in the analyses. In this regard, the
framework of n-point spatial correlations offers tremendous promise because of
its scalability (ability to define an infinite number of microstructural features) and
organization (value of n can start with one and increase).

The third step in the workflow focuses on reducing the dimensionality of
microstructure representation using data science approaches. Some of the estab-
lished dimensionality reduction techniques include principal component analysis,
factor analysis, projection pursuit, and independent component analysis, among
others. These methods are designed to reduce dataset dimensions, while losing
only the smallest amounts of information. The use of dimensionality reduction
leads to savings in both computational time and storage and identification of salient
features that can be used to establish models. For example, in prior work, PCA has
proven to be remarkably efficient in producing high-value, low-order representation
of microstructures that are ideally suited to establishing P-S-P linkages in a broad
variety of material systems.

The last step of the workflow focuses on establishing and validating a reliable
and robust process-structure (P-S) or structure-property (S-P) linkage. This step
typically involves an iterative process of model selection. The first part of this
step requires establishing a model using a variety of machine learning techniques
ranging from simple regression to sophisticated M5 model trees and support
vector machines. It is important to recognize that the models developed are indeed
dependent on the available data. Therefore, the model itself can change as one adds
more data. Validation of the model established in this step is typically performed
using accuracy estimation methods. Cross-validation has been found to be quite
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effective in avoiding over-fitting of the data to the model. Data splitting is another
validation method in which each ensemble dataset is generally split into calibration
and test subsets. Data splitting was shown to be an effective technique, where
a collection of new validation data is avoided. In this step, a model selection
is accomplished iteratively based on the optimization of error parameters. Error
metrics therefore play an important role in the model selection process. Popular
choices have included various combinations and variants of the mean of absolute
error (MAE), the standard deviation of error (SDE), the coefficient of correlation
(R), and the explained variance (R2) [10–12, 19].

Once a physics guided data-driven model is obtained, a new data point, not in
the calibration dataset, is tested/validated. If the errors are not satisfactory, it is
important to identify the step contributing to the unreliable model to allow suitable
modification for the next iteration. For instance, one might select a different learning
algorithm or select/identify new features via different data reduction techniques.
The modular nature of the framework allows exploration of a number of machine
learning models in a highly computationally efficient manner to best capture the
phenomena being studied.

3 Application of the Material Agnostic Framework
to Different Material Systems

In this section, the data-driven, process- structure, and structure-property linkages
applied to materials are reviewed. Microstructure plays an important role in the
formulation of P-S-P linkages and requires a higher dimensional representation
compared to other input/output (i.e., process parameters, properties) variables. As
microstructure quantification and representation form the bedrock to the material
agnostic models, the section is focused on various quantification techniques to P-S
and S-P linkages for diverse material systems.

3.1 Composites

Recent advancements in the development of composite materials systems sparked
the use of such material system in turbine engines replacing heavy metals parts.
Arguably, performance of composites, mainly ceramic matrix composites (CMCs),
is largely affected by its internal microstructure. At the scale of the microstructure,
the characteristic response of CMCs depends on the heterogeneous distribution of
local constituents (i.e., fiber, coating, crack, voids, and matrix itself) as seen in
Fig. 4. Thus, the damage response is sensitive to the local microstructure within
a CMC. The material agnostic, data-driven framework is ideal for exploring the
microstructural variabilities and their effects on performance.
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Fig. 4 A CMC sample material illustrating microstructural features: fiber, coating, crack, voids
and matrix itself

Various methods have been applied to quantify the structure of random hetero-
geneous materials such as CMCs. Oda et al. developed several metrics for spherical
granules in a sample instead of fibers [20]. These metrics were derived from the
contacts between granules because it is at those points where forces are transmitted
under load. Fast et al. [21] characterized the microscale statistics of the filaments
in the fiber tow bundles based on topological and Euclidean metrics. As observed
here, the fibers naturally meander within and outside of tows during processing and
tend to run together as bundled fibers running in smooth parallel pathways relative
to each other. By focusing on how the fibers meander through the column in relation
to the other fibers in their neighborhood, Fast et al. were able to parameterize the
variation using metrics such as the changes in the neighborhood per unit distance
of the fibers such that the neighborhood here refers to the connecting vertices
of the Delaunay Triangulation where the positions of the fiber centers are at the
vertices. If the neighborhood of a fiber changes consistently, this indicates that
there is misalignment of a particular fiber relative to its surrounding neighborhood.
Sherman et al. [22] developed a continuous field quantity of chirality to quantify the
substructing of groups of fibers within fiber bundles as these groups of fibers on a
scale less than that of a fiber tow tended to twist in migrate through the volume in
relative unison.

Focusing on the characterization of stochastic textile composites at tow scale
(i.e., mesoscale), Bale et al. and Vanaerschot et al. [23] developed metrics based on
ellipses that were automatically fitted to fiber tow cross sections, with some manual
corrections, to describe variance in textile structure. This allowed for the study of
variability in each tow’s centroid coordinates, aspect ratio, area, and tow reinforce-
ment. Their method for gathered statistical information on tows is constructed so
that the data can be used to instantiate and simulate performance characteristics for
synthetically generated microstructures via micromechanical finite element analysis
needed to extract metamodels for their data-driven framework.
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The data-driven framework discussed here has been employed to study the effect
of fiber architecture on the transverse matrix cracking. Patel et al. [24] have utilized
two-point correlations to quantify the microstructure at submicron length scales
where the constituents (i.e., fiber, matrix, coating, fiber interfaces) are distinctly
identifiable. More specifically, the two-point spatial correlations are defined by

f
(
h, h′ |r ) = 1

S

S∑

s

mhs m
h′
s+r (1)

where r enumerates all possible discretized vectors that can be defined on the
adopted uniform grid size describing the microstructure volume. The variable mhi
is defined such that it is equal to one if the argument h belongs to the bin label i and
zero otherwise. The spatial correlation is defined as the conditional probability of
finding a local state h and h

′
at the head and tail, respectively, of a vector r arbitrarily

placed in microstructure. The local states considered for the study are fiber, coating,
and matrix. PCA was performed on the full set of two-point statistics to reduce the
dimensionality. In this case cited here, it was seen that the PCA efficiently reduced
the dimensionality from 107 to mere 5 to 10 basis vectors, capturing the ~99% of
variance (see Fig. 5) in the dataset.

This work illustrates the capabilities of machine learning the complex multipara-
metric interaction among the various microstructural features of SiC/SiC ceramic
composites leading to damage imitation. The machine learned parameter was then
employed to generate a probability map of transverse crack initiation as a function
of the fiber spacing in PC space.

More specifically, data-driven models were utilized to capture the effect of fiber
architecture on the transverse matrix-cracking tendencies. The approach applied
here included the calibration of the finite element response of several instantiated
classes of microstructures (see Fig. 6) via a neural network. The microstructures
and the FEA results (maximum principal stresses) were captured using a two-
point correlation and a two-parameter statistical Gumbel distribution (Fig. 7),
respectively.

Fig. 5 Illustration of the
individual variance of the
principal components
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Fig. 6 Microstructure classes generated using bivariate Gaussian distribution to obtain difference
in fiber spatial distribution

Fig. 7 (a) Top 1% of the maximum principal stress contours for a microstructure subjected to
transverse load. (b) PDF of the selected 1% extreme values of maximum principal stress. (c) Two-
parameter CDF of Gumbel distribution fitted to obtain PDF in b
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Fig. 8 (a) Microstructure classes delineated in the PC features space. Note Class B was not
included in the calibration process. (b) Probability predictions of cumulative damage (volume
percent of top 1% of pixels) at varying maximum principal stresses as a function of microstructural
features in principal component space using ML

Using a partial dataset for training and then predicting the rest, the feasibility of
using machine learning to predict the transverse cracking initiation probability for
a given microstructure was demonstrated. Further, by applying a failure criterion,
the trained machine learning model can be employed to generate probability map of
damage initiation as a function of the microstructural features, as shown in Fig. 8.

3.2 Polycrystalline Metallic Materials

Many metallic materials exhibit a crystalline phase. Local properties of crystalline
phases may not be considered isotropic. That is, local anisotropic, elastic-plastic
properties (i.e., effective modulus, yield strength, fatigue parameters) depend not
only on the phase but also on the ordered atomic orientation of lattice plane
described by Bunge-Euler angles, as shown in Fig. 9, for example, structural
materials exhibiting polycrystalline microstructures, where spatial distribution of
crystal lattice orientation at microscale plays an important role in controlling the
measured effective properties.

Local features for a generic class of polycrystalline metals may include descrip-
tors such as crystal symmetry, dislocation density, and chemical composition
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Fig. 9 A polycrystalline sample material illustrating a dominant microstructural feature, grain
orientation described by a set of Bunge-Euler angles

(among others). However, a prevalent feature for most polycrystals is the crystal
lattice orientation, g, which spans the orientation space. A primitive approach of
binning the orientation space leads to an inefficient representation, that is, a large
number of bins are needed to represent the orientation space.

As an alternative, generalized spherical harmonics functions are utilized as
an efficient, continuous Fourier basis for the computation of two-point spatial
correlations in polycrystalline materials [3, 11, 12, 25]. For a single phase, annealed,
polycrystalline material, the main local state of interest at the grain-scale is
the crystal lattice orientation. The corresponding local state space is simply the
orientation space. Based on the concepts discussed thus far, a simple approach to
addressing polycrystalline microstructures is to simply bin the fundamental zone of
orientation space. As a specific example, the fundamental zone of orientation space
for cubic crystals is expressed as

FZ =

⎧
⎪⎪⎨

⎪⎪⎩
g = (ϕ1,	, ϕ2)

∣∣∣∣∣∣∣∣

0 ≤ ϕ1 < 2π,

cos−1
(

cosϕ2√
1+cos2ϕ2

)
≤ 	 ≤ π

2 ,

and 0 ≤ ϕ2 ≤ π
4

⎫
⎪⎪⎬

⎪⎪⎭
(2)

In this approach, the microstructure function, which can now be expressed as

mhs = m(g, x) ≈
S∑

s=1

∑

μ,n,l

M
μn
ls

˙̇T μn∗l (g)χs (x) (3)

where ˙̇T μnl (g) denotes the symmetrized GSH functions for cubic-triclinic symmetry
(in this notation, the first symmetry refers to crystal symmetry and the second one
to the sample symmetry) and * denotes a complex conjugate. Mμn

ls are referred to
as the GSH coefficients. As a special case, when there is a single crystal of lattice
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orientation go in a spatial bin s, the corresponding GSH coefficients are simply given
by

M
μn
ls = (2l + 1) ˙̇T μn∗l (go) (4)

For simplicity of notation, we will simply map every distinct combination of
(l,μ, n) to a single index L in all of the ensuing equations. As a result of this
simplification, Mμn

ls will be henceforth denoted simply as ML
s . Extending the

concept above to the description of the two-point spatial (Eq. 1) correlations, the
orientations in the polycrystalline microstructure can be expressed as

f
(
g, g′∣∣ r

) ≈
∑

K

∑

L

S∑

t=1

FLKt
˙̇T L(g) ˙̇T K (g′)χt (r) (5)

As mentioned earlier, the set of two-point statistics yields a large and unwieldy
dataset. A lower dimensional representation can similarly be sought using PCA.
Over the past decade, numerous structure-property linkage studies are illustrated to
predict the bulk properties of polycrystalline microstructure using the framework.
Specifically, the framework leverages the comprehensive description of microstruc-
ture based on n-point correlations coupled with the data-driven framework. The
viability and advantages of the data-driven framework were demonstrated in the
prediction of the elastic and inelastic bulk properties of titanium polycrystals,
elastic strain fields in cubic and hexagonal poly-crystals, and high-cycle fatigue
predictions of fatigue indicator parameters (FIPs) for alpha-titanium polycrystalline
alloys within 2–5% prediction errors in comparison with the physics-based models
(see Fig. 10) [3].

Fig. 10 The simulated versus predicted fatigue indicator parameters, commonly referred to as
FIPs. (Taken from Paulson et al.)
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This data-driven framework has also been applied to polymeric materials as well.
In particular, the transport properties of porous microstructures used in fuel cell
applications were linked to the microstructural features of polymers, a gas diffusion
layer (GDL), and the microporous layers (MPL) [6]. It was clearly shown that
the diffusivity coefficient prediction from the data-driven model outperforms the
conventional semi-empirical correlations.

Further, the data-driven framework was applied to inverse design problems to
extract single crystal elastic-plastic properties of a polycrystalline sample. A data-
driven model was calibrated using a physics-based model of nanoindentation to
establish the relationship between the input parameters, that is, elastic constants,
yield strength, and hardening parameters on the indentation stress-strain response
[19, 26]. In particular, a functional dependence (i.e., calibrated model) of respective
elastic-plastic properties extracted from the indentation stress-strain curve on its
input parameters (e.g., elastic stiffness constants and initial slip resistance) was
established. An inverse protocol is formulated to extract the single crystal elastic-
plastic parameters from nanoindentation measurements. More specifically, a large
number of data points, i.e., indentation stress-strain curves, were accumulated from
the finite element model predictions for a wide range of material properties for cubic
polycrystalline metals covering a range of cubic anisotropy ratio, 0 < A < 8, as
shown in Fig. 11, over the fundamental zone as defined in Eq. 2 for a total of 2700
FE simulations.

The calibrated model was used to estimate the single crystal elastic stiffness
and slip resistance parameters for Fe-3%Si for which indentation measurements on
differently oriented single crystals were available from literature. The single crystal

Fig. 11 Three hundred distinct sets of independent elastic stiffness constants for cubic polycrys-
talline materials selected to calibrate the data-driven model. (see [26])
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elastic stiffness constants and the initial slip resistance parameters obtained using the
inverse solution approach were within 5% of the typical values reported in literature
for Fe-3%Si.

4 Challenges

The availability of data and the use of data-driven protocols allows us to objectively
quantify the uncertainty associated with the information gathered and knowledge
gained. The quantity of experimental data generated by a single material research
group is typically relatively small and may not be enough to tackle the engineering
material’s design problems.

This framework has been demonstrated on a variety of problems. Structure-
property relations were developed capable of the prediction of the extreme value
elastic stresses hypothesized to be associated with transverse crack formation at the
scale of the filaments in ceramic matrix composites. The elastic and inelastic bulk
properties of titanium polycrystals were predicted, including the elastic strain fields
in cubic and hexagonal polycrystals and high-cycle fatigue predictions of fatigue
indicator parameters (FIPs). The transport properties of porous microstructures used
in fuel cell applications were linked to the microstructural features of polymers.
Additionally, the framework has been applied to inverse design problems to extract
single crystal elastic-plastic properties of a polycrystalline metal.

The practical realization of the framework is only feasible with the accumulation
of substantially large libraries of materials data that capture the relevant multiscale
spatiotemporal information about materials internal structures for a very broad
class of materials. It is practically impossible for a single research group or an
organization to take on the monumental task given the information required. Further,
the domain expertise needed to mine and curate the materials knowledge needed to
accelerate the material development of new and improved materials lie well outside
the traditional skill sets of materials scientists and engineers. Currently, the materials
community does not have the skill set needed to fully enable the materials data
science revolution. Hence, an intimate collaboration of teams with specific domain
knowledge are needed to facilitate the ICME approach.

5 Summary

A novel workflow template is presented to extract process-structure linkages in
microstructure evolution problems through the utilization of advanced data science
techniques. The presented workflow is scalable, expandable, and can be applied
to a broad variety of microstructure evolution datasets. This workflow consists of
four modular steps: (1) data preprocessing, (2) microstructure quantification, (3)
dimensionality reduction, and (4) extraction and validation of process-structure
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linkages. Each step of the workflow allows selection and utilization of readily
accessible codes from a large library of repositories.

Emerging toolsets in materials data science and informatics have demonstrated
tremendous promise in addressing some of the key challenges in materials engi-
neering. It is now possible to generate a large ensemble of datasets (inputs and
outputs) from a simulation toolset and publicly share these with the broader
scientific community in an open access data repository. Once this is accomplished,
it is possible to engage the broader scientific community in the extraction of the
embedded knowledge of these datasets. If this activity is guided in a suitable
framework for P-S-P, it could lead to an accelerated and robust curation of the
knowledge, while simultaneously ensuring the highest levels of access, sharing, and
dissemination for reuse.
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Multiscale Modeling of Epoxies and
Epoxy-Based Composites

Xiawa Wu and Jaafar A. El-Awady

1 Introduction

Epoxies are thermoset polymers with highly cross-linked molecular structures
[1]. They are synthesized in a curing process, which involves chemical reactions
between epoxy resins with or without curing agents [2]. Cured epoxies are typically
characterized by their high elastic modulus, mechanical strength, thermal stability,
electrical and chemical resistance, and a strong adhesion to other solid surfaces.
Thus, epoxies are often used as adhesives, coatings, and matrix phases in fiber-
reinforced composites for a wide range of industrial applications [3].

Epoxy resins usually have low molecular weight and weak thermal and mechan-
ical properties. The curing process transforms the epoxy resins into a three-
dimensional network with improved macroscale properties [4]. Some major factors
that affect the curing process include the combination of epoxy resins and curing
agents, the curing temperature and pressure, the cooling rate, and the presence
of other materials, such as fiber reinforcements or nanoparticles [3, 5–11]. Many
experimental studies (e.g., [12–16]) have aimed to quantify the structural, thermal
(e.g., glass transition temperature, thermal conductivity, and the coefficient of
thermal expansion), and mechanical (e.g., elastic modulus, mechanical strength,
strain to failure, and failure modes) properties of different epoxy systems. In
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addition, experimentally, the structure of bulk epoxies has been characterized using
measurements such as material density, degree of cross-linking, averaged length
between cross-linking sites, and distribution of free volume holes (e.g., [8, 17–19]).
However, such measurements provide average quantities and do not give precise
characterization of the local molecular structure, which is sometimes needed to
establish fundamental structure-property relationships [20, 21]. This is particularly
important when characterizing the interphase regions in epoxy-based composites.
These regions are of significant importance since they exhibit strong structural and
chemical variations within a relatively small volume and these variations greatly
influence the performance of the overall composites [8, 22]. Furthermore, while
scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
techniques can be used to analyze the distribution of fibers within the epoxy matrix
and they have an adequate resolution to identify whether there are cracks at the
fiber/matrix interface [23], a direct experimental measurement of the local molecular
structure of the epoxy or the strength at the fiber/epoxy interface is still lacking.

On the other hand, simulations of the epoxy curing process are generally
simplified by only including the material constituents to create a neat cross-linked
network [24–26]. Such simulations are usually based on fully atomistic molecular
dynamics (MD) simulations with inputs from either density functional theory (DFT)
to calculate the chemical reactions during curing [27] or by utilizing reactive force
fields to create a cross-linked epoxy structure [28, 29]. Additionally, MD simulations
can also be utilized to provide an atomic level understanding of the local variations
of the molecular structure and properties in the bulk epoxy or near/at interface
regions as well as provide an avenue to establish structure-property relationships
for epoxies [23]. The main challenge for such atomistic-based simulations is
that the material properties do not directly match the experimentally measured
macroscale properties [30], which can be attributed to the small length and time
scales probed in the simulations [31]. On the opposite end of length scales, the
finite element method (FEM) is often used to predict the mechanical properties and
deformation/failure of epoxy and epoxy-based composites at the macroscale [32–
35]. In conventional FEM, the material parameters and the constitutive rules are
typically based on empirical observations coming from experimental measurements.
Thus, these simulations lack information from small scales, such as the variations
in local molecular structure and properties (e.g., in the interphase region). One of
the promising approaches to overcome some of the limitations of MD and FEM
simulations and to bridge between them is coarse-grained (CG) methods.

All in all, the study of epoxies and epoxy-based composites is motivated by their
advanced properties and applications. In order to achieve desirable properties of
epoxies, the relationships between the curing process (in bulk and at interphase)
and their molecular structure, as well as their thermal and mechanical properties,
need to be established. If these process-structure-property relationships were well
established, one would be able to create different epoxy systems and probe their
properties effectively and efficiently. Current experimental investigations alone
can hardly reveal the structure-property relationships in epoxy systems. Thus,
simulation methods, especially multiscale simulations, are in need of development.
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This also highlights the need to develop a multiscale modeling approach in which
information is upscaled from the appropriate length scale to the next one, either
hieratically or concurrently, to better predict the deformation and failure of epoxies
and composites. This would provide a promising avenue to greatly accelerate the
design of advanced epoxy-based materials.

While a number of comprehensive review articles on epoxies and epoxy-based
composites have been published in the last 10 years [36–38], there is still a
lack of a comprehensive review focused on multiscale epoxy modeling efforts.
Thus, in this chapter, recent research on multiscale simulations of epoxies and
epoxy-based composites are discussed. In Sect. 2, common simulation methods are
briefly discussed for the purpose of outlining the building blocks of a multiscale
framework. In Sect. 3, various models that predicte the molecular structure and
thermomechanical properties of epoxies are reviewed. The majority of studies
discussed in this paper are on two of the most common epoxies, diglycidyl ether
of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF). The
properties of epoxy-based composites, coatings, and adhesives are then discussed
in Sect. 4. Finally, a summary and conclusions are given in Sect. 5.

2 Overview of Multiscale Simulation Methods for Epoxies

2.1 Molecular Dynamics Simulation

Molecular dynamics simulations are based on modeling many-body dynamics at
the atomic scale using Newton’s second law. Atomic structures and force fields are
two important inputs for an MD simulation, and both can be obtained from DFT
calculations.

The commonly used force fields in classical MD simulations include CVFF,
PCFF, COMPASS, Dreiding, and other modified and mixed potentials [16, 39, 40].
Many studies have been performed using classical (nonreactive force fields) MD
simulations to explore the molecular topology, degree of cross-linking, water
absorption, strain rate, temperature, and effects of force fields on the density,
modulus, fracture, glass transition temperature, and coefficient of thermal expansion
of various epoxy systems [16, 31, 40–49]. In these simulations, nonreactive force
fields are utilized, and bonds are created or broken based on criterion upscaled
from DFT simulations. In addition, reactive force fields (i.e., ReaxFF) are also
widely used when the chemical reactions are of interest in the epoxy simulations
[28, 29, 50]. Different types of force fields used in various epoxy studies are listed
in Table 1.

The MD simulations can typically model epoxy systems that are up to tens of
nanometers in edge lengths and reach time scales of up to a few nanoseconds. As
the examples in Table 1 show, the size of the MD simulation cells often consists of
few hundreds of combined prepolymer and curing agents, and a simulation system
that is larger than a few thousand molecules is rare due to the high computational
cost demands associated with such simulations.
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Table 1 Summary of different MD (including the force field method used) and CG-MD simu-
lations of DGEBA and DGEBF epoxy systems alongside the number of prepolymers and curing
agents. The size column is expressed in terms of (# prepolymers, # curing agents)

Epoxy system Method and force field Size Refs

DGEBF+DETDA MD+CVFF (128, 64) [51]

DGEBF+DETDA MD+Dreiding (256, 128) [31]

DGEBF+DETDA MD+OPLS (432, 216) [49]

DGEBF+DETDA MD+ReaxFF (72, 36) [28]

DGEBF+DETDA MD+COMPASS na [41]

DGEBF+DETA MD+ReaxFF (1120, 920) [50]

DGEBA+DETDA MD+ReaxFF na [29]

DGEBA+DETA MD+COMPASS (100, 40) [42]

DGEBA+DETA CG-MD (325, 150) [52]

DGEBA+IPD MD+Dreiding+COMPASS (16, 8) [40]

DGEBA+IPD MD+ReaxFF na [29]

DGEBA+IPD MD+PCFF na [44]

DGEBA+T403 MD+ReaxFF na [29]

DGEBA+33DDS MD+Dreiding (1024, 512) [16]

DGEBA+MDA MD+COMPASS (492, 246) [45]

DGEBA+DAB CG-MD (3888, 1944) [27]

One of the main applications of MD simulation in multiscale modeling is the
modeling of the curing process and to study the epoxy system’s response under
different thermomechanical loading conditions. Generally, thermosets have been
less studied compared to thermoplastics partly due to the difficulty of constructing
a 3D structure having a high degree of cross-linking. Nevertheless, the rapid
developments in molecular modeling and computing power in the last 10 years
enabled all-atom studies of thermoset materials.

In addition to modeling neat epoxy systems, MD simulations were also used
to investigate nanocomposites that consist of a single reinforcement nanoparticle
and its surrounding epoxy matrix. Such simulations have been used to investigate
interfacial bonding and damage initiation in carbon nanotube (CNT)/epoxy [53],
SiO2/epoxy [54], and graphene/epoxy [55] nanocomposites. Some MD simulations
of epoxies were also integrated with higher length/time scale models to enable
comparison to experiments. As an example, MD simulations and a homogenization-
based continuum model were used to predict the stress-strain behavior of epoxy
nanocomposites [22, 56], while combined MD and FEM simulations were used to
study the alumina/epoxy nanocomposites’ mechanical properties [57].

Similar to nanocomposite simulations, epoxy coating/substrate systems have
also been commonly studied using MD simulation. Examples include studying
the deformation and failure mechanisms of Cu/epoxy bi-materials [58], predicting
interfacial bonding between carbon steel and epoxy systems [59], simulating
fracture and adhesive properties of epoxy/solid wall systems [60], modeling epoxy
coating on inorganic substrate [39], and investigating silica/epoxy interface with the
presence of water molecules [61].
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2.2 Coarse-Grained Molecular Dynamics Methods

One of the most commonly used length/time scale bridging methods for epoxy
simulations is coarse-grained molecular dynamics simulations (CG-MD). Gener-
ally, there are two steps in developing a CG-MD model for epoxies. The first
step is to map groups of atoms into coarser particles, commonly known as super-
atoms, and the second step is to define the interactions between these coarse
particles [62]. It should be noted that the individual atoms grouped into super-
atoms typically have much less significant motion with respect to each other as
compared to the whole molecule. In addition, the interactions between super-atoms
are modeled by spring-like bonds, as well as angular and torsional potentials
that properly average the high-frequency internal degrees of freedom of the
molecules.

The CG-MD simulations are roughly two orders of magnitude faster than all-
atom MD simulations [63]. Thus, CG-MD simulations can model time scales of
up to microseconds depending on the degree of coarse-graining implemented [62].
Additionally, a CG-MD model can include thousands of prepolymers and curing
agents.

The highest level of coarsening reduces a single polymer chain into one “CG”
bead. However, this is not popular for epoxy modeling due to the loss of major
details of the epoxy structures (e.g., the lengths of monomers), which can strongly
influence the epoxy response. The lowest level of coarsening usually involves
grouping hydrogen with other atoms to create united-atom force fields. One such
low-level CG method that has been used in literature to simulate epoxy behavior is
the OPLS united-atom force field method [49, 55]. In this method, CH3, CH2, CH,
and alkyl groups were grouped into single united atoms [49].

In mid-level epoxy CG methods, a few non-hydrogen atoms are also grouped
into a single super-atom. An example of coarsening a DGEBA monomer based
on its full atomic structure is shown in Fig. 1. This mid-level CG model was used
by Aramoon et al. to study the curing structure evolution and thermal properties
of a DGEBA epoxy [27, 64]. Other examples for the utilization of mid-level CG
models include creating high degree of cross-linked epoxy systems using a dynamic
curing process with very long bonds [65]; studying the failure mechanism of general
thermoset and thermoplastic materials [30]; coarse-graining EPN-3mer, EPN-4mer,
and BPA molecules and predicting various thermomechanical properties including
their tensile failure [66, 67]; studying the cross-linking process of an epoxy under
Couette and Poiseuille flow conditions [68]; studying the interfacial failure and
microstructural evolution at interphase in epoxy/Cu [69] and epoxy/rigid walls
[62, 70] systems; as well as studying the glass transition temperature [52, 64].
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Fig. 1 CG mapping between an all-atom structure of a DGEBA monomer and coarse particles
[27]

2.3 Finite Element Method

FEM simulations are based on numerically solving conservation laws expressed in
terms of the material constitutive laws to predict the material continuum response.
The advantage of FEM simulations in epoxy studies is that it can explicitly model
a large length scale of epoxy-based composites, with detailed description of the
reinforcement fiber size, shape, orientation, distribution, and their interactions with
the epoxy matrix [71–74]. Commercial FEM packages, such as ABAQUS (Dassault
Systemes, 2016 [75]), offer a number of material models to describe the elastic
and plastic deformation, as well as brittle and ductile failure of bulk epoxies. The
cohesive zone element model is also commonly utilized to simulate fracture and
delamination at the interface region between the fiber and matrix [76–78]. However,
the material parameters that are used as inputs to FEM models highly depend on
experimental measurements. As discussed in Sect. 1, current experimental methods
are limited in measuring small-scale structures and properties, and it is a common
practice to assign homogeneous properties for the polymer matrix across the
simulation volume with a damage model that does not account for the effect of
local variations in the molecular structure or the multiscale damage mechanisms
of epoxies [79, 80]. Furthermore, this approach ignores the differences between
the molecular structure of the matrix and the interphase region, which can be
substantially different.

In literature, a number of multiscale simulations combining MD and FEM
models have been proposed to study epoxy-based nanocomposites/composites. For
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example, Mortazavi et al. studied graphene reinforced DGEBA epoxy composites
to understand their thermal conduction and dependence on geometry and volume
fraction of the fiber reinforcements [55, 74]. Subramanian et al. simulated the
damage and fracture of CNT/epoxy nanocomposites using MD and FEM models
[53]. In these studies, the MD simulation predictions were upscaled into FEM
simulations to develop homogenized properties based on microscale representative
volume elements (RVEs). Additionally, Choi et al. studied the size effects of carbon
nanotubes in SWNT/epoxy systems using a combined MD/FEM model [81]. In
this approach, the interphase geometric boundaries and mechanical response were
predicted from FEM through matching of homogenization and deformation energy
from MD simulations [82].

It should be noted that the MD and FEM models are at the nano- and microscales,
respectively; thus, there is a need for developing homogenization methods to bridge
the length-scale gap between both models. The CG-MD models provide such an
approach. Since CG-MD models can simulate large-scale domains (i.e., up to
the microscale), it is feasible to explicitly simulate the fiber/matrix regions with
dynamically created CG epoxy structures, and the resulting material properties can
be directly upscaled to FEM models, which will enable a one-way information flow.
In particular, CG-based bridging methods can be beneficial to epoxy and epoxy-
based composite modeling.

3 Multiscale Simulations of Epoxies and Their Properties

3.1 Modeling the Curing Process of Epoxies

A first step in any epoxy molecular modeling simulation is to create a structure that
represents a true epoxy material. Many simulations have been devoted to simulate
the dynamic curing process of highly cross-linked epoxies [27, 40, 65, 83, 84]. The
creation of an epoxy system is highly dependent on the epoxy resin, the cross-
linker, and the force field employed to describe the system dynamics. Generally, a
mixture of monomers and curing agents are placed in a simulation cell with periodic
boundary conditions in all directions. The functional groups on the prepolymers
are allowed to form covalent bonds according to a pre-defined distance-based bond
creation rule [85]. The cross-linking process is considered complete when a certain
degree of conversion is achieved or there are no more bonds to create in the system.
This general curing process is adopted in both MD and CG simulations with a few
modifications to achieve a good epoxy structures. The main modification occurs
in the cross-linking step. Wu and Xu [40] developed an algorithm that employed
repeated MD and molecular mechanics (MM) simulation steps during the curing
process and were able to achieve an epoxy network with conversion up to 93.7%
with less computing time and much flexibility. Additionally, Varshney et al. [51]
proposed a multistep robust procedure that includes a relaxation period during the
polymer network buildup and noted that the relaxation time between each step of
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Table 2 Different epoxy systems (system), the highest achieved degree of cross-linking (CL), the
material density at room temperature (density), volume shrinkage (VS), and gel point (GP) from
various MD and CG-MD simulations

System CL (%) Density (g/cm3) VS (%) GP (%) Refs.

DGEBF+DETDA 95 1.12 7 60–65 [51]

DGEBF+DETDA 86 1.13 na 60–70 [31]

DGEBF+DETDA 76 1.21 12 na [49]

DGEBF+DETDA 85 1.2 na na [28]

DGEBF+DETDA 90 1.2 na na [41, 87]

DGEBA+DETDA 84 1.159 na na [29]

DGEBA+DETA 81 1.15 na na [42]

DGEBA+DETA 72 1.10 na na [52]

DGEBA+IPD 93.7 1.116 na na [40]

DGEBA+IPD 82 1.147 na na [29]

DGEBA+IPD 92 1.13 5–7 60–80 [44]

DGEBA+T403 72 1.155 na na [29]

DGEBA+33DDS 85 1.17 14 65–70 [16]

DGEBA+DAB 95 1.16 5 65–70 [27]

creating new bonds helps to create an epoxy with a high degree of cross-linking and
good structure stability.

To reach a high degree of cross-linking in CG-MD simulations millions of
simulation time steps are usually required, and for degrees of cross-linking higher
than 80%, the mobility of the curing agents rapidly decreases due to trapping by
the formation of the 3D network, which can as well inhibit the simulation from
reaching the desired degree of cross-linking in a realistic simulation time [27].
Table 2 summarizes the degree of cross-linking in different simulation studies for
reference. Thus, to reduce computational cost in a large CG-MD simulation domain,
Aramoon et al. developed a new curing algorithm that can reach high degrees of
cross-linking faster than traditional ones and creates a more uniformly cross-linked
epoxy structure [27]. In this new approach, groups of partially cross-linked chains
with random lengths from 3 to 6 monomers were used as prepolymers, and they were
mixed with curing agents in a simulation cell. During the curing process, curing
agents were actively redistributed to sub-volumes where high reactive monomers
exist. The rate of curing in local areas was actively controlled based on the local
degree of cross-linking. This algorithm design ensures a cross-linked network with
a uniform degree of cross-linking can be achieved in a relatively short amount of
simulation time.

Figure 2a shows the degree of cross-linking reached as a function of the
number of simulation time steps as predicted using this new curing model for
a DGEBA/DAB system containing 5,832 super-atoms in a 75 nm periodic cube
simulation cell [27]. This new curing algorithm can reach a higher degree of
cross-linking (∼95%) compared to the traditional curing method after 1 million
simulation steps. An additional benefit of this new curing algorithm is that a uniform
degree of cross-linking was achieved throughout the simulation domain, which also
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Fig. 2 (a) Comparison between the degree of cross-linking as a function of the number of
simulation time steps as predicted from a traditional algorithm [40] and the curing algorithm
proposed by [27]. (b) Comparison of the uniformity of cross-linking in CG simulation domains
at different steps, as indicated in (a). (Reprint with permission from [27])
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contributes to the stability of the cured structure [27]. Figure 2b shows the epoxy
structure created using the new curing algorithm (right column) has a more uniform
degree of cross-linking than the ones created using the traditional method (left
column).

The degree of cross-linking is a well-controlled parameter in a simulated curing
process. Theoretically this value can be quantitatively compared to experiments.
However, the lack of experimental evaluation of the molecular structure of epoxies
has led to uncertainties in how well a constructed atomistic model represents the
true material structure. Accordingly, the molecular structure produced from curing
simulations is indirectly validated by computing other properties as discussed in the
following subsections.

3.2 Epoxy Density and Volume Shrinkage

Table 2 shows a summary of three common structural properties used to validate the
molecular structures predicted from MD and CG-MD simulations. As an example,
the predicted density of DGEBF systems is commonly in the range of 1.12–
1.21 g/cm3, while that for DGEBA systems is in the range of 1.1–1.169 g/cm3.
The variation in the predicted density is a result of the different curing agents and
force fields used (see Table 1), as well as the degrees of cross-linking reached (see
Table 2). These predicted values are qualitatively in agreement with experimental
measurements, which are in the range of 1.111–1.142 g/cm3 for the DGEBA
systems with different curing agents [86]. Generally speaking, the error in the
molecular-based simulation-predicted densities versus the experimental measured
ones for various DGEBA based-epoxies is in the range of 1.0–5.3%.

An exact agreement between experiments and simulation is hard to achieve due
to the following: (1) the force fields used in most simulation are generic polymer
potentials without specific tailoring to the simulated system and, thus, may introduce
systematic errors in describing the atomic interactions in the material; (2) the
simulated volume is small, and the curing process in the simulations is significantly
simplified as compared to experiments; and (3) the epoxy density is a function of
the degree of cross-linking, and the difference between the conversion degree of a
simulation system (72–95% conversion) and real materials (usually considered to
be close to 100% conversion) can also contribute to the differences between the
predicted and measured densities.

In addition to the static density of the cured epoxy at room temperature, the
dynamic change of density, i.e., volume shrinkage, during the curing process is
also commonly used to validate the accuracy of the predicted molecular structure.
Figure 3a shows a linear relationship between volume and the degree of conversion
from a CG-MD simulation of DGEBA/DAB epoxy [27]. The predicted volume
shrinkage from some MD and CG-MD simulations is also summarized in Table 2. A
volume shrinkage of 5–12% is typically predicted for different epoxy systems [39].

It should be noted that the slope of the volume shrinkage is a function of the
curing temperature [83]. Additionally, the volume shrinkage often causes internal
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Fig. 3 Coarse-grained MD simulation predictions of the curing process of a DGEBA/DAB
system: (a) volume change versus the degree of cross-linking (a 5% volume shrinkage is predicted
when the degree of cross-linking reaches 95%) and (b) molecular mass buildup versus the cure
conversion. The shaded area in (b) represents the range of gel point from experiments, and the
dashed line indicates the theoretical value. (Reprint with permission from [27])

residual stresses and interfacial stresses when the epoxy is in contact with solid
surfaces [39], which may lead to performance issues for epoxy coatings, adhesives,
and composites. Thus, it is desired that the volume shrinkage be kept at minimum
by choosing a lower curing temperature or a smaller degree of conversion.

Gel point is another structure property that measures the molecular weight of
the largest molecule during a curing process. The gel point can be experimentally
measured using dynamic mechanical analysis (DMA), and some simulation studies
report it for the purpose of validating the simulations. Figure 3b shows a profile
of the molecular mass of the largest DGEBA polymer increasing with the degree
of cross-linking in a CG-MD study of a DGEBA/DAB system. The molecular
mass rapidly increases during 65–70% conversion, and the calculated gel point is
around 67%, which is in agreement with the experimental measurements that are in
the range of 50–80% and the theoretical prediction of 58% [27]. Some additional
measurements of the gel point from different simulations are also summarized in
Table 2, and they are in a 60–80% range.

3.3 Glass Transition Temperature

The glass transition temperature, Tg , is directly linked to the chemical composition
and the degree of cross-linking of a polymer. In epoxy simulations, Tg is often used
as a validation characteristic to tune the developed models, since its experimental
value is reported in literature for a wide range of polymers. Figure 4a shows
the specific volume versus temperature as predicted from CG-MD simulation of
DGEBA/DAB epoxy with 85% degree of cross-linking [27]. Two straight lines were
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Table 3 The glass transition
temperature, Tg , and elastic
modulus, E, as predicted for
different degrees of
cross-linking (CL) from
different molecular-based
simulations

System CL (%) Tg (◦C) E (GPa) Refs

DGEBF+DETDA 95 105 na [51]

DGEBF+DETDA 86 172 2.8–3.2 [31]

DGEBF+DETDA 76 151.2 2.258 [49]

DGEBF+DETDA 100 109 na [24]

DGEBF+DETDA na na 2.76 [88]

DGEBF+DETDA na na 2.46 [89]

DGEBF+DETDA 90 113–161 2.5 [41, 87]

DGEBA+DETDA 90 177–190 5.5–8.5 [90]

DGEBA+DETA 72 87 1.10 [52]

DGEBA+DETA 81 na 3.82 [42]

DGEBA+IPD 82 153 3.0–3.4 [29]

DGEBA+IPD 93.7 na 5.198 [40]

DGEBA+IPD 92 107 2.953 [44]

DGEBA+T403 72 88 3.7–4.7 [29]

DGEBA+T403 na 96 2.88 [91]

DGEBA+33DDS 85 242 1.3 [16]

DGEBA+DAB 95 116 na [27]

fitted for the low- and high-temperature regions in the calculated specific volume
and temperature profile. The cross point of the two lines indicate the predicted
Tg value. Table 3 summarizes the predicted Tg and elastic modulus of various
epoxy systems and their corresponding degrees of cross-linking. The experimentally
measured Tg for DGEBA systems is in the range of 110–155 ◦C, which is in
agreement with simulation predictions [86].
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It should be noted that Tg is strongly dependent on many factors, including the
degree of cross-linking, curing temperature, length of the monomers, the size of the
simulation system, cooling rate, etc. [83]. Many simulation studies report that Tg
increases with increasing degree of conversion, which can be attributed to the high
degree of cross-linking in the epoxy that leads to lower mobility for the molecular
chains, leading to a stable epoxy network [31, 49, 54, 84]. Figure 4b shows the
dependence of Tg on the conversion degree for two epoxy systems. As most epoxies
are cured to high conversion degrees, a slight difference in degree of cross-linking
may cause a big variation in the predicted Tg .

3.4 Free Volume Distribution

Free volume (FV) holes are defined as the empty volume between polymer
chains, and the size of FV holes is related to the connectivity and mobility of
the surrounding molecules. Positron annihilation lifetime spectroscopy (PALS) is
commonly used to experimentally measure the size distribution of FV holes in a
polymer material [92, 93]. The drawback of PALS experiments is that it measures
averaged values over large volumes and lacks the resolution to characterize local
material structure (e.g., the interphase region). On the other hand, MD and CG-MD
models can capture both the average material property and local distributions.

To validate the molecular structure predicted from CG-MD simulations,
Aramoon et al. developed a computational algorithm to measure FV distribution
using spherical or ellipsoidal shapes fitted to the empty volumes between connected
epoxy molecules [64]. Figure 5 shows the predicted probability distribution
function of FV in DGEBA/DAB at different pressures as predicted from CG-
MD simulations [94] and those from PALS experiments [95]. These results indicate

Fig. 5 The probability
distribution function (PDF) of
FV holes as computed from
PALS experiments and
predicted from CG-MD
simulations at different
pressuress (P) [94]
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a good agreement between the CG-MD simulations and PALS measurements. The
simulations also show that the average FV radius and the standard deviation of the
FV distribution both decrease with increasing pressure. However, it should be noted
that the predicted average FV radius from the CG-MD simulations is larger than the
experimental values under all conditions. This can be attributed to the way the FV is
predicted in the simulations as compared to the experiments. The PALS experiments
measure the annihilation time of orthopositronium (o-Ps) particles created by the
reaction of positrons and electron cloud of the surrounding atoms [96], while in
the simulations the FVs are calculated by fitting the largest ellipsoids in the empty
space and reaching the surface of surrounding atoms without considering the effects
of the electron cloud. Thus, simulation predictions are systemically larger than
experiments.

Because FV holes are sensitive to temperature and pressure, it can be cor-
related to the polymer properties that are temperature and pressure dependent.
Aramoon et al. predicted the Tg for different degrees of cross-linking and pre-
polymer lengths based on the calculated FV distributions obtained from CG-MD
simulations of DGEBA epoxies [64]. Figure 6a shows the density ρ and the average
radius of FV holes, �, as functions of temperature for a 85% cured DGEBA/DAB
system as predicted from those simulations. The sharp turns observed in density,
ρ, and in the average FV hole radius, �, both coincide with the same predicted
glass transition temperature. While conventionally Tg is measured according to the

Fig. 6 (a) The density (left axis) and average FV radius (right axis) as a function of temperature
as predicted from CG-MD simulations of a DGEBA/DAB system having an initial length of 5
monomers, a degree of cross-linking of 85%, and a pressure of 0 kbar. The sharp turns observed
in the density and in the average FV hole radius curves both coincide with the same predicted
glass transition temperature. (b) Effects of prepolymer length, the degree of cross-linking, and the
average volume of free volume holes (χ) on the predicted glass transition temperature. Results
labeled by black circles and red squares are calculated using a 85% cross-linking system and
a 5-monomer system, respectively. Both systems are measured under 0 pressure. (Reprint with
permission from [64])
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changes in density or specific volume, Fig. 6a demonstrates that the average FV
radius can also be used to calculate Tg in CG-MD simulations [64].

Figure 6b also shows the effect of the average FV hole volume, degree of cross-
linking, and length of prepolymers on the predicted Tg . The average volume of
FV holes, χ , decreases with the increase in the degree of cross-linking and an
increase of prepolymer length. For smaller average volumes of FV holes, the Tg
becomes higher, which indicates a low mobility of the polymer chains and a more
stable molecular structure. An analytical predictive model was also developed from
CG-MD simulations, and the model was shown to be able to predict Tg based
only on the initial FV distribution that is calculated from simulations or measured
experimentally [64].

3.5 Elastic Modulus

Two approaches are commonly used to calculate the elastic modulus from
molecular-scale simulations [40]. In the first approach, molecular mechanics (MM),
which is a static method, is used to predict the elastic tensor of epoxies [40, 42]. In
this approach, the predicted elastic tensor is usually non-symmetric, and non-zero
off-diagonal components are common due to the fact that the simulated system
has relatively small dimensions to be considered a perfect isotropic material. This
method was employed by Wu and Xu [40] to predict the bulk, elastic, and shear
modulus of DGEBA/IPD epoxies, which were 15% higher than experimental
predictions. This discrepancy is systematically observed between MM simulations
and experiments. It is attributed to the ideally constructed epoxy structure and the
chosen force field in the MM simulations. In the second approach, the epoxy moduli
in different directions can be predicted from MD simulations. As summarized in
Table 3, the elastic modulus of DGEBF systems as predicted from MD simulations
is in the range of 2.258–3.2 GPa, and that of DGEBA systems is in the range of
1.10–8.5 GPa, which are in reasonable agreement with experimental measurements
that are in the range of 2.34–3.1 GPa [5, 86].

It should be noted that there are conflicting reports in literature on the effect of
the high strain rate imposed in MD simulations on the predicted elastic modulus
[28, 31, 45, 83]. Moller et al. showed a log-linear dependence of the elastic modulus
and yield strength on strain rate in an MD simulation of DGEBA [45]. Odegard
et al. also showed that the elastic properties are over predicted in MD simulations
due to the high strain rate discrepancy between simulation and experiments [28].
On the contrary, Li and Strachan indicate that in various thermoset systems, the
elastic modulus is insensitive to strain rate, while the yield strength was strongly
affected by it [83]. They argue that this is mainly due to the short relaxation time
required for solid materials to relax in a small deformation region. Because of such
conflicting reports on the effects of strain rate on the elastic response of epoxies,
further research is needed on this topic. Nevertheless, the effect of strain rate usually
plays a more important role in large deformation of epoxies [97].
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Fig. 7 Elastic modulus and yield stress, in compression (Ec, σt ) and tension (Et , σt ) as a function
of degree of cross-linking and temperature. (Reprint with permission from [44])

The elastic properties are also strongly correlated to the degree of cross-linking.
Bandyopadhyay et al. predicted that the elastic mechanical properties increase
with the increase in the degree of cross-linking for a DGEBF/DETDA system
[49]. A similar trend was also observed for DGEBA/IPD systems [22, 44, 57] and
DGEBF/TETA systems [22]. Bandyopadhyay et al. proposed that there exists a
threshold in the degree of cross-linking, beyond which elastic property of epoxy has
minimal effects. In their system the threshold was at 63% degree of cross-linking.
Fu et al. also showed a slowed increment in modulus change at high degree of cross-
linking as compared to lower degrees of cross-linking, as shown in Fig. 7.

3.6 Failure Properties

An MD simulation-predicted stress-strain curve in large deformation of an Epon
825 epoxy under tension loading is shown in Fig. 8. The stress-strain curve can be
divided into three regimes before the failure point. This is a representative stress-
strain curve from MD and CG-MD simulations of epoxies, with the extent of each
regime changing depending on the epoxy system modeled, temperature, and strain
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Fig. 8 A stress-strain curve
of epoxy Epon 825 using a
MD model. (Reprint with
permission from [47])

rate imposed. In the first regime is an initial elastic deformation region, where stress
arises mainly from Lennard-Jones attractive forces. In the second regime is a plateau
regime, i.e., plastic flow, where stress is mostly constant over a range of strains.
Here, the compact packed molecules are stretched in the deformation direction until
they are mostly taut. Finally, in the third regime, strain hardening is induced by the
stretch in covalent bonds. Covalent bonds start to break near the end of this stage and
ultimately lead to the failure of the epoxy, which is indicated by the rapid decreasing
stress at the end of the stress-strain curve [31, 45, 47].

It should be noted that to model fracture in large deformation from MD and
CG-MD simulations, realistic bond breaking criteria should be upscaled from
DFT simulations. For example, Barr et al. created a hybrid DFT/MM concurrent
multiscale model to simulate bond breaking events in epoxy without predetermined
bond breaking sites [98]. An alternative way of determining bond breaking sites
is to use reactive MD methods such as ReaxFF force field [28, 47]. Furthermore,
MD simulations indicate that the bonds around cross-linking sites are the ones most
likely to break under deformation [45, 46, 62, 98].

It is important to note that both MD and CG-MD simulations generally show an
extended plastic deformation and ductile failure for epoxies a [30, 31, 45, 47, 98],
which is very different from the brittle failure mode observed in experiments
(tensile failure strain is typically less than 7%) [86, 99, 100]. To explain this, Li
et al. attributed the over 100% strain required for local failure of an epoxy system
in MD simulations to the small simulation cell size and small time steps in the
simulations [31]. On the other hand, Koo et al. proposed that the temperature caused
rapid re-equilibrium of the deformation structure, which leads to the observed
plastic flow and strain hardening stages. They conduct an MD study to deform a
DGEBF/DETA system at absolute zero temperature to eliminate the temperature
effect and predicted a stress-strain profile of an epoxy system with a yield strain
below 10% and no strain hardening phase [50]. They further took strain rate effect
into consideration and predicted a brittle failure of CNT/epoxy composites at near
zero temperature and a high strain rate using RVE methods [53]. However, Tsige
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and Stevens [60] argued that their molecular models were fully flexible (there is no
stiffness of the strands), which allows for a higher packing density of the strands
than in a realistic material, which explained the large strain of failure.

On the other hand, Wu et al. attributed the discrepancies between MD and CG-
MD simulations with experiments to the frequency at which bonds are checked if
they satisfy the bond breaking criterion or not and the percentage of bonds that are
allowed to break during a given time step in the simulations [101]. They have shown
that with increasing bond breaking percentage and bond checking frequency in the
simulations, a more realistic response is achieved. However, performing the bond
breaking checking every time step adds a significant computational cost in large
simulations [101]. Additionally, at any given time step, if a large number of bonds
that satisfy the bond breaking criteria are all allowed to break, then a large amount
of energy would be instantaneously released into the system leading to an instability
in the simulations [101]. Thus, overcoming these issues is important for predicting
realistic responses of epoxies at high strain levels.

4 Multiscale Simulations of Epoxy Interfacial Properties

The advantages of using a multiscale simulations approach are demonstrated in
predicting epoxy’s interphase dominated properties and performances [52, 70].
Understandably the interphase strength depends on various factors, ranging from
material chemistry in the interphase region to the operating conditions [102–104].
Finite element simulations (FEM) are usually the common method to simulate the
overall material properties of epoxies with interfaces. The elastic-plastic constitutive
formula used in FEM models requires input data not only of the bulk epoxy
but also of the interphase region, and the latter are not commonly available in
experimental measurements. In the following, multiscale simulation studies that
account for the epoxy interphase region are reviewed in two general applications,
nanocomposites/composites and coatings/adhesives.

4.1 Epoxy-Based Composites and the Interphase Region

Advanced polymer matrix composites (PMCs) are usually used for structural appli-
cations in aerospace, automotive, and marine industries. An in-depth understanding
of the interphase region is especially crucial for PMC applications because the
polymer matrix transfers load to the reinforcement fibers through these interphase
regions. Most mechanical damage initiates in the interphase region and eventually
leads to failure of the whole material. Thus, the interphase region is typically
considered the weakest link in a PMC structure, and its properties largely determine
the performance and failure of advanced PMCs.
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Glass- and carbon-fiber reinforced epoxy composites have been widely studied
both experimentally and computationally [8, 105]. One example is single and
multiwall carbon nanotube (CNT)-reinforced nanocomposites, which are of interest
because of their wide potential applications [23, 106, 107]. Although there is no
chemical bonding between the CNT and epoxy, the electrostatic and van der Waals
forces are strong enough to create a tightly bonded interface [23].

Putz et al. conducted dynamic scanning calorimetry (DSC) testing and showed
that introducing multiwall CNTs in an epoxy matrix alters the Tg depending
on the degrees of cross-linking of the matrix [8]. In particular, the inclusion of
nanoparticles results in an increase/decrease in Tg at low/high degrees of cross-
linking. From their observation, the authors proposed three mechanisms that can
be used to explain the interphase phenomenon (see Fig. 9): (1) incomplete curing
of the network near the interphase region induced by the limited mobility of the
prepolymers and cross-linker leads to the formation of dangling unreacted end
groups of epoxide chains; (2) the epoxy curing process is disrupted at the interphase
region, and the formed network is different than the bulk epoxy; and (3) there is
a retarded dynamic at the interphase so that epoxy forms a distinguished structure
involving physical and/or chemical interactions with the fiber surfaces. All three
mechanisms can happen at the interface region, and various simulation efforts have
been conducted to understand the exact mechanisms, not only for Tg but also for
structural and mechanical properties as well. Note that fiber/epoxy interface is
different from fiber/plastic interface, as the latter has relatively long un-cross-linked
polymer molecules and physical adsorption and wrapping are most likely to happen
at the interface [108].

All-atom MD and CG-MD simulations of nanocomposites typically include
one nano-sized fiber/particle and a surrounding epoxy matrix to represent a small
region of the nanocomposites. The resulting material properties obtained from these
simulations can be considered as local properties of the nanocomposites. Langeloth
et al. [52] studied a DGEBA/DETA epoxy system as a bulk material and with
a solid surface using CG-MD models. They found that Tg is a function of the
conversion degree and it is a local material property that changes at a 3 nm region
around the fiber (the interphase region). A multiscale study from Choi et al. [81]
showed that a soft and slippery layer of a polymer at the CNT/DGEBA interface
reduces the mechanical strength in the transverse and shear directions compared
to neat epoxies. They have also bridged between the MD and FEM models using
an iterative matching process to obtain key parameters (i.e., interphase thickness
of 1.14–1.92 nm and strain energy density) for the FEM model (see Fig. 10a).
Kim et al. also used a matching process between MD and a continuum model to
create an effective interphase region between silica particle and epoxy matrix [22].
They found the interface structural conformation to depend on the degree of cross-
linking of the epoxy. Liu et al. proposed a novel multiscale simulation approach
that combined MD and CG-MD simulations to create a cured epoxy network with
a carbon fiber substrate and investigated the diffusion effect on the cured structure
[109]. Based on Koo et al.’s work of neat epoxy [50], Subramanian et al. created an
MD simulation of CNT/epoxy nanocomposites and modeled its fracture behaviors



286 X. Wu and J. A. El-Awady

Fig. 9 Schematic representations of three proposed mechanisms that control Tg changes in epoxy
nanocomposites [8]. (a) The fully cured neat epoxy. The green dots represent covalent cross-
links. (b) Mechanism #1: incomplete curing of the network near the interphase region. Dangling
unreacted end groups of epoxide chains are shown by red dots. (c) Mechanism #2: the epoxy curing
process is disrupted at the interphase region leading to a different network than the bulk epoxy. (d)
Mechanism #3: retarded dynamic at the interphase so that epoxy forms a distinguish structure
involves physical and/or chemical interaction with the fiber surfaces. (Reprint with permission
from [8])

via incorporating the bond disassociation energy from MD to a damage mechanics
model for a microscale simulation [53]. Buyukozturk et al. used an MD model to
understand the debonding between silica and epoxy at the molecular level and found
the influence of the water environment [61]. Yu and et al. [57] focused their study
on the nanoparticle size effects on the mechanical properties of alumina reinforced
epoxy matrix nanocomposites.
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Based on the above literature, interphase thickness and their corresponding
properties (i.e., interface stiffness) are key factors in creating a multiscale simulation
model [110]. The interphase thickness can be determined from density variation
near the fiber surface. At the interface of the polymer matrix and nanoparticles,
there is usually a layered mass distribution (as shown in Fig. 10b), from which
the interphase thickness can be calculated [22, 69]. Schadler [111] points out the
interfacial depth depends on the reinforcement particle size and the interaction
between the matrix and particle [54]. For example, the reported interface of DGEBF
epoxy nanocomposites is 0.64–0.69 nm, comparable to the 0.6–1.0 nm Al2O3
particle size [57]. The interface of a DGEBF matrix is 0.29–0.34 nm, comparable
to the 0.7–1.4 nm CNT particle size [81]. The interphase of a DGEBF system is
2.2 nm and is comparable to the size of the silica particles 1.01 nm [22]. Depending
on the configuration of the simulated system, an interface can be as large as 250 nm,
which is half of the spacing between particles in some cases [111].

After determining the thickness and properties of the interphase region, material
properties predicted from MD or CG-MD can then be upscaled into FEM models
via a numerical homogenization method, i.e., representative volume element (RVE)
method. An RVE model can effectively account for the structure variation through
a large material size and bring small localized material properties predicted by
all-atom MD or CG-MD models into microscale and macroscale level continuum
models [53, 112]. The basic concept of an RVE is to discretize a cubic FEM matrix
domain into unit cells, and each unit cell is corresponding to a fiber/epoxy system.
Stochasticity is considered in the FEM model via a random sampling process, so that
each unit cell has different fiber fractions and degrees of cross-linking of epoxies.
The overall FEM model thus can be used to simulate a macroscale material with
various local material properties. Figure 11a shows a work conducted by Mortazavi
et al., where they used the RVE method to incorporate MD-simulated thermal
conductivity of graphene/epoxy nanocomposites to a FEM microscale composite
model with 10% volume fraction of unidirectional graphene fibers and predict its
anisotropic thermal conductivity. The macroscale thermal properties of graphene
reinforced epoxy composites were then predicted using a larger FEM model with
203 elements and randomly assigned thermal properties predicted from RVEs in
each element, as shown by different colors in Fig. 11b. The latter model predicted
isotropic thermal properties of the material and demonstrated that RVE method
can be used to achieve homogenization in nanocomposite modeling [55, 74]. Kim
et al. also used the RVE method combined with MD simulation and simulated
mechanical deformation of a SiC/epoxy nanocomposites [22, 56]. Subramanian et
al. used RVE method simulating the fracture of CNT/epoxy nanocomposites [53].
Other analytical-based homogenization methods are also used in many multiscale
simulation of polymer composites, but they are not yet commonly used for epoxy
systems [63].
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Fig. 10 (a) An MD-FEM bridged multiscale simulation method characterizing the thickness and
strain energy density of an effective interphase of CNT/epoxy nanocomposites. (b) Radial density
distribution of epoxy matrix in a nanocomposite unit cell with CNT particles of different radii. The
inset in each figure is the overall density distribution. (Reprint with permission from [81])
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Fig. 11 An example of using the RVE method to bring MD simulation results into macroscale
FEM models. (a) A finite element RVE model of graphene/DGEBA epoxy nanocomposite is
created, and MD-predicted interphase properties are incorporated using thermal conductance
contact elements. (b) The anisotropic thermal conductivity predicted by RVE models are randomly
assigned to a larger FEM model with discretized unit cells. This model then predicts isotropic
thermal properties of the epoxy-based composites, which represents macroscale materials. (Reprint
with permission from [55])

4.2 Coatings and Adhesives

Coating and adhesives are two other application examples where the interphase
region plays an important role. Yarovsky and Evans used MD simulations to predict
the interface properties between low molecular weight water-soluble epoxy primer
coating and inorganic alumina substrates [39]. They reported that the shrinkage of
CYMEL epoxy leads to a high density coating, which prevents the penetration of
molecules and reduced the damage to the coated metal substrates. The increased
adhesion between epoxy and alumina was caused by interfacial hydrogen bonds.
Stevens [62, 113] studied the interphase strength, particularly the fracture mechanics
and failure mode at the interface between bisphenol A (BPA) epoxy and silicon
wafer. Yang et al. simulated EPN epoxy coating on copper using both MD and
CG-MD models. In neat epoxy, they found the polymer stands were stretched to
their taut positions before fracture, which is in agreement with Stevens’ theory
[62, 66, 67]. Yang et al. also found a brittle failure of this substrate/coating system
which was caused by the debonding of epoxy from the copper substrate [58].
Using CG model, they further observed that plastic deformation is localized to the
epoxy region near the epoxy/copper interface [69]. Bahlakeh and Ramezanzadeh
[59] simulated DGEBA as a coating on a steel (Fe) surface via MD simulation
and compared adhesion properties to experiments. Their results provided useful
information on surface treatment selection for the purpose of enhancing the
interfacial bonding and minimizing the underlying cause of weak surface bonding.
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Finally, Tsige and Stevens showed that the density of interfacial bonds determines
the fracture mode of DGEBA/solid surface system, and the tensile and shear stresses
were predicted as functions of interfacial bonds [60].

5 Summary and Conclusions

In summary, all-atom MD and CG-MD simulations are the most common modeling
approaches to investigate the molecular structural and the thermal and mechanical
properties of epoxy bulk materials. However, when the desired simulation length
and time scales are large (e.g., simulations of epoxy-matrix composites), multiscale
simulation methods are required [83].

The most common multiscale approach involves first the utilization of DFT
simulations to quantify the bond breaking conditions (i.e., critical length) [98], as
well as to create molecular force fields [27]. These results provide inputs for all-
atom MD or CG-MD simulations. All-atom MD simulations are commonly used
to predict epoxy properties at the atomic scale with the goal to use the predicted
values as inputs to larger length/time scale models [44], or to reveal quantify relevant
molecular-scale mechanisms in order to explain macroscale observed phenomena
[43, 61]. However, the common challenges facing all-atom MD simulations is how
to interpret the results in the relevant length/time scales and compare the simulated
properties directly with macroscale experiments. On the other hand, CG-MD
simulations are ideal to create larger simulation domains on the scale of the spacing
between fibers/particles in composites [52, 70, 109]. In plastics, soft matter, and
biomaterial simulations, CG-MD simulations have been very popular in modeling
material mesoscale structures [114–116]; however, it is still in the development
stages for epoxy simulations. Finally, FEM simulations have the advantage of
simulating a microscale material with heterogeneous local properties, with the RVE
method used commonly to help bring atomic information to continuum models.

The advantages of multiscale simulation of epoxy can be summarized as
follows:

1. Provide mechanistic understanding of the molecular-scale origins of observed
macroscopic material properties, which enriches our understanding of epoxy
materials.

2. For specific nanoscale materials, such as nanocomposites, accurate and well-
validated simulation models provide a less expensive means to study and test
materials than experiments and with a high resolution.

3. Simulation at all scales can be used for examining material response under
extreme condition including temperature and pressure, where lab setup of such
tests can be difficult or time-consuming.

4. For the purpose of screening, design, and optimization of new materials, and
tailoring material properties of existing materials, simulation is a very effective
method and compliments well to experiments.
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The last two points are in fact the main driving forces behind the research and
development of multiscale modeling of epoxy. Future development of multiscale
simulation of epoxy should focus on continuing developing computational models
at all relevant scales and pushing the limits in bridging different scales to simulate
microscale epoxy-based systems.
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Microstructural Statistics Informed
Boundary Conditions for Statistically
Equivalent Representative Volume
Elements (SERVEs) of Polydispersed
Elastic Composites

Somnath Ghosh, Dhirendra V. Kubair, and Craig Przybyla

1 Introduction

The representative volume element or RVE of a heterogeneous material is an
optimally representative microstructural subdomain, with morphological charac-
teristics and effective response similar to that of the entire microstructure [1–5].
Direct numerical simulations of the RVE are essential for determining higher
length-scale homogenized constitutive models without having to solve the larger
microstructural domains. Homogenization involves averaging principles like the
Hill-Mandel condition [6] with assumptions of scale separation, along with energy
equivalence of the microstructural RVE and the homogenized medium under equiv-
alent loading conditions. Computational homogenization from micromechanical
analysis of complex microstructures is now quite common [7–10]. Most of the
analyses assume periodic repetition of the RVE to uncouple governing equations
at different scales. Furthermore, the uncoupling process requires specific boundary
conditions like uniform displacement, traction, or periodicity on the RVE bound-
aries. Asymptotic expansion-based computational homogenization methods with
assumptions of macroscopic homogeneity and microscopic periodicity have found
extensive applications in [9, 11–16]. Analogously, the FE2 multi-scale methods [17]
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also solve micro-mechanical RVE models at every macroscopic element integration
point to obtain homogenized properties.

In practice, however, actual composite microstructures are seldom uniform or
periodic. They generally comprise nonuniform dispersion of heterogeneities with
clusters and matrix-rich regions as shown in the unidirectional composite micro-
graphs of Fig. 1a, b. To account for the nonuniform distribution of heterogeneities,
the concept of statistically equivalent RVE or SERVE was proposed in [9, 18, 19].

Fig. 1 (a) Experimental micrograph of a carbon fiber epoxy matrix unidirectional composite;
(b) micrograph of a composite containing fiber clusters; and (c) microstructure tessellated into
Voronoi cells showing regions of potential microstructural SERVE. (Reprinted from: Kubair and
Ghosh [35])
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A SERVE is defined as the smallest microstructural domain with the following
characteristics:

1. Distribution functions of morphological parameters in the SERVE should be
statistically equivalent to those for the overall microstructure. This is classified
as a microstructure-based SERVE or M-SERVE [20–22].

2. Effective material properties and response functions for the SERVE should be
equivalent to those of the entire microstructure. This is classified as a property-
based SERVE or P-SERVE [20–22].

3. The SERVE should not depend on the location in the microstructure, e.g., A,B,C,
and D in Fig. 1c, or the applied loading. The size of the SERVE should be
optimal in terms of representing deformation mechanisms and overall response.
A smaller than necessary SERVE size may not include all possible deformation
mechanisms and lead to erroneous estimation of effective properties, while
a larger than required size can require exorbitant computational resources. A
variety of methods have been developed for estimating RVE sizes of random
media, where direct numerical simulations are performed with different bound-
ary conditions [23–25]. Various statistical descriptors have been used to estimate
the RVE size to be sampled for obtaining the bulk material response [23, 26–29].
These descriptors include distributions of the local fiber volume fraction, nearest
neighbor distance, radial basis functions, and n-point correlation functions, e.g.,
in [30–34].

While methods of RVE estimation have generally focused only on the effective
microstructural domain and its volume, little consideration has been given to the
appropriateness of the boundary conditions. Three types of boundary conditions
have been conventionally applied on the RVE for solving the micromechanics
problem. These are:

1. Affine transformation-based displacement boundary condition (ATDBC),
expressed as:

uAi = ε0
ij xj on �RVE

Here, ε0
ij is a constant applied far-field strain, and xj are the boundary coordinates

measured with respect to the geometrical centroid of the RVE. This condition
provides the lower or Voigt bound of the solution.

2. Uniform traction boundary condition (UTBC) given as:

Ti = σ 0
ij nj on �RVE

Ti is the applied traction on the RVE boundary resulting in a constant stress σ 0
ij ,

where nj is the unit normal to the RVE boundary. This condition provides the
upper or Reuss bound of the solution.
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3. Periodic boundary condition (PBC), expressed as:

uPi = ε0
ij xj + updi on �RVE

The periodic additional displacement updi is equal on opposite faces of the RVE,
which requires the boundary to be homologous.

The underlying assumption of the ATDBC and UTBC is that strains and stresses
immediately outside the simulated RVE are constant [36, 37]. These boundary
conditions assume that the RVE is immersed in a continuum (exterior to the RVE)
with a spatially invariant strain energy density. They typically ignore the presence
of fibers exterior to the RVE and their interaction with those in the interior. The
periodic boundary condition, on the other hand, assumes the deformation patterns
in the domain exterior to the RVE to be homologous. However, for composites
with nonuniform distributions, these assumptions of strain energy invariance or
periodicity are invalid in the vicinity of the RVE boundary. All of the above bound-
ary conditions result in an overestimation of the RVE region from convergence
requirements.

The proper definition of the SERVE is incomplete without the application of
appropriate boundary conditions, reflecting microstructural statistics of the domain.
Ghosh et al. [35, 38, 39] have overcome these limitations by prescribing a new class
of exterior statistics-based boundary conditions or ESBCs. ESBCs are constructed as
a modification to the affine transformation-based displacement boundary conditions
(ATDBCs) in this work. They are expected to mimic periodic boundary conditions
(PBCs) when the dispersion of heterogeneities is periodic.

ESBCs are very effective boundary conditions when modeling linear elastic
heterogeneous materials with nonuniform distributions of heterogeneities. They
account for the interaction of heterogeneities in the region exterior to the SERVE
with those in its interior and how this interaction affects its response. The boundary
conditions incorporate the statistics of the exterior microstructure resulting in an
optimal volume for the converged SERVE. In [35, 38, 39], statistically informed
Green’s functions with the 2-point correlation function S2 (r, θ) and the Eshelby
equivalent inclusion method have been derived to describe the interactions between
the exterior and interior domains. Excellent convergence rates have been observed
for elastic stiffness components in comparison with other boundary conditions or
with statistical volume elements or SVEs.

This chapter reviews major developments in [35, 38, 39] for establishing the
novel exterior statistics-based boundary conditions or ESBCs for the statistically
equivalent RVE or SERVE. The first part discusses the formulation and numerical
implementations. Validation tests and convergence of the SERVE with ESBCs
are subsequently studied. The SERVE with ESBCs is compared with emerging
methods of homogenization, viz., those with statistical volume elements (SVEs)
and weighted statistical volume elements (WSVE).
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2 Formulation of the Exterior Statistics-Based Boundary
Conditions for a SERVE

A summary of the exterior statistics-based boundary condition formulation that has
been detailed in [35, 38] is given in this section. A microstructural volume element
or MVE for a given macroscopic point occupies a infinite microstructural region
�mve → �∞ as depicted in Fig. 2a. The MVE consists of nonuniformly dispersed
heterogeneities, e.g., fibers, particulates, etc. with clusters and matrix-rich regions
as shown in Fig. 1.

The homogenized constitutive response for a linear elastic material with MVE
occupying a domain �mve is expressed as:

σ̄mve
ij = C̄mve

ijkl ε̄
mve
kl (1)

where C̄mve
ijkl is the homogenized stiffness tensor, and the homogenized stresses and

strains are, respectively, written as:

σ̄mve
ij = 1

�mve

∫

�mve
σmve
ij (x) d� (2)

ε̄mve
ij = 1

�mve

∫

�mve
εmve
ij (x) d� (3)

where σmve
ij (x) and εmve

ij (x) are, respectively, the spatially varying microscopic
stresses and strains in the MVE. In a finite element formulation of the microstruc-
tural MVE problem for static problems in the absence of body forces, the weak form
corresponding to the principle of virtual work form is written as:

Fig. 2 (a) Schematic view of the MVE containing the SERVE and its complementary exterior
domain, i.e., �mve = �serve ∪ �ext, and (b) effect of an interacting fiber pair I -J on a field point
O at the P-SERVE boundary �serve. (Reprinted from: Kubair and Ghosh [35])
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∫

�mve
σmve
ij (x)δεmve

ij (x)d� = 0 (4)

subject to the affine transformation-based displacement boundary conditions

uAi (x
∞) = ε0

ij x
∞
j on �∞ (5)

Here, δεij is the virtual strain, and x∞
j are the coordinates of a point on the MVE

boundary �∞ relative to a reference point, such as the centroid of �mve. Since
the MVE typically consists of a large population of heterogeneities, the solution of
the weak form (4) is computationally prohibitive. To avert this, only a statistically
equivalent subset of the MVE domain with explicit representation of dispersed
heterogeneities is identified as the SERVE for detailed micromechanical analyses. A
candidate SERVE is highlighted in Fig. 2a. This domain should be optimally small
to make it computationally tractable. Thus, the ratio of the length scales of the MVE
(Lmve) to that of the SERVE (Lserve) should be sufficiently large, i.e., L

mve

Lserve >> 1.
For reducing the MVE boundary value problem in equation (4) to that of the

SERVE, the MVE domain �mve is partitioned into two complementary domains,
i.e., a SERVE domain �serve and its exterior domain �ext, such that �mve =
�ext∪�serve. The effect of the exterior domain�ext is manifested through equivalent
conditions on the SERVE boundary �serve, adequately reflecting the interaction of
�ext with �serve. It should result in the same invariant strain energy for the SERVE
as for the entire MVE with the applied affine displacement conditions on �∞. To
achieve this, the equation of principle of virtual work (4) is written as the sum of the
respective virtual work terms in the complementary domains of Fig. 2a as:

∫

�ext
σ ext
ij (x) δε

ext
ij (x) d�+

∫

�serve
σ serve
ij (x) δεserve

ij (x) d� = 0 (6)

Applying the divergence theorem to the first term containing the integral over �ext,
incorporating equilibrium conditions in the absence of body forces, i.e., σij,j (x) =
0, and with ε̄mve

ij = ε0
ik on �∞, the principle of virtual work (6) reduces to that of

the SERVE as:
∫

�serve
σ serve
ij (x) δεserve

ij (x) d�−
∫

�serve
T ext
i (x) δuext

i (x) d� = 0 (7)

T ext
i (x) is the traction on �serve resulting from the stresses in the domain �ext

exterior to the SERVE. The second term in equation (7) will drop out if an effective
displacement field can be prescribed on �serve, since δuext

i = 0 on �serve. This can be
incorporated through the augmentation of the affine transformation-based boundary
displacement field uAi (x

serve) = ε0
ilx

serve by an additional perturbation term, which
represents the effects of heterogeneities in�ext on �serve. Since the solution process
will not involve an explicit numerical solution of the exterior domain problem in
�ext, a special analytical solution that involves the statistics of the exterior domain
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may be developed. Hence the term exterior statistics-based boundary conditions or
uESBCi . It is expressed as:

uESBCi (xserve) = uAi (xserve)+ u∗
i (x

serve) on �serve (8)

where u∗
i is an enhancement due to the interaction of the exterior domain �ext with

the interior of the SERVE.
Among a plethora of available statistical functions, the n-point correlation

functions for characterizing multivariate point sets have been shown to effectively
describe arbitrary distributions in [27, 30]. In [40], it has been proved that the
anisotropic spatial statistics of a two-phase medium generally can be described
by the 2-point correlation function S2

(
rIJ , θIJ

)
. Alternately termed as the joint

distance and orientation-based 2-point correlation function, it is defined as the
probability that two points at positions xI and xI and separated by a distance rIJ

at an orientation θIJ lie in the same phase α. With location-dependent indicator
functions for the matrix phaseM and I th, inclusion phase FI among np inclusions,
expressed as:

ιM (x) =
{

1 ∀ x ∈ �M
0 ∀ x /∈ �M and ιFI (x) =

{
1 ∀ x ∈ �FI
0 ∀ x /∈ �FI I = 1 · · · np (9)

the joint distance and orientation-based, 2-point correlation function for �mve is
defined as:

S2 (r) = 1

�mve

∫

�mve

ιF (x) ιF (x + r)d� (10)

where r = x − xI is the position vector separating two points in the domain.
This vector can be represented in a parametric form as (r, θ), where the parameter
r = |r| is the separation distance and θ = � r is the orientation of the
line joining these points with a reference direction. In unidirectional composites
containing equi-radius fibers, the fiber centroids can represent these points. For
isotropic distributions, this correlation function reduces to a distance-based, radial
distribution function S2(r). The 1-point correlation function, which corresponds to
the volume fraction, is expressed as:

S1 = 1

�mve

∫

�mve

ιF (x)d� (11)

The displacements uESBCi on the SERVE boundary for heterogeneous microstruc-
tures containing inclusion clusters and matrix-rich regions are discussed next.
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2.1 Exterior Statistics-Based Perturbed Fields

The presence of heterogeneities in the form of inclusions or fibers alters the spatially
invariant, homogeneous state of the matrix stress σMij , the matrix strain εMij , and the

displacement uMi fields in the MVE domain �mve. The perturbed stress σ ∗
ij , strain

ε∗ij , and displacement u∗
i fields due to heterogeneities depend on the morphological

characteristics of the microstructure, viz., inclusion geometry and location. The total
stress σij , strain εij , and displacement ui fields in the heterogeneous MVE domain
may be defined as the sum of the homogeneous and perturbed parts as:

σij (x) = σMij + σ ∗
ij (x), εij (x) = εMij + ε∗ij (x), ui(x) = uMi + u∗

i (x) ∈ �mve

(12)
Since the homogeneous stress σMij is divergence-free, the equilibrium condition for
the perturbed stress fields (in the absence of body forces) is σ ∗

ij,j (x) = 0.
The solution to the problem of a heterogeneous medium can be simplified

by introducing an equivalent inclusion approach, where an eigenstrain ε ij (x) is
introduced in the inclusion domain to account for the constraint that the matrix
imposes on the inclusion due to autonomous deformation. Correspondingly, the
perturbation stress inside the inclusion FI can be written as:

σ ∗
ij (x

FI ) = CMijkl
(
ε∗kl(x)+ ιFI (x)ε kl (x)

)
(13)

where CMijkl is the elastic stiffness of the matrix material, and ιFI (x) is the inclusion

indicator function, defined in equation (9). The eigenstrain ε kl (x
FI ) represents

the effect of distributed point source on the perturbed solution u∗
i (x), where xFI

represent the location of any source point in �FI . Using an infinite-space Green’s
function solution Gij (x, xFI ), the perturbed displacement field in �MVE with np
dispersed inclusions can be derived as a summed integral, given as:

u∗
i (x) =

np∑

I=1

∫

�FI

CMklmnGik,l(x, x
FI )ε mn(x

FI )d� (14)

The integral over �FI corresponds to the contribution from individual inclusions.
The perturbed strains can be derived from equation (14) in terms of eigenstrains as:

ε∗ij (x) = 1

2

np∑

I=1

∫

�FI

CMklmn(Gik,lj

(
x, xFI

)
+Gjk,lj

(
x, xFI

)
)ε mn

(
xFI
)
d�

(15)
For isotropic, linear elastic matrix materials, the Green’s function has been derived
in [41] as:
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Gij (x, xFI ) = 1

4πμ

[
δij

rI
− 1

4 (1 − ν)r
I
,ij

]
(16)

where rI = |x − xFI | is the separation distance between a source point xFI and a
generic field point x.

Closed form expressions for the integrals in equations (14) and (15) have been
derived using elliptic integrals [42] with spatially invariant eigenstrains inside
ellipsoidal inclusions. The perturbed strains due to any isolated (noninteracting)
inclusion FI in the MVE are expressed as:

ε∗ij (x) =
∫

�mve

Hijkl
(
x, x̂
)
ε kl
(
x̂
)
dx̂ (17)

where x̂ is a point in the inclusion. Hijkl corresponds to a unified 2-point Eshelby
tensor given as:

Hijkl
(
x, x̂
) = ιFI (x) SFIijkl +

(
1 − ιFI (x)

)
Ĝ
FI
ijkl

(
x, x̂
)

(18)

where SFIijkl and ĜFIijkl
(
x, x̂
)

are the interior and exterior Eshelby tensors. The
corresponding perturbed displacements are written in terms of the Eshelby tensors
as:

u∗
i (x) =

∫

�mve

Likl
(
x, x̂
)
ε kl
(
x̂
)
dx̂ (19)

where

Likl
(
x, x̂
) = ιFI (x) T FIikl

(
x, x̂
)+

(
1 − ιFI (x)

)
D
FI
ikl

(
x, x̂
)

(20)

Expression for the interior and exterior Eshelby tensors SFIijkl and ĜFIijkl
(
x, x̂
)
, as

well as the displacement-transfer tensors T FIikl
(
x, x̂
)

and DFIikl
(
x, x̂
)

for a circular
cylindrical fiber are given in the Appendix. For identical fibers in �mve, the
following reductions hold:

S
FI
ijkl = SFJijkl = Sijkl

Mijkl

(
xI
)

= Mijkl
(
xJ
)

= Mijkl
Ĝ
FI
ijkl (r) = ĜFJijkl (r) = Ĝijkl (r, θ)

where Sijkl and Mijkl are spatially invariant, and Ĝijkl is position dependent and
describes interactions between fibers.
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The perturbed strain in an inclusion is influenced by its interactions with other
inclusions in the MVE. For a population of inclusions represented by the 2-point
probability distribution function S2 (r) in equation (9), the perturbed strain in the
fiber FI , (I = 1 · · · np) due to the interactions of fibers dispersed in �mve is
expressed as:

ε∗ij
(
xFI
)

= Sijkl(xI )ε ij
(
xI
)

+
∫

�mve\�FI
S2 (r) Ĝijkl (r) ε ij (r) d� (21)

where S2 (r) is the 2-point correlation function defined in equation (10). The second
integral term represents the interaction effect of all fibers with the I th fiber, and the
integrand may be denoted as a statistically informed Green’s function or SIGF.

The eigenstrains with np interacting inclusions are evaluated by applying the
Eshelby’s stress consistency condition, which requires the total stress inside the
fiber �FI to be equal to the total stress in the equivalent matrix domain. For the
domain �mve consisting of interacting fibers with a distribution represented by the
2-point correlation function S2 (r), the eigenstrain ε ij in a reference fiber occupying

a domain �F may be derived using equation (13) as:

ε ij (x) =
[
ιF (x)

(
Sijab +Mijab

)− ∫

�mve\�F
S2 (r) Ĝijmn (r)

(
Smnpq +Mmnpq

)−1
Ĝpqab (r) d�

]−1

[(
(Sabmn +Mabmn)−1 ∫

�mve\�F
S2 (r) Ĝmnkl (r) d�

)
− 1

2 (δakδbl + δalδbk)
]
εMkl

= Aijkl(x)εMkl ∀x ∈ �mve

(22)

where Mijkl =
(
C
FI
ijpq − CMijpq

)−1
CMpqkl , C

FI
ijkl is the elastic stiffness of the

inclusion material and r is the distance between a source and field point. The
perturbed displacements at an observation point O in Fig. 2b can be obtained in
terms of the matrix strain εMij by substituting equation (22) into equation (19) as:

u∗
i (x) =

⎛

⎜⎝
∫

�mve\�F
S2
(
r′)Limn

(
r′)Amnkl

(
r′) d�

⎞

⎟⎠ εMkl (23)

Finally, using equation (8), the affine transformation-based displacement fields
can be superposed on the above perturbed displacements to prescribe the exterior
statistics-based boundary conditions (ESBCs).
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2.2 Implementation of the Exterior Statistics-Based Boundary
Conditions (ESBCs)

The ESBCs are implemented on the boundary �serve of a SERVE domain �serve of
size L using the following steps:

1. Discretize the SERVE domain �serve into a finite element mesh. For the 3D
domains considered in this study, 4-noded tetrahedral elements are used.

2. Extract the positions and coordinates xi of all the boundary nodes on �serve.
3. Compute the affine transformation-based displacements uAi (x) on all the bound-

ary nodes with the applied far-field strain ε0
ij as uAi (x) = ε0

ij xj , where xj is
measured relative to the centroid of the SERVE.

4. Compute the 2-point correlation function S2 (r, θ) for the entire MVE domain
�mve using equation (10).

5. Compute the perturbed displacements u∗
i using equation (19) incorporating

S2 (r, θ) for all the boundary nodes, using the following steps:

• Each radial orientation is discretized into Nr number of equally spaced
segments with increment �r = R−a

Nr
, where a is the radius of the fibers, R is

the radius of horizon that corresponds to the extent of the MVE, and the lower
limit of the integration is r = a. The αth radial point is given as rα = αR−a

Nr
.

• The angular orientation is discretized into Nθ equally spaced points of �θ =
2π
Nθ

. The βth angular point is θβ = β 2π
Nθ

.
• At a SERVE boundary node at xi , the discrete perturbed displacement

components in equation (23) are evaluated for an applied strain ε0
ij as:

u∗
i (x) = [

2π(R − a)
NrNθ

Nr∑

α=1

Nθ∑

β=1

αLimn (x − (α�r, β�θ)) (24)

Amnkl (x − (α�r, β�θ)) S2 (x − (α�r, β�θ)) ] ε0
ij

6. The ESBCs on the boundary nodes are computed and applied as:

uESBCi (x) = uAi (x)+ u∗
i (x) (25)

3 Validation of ESBCs for SERVEs in Nonhomogeneous
Microstructures with Clustering

The exterior statistics-based boundary conditions (ESBCs) developed in Sect. 2.1
are validated in this section. Finite element simulations are conducted for a MVE
with section size 240 × 240 × 10 μm and consisting of 1152 fibers with clusters.
The MVE shown in Fig. 1b is generated from data on real glass-fiber epoxy matrix
composites that have been characterized in [43]. The fibers have a uniform 4 μm
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Fig. 3 (a) Contour plot of the FE solution ε11 in the clustered MVE (obtained from data provided
in [43]) subjected to a far-field applied strain ε0

11 = 1, (b) comparison of displacements on
the 40 × 40 μm SERVE obtained by the SIGF equation (25) with that from the finite element
simulation of the MVE. (The abscissa marks (0–1) correspond to the bottom edge, (1–2) to the left
edge, (2–3) to the top edge, and (3–4) to the right edge of the �SERVE .) (Reprinted from: Kubair
and Ghosh [35])

diameter. A candidate SERVE cross-section of 40 × 40 × 10 μm encompassing 38
fibers is highlighted by the white square boundary in Fig. 3a. The computational
domains are discretized into meshes of 4-noded tetrahedral elements of a minimum
size of 0.8 μm and with 13 elements in the z-direction. The Young’s modulus and
Poisson’s ratio of the epoxy matrix are EM = 3.2 GPa and νM = 0.4, while those
for the e-glass fibers are EF = 80 GPa and νF = 0.25, respectively. The first set
of simulations correspond to the affine transformation-based applied displacement
boundary condition uAi = ε0

ij xj , with an applied far-field strain ε0
11 = 1.

Contour plots of ε11 from the finite element solution are shown on the deformed
configuration in Fig. 3a. The strain inside the fibers is smaller than in the matrix
due to the larger fiber Young’s modulus. The FE displacement solution along the
white line is extracted from FE simulations of the MVE. This is compared with the
displacement solution ui = uAi + u∗

i used in ESBC, in which u∗
i is the perturbed

displacement solution from equation (25) using the statistically informed Green’s
function or SIGF approach. The displacement solutions, normalized by the fiber
radius, are plotted in Fig. 3b. The abscissa corresponds to the total length along
the sides of the white SERVE boundary in Fig. 3a. The markers (0–1) correspond
to the bottom edge, (1–2) to the left edge, (2–3) to the top edge, and (3–4) to the
right edge. Excellent agreement is seen between results of the FE simulations of
the MVE (shown with markers) and the displacement solutions uAi + u∗

i (shown
in solid lines). This provides a validation of the ESBC formulation. The SIGF-
augmented solutions show that even though the far-field strain is ε0

11 = 1, the u2
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component is not zero on the white SERVE boundary due to fiber interactions. It will
be shown in the following sections that the affine transformation-based displacement
boundary conditions (ATDBCs) or periodic boundary conditions (PBCs) applied on
the SERVE boundary suffer from poor accuracy.

3.1 Comparing ESBCs Generated by the 2-Point Correlation
and Radial Distribution Functions

Figure 4 plots the perturbation displacements u∗
i /a normalized by the fiber radius a.

The figure compares plots generated using the radial distribution function S2(r) and
the 2-point correlation function S2(r, θ). The abscissa shows the normalized length
along the bottom (edge 0–1), right (edge 1–2), top (edge 2–3), and left (edge 3–4)
edges of the 40 μm square SERVE in sequence, in Fig. 3. The applied far-field strain
ε0

11 affects the perturbation displacements in the x1 direction, but not much in the x2
direction. The difference in the perturbation displacement alters the ESBCs applied
on the SERVE and hence the computed homogenized stiffness C̄ijkl .

Furthermore, the effect of ATDBCs and ESBCs using S2(r) and S2(r, θ) on a
candidate SERVE of size L = 40 μm containing 38 fibers is illustrated in Figs. 5, 6
and 7, respectively. In this paper, the boundaries of the SERVEs �serve are assumed
not to intersect the inclusions, for the sake of simplicity. However the developed
ESBCs are capable of being prescribed on boundaries that intersect inclusions.
The plots in Figs. 5a, 6a and 7a show the displacement components in the 1 and
2 directions applied as boundary conditions along the four sides of the SERVE
boundary. Perturbations in the ESBCs u1 = uA1 + u∗

1 are pronounced on the right
and left edges of Figs. 6a, 7a. While uA2 = 0 for ε0

11 = 1 on the boundary, u2 = u∗
2

is nonzero along the edges with the ESBC. Unlike for PBCs, the deformed edges
with the ESBCs are not homologic. Contour plots of the strain ε11 for the different

Fig. 4 Perturbation
displacements u∗

i /a obtained
for a clustered MVE using the
S2 (r) and S2 (r, θ) statistical
functions in SIGF. (Reprinted
from: Kubair and Ghosh [35])
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Fig. 5 Results from SERVE simulation with ATDBC: (a) displacements on the boundary of the
SERVE, (b) contour plot of ε11 in the SERVE. (Reprinted from: Kubair and Ghosh [35])

Fig. 6 Results from SERVE simulation with ESBC generated by radial distribution func-
tion S2 (r): (a) displacements along the SERVE boundary, (b) contour plot of ε11 in the
SERVE. (Reprinted from: Kubair and Ghosh [35])

boundary conditions are shown in Figs. 5b, 6b and 7b. While regions of strain
localization are observed for all the boundary conditions, the intensity is less with
ESBCs.

The homogenized stiffness for the entire composite MVE C̄mve
ijk is evaluated using

equation (1), together with the averaged stresses from equation (3) corresponding
to an applied averaged strain. The same stiffness can be obtained from the averaged
stresses in the SERVE domain with the applied ESBCs generated by applying the
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Fig. 7 Results from SERVE simulation with ESBC generated with the 2-point correlation function
S2 (r, θ): (a) displacement along the SERVE boundary, (b) contour plot of the ε11 in the
SERVE. (Reprinted from: Kubair and Ghosh [35])

Table 1 Homogenized stiffness C̄1111/E
M in SERVEs subjected to different boundary conditions

Figure Boundary condition C̄1111/E
M % error

( ∣∣C̄mve
1111−C̄serve

1111

∣∣
C̄mve

1111

)
× 100

(L = 240 μm) 3 ATDBC 2.8836 0.0000

5 ATDBC 2.9406 1.9767

6 ESBC using S2(r) 2.9056 0.7620

7 ESBC using S2(r, θ) 2.8813 0.0798

SIGF to the applied averaged strains. Table 1 tabulates the normalized homogenized
stiffness C̄1111/E

M from the entire MVE simulations, as well as from simulating
a 40 μm SERVE subjected to ATDBC and ESBCs. For the ESBCs, both the
radial distribution S2(r) in Fig. 6a and the joint 2-point correlation function S2(r, θ)

in Fig. 7a are considered. The homogenized stiffness obtained from the SERVE
simulations with the S2(r, θ)-based ESBCs are the closest to those obtained from
entire MVE simulations. This illustrates the excellent desired performance of the
applied ESBCs.

The contour plot of the difference in the maximum principal stress obtained by
applying the ATDBC and ESBC with S2(r, θ) is shown in Fig. 8a. The difference is
pronounced in ligaments between fibers that are in close proximity. The maximum
principal stresses are larger with ATDBCs than with ESBCs for the same far-
field strain energy density. Analogously, the contour plot of the difference in the
maximum principal stress by ESBCs using the S2(r) and S2(r, θ) functions is shown
in Fig. 8b. While the perturbation displacements in Fig. 4 by using the S2(r) and
S2(r, θ)-based ESBCs are comparable in magnitude, the stresses are significantly



312 S. Ghosh et al.

Fig. 8 Contour plot showing the difference in the maximum principal stresses in the SERVE for:
(a) ATDBC and ESBC using S2(r, θ) (b) ESBCs using S2(r) and S2(r, θ), normalized by the
matrix modulus. (Reprinted from: Kubair and Ghosh [35])

Fig. 9 Intersection of
clusters in the MVE with the
edges of a SERVE.
(Reprinted from: Kubair and
Ghosh [35])

different. The S2(r, θ)-based ESBCs are accurate as they account for the presence
of fiber clusters in the exterior domain.

3.2 ESBCs for SERVEs Intersecting Clustered Regions

In certain microstructural volume elements, the SERVE can intersect clustered
regions in the microstructure. This will affect the ESBCs on SERVEs that intersect
clusters. A 40 × 40 μm SERVE intersecting two clusters in the MVE is illustrated
in Fig. 9. The intersection of the clusters with the SERVE boundaries results in a
few fibers, belonging to the cluster, to be present inside the SERVE. Regions that
belong to the clusters are highlighted in gray. The prescribed S2(r, θ)-based ESBCs
are shown in Fig. 10a. The ε11 strain contour in the SERVE is depicted in Fig. 10b.
Strain concentrations are larger due to the reduction of inter-fiber spacing inside the
clusters. The homogenized stiffness of the SERVE is C̄1111 = 2.8823EM , which is
almost equal to that obtained from the entire MVE C̄∞

1111 = 2.8836EM is given in
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Fig. 10 Results from ESBC from SERVE with edges intersecting clusters: (a) displacement
along the SERVE boundary, (b) contour plot of ε11 in the SERVE. (Reprinted from: Kubair and
Ghosh [35])

Table 1. This example illustrates the effectiveness of the ESBCs for SERVEs with
intersecting clusters.

4 Convergence of Elastic Homogenized Stiffness

4.1 Selection of SERVE Size from Convergence Characteristics

Figure 11 shows a set of concentric square cross-sections that are candidate SERVEs
that can be extracted from the MVE domain. The candidate SERVEs are chosen to
consist of an increasing number of fibers. The different SERVE sizes considered
are depicted in Fig. 11(i–vii). The thickness of the composite domain is 10μm. The
FE model is discretized into 4-noded tetrahedral elements with 13 elements in the
z-direction. Details of the SERVE size L and the number of fibers Nf contained are
listed in Table 2.

The candidate SERVEs are subjected to either ATDBCs, PBCs, or S2(r, θ)-
based ESBCs that correspond to a far-field unit uniaxial strain ε0

11 = 1. All other
strain components are kept to zero. Three-dimensional finite element simulations
of the SERVEs are performed, and the homogenized stiffness C̄ijkl, i, j, k, l =
1, 2, 3 are obtained by post-processing. Details of obtaining the homogenized
moduli have been discussed in [18, 38]. The convergence in homogenized stiffness
with increasing SERVE size is used as a metric to determine the necessary
SERVE size. In particular, the dominant stiffness component C̄1111 is used to
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Fig. 11 Concentrically
increasing candidate SERVE
domains in the MVE
generated from data in [43]

Table 2 Parameters in the
selection of the SERVE

SERVE I II III IV V VI VII MVE

L (μm) 35 40 70 90 124 160 250 300

Nf 13 38 120 176 313 498 1292 1746

determine the effect of the applied boundary conditions on the converged SERVE
size.

The homogenized stiffness component C̄1111 is plotted as a function of increasing
SERVE size L in Fig. 12. In the plots, L = 0 corresponds to the matrix alone, for
which the SERVE size is a material point of zero volume. The error in Fig. 12b is
calculated as the difference between the homogenized stiffness component for the
SERVEs and that for the entire MVE with L=300 μm. Figure 12a clearly shows
that the homogenized modulus obtained with the ESBCs converges at a SERVE
size of approximately L = 40 μm consisting of 38 fibers. In contrast, much larger
SERVE sizes of approximately L ≈ 220 μm are required when subjected to the
ATDBC or PBC. The error plots in Fig. 12b consolidate this conjecture that con-
vergence with ESBCs is much faster than with the other boundary conditions. This
example elucidates the role of exterior statistics on the boundary condition of the
SERVE.

Next, the effect of the 2-point correlation functions S2(r) or S2(r, θ) on the
optimal SERVE size is examined. The variation of the volume-averaged stiffness is
plotted as a function of the SERVE size in Fig. 13a. The S2(r)-based ESBCs exhibit
much slower convergence leading to larger SERVEs in comparison to SERVEs by
the S2(r, θ)-based ESBCs. In the example shown, the SERVE size by the latter
boundary condition is less than half of that obtained by the former boundary
condition. The plot of error in the homogenized stiffness, shown in Fig. 13b, also
corroborates this conclusion.
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Fig. 12 Variation of (a) the normalized homogenized stiffness tensor C̄1111/E
M and (b) error in

C̄1111, as a function of increasing SERVE size. (Reprinted from: Kubair and Ghosh [35])

Fig. 13 Convergence of homogenized stiffnesses for S2(r) and S2(r, θ)-based ESBCs with
increasing SERVE size: (a) variation of the normalized homogenized stiffness tensor C̄1111/E

M

and (b) variation of the normalized error. (Reprinted from Kubair and Ghosh [35])

4.2 Comparing Convergence of ESBC-Based SERVE with
Statistical Volume Elements (SVEs)

Statistical volume elements (SVEs) are based on the ergodicity hypothesis that
the composite microstructure with dispersed heterogeneities is statistically homo-
geneous, and hence, its volume averages are identical to the ensemble averages
[44, 45]. In this approach, the homogenized modulus for the MVE is expected
to be equal to the mean of the volume-averaged modulus obtained from a large
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number of instantiations of a much smaller analysis volume. The ensemble average
of any spatially varying field quantity �(x) over the SVE is expressed in terms of
the homogenized value over the MVE as:

�̄ = 1

�mve

∫

�mve

� (x) d� = 1

N

I=N∑

I=1

⎛

⎝ 1

�sveI

∫

�sveI

� (x) d�

⎞

⎠ , (26)

where �̄ is the volume-averaged value, �sveI is the domain of the I th SVE
instantiation, and N corresponds to the number of sample SVEs in the ensemble.
In general, the volume of any SVE is much smaller than that of the RVE, i.e.,
�sveI < �rve.

For comparison with the SERVE predictions, the SVE problem is set up with
individual square SVEs of size LI = 60 μm, 100 μm and 200 μm. One hundred
candidate SVEs are chosen from the much larger MVE for each SVE size. Two-
dimensional plane strain analysis of the candidate SVEs is performed subjected
to ATDBCs and PBCs. The ensemble-averaged stiffness components C̄ijkl are
obtained for the population of N SVEs as:

C̄ijkl = 1

N

I=N∑

I=1

C̄Iijkl (27)

where C̄Iijkl are the volume-averaged stiffness components for the I−th SVE.
With increasing number of instantiations in the ensemble population N , the
ensemble-averaged stiffness components are expected to converge to their respec-
tive homogenized values for the MVE (C̄∞

ijkl). The convergence criterion is defined
in terms of the minimum number of instantiations or SVEs N required in the
ensemble to attain a steady-state, invariant value of the homogenized stiffness in
equation (27). Convergence is ascertained from the plot of the cumulative mean
(CM) of the normalized stiffness as a function of the ensemble population sizeN , as
shown in Fig. 14a. The cumulative mean of a stiffness component C̄ijkl , normalized
by the matrix Young’s modulus EM , is defined as:

CM

(
C̄ijkl

EM

)

N

= 1

N

I=N∑

I=1

C̄Iijkl

EM

For an ergodic microstructure, the cumulative mean (CM) of the volume-
averaged stiffness is expected to converge to that of the entire MVE C̄∞

ijkl . The CM

of C̄1111, obtained from the three SVE sizes, are shown in Fig. 14a. For SVE size
Lsve = 60 μm, the ensemble-averaged stiffness even with 100 instantiations does
not converge to the accurate value obtained from the SERVE analysis. For the SVE
size of Lsve = 200 μm, the cumulative mean converges for ensembles consisting
of more than 15 SVE instantiations. The corresponding error in CM, defined as



SERVE-Boundary Conditions 317

Fig. 14 (a) Cumulative mean (CM) of the ensemble-averaged stiffness component C̄1111as a
function of the number of SVEs for different SVE sizes (Lsve); (b) error in CM of the stiffness
as a function of the number of SVEs. (Reprinted from: Kubair and Ghosh [35])

the difference from the stiffness C̄∞
1111, is plotted as a function of the number of

SVEs in Fig. 14b. This confirms the lack of convergence for smaller size SVEs.
SERVEs subjected to ESBCs require only one instantiation of size Lserve40 μm for
convergence, as illustrated in Fig. 12.

5 ESBCs for Polydispersed Microstructures of Carbon Fiber
Polymer Matrix Composites

The efficacy of the ESBC-based SERVEs is examined in this section for a
unidirectional polymer matrix composite (IM7/977-3 PMC) with a polydispersed
microstructure containing a nonuniform distribution of IM7 carbon fibers of varying
sizes in a 977-3 epoxy matrix.

5.1 Microstructure Imaging, Characterization, and
Mechanical Testing

The unidirectional polymer matrix composite (IM7/977-3 PMC) has a composition
of IM7 carbon fibers of varying sizes (mean radius of 2.43 μm and standard
deviation of 0.11 μm) nonuniformly distributed in a 977-3 epoxy matrix. Details
of processing this composite are given in [39]. A 200 × 250 μm montage, acquired
by the software autofocus with a 500× objective lens, is depicted in Fig. 1a. The
overall fiber volume fraction of this microstructure is ∼62%. Mechanical tests on
the PMC are performed following the ASTM-D3039 standardized test protocols
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Table 3 Experimentally
obtained elastic properties of
the IM7/977-3 polymer
matrix composite [46]

Property Mean St. Dev.

Tens. longitudinal modulus (E1T ) 164 GPa 4.12

Comp. longitudinal modulus (E1C ) 137 GPa 0.608

Tens. transverse modulus (E2T ) 8.98 GPa 0.284

Compressive transverse modulus (E2C ) 8.69 GPa 0.367

In-plane shear modulus (G12) 5.01 GPa 0.249

Major Poisson’s ratio (ν12) 0.320 0.0266

and have been reported in [46]. The elastic properties of the IM7/977-3 polymer
matrix composite are selectively documented in Table 3. The effective stiffness
coefficient can be calculated from values in Table 2. For example, the transverse
stiffness component C̄exp

1111 = 11.4±0.3597 GPa, which is of the same order as E2T .
For micromechanical analysis, material properties of the microstructural con-

stituents are obtained from various sources. The Young’s modulus and Poisson’s
ratio of the isotropic 977-3 epoxy matrix are EM = 2.5 GPa and νM= 0.43, respec-
tively. The IM7 carbon fibers are assumed to be transversely isotropic, for which the
modulus in the longitudinal direction is recorded in the manufacturer database [47]
as EFlong = 276 GPa. The transverse direction modulus of the IM7 carbon fibers has

been experimentally obtained in the Sottos group [48] as EFtrans = 19.5 GPa, while
the Poisson’s ratio is νF = 0.23.

5.2 Statistical Characterization of the Polydispersed
Microstructure

An image-processed micrograph of the cross-section of the unidirectional PMC is
shown in Fig. 1a. A large region in the micrograph is designated as the MVE and
tessellated into a network of Voronoi cells [9], based on the fiber centroids, as shown
in Fig. 15a. The selected MVE consists of 1239 fibers with a median fiber radius of
2.4624 μm. Voronoi cells provide a basis for microstructural characterization. The
local fiber volume fraction 	 is defined as the ratio of the fiber cross-sectional area
to the area of the associated Voronoi cell, and the shading represents the level of
	. Brighter cells with lower values of 	 indicate regions that are matrix rich, while
darker cells with large 	 indicate regions of fiber clustering.

The probability density functions (PDF) of the local volume fraction 	 and the
fiber size of the MVE are, respectively, plotted in Fig. 15b, c. The median volume
fraction is evaluated to be 	 = 0.63. The distribution of the normalized 2-point
correlation function S2(r,θ)

S2
1

is shown in Fig. 15d, where S1 is the 1-point correlation

function corresponding to the overall volume fraction, and S2(r, θ) is the radial
distance and orientation-dependent, 2-point correlation function [30]. The function
S2(r,θ)

S2
1

has a peak near the center and reaches a far-field value of S2
1 with some

oscillations.
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Fig. 15 (a) Voronoi tessellation of the polydispersed microstructural volume element (MVE) with
gray-scale shading corresponding to the local volume fraction 	 (coordinates x (or 1) and y (or
2) correspond to transverse directions in the section, while z (or 3) corresponds to the longitudinal
direction of the fibers); probability distribution functions of (b) volume fraction 	; (c) fiber size,
and (d) the radial distance and orientation-dependent 2-point correlation function S2(r, θ) of the
polydispersed MVE

5.3 Creating Statistically Equivalent MVEs from Experimental
Micrographs

Prior to conducting DNS of the SERVE for effective properties, it is important to
create statistically equivalent microstructural volume elements (SE-MVEs) that are
representative of the entire experimental micrograph as in Fig. 1a with identical
statistical distributions. The SE-MVE forms the parent domain from which SERVEs
may be extracted. The SE-MVEs are obtained by a Monte Carlo-type reconstruction
method using the 2-point correlation function S1, 2-point correlation function S2,
and the probability distribution of fiber radius in the PMC micrograph, depicted
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Fig. 16 (a) Convergence with respect to the L2-norm of error with progressive iterations and (b)
map of error in the S2 (r, θ) field between the experimental MVE and reconstructed SE-MVEs and
(c) square window containing the final SE-MVE microstructure with Nf ∼ 2000 fibers

in Fig. 15. The process initializes the positions of Nf chosen fibers in hexagonal
close packing arrangements within the MVE, with the initial spacing between
fibers determined from the global volume fraction S1. The radii of these fibers are
assigned by randomly sampling from the fiber size distribution in Fig. 15c. Values
of parameters used to start the process are Nf ≈ 2000, S1 = 0.65, mean fiber
radius = 2.43 μm, and standard deviation of = 0.11 μm. The reconstruction process
executes a large number of iterations (∼1000Nf ). The centroid of a randomly
selected fiber is perturbed in each iteration to transform the hexagonal arrangement
to an amorphous microstructure. Nonoverlapping perturbations are accepted for
the first ∼60% of the iterations toward this amorphization. The subsequent 40%
iterations optimize the configuration of the SE-MVE by minimizing the L2-norm of
the difference between the SE-MVE instantiation and the reference MVE.

||Sexp
2 (r, θ)− SSEMVE2 (r, θ)||L2 =

√√√√
∫

�MVE

(
S

exp
2 (r, θ)− SSEMVE2 (r, θ)

)2
d�

(28)

After each nonoverlapping fiber shuffle, S2(r, θ) of the SE-MVE is evaluated,
and the resulting L2-norm is compared with that for the unperturbed state. The
move is accepted only if there is an improvement with respect to the L2-norm.
Figure 16a shows the convergence in S2 (r, θ) as a function of iterations. The rate of
convergence is rapid in the beginning of the amorphization. At ∼60% of iterations,
the optimization algorithm begins with a sharp increase in convergence rate and
stabilizes at around 70% of the iterations. The map of error in the S2 (r, θ) field,
between the experimental MVE and the reconstructed final SE-MVE of Fig. 16c,
is given in Fig. 16b. Figure 16c shows the square window containing the SEMVE
represented by the fibers.
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5.4 Micromechanical Analysis of the Polydispersed SERVE
with ESBCs

The ESBCs for the statistically nonhomogeneous microstructures in Sect. 2 are
extended for polydispersed microstructures in this section. For polydispersed fibers,
the distribution of fiber radius a is represented by the probability density function
of the fiber size PDF (a). A relative position vector r = x − xI , where x is a
generic spatial point and xI is a reference point, is used to represent the 2-point
kernel functions. The eigenstrain ε ij in a reference fiber occupying a domain �F

given in equation (22) is correspondingly modified as:

ε ij (x) = [ ιF (x)
(
Sijab +Mijab

)−
∫

�mve\�F
PDF(a)S2(r)Ĝijmn(r, a)

(
Smnpq +Mmnpq

)−1

Ĝpqab(r, a)d� ]−1 [ ( (Sabmn +Mabmn)−1
∫

�mve\�F
PDF(a)S2(r)Ĝmnkl(r, a)d� )−

1

2
(δakδbl + δalδbk) ] εMkl = Aijkl(x)εMkl ∀x ∈ �mve (29)

Sijkl are the spatially invariant interior, Ĝijkl (r, a) are the position- dependent exte-
rior Eshelby tensors, respectively, and ι is a phase-based unit function. Furthermore,

Mijkl =
(
CFijpq − CMijpq

)−1
CMpqkl , with CMijkl and CFijkl being the elastic stiffness

of the matrix and inclusion materials, respectively. The perturbed displacements at
an observation point O in Fig. 2b are written in terms of the matrix strain as:

u∗
i (x) =

⎡

⎢⎣
∫

�mve\�F
PDF (a) S2

(
r′)Limn

(
r′, a

)
Amnkl

(
r′) d�

⎤

⎥⎦ εMkl (30)

where Likl (r) is a unified displacement-transfer tensor. Finally, using equation (8),
the affine transformation-based displacement fields are superposed on the perturbed
displacements to prescribe the exterior statistics-based boundary conditions. The
ESBCs are applied on the boundary �serve of a SERVE domain �serve of size L
using the steps given in Sect. 2.2 with a few modifications.

In step 5, the perturbed displacements u∗
i are computed using equation (30)

incorporating PDF(a) and S2 (r, θ) for all the boundary nodes, using the following
steps:

• Each radial orientation is discretized into Nr number of equally spaced segments
with increment�r = R−a

Nr
, where a is the fiber radius, R is the radius of horizon

(extent of the MVE), and the lower limit of the integration is r = a. The αth
radial point is given as rα = αR−a

Nr
.
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• The angular orientation is discretized intoNθ equally spaced points of�θ = 2π
Nθ

.

The βth angular point is θβ = β 2π
Nθ

.
• The fiber size distribution is discretized into Na equally spaced bins with �a =

amax−amin
Na

, amax and amin being the maximum and minimum fiber size.
• At a SERVE boundary node at xi , the discrete perturbed displacement compo-

nents in equation (30) are evaluated for an applied strain ε0
ij as:

u∗
i (x) = [

Na∑

γ=1

2π(R − γ�a)
NrNθ

Nr∑

α=1

Nθ∑

β=1

αLimn (x − (α�r, β�θ, γ�a))×

(31)

Amnkl (x − (α�r, β�θ)) S2 (x − (α�r, β�θ)) PDF (γ�a) ] ε0
ij

The ESBCs on the boundary nodes are computed using equation (25).

5.5 Candidate SERVE Selection from Stiffness Convergence

Candidate SERVEs are extracted from the SE-MVE domain in Fig. 16c for simu-
lations leading to the homogenized stiffness evaluation. Figure 17a shows a set of
five concentric cross-sections (i-v) with increasing number of fibers in the SE-MVE
that can be used as candidate SERVEs. The SERVE boundaries coincide with the
Voronoi cell boundaries at the edges of the MVE, and hence �serve does not intersect
any fiber. The thickness of the composite domain is considered to be 10μm. The FE
model is discretized into four-noded tetrahedral elements with ten elements in the
z-direction.

The composite system is assumed to be the weakest in transverse loading, as
corroborated by the transverse modulus E2T in Table 3. Hence the analyses are
performed in the transverse direction. The SERVEs are subjected to both ATDBCs
and ESBCs, corresponding to a far-field unit uniaxial strain in the transverse
direction ε0

11 = 1. The axes 1 (or x) and 2 (or y) in Fig. 17a correspond to the
transverse directions, and the fiber axis is in the 3 (or z) direction. All other strain
components are set to zero. 3D finite element simulations of the SERVEs are
performed, and the homogenized stiffness C̄ijkl, i, j, k, l = 1, 2, 3 are evaluated by
averaging the stress and strain fields. The analyses represent tensile loading in the
critical transverse direction, for which the tensile strength is the least. Convergence
in the homogenized stiffness with increasing SERVE size is used as a metric to
determine the optimal SERVE size. In this study, the critical stiffness component
C̄1111 is used to determine the effectiveness of the applied boundary conditions on
the converged SERVE size.

The homogenized stiffness component C̄1111, normalized by the matrix stiffness,
is plotted as a function of the P-SERVE size L in Fig. 17b. The figure shows that the
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Fig. 17 (a) Concentrically increasing candidate SERVE domains in the MVE for micromechan-
ical simulations and (b) convergence of the normalized homogenized stiffness tensor C̄1111/E

M

with SERVE size

Table 4 Comparison of
convergence conditions for
different cases

Bound. Cond. Size # instantiations

SERVE ATDBC 200 μm 1

SVE ATDBC 200 μm 10

SERVE ESBC 70 μm 1

homogenized modulus obtained with the ESBCs (superscript ESBC) converges at a
SERVE size of approximately L = 70 μm consisting of 179 fibers. In contrast,
a much larger P-SERVE sizes of approximately L ≈ 200 μm is necessary for
convergence when subjected to the ATDBC.

5.6 Comparing the SERVE and SVE Stiffness with
Experimental Observations

Results of mechanical tests in [46] have been discussed in the section on charac-
terization and testing. The dominant stiffness coefficient is evaluated as C̄exp

1111 =
11.4 ± 0.3597 GPa. The homogenized stiffness is obtained from finite element
simulations of the SERVEs subjected to both ATDBCs and ESBCs. In addition,
the homogenized stiffness is also computed from SVEs subjected to ATDBCs
as discussed in Sect. 4.2. All the cases in their respective converged situations
yield C̄serve

1111 = C̄sve
1111 = 11.9 GPa, which is within the acceptable range of the

experimental error. The conditions for convergence of the different cases are given
in Table 4. The SERVEs with ESBCs require the smallest volume �serve for
convergence with only one iteration. This is a significant advantage over the other
methods proposed in the literature.
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6 Summary and Conclusions

This chapter discusses the development of the exterior statistics-based boundary
conditions or ESBCs, for statistically equivalent RVEs of elastic composites with
a nonuniform distribution of fibers [35, 38, 39]. Boundary conditions are comple-
mentary to the micromechanical SERVE domain for micromechanical simulations.
The ESBCs overcome deficiencies with conventionally applied boundary condi-
tions, such as the affine transformation-based displacement boundary conditions
(ATDBCs) or periodic boundary conditions (PBCs) in evaluating homogenized
material properties. These deficiencies arise from overlooking the actual statistics
of heterogeneities in nonuniform microstructures, where the effect of the exterior
microstructure on the SERVE can be significant. The SERVE-ESBC model is
capable of resulting in an optimal SERVE domain due to the representation of
realistic boundary conditions. This results in significant computational efficiency.
Development of the ESBCs for the large exterior region needs characterization for
statistical analysis, which is efficiently accomplished for most material systems.
Validation results clearly show the significant advantage and potential of this
method, both in terms of the volume to be modeled for determining effective
mechanical properties and the number of iterations. In the case of high fiber volume
fractions, higher-order correlation functions such as S3, convoluted with the proper
three-body polarization tensor, may be helpful. In conclusion, the ESBCs are very
effective boundary conditions when modeling linear elastic heterogeneous materials
with nonuniform distributions of heterogeneities. Extension to nonlinear materials
will however require a different formulation due to the use of superposition
methods in this approach. Alternative approaches are in consideration for nonlinear
heterogeneous materials.

Appendix: Eshelby Tensors for Circular Cylindrical Fibers

For a cylindrical fiber of circular cross-section with a radius a and centroid at xI ,
let r = x − xI , x being a generic field point. Let ρ = a

r
with r = |x − xI | and

θ = � (x−xI ). Then the interior and exterior Eshelby tensors Sijkl and Ĝijkl
(
x, xI

)

have been given in [41] as:

Sijkl = {α}T {�ijkl}(θ) and Ĝijkl

(
x, xI

)
= {β}T (r){�ijkl}(θ) (32)

The material-dependent vectors {α} and {β} are:
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{α} = 1

8
(
1 − νM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4νM − 1
3 − 4νM

0
0
0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, {β}(r) = ρ2

8
(
1 − νM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2
(
1 + 2νM

)+ 9ρ2

2 − 3ρ2

4(1 + 2νM)− 12ρ2

4 − 12ρ2

16 − 24ρ2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

The parameter νM is the Poisson’s ratio of the matrix material. The circumference
basis tensor is given as:

{�ijkl}(θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δij δkl

δikδjl + δilδjk
δij nknl

ninj δkl

ninjnknl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, where

⎧
⎨

⎩

n1

n2

n3

⎫
⎬

⎭ =
⎧
⎨

⎩

cos θ
sin θ

1

⎫
⎬

⎭

For the cylindrical fiber of circular cross-section, the interior and exterior
displacement-transfer tensors are given by:

Tijk

(
x, xI

)
= {η}T (r){�ijk}(θ) and Dijk

(
x, xI

)
= {γ }T (r){�ijk}(θ) (33)

where

{η}(r) = a ρ

8
(
1 − νM)

⎧
⎪⎨

⎪⎩

4νM − 1
3 − 4νM

0

⎫
⎪⎬

⎪⎭
, {γ }(r) = a ρ

8
(
1 − νM)

⎧
⎪⎨

⎪⎩

−2
(
1 − 2νM

)+ ρ2

2
(
1 − 2νM

)+ ρ2

4
(
1 − ρ2

)

⎫
⎪⎬

⎪⎭

and

{�ijk}(θ) =
⎧
⎨

⎩

niδjk

nj δik + nkδij
ninjnk

⎫
⎬

⎭
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Transverse Failure of Unidirectional
Composites: Sensitivity to Interfacial
Properties
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1 Introduction

In fiber-reinforced polymer-matrix composite laminates, transverse plies are needed
to provide stiffness and strength under multiaxial loading. However, unidirectional
plies typically have a relatively low transverse strength [1]. Transverse cracking
in these plies results in degraded material properties and often leads to further

The original version of this chapter was revised: Missed out co-author name has been added. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-40562-5_15

S. Zacek · D. Brandyberry · A. Klepacki · P. Geubelle (�)
Department of Aerospace Engineering, University of Illinois, Urbana, IL, USA
e-mail: brandyb2@illinois.edu; geubelle@illinois.edu

C. Montgomery · M. Rossol · N. Sottos
Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
e-mail: cbmontg2@illinois.edu; n-sottos@illinois.edu

M. Shakiba
Department of Civil and Environmental Engineering, Virginia Tech., Blacksburg, VA, USA
e-mail: mshakiba@vt.edu

A. Najafi
Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA,
USA
e-mail: arn55@drexel.edu

X. Zhang
Department of Mechanical Engineering, University of Wyoming, Laramie, WY, USA
e-mail: xiang.zhang@uwyo.edu

C. Przybyla · G. Jefferson
Air Force Research Laboratory/RX, Wright-Patterson Air Force Base, Dayton, OH, USA
e-mail: craig.przybyla@wpafb.af.mil; george.jefferson.1@us.af.mil

© Springer Nature Switzerland AG 2020
S. Ghosh et al. (eds.), Integrated Computational Materials Engineering (ICME),
https://doi.org/10.1007/978-3-030-40562-5_12

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40562-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-40562-5_15
mailto:brandyb2@illinois.edu
mailto:geubelle@illinois.edu
mailto:cbmontg2@illinois.edu
mailto:n-sottos@illinois.edu
mailto:mshakiba@vt.edu
mailto:arn55@drexel.edu
mailto:xiang.zhang@uwyo.edu
mailto:craig.przybyla@wpafb.af.mil
mailto:george.jefferson.1@us.af.mil
https://doi.org/10.1007/978-3-030-40562-5_12


330 S. Zacek et al.

degradation of the laminate, such as induced delamination between plies and fiber
breakage [2]. Characterizing and modeling the transverse failure of composites
are complicated by the variability present not only in the material microstructure
(i.e., the fiber size distribution and placement) but also in the local constitutive and
failure properties of the constituents. The interaction between failure mechanisms
such as fiber/matrix interface debonding and matrix cracking further complicates
the prediction of the transverse strength of the composite laminate [1].

Multiple analytical and numerical models have been developed over the past
decades to predict transverse cracking in composite laminates. In analytical models,
it is often assumed that sequential cracks occur midway between existing cracks
[3, 4], while numerical models, which tend to rely on periodic boundary conditions,
simulate only a small portion of the experimental microstructure [5–7] and/or
assume a uniform, structured packing [8, 9]. However, there is an increasing need
to model larger, more realistic composite microstructures, as complex interac-
tions between phases result in effective properties that are highly dependent on
microstructural details [10].

In unidirectional composites with a high fiber volume fraction under transverse
tensile loading, failure typically occurs at the interfaces between the fibers and
the matrix. One of the most successful numerical methods used to capture this
type of failure relies on a cohesive failure law relating the cohesive traction to
the displacement jump along the fiber/matrix interfaces [11, 12]. This approach
is also the basis of the present study, which relies on a nonlinear, discontinuous
extension of a recently introduced interface-enriched generalized finite element
method (IGFEM) [13, 14] that allows for the modeling of transverse failure in
realistic virtual composite microstructures with hundreds of fibers discretized with
nonconforming finite element meshes. Beyond the development of this special form
of the IGFEM, a key goal of this work is to compute the sensitivity of the transverse
failure response of the transverse ply to the cohesive properties of the fiber/matrix
interfaces. To that effect, we present an analytic material sensitivity formulation
based on the direct differentiation method and implement it in the nonlinear,
cohesive IGFEM solver. Related work on IGFEM-based sensitivity analysis in the
context of multi-scale material design can be found in [15, 16].

The manuscript is organized as follows: in Sect. 2, the material system of
interest and experimental observations are presented. Next, Sect. 3 summarizes
the computational method used to simulate the initiation and propagation of the
transverse cracks. Section 4 describes the sensitivity analysis adopted in this work
to capture the dependence of the transverse failure response of the transverse ply on
the cohesive failure properties of the fiber/matrix interfaces. Additional derivations
of the sensitivity to the critical displacement jumps are provided in the Appendix.
The sensitivity formulations are verified against finite difference approximations in
Sect. 5, while Sect. 6 summarizes the results of a sensitivity analysis performed on
a virtual composite laminate composed of hundreds of fibers.
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Fig. 1 Left: Optical image of the [0/90/0]T composite laminate used in the transverse failure
experiments. The 0◦ plies are glass/epoxy, while the 90◦ ply consists of carbon fibers embedded
in the epoxy matrix. Right: Representative image of a transverse crack spanning the 90◦ ply. The
crack path was identified visually after unloading by the introduction of a fluorescent penetrant,
while the specimen is under loading. As apparent from this optical image, the transverse cracks
extend primarily along fiber/matrix interfaces

2 Experimental Observations

The material system under investigation is a [0/90/0]T composite laminate (Fig. 1).
The 90◦ ply is made of AS4 carbon fibers (Hexcel Corporation, Stamford, CT)
embedded in an Araldite/Aradur 8605 epoxy system, while the 0◦ plies, which serve
as barriers to the transverse cracks propagating in the 90◦ ply, consist of glass fibers
(PPG industries, Pittsburgh, PA) in the same epoxy matrix. Glass fibers are used
in the top and bottom layers to allow for the initiation of transverse cracks in the
carbon/epoxy ply at lower loads. The manufacturing of the composite specimen
involves using an in-house pre-impregnator to create pre-preg plies from a carbon
fiber or glass fiber spool. The composites are consolidated under vacuum bag
pressure and temperature according to manufacturer-recommended cure cycle. The
composite panels are then cut into rectangular coupons.

Six composite samples with thickness 0.7 mm, width 2 mm, and a gauge length
of 25 mm were tested in an Instron loadframe. The composite specimens were
subjected to quasi-static longitudinal tension at a displacement rate of 5 μm/sec
(SEMtester, MTI Instruments, Albany, NY) to obtain the composite stress-strain
response. A custom LabVIEW virtual instrument was used to record load and
displacement data. Samples were loaded under an optical microscope (DMR-
R, Leica Microsystems, Buffalo Grove, IL) to record failure mechanisms in the
transverse ply optically during the test.

The main failure mechanisms in this composite system are fiber/matrix debond-
ing and matrix cracking, and a typical transverse crack from these experiments
is shown in Fig. 1. A detailed analysis of the fracture surface indicates that
transverse cracks predominantly (in excess of 95% of the crack path) extend
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Fig. 2 Reconstruction of fiber placement in 90◦ ply: (a) Optical image of [0/90/0] hybrid laminate;
(b) Extraction of fiber distribution

along the fiber/matrix interfaces, in agreement with results reported in [17, 18].
This observation motivates the emphasis placed in this computational work on the
cohesive modeling of the fiber/matrix interface failure, as described in Sect. 3.

Small windows of the 90◦ ply were imaged using a Leica DMR optical
microscope with 50X objective to capture the microstructure with enough resolution
(9.3 pixels/μm) to make morphological reconstruction possible. Otsu’s method for
thresholding [19] was used to reduce the image to a binary representation. This
method computes an optimum threshold intensity level to separate the pixels in the
image into two pixel classes following a bimodal histogram to minimize intra-class
variance. Computing a single global threshold value may not be appropriate in large
images due to nonuniform contrast across the image, which makes it difficult to
classify pixels as foreground or background based on pixel intensity [20]. For this
reason, local threshold intensity values were used to threshold smaller portions of
the microstructure.

The reconstruction of the microstructure used generalized Hough transforms,
which have been adopted by multiple previous studies to find geometric parameters
describing instances of geometric shapes [21, 22]. We adopted the circular Hough
transform to identify individual fibers in the experimental micrographs [23], as
illustrated in Fig. 2a. To avoid the stress singularity associated with direct fiber-
fiber contact, a one-pixel minimum spacing between fibers is enforced, which is
of the order of 100 nm (or about 1/70 of a typical fiber diameter) for the image
presented.

The microstructure from Fig. 2b, which is used in the simulations presented in
Sect. 3, is composed of 751 fibers and has a fiber volume fraction of 55%. The
fiber radius distribution is shown in Fig. 3a, while the nearest-neighbor distance
distribution is presented in Fig. 3b, with the majority of fibers having a nearest
neighbor closer than 135 nm.
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Fig. 3 Fiber radius (a) and nearest-neighbor distance (b) distributions of the reconstructed
composite microstructure taken from Fig. 2b

3 Modeling

To simulate the initiation and propagation of transverse cracks in the 90◦ ply, a
plane strain finite element model is constructed directly from the reconstructed
microstructure. As indicated earlier, the transverse cracks predominantly extend
along the fiber/matrix interfaces, thereby motivating the use of a cohesive failure
law to describe the progressive failure of the fiber/matrix interfaces.

One of the key challenges in modeling transverse failure in composite plies
with high fiber volume fractions is associated with the very small distance between
adjacent fibers. Using a conventional finite element method that relies on elements
that conform to the fiber/matrix interfaces leads to extremely fine meshes and
therefore prohibitively expensive models. To address this challenge, which has
limited most existing numerical analyses to small computational domains and/or
unrealistically low fiber volume fractions, we have adopted a special form of
a recently introduced IGFEM that allows for the modeling of nonconforming
elements containing multiple cohesive interfaces.

Details on the numerical method adopted in this study are provided hereafter,
together with the results of a typical mesoscale analysis of transverse failure in the
[0/90/0]T laminate described in Sect. 2.

3.1 Cohesive Zone Model

For the cohesive failure of the fiber/matrix interfaces, we adopt the modified
trilinear traction-separation law of Scheider et al. [24]. Five material properties
characterize the cohesive response: the cohesive strength (σc), the three critical
opening displacements (δc1, δc2, and δc3), and the ratio between shear and normal
critical tractions (β). Defining the scalar effective displacement δ by

δ =
√
β2 δ2

s + δ2
n, (1)
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Fig. 4 Smooth “trilinear” cohesive law corresponding to σc = 50 MPa, δc1 = 1 nm, δc2 = 4 nm,
and δc3 = 8 nm. The area under the curve Gc denotes the cohesive fracture toughness of the
fiber/matrix interface

where δs and δn are the shear and normal components of the displacement jump
vector (δ), the cohesive traction vector t takes the form

t = t

δ
[β2 δ + (1 − β2)(δ · n)n], (2)

where n is the normal vector of the interface and the scalar effective traction t is

t (δ) = σc

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2( δ
δc1
)− ( δ

δc1
)
2

if 0 ≤ δ < δc1,
1 if δc1 ≤ δ < δc2,
2( δ−δc2
δc3−δc2 )

3 − 3( δ−δc2
δc3−δc2 )

2 + 1 if δc2 ≤ δ < δc3,
0 if δ ≥ δc3.

(3)

For unloading, when δ ≤ δmax, a linear cohesive relation is adopted:

t = δ

δmax
t∗, (4)

where t∗ = t (δmax).
As shown in Fig. 4, the nonlinear relations in the first and third segments of the

cohesive law are introduced to ensure the C1 continuity of the traction-separation
law. The area under the traction-separation law, which denotes the cohesive fracture
toughness, Gc, of the interface is given by

Gc = σc
(
δc2

2
+ δc3

2
− δc1

3

)
. (5)

The initial slope of the cohesive law, which describes the initial compliance of the
cohesive interface prior to failure (i.e., for δ < δc1), is given by 2σc/δc1.
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Finally, a numerical damping scheme is used to stabilize the solution [25]:

t = f (σc, δc1, δc2, δc3, β)+ ξ σc
δc1

dδ

dt
, (6)

where the first term on the right-hand side denotes the modified trilinear cohesive
model described in Fig. 4. To minimize the impact of the numerical damping term
(ξ ) on the solution, an adaptive scheme is adopted in which the damping parameter
is progressively increased to the point where the solution is stabilized and decreased
thereafter.

3.2 Interface-Enriched Generalized Finite Element Method
(IGFEM)

One of the key challenges in the modeling of transverse failure in composite layers
with high fiber volume fraction is associated with the very small distance separating
adjacent fibers. To address this challenge and allow for the simulation of transverse
failure in realistic virtual models of a composite layer consisting of hundreds of
closely packed fibers, we have adopted a special form of IGFEM. The method was
originally introduced in [13, 14] to simulate the thermal and structural response of
heterogeneous materials with meshes that do not conform to the material interfaces
by using enrichment functions and generalized degrees of freedom that allow for
capturing the gradient discontinuity present across these material interfaces.

For the present application, the method is modified in two ways. Firstly, while
the traditional IGFEM utilizes C0 enrichment functions to capture the gradient dis-
continuity of the solution across “intact” material interfaces, the method is extended
hereafter to the use of C−1 enrichment functions to capture the discontinuity in the
displacement solution field associated with the cohesive failure of the fiber/matrix
interfaces [26]. In this discontinuous extension of the IGFEM, two enrichment nodes
are placed at every intersection of the material interface with an element edge.
Generalized degrees of freedom are then associated with the original enrichment
node and its “mirror” node, allowing for the introduction of a cohesive failure model
used to describe their progressive normal and tangential separations.

Beyond the ability to model cohesive failure with nonconforming discontinuous
elements, the second modification to the conventional IGFEM used in this study
consists of the introduction of enriched elements with two cohesive interfaces which
are used to model the potential failure of two very close fiber/matrix interfaces when
they intersect the same element [27].

The remainder of the implementation of the nonlinear IGFEM solver is relatively
conventional and consists of a Newton-Raphson scheme with adaptive load stepping
and a parallel C++ framework using the Message Passing Interface (MPI). PETSc
[28] is used to solve the linearized system of equations using Krylov subspace
methods.
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3.3 Mesoscale Simulations

The mesoscale computational model, created from the reconstructed microstructure
shown previously in Fig. 2b, is presented schematically in Fig. 5, together with
details of the nonconforming IGFEM mesh. The model, which spans the entire
thickness of the 90◦ ply, contains 751 fibers. The width (L1) is approximately
325 μm, the height of the 90◦ ply (H2) is 162 μm, and each of the 0◦ plies (H1)
has a height of 28 μm. The nonconforming triangular elements intersected by the
fiber/matrix interfaces contain one or two cohesive interfaces. The other elements
are conventional three-node linear elements. The IGFEM computational model is
made of 512, 025 elements, 321, 975 nodes, and 643, 950 degrees of freedom.

The in-plane properties of the various constituents are summarized in Table 1.
The cohesive properties used to model the failure of the fiber/epoxy matrix
interfaces are derived from a numerical analysis of microbond experiments [29].
The homogenized properties used in the 0◦ plies are obtained using the classical
Halpin-Tsai relations [1, 30], with a fiber volume fraction of 69% in these 0◦ plies.

Under the effect of a 0.43% transverse strain, a complex heterogeneous stress
state and transverse cracking pattern develop in the composite laminate, as illus-
trated in Fig. 6a, in which the deformations have been scaled by a factor of 5.
The figure clearly shows distinct transverse cracks consisting of failed cohesive

Fig. 5 (Left) Schematic of mesoscale computational model used to simulate the transverse failure
of the reconstructed microstructure shown in Fig. 2b, with (right) details of the IGFEM mesh
consisting of nonconforming triangular elements. Cohesive interfaces are placed along each
fiber/matrix interface

Table 1 Material properties used in the mesoscale simulations

Carbon fibers E = 19.5 GPa, ν = 0.45

Epoxy matrix E = 2.38 GPa, ν = 0.43

Cohesive interfaces σc = 50 MPa, δc1 = 1 nm, δc2 = 4 nm,

δc3 = 8 nm, β = 1

0◦ glass-epoxy plies E1 = 49.2 GPa, E2 = 7.21 GPa, ν12 = 0.298,

G12 = 3.96 GPa, G23 = 2.08 GPa
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Fig. 6 (Left) Von Mises stress distribution in the composite laminate subjected to a 0.43% applied
transverse strain with the deformations scaled by a factor of 5, showing the appearance of a
transverse crack spanning the width of the 90◦ ply. (Right) Corresponding transverse stress-strain
curve

interfaces that span the 90◦ ply. Due to stiffness of the 0◦ plies, the corresponding
evolution of the transverse stress (Fig. 6b) computed from the reaction forces along
the right edge of the computational domain remains almost linear up to the point
where the cohesive elements in the vicinity of the crack path begin to fail and
subsequently reduce the overall modulus of the composite.

3.4 Validation

The IGFEM model for transverse composite failure was validated by comparing the
statistical distribution of the predicted linear elastic response and onset of failure
with experimental measurements. A reconstructed microstructure of approximately
6000 fibers was split into 9 and 18 sections of about 700 and 350 fibers, respectively.
These results are compared with experimental measurements of the initial stiffness
and of the strain at the first transverse crack obtained from tensile tests performed
on the same [0/90/0]T carbon/glass-epoxy system, with the onset of transverse
cracking captured through acoustic emission.

These virtual specimens were subjected to a tensile loading up to a transverse
strain of about 0.5%. The resulting stress-strain curves are plotted in Fig. 7 with
the characteristic first crack marked for each computational case. The cohesive
traction-separation law for this set of validation simulations is the same as outlined
in Table 1 and the previous example of a mesoscale simulation using the IGFEM
computational model. Table 2 presents a comparison between experimental and
numerical values of the initial composite stiffness and the strain corresponding
to the formation of the first transverse crack, measured through decreases in the
macroscopic stress-strain curve, and indicates good agreement between measured
and predicted values.
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Fig. 7 Numerical stress-strain curves associated with 9 (a) and 18 (b) virtual microstructures
composed of approximately 700 and 350 fibers, respectively. The diamond-shaped symbols denote
the strains at which the first transverse crack for each microstructure is predicted

Table 2 Validation of computational model based on the initial composite stiffness and the strain
at the onset of transverse cracking. N denotes the number of sections into which the large composite
sample was split for the mesoscale validation. The experimental values of the initial stiffness are
obtained by scaling the measured data using an isostrain relation of the [0/90/0]T laminate to
reflect the reduced thickness of the simulated 0◦ plies

Initial stiffness Initial stiffness error Strain at first First crack error

[GPa] [%] crack [%] [%]

Experimental 14.03 ± 0.363 N/A 0.34 ± 0.06 N/A

IGFEM (N = 9) 13.06 ± 0.396 6.91 0.345 ± 0.026 1.47

IGFEM (N = 18) 12.80 ± 0.266 8.77 0.358 ± 0.022 5.29

4 Sensitivity Analysis: Formulation

Beyond the simulation of transverse failure in realistic composite layers recon-
structed directly from optical images, a key objective of this work is the analytical
extraction of the sensitivity of the transverse failure response on the parameters
defining the cohesive failure of the fiber/matrix interfaces. In particular, we derive
the IGFEM-based analytic material sensitivity of the macroscopic transverse stress
(denoted hereafter simply as σ ) with respect to the interface variables (denoted as
ηi). A direct method is used here because of the costly nature of the nonlinear
simulations which would make finite difference extremely expensive, while the
direct method allows us to compute sensitivities at very low cost.

For this problem, the response functional at every load step n can be written as

nσ = LT nFext
p

1

2H1 +H2
, (7)

where LT is a constant vector of 0s and 1s to select the correct degrees of freedom
from the external force vector Fext, the subscript p denotes the prescribed degrees
of freedom, and H1 and H2 are the ply thicknesses introduced in Fig. 5. Unit depth
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is assumed here. The sensitivity of the macroscopic transverse stress at load step n
with respect to the design variable ηi can then be expressed as

dnσ

dηi
= LT

dnFext
p

dηi

1

2H1 +H2
. (8)

The partitioned system of nonlinear equations,

nFint
(
ηi,

n−1δmax(ηi),
nU(ηi, n−1δmax(ηi))

)
=
[
nFint
f

nFint
p

]
=
[

0
nFext
p

]
= nFext,

(9)
where the subscript f denotes the free degrees of freedom, is solved incrementally.
Because no external loads are applied, nFext

f vanishes. nδmax denotes the vector of
internal state variables computed at each cohesive integration point:

nδmax =
{√

β2 nδ2
s + nδ2

n if loading,
n−1δmax if unloading.

(10)

Differentiation of (9) yields

nKff
dnUf

dηi
= −

(
∂nFint

f

∂ηi
+ ∂nFf int

∂n−1δmax

dn−1δmax

dηi

)
(11)

and

dnFext
p

dηi
= nKpf

dnUf

dηi
+ ∂nFint

p

∂ηi
+ ∂nFp int

∂n−1δmax

dn−1δmax

dηi
. (12)

Note that d
nUp
dηi

= 0 since nUp is a prescribed value applied at each load step. nKff

and nKpf are the partial derivatives of the free and prescribed internal force vectors
with respect to the free displacements, respectively.

To compute dnσ
dηi

in Equation (8), the right-hand side of Equation (12) must be
evaluated which requires the solution of the linear system given by Equation (11) to

compute dnUf
dηi

. The right-hand sides of Equations (11) and (12) contain the partial

derivative of the internal force with respect to the internal variables n−1δmax, which
is computed only over the cohesive elements. The elemental internal force vector
contribution from a cohesive element has the form

nFint,{cohesive}
elem =

ngp∑

gp=1

wgpNTgp
ntgpdA, (13)
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where wgp is the Gauss integration weight, Ngp is a matrix arrangement of the
discontinuous enrichment functions used to compute the displacement jump vector,
and ntgp is the traction vector defined in Equation (2). Differentiating Equation (13)
with respect to the internal variables yields

∂Fint,{cohesive}
gp

∂n−1δ
gp
max

= wgpNTgp
∂ntgp
∂n−1δ

gp
max
dA,

∂ntgp
∂n−1δ

gp
max

=

⎧
⎪⎨

⎪⎩

0 if loading,
1

n−1δ
gp
max

(
dt∗

dn−1δ
gp
max

− t∗
n−1δ

gp
max

)
×

[
β2 δ + (1 − β2)(δ · n)n

]
if unloading,

(14)

where t∗ is defined in Equation (4) and dt∗
dn−1δmax

is easily computed from Equa-
tion (3).

The right-hand sides of Equations (11) and (12) also contain the derivatives of the
internal variables with respect to the parameters from the previous load step. These
derivatives are simply stored as additional internal variables for each quadrature

point and initialized as d0δmax
dηi

= 0. For subsequent steps, the components of the
vector are updated using

dnδmax

dηi
=
{

1
2 nδ (2β

2 nδs
dnδs
dηi

+ 2 nδn
dnδn
dηi
) if loading,

dn−1δmax
dηi

if unloading,
(15)

where

dnδgp

dηi
= Ngp

dnUelem

dηi
. (16)

In Equation (16), d
nUelem
dηi

can be solved using Equation (11). These updated internal
variable derivatives are then used in the sensitivity analysis at the end of the next
load step.

The last missing term is the partial derivative of the internal force with respect to
specific interface parameters. The sensitivity derivations presented in the remainder
of this section are specific to ηi = σc, leaving a summary of the derivations of the
sensitivity with respect to the critical displacement jumps δci (i = 1, 2, 3) for the
Appendix.

Again, the contributions from the linear elastic bulk elements to the partial
derivative vanish as the stress does not depend explicitly on the cohesive internal
strength. The partial derivative of Equation (13) with respect to σc is

∂nFint,{cohesive}
elem

∂σc
=

ngp∑

gp=1

wgpNTgp
∂ntgp
∂σc

dA. (17)
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The explicit partial derivative of Equation (2) with respect to σc yields

∂ntgp
∂σc

= ∂nt

∂σc

1
nδ

[β2 nδ + (1 − β2)(nδ · n)n], (18)

where ∂t
∂σc

is readily obtained from Equation (3) as

∂t

∂σc
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2( δ
δc1
)− ( δ

δc1
)
2

if 0 ≤ δ < δc1,
1 if δc1 ≤ δ < δc2,
2( δ−δc2
δc3−δc2 )

3 − 3( δ−δc2
δc3−δc2 )

2 + 1 if δc2 ≤ δ < δc3,
0 if δ ≥ δc3.

(19)

5 Sensitivity Analysis: Verification

To verify the material sensitivity analysis described in Sect. 4, the simple problem
shown in Fig. 8 is solved. The verification problem consists of a small square domain
containing two fibers of different sizes. The larger and smaller fibers have a diameter
of 8 and 6 μm, respectively, which correspond to the upper and lower sizes of the
carbon fibers used in the experiments.

The cohesive properties for this simulation are chosen as σc = 50 MPa, δc1 =
10 nm, δc2 = 40 nm, δc3 = 80 nm, and β = 1. The domain is subjected to a 2%
traverse strain and the results computed by the direct analytic sensitivity formulation
described in the previous section are compared to those obtained with a central finite
difference scheme.

As shown in Fig. 9, there is a very good agreement between the analytic and finite
difference sensitivity results for both the sensitivities with respect to the cohesive
strength and to δc1. The first and second peaks observed in the sensitivity curves are

Fig. 8 Schematic of
two-fiber problem used to
verify the analytic sensitivity
formulation
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Fig. 9 Verification of the material sensitivities for the two-fiber problem shown in Fig. 8. (a)
Transverse stress-strain response and sensitivity of the transverse stress with respect to σc; (b)
Sensitivity with respect to δc1

associated with the debonding failure of the larger and smaller fibers, respectively.
As expected, the sensitivity of the transverse stress with respect to σc remains
positive through the entire range of applied strains as the incremental increase of the
cohesive strength leads to an overall increase of σ over the entire traction-separation
curve as seen in Fig. 10 which shows the effect of differential changes in both σc and
δc1 on an example traction-separation curve. The sensitivity of the transverse stress
with respect to δc1 is first negative, as a higher value of the critical displacement
jump for a fixed cohesive strength leads to a more compliant cohesive model, and
therefore a decrease in σ . Once the interfaces start to fail, the δc1 sensitivity of σ
switches sign, as a larger value of δc1 leads to a delayed failure and therefore a
higher value of σ for a given applied strain.
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Fig. 10 Schematic illustration of the impact on the cohesive traction-separation curve for an
incremental increase in σc (a) and in δc1 (b)

Fig. 11 Formation of a large
transverse crack at 0.5%
strain in the 90◦ ply of the
[0/90/0]T composite
laminate. The 90◦ ply is
composed of 406 fibers. The
deformation has been scaled
by a factor of 5

6 Sensitivity Analysis: Results

In this section, a 406-fiber microstructure is simulated to extract the sensitivity of the
transverse stress with respect to the cohesive strength and the critical displacement
jumps. The simulated microstructure is presented in Fig. 11 at εapplied = 0.5%
showing a large transverse crack. The macroscopic transverse stress curve, along
with the evolution of the sensitivity with respect to the cohesive strength, is plotted
against the applied strain in Fig. 12, and the sensitivities with respect to the critical
displacement jumps are presented in Fig. 13.

As apparent in Fig. 12, the sensitivity of the transverse stress-strain curve with
respect to σc remains positive throughout the transverse failure process. This result
can be again explained by the effect of differential changes in σc on the cohesive
law illustrated in Fig. 10a.
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Fig. 12 Evolution of the transverse stress σ and of the σc-sensitivity of σ versus the applied
transverse strain for the 406-fiber problem shown in Fig. 11

Fig. 13 Evolution of the sensitivities of the transverse stress σ with respect to the critical
displacement jumps δci for the trilinear cohesive law versus the applied transverse strain for the
406-fiber problem

The sensitivity of the transverse stress with respect to δc1 is initially negative
due to the increased cohesive compliance of the interfaces, as illustrated in Fig. 10b.
During the failure events, the δc1-sensitivity becomes positive due to the delayed
failure response. The sensitivities with respect to δc2 and δc3 initially vanish
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before becoming positive during the failure events. It should also be noted that
the sensitivity with respect to δc3 is substantially smaller than the sensitivity with
respect to δc2.

Due to the complexity of the large 406-fiber microstructure and of the stress field
in the 90◦ ply, the failure of the fiber/matrix interfaces is a complex function of the
applied strain, rendering a precise determination of the onset of transverse cracking
difficult when only inspecting the stress-strain response or deformed geometry.
However, the evolution of the sensitivities of the transverse stress with respect to
the cohesive parameters provides a clear insight on the correlation between applied
strain and the onset of transverse cracking.

7 Conclusion

A computational framework has been presented for the modeling of transverse
cracking in realistic virtual microstructures of 90◦ composite plies reconstructed
directly from optical images. The underlying numerical method relies on a dis-
continuous, multi-interface extension of an interface-enriched generalized finite
element method, which allows for the simulation of fiber/matrix debonding in com-
posite layers with high fiber volume fractions. This computational model has been
validated against strain measurements of the onset of transverse cracking performed
on a [0/90/0]T carbon/glass-epoxy laminate. Also included in the computational
framework is the analytic extraction of the sensitivity of the macroscopic transverse
stress with respect to the parameters that define the cohesive failure law. By mon-
itoring the evolution of these sensitivities, the onset and propagation of transverse
cracks can be assessed. It should be noted, however, that in the present study, all
fiber/matrix interfaces are assumed to have the same cohesive properties. The next
steps include relaxing that assumption and deriving individual interface property
sensitivities, i.e., extracting how sensitive the transverse stress is to the critical
stress of individual fibers. With these individual sensitivities, one could study the
sensitivity to the parameters that define the distributions of the interface properties,
e.g., the sensitivity to the average and standard deviation of the interface strength.

Appendix: Sensitivity to Critical Displacement Jumps

For completeness, a summary of the sensitivity formulation with respect to the
critical displacement jumps δc1, δc2, and δc3 is included hereafter, starting from
Equation (18) in Sect. 4.

For linearly elastic volumetric elements, again there is no explicit dependence of
the internal force contribution on δci and no displacement discontinuity. Therefore,
Equation (18) simply becomes
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∂ntgp
∂δci

= ∂nt

∂δci

1
nδ

[β2 nδ + (1 − β2)(nδ · n)n]. (20)

From Equation (3), the partial derivatives of the scalar effective traction are

∂t

∂ηi
=

⎧
⎨

⎩
−2σc

(
1 − δe

δc1

)(
δe
δ2
c1

)
0 ≤ δe < δc1

0 else
for ηi = δc1

{
6σc

(
δe−δc2
δc3−δc2 − 1

) (
δe−δc2
δc3−δc2

) (
δe−δc3

(δc3−δc2)2
)
δc2 ≤ δe < δc3

0 else
for ηi = δc2

{
−6σc

(
δe−δc2
δc3−δc2 − 1

) (
δe−δc2
δc3−δc2

) (
δe−δc2

(δc3−δc2)2
)
δc2 ≤ δe < δc3

0 else.
for ηi = δc3

(21)

Acknowledgements This work has been supported through a grant No. FA9550-12-1-0445 to the
Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University
(partners JHU, UIUC, UCSB), awarded by the AFOSR/RSL (Computational Mathematics Pro-
gram, Manager Dr. A. Sayir) and AFRL/RX (Monitors Dr. C. Woodward and C. Przybyla).

References

1. I. Daniel, O. Ishai, Engineering Mechanics of Composite Materials (Oxford University Press,
New York, 2005)

2. J. Nairn, Matrix microcracking in composites, Polymer Matrix Composites, 2, 403–432 (2000)
3. K. Garrett, J. Bailey, Multiple transverse fracture in 90◦ cross-ply laminates of a glass fibre-

reinforced polyester. J. Mater. Sci. 12, 157–168 (1977)
4. J. Mayugo, P. Camanho, P. Maimi, C. Davila, Analytical modelling of transverse matrix

cracking of [±θ/90n]s composite laminates under multiaxial loading. Mech. Adv. Mater.
Struct. 17, 237–245 (2010)

5. L. Canal, J. Segurado, J. Llorca, Failure surface of epoxy-modified fiber-reinforced composites
under transverse tension and out-of-plane shear. Int. J. Solids Struct. 46, 2265–2274 (2009)

6. D. O’Dwyer, N. O’Dowd, C. McCarthy, Numerical micromechanical investigation of inter-
facial strength parameters in a carbon fibre composite material. J. Compos. Mater. 48(6),
749–760 (2014)

7. A. Louhghalam, S. Arwade, Prediction of incipient damage sites in composites using classi-
fiers. Int. J. Damage Mech. 19, 233–260 (2010)

8. T. Okabe, M. Nishikawa, H. Toyoshima, A periodic unit-cell simulation of fiber arrangement
dependence on the transverse tensile failure in unidirectional carbon fiber reinforced compos-
ites. Int. J. Solids Struct. 48, 2948–2959 (2011)

9. T. Okabe, H. Sekine, K. Ishii, M. Nishikawa, N. Takeda, Numerical method for failure
simulation of unidirectional fiber-reinforced composites with spring element model. Compos.
Sci. Technol. 65, 921–933 (2005)

10. S. Torquato, Random Heterogeneous Materials, Microstructure and Macroscopic Properties
(Springer, New York, 2002)

11. T. Vaughan, C. McCarthy, Micromechanical modelling of the transverse damage behaviour in
fibre reinforced composites. Compos. Sci. Technol. 71, 388–396 (2011)



Transverse Failure of Unidirectional Composites: Sensitivity to Interfacial Properties 347

12. V. Kushch, S. Shmegera, P. Brondsted, L. Mishnaevsky, Numerical simulation of progressive
debonding in fiber reinforced composite under transverse loading. Int. J. Eng. Sci. 49, 17–29
(2011)

13. S. Soghrati, A. Aragón, C. Duarte, P. Geubelle, An interface-enriched generalized finite
element method for problems with discontinuous gradient fields. Int. J. Numer. Methods Eng.
89(8), 991–1008 (2012)

14. S. Soghrati, P. Geubelle, A 3D interface-enriched generalized finite element method for weakly
discontinuous problems with complex internal geometries. Comput. Methods Appl. Mech.
Eng. 217–220, 46–57 (2012)

15. A. Najafi, M. Safdari, D. Tortorelli, P. Geubelle, A gradient-based shape optimization scheme
using an interface-enriched generalized FEM. Comput. Methods Appl. Mech. Eng. 296, 1–17
(2015)

16. A. Najafi, M. Safdari, D. Tortorelli, P. Geubelle, Material design using a NURBS-based shape
optimization scheme, in In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference (American Institute of Aeronautics and Astronautics Inc, AIAA, 2016)

17. T. Hobbiebrunken, M. Hojo, T. Adachi, C.D. Jong, B. Fiedler, Evaluation of interfacial strength
in CF/epoxies using FEM and in-situ experiments. Compos. A: Appl. Sci. Manuf. 37, 2248–
2256 (2006)

18. E. Gamstedt, B. Sjogren, Micromechanisms in tension-compression fatigue of composite
laminates containing transverse plies. Combust. Sci. Technol. 59, 167–178 (1999)

19. N. Otsu, A threshold selection method from gray-level histograms. IEEE IEEE Trans. Syst.
Man Cybern. 9, 62–66 (1979)

20. M. Chandrakala, P. Devi, Threshold based segmentation using block processing. Int. J. Innov.
Res. Comput. Commun. Eng. 4, 821–826 (2016)

21. D. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13,
111–122 (1981)

22. T. Atherton, D. Kerbyson, Size invariant circle detection. Image Vis. Comput. 17, 795–803
(1999)

23. C. Przybyla, T. Godar, S. Bricker, J. Simmons, M. Jackson, L. Zawada, J. Pearce, Statistical
characterization of SiC/SiC ceramic matrix composites at the filament scale with bayesian seg-
mentation, Hough transform feature extraction, and pair correlation statistics, in International
SAMPE Technical Conference (2013), pp. 859–878

24. I. Scheider, W. Brocks, The effect of the traction separation law on the results of cohesive zone
crack propagation analyses. Key Eng. Mater. 251, 313–318 (2003)

25. Y.F. Gao, A.F. Bower, A simple technique for avoiding convergence problems in finite element
simulations of crack nucleation and growth on cohesive interfaces. Model. Simul. Mater. Sci.
Eng. 12(3), 453 (2004)

26. A. Aragón, A. Simone, The discontinuity-enriched finite element method. Int. J. Numer.
Methods Eng. 112, 1589–1613 (2017)

27. S. Zacek, Exploring the link between microstructure statistics and transverse ply fracture in
carbon/epoxy composites. Master’s thesis, University of Illinois – Urbana-Champaign (2017)

28. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith,
S. Zampini, H. Zhang, H. Zhang, PETSc Web page. http://www.mcs.anl.gov/petsc (2016)

29. S. Potukuchi, Fracture analysis of carbon fiber/epoxy matrix interface through microbond and
cruciform tests. Master’s thesis, University of Illinois – Urbana-Champaign (2016)

30. J. Halpin, J. Kardos, The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

http://www.mcs.anl.gov/petsc


Geometric Modeling of Transverse
Cracking of Composites

Angel Agrawal, Scott Zacek, Kyle Nixon, Chris Montgomery,
Philippe Geubelle, Nancy Sottos, Craig Przybyla, and George Jefferson

1 Introduction

Continuous-fiber laminated composites have been shown to be a valuable material
option when high specific stiffness and strength are desired, particularly in the
aerospace industry [1]. However the random nature of the composite microstructure
complicates the experimental and analytical study of their failure response. The
primary objective of this research project is to develop a set of multiscale analytical
and experimental tools to investigate the link between the geometrical and material
parameters that define the microstructure and one of the failure modes of composite
laminates, i.e., the cracking taking place in 90◦ plies due to the transverse loading of
the laminate. Emphasis is placed on transverse cracking as this failure mode is often
considered as a precursor to other more critical failure modes such as delamination
and fiber breaking.

On the experimental side, transverse failure tests have been conducted using a
specially designed hybrid composite laminate composed of a carbon/epoxy trans-
verse (90◦) ply sandwiched between two glass/epoxy 0◦ plies [2]. On the analytical
side, a cohesive interface-enriched generalized finite element method (IGFEM)
combined with analytical sensitivity analysis has been formulated and implemented
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to simulate transverse failure in realistic virtual models of the composite laminate
and extract the sensitivity of the transverse failure response on the material and
geometrical parameters that define the microstructure of the transverse ply [3–5].
While the IGFEM scheme allows for the detailed simulation of transverse failure
in virtual models composed of hundreds of fibers, larger models of the composite
laminate are needed to further explore statistical effects on the transverse failure
response. To that effect, we develop in this manuscript a geometric model that
combines large reconstructed models of the transverse ply taken from optical images
with a simplified model of transverse crack initiation and a shear lag model of crack
shielding. This work builds on the theoretical studies of Garret and Bailey [6] and
Parvizi and Bailey [7], who used a homogenized model of the transverse ply in
their prediction of the relation between applied transverse loading of the laminate
and the evolution of transverse cracking in the 90◦ ply. In contrast, the present
study incorporates details of the transverse ply microstructure extracted from optical
images of the composite laminates used in the experiments [2].

Figure 1 shows the material system of interest. As indicated earlier, the two
outside plies contain 0◦ oriented glass fibers embedded in an epoxy matrix, while the
interior ply contains 90◦ oriented fibers in the same epoxy matrix. The figure also
provides details of the microstructure and of its reconstruction, which was achieved
using local thresholding techniques and a circular Hough transform [3].

Fig. 1 (a) Hybrid glass/carbon/epoxy composite laminate used in the experimental study. (b)
Focused view of carbon/epoxy transverse ply. (c) Detailed view of the carbon-fiber microstructure
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The proposed geometric model consists of three components, which are
described in the next three sections. Firstly (Sect. 2), realistic virtual specimens
are constructed based on spatial statistics of the actual composite system. Secondly
(Sect. 3), estimates of the stress concentration associated with a pair of adjacent
fibers on the distance between them and their relative orientation with respect to
the loading direction are used to identify potential points of failure initiation. Lastly
(Sect. 4), an iterative process is adopted to determine the location of successive
cracks, taking into account the shielding associated with previously introduced
transverse cracks. Section 5 summarizes the results of a convergence and calibration
analysis of the proposed model. In Sect. 6, we apply the geometric model to a
statistical investigation of the impact of some of the microstructural parameters on
the predicted transverse cracking response.

2 Problem Description

Multiple statistical metrics can be extracted from the optical images of the com-
posite microstructure similar to that shown in Fig. 1. Two of these statistical
measures are presented in Fig. 2: the distribution of fiber diameter (top figure) and
the distribution of the projected nearest-neighbor distance (NND) (bottom figure),
defined as the NND projected onto the direction of the transverse loading. The latter
parameter is used in the next section in the estimation of the stress concentration
factor that drives the crack initiation process. Due to the high fiber volume fraction
of the composite laminate of interest, the measured NND for the system of interest
is approximately 0.3 μm [3]. For reference, the diameter for a typical carbon fiber
is approximately 7.5 μm.

In the experiments, the monitoring of transverse cracking process is achieved
using two distinct methods. As shown in Fig. 3, optical images augmented by
a fluorescent dye show that the failure process takes place primarily along the
fiber/matrix interfaces. Another, more global approach based on acoustic emission
is illustrated in Fig. 4, which also presents the transverse constitutive response
dominated by the stiff, linear response of the 0◦ plies. Video observations of the
failure process show that the transverse cracks initiate inside the 90◦ ply, propagate
dynamically across the transverse layer, and are arrested by the adjacent 0◦ plies,
as illustrated in Fig. 4 (top). More details on the experimental aspects of the project
can be found in [2].

Once the virtual model of the laminate, built in this work directly from optical
images, is defined in terms of the number, diameter, and placement of the fibers
in the transverse ply, the problem description is completed by specifying the
interfacial strength distribution. It should be noted here that virtual models of the
microstructure can also be built numerically using a variety of statistical metrics,
such as the fiber diameter and NND distributions or the one- and two-point
correlation functions, combined with an optimization scheme aimed at matching the
numerically computed and experimentally measured values of these distributions.
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Fig. 2 Top: Fiber size distribution, showing an average fiber diameter around 7.5 μm. Bottom:
Histogram of the projected nearest neighbor distance (NND) between the fibers of the transverse
ply emphasizing the close packing of the fibers

An example of this virtual model construction based on the simulated annealing
method [8] specially adapted for composite with high fiber volume fractions can be
found in [9] and is illustrated in Fig. 5.

As described in the next section, the geometric model utilizes the fiber-matrix
interface strength to evaluate the required load to initiate failure. In this work, we
adopt a Weibull distribution of the interfacial strength, defined by the scale (λ) and
shape (k) parameters as

{
f (s, k, λ) = k

λ
( s
λ
)
k−1
e−( sλ )k s ≥ 0,

f (s, k, λ) = 0 s < 0,
(1)

with both λ and k greater than zero, and s denotes some strength measure in this
work. These two parameters are related to the mean (μ) and variance (σ 2) by
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Fig. 3 Three typical transverse cracks, showing that fiber/matrix debonding accounts for most of
the crack path

Fig. 4 Top: Multiple cracks across the transverse ply. Bottom: Measured transverse stress-strain
curves and acoustic signatures associated with six transverse failure tests. Although multiple cracks
are created, the constitutive response, dominated by the stiff 0◦ plies, is mostly linear
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Fig. 5 Numerical building of a virtual model of the transverse ply by on the matching of the NND
distribution extracted from optical images. The right figures compare the numerical (red curve) and
experimental (black curve) distributions (captured with a Weibul distribution) at the start (a) and
completion (b) of the optimization process. (Taken from [9])

μ = λ�(1 + 1

k
), (2)

and

σ 2 = λ2(�(1 + 2

k
)− �(1 + 1

k
)2), (3)

where �(.) is the Gamma function. Equations (2) and (3) lead to

σ 2

μ2 = �(1 + 2
k
)

�(1 + 1
k
)2

− 1. (4)

Figure 6 illustrates how k and λ affect the cumulative probability distribution.
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Fig. 6 Effect of the shape
parameter k (for λ = 1) (top)
and of the scale parameter λ
(for k = 3) (bottom) on the
cumulative Weibull
distribution used to describe
the fiber/matrix interface
strength distribution

An example of interfacial strength distribution with an average value of 80 MPa
and a variance σ of about 3 MPa is shown in Fig. 7.

In the crack initiation component of the model, each fiber/matrix interface is
assigned randomly a strength value based on the distribution shown in Fig. 7, and
transverse cracking is assumed to occur, and then the stress concentration (see
Sect. 3) associated with each fiber pair reaches the lesser of the two strength values.
This critical value associated with each fiber pair is pre-computed based on the fiber
placement and assigned strength values.
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Fig. 7 Continuous and discrete distributions of interface strength values corresponding to an
average of 80 MPa and a variance of approximately 3 MPa

3 Fiber-Pair Stress Concentration

As indicated earlier, postmortem fracture analyses of the composite laminate have
shown that interfacial failure accounts for most of the transverse crack path. In this
simplified model, we assume that crack initiation also takes place at fiber-matrix
interfaces, when the stress concentration associated with a pair of adjacent fibers,
which is a function of the distance between these fibers and of their orientation
with respect to the loading direction, reaches the debonding strength of the weaker
of the two interfaces. We also assume that, once a crack is initiated, it propagates
instantaneously and vertically across the 90◦ ply.

To estimate the dependence of the stress concentration on the distance d between
adjacent fibers and the angle β with the loading direction, we perform a parametric
study using the interface-enriched generalized finite element method (IGFEM) of
the problem described schematically in Fig. 8. In this model, the two fibers are
assumed to have the same diameter, the interface to be perfect, and the fibers
and the matrix to behave as linearly elastic solids. Figure 8 also illustrates the
loading conditions, including the applied far-field transverse load σ∞ that defines
the loading direction. The domain is chosen large enough to avoid the influence of
the boundary conditions on the stress field in the vicinity of the two fibers.

To capture accurately the geometry of the two fibers, we adopt the IGFEM for-
mulation based on Non-Uniform Rational Basis Splines (NURBS). This approach
allows for solving the problem with finite element meshes that do not conform to
the material interfaces by introducing in the elements traversed by a fiber/matrix
interface enrichments based on the NURBS representation of that interface [10].
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Fig. 8 Extraction of the
stress concentration
associated with two adjacent
fibers of radius R

Fig. 9 Dependence of the
stress concentration factor on
the separation d between two
fibers of radius R aligned
with the loading direction (β=
0). The dotted horizontal line
represents the stress
concentration factor for a
single fiber [11]

The parametric study is conducted for −90◦ ≤ β ≤ 90◦ and 0.05 ≤ d/R ≤ 3,
and, for each case, the maximum radial stress along the two fiber/matrix interfaces
is computed.

Figure 9 presents the dependence of the stress concentration factor (defined as
the ratio between the maximum radial stress along the fiber/matrix interfaces and
the applied far-field transverse load σ∞) on the distance d separating the two fibers
for the case where the fibers are aligned with the loading direction (β = 0). As
expected, the stress concentration increases as the fiber-to-fiber distance decreases
and tends to the single fiber value given by Goodier [11] when the fiber-to-fiber
separation exceeds three times the radius.

Figure 10 shows the β-dependence of the stress concentration factor for nine
values of d. As apparent in that figure, a stress concentration is obtained for −45◦ ≤
β ≤ 45◦, with the highest stress concentration obtained for fiber pairs aligned
with the loading direction. The β and d-dependence of the stress concentration is
summarized in the 3-D plot shown in Fig. 11.

The results of this study are used to determine the stress concentration factor,
labeled γg hereafter, that amplifies the applied stress (σt ) acting on the transverse
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Fig. 10 Angular variation of the stress concentration factor obtained for different values of the
fiber separation distance d

Fig. 11 3-D representation of the dependence of the interface stress concentration factor on the
fiber-to-fiber separation distance d and orientation angle β

ply. The resultant interface radial stress is then compared to the interface strength
value σc assigned to the weaker of two fiber interfaces to initiate a transverse crack.
The condition for crack initiation thus reads

σc = γg σt = γg Et
Ec
σa, (5)

where σa is the transverse stress applied on the composite laminate and Et and Ec,
respectively, denote the Young’s modulus (in the direction of the loading direction)
of the transverse ply and composite laminate.
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4 Stress Shielding from Transverse Cracks

Equation (5) provides the load amplitude and location of the first transverse
crack. The introduction of subsequent cracks, however, requires to account for
the shielding effect of the previously introduced cracks on the stress field in
the transverse layer. As a transverse crack is introduced across the 90◦ ply, the
magnitude of the transverse stress in the transverse ply becomes zero in the plane
of the crack and is reduced in the vicinity of that crack, thereby decreasing the
probability of another crack in the adjacent region. The size of this shielding zone
can be estimated using the shear lag approach described by Garret and Bailey [6].
The drop �σ0 in the axial stress due to the (assumed vertical) transverse crack is
given by

�σ0 = σa d
b

Et

Ec
, (6)

where b and 2d represent the width of the 0◦ plies and of the 90◦ ply, respectively.
This stress drop is transferred to the adjacent 0◦ plies through a spatially varying
shear stress along the ply interfaces. The axial force F(x) in the transverse ply,
where x denotes the distance to the plane of the transverse crack, is related to the
shear stress τ(x) acting along the ply interface by [6]

dF(x)

dx
= 2cτ(x), (7)

where c denotes the out-of-plane dimension of the laminate, and

τ(x) = b�σ0φ
1
2 e−φ

1
2 x. (8)

In (8), φ is a material parameter given by

φ = EcGt

ElEt

(b + d)
bd2

, (9)

where Gt is the shear modulus of the transverse ply in the horizontal direction, and
El is the Young’s modulus of the 0◦ plies. The stress σt (x) in the transverse ply can
readily be found by integrating (7) and dividing by the cross-sectional area (2cd) of
the transverse ply. The constant of integration is found by imposing σt (0) = 0 at the
crack plane. The shielding coefficient, denoted hereafter by γs and defined by

σt (x) = γs(x) σa, (10)

can be expressed as

γs(x) = Et

Ec
(1 − e−φ

1
2 x). (11)
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Fig. 12 Schematic illustration of the shielding effect of transverse cracks: spatial variation of the
shielding coefficient γs in the presence of three transverse cracks

In the presence of crack shielding, the criterion for crack initiation (5) is thus
rewritten as

σc = γgγsσa. (12)

This formulation can be extended to the case of multiple cracks to define the stress
distribution for the region between any pair of cracks with a spacing t . In this
instance, the constant of integration is found by imposing σt (0) = σt (t) = 0. The
shielding term can be shown to be

γs(x, t) = Et

Ec
(1 + e−φ

1
2 t − e−φ

1
2 x − e−φ

1
2 t eφ

1
2 x). (13)

Equations (11) and (13) can now be combined to create a piecewise definition for
the shielding factor in the transverse ply at any location, as illustrated schematically
in Fig. 12 for the case of three cracks. As expected, γs = 0 at the location of the
cracks and approaches the value Et/Ec when there is sufficient distance between
two neighboring cracks.

5 Model Testing and Calibration

Since the geometric model captures the interaction between cracks through the
shear-lag-based shielding model described in the previous section, one would expect
that adopting a small specimen size would rapidly lead to a “saturation,” which
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Fig. 13 Transverse strains associated with the appearance of the first ten transverse cracks in five
virtual specimens with varying lengths, showing the shielding effect on the shorter specimens

would lead to a rapid increase in the predicted failure strain. Based on (9), the length
scale associated with crack shielding is given by φ−1/2.

The largest sample for which an optical image is available is about 29 mm long
and counts about 50,000 fibers in the 90◦ ply. While the model is able to capture
transverse cracking in plies with tens of thousands of fibers, performing statistical
studies such as those described in the next section will be substantially speeded up
by using smaller domains. To that effect, we investigate the effect of the specimen
size on the prediction of the transverse strain associated with the appearance of the
first ten transverse cracks.

The results from that study are shown in Fig. 13. The smaller specimens
correspond to sections of the large 29 mm-long specimen with similar fiber volume
fractions. As apparent in that figure, the solution for shorter specimens deviates from
that of the “reference” specimen due to the aforementioned saturation effect. Based
on this study, 6.08 mm-long virtual specimens are selected for the calibration study
described later on in this section.

Although the emphasis of the proposed geometric model is to incorporate the
randomness inherent in the composite microstructure in the evolution of transverse
cracking, the model can also be used in the special case where the transverse
ply is homogenized, as was done in [7]. In this approach, there is no preferred
microstructure-driven location for crack initiation, and, due to the symmetry of the
axial stress field with respect to existing cracks, the new cracks are predicted to
appear halfway between previously introduced cracks. In other words, if we adopt a
normalized axial x̃ coordinate along the specimen running from 0 to 1, the first crack
appears at location x̃ = 0.5, the next two cracks appear simultaneously at locations
x̃ = 0.25 and x̃ = 0.75, the next four at locations x̃ = 0.125, 0.375, 0.625, and
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Fig. 14 Homogenized geometric model: Relation between the inverse of the applied stress σa and
number of cracks, showing the step-like response described in [7]

0.875, etc. This predicted evolution of the transverse cracking, displayed, as was
done in [7], as the number of cracks versus the inverse of the applied stress, is
shown in Fig. 14.

As expected, we recover the step-like response described in [7], where the
number of cracks at step i + 1 is related to that at the previous step i through

Ni+1 = 2Ni − 1. (14)

This result is quite different from the proposed model that incorporates the random
nature of the geometry and material properties of the transverse ply microstructure.

In the final part of this section, we calibrate the model through a comparison with
experimental measurements of the transverse cracking process. The key parameter
to be calibrated is the failure strength σc of the fiber/matrix interfaces (assumed
uniform for all fibers in this calibration study), which directly impacts the strain at
which transverse cracking is initiated, as shown in Fig. 15. As expected, the higher
the value of σc, the higher the critical strains associated with the onset of transverse
cracking.

Based on these results, we adopt the value of 80 MPa for the average strength
of the fiber/matrix interfaces, as it appears to capture the measured failure strains,
especially for the first five transverse cracks. This value is used in the statistical
study presented next.
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Fig. 15 Calibration of geometric model: effect of the interface strength on the strains associated
with the appearance of the first ten transverse cracks. The black dashed curves correspond to
the experimental measurements extracted from three separate tests, showing the variability of the
experimental results

6 Statistical Analysis of the Impact of the Interface Strength
Distribution

As indicated earlier, multiple microstructural parameters contribute to the statistical
nature of the transverse failure response of the laminate. These include geometrical
parameters, such as fiber placement and size, and material parameters such as the
constitutive response of the fibers and the matrix and the failure response of the
fiber/matrix interfaces. Taking advantage of the efficiency of the geometric model,
we investigate in this section the impact of the variability of the interface strength
σc modeled in the form of the Weibull distribution described by (1). Of particular
interest is the quantification of the effect of the variance (4) of the failure strength
distribution.

To that effect, five values of the variance σ ranging from 0 to 20 MPa are
selected to generate five Weibull distributions for interface strength. For each value
of the variance, 100 instantiations of the distribution are created and assigned to
the approximately 10,000 fibers present in the microstructure of the 6.08 mm-long
samples. To isolate the effect of the interfacial strength distribution, the geometry of
the virtual specimen is kept constant.

The average values of the critical applied axial stress associated with the first
10 transverse cracks extracted from these 100 instantiations are presented for these
five variance values in Fig. 16. As apparent there, the stress level corresponding to
the appearance of the first transverse crack drops by about 7 MPa when a small
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Fig. 16 Effect of the variance in fiber/matrix interface strength on the average failure load
extracted over 100 instantiations (based on the same microstructure) for an average interface
strength of 80 MPa

variability (0.5 MPa) is introduced. This drop increases for higher values of the
variance, although it tends to stabilize when σ ≥ 5 MPa. We also note that adding
variability in the interface strength assigned to the fibers leads to a decrease of the
predicted failure axial stress compared to the uniform strength case for the first 8 or
9 transverse cracks, beyond which it exceeds the solution obtained with σ = 0. It
should also be noted how the introduction of a variability in the interface strength
substantially changes the evolution of the failure stress with the number of cracks,
leading to a steadily and smoothly increasing trend to be contrasted with the quasi-
constant solution for σ = 0.

The value of the variance σ also affects the variability (i.e., the error bars) in the
predicted failure transverse stress, as shown in Fig. 17.

Again, the error bars on the predicted failure stress increase with the number of
cracks, following a similar trend for all four values of the variance σ , except for
the first few cracks, where higher values of the variance (5 and 20 MPa) lead to
substantially reduced error bars in the predicted failure stress values. This is to be
expected: higher values of the variance in the interfacial strength distribution lead
to the creation of weak interfaces for which the variability of the interface strength
dominates that associated with the geometry. This effect yields consistent solutions
with little variation.
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Fig. 17 Variability of the critical stress values associated with the appearance of the first ten cracks
for the four non-zero values of the interfacial strength variance used in Fig. 16

7 Conclusion

This manuscript has presented a simplified geometric model used to predict the
impact on the transverse failure of a composite laminate of the statistical nature
of the material and geometrical parameters that define the microstructure of the
transverse ply. The model is based on three key components: (i) realistic virtual
models of the microstructure (fiber placement and size distribution) of the transverse
ply, (ii) a simplified crack initiation model based on a critical value of the interface
stress concentration associated with the separation distance and orientation of
adjacent fibers, and (iii) a shear lag approximation of the stress shielding effect
created in the transverse ply by transverse cracks. One of the key advantages of the
geometric model is its computational efficiency, which enables the simulation of
multiple transverse cracks in realistic virtual models of the laminate with tens of
thousands of fibers and/or allows for the analysis of a large number of instantiations
of the statistical parameters.

The geometric model has been calibrated through comparison with measured
values of the critical transverse strains corresponding to the appearance of the first
ten transverse cracks in a hybrid glass/carbon/epoxy laminate. The model was then
used to perform a statistical analysis of the impact on the predicted failure response
of the variability of the strength values assigned to the thousands of fiber/matrix
interfaces present in the virtual specimen. The statistical analysis has shown that a
small variability of the interfacial strength distribution leads to a reduction in the
failure load associated with the appearance of the first transverse cracks. Further
expansions of the model include accounting for the residual stresses associated with
the property mismatch between plies and along the fiber/matrix interfaces.
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Challenges in Understanding the
Dynamic Behavior of Heterogeneous
Materials

Manny Gonzales and Naresh N. Thadhani

1 Introduction

Extreme dynamic environments are ubiquitous in defense applications, industrial
processing, and machining operations and in the study of celestial events such
as micrometeorite impact or in the formation of planets. Often, the materials
involved in these environments have microstructural and property heterogeneities
which influence the bulk response to the dynamic event. For the purposes of this
chapter, heterogeneous materials are reckoned as containing either inhomogeneities
or inclusions as defined by Mura [56], i.e., anything that produces an eigenstrain
in an otherwise continuously varying media. Multiphase materials such as dual-
phase steels, precipitation-hardened materials, composite materials, and particulate
or granular mixtures are naturally heterogeneous, and the heterogeneity may be
observed at disparate length scales among the different material types.

The importance of loading rate on the dynamic response depends on the
heterogeneity and degree of property contrasts in question [13, 24, 60]. For example,
polycrystalline materials may be considered heterogeneous at the meso-scale under
dynamic loading if there are significant property contrasts arising from orientation
mismatch or texture, especially if this creates disparities in an otherwise isotropic
wave propagation response. Highly deformed metals subjected to extreme dynamic
events can respond quite differently to high strain rate loading than quasi-static
loading due to metallurgical phenomena such as dynamic recovery and recrystalliza-
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tion, adiabatic shear localization, and other deformation modes becoming activated
such as deformation twinning [54, 57–59]. Even if the quasi-static behavior of
the material lends itself to a bulk isotropic formulation of its constitutive law, the
meso-scale response at dynamic loading rates may be drastically different due to
percolation effects [60]. The meso-scale response has implications on the measured
bulk behavior in an experiment and cannot be ignored. The fascinating aspects
of heterogeneous materials lie in the length scales, microstructural features, and
property contrasts that impart the physical and mechanochemical properties that
themselves make the materials suitable candidates for use in extreme dynamic
environments.

1.1 The Challenge of Dynamic Property Measurements

Experimental methods to evaluate material response at dynamic loading rates
involve generating stress waves in the material and evaluating the wave propagation
response either via indirect or direct measurement or by inferring the response from
computer simulation. The stress waves are generated by mechanical insult on a
material to be tested, usually by striking the material with a projectile, via contact
detonation with an explosive, or by the confined expansion of a plasma generated
by a pulsed-power laser. Experimental methods in dynamic behavior can range in
the strain rate regime of applicability, from quasi-static and slow-strain-rate testing
using load frames to drop weight testing, split Hopkinson pressure bar (SHPB)
testing, flyer plate testing, and contact detonation with explosives. The accessible
strain rates depend on the materials tested as well as the size and shape of the
testing articles. Figure 1 demonstrates the relative strain rate regimes achievable by
common testing methods applied to metallic materials. The shock impedance and
constitutive properties will determine the strain rates achievable. It should be noted
that these strain rates are typical at meso-scales and that macro-scale strain rates
may be up to an order of magnitude lower than those represented in this plot. The
local strain rates at smaller scales may be much higher, as strain rate scales with the
deformation length scale. Strain rates achievable in powder and particulate mixtures
are a strong function of the packing density and local microstructure, as well as the
topology of the void space and connectivity of phases. Furthermore, crush strength
also affects the strain rate achievable and can disperse the insulting waves as they
expend energy to compact the powder.

There are extensive descriptions in the monographs by Meyers [54], Field et al.
[21], Ramesh [62], and Horie and Sawaoka [42] on dynamic testing, especially
under shock compression conditions. Indirect measurements include the strain gage
output from split Hopkinson pressure bars (SHPBs), postmortem measurements of
the final bulk strain/deformation of recovered impacted specimens, or postmortem
microstructural characterization. Direct measurement techniques include direct-
contact stress gages, magnetic particle velocity gages, digital image correlation
(DIC) measurements of speckle patterns, high-speed photography/videography, and
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Fig. 1 Approximate strain rate regimes accessible by conventional dynamic testing. Custom
configurations, specimen size and material, and local geometry all affect the accessible strain rates.
Local strain rates at the meso- and microscales may be much higher due to size effects and inertia

velocimetry measurements on exposed moving surfaces. It can be argued that direct
measurements only measure the modified propagated wave characteristics and are
only valid if specific assumptions are met – namely, the Rankine-Hugoniot jump
conditions for extremely high strain rates (i.e., where shock waves are generated).
The structure and geometry of the microstructure affect the material response at high
strain rates by changing the dynamics of wave propagation. The aforementioned
measurement techniques have trade-offs in both spatial and temporal resolutions
and may smear the meso-scale response due to these trade-offs.

The inherently destructive nature of an extreme dynamic event makes probing its
behavior very challenging. Violent stress waves necessitate ultrafast measurement
from devices that can withstand the onslaught for sufficient time to record the
measurement. Due to the active area of the devices interacting with the material, the
effects of microstructural features are averaged over the area of the sensor, which
can artificially dampen the meso-scale response. Interactions between the probe
(i.e., the gage in contact with the material) and the material itself can modify the
response due to wave interaction/ringing and impedance-matching. Furthermore,
the loading configuration can change the wave propagation event in ways that the
gages or velocimetry probes cannot reckon (i.e., triaxial states of stress). The physi-
cal complexity of the dynamic event makes it difficult to glean valuable information
from experimental measurements alone. Therefore, valuable information may be
obtained via computer simulation in the Integrated Computational Materials Science
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and Engineering (ICMSE) paradigm, where physics-based models on spatially
resolved microstructures or meso-structures provide insight into the dynamic event
that experimental measurements are unable to fully capture. Naturally, experimental
validation guides highly resolved numerical simulations of impact processes, which
can capture the microstructural complexity of the material if suitable constitutive
models and equations of state exist.

1.2 ICMSE Approaches to Probing Dynamic Behavior of
Materials

The advent of distributed memory and parallelized computing has enabled mas-
sively parallel numerical computations of physical phenomena. Complex numerical
simulations using discretized forms of the conservation equations are now readily
available and make multi-material dynamic simulations a possibility. The sophisti-
cation of constitutive models and equations of state is constantly evolving, rendering
a predictive physics-based calculation tenable. However, there remain aspects of
the phenomena where deterministic calculation fails to capture the true nature of
the behavior, and stochastic methods become attractive. Meso-scale simulations of
realistic microstructural configurations under extreme dynamic loads can provide a
window into how these microstructures evolve and affect the bulk dynamic behavior
of the system.

1.2.1 Molecular Dynamics and Coarse-Grained Methods

Molecular dynamics (MD) provides a simulation methodology whereby ensembles
of atoms, treated as Newtonian bodies interacting in a field, [38] can provide bulk
and continuum-level properties through statistical mechanics considerations. MD
simulations relying on conventional thermo and barostats have been successfully
used to study shock compression phenomena, cf. [43, 55]. Jarmakani et al. [43]
studied shock propagation in both mono- and nanocrystalline Ni using the Mishin
potentials through an embedded atom method (EAM). They observed stacking faults
and partial dislocation formation consistent with experiments and found that the
stress release process was responsible for the annihilation of partial dislocation
loops formed after the shock wave traversed the crystal, which explained prior
discrepancies between post-shock observations and MD predictions. Figure 2
shows a representative output of the deformed substructure in nanocrystalline Ni
(Fig. 2a, b,) and Cu (Fig. 2c), which captures the richness in plastic deformation
mechanisms, which includes stacking fault formation and twinning. Blue areas
denote undeformed atomic configurations, green areas denote displacement by
the Burgers vector of a Shockley partial, and red areas denote displacement by
a full Burgers vector corresponding to a perfect dislocation. Perfect dislocations
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a

b

c

Fig. 2 MD simulations of the shock compression in polycrystalline Nickel. (Adapted from
Jarmakani et al. [43])

concentrate at grain boundaries; the authors also concluded that grain boundary
sliding accounts for an estimated 58–90% of the total shock-induced strain [43].

MD simulations have been successfully deployed to study the Ni+Al nanolam-
inate system to discern the mixing phenomena between the Ni+Al phases [83],
which is driven by interfacial mixing and melting of the Al layers. The work
also explored the effect of pressure on the chemical reaction rates (i.e., mixing
propensity) and found that the rate of mixing decreased with increasing pressure.
Specialized barostats (e.g., Holian and Ravelo’s “Hugoniotstat” [49, 63]) and
coarse-graining techniques for reactive and energetic materials as in Strachan,
Antillon, and co-workers [3, 4, 71], which utilize “mesoparticles” with internal
degrees of freedom and intramolecular potentials between phases, provide larger-
scale information about the microscopic interactions between relevant constituents
of reactive materials under dynamic loading. Density functional theory (DFT) can
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also be invoked to construct interatomic potentials for use in MD simulations and
has been successfully deployed to simulate shock compression, cf. [52, 53].

Further coarse-graining via dissipative particle dynamics (DPD) as described
in the works by Español et al. [18–20] and Hoogerbrugge and Koelman [39]
provides a truly mesoscopic simulation technique which links micro-level processes
to meso-level processes via the fluctuation-dissipation theorem [34, 80]. The method
combines lattice gas automata techniques and their time-stepping algorithms from
Frisch et al. [23], which allowed a nonlinear system of particles to evolve micro-
scopically and recover the Navier-Stokes equations, with MD to recover Galilean
invariance and flow isotropy. The original method as employed by Hoogerbrugge
and Koelman [39] involves N particles in a domain V , evolving the system by
initializing positions ri and momenta pi and updating with discrete timesteps δt
for the nth timestep via:

pn+1
i = pni +

∑

j

�ij eij (1)

eij = ri − rj∣∣ri − rj
∣∣ (2)

rn+1
i = ri + δt

mi
pi , (3)

where mi is the mass of particle i, eij is the unit vector pointing from particle
i to particle j , and �ij 1 represents the momentum transferred from particle j to
particle i. The function �ij must be suitably selected to ensure that a homogeneous
equilibrium state is possible and that recovers Galilean invariance. The form
selected by Hoogerbrugge and Koelman:

�ij = W (∣∣ri − rj
∣∣) ["ij − ω(pi − pj ) · eij

]
, (4)

satisfies these conditions. The weight function W(r) is dimensionless and non-
negativeW(r) ∈ W , where the set W is defined by:

W =
{
W(r)

∣∣∣∣ W(r) ∈ R,
N

V

∫
W(r)dr = 1, W(r ≥ rc) = 0

}
. (5)

The general form of the DPD method is based on Newtonian mechanics [20],
where spheres interact in a force field:

fi = mi r̈i (6)

1�ij must be symmetric, i.e., �ij = �ji to ensure conservation of momentum. Also, the authors
restricted momentum transfer to a ball of radius rc, �ij = 0 if

∣∣ri − rj
∣∣ > rc.
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fi = ṗi , (7)

fij =
∑

j �=i
(FCij + FDij + FRij ), (8)

where now the forces include a conservation term FC , a dissipative term FD , and
a stochastic term FR and consider the interaction of particle i with particle j . In a
similar manner, Español and Warren [20] and Groot and Warren [34] defined the
conservative force with a simple repulsion/decaying term:

FCij =
{
aij (1 − rij )r̂ij (rij < 1)

0 (rij ≥ 1)
, (9)

where the authors now define the particle relative displacement vectors, magnitudes,
and unit vector directions appropriately:

rij = ri − rj (10)

rij = |rij | (11)

r̂ij = rij
|rij | . (12)

Defining the dissipative and random forces in a similar fashion to Hoogerbrugge
and Koelman [39] gives force functions which include distance-dependent weight
function expressions, (wD,wR) ∈ W [18, 20, 34]:

FDij = −γwD(rij )(r̂ij · v̇ij )r̂ij , (13)

FRij = σwR(rij )θij r̂ij , (14)

wD(r) = [wR(r)]2, (15)

σ 2 = 2γ kBT . (16)

where the term θij is similar to the probabilistic function "ij , i.e., obtained from a
Gaussian distribution N (μ, s), and θij ∈ T , where

T =
{
θij

∣∣∣∣ θij (t) ∼ N(μ, s), 〈θij (t)
〉 = 0,

〈
θij (t)θkl(t

′)
〉 = (δikδjl + δilδjk)δ(t − t ′)

}
.

(17)
The DPD method can be solved with Verlet or leapfrog updating schemes similar

to MD methods but provides much faster relaxation to equilibrium states and
incorporates both frictional and stochastic forces in addition to conservative forces
[9]. The dissipative particle dynamics with energy conservation (DPD-E) extension
provides for thermal gradient and heat transfer modeling [48, 65], as well as
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Fig. 3 Polycrystalline RDX samples simulated via coarse-graining techniques. (Adapted from
Mattox et al. [51])

non-equilibrium and transient conditions. Further details on the implementation can
be found in Mackie et al. [48] and Español et al. [19]. These methods have enabled
the modeling of natural convection [1, 2] and energetic and reactive materials
systems with success. Coarse-grained models of RDX have been generated to
study the shock compression response and incorporate chemical reactivity in the
DPD framework (the so-called DPD-RX extension) [14, 67]. Sood et al. [69]
demonstrated an implementation of DPD-E for the modeling of shock compression
of two RDX impactors using a Lennard-Jones potential and were able to capture the
salient features of the shock, but were unable to capture the inelastic response upon
release. Recent work by Mattox et al. [51] demonstrated the coarse-graining of MD
methods via DPD-E techniques to model polycrystalline RDX samples under shock
compression. Figure 3 shows the shock compression response of polycrystalline
RDX employing coarse-grained DPD-E.

1.2.2 Meso-scale and Microstructure-Based Simulation at the Continuum
Scale

Microstructure-based simulation presents an opportunity to link meso-scale
response to bulk shock response in heterogeneous materials. By correctly capturing
the deformation and relevant physics at the meso-scale and validating with suitable
statistics and experiments, the problem of the dynamic behavior of heterogeneous
materials can become tractable by linking relevant microstructural features to
the response. This can help designers suitably select and tailor microstructures,
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Fig. 4 Comparison of real (left) and synthetic (right) microstructures for Ti+B powder mixtures.
The synthetic microstructures were generated using particle packing algorithms and particle
libraries obtained from montage serial sectioning [35, 36]. There is good visual correspondence
between the microstructures, and two-point correlation functions and lineal-path probability
functions confirm this to a high degree [35]

providing optimization strategies for a desired performance outcome. However, the
challenge remains to suitably describe the constitutive behavior of individual phases
at meso-level length scales, correctly capture and model the nuanced behavior of
the heterogeneity at relevant length scales, and describe interfacial phenomena and
its effects on wave propagation and mechanochemistry. This is an active area of
research, and contributions are still being made to develop suitable experiments and
models and implement correct physics into hydrocodes for the simulation of strong
dynamic events. Modeling strategies to correctly capture realistic and suitable
microstructural statistics and behaviors are at the forefront of the problem.

Microstructural descriptions can be made by not only obtaining a snapshot
of the microstructural configuration in time but also describing the distribution
of microstructural features by probability functions. For example, a two-phase
microstructure may be represented as a sampling of a stochastic process represented
by the probability space (�,F ,P), where � represents a sample space of all pos-
sible microstructures, F represents all possible events or instantiations of sampling
the space �, and P is the probability measure on F [45, 61, 78, 79]. Niezgoda
et al. [61] define the methodology to stochastically represent microstructures and
describe their spatial statistics with n-point correlation functions. The two-point
correlation function of the microstructure measures the probability that a randomly
placed vector will have its ends lie in specific phases of the microstructure (Fig. 4).
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Fig. 5 Comparison of real (left) and synthetic (right) microstructures for Ti+B powder mixtures.
The synthetic microstructures were generated using particle packing algorithms and particle
libraries obtained from montage serial sectioning [35, 36]. There is good visual correspondence
between the microstructures, and two-point correlation functions and lineal-path probability
functions confirm this to a high degree [35]

Particle packing algorithms and simulation methodologies using vendor-based
particle libraries [27, 36] have also been used to successfully build synthetic
microstructures for direct numerical simulation. Figure 5 shows real and synthetic
microstructures that can be built via particle packing and montage serial sectioning.
These microstructural representations were validated by comparing the two-point
correlation functions for the real and synthetic structures to ensure the microstruc-
tural features being simulated matched reality. Improved and automated ways of
building synthetic microstructures present a new opportunity to explore possible
effects that a microstructural configuration can have on the bulk dynamic response
of a system.
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Lastly, the authors would be remiss if crystal plasticity and viscoplastic self-
consistent (VPSC) methods were omitted from this brief listing of ICMSE tech-
niques to probe meso-scale heterogeneity. Specifically, Lebensohn and Tomé
developed the VPSC method [46] as an extension of the Eshelby formulation for
inclusions and inhomogeneities in a self-consistent continuum field. These codes
have been successful at modeling texture evolution under rolling conditions [47].
However, these techniques are currently limited to quasi-static boundary conditions,
although strides are being made to extend these techniques to model dynamic
behavior. The many works by Lebensohn should be referenced for further discussion
on these methods.

1.3 Outline of Chapter

The remainder of this chapter is devoted to outlining the challenges involved in the
investigation of dynamic behavior of heterogeneous materials, namely, understand-
ing the shock compression response of these materials and the inherent difficulties in
experimentally assessing the equation of state of the aggregate material and defining
the local and global properties. A case study will be provided from the author’s
work investigating the intermetallic-forming Ti+B reactive powder mixture under
shock compression and high strain rate loading conditions. The importance of using
ICMSE methodologies to understand bulk dynamic behavior of reactive powder
mixtures will be presented. These methodologies provide insight into the physical
phenomena that can only be indirectly inferred from experimental measurements.

This chapter is divided into three subsequent sections. Section 2 provides a
brief background of shock compression science, focusing on the dynamic behavior
of powder mixtures, granular media, and energetic/reactive materials. Section 3
provides an introduction to reactive materials, which take the form of heterogeneous
powder mixtures. The case study on Ti+B reactive mixtures is presented and
demonstrates how ICMSE has been employed to investigate the shock compression
and dynamic behavior of this system. Section 4 provides a summary and concluding
remarks on how the ICMSE framework can provide useful information on the
response of heterogeneous materials to dynamic loading.

2 Background on Shock Compression Science

Dynamic behavior in heterogeneous materials has been studied in earnest since
the founding of shock compression as a science at the end of World War II.
Materials of interest included precipitation-hardened alloys, particulate mixtures,
plastic-bonded explosives (PBX), geological materials such as rock, and sand.
Powder and particulate mixtures in particular are of interest due to the spatial
arrangements of the microconstituents and the behavior this imparts. Reactive and
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Fig. 6 Microstructure of
pressed PBX9501,
demonstrating a complex
size, shape, and
crystallographic distribution
of the energetic particles in
the estane binder, similar to a
granular concrete mixture.
(Adapted from [68])

energetic materials became particularly interesting due to defense applications,
and these materials were naturally heterogeneous. Consider the case of PBXs,
which involve the distribution of molecular explosive crystals in a plastic binder.
One need only recall the classic picture by Skidmore et al. [68] of hot-pressed
PBX 9501 (95% HMX, 2.5% estane 5703, 2.5% BDNPA/F) to note the level of
complexity and heterogeneity in the microstructure. Clearly there are a multitude
of size, morphology, and nearest-neighbor distributions of the HMX crystals, and
the pressing/compaction process leads to cracking of the particles due to the
limited accommodation of plastic deformation in the crystals and binder. This
classic picture demonstrates the complexity and degree of heterogeneity of a PBX
mixture. Reactive materials, granular solids, composite materials, and even some
polycrystalline materials exhibit similar features (Fig. 6).

2.1 Shock Compression Science and Theory

This section will develop the conservation relations and implement them for the
special case of a shock wave. Shock waves are defined as a near-discontinuous
change in thermodynamic state variables brought on by a mechanical insult, and
they are a special case of the axiomatic conservation relations for a moving
discontinuity. Consider a one-dimensional body � that has been stressed such that
the rapid application of the load caused a moving discontinuity to form in the body.
Any applied stress will travel throughout the body in the form of a characteristic
due to the form of the conservation of momentum. If the stress applied to the body
is rapid and high enough, a shock wave may form where the material behind the
traveling wave will be at a higher stress, velocity, density, etc. relative to the material
ahead of the way. This variation is nearly discontinuous, as is shown in Fig. 7.
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Fig. 7 Consider the stress
amplitude plotted over the
distance through a continuous
medium. After a sufficiently
large and rapid application of
load on a material, a shock
wave will develop which is a
traveling discontinuity in
thermodynamic state
variables. The state variables
behind the shock wave
depend on the conservation
relations and an equation of
state. (Adapted from [25])

2.2 Conservation Relations for a Shock Wave

The conservation of mass, momentum, and energy can be derived by considering
infinitesimal elements and matter/momentum/energy exchange therein, to formulate
the strong form of the equations. For the conservation of mass, influx and efflux of
matter in an infinitesimal volume lead to:

∫

�

[ρ(x, t)+ ∇ · (ρv)] d� = 0 ∀d�. (18)

This expression is valid for all possible integration volumes and can thus only be
true if the integrand is exactly zero, i.e.,

∂ρ

∂t
+ ∇ · (ρv) = 0, (19)

or in indicial notation:

∂ρ

∂t
+ ∂(ρvi)

∂xi
= 0, (20)

where the density of the material ρ is a continuous function of space and time –
ρ = ρ(x, y, z, t) – and v is the spatial velocity of the medium.2

In the case of a discontinuous change in state variables, the continuity equa-
tion (19) must take into account a moving discontinuity at velocity Us relative to
the disturbed material moving at a different material velocity Up which propagates

2More details on the difference between material and spatial coordinates can be found in Malvern’s
excellent text [50] on continuum mechanics.
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into a medium moving at a velocity U0. Considering the shock wave front as the
moving reference frame, the mass of material exiting the wave (to the left of the
shock front in Fig. 7) will have a new density ρ and will be moving at a velocity
Us −Up relative to the shock front. Considering the mass conservation through the
shock wave as the moving reference frame, the general expression becomes (after
canceling the cross-sectional area and δt terms which are the same across the shock
front) [22, 54]:

ρ0(Us − U0) = ρ(Us − Up). (21)

This equation is completely general and valid for any infinitely sharp discontinuity
in thermodynamic state. It is used as an approximation to the highly dispersed
compressed states observed in this work in the context of distended powder
mixtures.

The conservation of momentum relates the momentum change of a body to an
applied impulse. This equation can be cast in differential form relating incremental
stresses applied to a body and a variety of forces. Derivations of this equation may
be found in Gonzales [25], and it is expressed below for brevity:

ρ(Us − Up)Up − ρ0(Us − U0)U0 = (P − P0). (22)

This equation is commonly combined with the conservation of mass to obtain the
typical form of the conservation of momentum by noting that ρ0Us = ρ(Us −Up):

ρ0UsUp − ρ0(Us − U0)U0 = (P − P0). (23)

If the initial momentum is zero (stationary body impacted by a shock wave), the
equation becomes:

P − P0 = ρ0UsUp. (24)

This is the form of the conservation of momentum that will be used to analyze the
compressed state of the powder in this work.

The conservation of energy considers the work done by all external forces
balancing the internal energy and the kinetic and potential energies:

�E = �KE +�PE +
∑
�W, (25)

where �E represents the change in internal energy of the system, KE and PE are
the kinetic and potential energies of the system, and

∑
�W is the sum of all sources

of work done on to/by the system. This is similar to the classic definition of the First
Law of Thermodynamics:

dE = δQ− δW, (26)
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where the differential δ denotes path dependence, i.e., the total differential of
internal energy E, path independent by definition of a total differential (Pfaffian
form), can be composed of path-dependent changes in heat Q and work W . The
work done by the passage of the shock wave is composed of the force term (PA)
and displacement (Uδt). Using intensive quantities, each term becomes [22, 54]:

�KE = KE2 −KE1 = 1

2
[ρA(Us−Up)δt]U2

p− 1

2
[ρ0A(Us−U0)δt]U2

0 , (27)

PUp = 1

2
ρ(Us − Up)U2

p + Eρ(Us − Up)− E0ρ0Us. (28)

The common form of the conservation of energy in a shock wave is obtained by
modifying this general form noting that the conservation of mass must also apply:

PUp = 1

2
ρ0UsU

2
p + ρ0Us(E − E0). (29)

Rearranging the equation by dividing through by ρ0Us to isolate the energy term
gives:

E − E0 = PUp

ρ0Us
− 1

2
ρ0
UsU

2
p

ρ0Us
. (30)

Invoking the conservation of momentum, Eq. (24) for the Up term gives, after
rearranging (cf. Gonzales [25] for the full derivation):

E − E0 = P(P − P0)

(P − P0)
· (V0 − V )− 1

2

(P − P0)
2

P − P0
· (V0 − V ) (31)

∴ E − E0 = 1

2
(P + P0)(V0 − V ), (32)

which is the commonly used form of the conservation of energy. Equation (32) is
integral to this work, as it is the partition of energy between the compaction of
the loose powder and the shock compression that leads to the complex behavior of
powder mixtures (i.e., the long rise times and dispersed wave fronts) under shock
compression. The conservation equations are completely general, and there are
five variables [54]: pressure P , material (particle) velocity Up, shock velocity Us ,
specific volume V , and energy E. Thus, a fourth equation is necessary for closure.
This equation is in the form of a thermodynamic equation of state (EOS) which
relates state variables, usually Us − Up or some other equation.

The equations presented in this section are completely general and satisfied if a
strictly one-dimensional uniaxial strain loading configuration is maintained during
shock compression. This will allow the bulk compressibility of the material to
stiffen the shock response and increase the pressure to yield the discontinuous
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shock front embodied by the Rankine-Hugoniot jump conditions (Eqs. 21, 24,
and 32). Three-dimensional forms of the equations can be found in Meyers [54]
and Forbes [22]. The tensorial forms of the equations are required for simulation of
the shock compression process in hydrocodes and are essential when considering
local material heterogeneity, as the uniaxial strain condition will not be rigorously
satisfied at the meso-scale.

2.2.1 Theoretical Equations of State for Reactive Powders

Mixture theories can predict the possible inert and reacted equation of state (EOS)
or Hugoniot for a material. “Mixing” the 0K isotherms via mass fractions and using
the Mie-Grüneisen EOS leads to:

(
∂P

∂V

)

H

+ PH

2V0/�0 + V − V0
= (2V0/�0)(∂P/∂V )0K + 2P0K

2V0/�0 + V − V0
. (33)

For a distended powder, the Hugoniot can be expressed as [25, 42]:

P = [2V − �(V0 − V )]C2(V0 − V )
[2V − �(V00 − V )][V0 − S(V0 − V )]2 . (34)

However, this EOS mixture form is multivalued in volume [42, 64, 84], which
prompted Wu and Jing [84] to consider an isobaric process with enthalpy as the
relevant energy term, which gives the Hugoniot volume for both a solid and porous
mixture as:

V ′
H = 1 − (R/2)

1 − (R/2)[1 − (Pe/P )]VH

+ (R/2)

1 − (R/2)[1 − (Pe/P )]
(
(Ve − V0)+ Pe

P
V00 + 1 − R

(R/2)
(V ′
C − VC)

)
.

(35)
Using the Wu Jing EOS or McQueen mixture theory EOS as possible solutions to

the Hugoniot, a reaction-product Hugoniot may be determined from the Ballotech-
nic assumption [10, 42, 54], which is reproduced below:

V =
V ∗
S

[
(V/�)∗(KS/VS)∗ − P ∗

S

]+ P ∗
S V00/2 + ∫ V ∗

S

V ∗
0
P ∗
S dV

∗
S − (E∗

0 − E0)

(V/�)∗(KS/VS)∗ − P ∗
S /2

.

(36)
Further details may be obtained from the respective citations.
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2.3 Reactive Powder Mixtures and Explosives

Microstructurally sensitive and physics-based constitutive models [5–8, 12, 15, 76]
provide greater resolution of the physical phenomena by incorporating fine-scale
detail through direct numerical simulation on the microstructure or by suitable
homogenization procedures to account for the microstructural effect on the material
behavior. They depend on meso-scale information, equations of state, and material
characteristics and properties that can be obtained from structural characterization.
Many of the original simulations have involved idealized microstructures using
simple shapes and packing routines, which do not wholly capture the nuances
of real microstructures. Recent work by Gonzales et al. [25, 27–29, 37] has
attempted to use real microstructures and synthetic representations which were
validated via two-point correlation functions [27, 29, 37] to help generate valid
synthetic microstructures. Prior work investigating energetic and reactive materials
has involved flyer-plate gas gun experiments and explosively driven flyers.

Elemental powder precursors can undergo chemical reactions under shock
compression through mechanisms that are fundamentally different from first-
order physical and chemical changes [16]. The turbulent state within the shock
wave, facilitated by the local heterogeneity within the powder, leads to extreme
deformation of particles and enhanced material mixing, which can cleanse oxidized
surfaces and lead to conditions favorable to chemical reactions [74, 75]. The natural
porosity in powder compacts (of green strength or higher) provides sites for mixing
and thermal buildup due to pore collapse during the densification process. Horie
et al. [40, 41] were the first to study intermetallic-forming powder mixtures of Ni/Al
and Ti/Al under shock compression. They observed an ordered phase of Ni3Al in
the high-temperature zones of the post-impact recovered material and various other
stoichiometries interdispersed within the low-temperature zones [40], as shown in
Fig. 8. The high-temperature regions were found near the periphery of the samples
due to wave interactions at the edges of these regions. They also observed a region
of a nearly homogeneous distribution of the Ni3Al product dispersed alongside
inhomogeneous, irregularly shaped Ni, which was partly attributed to localized
inhomogeneous distributions of starting particles. Finally, regions of NiAl and
NiAl3 grains were also observed. The NiAl3 phase was postulated to have formed by
precipitation from the liquid state, as the structure had the classic eutectic form [40].

Horie’s original works stimulated further research into intermetallic-forming
systems. Thadhani et al. [72–74, 77] explored a number of materials systems under
shock compression to investigate their reactivities and equations of state. Novel
manufacturing strategies to develop ordered topologies have also been explored by
Weihs and his group with Ni+Al laminates [70, 81, 82] to promote more intimate
mixing and control the seemingly random nature of conventional powder mixtures.
Meso-scale simulations provide a way to probe the structure property relations
between these topologies and the bulk shock response of intermetallic-forming
powder mixtures. The next section details a case study from the authors’ own work
on Ti+B mixtures.
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Fig. 8 (a) Recovered shock-compressed Ni/Al powder compact specimen (b) Calculated temper-
ature isotherms superimposed on a schematic image of the recovered specimen. The crack was
caused by spallation. (Adapted from Horie et al. [40])

3 Case Study: Dynamic Behavior of Reactive Powder
Mixtures

Section 2.3 provides an abridged survey of the dynamic behavior of reactive
powder mixtures and energetic materials. Conventional energetics take the form of
plastic-bonded explosives (PBXs) as well as packed propellants. Reactive materials
are typically composed of intermetallic-forming powder mixtures that are highly
exothermic and can be combined with a typical metallic fuel such as aluminum
powder.

This section presents a case study from the authors’ work on the dynamic
response of Ti+B+Al reactive powder mixtures. These mixtures form complex
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microstructures when isostatically compacted and are both heterogeneous and
topologically complex. Different load configurations, namely, uniaxial stress and
uniaxial strain loading configurations, were studied to discern their effects on the
reaction response and the local mechanical response leading to a reaction event. The
compacts showed an optimum stoichiometric configuration in the uniaxial stress
case whereby reaction thresholds were minimized. However, the uniaxial strain
loading condition complicated the reaction response due to the limiting effects from
the high crush strength of the boron constituents.

3.1 Impact-Induced Chemical Reactions

Impact- and strain-induced chemical reactions in Ti+B reactive powder mixtures
will be discussed in this subsection. Uniaxial stress configurations were chosen to
discern the effects of loading configuration on the local stress/strain states produced
in the reactive compacts, and high-speed photography using an IMACON framing
camera provided in situ imaging of the impact process. The procedure for discerning
reactivity from light emission is detailed, and the implications of exogenous sources
of light emission are discussed. The experiments show an optimal stoichiometry for
enhanced reactivity under these impact loading conditions. Meso-scale simulations
are employed to investigate the possible reason behind this optimal stoichiometry.
The simulations reveal that boron agglomeration likely inhibits reactivity of pure
Ti+2B but that adding aluminum (to a degree) lessens this effect by promoting a
uniform distribution of the boron particles. The aluminum likely participates in the
reaction as well, but the reaction pathway cannot be deciphered.

Uniaxial stress loading experiments were conducted using the setup described
by Gonzales [25]. Reactive pellets were pressed and mounted onto a copper rod and
shot at different velocities from a 7.62 mm helium-driven gas gun, and the reaction
event was captured by the framing and video cameras. Figure 9 shows a time series
of snapshots from a pellet-mounted rod-on-anvil Taylor test in the uniaxial stress
configuration. The emitted light is taken as evidence of a chemical reaction event.

Plotting the observed reaction events based on a go/no-go criterion as a function
of total kinetic energy of impact shows an interesting trend. Compacts were manu-
factured by controlling the volume fraction of Al but maintaining a stoichiometric
ratio of Ti+B in a 1:2 molar ratio. Figure 10 demonstrates that for a similar %TMD
(theoretical maximum density) of 75% for the given mixture stoichiometries,3 there
exists an optimal stoichiometry that reduces the threshold input energy required for
impact-induced reactivity.

The enhanced reactivity may be due to a potential liquid-phase mechanism
resulting from the plastic heating of the softer Al phase enhancing the kinetics of any

3This final density was selected because it was the maximum density achievable the cold isostatic
pressing setup used in our lab for the pure Ti+B mixtures.
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Fig. 9 Impact-induced chemical reaction from a pellet-mounted rod-on-anvil Taylor test. A
heterogeneous reactive compacted powder mixture is mounted on the rod to simulate the one-
dimensional bulk uniaxial stress configuration. However, the local state of stress at the meso-scale
can be triaxial depending on the local microstructure

Ti/B reaction [26] for the 50% Al stoichiometry. This was investigated via ICMSE
techniques, whereby actual microstructures were imaged and simulated in the multi-
material Eulerian Hydrocode CTH (Version 9.0, Sandia National Laboratory). The
reactive pellet was simulated using a particle packing algorithm and real particles for
Ti obtained from a particle library built through montage serial sectioning. Further
details of the method can be found in [25, 26, 29, 35–37].

Figure 11 shows two impacts from a Ti+B+Al simulated powder mixture.
Microstructure-based simulations provide an in-depth look at the interaction
between phases which can cause an observed bulk response. The enhanced reactivity
of the 50% Al mixture is an astonishing discovery as it hints at potential optimal
microstructural configurations that can enhance the reactivity of this mixture.
This also indicates that topology (i.e., the microstructural spatial arrangement
of microconstituents) may play a role in driving both local and global chemical
reactivity. Ti+2B alone is suspected to be highly reactive, but did not exceed the
reactive potential that the 50% Al mixture demonstrated. This points to a potential
synergy beyond what is possible with Ti+2B alone at the densities considered, from
bulk thermodynamic considerations alone. Thus, microstructure-based simulations
can provide useful phenomenological explanations of observed bulk phenomena.

Comparing both the Ti+2B and Ti+2B+50%Al stoichiometries at the same
snapshots reveals another startling observation – the boron particle boundaries
coalesce and lead to the formation of the dark black regions, and zooming into
these features reveals a highly comminuted region. This can be further appreciated
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Fig. 10 Impact-induced reactivity threshold plot, demonstrating the threshold energy (for go/no-
go chemical reactions) for Ti+B+Al mixtures. The %TMD of the mixtures was kept constant,
and the Al content was systematically varied maintaining a 1:2 molar ratio of Ti:B. The plot
demonstrates an optimal stoichiometry for reduced threshold for reactivity

Fig. 11 Half-view of the rod-on-anvil impact simulations at 200 m/s impact velocity. The
temperature distribution shows that the majority of the heat localizes in bands coincident with
the agglomerated boron. This is in stark contrast with the fully dense structure simulations where
the majority of the heating was at the interface between the copper and powder



388 M. Gonzales and N. N. Thadhani

Fig. 12 Zoomed-in view comparing the 0% Al and 50% Al microstructures at two different times
for an impact velocity of 200 m/s. There are much more agglomerates in the 0% Al structure,
and their shape is more equiaxed since they pulverize and rotate in empty pores during crush-up.
Temperatures are also much greater for the 0% Al structure but shows lower bulk heating of the Ti
particles, which may account for the discrepancy in the threshold condition observed in Fig. 10

in Fig. 12 which shows a zoomed-in view of a shear band region. This was noted
to be due to the natural particle rearrangement due to size and property contrasts
between the Ti and B particles and also because of local elevated tensile stresses
creating smaller fractured powders which comingle under the influence of complex
material jetting and flow instabilities inherent in these processes.

The observations from the uniaxial stress loading configuration show that critical
levels of strain and mixing are essential ingredients to drive chemical reactivity
in these powder mixtures. The transformation of impact (i.e., kinetic) energy to
local states of deformation, mixing, and ultimately high local temperatures satisfies
the ingredients of the phenomenological Graham’s CONMAH model [31, 32].
CONfigurational changes in the microstructure are generated via deformation of
a mixed microstructure, and optimizing the starting structure to enhance these
configurational changes along with the Mixing of the constituents, enhanced
Activation of the ingredients, and ultimately the local and global Heating shows the
potential area that emergent ICMSE methods can address. The CONMAH model is
a useful construct to consider the role of dissipative processes such as void collapse,
crack nucleation and propagation, and interparticle friction and sliding during the
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shock compression process. These processes are discussed in detail in Meyers [54]
and Horie and Sawaoka [42] and remain of critical importance in understanding the
response of explosives and reactive materials.

3.2 Shock-Induced Chemical Reactions

The uniaxial strain configuration sets up a much different loading state than the
uniaxial stress configuration. Due to the lateral confinement of the powders, a shock
wave develops in the material which ramps up the pressure within the particles
and compacts the powder, setting up local deformation fields limited by the bulk
compressibility of both the individual constituents and the bulk surrounding powder.
Of note is the ability of a flyer-plate gas gun experiment to measure the thermo-
dynamic shock-compressed state of the powder. If the measured shock response
deviates from the predicted thermodynamic state of an inert compacted powder, it
can be inferred that some event occurred which caused the deviation, namely, a
shock-induced chemical reaction. The Ballotechnic model [11, 17, 27, 30, 33] can
be used to infer the shock-induced chemistry event. The crush-up to full density
of a distended powder mixture can greatly influence the chemical reactivity of the
mixture due to local hot spot generation and particle friction, which needs to be
accounted for in the reaction product equation of state.

Shock compression experiments on Ti+2B compacts at 50% TMD were per-
formed to assess the equation of state and shock compression response of the
mixture to assess the baseline performance of the mixture. The Hugoniot was
measured from the equations of state and Rankine-Hugoniot jump conditions.
Figure 13 casts the shock compression response of the Ti+2B powder mixture in
P-V space, along with predicted equations of state. The Ballotechnic curve (Eq. 36)
is also included, and it can be observed that a number of experiments fall within the
Ballotechnic, which indicates a potential shock-induced chemical reaction.

Meso-scale simulations were performed to identify the possible precursor mech-
anisms for the observed chemical reaction. Synthetic microstructures were gen-
erated using the same methods as the uniaxial stress simulations, and shock
compression simulations were performed as 1:4 scale models of the actual experi-
ment. Individual stress traces at the backer “simulated gage” are plotted in Fig. 14
which show a distinct distribution in possible rise times and peak pressures, owing
to the adjacency of B or Ti particles relative to where the measurement was taken.
This manifests as a dispersed two-wave structure, reminiscent of the wave-splitting
that occurs within elastic-plastic shock wave propagation.

This distinct heterogeneity influences how both the EOS and wave profiles are
interpreted. It is also unique to heterogeneous materials and demonstrates how the
probe smears the actual local response of the shock-breakout event. Gonzales [29]
provides an assessment of measurement uncertainty in light of this heterogeneity.
Of note is the observation that the bulk temperatures remain comparatively low,
as shown in Fig. 15 [25]. However, the intimate mixing of the reactants and large
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Fig. 13 The P-V Hugoniot for Ti/Al/B with the P-α prediction and Ballotechnic. The Wu-Jing
EOS approaches the Mie-Grüneisen porous Hugoniot. Many data points lie along the Ballotechnic,
hinting at a potential shock-induced chemical reaction

Fig. 14 The simulated stresses measured at each individual tracer point show a wide variability
in both arrival-time signature and stress level. Averaging the stresses naturally leads to the
observed characteristic “hump,” which was reproduced by simulations. This is captured due to
the inhomogeneous loading of the PVDF gage
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Fig. 15 Temperature distribution in a 50% TMD microstructure of Ti+2B shock compressed
with a Cu flyer impact at 1000 m/s. A random distribution of highly strained regions and high-
temperature hotspots are observed, along with highly deformed particles. Confined boron particles
heat up more due to greater plastic deformation and friction

amounts of deformation seem to contribute to the enhanced reactivity observed
in Fig. 13. The simulations were validated by comparing averaged wave profiles
with PVDF stress gage measurements, and the salient features were correctly
captured as shown in Fig. 14. Further work with reactive flow models is needed
to substantiate the elevated pressures obtained from the experiments with the
numerical simulations.

The challenge in discerning meso-scale response from macro-scale measure-
ments remains ever-present, as macro-level measurements are poor surrogates
for the local response. Indeed, the anomalous wave profiles obtained during the
shock compression of Ti+2B reactive powder mixtures reveal a two-stage process,
whereby the equation of state can be affected by the time of arrival (TOA)
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of the breakout shock wave. Interferometry or stress gage-based measurement
techniques average the response over the probe area as well as the temporal
resolution of the sensor. Recent work by Kang et al. [44] attempts to address these
limitations by introducing CdTe quantum dots directly into the microstructure of the
heterogeneous material.

In situ sensing is a challenge because local interaction between the sensor
material and the local microstructure can change the character of the shock wave
and bias the true nature of the interaction. However, these sensors are small enough
that this interference is minimized. Furthermore, these sensors provide a pressure-
induced blueshift which can be normalized. Laser-driven flyer impact experiments
on CdTe quantum dots embedded in glass show a well-defined blueshift in the
photoluminescent emission spectra [44]. These blueshifts correspond strongly with
the peak shock pressure and are indicators of the peak stress, up to a maximum
at around 6 GPa. Optical microcavity structures [66] also show promise as in-
situ pressure sensors taking advantage of the pressure-sensitive spectral shift in
Al2O3 optical microcavity lamellar composites. This is a truly exciting work
which merits further consideration, as in situ pressure and TOA data would be
invaluable to validating and informing meso-scale shock compression simulations
of heterogeneous materials.

4 Summary and Conclusions: Where Can ICMSE Continue
to Provide Value in Understanding Dynamic Behavior of
Heterogeneous Materials?

This chapter discussed some of the challenges in understanding the dynamic behav-
ior of heterogeneous materials. The difficulties stem from the multiple length and
time scales involved in the processes and how the microstructural effects interplay
with the bulk response. Experimental challenges exist in probing the ultrafast
response of heterogeneous and particulate materials under shock compression, and
isolating the effects of individual phenomena at every length scale is a challenge
that has yet to be conquered. Experiments probing the response tend to smear the
meso-scale effects, but strides are continually being made to address this by the
community.

With the continued refinement of experimental techniques, ultrafast imaging,
synchrotron radiation sources, laser shock technologies, and improvements in
ultrafast diagnostics, the method developers will have a wealth of information to
refine their models and simulation capabilities. Numerical simulation remains a
powerful tool to help assess the nature of the complex shock compression event.

In this regard, ICMSE has proven to be an invaluable tool in helping to
explore the sources of chemical reactivity in intermetallic-forming powder mixtures.
Microstructure-based simulations provided a possible explanation for the interesting
observations of both optimal stoichiometries leading to enhanced chemical reactiv-
ity, as well as the dispersed wave mechanics inherent to the reactive powder mixture.
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Probing the microstructure and quantifying the behavior for all possible instan-
tiations is a difficult task and ongoing research. Better microstructural descriptions
and statistical analysis are required to define structure-property linkages between the
microstructure and the bulk shock response. In addition, microstructure-sensitive
constitutive models and microstructurally aware experiments using time-resolved
and highly spatially resolved measurement capabilities will continue to provide
important data to help define these structure-property linkages. ICMSE toolsets
sensitive to the complexities of high strain rate events can provide closure to some of
the important questions of microstructural tailorability for performance of powder
mixtures.
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