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Chapter 1
Entry Routes of Antibiotics 
and Antimicrobial Resistance 
in the Environment

Paweł Krzemiński, Zdzisław Markiewicz, and Magdalena Popowska

Abstract This chapter describes the current knowledge about the entry routes of 
antibiotics and antimicrobial resistance in the environment. It starts with an over-
view of the most important entry routes being wastewater and sludge from urban 
wastewater treatment plants, and natural fertilizers like pig slurry and cow manure 
and fertilizer from poultry farming. These sites are referred to as hotspots for anti-
biotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB), including 
bacteria pathogenic for humans and animals, also those mentioned on the WHO 
priority list of global priority pathogens and of antibiotic-resistant bacteria. All 
these entry routes, manure, wastewater, and aquacultures, are characterized in terms 
of general sources of antibiotics, ARB, and ARGs. We also analyze the European 
Surveillance of Veterinary Antimicrobial Consumption report on the sale of antibac-
terials for veterinary. Furthermore, the EU guidelines to reduce the sales of veteri-
nary antimicrobials across Europe under the umbrella of the EU One-Health Action 
Plan against Antimicrobial Resistance are mentioned. In the last section we point 
the need to develop and standardize the guidelines and method protocols for surveil-
lance of AMR which need to be practicable, comparable, simple, and cost-effective 
so that they can be applied globally.
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1.1  Introduction

Antibiotics and antimicrobial resistance (AMR) can enter the environment through 
very many different routes, the most important being wastewater and sludge from 
urban wastewater treatment plants (WWTPs), and natural fertilizers like pig slurry 
and cow manure and fertilizer from poultry farming. These sites are referred to as 
hotspots for antibiotic resistance genes (ARGs) and antibiotic resistance bacteria 
(ARB), including bacteria pathogenic for humans and animals. In many cases, these 
are multidrug-resistant (MDR) strains, where ARGs are frequently carried on 
mobile genetic elements, notably plasmids and transposons, that can be transferred 
by different mechanisms of horizontal gene transfer (HGT) not only among bacteria 
of the same species, but also among different species. In the following sections, we 
present current knowledge on antibiotics and antimicrobial resistance entry routes 
in the environment, and finally we present a scheme of general sources of antibiotics 
ARB and ARGs and degradation mechanisms of antibiotics in the environment, in 
an attempt to better understand the complexity of the problem of dissemina-
tion of AMR.

1.2  Characterization of Entry Routes

The entry routes of antibiotics and AMR are mainly connected with the excretion of 
animal urine and feces (manure) from agriculture, where a large fraction of antimi-
crobial agents can be released into the environment in an active form. Another 
source represents WWTPs, where both sludge and treated wastewater are major 
pathways. For example, when sewage sludge is used as fertilizer or to condition soil, 
or when treated wastewater is reused for irrigating arable fields, the remaining anti-
biotics and ARB that are reservoirs of ARGs are introduced into the environ-
ment  (Krzeminski et  al. 2019). Finally, the third pathway is aquaculture, where 
antibiotics provided with a feed are frequently overused. Perhaps of lesser impor-
tance for AMR, there are also communal rubbish dumps; however in this case a 
leachate from a municipal solid waste is a real threat to environmental pollution by 
antibiotics and other drugs that are thrown into the household rubbish bins. The 
presence of antibiotics in the environment creates a selective pressure, which pro-
motes the spread of AMR among bacteria, especially with a high potential of resis-
tance genes located on mobile genetic elements (MGEs). This, in turn, may lead to 
the selection of resistant strains, which are also capable of moving between different 
environments (including people’s microbiome and the hospital environment), 
thereby creating the potential for the movement of ARGs and associated MGEs 
(further covered in Chap. 14 on the fate of ARB and their AMR genes within the 
environment). Considering the above, it seems extremely important to develop 
effective methods of wastewater, water, and soil treatment to reduce spread and 
proliferation of AMR in the environment.

P. Krzemiński et al.
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1.2.1  Manure

Manure is characterized by a rich chemical composition and contains, among oth-
ers, compounds sometimes unavailable in mineral fertilizers. The advantage of 
manure is also that it slowly decomposes and does not cause soil salinity. Manure 
provides plants with basic nutrients such as nitrogen, phosphorus, and potassium. In 
addition, it also contains calcium, magnesium, boron, and iron, which are some-
times unavailable in mineral fertilizers (Szogi et al. 2015; Burton and Turner 2003). 
Manure spread and excavated with soil (optimally at a depth of 15–20 cm) also 
affects the humus formation. Manure types due to their origin:

Bovine manure—used on different soils, but it is recommended for sandy sub-
strates in which nutrients are quickly washed away. It contains fewer nutrients, but 
is more abundant in potassium. The bovine manure contains an average of 0.9% N; 
0.5% P2O5; 1.2% K2O; 1.2% CaO, and 0.2% MgO at a water content of 34%.

Horse manure—causes rapid heating of the soil which is not always a beneficial 
process. It can be used on heavy and light soils. Horse manure contains an average 
of 0.7% N; 0.3% P2O5; 0.8% K2O; at a water content of 55%.

Pig manure—a good solution for sandy substrates in the cultivation of plants that 
produce a large amount of green matter. It is nitrogen rich. The liquid manure is a 
mixture of animal manure and water. It is created in the non-bedding of swine as a 
by-product and waste product. Among the compounds included in its composition, 
it is possible to distinguish compounds that are mainly a solid fraction, for example, 
organic compounds and phosphorus compounds, as well as components of the liq-
uid fraction, such as nitrogen compounds and minerals in the form of sodium, potas-
sium, and magnesium oxides. However, the content of these substances depends on 
the method of breeding and feeding of pigs. Pig manure contains an average of 1.1% 
N, 0.6% P2O5, 0.7% K2O, 0.4% CaO, and 0.2% MgO at a water content of 88% 
(Jørgensen and Jensen 2009).

Poultry manure—usually used as an additive to other fertilizers or a component 
of a compost prism. It contains a very large amount of nitrogen and its use may lead 
to a risk of overfertilizing the plants. It is usually recommended to dilute it and/or 
mix with other natural fertilizers. Poultry manure is used for fertilizing soils and for 
the production of various types of organic substrate, e.g., for growing mushrooms. 
The chemical composition of this fertilizer varies depending on the species. The 
chicken manure contains an average of 2.8% N, 1.2% P2O5, 1.4% K2O, 2.4% CaO, 
and 0.7% MgO at a water content of 56%. Manure of waterfowl (duck and goose) 
contains 0.5–1.0% N, 0.5–1.4% P2O5, 0.6–0.9% K2O, 0.8–1.6% CaO, and 0.2–0.3% 
MgO at a water content of 30%. Nitrogen in bird manure is predominantly in the 
form of uric acid, which quickly decomposes into ammonia. Poultry manure is rec-
ommended in doses of 10–15  t/ha, for the same plants and at the same times as 
traditional manure.

Natural fertilizers like manure can be harmful to health. Therefore, in the coun-
tries of the European Union, the rules for introducing these products for sale and use 
have been specified. Permission for introduction of fertilizer or other means is 
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issued by the minister competent for agriculture. Before being placed on the market, 
organic fertilizers must be carefully tested in terms of both fertilizer value and safety 
for humans, animals, and the environment.

Organic and organic-mineral fertilizers are subject to physicochemical and bio-
logical research. Physicochemical tests determine the content of organic matter, 
nitrogen, phosphorus, magnesium, and heavy metals in fertilizers. In addition to 
organic matter and heavy metals, the scope of fertilizer testing depends on the man-
ufacturer’s declaration. Biological examinations are aimed at excluding the pres-
ence of Salmonella and live parasitic eggs from Ascaris spp., Trichuris spp., and 
Toxocara spp.

The biological impurities introduced together with organic fertilizers into the 
environment include bacteria, viruses, fungi, and invasive forms of parasites, mainly 
intestinal. It is also known that the survival time of pathogenic organisms in the soil 
is from several days to even 10 years, and on plants from several days to 1 year.

The chemical composition of natural fertilizers is variable and depends on the 
species, age, direction of use and way of feeding animals, as well as the storage 
conditions of fertilizers.

In order to use natural fertilizers rationally and in accordance with the regula-
tions, it is necessary to determine the permissible and optimal dose of fertilizers. 
The permissible dose is that in which the amount of nitrogen carried in does not 
exceed 170 kg N/ha. The optimum dose, depending on the nutritional requirements 
of the plants and soil availability, may be lower than the acceptable dose. When 
using natural fertilizers frequently and in high doses, particular attention should be 
paid to the abundance of soils in phosphorus, the excessive accumulation of which 
may pose a threat to the aquatic environment. Manure is not active enough to fully 
replace fast-acting mineral fertilizers, but it can significantly reduce expenditures on 
the total cost of fertilizers, because it is the cheapest of all known fertilizers. Liquid 
manure differs from manure not only in physical values but also in chemical com-
position and fertilizing action. In contrast to manure, it is a liquid fertilizer, more 
aggressive, and thus faster affecting the soil. In addition, its use by plants is very 
fast, which results from the fact that most fertilizer substances are in a mineral form, 
e.g., nitrogen from slurry is much better used by plants than from manure. Liquid 
manure is a mixture of feces and urine as well as water from washing up the stands. 
It is created in rooms adapted to keep animals without mulch. The content of fertil-
izing ingredients in slurry depends on the species and age of the animals and how 
they are used, the type of feeding, the degree of dilution, water, etc.

It should be remembered, however, that the aforementioned fertilizers are the 
essence of fertilization in so-called organic farming, whose aim is to maintain or 
increase the fertility and biological activity of the soil and create optimal conditions 
for the development of plants.

In manure, antibiotics from a wide range of classes are detected in the highest 
levels (Hu et  al. 2010; Jechalke et  al. 2014;  Kemper et  al. 2008; Lathers 2001; 
Marshall and Levy 2011; Sarmah et al. 2006). The second environment with high 
concentration of antibiotics are soils fertilized with manure, where antibiotics are 
washed off with groundwater from the soil and move forward (Anjum and Krakat 
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2015; De La Torre et al. 2012; Williams-Nguyen et al. 2016). Also veterinary medi-
cine were antibiotics of the same classes as in human treatment are or have been 
used, carries the danger of the emergence and spread of AMR (Heuer et al. 2009; 
Martínez 2009). This phenomenon is particularly serious in the case of the patho-
gens transmitted via food, e.g., Campylobacter jejuni, Escherichia coli, Salmonella, 
and Enterococcus faecium. The same strains may hence colonize animals and 
humans, yet resistance genes disseminate easily between closely related species. 
This creates a serious threat of extensive antibiotic and/or resistance gene dissemi-
nation (Ding and He 2010; Popowska et al. 2010, 2012; Mąka et al. 2015a, b, 2018). 
Since January 1, 2006, antibiotics should not be used as growth promoters (http://
europa.eu). Until 2006, 90% of antibiotics used in agriculture had been destined for 
growth stimulation and only 10% for fighting bacterial diseases. Statistical data 
indicate that in the last 50 years over one million of tons of antibiotics were intro-
duced into the environment, 50% derived from veterinary medicine and agriculture 
(Allen et al. 2010). Despite the existence of legal acts regulating the use of antibiot-
ics in veterinary medicine and animal husbandry, medically important antibiotics 
are still routinely used for livestock (Cantas et al. 2013). Many publications report 
the association between antibiotics (of 24 antibiotics used in animal and/or human 
medicine) and bacterial AMR of Escherichia coli, Enterococcus faecalis, and 
Enterococcus faecium in liquid pig manure used as fertilizer. Reported concentra-
tions of antibiotics in manure are from residual levels to commonly 1–10 mg/kg or 
mg/L, yet concentrations of more than 50 mg/kg were also reported (Hölzel et al. 
2010; Massé et al. 2014). A summary of the findings is presented in Table 1.1.

The levels of antibiotics found in manure might seem generally low, but the pro-
duction of manure is on a big scale: in Europe, pigs and cows are reported to jointly 
produce 1.27 billion tonnes of manure per year. The consolidated data from 30 EU/
EEA countries shows that more than 8300 tonnes of active ingredients were sold for 
use in animals in 2015 alone (EMA/ESVAC 2017; ECDC/EFSA/EMA 2017). In 
agricultural land where farm manures (both solid manures and slurries) are applied, 
it is estimated that, antimicrobials are being released into the environment in the 
region of kilograms per hectare per year (Kemper 2008). An example of the use of 
fertilizers on a large scale is the United Kingdom, where about 96 million tonnes of 
farm manures (both solid manures and slurries) are applied to agricultural land 
(Defra 2010). This is a real threat of environmental contamination with antibiotics 
used in livestock. The final concentration of antibiotics in manure and then in the 
agriculture soil is the resultant of various processes, among others, antibiotic metab-
olism and degradation processes. Some antibiotics bind strongly to soil and sedi-
ments, which contributes to their persistence as they become inaccessible to 
degradation (Kumar et  al. 2005; Kühne et  al. 2000; Rabølle and Spliid 2000; 
Sengelov et al. 2003). The rate of degradation of antimicrobials in the environment 
is dependent on a range of conditions, for example: antibiotic concentration, chemi-
cal structure of the compound, composition and structure and sorption properties of 
soil, pH, temperature, availability of oxygen and microorganisms that support bio-
degradation (Kümmerer 2004, 2009a, b). The application of manure to land poses a 
threat to contamination of the aquatic environment including surrounding surface 
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water and groundwater. The antibiotic concentrations reported in aquatic environ-
ments are less than 10 μg/L (Kümmerer 2009a, b), which, however, taking into 
account the phenomenon of promoting antibiotic resistance in sub-lethal concentra-
tions, creates a serious risk of antibiotic resistance spread (Andersson and Hughes 
2014; Cairns et al. 2017; Friman et al. 2015; Händel et al. 2013).

Manure is also the reservoir of AMR and ARGs, and thus poses a risk for animal 
or human health (Marshall and Levy 2011; Storteboom et al. 2007; Thanner et al. 
2016). It has been shown that manure is a “hot spot” of ARB, which carrying ARGs 
on mobile genetic elements (MG) and via horizontal gene transfer (HGT) these 
ARGs can be transferred to the soil bacteria (Cytryn et al., 2017; Binh et al. 2008; 
Fahrenfeld et al. 2014; Wolters et al. 2014). ARB are also found in meat, generating 
a real risk of pathogen infections in human. Examples are Staphylococcus aureus 
(MRSA), extended-spectrum beta-lactamase (ESBL)-producing or AmpC beta- 
lactamase- producing Escherichia coli, and Enterococcus faecalis (Endimiani et al. 
2012; EU 2015; Overesch et al. 2013; Schmidt et al. 2015; Vogt et al. 2014). These 
bacteria were included on the WHO priority list on February 2017, the first ever list 
of global priority pathogens (global PPL) and of antibiotic-resistant bacteria. 
Totally, 12 families of bacteria identified as posing the greatest threat to human 
health were mentioned (Table 1.2). These bacteria were grouped into three classes 
in the order of risk: I—critical, II—high, and III—medium priority. Due to the high 

Table 1.1 Concentration of antibiotics in manure from global sources (Massé et al. 2014)

Class of 
antibiotic Antibiotic Source Concentration Reference

Ionophorous Monensin Beef manure 
stockpile

120 mg/kg Dolliver et al. (2008)

Macrolide Tylosin Fresh calf manure 0.11 mg/kg Jacobsen and Halling- 
Sørensen (2006)

Beef manure 
stockpile

8.1 mg/kg Dolliver et al. (2008)

Sulfonamide Sulfadiazine Swine manure 7.1 mg/L Chen et al. (2012)
Sulfonamides Swine manure 2 mg/kg DM Jacobsen and Halling- 

Sørensen (2006)
Tetracycline Chlortetracycline Swine manure 764.4 mg/L Pan et al. (2011)

Swine manure 139 mg/L Chen et al. (2012)
Swine manure 
storage lagoon

1 mg/L Campagnolo et al. 
(2002)

Beef manure 
stockpile

6.6 mg/kg Dolliver et al. (2008)

Doxycycline Swine manure 37 mg/L Chen et al. (2012)
Oxytetracycline Swine manure 354 mg/L Chen et al. (2012)

Manure 136 mg/L Martínez-Carballo et al. 
(2007)

Cow manure 0.5–200 mg/L Ince et al. (2013)
Fresh calf manure 10 mg/kg De Liguoro et al. (2003)

Tetracycline Swine manure 98 mg/L Chen et al. (2012)

P. Krzemiński et al.
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level of resistance among these bacteria and the presence of MDR strains, new anti-
microbial agents targeting this priority list of pathogens are needed. According to 
the WHO “The list was drawn up in a bid to guide and promote research and devel-
opment (R&D) of new antibiotics, as part of WHO’s efforts to address growing 
global resistance to antimicrobial medicines.” It is important to realize that R&D of 
new antibiotics is not enough and cannot solve the problem. It is equally important 
to use better prevention of infections and appropriate use of existing antibiotics in 
humans and animals.

The European Medicines Agency (EMA) published on 15th October 2018, the 
eighth ESVAC (European Surveillance of Veterinary Antimicrobial Consumption) 
report on the sale of antibacterials for veterinary use in 2016 (EMA/ESVAC 2018). 
On average, sales of antibacterial agents for veterinary use in the EU decreased by 
20% between 2011 and 2016. Sixteen countries experienced a reduction of 9–58%. 
Not all countries, however, experienced such a reduction as six countries experi-
enced an increase of 8–68%. What can be a reason for satisfaction, the sale of criti-
cal substances, which are antibacterial substances that are important for public 
health, amounted to 0.21 mg/PCU, 2.70 mg/PCU, and 6.62 mg/PCU, respectively, 
for third and fourth generation cephalosporins, fluoroquinolones, and polymyxins. 
The data shows there was a drop of almost 40% in sales of polymyxins for veteri-
nary use. This class includes colistin, which is used as a last resort treatment in 
patients with bacterial infections resistant to other antibiotics. Sales of third and 
fourth generation cephalosporins decreased by 15.4%, while sales of quinolones 
declined by 13.6%.

This continues the downward trend seen over the last few years and confirms that 
EU guidance and national campaigns promoting prudent use of antibiotics in 

Table 1.2 WHO global PPL of antibiotic-resistant bacteria (WHO 2017)

Classification Antibiotic resistant

Priority 1: Critical
Acinetobacter baumannii Carbapenem-resistant
Pseudomonas aeruginosa Carbapenem-resistant
Enterobacteriaceae Carbapenem-resistant, ESBL-producing
Priority 2: High
Enterococcus faecium Vancomycin-resistant
Staphylococcus aureus Methicillin-resistant, vancomycin-intermediate and 

resistant
Helicobacter pylori Clarithromycin-resistant
Campylobacter spp. Fluoroquinolone-resistant
Salmonellae Fluoroquinolone-resistant
Neisseria gonorrhoeae Cephalosporin-resistant, fluoroquinolone-resistant
Priority 3: Medium
Streptococcus pneumoniae Penicillin-non-susceptible
Haemophilus influenzae Ampicillin-resistant
Shigella spp. Fluoroquinolone-resistant

1 Entry Routes of Antibiotics and Antimicrobial Resistance in the Environment
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 animals to fight antimicrobial resistance are having a positive effect. Reduction in 
sales is the result of combined efforts of the European Commission, EMA, EU 
Member States, veterinarians, farmers, and other actors in the livestock sector. EU 
guidance together with national campaigns for prudent use of antibiotics in animals, 
sales targets, and restriction of use of some antimicrobials in food-producing ani-
mals are among the actions implemented to reduce the sales of veterinary antimicro-
bials across Europe under the umbrella of the EU One-Health Action Plan against 
Antimicrobial Resistance (EU 2017; WHO—http://www.who.int/features/qa/one-
health/en/). Actions to reduce the emergence and spread of AMR are also car-
ried out.

The results of studies on AMR in soil fertilized with manure indicate that the 
spread of manure leads to a temporary increase in the occurrence of AMR in the 
manure-amended soil (Bengtsson-Palme et al. 2018; Kumar et al. 2018; Scott et al. 
2018). Thus, the use of manure in agriculture contributes to the global dissemina-
tion of AMR in the environment (Heuer et al. 2011a, b; Jensen et al. 2002; Sengelov 
et al. 2003). Therefore, a matter of high importance is the right manure treatment 
strategies to reduce or eliminate the risk of the release of antibiotics and ARGs from 
manures to the environment. More information on AMR and ARGs in natural fertil-
izers is provided in Chap. 6: “Antimicrobial/antibiotic resistance gene due to manure 
and agricultural waste applications,” and on treatment technologies for removal of 
antibiotics, ARB, and ARGs is posted in Chap. 19.

1.2.2  Wastewater Treatment Plants (WWTPs)

WWTPs where sewage is collected and then treated serve an essential role in the 
protection of human and environmental health. WWTPs therefore meet the princi-
ples outlined in the WHO concept—One-Health approach. Unfortunately, tradi-
tional WWTPs are designed to remove conventional pollutants, including organic 
matter, suspended solids, and nutrients like nitrogen and phosphorus. In many cases 
traditional WWTPs are effective in eliminating some pathogens but are not designed 
for the removal of antibiotics or ARGs (Agga et al. 2015; Manaia et al. 2018; Novo 
et al. 2013; Krzeminski et al. 2020; Pruden et al. 2013; Schwermer et al. 2018). 
Together with sewage to WWTPs enter antibiotic residues from different sources 
(hospital, pharmaceutical industry, and household) and other co-selecting factors, 
such as chemical pollutants (e.g., pesticides), heavy metals, and disinfectants/sur-
factants. Sewage microbiota is mainly composed of human commensal bacteria, 
which is mixed with bacteria that may be colonizing the sewage system (Cai et al. 
2014; Shchegolkova et al. 2016; Wang et al. 2014). The ARB fraction in sewage 
may reach more than 50%, mainly in a given group: enterobacteria or enterococci 
(Manaia et al. 2016; Rizzo et al. 2013). Considering the very good conditions for 
bacterial growth in a bioreactor system such as WWTPs, the presence of these 
abovementioned factors causes selection pressure and the phenomenon of co- 
selection, which in turn promotes horizontal gene transfer (Di Cesare et al. 2016; 
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Schlüter et al. 2007). Besides, the mobile genetic elements (MGEs) are in fact pos-
tulated as important vectors of ARGs between bacterial strains (Dröge et al. 2000; 
Kim et al. 2014; Marano and Cytryn 2017; Perry and Wright 2013; Szczepanowski 
et al. 2009).

Analysis of the effectiveness of removing various antibiotics from wastewater in 
WWTPs showed that removal is achieved mainly via chemical treatment and/or bio- 
adsorption onto particulates, and subsequent physical separation from municipal 
wastewater. The removal is not a result of biological degradation, which is relatively 
less effective in removing antibiotics from the municipal wastewater (Michael et al. 
2013). For some antibiotics such as sulfonamides like sulfamethoxazole and quino-
lones like norfloxacin and ciprofloxacin the detected abundance in the effluent still 
remained high, ranging at concentrations of 119–544  ng/L, 24–175  ng/L, and 
11–168  ng/L, respectively (Senta et  al. 2013). Generally, at least 56 antibiotics 
belonging to six different classes have been widely detected at nanogram per-liter to 
microgram per-liter levels in sewage of East Asia, North America, Europe, and 
Australia (Zhang and Li 2011). Many studies have shown the occurrence of chemi-
cal contaminants including antibiotic residues and their uncontrolled emission in 
the environment, which contributes to the proliferation of ARB and their associated 
genes, especially ARGs (Berendonk et al. 2015; Berglund et al. 2015; Manaia 2017; 
Manaia et al. 2016; Michael et al. 2013; Rizzo et al. 2013). The results of numerous 
studies indicate that WWTPs are “hot spots” of ARGs and ARB (Baquero et  al. 
2008; Michael et al. 2013; Piotrowska et al. 2017a; Zhang et al. 2009a; b). Depending 
on the treatment technology used and the sources of sewage coming to a WWTP 
(hospital, municipal effluent), the variability of diverse ARB including multidrug- 
resistant (MDR) strains of clinically relevant bacteria and ARGs for important anti-
biotics in medicine and veterinary medicine (B-lactams, macrolides, sulfonamides, 
fluoroquinolones and tetracyclines) are observed (Hong et al. 2013; Michael et al. 
2013; Rizzo et al. 2013). For example, β-lactamase genes (https://www.lahey.org) 
belonging to the AmpC, ESBL, KPC, and NDM groups have been found in bacteria 
in wastewater (Amador et al. 2015; Gatica et al. 2016; Khan and Parvez 2014; Picão 
et al. 2013; Piotrowska et al. 2017a; Varela et al. 2016; Zhang et al. 2009a, b). A 
study of Chen and Zhang (2013) using QPCR methods found that tetracycline resis-
tance genes (e.g., tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetP, tetS, 
tetX) were present in the activated sludge sampled from 15 WWTPs at different 
geographical locations. Others indicated the ARGs are widespread in the effluent, 
for example: sulfonamide resistance genes (sul1 and sul2); erythromycin resistance 
genes (ermB, ermF); and vancomycin resistance gene (vanA) (Bockelmann et al. 
2009; Burch et al. 2013; Chen and Zhang 2013; Fahrenfeld et al. 2013; Negreanu 
et al. 2012; Zhang et al. 2009a, b). ARBs found at different stages of the treatment 
process in municipal WWTPs belong mainly to Acinetobacter spp., and to entero-
cocci and Enterobacteriaceae, which includes those mentioned in the list of global 
priority pathogens list (Table 1.2). Analysis of the results published showed that 
many of the enterococci and Enterobacteriaceae were resistant to more than one 
antibiotic (Ferreira da Silva et al. 2006, 2007). In addition, it has been shown that 
for some bacteria of Escherichia, Shigella and Klebsiella spp. resistant to more than 
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two antibiotics increased from an average 11% in the raw wastewater to 21% in the 
treated wastewater. Similarly, the collective proportion of these Enterobacteriaceae 
which were resistant to three antibiotics increased from 5.5 to 14.1% in the treated 
wastewater. This observation further suggested that the conventional municipal 
wastewater treatment scheme does not effectively remove viable Enterobacteriaceae 
that are resistant to antibiotics. Goldstein et  al. (2012) reported evidence for the 
presence of methicillin-resistant Staphylococcus aureus (MRSA) in the effluent of 
four U.S. WWTPs. Likewise, bacteria resistant to clinically important antibiotics, 
including ciprofloxacin and vancomycin, have been found in the activated sludge 
(Nagulapally et al. 2009). Since many similar examples can be given, the effluent of 
WWTPs, if not purified sufficiently, poses a threat to public health (Hong et  al. 
2013; Walsh et al. 2011). To analyze ARB and ARGs different approaches are used: 
targeted (culture-based and quantitative PCR) and non-targeted like metagenomics. 
However, it should be remembered that depending on the type of environment, less 
than 1–10% of bacteria can be culturable (Vaz-Moreira et al. 2013). That is why it 
seems that the combination of culture-based methods with culture-independent 
approaches may be the ideal way to explore the environmental resistome (Li et al. 
2015; Port et al. 2014; Yang et al. 2014).

Water scarcity is a global issue, especially in certain regions like Africa, the 
Middle East, southern Europe, as well as the western states of America. Thus, in 
these regions irrigation with treated wastewater is likely an important entry route of 
antibiotics into soil ecosystems. Multiple studies point out the presence of ARGs 
and ARB in wastewater effluent (Auerbach et al. 2007; LaPara et al. 2011; Manaia 
et al. 2010; Munir et al. 2011; Piotrowska and Popowska 2015; Piotrowska et al. 
2017a). Unfortunately, the effects of antibiotics introduced into the soil on ARGs or 
ARB levels in soil has been little explored (Negreanu et  al. 2012; McLain and 
Williams 2014). Antibiotics transferred into the soil may also affect the microorgan-
isms and other biota inhabiting the niche and also the different processes in soil 
(Aga et al. 2016; Majewsky et al. 2014; Williams-Nguyen et al. 2016).

1.2.3  Aquaculture

Aquacultures are an intensively developing, fastest-growing food industry in the 
world. Continuous intensification of fish farming, increasing the risk of disease, has 
resulted in the widespread application of antibiotics treatment (Bostock et al. 2010). 
Consequently, the occurrence of ARGs in commercially available fish meals has 
been reported. Han et al. (2017) found 132 AMR genes in fishmeal from Russia and 
from China and these resistance genes were also isolated from sediment bacteria. 
Hence in aquacultures, where antibiotics are used as feed additives, the number of 
strains non-susceptible to antibiotics is many times greater (Baquero et al. 2008). 
The type and amount of use of antibiotics in aquaculture depends on farming prac-
tices, different local and national regulations and government enforcement ability. 
However, in many countries that are major aquaculture producers, regulation and 

P. Krzemiński et al.



11

enforcement is very weak and, it seems that inadequate. In aquaculture, antibiotics 
are used in range: from 1 g in Norway to 700 g in Vietnam per metric ton of produc-
tion (Defoirdt et al. 2011). The low use of antibiotics in Norway is a results of a 
national strategy to substitute antibiotic treatment with vaccinations. The antibiotics 
officially approved for use in the treatment and prophylaxis of cultured aquatic ani-
mals belongs to several classes and their representatives are: oxytetracycline, flor-
fenicol, sarafloxacin, erythromycin, sulfonamides with trimethoprim or ormethoprim 
(Serrano 2005; Kümmerer 2009a). The literature data indicate that up to 75 percent 
of antibiotics used in aquaculture may be released to the surrounding environment 
and the presence of antibacterial compounds strongly disturbs the microbiome com-
position. The application of antimicrobials affects targeted pathogens as well as a 
wide variety of environmental bacteria, resulting in selection of AMR strains. The 
presence of AMR strains increases the risk of HGT to potential human pathogens 
(Zhang et al. 2009a, b). Some antibiotics in aqueous medium are not biodegradable 
and accumulate, e.g., by the process of adsorption on solid surfaces including bot-
tom sediments or silt (Kümmerer 2004, 2009b). As research indicates, a minimum 
of 75% of antibiotics added to the feed of farmed fish enters the aquatic environ-
ment and accumulate in sediments (Lalumera et al. 2004). In the review article by 
Caruso (2016), there are many examples of research work on AMR and HGT in 
aquacultures. Generally, till now ARGs have been described in bacteria responsible 
for fish diseases, such as Aeromonas hydrophila, Aeromonas salmonicida, 
Edwardsiella tarda, Edwardsiella icttaluri, Vibrio anguillarum, Vibrio salmonicida, 
Pasteurella piscida, Yersinia ruckeri, or Piscirickettsia salmonis (Serrano 2005; 
Henríquez et al. 2016). Two bacterial genera have been found in aquacultures with 
a high frequency: Aeromonas spp. and Vibrio spp. What is interesting, bacteria of 
the genus Aeromonas isolated from fish ponds exhibit resistance to multiple antibi-
otics, and the resistance genes for these therapeutics are primarily located on plas-
mids and integrons (Baquero et al. 2008; Piotrowska and Popowska 2014, 2015; 
Piotrowska et  al. 2017b). What is very important, since some of the Aeromonas 
strains also cause disease in humans and become the same specific vector that con-
nects both environments, they may transfer MGEs carrying resistance genes to 
pathogenic or opportunistic bacteria in the human microbiome. These data clearly 
indicate that aquacultures are a reservoir of antibiotic resistance genes, and there-
fore pose a great risk to the health and life of humans (Agersø and Petersen 2007; 
Cabello et al. 2013; Furushita et al. 2003; Kemper 2008; Miranda et al. 2018). The 
significantly greater percentage of an aquaculture’s strains are non-susceptible to 
tetracycline, streptomycin, and erythromycin, but the resistance mechanism against 
those antibiotics has been explained in only 50% of the resistant isolates. Literature 
data indicates that the dominant mechanisms of tetracycline and erythromycin resis-
tance are: efflux pumps, ribosomal protection, or enzymatic modification of rRNA 
(Miranda et al. 2003; Muziasari et al. 2014; Patterson et al. 2007; Piotrowska et al. 
2017b; Tamminen et al. 2010). The latter is dominant in the streptomycin-resistant 
aquatic isolates (Mohapatra et al. 2008). Quinolone, florfenicol, flumequine, ampi-
cillin, or oxolinic acid-resistant strains are found with lesser frequency in aquacul-
ture (Miranda et  al. 2018; Su et  al. 2011). On the contrary, bacteria resistant to 
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gentamicin, kanamycin, flumequine, and enrofloxacin have been reported to account 
for a low percentage of the total of the isolates (Miranda and Zemelman 2002). Very 
often, specific ARGs are detected simultaneously during the analysis of fish farm 
effluents. The results of the research of coastal aquaculture located in South Korea 
revealed 22 ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, 
tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone 
resistance (qnrD, qnrS, aac(60)-Ib-cr), b-lactams resistance (blaTEM, blaCTX, 
blaSHV), macrolide resistance (ermC), florfenicol resistance (floR), and multidrug 
resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified 
(qPCR) (Jang et al. 2018). The same ARGs have been found in the commercial fish 
and seafood (Ryu et al. 2012) which already creates real threats to human health. 
Yang et al. (2013) detected with metagenomic method 58 genes codifying for resis-
tance against 11 antibiotics. Many of these genes are located on MGE with more 
than 90% similarity with transposons and plasmids described for human pathogens, 
which suggests the possibility of occurrence of mobility of these ARGs to human 
pathogenic bacteria (Yang et al. 2013; Chen et al. 2018) or the potential risk of the 
ARGs spreading to other environments (Muziasari et al. 2017). The AMR strain 
from fish farms have been detected in nearly all key countries responsible for the 
production of farmed fish: United States (Seyfried et  al. 2010), Pakistan and 
Tanzania (Shah et al. 2012), Australia (Akinbowale et al. 2006), China (Su et al. 
2011), and Chile (Miranda et al. 2018).

It seems obvious that the overuse of antibiotics in aquaculture, especially pro-
phylactic use, must be stopped. Antibiotics should be used only to treat diagnosed 
bacterial diseases. However, the question how to do it effectively, remains unan-
swered. It seems that the best solution would be to change food-safety regulations 
that set maximum residue limits or the use of special aquaculture ecolabeling 
schemes. For example, in Norway, veterinarians, fish farmers, and feed producers 
are legally obligated to report antibiotics use and prescriptions to a government 
agency. Due to such strict regulations, this data is made publicly available. In 
Norway, such data show a 99% reduction in antibiotic use in the Norwegian salmon 
industry since the early 1980s (Taranger et al. 2015). Therefore, implementation of 
legal obligation to report antibiotics use in food animals to a government agency in 
all countries is urgently needed. This approach will enable meaningful comparisons 
between species, countries, and over time of application. It is only on the basis of 
such aggregate data will it be possible to demonstrate any reduction or change in 
antibiotics use. Another very interesting approach is introduction of the farm level 
certification system (https://www.asc-aqua.org/). It is known that, only 5% of 
farmed seafood is currently certified, but its market share is growing because of 
consumer awareness about this framework. It is also extremely important to raise 
the awareness of fish farmers and veterinarians regarding the use of medically 
important antimicrobial drugs in food-animal production, and the public health 
risks associated with antibiotic resistance. “At a joint aquaculture and agriculture 
industry roundtable discussion in Oxford, UK, in May 2014, participants including 
vets, food scientists, farmers, and representatives of the food and animal health 
industries agreed that the development of a ‘replace, reduce, refine’ strategy could 
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help drive the responsible use of antibiotics in food-producing animals” (Taranger 
et al. 2015). At the same time, the Aquaculture Stewardship Council (ASC) recom-
mends development of alternative treatments and vaccines (https://www.asc-aqua.
org/). There are a lot of methods capable of removing antibiotics from aquaculture 
systems: physical, chemical, and biological methods including adsorption, biodeg-
radation, disinfection, membrane separation, hydrolysis, photolysis, and volatiliza-
tion (Chuah et al. 2016; Feng et al. 2016). The use of the “One Health approach” 
seems to be extremely important in the case of aquacultures, because this frame-
work recognizes the interconnectedness of aquaculture production and human 
health especially in the aspect of linkage between antibiotic use in aquaculture and 
AMR pathogenic bacteria in humans.

1.2.4  Airborne ARGs

In recent years, the interest in the potential spread of airborne ARGs has increased. 
So far, scientists have been able to demonstrate ARGs in air samples collected from 
places around WWTPs, for example, they detected sul2 and class 1 integrase (Li 
et al. 2016). Similar research was carried out in the vicinity of composting plant, 
cattle feed yards, metro station, and hospital, where ARGs were detected in the 
airborne particulate matter (PM) (Hu et al., 2018; Gao et al. 2014, 2018; McEachran 
et al. 2015; Zhou and Wang 2013). In addition, mexF was found in airborne samples 
collected from sludge and animal feces (Yang et al. 2018).

These studies indicate the main threat to human respiratory tract infections as 
well as the possibility of transferring ARGs to other places as a result of rainfall and 
thus the possibility of threatening water or soil ecosystems (Ahmed et al. 2018).

Li et al. (2018) studied 39 ARG subtypes coding resistance to seven common 
classes of antibiotics (aminoglycosides, β-lactams, macrolides, sulfonamides, tetra-
cyclines, quinolones, and vancomycins) and two MGE genes (tnpA encoding trans-
posase and intI1 encoding integrase class I), which were screened by a 
high-throughput real-time qPCR platform. The study samples were total PM across 
19 world cities, sampled and grouped by year (2004, 2009, 2014), and by season. 
The obtained results allowed for the detection of 30 ARG subtypes and from all the 
cities the highest richness (up to 18 subtypes) of airborne ARGs was found in 
Beijing, compared with Bandung where only 5 subtypes of ARGs were found. The 
most frequent genes were resistance genes to β-lactams (blaTEM was found to be 
most abundant) and quinolones (qepA), followed by macrolide, tetracycline, sulfon-
amide, aminoglycoside, and vancomycin. The highest abundance of β-lactam resis-
tance genes was detected in San Francisco in contrast to Johannesburg, Zurich, and 
Hong Kong. In each of 19 cities except Melbourne intI gene was detected, and the 
TnA gene was determined in only 4 cities, with the largest amount being in Beijing. 
It is worth noting that in general these two genes, blaTEM and qepA, as well as the 
class 1 integron-integrase gene, IntI1, are widespread across various external envi-
ronments such as sediment, water, soil, and wastewater/sludge (Pal et al. 2016). As 
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is known, MGEs are associated with HGT and therefore may be responsible for the 
dissemination of detected ARGs, which already poses a health risk (Xie et al. 2018).

Li et al. (2018) also analyzed the bacterial communities associated with the air-
borne ARGs detected for 19 cities. Fifty most abundant bacterial genera were 
detected, among others Corynebacterium, Albirhodobacter, Burkholderia, 
Escherichia/Shigella, Brevundimonas, Streptococcus, Delftia, Serratia, 
Lactobacillus, Mathanosarcina, Bacillus, Raoultella, Acinetobacter, or 
Pseudomonas; among them also pathogenic bacteria for humans and animals. In 
other work, 69 air samples were collected every 4 h continuously, both day and 
night, over 6 days in Beijing. Not only was the blaTEM gene detected but also the 
multidrug-resistant NDM-1 gene and vanB gene. In addition, increase in the abun-
dance of ARGs in the more polluted air, as well as of MGEs tnpA and intI1, was 
also observed. Of the ARGs detected, the sul3 gene proved to be the most wide-
spread among the culturable Bacillus isolates in the air (Zhang et al. 2019).

Although the evidence of the studies carried out so far on airborne ARGs is not 
sufficient to specify their public health impact and to determine the real risk to pub-
lic health, the results definitely indicate the need for redefining our current air qual-
ity standards. Consequently, studies on the dissemination of ARB and ARGs require 
global research to demonstrate their importance for public health.

1.3  Mutual Interactions: A Conceptual Model 
for Understanding Entry Routes of Antibiotics, ARB, 
and ARGs

As comprehensively explored above, the scope and dynamics of ARB and ARGs in 
each of the entry routs are determined by many factors. The main ones may include: 
a natural, for each entry route, microbiome and resistome (biodiversity); the abun-
dance and diversity of ARGs and ARB introduced within the different environ-
ments; the ability to mobilize genes and the ability of bacteria to survive and 
replicate in different ecosystems (horizontal and vertical transfer); the scope and 
intensity of selective pressure (i.e., presence of residual antibiotic compounds, 
heavy metals, biocides or detergents); and environmental conditions (e.g., tempera-
ture, moisture, pH, amount of rainfall, availability of organic matter, nutrients). In 
addition, there are also mutual interactions between all entry routes that can gener-
ate, through dust and air-borne aerosols, new threats of the dissemination of ARB 
and ARGs to humans, animals, or food. According to the One Health approach, we 
can additionally superimpose the transfer of AMR between people, animals, ani-
mals and humans, which complicates this scheme even further.

A conceptual model that summarizes the various factors, conditions, and interac-
tions that impact ARB and ARGs transfer is shown in Fig. 1.1. This model is not 
complete and, depending on the specificity of place and climate, other factors 
involved in the dissemination of ARB and ARGs, such as flies, river and lake waters 
can probably be of importance.
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1.4  Summary and Perspectives

Antibiotics, ARB, and ARGs are widespread in the environment, not only in the 
clinical one but also in the natural one. Yet, it is difficult to clearly identify what 
constitutes the greatest threat to humans and animals. It is known that in the natural 
environment, as a result of the presence of subminimal inhibitory concentrations of 
antibiotics, new resistance mechanisms or resistance genes encoded on mobile 
genetic elements can be propagated through horizontal gene transfer. Therefore, 
antibiotic pressure does not eliminate as many bacteria as in a clinical environment. 
When high concentrations of antibiotics are used, only a single selected bacterial 
strain resistant to one or, more often, many antibiotics survives. In addition, in the 
natural environment there are co-selection mechanisms associated with resistance 
to heavy metals and biocides, which are also widespread in the environment. The 
resistance determinants for metals and biocides can be co-localized to the same 

Fig. 1.1 A conceptual model, according to the One Health approach, that summarizes the interac-
tions that impact the dissemination of antibiotics, ARB, and ARGs transfer
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MGEs as antibiotic resistance genes, which mean that even in the absence of an 
antibiotic in the environment, a specific MGE is maintained and disseminated. 
However, WWTPs seem to be the most dangerous of the entry routes for resistant 
pathogenic bacteria, including MDR strains. Since the human feces are the main 
sources of pathogenic bacteria, the risk of human fecal contamination should not be 
neglected. There is definitely a greater risk of the transfer of resistance genes 
between pathogens in the human microbiome than the transfer of the same genes 
from environmental bacteria. On the other hand, there are probably more possibili-
ties in the environment for the creation of new antibiotic resistance mechanisms and 
horizontal transfer events that lead to the phenomenon of co-selection.

After the antibiotics were used globally on a huge scale in the last few decades, 
their use as growth stimulators was prohibited in Europe. Nevertheless, their mas-
sive use in agriculture and animal husbandry in India and China makes it impossible 
to eliminate the problem of antibiotic resistance. Even though in many countries 
outside Europe there are antibiotic protection programs dedicated to the clinical 
environment, ARB do not recognize borders. Unfortunately, there are no regulations 
to monitor the problem of ARB dissemination in the environment and the main 
route of antibiotics, ARB, and ARGs, or use of WWTP sludge as natural fertilizers 
without proper treatment in agriculture. Furthermore, chemical plant protection 
products in agriculture as well as widespread environmental pollution with toxic 
compounds such as xenobiotics is also important contributing factor. All this causes 
the reduction of the proper microflora in a given environment, creating the niche for 
opportunistic and pathogenic bacteria. However, there is still insufficient knowledge 
about the barriers to the spread of antibiotic resistance in the environment and the 
importance of biodiversity in this process.

It is also necessary to develop and standardize the guidelines and method proto-
cols for the surveillance of AMR, allowing to estimate precise values of the abun-
dance of ARB and ARGs in WWTP discharges and to determine the fate of ARBs 
and ARGs. Such guidelines and protocols need to be practicable, comparable, sim-
ple, and cost-effective so that they can be applied globally.

However, to effectively limit the spread of ARB and ARGs via environmental 
pathways it is necessary to develop and implement new policies and regulations, 
which should be used globally and not locally. It should also be mentioned that the 
development of effective treatment strategies for removal of antibiotics, ARB, and 
ARGs is also extremely important.
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