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Abstract  Enterococci are Gram-positive facultative anaerobes that have changed 
over epoch as highly modified representer of the gastrointestinal (GI) consortia of 
an extensive array of organisms like insects, birds, reptiles, mammals, and human. 
These commensal microorganisms have grossed resistance to all the antimicrobial 
drugs that currently exist. Multidrug-resistant (MDR) enterococci shows an exten-
sive repertoire of mechanisms of drug resistance including drug target modification, 
overexpression of efflux pumps, inactivation of antibacterial agents, and cell mem-
brane adaptive response that helps to persist in the body of the host and nosocomial 
atmosphere. MDR enterococci are renewed to persist in the GI environment and 
predisposing to invasive infections in those patients who are severely ill and immu-
nocompromised. This chapter mainly focuses the resistance mechanisms of antimi-
crobial drugs and also role of certain new antimicrobial genes like optrA and cfr in 
enterococci. Moreover different strategies to control and therapeutic approaches for 
controlling MDR enterococci especially using nanotechnology are also highlighted.

Keywords  Enterococci · Pathogenesis · Antibiotics · Multidrug resistance (MDR) 
· Endocarditis · Cephalosporin

18.1  �Introduction

Enterococci are a primitive genus of microorganisms that are highly adapted to 
surviving in heterogeneous and harsh environmental conditions. In the ending of 
nineteenth century, a saprophytic and infectious cocci found in intestine was 
described as “Enterococcus” (Thiercelin 1899). MacCallum and Hastings also char-
acterized an enterococcal organism, Enterococcus faecalis, from a fatal endocarditis 
case, and provide first comprehensive picture of its pathogenesis (MacCallum and 
Hastings 1899). Early report attested that enterococcal pathogens are basically com-
mensal opportunist (Lebreton et al. 2014). With the development of genomic tech-
nologies, an array of enterococcal species has explored. Enterococci are the principal 
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causes of healthcare-associated infections (HAIs) all around the globe. The last few 
decades have witnessed the development of multidrug-resistant (MDR) enterococci 
which extensively complicates this issue and also enhances the chance of treatment 
failure and sometimes leads to death. In the last decade, antibiotic-resistant entero-
cocci have become familiar as the prime cause of nosocomial bacteremia, postsurgi-
cal wound infection, urinary tract infections, and device-associated infections 
(García-Solache and Rice 2019; Prabaker and Weinstein 2011; Emori and Gaynes 
1993; McDonald et al. 1997).

In this section, we will explain the overall characteristics of the genus 
Enterococcus species, diseases induced by it, and the historical viewpoint behind 
the creation of MDR enterococci as pathogens and current knowledge of the molec-
ular foundation of drug resistance in Enterococcus. Finally we addressed briefly the 
necessity to advance new drug targets, development of new approaches of nanobio-
technological methods against these dangerous and insubordinate organisms as well 
as difficulties and opportunities for the future.

18.1.1  �Features of Enterococcus Genus

Enterococcus species are catalase negative Gram-positive bacteria, are natural 
inhabitants, and can be isolated easily from their habitats. They are also an impor-
tant intestinal microfloral component of humans and animals (Van and Willems 
2010). The basic physiological and morphological characteristics of all enterococ-
cal strain include Gram-positive, ovoid/spherical cells organized in pairs/chains; 
among them a few strains exhibit pathogenic potential (Thiercelin 1899). Different 
salient feature of genus streptococci is represented in Fig. 18.1. They are obligatory 
fermentative chemoorganotrophs and non-spore-forming facultative anaerobes. 
They usually grow at an optimal temperature of 35 °C and can growth in the range 
of 10–45 °C. They normally have an optimal growth in medium having 6.5% sodium 
chloride (Facklam 1973). They are generally unable to produce catalase and all 
cytochromes. A few species are able to produce nominal catalase with weak effer-
vescence. Usually they are homofermentative and produce only lactic acid as end 
product by fermenting glucose (Klein 2003).

18.1.2  �Phylogenetic Diversity of Enterococcus Genus

In recent decades, knowledge regarding the biology, ecology, virulence, and genet-
ics of the genus Enterococcus has sharply increased. The enterococci’s taxonomy 
has changed considerably since the end of the twentieth century when the genus had 
only 20 species. As a consequence of improvements in differentiation techniques 
coupled with enhanced interest in enterococci, many fresh species have been well 
documented. Being ubiquitous, three Enterococcal species, namely, E. durans, E. fae-
calis, and E. faecium, were documented before 1950. E. faecium and E. faecalis 
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account for most of the enterococcal diseases (Malani et al. 2002). Other species 
like E. avium, E. casseliflavus, E. hirae, E. gallinarum, E. mundtii, and E. raffinosus 
have also been isolated from human infection (Devriese et al. 1994; Hammerum 
2012; Murray 1990; Lebreton et al. 2014). In the era of 1992–2012, about 30 spe-
cies of Enterococcus were documented, and only four of them were associated with 
human infection and pathogenesis (E. sanguinicola, E. pallens, E. gilvus, and 
E. canintestini). Till date, there are 52 species available that belong to 
Enterococcus genus.

18.1.3  �Enterococci-Associated Infections

Over the last couple of eras, enterococci emerged as significant pathogens (Arias 
and Murray 2012). The variety of diseases caused by streptococci becomes devas-
tating which is attributed to their tendency to become increased antibiotic resis-
tance. Although other microorganisms are often isolated from the source site with 

Fig. 18.1  Different salient features of Enterococci
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enterococci, it is often not well understood and remains a paradox that the entero-
cocci are directly associated with the manifestations of the diseases or whether they 
are avirulent and opportunistic one and suppose to play an insignificant role in the 
manifestation of diseases (Higuita and Huycke 2014). Among the several types of 
enterococcal infection, endocarditis and bacteremia are the leading life-threatening 
disease.

18.1.3.1  �Urinary Tract Infections (UTI)

Urinary tract is the most susceptible area of enterococci infection. Lower urinary 
tract portions, especially cystitis, prostatitis, and epididymitis, are the frequent sites 
of UTI caused by enterococci in older man. Young women are also affected by 
uncomplicated cystitis, infected by enterococci. Occurrences of bacteremia in upper 
UTI are most often reported in older men. Enterococci-induced UTIs are more 
likely to be acquired in hospitals or in long-term settings, making them more resis-
tant to antibiotics. Moreover, ICU setting also contributes to 15% of healthcare-
associated UTI. Among the ICU patients, enterococci resistant to vancomycin have 
become the major urinary tract pathogens associated with healthcare (Hidron 
et al. 2008).

18.1.3.2  �Intra-abdominal Infection with Pelvic and Soft Tissue

Intra-abdominal infection with pelvic and soft tissue is also the site of enterococcal 
infections. Enterococci are isolated from these samples often associated with other 
microbial flora and infrequently cause mono-microbial infection at the above sites. 
Bacteremia caused by enterococci is mainly associated with abscesses and wounds 
in the intra-abdominal and pelvic regions (Graninger and Ragette 1992; Maki and 
Agger 1988). Though most of the physician routinely follows antibiotic regimens to 
treat such type of infections, drainage of abscesses and debridement of wounds are 
also essential adjuncts to antibiotic therapy. Moreover, conjunction of liver cirrhosis 
or patients receiving chronic peritoneal dialysis most often suffered from an infec-
tion called peritonitis. Peritonitis mainly occurs in the abdominal lining. Moreover, 
abdominal or pelvic mixed aerobic-anaerobic infections should be considered sepa-
rately. Though, in this type of cases, enterococci show monomicrobial infection, 
Escherichia coli, coagulase-negative Staphylococci, and Staphylococcus aureus are 
also responsible for bacterial peritonitis and dialysis-associated peritonitis. Over 
and above, enterococci are also often isolated in cultures from decubitus and foot 
ulcers. However, their roles in causing such site-specific infections are not clearly 
understood till date.
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18.1.3.3  �Bacteremia

Enterococci are presently one of the major causes of bacteremia associated with 
healthcare. Over the last couples of years, bacteremia is usually associated with 
gastrointestinal tract, although sources of bacteremia also reported from biliary and 
intra-abdominal regions, indwelling central lines, or infections in soft tissues. 
Polymicrobial bacteremia is associated mainly with enterococci, though there are 
also other microorganisms partially involved in the occurrence of such type of 
infection. Enterococci-associated bacteremia causes metastatic abscesses. The rate 
of overall mortality in enterococci associated bacteremia is varied (Maki and Agger 
1988; Patterson et al. 1995; Higuita and Huycke 2014). Several scientific reviews 
regarding bloodstream infections clearly reported that enterococci is the only Gram-
positive bacteria associated with high risks of death. Moreover, higher mortality rate 
was reported in the case of E. faecium-associated bacteremia than E. faecalis 
(Noskin et al. 1995a, b; Higuita and Huycke 2014). The chances of occurrence of 
enterococci-associated bacteremia are higher in the case of elderly people with mul-
tiple underlying diseases like malignancy, diabetes mellitus, cardiovascular dis-
eases, transplantation, and postsurgery infection.

18.1.3.4  �Endocarditis

Among different types of infection caused by enterococci, endocarditis is the most 
fatal enterococcal infections. The alimentary or urinogenital tract is the primary 
bacteremia source which leads to endocarditis. In reality, left-sided participation is 
much more prevalent than right-sided participation. Prosthetic valve enterococcal 
endocarditis has been increasingly marked. This is mainly associated with increas-
ing application of prostheses in aged persons who have higher risks for bacteremia 
caused by enterococci (Anderson et al. 2004; Rice et al. 1991). Enterococcal endo-
carditis is more common in men compared to women (McDonald et  al. 2005). 
Several retrospective analysis reported that between 15 and 39% of enterococcal 
endocarditis are healthcare associated (Anderson et al. 2004; McDonald et al. 2005). 
Endocarditis associated with enterococci is a subacute infection followed by cardiac 
failure, rather than an embolic effect (McDonald et al. 2005). Though death rates 
are low (9–15%) in enterococcal endocarditis in comparison to other infective endo-
carditis (McDonald et al. 2005; Rice et al. 1991; Wilson et al. 1984; Higuita and 
Huycke 2014), selection of effective therapy against the multidrug-resistant entero-
cocci is definitely a challenging task.

18.1.3.5  �Uncommon Infections

Meningitis, septic arthritis, hematogenous osteomyelitis, and pneumonia are the 
less common or rarely seen infections caused by enterococci. Pneumonia is quite 
rare even in the presence of ventilators, and it is reported in significantly weakened 

A. Banik et al.



423

or in immunocompromised patients who have received antibiotic drugs of a broad 
spectrum. Antibiotic-resistant enterococci (VRE) are likely to be responsible for 
such types of infection than antibiotic-susceptible enterococcal isolates.

18.2  �Expansion of Antibiotic Resistance

With the innovation of antimicrobial drugs discovery and understanding the micro-
biological foundation of diseases, infection became remediable with remarkable 
recovery. Clinicians, however, quickly understood that certain microbes appear to 
be less effective in responding to specific antimicrobials and that’s why generations 
of antibiotics had come. It was also documented that penicillin and aminoglycoside 
are less effective against many enterococcal species, and conjugation of aminogly-
cosides with penicillin was prescribed which showed synergistic response that 
improved enterococcal endocarditis cure rates from 40 to 88% (Robbins and 
Tompsett 1951). Thus the particular combination of a cell-wall-active agent (i.e., 
penicillin/ampicillin) along with an aminoglycoside will be the solution for the 
treatment of deep-rooted Enterococcus-associated diseases, and this combination 
remains effective (Baddour et al. 2005).

Unknowingly the seeds of the resistance of enterococci against an array of drug 
were already being sown and propagated. By the help of comparative genomics, it 
was documented that the modern MDR Enterococcus faecium is a part of a genetic 
class that seems to have divergent root of ancestry from animal-adapted E. faecium 
strains in clinical practice approximately 75 years ago, corresponding to the intro-
duction of antibiotics (Lebreton et al. 2013). This was achieved by various means 
which include an upsurge in horizontal gene transfer, metabolic bypass, and hyper-
mutability in the enterococcal strains. The acquisition of genes for vancomycin 
resistance is one of the utmost examples of this adaptability. Vancomycin-resistance 
enterococci (VRE) was first time documented in 1988, and within two decades, 
more than 80% of E. faecium acquired the said property in the USA (Arias and 
Murray 2012). Of particular concern, E. faecium is also increasingly reported to 
cause nosocomial infection, which now occurs as often frequently as E. faecalis 
(Hidron et  al. 2008). Recently, enterococci have also reported to share the 
vancomycin-resistant gene clusters with potential pathogens (such as methicillin-
resistant Staphylococcus aureus) through horizontal gene transfer, which is matter 
of a great health risk (Chang et al. 2003; Ray et al. 2003). Enterococci have adapted 
rapidly despite the abundance of anti-Gram-positive antimicrobials, and the emer-
gence of resistance against these agents has been theorized. This becomes a clinical 
challenge to treat enterococcal MDR infections. The following sections give a pic-
ture of the mechanisms and prevalence of antimicrobial resistance in enterococci 
which is summarized in Table 18.1.
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Table 18.1  Antibiotics and the resistance mechanism of enterococci against them

Class/name of 
antibiotics Basic mode of action

Specific gene(s)/
operon 
responsible for 
resistance

Possible mechanism 
of antibiotic resistance

Ampicillin, Penicillin, 
Mezlocillin, 
Piperacillin

Inhibit the synthesis of 
peptidoglycan

ponA, pbp F, 
pbpZ, pbp5, pbp 
A, pbpB

Reduced susceptibility 
for the antibiotic

Cephalosporin pbp5, ponA, pbpZ Reduced binding 
affinity for the 
antibiotic

Glycopeptide 
(vancomycin)

Prevent cross-linking of 
peptidoglycan

vanA, vanB, 
vanD, vanM, 
vanC, vanE, 
vanG, vanL, 
vanN, vanT, 
vanXY, vanT

Reduced affinity for 
the antibiotic

Aminoglycosides 
(gentamicin, sisomicin, 
kanamycin, netilmicin, 
tobramycin)

Create pores in the cell 
membrane of the bacterial 
cell

aac (6')-Ii, 
aph(2')-Ic, 
aph(3')- IIIa, 
aph(2')-Id, aph 
(2')-I

Modification of the 
aminoglycoside 
structure

Oxazolidinones, 
linezolid

Inhibit the peptide 
delivery

cfr or cfr(B) Methylation of 23S 
rRNA and reducing 
affinity to the 
antibiotics due to 
mutations

Streptogramins, 
macrolides, 
lincosamides

Dissociation of peptidyl-
tRNA, preventing binding 
of aminoacyl-tRNA to the 
ribosomal and the 
formation of the peptide 
bond

isa, msrC, eatA, 
msr(A), linB, 
mef(A), vgb(A), 
vat(D), vat(E)

Efflux pump to 
eliminate antibiotics

Daptomycin Alterations in the cellular 
membrane characteristics

liaFSR operon Mutation in the 
specific gene to 
exclude the effect of 
antibiotics

Tetracyclines, 
glycylcyclines, 
tigecycline

Interfere with the docking 
of aminoacyl-tRNA in the 
ribosome

tetM, tetO, tetS
tetL

Efflux mechanism, 
ribosomal protection 
overexpression of 
genes

Quinolones, 
fluoroquinolone

Disrupt DNA strand 
continuity as well as stop 
replication

gyrA, parC, qnr Mutation in the 
specific gene, efflux 
pump

Rifampicin Inhibit the process of 
transcription

rpoB Reduced affinity due 
to point mutation

Trimethoprim, 
sulfamethoxazole

Inhibit folate biosynthesis 
pathway

– Gain ability to utilize 
exogenous folate
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18.3  �Biofilm Formation in Enterococcal Infections

Biofilm is multicellular community of microbes attached on abiotic and biotic sur-
faces or interfaces, enclosed in a hydrated self-produced extracellular polymeric 
matrix (Costerton 2001). Development of biofilm is a multistep phenomenon which 
includes surface attachment, immobilization, cell-cell interaction, microcolony for-
mation, confluent biofilm formation, and subsequently three-dimensional biofilm 
formation (O’Toole et al. 2000). Biofilms are the reservoir of many chronic infec-
tions and extremely difficult to eliminate (Mohamed and Huang 2007). As per the 
National Institutes of Health, about 4/5 share of all bacterial infection in the body 
associated with biofilm formation (Lewis 2001). Biofilm containing bacteria are 
phagocytosis resistant, and therefore it is an extremely challenging task to eliminate 
from the host or infected individual (Lewis 2001). Biofilms are reported to form in/
on a broad range of medically used devices like pacemakers, catheters, orthopedic 
appliances, and prosthetic heart valves, which is correlated with multiple patho-
genic consequences (Costerton et al. 1999).

Biofilm producing enterococci are extremely antibiotic resistant and therefore 
the impact of biofilm development is very crucial. Perusal of literature attested that 
enterococci were found to form biofilm in an array of infection like UTI, wounds, 
GI dysbiosis, endocarditis, etc. Though exopolymeric matrix and antibiotic resis-
tance are the two major hurdles to eradicate enterococci, the foremost problem is the 
dissemination of the genetic trait of antibiotic resistance to other microbes (Ch’ng 
et al. 2019). As like as other biofilm-forming bacteria, adherence and biofilm forma-
tion by E. faecalis and E. faecium on diverse biomaterials and numerous medical 
apparatus (biliary stents, intravascular catheters, silicone gastrostomy devices, ure-
teral stents, etc.) have been documented (Joyanes et al. 2000; Distel et al. 2002; 
Dowidar et al. 1991; Sandoe et al. 2003; Dautle et al. 2003; Keane et al. 1994). 
Formation of enterococcal biofilm of on ocular lens has also been demonstrated 
(Kobayakawa et al. 2005).

18.3.1  �Factors Contributing Formation of Biofilm 
in Enterococci

18.3.1.1  �Biofilm Formation in E. faecalis

Development of biofilm generally consists of four phases: initial attachment, forma-
tion of microcolony, maturation of biofilm, and, finally, dispersal. There are multi-
ple factors that influence formation of biofilm in enterococci within or outside their 
host condition (Dunny et al. 2014); however, the dispersion mediators have yet to be 
identified (Table 18.2).

Adherence to the surface is the early stage for the establishment of biofilm. 
Various factors like surface adhesins, glycolipids, and proteases perform significant 
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tasks in the first step of biofilm formation. The multi-subunit (viz., A, B, and C) 
endocarditis and biofilm-associated pilus (Ebp) encoded by ebpABC facilitates sur-
face adherence both in vivo and in vitro (Nielsen et al. 2012; Nallapareddy et al. 
2011a; Singh et al. 2007). The role of Ebp in the early development of biofilm was 
showed by in vivo models of UTIs, catheter-associated UTI, and infective endocar-
ditis (Nallapareddy et al. 2006, 2011a, b; Nielsen et al. 2013). Several in vivo exper-
iments in cultured human cell also described the significance of surface adhesins in 
formation of biofilm (Mohamed et al. 2006; Rozdzinski et al. 2001; Sussmuth et al. 
2000; Sillanpaa et al. 2010). It was also demonstrated that biofilm-associated glyco-
lipid synthesis A influences in  vitro surface adherence and subsequent biofilm 
development (Theilacker et al. 2009).

Initial attachment followed by formation of microcolony in which bacteria 
divided repeatedly and produce minute sizes of biofilm which subsequently get 
aggregated (Monds and O’Toole 2009). In vitro findings have clearly showed that 
microcolony formation is the mature stage of biofilm development, and this is sig-
nificant for gut colonization. An enterococcal polysaccharide antigen gene cluster 
(epaOX) encodes a glycosyltransferase which is associated with the production of 
rhamnopolysaccharide associated with cell wall, and mutant E. faecalis for the par-
ticular trait showed a reduction in biofilm reduction (Ch’ng et  al. 2019; Xu 
et al. 2000).

Maturation of E. faecalis biofilm is associated with the vigorous growth and 
development of extracellular matrix materials like extracellular DNA, polysaccha-
ride, glycoprotein, modified lipid, lipoteichoic acid, etc. (Ch’ng et al. 2019; Fabretti 
et al. 2006). Deletion of atlA reduces the release of extracellular DNA, thus decreas-
ing biofilm formation (Guiton et  al. 2009). In vitro deletion of dltABCD operon 
causes inhibition of biofilm development by Gram-positive bacteria by reducing the 
production of D-alanine esters of lipoteichoic acid.

Table 18.2  Some nanoparticle and their effects on enterococci

Type of 
nanoparticles

Antibiotic resistance 
type/special feature Mechanism of action References

AgNPs Vancomycin 
resistance

In combination with vancomycin 
causing bacterial death

Saeb et al. 
(2014)

Erythromycin 
resistance

Cell surface damage and loss of the 
chain integrity

Otari et al. 
(2013)

Multidrug resistance Modification of physicochemical 
properties of the cell

Cavassin et al. 
(2015)

Multidrug resistance Combined effect with gentamicin 
and chloramphenicol

Katva et al. 
(2018)

Graphene oxide 
NPs

Multidrug resistance UV irradiation leads to reactive 
oxygen species generation, multiple 
toxic mechanisms

Govindaraju 
et al. (2016)

Magnetite NPs Biofilm forming Effective aminoglycoside antibiotic 
carrier

Chifiriuc et al. 
(2013)

Calcium 
hydroxide NPs

Multidrug resistance –
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Biofilm formation is also contributed by population density-dependent signaling 
mechanism like quorum sensing and peptide pheromone signaling which upgrade 
expression of genes towards biofilm formation by enterococci (Krasteva et al. 2012; 
Camilli and Bassler 2006; Cook and Federle 2014; Li and Tian 2012; Cook et al. 
2011). Recently, transfer of plasmid DNA between E. faecalis cells in GI tract has 
been documented which encourages biofilm formation (Chen et al. 2017; Hirt et al. 
2018). Eep (Chandler and Dunny 2008), fsrABC (Ali et al. 2017), bopABCD, gelE, 
sprE (Dunny et al. 2014), and AI-2 (Shao et al. 2012) are also involved in quorum 
sensing system of enterococcal biofilm formation.

18.3.1.2  �Biofilm Formation in E. faecium

Multiple genes are responsible for the development of biofilm in E. faecium like 
atlA, ebpABC, esp, fsrB, luxS, spx, acm, scm, sgrA, pilA, pilB, ecbA, and asrR 
(Dunny et al. 2014; Lim et al. 2017; Sava et al. 2010; Hendrickx et al. 2009; Sillanpaa 
et al. 2008). Among these genes, atlA, ebpABC, esp, acm, and asrR are responsible 
to cause biofilm-associated infection in in vivo condition (Dunny et al. 2014; Sava 
et al. 2010). The cell surface adhesin, Esp, and EbpABC perform a crucial task in 
the initial attachment of E. faecium, followed by biofilm development in the case of 
UTI and infective endocarditis model (Montealegre et  al. 2016a, b; Almohamad 
et al. 2014). Deletion of the gene esp and ebpABC operon reduced the chances of 
biofilm formation by the organism (Heikens et al. 2011). There are similarities in the 
occurrence of biofilm formation in the case of E. faecium and E. faecalis (Ch’ng 
et al. 2019). AtlA-dependent release of extracellular DNA plays a crucial role in 
biofilm formation in vitro in both the species (Paganelli et al. 2013). Several reports 
suggest that upregulation of gene like ebpABC and downregulation of genes like 
fsrB, luxS, and spx might regulate biofilm-forming potential of E. faecium (Lim 
et al. 2017). Moreover, deletion of asrR gene involves in growth and maturation of 
biofilm and also influences biofilm-associated infections (Lebreton et al. 2012).

18.4  �Mechanism of Antimicrobial Drug Resistance 
in Enterococci

18.4.1  �Mechanism of Resistance of β-Lactam Derivatives 
(Cell-Wall-Active Agents)

18.4.1.1  �Resistance to β-Lactams

Penicillin and ampicillin are the foremost pronounced β-lactams which competi-
tively block peptidoglycan (PPG) biosynthesis which is basic and the most common 
component of the bacterial cell wall. However, the lack of analogous structural 
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component in eukaryotes excludes the lethality of these agents and makes them an 
ideal against bacterial infection as therapeutics. Penicillin-binding proteins (PBPs) 
are the flagship of the cell wall biosynthesis machinery which is broadly subdivided 
into two classes: class A, which exhibits bipartite enzymatic activity, namely D,D-
transpeptidase and transglycosylase, and class B, which exhibits transpeptidase 
activity towards other enzymes.

Enterococci are inherently resistant to most β-lactams and hence less prone to 
restricted by the antibiotics. This is due to the expression of one kind of PBPs which 
have low affinity towards β-lactam antibiotics. Consequently, the minimum inhibi-
tory concentration (MIC) of penicillin is higher in enterococci in contrast with 
streptococci or other Gram-positive bacteria, which do not produce chromosomally 
encoded low affinity PBPs. Lower MIC values of penicillin were documented for 
E. faecalis strains than E. faecium.

Every enterococci have at least 5 PBPs, and 6 putative PBP genes were recog-
nized by studying the genome of E. faecalis and E. faecium (class A, ponA, pbp F, 
pbpZ; class B, pbp5, pbp A, pbpB) (Miller et al. 2014). Inherent tolerance against 
the β-lactam antibiotics is linked with the expression of species-specific pbp5 gene 
(class B PBP) that minimizes binding affinity cell wall with the antibiotics. In 
E. faecium, the pbp5 gene is a part of operon which has three genes (including 
pbp5) that take part in cell wall synthesis (psr and ftsW) (Miller et  al. 2014). 
Enhanced resistance against β-lactam antibiotics has frequently been noticed 
among clinically isolated E. faecium but rarely noticed in the case of E. faecalis. 
High-level ampicillin resistance of E. faecium (MIC>128 μg/ml) has been corre-
lated with concomitant production of Pbp5 or with specific amino acid modifica-
tions in its sequence, which minimizes affinity of the same with penicillins resulting 
in less vulnerable to be inhibited. The substitutions of amino acid at or near the 
active-site cavity (Ser-Thr-Phe-Lys, Ser-Asp-Ala, and Lys-Thr-Gly motifs) seem to 
be the utmost significant ones (Rybkine et al. 1998; Zorzi et al. 1996). Combinations 
of specific amino acid alterations in the carboxyl-terminal transpeptidase domain 
of PBP5 (substitution Met-485-Ala/Thr, Ala-499-Ile/Thr, Glu-629-Val and 
Pro-667-Ser) and the insertion of serine or aspartate after position 466 have been 
related to ampicillin resistance of E. faecium isolates (Montealegre et al. 2016a, b; 
Jureen et al. 2003; Poeta et al. 2007; Klibi et al. 2008; Arbeloa et al. 2004; Rice 
et al. 2004).

Alongside, β-lactam antibiotic resistance is also facilitated by a β-lactamase 
enzyme which restricts the antibiotic action by cleaving the β-lactam ring. The phe-
nomenon was documented in both E. faecalis and E. faecium (Rice and Murray 
1995; Murray 1992; Coudron et al. 1992). Selected strains of E. faecalis produce a 
plasmid-mediated β-lactamase that is similar to the enzyme produced by 
Staphylococcus aureus, encoded by the blaZgene, although some polymorphisms in 
this gene have also been detected in some isolates (Hollenbeck and Rice 2012; 
Murray et al. 1992).
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18.4.1.2  �Resistance to Cephalosporin

As like as β-lactam antibiotic resistance, the intrinsic resistance of enterococci is 
correlated with a decline in the affinity of binding of cephalosporin with enterococ-
cal PBPs, especially Pbp5 (Rice et al. 2009; Arbeloa et al. 2004). It was documented 
that expression of either ponA or pbpF gene in E. faecalis and E. faecium is required 
to exhibit cephalosporin resistance, and PbpZ alone is incapable of offering the 
transglycosylation property.

An array of regulatory pathways manifested by two-component system is respon-
sible for showing cephalosporin resistance by enterococci. Downstream effector 
like CroRS was publicized to be imperative for the same. Besides, two-component 
system implicated a role in resistance also relayed by a serine/threonine kinase, 
namely, IreK and IreP (phosphorylated). IreB was proven as target of both the afore-
mentioned proteins and in turn upgrade the expression of cephalosporin resistance 
(Comenge et al. 2003; Muller et al. 2006; Kristich et al. 2007; Hall et al. 2013). 
MurAA protein involved at the downstream of the IreK signaling pathway and cata-
lyzes the first committed step in PPG biosynthesis (Miller et al. 2014).

18.4.1.3  �Resistance to Glycopeptide

Vancomycin and teicoplanin belongs to glycopeptide family employed for the treat-
ment of severe human diseases. Glycopeptides actually bind with the terminal 
D-alanyl-D-alanine of the pentapeptide of PPG precursors that subsequently inhibit 
cross-linking of PPG chains and thus restrict the bacterial cell wall synthesis. The 
mechanism underlying the glycopeptide resistance of enterococcal strains is the 
alteration of the PPG synthesis pathway. The terminus D-alanyl-D-alanine with 
which vancomycin binds is modified to D-alanyl-D-lactate (high resistance, MIC 
>64 μg/ml) or to D-alanyl-D-serine (low resistance, MIC >4–32 μg/ml). This kind 
of alteration in the cell wall precursors leads to reduced binding affinity of the gly-
copeptide with the former (Miller et al. 2014; Ahmed and Baptiste 2018; Shlaes 
et al. 1989; Arthur et al. 1993).

Vancomycin-resistant enterococci are formed by van operons, which encode the 
modified PPG precursors. Nine van operons have been recognized so far in 
enterococci-mediating vancomycin resistance (for D-alanyl-D-lactate modification, 
vanA, vanB, vanD, vanM, and for D-alanyl-D-serine modification, vanC, vanE, 
vanG, vanL, and vanN) (Miller et al. 2014; Courvalin 2006; Depardieu et al. 2015). 
The vanA and vanB are the most common genotypes among VRE with acquired 
resistance mechanisms of humans and animals, mostly among E. faecalis and 
E. faecium (Ahmed and Baptiste 2018). VanC operon is the fundamental component 
of E. gallinarum and E. casseliflavus that helps to produce PPG precursor with ter-
minal D-alanyl-D-serine residue reported first time (Leclercq et al. 1992; Reid et al. 
2001). Apart from VanC (which is a D-alanine-D-serine ligase), the enterococcal 
cells encode a serine racemase (VanT), combined dipeptidase-carboxypeptidase 
(VanXY) and regulators encoded by vanR and vanS genes which encode (cytoplas-
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mic) transcriptional regulator and membrane-bound histidine kinase, respectively 
(Depardieu et al. 2015; Sassi et al. 2018).

The vanA operon is associated with the transposon Tn1546 and includes seven 
open reading frames (ORFs) transcribed under two different promoters. Regulation 
is mediated by vanS-vanR (sensor-kinase-response regulator) two-component sys-
tem, transcribed with a common promoter. The vanH- and vanA-encoded protein 
modifies the PPG precursors, whereas vanY interrupt the creation of the D-alanyl-
D-alanine termini of the pentapeptide by its D,D-carboxypeptidase activity. 
Moreover, vanZ gene is associated with teicoplanin resistance in enterococci.

Tn1547, Tn1549, and Tn5382 are the transposons associated with vanB operon. 
Among the transposons, Tn1549 is widely predominant among vanB-type entero-
cocci located in chromosome. vanB has two promoters and seven ORFs. vanB 
enterococci represent vancomycin resistance but susceptibility towards teicoplanin 
(Ahmed and Baptiste 2018; Arthur and Courvalin 1993). It was well documented 
that a few of van operons belong to transposable genetic element which triggers the 
spreading of the antibiotic resistance trait.

18.4.2  �Mechanism of Resistance to Protein Synthesis 
Interfering Antibiotics

18.4.2.1  �Resistance to Aminoglycosides

Aminoglycosides are effective bactericidal chemotherapeutic agents that interfere 
with the protein synthesis of the bacterial cell by binding with 30S ribosomal sub-
unit followed by misread of genetic code. The intrinsic resistance of enterococci 
against aminoglycosides is imparted by inactivating the aminoglycoside through 
covalent modification of amino or hydroxyl groups which is carried out by entero-
coccal enzymes.

E. faecium express 6′-acetyltransferase enzymes [AAC (6′)-Ii] which was 
reported to modify tobramycin, kanamycin, sisomicin, and netilmicin. Moreover, 
numerous isolates from clinical samples also possess the enzyme APH(3′)-IIIa 
which triggers the resistance against amikacin and kanamycin owing to its 
phosphotransferase activity (Costa et  al. 1993). Alongside, in E. faecium, the 
bypassing of the aminoglycoside action was carried out by modifying the ribosomal 
target through the action of rRNA methyltransferase which methylates cytidine resi-
due at 1404 position (Galimand et al. 2011).

Gentamycin and streptomycin are the aminoglycosides that are used in clinical 
practice reliably because these two are not readily degraded by enterococci-
produced intrinsic enzymes. APH(2′)-Ic is another gene encoding phosphotransfer-
ases reported in E. gallinarum, E. faecium, and E. faecalis which counteracts against 
gentamycin (Chow et  al. 1997) and tobramycin but not in against of amikacin, 
whereas APH(2′)-Id, isolated from E. casseliflavus and E. faecium, confers genta-
mycin resistance but not against amikacin. Moreover the presence of another gene, 
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aph (2')-Ib, in E. faecium causes amino-glycoside resistance except for amikacin 
and streptomycin (Eliopoulos et al. 1984; Courvalin et al. 1980).

18.4.2.2  �Resistance to Oxazolidinones and Linezolid

Bacteriostatic agent linezolid binds to the 23S rRNA of Gram-positive bacteria and 
causes disruption in the docking of charged tRNA in ribosomal A site, followed by 
inhibition in the peptide delivery and elongation of the polypeptide chain subse-
quently (Shinabarger et al. 1997; Leach et al. 2007; Locke et al. 2009; Mendes et al. 
2008). The mechanism of linezolid resistance is the gene mutation which generally 
encodes 23S rRNA, an important ribosomal drug-binding site (Marshall et al. 2002; 
Chen et al. 2013; Diaz et al. 2012, 2013). Moreover, linezolid resistance develops in 
enterococci through acquirement of methyltransferase gene followed by modifica-
tion of A2503 in the 23S rRNA (Kehrenberg et al. 2005; Vester 2018; Wang et al. 
2015). Many copy of the 23S rRNA gene present in enterococci, and as much as the 
gene becomes mutated, the resistance property is increased concomitantly 
(Boumghar-Bourtchaï et al. 2009; Bourgeois-Nicolaos et al. 2007; Toh et al. 2007).

18.4.2.3  �Resistance to Streptogramins, Macrolides, and Lincosamides

Unlike E. faecium, E. faecalis is resistant to pristinamycin derivatives, streptomycin 
A and B.

In E. faecalis genome, Isa gene encodes an ATP-binding cassette (ABC) trans-
porter protein necessary for efflux pump which eliminates the action of lincosamide 
and streptogramin A (Singh et al. 2002). Similar type of pumps coded by msrC has 
also been reported to act in removing the streptomycin A and B (Portillo et al. 2000). 
An intrinsic resistance mechanism of chromosome towards macrolides by msr(A) 
and to linosamides by linB in E. faecium has been documented (Portillo et al. 2000; 
Bozdogan et al. 1999). Several other genes in Enterococcus genus are also respon-
sible for conferring resistance like gene mef(A), causing resistance to macrolides; 
vgb(A), causing resistance to lincosamide; and vat(D) and vat(E), causing resis-
tance to streptogramins.

18.4.2.4  �Resistance to Daptomycin

Daptomycin binds with cellular membrane facilitated by calcium that causes altera-
tions in its characteristics and function. It is a cyclic lipopeptide that primarily inter-
acts with phosphatidylglycerol and, in the presence of calcium ions, aggregates and 
enters into the cell membrane and reaches to the inner leaflet. This causes leakage 
of ions, and also formation of pores occurs on the cell membrane. It also causes lipid 
aggregation on the membrane surface by “lipid extraction effect.” Daptomycin-
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resistant enterococci are reported and it is achieved by means of mutations. Report 
suggests that E. faecium repulses daptomycin from its cell surface by changing 
membrane phospholipids which is commonly associated with mutation in liaFSR 
operon (García-Solache and Rice 2019; Miller et  al. 2016). Mutation in liaFSR 
system causes synergism between ampicillin and daptomycin in daptomycin-
resistant E. faecium (Mishra et al. 2012).

18.4.2.5  �Resistance to Tetracyclines and Glycylcyclines

Tetracyclines exhibit bacteriostatic effect by interfering with the aminoacyl-tRNA 
docking in the ribosome. Enterococci-acquired tetracycline resistance by ribosome 
shielding mechanism is facilitated by tet(M), and antibiotic efflux mechanism is 
facilitated by tet(L) genes (García-Solache and Rice 2019). Several other genes like 
tetO and tetS confer resistance to doxycyclines, minocyclines, and tetracyclines and 
are transferred via the Tn916 transposon. The encoded proteins of the above-
mentioned genes hydrolyze GTP in the presence of ribosome and cause alteration 
of ribosomal conformation and finally displace bound tetracyclines (Rice 1998; 
Speer et al. 1992).

Tigecycline belongs to glycylcycline which is a broad-spectrum antibiotic used 
as therapeutics in severe infections in skin, soft tissues, and abdomen. It binds with 
the 16S rRNA and causes inhibition in the association of aminoacyl-tRNA.  In 
tigecycline-resistant E. faecium, increased expressions of tet(M) and tet(L) genes 
were reported to confer tigecycline resistance (Fiedler et al. 2016).

18.4.3  �Mechanism of Resistance to Antibiotics That Interfere 
in Central Dogma

18.4.3.1  �Resistance to Quinolones

For the onset of cell division, starting of replication and transcription of DNA is 
important. Quinolones generally target two enzymes like DNA gyrase and topoi-
somerase IV. Those enzymes are responsible for the replication and transcription 
process. Administration of quinolones causes disruption of strand continuity, stop-
ping replication process (Hawkey 2003). This antibacterial compound shows 
broad-spectrum effect on numerous bacteria by targeting the two said enzymes. 
Reduction of antibacterial activity of fluoroquinolones against Enterococci has also 
been reported (Oyamada et al. 2006). Though enterococci acquire low levels of qui-
nolone resistance, sometimes it can also confer high-level resistance by several 
mechanisms (López et al. 2011; Werner et al. 2010; Yasufuku et al. 2011). Mutations 
in the gyrA and parC genes are responsible for the acquisition of resistance (in the 
case of levofloxacin and moxifloxacin) in E. faecium and E. faecalis (Tankovic et al. 
1999; Kanematsu et al. 1998). EmeA and NorA like efflux pumps have also been 
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reported for conferring the resistance of E. faecalis and E. faecium against quino-
lones, respectively (Hooper 2000). Another gene, qnr-encoded protein, is also 
responsible for the formation of quinolone-gyrase complex, protecting DNA gyrase, 
and in this way it confers resistance in Enterobacteriaceae (Arsène and Leclercq 
2007; Tran et al. 2005).

18.4.3.2  �Resistance to Rifampicin

Rifampicin binds with the β-subunit of DNA-dependent RNA polymerase and thus 
inhibits the process of transcription. Rifampicin-resistant E. faecium is developed 
due to substituted mutation in rpoB gene (H486Y) which encodes the said enzyme 
(Kristich and Little 2012). Moreover, rpoB-mutated E. feecium and E. faecalis show 
elevated resistance to cephalosporin (Enne et al. 2004; Rand et al. 2007).

18.4.3.3  �Resistance to Trimethoprim and Sulfamethoxazole

Trimethoprim and sulfamethoxazole are the two notable antibacterial compounds 
that mainly target the enzymes associated with folate biosynthesis. Folate is synthe-
sized from the p-amino benzoic acid and essential for synthesis of nucleic acids. 
The aforementioned compounds decrease the production of dihydrofolate and also 
blocked the conversion of tetrahydrofolate by inhibiting several enzymes in folate 
biosynthesis pathway. Though in  vitro susceptibility is present, in  vivo reports 
showed that these two antibiotics are ineffective against enterococci as they have 
gained the ability to utilize exogenous folate (Chenoweth et  al. 1990; Grayson 
et al. 1990).

18.5  �Alternative Strategies for Combating 
Multidrug-Resistant Enterococcus

The evolution of MDR enterococci has boosted interest towards alternative thera-
pies to alleviate the disease causing potentiality of enterococci. Though virulence 
factors do not directly confer resistance, it will help bacteria to withstand in an 
unfavorable environmental condition and resist host defense mechanisms. Host bio-
macromolecules associated with the cell surface of Enterococcus and release of 
these molecules into the extracellular matrix inhibit the antimicrobial drugs from 
reaching their targeted sites (Otto 2006). Cyclic-AMP (cAMP) as an important 
mediator of innate immune system imparts antimicrobial activity by disturbing PPG 
biosynthesis and cytoplasmic membrane structure (bacterial) as well as promotes 
autolysins which collectively help to keep microbial populations within threshold 
level. However, coevolution of cAMPs and their bacterial targets is well docu-
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mented (Kandaswamy et al. 2013; Gilmore et al. 2013). Exploitation of host adap-
tive immunity is also targeted through vaccination for the production of antibodies 
against enterococci. In this context, the lipoteichoic acids and diheteroglycans pres-
ent over the cell walls of enterococci are marked as an epitope as they will help to 
induce an antibody response. This will protect the host (mouse bacteremia model) 
against E. faecalis (Theilacker et al. 2011). Application of antibodies against those 
specific enterococcal antigenic motifs could be a possible therapeutic to combat 
MDR strains in the future.

18.6  �Application of Nanotechnology Against 
Enterococcal Infections

Development of multidrug-resistant enterococci becomes a most pressing concern 
in community health worldwide. The WHO (World Health Organization) and CDC 
(Center for Disease Control) have already expressed major concern about the grad-
ual increase in the formation of multidrug-resistant bacteria (Baptista et al. 2018). 
This has boosted researchers to develop potent strategies for drug delivery and, 
finally, targeting bacteria. Nanostructured materials (e.g., organic, inorganic, metal-
lic, carbon nanotubes, etc.) are being synthesized to circumvent such types of drug 
resistance as they easily convey antimicrobials, assist novel drug delivery, exert 
antimicrobial activities, and inhibit biofilm development (Baptista et al. 2018).

Several attempts were made for the synthesis of potent nanoparticles and subse-
quent effective delivery of the same against multidrug-resistant enterococci (Katva 
et  al. 2018). Silver is a nontoxic, safe antimicrobial inorganic agent, and silver 
nanoparticles (AgNPs) have obtained much more attention as compared to other 
metal-based nanoparticles due to its strong antimicrobial activity. AgNPs are the 
utmost encouraging inorganic nanoparticles that can be applied for the alleviation of 
enterococcal infections. It was demonstrated that AgNPs in combination with van-
comycin exhibited excellent antibacterial potential against vancomycin-resistant 
E. faecalis. Likewise, a mixture of gentamycin, chloramphenicol, and AgNPs could 
be promising to treat MDR E. faecalis infection than both the above-mentioned 
antibiotics separately (Katva et al. 2018). The antibacterial efficiency of AgNPs was 
also evaluated by Wu et al. (2014) against E. faecalis biofilm. Otari et al. (2013) also 
showed the effect of AgNPs on the erythromycin-resistant E. faecalis. It was 
suggested that AgNPs inhibit bacterial growth and proliferation by adhering on the 
cell wall of bacteria, leading to cell wall modification followed by penetration of 
AgNPs into the bacterial cell, which consequently damages the DNA leading to cell 
death (Aziz et al. 2015, 2016; Kumar et al. 2016; Saini et al. 2019).

Khiralla and El-Deeb (2015) developed biogenic spherical selenium nanoparti-
cles using cell-free supernatant of Bacillus licheniformis which imparted paramount 
antimicrobial and antibiofilm potential against E. faecalis. Likewise, biogenic pal-
ladium nanoparticles were prepared by using flower extract of Moringa oleifera 
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which showed significant antibacterial effect against the same bacteria (Anand 
et al. 2016).

Graphene oxide (GO) has unique physicochemical characteristics and has there-
fore attracted attention for antibacterial use (Hu 2010). The GO nanosheets exhibit 
antibacterial activity through direct interaction with bacteria and increased the reac-
tive oxygen species (ROS) level within the cell (Akhavan and Ghaderi 2010). 
Govindaraju et  al. (2016) demonstrated that UV-irradiated form of glucosamine-
gold nanoparticle-graphene oxide composite exhibited paramount antimicrobial 
activity against E. faecalis which is better than kanamycin, and several functional 
groups (like carboxyl, hydroxyl, and epoxy) present in the GO-based nanomaterial 
are responsible for the activity. Nanocomposite of indocyanine green and GO was 
also reported to exhibit potential antibacterial effect against E. faecalis during pho-
todynamic therapy (Akbari et al. 2017).

In order to treat vancomycin-resistant Enterococcus(VRE), Zhou et al. (2018) 
prepared Au/Ag bimetallic NPs and demonstrated that it has immense potential to 
be a good anti-enterococcal agent. Both in vitro (bacterial surface-enhanced Raman 
scattering imaging) and in vivo (mouse infection assays) results clearly revealed the 
effectiveness of this newly developed nanocomposite against VRE.

Chifiriuc et al. (2013) also investigated the capability of magnetic nanoparticle 
for a sustained and controlled release of drug which subsequently increases the 
effectiveness of antibiotics against resistant opportunistic pathogen, E. faecalis. 
They also suggested that magnetic nanoparticles might be a potent carrier for deliv-
ery of amino-glucoside antibiotics.

The antibacterial efficacy of calcium hydroxide nanoparticle (NCH) showed bet-
ter result against E. faecalis in dentin block model. The MIC determination and agar 
diffusion test revealed that low concentration of the NCH inhibited E. faecalis than 
the native form of calcium hydroxide which is due to the enhancement of surface 
area due to smaller size which encourages the penetration of the NPs into the deeper 
layers of dentin which subsequently inhibits E. faecalis growth (Dianat et al. 2015).

Despite the expected potential of newly reported nanoparticles against multidrug-
resistant Enterococcus, there are still few shortfall related to their safety when they 
are used in long-term basis in human. Therefore, in-depth assessment of the physi-
cal, chemical, and biological compatibility must be addressed. Experimental proof 
is also desirable for establishment of mechanism of action against the targeted 
enterococci in vivo. Moreover, the fruitful translation of the R&D work into real-life 
large-scale production of the newly discovered nanoparticles needs comprehensive 
guidelines, and effort is needed.

18.7  �Conclusions and Future Challenges

Enterococcal species can colonize and survive in different biological and environ-
mental niches. Owing to their biofilm-forming ability, multiple-drug resistance, and 
tendency of transfer of resistant trait to other enterococci, it became a great burden 
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in healthcare sectors. Among the several species of enterococci, E. faecalis and 
E. faecium are associated with most clinical cases and hence they are marked as 
important nosocomial pathogens. Continuous exposure to prophylactic or metaphy-
lactic and random application of antimicrobial agents by clinicians in human and 
animal hosts against enterococci contributed its ability to acquire and develop 
unique profiles of virulence and antimicrobial drug resistance. Moreover, expres-
sion of a wide variety of virulence characteristics promotes enterococci to colonize 
and also causes infections in the host body. Extensive tolerance to the antibacterial 
agents as well as their wondrous capacity to acquire resistance to marketed antibiot-
ics becomes a great challenge to clinicians throughout the globe to combat with 
enterococcal pathogenesis. In the recent future, MDR enterococci will be immense 
clinical challenges to treat infections in hospitalized patients. Current trends in the 
epidemiology and population structure of antibiotic-resistant Enterococcus species 
clearly suggest that MDR enterococci may become the most common species iso-
lated from patients in the upcoming eons. Nanotechnology is an emerging branch of 
science which could restrict the propagation of enterococci. Various attempts were 
already made worldwide to develop versatile nanomaterials that exhibited immense 
potentiality to limit enterococcal growth in in vitro and in vivo. However, with the 
advent and advancement of nanotechnology, more studies are extremely necessary 
to develop comprehensive strategies to limit the Enterococcus-associated infections 
and their large-scale implementation in upcoming eons.
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