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Abstract

Constructing a classical potential suited to simulate a given atomic system is a
remarkably difficult task. This chapter presents a framework under which this
problem can be tackled, based on the Bayesian construction of nonparametric
force fields of a given order using Gaussian process (GP) priors. The formalism
of GP regression is first reviewed, particularly in relation to its application
in learning local atomic energies and forces. For accurate regression, it is
fundamental to incorporate prior knowledge into the GP kernel function. To this
end, this chapter details how properties of smoothness, invariance and interaction
order of a force field can be encoded into corresponding kernel properties. A
range of kernels is then proposed, possessing all the required properties and an
adjustable parameter n governing the interaction order modelled. The order n

best suited to describe a given system can be found automatically within the
Bayesian framework by maximisation of the marginal likelihood. The procedure
is first tested on a toy model of known interaction and later applied to two real
materials described at the DFT level of accuracy. The models automatically
selected for the two materials were found to be in agreement with physical
intuition. More in general, it was found that lower order (simpler) models should
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be chosen when the data are not sufficient to resolve more complex interactions.
Low n GPs can be further sped up by orders of magnitude by constructing the
corresponding tabulated force field, here named “MFF”.

5.1 Introduction

The no free lunch (NFL) theorems proven by D. H. Wolpert in 1996 state
that no learning algorithm can be considered better than any other (and than
random guessing) when its performance is averaged uniformly over all possible
functions [1]. Although functions appearing in real-world problems are certainly
not uniformly distributed, this remarkable result seems to suggest that the search
for the “best” machine learning (ML) algorithm able to learn any function in an
“agnostic” fashion is groundless, and strongly justifies current efforts within the
physics and chemistry communities aimed at the development of ML techniques
that are particularly suited to tackle a given problem, for which prior knowledge is
available and exploitable.

In the context of machine learning force field (ML-FF) generation, this resulted
in a proliferation of different approaches based on artificial neural networks (NN)
[2–11], Gaussian process (GP) regression [12–17] or linear expansions on properly
defined bases [18–20]. Particularly within GP regression (the method predominantly
discussed in this chapter), a considerable effort was directed towards the inclusion
of the known physical symmetries of the target system (translations, rotations and
permutations) in the algorithm as a prior piece of information. Among these, rotation
symmetry proved the most cumbersome one to deal with, and received special
attention. This typically involved either building explicitly invariant descriptors (as
the Li et al. feature-matrix based on internal vectors [13]) or imposing the symmetry
via an invariant [21] or covariant [14] integral to learn energies or forces. Clearly,
many more detailed recipes than those featuring in the list above would be possible
in virtually all situations, making the problem of selecting a single model for a
particular task both interesting and unavoidable. In the following, we will argue
that a good way of choosing among competing explanations is to follow the long-
standing Occam’s razor principle and select the simplest model that is still able to
provide a satisfactory explanation [22–24].

This general idea has found rigorous mathematical formulations. Within statis-
tical learning theory, the complexity of a model can be measured by calculating
its Vapnik–Chervonenkis (VC) dimension [25, 26]. The VC dimension of a model
then relates to its sample complexity (i.e., the number of points needed to effectively
train it) as one can prove that the latter is bounded by a monotonic function of the
former [26, 27]. Similar considerations can also be made in a Bayesian context by
noting that models with prior distributions concentrated around the true function
(i.e., simpler models) have a lower sample complexity and will hence learn faster
[28]. The above considerations suggest that a principled approach to learn a force
field is to incorporate as much prior knowledge as is available on the function to be
learned and the particular system at hand. When prior knowledge is not enough to
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Fig. 5.1 A simple linear model (blue solid line) and a complex GP model (green dashed line) are
fitted to some data points. In this situation, if we have prior knowledge that a linear trend underpins
the data, we should enforce the blue model a priori; otherwise we should select the blue model by
Occam’s razor after the data becomes available, since it is the simplest one. The advantages of this
choice lie in the greater interpretability and extrapolation power of the simpler model

decide among competing models, these should all be trained and tested, after which
the simplest one that is still compatible with the desired target accuracy should be
selected. This approach is illustrated in Fig. 5.1, where two competing models are
considered for a one dimensional dataset.

In the rest of this chapter, we provide a step-by-step guide to the incorporation
of prior knowledge and to model selection in the context of Bayesian regression
based on GP priors (Sect. 5.2) and show how these ideas can be applied in practice
(Sect. 5.3). Section 5.2 is structured as follows. In Sect. 5.2.1, we give a pedagogical
introduction to GP regression, with a focus on the problem of learning a local energy
function. In Sect. 5.2.2, we show how a local energy function can be learned in
practice when using a database containing solely total energies and/or forces. In
Sect. 5.2.3, we then review the ways in which physical prior information can (and
should) be incorporated in GP kernel functions, focusing on smoothness (5.2.3.1),
symmetries (5.2.3.2) and interaction order (5.2.3.3). In Sect. 5.2.4, we make use
of the preceding section’s results to define a set of kernels of tunable complexity
that incorporate as much prior knowledge as is available on the target physical
system. In Sect. 5.2.5, we show how Bayesian model selection provides a principled
and “automatic” choice of the simplest model suitable to describe the system.
For simplicity, throughout this chapter only systems of a single chemical species
are discussed, but in Sect. 5.2.6, we briefly show how the ideas presented can be
straightforwardly extended to model multispecies systems.

Section 5.3 focuses on the practical application of the ideas presented. In partic-
ular, Sect. 5.3.1 describes an application of the model selection method described in
Sect. 5.2.5 to two different Nickel environments, represented as different subsets of
a general Nickel database. We then compare the results obtained from this Bayesian
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model selection technique with those provided by a more heuristic model selection
approach and show how the two methods, while being substantially different
and optimal in different circumstances, typically yield similar results. The final
Sect. 5.3.2 discusses the computational efficiency of GP predictions, and explain
how a very simple procedure can increase by several orders of magnitude the
evaluation speed of certain classes of GPs when on-the-fly training is not needed.
The code used to carry out such a procedure is freely available as part of the “MFF”
Python package [29].

5.2 Nonparametric n-body Force Field Construction

The most straightforward well-defined local property accessible to QM calculations
is the force on atoms, which can be easily computed by way of the Hellman–
Feynman theorem [30]. Atomic forces can be machine learned directly in various
ways, and the resulting model can be used to perform molecular dynamics simu-
lations, probe the system’s free energy landscape, etc. [13, 14, 16, 31, 32]. We can
however also define a local energy function ε(ρ) representing the energy ε of an
atom given a representation ρ of the set of positions of all the atoms surrounding
it within a cutoff distance. Such a set of positions is typically called an atomic
environment or an atomic configuration, and ρ could simply be a list of the atomic
species and positions expressed in Cartesian coordinates, or any suitably chosen
representation of these [13, 15, 21, 33].

Although local energies are not well-defined in quantum calculations, in the
following section we will be focusing on GP models for learning this somewhat
accessory function ε(ρ), as this makes it easier to understand the key concepts [34].
We will also assume for simplicity that our ML model is trained on a database of
local configurations and energies, although in practice ε(ρ) is machine-learned from
the atomic forces and total energies produced by QM codes. The details of how this
can be practically done will be discussed in Sect. 5.2.2.

5.2.1 Gaussian Process Regression

In order to learn the local energy function ε(ρ) yielding the energy of the atomic
configuration ρ, we assume to have access to a database of reference calculations
D = {(εr

i , ρi)}Ni=1 composed by N local atomic configurations ρ = (ρ1, . . . , ρN)T

and their corresponding energies εr = (εr
1, . . . , ε

r
N )T . It is assumed that the energies

have been obtained as

εr
i = ε(ρi) + ξi (5.1)

where the noise variables ξi are independent zero mean Gaussian random variables
(ξi ∼ N (0, σ 2

n )). This noise in the data can be imagined to represent the combined
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uncertainty associated with both training data and model used. For example, an
important source of uncertainty is the locality error resulting from the assumption
of a finite cutoff radius, outside of which atoms are treated as non-interacting. This
assumption is necessary in order to define local energy functions but it never holds
exactly.

The power of GP regression lies in the fact that ε(ρ) is not constrained to be a
given parametric functional form as in standard fitting approaches, but it is rather
assumed to be distributed as a Gaussian stochastic process, typically with zero mean

ε(ρ) ∼ GP (
0, k

(
ρ, ρ′)) (5.2)

where k is the kernel function of the GP (also called covariance function). This
notation signifies that for any finite set of input configurations ρ, the corresponding
set of local energies ε = (ε(ρ1), . . . , ε(ρN))T will be distributed according to a
multivariate Gaussian distribution whose covariance matrix is constructed through
the kernel function:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(ε | ρ) = N (0,K)

K =

⎛

⎜⎜
⎝

k(ρ1, ρ1) · · · k(ρ1, ρN)

...
. . .

...

k(ρN, ρ1) · · · k(ρN, ρN)

⎞

⎟⎟
⎠ .

(5.3)

Given that both ξi and ε(ρi) are normally distributed, and since the sum of two
Gaussian random variables is also a Gaussian variable, one can write down the
distribution of the reference energies εr

i of Eq. (5.1) as a new normal distribution
whose covariant matrix is the sum of the original two:

{
p (εr | ρ) = N (0,C)

C = K + 1σ 2
n .

(5.4)

Building on this closed form (Gaussian) expression for the probability of the
reference data, we can next calculate the predictive distribution, i.e., the probability
distribution of the local energy value ε∗ associated with a new target configuration
ρ∗, for the given training dataset D = (ρ, εr ) —the interested reader is referred to
the two excellent references [35, 37] for details on the derivation. This is:

⎧
⎪⎪⎨

⎪⎪⎩

p (ε∗ | ρ∗,D) = N (
ε̂ (ρ∗) , σ̂ 2 (ρ∗)

)

ε̂ (ρ∗) = kT C−1εr

σ̂ 2 (ρ∗) = k (ρ∗, ρ∗) − kT C−1k

, (5.5)
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Fig. 5.2 Pictorial view of GP learning of a LJ dimer. Panel (a): mean, standard deviation and
random realisations of the prior stochastic process, which represents our belief on the dimer
interaction before any data is seen. Panel (b): posterior process, whose mean passes through the
training data and whose variance provides a measure of uncertainty

where we defined the vector k = (k(ρ∗, ρ1), . . . , k(ρ∗, ρN))T . The mean function
ε̂(ρ) of the predictive distribution is now our “best guess” for the true underlying
function as it can be shown that it minimises expected error.1

The mean function is often equivalently written down as a linear combination of
kernel functions evaluated over all database entries

ε̂(ρ) =
N∑

d=1

k(ρ, ρd)αd, (5.6)

where the coefficients are readily computed as αd = (C−1ε)d . The posterior
variance of ε∗ provides a measure of the uncertainty associated with the prediction,
normally expressed as the standard deviation σ̂ (ρ).

The GP learning process can be thought of as an update of the prior distribution
Eq. (5.2) into the posterior Eq. (5.5). This update is illustrated in Fig. 5.2, in which
GP regression is used to learn a simple Lennard Jones (LJ) profile from a few dimer
data. In particular, Fig. 5.2a shows the prior GP (Eq. (5.2) while Fig. 5.2b shows
the posterior GP, whose mean and variance are those of the predictive distribution
Eq. (5.5). By comparing the two panels, one notices that the mean function (equal

1Choosing a squared error function L = (ε̄(ρ) − ε)2, the expected error under the posterior
distribution reads 〈L〉 = ∫

dε p(ε | ρ,D)(ε̄(ρ) − ε)2. Minimising this quantity with respect to the
unknown optimal prediction ε̄(ρ) can be done by equating the functional derivative δ〈L〉/δε̄(ρ) to
zero, yielding the condition (ε̄(ρ)−〈ε〉) = 0, proving that the optimal estimate corresponds to the
mean ε̂(ρ) of the predictive distribution in Eq. (5.5). One can show that choosing an absolute error
function L = |ε̄(ρ) − ε| makes the mode of the predictive distribution the optimal estimate, this
however coincides with the mean in the case of Gaussian distributions.
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to zero in the prior process) approximates the true function (black solid line) by
passing through the reference calculations. Clearly, the posterior standard deviation
(uniform in the prior) shrinks to zero at the points where data is available (as we set
the intrinsic noise σn to zero) to then increase again away from them. Three random
function samples are also shown for both prior and posterior process.

5.2.2 Local Energy fromGlobal Energies and Forces

The forces acting on atoms are well-defined local property accessible to QM
calculations, easily computed by way of the Hellman–Feynman theorem [30]. As a
consequence, GP regression can in principle be used to learn a force field directly
on a database of quantum forces, as done, for instance, in Refs. [13, 14, 31]. Local
atomic energies on the contrary cannot be computed in QM calculations, which can
only provide the total energy of the full system. However, the material presented in
the previous section, in addition to being of pedagogical importance, is still useful
in practice since local energy functions can be learned from observations of total
energies and forces only.

Mathematically this is possible since any sum, or derivative, of a Gaussian
process is also a Gaussian process [35], and the main ingredients needed for
learning are hence the covariances (kernels) between these Gaussian variables. In
the following, we will see how kernels for total energies and forces can be obtained
starting from a kernel for local energies, and how these derived kernels can be used
to learn a local energy function from global energy and force information.

Total Energy Kernels The total energy of a system can be modelled as a sum of
the local energies associated with each local atomic environment

E({ρa}) =
Na∑

a=1

ε(ρa) (5.7)

and if the local energy functions ε in the above equation are distributed according to
a zero mean GP, then also the global energy E will be GP variable with zero mean.
To calculate the kernel functions kεE and kEE providing the covariance between
local and global energies and between two global energies, one simply needs to take
the expectation with respect to the GP of the corresponding products

kεE
(
ρa,

{
ρ′

b

}) = 〈
ε(ρa)E

({
ρ′

b

})〉

=
N ′

a∑

b=1

〈
ε(ρa)ε

(
ρ′

b

)〉

=
N ′

a∑

b=1

k(ρa, ρb).

(5.8)
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kEE
({ρa},

{
ρ′

b

}) = 〈
E({ρa})E

({
ρ′

b

})〉

=
Na∑

a=1

N ′
a∑

b=1

〈
ε(ρa)ε

(
ρ′

b

)〉

=
Na∑

a=1

N ′
a∑

b=1

k(ρa, ρb).

(5.9)

Note that we have allowed the two systems to have a different number of particles
Na and N ′

a and that the final covariance functions can be entirely expressed in terms
of local energy kernel functions k.

Force Kernels The force f({ρa}p) on an atom p at position rp is defined as the
derivative

f
({ρa}p

) = −∂E ({ρa}p)

∂rp

, (5.10)

where by virtue of the existence of a finite cutoff radius of interaction, only the set
of configurations {ρa}p that contain atom p within their cutoff function contribute
to the force on p. Being the derivative of a GP-distributed quantiy, the force
vector is also distributed according to a GP [35] and the corresponding kernels
between forces and between forces and local energies can be easily obtained by
differentiation as described in Refs. [35, 36]. They read

kεf (
ρa, {ρb}p

) = −
∑

{ρb}q
∂k(ρa, ρb)

∂rT
q

(5.11)

Kff ({ρa}p, {ρb}q
) =

∑

{ρa}p

∑

{ρb}q
∂2k(ρa, ρb)

∂rp∂rT
q

. (5.12)

Total Energy–Force Kernel Learning from both energies and forces simultane-
ously is also possible. One just needs to calculate the extra kernel kfE comparing
the two quantities in the database

kfE ({ρa}p,
{
ρ′

b

}) = −
∑

{ρa}p

N ′∑

b=1

∂k(ρa, ρb)

∂rp

. (5.13)

To clarify how the kernels described above can be used in practice, it is instructive
to look at a simple example. Imagine having a database made up of a single snapshot
coming from an ab initio molecular dynamics of N atoms, hence containing a single
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energy calculation and N forces. Learning using these quantities would involve
building a N + 1 × N + 1 block matrix K containing the covariance between every
pair

K =

⎛

⎜⎜⎜
⎝

kEE ({ρa}, {ρb}) kEf
({ρa}, {ρb}1

) · · · kEf
({ρa}, {ρb}N

)

kfE
({ρa}1, {ρb}

)
Kff

({ρa}1, {ρb}1
) · · · Kff

({ρa}1, {ρb}N
)

...
...

. . .
...

kfE
({ρa}N, {ρb}

)
Kff

({ρa}N, {ρb}1
) · · · Kff

({ρa}N, {ρb}N
)

⎞

⎟⎟⎟
⎠

. (5.14)

As is clear from the above equation, each block is either a scalar (the energy–energy
kernel in the top left), a 3 × 3 matrix (the force–force kernels) or a vector (the
energy–force kernels). The full dimension of K is hence (3N + 1) × (3N + 1).

Once such a matrix is built and the inverse C−1 = [K + Iσ 2
n ]−1 computed, the

predictive distribution for the value of the latent local energy variable can be easily
written down. For notational convenience, it is useful to define the vector {xi}Ni=1
containing all the quantities in the training database and the vector {ti}Ni=1 specifying
their type (meaning that ti is either E or f depending on the type of data point
contained in xi). With this convention, the predictive distribution for the local energy
takes the form

p(ε∗ | ρ∗,D) = N
(
ε̂(ρ∗), σ̂ 2(ρ∗)

)

ε̂(ρ∗) =
∑

ij

kεti (ρ∗, ρi)C
−1
ij xj

σ̂ 2(ρ∗) = k(ρ∗, ρ∗) −
∑

ij

kεti (ρ∗, ρi)C
−1
ij ktj ε(ρj , ρ

∗),

(5.15)

where the products between xj , C−1
ij and ktj ε are intended to be between scalars,

vectors or matrices depending on the nature of the quantities involved.

5.2.3 Incorporating Prior Information in the Kernel

Choosing a Gaussian stochastic process as prior distribution over the local energies
ε(ρ) rather than a parametrised functional form brings a few key advantages. A
much sought advantage is that it allows greater flexibility: one can show that in
general a GP corresponds to a model with an infinite number of parameters, and
with a suitable kernel choice can act as a “universal approximator”: capable of
learning any function if provided with sufficient training data [35]. A second one is
a greater ease of design: the kernel function must encode all prior information about
the local energy function, but typically contains very few free parameters (called
hyperparameters) which can be tuned, and such tuning is typically straightforward.
Third, GPs offer a coherent framework to predict the uncertainty associated with the
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predicted quantities via the posterior covariance. This is typically not possible for
classical parametrised n-body force fields.

All this said, the high flexibility associated with GPs could easily become a
drawback when examined from the point of view of computational efficiency.
Broadly, it turns out that for maximal efficiency (which takes into account both
accuracy and speed of learning and prediction) one should constrain this flexibility
in physically motivated ways, essentially by incorporating prior information in the
kernel. This will reduce the dimensionality of the problem, e.g., by choosing to
learn energy functions of significantly fewer variables than those featuring in the
configuration ρ (3N for N atoms).

To effectively incorporate prior knowledge into the GP kernel, it is fundamental
to know the relation between important properties of the modelled energy and the
corresponding kernel properties. These are presented in the remainder of this section
for the case of local energy kernels. Properties of smoothness, invariance to physical
symmetries and interaction order are discussed in turn.

5.2.3.1 Function Smoothness
The relation between a given kernel and the smoothness of the random functions
described by the corresponding Gaussian stochastic process has been explored
in detail [35, 37]. Kernels defining functions of arbitrary differentiability have
been developed. For example, on opposite ends we find the so-called squared
exponential (kSE) and absolute exponential (kAE) kernels, defining, respectively,
infinitely differentiable and nowhere differentiable functions:

kSE(d) = e−d2/2	2
(5.16)

kAE(d) = e−d/	, (5.17)

where the letter d represents the distance between two points in the metric space
associated with the function to be learned (e.g., a local energy). The Matérn kernel
[35, 37] is a generalisation of the above-mentioned kernels and allows to impose an
arbitrary degree of differentiability depending on a parameter ν:

kM,ν(d) = 21−ν

�(ν)

(√
2ν

d

	

)ν

Kν

(√
2ν

d

	

)
, (5.18)

where � is the gamma function and Kν is a modified Bessel function of the second
kind.

The relation between kernels and modelled function differentiability is illustrated
by Fig. 5.3, showing the three kernels mentioned above (Fig. 5.3a) along with typical
samples from the corresponding GP priors (Fig. 5.3b). The absolute exponential
kernel has been found useful to learn atomisation energy of molecules [38–40],
especially in conjunction with the discontinuous Coulomb matrix descriptor [38].
In the context of modelling useful machine learning force fields, a relatively smooth
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Fig. 5.3 Effect of three kernel functions on the smoothness of the corresponding stochastic
processes

energy or force function is typically sought. For this reason, the absolute exponential
is not appropriate and has never been used while the flexibility of the Matérn
covariance has only found limited applicability [41]. In fact, the squared exponential
has been almost always preferred, in conjunction with suitable representations ρ of
the atomic environment, [14, 16, 31, 42], and will be used also in this work.

5.2.3.2 Physical Symmetries
Any energy or force function has to respect the symmetry properties listed below.

Translations Physical systems are invariant upon rigid translations of all their
components. This basic property is relatively easy to enforce in any learning
algorithm via a local representation of the atomic environments. In particular, it
is customary to express a given local atomic environment as the unordered set of
M vectors {ri}Mi=1 going from the “central” atom to every neighbour lying within
a given cutoff radius [14, 15, 21, 33]. It is clear that any representation ρ and any
function learned within this space will be invariant upon translations.

Permutations Atoms of the same chemical species are indistinguishable, and any
permutation P of identical atoms in a configuration necessarily leaves energy (as
well as the force) invariant. Formally one can write ε(Pρ) = ε(ρ)∀P . This property
corresponds to the kernel invariance

k
(Pρ,P ′ρ′) = k

(
ρ, ρ′) ∀P,P ′. (5.19)

Typically, the above equality has been enforced either by the use of invariant
descriptors [13, 14, 42, 43] or via an explicit invariant summation of the kernel over
the permutation group [15, 16, 44], with the latter choice being feasible only when
the symmetrisation involves a small number of atoms.
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Rotations The potential energy associated with a configuration should not change
upon any rigid rotation R of the same (i.e., formally, ε(Rρ) = ε(ρ)∀R). Similarly
to permutation symmetry, this invariance is expressed via the kernel property

k
(Rρ,R′ρ′) = k

(
ρ, ρ′) ∀R,R′. (5.20)

The use of rotation-invariant descriptors to construct the representation ρ immedi-
ately guarantees the above. Typical examples of such descriptors are the symmetry
functions originally proposed in the context of neural networks [3, 45], the internal
vector matrix [13] or the set of distances between groups of atoms [15, 42, 43].

Alternatively, a “base” kernel kb can be made invariant with respect to the
rotation group via the following symmetrisation (“Haar integral” over the full 3D
rotation group):

k
(
ρ, ρ′) =

∫
dR kb

(
ρ,Rρ′) . (5.21)

Such a procedure (called “transformation integration” in the ML community [46])
was first used to build a potential energy kernel in Ref. [21].

When learning forces, as well as other tensorial physical quantities (e.g., a
stress tensor, or the (hyper)polarisability of a molecule), the learnt function must
be covariant under rotations. This property can be formally written as f(Rρ) =
Rf(ρ)∀R and, as shown in [14], it translates at the kernel level to

K
(Rρ,R′ρ′) = RK(ρ, ρ′)R′T . (5.22)

Note that, since forces are three dimensional vectorial quantities, the corresponding
kernels are 3 × 3 matrices [14, 47, 48], here denoted by K.

Designing suitable covariant descriptors is arguably harder than finding invariant
ones. For this reason, the automatic procedure proposed in Ref. [14] to build
covariant descriptors can be particularly useful. Covariant matrix valued kernels
are generated starting with an (easy to construct) scalar base kernel kb through a
“covariant integral”

K
(
ρ, ρ′) =

∫
dRRkb

(
ρ,Rρ′) . (5.23)

This approach has been extended to learn higher order tensors in Refs. [49, 50].
Using rotational symmetry crucially improves the efficiency of the learned

model. A very simple illustrative example of the importance of rotational symmetry
is shown in Fig. 5.4, addressing an atomic dimer in which force predictions coming
from a non-covariant squared exponential kernel and its covariant counterpart
(obtained using Eq. (5.23)) are compared. The figure reports the forces predicted
to act on an atom, as a function of the position on the x-axis of the other atom,
relative to the first. So that, for positive x values the figure reports the forces on the
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Fig. 5.4 Learning the force profile of a 1D LJ dimer using data (blue circle) coming from one
atom only. It is seen that a non-covariant GP (solid red line) does not learn the symmetrically
equivalent force acting on the other atom and it thus predicts a zero force and maximum error. If
covariance is imposed to the kernel via Eq. (5.23) (dashed blue line), then the correct equivalent
(inverted) profile is recovered. Shaded regions represent the predicted 1σ interval in the two cases

left atom as a function of the position of the right atom, while negative x values will
be associated with forces acting on the right atom as a function of the position of the
left atom. In the absence of the covariance force properties, training the model on a
sample of nine forces acting on the left atom will populate correctly only the right
side of the graph: a null force will be predicted to act on the right atom (solid red
line on the left panel). However, the covariant transformation (in 1D, just a change
of sign) will allow the transposition of the force field learned from one environment
to the other, and thus the correct prediction of the (inverted) force profile in the left
panel.

5.2.3.3 Interaction Order
Classical parametrised force fields are sometimes expressed as a truncated series of
energy contributions of progressively higher n-body “interaction orders” [51–54].
The procedure is consistent with the intuition that, as long as the series converges
rapidly, truncating the expansion reduces the amount of data necessary for the
fitting, and enables a likely higher extrapolation power to unseen regions of con-
figuration space. The lowest truncation order compatible with the target precision
threshold is, in general, system dependent, as it will typically depend on the nature
of the chemical interatomic bonds within the system. For instance, metallic bonding
in a close-packed crystalline system might be described surprisingly well by a
pairwise potential, while covalent bonding yielding a zincblende structure can never
be, and it will always require three-body interactions terms to be present [14, 15].
Restricting the order of a machine learning force field has proven to be useful for
both neural network [55] and Gaussian process regression [14,42]. In the particular
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context of GP-based ML-FFs, prior knowledge on the interaction order needs to be
included in the form of an n-body kernel functions. A detailed and comprehensive
exposition on how to do so was given in Ref. [15], and it will be summarised below
and in the next subsection. The order of a kernel kn can be defined as the smallest
integer n for which the following property holds true

∂nkn

(
ρ, ρ′)

∂ri1 · · · ∂rin

= 0 ∀ ri1 	= ri2 	= · · · 	= rin , (5.24)

where ri1 , . . . , rin are the positions of any choice of a set of n different surrounding
atoms. By virtue of linearity, the predicted local energy in Eq. (5.6) will also satisfy
the same property if kn does. Thus, Eq. (5.24) implies that the central atom in a
local configuration interacts with up to n − 1 other atoms simultaneously, making
the learned energy n-body.

5.2.4 Smooth, Symmetric Kernels of Finite Order n

In the previous subsection, we saw how the fundamental physical symmetries of
energy and forces translate into the realm of kernels. Here, we show how to build
n-body kernels that possess these properties.

We start by defining a smooth translation- and permutation-invariant 2-body
kernel by summing all the squared exponential kernels calculated on the distances
between the relative positions in ρ and those in ρ′ [14–16]

k2
(
ρ, ρ′) =

∑

i∈ρ,j∈ρ′
e
−‖ri−r′

j ‖2/2	2
. (5.25)

As shown in [15], higher order kernels can be defined simply as integer powers of
k2

kn

(
ρ, ρ′) = k2

(
ρ, ρ′)n−1 (5.26)

Note that, by building n-body kernels using Eq. (5.26), one can avoid the expo-
nential cost of summing over all n-plets that a more naïve kernel implementation
would involve. This makes it possible to model any interaction order paying only
the quadratic computational cost of computing the 2-body kernel in Eq. (5.25).

Furthermore, one can at this point write the squared exponential kernel on the
natural distance d2(ρ, ρ′) = k2(ρ, ρ) + k2(ρ

′, ρ′) − 2k2(ρ, ρ′) induced by the
(“scalar product”) k2 as a formal many-body expansion:

kMB

(
ρ, ρ′) = e−d2(ρ,ρ′)/2	2

= e
−k2(ρ,ρ)−k2(ρ′,ρ′)

2	2

[
1 + 1

	2
k2 + 1

2!	4
k3 + 1

3!	6
k4 + · · ·

]
. (5.27)
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So that, assuming a smooth underlying function, the completeness of the series and
the “universal approximator” property of the squared exponential [35, 56] can be
immediately seen to imply one another.

It is important to notice that the scalar kernels just defined are not rotation
symmetric, i.e., they do not respect the invariance property of Eq. (5.20). This is
due to the fact that the vectors ri and r′

j featuring in Eq. (5.25) depend on the
arbitrary reference frames with respect to which they are expressed. A possible
solution would be given by carrying out the explicit symmetrisations provided
by Eq. (5.21) (or Eq. (5.23) if the intent is to build a force kernel). The invariant
integration Eq. (5.21) of k3 is, for instance, a step in the construction of the (many-
body) SOAP kernel [21], while an analytical formula for kn (with arbitrary n) has
been recently proposed [15]. The covariant integral (Eq. (5.23)) of finite-n kernels
was also successfully carried out (see Ref. [14], which in particular contains a closed
form expression for the n = 2 matrix valued two-body force kernel).

However, explicit symmetrisation via Haar integration invariably implies the
evaluation of computationally expensive functions of the atomic positions. Moti-
vated by this fact, one could take a different route and consider symmetric n-kernels
defined, for any n, as functions of the effective rotation-invariant degrees of freedom
of n-plets of atoms [15]. For n = 2 and n = 3, we can choose these degrees
of freedom to be simply the interparticle distances occurring in atomic pairs and
triplets (other equally simple choices are possible, and have been used before, see
Ref. [42]). The resulting kernels read:

ks
2

(
ρ, ρ′) =

∑

i∈ρ
j∈ρ′

e
−

(
ri−r ′

j

)2
/2	2

, (5.28)

ks
3

(
ρ, ρ′) =

∑

i1>i2∈ρ
j1>j2∈ρ′

∑

P∈P
e
−‖(ri1 ,ri2 ,ri1i2

)T−P
(
r ′
j1

,r ′
j2

,r ′
j1j2

)T‖2/2	2

. (5.29)

where ri indicates the Euclidean norm of the relative position vector ri , and the
sum over all permutations of three elements P (| P |= 6) ensures the permutation
invariance of the kernel (see Eq. (5.19)).

It was argued (and numerically tested) in [15] that these direct kernels are as
accurate as the Haar-integrated ones, while their evaluation is very substantially
faster. However, as is clear from Eqs. (5.28) and (5.29), even the construction of
directly symmetric kernels becomes unfeasible for large values of n, since the
number of terms in the sums grows exponentially. On the other hand, it is still
possible to use Eq. (5.26) to increase the integer order of an already symmetric
n′−body kernel by elevating it to an integer power. As detailed in [15], raising
an already symmetric “input” kernel of order n′ to a power ζ in general produces a
symmetric “output” kernel

k¬u
n

(
ρ, ρ′) = ks

n′
(
ρ, ρ′)ζ (5.30)
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of order n = (n′ − 1)ζ + 1. We can assume that the input kernel was built on the
effective degrees of freedom of the n′ particles in an atomic n′-plet (as is the case,
e.g., the 2 and 3-kernels in Eqs. (5.28) and (5.29)). The number of these degrees of
freedom is (3n′ − 6) for n′ > 2 (or just 1 for n′ = 2). Under this assumption, the
output n-body kernel will depend on ζ(3n′ − 6) variables (or just ζ variables for
n′ = 2). It is straightforward to check that this number is always smaller than the
total number of degrees of freedom of n bodies (here, 3n−6 = 3(n′−1)ζ −3). As a
consequence, a rotation-symmetric kernel obtained as an integer power of an already
rotation-symmetric kernel will not be able to learn an arbitrary n-body interaction
even if fully trained: its convergence predictions upon training on a given n-body
reference potential will not be in general exact, and the prediction errors incurred
will be specific to the input kernel and ζ exponent used. For this reason, kernels
obtained via Eq. (5.30) were defined non-unique in Ref. [15] (the superscript ¬u in
Eq. (5.30) stands for this).

In practice, the non-unicity issue appears to be a severe problem only when the
input kernel is a two-body kernel, and as such it depends only on the radial distances
from the central atoms occurring in the two atomic configurations (cf. Eq. (5.28)).
In this case, the non-unique output n-body kernels will depend on ζ -plets of radial
distances and will miss angular correlations encoded in the training data [15]. On
the contrary, a symmetric 3-body kernel (Eq. (5.29)) contains angular information
on all triplets in a configuration, and using this kernel as input will be able to capture
higher interaction orders (as confirmed, e.g., by the numerical tests performed in
Ref. [21]).

Following the above reasoning, one can define a many-body kernel invariant over
rotations as a squared exponential on the 3-body invariant distance d2

s (ρ, ρ′) =
ks

3(ρ, ρ) + ks
3(ρ

′, ρ′) − 2ks
3(ρ, ρ′), obtaining:

ks
MB

(
ρ, ρ′) = e−(ks

3(ρ,ρ)+ks
3(ρ

′,ρ′)−2ks
3(ρ,ρ′))/2	2

. (5.31)

It is clear from the series expansion of the exponential function that this kernel
is many-body in the sense of Eq. (5.24) and that the importance of high order
contributions can be controlled by the hyperparameter 	. With 	 � 1 high order
interactions become dominant, while for 	  1 the kernel falls back to a 3-body
description.

For all values of 	, the above kernel will however always encompass an implicit
sum over all contributions (no matter how suppressed), being hence incapable
of pruning away irrelevant ones even when a single interaction order is clearly
dominant. Real materials often possess dominant interaction orders, and the ionic
or covalent nature of their chemical bonding makes the many-body expansion
converge rapidly. In these cases, an algorithm which automatically selects the
dominant contributions, truncating this way the many-body series in Eq. (5.27),
would represent an attractive option. This is the subject of the following section.
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5.2.5 Choosing the Optimal Kernel Order

In the previous sections, we analysed how prior information can be encoded in
the kernel function. This brought us to designing kernels that implicitly define
smooth potential energy surfaces and force fields with all the desired symmetries,
corresponding to a given interaction order (Eqs. (5.29) and (5.30)). This naturally
raises the problem of deciding the order n best suited to describe a given system.
A good conceptual framework for a principled choice is that of Bayesian model
selection, which we now briefly review.

We start by assuming we are given a set of models {Mθ
n} (each, e.g., defined by

a kernel function of given order n). Each model will be equipped with a vector of
hyperparameters θ (typically associated with the covariance lengthscale 	, the data
noise level σn and similar). A fully Bayesian treatment would involve calculating
the posterior probability of each candidate model, formally expressed via Bayes’
theorem as

p
(
Mθ

n | ρ, εr
)

= p
(
εr | ρ,Mθ

n

)
p

(Mθ
n

)

p (εr | ρ)
, (5.32)

and selecting the model that maximises it. However, often little a priori information
is available on the candidate models and their hyperparameters (or it is simply
interesting to operate a selection unbiased by priors, and “let the data speak”). In
such a case, the prior p(Mθ

n) can be ignored as being flat and uninformative, and
maximising the posterior becomes equivalent to maximising the marginal likelihood
p(εr | ρ,Mθ

n) (here equivalent to the model evidence.2), and the optimal selection
tuple (n, θ) can be hence chosen as

(
n̂, θ̂

)
= argmax

(n,θ)

p
(
εr | ρ,Mθ

n

)
. (5.33)

The marginal likelihood is an analytically computable normalised multivariate
distribution, and it was given in Eq. (5.4).

The maximisation in Eq. (5.33) can be thought of as a formalisation of the
Occam’s razor principle in our particular context. This is illustrated in Fig. 5.5,
which contains a cartoon of the marginal likelihood of three models of increas-
ing complexity/flexibility (a useful analogy is to think of polynomials Pn(x) of
increasing order n, the likelihood representing how well these would fit a set of
measurements εr of an unknown function ε(x)). By definition, the most complex
model in the figure is the green one, as it assigns a non-zero probability to the

2The model evidence is conventionally defined as the integral over the hyperparameter space of
the marginal likelihood times the hyperprior (cf. [35]). We here simplify the analysis by jointly
considering the model and its hyperparameters.
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Fig. 5.5 Cartoon of the
marginal likelihood profile of
three models of increasing
complexity. More complex
models can fit very different
datasets εr , this is illustrated
by the fact that their marginal
likelihood is non-zero for a
broader region of the dataset
space (here pictorially one
dimensional)
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largest domain of possible outcomes, and would thus be able to explain the widest
range of datasets. Consistently, the simplest model is the red one, which is instead
restricted to the smallest dataset range (in our analogy, a straight line will be able to
fit well fewer datasets than a fourth order polynomial). Once a reference database
εr

0 is collected, it is immediately clear that the M3 model with highest likelihood
p(ε | ρ,Mθ

n) at εr = εr
0 is the simplest that is still able to explain it (the blue one

in Fig. 5.5). Indeed, the even simpler model M2 is not likely to explain the data, the
more complex model M4 can explain more than is necessary for compatibility with
the εr

0 data at hand, and thus produces a lower likelihood value, due to normalisation.
To see how these ideas work in practice, we first test them on a simple system

with controllable interaction order, while real materials are analysed in the next
section. We here consider a one dimensional chain of atoms interacting via an ad
hoc potential of order nt (t standing for “true”).3

For each value of nt , we generate a database of N randomly sampled config-
urations and associated energies. To test Bayesian model selection, for different
reference nt and N values and for fixed σn ≈ 0 (noiseless data), we selected the
optimal lengthscale parameter 	 and interaction order n of the n-kernel in Eq. (5.26)
by solving the maximisation problem of Eq. (5.33). This procedure was repeated 10
times to obtain statistically significant conclusions; the results were however found
to be very robust in the sense that they did not depend significantly on the specific
realisation of the training dataset.

The results are reported in Fig. 5.6, where we graph the logarithm of the
maximum marginal likelihood (MML), divided by the number of training points
N , as a function of N for different combinations of true orders nt and kernel order
n. The model selected in each case is the one corresponding to the line achieving

3The n-body toy model used was set up as a hierarchy of two-body interactions defined via the

negative Gaussian function εg(d) = −e− (d−1)2
2 . This pairwise interaction, depending only on the

distance d between two particles, was then used to generate n-body local energies as εn(ρ) =∑
i1 	=···	=in−1

εg(xi1 )ε
g(xi2 −xi1 ) . . . εg(xin−2 −xin−1 ) where xi1 , . . . , xin−1 are the positions, relative

to the central atom, of n − 1 surrounding neighbours.
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Fig. 5.6 Scaled log maximum marginal likelihood as a function of the number of training points
for different kernel models n and true interaction orders nt . (a) nt = 2. (b) nt = 3. (c) nt = 4

the maximum value of this quantity. It is interesting to notice that, when the kernels
order is lower than the true order (i.e., for n < nt ), the MML can be observed
to decreases as a function of N (as, e.g., the red and blue lines in Fig. 5.6c). This
makes the gap between the true model and the other models increase substantially
as N becomes sufficiently large.

Figure 5.7 summarises the results of model selection. In particular, Fig. 5.7a
illustrates the model-selected order n̂ as a function of the true order nt , for different
training set sizes N . The graph reveals that, when the dataset is large enough (N =
1000 in this example) maximising the marginal likelihood always yields the true
interaction order (green line). On the contrary, for smaller database sizes, a lower
interaction order value n is selected (blue and red lines). This is consistent with the
intuitive notion that smaller databases may simply not contain enough information
to justify the selection of a complex model, so that a simpler one should be
chosen. More insight can be obtained by observing Fig. 5.7b, reporting the model-
selected order as a function of the training dataset size for different true interaction
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Fig. 5.7 Model-selected order n̂ as a function of the true order nt (left) and as a function of the
number of training data points N (right)

orders. While the order of a simple 2-body model is always recovered (red line), to
identify as optimal a higher order interaction model a minimum number of training
points is needed, and this number grows with the system complexity. Although
not immediately obvious, choosing a simpler model when only limited databases
are available also leads to smaller prediction errors on unseen configurations, since
overfitting is ultimately prevented, as illustrated in Refs. [14, 15] and further below
in Sect. 5.3.1.

The picture emerging from these observations is one in which, although the
quantum interactions occurring in atomistic systems will in principle involve all
atoms in the system, there is never going to be sufficient data to select/justify the
use of interaction models beyond the first few terms of the many-body expansion
(or any similar expansion based on prior physical knowledge). At the same time,
in many likely scenarios, a realistic target threshold for the average error on atomic
forces (typically of the order of 0.1 eV/A) will be met by truncating the series at
a complexity order that is still practically manageable. Hence, in practice a small
finite-order model will always be optimal.

This is in stark contrast with the original hope of finding a single many-body
“universal approximator” model to be used in every context, which has been driving
a lot of interest in the early days of the ML-FF research field, producing, for
instance, reference methods [3, 12]. Furthermore, the observation that it may be
possible to use models of finite-order complexity without ever recurring to universal
approximators suggests alternative routes for increasing the accuracy of GP models
without increasing the kernels’ complexity. These are worth a small digression.

Imagine a situation as the one depicted in Fig. 5.8, where we have an hetero-
geneous dataset composed of configurations that cluster into groups. This could
be the case, for instance, if we imagine collecting a database which includes
several relevant phases of a given material. Given the large amount of data and
the complexity of the physical interactions within (and between) several phases, we
can imagine the model selected when training on the full dataset to be a relatively
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Fig. 5.8 An illustrative
representation of a
heterogeneous database
composed of configurations
which “cluster” around
specific centroids in an
arbitrary two dimensional
space. The different clusters
can be imagined to be
different phases of the same
material
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complex one. On the other hand, each of the small datasets representative of a
given phase may be well described by a model of much lower complexity. As a
consequence, one could choose to train several GP, one for each of the phases,
as well as a gating function p(c|ρ) deciding, during an MD run, which of the
clusters c to call at any given time. These GPs learners will effectively specialise
on each particular phase of the material. This model can be considered a type of
mixture of experts model [57, 58], and heavily relies on a viable partitioning of the
configuration space into clusters that will comprise similar entries. This subdivision
is far from trivially obtained in typical systems, and in fact obtaining “atlases” for
real materials or molecules similar to the one in Fig. 5.8 is an active area of research
[59–62]. However, another simpler technique to combine multiple learner is that of
bootstrap aggregating (“Bagging”) [63]. In our particular case, this could involve
training multiple GPs on random subsections of the data and then averaging them to
obtain a final prediction. While it should not be expected that the latter combination
method will perform better than a GP trained on the full dataset, the approach can be
very advantageous from a computational perspective since, similar to the mixture of
experts model, it circumvents the O(N3) computational bottleneck of inverting the
kernel matrix in Eq. (5.5) by distributing the training data to multiple GP learners.
ML algorithms based on the use of multiples learners belong to a broader class of
ensemble learning algorithms [64, 65].

5.2.6 Kernels for Multiple Chemical Species

In this section, we briefly show how kernels for multispecies systems can be
constructed, and provide specific expressions for the case of 2- and 3-body kernels.

It is convenient to show the reasoning behind multispecies kernel construction
starting from a simple example. Defining by sj the chemical species of atom j , a
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generic 2-body decomposition of the local energy of an atom i surrounded by the
configuration ρi takes the form

ε(ρi) =
∑

j∈ρi

ε̃
si sj
2 (rij ), (5.34)

where a pairwise function ε̃
si sj
2 (rij ) is assumed to provide the energy associated

with each couple of atoms i and j which depends on their distance rij and on their
chemical species si and sj . These pairwise energy functions should be invariant
upon re-indexing of the atoms, i.e., ε̃

si sj
2 (rij ) = ε̃

sj si
2 (rji). The kernel for the

function ε(ρi) then takes the form

ks
2

(
ρi, ρ

′
l

) = 〈
ε(ρi)ε

(
ρ′

l

)〉

=
∑

jm

〈
ε̃
si sj
2 (rij )ε̃

s′
l s

′
m

2

(
r ′
lm

)〉

=
∑

jm

k̃
si sj s′

l s
′
m

2

(
rij , r

′
lm

)
.

(5.35)

The problem of designing the kernel ks
2 for two configurations in this way reduced to

that of choosing a suitable kernel k̃
si sj s′

l s
′
m

2 comparing couples of atoms. An obvious
choice for this would include a squared exponential for the radial dependence
and a delta correlation for the dependence on the chemical species, giving rise to
δsi s

′
l
δsj s′

m
kSE(rij , r

′
lm). This kernel is however still not symmetric upon the exchange

of two atoms and it would hence not impose the required property ε̃
si sj
2 (rij ) =

ε̃
sj si
2 (rji) on the learned pairwise potential. Permutation invariance can be enforced

by a direct sum over the permutation group, in this case simply an exchange of the
two atoms l and m in the second configuration. The resulting 2-body multispecies
kernel reads

ks
2

(
ρi, ρ

′
l

) =
∑

j∈ρi

m∈ρ′
l

(
δsi s

′
l
δsj s′

m
+ δsi s

′
m
δsj s′

l

)
e−(rij −r ′

lm)
2
/2	2

. (5.36)

This can be considered the natural generalisation of the single species 2-body kernel
in Eq. (5.28). A very similar sequence of steps can be followed for the 3-body kernel.
By defining the vector containing the chemical species of an ordered triplet as
sijk = (sisj sk)

T, as well as the vector containing the corresponding three distances
rijk = (rij rjkrki)

T, a multispecies 3-body kernel can be compactly written down as

ks
3

(
ρi, ρ

′
l

) =
∑

j>k∈ρi

m>n∈ρ′
l

∑

P∈P
δsijk,Ps′lmn

e
−

∥
∥∥rT

ijk−Pr′
lmn

∥
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2
/2	2

, (5.37)
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where the group P contains six permutations of three elements, represented by
the matrices P. The above can be considered the direct generalisation of the 3-
body kernel in Eq. (5.29). It is simple to see how the reasoning can be extended
to an arbitrary n-body kernel. Importantly, the computational cost of evaluating the
multispecies kernels described above does not increase with the number of species
present in a given environment, and the kernels’ interaction order could be increased
arbitrarily at no extra computational cost using Eqs. (5.30) and (5.31).

5.2.7 Summary

In this section, we first went through the basics of GP regression, and emphasised the
importance of a careful design of the kernel function, which ideally should encode
any available prior information on the (energy or force) function to be learned
(Sect. 5.2.1). In Sect. 5.2.2, we detailed how a local energy function (which is not a
quantum observable) can be learned in practice starting from a database containing
solely total energies and atomic forces. We then discussed how fundamental
properties of the target force field, such as the interaction order, smoothness, as
well as its permutation, translation and rotation symmetries, can be included into
the kernel function (Sect. 5.2.3). We next proceeded to the construction of a set of
computationally affordable kernels that implicitly define smooth, fully symmetric
potential energy functions with tunable “complexity” given a target interaction order
n. In Sect. 5.2.5, we looked at the problem of choosing the order n best suited for
predictions based on the information available in a given set of QM calculations.
Bayesian theory for model selection prescribes in this case to choose the n-kernel
yielding the largest marginal likelihood for the dataset, which is found to work very
well in a 1D model system where the interaction order can be tuned and is correctly
identified upon sufficient training. Finally, in Sect. 5.2.6 we showed how the ideas
presented can be generalised to systems containing more than one chemical species.

5.3 Practical Considerations

We next focus on the application of the techniques described in the previous
sections. In Sect. 5.3.1, we apply the model selection methodology described in
Sect. 5.2.5 to two atomic systems described using density functional theory (DFT)
calculations. Namely, we consider a small set of models with different interaction
order n, and recast the optimal model selection problem into an optimal kernel order
selection problem. This highlights the connections between the optimal kernel order
n and the physical properties of the two systems, revealing how novel physical
insight can be gained via model selection. We then present a more heuristic approach
to kernel order selection and compare the results with the ones obtained from the
MML procedure. The comparison reveals that typically the kernel selected via the
Bayesian approach also incurs into lower average error for force prediction on a
provided test set. In Sect. 5.3.2, we discuss computational efficiency of GPs. We
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argue that an important advantage of using GP kernels of known finite order is
the possibility of “mapping” the kernel’s predictions onto the values of a compact
approximator function of the same set of variables. This keeps all the advantages of
the Bayesian framework, while removing the need of lengthy sums over the database
and expensive kernel evaluations typical of GP predictions. For this we introduce a
method that can be used to “map” the GP predictions for finite-body kernels and
therefore increase the computational speed up to a factor of 104 when compared
with the original 3-body kernel, while effectively producing identical interatomic
forces.

5.3.1 ApplyingModel Selection to Nickel Systems

We consider two Nickel systems: a bulk face centred cubic (FCC) system described
using periodic boundary conditions (PBC), and a defected double icosahedron
nanocluster containing 19 atoms, both depicted in Fig. 5.9a. We note that all atoms in
the bulk system experience a similar environment, their local coordination involving
12 nearest neighbours, as the system contains no surfaces, edges or vertexes.
The atom-centred configurations ρ are therefore very similar in this system. The
nanocluster system is instead exclusively composed by surface atoms, involving a
different number of nearest neighbours for different atoms. The GP model is thus
here required to learn the reference force field for a significantly more complex
and more varied set of configurations. It is therefore expected that the GP model
selected for the nanocluster systems will be more complex (have a higher kernel
order n) than the one selected for the bulk system, even if the latter system is kept
at an appreciably higher temperature.

The QM databases used here were extracted from first principles MD simulations
carried out at 500 K in the case of bulk Ni, and at 300 K for the Ni nanocluster.
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Fig. 5.9 Panel (a): the two Nickel systems used in this section as examples, with bulk FCC Nickel
in periodic boundary conditions on the left (purple) and a Nickel nanocluster containing 19 atoms
on the right (orange). Panel (b): maximum log marginal likelihood divided by the number of
training points for the 2-, 3- and 5-body kernels in the bulk Ni (purple) and Ni nanocluster (orange)
systems, using 50 (dotted lines) and 200 (full lines) training configurations
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All atoms within a 4.45 Å cutoff from the central one were included in the
atomic configurations ρ for the bulk Ni system, while no cutoff distance was set
for the nanocluster configurations, which therefore all include 19 atoms. In this
example, we perform model selection on a restricted, yet representative, model
set {Mθ

2,Mθ
3,Mθ

5} containing, in increasing order of complexity, a 2-body kernel
(see Eq. (5.28)), a 3-body kernel (see Eq. (5.29)) and a non-unique 5-body kernel
obtained by squaring the 3-body kernel [14] (see Eq. (5.30)). Every kernel function
depends on only two hyperparameters θ = (	, σn), representing the characteristic
lengthscale of the kernel 	 and the modelled uncertainty of the reference data σn.
While the value of σn is kept the same for all kernels, we optimise the lengthscale
parameter 	 for each kernel via marginal likelihood maximisation (Eq. (5.33)). We
then select the optimal kernel order n as the one associated with the highest marginal
likelihood.

Figure 5.9b reports the optimised marginal likelihood of the three models (n =
2, 3, 5) for the two systems while using 50 and 200 training configurations. The 2-
and 3-body kernels reach comparable marginal likelihoods in the bulk Ni system,
while a 3-body kernel is instead always optimal for the Ni nanocluster system. While
intuitively correlated with the relative complexity of the two systems, these results
yield further interesting insight. For instance, the occurrence of angular-dependent
forces must have a primary role in small Ni clusters since a 3-body kernel is
necessary and sufficient to accurately describe the atomic forces in the nanocluster.
Meanwhile, the 5-body kernel does not yield a higher likelihood, suggesting that the
extra correlation it encodes is not significant enough to be resolved at this level of
training. On the other hand, the forces on atoms occurring in a bulk Ni environment
at a temperature as high as 500 K are well described by a function of radial distance
only, suggesting that angular terms play little to no role, as long as the bonding
topology remains everywhere that of undefected FCC crystal.

The comparable maximum log marginal likelihoods the 2- and 3-body kernels
produce on bulk environment suggest that the two kernels will achieve similar
accuracies. In particular, the 2-body kernel produces the higher log marginal
likelihood when the models are trained using N = 50 configurations, while the 3-
body kernel has a better performance when N increases to 200. This result resonates
with the results shown on the toy model in Fig. 5.7: the model selected following the
MML principle is a function of the number of training points N used.

For this reason, when using a restricted dataset we should prefer the 2-body
kernel to model bulk Ni and a 3-body kernel to model the Ni cluster, as these provide
the simplest models that are able to capture sufficiently well the interactions of the
two systems. Notice that the models selected in the two cases are different and this
reflects the different nature of the chemical interactions involved. This is reassuring,
as it shows that the MML principle is able to correctly identify the minimum
interaction order needed for a fundamental characterisation of a material even with
very moderate training set sizes. For most inorganic material, this minimum order
can be expected to be low (typically either 2 or 3) as a consequence of the ionic or
covalent nature of the chemical bonds involved, while for certain organic molecules,
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Fig. 5.10 Learning curves for bulk Ni (a) and Ni nanocluster (b) systems displaying the mean
error incurred by the 2-body, 3-body and 5-body kernels as the number of training points used
varies. The “error on force” reported here is defined as the norm of the difference vector between
predicted and reference force. The error bars in the graphs show the standard deviation when five
tests were repeated using different randomly chosen training and testing configuration sets. The
black dashed line corresponds to the same target accuracy in the two cases (here 0.15 eV/Å), much
more easily achieved in the bulk system

one can expect this to be higher (think, e.g., at the importance of 4-body dihedral
terms).

Overall, this example showcases how the maximum marginal likelihood principle
can be used to automatically select the simplest model which accurately describes
the system, meanwhile providing some insight on the nature of the interactions
occurring in the system. In the following, we will compare this procedure with a
more heuristic approach based on comparing the kernels’ generalisation error, which
is commonly employed in the literature [14–16, 43, 66] for its ease of use.

Namely, let us assume that all of the hyperparameters θ have been optimised for
each kernel in our system of interest, either via maximum likelihood optimisation
or via manual tuning. We then measure the error incurred by each kernel on a test
set, i.e., a set of randomly chosen configurations and forces different from those
used to train the GP. Tracing this error as the number of training points increases,
we obtain a learning curve (Fig. 5.10). The selected model will be the lowest-
complexity one that is capable of reaching a target accuracy (chosen by the user, here
set to 0.15 eV/Å, cf. black dotted line in Fig. 5.10). Since lower-complexity kernels
are invariably faster learners, if they can reach the target accuracy, they will do so
using a smaller number of training points, consistent with all previous discussions
and findings. More importantly, lower-complexity kernels are computationally
faster and more robust extrapolators than higher-complexity ones—a property that
derives from the low order interaction they encode. Furthermore, they can be
straightforwardly mapped as described in the next section. For the bulk Ni system
of the present example, all three kernels reach the target error threshold, so the 2-
body kernel is the best choice for the bulk Ni system. In the Ni nanocluster case, the
2-body kernel is not able to capture the complexity of force field experienced by the
atoms in the system, while both the 3- and 5-body kernels reach the threshold. Here
the 3-body kernel is thus preferred.
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In conclusion, marginal likelihood and generalisation error offer different
approaches to the problem of optimal model selection. While their outcomes are
generally consistent, these two methods differ in spirit, e.g., because the marginal
likelihood distribution naturally incorporates information on the underlying model’s
variance when measured on the training target data and this will reflect into selecting
the best model also on this basis (see Fig. 5.5, in which the target data εr

0 select the
model with n = 3). This is not true when using the generalisation error, where all
that counts is the model’s prediction, i.e., the predicted mean of the posterior GP.
Moreover, while model selection according to the marginal likelihood is a function
of the training set only, the generalisation error is also dependent on the choice of
the test set, whose sampling uncertainty can be reduced through repeated tests, as
reported in Fig. 5.10. Regardless of the model selection method, simpler models
may perform better when the available data is limited, i.e., higher model complexity
does not necessarily imply higher prediction accuracy: whether this is the case will
each time depend on the target physical system, the desired accuracy threshold,
and the amount data available for training. Due to the lower dimensionality of the
feature spaces used to construct the kernels, the predictions of simpler models will
also be easier to re-express into a more computationally efficient way than carrying
out the summation in Eq. (5.6). For the examples described in this chapter, this
means re-expressing the trained GPs based on n-body kernels as functions of 3n-6
variables which can be evaluated directly, without using a database. These functions
can be viewed as the nonparametric n-body classical force fields (here named
“MFFs”) that the n-body kernels’ predictions exactly correspond to. Exploiting this
correspondence allows us to achieve force fields as fast-executing as determined by
the complexity of the physical problem at hand (which will determine the lowest n

that can be used). Examples of MFF constructions and tests on their computational
efficiency are provided in the next section.

5.3.2 Speeding Up Predictions by BuildingMFFs

In Sect. 5.2.4, we described how simple n-body kernels of any order n could be
constructed. Force prediction based on these kernels effectively produces nonpara-
metric classical n-body force fields: typically depending on distances (2-body) as
well as on angles (3-body), dihedrals (4-body) and so on, but not bound by design
to any particular functional form.

In this section, we describe a mapping technique (first presented in Ref. [15]) that
faithfully encodes forces produced by n-body GP regression into classical tabulated
force fields. This procedure can be carried out with arbitrarily low accuracy loss,
and always yields a substantial computational speed gain.
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We start from the expression of the GP energy prediction in Eq. (5.6), where we
substitute k with a specific n-body kernel (in this example, the 2-body kernel of
Eq. (5.25) for simplicity). Rearranging the sums, we obtain:

ε̂(ρ) =
∑

i∈ρ

⎛

⎝
N∑

d

∑

j∈ρd

e−(ri−rj )2/2	2
αd

⎞

⎠ . (5.38)

The expression within the parentheses in the above equation is a function of the
single distance ri in the target configuration ρ and the training dataset, and it will
not change once the dataset is chosen and the model is trained (the covariance matrix
is computed and inverted to give the coefficient αd for each dataset entry). We can
thus rewrite Eq. (5.38) as

ε̂(ρ) =
∑

i∈ρ

ε̃2(ri), (5.39)

where the function ε̃(ri) can be now thought to be nonparametric 2-body potential
expressing the energy associated with an atomic pair (a “bond”) as a function of the
interatomic distance, so that the energy associated with a local configuration ρ is
simply the sum over all atoms surrounding the central one of this 2-body potential.
It is now possible to compute the values of ε̃2(ri) for a set of distances ri , store
them in an array, and from here on interpolate the value of the function for any
other distances rather than using the GP to compute this function for every atomic
configuration during an MD simulation. In practice, a spline interpolation of the
so-tabulated potential can be very easily used to predict any ε̂(ρ) or its negative
gradient f̂(ρ) (analytically computed to allow for a constant of motion in MD runs).
The interpolation approximates the GP predictions with arbitrary accuracy, which
increases with the density of the grid of tabulated values, as illustrated in Fig. 5.11a.

The computational speed of the resulting “mapped force field” (MFF) is inde-
pendent of the number of training points N and depends linearly, rather than
quadratically, on the number of distinct atomic n-plets present in a typical atomic
environment ρ including M atoms plus the central one (this is the number of
combinations

(
M

n−1

) = M!/(n − 1)!(M − n + 1)!, yielding, e.g., M pairs and

M(M − 1)/2 triplets). The resulting overall N
(

M
n−1

)
speedup factor is typically

several orders of magnitude over the original n-body GP, as shown in Fig. 5.11b.
The method just described can in principle be used to obtain n-body MFFs from

any n-body GPs, for every finite n. In practice, however, while mapping 2-body or
3-body predictions on a 1D or 3D spline is straightforward, the number of values to
store grows exponentially for n, consistent with the rapidly growing dimensionality
associated with atomic n-plets. This makes the procedure quickly not viable
for higher n values which would require (3n-6)-dimensional mapping grids and
interpolation splines. On a brighter note, flexible 3-body force fields were shown
to capture most of the features for a variety of inorganic materials [15, 16, 20, 42].
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Fig. 5.11 Panel (a): error incurred by a 3-body MFF w.r.t. the predictions of the original GP used
to build it as a function of the number of points in the MFF grid. Panel (b): computational time
needed for the force prediction on an atom in a 19-atoms Ni nanocluster as a function of the number
of training points for a 3-body GP (red dots) and for the MFF built from the same 3-body GP (blue
dots)

Increasing the order of the kernel function beyond 3 might be unnecessary for many
systems (and if only few training data are available, it could be still advantageous to
use a low-n model to improve prediction accuracy, as discussed in Sect. 5.2.5).

MFFs can be built for systems containing any number of atomic species. As
already described in Sect. 5.2.6, the cost of constructing a multispecies GP does
not increase with the number of species modelled. On the other hand, the number
of n-body MFFs that need to be constructed when k atomic species are present
grows as the multinomial factor (k+n−1)!

n!(k−1)! (just as any classical force field of the
same order). Luckily, constructing multiple MFFs is an embarrassingly parallel
problem as different MFFs can be assigned to different processors. This means that
the MFF construction process can be considered affordable also for high values of k,
especially when using a 3-body model (which can be expected to achieve sufficient
accuracy for a large number of practical applications).

We finally note that the variance of a prediction σ̂ 2(ρ) (third term in Eq. (5.5))
could also be mapped similarly to its mean. However, it is easy to check that
the mapped variance will have twice as many arguments as the mapped mean,
which again makes the procedure rather cumbersome for n > 2. For instance, for
n = 2 one would have to store the function of two variables σ̃ 2(ri, rj ) providing
the variance contribution from any two distances within a configuration, and the
final variance can be computed as a sum over all contributions. A more affordable
estimate of the error could also be obtained by summing up only the contributions
coming from single n-plets (i.e., σ̃ 2(ri, ri) in the n = 2 example). This alternative
measure could again be mapped straightforwardly also for n = 3 and its accuracy
in modelling the uncertainty in the real materials should be investigated.

MFFs obtained as described above have already been used to perform MD
simulations on very long timescales while tracking with very good accuracy their
reference ab initio DFT calculations for a set of Ni19 nanoclusters [16]. In this
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example application, a total of 1.2·108 MD time steps were performed, requiring the
use of 24 CPUs for ∼3.75 days. The same simulation would have taken ∼80 years
before mapping, and indicatively ∼2000 years using the full DFT-PBE (Perdew–
Burke–Ernzerhof) spin-orbit coupling method which was used to build the training
database. A Python implementation for training and mapping two- and three-body
nonparametric force fields for one or two chemical species is freely available within
the MFF package [29].

5.4 Conclusions

In this chapter, we introduced the formalism of Gaussian process regression for the
construction of force fields. We analysed a number of relevant properties of the
kernel function, namely its smoothness and its invariance with respect to permuta-
tion of identical atoms, translation and rotation. The concept of interaction order,
traditionally useful in constructing classical parametrised force fields and recently
imported into the context of machine learning force fields, was also discussed.
Examples on how to construct smooth and invariant n-body energy kernels have
been given, with explicit formulas for the cases of n = 2 and n = 3. We then focused
on the Bayesian model selection approach, which prescribes the maximisation of
the marginal likelihood, and applied it to a set of standard kernels defined by an
integer order n. In a 1D system where the target interaction order could be exactly
set, explicit calculations exemplified how the optimal kernel order choice depends
on the number of training points used, so that larger datasets are typically needed
to resolve the appropriateness of more complex models to a target physical system.
We next reported an example of application of the marginal likelihood maximisation
approach to kernel order selection for two Nickel systems: face centred cubic
crystal and a Ni19 nanocluster. In this example, prior knowledge about the system
provides hints on the optimal kernel order choice which is a posteriori confirmed
by the model selection algorithm based on the maximum marginal likelihood
strategy. To complement the Bayesian approach to kernel order selection, we briefly
discussed the use of learning curves based on the generalisation error to select the
simplest model that reaches a target accuracy. We finally introduced the concept
of “mapping” GPs onto classical MFFs, and exemplified how mapping of mean and
variance of a GP energy prediction can be carried out, providing explicit expressions
for the case of a 2-body kernel. The construction of MFFs allows for an accurate
calculation of GP predictions while reducing the computational cost by a factor
∼104 in most operational scenarios of interest in materials science applications,
allowing for molecular dynamics simulations that are as fast as classical ones but
with an accuracy that approaches ab initio calculations.
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