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Chapter 12
Epidemiological, Ecological, and Public 
Health Effects of Antibiotics and AMR/
ARGs

Sadia Shakoor, Zahra Hasan, and Rumina Hasan

Abstract  Worldwide morbidity and mortality caused by infectious diseases is 
high, mandating high rates of antibiotic use among humans and animals. Antibiotics 
of anthropogenic origin often contaminate the environment. The arising ecological 
pressure results in alteration of bacterial “biomes,” high resistance rates in environ-
mental microorganisms, and increase in the gene pool which contributes to antibi-
otic resistance. A number of such antibiotic resistance genes are carried on mobile 
genetic elements that can easily be exchanged between bacteria. The ecological net 
effect is an expanding population of resistant organisms contributing to spread of 
antibiotic resistance in both the clinical and the nonclinical environments. In non-
clinical environments, antibiotics upset the natural symbiotic balance between 
microorganism and macroorganism communities. In clinical environments, while 
therapeutic antibiotic adverse effects are easily observed, the, impact of sub-
inhibitory concentrations of antimicrobials on human health are less apparent and 
require investigations. In summary, impact of antimicrobial resistance is extensive, 
threatening not just health and food safety but also our environment. Actions are 
thus required to both safeguard efficacies of antimicrobial agents, and also to pro-
tect the environment from damage by them.
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The development of antimicrobials changed the course of medicine. With the avail-
ability of antimicrobials many infectious diseases previously associated with con-
siderable morbidity and mortality could be overcome. Modern medicine progressed 
by leaps and bounds secure in the knowledge that infections would be managed by 
antimicrobial agents. However, this confidence was challenged by two things: slow-
ing down of the pipeline for new antimicrobials (Koulenti et al. 2019; Durand et al. 
2019) and the development of antimicrobial resistance.

Of the currently known antibiotics a number are synthetic compounds, but most 
are natural products of microorganisms. As such antimicrobials, and indeed resis-
tance to them, are both part of normal microbial defense mechanisms (Durand et al. 
2019). Antimicrobial resistance however, is not a new phenomenon. Phylogenetic 
of OXA genes (that encode beta-lactamases) have shown that much of the diversity 
in these genes is the result of ancient events, and that the OXA genes were mobi-
lized to plasmids from chromosomes millions of years ago (Barlow and Hall 2002). 
Genes that confer antimicrobial resistance have been identified in samples of per-
mafrost dating back thousands of years (D’Costa et al. 2011; Kashuba et al. 2017). 
Environmental sample of Lechuguilla cave in New Mexico, isolated for more than 
four million years, yielded 93 bacterial strains of which several species were resis-
tant in vitro to three or more antibiotics classes (Bhullar et al. 2012). Antimicrobial 
resistant genes (ARGs) have been isolated from gut microbiomes of an ancient 
mummy (Lugli et al. 2017) and from antibiotic naïve glaciers in the Antarctic (Van 
Goethem et al. 2018). In recent times though, antimicrobial resistance has come to 
be viewed as one of the biggest health threats faced by mankind (O’Neill 2016).

12.1  �Epidemiological Impact of Antibiotics and ARGs

12.1.1  �Pharmacoepidemiology and Evolution of Antibiotic Use

The first antimicrobials to be made available commercially included arsphenamine, 
a chemical compound discovered by Paul Ehrlich marketed in 1911 as Salvarsan@ 
and Mapharsen@ for the treatment of syphilis (Gensini et al. 2007). This was fol-
lowed by sulphanilamide marketed as Protonsil@ in 1935 (Lewis 2013). Penicillin 
though discovered by Fleming in 1928 was made commercially available in 1940 
(Durand et al. 2019). Since then several synthetic or naturally derived molecules 
were explored and a number added to the antimicrobial armamentarium. The global 
expansion of pharmaceutical industry, reduced cost of production in particular 
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following expiry of drug patents, together with increasing demands from health care 
providers and patients, allowed for an exponential increase in global availability of 
antimicrobials. In many parts of the world with limited access to health care antimi-
crobials came to be used as first-line agents for a number of conditions, and in 
countries with weak health systems, made available over the counter. Microorganisms 
develop antimicrobial resistance either by de novo mutations under clinical antibi-
otic selection or through acquisition of mobile genes from other bacteria that have 
evolved resistance following exposure to antimicrobials at some earlier point in 
time. The increasing and unregulated exposure to antimicrobials (which in many 
parts of the world included poor quality drugs) therefore selected for organisms that 
were resistant to them. Patients treated with antibiotics became colonized with 
resistant organisms carrying them as part of their microbiome. Inadequate infection 
control measures and poor access to hygiene allowed the spread of these resistant 
bacteria initially within health care facilities, but ultimately within the communities 
as well.

In parallel to human use, antimicrobials also came to be recognized as being 
valuable in protecting farmed animals against infections leading to increased pro-
ductivity; antifungals were found to be useful in protecting crops seeds and bulbs 
safeguarding the farmers’ economic interest and ensuring affordable protein and 
food safety for many. To the extent that currently agricultural antibiotic use exceeds 
human consumption (Van Boeckel et al. 2015), excessive antimicrobial use in food 
production contributed not only to selection of antimicrobial resistance in the envi-
ronment, but to its spread through the food chain (Kirchhelle 2018).

When exploring the spread of antimicrobial resistance another important link to 
be considered is the environment. Approximately 50–90% of antibiotics adminis-
tered to humans and animals are reportedly excreted via urine and feces, as a mix-
ture of parent drug and metabolite forms (Kümmerer 2009). Pharmaceutical industry 
too discharges waste (which includes waste containing antimicrobial agents) into 
sewage. The antimicrobial compounds thus discharged may associate with sewage 
sludge, or be released to rivers. Sludge-associated drugs will enter agricultural sys-
tems when the sludge is used as a fertilizer, or when wastewaters are used for irriga-
tion (Kinney et  al. 2006). Thus, significant levels of active drugs end up in the 
environment, where they may persist in soil and aquatic ecosystems (Kümmerer 
2009; Wellington et al. 2013) contributing to generation of antimicrobial resistance 
among the environmental microbiota (including amongst microbiota of health care 
facilities), which in turn passes back to humans and to animals and into the food 
chain (Chamosa et al. 2017; Ekwanzala et al. 2018). Additionally, human/animal 
waste contains microbiome of those exposed to antimicrobials, antimicrobial resis-
tant bacteria, and/or antimicrobial resistance genes, the resistome (Van Schaik 2015; 
Proia et al. 2018). Wastewater containing such resistomes and used for either agri-
culture or indeed for drinking too represents a significant risk for spreading bacteria 
and antimicrobial resistance among both humans and animals (Lamba et al. 2018; 
Bougnom et al. 2019).

12  Epidemiological, Ecological, and Public Health Effects of Antibiotics…
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12.1.2  �Economic Epidemiology

The significance of and risk from AMR is enormous. It is estimated that by 2050, 
ten million lives a year and a cumulative 100 trillion USD of economic output are at 
risk due to the rise of drug-resistant infections (O’Neill 2016). A recent report from 
the Organization for Economic Co-operation and Development (OECD) predicts 
that 2.4 million people in Europe, North America, and Australia will die from infec-
tions with resistant microorganisms in the next 30 years and that such infections 
could cost up to US$3.5 billion per year (OECD 2018). Analysis of European 
Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data suggests 
that the burden of infections due to antibiotic resistance organisms has increased 
between 2007 and 2015 and was similar to the cumulative burden of influenza, 
tuberculosis, and HIV (Cassini et al. 2019). Yet antimicrobial usage continues to 
increase. A recent study analyzing the trends of antibiotic consumption in 76 coun-
tries from 2000 to 2015 reports that antibiotic consumption, expressed in defined 
daily doses (DDD), increased 65% (21.1–34.8 billion DDDs), and the antibiotic 
consumption rate increased 39% (11.3–15.7 DDDs per 1000 inhabitants per day). 
The study further found that the increase was in particular driven by low- and 
middle-income countries (LMICs), where rising consumption was correlated with 
gross domestic product per capita (GDPPC) growth (Klein et al. 2018).

In response to these concerns at its sixty-eight World Health Assembly in 2015 
World Health Organization endorsed a global action plan to tackle antimicrobial 
resistance (World Health Organization 2015) One year later the United Nations 
General Assembly (UNGA) termed antimicrobial resistance as one of the biggest 
threats to global health endangering major priorities including human development 
(World Health Organization 2016). In response to these concerns countries were 
called upon to develop their national AMR action plans encompassing a One Health 
agenda. The challenge remains in prioritizing implementation and balancing cost 
benefit of each component. The  Organisation for Economic Cooperation and 
Development (OECD) report recommends five simple measures to reduce AMR: 
hand and environmental hygiene, antibiotic stewardship, rapid testing to distinguish 
bacterial from viral infections, delayed antibiotic prescriptions, and mass media 
campaigns. The report further estimates that in OECD countries this could be 
achieved by investing as little as US$2 per person per year and could avoid 75% of 
deaths caused by infections with resistant microorganisms (OECD 2018; Hofer 
2019). In contrast, a multivariate analysis of 2008–2014 data from 103 countries by 
Collignon et al. (2018) conclude that given the importance of resistant bacteria and 
of resistance genes in spreading AMR, reducing antibiotic consumption alone 
would not be sufficient for the problem and call for improved sanitation, clean 
water, good governance, increased investment in public health care, and the impor-
tance of regulating the private health sector (Collignon et al. 2018; Hofer 2019). 
Equally, curbing antimicrobial use in the animal and agricultural sector remains a 
challenge. A number of wealthy countries like Korea, Japan, the USA, and EU 
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member states have managed to stall decades of increasing antibiotic use and 
establish surveillance systems. However, in the absence of long-term funding com-
mitments and international controls, antibiotic stewardship remains patchy in mid-
dle- and low-income countries. As such regulating food supply chains and reducing 
antibiotic consumption in the farm and agricultural industry across the world will 
require global solutions that are subject to transparent evaluation (Kirchhelle 2018).

12.2  �Ecological Impact of Antibiotics and ARGs

Ecosystems are complex structures with significant heterogeneity with respect to 
geography, time, and components of the environment and animate species involved. 
It follows therefore that ecological impact of antibiotics and ARGs should vary 
within different ecosystems. With what little knowledge and evidence is available 
however, it can be surmised that antibiotics have a significant impact on micro- and 
macroecosystems and should be treated as ecotoxins.

Despite its ubiquity, microbial ecology is understudied. Since much was unknown 
about microbial ecology and its predictors before the beginning of this decade, rela-
tively few planned studies have evaluated the impacts of antibiotics, antibiotic resi-
dues, and ARGs on various ecosystems.

12.2.1  �Impact on Natural Ecosystems

12.2.1.1  �Importance of Microbial Diversity in Terrestrial and Aquatic 
Ecosystems

Microbial diversity in the environment affects biogeochemical cycles (Panizzon 
et  al. 2015), which in turn are critical to the sustainability of macroecosystems. 
Although very little is known about diversity of microbes owing, in part, to the 
inherent difficulty of studying non-cultivable microbes, it is well accepted that 
microbial abundance and diversity in natural ecosystems is essential to their produc-
tivity (Prosser et al. 2007).

Antibiotics from anthropogenic (man-made) sources in the environment affect 
bacterial diversity by inducing a selective pressure, causing a shift in the natural 
competition toward those microbes that have the ability to withstand this selective 
pressure. This change in the structural and/or functional composition of microbial 
communities can affect nitrogen cycles, nutrient cycles, biodegradation in nature 
(through affecting the proportion and function of anaerobic digesters), and other 
natural processes that are crucial for optimal functioning of other ecosystems 
(Blaser et al. 2016). Any effect on microorganism communities therefore extends to 
indirect impact on larger ecosystems.

12  Epidemiological, Ecological, and Public Health Effects of Antibiotics…
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12.2.1.2  �Impact on Agroecosystems

Ecological risk assessment of the impact of pesticides on plant communities, 
alluvial soil, and related aquatic environments is a prime example of the effect of 
toxins on these larger ecosystems (Khetan and Collins 2007). Since antibiotics 
affect bacterial communities which in turn affect plant rhizospheres etc., a similar 
conceptual framework applied to antibiotics as plant toxins has been favored by 
Brandt et al. (2015) and Grenni et al. (2018). Several studies have demonstrated the 
effect of small sub-inhibitory concentrations of antibiotics and antibiotic residues 
on bacterial community and rhizosphere structure which can potentially lead to low 
productivity of agroecosystems with significant agronomic impact (Revellin et al. 
2018; Topp et al. 2017). Studies on plants have also identified measured environ-
mental concentrations (MECs) and the predicted no-effect concentrations (PNECs)/
non-observed effect concentrations (NOECs) of major antibiotics (Park and Choi 
2008; Santos et  al. 2010) as toxicological endpoints. Further research into more 
antibiotic classes and similar limits for different ecosystems is warranted.

ARGs present in soil and agroecosystems impact constituent microbial popula-
tions through transmission into different bacterial species. It has been proposed that 
ARGs in bovine manure can make way into the farm environment with subsequent 
risk of transmission to consumers via farm produce (Doyle et al. 2017).

12.2.1.3  �Impact on Aquatic Ecosystems

Through direct and indirect means, anthropogenic (human and veterinary use) anti-
biotics enter the natural aquatic environment. Presence of antibiotics and their resi-
dues in these aquatic microcosms, wastewaters, as well as in natural marine and 
freshwaters impacts microbial diversity as well as aquatic animal species and their 
functions at different trophic levels (Kümmerer 2009).

Aquatic algal populations are affected by the presence of macrolides, tetracy-
clines, sulfonamides, and quinolones in the order of micrograms per liter (Santos 
et al. 2010). Both acute and chronic toxic effects have been observed. Macrolides 
and tetracyclines also impact photosynthesis in cyanobacteria and also disrupt the 
balance between these beneficial bacteria and toxic weeds, increasing populations 
of the latter (Pomati et al. 2004). Crustaceans also exhibit chronic toxicity as a result 
of macrolide and quinolone accumulation (Yamashita et al. 2006). Although studies 
show no observable effects on fish populations (Isidori et al. 2005), an effect on 
algal species is thought to eventually affect fish by impacting the aquatic food chain.

Water reuse is also impacted by the presence of antibiotics, antibiotic residues, 
and ARGs. Microbial water quality is dependent on the presence and quantitation of 
microbes and absence of pathogenic bacteria. As antibiotics directly affect bacterial 
compositions, their presence in water ultimately impacts water reusability (Liu 
et al. 2016).
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Aquatic environments are ideal for horizontal gene transfer from one bacterial 
species to another, thus facilitating spread of antibiotic resistance. Presence of 
antibiotic concentrations favors survival of organisms carrying ARGs and also per-
haps the presence, dispersal, and transmittance of mobile genetic elements (MGEs) 
(Martínez et al. 2015).

12.2.1.4  �Impact on Human and Animal Microbiomes

Evidence on the role of the human microbial ecosystem—the human microbiome—
in human health and disease is vast. Diversity and composition of the human micro-
biome are currently of great interest (Costello et al. 2012). Antibiotic use by humans, 
whether therapeutic or prophylactic, or resulting from contamination of food, water, 
or presence in other products, affect the microbiome through modification of this 
diversity and composition. Microbiomes are present on the human skin, epithelial-
ized orifices, the respiratory tract, the gastrointestinal tract, and the genitourinary 
tract. Although normal gastrointestinal microbiota are sufficiently resilient to coun-
ter major ecological shifts in species, repeated courses of antibiotics are thought to 
lead to major and perhaps more persistent changes in an individual’s microbiome 
(Jakobsson et al. 2010). Changes thereof can potentially lead to a shift in the micro-
biome toward less resilient bacteria more easily overcome by pathogens, and also 
putatively a larger microbial resistome.

Understanding of the human-microbial symbiosis has now evolved to an extent 
that ecological paradigms have been applied to clinical situations. Transplantation 
of feces from a healthy donor (therefore with a “healthy” microbiome) into patients 
with Clostridium difficile colitis has not only revolutionized the management of this 
disease, but has also impacted the understanding of the role of microbiome in human 
health (Bakken et al. 2011).

Antibiotics are common stressors also of the animal microbiome, inducing a so-
called “dysbiotic” state (Zaneveld et  al. 2017) leading to possible animal health 
effects. Presence of therapeutic and subtherapeutic (through indirect exposure) con-
centrations of antibiotics in animal gut has been shown to affect quantities of ARGs 
(Field and Hershberg 2015).

The presence of resistance genes against trimethoprim, a synthetic antibiotic in 
human, mammalian, and farm soil microbiomes, alike suggests that some exchange 
interface exists between these ecosystems, suggesting a much wider impact 
(Fitzpatrick and Walsh 2016). As applications of metagenomics, metabolomics, 
and proteomics enable more accurate studies on composition and diversity of the 
human and animal microbiome, the ecological impact of antibiotics, possible toxi-
cological endpoints, and the resulting overarching health effects will be better 
understood.

12  Epidemiological, Ecological, and Public Health Effects of Antibiotics…
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12.2.2  �Impact on Artificial Ecosystems

Man-made environments have their own unique ecosystems, and individuals and 
surfaces within these built environments have their own microbial ecosystems. 
Metagenomic approaches to some of these ecosystems have been applied recently, 
and although antibiotic concentrations have not yet been studied widely, evidence 
from natural ecosystems suggests that antibiotics within these environments also 
affect microbial ecosystems and constituent ARGs. Among these ecosystems which 
affect human life significantly and have their own microbiomes are food production 
facilities (e.g., food manufacturing/packaging plants) (Doyle et al. 2017), aquacul-
ture ecosystems, intensive urban farming, horticulture, and hospitals. The recently 
initiated Hospital Microbiome Project (Westwood et  al. 2014) is likely to reveal 
further aspects of the built hospital environment and surfaces which can lead to 
improved understanding of microbial ecology therein. It has been postulated that 
the presence of antibiotic-impregnated surfaces in hospitals can lead to increase in 
resistance among resident microbial flora (Strachan et al. 1991; Caselli et al. 2016). 
Furthermore, patients within hospitals may be considered individual microbial 
ecosystems where antibiotics significantly impact the microbiome and ARGs 
(Lofgren et al. 2016).

12.3  �Public Health Impact of Antibiotics and ARGs

Antibiotics have revolutionized the treatment of infectious diseases. While this has 
tremendously impacted the health of those suffering from disease, there are other 
consequences of using antibiotic that are fast becoming clear and relevant in 
recent years.

Consequences of antibiotic use may be direct, resulting from intentional therapeutic 
or prophylactic use, or indirect, due to the presence of subtherapeutic concentra-
tions in the environment, food, and water. Both acute and chronic effects of antibiotic 
use have been observed at the individual and population level in humans. These 
result from three main mechanisms or drivers: an increasing resistance gene pool or 
“resistome,” alterations in microbiomes, and direct tissue toxicity (Fig. 12.1).

12.3.1  �Consequences of Expanding Resistome

The hidden resistome in the animate and inanimate environment is a direct public 
health threat due to its causal association with clinical AMR. Spread of environmen-
tal antibiotic resistance genes has resulted in very high clinical resistance among 
pathogens, severely restricting treatment options for life-threatening infections. 
Attributable mortality resulting from infections due to resistant pathogens is high in 
critically ill patients (De Kraker et al. 2011), and also contributes to high health care 
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costs due to prolonged hospital stays alone (De Kraker et al. 2011). By 2050, it is 
predicted that AMR will cause around 4 million deaths in Asia alone, and 10 million 
deaths per annum globally (O’Neill 2016).

AMR has also forced older antibiotics and some repurposed drugs as antibiotics 
into clinical usage. Repurposed drugs and older antibiotics such as polymyxins have 
uncertain dosages pharmacokinetics, and adverse effect profiles (Palomino and 
Martin 2012). Clinical use of these drugs therefore often results in toxicities that 
require further medical interventions, burdening the individual, health care facili-
ties, and health systems.

Intensive management of drug-resistant infections also necessitates investment 
in diagnosis and treatment of AMR pathogens. This increases health expenditure, 
and competes with investments in preventive health programs especially in resource 
limited settings.

12.3.2  �Consequences of an Altered Microbiome

As highlighted previously, environmental antibiotics impact microbiomes, which 
differ remarkably between healthy and diseased humans. Deviations in population 
structure of microorganisms constituting the “healthy microbiome” affect the health 
of individuals and populations. This functional impact of the microbiome has been 
observed in skin disease (Byrd et al. 2018), bowel disease (Heeney et al. 2018), and 
liver disease (Adolph et al. 2018), and it is expected that further research into this 
domain will uncover more systemic relationships. Microbiomes are also thought to 
have a bearing on the nervous system and behavior (Ghaisas et al. 2016).

Alteration of the microbiome in pregnancy is associated with gestational diabe-
tes and adverse fetal outcomes such as preterm birth (Bassols et al. 2016; Prince 

Fig. 12.1  Mechanisms 
and health effects of 
antibiotic and ARG 
contamination in the 
environment
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et al. 2016). In utero exposure to antibiotics can potentially alter the developmental 
microbiome of the fetus, which modulates the infant immune system (Stiemsma and 
Michels 2018). Although causality has not been proven, exposure to antibiotics pre-
natally and in infancy is thought to lead to noncommunicable diseases such as 
asthma (Hoskin-Parr et al. 2013) or inflammatory bowel disease (Hviid et al. 2011) 
in later life. The recent obesity epidemic has also been associated with antibiotic 
exposure and microbiome modification in early childhood (Leong et  al. 2018). 
Antibiotics induce microbial dysbiosis even at subinhibitory concentrations 
(Berendonk et al. 2015). The association of subinhibitory exposure with dysbiosis 
and disease needs to be determined through further research.

Gastrointestinal microbiome structure affects tumor formation, as suggested by 
murine studies (Zackular et al. 2013). In a recent study, long-term antibiotic use in 
adults was associated with colorectal adenomas; however, independent association 
with antibiotics remains to be elucidated (Cao et al. 2018). Breast cancer may result 
from a disturbance of the “estrobolome”—the collective enteric bacterial engine 
that can metabolize estrogens (Kwa et al. 2016).

12.3.3  �Consequences of Antibiotic Toxicity

Data on direct toxic effects of subtherapeutic antibiotics on humans are limited. 
However, recognition of antimicrobials as toxins in food and water is increasing 
(Hanekamp and Bast 2015), and no-effect antibiotic concentrations in food have 
been proposed and revised (Barton 2000). Despite this, comprehensive informa-
tion on risk assessment and Thresholds of Toxicological Concern (TTC) are lack-
ing for antibiotic classes (Hanekamp and Bast 2015). TTC studies at a population 
level are also critical to understanding of the various types of anti-infective side 
effects potentially caused by subtherapeutic concentrations of antibiotics (Barton 
2000). Three categories of antibiotic toxicities merit special mention. These are 
tumorigenesis, allergic and pseudoallergic reactions, and idiosyncratic immune 
reactions.

Antibiotics such as quinolones and tetracyclines are potentially genotoxic and 
cytotoxic to mammalian cells (Smart and Lynch 2011; Çelik and Eke 2011). While 
these antibiotics are monitored in food and biosolids, other mutagenic antibiotics 
such as furazolidones (Magee et al. 2018) are often overlooked and metabolites of 
which may contribute to side effects (Hoogenboom et al. 2002).

Allergenic potential of antibiotics is well known; however, the allergenic con-
centrations and potentials at subtherapeutic levels present in food and water are 
poorly understood. Veterinary antibiotics also have several toxicological effects 
observed at high concentrations, and occasional occupational exposure to these can 
lead to serious side effects (Joint FAO/WHO Expert Committee 2009). Penicillin 
residues in milk have been documented to trigger a Type I hypersensitivity reaction 
(Dewdney et al. 1991) rarely. However, reports of other antibiotics triggering aller-
gic reactions are often unsubstantiated and thought to be insignificant (Dayan 1993).
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The most well-known example of an immune-mediated reaction to small amounts 
of antibiotic contamination in food is that of chloramphenicol. This antibiotic is 
known to cause a dose-independent aplastic anemia (Settepani 1984) through expo-
sure in food. Other reported instances of smaller concentrations of antibiotics caus-
ing adverse effects in humans are rare; however, this may be due to the inherent 
difficulty of monitoring for such effects at the population level. The overall health 
impact and spectrum of toxicities of contaminant antibiotics may be much wider 
and hitherto unrecognized.

Assessing public health impact of any intervention is central to influencing pol-
icy decisions. The adverse impact of clinical AMR on human health and economy 
is indisputable. The projected future impact on morbidity and mortality as predicted 
by the O‘Neill report makes it essential to revise current policies in light of emerg-
ing evidence to not only safeguard efficacy of antimicrobial agents, but also to pro-
tect the environment from damage by them.

The interdependence of environments, humans, animals, and microbiota is evi-
dent in the manner in which changes at epidemiological, ecological, and the public 
health level are impacted by the presence of antibiotics and spread of ARGs through 
the ecosystem. As these environments are interlinked, it is necessary that risk assess-
ment and solutions to prevent antimicrobial resistance encompass all sectors where 
the antibiotics and ARGs interface with the animate world.
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