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Abstract Under natural conditions, plants are often exposed to both biotic
(pathogens, wounding, insects) and abiotic stresses (drought, salinity, heat, high
or low temperature, UV light, heavy metals, ozone) simultaneously. Among the
various abiotic stresses, drought along with salinity and alkalinity confers osmotic
stress and causes major yield losses, with water scarcity (drought) contributing to
maximum losses. On perceiving stress, plants respond by activating signal trans-
duction cascades that interact with other pathways (phytohormones) for an optimal
response for survival. Hormones also control the response to environmental factors,
but do so by influencing each other at a biosynthesis or signaling level rather than
by discrete pathways. This coordination leads to a network of signal transduction
that integrates various inputs leading to a comprehensive output resulting in a phys-
iological adaptation to stress. The points of hormones interacting with one another
are where crosstalk occurs, which helps in switching the response from one pathway
to another. Published literature provide comprehensive information on the response
of plants to drought and the role of hormones in regulating the response to drought
from experiments directly imposing drought stress (dehydration stress-withholding
water) or osmotic stress (turgor loss due to extracellular solutes) and experimentswith
mutants and others involving the functions of hormones and other signals. Changes
in gene expression induced by drought overlap with gene expression regulated by
hormones. This chapter presents the signal transduction pathways of hormones under
drought stress and how they cross talk with each other in regulating the drought stress
response in plants.
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1 Introduction

Anumber of environmental stresses (abiotic—drought, salinity, high and low temper-
ature—and biotic) affect plant growth and productivity. Under stress, both hormonal
and redox processes are imbalanced. Plants alter their gene and protein expression in
response to signal cascades that are transduced when plants perceive stress (Munns
and Tester 2008; Mittler et al. 2011; Munné-Bosch et al. 2013), which leads to
a change in metabolic and physiological responses that help plants survive under
stressful situations. Phytohormones, that under optimal growth conditions play a
critical role in plant growth and development, also play a central role in integrat-
ing signal transduction occurring under stressful conditions. Phytohormones help in
linking and reprogramming the stress-adaptive signaling cascades (Ma et al. 2006;
Golldack et al. 2014).

The growth regulators abscisic acid (ABA) and ethylene (ET) play a vital role in
signaling drought stress and conferring drought tolerance. Jasmonic acid (JA) and
salicylic acid (SA), known for their role in biotic stress signaling and tolerance, also
play a role in abiotic stress signaling and tolerance. In addition, the growth regulators
cytokinins (CKs), auxin (AUX), gibberellic acid (GA), brassinosteroids (BRs), and
strigolactones (SLs) play a role in abiotic stress tolerance (Zhao and Schaller 2004;
Cheng et al. 2013; Wu et al. 2007; Cela et al. 2011; Jayakannan et al. 2015; Magome
et al. 2008; Wu et al. 2014a, b; He et al. 2005; Divi et al. 2010). Most of the time,
these phytohormones are involved in crosstalk with other phytohormones and other
signaling cascades.

Among the abiotic stress, drought stress negatively affects crop growth and pro-
ductivity (Anjum et al. 2017). Plants exposed to drought stress adapt a drought-
escape, avoidance or tolerance mechanism to overcome the stress (Hussain et al.
2018). Under drought escape, plants maintain a short life cycle or adapt develop-
mental plasticity. Under drought avoidance, plants increase their water uptake and
decrease water loss such that they avoid physiological drought. However, under
drought tolerance, cells tolerate drought by regulating mechanisms such as osmo-
protection, antioxidative capacity, and tolerance. Plants maintain a balance among
the different mechanisms.

Drought tolerance is a complex trait that operates at morphological, physiological
and molecular levels (Tanveer et al. 2018). Traits such as earliness; stomata shape,
size and structure; leaf number, orientation, and rolling; the presence of a cuticle; wax
on leaf and stem; growth habit; and rooting pattern contribute to morphological char-
acters associated with drought resistance and tolerance. Traits such as photosynthetic
rate, transpiration rate, osmotic adjustment, and stomatal closure contribute to phys-
iological characters. Regulation of these traits at the molecular level by regulating
gene expression and protein synthesis contribute to molecular characteristics.

Functional genomic approaches (gene expression analysis) have aided in under-
standing the molecular mechanism of stress tolerance. A number of genes are regu-
lated under stress conditions and can be grouped broadly in two categories based on
function. One group involves the regulation of genes encoding proteins involved in
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cellular homeostasis and stress protection such as osmoprotectants, water channels,
antioxidative enzymes, metabolic enzymes, and lipid-transfer proteins. The other
group involves genes that code for kinases, transcription factors (TFs) and proteins
or products that mediate stress signal transduction and result in the expression of
stress-responsive genes. Among them are also genes that are associated with sig-
naling pathway(s) of various phytohormones. Auxins, GA, CKs, ABA, ET, SA, JA,
BR, and SLs are the major hormones produced by plants. Although all play a role
in the stress response, the hormones ABA, SA, JA, and ET play a major role in the
plant response to biotic and abiotic stresses (Bari and Jones 2009; Nakashima and
Yamaguchi-Shinozaki 2013). On sensing stress (abiotic or biotic stress), several sig-
naling pathways are initiated in plant cells. Some lead to the induction and alteration
of intercellular levels of Ca2+, reactive oxygen species (ROS), and inositol phosphate
and activation of the kinase cascade.

2 Abscisic Acid (ABA)

Abscisic acid playsmajor role in the plant response to osmotic stress induced by cold,
high salinity and drought. It is an endogenous messenger of the plant’s water status.
Plant hormone, ABA is typically synthesized in response to stress due to enhanced
expression of its biosynthetic genes (Swamy and Smith 1999; Zhu 2002). Treating
plants with ABA mimics exposure to stress. Abscisic acid plays a critical role in
response to various stress signals. It triggers reprogramming of the transcriptome
and stomatal closure to control transpirational water loss (Christmann et al. 2007;
Cutler et al. 2010; Raghavendra et al. 2010).

Signaling under stress involves various proteins leading to regulation of stress-
responsive gene expression. Under stress, signaling pathways occurring under
stress (osmotic or drought stress) can be broadly classified as ABA-dependent-
or independent. TFs that bind to ABA-responsive element (ABRE) cis-elements
play a major role in ABA-dependent gene expression and those that bind to the
dehydration-responsive element/C-repeat (DRE/CRT) cis element are involved in
ABA-independent gene expression in response to drought stress (Fujita et al. 2011;
Qin et al. 2011).

Abscisic acid signaling has been extensively studied, and vari-
ous components have been identified. The proteins PYRABACTIN
RESISTANCE/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEP-
TORS (PYR/PYL/RCARs) function as soluble ABA receptors, as demonstrated
by chemical genetic and biochemical approaches. Besides their identification in
Arabidopsis, they have been identified in rice (Oryza sativa), maize (Zea mays),
sorghum (Sorghum bicolor), soybean (Glycine max), grapevine (Vitis vinifera),
citrus (Citrus sinensis), and tomato (Solanum lycopersicum) (Klingler et al. 2010;
Sun et al. 2011; Boneh et al. 2012; Kim et al. 2011; Romero et al. 2012). GPCR-type
G protein 1 (GTG1)/GTG2 are membrane proteins with homology to G-protein
coupled receptors (GPCRs). ChlH (or GENOMES UNCOUPLED 5 [GUN5])
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and GTG1/GTG2 may be ABA receptors. However, neither ChlH/GUN5 nor
GTG1/GTG2 can bind the biologically active ABA isomer (Shen et al. 2006; Pandey
et al. 2009).

Forward genetic screening using mutants resistant to the ABA agonist pyrabactin
and a search for biochemical interacting partners of ABA insensitive 1 (ABI1) and
ABI2 led to the identification of PYR1 and RCAR1 among the 14 genes that code for
PYR/PYL/RCARs (Ma et al. 2009; Nishimura et al. 2009). On activation, the recep-
tor interacts with partners such as type 2C protein phosphatase (PP2C) and sucrose
nonfermenting 1-related protein kinase 2 (SnRK2) complex (Umezawa et al. 2009,
2010). In the absence of ABA, PP2C binds to SnRK2 and mediates its dephospho-
rylation. Binding of ABA to its receptor (PYR/PYL/RCARs) fits well into the active
site of PP2C enzyme, thereby inhibiting the phosphatase activity of PP2C. This situ-
ation results in phosphorylated SnRK2s, which can activate relevant TFs, and in turn
leads to activation of an ABA-induced transcriptional cascade (Kline et al. 2010).
Therefore, an increase in endogenousABAdue to environmental and/or developmen-
tal cues leads to sequestration of PP2C and ABA-induced release or activation of
SnRK2.6. Autophosphorylation of SnRK2s then phosphorylates downstream pro-
teins such as ABA-responsive element binding proteins/ABA-responsive element
binding factor/basic-leucine zipper (AREB/ABF/bZIP) proteins and anion channels
(Cutler et al. 2010; Klingler et al. 2010; Umezawa et al. 2010; Seiler et al. 2014).
SnRK2s can be further regulated by a positive regulator, ARK (B3-MAPKKKs), and
a negative regulator, casein kinase 2 (CK2) (Saruhashi et al. 2015; Meggio and Pinna
2003; Vilela et al. 2015).

The Arabidopsis genome encodes 112 phosphatases, of which 76 code for PP2Cs
and at least 6 are involved in ABA signaling with well-characterized ABI1/2 and
homolog of ABI1 (HAB1). Themutants abi1 and abi2 displayABAhypersensitivity,
insensitive phenotypes and reduced seedling growth, seed dormancy, drought toler-
ance, and stomatal regulation. Othermembers of PP2Cs includeABA-hypersensitive
germination 1 (AHG1), AHG3/AtPP2CA from Arabidopsis, and OsPP108 from rice
(Leung et al. 1994, 1997; Meyer et al. 1994; Saez et al. 2004; Singh et al. 2015).

The protein kinase SnRK2 family is a group of plant-specific serine/threonine
kinases that participate in cellular responses to drought and dehydration (Hrabak
et al. 2003; Saruhashi et al. 2015). Depending on the affinity toward ABA, the
SnRK2 family is divided into three subgroups. Subgroup I does not respond to ABA,
subgroup II includes weak respondents, and subgroup III includes active respondents
of ABA that are key players of ABA-dependent gene expression (Hrabak et al. 2003;
Boudsocq et al. 2007). Arabidopsis has 10 SnRK2 members (SnRK2.1-2.10); ABA
activates five SnRK2s (SnRK-2.2, -2.3, -2.6, -2.7, -2.8). Mutation in three SnRKs
(snrk2.2/2.3/2.6) blocks all main ABA responses (Fujii and Zhu 2009; Fujita et al.
2009; Waadt et al. 2015). In addition, all SnRK2s are involved in ABA and stress
signaling except SnRK2.9,which is activatedbyosmotic stress (Boudsocq et al. 2007;
Furihata et al. 2006; Yoshida et al. 2006). ABA-activated protein kinase (AAPK),
the ortholog of Arabidopsis open stomata 1 (OST1)/SnRK2.6, was the first protein
kinase identified (from Vicia faba).
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SnRK2 kinases phosphorylate the TFs ABFs/AREBs and ABI5, both in vitro
and in vivo, involved in ABA responsive gene expression (Kobayashi et al. 2005;
Furihata et al. 2006; Sirichandra et al. 2010; Nakashima et al. 2009). In addition,
SnRK2 (OST1/SNRK2.6) phosphorylates plasma membrane proteins anion channel
slow anion channel-associated 1 (SLAC1), potassium channel protein KAT1 and
NADPH oxidase AtrbohF involved in regulating stomatal aperture (Geiger et al.
2009; Sato et al. 2009; Sirichandra et al. 2009). Phosphoproteomic andmutation study
approach has identified ascorbate peroxidase, Ca2+/H+ antiporter regulator protein,
G-protein beta subunit-like protein, glyoxysomal malate dehydrogenase, manganese
superoxide dismutase, triose phosphate isomerase and others as potential SnRK2
targets (He and Li 2008; Umezawa et al. 2013).

TFs that play a significant role in ABA-regulated gene expression include
ABFs/AREBs, ABI5, myeloblastosis (MYB), myelocytomatosis (MYC), NAM: no
apical meristem (NAC), Arabidopsis transcription activation factor (ATAF), cup-
shaped cotyledon (CUC), and ethylene response factor (ERF). ABFs/AREBs are
regulated by SnRK2-mediated phosphorylation (Fujita et al. 2011; Nakashima et al.
2012; Rushton et al. 2012). ABFs/AREBs and ABI5 encode proteins belonging to
the bZIP family regulate ABA and stress responses by binding to ABRE in pro-
moters of target genes (Choi et al. 2000; Uno et al. 2000; Lopez-Molina et al.
2001). AREB1/ABF2, AREB2/ABF4, ABF3 and ABRE binding protein 9 (ABP9)
are involved in signaling drought stress (Riechmann et al. 2000; Yoshida et al. 2010).
MYC andMYB, belonging to the basic helix loop helix (bHLH) subfamily, also reg-
ulate ABA signaling by regulating stress-inducible genes. AtMYB60, AtMYB44,
AtMYB15, and AtMYC2 mediate drought stress signaling (Abe et al. 1997, 2003,
Jaradat et al. 2013). In addition, NAC (AtNAC) and ERF (AtERF7)-type TFs are
involved in regulating ABA signal transduction under drought stress (Song et al.
2005; Zhang and Gan 2012).

3 Ethylene (ET)

This simple two-carbon molecule plays a major role in regulating biotic and abiotic
stress signaling (Morgan and Drew 1997; van Loon et al. 2006). Biosynthesis of ET
is simple, consisting of three steps. Methionine is used as precursor and is converted
to S-adenosyl methionine (SAM), which is converted to ET by the action of ACC
synthase (ACS) andACCoxidase (ACO).ACS is regulated by drought stress, thereby
regulating ET levels under drought stress.

Endoplasmic reticulum membrane-localized proteins perceive ET, are negative
regulators of ET signaling, and play a role as ET receptors. Arabidopsis has five
ET receptors: ET response 1 (ETR1) and ET response sensor 1 (ERS1), belong-
ing to subfamily I, and ETR2, ERS2, and ET insensitive 4 (EIN4), belonging to
subfamily II (Chen et al. 2005; Lacey and Binder 2014). Similarly, rice has five
receptors: OsERS1 and OsERS2, belonging to subfamily I, and OsETR2, OsETR3,
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and OsETR4, belonging to subfamily II (Watanabe et al. 2004; Yau et al. 2004). Con-
stitutive triple response 1 (CTR1), also a membrane protein and central transducer,
is a negative regulator of ET signaling and acts downstream of the receptor, which
is a Raf-like Ser/Thr protein kinase. Downstream of this is ETI2, also localized to
the endoplasmic reticulum membrane that activates EIN3 and EIN3-like 1 (EIL1),
which function as TFs inducing the expression of ERF1 and inducing or repressing
that of many ET response genes (Kendrick and Chang 2008; Stepanova and Alonso
2009).

Therefore, in the absence of ET, CTR1 kinase activity is induced, which phospho-
rylates EIN2 and prevents its localization to the nucleus (Kieber et al. 1993; Bisson
and Groth 2010; Ju et al. 2012). In addition, two F-box proteins—ETI2-targeting
protein 1 (ETP1) and ETP2—reduce levels of EIN2 protein (Qiao et al. 2009). EIN2
is localized to the nucleus on its dephosphorylation and cleavage of its C-terminus,
in the presence of ET, and it regulates activation of EIN3/EIL1 leading to the ET
response (Ju et al. 2012). Similar to EIN2, two F-box proteins—ETI3 binding F-box
protein 1 (EBF1) and EBF2—that are downregulated by ET, reduce EIN3/EIL1 pro-
tein levels in the absence of ET. Among the ET signal transduction pathway, ERFs
are key players of abiotic-stress tolerance induced by drought stress. ERFs are also
induced by various other abiotic stresses. ERFs belong to the APETALA2/ERF TF
family. The expression of ERFs increases under drought stress, and many ERFs bind
to DREs and regulate tolerance to abiotic stress.

ERF induces the expression of P5CS, germin-like protein 9, osmotin 34, similar
to RCD one 5 (SRO5), responsive to dessication 29B (RD29B), early response to
dehydration (ERD7) and RD20, leading to drought tolerance (Cheng et al. 2013).
In addition, OsDERF1 directly binds promoters of the ERF repressors OsERF3 and
OsAP2-39 that suppress ET synthesis and regulate drought tolerance (Wan et al.
2011; Zhang et al. 2013). Although most ERFs are transcriptional activators, two
(ERF8 and ERF9) are transcriptional repressors. ERF8 is an inhibitor of cell division
and leaf growth and thereby regulates the drought stress response (Thao et al. 2015;
Dubois et al. 2013, 2018).

4 Jasmonic Acid (JA)

The JAs collectively include JA and its conjugates methyl jasmonate (MeJA) and
jasmonyl-isoleucine (JA-Ile) (Ghasemi et al. 2014). They are lipid-derived oxylipins,
synthesized from linolenic acid via the octadecanoid pathway as a result of oxidation
by lipoxygenases (Feussner and Wasternack 2002).

Jasmonic acids are well known for their role in developmental processes, sec-
ondary metabolite synthesis and the plant defense response against pathogens and
wounding (McConn et al. 1997; Reymond and Farmer 1998; Wasternack and Hause
2002; Lorenzo and Solano 2005; Schommer et al. 2008). Despite reports of the
role of JA in the abiotic stress response, its role in drought stress is little known
(Maksymiec et al. 2005; Brossa et al. 2011; Dong et al. 2013; Qiu et al. 2014; Zhao
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et al. 2013; Clarke et al. 2009). Jasmonic acid basically imparts drought tolerance
by modulating stomatal closure and minimizing transpiration water loss. In addi-
tion, MeJA increases root hydraulic conductivity and helps plants uptake more water
under drought stress (Tanaka et al. 2005; Munemasa et al. 2007; Daszkowska-Golec
and Szarejko 2013; Sánchez-Romera et al. 2014). In addition, JAs play an important
role in signaling the drought-induced antioxidant response by enhancing the expres-
sion and activity of the antioxidant enzymes superoxide dismutase, peroxidase, and
catalase (Nafie et al. 2011; Anjum et al. 2011). However, JA biosynthesis, crosstalk
and signal transduction is more or less similar between biotic and abiotic stress, with
unique aspects being identified for abiotic stress response.

An F-box protein coronatine insensitive 1 (COI1), jasmonate ZIM domain (JAZ)
proteins, multi-component E3 ubiquitin ligase-Skp/Cullin/F-box complex (SCF-
COI1) and 26S proteasome are key players in JA signaling (Thines et al. 2007;
Deshaies 1999; Turner et al. 2002). JA-Ile functions as a ligand and promotes the
assembly of COI1 and JAZ proteins (Thines et al. 2007). JAZ proteins are repres-
sors or negative regulators of JA signaling that are targeted for degradation by the
SCFCOI1-dependent 26S proteasome pathway. In addition, JAZ proteins interact with
co-repressor Topless (TPL) and TPL-related proteins (TPRs) via an adaptor protein,
novel interactor of JAZ (NINJA), in JA signaling (Pauwels et al. 2010). Hence, JA-
mediated destruction of JAZ transcription repressors leads to the activation of down-
stream genes (Staswick 2008; Thines et al. 2007; Pauwels and Goossens 2011). JAZ
proteins target and regulate TFs belonging to bHLH factors (AtMYC2, OsBHLH1,
RERJ1, MYC3, MYC4, Glabra3-GL3, enhancer of glabra 3 1 [EGL1] and transpar-
ent testa [TT8]). A few are regulated under drought stress (RERJ1, OsbHLH148),
and their overexpression results in enhanced drought tolerance (Kiribuchi et al. 2005;
Seo et al. 2011). JAZ proteins interact with the Apetala 2 group of TFs—target of eat
1 (TOE1) and TOE2—and repress transcription (Zhai et al. 2015). An intermediate
of JA biosynthesis, 12-OPDA, also plays a role in JA signaling and has a major role
in drought response (Savchenko et al. 2014).

5 Salicylic Acid (SA)

Similar to JA, the phytohormone SA plays an important role in response to biotic
stresses, pathogenesis, plant growth and development, although antagonizing gene
induction by JA. In addition, it participates in signaling abiotic stress responses
(drought, salinity, high and low temperature, ozone, UV light and heavy metals)
(Rivas-SanVicente andPlasencia 2011;Hara et al. 2012).However, its utility depends
on its concentration: low concentration enhancing antioxidant capacity and high
concentration inducing oxidative stress and leading to cell death (Hara et al. 2012).

The synthesis of endogenous SA levels is increased in plants exposed to drought
stress, and plants susceptible to drought show reduced SA level. SA probably protects
plants under stress by regulating the induction of SA-inducible PR genes (Munné-
Bosch and Penuelas 2003; Sawada et al. 2006; Miura et al. 2013).
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In plants, SA is synthesized in plastids via two distinct pathways: the isochoris-
mate (IC) pathway, the major pathway, and the phenylalanine ammonia-lyase (PAL)
pathway. Both pathways begin with chorismic acid, an end product of the shikimate
pathway (Wildermuth et al. 2001; Catinot et al. 2008). IC synthase (ICS), responsible
for converting chorismic acid to IC, is regulated by biotic stress and also drought
stress (Nawrath and Métraux 1999; Hunter et al. 2013). Mutants (adr1, myb96-1d,
siz1, acd6, and cpr5) that accumulated endogenous SA showed both SA-dependent
disease resistance and drought tolerance (Seo and Park 2010; Miura et al. 2013).

Well-known systemic acquired resistance is inducedbySAand leads to an immune
response against pathogens via transcriptional reprogramming (Durrant and Dong
2004). Under drought stress, plants are protected against oxidative stress induced by
drought stress by the induction of stress proteins such as glutathione S-transferases,
ascorbate peroxidase (APX), and 2-cysteine peroxiredoxin by enhanced SA levels
(Kang et al. 2012). Exogenous application of SA and high endogenous SA level
promote stomatal closure during water deficit to conserve water, which leads to
reduced photosynthesis likely because of ROS induced by SA (Senaratna et al. 2000;
Korkmaz et al. 2007).

Jasmonic acid binds to effector proteins such as catalase, APX, methyl SA
esterase, and carbonic anhydrase (Sanchez-Casas and Klessig 1994; Du and Klessig
1997; Slaymaker et al. 2002; Forouhar et al. 2005). However, mutant studies pre-
dicted that non-expressor of PR genes 1 (NPR1) was an SA receptor candidate
(Delaney et al. 1995; Cao et al. 1997). NPR1 functions as a positive regulator of the
SA-mediated defense response. In addition, NPR3 and NPR4, paralogs of NPR1, are
SA receptors (Fu et al. 2012). They have a direct role in defense gene expression and
affect disease resistance (Fu et al. 2012; Wu et al. 2012). They interact with cullin 3
(CUL3) ubiquitin E3 ligase and recruit NPR1 for proteasome-mediated degradation
dependent on SA. Studies of mutants of the mitochondrial succinate dehydrogenase
(SDH) pathway, disrupted in stress response 1 (dsr1) and SDH assembly factor 2
(sdhaf2), demonstrated that SA directly contributes to stress signaling by increasing
mitochondrial H2O2 production.

6 Brassinosteroids (BRs)

Brassinosteroids are a plant-specific steroid group of plant hormones known for their
role in growth, development, reproduction, and stress response (Sharma et al. 2015;
Vardhini and Anjum 2015; Tang et al. 2016; Wei and Li 2016; Xia et al. 2009,
2014). Brassinolide (BL) is synthesized from campesterol via a series of reduc-
tions, hydroxylations, epimerizations, and oxidations, whereas the mevalonic acid-
dependent triterpenoid pathway is used for synthesis of other major BRs (Fujioka
et al. 1998; Fujioka andYokota 2003;ChungandChoe2013).BRs actively participate
in drought stress response and tolerance, as demonstrated by enhanced drought of
plants overexpressing the BR biosynthetic gene encoding cytochrome p450 (Tiwari
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et al. 2017). Brassinosteroids also help reduce the photoinhibition that commonly
occurs under abiotic stress conditions (Ahammed et al. 2015)

The BRs are recognized by the BRASSINOSTEROID INSENSITIVE 1 (BRI1)
cell-surface leucine-rich repeat kinase group of receptor proteins. BRI further inter-
acts with co-receptor BRI-associated receptor kinase 1 (BAK1) and initiates a series
of phosphorylation and dephosphorylation events resulting in the regulation of gene
expression (Belkhadir and Jaillais 2015; Nakamura et al. 2017). BR-mediated sig-
naling is transduced by the bHLH group of TFs such as CESTA and TEOSINTE
BRANCHED 1, CYCLOIDEA, PCF1 (TCP) (Poppenberger et al. 2011).

Similarly, the TF BRASSINAZOLE RESISTANT 1 (BZR1), induced by BRs,
plays a role in maintaining cell cycle progression even under stress (Hacham et al.
2011). In contrast, BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING
CENTER (BRAVO), an R2R3 MYB transcription factor, inhibits stem cell prolif-
eration. In the root quiescent center, interaction with BRI1-EMS SUPRESSOR 1
(BES1) represses the activity of BRAVO (Vilarrasa-Blasi et al. 2014). In addition,
BRs remodel the cell wall under abiotic stress by inducing genes responsible for cell
wall remodeling: pectin lyase-like proteins, expansins, and xyloglucan endotrans-
glucosylase/hydrolases (Rao and Dixon 2017). In addition, BRI1 receptor induces
the expression of pectin methylesterases under stress, thereby resisting the loss of
cell wall and maintaining the integrity of the cell wall via interaction of BAK1 and
RECEPTOR-LIKE PROTEIN (RPL44) (Wolf et al. 2014). These mechanisms help
plants in stress adaptation and increase longevity.

7 Hormonal Crosstalk

7.1 ABA Crosstalk

In response to environmental stress (drought), ABA regulates growth and develop-
ment via crosstalkwith other plant hormones. Abscisic acid interacts antagonistically
with most plant hormones. ABA and auxin work in opposing directions in regulat-
ing growth and development. Both of these hormones control cell division, seed
dormancy and germination, primary root growth, seedling growth, etc. Crosstalk
between auxin and ABA in regulating growth occurs via regulation of auxin or ABA
response pathways. Auxin activates the ABA response and or ABA biosynthesis.
Under osmotic stress, ABA increases basipetal transport of auxin via AUX1 (an
auxin influx transporter) and PIN2 (an auxin efflux transporter) (Sun and Li 2014;
Wang et al. 2011; Belin et al. 2009; Liu et al. 2013; Xu et al. 2013). Similarly,
ABA and CK crosstalk with each other. ABA regulates CK by regulating CK oxi-
dase that degrades CK. Under stress, CK via cytokinin receptor kinases (AHK2 and
AHK3) negatively regulates ABA, ABA signaling and stress gene expression (Tran
et al. 2007; Jeon et al. 2010). ABA also acts antagonistically with ET in regulating
stomatal closure. ET inhibits ABA signaling and thereby delays stomatal closure.
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Similarly, ABA inhibits ET biosynthesis by regulating ERF1 and long hypocotyl 5
(HY5), thereby repressing ACS5 (ethylene biosynthesis gene). The TF HY5 is a key
player in the crosstalk between ABA and ET (Harrison 2012; Tanaka et al. 2005;
Li et al. 2011). However, the crosstalk between ABA and JA is complex. Reduction
of ABA level upregulates JA. Multiple components of ABA and JA–ET signaling
pathways antagonistically interact in regulating stress-responsive gene expression,
with MYC2 playing a central role or being a major hub in the crosstalk (Anderson
et al. 2004; Chen et al. 2011; Fernández-Calvo et al. 2011; Sun and Li 2014).

7.2 ET Crosstalk

The ERF key regulatory proteins of ET signal transduction are also the hub of the
crosstalk between ET and ABA, JA, SA, BR, and redox signaling. Under abiotic
stress, both ABA and JA regulate ERFs. However, we have few reports on the
crosstalk under drought stress. JA positively regulates the induction of ERFs [ERF6,
JERF1, JERF3, Tsi1, OPBP1, and GmERF3 (Sewelam et al. 2013; Wu et al. 2007,
2008;Wang et al. 2004; Park et al. 2001; Zhang et al. 2009a, b)], but ABA negatively
regulates the induction of few ERFs (ERF1/6) (Cheng et al. 2013; Sewelam et al.
2013). In contrast, ABA induces other ERFs (CsERF, GmERF3, LchERF, JERF3,
TSRF1, TaERF1 and JERF1) (Ma et al. 2014; Zhang et al. 2009a, b; Wu et al. 2007,
2008, 2014a, b; Quan et al. 2010; Xu et al. 2007). Overexpression of TSRF1 results in
enhanced drought tolerance (Quan et al. 2010; Cheng et al. 2013). The negative reg-
ulator AtERF7 inhibits ABA-induced gene expression, thereby decreasing drought
stress tolerance (Song et al. 2005).

7.3 JA Crosstalk

The JA crosstalk with ABA at MYC2 is involved in drought stress signaling and
activates genes such as RD22 and RD26, which are also upregulated under drought
stress (Abe et al. 2003; Fujita et al. 2004, 2006; Harb et al. 2010). JA and GA also
crosstalk, which is mediated by direct interaction betweenDELLA and JAZ proteins,
thereby competing for the JAZ–MYC2 interaction that activates JA-responsive genes
(Boter et al. 2004; Hou et al. 2010). Expression of the MYC2 target RGL3, which
encodes DELLA, is induced by JA signaling (Wild et al. 2012). MYC2 is released
when JA degrades JAZ. DELLA is also the hub of crosstalk between GA and ABA
under abiotic stress. In addition, there is crosstalk between JA and ET: both activate
Arabidopsis AtERF1, which imparts drought tolerance (Cheng et al. 2013).
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7.4 SA Crosstalk

SA interacts with other phytohormones, and depending on the hormone, has a syn-
ergistic or antagonistic relation under optimal and stressful conditions. SA-induced
ABA improves osmotic adaptation and growth under normal, salt and other abiotic
stress (Szepesi et al. 2009; Szalai et al. 2011). Mitogen-activated protein kinases are
key players of signaling components where antagonistic interaction between SA and
JA occurs (Khan et al. 2012a, b). In addition, NPR1, the master regulator of SA-
mediated defense, is a critical component of the epibassinolide-mediated increase in
abiotic stress tolerance (heat and salt) (Divi et al. 2010).

7.5 BR Crosstalk

BR and ABA crosstalk via ABI3/viviparous1 (ABI3/VP1) and related to ABI3/VP1
(RAV1) and induce BRI expression (Saini et al. 2015). Maintenance of cell wall
integrity is via interaction of BR with other hormones (Wolf et al. 2014). The long-
distance effect of BR is via crosstalk with multiple hormones (Vriet et al. 2013;
Gudesblat and Russinova 2011). BRs antagonistically cross-interact with ABA, ET,
SA, auxin, GA and polyamines (Vardhini and Anjum 2015). Analysis of det-2 and
bri-1 BR mutants demonstrated that BIN2 negatively regulates BR signaling in the
presence of ABA signaling, which is via ABI1/2 (PP2Cs) that function downstream
of BRI1 and upstream of BIN2 and regulate BR signaling (Zhang et al. 2009a, b).
ABI1/2 dephosphorylate BIN2, and ABA inhibits BIN2 phosphorylation by BES1,
thereby reducing BR signaling (Wang et al. 2018). BIN2 also interacts with ABI5
and phosphorylates it and mediates ABA signaling (Hu and Yu 2014). Both ABA
and BR induce the expression of BRASSINOSTEROID-SIGNALING KINASE 5
(BSK5), a key player in ABA signaling. Similar crosstalk between ABA and BR
occurs with a TF, BZR1 (Yang et al. 2016). BR and ET crosstalk via H2O2 and
regulate stress tolerance (Zhu et al. 2016). BR signaling interacts with SA signaling
via the TFWRKY70, which negatively regulates SA biosynthesis. NPR1, regulating
SA signaling, interacts with BIN2 and BZR1 and regulates stress tolerance (Divi
et al. 2010; Li et al. 2013).
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