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Abstract

This chapter reviews past and ongoing efforts in using high-throughput ab-initio
calculations in combination with machine learning models for materials design.
The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal
structures, although the methods naturally extend into more complicated config-
urations. Efficient and robust computational methods, computational power, and
reliable methods for automated database-driven high-throughput computation
are combined to produce high-quality data sets. This data can be used to train
machine learning models for predicting the stability of bulk materials and their
properties. The underlying computational methods and the tools for automated
calculations are discussed in some detail. Various machine learning models and,
in particular, descriptors for general use in materials design are also covered.

17.1 Background

Design of new materials with desired properties is a crucial step in making many
innovative technologies viable. The aim is to find materials that fulfill requirements
on efficiency, cost, environmental impact, length of life, safety, and other properties.
During the past decades, we have seen major progress in theoretical materials
science due to the combination of improved computational methods and a massive
increase in available computational power. It is now standard practice to obtain
insights into the physics of materials by using supercomputers to find numerical
solutions to the basic equations of quantum mechanics. When using the appropriate
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level of theory, these calculations can be robust enough to run in unsupervised
high-throughput. Hence, materials design can be done via automated theoretical
screening of candidate materials and substances, picking out those with desired
properties. Early examples of this methodology include works in the fields of
catalysts [1], battery materials [2, 3], detector materials for ionizing radiation [4],
superconductivity [5], thermoelectricity [6, 7], piezoelectrics [8, 9], transparent
conducting oxides [10], and two-dimensional materials [11]. There is a wealth of
further examples in the literature, see, e.g., the reviews in Ref. [12–15].

Early adoption of high-throughput methodology for materials design has invoked
the ambition that it may be possible to computationally predict the existence and
basic properties of essentially every single material, i.e., any composition that, in
principle, can be synthesized as a reasonably long-lived “stable” compound (in the
context of an environment.) This ambition has been referred to as the materials
genome project [13,16,17], which in 2011 was endorsed as a White House initiative
[18]. The idea is that access to materials genome data with sufficient coverage would
greatly accelerate materials design. It would be possible to perform queries against
this data to pick out compositions that have some sought combination of desired
properties for a specific application at, essentially, no additional computational cost
[12, 13].

A large number of databases of materials-genome-type are now available,
many of them open and free for access over the Internet. Some notable examples
include: the Electronic Structure Project (http://gurka.physics.uu.se/esp/; 2002),
the Automatic FLOW repository (aflowlib.org; 2011), the Materials Project
(materialsproject.org; 2011), the Open Materials Database (openmaterialsdb.se;
2013), the Open Quantum Materials Database (oqmd.org; 2013), the Theoretical
Crystallographic Open Database (www.crystallography.net/tcod; 2013), the
Novel Materials Discovery Repository (nomad-repository.eu; 2014), the High
Performance Computing Center Materials Database—NREL MatDb (materials.
nrel.gov; 2015), and the Materials Cloud (materialscloud.org; 2017).

To use machine learning models for, e.g., molecular dynamics simulations of
systems with up to a few chemical species has become increasingly popular (i.e., to
accelerate simulations of the movement of some types of atoms in a material.) To
train more general models with data from materials genome-type databases opens
a way forward towards the vision of a complete coverage of materials and their
properties. This chapter reviews the use of high-throughput techniques and tools
to produce training data for these models and recent developments in the area of
models with the aim of a general description of atomistic systems (i.e., molecules
and materials.) This development is, at its core, the adoption of an informatics
perspective to materials science and design, which has been referred to as materials
informatics [19, 20].

It has been posed as a hypothesis that the progress of general AI methods
will eventually reach “the singularity,” a moment in time when self-improving AI
methods set off a runaway technological development that fundamentally changes
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society.1 One can, in a similar way, formulate the hypothesis that the development
of increasingly sophisticated machine learning models for atomistic systems will
reach a singularity of its own, i.e., a point in time of fundamental change in our
theoretical description of physical matter. This change would happen when fully
trained, general, machine learning models appear that are capable of predictions
at the same accuracy as physics-based quantum mechanical simulations but at
negligible computational effort. The result would turn the present materials genome-
type databases obsolete and enable true inverse design of molecules and materials
with desired properties across the full chemical space at near zero computational
expense. Such a development would bring far-reaching changes across the natural
sciences.

In conclusion, advancing the present state of materials design with machine
learning models requires progress in three key areas: (1) progress in the theory and
methods used in physics-based calculations that can be used to improve the quality
of training data. This requires developing methods with improved accuracy without
sacrificing the low computational demand and the high level of generality that are
necessary for the methods to be useful for high-throughput calculations; (2) further
improved methods and tools for running automated calculations in high throughput.
While there are many software packages and solutions available today for running
calculations in high-throughput, major work of both practical and theoretical nature
remains to turn methods that were developed and tested only on a few systems
into automated workflows capable of running unsupervised at large scale without
human interference; and (3) further improved machine learning models for general
atomistic systems.

17.2 Computational Methods

Kohn–Sham density functional theory [23, 24] (KS-DFT) is the standard theo-
retical framework for high-throughput computation in present materials property
databases. There is a range of software implementations for performing the numer-
ical solution of the basic equations of DFT. A few prominent examples include the
Vienna Ab-initio Simulation Package—VASP (vasp.at), ABINIT (www.abinit.org),
Wien2K (susi.theochem.tuwien.ac.at), and Quantum ESPRESSO (www.quantum-
espresso.org). Of primary concern for these software packages is the numerical
convergence towards the exact solution with respect to the approximations used.
Most approximations are fairly straightforward to systematically improve towards
a converged result, which has led to a number of standard practices for setting
convergence parameters that are typically documented in relation to the respective
database. See, e.g., Ref. [17] for the practices used in the Materials Project database.

1The term was recently popularized by a 2006 book by Kurzweil [21], but its use goes back to a
1958 account by Stanislaw Ulam of a discussion with John von Neumann that references a point
in time of fundamental change due to runaway technological development [22].
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One aspect of numerical convergence that frequently is in focus when discussing
the accuracy of KS-DFT calculations in the context of chemistry-oriented calcu-
lations is the basis set used to represent the single particle wave functions (also
known as the KS orbitals.) While more or less all basis sets can be systematically
extended towards numerical convergence, this can be impractical for some choices.
Nevertheless, in the context of materials design of bulk materials, we are mostly
concerned with fully periodic crystals where the most common choice is a plane-
wave basis set where systematic convergence is more straightforward.

In contrast to the numerical approximations that can be, at least in principle,
systematically refined to arbitrary accuracy towards the solution of the KS-DFT
equations, there is one aspect of the calculations where this is not possible. This
is the choice of exchange-correlation density functional. This choice is crucial for
the description of the physics of the system and, by extension, which properties are
available in the output. The kind of systems and properties for which one can obtain
reliable data is of key importance in the present context of using high-throughput
computation to produce reliable training data for machine learning models. Hence,
we will in the following review the important aspects of this choice in detail.

The level of theory that so far has been the standard for high-throughput computa-
tion in first-principles materials property databases is the semi-local, “second-rung”
[25] level, which uses exchange-correlation functionals on the generalized gradient
approximation (GGA) form. The most commonly used functional in the context
of high-throughput calculations for materials databases is the one by Perdew,
Burke, and Ernzerhof [26] (PBE) with the +U correction [27]. This level of
theory strikes a desirable balance between computational speed and accuracy while
maintaining a high level of transferability. Nevertheless, the most popular GGA-
type functionals, including PBE, have known shortcomings in their description of
the electronic structure. The primary issues include: (1) a tendency to give energetics
that in geometrical relaxations lead to a systematic over- or underestimation of
bond lengths (the local density approximation, LDA, overbinds, whereas PBE
underbinds); (2) an insufficient description of the physics of weak dispersion
forces/van der Waals bonding; and (3) a systematically overdelocalized description
of the KS orbitals that leads to inaccuracies in a number of properties that are derived
from the orbitals. These three issues will be discussed in some more detail in the
subsections below.

17.2.1 Overdelocalized Orbitals

The fundamental issue of overdelocalized KS orbitals is related to various aspects of
the self-interaction error present at the semi-local exchange-correlation functional
level of theory. A simplified picture is that the self-interaction introduces a repulsive
electrostatic interaction of an electron with itself, leading to a delocalization that
becomes more severe the more localized the correct representation of the orbital
was supposed to be, i.e., the effect more severely impacts the more localized d-,
and even more so, the f orbitals, compared to the less localized s and p states.
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The result is a number of deficiencies in predicted materials properties. Examples
of problematic properties include redox reaction energies [28,29], the polarizability
of extended systems [30, 31], and the silicon interstitial formation energy [32, 33].

In addition to these examples, issues are also seen in a number of properties
calculated from the single-particle orbitals from the KS-DFT framework, where they
are used as approximations of the “true quasi-electron orbitals” of the many-electron
system (to the extent that such can be defined). However, from a fundamental
perspective, the discussion of the accuracy of such properties is delicate because the
DFT orbitals and the quasi-electron orbitals are not the same thing, even in theory
for the exact exchange-correlation functional. Hence, one cannot a priori assume
that an improved functional increases the agreement with the experimental values
of, e.g., optical properties calculated from the KS band structure. Nevertheless,
if one compares common GGA functionals to higher order methods that are still
within the framework of KS-DFT (e.g., exact DFT exchange) one finds a qualitative
difference in the orbital physics. This difference translates to that when materials
properties which are directly associated with the electronic structure are calculated
using higher-order theory, the results come out qualitatively closer to experiments
than those calculated using standard GGAs. One can, therefore, take the position
that it is a worthwhile improvement over standard semi-local functionals if improved
functionals can make the orbitals to more closely mimic the orbital features given
by higher order methods. This motivation is independent of the justification, or
lack thereof, of using KS states to approximate quasi-particle bands for calculating
materials properties. For an expanded discussion on this delicate topic, see, e.g.,
Ref. [34].

There are a range of well-known methods to address the description of localized
states in semi-local DFT, (i) an explicit orbital-dependent correction that removes
the surplus electrostatic term (sic correction) [35–37]; (ii) exact exchange DFT [38];
(iii) interpolating the DFT functional with Hartree–Fock exchange energy (hybrid
functionals) [39–41]; (iv) use of the many-body Green’s function for a more precise
description of the localized quasi-particle orbitals (GW) [42]; (v) the DFT+U

correction that adds an effective Hubbard-like term to the Hamiltonian to make
selected localized orbitals energetically preferable [27]; and (vi) various attempts
to modify the KS potential directly to make it reproduce essential features of exact
exchange [31, 43–48]. All these methods, except for the last two (v, vi), require a
vastly increased computational expense. Hybrid density functional methods (iii) are
increasingly adopted for resolving these issues when the extra computational cost is
acceptable. However, at a cost of roughly 50 times of that of standard GGAs, they
are very inconvenient, or even completely unsuitable for, e.g., larger systems and
high-throughput-type calculations.

Of the two less computationally expensive methods, DFT+U (v) is widely
adopted as, arguably, the standard way of dealing with the issue of overdelocalized
orbitals in high-throughput calculations and materials genome-type databases.
However, DFT+U is not a highly transferable method; it requires attention in
the assignment of site-specific “U -values.” In setting the value of U , one selects
how strongly a given localized orbital on a specific site prefers full occupation
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over partial occupation. In low throughput calculations, it is common to somewhat
thoroughly investigate a system to arrive at a value of U that reasonably reproduces
the expected physics of the system, but this is clearly not an option for high-
throughput calculations. There are schemes to obtain sets of values that work well
for systems with some specific type of physics, e.g., for typical oxides. However,
in systems of mixed chemistries and intermixed types of bonding physics, the
non-universality of U values becomes a serious problem. Energies obtained for
different systems using different U -values for the same species cannot easily be
mixed. Furthermore, since U values are usually only assigned to specific orbital
projections on a pre-selected set of transition metal species, they cannot help with
overdelocalized states of different origin, e.g., for defect states that are not atomic-
orbital-like.

The second computationally less expensive method in the list above is (v) the
approach to model the exchange-correlation potential directly to make it reproduce
essential “non-local” features of exact exchange, instead of obtaining it as a
functional derivative of an energy functional. Such potentials are known as model
potentials, and have in some cases been quite successful [31, 43–48]. Some recent
interest has been generated by the model potential of Becke and Johnson (BJ) [45],
which was observed to mimic some of the crucial features of exact exchange for
atoms. With various adjustments and extensions, it improves the polarization of
hydrogen chains [31, 47], gives closer correspondence to experimental band gaps
[48], and, to some extent, gives other improved properties [49, 50]. These model
potentials seem promising for future adoption in high-throughput calculations to
access properties that would otherwise be problematic because of orbital delocal-
ization.

However, there are some fundamental issues with the general approach of
model potentials. Since they directly model the exchange-correlation potential, the
corresponding energy functionals are not merely unknown, they usually do not
exist [46, 51, 52], and this deficiency cannot easily be corrected [53]. Since the KS
equations are derived from a variational treatment of an energy equation, the use of
such potentials has to be regarded on a weak formal basis, and are, strictly, outside
the framework of KS-DFT. One cannot calculate any energy-derived properties from
model potentials, e.g., one cannot do a geometry optimization that is consistent
with the potential. Hence, if one starts from, e.g., theoretically generated structure
candidates, one would have to use another method first to pre-relax the structure.

A closely related promising direction of functional development is the Armiento–
Kümmel exchange functional (AK13) [54] (co-authored by the author of this
chapter.) This is a normal GGA exchange energy functional that mimics the behavior
of the BJ potential while avoiding the fundamental issues with model potentials.
Similar to the modified BJ-based model potentials, the AK13 exchange energy
functional gives qualitatively different orbitals from common GGA functionals. The
results are a KS potential with improved atomic shell structure [54], improved
ionization potentials from the highest eigenvalue [54] (but see the discussion in
Ref. [55]), overall a KS band structure that better match that of higher order meth-
ods, including enlarged band gaps, and improved optical properties [34, 54, 56, 57].
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As mentioned, the AK13 functional avoids the problem of undefined energies and
energetics in model potentials. However, their values are not as accurate as those
of commonly used GGAs and mostly insufficient. In addition, other issues appear
from the AK13 construction that prevent its broader indiscriminate application
[55,58,59]. We are hopeful that further research into modifications of the expression
can overcome the difficulties while still retaining the favorable exchange potential
features.

17.2.2 Under- and Overestimated Lattice Constants

On the issue of systematic under- and overestimation of lattice constants, this
has mostly been resolved in functional development beyond PBE. The Armiento–
Mattsson 2005 functional (AM05) [60, 61] is a semi-local functional with the same
computational difficulty as PBE, but which gives roughly half the error for lattice
constants. The comprehensive testing of Haas et al. finds for the lattice constants of
60 solids that the mean absolute error is 0.053 Å for PBE and 0.033 Å for AM05
[62–64]. Later functionals developed by Wu–Cohen in 2006 [65–67], SOGGA
by Zaho, and Truhlar in 2008 [68], and PBEsol by Perdew et al. in 2009 [69–
72] report similar improvements [63, 64, 70]. Further progress has been made
by Perdew and coworkers on the meta-GGA level of theory, where, in addition
to the electron density and its derivatives, a functional may also depend on the
local value of the kinetic energy density of the KS particles. While meta-GGAs
are technically more complex expressions than GGAs, implementations can be
made that do not significantly increase the computational cost. The 2015 Strongly
Constrained and Appropriately Normed Semilocal Density Functional (SCAN)
meta-GGA [73] reportedly performs well for a wide range of properties for both
solids and molecules, including lattice constants [74, 75]. However, some issues
have recently been reported in the description of systems with itinerant magnetism
[76].

17.2.3 Weak Dispersion Forces

On the topic of the description of van der Waals/London dispersion forces/weak
interactions by semi-local DFT functionals, there exist a range of post-correction
schemes of the energy to handle such interactions that can be deployed without
any significant additional computational cost, see, e.g., Refs. [77–83]. Furthermore,
there is a series of successful exchange-correlation functionals known as the vdW-
DF from a collaboration between Chalmers University and Rutgers University [84–
86] which allow a self-consistent treatment of these interactions. These functionals
are not semi-local, but still fairly computationally inexpensive compared to, e.g.,
hybrid functionals. Furthermore, it has been shown that information about weak
interactions can be extracted from local values of the kinetic energy density which
are available to meta-GGAs [73, 87], at least to a level where the region around the
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equilibrium in van der Waals bonds can be described. This development has been
incorporated in the SCAN functional [73].

17.3 Materials Properties

One of the central questions with the materials genome effort is what basic
properties are within reach to be collected and included in these databases. This
is determined by a combination of what can be described by the level of theory
used for the computations (as carefully reviewed in the previous section), and
what methods are available as automated workflows. The starting point, crucial
for building any materials genome-type resource, is the crystal structures and
corresponding formation energies. The importance of the formation energies is due
to their use in creating composition phase diagrams to estimate the zero temperature
thermodynamic stability of a material. The composition phase diagram gives the
ground state crystal structure of a material at zero temperature as a function of
composition. It is constructed by determining the convex hull of the predicted
formation energies of all competing crystal structures in a chemical subspace
[16, 88, 89]. A compound with a formation energy on the convex hull is stable,
whereas a compound that ends up above the hull is unstable. The distance to the hull
can be used as a rough estimate of the degree to which a material is unstable (i.e.,
how unlikely it is to be observed, and if observed, how quickly it would deteriorate
into a combination of lower energy structures.) Crystal structures with a small hull
distance (very roughly up to ∼50 meV) may still be regarded as candidates for
materials that in practice may be stable since such an “error margin” can account
for meta-stability, stability at limited elevated temperatures, and the computational
inaccuracy of the methods.

Several works have investigated the accuracy of DFT calculations of formation
energies. The standard deviation of formation energies calculated with PBE+U

to experiments for the formation of ternary oxides from binary oxides was found
to be 0.024 eV/atom; meaning 90% of the errors are within 0.047 eV/atom, which
corresponds to a mean absolute error of approximately 0.02 eV/atom [90]. Kirklin
et al. determined a mean absolute error of PBE formation energies of systems over
all chemistries to be 0.136 eV/atom, but with energy corrections that are often used
in high-throughput databases to some of the elemental phase energies, this lowers
to 0.081 eV/atom [91]. However, the same paper notes that for 75 intermetallic
structures they found experimental results from more than one source, giving an
estimate for the mean absolute error in the experiments of 0.082 eV/atom. (Note
that the latter estimate may be affected by selection bias, i.e., there may be a larger
probability of finding multiple experimental values if the results are uncertain.)

Presently the set of materials properties beyond stability and formation energies
available for large data sets is somewhat limited. There is an ongoing competition
between the online materials genome-type databases to grow the data they provide
both in terms of included structures and materials properties. There is a wealth
of methods in the literature that could potentially be used to produce data for
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many different properties. However, to turn these methods into a form where they
can run reliably in high-throughput is non-trivial. Among the available databases,
the Materials Project is quite comprehensive in terms of properties. In addition
to structural information and formation energies, they have over the years added
the KS-DFT band structure (in some cases corrected using the GW approximation
[42, 92]), elastic tensors [93], piezoelectric tensors [94], dielectric properties [95],
phonon spectra [96], synthesis descriptors [97], and X-ray absorption spectra [98].

17.4 Database-Driven High-Throughput Calculations

A basic flowchart for materials design using database-driven high-throughput
calculations is shown in Fig. 17.1. There are many software packages with partially
overlapping aims for helping with the steps in the flowchart. Some recognized
open source examples are the atomic simulation environment—ASE (wiki.fysik.
dtu.dk/ase), pymatgen, custodian, and fireworks (pymatgen.org, see also the infor-
mation at materialsproject.org/infrastructure; connected to the Materials Project),
aflow (materials.duke.edu/AFLOW; connected to the AFLOW repository), AiiDA
(aiida.net; connected to materials cloud), qmpy (connected to the open quantum
materials database). The author is involved in the development of the open source
high-throughput toolkit—httk (httk.org) framework, which we use extensively for
high-throughput computation in our own research, and which provides the backend
for the open materials database. This toolkit provides functionality for preparing
and running unsupervised workflows of calculations (electronic structure, mostly
targeted towards the software package VASP), analyzing the results, and storing

Fig. 17.1 A schematic flowchart representation of database-driven high-throughput materials
design, largely inspired by the setup used in the Materials Project [16]. The steps on the right-hand
sides represent the use of the database to find materials with desirable properties. In the context
of machine learning models, the materials and materials properties in the database can be used for
training and validation

wiki.fysik.dtu.dk/ase
wiki.fysik.dtu.dk/ase
pymatgen.org
materialsproject.org/infrastructure
materials.duke.edu/AFLOW
aiida.net
httk.org
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them in a global and/or in a personalized database. The basic functionalities of these
software packages are quite similar; in the following, we discuss the functionality
of httk.

The primary focus of httk is for running automated calculations with as little
human intervention as possible. This is crucial when working with large data sets,
but can also be convenient when working with smaller projects. The toolkit consists
of a software library developed in Python and a set of script programs that enable the
interaction with supercomputers. The primary strengths of this framework compared
to common alternatives are (1) the Python library provides a very integrated object-
relational mapper, where classes in object-oriented Python are used to introduce
abstractions that remove much of the difficulty in setting up a personal database
of SQL type in which one can store, search, retrieve, and analyze results; (2) httk
consistently allows the use of exact rational numbers in place of the more commonly
used floating-point numbers. The exact rational numbers allow processing of crystal
structures, application of transforms, etc., without the usual loss of precision. Hence,
httk can deterministically produce an internal representation of structures read from
a source file (e.g., on the cif file format), which is not the case in most other
frameworks due to their use of floating-point numbers means the precise end result
is influenced by the computer architecture.

The httk framework is distributed in several ways, including the PyPI service.
Hence, it can easily be installed by issuing: pip install httk on a system
with a modern distribution of Python. There is a set of tutorial steps and a large
number of examples available to show how the framework can be utilized in the
various steps of database-driven high-throughput as shown in Fig. 17.1. These are
available via the project website (httk.openmaterialsdb.se).

17.5 Machine LearningModels for Materials Design

17.5.1 Models for Molecules

The primary focus in this chapter is on a type of machine learning models for use
in materials design that can be said to begin with a 2012 paper by Rupp et al. on
the use of kernel ridge regression for small molecules [99]. They define a matrix
representation for molecules named the “Coulomb matrix.” In this representation
a system of N atoms generates an N × N matrix where the off-diagonal elements
(i,j ) are the Coulomb repulsion between the ith and j th bare atomic cores, and
the diagonal elements are based on a polynomial fit to energies of free atoms to
represent a static energy contribution pertaining to the ith atom,

Cij =
{

0.5Z2.4
i if i = j

ZiZj/(‖ri − rj‖2) if i �= j
(17.1)

httk.openmaterialsdb.se
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One may note that the Coulomb interaction between the bare atomic cores is not a
good indicator of the physics of the bonds in a system. However, the representation
does not aim to push the machine learning model into a specific physics-based
description, but just to constitute a well-formed way to represent the structural
information (i.e., the positions of the atoms) so that the machine is free to learn
the physics from the data. This model was trained on small organic molecules (with
up to 7 atoms from the elements C, O, N, and S, and with the valencies satisfied by
hydrogen atoms; this data set is named qm7.) It was shown in the original paper that
the machine can be trained to predict atomization energies of molecules not in the
training set down to a mean absolute error of 10 kcal/mol at a training set size of 7k.
In units more common for materials, this model reaches 20 meV/atom at a training
set of 3000 molecules from qm7 [100].

17.5.2 General Models for Periodic Systems

In a 2015 work Faber, Lindmaa, von Lilienfeld, and Armiento (the author of the
present chapter) extended the Coulomb matrix construct into a suitable form for
periodic crystals [100]. This extension is non-trivial, since there exist more than one
way to choose a unit cell in a periodic system, and therefore representations based
on the Coulomb matrix easily become non-unique. As pointed out in that paper, the
aim when seeking a representation for atomistic systems is to find one that is (1)
complete: incorporates all features of the structural information that are relevant for
the underlying problem, but at the same time; (2) compact: avoids representation of
features irrelevant for the underlying problem (e.g., static rotations); (3) descriptive:
structural similarity should give representations that are close; and (4) simple: low
computational effort to compute, and conceptually easy to understand.

The end result of Ref. [100] was three alternative Coulomb matrix inspired
representations applicable to periodic crystals. The first one was based on replacing
the bare Coulomb interactions in the off-diagonal matrix elements with the corre-
sponding expression for fully periodic systems, i.e., the sum of the total Coulomb
interaction energy per unit cell between the infinite periodic lattices of the bare
cores of repetitions of two separate atoms in the unit cell. These expressions
are evaluated via Ewald sums [101]. The issue with this expression is that it
is somewhat computationally expensive and non-trivial to evaluate correctly. The
second generalization of the Coulomb matrix was to duplicate the unit cell a number
of times and then use the same expression as for the non-periodic Coulomb matrix,
however, with a screened Coulomb interaction (i.e., where the interaction decays
exponentially to give a finite reach.) This is very similar to just using the short
range term in the Ewald sum. To get an even simpler descriptor, a third expression
was invented. It was shown how the Ewald sum can be replaced by an expression
that mimics the basic shape and periodicity of the Ewald expression, but which still
remains on a simple closed form that is easy to evaluate. This expression was named
the “sine” or “sinusoidal” descriptor, because of how it reproduced the periodicity
over the unit cell via a sine function.
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The three alternative extensions of the Coulomb matrix to periodic systems were
tested on a data set that is now known as FLAA (from the authors’ initials). It
consists of structures with up to 25 atoms that were randomly selected out of the
Materials Project database. In these structures most atomic species occur, in propor-
tions roughly similar to their occurrence in structures published in the literature and
extracted into the inorganic crystal structure database (ICSD) [102, 103] which is
the main source of crystal structures for the Materials Project. The conclusion of the
2015 paper [100] was that all three alternative extensions of the Coulomb matrix to
periodic systems performed approximately equal. The sine descriptor did slightly
better than the others, with a 370 meV/atom mean absolute error for predicting
formation energies when trained on 3k structures from the FLAA data set.

Two main conclusions follow from the above results. Firstly, the performance of
kernel ridge regression-based machines for atomistic systems does not appear to be
particularly sensitive to the exact details of how the generalized Coulomb matrix
descriptors are constructed, as long as they reasonably well adhere to the aims for
a good representation listed above. Secondly, at first glance it may appear as if the
performance of the models for molecules far outperforms the corresponding ones
for periodic crystals (20 meV/atom vs. 0.370 meV/atom). However, the sizes of the
chemical space for the two cases are not comparable, and arguably the one used for
crystals in Ref. [100] is far larger.

17.5.3 Crystal-Structure Specific Models

To demonstrate that these types of models are capable of reaching a level of accuracy
directly useful for applications if one restricts the chemical space, the same authors
investigated in 2016 a machine learning model operating on such a smaller space
[104]. This work considered all substitutions of main group elements into four
sites of one specific quaternary crystal structure, the elpasolite. This structure was
selected because it is the quaternary crystal most frequently occurring with different
substitutions in the ICSD database, indicating that this structure can accommodate
many types of bonds and thus to be rewarding to characterize fully. High-throughput
DFT calculations using the httk framework were used to produce data for ca 10k
substitutions of elements into the elpasolite crystal structure out a total of two
million possibilities. Furthermore, a subset of 12 main group elements was selected
to give a reduced chemical space of 12k possible substitutions, which were run
exhaustively.

A substitution into a fixed crystal structure can be uniquely specified by giving
which chemical species are at which atomic site in the structure. Hence, the 2016
paper used a very straightforward representation of, essentially, a 2 × 4 matrix that
specified the row and column in the periodic table of the atom species at each
of the four sites in the elpasolite structure. This leaves out the precise structural
information of the system from the descriptor, i.e., the bond lengths between the
atoms. The 2 × 4 matrix descriptor should be understood to technically refer to the
system relaxed while confined to the elpasolite crystal structure.
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A kernel ridge regression machine learning model was trained using this descrip-
tor on formation energies for structures in the elpasolite data set, and it was shown
that (1) by training on a sufficiently large subset of the exhaustive 12k data set,
the model can reach essentially any level of accuracy for predictions of structures
outside the training set, at least below <10 meV/atom which is significantly less
than the errors in the DFT data. (See the discussions of accuracy of DFT formation
energies in Sect. 17.3.) This shows that the performance of this machine learning
model is merely a question of having a large enough training set; (2) when training
on data in the larger chemical space of two million possible substitutions of main
group elements into the elpasolite structure, it was sufficient to train on about 10k
structures to reach roughly the accuracy of the DFT calculations, 100 meV/atom.
This result means that the machine learning model was capable of producing DFT-
quality formation energies with a net ×200 speedup, including all the time used
to produce the training data. The resulting two million formation energies are
illustrated in Fig. 17.2 reproduced from the original paper.

Furthermore, the 2016 paper also demonstrated a practical use of the large
set of predicted formation energies. Phase diagrams were created for most of the
elpasolite systems by using information about competing compositions from the
Materials Project using the pymatgen Python library (some systems were outright
dismissed on grounds of containing rare-gas elements). From these phase diagrams
a number of candidates for thermodynamically stable materials were obtained
by identifying compositions with a predicted formation energy on the convex
hull. These candidates were validated by DFT calculations and 90 systems were
confirmed to be thermodynamically stable within this level of theory. However, the
compounds that passed validation only constituted a small fraction of the candidates.
As explained in the paper, the reason is that the process of identifying structures on
the convex hull is a screening for systems with the lowest formation energies, which
are outliers in the full data set. The interpolative nature of machine learning models
leads to them being significantly less accurate in predicting properties of outlier
systems. Nevertheless, even with this limitation, the scheme far reduced the number
of DFT calculations needed to identify thermodynamically stable elpasolite systems
compared to just obtaining all formation energies from DFT calculations. The net
result was a ×11 speedup, including the full time spent both on the training set and
the calculations used to validate the materials picked out as candidates for stability.

Hence, the crystal-structure-specific machine was demonstrated to be very
successful for generating large amounts of formation energy data which is useful
for greatly accelerating predictions of stable compounds in a considered crystal
structure. The predictions allow extending the available data in materials genome-
type databases. The structures identified as stable in the work discussed above are
now available (with some singular exceptions) via the Materials Project and, e.g.,
enters the predictions of convex hulls for user-generated phase diagrams via their
online service, thus contributing to the accuracy of those predictions.
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Fig. 17.2 Color matrix of the two million elpasolite energies predicted with the crystal-structure
specific machine learning model of Faber et al. [104]. The x- and y-axes specify which atomic
species sits on two of the four sites in the crystal structure. At those coordinates one finds a
miniature diagram over the species at the remaining two sites. Every pixel in the miniature diagram
shows a formation energy of the corresponding composition of four atomic species. The figure is
reproduced from the original paper and is licensed under the Creative Commons Attribution 3.0
License

17.5.4 Models for Predicting Composition Phase Diagrams, Crystal
Structures

The success of the crystal-structure-specific machine notwithstanding, it does not
directly answer the most typical materials design problem. It is, arguably, more
common to seek the stable crystal structures that can be formed from a given set
of chemical species, rather than all the stable chemical compositions that share the
same crystal structure. This is, in essence, the crystal structure prediction problem.

In 2016, Tholander, Andersson, Armiento, Tasnádi, and Alling [105] (TAATA)
produced a data set by high-throughput calculations using the httk framework. The
aim was to seek stable crystal structures in the ternary chemical systems Ti-Zn-
N, Zr-Zn-N, and Hf-Zn-N for possible use in piezoelectrics. This high-throughput
data set is a good real-world test case to evaluate the possible acceleration of
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the generation of phase diagrams for identifying stable structures using machine
learning models.

The author of this chapter and coworkers have since then engaged in a project
of trying out new machine learning models on this problem and to develop new
ones for it; the progress on this was recently reported in, e.g., Ref. [106]. At
the present stage, it appears the original Coulomb matrix-based descriptors from
Ref. [100] perform similar on this data set as for the original FLAA data set,
which is encouraging in establishing the generality of these models. However, the
resulting accuracy is not sufficient to be useful for accelerating the production of the
phase diagrams. Compared to the FLAA set, the TAATA data set has much fewer
atomic species, but at the same time is comprised of structures over a very wide
range of formation energies. The origin of the structures in the FLAA set is the
Materials Project which, as explained above, are based on structures from the ICSD
database. The ICSD primarily indexes materials seen in nature which means most
are thermodynamically stable and have comparably low formation energies. This
restriction lowers the dimensionality of the chemical space of FLAA relative to that
of TAATA.

Other recent machine learning models perform better; e.g., in Ref. [106] it
was found that a descriptor by Ward et al. that encodes structural information
using a Voronoi tessellation reaches a mean absolute error of 0.28 eV/atom for 10k
structures from the TAATA data set [107]. While errors on this level are not small
enough to replace the need for DFT calculations with model predictions, one may
still be able to use predictions to identify and remove competing structures that are
highly unstable and therefore would not influence the phase diagram, thus reducing
the number of DFT calculations necessary, giving an overall reduction in the effort
of producing the phase diagram. The field moves rapidly forward, and some other
interesting recent developments are found in Refs. [108–111].

17.6 Conclusions and Outlook

This chapter has reviewed several aspects of producing training data by database-
driven high-throughput calculations, and the use of this data to train machine
learning models with the aim of accelerating materials design. All these aspects
are making rapid and encouraging progress. The research-front machine learning
methods are now on the edge of producing results that are accurate and reliable
enough to accelerate theoretical prediction of thermodynamic stability via the
creation of convex hulls; i.e., the crystal prediction problem which arguably is
the most important first step for materials design of bulk materials with desired
properties. Further progress towards this goal, and for predicting other properties,
is continuously being made. Looking forward, two crucial points can be raised: (1)
further development of general machine learning models for atomistic systems with
improved accuracy and a reduced need for training data is needed; but how far can
that development go before it hits a fundamental wall where not enough information
about the underlying physics is present in the data?; (2) the rapid development of
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machine learning models will drive a need for more accurate training data. Will
the progress of physics-based computational methods be able to keep up with this
need of methods with improved accuracy but low enough computational effort to be
useful in high-throughput?; or will the lack of a sufficient amount of high quality
training data become a major bottleneck for further progress? Future research needs
to target both these areas.
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88. A.R. Akbarzadeh, V. Ozoliņš, C. Wolverton, Adv. Mater. 19(20), 3233 (2007)
89. S.P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20(5), 1798 (2008)
90. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, G. Ceder, Phys. Rev. B 85(15), 155208 (2012)
91. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C.M.

Wolverton, npj Comput. Mater. 1, 15010 (2015)
92. I.E. Castelli, F. Hüser, M. Pandey, H. Li, K.S. Thygesen, B. Seger, A. Jain, K.A. Persson,

G. Ceder, K.W. Jacobsen, Adv. Energy Mater. 5(2), 1400915 (2015)
93. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter,

C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson,
M. Asta, Sci. Data 2, 150009 (2015)

94. M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2, 150053 (2015)
95. I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt,

K.A. Persson, F.B. Prinz, Sci. Data 4, 160134 (2017)
96. G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. van Setten,

X. Gonze, K.A. Persson, G. Hautier, G.M. Rignanese, Sci. Data 5, 180065 (2018)
97. E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder, E. Olivetti, Chem. Mater. 29(21),

9436 (2017)

https://doi.org/10.1038/nchem.2535
https://doi.org/10.1038/nchem.2535
https://www.nature.com/articles/nchem.2535
https://doi.org/10.1038/s41524-018-0065-z
https://doi.org/10.1038/s41524-018-0065-z
https://www.nature.com/articles/s41524-018-0065-z
https://doi.org/10.1103/PhysRevB.98.094413
https://link.aps.org/doi/10.1103/PhysRevB.98.094413
https://link.aps.org/doi/10.1103/PhysRevB.98.094413


17 High-Throughput and Machine Learning Models for Materials Design 395

98. K. Mathew, C. Zheng, D. Winston, C. Chen, A. Dozier, J.J. Rehr, S.P. Ong, K.A. Persson, Sci.
Data 5, 180151 (2018)

99. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301
(2012)

100. F. Faber, A. Lindmaa, O.A.V. Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094
(2015)

101. P.P. Ewald, Ann. Phys. 369(3), 253 (1921)
102. G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23(2), 66 (1983)
103. A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, Acta Cryst. B 58(3–1), 364 (2002)
104. F.A. Faber, A. Lindmaa, O.A.v. Lilienfeld, R. Armiento, Phys. Rev. Lett. 117(13), 135502

(2016)
105. C. Tholander, C.B.A. Andersson, R. Armiento, F. Tasnádi, B. Alling, J. Appl. Phys. 120(22),

225102 (2016)
106. C. Bratu, Machine Learning of Crystal Formation Energies with Novel Structural Descriptors.

Master’s Thesis, Linköping University, Sweden, 2017. http://urn.kb.se/resolve?urn=urn:nbn:
se:liu:diva-143203

107. L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Phys.
Rev. B 96(2), 024104 (2017)

108. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717
(2018)

109. H. Huo, M. Rupp (2017). arXiv:1704.06439
110. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
111. W. Ye, C. Chen, Z. Wang, I.H. Chu, S.P. Ong, Nat. Commun. 9(1), 3800 (2018)

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203

	17 Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design
	17.1 Background
	17.2 Computational Methods
	17.2.1 Overdelocalized Orbitals
	17.2.2 Under- and Overestimated Lattice Constants
	17.2.3 Weak Dispersion Forces

	17.3 Materials Properties
	17.4 Database-Driven High-Throughput Calculations
	17.5 Machine Learning Models for Materials Design
	17.5.1 Models for Molecules
	17.5.2 General Models for Periodic Systems
	17.5.3 Crystal-Structure Specific Models
	17.5.4 Models for Predicting Composition Phase Diagrams, Crystal Structures

	17.6 Conclusions and Outlook
	References


