
Kristof T. Schütt · Stefan Chmiela
O. Anatole von Lilienfeld
Alexandre Tkatchenko · Koji Tsuda
Klaus-Robert Müller Editors

Machine
Learning Meets
Quantum
Physics

Lecture Notes in Physics

Lecture Notes in Physics

Volume 968

Founding Editors
Wolf Beiglböck, Heidelberg, Germany
Jürgen Ehlers, Potsdam, Germany
Klaus Hepp, Zürich, Switzerland
Hans-Arwed Weidenmüller, Heidelberg, Germany

Series Editors
Matthias Bartelmann, Heidelberg, Germany
Roberta Citro, Salerno, Italy
Peter Hänggi, Augsburg, Germany
Morten Hjorth-Jensen, Oslo, Norway
Maciej Lewenstein, Barcelona, Spain
Angel Rubio, Hamburg, Germany
Manfred Salmhofer, Heidelberg, Germany
Wolfgang Schleich, Ulm, Germany
Stefan Theisen, Potsdam, Germany
James D. Wells, Ann Arbor, MI, USA
Gary P. Zank, Huntsville, AL, USA

The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching-quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging material
between advanced graduate textbooks and the forefront of research and to serve
three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic for-
mats, the electronic archive being available at springerlink.com. The series content
is indexed, abstracted and referenced by many abstracting and information services,
bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Dr Lisa Scalone
Springer Nature
Physics Editorial Department
Tiergartenstraße 17
69121 Heidelberg, Germany
lisa.scalone@springernature.com

More information about this series at http://www.springer.com/series/5304

http://www.springer.com/series/5304

Kristof T. Schütt • Stefan Chmiela •
O. Anatole von Lilienfeld •
Alexandre Tkatchenko • Koji Tsuda •
Klaus-Robert Müller
Editors

Machine Learning Meets
Quantum Physics

Editors
Kristof T. Schütt
Machine Learning
Technical University of Berlin
Berlin, Germany

Stefan Chmiela
Machine Learning Group
Technical University of Berlin
Berlin, Germany

O. Anatole von Lilienfeld
Institute of Physical Chemistry
and MARVEL
University of Basel
Basel, Switzerland

Alexandre Tkatchenko
Department of Physics and Materials
Science
University of Luxembourg
Luxembourg, Luxembourg

Koji Tsuda
Graduate School of Frontier Sciences
University of Tokyo
Kashiwa, Japan

Klaus-Robert Müller
Computer Science
Technical University of Berlin
Berlin, Germany

ISSN 0075-8450 ISSN 1616-6361 (electronic)
Lecture Notes in Physics
ISBN 978-3-030-40244-0 ISBN 978-3-030-40245-7 (eBook)
https://doi.org/10.1007/978-3-030-40245-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2020
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40245-7

To Sandro!
7.3.1965–2.10.2018

Contents

1 Introduction . 1
Kristof T. Schütt, Stefan Chmiela, O. Anatole von Lilienfeld,
Alexandre Tkatchenko, Koji Tsuda, and Klaus-Robert Müller
References . 3

Part I Fundamentals

References . 5

2 Introduction to Material Modeling . 7
Jan Hermann
2.1 Introduction . 7
2.2 Structure–Property Relationship. 9

2.2.1 Atomic Structure. 10
2.2.2 Molecular and Material Properties. 12

2.3 Quantum Mechanics . 15
2.4 Statistical Mechanics . 17
References . 24

3 Kernel Methods for Quantum Chemistry. 25
Wiktor Pronobis and Klaus-Robert Müller
3.1 Introduction . 26
3.2 Representations of Physical Systems . 26
3.3 Implicit Feature Mapping: The Kernel Trick . 29
3.4 Kernel Methods . 32

3.4.1 Kernel Ridge Regression . 32
3.4.2 Kernel Principal Component Analysis . 33

3.5 Relevant Dimension Estimation . 34
3.6 Conclusion . 35
References . 35

4 Introduction to Neural Networks . 37
Grégoire Montavon
4.1 Introduction . 37
4.2 Neural Network Basics. 39

4.2.1 The Forward Pass . 40

vii

viii Contents

4.2.2 The Backward Pass . 41
4.2.3 Optimizing Neural Networks . 42

4.3 Efficient Training of Neural Networks . 43
4.3.1 Hessian-Based Analysis of the Error Function 43
4.3.2 Normalizing the Input Data . 44
4.3.3 Choosing the Activation Function . 46
4.3.4 Initialization and Network Size . 46
4.3.5 Learning Rate, Momentum, and Mini-Batches 47

4.4 Improving Neural Network Generalization . 48
4.4.1 Model Regularization . 48
4.4.2 Invariant Input Representations . 49
4.4.3 Structured Neural Networks . 50
4.4.4 Smoothness of the Prediction Function. 52

4.5 Model Selection, Evaluation, and Understanding 54
4.5.1 Model Selection and Evaluation . 54
4.5.2 Understanding Neural Network Predictions. 55
4.5.3 Layer-Wise Relevance Propagation. 56
4.5.4 What Did the Neural Network Actually Learn?. 58

4.6 Conclusion . 59
References . 59

Part II Incorporating Prior Knowledge: Invariances, Symmetries,
Conservation Laws

References . 64

5 Building Nonparametric n-Body Force Fields Using Gaussian
Process Regression. 67
Aldo Glielmo, Claudio Zeni, Ádám Fekete, and Alessandro De Vita
5.1 Introduction . 68
5.2 Nonparametric n-body Force Field Construction 70

5.2.1 Gaussian Process Regression . 70
5.2.2 Local Energy from Global Energies and Forces 73
5.2.3 Incorporating Prior Information in the Kernel 75
5.2.4 Smooth, Symmetric Kernels of Finite Order n 80
5.2.5 Choosing the Optimal Kernel Order . 83
5.2.6 Kernels for Multiple Chemical Species 87
5.2.7 Summary . 89

5.3 Practical Considerations . 89
5.3.1 Applying Model Selection to Nickel Systems 90
5.3.2 Speeding Up Predictions by Building MFFs 93

5.4 Conclusions . 96
References . 97

Contents ix

6 Machine-Learning of Atomic-Scale Properties Based
on Physical Principles . 99
Gábor Csányi, Michael J. Willatt, and Michele Ceriotti
6.1 Introduction . 100
6.2 Kernel Fitting . 102

6.2.1 Selection of a Representative Set . 104
6.2.2 Linear Combination of Kernels . 105
6.2.3 Derivatives . 106
6.2.4 Learning from Linear Functionals . 108
6.2.5 Learning Multiple Models Simultaneously 110

6.3 Density-Based Representations and Kernels . 110
6.3.1 A Dirac Notation for Structural Representations. 111
6.3.2 Smooth Overlap of Atomic Positions. 114
6.3.3 Body-Order Potentials . 116
6.3.4 Kernel Operators and Feature Optimization. 117
6.3.5 λ-SOAP: Symmetry-Adapted Gaussian Process

Regression . 118
6.3.6 Computing SOAP Representations Efficiently 119
6.3.7 Back to the Structures . 121
6.3.8 Multi-Kernel Learning . 122

6.4 Conclusions . 123
References . 125

7 Accurate Molecular Dynamics Enabled by Efficient Physically
Constrained Machine Learning Approaches . 129
Stefan Chmiela, Huziel E. Sauceda, Alexandre Tkatchenko,
and Klaus-Robert Müller
7.1 Introduction . 130
7.2 Hilbert Space Learning. 131

7.2.1 Hilbert Spaces . 132
7.2.2 Gaussian Process Models . 133

7.3 Encoding Prior Knowledge . 135
7.3.1 Representation . 135
7.3.2 Covariance Function. 136
7.3.3 Mean Function . 137

7.4 Energy-Conserving Force Field Reconstructions 138
7.4.1 Forces Are Quantum-Mechanical Observables 138
7.4.2 Differentiation Amplifies Noise . 139
7.4.3 Constructing Conservative Vector-Valued GPs 140

7.5 Point Groups and Fluxional Symmetries . 144
7.5.1 Positive-Semidefinite Assignment . 144

7.6 Conclusion . 148
7.7 Data and Software . 149
References . 149

x Contents

8 Quantum Machine Learning with Response Operators
in Chemical Compound Space . 155
Felix Andreas Faber, Anders S. Christensen,
and O. Anatole von Lilienfeld
8.1 Introduction . 156
8.2 Representing an Atomic Environment . 156

8.2.1 First-Order Term A1 . 157
8.2.2 Second-Order Term A2 . 158
8.2.3 Third Order Term A3 . 159
8.2.4 Scaling Function . 160
8.2.5 Electric Field-Dependent Representation 160

8.3 Kernel-Based Regression Model . 161
8.3.1 General Response Formalism . 161
8.3.2 Kernel Derivatives in the Basis of Atomic

Environments . 163
8.4 Numerical Results . 164

8.4.1 Dipole Learning for QM9 Molecules . 167
8.5 Outlook . 168
References . 168

9 Physical Extrapolation of Quantum Observables
by Generalization with Gaussian Processes . 171
R. A. Vargas-Hernández and R. V. Krems
9.1 Introduction . 172

9.1.1 Organization of This Chapter . 173
9.2 Quantum Systems . 174

9.2.1 Lattice Polarons. 174
9.2.2 The Heisenberg Model . 175

9.3 Gaussian Process Regression for Interpolation . 176
9.3.1 Model Selection Criteria . 178

9.4 Physical Extrapolation by Generalization
with Gaussian Processes . 178
9.4.1 Learning with Kernel Combinations . 178

9.5 Extrapolation of Quantum Properties . 179
9.5.1 Extrapolation Across Sharp Polaron Transitions 180
9.5.2 Effect of Kernel Complexity . 181
9.5.3 Extrapolation Across Paramagnetic–Ferromagnetic

Transition . 182
9.5.4 Validation of Extrapolation. 187
9.5.5 Power of the Bayesian Information Criterion 190

9.6 Conclusion . 190
References . 192

Part III Deep Learning of Atomistic Representations

References . 196

Contents xi

10 Message Passing Neural Networks . 199
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl
10.1 Introduction . 199
10.2 Message Passing Neural Networks . 201

10.2.1 Convolutional Networks for Learning Molecular
Fingerprints [14] . 202

10.2.2 Gated Graph Neural Networks (GG-NN) [25] 203
10.2.3 Interaction Networks [27]. 203
10.2.4 Molecular Graph Convolutions [24]. 204
10.2.5 Deep Tensor Neural Networks [15] . 205
10.2.6 SchNet with Edge Updates [19] . 205
10.2.7 Laplacian-Based Methods [12, 28, 29] . 205

10.3 MPNNs for Modeling Molecules . 206
10.3.1 Message Functions . 207
10.3.2 Virtual Graph Elements . 207
10.3.3 Readout Functions . 208
10.3.4 Multiple Towers . 208

10.4 Input Representation . 209
10.5 Training . 210
10.6 Results . 210
10.7 Conclusions and Future Work . 213
References . 213

11 Learning Representations of Molecules and Materials
with Atomistic Neural Networks . 215
Kristof T. Schütt, Alexandre Tkatchenko, and Klaus-Robert Müller
11.1 Introduction . 216
11.2 The Deep Tensor Neural Network Framework . 217
11.3 SchNet . 218

11.3.1 Continuous-Filter Convolutional Layers 218
11.3.2 Interaction Blocks . 220
11.3.3 Filter-Generating Networks . 221

11.4 Analysis of the Representation . 223
11.4.1 Locality of the Representation . 223
11.4.2 Local Chemical Potentials . 226
11.4.3 Atom Embeddings . 227

11.5 Conclusions . 228
References . 229

Part IV Atomistic Simulations

References . 232

xii Contents

12 Molecular Dynamics with Neural Network Potentials 233
Michael Gastegger and Philipp Marquetand
12.1 Introduction . 234
12.2 Methods . 235

12.2.1 High-Dimensional Neural Network Potentials 235
12.2.2 Dipole Model . 236
12.2.3 Adaptive Sampling Scheme . 238

12.3 Generation of Reference Data Sets . 239
12.3.1 Accuracy of NNP Ensembles . 239
12.3.2 Choice of Uncertainty Measures . 240
12.3.3 Frequency of Reference Computations . 242
12.3.4 Adaptive Sampling with Multiple Replicas 243

12.4 NNPs for Molecular Dynamics Simulations . 243
12.4.1 Machine Learning for Molecular Dipole Moments 245
12.4.2 Latent Partial Charges . 246
12.4.3 Electrostatic Potentials . 249
12.4.4 Geometry Dependence of Latent Charges 250

12.5 Conclusion . 251
References . 252

13 High-Dimensional Neural Network Potentials for Atomistic
Simulations . 253
Matti Hellström and Jörg Behler
13.1 Introduction . 253
13.2 Preliminaries. 255
13.3 Functional Form of a High-Dimensional Neural Network

Potential . 256
13.3.1 Energy Calculations . 256
13.3.2 Symmetry Functions . 258
13.3.3 Choosing a Set of Symmetry Functions 262
13.3.4 Force Calculations . 263
13.3.5 Other Types of Symmetry Functions . 267

13.4 Construction of a High-Dimensional Neural Network Potential . . . 267
13.5 Long-Range Interactions . 269
13.6 Applications of High-Dimensional Neural Network Potentials 271
13.7 Summary. 271
References . 274

14 Construction of Machine Learned Force Fields with Quantum
Chemical Accuracy: Applications and Chemical Insights 277
Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky,
Klaus-Robert Müller, and Alexandre Tkatchenko
14.1 Introduction . 278
14.2 Data Generation and Sampling of the PES. 282

14.2.1 Imbalanced Sampling . 283
14.2.2 Representative Sampling: From DFT to CCSD(T) 284

Contents xiii

14.3 Physically Inspired Machine Learned Force Fields 286
14.3.1 Symmetrized Gradient-Domain Machine Learning. 287
14.3.2 Force vs. Energy ML Models . 289

14.4 Gradient-Domain Learning and Its Performance 290
14.4.1 Static Validation . 290
14.4.2 Dynamic Validation . 292

14.5 Smoothness Hypothesis in Quantum Chemistry . 294
14.6 Learning Molecular PES: What Type of Interactions Can

Be Captured? . 296
14.6.1 Electrostatic Interactions and Electron Lone Pairs 297
14.6.2 Intramolecular H-Bond and Proton Transfer 299
14.6.3 Hybridization and Electronic Delocalization 300

14.7 Conclusions . 302
References . 303

15 Active Learning and Uncertainty Estimation . 309
Alexander Shapeev, Konstantin Gubaev, Evgenii Tsymbalov,
and Evgeny Podryabinkin
15.1 Introduction . 309
15.2 Active Selection from Given Samples: Uncertainty Estimation . . . 310

15.2.1 Predictive Variance for Gaussian Process Regression 312
15.2.2 Query by Committee . 312
15.2.3 D-Optimality . 313
15.2.4 Bayesian Methods for Neural Networks. 315

15.3 Learning-On-the-Fly . 317
15.3.1 Active Learning in Molecular Dynamics 317
15.3.2 Active Learning in Crystal Structure Prediction 321

15.4 Conclusion . 327
References . 327

16 Machine Learning for Molecular Dynamics on Long Timescales 331
Frank Noé
16.1 Introduction . 331
16.2 Learning Problems for Long-Time Molecular Dynamics 334

16.2.1 What Would We Like to Compute? . 334
16.2.2 What Is Molecular Dynamics? . 335
16.2.3 Learning Problems for Long-Time MD 335

16.3 LP1: Learning Propagator in Feature Space . 337
16.3.1 Loss Function and Basis Statistics . 339
16.3.2 Maximum Likelihood and Markov State Models 340
16.3.3 MSMs with Detailed Balance . 341
16.3.4 Minimal Regression Error . 343
16.3.5 Variational Approach for Dynamics with Detailed

Balance (VAC) . 343
16.3.6 General Variational Approach (VAMP) 346

xiv Contents

16.4 Spectral Representation and Variational Approach 347
16.4.1 Spectral Theory . 347
16.4.2 Variational Principles . 348
16.4.3 Spectral Representation Learning. 349

16.5 LP2: Learning Features and Representation . 350
16.5.1 Suitable and Unsuitable Loss Functions 350
16.5.2 Feature Selection . 351
16.5.3 Blind Source Separation and TICA . 352
16.5.4 TCCA/VAMP . 353
16.5.5 MSMs Based on Geometric Clustering. 354
16.5.6 VAMPnets. 355

16.6 LP3 Light: Learn Representation and Decoder . 357
16.6.1 Time-Autoencoder . 358
16.6.2 Time-Autoencoder with Propagator . 359
16.6.3 Variational (Time-)Autoencoders . 359

16.7 LP3 Heavy: Learn Generative Models . 360
16.7.1 Deep Generative MSMs . 361
16.7.2 Deep Resampling MSMs. 362
16.7.3 Deep Generative MSMs with Energy Distance Loss 363

16.8 Data and Software . 364
16.9 Conclusions . 365
References . 366

Part V Discovery and Design

References . 374

17 Database-Driven High-Throughput Calculations and Machine
Learning Models for Materials Design . 377
Rickard Armiento
17.1 Background . 377
17.2 Computational Methods . 379

17.2.1 Overdelocalized Orbitals . 380
17.2.2 Under- and Overestimated Lattice Constants 383
17.2.3 Weak Dispersion Forces . 383

17.3 Materials Properties . 384
17.4 Database-Driven High-Throughput Calculations 385
17.5 Machine Learning Models for Materials Design 386

17.5.1 Models for Molecules . 386
17.5.2 General Models for Periodic Systems . 387
17.5.3 Crystal-Structure Specific Models . 388
17.5.4 Models for Predicting Composition Phase

Diagrams, Crystal Structures. 390
17.6 Conclusions and Outlook . 391
References . 392

Contents xv

18 Polymer Genome: A Polymer Informatics Platform
to Accelerate Polymer Discovery. 397
Anand Chandrasekaran, Chiho Kim, and Rampi Ramprasad
18.1 Introduction: Applications of Machine Learning

in Materials Science . 398
18.2 Dataset . 400
18.3 Hierarchical Fingerprinting . 402
18.4 Surrogate (Machine Learning) Model Development 405

18.4.1 Recursive Feature Elimination . 405
18.4.2 Gaussian Process Regression . 405

18.5 Model Performance Validation . 406
18.6 Polymer Genome Online Platform . 407
18.7 Conclusions and Outlook . 409
References . 410

19 Bayesian Optimization in Materials Science . 413
Zhufeng Hou and Koji Tsuda
19.1 Introduction . 413
19.2 Bayesian Optimization . 414
19.3 Application of Bayesian Optimization in Materials Science 416

19.3.1 Determine the Parameters in a Physics Model 416
19.3.2 Discovery of New Functional Materials 418
19.3.3 Global Optimization of Atomic Structure 419

19.4 Conclusions . 423
References . 423

20 Recommender Systems for Materials Discovery . 427
Atsuto Seko, Hiroyuki Hayashi, Hisashi Kashima, and Isao Tanaka
20.1 Introduction . 427
20.2 Matrix- and Tensor-Based Recommender System. 430

20.2.1 Matrix and Tensor Factorization . 430
20.2.2 Datasets . 431
20.2.3 Rating Matrix and Tensor Representations 433
20.2.4 Discovery Performance of Unknown CRCs. 434

20.3 Compositional Descriptor-Based Approach . 439
20.3.1 Classification. 439
20.3.2 Descriptors . 440
20.3.3 Datasets . 440
20.3.4 Discovery Performance of Unknown CRCs. 441

20.4 Conclusion . 442
References . 443

21 Generative Models for Automatic Chemical Design . 445
Daniel Schwalbe-Koda and Rafael Gómez-Bombarelli
21.1 Introduction . 445

21.1.1 Early Inverse Design Strategies for Materials 446

xvi Contents

21.1.2 Deep Learning and Generative Models . 448
21.1.3 Generative Models Meet Chemical Design 451

21.2 Chemical Generative Models . 453
21.2.1 SMILES Representation. 453
21.2.2 Molecular Graphs. 456

21.3 Challenges and Outlook for Generative Models . 459
References . 461

1Introduction

Kristof T. Schütt, Stefan Chmiela, O. Anatole von Lilienfeld,
Alexandre Tkatchenko, Koji Tsuda, and Klaus-Robert Müller

Abstract

Rational design of molecules and materials with desired properties requires both
the ability to calculate accurate microscopic properties, such as energies, forces,
and electrostatic multipoles of specific configurations, and efficient sampling of
potential energy surfaces to obtain corresponding macroscopic properties. The
tools that provide this are accurate first-principles calculations rooted in quantum
mechanics, and statistical mechanics, respectively. Both of these come with a
high computational cost that prohibits calculations for large systems or sampling-
intensive applications, like long-timescale molecular dynamics simulations, thus
presenting a severe bottleneck for searching the vast chemical compound space.
To overcome this challenge, there have been increased efforts to accelerate
quantum calculations with machine learning (ML).

K. T. Schütt · S. Chmiela
Machine Learning, Technical University of Berlin, Berlin, Germany

O. A. von Lilienfeld
Institute of Physical Chemistry and MARVEL, University of Basel, Basel, Switzerland
e-mail: anatole.vonlilienfeld@unibas.ch

A. Tkatchenko
Department of Physics and Materials Science, University of Luxembourg, Luxembourg,
Luxembourg

K. Tsuda
Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
e-mail: tsuda@k.u-tokyo.ac.jp

K.-R. Müller (�)
Computer Science, Technical University of Berlin, Berlin, Germany

MPII Saarbrücken, Germany and Korea University, Seoul, South Korea
e-mail: klaus-robert.mueller@tu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_1&domain=pdf
mailto:anatole.vonlilienfeld@unibas.ch
mailto:tsuda@k.u-tokyo.ac.jp
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_1

2 K. T. Schütt et al.

The success of ML methods, and artificial intelligence (AI) in general, rests on
their ability to uncover and exploit regularities within data, without an explicit
concept of the underlying principles that cause them (e.g., [1, 2]). This allows the
description of phenomena that are not yet fully understood or computationally too
expensive to calculate exactly. Recently, AI was able to beat the champion in Go,
one of the most challenging classical games [3]. Traditional rule-based algorithms
have failed to perform at an even remotely comparable level in the face of the
enormous search space that needs to be traversed. The proposed AI method, on
the other hand, was able to develop more efficient strategies in a reinforcement
learning scheme. Similarly, ML and AI have been used to enable medical decision
making (e.g., [4–7]) or contribute to analyzing data in the neurosciences (e.g., [8–
11]). While a careful application of ML can aid in revealing insights like that, it is
crucial to ascertain their robustness beyond any doubt. The field of explainable AI
addresses this long standing challenge, by highlighting the reliability of problem-
solving behaviors of learning machines to which standard performance evaluation
metrics are oblivious (e.g., [12, 13]).

For the field of quantum chemistry, training nonlinear regression models, such
as Gaussian processes or neural networks, on accurate reference calculations allows
to shortcut quantum mechanics and directly predict chemical properties [14–16].
ML predictions of atomic forces can drive molecular dynamics simulations, while
uncertainty estimates and active learning guide the acquisition of more reference
calculations to further improve the previously trained models [17, 18]. Having
immediate access to such accurate predictions of chemical properties allows for
extensive, large-scale studies that would have been infeasible with conventional
quantum chemistry simulations. Beyond that, chemical insights can be obtained
by developing interpretable models and employing techniques from explainable
AI [19]. This book has emerged from the 2016 IPAM Long Program Understanding
Many-Particle Systems with Machine Learning as well as the NeurIPS Workshops
2017 and 2018 on Machine Learning for Molecules and Materials. It aims to
provide researchers that are new to this quickly developing field both with the
fundamental concepts and a cross-section through the various lines of research.
While the focus lies on physics-based machine learning that models electronic and
atomistic properties, the book also touches on related fields of chemo- and materials-
informatics. In the following, we give an overview of the topics covered in the book.
As the subject of this book is inherently interdisciplinary, its first part starts off
with an introduction of the fundamental concepts and techniques. This includes a
chapter on the basics of quantum and statistical mechanics for modeling molecules
and materials as well as chapters on two of the most popular machine learning
techniques in this field—kernel methods and neural networks.

Incorporating prior physical knowledge into the machine learning models is
crucial to obtain accurate predictions given as few computationally expensive
reference calculations as possible. Part II is concerned with various approaches
to achieve this. In particular, it covers the design of n-body force-fields based
on physical principles such as smoothness and invariances, modeling response
properties as well as choosing the kernel complexity for optimal generalization.

1 Introduction 3

While manual design of kernels and features may be informed by prior knowledge,
some aspects need to be chosen using heuristics. In contrast, deep neural networks
aim to learn a representation of the data. Part III presents deep learning approaches
to model molecules and materials and shows how to extract insights from the learned
representation.

The second half of the book focuses on applications, starting with ML-enhanced
atomistic simulations in Part IV. The chapters cover the application of neural
networks and kernel methods to drive molecular dynamics simulations, computing
uncertainty estimates as well as dealing with long time-scales. Part V addresses
the discovery of novel molecules and materials and the exploration of chemical
compound space. This includes ML predictions across chemical compound space
as well as approaches from chemo- and materials-informatics such as recommender
systems and graph generative models.

We expect that combining approaches from all these directions of research—
ranging from prediction of chemical properties over the sampling of potential energy
surfaces to recommender systems and generative models for molecular graphs—will
enable researchers to build powerful multi-step frameworks to facilitate targeted,
rational design.

Acknowledgments All editors gratefully acknowledge support by the Institute of Pure and
Applied Mathematics (IPAM) at the University of California Los Angeles during the long program
on Understanding Many-Particle Systems with Machine Learning.

References

1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)
2. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)
3. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot et al., Nature 529(7587), 484 (2016)
4. D. Capper, D.T. Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, C. Koelsche, F. Sahm,

L. Chavez, D.E. Reuss et al., Nature 555(7697), 469 (2018)
5. A. Meyer, D. Zverinski, B. Pfahringer, J. Kempfert, T. Kuehne, S.H. Sündermann, C. Stamm,

T. Hofmann, V. Falk, C. Eickhoff, Lancet Respir. Med. 6(12), 905 (2018)
6. P. Jurmeister, M. Bockmayr, P. Seegerer, T. Bockmayr, D. Treue, G. Montavon, C. Vollbrecht,

A. Arnold, D. Teichmann, K. Bressem et al., Sci. Transl. Med. 11(509), eaaw8513 (2019)
7. D. Ardila, A.P. Kiraly, S. Bharadwaj, B. Choi, J.J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye,

G. Corrado, et al., Nat. Med. 25(6), 954 (2019)
8. J. Gemignani, E. Middell, R.L. Barbour, H.L. Graber, B. Blankertz, J. Neural Eng. 15(4),

045001 (2018)
9. T. Nierhaus, C. Vidaurre, C. Sannelli, K.R. Müller, A. Villringer, J. Physiol. (2019). https://doi.

org/10.1113/JP278118
10. J.D. Haynes, G. Rees, Nat. Rev. Neurol. 7(7), 523 (2006)
11. K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Nature 452(7185), 352 (2008)
12. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.R. Müller, Nat. Commun.

10(1), 1096 (2019)
13. W. Samek, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Springer,

Berlin, 2019)
14. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

https://doi.org/10.1113/JP278118
https://doi.org/10.1113/JP278118

4 K. T. Schütt et al.

15. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)
16. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett. 108(5), 058301

(2012)
17. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015)
18. J. Behler, Int. J. Quantum Chem. 115(16), 1032 (2015)
19. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.R. Müller, Explainable AI: Interpreting,

Explaining and Visualizing Deep Learning, vol. 11700 (Springer, Berlin, 2019)

Part I

Fundamentals

Preface

In recent years, applying machine learning techniques to model atomistic systems
has led to promising advances towards accelerated sampling of potential energy
surfaces and inverse chemical design. This quickly developing field is inherently
interdisciplinary and brings together fundamental techniques from material model-
ing and quantum chemistry as well as machine learning.

The first part of the book aims to introduce important concepts from these
domains. Chapter 2 [1] briefly covers material modeling, including the necessary
fundamentals of statistical and quantum mechanics. In the following, Chaps. 3 [2]
and 4 [3] introduce kernel methods and neural networks, respectively. Those are
among the most common machine learning techniques in the field and applied in
many chapters throughout the book.

Berlin, Germany Kristof T. Schütt
Berlin, Germany Stefan Chmiela
Basel, Switzerland O. Anatole von Lilienfeld
Luxembourg, Luxembourg Alexandre Tkatchenko
Kashiwa, Japan Koji Tsuda
Berlin, Germany Klaus-Robert Müller
September 2019

References

1. J. Hermann, in Machine Learning for Quantum Simulations of Molecules and Materials, ed.
by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture
Notes in Physics (Springer, Berlin, 2019)

6 I Fundamentals

2. W. Pronobis, K.-R. Müller, in Machine Learning for Quantum Simulations of Molecules and
Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

3. G. Montavon, in Machine Learning for Quantum Simulations of Molecules and Materials, ed.
by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture
Notes in Physics (Springer, Berlin, 2019)

2Introduction toMaterial Modeling

Jan Hermann

Abstract

This introductory chapter presents material modeling, or computational materials
science, as a discipline that attempts to computationally predict properties
of materials and design materials with given properties, and discusses how
machine learning can help in this task. At the center of material modeling
is the relationship between the atomic structure and material properties. This
relationship is introduced together with the quantum and statistical mechanics as
the two main tools for material modeling from first principles, which should also
guide the development of new machine learning approaches to computational
materials science. Material modeling operates with an abundance of technical
terms, and some of these are explained in a glossary at the end of the chapter.

2.1 Introduction

Material modeling, or computational materials science, refers to the problem of
computational prediction of material properties, and also to the inverse problem
of computational discovery of materials with given properties [1–4]. Tradition-
ally, modeling of materials is based on the underlying fundamental physical
laws—quantum and statistical mechanics—expressed in the form of mathematical
equations, which provide an in principle exact framework for building the right
models. This bottom-up approach is limited by the complexity of the equations,
and by the difficulty in recognizing a priori which of the degrees of freedom in the

J. Hermann (�)
TU Berlin, Machine Learning Group, Berlin, Germany

FU Berlin, Department of Mathematics and Computer Science, Berlin, Germany
e-mail: jan.hermann@fu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_2&domain=pdf
mailto:jan.hermann@fu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_2

8 J. Hermann

description of a system are relevant for the solution of the equations, and which
can be omitted to reduce the complexity. Material modeling sometimes resorts
to the opposite top-down approach as well, in which known materials and their
properties are used to parametrize or simplify the models, but such techniques
are often used in an ad-hoc fashion without any systematic theoretical guidelines.
Here, machine learning as a discipline can fill this void and provide precisely such
guidelines in the form of a solid mathematical framework for inferring unknown
models from known data, extracting the relevant degrees of freedom along the way.
Delivering on such a promise, this book presents a series of works that pave the way
towards incorporating machine learning into material modeling. The challenge in
such a program is to avoid creating an entirely orthogonal branch of research to the
established techniques. Instead, the goal is to either incorporate machine learning
into existing methods, thus enhancing them, or use the existing methods to bootstrap
the machine learning approaches. For this reason, this introductory chapter gives a
brief introduction into the traditional bottom-up approach of material modeling in
the form of fundamental physical laws.

One possible way to characterize learning is that it involves inferring probability
distributions from data that are assumed to be sampled from those distributions. In
the common meaning of the word learning, the “data” may be observed instances of
behavior and the probability distributions would be the “rules” according to which
one behaves, both in terms of what behavior is possible (marginal distributions) and
which behavior is appropriate for a given situation (conditional distributions). In
some types of learning problems, with seemingly or evidently deterministic rules,
the formulation in terms of probabilities may seem superfluous, but even in such
cases it enables a rigorous handling of the fact that one always works with limited
amount of data, and as such there can never be a certainty about the underlying
inferred rules. In traditional machine learning tasks, e.g., image recognition, natural
language processing, or optimal control, it is in general assumed that very little is
known about the underlying distributions besides some general and often obvious
properties such as locality or certain invariances. Either the data being modeled are
too complex to derive anything meaningful about the distributions from theory, or,
more commonly, there is no theory available.

When applying machine learning to molecules and materials, on the other hand,
one has the whole toolbox of quantum and statistical mechanics to derive all sorts
of general approximations or exact constraints to the distributions that underlie the
data. The approximations can serve as a basis which a machine learning model
improves, or as motivation for constructing specialized features and architectures.
The constraints, such as symmetries or asymptotic behavior, can improve data
efficiency and numerical stability of the learning algorithms, and in the case
of unsupervised learning may even be a necessity to avoid learning unphysical
solutions. In many applications, the methods of quantum and statistical mechanics
do not enter the machine-learning techniques directly, but they are used to generate
the data that are used to train the machine-learning models. In such cases, the
question of feasibility and accuracy of the generated data becomes an integral part
of the design of the machine learning approach.

2 Introduction to Material Modeling 9

This chapter aims to give a brief introduction to the problem of modeling of
molecules and materials intended for a reader with only the most rudimentary
knowledge of physics and chemistry. It attempts to provide a context for the
technical parts of the book, and place the subsequent chapters in the broader map of
materials science. The topic and scope of this chapter preclude any chances at being
comprehensive, but it should give an explanation of some of the core principles and
ideas, and point to topics of possible further study.

Section 2.2 presents the traditional problems encountered in material modeling
in the framework of the relationship between material structure and material proper-
ties. Sections 2.3 and 2.4 present quantum mechanics and statistical mechanics—the
two main disciplines of physics and theoretical chemistry that provide the theoretical
framework for modeling molecules and materials. The chapter is concluded in
Sect. 2.4 by a glossary of common terms that are frequently used in the subsequent
technical chapters and where they are assumed to be understood.

2.2 Structure–Property Relationship

The ultimate goal of material modeling is to replace real-world lab experiments
using materials and measuring instruments with (cheaper) computer simulations in
the task of predicting the physical and chemical properties of a material [5]. This
is the so-called forward problem in materials science. The corresponding inverse
problem is to produce a (usually novel) material that has a set of desired properties,
using computational techniques—this branch of materials science is called materials
design or discovery [6]. The inverse problem is usually considered to be much
harder than the forward problem, at least with existing techniques.

The reason for calling the material property prediction a forward problem is that,
in principle, it has an exactly known unique solution. The mathematical solutions
of the Schrödinger equation of quantum mechanics, applied to materials, can give
answers to many questions about the properties of a material [7]. The rest of the
questions can be, again in principle, answered by the tools of statistical mechanics
[8, 9]. Unfortunately, the Schrödinger equation can be solved analytically only for
the simplest “molecule”—a single hydrogen atom—and the numerical techniques
that give sufficiently accurate solutions are computationally too expensive for many
materials of interest. A large portion of the efforts in material modeling then deals
with a careful analysis of these numerical models and their errors, with attempts to
have these errors under control, and ultimately with devising more accurate, more
general, and more computationally efficient models. The first technical part of the
book, Representations, covers attempts to entirely avoid having to deal with the
Schrödinger equation by learning the properties obtained from its solutions directly
from data. Similarly, statistical mechanics can provide analytical answers only for
the most rudimentary models, such as noninteracting harmonic oscillators, hard
spheres, or two-dimensional lattices, and relies on statistical sampling from various
types of thermodynamic distributions (ensembles) for more realistic systems. The
biggest (unsolved) problem is then to generate representative samples from these

10 J. Hermann

distributions. The second part of the book, Atomistic Simulations, deals with
applications of machine learning to this sampling problem. The inverse problem
of materials science, as every inverse problem, is likewise solvable in principle,
by enumerating all possible materials and solving the forward problem for all of
them. But this is unfeasible in most cases due to the sheer combinatorial size of the
problem space in question. The third part of the book, Discovery, covers the use
of machine learning to accelerate materials design by reducing the effective search
space.

2.2.1 Atomic Structure

An important part of the discussion of material properties is the question of unique
specification of a material or a molecule. All materials are composed of atoms,
and specifying a material is usually understood as specifying its atomic structure.
Disregarding quantum mechanics for a moment, the state of a piece of material is
fully given by listing the positions and velocities of all its atoms, and to which
element each of them belongs—this is called a microstate. However, since one
gram of a typical solid or liquid contains on the order of 1021–1023 atoms, this
is practically impossible and in fact not necessary. The vast majority of the degrees
of freedom involved in such a specification are constantly changing in any given
piece of material, and as such do not pertain to any kind of permanent structure.

Which of the degrees of freedom constitute the atomic structure depends largely
on the type of material and sometimes on the material property being investigated
in the structure–property relationship. Although the term “material” is usually
reserved for solid objects, consider water vapor for a moment as an example
of a simple material. Water vapor consists of individual water molecules, each
of which consists of one oxygen (O) and two hydrogen (H) atoms and whose
geometry can be specified by the two O–H distances and the angle between them.
At any given moment, the distances and angles in all the molecules in a drop of
water are narrowly distributed around some mean values. (The actual width of
these distributions increases with temperature and is a subject matter of statistical
mechanics.) The same distributions would be found if one repeatedly measured the
geometry of a single molecule over a period of time. The individual molecules move
fast along straight lines between relatively rare collisions, spinning as they do, so
the relative positions of the molecules change rapidly. It then follows that the only
structurally persistent motif is the mean geometry of a water molecule—two O–
H distances and one H–O–H angle. In the case of water vapor, this is all that can
be said about its atomic structure, and many properties of water vapor can in fact
be determined from studying just a single molecule as a representative of all the
molecules.

Going to liquid water, the geometry of the individual molecules is unchanged,
and they still constantly vibrate, move around, and spin, but they are now condensed
and essentially touching each other. Many interesting water properties do not follow
from the properties of a single molecule like in vapor anymore, but rather are a result

2 Introduction to Material Modeling 11

of the statistical characteristics of the relative positions and movement of the water
molecules, which can be very complex. However, these characteristics do uniquely
follow from the interactions between individual water molecules. In principle, there
could be different “kinds” of water, for which the statistical characteristics and hence
material properties would be different, but this is not the case, and neither is for vast
majority of liquids. As a result, all it takes to specify liquid water as a material is the
geometry of a water molecule.

Moving on to solid water—ice—the water molecules themselves are again
unchanged, they are condensed similarly to liquid water, and they still vibrate
around the most likely geometry, but now their relative positions and rotations are
frozen. As in the case of the intramolecular degrees of freedom (O–H distances,
H–O–H angles), the intermolecular degrees of freedom are not sharp values, but
narrowly distributed around some mean values, nevertheless they are not entirely
free as in the liquid or vapor. Fortunately, it is not necessary to specify all the
relative positions of all the molecules in a piece of ice. Common ice is a crystal,
which means that its water molecules are periodically arranged with a relatively
short period. Thus one needs to specify only the positions of several water molecules
and the periodic pattern to express the atomic structure of ice. Unlike in the case
of liquid water, the water molecules in ice can be arranged in different structural
arrangements, and as a result there are different types (phases) of ice, each with
different material properties. (Almost all ice found naturally on Earth is of one
form, called Ih.) In general, a crystal is any material with periodic atomic structure.
This relative structural simplicity enables them to be specified and characterized
precisely, because a microscopic region of a crystal at most several nanometers
across uniquely determines the atomic structure of the whole macroscopic piece of
a material. Many common solid materials are crystalline, including metals, rocks,
or ceramics. Usually a macroscopic piece of a material is not a single crystal, but a
large array of very small crystals that stick together in some way. This structure on
top of the microscopic atomic structure of a single crystal can sometimes have an
effect on some properties of a material, but often is inconsequential and not relevant
for material modeling.

Other solid materials, including glasses, plastics, and virtually all biological
matter, are not crystalline but amorphous—their atomic structure has no periodic
order. Still, specifying the structure of such materials does not require specifying all
the atomic positions. Consider a protein as an instance of complex biological matter.
Proteins are very large molecules consisting of hundreds to hundreds of thousands
atoms, with typical sizes in thousands of atoms, that play a central role in all life on
Earth. All proteins are constructed as linear chains, where each chain link is one of
22 amino acids, which are small organic molecules. Like in a common chain, the
overall three-dimensional shape of a protein is relatively easy to change, whereas
the linear sequence of the links (amino acids) is fixed. Unlike in a common chain,
the amino acids themselves have internal degrees of freedom, with some of them
hard as the distances and angles in the water molecules, and some of them relatively
soft. When a protein molecule is constructed in a cell from the amino acids, its
three-dimensional shape is essentially undetermined, and all that can be said about

12 J. Hermann

its atomic structure in that moment is the linear sequence of the amino acids—this is
called the primary structure. Most proteins in living organisms are not found having
random shapes, but very specific native forms. As a result of the complex quantum-
mechanical interactions within the protein and of the protein with its environment,
the initially random shape folds into the native shape, referred to as the secondary
and tertiary structure, at which point the protein can fulfill its biological function.
This process does not only fix the overall three-dimensional shape of the protein,
but also some of the previously free internal degrees of freedom within the amino
acids. In the native state, the atomic structure of a protein can be characterized
much more precisely. Finally, many proteins can be extracted from the cells into
solutions and then crystallized, which freezes all the degrees of freedom, just like
when ice is formed from water. At that point the atomic structure can be specified
most precisely, with all atoms of the protein vibrating only slightly around their
mean positions.

The previous examples demonstrate that what is considered to be the atomic
structure of a material depends on a given context. The myriads of degrees of
freedom in the atomic structure of a piece of a material can be under given
circumstances (temperature, pressure, time scale) divided into hard ones and soft
ones, with the caveat that there is no sharp boundary between the two. The soft
degrees of freedom are described by distributions with large variance, sometimes
multi-modal, and often with strong correlations between them. These distributions
follow the laws of statistical mechanics, and in many cases are detrimental to
the molecular and material properties, but are not considered to be part of the
atomic structure per se. The hard degrees of freedom can be described by sharp
probability distributions with small variance, and their mean values constitute the
atomic structure of a molecule or a material. The chapters of the first part of the
book deal with how best to represent the atomic structure so that machine learning
approaches can then efficiently learn the relationship between the structure and the
properties. These constitute both properties that follow directly from the structure
and are independent of the soft degrees of freedom, as well as those that follow
from the statistics of the soft degrees of freedom, which are in turn constrained by
the hard degrees of freedom. The following section discusses the material properties
in more detail.

2.2.2 Molecular andMaterial Properties

Having clarified what is meant by the structure of a molecule or a material, the two
problems of materials science can be stated as being able to maximize the following
two conditional probability distributions:

forward: P(property|structure)

inverse (materials design): P(structure|property)

2 Introduction to Material Modeling 13

The atomic structure was introduced above as a specification of a material that
uniquely determines its properties, which would suggest that the forward problem
should be formulated in terms of a function, rather than a distribution. Nevertheless,
it is useful to replace the deterministic function with a probability distribution for
two reasons. First, the forward problem is strictly deterministic only under idealized
conditions (e.g., isolated molecule, zero temperature) and when the problem is set
up in such a way that the atomic structure is indeed specified fully. For instance,
temperature effects or random defects in crystals smear many sharp properties
into Gaussian distributions. Furthermore, a given material modeling problem may
specify atomic structure only partially, such as when one is given only the structure
of a molecule, of which a molecular crystal is composed, but not the complete
structure—the periodic arrangement of the molecules. Second, when the forward
problem is to be learned from data, rather than derived from first principles,
the uncertainty, and hence probability, arises naturally from the finite amount
of available data. In contrast to the forward problem, its inverse is inherently
probabilistic, because molecular and material properties are never guaranteed to
uniquely specify a molecule or a material.

Listing all the material properties that scientists have ever measured would cover
many books on its own, so this introduction will keep to classifying them into
general categories. The molecular and material properties can be tentatively divided
into two categories: electronic properties on the one hand and thermodynamic
properties on the other.

Atoms themselves are not indivisible, but consist of heavy nuclei (which can
be almost always considered point-like in materials science) and thousand-times
lighter electrons, which form electronic “clouds” around the nuclei. The behavior
of the electrons deviates strongly from classical mechanics, and is best described by
quantum mechanics. The closest (but still bad) classical analogy for the electrons
would be perhaps that of a liquid floating around the nuclei, rather than particles
moving around them. In any case, because most of the mass of an atom is
concentrated in its nucleus, its position is likewise associated with the position
of the nucleus. Under almost all circumstances, the atoms moving around can be
described as nuclei moving around and being instantly followed by their respective
clouds of electrons. The mathematical formulation of this idea is called the Born–
Oppenheimer approximation, which underlies most of material modeling. The hard
degrees of freedom that constitute the atomic structure are then associated with fixed
electronic clouds, and the material properties that can be explained by quantum
mechanics from these stationary electronic clouds are considered to be electronic
properties. In contrast, the thermodynamic properties can be explained by statistical
mechanics from the often complex statistics of the soft degrees of freedom in the
motion of the atoms (atomic nuclei).

Electronic properties of molecules and materials are essentially properties of
the collection of their electrons (electronic cloud) under the influence of the nuclei
located at positions given by the atomic structure. As will be discussed in a bit more
detail in Sect. 2.3, the electronic cloud can be in different discrete quantum states,
and under temperatures found on Earth, most matter is found in the lowest-energy

14 J. Hermann

state, called the ground state. The higher-energy states, called excited states, can
be reached, for instance, by exposing a material to visible light or UV radiation. In
general, one can then distinguish between the ground-state electronic properties and
the excited-state properties, the latter usually referring to the transitions between
the ground and the excited states. Some of the ground-state properties include the
atomization energy (energy released when a molecule is formed from its constituent
atoms), the dipole moment and polarizability (shape and responsiveness of the
electronic cloud), and the vibrational spectra (the hardness of the hard degrees
of freedom). (See the Glossary for more details.) It is mostly the ground-state
electronic properties that are targeted by the approaches in the first part of this
book. The excited-state properties include UV and optical absorption spectra (which
determine the color and general photosensitivity of a material), or the ability to
conduct electrical current.

Thermodynamic properties stem from the motion of the atoms along the soft
degrees of freedom in a material. Virtually all the soft degrees of freedom are
not entirely free, but are associated with some barriers. For instance, in liquid
water the molecules can rotate and move around, but not equally easily in all
directions, depending on a particular configuration of the neighboring molecules
at any given moment. The ability to overcome these barriers is directly related
to the average speed of the atoms, which in turn is expressed by the temperature
of the material. At absolute zero, 0 K, the atoms cease almost all motion, only
slightly vibrating around their mean positions as dictated by quantum mechanics.
At that point, all the degrees of freedom in the material can be considered hard,
and virtually all material properties that can be observed and defined at absolute
zero can be considered electronic properties. Calculations of material properties
that neglect the motion of atoms essentially model the materials as if they were
at zero temperature. As the temperature is increased, the atoms move faster and
fluctuate farther from their mean positions, and the lowest barriers of the least hard
degrees of freedom can be overcome, which turns them into soft degrees of freedom.
The statistical characteristics of the resulting atomic motion, and material properties
that follow from it, can be then obtained with the tools of statistical mechanics.
(Statistical mechanics is valid and applicable at all temperatures, but only at higher
temperatures does the atomic motion become appreciably complex.)

The study of thermodynamic properties—thermodynamics—can be divided to
two main branches, equilibrium and nonequilibrium thermodynamics. The equi-
librium refers to a state of a material in which the hard degrees of freedom and
the probability distributions of the soft degrees of freedom remain unchanged over
time. Traditionally, thermodynamic properties refer to those properties related to
the motion of atoms that can be defined and studied at equilibrium. This includes
the melting and boiling temperatures, the dependence of density on pressure and
temperature, the ability to conduct and absorb heat, or the ability of liquids to
dissolve solid materials. It is mostly properties of this kind that motivate the
development of the approaches presented in the second part of this book. On the
other hand, nonequilibrium thermodynamics deals with processes that occur in
materials when they are out of equilibrium, that is, when the distributions of the

2 Introduction to Material Modeling 15

degrees of freedom change over time. Examples of such processes are chemical
reactions and their rates, transport of matter through membranes, or the already
mentioned folding of a protein to its native state.

2.3 QuantumMechanics

Quantum mechanics is the set of fundamental laws according to which all objects
move [10]. In the limit of macroscopic objects, with which we interact in everyday
life, the laws of quantum mechanics reduce to classical mechanics, which was first
established by Newton, and for which all of us build good intuition when jumping
from a tree, riding on a bus, or playing billiard. On the microscopic scale of atoms,
however, the laws of quantum mechanics result in a behavior very different from
that of the classical mechanics.

One of the fundamental differences between the two is that in quantum mechan-
ics, an object can be simultaneously in multiple states. In classical mechanics, an
object can be exclusively either at point r1 or at point r2 �= r2, but not in both. In
quantum mechanics, an object, say an electron, can be in any particular combination
of the two states. Mathematically, this is conveniently expressed by considering the
two position states, denoted |r1〉, |r2〉, to be basis vectors in a vector space (more
precisely a Hilbert space), and allowing the object to be in a state formed as a linear
combination of the two basis vectors,

|ψ〉 := c1|r1〉 + c2|r1〉

Note that c1|r1〉+c2|r1〉 �= |c1r1+c2r2〉, that is, the object is not simply in a position
obtained by adding the two position vectors together, but rather it is somewhat at r1
and somewhat at r2. Generalizing the two position vectors to the infinite number
of positions in a three-dimensional space, the general state of an object can be
expressed as

|ψ〉 :=
∫

drψ(r) |r〉

where ψ(r), called a wave function plays the role of the linear coefficients c1, c2
above. It is for this reason that electrons in molecules are better to be thought of as
electronic clouds (corresponding to ψ(r)) rather than point-like particles.

Another fundamental law of quantum mechanics is that each in principle
experimentally observable physical quantity (“observable” for short) is associated
with a linear operator, L̂, acting on the Hilbert space of the object states, and the
values of the quantity that can be actually measured are given by the eigenvalues,
λi , of the operator,

L̂|ψi〉 = λi |ψi〉

16 J. Hermann

One of the most important operators is the energy operator, called Hamiltonian,
which determines which energies of an object can be measured,

Ĥ |ψi〉 = Ei |ψi〉

This particular eigenvalue equation is called a Schrödinger equation, and since
energy plays a key role in all physical phenomena, its solution (the eigenvalues and
eigenstates) enables determination of many electronic properties of both the ground
state (|ψ0〉) and the excited states (|ψn〉, n > 0). The abstract eigenvalue equation
can be transformed into a differential equation by expressing the state vectors using
the wave function,

Ĥψi(r) = Eiψi(r)

where Ĥ becomes a differential operator. For example, consider a hydrogen atom,
consisting of a single electron described by position r and moving around a nucleus
fixed at position R. Such a system can be considered the simplest “molecule.” In
this case, the Schrödinger equation for the wave function of the electron (in atomic
units) has the form

(
−1

2
∇2 − 1

|r− R|
)
ψi(r) = Eiψi(r)

where ∇2 is the Laplace operator. In more complex molecules with multiple nuclei
and electrons, the Hamiltonian contains more terms, and the wave function is a
function of the coordinates of all the electrons, but the general structure of the
problem remains the same.

The Schrödinger equation for the hydrogen atom can be solved analytically(
E0 = − 1

2 , ψ0(r) ∝ e−|r−R|), but this is not possible for more complex
molecules. Direct methods for numerical solution of differential equations are
inapplicable because of the dimensionality of the wave function (3N dimensions
for N electrons). Many methods of quantum chemistry, such as the Hartree–Fock
or the coupled-cluster method, attempt to solve this issue by cleverly selecting
a subspace in the full Hilbert space of the electrons spanned by a finite basis,
and finding the best possible approximate eigenstates within that subspace. This
turns the differential Schrödinger equation into an algebraic problem, which can
be solved numerically at a feasible computational cost. Another class of methods,
such as the density functional theory, also change the original Hamiltonian such
that the eigenvalues (and in some cases also the eigenstates) are as close to the
true eigenvalues as possible. In all the approximate quantum-mechanical methods,
however, the computational cost grows asymptotically at least as O(N3) (or much
faster for the more accurate methods), and their use becomes unfeasible from
a certain system size. These include the density functional theory (O(N3)), the
Hartree–Fock (HF) method (O(N3)), the Møller–Plesset perturbation theory to
second order (MP2, O(N3)), the coupled-cluster method with single, double,

2 Introduction to Material Modeling 17

and perturbative triple excitations (CCSD(T), O(N7)), and the full configuration
interaction (FCI, O(exp(N))).

Once the Schrödinger equation is solved, evaluating the electronic properties
from the known eigenvalues and eigenstates of the Hamiltonian is often straight-
forward. In particular, many properties such as the dipole moment, polarizability,
or atomic forces can be calculated as integrals of the corresponding operators over
a given eigenstate, or as derivatives of such integrals, which can be transformed to
integrals over derivatives of the operators by the Hellmann–Feynman theorem [11].
Besides that, the solution to the Schrödinger equation also provides a direct link
between the quantum mechanics of the electrons and the statistical mechanics of
the atoms. The electronic Hamiltonian has terms depending on the positions of the
nuclei, Ri , and as a result, the energies of the eigenstates likewise depend on the
positions of the nuclei. The energy of a particular eigenstate as a function of the
nuclear positions, V (R1, . . .), is called a potential energy surface, and in principle
completely determines the dynamics of the motion of the atoms.

2.4 Statistical Mechanics

In the context of material modeling, statistical mechanics deals with the motion in
the soft degrees of freedom of the atoms in a material, and its central idea is that
most of the detail in that motion (>1021 variables) can be safely omitted, while the
physically relevant characteristics can be expressed in a smaller number of collective
degrees of freedom. These collective variables can range from microscopic, in the
form of a coarse-grained description of an atomistic modeling, to macroscopic, such
as temperature or pressure. In all cases, the remaining degrees of freedom beyond
the collective ones are treated in a statistical fashion, rather than explicitly.

The fundamental concept in statistical mechanics is that of a microstate, s, which
comprises the positions, Ri , and velocities vi , of all the atoms in a material, s ≡
(R1, v1,R2, . . .) ≡ (v,R). The total energy, H , of a given microstate consists of the
kinetic part, arising from the velocities, and the potential part, which is determined
by the potential energy surface,

E(s) =
∑
i

1

2
miv

2
i + V (R1, . . .)

One of the central results of statistical mechanics is that given that a material is
kept at a constant temperature T (the so-called canonical ensemble), the probability
density of finding it at any particular microstate is proportional to the so-called
Boltzmann factor (in atomic units),

P(s) ∝ e−
E(s)
T ⇒ P(R) ∝ e−

V (R)
T

18 J. Hermann

The latter proportionality follows from the fact that the kinetic and potential parts of
the total energy are independent. Close to absolute zero temperature, the Boltzmann
factor is very small (in relative sense) for all but the lowest-energy microstates,
which correspond to small atomic velocities and atomic positions close to the
minimum of the potential energy surface. This coincides with the picture of all
the degrees of freedom in the atomic motion being hard close to absolute zero.
As the temperature rises, the microstates with higher energy become more likely,
corresponding to higher velocities and atomic positions further from the energy
minimum. To see how this simple principle can be used to calculate thermodynamic
properties of materials, assume that one can enumerate all the possible microstates,
calculate the sum of all the Boltzmann factors—the partition function [12]—and
thus normalize the probabilities above,

Z(T) =
∫

ds e
−E(s)

T , P (s) = 1

Z(T)
e−

E(s)
T

The mean total energy, for instance, can be then calculated directly from the partition
function,

〈E〉 =
∫

dsP(s)E(s) = T 2 ∂ lnZ

∂T

A quantity closely related to the partition function is the free energy,

F(T) = T lnZ(T)

Whereas the total partition function of two combined systems is a product of their
respective partition functions, the logarithm in the definition of the free energy
makes it an additive quantity. The multiplication by the temperature allows the free
energy to have a physical interpretation—the change in the free energy between two
states of a system is the maximum amount of work that can be extracted from a
process (is available—free) that takes the system from one state to the other.

One of the reasons that makes the free energy (and partition function) a powerful
tool is that it can be calculated not only for the set of all possible microstates, but also
for physically meaningful subsets. For instance, consider the melting temperature
of a solid as an example. To use the free energy, one can characterize the melting
temperature as the point of inversion of the probabilities of the atoms of a material
appearing solid on the one hand or liquid on the other (inversion of free energies of
a solid and of a liquid),

psolid(T) ∝
∫

solid
ds e−

E(s)
T = Zsolid(T) = e−

Fsolid(T)

T , pliquid(T) ∝ e−
Fliquid(T)

T

where the integrals run over all microstates that correspond to the solid or liquid
forms of matter. The melting temperature can then be calculated as the temperature

2 Introduction to Material Modeling 19

at which the free energies of the solid and liquid forms of a given material are equal
(the probabilities of finding the two forms are identical). In the case of melting, the
average potential energy of the solid microstates is lower (Boltzmann factors larger)
than that of the liquid microstates, but there is many more liquid microstates than
solid microstates, so the free energies (total probabilities) end up being equal.

The computational difficulty in statistical mechanics lies in the evaluation of the
integrals over microstates such as those above. Even if one modeled only several
hundreds atoms of a material at a time, the number of degrees of freedom involved
in a microstate prohibits analytical evaluation of the integrals, and even direct
numerical integration is unfeasible. Fortunately, Monte Carlo techniques present
a general approach to evaluate such high-dimensional integrals by replacing them
with sums over representative samples of the microstates. The task is then to
generate statistically significant and diverse microstates, that is, microstates with
large Boltzmann factors that completely span the physically relevant microstate
subspaces. This can be achieved by many different techniques, the most common
one being molecular dynamics. In this approach, the atoms are let to move
according to the laws of classical mechanics along trajectories influenced by the
potential energy surface, and the microstate samples are obtained by taking periodic
snapshots of this dynamical system. This approach is justified by the so-called
ergodic principle, which states that integral averages over the space of microstates
(also called the phase space) are equal to time averages over sufficiently long times
when a system is let to evolve under appropriately chosen dynamical conditions.
This technique is used in most chapters in the second part of the book.

Glossary

Atomic units The standard units of measurement (SI units), including the meter,
kilogram, or joule, are convenient for macroscopic settings, but result in very
small values of quantities in the microscopic world. The atomic units have been
designed to alleviate this inconvenience, and also to simplify physical equations
by making the numerical values of common physical constants equal to one (in
atomic units). For instance, the atomic unit of energy is called Hartree, and the
ground-state electronic energy of a hydrogen atom is− 1

2 Hartree. In SI units, this
would be equal to approximately −2.18 · 10−18 J.

Boltzmann distribution A piece of material in equilibrium at temperature T can
be found in a microstate s (positions and velocities of all atoms) with a probability
that is proportional to e−H(s)/kBT . This probability distribution of the microstates
is called a Boltzmann distribution. Since the energy of a microstate consists
of two independent parts—the kinetic and potential energy—the distribution
of the positions of the atoms also follows a Boltzmann distribution. The
statistical ensemble of microstates following the Boltzmann distribution is called
a canonical ensemble.

20 J. Hermann

Chemical bond All chemistry is a consequence of the motion of electrons in
molecules, which is in general complicated. Comparing the electronic motion
across different molecules reveals common patterns, and chemical bonding is
one of the most widely recognized of such patterns. For instance, when two
carbon atoms get close to each other, between one to three pairs of electrons
tend to concentrate between the two atoms, depending on other atoms in the
neighborhood. This in turn attracts the two atoms together. This effect is an
example of a chemical bond and is what holds the atoms in diamond together.

Computational cost Usually called computational complexity in computer sci-
ence, the computational cost of approximate methods for solving the fundamen-
tal physical equation of quantum mechanics and statistical mechanics involved
in material modeling is one of their three key properties besides accuracy and
universality. The main determining factor of a given factor is usually the size of
the system being modeled, that is, the number of atoms.

Configuration vs. conformation The degrees of freedom in the positions of
atoms in a material can be under given circumstances, such as temperature,
divided into hard and soft. The hard degrees are essentially fixed for the purpose
of a given modeling task and determine the configuration. The soft degrees of
freedom can change through the simulation and their particular arrangement is
called a conformation. For instance, the sequence of amino acids in a protein is a
configuration, whereas any particular three-dimensional shape of the amino acid
chain is a conformation.

Crystal The atomic structure of many solids is characterized by a small pattern
of atoms (usually units to hundreds) periodically repeated throughout the three-
dimensional space. Such a material is called a crystal. Most crystalline materials
do not consist of single large crystals, but of many small crystals randomly
stitched together, or forming a powder. Although crystals are usually modeled
as being perfectly periodic, real-world crystals have various defects that make
the perfect crystal only an approximation.

Density functional theory (DFT) Tracking all the interactions and correlations
in the motion of electrons in molecules and materials becomes quickly unfeasible
as the system size grows. DFT attempts to alleviate this problem by reformulating
the electronic problem such that the electrons do not interact explicitly one with
each other, but rather only via the total density of electrons, which makes the
problem mathematically tractable. DFT is in principle an exact theory, but its
practical realizations (the different functionals of the electron density) achieve
only approximate description of the electronic motion.

Dipole moment When an electrical charge is distributed continuously in space,
such as in the electronic cloud of molecules, its dipole moment is simply the
mathematical first moment of the density of the charge, p = ∫

dr rn(r). Its
importance lies in the fact that when two molecules are sufficiently far apart,
their electric interaction can be Taylor expanded around the infinite separation,
and the leading term of this expansion depends on the dipole moments of the
molecules.

2 Introduction to Material Modeling 21

Electronic property Material property that can be explained by the electronic
structure of a material without regard for the statistics of the motion of the atoms.

Electronic structure The electronic structure of a molecule or a material refers
to the particular arrangement of electrons in it and their collective properties.
The electronic structure can be obtained by solving the Schrödinger equation of
quantum mechanics, and used to predict and explain electronic properties.

Excitation energy The electrons in a molecule or a crystal can be collectively
in different states with different electronic properties. Most matter on Earth is
in the lowest-energy state, called the ground state, but electrons can be excited
to higher-energy states using light or chemical reactions, which supply the
necessary excitation energy. The excited states usually do not persist for long
and fall back to the ground state, with the excitation energy being released back
in various forms.

First principles (ab initio) Approximate methods of material modeling that are
considered to be based on first principles can be straightforwardly derived from
fundamental physical laws without introducing much room for tuning. They
stand in opposition to empirical approaches which use flexible models that can be
optimized to reproduce available data. The first principles and empirical methods
are not two binary categories, but opposite extremes on a spectrum.

Force field The electronic structure methods that are able to calculate the true
electronic energy for a given position of nuclei are usually too costly for them
to be used for molecular dynamics simulations, which model often large systems
and where the energy must be evaluated many times. Fortunately, the absolute
value of the electronic energy is irrelevant for the molecular dynamics, only the
forces exerted on the atoms matter. Force fields are usually relatively simple sets
of functions that take the positions of atoms as an input, and map them to the
forces acting on the atoms. Force fields are usually highly empirical and their
parametrization from data is a tedious task.

Free energy Free energy is always associated with some subset of microstates
and is a direct measure of a probability, p, to find a system in that subset,
F = −T lnp. The subsets are usually either coarse-grained degrees of freedom
(e.g., all microstates of a protein with a given overall three-dimensional shape
fixed, regardless of the internal degrees of freedom of individual amino acids) or
macroscopic states (e.g., all microstates with a given total volume of the system).
Only differences between the free energies of different microstate subsets are
physically relevant.

HOMO–LUMO gap The difference between the energies of the highest-
occupied molecular orbital (HOMO) and the lowest-unoccupied molecular
orbital (LUMO). This quantity can only be defined within approximate models
of the electrons in molecules and is not physically observable, but it is an
approximation of the lowest excitation energy.

Hamiltonian The Hamiltonian is a physicist’s way of uniquely specifying a given
physical system, by relating the energy of a system to its internal degrees of
freedom. Given a Hamiltonian, the behavior of a system can be in principle
calculated using the laws of quantum mechanics, or approximately by classical

22 J. Hermann

mechanics. In quantum mechanics, the Hamiltonian is mathematically expressed
as an operator acting on the Hilbert space of potential states of the system. In
classical mechanics, the Hamiltonian is just a function mapping from the internal
degrees to energy.

Intermolecular interactions Molecules are aggregations of atoms that stick
together via strong intramolecular interactions that can be broken apart only
in chemical reactions (a single water molecule). Intramolecular interactions
are relatively weaker forces between different molecules that determine the
relative motion of molecules around each other (molecules in liquid water). Both
intra- and intermolecular interactions are the end result of the single underlying
Coulomb interaction between electrons and nuclei in molecules.

Many-body interactions Effective models of systems composed of multiple
interacting bodies (electrons, atoms, molecules) often describe collective prop-
erty or behavior as resulting from a simple aggregate effect of the property or
behavior of individual bodies and of pairs of bodies (pairwise interactions). In
many cases, such an effective description captures a large part of the collective
behavior. Collective behavior that cannot be expressed in terms of individual
bodies and pairwise interactions is said to results from many-body interactions.

Materials design One of two main branches of materials science that deals with
discovery of novel materials with desired material properties. Sometimes also
referred to as the inverse problem of material modeling. Computational materials
design usually attempts to predict the atomic structure of the material with
the desired properties, which can then be in principle prepared by synthetic
experimental techniques.

Material modeling One of two main branches of materials science that deals
with prediction of properties of a given material. The general approach is
to approximate the real materials with simplified model systems (with fewer
degrees of freedom or simpler interactions), whose properties can be calculated
using the laws of quantum and statistical mechanics.

Metastable state The electrons in materials can be in different quantum states.
Likewise the atoms in materials can be in different “states,” which is a shorthand
term for subsets of microstates that share some relevant physical feature. In both
cases, if the system is allowed to interact with an environment that can “disturb”
it, it can transition between the different states at any given moment with some
probabilities. Some of the states are stable, which means that the probability of
transitioning to any other state is low enough that it most likely does not happen
on the relevant time scale. Unstable states are so short-lived, that the system
never exhibits behavior that could be associated with any particular unstable
state. Metastable states are between stable and unstable states in the sense that
the system in a metastable state most likely transitions to other states during
the relevant time scale, but it stays long enough in it that it exhibits behavior
characteristic of that state.

Molecular dynamics The atoms of a material constantly transition from one
microstate to another, and the statistical distribution of the microstates determines
many material properties. Molecular dynamics generates samples from this

2 Introduction to Material Modeling 23

distribution by evolving the positions of atoms along classical trajectories. The
particular trajectories (sequences of microstates) are inconsequential, but the
overall generated statistics can be used to calculate various thermodynamic
properties.

Molecular geometry Specification of the charges and positions of atomic nuclei
in a molecule. Specifying the charges is equivalent to specifying the chemical
identities of the atoms. The fixed nuclei are surrounded by the electronic
cloud which determines the electronic properties of a molecule. The atoms of
a molecule (the atomic nuclei) are in constant motion and a fixed molecular
geometry corresponds to molecule frozen in time or a molecule at absolute zero
temperature, when the atomic motion is greatly reduced.

Molecular symmetry The geometry of many common molecules is symmetrical
with respect to rotations, inversions, and reflections around a point. As a result
of this symmetry, any observable function of the molecular geometry has to by
invariant or equivariant with respect to these symmetry operations.

Observable Physical laws operate with quantities. Some of these quantities can
be in principle measured, and those are called physical observables, regardless
of whether it is feasible to actually perform the measurement. Other quantities
are only auxiliary intermediates used to formulate the physical laws, but cannot
be measured directly. Examples of observables are distance, mass, square of a
wave function, or an energy difference. Examples or non-observables are a wave
function or absolute energy.

Periodic boundary conditions One gram of a typical material contains on the
order of 1021–1023 atoms. To make their modeling tractable, a common approxi-
mation is to consider a sufficiently large box containing the atoms, which is then
periodically repeated throughout the space. How large the box should be depends
on the material and property in question. The errors caused by using a sufficiently
large box are called finite size effects. The atomic structure of crystals is in fact
periodic, so in the case of crystals periodic boundary conditions are not really an
approximation.

Potential energy surface The dependence of the energy of a molecule or a
material on the positions of the atoms. The potential energy for the atoms is a
result of the electronic motion and can be calculated by solving the Schrödinger
equation of quantum mechanics. Each electronic state (ground state and excited
states) has its own potential energy surface, which can cross. Such effects
are important when studying the dynamics of excited states and electronic
mechanisms of chemical reactions.

Quantum chemistry Chemistry is the study of chemical reactions, and much of
chemical knowledge preceded the discovery of quantum physics. Every since
that discovery, quantum chemistry attempts to explain chemical properties of
molecules from first principles using the tools of quantum mechanics. Quantum
chemistry relies heavily on numerical calculations and the computational power
of modern computers.

Schrödinger equation The central eigenvalue equation of quantum mechanics
that, given a specification of a system in the form of a Hamiltonian operator,

24 J. Hermann

determines the possible quantum states in which the system can be found and the
energies of those states. Depending on the basis in which the abstract operator
equation is expressed, the Schrödinger equation can be either a differential equa-
tion or an algebraic matrix equation. Except for the simplest quantum-mechanical
systems, the Schrödinger equation cannot be solved exactly, necessitating various
approximations and numerical techniques.

References

1. J.G. Lee, Computational Materials Science: An Introduction, 2nd edn. (CRC Press, Boca
Raton, 2017)

2. R. LeSar, Introduction to Computational Materials Science: Fundamentals to Applications
(Cambridge University Press, Cambridge, 2013)

3. K. Ohno, K. Esfarjani, Y. Kawazoe, Computational Materials Science: From Ab Initio to Monte
Carlo Methods, 2nd edn. (Springer, Berlin, 2018)

4. A.R. Leach, Molecular Modelling: Principles and Applications, 2nd edn. (Pearson Education,
Edinburgh, 2001)

5. S. Yip, A. Wanda (eds.), Handbook of Materials Modeling (Springer, Berlin, 2020)
6. A.R. Oganov, G. Saleh, A.G. Kvashnin (eds.), Computational Materials Discovery (Royal

Society of Chemistry, Cambridge, 2018)
7. L. Piela, Ideas of Quantum Chemistry, 2nd edn. (Elsevier, Amsterdam, 2014)
8. R.K. Pathria, P.D. Beale, Statistical Mechanics, 3rd edn. (Elsevier, Amsterdam, 2011)
9. L.D. Landau, E.M. Lifschitz, Statistical Physics, vol. 5, 3rd edn. (Pergamon Press, Oxford,

1980)
10. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Pearson Education, San

Francisco, 2011)
11. R.P. Feynman, Phys. Rev. 56(4), 340 (1939). https://doi.org/10.1103/PhysRev.56.340
12. D. Yoshioka, in Statistical Physics (Springer, Berlin, 2007), pp. 35–44

https://doi.org/10.1103/PhysRev.56.340

3Kernel Methods for Quantum Chemistry

Wiktor Pronobis and Klaus-Robert Müller

Abstract

Kernel ridge regression (KRR) is one of the most popular methods of non-
linear regression analysis in quantum chemistry. One of the main ingredients
of KRR is the representation of the underlying physical system which mainly
determines the performance of predicting quantum-mechanical properties based
on KRR. Several such representations have been developed for both, solids
and molecules; all of them with different advantages and limitations. These
descriptors correspond to a similarity measure between two chemical compounds
which is represented by the kernel. As recent approaches define the kernel
directly from the underlying physical system, it is important to understand the
properties of kernels and how these kernel properties can be used to improve the
performance of machine learning models for quantum chemistry. After reviewing
key representations of molecules, we provide an intuition on how the choice of
the kernel affects the model. This is followed by a more practical guide of two
complementary kernel methods, one for supervised and one for unsupervised
learning, respectively. Finally, we present a way to gain an understanding about
the model complexity by estimating the effective dimensionality induced by the
data, the representation, and the kernel.

W. Pronobis
Technische Universität Berlin, Berlin, Germany

K.-R. Müller (�)
Technische Universität Berlin, Berlin, Germany

Max Planck Institute for Informatics, Saarbrücken, Germany

Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
e-mail: klaus-robert.mueller@tu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_3&domain=pdf
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_3

26 W. Pronobis and K.-R. Müller

3.1 Introduction

Kernel-based learning methods [1–4] allow an efficient convex solution of highly
non-linear optimization problems often encountered in quantum chemistry. A
common task for the practitioner is to find a (kernel) representation of the problem at
hand which encodes the distribution of the data in a complete, unique, and efficient
way [5], favorably taking into account the inherent symmetries of the system such
as rotational, translational, and atomic indexing invariance. As typical settings for
a chemist or physicist include a low number of data points paired with a highly
non-linear learning problem, kernel-based formulations are considered as suitable
and powerful methods of choice. In view of these considerations, it is important
to understand the kernel properties relevant for an efficient solution in a possibly
much higher-dimensional, sometimes even unknown feature space induced by the
kernel [6]. This is especially true, as it is non-trivial how a kernelized formulation
can circumvent the so-called curse of dimensionality [7–9]. We provide insights on
how the choice of the kernel helps solving these problems by introducing a function
class of limited complexity from which the final model is chosen.

This chapter is structured as follows. Section 3.2 introduces a set of molecular
descriptors and shows how they incorporate prior physical knowledge. This is
followed by a theoretical background on kernels in Sect. 3.3, where we discuss
ways to tailor the kernel to the problem at hand. Section 3.4 provides two examples
of kernel methods often used in the quantum chemistry domain, namely the
supervised KRR and the unsupervised kernel principal component analysis. Finally,
in Sect. 3.5 we present an estimation procedure for the effective dimensionality of
the underlying learning problem using kernels. The conclusion Sect. 14.7 completes
the chapter.

3.2 Representations of Physical Systems

A crucial ingredient of kernel-based methods is the representation of the physical
system at hand. Such representations have been developed for a variety of physical
systems [10–13]. Note that neural networks in contrast to kernel methods learn
their representation from data [14–16]. This representation, together with the
kernel and the data, defines the function class from which the model is chosen,
e.g., to predict a given quantum-mechanical property. In this section, we discuss
three exemplary molecular descriptors and show how chemical knowledge can be
included to improve the predictive performance of KRR.

A physical system will be defined by a set of 4-dimensional points {(Zi, r i)}Ni=1,
where Zi is the atomic number and r i is the position of the atom i in three-
dimensional space, respectively. While the system size N is well defined for
molecules (by the total number of atoms of the molecule), one workaround for
solids is to use atomic environment descriptors together with a cutoff distance to
limit the number of neighboring atoms used to compute the atomic representation.

3 Kernel Methods for Quantum Chemistry 27

Alternatively, any molecular descriptor can also be combined with a modified
distance metric to account for the periodic boundary conditions [17]. A raw
encoding of the physical system by the atomic positions is unsuited for use in
combination with machine learning methods as it neglects invariance with respect
to basic symmetry operations. Instead, a representation is defined

R : {(Zi, xi)}Ni=1 → RNF (3.1)

with the number of features NF . Such a mapping should encode the underlying
chemical system in a complete, unique, and efficient way, including as much
problem symmetries as possible. One way to incorporate translational and rotational
invariance is to use pairwise atomic distances to construct the representation R. For
molecules, a pioneering work which utilizes this observation is the Coulomb matrix
(CM) [18] which is defined as

Cij =
{

0.5Z2.4
i , i = j

ZiZj

‖r i−rj ‖ , i �= j
(3.2)

Being composed based on inverse pairwise distances, the off-diagonal elements of
the CM account well for Coulomb interaction terms of the atomization energy. The
diagonal elements of the CM correspond to a polynomial fit of atomic energies to
nuclear charge [18]. From the set of all pairwise distances, a given molecule can
be uniquely reconstructed, which is not the case for the following representations of
this section. For equilibrium molecules, a variant of the CM has been proposed
which sorts the row (or equivalently column) norms, and which better suits the
feature comparison needed for applying kernel methods [19]. The CM is a global
descriptor in the sense that it lacks a direct encoding of local atomic environment
features. Due to its simplicity and predictive power, the CM provides the basis for
various following molecular descriptors. Being composed of two-body terms, the
three-body interactions of a given molecule are implicitly learned by the intrinsic
feature mapping of the kernel (see Sect. 3.3). Although sorting of the rows solves
some of its problems, one possible flaw of the CM is the comparison of different
kinds of atom combinations within the distance metric which brings us to the next
descriptor.

The bag-of-bonds (BOB) molecular representation is a development of the CM
which rearranges the elements of the CM into bags defined by a given bond
type [20]. Within each feature group, the elements of BOB are sorted, thereby
ensuring atomic permutation invariance. Due to this grouping, chemically more
similar elements are compared with each other as compared to the CM. In addition,
three-body interactions in molecules can possibly be better implicitly learned
by the kernel. Similarly to the bag-of-words descriptor used in natural language
processing and information retrieval applications, BOB encodes the frequencies
of bonds present in a given molecule. As such, the BOB descriptor is inspired
by interatomic potentials, which model a quantum-mechanical property as a sum

28 W. Pronobis and K.-R. Müller

over such potentials. In fact, a Taylor series expansion in combination with KRR
yields a low-order approximation of the BOB model by a sum over bonds and
pairwise potentials [20]. This important finding indicates that the BOB model is
better able to learn optimal pairwise potentials as compared to the CM, which
is beneficial for some extensive properties like the atomization energy and the
polarizability, respectively [21]. For BOB, the Laplace kernel performs better than
the Gaussian kernel, indicating that the Laplace kernel is better able to utilize non-
local information in chemical compound space [20].

Building on the promising feature rearrangement of BOB, a set of pairwise and
three-body descriptors have been proposed to tackle some of the sorting problems
encountered in the CM and BOB [22]. The invariant pairwise interaction descriptors
F2B are composed of the 2-body terms

F2B(Z1, r1, Z2, r2) := {‖r1 − r2‖−m}m=1,...,M (3.3)

where the final set of F2B,Z1,Z2 descriptors are defined by the sum over all pairs of
atoms with the given atomic numbers Z1, Z2, respectively. The grouping according
to pairs of atom types is extended for the three-body descriptors F3B which are
composed of the explicit three-body terms

F3B(Z1, r1, Z2, r2, Z3, r3) := {‖r12‖−m1‖r13‖−m2‖r23‖−m3}m1,m2,m3=1,...,P .

(3.4)

where ‖r ij‖ := ‖r i − rj‖ for i, j = 1, 2, 3. According to the pairwise terms,
the F3B,Z1,Z2,Z3 descriptors are defined by the sum over all triples of atoms with
the given ordered atomic numbers Z1, Z2, Z3, respectively. A local variant of the
F3B,Z1,Z2,Z3 descriptors is composed by summing over all triples which are formed
by two sets of bonded atoms which have a common atom. A diverse set of possible
two- and three-body molecular interaction terms are thereby explicitly encoded into
the F2B + F3B representation. For the concatenated features F2B + F3B, a Gaussian
kernel is better suited than a Laplace kernel [22]. In addition to leveraging the
sorting problems of CM and BOB, one possible advantage of F2B + F3B can be its
fixed descriptor size, making them readily applicable in combination with artificial
neural network architectures. A feature importance analysis has been performed
for the F2B + F3B descriptors [22] to gain insights into the two- and three-body
interactions in equilibrium molecules. Figure 3.1 schematically shows the discussed
representations of this section for the example of a water molecule.

The features F2B + F3B explicitly encode local chemical information into the
representation. In the next section, we will see how to incorporate prior knowledge
directly into the kernel.

3 Kernel Methods for Quantum Chemistry 29

Fig. 3.1 Molecular representations of the water molecule (left) defined by a set of three pairwise
distances. From the Coulomb matrix (CM), the off-diagonal elements are reordered by the bag-
of-bonds (BOB) descriptor. These two-body terms are then combined to atomic index invariant
two-body and three-body features F2B and F3B, respectively

3.3 Implicit Feature Mapping: The Kernel Trick

The second important ingredient of KRR (the first being the representation) is
the kernel. But what is a kernel in general and how can it be useful? With a
kernel, the data can be nonlinearly mapped onto a feature space, where the learning
may become easier and where optimal generalization can be guaranteed. A key
concept here is that this mapping can be done implicitly by the choice of the
kernel. This implicit feature mapping to a possibly much higher-dimensional space
is very flexible. More intuitively, the kernel encodes a real valued similarity measure
between two chemical compounds. This similarity measure is primarily encoded
by the representation of the physical system which is then used in combination
with standard non-linear kernel functions like the Gaussian or Laplace kernel.
Alternatively, the similarity measure can be encoded directly into the kernel, leading
to a variety of kernels in the chemistry domain, e.g., for predicting the atomization
energy with KRR, local kernels have been developed which compare atomic
environments across molecules with each other.

One way to better understand the role of the kernel is to apply existing learning
methods in a projected space φ : Rni → Rno with the input and feature
dimension ni and no, respectively. Specifically, it is required that a given algorithm
(together with predictions based on this algorithm) works solely on scalar products
of type x�y which can then be translated into scalar products in feature space
φ(x)�φ(y). Then, it turns out that such scalar products in feature space can be
done implicitly, replacing them with an evaluation of the kernel function k(x, y) :=
φ(x)�φ(y) [23]. This is known as the kernel trick [24] and interestingly enough,
many algorithms can be kernelized this way [3]. Using the kernel trick, one never
has to explicitly perform the potentially computationally expensive transformation
φ(·).

30 W. Pronobis and K.-R. Müller

Table 3.1 List of Mercer
kernels often used in the
quantum chemistry domain

Name Kernel k(x, y)

Gaussian exp(−‖x − y‖2
2/(2σ

2))

Laplace exp(−‖x − y‖1/σ)

Polynomial (x� · y + c)d

Matérn 21−ν

Γ (ν)

(√
2ν
l
‖x − y‖

)ν
Kν

(√
2ν
l
‖x − y‖

)

For the Matérn kernel, Γ denotes the Gamma function
and Kν is the modified Bessel function of the second
kind, respectively

The kernel function k(·) thus allows to reduce some of the intrinsic difficulties
of the non-linear mapping φ(·). The question remains, which kernel functions allow
for such implicit feature mappings. Mercer’s theorem [25] guarantees that such a
mapping exists, if for all elements f of the Hilbert space L2 defined on a compact
set C ⊂ Rni

∫
C

f (x)k(x, y)f (y)dxdy > 0. (3.5)

From the kernel and a set of input samples {xi}Ni=1, we can construct a discrete
version of Mercer’s theorem by composing the matrix

K :=
⎛
⎜⎝

k(x1, x1) · · · k(x1, xN)
...

k(xN, x1) · · · k(xN, xN)

⎞
⎟⎠ . (3.6)

Mercer’s theorem now implies that the matrix K is a Gram matrix, i.e., positive-
semidefinite for any set of inputs {xi}Ni=1. Thus, practically if the matrix K would
have negative eigenvalues, then it will not fulfill Mercer’s theorem. Examples of
popular kernels in the quantum chemistry domain are shown in Table 3.1.

For some kernels like the Gaussian kernel, the feature map φ(·) can be infinite
dimensional. Due to the curse of dimensionality, it is then a question whether such a
feature mapping to a much higher-dimensional space is a good idea at all, especially
as the training set size increases (which corresponds to the dimension of the linear
span of the projected input samples in feature space). As it turns out, one can still
leverage the feature mapping if the learning algorithm is kept simple [3]. The
intuitive complexity of the learning problem induced by the kernel, the data, and
the learning algorithm is a measure of how well a kernel matches the data. We
will review and investigate one such complexity measure in Sect. 3.5. For now, note
that translation invariant kernels have natural regularization properties which help
reducing the complexity of a learning algorithm. The Gaussian kernel, for example,
is smooth in all its derivatives [26].

While there is a wide variety of representations of physical systems, it is less
obvious how to encode prior knowledge into the kernel (see Zien et al. [27] for

3 Kernel Methods for Quantum Chemistry 31

the first kernels engineered to reflect prior knowledge). In the quantum chem-
istry domain, this is typically done by limiting the similarity measure to local
information [13, 28]. The definition of such locality depends on the chemical
system as it limits correlations between such localized kernels and emphasized local
correlations. Due to the scalar product properties of the mapping φ(·) in feature
space, these local kernels can be combined by a sum to yield a new kernel function.

To conclude this section, we will describe a method for choosing a good kernel
among a set of candidate kernels for a given learning problem, a procedure that
is commonly called model selection [19]. Typically, a class of kernels is defined
by a set of hyperparameters which, e.g., control the scaling of the kernel with
respect to the data in the chosen distance metric. These hyperparameters have to
be determined (i.e., a kernel is selected from a given class) in order to minimize
the generalization error, a measure of how good unseen data can be predicted [19].
Note that minimizing a given criterion on the training data alone with respect to
the hyperparameters usually results in poor generalization due to overfitting. The
most common procedure to estimate the generalization error is cross-validation.
In cross-validation, the data set is divided into k subsets of equal sample size.
Then, the model is trained on the remaining k − 1 subsets and evaluated on
the k-th subset, called the validation set. The average of the error over the k

validation sets is a good estimate of the generalization error. After heuristically
choosing a set of hyperparameters (kernels), this cross-validation scheme yields
the best hyperparameters among the set which are then evaluated on an unseen
test set. Repeating this procedure for different test splits is called nested cross-
validation. Both cross-validation and nested cross-validation are schematically
shown in Fig. 3.2.

validation testtraining

fold 1

fold 2

fold 3

fold 4

repeat for
test splits 1-5

1 2 3 4 5
splits

Fig. 3.2 Schematic fourfold cross-validation (inner loop) together with fivefold nested cross-
validation (outer loop), respectively

32 W. Pronobis and K.-R. Müller

3.4 Kernel Methods

After reviewing key concepts of kernels, we present two practical applications
which have been extensively used in the quantum chemistry domain, one for
supervised and one for unsupervised learning, respectively.

3.4.1 Kernel Ridge Regression

A typical setting in machine learning problems includes the prediction of response
variables {yi}Ni=1 for a set of samples {xi}Ni=1. The kernel trick introduced in the
previous section can be applied to the linear ridge regression model. In ridge
regression, a cost function typically given by

C(w) := 1

N

N∑
i=1

(yi − w�xi)
2 + λ · ‖w‖2 (3.7)

is minimized with respect to the weight coefficients w, where λ is a regularization
parameter of the model which penalizes the norm of the weights. Given the
regularization parameter λ, the weights which minimize Eq. (3.7) are given by

wridge = (λ · I+ X�X)−1X�y, (3.8)

with the design matrix X which rows are composed of the inputs {xi}Ni=1 and
the identity matrix I, respectively. Increasing the complexity regularizer λ results
in smoother functions, thereby avoiding purely interpolating the training data and
reducing overfitting (see [19]). Due to its form, the ridge regression model often
exhibits good stability in terms of generalization error. However, for most real-world
problems the linear model is not powerful enough to accurately predict quantum-
mechanical properties as it is difficult to find features of the underlying system
which linearly correlate with the response variables {yi}Ni=1. As the simplicity of
the linear ridge regression model turns out to be the main limitation, there is a need
for a non-linear variant.

This non-linear variant can be provided by kernelizing the ridge regression
model. In kernel ridge regression, the parameters of the model α := (α1, . . . , αN)

are calculated by

(λ · I+K) · α = y, (3.9)

with the already introduced Gram matrix K and y := (y1, . . . , yN), respectively.
From the parameters α, a new prediction for a sample x is given by

yest =
N∑
i=1

αi · k(x, xi) (3.10)

3 Kernel Methods for Quantum Chemistry 33

Due to its nice practical and theoretical properties, kernel ridge regression
has been extensively used in the quantum chemistry domain [29–33]. Note that
the formally same solution of Eq. (3.9) is also obtained when training Gaussian
processes and starting from the framework of Bayesian statistics [34].

3.4.2 Kernel Principal Component Analysis

Kernel principal component analysis (kernel PCA) [35–37] is a kernelized extension
to one of the most popular data dimensionality reduction techniques, namely princi-
pal component analysis (PCA). To recall, PCA is an unsupervised method that uses
an orthogonal transformation to project the high-dimensional data onto a linearly
uncorrelated set of low-dimensional variables called the principal components.
These principal components are defined in a compact way in the sense that a
given component accounts for the highest variance under the constraint of being
orthogonal to the preceding ones, the first principal component having the largest
possible variance.

PCA can be kernelized by virtue of the kernel trick: the evaluation of the data on
the m-th principal component equals the m-th eigenvector of the kernel matrix [38].
As PCA requires the data to be centered which is not guaranteed in feature space,
one common preliminary step is to centralize the kernel beforehand by

K′ := K− 1N ·K−K · 1N + 1N ·K · 1N, (3.11)

where 1N is the N ×N -matrix with entries 1/N . From the normalized eigenvectors
{ui}Ni=1 of the centralized kernel K′, we compute the m-th principal component of a
new sample x by

pm(x) =
N∑
i=1

um,i · k(x, xi), (3.12)

where um,i is the i-th element of the eigenvector um. Kernel PCA is often used in the
quantum chemistry domain to display the data in its first two principal components
[39–42], along with the label information if present. Such a projection separates the
structure of the data as induced by the kernel from the response variable, possibly
learning something about the difficulties to predict a given response variable.

Kernel PCA can be used in a supervised fashion by projecting the label vector y

on the normalized eigenvectors of the centralized kernel matrix

zi := u�i y i = 1, . . . , N (3.13)

where we call the {zi}Ni=1 the kernel PCA coefficients. Analyzing the kernel PCA
coefficients allows to gain additional information about the complexity of the
learning problem at hand [43], as we show in the next section.

34 W. Pronobis and K.-R. Müller

3.5 Relevant Dimension Estimation

In the previous sections, we indicated that one of the governing factors for the
efficiency of the model is the complexity of the learning problem. Due to the
potentially infinite dimensional implicit feature space induced by the kernel, it is
a priori unclear how to assess this complexity in a feasible way.

One way to tackle this problem is to analyze where the relevant information of
the learning problem is contained [43]. Specifically, the relevant information can
be bounded by a number of leading kernel PCA-components already encountered
in the previous section, under the mild assumption that the kernel asymptotically
represents the learning problem and is sufficiently smooth (see [43] for a detailed
definition of these aspects). This leads to an estimation of a relevant dimension
dRD representing the complexity of the learning problem at hand. Modeling the
kernel PCA coefficients {zi}Ni=1 by two zero-mean Gaussians yields the following
maximum likelihood fit for the relevant dimension

dRD := argmin
1≤d≤N

(
d

N
log σ 2

1 +
N − d

N
log σ 2

2

)
(3.14)

with

σ 2
1 =

1

d

d∑
i=1

z2
i (3.15)

σ 2
2 =

1

N − d

N∑
i=d+1

z2
i . (3.16)

Alternatively, dRD can be estimated by a leave-one-out cross-validation approach
[43]. In addition to the useful side-product in form of the relevant dimension in
the kernel feature space, we can gain important insights into the interplay between
the kernel and data, respectively. Specifically, the boundedness of the relevant
information in a possibly small amount of kernel PCA-components shows that
ideally, the kernel induces a feature space in such a way that makes optimal use
of the potentially high number of feature space dimensions. This dimensionality
reduction is paired with an intrinsic regularization by the kernel, yielding an efficient
model which generalizes well. One additional application is to use the relevant
dimension to estimate the noise of a given regression task, which allows to assess
whether the difficulty of the learning problem lies in its intrinsic high-dimensionality
or alternatively in present noise.

3 Kernel Methods for Quantum Chemistry 35

3.6 Conclusion

In this chapter, we examined how the choice of the representation of a given
chemical system and the kernel affects the model. We reviewed three recent
molecular descriptors, the Coulomb matrix, the bag-of-bonds, and the F2B + F3B
representations, for their ability to encode prior physical knowledge. In view
of highly non-linear learning problems often encountered in quantum chemistry,
we discussed important kernel properties to better understand machine learning
methods based on kernels. Specifically, we examined an efficient way to choose
an appropriate kernel by a common model selection scheme. This was followed by
a practical guide of two popular kernel methods, the supervised kernel ridge regres-
sion and the unsupervised kernel principal component analysis. As more descriptors
are continuously developed, we assert the importance to better understand their
interplay with the kernel and data, respectively. In the final part of this chapter,
we provided an analysis tool which captures this connection in form of the relevant
dimension estimation, a way how to measure the effective complexity of the learning
problem at hand when using a specific kernel.

References

1. C. Cortes, V. Vapnik, Mach. Learn. 20(3), 273 (1995)
2. V. Vapnik, S.E. Golowich, A.J. Smola, in Advances in Neural Information Processing Systems

(1997), pp. 281–287
3. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, IEEE Trans. Neural Netw. 12(2),

181 (2001). https://doi.org/10.1109/72.914517
4. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond (MIT Press, Cambridge, 2002)
5. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16), 161102 (2016). https://doi.org/10.

1063/1.4964627
6. B. Schölkopf, S. Mika, C.J. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, A.J. Smola, IEEE

Trans. Neural Netw. 10(5), 1000 (1999)
7. P. Indyk, R. Motwani, in Proceedings of the Thirtieth Annual ACM Symposium on Theory of

Computing (ACM, New York, 1998), pp. 604–613
8. J.H. Friedman, Data Min. Knowl. Disc. 1(1), 55 (1997)
9. J. Rust, J. Econ. Soc. 1997, 487–516 (1997)

10. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89,
205118 (2014). https://doi.org/10.1103/PhysRevB.89.205118

11. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.-R. Müller, A. Tkatchenko, Comput. Phys. Commun.
240, 38 (2019). https://doi.org/10.1016/j.cpc.2019.02.007

12. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,
S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017).
https://doi.org/10.1021/acs.jctc.7b00577

13. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717
(2018). https://doi.org/10.1063/1.5020710

14. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890
(2017)

15. K.T. Schütt, P.-J. Kindermans, H.E.S. Felix, S. Chmiela, A. Tkatchenko, K.-R. Müller, in
Advances in Neural Information Processing Systems (2017), pp. 991–1001

https://doi.org/10.1109/72.914517
https://doi.org/10.1063/1.4964627
https://doi.org/10.1063/1.4964627
https://doi.org/10.1103/PhysRevB.89.205118
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1063/1.5020710

36 W. Pronobis and K.-R. Müller

16. G. Montavon, W. Samek, K.-R. Müller, Digit. Signal Process. 73, 1 (2018)
17. S. Chmiela, Towards exact molecular dynamics simulations with invariant machine-

learned models. Dissertation, Technische Universität Berlin (2019). https://doi.org/10.14279/
depositonce-8635

18. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301
(2012). https://doi.org/10.1103/PhysRevLett.108.058301

19. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld,
A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013). https://doi.org/10.
1021/ct400195d

20. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller,
A. Tkatchenko, J. Phys. Chem. Lett. 6(12), 2326 (2015). https://doi.org/10.1021/acs.jpclett.
5b00831

21. W. Pronobis, K.T. Schütt, A. Tkatchenko, K.-R. Müller, Eur. Phys. J. B 91(8), 178 (2018).
https://doi.org/10.1140/epjb/e2018-90148-y

22. W. Pronobis, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 14(6), 2991 (2018).
https://doi.org/10.1021/acs.jctc.8b00110

23. B.E. Boser, I.M. Guyon, V.N. Vapnik, in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory (ACM, New York, 1992), pp. 144–152

24. K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, in Advances in
Kernel Methods—Support Vector Learning, pp. 243–254 (1999)

25. M. James, F.A. Russell, Philos. Trans. R. Soc. Lond. A 209(441–458), 415 (1909). https://doi.
org/10.1098/rsta.1909.0016

26. A.J. Smola, B. Schölkopf, K.-R. Müller, Neural Netw. 11(4), 637 (1998). https://doi.org/10.
1016/S0893-6080(98)00032-X

27. A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, K.-R. Müller, Bioinformatics 16(9),
799 (2000)

28. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013). https://doi.org/10.1103/
PhysRevB.87.184115

29. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, A.V.
Lilienfeld, K.-R. Müller, in Advances in Neural Information Processing Systems (2012), pp.
440–448

30. R. Ramakrishnan, O.A. von Lilienfeld, CHIMIA Int. J. Chem. 69(4), 182 (2015)
31. G. Ferré, T. Haut, K. Barros, J. Chem. Phys. 146(11), 114107 (2017)
32. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Sci. Adv.

3(5), e1603015 (2017)
33. D. Hu, Y. Xie, X. Li, L. Li, Z. Lan, J. Phys. Chem. Lett. 9(11), 2725 (2018). https://doi.org/10.

1021/acs.jpclett.8b00684
34. C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2 (MIT Press,

Cambridge, 2006)
35. B. Schölkopf, A. Smola, K.-R. Müller, in International Conference on Artificial Neural

Networks (Springer, Berlin, 1997), pp. 583–588
36. Z. Liu, D. Chen, H. Bensmail, Biomed Res. Int. 2005(2), 155 (2005)
37. D. Antoniou, S.D. Schwartz, J. Phys. Chem. B 115(10), 2465 (2011)
38. B. Schölkopf, A. Smola, K. Müller, Neural Comput. 10(5), 1299 (1998). https://doi.org/10.

1162/089976698300017467
39. Y.M. Koyama, T.J. Kobayashi, S. Tomoda, H.R. Ueda, Phys. Rev. E 78(4), 046702 (2008)
40. X. Han, IEEE/ACM Trans. Comput. Biol. Bioinform. 7(3), 537 (2010)
41. A. Varnek, I.I. Baskin, Mol. Inf. 30(1), 20 (2011)
42. X. Deng, X. Tian, S. Chen, Chemom. Intell. Lab. Syst. 127, 195 (2013)
43. M.L. Braun, J.M. Buhmann, K.-R. Müller, J. Mach. Learn. Res. 9, 1875 (2008)

https://doi.org/10.14279/depositonce-8635
https://doi.org/10.14279/depositonce-8635
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1140/epjb/e2018-90148-y
https://doi.org/10.1021/acs.jctc.8b00110
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1016/S0893-6080(98)00032-X
https://doi.org/10.1016/S0893-6080(98)00032-X
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1021/acs.jpclett.8b00684
https://doi.org/10.1021/acs.jpclett.8b00684
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1162/089976698300017467

4Introduction to Neural Networks

Grégoire Montavon

Abstract

Machine learning has become an essential tool for extracting regularities in the
data and for making inferences. Neural networks, in particular, provide the scal-
ability and flexibility that is needed to convert complex datasets into structured
and well-generalizing models. Pretrained models have strongly facilitated the
application of neural networks to images and text data. Application to other
types of data, e.g., in physics, remains more challenging and often requires
ad-hoc approaches. In this chapter, we give an introduction to neural networks
with a focus on the latter applications. We present practical steps that ease
training of neural networks, and then review simple approaches to introduce
prior knowledge into the model. The discussion is supported by theoretical
arguments as well as examples showing how well-performing neural networks
can be implemented easily in modern neural network frameworks.

4.1 Introduction

Neural networks [1–4] are a machine learning paradigm where a large number
of simple computational units called neurons are interconnected to form complex
predictions [5, 6]. Neurons are typically organized in layers, where each layer
compresses certain components of the input data to expand other components
that are more task-relevant [7, 8]. Unlike kernels [9–11], for which the problem
representation is fixed and high-dimensional, neural networks are able to learn their
own representation and keep it confined to finitely many neurons, thereby providing

G. Montavon (�)
Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
e-mail: gregoire.montavon@tu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_4&domain=pdf
mailto:gregoire.montavon@tu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_4

38 G. Montavon

(a) (b) (c)

Fig. 4.1 Three types of machine learning problems. (a) Classification. (b) Regression. (c) Inter-
polation. Curves represent the ground truth, and points represent the available training data. The
horizontal axis corresponds to the input space and the vertical axis the output space. This chapter
focuses on the problem of interpolation

scalability. Neural networks have reached widespread successes in applications such
as image recognition [12–14] and text understanding [15,16]. These successes have
motivated the use of deep neural networks beyond image and text classification, for
example, in physics [17–19].

Physics applications are however characterized by a strong heterogeneity in prob-
lems and datasets, preventing an outright application of the models and techniques
developed for images and text. For example, learning the energy potential of a
physical system requires to produce real-valued predictions that match the energy
targets exactly. This is clearly not a classification task, nor a typical regression. It is
better described as an interpolation problem (cf. Fig. 4.1).

In practice, the type of task being considered has significant implications on the
design of the neural network and its learning procedure. For example, noise injection
techniques [20] are very useful for classification by forcing the function to be low-
varying near the data. However, it would likely be detrimental in the context of
regression or interpolation, where the ground truth function is clearly not flat in
these regions. The interpolation task also distinguishes itself from regression by an
absence of target noise, in other words, the training error must reach zero. This
requires to carefully address the question of optimization. Furthermore, learning
in physical systems significantly differs from other applications in terms of the
representations and neural network structures that are needed for the prediction task.
Overall, these multiple differences with the well-established image/text recognition
pipelines have so far prevented a straightforward and systematic application of
neural networks in physics, requiring instead the development of ad-hoc designs
[18, 21–24].

This chapter provides a bottom-up introduction to neural networks, by first
presenting the basics and then demonstrating on illustrative toy examples how
simple models can be adapted to more complex scenarios. Section 4.2 presents the
computation of the forward pass, backpropagation, and the simple gradient descent
procedure for learning the model. Section 4.3 presents best practices to quickly
bring the training error of a model to zero. These practices are analyzed from the
perspective of the Hessian matrix that characterizes locally the function to optimize.
Section 4.4 tackles the question of generalization, by illustrating how invariance
can be added in the input representation, and how the model can be structured

4 Introduction to Neural Networks 39

to incorporate prior knowledge about the task. Using concrete code examples,
we show that simple neural networks and their well-generalizing extensions can
be implemented easily and concisely in modern neural network frameworks such
as PyTorch.1 Finally, we give in Sect. 4.5 an overview of the question of model
selection and validation with a focus on aspects that are specific to neural networks.
In particular, we discuss recent techniques to explain and visualize the predictions
of a neural network, and comment on the relation between the prediction accuracy
of a model and its physical plausibility.

4.2 Neural Network Basics

At an abstract level, a neural network can be seen as a function

f : Rd ×
→ R.

It takes as input a data point x ∈ Rd and a vector of parameters θ ∈
 that must
be learned from the data. The output f (x, θ) ∈ R is a real-valued prediction for the
input x. The function f is structured as an interconnection of many simple neurons,
usually organized in a layered structure, where neurons at a given layer receive as
input the output of the neurons from the previous layer. A simple neural network is
illustrated in Fig. 4.2.

Consider the neuron with index k. Its output ak is computed in two steps:

zk =∑j ajwjk + bk

ak = ρ(zk)

The first step performs a weighted sum over all neurons j that neuron k receives as
input. The weights (wjk)j and bias bk are the neuron parameters that are learned
from the data. The second step applies a predefined nonlinear function ρ : R → R

Fig. 4.2 Illustration of a
3-layer neural network, with a
neuron from the second layer
highlighted in gray

input output

layer 0 layer 1 layer 2 layer 3

aj
ak

y

xi
wjk

1https://pytorch.org/.

https://pytorch.org/

40 G. Montavon

called activation function. Specific choices of activation function are discussed in
Sect. 4.3.3.

4.2.1 The Forward Pass

Consider the layered network of Fig. 4.2. The whole processing from input x =
(xi)i to output y can be written as the sequence of computations:

∀j : zj =∑i xiwij + bj aj = ρ(zj) (layer 1)

∀k : zk =∑j ajwjk + bk ak = ρ(zk) (layer 2)

y =∑k akvk + c (layer 3)

The letters i, j , and k are indices for the neurons at each layer. Weights and bias
parameters of each neuron constitute the elements of the parameter vector θ . In
practice, when neurons in consecutive layers are densely connected, it is convenient
to replace neuron-wise computations by layer-wise computations. In particular, we
can rewrite the neural network above as:

z(1) = W(1)x + b(1) a(1) = ρ(z(1)) (layer 1)

z(2) = W(2)a(1) + b(2) a(2) = ρ(z(2)) (layer 2)

y = v�a(2) + c (layer 3)

where [W(1)]j i = wij , b(1) = (bj)j , a(1) = (aj)j , etc., and where the function ρ

applies element-wise. Matrix operations occurring in this formulation considerably
simplify the implementation and improve the computational efficiency. This layer-
wise formulation can be further generalized to let the forward pass apply to N data
points in parallel, by using matrix–matrix multiplications in place of matrix–vector
operations. For example, in PyTorch, the forward pass can be implemented as:

def forward(X):

Z1 = X.matmul(W1) + b1; A1 = rho(Z1)

Z2 = A1.matmul(W2) + b2; A2 = rho(Z2)

Y = A2.matmul(v) + c

return Y

This function takes as input a torch array of shape N × d containing the data.
The function matmul performs matrix–matrix multiplications, and the function
rho implements the nonlinear activation function. Note that weight matrices W1
and W2 are transposed versions of matrices W(1) and W(2). Neural network

4 Introduction to Neural Networks 41

frameworks such as PyTorch or Keras2 also come with a collection of predefined
layers, including linear layers, convolutions, and a variety of nonlinear activation
functions.

4.2.2 The Backward Pass

A crucial aspect of neural networks is the existence of an algorithm called error
backpropagation [25, 26] to efficiently propagate the error feedback to the multiple
layers of the network where the weights and biases need to be adjusted. Error
backpropagation is an iterative application of the chain rule for derivatives to neural
network graphs. Let δout = ∂(·)/∂y be the derivative of some quantity (·) that
depends on the input and parameters through the output y. We start from the output
and apply the chain rule to get the derivatives in the previous layer:

∀k : ∂(·)
∂zk

= ∂ak

∂zk

∂y

∂ak

∂(·)
∂y

= ρ′(zk) vkδout

We store the result of this computation in some variable δk (i.e., δk ← ∂(·)/∂zk), so
that it does not need to be recomputed. Application of the (multivariate) chain rule
is then used to propagate the derivatives one layer below:

∀j : ∂(·)
∂zj

= ∂aj

∂zj
·
(∑

k

∂zk

∂aj

∂(·)
∂zk

)
= ρ′(zj)

∑
k wjkδk

We store the result in δj (i.e., δj ← ∂(·)/∂zj). A further step of backpropagation
similar to the one above gives δi ← ∂(·)/∂xi . The whole backpropagation procedure
can be written as:

∀k : ∂(·)/∂vk = akδout ∂(·)/∂c = δout δk = ρ′(zk) vkδout (layer 3)

∀j : ∂(·)/∂wjk = aj δk ∂(·)/∂bk = δk δj = ρ′(zj)
∑

k wjkδk (layer 2)

∀i : ∂(·)/∂wij = xiδj ∂(·)/∂bj = δj δi =∑j wij δj (layer 1)

Computations are applied from top to bottom and from left to right. The first two
columns compute derivatives with the model weights and biases, and make use
of the quantities δj , δk discussed before. These quantities are obtained iteratively
by computations in the last column. This last column forms the backbone of
the backpropagation procedure. Derivatives with respect to weights and biases
constitute the elements of the gradient that we will use in Sect. 4.2.3 to train the
neural network. Overall, the backward pass runs in linear time with the forward

2https://keras.io/.

https://keras.io/

42 G. Montavon

pass. Like for the forward pass, the backward pass can also be rewritten in terms of
matrix multiplications.

In practice, however, modern neural network frameworks such as PyTorch or
Keras come with an automatic differentiation mechanism, where the backward
computations are generated automatically from the forward pass. Consequently, the
backward pass does not have to be implemented manually. For example, to get the
gradient of the nth data point’s output w.r.t. the first layer weights, we write in
PyTorch:

W1.requires_grad_(True)

Y = forward(X)

Y[n].backward()

print(W1.grad)

The first line declares that the gradient w.r.t. W1 needs to be collected. The second
line applies the forward pass. The third line invokes for the desired scalar quantity
the automatic differentiation mechanism which stores the gradient in the variable
W1.grad .

4.2.3 Optimizing Neural Networks

Having described how to compute activations at each layer of a neural network
and the gradient w.r.t. the parameters, we now focus on the problem of learn-
ing these parameters from the data. Assume a dataset of N examples D =
((x1, t1), (x2, t2), . . . , (xN, tN)) where each example consists of an input xn ∈ Rd

and an associated target tn ∈ R representing what needs to be predicted for
this example. The problem can be formalized by defining an error function E(θ)
that measures the average divergence on the training data between the predictions
f (xn, θ) and the targets tn:

E(θ) = 1

N

N∑
n=1

[
f (xn, θ)− tn

]2 (4.1)

The best fitting neural network is then obtained as a solution to the optimization
problem minθ∈
 E(θ). Because the function E(θ) has potentially many (local)
minima, we usually start at some given position in the parameter space and iterate
the map

θ ← θ − γ · ∇θE(θ)

until it converges to some local minimum θ�. The hyperparameter γ is the learning
rate. The error gradient is obtained with automatic differentiation (cf. Sect. 4.2.2).
Assuming our dataset is stored in torch arrays X and T of size N × d and N

4 Introduction to Neural Networks 43

respectively, the gradient descent procedure can be implemented compactly as:

for i in range(n_iter):

Y = forward(X)

E = ((Y-T)**2).mean()

E.backward()

with torch.no_grad():

for p in [W1,b1,W2,b2,v,c]:

p -= gamma * p.grad

p.grad = None

The statement torch.no_grad() temporarily deactivates the automatic dif-
ferentiation mechanism so that the parameters of the model can be updated.
Importantly, because the call to backward() increments parameter gradients
rather than replacing them by their new value, we need to manually set these
gradients to None after each iteration.

4.3 Efficient Training of Neural Networks

The optimization procedure above assumes that the error function E(θ) is such that a
step along the gradient direction will result in a new parameter θ ′ at which the error
E(θ ′) is significantly lower. In practice, this is not necessarily the case. The error
function might instead exhibit pathological curvature, which makes the gradient
direction of little use. Section 4.3.1 looks at the Hessian of the error function at
the local minimum θ�, from which we can infer how difficult it is to optimize the
function locally. Building on this Hessian-based analysis, Sects. 4.3.2–4.3.5 present
common practices to make neural network training more efficient.

4.3.1 Hessian-Based Analysis of the Error Function

To assess how quickly gradient descent converges, we need to inspect the shape of
the error function E(θ) locally. A Taylor expansion at θ� gives:

E(θ) = E(θ�)+ 1

2
(θ − θ�)�H

∣∣
θ�(θ − θ�)+ · · ·

where H = ∂2E/∂θ2 is the Hessian matrix containing all second-order derivatives.
Its eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λdim(θ) ≥ 0 give information about the local
curvature of the error function and how well gradient descent will perform. When
all the eigenvalues are strictly positive, the difficulty to converge to θ� is given by
the condition number λ1/λdim(θ). An example of error function annotated with its
eigenvalues is given in Fig. 4.3.

44 G. Montavon

Fig. 4.3 Error function viewed in three dimensions (left) and from the top (right) with θ ∈ R2.
The highest eigenvalues correspond to the direction of highest curvature. A large ratio λ1/λ2 makes
the function ill-conditioned and harder to optimize with gradient descent

A general way of computing the Hessian in a neural network makes use of the
chain rule for second derivatives [27]:

H = ∂Y

∂θ

� ∂2E
∂Y 2

∂Y

∂θ
+ ∂E

∂Y

∂2Y

∂θ2

The vector Y represents the neural network outputs, here, Y = [f (x1, θ), . . . , f (xN,

θ)]. While the Hessian is high-dimensional and hard to analyze, certain fragments
of it have a simpler analytical form [28, 29]. Let 〈 · 〉 denote the mean over the
training data, and δk = ∂y/∂zk . The matrix Hk = (∂2E/∂wjk∂wj ′k)jj ′ focuses on
the parameters of neuron k and takes the simple form:

[Hk]jj ′ = 2
〈
aj aj ′ δ

2
k

〉+ 2
〈
aj · ∂δk

∂wj ′k
· (y − t)

〉
(4.2)

The first term is a product of incoming activations aj aj ′ modulated by δ2
k measuring

the sensitivity to the output. The second term disappears when the error at the
minimum is zero.

Overall, this Hessian-based analysis will serve to theoretically motivate a number
of heuristics and best practices that are commonly used to prepare the data, build
the neural network, and train it efficiently. These practices are presented in the next
sections.

4.3.2 Normalizing the Input Data

A recommendation by LeCun et al. [27] is to apply a transformation to the data
before giving it as input to the neural network. The transformation applies:

xi ←
(
xi −mi

)
/si

to each input feature i = 1 . . . d, where mi and si are the mean and standard
deviation of feature i computed on the training data. This transformation is known

4 Introduction to Neural Networks 45

as standardization. It is easy to compute and has been shown empirically to ease
the task of optimization. Standardization can be motivated from the Hessian-based
analysis. Consider the special case where xi , xi′ , and δj are independent. The
Hessian matrix Hj = 2

〈
xx�δ2

j

〉
computed on the original data has in that case

its condition number upper-bounded as λ1/λd ≤ (maxi s
2
i + ‖m‖2)/mini s

2
i . A

mean that is distant from the origin or a large spread in standard deviations is
likely to raise the condition number significantly and make optimization harder. The
standardization procedure thus clearly contributes in this simple scenario to lower
the condition number. When xi and xi′ are instead strongly correlated, the condition
number would remain high, and application of an additional transform, e.g., data
whitening, becomes needed to ease optimization.

During training, the variables δj and (xi, xi′) are likely to become dependent.
The neuron j (and the associated sensitivity term δ2

j) might indeed specialize to
very specific input patterns. If these patterns are distant from the origin, e.g., in the
tails of the input distribution, this will lead to a poorly conditioned Hessian matrix,
even after standardization or whitening. A technique to improve optimization in
this case is thermometer coding [30, 31]. It applies to each standardized feature the
nonlinear expansion

∀di=1 : xi ←
(
. . . , σ (xi+2) , σ (xi+1) , σ (xi+0) , σ (xi−1) , σ (xi−2) , . . .

)

where σ is a sigmoid function, for example, the hyperbolic tangent. Each term of
the expansion “zooms-in” on a particular range of values of the input. Thermometer
coding is then followed by another step of standardization. The effect of thermome-
ter coding is illustrated for a simple one-dimensional distribution in Fig. 4.4. We
highlight in blue a specific region of the input distribution. In certain dimensions, it
collapses to a constant value while in other dimensions it becomes well-expanded,
making it easier to learn the local variations of the target function.

standardized
input

standardized / thermometer-coded / standardized input

Fig. 4.4 On the left, standardized input distribution with a selection of the data shown in blue. On
the right, the same distribution after thermometer coding and another standardization step

46 G. Montavon

softplus

pre-activations

ReLU centered softplus

Fig. 4.5 Distribution of activations resulting from application of different nonlinearities, and the
measured condition number. A low condition number makes optimization easier

4.3.3 Choosing the Activation Function

Another important parameter of the neural network is the choice of the activation
function ρ. The ReLU activation given by

ρ(zj) = max(0, zj)

was recommended by Glorot et al. [32]. It has become the “default” nonlinearity
and is commonly used in state-of-the-art models [12,16,33]. Similarly to Sect. 4.3.2,
this choice of nonlinearity can be motivated from the Hessian-based analysis. Let
a = (aj)j be the vector of activations received by neuron k, and Hk = 2

〈
aa�δ2

k

〉
its

Hessian matrix. Figure 4.5 shows the distribution of input activations (aj)j obtained
from various nonlinearities, as well as the condition number of a neuron k built on
top of these activations. (Here, we assume constant sensitivity δ2

k = 1.)
Application of the ReLU function results in activations for which the condition

number is low. This hints at a good optimization behavior. For certain problems
(cf. Sect. 4.4.4), a further desirable property of an activation function is smoothness.
The softplus activation ρ(zj) = β−1 · log(1 + exp(β · zj)) is a smooth variant
of the ReLU. However, it tends to produce activations that are not well centered,
causing the condition number to be high. The centered softplus activation ρ(zj) =
β−1 ·[log(1+exp(β ·zj))−log(2)

]
corrects for this behavior by ensuring ρ(0) = 0.

4.3.4 Initialization and Network Size

A common practice for initializing a neural network is to draw the weights randomly
from the Gaussian distribution wjk ∼ N(0, σ 2

jk) where σ 2
jk is a variance parameter.

A motivation for randomness is to break symmetries in the parameter space.
This avoids scenarios where two neurons with same biases, incoming weights,
and outgoing weights, would always receive the same updates and never become

4 Introduction to Neural Networks 47

different. For neural networks with ReLU activations, it was recommended in [34]
to set the variance to

σ 2
jk = 2 · (∑j 1jk)

−1,

i.e., inversely proportional to the number of incoming connections, as a way
to keep activations at each layer on the same scale. Similarly to Sects. 4.3.2
and 4.3.3, this scaling can be motivated from a Hessian-based analysis (see
also [28]). A block-diagonal approximation of the whole Hessian is first
constructed from the Hessian matrices of each neuron at each layer: H =
diag

{
Hj ,Hj ′ ,Hj ′′ , . . . , Hk,Hk′ ,Hk′′ , . . . , Hout

}
. Eigenvalues of H are then given

by the collection of eigenvalues of the different blocks. Reducing the condition
number can be achieved by requiring each block to have eigenvalues on a similar
scale. In particular, remembering that [Hk]jj ′ ≈ 2

〈
ajaj ′δ2

k

〉
we can impose the

stronger requirement that (1) activations at each layer are on the same scale, and (2)
sensitivities at each layer are also on the same scale. The weight scaling heuristic
above implements the first requirement. Fulfilling the second requirement would
require an alternate scaling of the weights, with variance inversely proportional to
the number of outgoing connections. These seemingly contradicting requirements
can be reconciled by using the same number of neurons in each layer.

One last parameter of the neural network that influences training time is its size.
On the one hand, a small network will be fast to evaluate; however, it may not be
expressive enough to reach zero error. On the other hand, a large neural network will
be able to represent a broader class of functions and reach zero training error more
easily; however, each training iteration will take longer. Therefore, the number of
neurons in the network should be large enough to easily and accurately represent
the target values, but not larger than necessary.

4.3.5 Learning Rate, Momentum, andMini-Batches

Once we have built and initialized the neural network, the next step is to train it.
The most important training hyperparameter is the learning rate γ . A simple way to
choose it is to start with a fairly large learning rate, e.g., γ = 1.0, and if learning
diverges, repeatedly slash the learning rate by a factor 10.

Because techniques outlined in Sects. 4.3.2–4.3.4 are heuristics based only on
fragments of the true Hessian matrix, the conditioning of the optimization problem
is likely to remain suboptimal. This remaining ill-conditioning can be handled at
training time by incorporating momentum in the gradient descent:

g ← η · g + ∇θE(θ)

θ ← θ − γ · g

48 G. Montavon

where 0 ≤ η < 1 is a hyperparameter. Using a strong momentum speeds up
convergence along the directions of the parameter space associated with low Hessian
eigenvalues. Typical choices of momentum are η = 0.9 or η = 0.99. Other popular
choices of optimization algorithms include the Adam optimizer [35] which further
improves convergence by incorporating a second-order moment. This optimizer is
available in neural network frameworks such as PyTorch or Keras.

When the dataset is composed of more than a few hundreds training examples,
evaluation of the error function and its gradient becomes very expensive, both
computationally and in terms of memory. In that case, it is common to use stochastic
gradient descent [36, 37], a technique that substitutes at each iteration the error
gradient ∇θE(θ) by the gradient of an estimate of the error built from a single
example:

∇̂θE(θ) = ∇θ

[
f (xn, θ)− tn

]2
n ∼ random{1, . . . , N}.

The index n is selected randomly at each iteration. In practice, it is common to not
consider a single example, but to estimate the gradient at each iteration from a mini-
batch containing somewhere between 10 and 100 randomly selected examples.

4.4 Improving Neural Network Generalization

Application of the practical steps of Sect. 4.3 will help the neural network to reach
quickly a low training error E(θ). Training error however does not tell us how
well the model will generalize to new data points. For this, we need to impose a
preference among all models that correctly fit the training data, for those that are
likely to generalize well to new data points.

4.4.1 Model Regularization

Regularization consists of applying a preference for simple models [38]. For
example, among all models that fit the training data, we might retain the one that
has the fewest variations or that is the smoothest. In the context of neural networks,
a common regularization technique is weight decay [39]. The neural network is
trained to match the target values while at the same time pulling its weights to
smaller values. This procedure can be implemented by adding the squared weights
to the objective function:

Ereg(θ) = E(θ)+ λ ·
[∑

ij w2
ij +

∑
jk w

2
jk +

∑
k v

2
k

]

The larger the hyperparameter λ, the smaller the weights will get. In practice, on
interpolation tasks, λ should be set high enough for the weights to decay quickly
enough, but not too high in order to still be able to fit the training data perfectly. In

4 Introduction to Neural Networks 49

PyTorch, weight decay can be implemented by adding the squared weights to the
original error function:

E += lambd * sum((p**2).sum() for p in [W1,W2,v])

We then call backward() on this new quantity to get the gradients.
Other popular regularization techniques that can be applied in this context

include pruning [40] or bagging [41]. Regularization techniques are generally
applicable and make relatively few assumptions about the task. Next sections will
show that generalization can be further improved by introducing problem-specific
prior knowledge into the model and the input representation.

4.4.2 Invariant Input Representations

The problem of building invariant input representations has been extensively studied
in the context of predicting molecular electronic properties [42–46]. We discuss
below two approaches to introduce invariance: feature selection and data extension.

Feature selection [47] aims to map the data to a new representation that retains
task-relevant features while discarding information to which the model should be
invariant. Consider the toy problem of Fig. 4.6 where we would like to learn an
energy function by integrating prior knowledge such as translation and rotation
invariance. One representation that readily incorporates this invariance is the matrix

A B C D E

training examples test examples

1. Translation 2. Rotation 3. Flip

4. Locality 5. Smoothness

Ground truth (unknown) Prior knowledge (known)

Fig. 4.6 Toy dataset representing various configurations of a one-dimensional system of eight
elements. The system is governed by some ground truth energy function assumed to be unknown,
but for which we have some prior knowledge that we would like to incorporate in our model

50 G. Montavon

of pairwise distances:

�(r) =

⎛
⎜⎜⎜⎝

‖r1 − r2‖ , ‖r1 − r3‖ , . . . ‖r1 − rL‖
‖r2 − r3‖ , ‖r2 − rL‖

. . .
...

‖rL−1 − rL‖

⎞
⎟⎟⎟⎠ (4.3)

Training a neural network on such representation ensures that the predictions of
the model also have the desired invariance. An important property to verify when
building a representation is the absence of collision in feature space between
systems with different energies, i.e., E(r) �= E(r′)⇒ �(r) �= �(r′). If two systems
collide, it is indeed no longer possible for the neural network to produce different
predictions.

Another approach to implementing invariance is data augmentation [31, 48].
Here, instead of building a better representation, we augment the data with all
transformations that leave the quantity to predict invariant. In the toy example
of Fig. 4.6, the prior knowledge we have about flip invariance can be induced by
building the extended dataset:

Dnew =
⋃

(r,E)∈D

{
(r, E) , (r::−1, E)

}
(4.4)

Data extension delegates to the neural network the task of learning the required
invariance. Neural networks work well with data extension, as they can scale to
potentially very large datasets. The main advantage of data extension is to avoid the
problem of finding a good invariant representation that is collision-free. On the other
hand, data extension will require a larger neural network, and invariance outside the
training data will only hold approximately.

4.4.3 Structured Neural Networks

Some prior knowledge can be incorporated directly into the structure of the neural
network. A well-known example in computer vision is the convolutional neural
network [49]. It is structured in a way that the same parameters, e.g., edge
detectors, apply similarly at each location in the input image, and detected features
at nearby locations contribute equally to the output. Structured models have also
been proposed for applications in physics, for example, fitted pairwise inter-atomic
potentials [21], fitted local environments [22], or more recently, message passing
neural networks [18, 50, 51]. Consider again the toy example of Fig. 4.6, where we
now focus on implementing the prior on the locality of the energy function.

Figure 4.7 depicts two possible neural network architectures for predicting
energies. The first one is a plain network that takes as input a flattened version of
the representation �(r), normalizes it, and maps it to the output through a sequence

4 Introduction to Neural Networks 51

structured
network

plain
network

Fig. 4.7 Plain and structured neural networks that predict the energy of systems from their feature
representation

of fully connected layers. The second one is a structured network that applies
the same subnetwork multiple times to distinct groups of variables, and sums the
corresponding outputs into a global energy prediction. Starting from the plain neural
network of Sect. 4.2.1, we get the following sequence of layers:

∀Mm=1,∀j : zmj =∑i xmiwij + bj amj = ρ(zmj) (layer 1)

∀Mm=1,∀k : zmk =∑j amjwjk + bk amk = ρ(zmk) (layer 2)

∀Mm=1 : ym =∑k amkvk + c (layer 3)

y =∑M
m=1 ym (layer 4)

While this neural network architecture appears more complicated, it can actually be
implemented very easily from a standard neural network. For this, a torch tensor
X of dimensions M × N × 3 is prepared, containing the datasets of size N × 3
received by the different subnetworks. Then, we take the readily implemented
forward function from Sect. 4.2.1, and get the output of our structured neural
network by simply applying:

What happens is that the matmul operation used in the forward function views
the added dimension of X as a batch and thus propagates the added dimension from
layer to layer. The operation .sum(dim=0) applies the top-layer pooling along
the dimension of the batch.

To demonstrate the practical benefit of the locality prior implemented by the
structured network, a plain and a structured network are trained on the toy problem
of Fig. 4.6. For the plain network, we choose layer sizes (28 × 5)-25-25-1. For the
structured model, layer sizes for each subnetwork are (3× 5)-25-25-1. The factor 5
for the input layer corresponds to the thermometer coding expansion. Weight decay

52 G. Montavon

Energy (plain network)

R2 = 0.893

Energy (structured network)

R2 = 0.991

Fig. 4.8 Energy predictions along the test trajectories of the toy dataset. Results are shown for the
plain and structured neural networks illustrated in Fig. 4.7. Shaded area represents the discrepancy
between the prediction (solid blue line) and the ground truth (dotted line) and the R2 score is the
coefficient of determination quantifying the overall model accuracy

with λ = 0.001 is applied to both networks. Predictions on the test trajectories are
shown in Fig. 4.8. We observe that the structured neural network predicts energies
much more accurately than the plain network.

While using a structured network will be the preferred choice most of the
time, there are however two potential limitations to keep in mind: First, the
newly imposed restriction on the structure of the model makes the error function
potentially harder to optimize. Use of a strong momentum (cf. Sect. 4.3.5) is
becoming especially needed here. Second, the toy example of Fig. 4.6 is artificially
structured to only contain short-range dependencies. This is not representative of
all real-world systems, as some of them may exhibit long-range dependencies.
For such systems, the structured neural network considered here will likely see
its performance saturate as more data is being observed, and in the limit case be
outperformed by a plain neural network.

4.4.4 Smoothness of the Prediction Function

The last prior knowledge we would like to incorporate for the toy example of Fig. 4.6
is smoothness. Here, the predicted energy function E(r) is considered to be smooth
if its gradient ∇rE(r) is continuous. The sequence of computations that leads to
the gradient includes (1) the mapping from the system’s coordinates to the neural
network input, (2) the forward pass, (3) the backward pass, and (4) the gradient of
the input mapping:

x = normalize(�(r)) (neural network input)
...

∀Mm=1,∀k : amk = ρ(
∑

j amjwjk + bk) (forward pass)
...

∀Mm=1,∀j : δmj = ρ′(zmj)
∑

k wjkδmk (backward pass)

4 Introduction to Neural Networks 53

...

∇rE(r) =∑M
m=1

∑
i
∂xmi

∂r · δmi (gradient of input)

The mapping to the neural network input is composed of distance functions,
standardization, and thermometer coding, all of them are continuous. Weighted
sums occurring in the forward pass and backward pass are continuous. The gradient
∂xmi/∂r is continuous. The activation function ρ is also continuous. However,
when ρ is the standard ReLU activation, the derivative ρ′ used in the backward
pass is not continuous. This discontinuity causes the overall gradient ∇rE(r) to
be discontinuous, and the energy prediction E(r) to be non-smooth. To enable
smoothness, we can replace the ReLU activation by the centered softplus activation
presented in Sect. 4.3.3 whose derivative is continuous.

To verify the effect of the activation function on the gradient continuity and the
resulting accuracy of the energy prediction, we consider the structured model of
Sect. 4.4.3 applied to our toy example. The neural network is trained once using
the original ReLU activations, and once with the centered softplus activations.
The quantity ‖∇rE(r)‖ is plotted in Fig. 4.9 (top) for both models along the
test trajectories. The discontinuous behavior for the neural network with ReLU
activations is clearly visible. Figure 4.9 (bottom) plots predicted energies for the

Gradient norm (ReLU)

R2 = 0.693

Gradient norm (centered softplus)

R2 = 0.760

Energy (ReLU)

R2 = 0.991

Energy (centered softplus)

R2 = 0.995

Fig. 4.9 Top: Gradient norm ‖∇rE(r)‖ as derived from the energy predictions, and computed
along the test trajectories of the toy dataset. Bottom: Energy prediction E(r). Results are shown
for structured neural networks with ReLU or centered softplus activations. Shaded area represents
the discrepancy between the prediction (solid blue line) and the ground truth (dotted line), and R2

is the coefficient of determination

54 G. Montavon

same models and trajectories. We observe that the neural network with the centered
softplus activation outperforms the non-smooth ReLU variant, reaching near-perfect
predictions. Overall, this experiment demonstrates the benefit in terms of prediction
accuracy of implementing the smoothness prior.

Generally, the smoothness implemented by the centered softplus function makes
it particularly suitable in the context of modeling physical systems. However, the
smoothness of the prediction is likely to be useful only as long as the true function
to approximate is smooth. Interpolating non-smooth functions with a smooth model
may lead to poor results.

4.5 Model Selection, Evaluation, and Understanding

So far, we have introduced techniques for learning a neural network efficiently
and in a way that it generalizes well. However, which regularization technique to
use, how to set the hyperparameters, and which prior knowledge to incorporate
will typically be problem-dependent. Section 4.5.1 explains how to perform model
selection quantitatively and automatically, and what are the implicit assumptions
that are made about the task. Section 4.5.2 describes another set of techniques that
are not subject to the same restrictions and that aim to present the neural network
decision structure to a human.

4.5.1 Model Selection and Evaluation

A common procedure for selecting the best model and hyperparameters consists of
randomly splitting the dataset in three parts. The first part is used to train a set
of candidate models with different hyperparameters. The second part is used to
evaluate each trained model and select the one with highest prediction accuracy.
The last part of the data is used to produce an unbiased estimate of prediction
accuracy for the selected model. The procedure is illustrated in Fig. 4.10. A more
advanced version of this selection procedure, k-fold cross-validation, averages the
evaluation on multiple data splits, so that a larger fraction of the data can be allocated
to training. (See, e.g., [52] for further discussion.)

A first question to consider is which candidate models to select from. Given the
flexibility of neural networks, taking all possible combinations of structures and
hyperparameters would be computationally infeasible. Randomized or predictive
approaches [53, 54] search only over a limited and sufficient collection of models,
allowing to strongly reduce the computational requirements. Another common
practice is to set most hyperparameters to best guesses, and exhaustively search
for only two or three hyperparameters. In addition, for a more robust selection
procedure, it is also recommended to include in the list of candidates, simple non-
neural network models such as linear regression or Gaussian kernels.

The second ingredient that enters in the model selection procedure is the
metric that we use to evaluate the model performance. Independently of the exact

4 Introduction to Neural Networks 55

shuffled data

accuracy

, ..., ,,

candidate models

data
input targets input targets

validation set

test set

training set

selected
model

Fig. 4.10 Illustration of a typical procedure for model selection and evaluation. The data is
shuffled and partitioned in three sets, with each set having a particular role

objective used to train the model, the evaluation metric should evaluate the true
model performance, reflecting what the end-user would consider to be a good
prediction. Examples of common evaluation metrics are the mean square error, the
R2 coefficient of determination, or the mean absolute error. We may also more
specifically measure, e.g., whether the prediction correctly ranks systems from
lowest to highest energy, or whether quantities derived from the prediction such
as forces are accurate.

A limitation of this simple model validation technique, and more generally of any
technique based on cross-validation, is the assumption that we can truly evaluate
and quantify the usefulness of the model. Such assessment may be impossible for
various reasons. For example, we do not always know in advance on which input
distribution the end-user will apply the model. The model may perform well on
the current data but fail to extrapolate to new scenarios. Furthermore, the selection
procedure assumes that the user is able to quantify what he wants from a model. In
practice, the user may not only be interested in getting accurate predictions, but also
to extract insight from the model. The insights to be extracted from the model are in
essence not quantifiable by the user.

4.5.2 Understanding Neural Network Predictions

It is often desirable for a user to be able to understand what the neural network
model has learned [55, 56]. The structures learned by a well-functioning neural
network could, for example, allow the user to refine his own problem’s intuition.
Furthermore, a neural network that closely aligns with the user’s own physics
knowledge is likely to extrapolate better outside the available data. Although prior
knowledge about the task can be induced in the model through various mechanisms,
e.g., input representation, neural network structure, and smooth nonlinearities, we

56 G. Montavon

still would like to verify that the trained model has used these mechanisms in the
way they were intended.

Interpretability is commonly achieved by exposing to the user, which input
features were relevant for the model to arrive at its prediction [57,58]. For example,
if the input of our neural network is the collection of pairwise distances (cf.
Eq. (4.3)), the produced explanation would highlight the contribution of each pair
(ri , rj) to the neural network output, that is, in which pairs the modeled physical
system stores its energy. A first approach to obtain these scores consists of building
interpretability structures directly into the model. For example, [59,60] proposed to
incorporate a top-level summing structure in the network so that summands readily
give the contributions of their associated features. The summing structure is also
present in recent neural networks for predicting molecular electronic properties
[61,62], as well as in the simple structured neural network of Sect. 4.4.3. For this last
example, we note that summands are not bound to a single input feature, but depend
on three input features. Thus, one still needs to determine which of these three
features are actually being used. Various methods have been proposed to determine
the relevance of individual input features [58, 63–65]. In the following, we focus
on layer-wise relevance propagation [58], which identifies the contribution of input
features via a reverse propagation pass in the neural network.

4.5.3 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) [58] is a technique to systematically
attribute the prediction of a neural network to its input features. It is applicable to
general neural network structures including CNNs [58, 66] and LSTMs [67]. LRP
is based on a conservative reverse propagation procedure in the neural network that
is illustrated in Fig. 4.11.

The notation [y]j indicates the share of the output that flows backward through
neuron j . In the context of deep networks with ReLU nonlinearities, a practical
propagation rule is LRP-γ [66]:

[y]j =
∑
k

ajg(wjk)

g(bk)+∑j aj g(wjk)
[y]k

Fig. 4.11 Illustration of the
LRP procedure where the
prediction is propagated from
the output towards the input
features, by means of
propagation rules

input output

[y]k

layer 0 layer 1 layer 2 layer 3

y
[y]j

xi

4 Introduction to Neural Networks 57

where g(w) = w + γ max(0, w), with a hyperparameter γ ≥ 0. A large value for
γ prevents the emergence of strong positive and negative scores in redistribution
process but it also makes the resulting explanation less sensitive to local variations
of the prediction. Typical values for γ are between 0 and 1. When neurons are
linear (e.g., in the top layer), we must choose γ = 0. The LRP-γ propagation rule
is applicable to all layers that receive positive activations as input. For the first layer
where inputs (xi)i are signed, we can replace the contribution terms ajg(wjk) by
the symmetrized variant g(xi)g(wij) + g(−xi)g(−wij) where contributions from
positive and negative input values are treated equally.

We now come to the question of implementation. A direct approach for imple-
menting LRP is to manually iterate from the top layer to the bottom layer.
However, the implementation can be made more concise by leveraging automatic
differentiation. We first observe that, when expressing the propagated scores as
[y]j = aj cj and [y]k = akck , the standard LRP-γ propagation procedure can be
rewritten as:

cj =
∑
k

g(wjk)
ρ(
∑

j ajwjk + bk)

g(bk)+∑j aj g(wjk)
ck

This equation is similar to the one used for gradient propagation (cf. Sect. 4.2.2),
except for the ReLU derivative which is replaced by a more complex term, and
for the weight wjk that becomes g(wjk). Our strategy will be to redefine neurons
of the forward pass in a way that their output remains the same, but results in the
LRP computation when calling the automatic differentiation mechanism. This can
be achieved by constructing the neuron:

ak =
(
g(bk)+∑j aj g(wjk)

) · [ρ(∑j ajwjk + bk
)/(

g(bk)+∑j aj g(wjk)
)]

const.

where the right-hand side is treated as constant. In PyTorch, the forward pass of
Sect. 4.2.1 can be reimplemented as:

where ().data detaches the variable from the graph used for automatic differen-
tiation, making it effectively constant. Once the new architecture has been built, the

58 G. Montavon

ground truth structured network plain network

Fig. 4.12 Contribution of input features to the predicted energy, summed over the whole test set.
Circle size indicates the magnitude of the contribution

LRP explanation is produced by simply calling:

def explain(X):

X.requires_grad_(True)

Y = forward(X).sum(); Y.backward()

return X * X.grad

We consider the neural networks trained in Sect. 4.4.3 and use LRP to identify
how much of the energy is attributed to each pair (r, r′). LRPγ=0 is applied in the
top layer, LRPγ=1 in the second layer, and its symmetrized variant in the first layer.
Once the explanation in terms of the neural network input is obtained, the scores are
sum-pooled over the dimensions of the thermometer coding expansion. Relevance
scores are then summed over all trajectories in the test set to get a dataset-wide
explanation. Results are shown in Fig. 4.12.

In both cases, the inferred contributions do not sum to the ground truth, indicating
that part of the predicted energy is modeled by neurons biases. We also observe
that the plain network uses long-range dependencies to support its prediction. The
structured network, which we have found to be more accurate on the prediction task,
structurally prevents long-range dependencies from being used. As a result, inferred
energy contributions are also closer to the ground truth.

4.5.4 What Did the Neural Network Actually Learn?

Clearly, the model selection procedure of Sect. 4.5.1 would have resulted in
selecting the structured network over the plain network on the basis of higher
predicting accuracy. The relation between high predicting accuracy and the structure
of the network gives some clue to the user on the actual structure of the physical
system. Yet, the LRP analysis reveals that even when the model reaches high test
set accuracy, the decision structure of the learned model may still differ in certain
aspects from the ground truth [68]. We note that this observation is not necessarily

4 Introduction to Neural Networks 59

contradictory: The representation �(r) given as input is indeed an overcomplete
description of the system’s state r. Thus, nothing a priori prevents the machine
learning model to base its prediction, e.g., on features (‖r1 − r2‖,‖r1 − r3‖) rather
than (‖r1 − r2‖, ‖r2 − r3‖). Both of them indeed contain all information about
the relative positions of (r1, r2, r3). In fact, the model may well choose to use all
three distances in order to spread its dependency on multiple correlated features
to increase robustness, or because the nonlinear relation to predict is more easily
implemented in terms of indirect interactions.

To summarize, rather than converging to a physically plausible problem repre-
sentation, the exact strategy implemented by the neural network, if not explicitly
regularized for physical plausibility, might instead be driven by more technical
factors, such as statistical robustness or representation power.

4.6 Conclusion

In this chapter, we have introduced neural networks, with a focus on their use in
the context of physical systems modeling. Owing to their very high representation
power and scalability, neural networks have been the object of sustained interest
for solving a wide range of problems in the sciences, for example, in the field of
atomistic simulations.

As neural network models are also intrinsically complex, training them can be
a delicate task. We have outlined a number of practical steps that can be taken to
facilitate this process. Once a neural network has been trained successfully, i.e., has
minimized its training objective, its ability to generalize to new examples must be
considered. The latter can be improved by application of common regularization
techniques, and by refining its structure and input representation in a way that it
incorporates prior knowledge on the modeled physical system. These techniques let
the neural network learn complex problems from a fairly limited number of data
points.

Furthermore, while a neural network model should be able to predict accurately,
it is also important to make the model interpretable, so that the learned structures
can be explored and assessed qualitatively by the user.

Acknowledgments This work was supported by the German Ministry for Education and Research
as Berlin Center for Machine Learning (01IS18037I). The author is grateful to Klaus-Robert Müller
for the valuable feedback.

References

1. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, New York,
1995)

2. G. Montavon, G.B. Orr, K. Müller (eds.), in Neural Networks: Tricks of the Trade, 2nd edn.
Lecture Notes in Computer Science, vol. 7700 (Springer, Berlin, 2012)

3. J. Schmidhuber, Neural Netw. 61, 85 (2015)

60 G. Montavon

4. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)
5. G. Cybenko, Math. Control Signals Syst. 2(4), 303 (1989)
6. Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, in Advances in Neural Information Processing Systems,

vol. 30 (2017), pp. 6231–6239
7. K. Fukushima, Biol. Cybern. 36, 193 (1980)
8. G. Montavon, M.L. Braun, K. Müller, J. Mach. Learn. Res. 12, 2563 (2011)
9. C. Cortes, V. Vapnik, Mach. Learn. 20(3), 273 (1995)

10. K. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, IEEE Trans. Neural Netw. 12(2), 181
(2001)

11. B. Schölkopf, A. J. Smola, in Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Adaptive Computation and Machine Learning Series (MIT Press,
Cambridge, MA, 2002)

12. A. Krizhevsky, I. Sutskever, G. E. Hinton, in Neural Information Processing Systems (2012),
pp. 1106–1114

13. K. Simonyan, A. Zisserman, in Third International Conference on Learning Representations
(2015)

14. M. Oquab, L. Bottou, I. Laptev, J. Sivic, in IEEE Conference on Computer Vision and Pattern
Recognition (2014), pp. 1717–1724

15. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P.P. Kuksa, J. Mach. Learn.
Res. 12, 2493 (2011)

16. Y. Kim, in Proceedings of the Conference on Empirical Methods in Natural Language
Processing (2014), pp. 1746–1751

17. P. Baldi, P. Sadowski, D. Whiteson, Nat. Commun. 5, 4308 (2014)
18. K. T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017)
19. A. Mardt, L. Pasquali, H. Wu, F. Noé, Nat. Commun. 9(5) (2018)
20. L. Holmström, P. Koistinen, IEEE Trans. Neural Netw. 3(1), 24 (1992)
21. S. Hobday, R. Smith, J. Belbruno, Model. Simul. Mater. Sci. Eng. 7(3), 397 (1999)
22. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
23. K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9(8), 2261 (2018)
24. B. Nebgen, N. Lubbers, J.S. Smith, A.E. Sifain, A. Lokhov, O. Isayev, A.E. Roitberg,

K. Barros, S. Tretiak, J. Chem. Theory Comput. 14(9), 4687 (2018)
25. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323(6088), 533 (1986)
26. P.J. Werbos, in System Modeling and Optimization (Springer, Berlin, 1982), pp. 762–770
27. Y. LeCun, L. Bottou, G.B. Orr, K. Müller, in Neural Networks: Tricks of the Trade, 2nd edn.

Lecture Notes in Computer Science, vol. 7700 (Springer, Berlin, 2012), pp. 9–48
28. J. Lafond, N. Vasilache, L. Bottou (2017). CoRR abs/1705.09319
29. A. Botev, H. Ritter, D. Barber, in Proceedings of the 34th International Conference on Machine

Learning (2017), pp. 557–565
30. Y. Jeon, C. Choi, in International Joint Conference Neural Network (1999), pp. 1685–1690
31. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R.

Müller, O. A. von Lilienfeld, New J. Phys. 15(9), 095003 (2013)
32. X. Glorot, A. Bordes, Y. Bengio, in International Conference on Artificial Intelligence and

Statistics (2011), pp. 315–323
33. M.D. Zeiler, M. Ranzato, R. Monga, M.Z. Mao, K. Yang, Q.V. Le, P. Nguyen, A.W. Senior,

V. Vanhoucke, J. Dean, G.E. Hinton, in IEEE International Conference on Acoustics, Speech
and Signal Processing (2013), pp. 3517–3521

34. K. He, X. Zhang, S. Ren, J. Sun, in IEEE International Conference on Computer Vision (2015),
pp. 1026–1034

35. D.P. Kingma, J. Ba, in Third International Conference on Learning Representations (2015)
36. L. Bottou, in Proceedings of Neuro-Nîmes, vol. 91 (EC2, Nimes, 1991)
37. L. Bottou, in Neural Networks: Tricks of the Trade, 2nd edn. Lecture Notes in Computer

Science, vol. 7700 (Springer, Berlin, 2012), pp. 421–436

4 Introduction to Neural Networks 61

38. V.N. Vapnik, The Nature of Statistical Learning Theory, 2nd edn. Statistics for Engineering
and Information Science (Springer, Berlin, 2000)

39. A. Krogh, J.A. Hertz, in Advances in Neural Information Processing Systems, vol. 4 (1991),
pp. 950–957

40. R. Reed, IEEE Trans. Neural Netw. 4(5), 740 (1993)
41. L. Breiman, Mach. Lear. 24(2), 123 (1996)
42. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301

(2012)
43. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller,

A. Tkatchenko, J. Phys. Chem. Lett. 6(12), 2326 (2015)
44. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017)
45. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Sci. Adv.

3(5), e1603015 (2017)
46. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Nat. Commun. 9, 3887 (2018)
47. I. Guyon, A. Elisseeff, in Feature Extraction—Foundations and Applications. Studies in

Fuzziness and Soft Computing, vol. 207 (Springer, Berlin, 2006), pp. 1–25
48. P.Y. Simard, Y. LeCun, J.S. Denker, B. Victorri, in Neural Networks: Tricks of the Trade, 2nd

edn. Lecture Notes in Computer Science, vol. 7700 (Springer, Berlin, 2012), pp. 235–269
49. Y. LeCun, P. Haffner, L. Bottou, Y. Bengio, in Shape, Contour and Grouping in Computer

Vision (Springer, Berlin, 1999), pp. 319–345
50. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, in Proceedings of the 34th

International Conference on Machine Learning (2017), pp. 1263–1272
51. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
52. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von Lilienfeld,

A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)
53. J. Bergstra, Y. Bengio, J. Mach. Learn. Res. 13, 281 (2012)
54. J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, in Advances in Neural Information Processing

Systems, vol. 24 (2011), pp. 2546–2554
55. Z.C. Lipton, ACM Queue 16(3), 30 (2018)
56. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.-R. Müller (eds.), Explainable AI:

Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science,
vol. 11700 (Springer, Berlin, 2019)

57. D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K. Müller, J. Mach. Learn.
Res. 11, 1803 (2010)

58. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek, PLoS One 10(7),
e0130140 (2015)

59. R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015),
pp. 1721–1730

60. B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, A. Torralba, in IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 2921–2929

61. K. Yao, J.E. Herr, S.N. Brown, J. Parkhill, J. Phys. Chem. Lett. 8(12), 2689 (2017)
62. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, in Explainable AI: Interpreting,

Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science, vol. 11700
(Springer, Berlin, 2019)

63. M.T. Ribeiro, S. Singh, C. Guestrin, in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

64. R.C. Fong, A. Vedaldi, In IEEE International Conference on Computer Vision (2017), pp.
3449–3457

65. M. Sundararajan, A. Taly, Q. Yan, in Proceedings of the 34th International Conference on
Machine Learning (2017), pp. 3319–3328

62 G. Montavon

66. G. Montavon, A. Binder, S. Lapuschkin, W. Samek, K.-R. Müller, in Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science,
vol. 11700 (Springer, Berlin, 2019)

67. L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller, S. Hochre-
iter, W. Samek, in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Lecture Notes in Computer Science, vol. 11700 (Springer, Berlin, 2019)

68. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.-R. Müller, Nat. Commun.
10, 1096 (2019)

Part II

Incorporating Prior Knowledge: Invariances,
Symmetries, Conservation Laws

Preface

When attempting to apply machine learning to atomistic simulations or prediction
throughout chemical compound space, one will quickly face a crucial challenge—
how to smartly encode the input? A naïve choice could be to stack the atomic
types and positions into a vector and apply a standard non-linear regression method,
such as a neural network or a Gaussian process with a radial basis function (RBF)
kernel. While it is true that those methods are universal approximators and will
converge to the true solution eventually, it may require a huge amount of training
data. Generating this data will not be feasible for many of the applications presented
in this book, due to the high computational cost of accurate quantum chemical
reference calculations.

In order to substantially increase the data efficiency of machine learning
approaches, we need to incorporate all available prior knowledge about atomistic
systems: We know that our input is a set of categorical atom types and three-
dimensional position vectors. We know that the order of the atoms does not
change the chemical properties of the system and that many chemical properties are
invariant or covariant to rotation and translation. These properties can be achieved
by what is commonly called feature engineering or descriptor design, where the
system is encoded in such a way that invariances and symmetries are reflected [1].
Finding suitable descriptors for molecules and materials has been a major aspect of
research in recent years [2–7].

This part of the book will introduce several novel aspects when incorporating
prior knowledge into the descriptor. Glielmo et al. [8] cover the construction of
nonparametric n-body force fields using Gaussian processes (GPs). Several GP ker-
nels are reviewed, in particular with respect to constraining the interaction order n.
Chapter 6 [9] was originally published in the Handbook of Materials Modeling [10].
We reprint it here in an adapted version as it gives an excellent introduction to using
the SOAP (Smooth Overlap of Atomic Positions) representation and incorporating
physical principles into the machine learning framework.

64 II Incorporating Prior Knowledge: Invariances, Symmetries, Conservation Laws

Faber et al. [11] demonstrate how models for the accurate prediction of
energies—here using the FCHL descriptor—can be generalized to incorporate
response properties. In Chap. 7, [12] present the sGDML framework, consisting
of vector-valued kernels that are constrained to model energy-conserving force
fields only. In addition sGDML encompasses an efficient matching procedure that
automatically extracts rigid and fluxional symmetries contained in the reference
data.

In Chap. 9, [13] describe the development of machine learning models that gen-
eralize across phase transitions—a feature the authors call physical extrapolation,
i.e., the extrapolation in physical input space, while interpolating in feature space.
The authors discuss controlling model complexity using the Bayesian information
criterium to avoid overfitting in the unknown domain.

While this part of the book encompasses mainly kernel-based learning methods,
where prior domain knowledge allows the incorporation of invariances into repre-
sentations, we will in part of the book also encounter representation learning using
deep neural networks, where incorporating prior knowledge is mainly achieved
through the choice of architecture [14–18].

Berlin, Germany Kristof T. Schütt
Berlin, Germany Stefan Chmiela
Basel, Switzerland O. Anatole von Lilienfeld
Luxembourg, Luxembourg Alexandre Tkatchenko
Kashiwa, Japan Koji Tsuda
Berlin, Germany Klaus-Robert Müller
September 2019

References

1. O.A. von Lilienfeld, R. Ramakrishnan, M. Rupp, A. Knoll, Int. J. Quantum Chem. 115(16),
1084 (2015)

2. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577 (2009)
3. J. Behler, J. Chem. Phys. 134(7), 074106 (2011)
4. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013)
5. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Müller, E. Gross, Phys. Rev. B 89(20),

205118 (2014)
6. F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094

(2015)
7. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld (2017). arXiv:1702.05532
8. A. Glielmo, C. Zeni, A. Fekete, A. De Vita, in Machine Learning for Quantum Simulations of

Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

9. M. Ceriotti, M.J. Willatt, G. Csányi, in Machine Learning for Quantum Simulations of
Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

10. M. Ceriotti, M.J. Willatt, G. Csányi, Handbook of Materials Modeling: Methods: Theory and
Modeling (2018), pp. 1–27

II Incorporating Prior Knowledge: Invariances, Symmetries, Conservation Laws 65

11. F.A. Faber, A.S. Christensen, O.A. von Lilienfeld, in Machine Learning for Quantum
Simulations of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld,
A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

12. S. Chmiela, H.E. Sauceda, A. Tkatchenko, K.-R. Müller, in Machine Learning for Quantum
Simulations of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld,
A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

13. R.A. Vargas-Hernández, R.V. Krems, in Machine Learning for Quantum Simulations of
Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes in Physics (Springer, Berlin, 2019)

14. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890
(2017)

15. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, in Proceedings of the 34th
International Conference on Machine Learning (2017), pp. 1263–1272

16. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, J. Chem. Phys.
148(24), 241722 (2018)

17. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018)
18. N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, P. Riley (2018).

arXiv:1802.08219

5Building Nonparametric n-Body Force Fields
Using Gaussian Process Regression

Aldo Glielmo, Claudio Zeni, Ádám Fekete, and Alessandro De Vita

Abstract

Constructing a classical potential suited to simulate a given atomic system is a
remarkably difficult task. This chapter presents a framework under which this
problem can be tackled, based on the Bayesian construction of nonparametric
force fields of a given order using Gaussian process (GP) priors. The formalism
of GP regression is first reviewed, particularly in relation to its application
in learning local atomic energies and forces. For accurate regression, it is
fundamental to incorporate prior knowledge into the GP kernel function. To this
end, this chapter details how properties of smoothness, invariance and interaction
order of a force field can be encoded into corresponding kernel properties. A
range of kernels is then proposed, possessing all the required properties and an
adjustable parameter n governing the interaction order modelled. The order n

best suited to describe a given system can be found automatically within the
Bayesian framework by maximisation of the marginal likelihood. The procedure
is first tested on a toy model of known interaction and later applied to two real
materials described at the DFT level of accuracy. The models automatically
selected for the two materials were found to be in agreement with physical
intuition. More in general, it was found that lower order (simpler) models should

A. Glielmo (�) · C. Zeni · Á. Fekete
Department of Physics, King’s College London, London, UK
e-mail: aldo.glielmo@kcl.ac.uk; claudio.zeni@kcl.ac.uk

A. De Vita
Department of Physics, King’s College London, London, UK

Dipartimento di Ingegneria e Architettura, University of Trieste, Trieste, Italy

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_5

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_5&domain=pdf
mailto:aldo.glielmo@kcl.ac.uk
mailto:claudio.zeni@kcl.ac.uk
https://doi.org/10.1007/978-3-030-40245-7_5

68 A. Glielmo et al.

be chosen when the data are not sufficient to resolve more complex interactions.
Low n GPs can be further sped up by orders of magnitude by constructing the
corresponding tabulated force field, here named “MFF”.

5.1 Introduction

The no free lunch (NFL) theorems proven by D. H. Wolpert in 1996 state
that no learning algorithm can be considered better than any other (and than
random guessing) when its performance is averaged uniformly over all possible
functions [1]. Although functions appearing in real-world problems are certainly
not uniformly distributed, this remarkable result seems to suggest that the search
for the “best” machine learning (ML) algorithm able to learn any function in an
“agnostic” fashion is groundless, and strongly justifies current efforts within the
physics and chemistry communities aimed at the development of ML techniques
that are particularly suited to tackle a given problem, for which prior knowledge is
available and exploitable.

In the context of machine learning force field (ML-FF) generation, this resulted
in a proliferation of different approaches based on artificial neural networks (NN)
[2–11], Gaussian process (GP) regression [12–17] or linear expansions on properly
defined bases [18–20]. Particularly within GP regression (the method predominantly
discussed in this chapter), a considerable effort was directed towards the inclusion
of the known physical symmetries of the target system (translations, rotations and
permutations) in the algorithm as a prior piece of information. Among these, rotation
symmetry proved the most cumbersome one to deal with, and received special
attention. This typically involved either building explicitly invariant descriptors (as
the Li et al. feature-matrix based on internal vectors [13]) or imposing the symmetry
via an invariant [21] or covariant [14] integral to learn energies or forces. Clearly,
many more detailed recipes than those featuring in the list above would be possible
in virtually all situations, making the problem of selecting a single model for a
particular task both interesting and unavoidable. In the following, we will argue
that a good way of choosing among competing explanations is to follow the long-
standing Occam’s razor principle and select the simplest model that is still able to
provide a satisfactory explanation [22–24].

This general idea has found rigorous mathematical formulations. Within statis-
tical learning theory, the complexity of a model can be measured by calculating
its Vapnik–Chervonenkis (VC) dimension [25, 26]. The VC dimension of a model
then relates to its sample complexity (i.e., the number of points needed to effectively
train it) as one can prove that the latter is bounded by a monotonic function of the
former [26, 27]. Similar considerations can also be made in a Bayesian context by
noting that models with prior distributions concentrated around the true function
(i.e., simpler models) have a lower sample complexity and will hence learn faster
[28]. The above considerations suggest that a principled approach to learn a force
field is to incorporate as much prior knowledge as is available on the function to be
learned and the particular system at hand. When prior knowledge is not enough to

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 69

0.00 0.25 0.50 0.75 1.00 1.25

x

0.50

0.75

1.00

1.25

1.50

1.75

y

simple model
complex model

Fig. 5.1 A simple linear model (blue solid line) and a complex GP model (green dashed line) are
fitted to some data points. In this situation, if we have prior knowledge that a linear trend underpins
the data, we should enforce the blue model a priori; otherwise we should select the blue model by
Occam’s razor after the data becomes available, since it is the simplest one. The advantages of this
choice lie in the greater interpretability and extrapolation power of the simpler model

decide among competing models, these should all be trained and tested, after which
the simplest one that is still compatible with the desired target accuracy should be
selected. This approach is illustrated in Fig. 5.1, where two competing models are
considered for a one dimensional dataset.

In the rest of this chapter, we provide a step-by-step guide to the incorporation
of prior knowledge and to model selection in the context of Bayesian regression
based on GP priors (Sect. 5.2) and show how these ideas can be applied in practice
(Sect. 5.3). Section 5.2 is structured as follows. In Sect. 5.2.1, we give a pedagogical
introduction to GP regression, with a focus on the problem of learning a local energy
function. In Sect. 5.2.2, we show how a local energy function can be learned in
practice when using a database containing solely total energies and/or forces. In
Sect. 5.2.3, we then review the ways in which physical prior information can (and
should) be incorporated in GP kernel functions, focusing on smoothness (5.2.3.1),
symmetries (5.2.3.2) and interaction order (5.2.3.3). In Sect. 5.2.4, we make use
of the preceding section’s results to define a set of kernels of tunable complexity
that incorporate as much prior knowledge as is available on the target physical
system. In Sect. 5.2.5, we show how Bayesian model selection provides a principled
and “automatic” choice of the simplest model suitable to describe the system.
For simplicity, throughout this chapter only systems of a single chemical species
are discussed, but in Sect. 5.2.6, we briefly show how the ideas presented can be
straightforwardly extended to model multispecies systems.

Section 5.3 focuses on the practical application of the ideas presented. In partic-
ular, Sect. 5.3.1 describes an application of the model selection method described in
Sect. 5.2.5 to two different Nickel environments, represented as different subsets of
a general Nickel database. We then compare the results obtained from this Bayesian

70 A. Glielmo et al.

model selection technique with those provided by a more heuristic model selection
approach and show how the two methods, while being substantially different
and optimal in different circumstances, typically yield similar results. The final
Sect. 5.3.2 discusses the computational efficiency of GP predictions, and explain
how a very simple procedure can increase by several orders of magnitude the
evaluation speed of certain classes of GPs when on-the-fly training is not needed.
The code used to carry out such a procedure is freely available as part of the “MFF”
Python package [29].

5.2 Nonparametric n-body Force Field Construction

The most straightforward well-defined local property accessible to QM calculations
is the force on atoms, which can be easily computed by way of the Hellman–
Feynman theorem [30]. Atomic forces can be machine learned directly in various
ways, and the resulting model can be used to perform molecular dynamics simu-
lations, probe the system’s free energy landscape, etc. [13, 14, 16, 31, 32]. We can
however also define a local energy function ε(ρ) representing the energy ε of an
atom given a representation ρ of the set of positions of all the atoms surrounding
it within a cutoff distance. Such a set of positions is typically called an atomic
environment or an atomic configuration, and ρ could simply be a list of the atomic
species and positions expressed in Cartesian coordinates, or any suitably chosen
representation of these [13, 15, 21, 33].

Although local energies are not well-defined in quantum calculations, in the
following section we will be focusing on GP models for learning this somewhat
accessory function ε(ρ), as this makes it easier to understand the key concepts [34].
We will also assume for simplicity that our ML model is trained on a database of
local configurations and energies, although in practice ε(ρ) is machine-learned from
the atomic forces and total energies produced by QM codes. The details of how this
can be practically done will be discussed in Sect. 5.2.2.

5.2.1 Gaussian Process Regression

In order to learn the local energy function ε(ρ) yielding the energy of the atomic
configuration ρ, we assume to have access to a database of reference calculations
D = {(εri , ρi)}Ni=1 composed by N local atomic configurations ρ = (ρ1, . . . , ρN)T

and their corresponding energies εr = (εr1, . . . , ε
r
N)T . It is assumed that the energies

have been obtained as

εri = ε(ρi)+ ξi (5.1)

where the noise variables ξi are independent zero mean Gaussian random variables
(ξi ∼ N (0, σ 2

n)). This noise in the data can be imagined to represent the combined

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 71

uncertainty associated with both training data and model used. For example, an
important source of uncertainty is the locality error resulting from the assumption
of a finite cutoff radius, outside of which atoms are treated as non-interacting. This
assumption is necessary in order to define local energy functions but it never holds
exactly.

The power of GP regression lies in the fact that ε(ρ) is not constrained to be a
given parametric functional form as in standard fitting approaches, but it is rather
assumed to be distributed as a Gaussian stochastic process, typically with zero mean

ε(ρ) ∼ GP (0, k (ρ, ρ′)) (5.2)

where k is the kernel function of the GP (also called covariance function). This
notation signifies that for any finite set of input configurations ρ, the corresponding
set of local energies ε = (ε(ρ1), . . . , ε(ρN))T will be distributed according to a
multivariate Gaussian distribution whose covariance matrix is constructed through
the kernel function:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(ε | ρ) = N (0,K)

K =

⎛
⎜⎜⎝

k(ρ1, ρ1) · · · k(ρ1, ρN)

...
. . .

...

k(ρN, ρ1) · · · k(ρN, ρN)

⎞
⎟⎟⎠ .

(5.3)

Given that both ξi and ε(ρi) are normally distributed, and since the sum of two
Gaussian random variables is also a Gaussian variable, one can write down the
distribution of the reference energies εri of Eq. (5.1) as a new normal distribution
whose covariant matrix is the sum of the original two:

{
p (εr | ρ) = N (0,C)

C = K + 1σ 2
n .

(5.4)

Building on this closed form (Gaussian) expression for the probability of the
reference data, we can next calculate the predictive distribution, i.e., the probability
distribution of the local energy value ε∗ associated with a new target configuration
ρ∗, for the given training dataset D = (ρ, εr) —the interested reader is referred to
the two excellent references [35, 37] for details on the derivation. This is:

⎧⎪⎪⎨
⎪⎪⎩
p (ε∗ | ρ∗,D) = N (

ε̂ (ρ∗) , σ̂ 2 (ρ∗)
)

ε̂ (ρ∗) = kT C−1εr

σ̂ 2 (ρ∗) = k (ρ∗, ρ∗)− kT C−1k

, (5.5)

72 A. Glielmo et al.

0.8 1.0 1.2 1.4 1.6 1.8

Position (Å)

− 2

− 1

0

1

2
E

ne
rg

y
(e

V
)

mean
realisations

(a)

0.8 1.0 1.2 1.4 1.6 1.8

Position (Å)

− 2

− 1

0

1

2

E
ne

rg
y

(e
V

)

mean
realisations

(b)

Fig. 5.2 Pictorial view of GP learning of a LJ dimer. Panel (a): mean, standard deviation and
random realisations of the prior stochastic process, which represents our belief on the dimer
interaction before any data is seen. Panel (b): posterior process, whose mean passes through the
training data and whose variance provides a measure of uncertainty

where we defined the vector k = (k(ρ∗, ρ1), . . . , k(ρ
∗, ρN))T . The mean function

ε̂(ρ) of the predictive distribution is now our “best guess” for the true underlying
function as it can be shown that it minimises expected error.1

The mean function is often equivalently written down as a linear combination of
kernel functions evaluated over all database entries

ε̂(ρ) =
N∑

d=1

k(ρ, ρd)αd, (5.6)

where the coefficients are readily computed as αd = (C−1ε)d . The posterior
variance of ε∗ provides a measure of the uncertainty associated with the prediction,
normally expressed as the standard deviation σ̂ (ρ).

The GP learning process can be thought of as an update of the prior distribution
Eq. (5.2) into the posterior Eq. (5.5). This update is illustrated in Fig. 5.2, in which
GP regression is used to learn a simple Lennard Jones (LJ) profile from a few dimer
data. In particular, Fig. 5.2a shows the prior GP (Eq. (5.2) while Fig. 5.2b shows
the posterior GP, whose mean and variance are those of the predictive distribution
Eq. (5.5). By comparing the two panels, one notices that the mean function (equal

1Choosing a squared error function L = (ε̄(ρ) − ε)2, the expected error under the posterior
distribution reads 〈L〉 = ∫ dε p(ε | ρ,D)(ε̄(ρ)− ε)2. Minimising this quantity with respect to the
unknown optimal prediction ε̄(ρ) can be done by equating the functional derivative δ〈L〉/δε̄(ρ) to
zero, yielding the condition (ε̄(ρ)−〈ε〉) = 0, proving that the optimal estimate corresponds to the
mean ε̂(ρ) of the predictive distribution in Eq. (5.5). One can show that choosing an absolute error
function L = |ε̄(ρ)− ε| makes the mode of the predictive distribution the optimal estimate, this
however coincides with the mean in the case of Gaussian distributions.

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 73

to zero in the prior process) approximates the true function (black solid line) by
passing through the reference calculations. Clearly, the posterior standard deviation
(uniform in the prior) shrinks to zero at the points where data is available (as we set
the intrinsic noise σn to zero) to then increase again away from them. Three random
function samples are also shown for both prior and posterior process.

5.2.2 Local Energy fromGlobal Energies and Forces

The forces acting on atoms are well-defined local property accessible to QM
calculations, easily computed by way of the Hellman–Feynman theorem [30]. As a
consequence, GP regression can in principle be used to learn a force field directly
on a database of quantum forces, as done, for instance, in Refs. [13, 14, 31]. Local
atomic energies on the contrary cannot be computed in QM calculations, which can
only provide the total energy of the full system. However, the material presented in
the previous section, in addition to being of pedagogical importance, is still useful
in practice since local energy functions can be learned from observations of total
energies and forces only.

Mathematically this is possible since any sum, or derivative, of a Gaussian
process is also a Gaussian process [35], and the main ingredients needed for
learning are hence the covariances (kernels) between these Gaussian variables. In
the following, we will see how kernels for total energies and forces can be obtained
starting from a kernel for local energies, and how these derived kernels can be used
to learn a local energy function from global energy and force information.

Total Energy Kernels The total energy of a system can be modelled as a sum of
the local energies associated with each local atomic environment

E({ρa}) =
Na∑
a=1

ε(ρa) (5.7)

and if the local energy functions ε in the above equation are distributed according to
a zero mean GP, then also the global energy E will be GP variable with zero mean.
To calculate the kernel functions kεE and kEE providing the covariance between
local and global energies and between two global energies, one simply needs to take
the expectation with respect to the GP of the corresponding products

kεE
(
ρa,
{
ρ′b
}) = 〈ε(ρa)E

({
ρ′b
})〉

=
N ′a∑
b=1

〈
ε(ρa)ε

(
ρ′b
)〉

=
N ′a∑
b=1

k(ρa, ρb).

(5.8)

74 A. Glielmo et al.

kEE
({ρa},

{
ρ′b
}) = 〈E({ρa})E

({
ρ′b
})〉

=
Na∑
a=1

N ′a∑
b=1

〈
ε(ρa)ε

(
ρ′b
)〉

=
Na∑
a=1

N ′a∑
b=1

k(ρa, ρb).

(5.9)

Note that we have allowed the two systems to have a different number of particles
Na and N ′a and that the final covariance functions can be entirely expressed in terms
of local energy kernel functions k.

Force Kernels The force f({ρa}p) on an atom p at position rp is defined as the
derivative

f
({ρa}p

) = −∂E ({ρa}p)
∂rp

, (5.10)

where by virtue of the existence of a finite cutoff radius of interaction, only the set
of configurations {ρa}p that contain atom p within their cutoff function contribute
to the force on p. Being the derivative of a GP-distributed quantiy, the force
vector is also distributed according to a GP [35] and the corresponding kernels
between forces and between forces and local energies can be easily obtained by
differentiation as described in Refs. [35, 36]. They read

kεf (ρa, {ρb}p
) = −∑

{ρb}q
∂k(ρa, ρb)

∂rT
q

(5.11)

Kff ({ρa}p, {ρb}q
) = ∑

{ρa}p

∑
{ρb}q

∂2k(ρa, ρb)

∂rp∂rT
q

. (5.12)

Total Energy–Force Kernel Learning from both energies and forces simultane-
ously is also possible. One just needs to calculate the extra kernel kfE comparing
the two quantities in the database

kfE ({ρa}p,
{
ρ′b
}) = −∑

{ρa}p

N ′∑
b=1

∂k(ρa, ρb)

∂rp
. (5.13)

To clarify how the kernels described above can be used in practice, it is instructive
to look at a simple example. Imagine having a database made up of a single snapshot
coming from an ab initio molecular dynamics of N atoms, hence containing a single

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 75

energy calculation and N forces. Learning using these quantities would involve
building a N + 1×N + 1 block matrix K containing the covariance between every
pair

K =

⎛
⎜⎜⎜⎝

kEE ({ρa}, {ρb}) kEf
({ρa}, {ρb}1

) · · · kEf
({ρa}, {ρb}N

)
kfE

({ρa}1, {ρb}
)

Kff
({ρa}1, {ρb}1

) · · · Kff
({ρa}1, {ρb}N

)
...

...
. . .

...

kfE
({ρa}N, {ρb}

)
Kff
({ρa}N, {ρb}1

) · · · Kff
({ρa}N, {ρb}N

)

⎞
⎟⎟⎟⎠ . (5.14)

As is clear from the above equation, each block is either a scalar (the energy–energy
kernel in the top left), a 3 × 3 matrix (the force–force kernels) or a vector (the
energy–force kernels). The full dimension of K is hence (3N + 1)× (3N + 1).

Once such a matrix is built and the inverse C−1 = [K + Iσ 2
n]−1 computed, the

predictive distribution for the value of the latent local energy variable can be easily
written down. For notational convenience, it is useful to define the vector {xi}Ni=1
containing all the quantities in the training database and the vector {ti}Ni=1 specifying
their type (meaning that ti is either E or f depending on the type of data point
contained in xi). With this convention, the predictive distribution for the local energy
takes the form

p(ε∗ | ρ∗,D) = N
(
ε̂(ρ∗), σ̂ 2(ρ∗)

)

ε̂(ρ∗) =
∑
ij

kεti (ρ∗, ρi)C
−1
ij xj

σ̂ 2(ρ∗) = k(ρ∗, ρ∗)−
∑
ij

kεti (ρ∗, ρi)C
−1
ij ktj ε(ρj , ρ

∗),

(5.15)

where the products between xj , C−1
ij and ktj ε are intended to be between scalars,

vectors or matrices depending on the nature of the quantities involved.

5.2.3 Incorporating Prior Information in the Kernel

Choosing a Gaussian stochastic process as prior distribution over the local energies
ε(ρ) rather than a parametrised functional form brings a few key advantages. A
much sought advantage is that it allows greater flexibility: one can show that in
general a GP corresponds to a model with an infinite number of parameters, and
with a suitable kernel choice can act as a “universal approximator”: capable of
learning any function if provided with sufficient training data [35]. A second one is
a greater ease of design: the kernel function must encode all prior information about
the local energy function, but typically contains very few free parameters (called
hyperparameters) which can be tuned, and such tuning is typically straightforward.
Third, GPs offer a coherent framework to predict the uncertainty associated with the

76 A. Glielmo et al.

predicted quantities via the posterior covariance. This is typically not possible for
classical parametrised n-body force fields.

All this said, the high flexibility associated with GPs could easily become a
drawback when examined from the point of view of computational efficiency.
Broadly, it turns out that for maximal efficiency (which takes into account both
accuracy and speed of learning and prediction) one should constrain this flexibility
in physically motivated ways, essentially by incorporating prior information in the
kernel. This will reduce the dimensionality of the problem, e.g., by choosing to
learn energy functions of significantly fewer variables than those featuring in the
configuration ρ (3N for N atoms).

To effectively incorporate prior knowledge into the GP kernel, it is fundamental
to know the relation between important properties of the modelled energy and the
corresponding kernel properties. These are presented in the remainder of this section
for the case of local energy kernels. Properties of smoothness, invariance to physical
symmetries and interaction order are discussed in turn.

5.2.3.1 Function Smoothness
The relation between a given kernel and the smoothness of the random functions
described by the corresponding Gaussian stochastic process has been explored
in detail [35, 37]. Kernels defining functions of arbitrary differentiability have
been developed. For example, on opposite ends we find the so-called squared
exponential (kSE) and absolute exponential (kAE) kernels, defining, respectively,
infinitely differentiable and nowhere differentiable functions:

kSE(d) = e−d2/2�2
(5.16)

kAE(d) = e−d/�, (5.17)

where the letter d represents the distance between two points in the metric space
associated with the function to be learned (e.g., a local energy). The Matérn kernel
[35, 37] is a generalisation of the above-mentioned kernels and allows to impose an
arbitrary degree of differentiability depending on a parameter ν:

kM,ν(d) = 21−ν

�(ν)

(√
2ν

d

�

)ν

Kν

(√
2ν

d

�

)
, (5.18)

where � is the gamma function and Kν is a modified Bessel function of the second
kind.

The relation between kernels and modelled function differentiability is illustrated
by Fig. 5.3, showing the three kernels mentioned above (Fig. 5.3a) along with typical
samples from the corresponding GP priors (Fig. 5.3b). The absolute exponential
kernel has been found useful to learn atomisation energy of molecules [38–40],
especially in conjunction with the discontinuous Coulomb matrix descriptor [38].
In the context of modelling useful machine learning force fields, a relatively smooth

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 77

0.0 0.2 0.4 0.6

Distance, d ˚(A)

0.0

0.2

0.4

0.6

0.8

1.0

K
er

ne
l

va
lu

e

squared exp.
absolute exp.
Mat., ν = 2 / 3

(a)

0.8 1.0 1.2 1.4 1.6 1.8

Position (Å)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
ne

rg
y

(e
V

)

(b)

Fig. 5.3 Effect of three kernel functions on the smoothness of the corresponding stochastic
processes

energy or force function is typically sought. For this reason, the absolute exponential
is not appropriate and has never been used while the flexibility of the Matérn
covariance has only found limited applicability [41]. In fact, the squared exponential
has been almost always preferred, in conjunction with suitable representations ρ of
the atomic environment, [14, 16, 31, 42], and will be used also in this work.

5.2.3.2 Physical Symmetries
Any energy or force function has to respect the symmetry properties listed below.

Translations Physical systems are invariant upon rigid translations of all their
components. This basic property is relatively easy to enforce in any learning
algorithm via a local representation of the atomic environments. In particular, it
is customary to express a given local atomic environment as the unordered set of
M vectors {ri}Mi=1 going from the “central” atom to every neighbour lying within
a given cutoff radius [14, 15, 21, 33]. It is clear that any representation ρ and any
function learned within this space will be invariant upon translations.

Permutations Atoms of the same chemical species are indistinguishable, and any
permutation P of identical atoms in a configuration necessarily leaves energy (as
well as the force) invariant. Formally one can write ε(Pρ) = ε(ρ)∀P . This property
corresponds to the kernel invariance

k
(Pρ,P ′ρ′) = k

(
ρ, ρ′

) ∀P,P ′. (5.19)

Typically, the above equality has been enforced either by the use of invariant
descriptors [13, 14, 42, 43] or via an explicit invariant summation of the kernel over
the permutation group [15, 16, 44], with the latter choice being feasible only when
the symmetrisation involves a small number of atoms.

78 A. Glielmo et al.

Rotations The potential energy associated with a configuration should not change
upon any rigid rotation R of the same (i.e., formally, ε(Rρ) = ε(ρ)∀R). Similarly
to permutation symmetry, this invariance is expressed via the kernel property

k
(Rρ,R′ρ′) = k

(
ρ, ρ′

) ∀R,R′. (5.20)

The use of rotation-invariant descriptors to construct the representation ρ immedi-
ately guarantees the above. Typical examples of such descriptors are the symmetry
functions originally proposed in the context of neural networks [3, 45], the internal
vector matrix [13] or the set of distances between groups of atoms [15, 42, 43].

Alternatively, a “base” kernel kb can be made invariant with respect to the
rotation group via the following symmetrisation (“Haar integral” over the full 3D
rotation group):

k
(
ρ, ρ′

) =
∫

dR kb
(
ρ,Rρ′

)
. (5.21)

Such a procedure (called “transformation integration” in the ML community [46])
was first used to build a potential energy kernel in Ref. [21].

When learning forces, as well as other tensorial physical quantities (e.g., a
stress tensor, or the (hyper)polarisability of a molecule), the learnt function must
be covariant under rotations. This property can be formally written as f(Rρ) =
Rf(ρ)∀R and, as shown in [14], it translates at the kernel level to

K
(Rρ,R′ρ′) = RK(ρ, ρ′)R′T . (5.22)

Note that, since forces are three dimensional vectorial quantities, the corresponding
kernels are 3× 3 matrices [14, 47, 48], here denoted by K.

Designing suitable covariant descriptors is arguably harder than finding invariant
ones. For this reason, the automatic procedure proposed in Ref. [14] to build
covariant descriptors can be particularly useful. Covariant matrix valued kernels
are generated starting with an (easy to construct) scalar base kernel kb through a
“covariant integral”

K
(
ρ, ρ′

) =
∫

dRRkb
(
ρ,Rρ′

)
. (5.23)

This approach has been extended to learn higher order tensors in Refs. [49, 50].
Using rotational symmetry crucially improves the efficiency of the learned

model. A very simple illustrative example of the importance of rotational symmetry
is shown in Fig. 5.4, addressing an atomic dimer in which force predictions coming
from a non-covariant squared exponential kernel and its covariant counterpart
(obtained using Eq. (5.23)) are compared. The figure reports the forces predicted
to act on an atom, as a function of the position on the x-axis of the other atom,
relative to the first. So that, for positive x values the figure reports the forces on the

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 79

− 2.0 − 1.5 − 1.0
− 4

− 3

− 2

− 1

0

1

2

3

4

1.0 1.5 2.0

non cov.
cov.

Position (Å)

F
or

ce
(e

V
/Å

)

Fig. 5.4 Learning the force profile of a 1D LJ dimer using data (blue circle) coming from one
atom only. It is seen that a non-covariant GP (solid red line) does not learn the symmetrically
equivalent force acting on the other atom and it thus predicts a zero force and maximum error. If
covariance is imposed to the kernel via Eq. (5.23) (dashed blue line), then the correct equivalent
(inverted) profile is recovered. Shaded regions represent the predicted 1σ interval in the two cases

left atom as a function of the position of the right atom, while negative x values will
be associated with forces acting on the right atom as a function of the position of the
left atom. In the absence of the covariance force properties, training the model on a
sample of nine forces acting on the left atom will populate correctly only the right
side of the graph: a null force will be predicted to act on the right atom (solid red
line on the left panel). However, the covariant transformation (in 1D, just a change
of sign) will allow the transposition of the force field learned from one environment
to the other, and thus the correct prediction of the (inverted) force profile in the left
panel.

5.2.3.3 Interaction Order
Classical parametrised force fields are sometimes expressed as a truncated series of
energy contributions of progressively higher n-body “interaction orders” [51–54].
The procedure is consistent with the intuition that, as long as the series converges
rapidly, truncating the expansion reduces the amount of data necessary for the
fitting, and enables a likely higher extrapolation power to unseen regions of con-
figuration space. The lowest truncation order compatible with the target precision
threshold is, in general, system dependent, as it will typically depend on the nature
of the chemical interatomic bonds within the system. For instance, metallic bonding
in a close-packed crystalline system might be described surprisingly well by a
pairwise potential, while covalent bonding yielding a zincblende structure can never
be, and it will always require three-body interactions terms to be present [14, 15].
Restricting the order of a machine learning force field has proven to be useful for
both neural network [55] and Gaussian process regression [14,42]. In the particular

80 A. Glielmo et al.

context of GP-based ML-FFs, prior knowledge on the interaction order needs to be
included in the form of an n-body kernel functions. A detailed and comprehensive
exposition on how to do so was given in Ref. [15], and it will be summarised below
and in the next subsection. The order of a kernel kn can be defined as the smallest
integer n for which the following property holds true

∂nkn
(
ρ, ρ′

)
∂ri1 · · · ∂rin

= 0 ∀ ri1 �= ri2 �= · · · �= rin , (5.24)

where ri1 , . . . , rin are the positions of any choice of a set of n different surrounding
atoms. By virtue of linearity, the predicted local energy in Eq. (5.6) will also satisfy
the same property if kn does. Thus, Eq. (5.24) implies that the central atom in a
local configuration interacts with up to n − 1 other atoms simultaneously, making
the learned energy n-body.

5.2.4 Smooth, Symmetric Kernels of Finite Order n

In the previous subsection, we saw how the fundamental physical symmetries of
energy and forces translate into the realm of kernels. Here, we show how to build
n-body kernels that possess these properties.

We start by defining a smooth translation- and permutation-invariant 2-body
kernel by summing all the squared exponential kernels calculated on the distances
between the relative positions in ρ and those in ρ′ [14–16]

k2
(
ρ, ρ′

) = ∑
i∈ρ,j∈ρ′

e
−‖ri−r′j ‖2/2�2

. (5.25)

As shown in [15], higher order kernels can be defined simply as integer powers of
k2

kn
(
ρ, ρ′

) = k2
(
ρ, ρ′

)n−1 (5.26)

Note that, by building n-body kernels using Eq. (5.26), one can avoid the expo-
nential cost of summing over all n-plets that a more naïve kernel implementation
would involve. This makes it possible to model any interaction order paying only
the quadratic computational cost of computing the 2-body kernel in Eq. (5.25).

Furthermore, one can at this point write the squared exponential kernel on the
natural distance d2(ρ, ρ′) = k2(ρ, ρ) + k2(ρ

′, ρ′) − 2k2(ρ, ρ
′) induced by the

(“scalar product”) k2 as a formal many-body expansion:

kMB

(
ρ, ρ′

) = e−d2(ρ,ρ′)/2�2

= e
−k2(ρ,ρ)−k2(ρ′,ρ′)

2�2

[
1+ 1

�2
k2 + 1

2!�4
k3 + 1

3!�6
k4 + · · ·

]
. (5.27)

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 81

So that, assuming a smooth underlying function, the completeness of the series and
the “universal approximator” property of the squared exponential [35, 56] can be
immediately seen to imply one another.

It is important to notice that the scalar kernels just defined are not rotation
symmetric, i.e., they do not respect the invariance property of Eq. (5.20). This is
due to the fact that the vectors ri and r′j featuring in Eq. (5.25) depend on the
arbitrary reference frames with respect to which they are expressed. A possible
solution would be given by carrying out the explicit symmetrisations provided
by Eq. (5.21) (or Eq. (5.23) if the intent is to build a force kernel). The invariant
integration Eq. (5.21) of k3 is, for instance, a step in the construction of the (many-
body) SOAP kernel [21], while an analytical formula for kn (with arbitrary n) has
been recently proposed [15]. The covariant integral (Eq. (5.23)) of finite-n kernels
was also successfully carried out (see Ref. [14], which in particular contains a closed
form expression for the n = 2 matrix valued two-body force kernel).

However, explicit symmetrisation via Haar integration invariably implies the
evaluation of computationally expensive functions of the atomic positions. Moti-
vated by this fact, one could take a different route and consider symmetric n-kernels
defined, for any n, as functions of the effective rotation-invariant degrees of freedom
of n-plets of atoms [15]. For n = 2 and n = 3, we can choose these degrees
of freedom to be simply the interparticle distances occurring in atomic pairs and
triplets (other equally simple choices are possible, and have been used before, see
Ref. [42]). The resulting kernels read:

ks2
(
ρ, ρ′

) =∑
i∈ρ
j∈ρ′

e
−
(
ri−r ′j

)2
/2�2

, (5.28)

ks3
(
ρ, ρ′

) = ∑
i1>i2∈ρ
j1>j2∈ρ′

∑
P∈P

e
−‖(ri1 ,ri2 ,ri1i2

)T−P
(
r ′j1

,r ′j2
,r ′j1j2

)T‖2/2�2

. (5.29)

where ri indicates the Euclidean norm of the relative position vector ri , and the
sum over all permutations of three elements P (| P |= 6) ensures the permutation
invariance of the kernel (see Eq. (5.19)).

It was argued (and numerically tested) in [15] that these direct kernels are as
accurate as the Haar-integrated ones, while their evaluation is very substantially
faster. However, as is clear from Eqs. (5.28) and (5.29), even the construction of
directly symmetric kernels becomes unfeasible for large values of n, since the
number of terms in the sums grows exponentially. On the other hand, it is still
possible to use Eq. (5.26) to increase the integer order of an already symmetric
n′−body kernel by elevating it to an integer power. As detailed in [15], raising
an already symmetric “input” kernel of order n′ to a power ζ in general produces a
symmetric “output” kernel

k¬un

(
ρ, ρ′

) = ksn′
(
ρ, ρ′

)ζ (5.30)

82 A. Glielmo et al.

of order n = (n′ − 1)ζ + 1. We can assume that the input kernel was built on the
effective degrees of freedom of the n′ particles in an atomic n′-plet (as is the case,
e.g., the 2 and 3-kernels in Eqs. (5.28) and (5.29)). The number of these degrees of
freedom is (3n′ − 6) for n′ > 2 (or just 1 for n′ = 2). Under this assumption, the
output n-body kernel will depend on ζ(3n′ − 6) variables (or just ζ variables for
n′ = 2). It is straightforward to check that this number is always smaller than the
total number of degrees of freedom of n bodies (here, 3n−6 = 3(n′−1)ζ−3). As a
consequence, a rotation-symmetric kernel obtained as an integer power of an already
rotation-symmetric kernel will not be able to learn an arbitrary n-body interaction
even if fully trained: its convergence predictions upon training on a given n-body
reference potential will not be in general exact, and the prediction errors incurred
will be specific to the input kernel and ζ exponent used. For this reason, kernels
obtained via Eq. (5.30) were defined non-unique in Ref. [15] (the superscript ¬u in
Eq. (5.30) stands for this).

In practice, the non-unicity issue appears to be a severe problem only when the
input kernel is a two-body kernel, and as such it depends only on the radial distances
from the central atoms occurring in the two atomic configurations (cf. Eq. (5.28)).
In this case, the non-unique output n-body kernels will depend on ζ -plets of radial
distances and will miss angular correlations encoded in the training data [15]. On
the contrary, a symmetric 3-body kernel (Eq. (5.29)) contains angular information
on all triplets in a configuration, and using this kernel as input will be able to capture
higher interaction orders (as confirmed, e.g., by the numerical tests performed in
Ref. [21]).

Following the above reasoning, one can define a many-body kernel invariant over
rotations as a squared exponential on the 3-body invariant distance d2

s (ρ, ρ
′) =

ks3(ρ, ρ)+ ks3(ρ
′, ρ′)− 2ks3(ρ, ρ

′), obtaining:

ksMB

(
ρ, ρ′

) = e−(ks3(ρ,ρ)+ks3(ρ
′,ρ′)−2ks3(ρ,ρ

′))/2�2
. (5.31)

It is clear from the series expansion of the exponential function that this kernel
is many-body in the sense of Eq. (5.24) and that the importance of high order
contributions can be controlled by the hyperparameter �. With � � 1 high order
interactions become dominant, while for � � 1 the kernel falls back to a 3-body
description.

For all values of �, the above kernel will however always encompass an implicit
sum over all contributions (no matter how suppressed), being hence incapable
of pruning away irrelevant ones even when a single interaction order is clearly
dominant. Real materials often possess dominant interaction orders, and the ionic
or covalent nature of their chemical bonding makes the many-body expansion
converge rapidly. In these cases, an algorithm which automatically selects the
dominant contributions, truncating this way the many-body series in Eq. (5.27),
would represent an attractive option. This is the subject of the following section.

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 83

5.2.5 Choosing the Optimal Kernel Order

In the previous sections, we analysed how prior information can be encoded in
the kernel function. This brought us to designing kernels that implicitly define
smooth potential energy surfaces and force fields with all the desired symmetries,
corresponding to a given interaction order (Eqs. (5.29) and (5.30)). This naturally
raises the problem of deciding the order n best suited to describe a given system.
A good conceptual framework for a principled choice is that of Bayesian model
selection, which we now briefly review.

We start by assuming we are given a set of models {Mθ
n} (each, e.g., defined by

a kernel function of given order n). Each model will be equipped with a vector of
hyperparameters θ (typically associated with the covariance lengthscale �, the data
noise level σn and similar). A fully Bayesian treatment would involve calculating
the posterior probability of each candidate model, formally expressed via Bayes’
theorem as

p
(
Mθ

n | ρ, εr
)
= p

(
εr | ρ,Mθ

n

)
p
(Mθ

n

)
p (εr | ρ) , (5.32)

and selecting the model that maximises it. However, often little a priori information
is available on the candidate models and their hyperparameters (or it is simply
interesting to operate a selection unbiased by priors, and “let the data speak”). In
such a case, the prior p(Mθ

n) can be ignored as being flat and uninformative, and
maximising the posterior becomes equivalent to maximising the marginal likelihood
p(εr | ρ,Mθ

n) (here equivalent to the model evidence.2), and the optimal selection
tuple (n, θ) can be hence chosen as

(
n̂, θ̂
)
= argmax

(n,θ)

p
(
εr | ρ,Mθ

n

)
. (5.33)

The marginal likelihood is an analytically computable normalised multivariate
distribution, and it was given in Eq. (5.4).

The maximisation in Eq. (5.33) can be thought of as a formalisation of the
Occam’s razor principle in our particular context. This is illustrated in Fig. 5.5,
which contains a cartoon of the marginal likelihood of three models of increas-
ing complexity/flexibility (a useful analogy is to think of polynomials Pn(x) of
increasing order n, the likelihood representing how well these would fit a set of
measurements εr of an unknown function ε(x)). By definition, the most complex
model in the figure is the green one, as it assigns a non-zero probability to the

2The model evidence is conventionally defined as the integral over the hyperparameter space of
the marginal likelihood times the hyperprior (cf. [35]). We here simplify the analysis by jointly
considering the model and its hyperparameters.

84 A. Glielmo et al.

Fig. 5.5 Cartoon of the
marginal likelihood profile of
three models of increasing
complexity. More complex
models can fit very different
datasets εr , this is illustrated
by the fact that their marginal
likelihood is non-zero for a
broader region of the dataset
space (here pictorially one
dimensional)

0

n̂ = 3

M
ar

g.
li

k.
,

2

3

4

Possible reference energies,

largest domain of possible outcomes, and would thus be able to explain the widest
range of datasets. Consistently, the simplest model is the red one, which is instead
restricted to the smallest dataset range (in our analogy, a straight line will be able to
fit well fewer datasets than a fourth order polynomial). Once a reference database
εr0 is collected, it is immediately clear that the M3 model with highest likelihood
p(ε | ρ,Mθ

n) at εr = εr0 is the simplest that is still able to explain it (the blue one
in Fig. 5.5). Indeed, the even simpler model M2 is not likely to explain the data, the
more complex model M4 can explain more than is necessary for compatibility with
the εr0 data at hand, and thus produces a lower likelihood value, due to normalisation.

To see how these ideas work in practice, we first test them on a simple system
with controllable interaction order, while real materials are analysed in the next
section. We here consider a one dimensional chain of atoms interacting via an ad
hoc potential of order nt (t standing for “true”).3

For each value of nt , we generate a database of N randomly sampled config-
urations and associated energies. To test Bayesian model selection, for different
reference nt and N values and for fixed σn ≈ 0 (noiseless data), we selected the
optimal lengthscale parameter � and interaction order n of the n-kernel in Eq. (5.26)
by solving the maximisation problem of Eq. (5.33). This procedure was repeated 10
times to obtain statistically significant conclusions; the results were however found
to be very robust in the sense that they did not depend significantly on the specific
realisation of the training dataset.

The results are reported in Fig. 5.6, where we graph the logarithm of the
maximum marginal likelihood (MML), divided by the number of training points
N , as a function of N for different combinations of true orders nt and kernel order
n. The model selected in each case is the one corresponding to the line achieving

3The n-body toy model used was set up as a hierarchy of two-body interactions defined via the

negative Gaussian function εg(d) = −e−
(d−1)2

2 . This pairwise interaction, depending only on the
distance d between two particles, was then used to generate n-body local energies as εn(ρ) =∑

i1 �=···�=in−1
εg(xi1)ε

g(xi2−xi1) . . . ε
g(xin−2−xin−1) where xi1 , . . . , xin−1 are the positions, relative

to the central atom, of n− 1 surrounding neighbours.

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 85

Fig. 5.6 Scaled log maximum marginal likelihood as a function of the number of training points
for different kernel models n and true interaction orders nt . (a) nt = 2. (b) nt = 3. (c) nt = 4

the maximum value of this quantity. It is interesting to notice that, when the kernels
order is lower than the true order (i.e., for n < nt), the MML can be observed
to decreases as a function of N (as, e.g., the red and blue lines in Fig. 5.6c). This
makes the gap between the true model and the other models increase substantially
as N becomes sufficiently large.

Figure 5.7 summarises the results of model selection. In particular, Fig. 5.7a
illustrates the model-selected order n̂ as a function of the true order nt , for different
training set sizes N . The graph reveals that, when the dataset is large enough (N =
1000 in this example) maximising the marginal likelihood always yields the true
interaction order (green line). On the contrary, for smaller database sizes, a lower
interaction order value n is selected (blue and red lines). This is consistent with the
intuitive notion that smaller databases may simply not contain enough information
to justify the selection of a complex model, so that a simpler one should be
chosen. More insight can be obtained by observing Fig. 5.7b, reporting the model-
selected order as a function of the training dataset size for different true interaction

86 A. Glielmo et al.

2 3 4

True order, nt

2

3

4
M

o
de

l
se

le
ct

ed
or

de
r,

n̂ N = 10
N = 100
N = 1000

(a)

5 10 20 50 100 200 500 1000

Number of training points, N

2

3

4

M
o

de
l

se
le

ct
ed

or
de

r,
n̂ n t = 2

nt = 3
n t = 4

(b)

Fig. 5.7 Model-selected order n̂ as a function of the true order nt (left) and as a function of the
number of training data points N (right)

orders. While the order of a simple 2-body model is always recovered (red line), to
identify as optimal a higher order interaction model a minimum number of training
points is needed, and this number grows with the system complexity. Although
not immediately obvious, choosing a simpler model when only limited databases
are available also leads to smaller prediction errors on unseen configurations, since
overfitting is ultimately prevented, as illustrated in Refs. [14, 15] and further below
in Sect. 5.3.1.

The picture emerging from these observations is one in which, although the
quantum interactions occurring in atomistic systems will in principle involve all
atoms in the system, there is never going to be sufficient data to select/justify the
use of interaction models beyond the first few terms of the many-body expansion
(or any similar expansion based on prior physical knowledge). At the same time,
in many likely scenarios, a realistic target threshold for the average error on atomic
forces (typically of the order of 0.1 eV/A) will be met by truncating the series at
a complexity order that is still practically manageable. Hence, in practice a small
finite-order model will always be optimal.

This is in stark contrast with the original hope of finding a single many-body
“universal approximator” model to be used in every context, which has been driving
a lot of interest in the early days of the ML-FF research field, producing, for
instance, reference methods [3, 12]. Furthermore, the observation that it may be
possible to use models of finite-order complexity without ever recurring to universal
approximators suggests alternative routes for increasing the accuracy of GP models
without increasing the kernels’ complexity. These are worth a small digression.

Imagine a situation as the one depicted in Fig. 5.8, where we have an hetero-
geneous dataset composed of configurations that cluster into groups. This could
be the case, for instance, if we imagine collecting a database which includes
several relevant phases of a given material. Given the large amount of data and
the complexity of the physical interactions within (and between) several phases, we
can imagine the model selected when training on the full dataset to be a relatively

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 87

Fig. 5.8 An illustrative
representation of a
heterogeneous database
composed of configurations
which “cluster” around
specific centroids in an
arbitrary two dimensional
space. The different clusters
can be imagined to be
different phases of the same
material

Collective variable 1

C
ol

le
ct

iv
e

va
ri

ab
le

2

Perfect crystal

Liquid

Amorphous solid

Gas

Defected crystal
Nanocluster

complex one. On the other hand, each of the small datasets representative of a
given phase may be well described by a model of much lower complexity. As a
consequence, one could choose to train several GP, one for each of the phases,
as well as a gating function p(c|ρ) deciding, during an MD run, which of the
clusters c to call at any given time. These GPs learners will effectively specialise
on each particular phase of the material. This model can be considered a type of
mixture of experts model [57, 58], and heavily relies on a viable partitioning of the
configuration space into clusters that will comprise similar entries. This subdivision
is far from trivially obtained in typical systems, and in fact obtaining “atlases” for
real materials or molecules similar to the one in Fig. 5.8 is an active area of research
[59–62]. However, another simpler technique to combine multiple learner is that of
bootstrap aggregating (“Bagging”) [63]. In our particular case, this could involve
training multiple GPs on random subsections of the data and then averaging them to
obtain a final prediction. While it should not be expected that the latter combination
method will perform better than a GP trained on the full dataset, the approach can be
very advantageous from a computational perspective since, similar to the mixture of
experts model, it circumvents the O(N3) computational bottleneck of inverting the
kernel matrix in Eq. (5.5) by distributing the training data to multiple GP learners.
ML algorithms based on the use of multiples learners belong to a broader class of
ensemble learning algorithms [64, 65].

5.2.6 Kernels for Multiple Chemical Species

In this section, we briefly show how kernels for multispecies systems can be
constructed, and provide specific expressions for the case of 2- and 3-body kernels.

It is convenient to show the reasoning behind multispecies kernel construction
starting from a simple example. Defining by sj the chemical species of atom j , a

88 A. Glielmo et al.

generic 2-body decomposition of the local energy of an atom i surrounded by the
configuration ρi takes the form

ε(ρi) =
∑
j∈ρi

ε̃
si sj
2 (rij), (5.34)

where a pairwise function ε̃
si sj
2 (rij) is assumed to provide the energy associated

with each couple of atoms i and j which depends on their distance rij and on their
chemical species si and sj . These pairwise energy functions should be invariant
upon re-indexing of the atoms, i.e., ε̃

si sj
2 (rij) = ε̃

sj si
2 (rji). The kernel for the

function ε(ρi) then takes the form

ks2
(
ρi, ρ

′
l

) = 〈ε(ρi)ε
(
ρ′l
)〉

=
∑
jm

〈
ε̃
si sj
2 (rij)ε̃

s′l s′m
2

(
r ′lm
)〉

=
∑
jm

k̃
si sj s

′
l s
′
m

2

(
rij , r

′
lm

)
.

(5.35)

The problem of designing the kernel ks2 for two configurations in this way reduced to

that of choosing a suitable kernel k̃
si sj s

′
l s
′
m

2 comparing couples of atoms. An obvious
choice for this would include a squared exponential for the radial dependence
and a delta correlation for the dependence on the chemical species, giving rise to
δsi s′l δsj s′mkSE(rij , r

′
lm). This kernel is however still not symmetric upon the exchange

of two atoms and it would hence not impose the required property ε̃
si sj
2 (rij) =

ε̃
sj si
2 (rji) on the learned pairwise potential. Permutation invariance can be enforced

by a direct sum over the permutation group, in this case simply an exchange of the
two atoms l and m in the second configuration. The resulting 2-body multispecies
kernel reads

ks2
(
ρi, ρ

′
l

) = ∑
j∈ρi

m∈ρ′l

(
δsi s′l δsj s′m + δsi s′mδsj s′l

)
e−(rij−r ′lm)

2
/2�2

. (5.36)

This can be considered the natural generalisation of the single species 2-body kernel
in Eq. (5.28). A very similar sequence of steps can be followed for the 3-body kernel.
By defining the vector containing the chemical species of an ordered triplet as
sijk = (sisj sk)

T, as well as the vector containing the corresponding three distances
rijk = (rij rjkrki)

T, a multispecies 3-body kernel can be compactly written down as

ks3
(
ρi, ρ

′
l

) = ∑
j>k∈ρi

m>n∈ρ′l

∑
P∈P

δsijk,Ps′lmn
e
−
∥∥∥rT

ijk−Pr′lmn

∥∥∥2
/2�2

, (5.37)

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 89

where the group P contains six permutations of three elements, represented by
the matrices P. The above can be considered the direct generalisation of the 3-
body kernel in Eq. (5.29). It is simple to see how the reasoning can be extended
to an arbitrary n-body kernel. Importantly, the computational cost of evaluating the
multispecies kernels described above does not increase with the number of species
present in a given environment, and the kernels’ interaction order could be increased
arbitrarily at no extra computational cost using Eqs. (5.30) and (5.31).

5.2.7 Summary

In this section, we first went through the basics of GP regression, and emphasised the
importance of a careful design of the kernel function, which ideally should encode
any available prior information on the (energy or force) function to be learned
(Sect. 5.2.1). In Sect. 5.2.2, we detailed how a local energy function (which is not a
quantum observable) can be learned in practice starting from a database containing
solely total energies and atomic forces. We then discussed how fundamental
properties of the target force field, such as the interaction order, smoothness, as
well as its permutation, translation and rotation symmetries, can be included into
the kernel function (Sect. 5.2.3). We next proceeded to the construction of a set of
computationally affordable kernels that implicitly define smooth, fully symmetric
potential energy functions with tunable “complexity” given a target interaction order
n. In Sect. 5.2.5, we looked at the problem of choosing the order n best suited for
predictions based on the information available in a given set of QM calculations.
Bayesian theory for model selection prescribes in this case to choose the n-kernel
yielding the largest marginal likelihood for the dataset, which is found to work very
well in a 1D model system where the interaction order can be tuned and is correctly
identified upon sufficient training. Finally, in Sect. 5.2.6 we showed how the ideas
presented can be generalised to systems containing more than one chemical species.

5.3 Practical Considerations

We next focus on the application of the techniques described in the previous
sections. In Sect. 5.3.1, we apply the model selection methodology described in
Sect. 5.2.5 to two atomic systems described using density functional theory (DFT)
calculations. Namely, we consider a small set of models with different interaction
order n, and recast the optimal model selection problem into an optimal kernel order
selection problem. This highlights the connections between the optimal kernel order
n and the physical properties of the two systems, revealing how novel physical
insight can be gained via model selection. We then present a more heuristic approach
to kernel order selection and compare the results with the ones obtained from the
MML procedure. The comparison reveals that typically the kernel selected via the
Bayesian approach also incurs into lower average error for force prediction on a
provided test set. In Sect. 5.3.2, we discuss computational efficiency of GPs. We

90 A. Glielmo et al.

argue that an important advantage of using GP kernels of known finite order is
the possibility of “mapping” the kernel’s predictions onto the values of a compact
approximator function of the same set of variables. This keeps all the advantages of
the Bayesian framework, while removing the need of lengthy sums over the database
and expensive kernel evaluations typical of GP predictions. For this we introduce a
method that can be used to “map” the GP predictions for finite-body kernels and
therefore increase the computational speed up to a factor of 104 when compared
with the original 3-body kernel, while effectively producing identical interatomic
forces.

5.3.1 ApplyingModel Selection to Nickel Systems

We consider two Nickel systems: a bulk face centred cubic (FCC) system described
using periodic boundary conditions (PBC), and a defected double icosahedron
nanocluster containing 19 atoms, both depicted in Fig. 5.9a. We note that all atoms in
the bulk system experience a similar environment, their local coordination involving
12 nearest neighbours, as the system contains no surfaces, edges or vertexes.
The atom-centred configurations ρ are therefore very similar in this system. The
nanocluster system is instead exclusively composed by surface atoms, involving a
different number of nearest neighbours for different atoms. The GP model is thus
here required to learn the reference force field for a significantly more complex
and more varied set of configurations. It is therefore expected that the GP model
selected for the nanocluster systems will be more complex (have a higher kernel
order n) than the one selected for the bulk system, even if the latter system is kept
at an appreciably higher temperature.

The QM databases used here were extracted from first principles MD simulations
carried out at 500 K in the case of bulk Ni, and at 300 K for the Ni nanocluster.

(a)

-40
-35
-30
-25
-20
-15
-10
-5
0
5

10

2-body 3-body 5-body

S
ca

le
d

L
og

 M
ar

gi
na

l
L

ik
el

ih
oo

d

Bulk 200 tr
Nanocluster 200 tr
Bulk 50 tr
Nanocluster 50 tr

(b)

Fig. 5.9 Panel (a): the two Nickel systems used in this section as examples, with bulk FCC Nickel
in periodic boundary conditions on the left (purple) and a Nickel nanocluster containing 19 atoms
on the right (orange). Panel (b): maximum log marginal likelihood divided by the number of
training points for the 2-, 3- and 5-body kernels in the bulk Ni (purple) and Ni nanocluster (orange)
systems, using 50 (dotted lines) and 200 (full lines) training configurations

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 91

All atoms within a 4.45 Å cutoff from the central one were included in the
atomic configurations ρ for the bulk Ni system, while no cutoff distance was set
for the nanocluster configurations, which therefore all include 19 atoms. In this
example, we perform model selection on a restricted, yet representative, model
set {Mθ

2,Mθ
3,Mθ

5} containing, in increasing order of complexity, a 2-body kernel
(see Eq. (5.28)), a 3-body kernel (see Eq. (5.29)) and a non-unique 5-body kernel
obtained by squaring the 3-body kernel [14] (see Eq. (5.30)). Every kernel function
depends on only two hyperparameters θ = (�, σn), representing the characteristic
lengthscale of the kernel � and the modelled uncertainty of the reference data σn.
While the value of σn is kept the same for all kernels, we optimise the lengthscale
parameter � for each kernel via marginal likelihood maximisation (Eq. (5.33)). We
then select the optimal kernel order n as the one associated with the highest marginal
likelihood.

Figure 5.9b reports the optimised marginal likelihood of the three models (n =
2, 3, 5) for the two systems while using 50 and 200 training configurations. The 2-
and 3-body kernels reach comparable marginal likelihoods in the bulk Ni system,
while a 3-body kernel is instead always optimal for the Ni nanocluster system. While
intuitively correlated with the relative complexity of the two systems, these results
yield further interesting insight. For instance, the occurrence of angular-dependent
forces must have a primary role in small Ni clusters since a 3-body kernel is
necessary and sufficient to accurately describe the atomic forces in the nanocluster.
Meanwhile, the 5-body kernel does not yield a higher likelihood, suggesting that the
extra correlation it encodes is not significant enough to be resolved at this level of
training. On the other hand, the forces on atoms occurring in a bulk Ni environment
at a temperature as high as 500 K are well described by a function of radial distance
only, suggesting that angular terms play little to no role, as long as the bonding
topology remains everywhere that of undefected FCC crystal.

The comparable maximum log marginal likelihoods the 2- and 3-body kernels
produce on bulk environment suggest that the two kernels will achieve similar
accuracies. In particular, the 2-body kernel produces the higher log marginal
likelihood when the models are trained using N = 50 configurations, while the 3-
body kernel has a better performance when N increases to 200. This result resonates
with the results shown on the toy model in Fig. 5.7: the model selected following the
MML principle is a function of the number of training points N used.

For this reason, when using a restricted dataset we should prefer the 2-body
kernel to model bulk Ni and a 3-body kernel to model the Ni cluster, as these provide
the simplest models that are able to capture sufficiently well the interactions of the
two systems. Notice that the models selected in the two cases are different and this
reflects the different nature of the chemical interactions involved. This is reassuring,
as it shows that the MML principle is able to correctly identify the minimum
interaction order needed for a fundamental characterisation of a material even with
very moderate training set sizes. For most inorganic material, this minimum order
can be expected to be low (typically either 2 or 3) as a consequence of the ionic or
covalent nature of the chemical bonds involved, while for certain organic molecules,

92 A. Glielmo et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

10 100 1000

M
ea

n
er

ro
r

on
 f

or
ce

 [
eV

/Å
]

Number of training points

2-body
3-body
5-body

Bulk

(a)

0

0.2

0.4

0.6

0.8

1

10 100 1000

M
ea

n
er

ro
r

on
 f

or
ce

 [
eV

/Å
]

Number of training points

2-body
3-body
5-body

Nanocluster

(b)

Fig. 5.10 Learning curves for bulk Ni (a) and Ni nanocluster (b) systems displaying the mean
error incurred by the 2-body, 3-body and 5-body kernels as the number of training points used
varies. The “error on force” reported here is defined as the norm of the difference vector between
predicted and reference force. The error bars in the graphs show the standard deviation when five
tests were repeated using different randomly chosen training and testing configuration sets. The
black dashed line corresponds to the same target accuracy in the two cases (here 0.15 eV/Å), much
more easily achieved in the bulk system

one can expect this to be higher (think, e.g., at the importance of 4-body dihedral
terms).

Overall, this example showcases how the maximum marginal likelihood principle
can be used to automatically select the simplest model which accurately describes
the system, meanwhile providing some insight on the nature of the interactions
occurring in the system. In the following, we will compare this procedure with a
more heuristic approach based on comparing the kernels’ generalisation error, which
is commonly employed in the literature [14–16, 43, 66] for its ease of use.

Namely, let us assume that all of the hyperparameters θ have been optimised for
each kernel in our system of interest, either via maximum likelihood optimisation
or via manual tuning. We then measure the error incurred by each kernel on a test
set, i.e., a set of randomly chosen configurations and forces different from those
used to train the GP. Tracing this error as the number of training points increases,
we obtain a learning curve (Fig. 5.10). The selected model will be the lowest-
complexity one that is capable of reaching a target accuracy (chosen by the user, here
set to 0.15 eV/Å, cf. black dotted line in Fig. 5.10). Since lower-complexity kernels
are invariably faster learners, if they can reach the target accuracy, they will do so
using a smaller number of training points, consistent with all previous discussions
and findings. More importantly, lower-complexity kernels are computationally
faster and more robust extrapolators than higher-complexity ones—a property that
derives from the low order interaction they encode. Furthermore, they can be
straightforwardly mapped as described in the next section. For the bulk Ni system
of the present example, all three kernels reach the target error threshold, so the 2-
body kernel is the best choice for the bulk Ni system. In the Ni nanocluster case, the
2-body kernel is not able to capture the complexity of force field experienced by the
atoms in the system, while both the 3- and 5-body kernels reach the threshold. Here
the 3-body kernel is thus preferred.

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 93

In conclusion, marginal likelihood and generalisation error offer different
approaches to the problem of optimal model selection. While their outcomes are
generally consistent, these two methods differ in spirit, e.g., because the marginal
likelihood distribution naturally incorporates information on the underlying model’s
variance when measured on the training target data and this will reflect into selecting
the best model also on this basis (see Fig. 5.5, in which the target data εr0 select the
model with n = 3). This is not true when using the generalisation error, where all
that counts is the model’s prediction, i.e., the predicted mean of the posterior GP.
Moreover, while model selection according to the marginal likelihood is a function
of the training set only, the generalisation error is also dependent on the choice of
the test set, whose sampling uncertainty can be reduced through repeated tests, as
reported in Fig. 5.10. Regardless of the model selection method, simpler models
may perform better when the available data is limited, i.e., higher model complexity
does not necessarily imply higher prediction accuracy: whether this is the case will
each time depend on the target physical system, the desired accuracy threshold,
and the amount data available for training. Due to the lower dimensionality of the
feature spaces used to construct the kernels, the predictions of simpler models will
also be easier to re-express into a more computationally efficient way than carrying
out the summation in Eq. (5.6). For the examples described in this chapter, this
means re-expressing the trained GPs based on n-body kernels as functions of 3n-6
variables which can be evaluated directly, without using a database. These functions
can be viewed as the nonparametric n-body classical force fields (here named
“MFFs”) that the n-body kernels’ predictions exactly correspond to. Exploiting this
correspondence allows us to achieve force fields as fast-executing as determined by
the complexity of the physical problem at hand (which will determine the lowest n
that can be used). Examples of MFF constructions and tests on their computational
efficiency are provided in the next section.

5.3.2 Speeding Up Predictions by BuildingMFFs

In Sect. 5.2.4, we described how simple n-body kernels of any order n could be
constructed. Force prediction based on these kernels effectively produces nonpara-
metric classical n-body force fields: typically depending on distances (2-body) as
well as on angles (3-body), dihedrals (4-body) and so on, but not bound by design
to any particular functional form.

In this section, we describe a mapping technique (first presented in Ref. [15]) that
faithfully encodes forces produced by n-body GP regression into classical tabulated
force fields. This procedure can be carried out with arbitrarily low accuracy loss,
and always yields a substantial computational speed gain.

94 A. Glielmo et al.

We start from the expression of the GP energy prediction in Eq. (5.6), where we
substitute k with a specific n-body kernel (in this example, the 2-body kernel of
Eq. (5.25) for simplicity). Rearranging the sums, we obtain:

ε̂(ρ) =
∑
i∈ρ

⎛
⎝ N∑

d

∑
j∈ρd

e−(ri−rj)
2/2�2

αd

⎞
⎠ . (5.38)

The expression within the parentheses in the above equation is a function of the
single distance ri in the target configuration ρ and the training dataset, and it will
not change once the dataset is chosen and the model is trained (the covariance matrix
is computed and inverted to give the coefficient αd for each dataset entry). We can
thus rewrite Eq. (5.38) as

ε̂(ρ) =
∑
i∈ρ

ε̃2(ri), (5.39)

where the function ε̃(ri) can be now thought to be nonparametric 2-body potential
expressing the energy associated with an atomic pair (a “bond”) as a function of the
interatomic distance, so that the energy associated with a local configuration ρ is
simply the sum over all atoms surrounding the central one of this 2-body potential.
It is now possible to compute the values of ε̃2(ri) for a set of distances ri , store
them in an array, and from here on interpolate the value of the function for any
other distances rather than using the GP to compute this function for every atomic
configuration during an MD simulation. In practice, a spline interpolation of the
so-tabulated potential can be very easily used to predict any ε̂(ρ) or its negative
gradient f̂(ρ) (analytically computed to allow for a constant of motion in MD runs).
The interpolation approximates the GP predictions with arbitrary accuracy, which
increases with the density of the grid of tabulated values, as illustrated in Fig. 5.11a.

The computational speed of the resulting “mapped force field” (MFF) is inde-
pendent of the number of training points N and depends linearly, rather than
quadratically, on the number of distinct atomic n-plets present in a typical atomic
environment ρ including M atoms plus the central one (this is the number of
combinations

(
M
n−1

) = M!/(n − 1)!(M − n + 1)!, yielding, e.g., M pairs and

M(M − 1)/2 triplets). The resulting overall N
(

M
n−1

)
speedup factor is typically

several orders of magnitude over the original n-body GP, as shown in Fig. 5.11b.
The method just described can in principle be used to obtain n-body MFFs from

any n-body GPs, for every finite n. In practice, however, while mapping 2-body or
3-body predictions on a 1D or 3D spline is straightforward, the number of values to
store grows exponentially for n, consistent with the rapidly growing dimensionality
associated with atomic n-plets. This makes the procedure quickly not viable
for higher n values which would require (3n-6)-dimensional mapping grids and
interpolation splines. On a brighter note, flexible 3-body force fields were shown
to capture most of the features for a variety of inorganic materials [15, 16, 20, 42].

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 95

10-4

10-3

10-2

10-1

 100
 102 104 106

M
ea

n
E

rr
or

 o
n

G
P

fo
rc

e
[e

v/
Å

]

Number of grid points

(a)

10-3

10-2

10-1

100

101

102

1 10 100 1000

T
im

e
pe

r
ev

al
ua

ti
on

 [
s/

co
re

]

Number of training points

GP
M-FF

(b)

Fig. 5.11 Panel (a): error incurred by a 3-body MFF w.r.t. the predictions of the original GP used
to build it as a function of the number of points in the MFF grid. Panel (b): computational time
needed for the force prediction on an atom in a 19-atoms Ni nanocluster as a function of the number
of training points for a 3-body GP (red dots) and for the MFF built from the same 3-body GP (blue
dots)

Increasing the order of the kernel function beyond 3 might be unnecessary for many
systems (and if only few training data are available, it could be still advantageous to
use a low-n model to improve prediction accuracy, as discussed in Sect. 5.2.5).

MFFs can be built for systems containing any number of atomic species. As
already described in Sect. 5.2.6, the cost of constructing a multispecies GP does
not increase with the number of species modelled. On the other hand, the number
of n-body MFFs that need to be constructed when k atomic species are present
grows as the multinomial factor (k+n−1)!

n!(k−1)! (just as any classical force field of the
same order). Luckily, constructing multiple MFFs is an embarrassingly parallel
problem as different MFFs can be assigned to different processors. This means that
the MFF construction process can be considered affordable also for high values of k,
especially when using a 3-body model (which can be expected to achieve sufficient
accuracy for a large number of practical applications).

We finally note that the variance of a prediction σ̂ 2(ρ) (third term in Eq. (5.5))
could also be mapped similarly to its mean. However, it is easy to check that
the mapped variance will have twice as many arguments as the mapped mean,
which again makes the procedure rather cumbersome for n > 2. For instance, for
n = 2 one would have to store the function of two variables σ̃ 2(ri, rj) providing
the variance contribution from any two distances within a configuration, and the
final variance can be computed as a sum over all contributions. A more affordable
estimate of the error could also be obtained by summing up only the contributions
coming from single n-plets (i.e., σ̃ 2(ri, ri) in the n = 2 example). This alternative
measure could again be mapped straightforwardly also for n = 3 and its accuracy
in modelling the uncertainty in the real materials should be investigated.

MFFs obtained as described above have already been used to perform MD
simulations on very long timescales while tracking with very good accuracy their
reference ab initio DFT calculations for a set of Ni19 nanoclusters [16]. In this

96 A. Glielmo et al.

example application, a total of 1.2·108 MD time steps were performed, requiring the
use of 24 CPUs for ∼3.75 days. The same simulation would have taken ∼80 years
before mapping, and indicatively ∼2000 years using the full DFT-PBE (Perdew–
Burke–Ernzerhof) spin-orbit coupling method which was used to build the training
database. A Python implementation for training and mapping two- and three-body
nonparametric force fields for one or two chemical species is freely available within
the MFF package [29].

5.4 Conclusions

In this chapter, we introduced the formalism of Gaussian process regression for the
construction of force fields. We analysed a number of relevant properties of the
kernel function, namely its smoothness and its invariance with respect to permuta-
tion of identical atoms, translation and rotation. The concept of interaction order,
traditionally useful in constructing classical parametrised force fields and recently
imported into the context of machine learning force fields, was also discussed.
Examples on how to construct smooth and invariant n-body energy kernels have
been given, with explicit formulas for the cases of n = 2 and n = 3. We then focused
on the Bayesian model selection approach, which prescribes the maximisation of
the marginal likelihood, and applied it to a set of standard kernels defined by an
integer order n. In a 1D system where the target interaction order could be exactly
set, explicit calculations exemplified how the optimal kernel order choice depends
on the number of training points used, so that larger datasets are typically needed
to resolve the appropriateness of more complex models to a target physical system.
We next reported an example of application of the marginal likelihood maximisation
approach to kernel order selection for two Nickel systems: face centred cubic
crystal and a Ni19 nanocluster. In this example, prior knowledge about the system
provides hints on the optimal kernel order choice which is a posteriori confirmed
by the model selection algorithm based on the maximum marginal likelihood
strategy. To complement the Bayesian approach to kernel order selection, we briefly
discussed the use of learning curves based on the generalisation error to select the
simplest model that reaches a target accuracy. We finally introduced the concept
of “mapping” GPs onto classical MFFs, and exemplified how mapping of mean and
variance of a GP energy prediction can be carried out, providing explicit expressions
for the case of a 2-body kernel. The construction of MFFs allows for an accurate
calculation of GP predictions while reducing the computational cost by a factor
∼104 in most operational scenarios of interest in materials science applications,
allowing for molecular dynamics simulations that are as fast as classical ones but
with an accuracy that approaches ab initio calculations.

Acknowledgments The authors acknowledge funding by the Engineering and Physical Sci-
ences Research Council (EPSRC) through the Centre for Doctoral Training “Cross Disciplinary
Approaches to Non-Equilibrium Systems” (CANES, Grant No. EP/L015854/1) and by the Office
of Naval Research Global (ONRG Award No. N62909-15-1-N079). The authors thank the UK

5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression 97

Materials and Molecular Modelling Hub for computational resources, which is partially funded
by EPSRC (EP/P020194/1). ADV acknowledges further support by the EPSRC HEmS Grant No.
EP/L014742/1 and by the European Union’s Horizon 2020 research and innovation program (Grant
No. 676580, The NOMAD Laboratory, a European Centre of Excellence). We, AG, CZ and AF,
are immensely grateful to Alessandro De Vita for having devoted, with inexhaustible energy and
passion, an extra-ordinary amount of his time and brilliance towards our personal and professional
growth.

References

1. D.H. Wolpert, Neural Comput. 8(7), 1341 (1996)
2. A.J. Skinner, J.Q. Broughton, Modell. Simul. Mater. Sci. Eng. 3(3), 371 (1995)
3. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
4. R. Kondor (2018). Preprint. arXiv:1803.01588
5. M. Gastegger, P. Marquetand, J. Chem. Theory Comput. 11(5), 2187 (2015)
6. S. Manzhos, R. Dawes, T. Carrington, Int. J. Quantum Chem. 115(16), 1012 (2014)
7. P. Geiger, C. Dellago, J. Chem. Phys. 139(16), 164105 (2013)
8. N. Kuritz, G. Gordon, A. Natan, Phys. Rev. B 98(9), 094109 (2018)
9. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017)
10. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018)
11. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
12. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)
13. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015)
14. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95(21), 214302 (2017)
15. A. Glielmo, C. Zeni, A. De Vita, Phys. Rev. B 97(18), 1 (2018)
16. C. Zeni, K. Rossi, A. Glielmo, Á. Fekete, N. Gaston, F. Baletto, A. De Vita, J. Chem. Phys.

148(24), 241739 (2018)
17. W.J. Szlachta, A.P. Bartók, G. Csányi, Phys. Rev. B 90(10), 104108 (2014)
18. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285(C),

316 (2015)
19. A.V. Shapeev, Multiscale Model. Simul. 14(3), 1153 (2016)
20. A. Takahashi, A. Seko, I. Tanaka, J. Chem. Phys. 148(23), 234106 (2018)
21. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013)
22. W.H. Jefferys, J.O. Berger, Am. Sci. 80(1), 64 (1992)
23. C.E. Rasmussen, Z. Ghahramani, in Proceedings of the 13th International Conference on

Neural Information Processing Systems (NIPS’00) (MIT Press, Cambridge, 2000), pp. 276–
282

24. Z. Ghahramani, Nature 521(7553), 452 (2015)
25. V.N. Vapnik, A.Y. Chervonenkis, in Measures of Complexity (Springer, Cham, 2015), pp. 11–

30
26. V.N. Vapnik, Statistical Learning Theory (Wiley, Hoboken, 1998)
27. M.J. Kearns, U.V. Vazirani, An Introduction to Computational Learning Theory (MIT Press,

Cambridge, 1994)
28. T. Suzuki, in Proceedings of the 25th Annual Conference on Learning Theory, ed. by

S. Mannor, N. Srebro, R.C. Williamson. Proceedings of Machine Learning Research, vol. 23
(PMLR, Edinburgh, 2012), pp. 8.1–8.20

29. C. Zeni, F. Ádám, A. Glielmo, MFF: a Python package for building nonparametric force fields
from machine learning (2018). https://doi.org/10.5281/zenodo.1475959

30. R.P. Feynman, Phys. Rev. 56(4), 340 (1939)
31. V. Botu, R. Ramprasad, Phys. Rev. B 92(9), 094306 (2015)

https://doi.org/10.5281/zenodo.1475959

98 A. Glielmo et al.

32. I. Kruglov, O. Sergeev, A. Yanilkin, A.R. Oganov, Sci. Rep. 7(1), 1–7 (2017)
33. G. Ferré, J.B. Maillet, G. Stoltz, J. Chem. Phys. 143(10), 104114 (2015)
34. A.P. Bartók, G. Csányi, Int. J. Quantum Chem. 115(16), 1051 (2015)
35. C.K.I. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning (MIT Press,

Cambridge, 2006)
36. I. Macêdo, R. Castro, Learning Divergence-Free and Curl-Free Vector Fields with Matrix-

Valued Kernels (Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, 2008)
37. C.M. Bishop, in Pattern Recognition and Machine Learning. Information Science and Statistics

(Springer, New York, 2006)
38. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301

(2012)
39. M. Rupp, Int. J. Quantum Chem. 115(16), 1058 (2015)
40. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld,

A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)
41. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv.

3(5), e1603015 (2017)
42. V.L. Deringer, G. Csányi, Phys. Rev. B 95(9), 094203 (2017)
43. H. Huo, M. Rupp (2017). Preprint. arXiv:1704.06439
44. A.P. Bartók, M.J. Gillan, F.R. Manby, G. Csányi, Phys. Rev. B 88(5), 054104 (2013)
45. J. Behler, J. Chem. Phys. 134(7), 074106 (2011)
46. B. Haasdonk, H. Burkhardt, Mach. Learn. 68(1), 35 (2007)
47. C.A. Micchelli, M. Pontil, in Advances in Neural Information Processing Systems (University

at Albany State University of New York, Albany, 2005)
48. C.A. Micchelli, M. Pontil, Neural Comput. 17(1), 177 (2005)
49. T. Bereau, R.A. DiStasio, A. Tkatchenko, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241706

(2018)
50. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018). https://

doi.org/10.1103/PhysRevLett.120.036002
51. S.K. Reddy, S.C. Straight, P. Bajaj, C. Huy Pham, M. Riera, D.R. Moberg, M.A. Morales,

C. Knight, A.W. Götz, F. Paesani, J. Chem. Phys. 145(19), 194504 (2016)
52. G.A. Cisneros, K.T. Wikfeldt, L. Ojamäe, J. Lu, Y. Xu, H. Torabifard, A.P. Bartók, G. Csányi,

V. Molinero, F. Paesani, Chem. Rev. 116(13), 7501 (2016)
53. F.H. Stillinger, T.A. Weber, Phys. Rev. B31(8), 5262 (1985)
54. J. Tersoff, Phys. Rev. B 37(12), 6991 (1988)
55. K. Yao, J.E. Herr, J. Parkhill, J. Chem. Phys. 146(1), 014106 (2017)
56. K. Hornik, Neural Netw. 6(8), 1069 (1993)
57. R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Neural Comput. 3(1), 79 (1991)
58. C.E. Rasmussen, Z. Ghahramani, in Advances in Neural Information Processing Systems

(UCL, London, 2002)
59. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016)
60. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114(10),

105503 (2015)
61. J. Mavračić, F.C. Mocanu, V.L. Deringer, G. Csányi, S.R. Elliott, J. Phys. Chem. Lett. 9(11),

2985 (2018)
62. S. De, F. Musil, T. Ingram, C. Baldauf, M. Ceriotti, J. Cheminf. 9(1), 1–14 (2017)
63. L. Breiman, Mach. Learn. 24(2), 123 (1996)
64. O. Sagi, L. Rokach, Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 8(4), e1249 (2018)
65. M. Sewell, Technical Report RN/11/02 (Department of Computer Science, UCL, London,

2008)
66. I. Kruglov, O. Sergeev, A. Yanilkin, A.R. Oganov, Sci. Rep. 7(1), 8512 (2017)

https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1103/PhysRevLett.120.036002

6Machine-Learning of Atomic-Scale Properties
Based on Physical Principles

Gábor Csányi, Michael J. Willatt, and Michele Ceriotti

Abstract

We briefly summarize the kernel regression approach, as used recently in
materials modelling, to fitting functions, particularly potential energy surfaces,
and highlight how the linear algebra framework can be used to both predict
and train from linear functionals of the potential energy, such as the total
energy and atomic forces. We then give a detailed account of the smooth
overlap of atomic positions (SOAP) representation and kernel, showing how it
arises from an abstract representation of smooth atomic densities, and how it
is related to several popular density-based representations of atomic structure.
We also discuss recent generalizations that allow fine control of correlations
between different atomic species, prediction and fitting of tensorial properties,
and also how to construct structural kernels—applicable to comparing entire
molecules or periodic systems—that go beyond an additive combination of local
environments. (This chapter is adapted with permission from Ceriotti et al.
(Handbook of materials modeling. Springer, Cham, 2019).)

G. Csányi
Engineering Laboratory, University of Cambridge, Cambridge, UK

M. J. Willatt · M. Ceriotti (�)
Laboratory of Computational Science and Modelling, Institute of Materials, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland
e-mail: michele.ceriotti@epfl.ch

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_6

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_6&domain=pdf
mailto:michele.ceriotti@epfl.ch
https://doi.org/10.1007/978-3-030-40245-7_6

100 G. Csányi et al.

6.1 Introduction1

There has been a surge of activity during the last couple of years in applying
machine-learning methods to materials and molecular modelling problems, that
was largely fuelled by the evident success of these techniques in what can loosely
be called artificial intelligence. These successes have followed from the collective
experience that the scientific community has gained in fitting high volumes of data
with very complex functional forms that involve a large number of free parameters,
while still keeping control of the regularity and thus avoiding catastrophic overfit-
ting. In the context of molecular modelling, empirical fitting of potential energy
surfaces has of course been used for many decades. Indeed it is generally held that
this is the only practical way to simulate very large systems (many thousands of
atoms) over long time scales (millions of time steps) [2].

Traditionally, when fitting empirical models of atomic interactions, regularity
was ensured by writing functional forms that are expressed in terms of one-
dimensional functions, e.g. pair potentials, spherically symmetric atomic electron
densities, bond orders (as a function of number of neighbours), etc. Such functions
are easy to inspect visually to ensure that they are physically and chemically
meaningful, e.g. that pair potentials go to zero at large distances and are strongly
repulsive at close approach, that atomic electron densities are decreasing with
distance, that electron density embedding functions are convex, etc. Moreover,
these natural properties are easy to build into the one-dimensional functional forms
or enforced as constraints in the parameter optimization. It is widely held that
employing such “physically meaningful” functional forms is key to achieving good
transferability of the empirical models [3].

It is also recognized, however, that the limited functional forms that can be
built from these one-dimensional functions ultimately limit the accuracy that these
empirical models can achieve. In trying to replace them by high dimensional fits
using much more flexible functional forms, two things immediately have to change.
The first is the target data. When fitting only a few parameters, it is natural to demand
that important observables that are deemed to be central to the scientific questions
being addressed are reproduced correctly, and it is easiest to do this if they are
part of the fit: e.g. melting points and other phase boundaries, radial distribution
functions, etc. But in the case of very many parameters, their optimization also
takes a significant number of evaluations, and it becomes impractical to use
complex observables as targets. Moreover, there is a drive towards using a “first
principles” approach, i.e. that the potentials should actually reproduce the real
Born–Oppenheimer potential energy surface with sufficient accuracy and therefore
the scientifically relevant observables also. The hope is that this will result in
transferability in the sense that a wide array of macroscopic observables will be
correctly predicted without any of them being part of the fit explicitly, and therefore,
the corresponding microscopic mechanisms that are also dependent on the potential

1This chapter is adapted with permission from Ref. [1].

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 101

energy surface will also be correct. So it is natural to take values of the potential
energy, computed by the electronic structure method of choice, as the target data.
The large number of free parameters can then easily be counterbalanced by a large
amount of calculated target data.

The second thing that has to change is how the smooth physically meaningful
behaviour of the potential is controlled. It is not practical to inspect manually
high dimensional functions to ensure that their predictions are physically and
chemically meaningful for all possible configurations. Therefore it becomes even
more important to build into the functional forms as much prior information as
possible about limiting behaviour and regularity (the technical word for the kind
of smoothness we are interested in). Reviewing recent work, this paper sets out
an example framework for how to do this. The key goals are to create functional
forms that preserve the (1) invariance of the properties over permutation of like
atoms, (2) invariance of scalar and covariance of tensorial properties with three-
dimensional rotations, (3) continuity and regularity with respect to changes in
atomic coordinates, including compact support of atomic interactions by including
finite cutoffs.

Evidence is accumulating that strictly enforcing these physically motivated
properties is enormously beneficial, and many of the most successful machine-
learning schemes for atomic-scale systems are built around symmetry arguments.
One possible approach is to describe the system in terms of internal coordinates—
that automatically satisfy rotational invariance—and then symmetrize explicitly the
vector of representations or the functional relation between the representations and
the properties. Permutationally invariant polynomials are an example that have been
very effective to model the potential energy surfaces of small molecules (see, e.g.
the work of Braams and Bowman [4]). Sorting the elements of the representation
vector according to interatomic distances has also been used as a way of obtaining
permutation invariance at the cost of introducing derivative discontinuities [5–7].
Another possibility, which we will focus on in this paper, starts from a representation
of each structure in terms of atomic densities—that are naturally invariant to
atom permutations—and then builds a representation that is further invariant to
translations and rotations also.

Either way, once an appropriate description of each structure has been obtained,
further regularization can be achieved at the level of the regression scheme. To this
end, two prominent techniques are the use of artificial neural networks and kernel
ridge regression [8]. We use the latter formalism here, and many further details
about these techniques can be found in the rest of this volume. The kernel approach
starts with the definition of a kernel function, which will be combined with a set
of representative atomic configurations to construct the basis functions for the fit.
It is a scalar function—at least when learning scalar quantities—with two input
arguments, in the present case two atomic structures. Its value should quantify the
similarity of the atomic configurations represented by its two arguments, and it can
(but does not have to) be defined starting from their associated representations.
The value should be largest when its two arguments are equal (or equivalent up
to symmetry operations) and smallest for maximally different configurations. The

102 G. Csányi et al.

degree to which the kernel is able to capture the variation of the function when
varying the atomic configuration will determine how efficient the fit is. The better
the correspondence, the fewer basis functions that are needed to achieve a given
accuracy of fit.

6.2 Kernel Fitting

We start by giving a concise account of the kernel regression fitting approach,
for more details see Refs. [8–10]. A function defined on an atomic structure is
represented as a linear sum over kernel basis functions,

f (A) =
∑
B∈M

xBK(A,B), (6.1)

where the sum runs over a representative set of configurations M , selected from the
total set N of input configurations. The set of coefficients, combined into a vector x,
are determined by solving the linear system that is obtained when the available data
(e.g. values of the target function evaluated for a set of structures) are substituted
into Eq. (6.1). In the simplest case, there is one input data value corresponding to
each atomic configuration. Let y be the vector of all available input data, and K
be the kernel matrix with rows and columns corresponding to atomic structures, so
that the element of K with row and column corresponding to structures A and B,
respectively, is K(A,B). The fit is then obtained by solving a linear system in the
least squares sense, i.e. minimizing the quadratic loss function,

�(x) = ‖Kx− y‖2. (6.2)

The text book case is when the set of all configurations for which we have target
data available is used in its entirety as the representative set (i.e. N = M), K is
square, and as long as it is invertible, the optimal solution is

x = K−1y. (6.3)

In practice, for large data sets, using all the configurations in the data set as
representatives is unnecessary. In this case, M ⊂ N , the solution is given by the
pseudoinverse,

xM = (KMNKNM)−1KMNyN, (6.4)

where we used subscripts to emphasize the set that the vector elements correspond
to, e.g. y ≡ yN is the data vector with one element for each input data structure
and x ≡ xM is the vector of coefficients, one for each representative configuration.
The subscripts on the kernel matrix denote array slices, i.e. KMN = K�NM is the

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 103

rectangular matrix whose elements correspond to the kernel values between the
representative configurations and the input configurations.

Using a representative set much smaller than the total number of structures has
significant advantages in terms of computational cost, often with no reduction in
fitting accuracy. The training cost is dominated by computing the pseudoinverse,
which scales as O(NM2), which is linear in the size of the training data, N , and
evaluating the model scales as O(M), now independent of the size of the training
data. These cost scalings are analogous to those of artificial neural networks with a
fixed number of nodes.

While the above solutions are formally correct, it is widely recognized that they
lead to numerical instability and overfitting, i.e. they are solutions that attempt
to maximize the fit to the input data, even when this might not be desirable,
which is almost always the case. At first sight, this might sound surprising,
since electronic structure calculations can be made deterministic, with precise
convergence behaviour in terms of its parameters, such as k-point sampling, SCF
tolerance, etc. However, practical calculations are never converged to machine
precision, and the resulting inconsistencies between the potential energy values
for different configurations are not something that is desirable to propagate to a
fitted potential energy surface. The magnitude of such inconsistencies can be easily
assessed before the fit is made. Previous experience [11, 12] suggests that for large
databases for materials applications using plane wave density functional theory,
the error due to k-point sampling is dominant, and difficult to reduce below a few
meV/atom due to the associated computational cost.

In case we are fitting a potential energy surface with a representation that does
not characterize the atomic positions of the whole system completely due to, e.g.,
a finite cutoff, or some other choices made to gain computational efficiency, the fit
is not expected to be exact, irrespective of the amount of input data. Sometimes,
such model error can also be assessed a priori, e.g. in the case of a finite cutoff by
measuring the contribution made to forces on an atom by other atoms beyond the
cutoff [13–15].

These two considerations suggest that allowing some “looseness” in the linear
system might be beneficial, because it can be exploited to allow smaller linear
coefficients, making the fit more regular and thus better at extrapolation. We collect
the errors we expect in the fit of each target data value on the diagonal of an N ×N

matrix, �. The common procedure to regularizing the problem is due to Tikhonov
[16]. Specifically, in “kernel ridge regression” (and the equivalent “Gaussian process
regression”, a Bayesian view of the same) the Tikhonov matrix is chosen to be
the kernel matrix between the M representative points, KMM . With highly regular
(“smooth”) kernel functions, this regularization leads to smooth fits, and the sizes
of the elements of � control the trade-off between the accuracy of the fit and
smoothness. The corresponding solutions are

x = (K+�)−1y, (6.5)

104 G. Csányi et al.

for the square problem, and

xM =
(

KMM +KMN�−1KNM

)−1
KMN�−1yN, (6.6)

for the rectangular problem, where we again emphasized the index sets. This
solution is equivalent to minimizing

‖Kx− y‖2
�−1 + ‖x‖2

K, (6.7)

which shows that the inverse of the tolerances in � is equivalent to regression
weights on the different data points. With the solution of the linear system in hand,
the value of the fitted function for a new structure C can be written as

f (C) = KCMxM. (6.8)

Note that the KCM slice is just a vector, with elements given by the kernel between
the new structure C and the structures in the representative set M .

6.2.1 Selection of a Representative Set

Next we describe some ways to choose the set of representative environments over
which the sum in Eq. (6.1) is taken. This can be done by simple random sampling,
but we find it advantageous to use this freedom to optimize interpolation accuracy.
Among the many strategies that have been proposed [17–20], we discuss two that
have been used successfully in the context of potential energy fitting. One approach
to this is to maximize the dissimilarity between the elements of the representative
set. A greedy algorithm to select the configurations for the representative set is
“farthest point sampling”, in which we start with a randomly selected structure,
and then iteratively pick as the next structure to include the one which is farthest
away from any of the structures already in the set [21–23]. The distance between
two structures is measured using the “kernel metric” [10], defined as

d2(A,B) = K(A,A)+K(B,B)− 2K(A,B). (6.9)

This algorithm performed well for selecting molecules in regression tasks, enabling
the significant reduction of the data set sizes needed to achieve a given level of
accuracy [24].

Another technique that has been successfully used is based on matrix factoriza-
tion, which is particularly appealing when the kernel function is linear or a low order
polynomial of the representation vector. Consider the matrix of feature vectors, D,
in which each row is the representation vector of an input atomic configuration,
such that a linear kernel is K = DD�. We are looking to select rows, many fewer
than the total number, which span as much of the space as all rows span. This is a

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 105

problem of matrix representation, specifically the representative set should serve as
a low-rank approximation of K and/or D. One solution to this is called CUR matrix
decomposition [25], which can be applied to either K or D, the latter being much
cheaper if the length of the representation vectors is less than the number of data
points.

To determine the optimal set of representative configurations, we start with a
singular value decomposition of D,

D = USV �. (6.10)

For each data point, a leverage score is calculated, essentially the weight that the
top singular vectors have on that configuration,

πA = 1

k

k∑
ξ=1

(
u
ξ
A

)2
, (6.11)

where u
ξ
A is the element of the ξ -th left singular vector that corresponds to

structure A. The sum runs over the first k singular vectors, e.g. k = 20 is
typical. The configuration A is included in the representative set with a probability
that is proportional to its leverage score, πA. A deterministic variant is to select
one structure A at a time—the one with the highest leverage score—delete the
associated row from the representation matrix and orthogonalize the remaining rows
of D relative to it. The next data point can then be selected repeating the same
procedure on the now smaller feature matrix [26].

Note that in the Gaussian process literature, using a subset of the data to construct
the basis is called sparsification [27, 28], even though the approximation relies on a
low-rank matrix reconstruction rather than the kernel matrix being sparse.

6.2.2 Linear Combination of Kernels

When fitting interatomic potentials for materials, a model is constructed for the
atomic energy, sometimes called the “site energy”. This is both for computational
efficiency and to reduce the complexity of the functional relation between structures
and properties: each atomic energy is only a function of a limited number of degrees
of freedom corresponding to the coordinates of the neighbouring atoms and can
therefore be evaluated independently from any other atomic energy. In fact this
is the defining characteristic of an interatomic potential, in contrast to a quantum
mechanical model that explicitly includes delocalized electrons. Going from atomic
energies to the total energy is trivial, the latter being the sum of the former. However,
going in the other direction is not unambiguous. The total energy can be calculated
from a quantum mechanical model, but the atomic energies are not defined uniquely,
and it becomes part of the fitting task to find the best possible decomposition of the
total energy into atomic energies. Treating these two transformations on the same

106 G. Csányi et al.

footing helps. Suppose we want to predict the sum of function values for two (or
more) configurations. For the simple case of the sum of two energies for structures
A and B, the prediction is, trivially, just the sum of the individual function value
predictions, e.g.

Etot = E(A)+ E(B) = KAMxM +KBMxM. (6.12)

If we define a new “sum-kernel” to be the sum of kernel values between a number
of new configurations and the representative set, the expression for the above total
energy prediction takes the same form as the prediction of the individual function
values. For some set I of new configurations, let

�KM =
∑
A∈I

KAM, (6.13)

where �KM is the vector of sum-kernel values, each element of which is the sum
of the kernel between all the configurations in I and a given configuration in the
representative set M . The predicted total energy of the configurations in I is then

Etot = �KMxM. (6.14)

This same sum-kernel can be used to fit the model to sum data, rather than to
individual function values. This is necessary in order to fit interatomic potentials for
materials systems, since only total energies, and not the atomic energies themselves,
are available from electronic structure calculations. At the same time, in order
to enforce a finite short range in the interatomic potential, we must express the
potential as an atomic energy. Using the sum-kernel, this is straightforward, the
original functional form in Eq. (6.1) can be retained, and we now minimize (omitting
the regularization term for clarity)

∥∥�Kx− Etot
∥∥2

, (6.15)

where �K is a matrix containing the sum-kernel values for all configurations in the
input database and the representative set, and the vector Etot is the collection of
corresponding total energy data.

6.2.3 Derivatives

The explicit analytic functional form of Eq. (6.1) leads to analytic derivates with
respect to the atomic coordinates, e.g. forces in the case of fitting an energy.
Considering for the moment the simpler case in which we are computing the
derivatives of an atom-centred quantity f (A), we define ∇A as the vector of
derivatives with respect to all the atomic coordinates in structure A. We use the

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 107

notation
←−∇ to indicate a derivative operator that applies to the first argument of

the kernel, and
−→∇ to indicate a derivative that applies to the second argument. The

derivatives of f (A) are non-zero only for atoms that belong to the structure A and
are then given by differentiating Eq. (6.1)

∇Af (A) =
∑
B∈M

xB
←−∇AK(A,B) = K∇AMxM, (6.16)

where we introduced the notation K∇AM to indicate the matrix that contains the
derivatives of the kernels relative to all the relevant atomic coordinates. Similarly
to the case of sums above, the gradient of the kernel function can also be used for
fitting the model not to target values, but to gradient data [29]. This is especially
useful when the target represents a potential energy surface. When using typical
electronic structure methods, the cost of computing the gradient with respect to all
atomic positions is only a little bit more than the cost of computing the energy, but
yields much more information, 3n pieces of data for an n-atom structure. There are
two approaches one can take to incorporate gradient information. In the first one,
used in Ref. [30] and subsequent work of that group [11, 12, 14, 15, 31–37], the
functional form for the energy is again retained to be the same as in Eq. (6.1). The
corresponding loss function (again without regularization) is

‖K∇NMxM − y∇N‖2, (6.17)

where y∇N refers to the concatenated vector of gradients on all atoms in the set of
input structures and K∇NM to the corresponding matrix of kernel derivatives. The
form of the solution for the coefficients is unchanged from Eq. (6.5) or (6.6) with
K∇NM taking the role of KNM .

In the second approach, used recently in Ref. [38], derivatives of the kernel are
the basis functions in the functional form of the fit,

f (A) =
∑
B∈M

x∇B · −→∇BK(A,B), (6.18)

where x∇B contains one weight for each of the derivatives relative to the atoms in
structure B. The number of basis functions and corresponding coefficients is now
much larger, 3nM , for n-atom structures. Since the model is fitted to the derivatives,
given by gradients of Eq. (6.18), the loss is

‖K∇N∇Mx∇M − y∇N‖2, (6.19)

the target properties can be computed as

f (A) = KA∇Mx∇M, (6.20)

108 G. Csányi et al.

and their derivatives as

∇Af (A) = K∇A∇Mx∇M. (6.21)

The original motivation for this approach is apparent from Eq. (6.19) in which the
matrix can be understood as a kernel directly between atomic forces (and in case of
M = N , between the input data forces).

Both approaches constitute valid ways of learning a function from data rep-
resenting its gradients, differing only in the choice of the kernel basis. The
kernel-derivative basis functions could also be used in conjunction with a reduced
representative set, and it is not yet clear which approach is better, or indeed a
combination: one could choose different basis functions (kernels or their derivatives)
depending on the amount and kind of data available and on the size and choice of
the representative set.

6.2.4 Learning from Linear Functionals

We can combine the sum-kernel and the derivative kernel naturally, and write a
single least squares problem for the coefficients in Eq. (6.1) that is solved to fit an
interatomic potential to all available total energy, force, and virial stress data (the
only condition being that the input data has to be expressible using a linear operator
on function values). We define y as the vector with L components containing
all the input data: all total energies, forces, and virial stress components in the
training database, and y′ as the vector with N components containing the unknown
atomic energies of the N atomic environments in the database, and L̂ as the linear
differential operator of size L × N which connects y with y′ such that L̂y′ = y
(note that the definition of L̂ we use here is the transpose of that in Ref. [32]). The
regularized least squares problem is now to minimize

∥∥∥L̂Kx− y
∥∥∥2

�−1
+ ‖x‖2

K , (6.22)

and the expression for the coefficients is given by

x =
[

KMM +
(

L̂KNM

)�
�−1L̂KNM

]−1 (
L̂KNM

)�
�−1y , (6.23)

where the sizes of the elements of � control the trade-off between the accuracy of
the fit and smoothness.

It is instructive to write down the above matrices for the simple case when the
system consists of just two atoms, A and B, with position vectors rA, rB , target total
energy E, and target forces fA ≡ (fAx, fAy, fAz) and fB ≡ (fBx, fBy, fBz). The
data vector is then given by

y = [E fAx fAy fAz fBx fBy fBz

]�
. (6.24)

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 109

The aim of the fit is to determine two unknown atomic energy functions εA and εB
as a function of the atomic environments centred around the two atoms, A and B,
respectively. The total energy is their sum, E = εA + εB , and the forces need to
include the cross terms,

fA = ∂εA

∂rA
+ ∂εB

∂rA
,

fB = ∂εA

∂rB
+ ∂εB

∂rB
.

(6.25)

The representative set in this case consists of the same two atoms, so N = M , and
the kernel matrix is square,

K =
[
K(A,A) K(A,B)

K(B,A) K(B,B)

]
, (6.26)

and the linear operator L̂ is a 7× 2 matrix and is given by

L̂ =
⎡
⎢⎣

1 1←−∇ rA
←−∇ rA←−∇ rB
←−∇ rB

⎤
⎥⎦ , (6.27)

so the L̂K matrix to be substituted into Eq. (6.23) is

L̂K =
⎡
⎢⎣

K(A,A)+K(A,B) K(B,A)+K(B,B)←−∇ rAK(A,A)+←−∇ rAK(B,A)
←−∇ rAK(A,B)+←−∇ rAK(B,B)←−∇ rBK(A,A)+←−∇ rBK(B,A)
←−∇ rBK(A,B)+←−∇ rBK(B,B)

⎤
⎥⎦
(6.28)

Note that terms such as
←−∇ rAK(B,B) or

←−∇ rAK(B,A) are not zero because atom
A is present in the environment B of atom B, and so K(B,A), and also K(B,B),
depend on rA explicitly.

Using the approach of Ref. [38] for the dimer, the kernel matrix is 6 × 6 and is
given by

K∇A∇B =
[←−∇ rA

−→∇ rAK(A,A)
←−∇ rA

−→∇ rBK(A,B)←−∇ rB
−→∇ rAK(B,A)

←−∇ rB
−→∇ rBK(B,B)

]
. (6.29)

In practice it is always worth using all available data, even though once the fit is
converged in the limit of infinite amount of data, the information from derivatives
(forces) is the same as from energies. With finite amount of data, however, choosing
the weights corresponding to energies and forces via the diagonal regularizer allows
control of the fit, in the sense of its relative accuracy in reproducing energies and
forces.

110 G. Csányi et al.

6.2.5 LearningMultiple Models Simultaneously

Being able to fit to sums of function values has an interesting consequence. It
enables in a very natural way the fitting of a model that is explicitly and a priori
written as a sum of terms, each using a different kernel function, perhaps even using
a different representation. That this is a good idea for potential energy functions
is shown by the relative success of empirical force fields both for materials and
molecules, in which the total energy is written as a sum of body-ordered terms, i.e.
an atomic term, a pair potential, and a three-body (angle-dependent) term, etc.

Etot =
∑
i

E(1) +
∑
i,j

E(2)(rij)+
∑
i,j,k

E(3)(rij , rik, rjk)+ · · · (6.30)

It is notable that while pair potentials and three-body potentials using various
simple parametrizations are widely used in the materials modelling literature, there
are few models that take advantage of the full three-dimensional flexibility of the
three-body term. Four-body terms are almost always restricted to one-dimensional
parametrizations such as a dihedral angle. The reason for this is presumably because
there is little intuition about what kinds of functional forms would be appropriate—
kernel fitting avoids this problem. Such a framework was introduced [32] and is
beginning to be used for low body order model fitting [14,15,39,40]. Furthermore,
by bringing everything together under the kernel formalism, the above expansion
can also be augmented with a many-body term which enables the systematic conver-
gence to the true Born–Oppenheimer potential energy surface, but with the many-
body term having a relatively small magnitude (because the low body order terms
account for most of the energy already), which helps transferability and stability.

The two-body term could be represented as a linear combination of kernels whose
arguments are simply the interatomic distances, the three-body term is again a linear
combination of kernels whose arguments are some representation of the geometry
of three atoms, e.g. the one above using the three distances, but two distances and
an angle are equally viable. The fit is then made to the target data of total energies
and forces of atomic configurations, in complete analogy with Eq. (6.12), and now
the value of the sum-kernel is the sum of pair- and triplet-kernel values between all
pairs and triplets present in the two atomic configurations. A stringent test of this
scheme is that in case of a target potential energy surface that is explicitly the sum
of two- and three-body terms, the fit recovers these terms explicitly from just the
total energies and forces [32].

6.3 Density-Based Representations and Kernels

Having summarized the algorithms that can be used to perform kernel ridge
regression using atomic-scale properties and their derivatives as inputs, we now
proceed to describe a framework for defining physics-based representations of local

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 111

atomic environments and the kernels built from them. In kernel ridge regression, the
representations do not necessarily need to be expressed explicitly, but can also be
defined implicitly by means of the kernel function K(A,B) that corresponds to the
scalar product of representation vectors that span a (possibly infinite-dimensional)
Hilbert space [10]. Vectors |A〉 in this “reproducing kernel Hilbert space” do
correspond to atomic structures, and one can write formally K(A,B) ≡ 〈A|B〉 even
if the kernel might be computed without ever determining the vectors explicitly.

The reader trained in quantum mechanics will recognize an isomorphism
between representations and the state vectors on the one hand, and kernels and
expectation values on the other. This analogy suggests that it may be beneficial
to formulate atomic-scale representations using a formalism that mimics Dirac
notation. Whereas in a quantum mechanical setting the physical symmetries of the
problem are built into the Hamiltonian, in a machine-learning setting they are more
conveniently included in the representation itself, that should be made invariant to
basic symmetries such as atom labelling, rigid translations, and rotations. In this
section we show how starting from these intuitions one can build a very abstract
description of a molecular structure that is naturally invariant with respect to the
physical symmetries, based on a representation of the atom density.

Translational and rotational symmetries can be included by decomposing the
structure into a collection of local environments, and by explicit symmetrization
over the SO(3) group. In fact, it has been recently shown [41] how this construction
leads naturally to the SOAP representation and kernel [42], and to several
other popular choices of density-based representations—from Behler–Parrinello
symmetry functions [43], to voxel density representations [44] to the binning of
the pair correlation function [45]—that can be regarded as different projections
of the same smooth atomic amplitude. A peculiarity of the SOAP framework is
that it is formulated very naturally in terms of a kernel, that corresponds to the
symmetrized overlap of atomic densities, and that it allows one to explicitly compute
the representations whose scalar product constitutes the kernel function, which
allows one to go back and forth between a kernel and a representation language. The
atomic environmental representations can then be modified to generate non-linear
kernels, as well as combined into global structural kernels. We will briefly discuss
different possible approaches to the latter, either by simple linear combination of the
local representations or by a more sophisticated procedure that takes into account
the most effective matching between pairs of environments in the two structures that
are being compared.

6.3.1 A Dirac Notation for Structural Representations

Let us introduce an abstract notation to describe atomistic structures in terms of
the positions and chemical nature of the atoms that compose them [41]. Taking
inspiration from Dirac notation for quantum mechanical states, we associate a ket
|A〉 with each configuration. Let us start with a simple example to see how such a
formalism can be introduced and used. Much like in the case of quantum states, we

112 G. Csányi et al.

can define a concrete representation of the ket associated with a structure in terms
of positions and chemical species, e.g.

〈
r

∣∣∣∣A〉 =
∑
i

gi(r− ri)

∣∣∣∣αi

〉
, (6.31)

where the position of each atom is represented by a smooth density gi (that in
principle could depend on the nuclear charge and the position of atom i) and the kets
|αi〉 contain the information on the nuclear charge of each atom. The Dirac notation
lends itself naturally to the definition of overlap kernels between structures, 〈A|B〉.
To compute such an integral, one can use the position representation and assume
that the kets associated with different elements are orthonormal:

〈A|B〉 =
∫

dr 〈A|r〉〈r|B〉

=
∑
ij

∫
dr gA

i

(
r− rAi

)�
gB
j

(
r− rBj

) 〈
αA
i

∣∣∣αB
j

〉

=
∑
α

∑
i,j∈{α}

∫
dr gA

i

(
r− rAi

)�
gB
j

(
r− rBj

)
.

(6.32)

This density-based representation would not be in itself very useful, as the kernel
is not invariant to relative rotations of the structures, and not even to the absolute
position of the two structures in space, or their periodic representation. Nevertheless,
it can be taken as the starting point to introduce many of the most successful feature
representations that have been used in recent years for machine-learning of materials
and molecules.

To see how, one can take inspiration from linear-scaling electronic structure
methods, and the nearsightedness principle for electronic matter [46–49]. We then
shift the attention from the description of complete structures to that of spherical
atomic environments, that one can conveniently centre on top of each atom. An
atom-centred representation arises naturally from the symmetrization over the
translation group of tensor products of the representation Eq. (6.31) [41] and is also
consistent with the atom-centred potentials that have been discussed in the previous
section as an obvious application of this framework.

We will use the notation |Xj 〉 to indicate an environment centred around the j -th
atom in a structure and express it in the position representation as

〈r|Xj 〉 =
∑
i

fc(rij)gij (r− rij)|αi〉, (6.33)

where fc(rij) is a cutoff function that restricts the environment to a spherical region
centred on the atom, for the sake of computational efficiency and/or localization of
the density information. The atom-centred smoothing functions are typically taken

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 113

to be uniform-width Gaussians, but it would be easy to generalize the expression to
include a dependency on the atomic species and/or the distance of an atom from the
centre of the environment, which could be used to, e.g., reduce the resolution of the
representation at the periphery of the environment, or adapt the smoothing length
scale to each atomic species.

Note that one could also combine the density contributions from atoms of the
same species into a species-dependent atomic amplitude,

〈αr|Xj 〉 = ψα
Xj

(r) =
∑
i∈α

fc(rij)gij (r− rij), (6.34)

and then write

〈r|Xj 〉 =
∑
α

ψα
Xj

(r)|α〉. (6.35)

This notation is very useful to reveal how different representations can be seen
as alternative representations of the same abstract ket. For instance, one can expand
the atom density in orthogonal radial functions Rn(r) and spherical harmonics. The
coefficients in such an expansion can be written as

〈αnlm|Xj 〉 =
∫

dr〈nlm|r〉〈αr|Xj 〉

=
∫

drdr̂ r2Rn(r)Y
l
m(r̂)ψα

Xj
(r r̂).

(6.36)

As another example, Behler–Parrinello atom-centred symmetry functions that
have been used in the construction of artificial neural network based interatomic
potentials for materials [43,50–52] and molecules [53] can be written by setting the
basis functions to be delta distributions gij (r− rij) = δ(r− rij), and averaging the
atom density with an appropriate pair weighting function G2, e.g.

〈αβG2|Xj 〉 = 〈α|αj 〉
∫

drG2(r)〈βr|Xj 〉

= δαjα

∑
i∈{β}

fc(rij)G2(rij)
(6.37)

The basis functions of the spectral neighbour analysis potential [54] also start with
the same density and expands it in hyperspherical harmonics as introduced in Ref.
[30].

114 G. Csányi et al.

6.3.2 Smooth Overlap of Atomic Positions

It is clear that a density-based representation such as Eq. (6.33) is invariant to
translations of the entire structure, but not to rotations that would change the
orientation of the atomic neighbour amplitude. This reflects the fact that scalar
products of the form 〈Xj |Xk〉 depend on the relative orientation of the environments
being compared. In the smooth overlap of atomic positions (SOAP) framework, we
define a symmetrized version of the overlap kernel, using the Haar integral [55] of
the rotation group,

K(ν)(Xj ,Xk) =
∫

dR̂
∣∣∣
〈
Xj

∣∣∣R̂
∣∣∣Xk

〉∣∣∣ν =
〈
Xj

(ν)
∣∣∣Xk

(ν)
〉

(6.38)

where the integral is performed over all possible rotation matrices. If the base kernel
is raised to the ν-th power, the average preserves information on the correlations
between atoms up to the (ν + 1)-th order [39]. As we will show below, a crucial
feature of the SOAP framework is that an explicit expression for the symmetrized
representation vectors |Xj

(ν)〉 can be given. In fact, an alternative derivation of the
SOAP framework can be achieved by symmetrizing directly tensor products of the
translationally invariant ket Eq. (6.36) [41].

The complexity of the SOAP features is quite manageable for ν = 1, 2, but
becomes increasingly cumbersome for higher ν. An effective description of higher-
order interactions, that does not increase too much the complexity of the analytical
evaluation of Eq. (6.38), can be obtained by manipulating the ν = 2 kernel, e.g. by
taking a non-linear function of it. In practice it has been found that raising it to a
power ζ and normalizing it to one

〈
Xj

(2)
∣∣∣Xk

(2)
〉
ζ
=

〈
Xj

(2)
∣∣Xk

(2)〉ζ
√〈

Xj
(2)
∣∣Xj

(2)〉ζ 〈Xk
(2)
∣∣Xk

(2)〉ζ (6.39)

is sufficient to include many-body contributions in the final kernel.
Using the Dirac notation, it is easy to see how one can give an explicit

representation of the SO(3) symmetrized ket for the case with ν = 1, 2. Using
a spherical harmonics expansion of |Xj 〉 it is very natural to perform the rotational
average analytically by introducing the Wigner matrix associated with the rotation,
〈lm|R̂|l′m′〉 = δll′Dl

mm′(R̂)

∫
dR̂
∑
αnlm

〈Xj |αnlm〉〈αnlm|R̂|Xk〉

=
∑

αnlmm′
〈Xj |αnlm〉〈αnlm′|Xk〉

∫
dR̂ Dl

mm′(R̂)

(6.40)

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 115

which simplifies greatly due to the properties of the Wigner matrices. Only the
term with l = 0 survives, which makes it possible to write explicitly the ν = 1
symmetrized SOAP representations in terms of the spherical harmonics coefficients

〈
αn

∣∣∣Xk
(1)
〉
=
√

8π2〈αn00|Xk〉, (6.41)

which corresponds to the simple kernel

〈
Xj

(1)
∣∣∣Xk

(1)
〉
=
∑
αn

〈
Xj

(1)
∣∣∣αn
〉 〈
αn

∣∣∣Xk
(1)
〉
. (6.42)

A position representation of the ν = 1 representation 〈r|Xk
(1)〉 yields naturally

the rotational average of 〈r|Xk〉. This can be seen by expressing K(1)(Xj ,Xk) in a
position basis

〈
αXj

(1)
∣∣∣αXk

(1)
〉
=
∫

dR̂
∫

drψα
Xj

(r)ψα
Xk

(R̂r)

= 32π3
∫

dr r2ψ̄α
Xj

(r)ψ̄α
Xk

(r)

(6.43)

where we have defined the rotationally averaged atom density

ψ̄α
Xj

(r) = 1

4π

∫
dr̂ψα

Xj
(r r̂) = 1√

32πr3

〈
αr

∣∣∣Xj
(1)
〉
, (6.44)

which is thus closely related to the pair correlation function around the tagged
atom. Similar representations have been used for machine-learning of molecules and
materials [6, 45], revealing once more the intimate relationships between different
atom-density based representations.

The ν = 1 representation integrates away all angular correlations and therefore
does not provide a unique representation of an environment. The representations
with ν = 2 provide information on 3-body correlations and can also be obtained
relatively easily in closed form. The Haar integral now contains the product of two
Wigner matrices. Exploiting their orthogonality relations, one obtains

∫
dR̂

∣∣∣∣∣
∑
αnlm

〈
Xj

∣∣∣αnlm
〉 〈
αnlm

∣∣∣R̂
∣∣∣Xk

〉∣∣∣∣∣
2

=
∑

αnα′n′l

〈
Xj

(2)
∣∣∣αnα′n′l

〉 〈
αnα′n′l

∣∣∣Xk
(2)
〉

(6.45)

where the ν = 2 symmetrized SOAP representations read

〈
αnα′n′l

∣∣∣Xj
(2)
〉
=
√

8π2

2l + 1

∑
m

〈
Xj

∣∣∣αnlm
〉 〈
α′n′lm

∣∣∣Xj

〉
. (6.46)

116 G. Csányi et al.

This notation corresponds to the power spectrum components introduced in Refs.
[24, 42], 〈αnα′n′l|Xj

(2)〉 ≡ pαα′
nn′l (Xj). Note also that, while the representation of

the symmetrized kets in terms of the nlm expansion is very convenient, it is not
the only possibility. Similar to Eq. (6.44), an explicit position representation can be
obtained for 〈αr1α

′r2|Xk
(2)〉, that provides a complete representation of the 3-body

rotationally invariant correlations. The 3-body symmetry functions of the Behler–
Parrinello kind can be seen as projections of this representation, similarly to the case
of 2-body functions in Eq. (6.37).

The case of ν = 3 leads to an explicit representation of the ket that is proportional
to the bispectrum of the environment [42]

〈
α1n1l1α2n2l2αnl

∣∣∣Xj
(3)
〉
∝
∑

mm1m2

〈
Xj

∣∣∣αnlm
〉

× 〈α1n1l1m1|Xj 〉〈α2n2l2m2|Xj 〉〈l1 m1 l2 m2|l m〉.
(6.47)

While the dimensionality of this representation makes it impractical unless some-
how sparsified, it does give direct access to higher-order correlations. An interesting
detail is that |Xj

(3)〉, contrary to the ν = 1, 2 cases, is not invariant to mirror
symmetry, which makes it capable of distinguishing enantiomers.

Finally, one should note that the normalization of the kernel Eq. (6.39) can be
achieved by normalizing the SOAP vector, so that an explicit representation of
the normalized feature vector is possible. While in principle one could write out
an explicit representation that yields the kernel for ζ > 1, it would contain an
exponentially increasing number of terms. As in the case of |Xj

(3)〉, this only makes
sense if combined with a sparsification procedure.

6.3.3 Body-Order Potentials

Representations based on a symmetrized atom-density correspond to (ν + 1) body-
order correlations. As a consequence, they can be used as a linear basis to expand
(ν+1)-body potentials [39], drawing a connection with a long-standing, physically
inspired tradition in the construction of empirical force fields as a sequence of terms
of increasing complexity [56–58]. This connection has been recently discussed
in great detail in Ref. [59], which reaches a conclusion similar to Ref. [41] on
the existence of a deep connection among all of the most widespread feature sets
for atomistic machine-learning. In Ref. [59], smoothness in the atomic cluster
expansion is effectively imposed through the choice of a smooth set of functions that
are evaluated at atomic positions. In contrast, the SOAP representation is smooth
regardless of the choice of basis for the density expansion because the density itself
is a superposition of smooth functions (e.g. Gaussians).

When discussing the connection between density-based representations, atomic
cluster expansion, and traditional body-order potentials, it is important to consider
the computational complexity associated with the evaluation of different body-

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 117

order terms. An explicit (ν + 1)-body potential requires summing over every
group of ν of the N atoms within each neighbourhood, leading to an N(ν) scaling
for each atom-centred term. In a density-based representation, or in the atomic
cluster expansion, this cost is mitigated by computing expansion coefficients of the
density (with a linear scaling in N), and then computing (ν + 1)-order invariant
representations. This second step still entails an exponential scaling with body
order, e.g. for ν = 2 SOAP written in a radial basis with nmax functions and lmax
angular channels, one has to perform n2

max(lmax + 1)2 multiplications to evaluate
all invariant coefficients. In general, the computational complexity of the complete
set of invariants scales with the power of ν. Computational savings come through
the choice of an optimized basis set (keeping nmax and lmax low), the low prefactor
associated with the evaluation of the invariant coefficients, and potentially through
the use of data-driven compression techniques [26], that can beat the exponential
scaling by only retaining a small number of (ν + 1)-body order invariant features.
Note that apart from computing high body order terms explicitly by increasing ν,
non-linear transformations (e.g. Eq. (6.39)) also increase the effective body order of
the models within the kernel fitting framework.

6.3.4 Kernel Operators and Feature Optimization

Provided one takes a long-range environmental cutoff, and chooses a kernel that can
represent high orders of many-body interactions, a density-based representation of
atomic structures should provide a complete description of any atomic structure
and—given a sufficiently complete training set—predict any atomistic property
with arbitrary accuracy. In practice, obviously, the accuracy of a model depends on
the details of the representation, which is why different representations or kernels
provide different levels of accuracy for the same training and test set [60]. The
performance of a set of representations can be improved by modifying them so that
they represent more efficiently the relations between structure and properties.

This kind of optimizations are best understood in terms of changes to the
translationally invariant environmental ket Eq. (6.33) and can be described in an
abstract and basis-set independent manner as a Hermitian operator acting on the
ket,

|Xj 〉 → Û |Xj 〉. (6.48)

The most general form of this operator that makes it rotationally invariant—so that it
commutes with the rotation matrix in the definition of the SOAP kernel Eq. (6.38)—
is readily expressed in the {|αnlm〉} basis [41]:

〈αnlm|Û |α′n′l′m′〉 = δll′δmm′ 〈αnl|Û |α′n′l′〉. (6.49)

While this is the most general form of the operator that is consistent with SO(3)
symmetry, one can use simpler forms to represent feature space transformations that

118 G. Csányi et al.

can be easily understood. For instance, taking

〈αnl|Û |α′n′l′〉 = unδαα′δnn′δll′ (6.50)

corresponds to a scaling of the smooth atom density according to the distance
from the centre. This kind of scaling has been shown to improve significantly the
performance of SOAP [61], as well as other density-based representations [62,63].

Another simple form of the transformation matrix involves only the “chemical”
channels

〈αnl|Û |α′n′l′〉 = uαα′δnn′δll′ . (6.51)

This operator amounts to a change of representation for the elemental space. It is
easy to see that 〈α|Û†Û |α′〉 = καα′ is nothing but the “alchemical similarity matrix”
between elements that has been shown to improve the accuracy of SOAP in the
presence of multiple atomic species [23, 24]. What is more, by writing a low-rank
approximation of Û =∑Jα = uJα|J 〉〈α one can express atomic density in terms of
a small number of “chemical archetypes”, improving dramatically both the accuracy
and the computational cost of machine-learning models that involve more than a
handful of elements [61]. Note that this transformation can be applied at the level
of the translationally invariant representation, where one can write

ψJ
Xj

(r) = 〈J r|Xj 〉 =
∑
α

uJα〈αr|Xj 〉 (6.52)

that makes it evident how the action of this particular Û operator amounts to using
linear combination of atomic densities in which each species is given weights that
can be optimized by cross-validation.

6.3.5 λ-SOAP: Symmetry-Adapted Gaussian Process Regression

When building a machine-learning model for a tensorial property T, one should
consider that the target is not invariant under the action of a symmetry operation
(e.g. a rotation) but transforms covariantly. The most effective strategy to encode
the appropriate covariance properties in the model involves the decomposition of the
tensor into its irreducible spherical components, i.e. combinations of the elements
of the tensor that transform as the spherical harmonics of order λ [64]. For these
irreducible components,

Tλμ(R̂Xj) =
∑
μ′

Dλ
μμ′(R̂)Tλμ′(Xj) (6.53)

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 119

As shown in Ref. [65] for the case of vectors and in Ref. [66] for tensors of arbitrary
order, one has to consider a matrix-valued kernel that describes the geometric
relationship between the different components of Tλ, which can be obtained by
including an additional Wigner matrix Dλ

μμ′(R̂) in the Haar integral

〈
X(ν)

j,λμ

∣∣∣X(ν)

k,λμ′
〉
=
∫

dR̂ Dλ
μμ′(R̂)

∣∣∣〈Xj |R̂|Xk〉
∣∣∣ν . (6.54)

For the case with ν = 2 the symmetrized kets can be written explicitly based on a
αnlm expansion of the atom density

〈
αnlα′n′l′

∣∣∣X(2)
j,λμ

〉
=
√

8π2

2l + 1

∑
mm′
〈Xj |αnlm〉

× 〈α′n′l′m′|Xj 〉〈l m l′ −m′|λ −μ〉
(6.55)

We write Eq. (6.55) in this form because it is somewhat symmetric, but the proper-
ties of the Clebsch-Gordan coefficients require that m′ = m + μ so the expression
can be evaluated with a single sum. Furthermore, the expression evaluates to zero
whenever

∣∣l − l′
∣∣ < λ, which reduces the number of elements that must be evaluated

and stored, and makes it clear that Eq. (6.55) reduces to the scalar SOAP Eq. (6.46)
when λ = 0.

When using a linear model, each of the symmetry-adapted representations
Eq. (6.55) can be used to represent tensorial components that transform as Yλ

μ .
Linearity, in this case, is necessary for preserving the symmetry properties of
the λ-SOAP. A non-linear model, however, can be obtained by scaling each
〈αnlα′n′l′|X(2)

j,λμ〉 by a (in principle different) non-linear function of some λ = 0
representations [67]. In the kernel language, a high-order version of the λ-SOAP
kernel can be introduced with an expression analogous to Eq. (6.39):

〈
X(2)

j,λμ

∣∣∣X(2)
k,λμ′

〉
ζ
=

〈
X(2)

j,λμ

∣∣∣X(2)
k,λμ′

〉 〈
Xj

(2)
∣∣Xk

(2)〉
ζ−1∥∥∥

〈
X(2)

j,λμ

∣∣∣X(2)
j,λμ�

〉∥∥∥
F

∥∥∥
〈
X(2)

k,λμ

∣∣∣X(2)
k,λμ�

〉∥∥∥
F

, (6.56)

where ‖·‖F indicates the Frobenius norm and 〈Xj
(2)|Xk

(2)〉ζ−1 is a (scalar) SOAP
kernel. This second term makes the overall kernel non-linear, without affecting the
symmetry properties of the overall tensorial kernel.

6.3.6 Computing SOAP Representations Efficiently

A practical calculation of both scalar and tensorial ν = 2 SOAP representations
〈αnlα′n′l′|X(2)

j,λμ〉 requires the evaluation of the expansion coefficients 〈αnlm|Xj 〉.
Let us start with the atom density written in the position representation, according

120 G. Csányi et al.

to Eq. (6.36), and consider the case in which ψα
X(r) is written as a superposition

of spherical Gaussian functions of width σ placed at the positions of the atoms of
type α. Then, the spherical harmonics projection in Eq. (6.36) can be carried out
analytically, leading to:

〈αnlm|Xj 〉 =
∑
i∈α

Ylm(r̂ij) e
− r2

ij

2σ2

×
∫ ∞

0
dr r2 Rn(r)e

− r2

2σ2 ιl

(rrij
σ 2

)
,

(6.57)

where the sum runs over all neighbouring atoms of type α and ιl indicates a modified
spherical Bessel function of the first kind. It is convenient to choose a form for the
orthogonal radial basis functions Rn(r) that makes it possible to perform the radial
integration analytically.

One possible choice starts by using Gaussian type orbitals as non-orthogonal
primitive functions R̃k(r)

R̃k(r) = Nk rk exp

{
−1

2

(
r

σk

)2
}
, (6.58)

where Nk is a normalization factor, such that
∫∞

0 drr2R̃2
k (r) = 1. The set of

Gaussian widths {σk} can be chosen to span effectively the radial interval involved
in the environment definition. Assuming that the smooth cutoff function approaches
one at a distance rcut − δrcut, one could take σk = (rcut − δrcut)max(

√
k, 1)/nmax,

that gives functions that are peaked at equally spaced positions in the range between
0 and rcut − δrcut.

While the R̃k(r) are not themselves orthogonal, they can be used to write
orthogonal basis functions Rn(r) = ∑

k S
−1/2
nk R̃k(r), where the overlap matrix

Skk′ =
∫

drr2R̃k(r)R̃k′(r) can be computed analytically. The full decomposition of
the translationally invariant environmental ket can then be obtained without recourse
to numerical integration.

Once the spherical decomposition of the atomic density has been obtained, the
coefficients can be combined to give the SOAP representations of order 1 and 2.
Particularly in the presence of many different chemical species, the number of
components can become enormous. Ignoring for simplicity a few symmetries, and
the fact that if all species do not appear in every environment it is possible to
store a sparse representation of the representation, the power spectrum contains
a number of components of the order of n2

speciesn
2
maxlmax, which can easily reach

into the tens of thousands. In the case of the tensorial λ-SOAP the number
increases further to λ2n2

speciesn
2
maxlmax. It is however not necessary to compute

and store all of these representations: each of them, or any linear combination, is
a spherical invariant (covariant) description of the environment and can be used
separately as a representation. This can be exploited to reduce dramatically the

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 121

computational cost and the memory footprint of a SOAP calculation, determining a
low-rank approximation of the representation. One can use dimensionality reduction
techniques similar to those discussed in Sect. 6.2.1 to identify the most suitable
reference structures. As shown in Ref. [26], both CUR decomposition and a greedy
selection strategy based on farthest point sampling make it possible to reduce by
more than 95% the number of SOAP representations that are needed to predict the
energy of small organic molecules with chemical accuracy.

6.3.7 Back to the Structures

Whenever one is interested in computing properties that are associated to individual
atoms (for instance, their NMR chemical shieldings [68], or the forces) one
can use directly the representations corresponding to each environment, or the
kernel between two environments, as the basis for a linear or non-linear regression
model. As discussed in Sect. 6.2, it is often the case that one is interested in
using as structure labels some properties that are instead associated with the
entirety of a structure—e.g. its cohesive energy, its dielectric constant, etc. In these
cases a ridge regression model should be used that is based on “global” kernels
between the structures, K(A,B), rather than those between individual atom-centred
environments. This is reflected in how the kernels between environments should be
combined to give a kernel that is suitable to represent the relation between local
environments and the overall property of a structure. When the target property can
be seen as an additive combination of local, atom-centred contributions, the most
natural (and straightforward) choice, that is consistent with Eq. (6.13), is

K(A,B) =
∑

j∈A,k∈B
K(Xj ,Xk). (6.59)

It is worth stressing that in the case where the environment kernel is a linear kernel
based on SOAP representations, this sum-kernel can be written in terms of a global
representation associated with the entire structure,

K(A,B) =
〈
A(ν)

∣∣∣B(ν)
〉
, (6.60)

where we introduced

|A(ν)〉 =
∑
j∈A

|Xj
(ν)〉. (6.61)

An alternative way to combine the information from individual environments in a
symmetrized global kernel corresponds to averaging the Fourier coefficients of each
environment,

〈αnlm|A〉 =
∑
j∈A
〈αnlm|Xj 〉 (6.62)

122 G. Csányi et al.

and then taking the Haar integral of the resulting sum. For instance, for ν = 2,

〈
αnα′n′l

∣∣∣Ā(2)
〉
=
∑
m

〈αnlm|A〉〈A|α′n′lm〉. (6.63)

The form Eq. (6.59) is more general, and one can readily introduce non-linear
kernels such as 〈Xj

(ν)|Xk
(ν)〉ζ for which an explicit expression for the representa-

tions would be too cumbersome. Equation (6.59) also suggests that the combination
of environment kernels could be generalized by introducing a weighting matrix

KW(A,B) =
∑

j∈A,k∈B
Wjk(A,B)K(Xj ,Xk). (6.64)

One could, for instance, determine the importance of each environment within a
structure, and set Wjk(A,B) = wj(A)wk(B). Alternatively, one can use techniques
from optimal transport theory [69] to define an entropy-regularized matching
(REMatch) procedure [24], in which Wjk is a doubly stochastic matrix that matches
the most similar environments in the two structures, disregarding the environmental
kernels between very dissimilar environments

W(A,B) = argmin
W∈U(NA,NB)

∑
jk

Wjk

[
d2(Xj ,Xk)+ γ lnWjk

]
, (6.65)

where d2 indicates the kernel-induced squared distance Eq. (6.9). The parameter
γ weights the entropy regularization and makes it possible to interpolate between
strict matching of the most similar pairs of environments (γ → 0) to an average
kernel that weights all pairs equally (γ → ∞). Although this construction
complicates considerably the combination of local kernels, it provides a strategy to
introduce an element of non-locality in the comparison between structures. Given
the cost of computing the REMatch kernel, and the fact that it prevents using
some sparsification strategies that act at the level of individual environments, this
method should be used when the target property is expected to exhibit very strong
non-additive behaviour, e.g. when just one portion of the system is involved—
for instance, when determining the activity of a drug molecule, a problem for
which REMatch has been shown to improve dramatically the accuracy of the ML
model [23].

6.3.8 Multi-Kernel Learning

We have shown that SOAP representations can be seen as just one possible
embodiment of a general class of rotationally symmetrized density-based repre-
sentations, that also encompasses other popular representations for atomic-scale
machine learning, and that can be tuned to a great extent, e.g. by changing the

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 123

way different components are weighted. The fact that different representations can
be computed within the same formalism does not imply they are fully equivalent:
each expression or kernel emphasizes different components of the structure/property
relations. For instance, kernels with varying radial scaling or cutoff distance focus
the machine-learning model on short-, mid-, or long-range interactions. It is then
natural to consider whether a better overall model can be constructed by combining
representations that are associated with different cutoff distances, or different levels
of body-order expansions. This can be achieved by a weighted combination of
kernels of the form

Ktot(A,B) =
∑
ℵ

wℵKℵ(A,B), (6.66)

where each Kℵ corresponds to a distinct model.
This is equivalent to an additive model for a property, similar to the construction

of an atom-centred decomposition of the total energy in Eq. (6.12). In this case,
instead, the property y associated with each structure is written as the sum of
contributions yℵ(A) that are associated with the various kernels Kℵ

y(A) =
∑
ℵ

yℵ(A) =
∑
ℵ,B

xBwℵKℵ(A,B), (6.67)

where xB are the kernel regression weights for each of the representative structures
B. The weights wℵ correspond to the estimated contribution that each model will
give to the final property and can be obtained by cross-validation, or by physical
intuition. For instance, in the case of multiple radial cutoffs, it is found that much
smaller weights should be associated with long-range kernels, consistent with the
fact that distant interactions contribute a small (although often physically relevant)
contribution to the total energy [23]. It should also be noted that, provided that
the representations corresponding to the kernels are linearly independent, Eq. (6.66)
effectively corresponds to a feature space of increased dimensionality, obtained by
concatenating the representations that are—implicitly or explicitly—associated with
each kernel.

6.4 Conclusions

We have laid out a mathematical framework, based on the concept of the atomic
density, for building representations of atomic environments that preserve the geo-
metric symmetries, and chemically sensible limits. Coupled with kernel regression,
this allows the fitting of complex models of physical properties on the atomic scale,
both scalars like interatomic potentials (force fields), and tensors such as multipole
moments and quantum mechanical operators. We discuss in general terms how ker-
nel regression can be extended to include a sparse selection of reference structures
and to predict and learn from linear functionals of the target property. To leverage

124 G. Csányi et al.

the many formal similarities between kernel regression and quantum mechanics, we
use a Dirac bra-ket notation to formulate the main results concerning the SOAP
representations. This notation also helps making apparent the relationship between
SOAP representations and other popular density-based approaches to represent
atomic structures. The framework can be extended and tuned in many different
ways to incorporate insight about the relations between properties, structures, and
representations. With physical principles such as symmetry and nearsightedness of
interactions at its core, we believe this formulation is ideally suited to provide a
unified framework to machine learn atomic-scale properties.

Nomenclature

A An item—structure or atomic environment for which one
wants to predict a property

K(A,B) The kernel function computed between items A and B
N Number of input structures in the training set
M Number of structures in the representative set
x The vector of KRR weights, also written as xM ; the

weight associated with a structure B is indicated as xB
y The vector containing the values of the target property,

also written as yN . yB indicates the value for the item B
‖ · ‖ The 2-norm of the quantity ·
‖ · ‖F The Frobenius norm of the quantity ·
K Kernel matrix
KMN Slice of the kernel matrix K, corresponding to rows in set

M and columns in set N
‖ · ‖A The 2-norm of the quantity ·, in the metric given by A
�K Sum-kernel, defined as the sum of the regular kernel over

a set of configurations←−∇ Derivative operator applying to the first argument of the
kernel matrix−→∇ Derivative operator applying to the second argument of
the kernel matrix

K∇AB Derivative of the kernel matrix, applying to its first
argument, with respect to the coordinates of atoms in
structure A, with structure B as its second argument

L̂ Linear operator connecting the observed values y with the
unobserved atomic energies y′

|A〉 An abstract vector that describes the input A

(continued)

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 125

〈A|B〉 The scalar product between the features associated with
A and B. Could be either an explicit scalar product, or an
abstract notation equivalent to K(A,B)

gi(r) A smooth function—typically a Gaussian that is used to
represent the density associated with atom i

|α〉 An abstract vector that represents the chemical species α

r Position in 3D Cartesian coordinates
r The modulus of the vector r
r̂ The unit vector r/r
ri Position of the i-th atom
rij Displacement vector ri − rj between the i-th and j -th

atoms
ψα
Xj

(r) The atom density of species α centred around the j -th
atom

Y l
m(r̂) The l, m-th spherical harmonic

Rn(r) The n-th orthogonal radial basis function
|Xj

(ν)〉 The spherically averaged SOAP representation of order ν
〈Xj

(ν)|Xk
(ν)〉ζ The normalized SOAP kernel of order ν and non-linear

exponent ζ
Dl

mm′(R̂) The Wigner rotation matrix associated with the rotation

R̂

〈αnα′n′l|Xj
(2)〉 The radial/spherical representation of the SOAP ν = 2

vector, corresponding to the power spectrum between
species α and α′

〈l1 m1 l2 m2|l m〉 A Clebsch–Gordan coefficient
Tλμ The μ-th component of the irreducible spherical compo-

nent of order λ for the tensorial quantity T
|X(ν)

j,λμ〉 The λ-SOAP representation of order ν, corresponding to
the irreducible spherical component λμ centred on atom
j

References

1. M. Ceriotti, M.J. Willatt, G. Csányi, Machine-learning of atomic-scale properties based on
physical principles, in Handbook of Materials Modeling, ed. by W. Andreoni, S. Yip (Springer,
Cham, 2019)

2. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2004)
3. D.W. Brenner, Phys. Status Solidi B 217, 23 (2000)
4. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577–606 (2009)
5. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301

(2012)
6. F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094–

1101 (2015)

126 G. Csányi et al.

7. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Phys. Rev. Lett. 120(14), 143001 (2018)
8. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2016)
9. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press,

Cambridge, 2006)
10. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond (MIT Press, Cambridge, 2002)
11. W.J. Szlachta, A.P. Bartók, G. Csányi, Phys. Rev. B Condens. Matter 90(10), 104108 (2014).

https://doi.org/10.1103/PhysRevB.90.104108
12. D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Phys. Rev. Mater. 2(1), 013808 (2018)
13. N. Bernstein, J.R. Kermode, G. Csányi, Rep. Prog. Phys. 72(2), 026501 (2009). https://doi.org/

10.1088/0034-4885/72/2/026501
14. V.L. Deringer, G. Csányi, Phys. Rev. B 95(9), 094203 (2017). https://doi.org/10.1103/physrevb.

95.094203
15. S. Fujikake, V.L. Deringer, T.H. Lee, M. Krynski, S.R. Elliott, G. Csányi, J. Chem. Phys. 148,

241714 (2018)
16. A.N. Tikhonov, A. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical Methods for the

Solution of Ill-Posed Problems (Kluwer Academic, Dordrecht, 1995)
17. J.A. Hartigan, M.A. Wong, J. R. Stat. Soc. Ser. C Appl. Stat. 28(1), 100 (1979)
18. S. Prabhakaran, S. Raman, J.E. Vogt, V. Roth, Joint DAGM (German Association for Pattern

Recognition) and OAGM Symposium (Springer, Berlin, 2012), pp. 458–467
19. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017). https://doi.org/10.

1016/j.commatsci.2017.08.031.
20. B. Huang, O.A. von Lilienfeld (2017). arxiv:1707.04146 . http://arxiv.org/abs/1707.04146v3
21. T.F. Gonzalez, Theor. Comput. Sci. 38, 293 (1985)
22. M. Ceriotti, G.A. Tribello, M. Parrinello, J. Chem. Theory Comput. 9, 1521 (2013)
23. A.A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R.J. Kermode, G. Csányi, M. Ceriotti, Sci.

Adv. 3, e1701816 (2017)
24. S. De, A.A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016)
25. M.W. Mahoney, P. Drineas, Proc. Natl. Acad. Sci. USA 106, 697 (2009)
26. G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, M. Ceriotti, J. Chem. Phys. 148, 241730

(2018)
27. J.Q. Quinonero-Candela, C.E. Rasmussen, J. Mach. Learn. Res. 6, 1939–1959 (2005)
28. E. Snelson, Z. Ghahramani, Advances in Neural Information Processing Systems (2005)
29. E. Solak, C.E. Rasmussen, D.J. Leith, R. Murray-Smith, W.E. Leithead, Advances in Neural

Information Processing Systems (2003)
30. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)
31. A.P. Bartók, M.J. Gillan, F.R. Manby, G. Csányi, Phys. Rev. B 88(5), 054104 (2013). https://

doi.org/10.1103/PhysRevB.88.054104
32. A.P. Bartók, G. Csányi, Int. J. Quant. Chem. 116(13), 1051 (2015). https://doi.org/10.1002/

qua.24927
33. S.T. John, G. Csányi, J. Phys. Chem. B 121(48), 10934 (2017). https://doi.org/10.1021/acs.

jpcb.7b09636
34. V.L. Deringer, C.J. Pickard, G. Csányi, Phys. Rev. Lett. 120(15), 156001 (2018). https://doi.

org/10.1103/PhysRevLett.120.156001
35. M.A. Caro, V.L. Deringer, J. Koskinen, T. Laurila, G. Csányi, Phys. Rev. Lett. 120(16), 166101

(2018). https://doi.org/10.1103/PhysRevLett.120.166101
36. P. Rowe, G. Csányi, D. Alfè, A. Michaelides, Phys. Rev. B 97(5), 054303 (2018). https://doi.

org/10.1103/PhysRevB.97.054303
37. T.T. Nguyen, E. Szekely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A.W. Götz,

F. Paesani, J. Chem. Phys. 148, 241725 (2018)
38. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv.

3(5), e1603015 (2017). https://doi.org/10.1126/sciadv.1603015
39. A. Glielmo, C. Zeni, A.D. Vita, Phys. Rev. B 97(18) (2018). https://doi.org/10.1103/physrevb.

97.184307

https://doi.org/10.1103/PhysRevB.90.104108
https://doi.org/10.1088/0034-4885/72/2/026501
https://doi.org/10.1088/0034-4885/72/2/026501
https://doi.org/10.1103/physrevb.95.094203
https://doi.org/10.1103/physrevb.95.094203
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
http://arxiv.org/abs/1707.04146v3
https://doi.org/10.1103/PhysRevB.88.054104
https://doi.org/10.1103/PhysRevB.88.054104
https://doi.org/10.1002/qua.24927
https://doi.org/10.1002/qua.24927
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1103/PhysRevLett.120.156001
https://doi.org/10.1103/PhysRevLett.120.156001
https://doi.org/10.1103/PhysRevLett.120.166101
https://doi.org/10.1103/PhysRevB.97.054303
https://doi.org/10.1103/PhysRevB.97.054303
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1103/physrevb.97.184307
https://doi.org/10.1103/physrevb.97.184307

6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles 127

40. C. Zeni, K. Rossi, A. Glielmo, A. Fekete, N. Gaston, F. Baletto, A. Dr Vita, J. Chem. Phys.
148(23), 234106 (2018)

41. M.J. Willatt, F. Musil, M. Ceriotti, J. Chem. Phys. 150, 154110 (2019)
42. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013)
43. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)
44. S. Kajita, N. Ohba, R. Jinnouchi, R. Asahi, Sci. Rep. 7, 1 (2017)
45. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89,

205118 (2014)
46. W. Yang, Phys. Rev. Lett. 66, 1438 (1991)
47. G. Galli, M. Parrinello, Phys. Rev. Lett. 69, 3547 (1992)
48. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)
49. E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. USA 102, 11635 (2005)
50. H. Eshet, R.Z. Khaliullin, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. Lett. 108, 115701

(2012)
51. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. USA 113, 8368 (2016)
52. B. Cheng, J. Behler, M. Ceriotti, J. Phys. Chem. Lett. 7, 2210 (2016)
53. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017)
54. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285, 316

(2015)
55. A. Haar, Ann. Math. 34, 147 (1933)
56. J. Tersoff, Phys. Rev. B 39, 5566 (1989)
57. G.R. Medders, V. Babin, F. Paesani, J. Chem. Theory Comput. 10, 2906 (2014)
58. J.A. Moriarty, Phys. Rev. B 42, 1609 (1990)
59. R. Drautz, Phys. Rev. B 99, 014104 (2019)
60. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13, 5255 (2017)
61. M.J. Willatt, F. Musil, M. Ceriotti, Phys. Chem. Chem. Phys. 20, 29661 (2018)
62. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16), 161102 (2016). https://doi.org/10.

1063/1.4964627
63. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148, 241717

(2018)
64. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum

(World Scientific, Singapore, 1988)
65. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95, 214302 (2017)
66. A. Grisafi, D.D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018)
67. D.M. Wilkins, A. Grisafi, Y. Yang, K.U. Lao, R.A. DiStasio, M. Ceriotti, Proc. Natl. Acad. Sci.

USA 116, 3401 (2019)
68. F.M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti, L. Emsley, Nat. Commun. 9, 4501

(2018)
69. M. Cuturi, in Advances in Neural Information Processing Systems, vol. 26, ed. by C.J.C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (Curran Associates, Inc.,
Red Hook, 2013), pp. 2292–2300

https://doi.org/10.1063/1.4964627
https://doi.org/10.1063/1.4964627

7Accurate Molecular Dynamics Enabled by
Efficient Physically ConstrainedMachine
Learning Approaches

Stefan Chmiela, Huziel E. Sauceda, Alexandre Tkatchenko,
and Klaus-Robert Müller

Abstract

We develop a combined machine learning (ML) and quantum mechanics
approach that enables data-efficient reconstruction of flexible molecular force
fields from high-level ab initio calculations, through the consideration of
fundamental physical constraints. We discuss how such constraints are recovered
and incorporated into ML models. Specifically, we use conservation of energy—
a fundamental property of closed classical and quantum mechanical systems—to
derive an efficient gradient-domain machine learning (GDML) model. The
challenge of constructing conservative force fields is accomplished by learning
in a Hilbert space of vector-valued functions that obey the law of energy
conservation. We proceed with the development of a multi-partite matching
algorithm that enables a fully automated recovery of physically relevant point
group and fluxional symmetries from the training dataset into a symmetric variant
of our model. The symmetric GDML (sGDML) approach is able to faithfully
reproduce global force fields at the accuracy high-level ab initio methods, thus
enabling sample intensive tasks like molecular dynamics simulations at that level
of accuracy. (This chapter is adapted with permission from Chmiela (Towards
exact molecular dynamics simulations with invariant machine-learned models,
PhD thesis. Technische Universität, Berlin, 2019).)

S. Chmiela (�) · H. E. Sauceda · K.-R. Müller
Machine Learning Group, Technische Universität Berlin, Berlin, Germany
e-mail: stefan@chmiela.com

A. Tkatchenko
Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg,
Luxembourg

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_7&domain=pdf
mailto:stefan@chmiela.com
https://doi.org/10.1007/978-3-030-40245-7_7

130 S. Chmiela et al.

7.1 Introduction

Molecular dynamics (MD) simulations have become an indispensable atomistic
modeling tool, revealing the equilibrium thermodynamic and dynamical properties
of a system, while simultaneously providing atomic-scale insight. The predictive
power of such simulations is crucially determined by the accuracy of the underlying
description of inter-atomic forces, which is typically the limiting factor. Most com-
monly, the inter-atomic forces are obtained from classical potentials, which provide
a mechanistic description in terms of fixed interaction patterns between bonds and
bond angles within a molecule. In contrast to exact ab initio methods, classical
force fields are computationally affordable enough to allow for long simulation
time scales, but their simplistic characterization of atomic interactions prevents them
from capturing wide range of important effects, such as the anharmonic nature of
atomic bonds, charge transfer, and many-body effects [1].

As an alternative, a series of methodological advances in the field of machine
learning (ML) [2–55] have yielded universal approximators with virtually no
inherent flexibility restrictions. Parametrized from high-level ab initio reference
calculations, they are theoretically able to represent arbitrarily accurate force fields
that faithfully capture key quantum effects, as represented in the training data.
However, the major handicap of such off-the-shelf solutions is that they require
extraordinary amounts of computationally expensive reference calculations until
convergence to a useful level of predictive robustness. This limits their practicality,
as the full procedure of data generation, training, and inference has to outpace the
reference method that the ML model is based on. Only then do ML models represent
a meaningful addition to existing approaches.

This predicament suggests that a tight integration between ML and fundamental
concepts from physics is necessary to close the gap between efficient FFs and
accurate high-level ab initio methods. To this end, we review ideas of how to
take advantage of conserved quantities in dynamical processes in addition to other
physical laws in order to inform universal approximators without compromising
their generality. In doing so, we focus statistical inference on the challenging
aspects of the problem, while readily available a priori knowledge about the atomic
interactions is represented exactly and artifact-free through explicit constraints. A
key philosophical difference distinguishes this approach from classical FFs: we
aim to exclude physically impossible interactions, as opposed to (approximately)
parametrizing known behavior. Inherent modeling biases can thus be avoided. It is a
fascinating prospect, that the necessary constraints can often be expressed in simple
terms, although they originate from complex interactions, as many regularities can
be exploited without an explicit concept of the underlying principles that cause
them. For example, Noether’s theorem [56] allows us to derive symmetry constraints
as conservation laws from the Lagrangian.

We approach this challenge using principles of probabilistic inference, which
define a set of hypotheses and conditions them on the made observations. The result-
ing predictions are particularly robust to overfitting, because all viable hypotheses

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 131

that agree with the data are taken into account. The incorporation of strong
priors restricts this set of hypotheses, which carries data-efficiency advantages over
approaches that start from a more general set of assumptions. The so-called Hilbert
space learning algorithms [57] will enable us to rigorously incorporate fundamental
temporal and spatial symmetries of atomic systems to create models for which
parametrization from highly accurate, but costly coupled-cluster reference data
becomes viable. In the end, we will be able to perform sampling intensive, long-
time scale path-integral MD at that level of accuracy.

7.2 Hilbert Space Learning

Supervised ML infers a relationship between pairs of inputs x ∈ X and associated
outputs y ∈ Y from a finite training set of M examples. The objective is to
formulate a hypothesis that generalizes beyond these known data points, which is
estimated by measuring the prediction error of the model on an independent test set.
While data efficiency, in the sense of a quickly converging generalization error with
growing training set size, is certainly a consideration, it has rarely been the primary
focus in typical ML application domains. These fields are typically fortuned with
an abundance of data and the need for ML purely arises from the lack of theory
to describe the sought-after mapping. For example, there is no rigorous way of
deriving the contents of an image from its pixel values and the best results are
currently achieved by deep neural networks that match each input against hundreds
of thousands of characteristic patterns for the respective image class. Here, it does
not matter that several millions of example images were needed until the model was
able to give useful predictions, because it is the best tool available.

However, the data efficiency demands are much more stringent in the sciences
where the baseline is an essentially exact theory and the role of ML algorithms is
to forego some of the computational complexity by means of empirical inference.
Naturally, this also means that a considerable computational cost is associated with
the generation of high-level ab initio training data in that case, making it rare.
Practically obtainable datasets of that quality are thus often too small to enable deep
learning architectures to play up their strengths.

A more efficient alternative is provided by Hilbert space learning algorithms,
as they operate in spaces of functions that match prior beliefs about the observed
process. While a small number of training points is not enough to condition
general estimators adequately, it might be sufficient to constrain a well-behaved,
physically meaningful function space. This is alluring, because even complex
physical processes involve quantities with well understood properties that can be
exploited to define the structure of those Hilbert spaces. In the following, we briefly
review the fundamentals of Hilbert space learning and highlight different ways of
incorporating prior knowledge.

132 S. Chmiela et al.

7.2.1 Hilbert Spaces

A Hilbert space H is a vector space over R with an inner product that yields a
complete metric space. The inner product gives rise to a norm ‖x‖ = √〈x, x〉,
which induces a distance metric d(x, x′) = ‖x − x′‖, for x, x′ ∈ H. Although any
N -dimensional Euclidean space RN is technically a Hilbert space, this formalism
becomes particularly interesting in infinite dimension, where H is a space of
functions, while retaining almost all of linear algebra from vector spaces [57, 58].

7.2.1.1 Reproducing Kernels
Many ML algorithms make use of infinite-dimensional Hilbert spaces indirectly
via the so-called kernel-trick, which allows to express inner products of mappings
� : X→ H in terms of inputs x ∈ X via a kernel function k : X× X→ R:

k(x, x′) = 〈�(x),�(x′)〉H. (7.1)

Equation (7.1) holds true for any symmetric and positive semidefinite kernel, i.e. it
is required that k(x, x′) = k(x′, x) and any linear combination f = ∑

i αi�(xi)

with αi ∈ R must satisfy

〈f, f 〉H =
∑
ij

αiαj k(xi , xj) ≥ 0. (7.2)

These two properties guarantee the reproducing property of H

f (x) = 〈k(·, x), f 〉H, (7.3)

due to which any evaluation of f corresponds to an inner product evaluation in
H between the representer k(·, x) = �(x) of x and the function itself. We say
that k is reproducing for a subset of H, the reproducing kernel Hilbert space
(RKHS). Intuitively, this means that the feature maps �(xi) for all training points
i ∈ [1, . . . ,M] provide an over-complete basis for the RKHS [58].

7.2.1.2 Representer Theorem
The computational tractability of Hilbert space learning algorithms is afforded by
the representer theorem which states that in an RKHS H, the minimizer f̂ ∈ H of
a loss function L : Y×Y→ R in a regularized risk functional with λ > 0,

f̂ = arg min
f∈F

[
1

M

M∑
i

L(f (xi), yi)+ λ‖f ‖2

]
, (7.4)

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 133

admits a representation of the form

f (·) =
M∑
i

αik(·, xi) (7.5)

for any αi . It therefore reduces the infinite-dimensional minimization problem in
a function space to finding the optimal values for an M-dimensional vector of
coefficients α [57, 59, 60]. Because we are not fitting a model with a fixed number
of predetermined parameters, Hilbert space algorithms are generally regarded as
non-parametric methods, i.e. the complexity of the model is able to grow with the
amount of available data.

7.2.2 Gaussian Process Models

When formulated in terms of the squared loss L(f̂ (x), y) = (f̂ (x) − y)2, the
regularized risk functional in Eq. (7.4) can be interpreted as the maximum a
posteriori estimate of a Gaussian process (GP) [57]. One common perspective on
GPs is that they specify a prior distribution over a function space. GPs are defined as
a collection of random variables that jointly represent the distribution of the function
f (x) at each location x and thus as a generalization of the Gaussian probability
distribution from vectors to functions. This conceptual extension makes it possible
to model complex beliefs.

At least in part, the success of GPs—in contrast to other stochastic processes—
can be attributed to the fact that they are completely defined by only the first-
and second-order moments, the mean μ(x), and covariance k(x, x′) for all pairs
of random variables [61]:

f (x) ∼ GP
[
μ(x), k(x, x′)

]
. (7.6)

Any symmetric and positive definite function is a valid covariance that specifies
the prior distribution over functions we expect to observe and want to capture by a
GP. Altering this function can change the realizations of the GP drastically: e.g.
the squared exponential kernel k(x, x′) = exp(−‖x − x′‖2σ−1) (with a freely
selectable length-scale parameters σ) defines a smooth, infinitely differentiable
function space, whereas the exponential kernel k(x, x′) = exp(−‖x − x′‖σ−1)

produces a non-differentiable realizations. The ability to define a prior explicitly
gives us the opportunity to express a wide range of hypotheses like boundary
conditions, coupling between variables or different symmetries like periodicity or
group invariants. Most critically, the prior characterizes the generalization behavior
of the GP, defining how it extrapolates to previously unseen data. Furthermore,
the closure properties of covariance functions allow many compositions, providing
additional flexibility to encode complex domain knowledge from existing simple
priors [62].

134 S. Chmiela et al.

The challenge in applying GP models lies in finding a kernel that represents the
structure in the data that is being modeled. Many kernels are able to approximate
universal continuous functions on a compact subset arbitrarily well, but a strong
prior restricts the hypothesis space and drastically improves the convergence of
a GP while preventing overfitting [63]. Each training point conditions the GP,
which allows increasingly accurate predictions from the posterior distribution over
functions with growing training set size.

A number of attractive properties beyond their expressivity make GPs particu-
larly useful in the physical sciences:

• There is a unique and exact closed form solution for the predictive posterior,
which allows GPs to be trained analytically. Not only is this faster and more
accurate than numerical solvers, but also more robust. For example, choosing the
hyper-parameters of the numerical solver for NNs often involves intuition and
time-consuming trial and error.

• Because a trained model is the average of all hypotheses that agree with the
data, GPs are less prone to overfit, which minimizes the chance of artifacts in
the reconstruction [64]. Other types of methods that start from a more general
hypothesis space require more complex regularization schemes.

• Lastly, their simple linear form makes GPs easier to interpret, which simplifies
analysis of the modeled phenomena and supports theory building.

7.2.2.1 Gaussian Process Regression
It is straightforward to use GPs for regression: Given a sample (X, y) = {(xi , yi)}Mi ,
we compute the sample covariance matrix (K)ij = k(xi , xj) and use the posterior
mean

μ(x) = E[f (x)] = kX(x)�(K+ λI)−1y (7.7)

to make predictions about new points x. Here, kX(x) = [k(x, x1), . . . , k(x, xM)]�
is the vector of covariances between the new point x and all training points. In
the frequentist interpretation, this algorithm is also referred to as kernel ridge
regression.

We can also calculate the variability of the hypotheses at every point via the
posterior variance

σ 2(x) = E
[
(f (x)− μ(x))2

]
= k(x, x)− kX(x)�(K+ λI)−1kX(x), (7.8)

which gives us an idea about the uncertainty of the prediction. We remark here, that
the posterior variance is generally not a measure for the accuracy of the prediction.
It rather describes how well the hypothesized space of solutions is conditioned by
the observations and whether the made assumptions are correct.

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 135

7.3 Encoding Prior Knowledge

Prior knowledge about the problem at hand is an essential ingredient to the
learning task, as it can drastically increase the efficiency of the training process and
robustness of the reconstruction. An ML model that starts from weak assumptions
will require more training data to achieve the same performance, compared to one
that is restricted to solutions with certain known properties. A unique feature of GPs
is that they provide a direct way to incorporate such constraints on the hypothesis
space [58].

In the context of this chapter, we are particularly interested in regularities that
arise from invariances and symmetries of physical systems. Sure enough, the idea
to reduce equations in a way that leaves them invariant is not new in physics.
In fact, Jacobi already developed a procedure to simplify Hamilton’s dynamical
equations of mechanics based on the conserved quantities of dynamical systems [65]
in the middle of the eighteenth century. Heisenberg was the first to apply group
theory to quantum mechanics, where he exploited the permutational symmetry
of indistinguishable quantum particles in 1926. Even in modern physics, new
symmetries are still routinely discovered [66].

Here, we will review the three most important ways to include prior knowledge
into GPs: via the representation of the input, the construction of suitable mean,
and the covariance functions. As the choice of covariance function is especially
important, which is why we will describe several distinct ways to construct them.

7.3.1 Representation

Once the data is captured, it needs to be represented in terms of features that are
considered to be particularly informative, i.e. well-correlated with the predicted
quantity. For example, parametrizing a molecular graph in terms of dihedral angles
instead of pairwise distances might be advantageous when modeling complex
transition paths.

The representation of the data also provides the first opportunity to incorporate
known invariances of the task at hand. Especially in physical systems, there are
transformations that leave its properties invariant, which introduces redundancies
that can be exploited with a representation that shares those symmetries.

For example, physical systems can generally be translated and rotated in space
without affecting their attributes. Often, the invariances extend to more interesting
group of transformations like rotations, reflections, or permutations, providing
further opportunities to reformulate the learning problem into a simpler, but
equivalent one. Conveniently, any non-linear map D : X → D of the input to
a covariance function yields another valid covariance function, providing a direct
way to incorporate desired invariances into existing kernels [67].

136 S. Chmiela et al.

7.3.2 Covariance Function

Symmetries in the input data naturally translate to symmetries in the output. If
a molecular graph is mirror symmetric, so will be its potential energy surface.
However, sometimes there is structure in the output that is not tied to the input
at all. This is the case when the predicted property is subject to a conservation law,
e.g. the energy of a system is conserved as its geometry propagates through time.
There is no representation of individual data points that would be able to capture
this kind of symmetry.

Instead, conservation laws have to be incorporated as constraints into the
predictor, to restrict the space of eligible solutions. This is achieved elegantly in GPs,
via modification of the covariance function in a way that gives rise to a prior that
obeys the desired symmetry. Any function drawn from that prior will then inherit
the same invariances [58, 61]. Before developing a covariance function that fits
our problem, we will briefly highlight different ways to construct them. After all,
arbitrary functions of two inputs x, x′ ∈ X are not necessarily valid covariance
functions. For that purpose we will switch away from the probabilistic view that we
held so far and provide a perspective that is more intuitive in the physics context.

7.3.2.1 Integral Transforms
We can think of the covariance function as a kernel of a linear integral transform
that defines an operator

T̂kf (x) =
∫
X
k(x, x′)f (x′) dx′, (7.9)

which maps a function f (x) from one domain to another [61, 68]. In this view,
T̂kf (x) = f̂ (x) corresponds to the posterior mean of our GP. Note that T̂kf (x)
remains a continuous function even if we discretize the integration domain. This
is the case in the regression setting, when we are only able to observe our target
function partially, i.e. when f (x′) = ∑M

i=1 f (xi)δ(x′ − xi). With that in mind, an
integral operator can be regarded as a continuous generalization of the matrix-vector
product using a square matrix with entries (K)ij = k(xi , xj) and a vector α. Then,

(Kα)i =
M∑
j

k(xi , xj)αj (7.10)

is the discrete analogon to T̂kf (x) [69]. Note that this expression is closed under
linear transformation: any linear constraint Ĝ[T̂k] propagates into the integral and
gives rise to a new covariance function.

However, there are several alternative construction options, one of them through
explicit definition of the frequency spectrum of T̂k . Due to the translational sym-
metry of physical systems, we are particularly interested in stationary covariance
functions that only depend on pairwise distances δ = x − x′ between points. In

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 137

that setting, Bochner’s theorem says that symmetric, positive definite kernels can be
constructed via the inverse Fourier transform of a probability density function p(δ)

in frequency space [61, 67, 68, 70]:

k(δ) = F(p(δ)) =
∫

p(ω)e−iω�δdω. (7.11)

The following perspective might however be more intuitive when approaching
this problem form a physics background: Since T̂kf (x) is the reconstruction from
pointwise observations yi = f (xi), we are ideally looking for an operator that
leaves our unknown target function invariant, such that T̂kf (x) = f (x). This
is another way of saying that our estimate f̂ (x) lives in the space spanned by
the eigenfunctions ϕi ∈ F of the operator defined by the kernel function (with
coefficients ci ∈ R), giving

f̂ (x) =
∑
i

ciϕi(x) with T̂kϕi = λiϕi . (7.12)

It is impossible to overlook that there is a strong analogy between the covariance
function in a GP process and the Hamiltonian in the Schrödinger equation (SE).
Both operators formulate constraints that give rise to Hilbert space of possible states
of the modeled object, whether it is the wave-function or the hypothesis space of the
GP. Although this is where the similarities end, this connection certainly illustrates
that GPs are particularly suitable to reconstruct physical processes in a principled
way.

7.3.3 Mean Function

In most applications, the GP prior mean function μ(x) = 0 is set to zero, which leads
to predictions f̂ (x) ≈ 0 as ‖x − x′‖ → 0 for stationary kernels. Convergence to a
constant outside of the training regime is desirable for data-driven models, because
it means that the prediction degrades gracefully in the limit, instead of producing
unforeseeable results. However, if a certain asymptotic behavior of the modeled
function is known, the prior mean function offers the possibility to prescribe it. For
example, we could introduce a log barrier function

μ(x) = − log(b− x) (7.13)

that ramps up the predicted quantity towards infinity for x ≥ 0. In a molecular PES
model, such a barrier would represent an atom dissociation limit, which could be
useful to ensure that a dynamical process stays confined to the data regime as it
moves around the PES.

138 S. Chmiela et al.

In the spirit of how the Slater determinant in quantum mechanics accounts for
the average affect of electron repulsion without explicit correlation, the mean of a
GP can be used to prescribe a sensible predictor response outside of the data regime.

7.4 Energy-Conserving Force Field Reconstructions

A fundamental property that any molecular force field F(r1, r2, . . . , rN) must
satisfy is the conservation of total energy, which implies that

F(r1, r2, . . . , rN) = −∇E(r1, r2, . . . , rN). (7.14)

While any analytically derivable expression for the potential energy satisfies energy
conservation by definition, a direct reconstruction of a force field is more involved.
It requires mapping to an explicitly conservative vector field and thus special
constraints on the hypothesis space that the ML model navigates in. Before we
discuss how this can be implemented in practice, we will briefly review a number of
advantages that make this direct approach worthwhile.

7.4.1 Forces Are Quantum-Mechanical Observables

A major reason is the fact that atomic forces are true quantum-mechanical observ-
ables within the BO approximation by virtue of the Hellmann–Feynman theorem. It
provides a way to obtain analytical derivatives by relating changes in the total energy
δE with respect to any variation δλ of the Hamiltonian H through the expectation
value

∂E

∂λ
=
〈
�λ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣�λ

〉
. (7.15)

It thus allows the direct computation of forces F = −∂E/∂R as derivatives with
respect to nuclei positions R. Similar analogous expressions for density-based
approaches exist as well [71, 72]. Once the SE is solved for a particular atomic
configuration to compute the energy, this theorem makes the additional computation
of forces relatively cheap, by reusing some of the results (most importantly, the
parametrization of the wave-function �).

The appealing aspect about (analytic) force observations is that they are con-
siderably more informative, as they represent a linearization of the PES in all
directions of the 3N -dimensional configuration space, instead of a single point
evaluation. Gathering a similar amount of insight about the PES numerically via
energy examples would require solutions of the SE for at least 3N +1 perturbations
E(r1, . . . , ri + ε, . . . , r3N) of the original geometry at each point. Even then, the
obtained force would be subject to approximation error. In contrast, computing
analytical forces using the Hellman–Feynman theorem only requires about one to

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 139

seven times the computational effort of a single energy calculation. Effectively, this
theorem thus offers a more efficient way to sample PESs.

7.4.2 Differentiation Amplifies Noise

When force estimates are obtained via differentiation of an approximate PES
reconstruction, there are no guarantees regarding their quality, since forces are
neither constrained nor directly regularized within the loss function of an energy-
based model. Inevitably, this can lead to artifacts.

Reconstructions of functions based on a limited number of observations will
almost always not be error-free, either due to aliasing effects, non-ideal choice
of hypothesis space, or noisy training data [60]. Furthermore, the regularization
term in the loss function will reduce the variance of the model and thus promote
any approximation errors into the high-frequency band of the residual f − f̂ .
Unfortunately, the application of the derivative operator amplifies high frequencies
ω with increasing gain [73], drastically magnifying these errors. This phenomenon
can be easily understood when looking at the derivative of a model f̂ ′ in the
frequency domain

F
[
f̂ ′
]
= iωF

[
f̂
]

, (7.16)

where ω is a factor on the Fourier transform F[f̂] of the original model (see
Fig. 7.1). A low test error in the energy prediction task does therefore not necessarily
imply that the model also reconstructs the forces of the target function reliably.

si
n(
x)

co
s(
x)

x

-c
os

(x
)

Fig. 7.1 A noisy approximation of a sine wave (blue). Although all instantaneous values are
represented well, the derivative of the approximation is a poor estimator for the true derivative. This
is because differentiation amplifies the high-frequency noise component within the approximation
(middle). Integration on the other hand acts as a low-pass filter (right) that attenuates noise. It is
therefore easier to approximate a function with accurate first derivatives from derivative examples
instead of function values. Note that integrals are only defined up to an additive constant, which
needs to be recovered separately. Figure taken from Chmiela [74]

140 S. Chmiela et al.

Conversely, however, high-frequency noise is attenuated upon integration of a force
field estimate, which gives corresponding potentials with controlled variance.

7.4.3 Constructing Conservative Vector-Valued GPs

In the simplest, and by far most prevalent regression setting, a single output variable
y ∈ R is predicted from an input vector x ∈ RN . Being a scalar field, the
PES reconstruction problem fits this template; however, we intend to pursue the
reconstruction of the associated force field, i.e. the negative gradient of the PES,
instead. In that reformulation of the problem, the output y ∈ RN becomes vector-
valued as well, thus requiring a mapping f̂ : RN → RN .

Naively, we could model each partial force separately and treat them as indepen-
dent, implicitly assuming that the individual components of the force vector do not
affect each other. Then, a straightforward formulation of a vector-valued estimator
takes the form

f̂(x) =
[
f̂1(x), . . . , f̂N (x)

]�
, (7.17)

where each component f̂i : RN → R is a separate scalar-valued GP [75].
However, this assumed independence of the individual outputs is hard to justify
in many practical scenarios. Especially, since correlations between the individual
noise processes associated with each output channel could introduce dependencies
in the posterior process, even if they were independent a priori [61]. Bypassing
this dependence would therefore ignore valuable information and yield sub-optimal
estimates.

Instead of mapping to scalar outputs, we can alternatively model the covariance
function as a matrix k : X × X → RN×N that expresses the interaction among
multiple output components. Together with a vector-valued mean function μ : X→
RN , we can then sample realizations of vector-valued functions from the GP

f(x) ∼ GP
[
μ(x),k(x, x′)

]
. (7.18)

In this setting, the corresponding RKHS is vector-valued and it has been shown
that the representer theorem continues to hold [76]. Each component of the kernel
function kij specifies a covariance between a pair of outputs fi(x) and fj (x), which
makes it straightforward to impose linear constraints g(x) = Ĝ [f(x)] on the GP
prior

g(x) ∼ GP
[
Ĝμ(x), Ĝ k(x, x′) Ĝ′�

]
, (7.19)

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 141

Ground truth Examples General vector field Conservative field Solenoidal field

Helmholz decomposition

Fig. 7.2 Modeling gradient fields (leftmost subfigure) based on a small number of examples. With
GDML, a conservative vector field estimate f̂ is obtained directly (purple). In contrast, a naïve
estimator f̂− with no information about the correlation structure of its outputs is not capable to
uphold the energy conservation constraint (blue). We perform a Helmholtz decomposition of the
naïve non-conservative vector field estimate to show the error component due to violation of the
law of energy conservation (red). This significant contribution to the overall prediction error is
completely avoided with the GDML approach. Figure taken from Chmiela et al. [88]

and hence also the posterior [77–80]. Here, Ĝ and Ĝ′ act on the first and second
argument of the kernel function, respectively. Linear constraints are wide-spread in
physics. They include simple conservation laws, but also operations like differential
equations, allowing the construction of models that are consistent with the laws that
underpin many physical processes [81–85].

Here, we aim to construct a GP that inherits the correct structure of a conservative
force field to ensure integrability, so that the corresponding energy potential can
be recovered from the same model. We start by considering, that the force field
estimator f̂F(x) and the PES estimator f̂E(x) are related via some operator Ĝ. To
impose energy conservation, we require that the curl vanishes (see Fig. 7.2) for every
input to the transformed energy model1:

∇ × Ĝ
[
f̂E

]
= 0. (7.20)

As expected, this is satisfied by the derivative operator Ĝ = ∇ or, in the case of
energies and forces, the negative gradient operator

f̂F(x) = Ĝ
[
f̂E

]
(x) = −∇f̂E(x). (7.21)

1For illustrative purposes, we use the definition of curl in three dimensions here, but the theory
directly generalizes to arbitrary dimension. One way to prove this is via path-independence of
conservative vector fields: the circulation of a gradient along any closed curve is zero and the curl
is the limit of such circulations.

142 S. Chmiela et al.

As outlined previously, we can directly apply this transformation to a standard
scalar-valued “energy” GP with realizations fE : X3N → R. Since differentiation
is a linear operator, the result is another GP with realizations fF : X3N → R3N :

f̂F ∼ GP
[
−∇μ(x),∇xk(x, x′)∇�x′

]
. (7.22)

Note, that this gives the second derivative of the original kernel (with respect to
each of the two inputs) as the (co-)variance structure, with entries

kij = ∂2k

∂xi∂x′j
. (7.23)

It is equivalent (up to sign) to the Hessian ∇k∇� = Hessx(k) (i.e., second derivative
with respect to one of the inputs), provided that the original covariance function k is
stationary. A GP using this covariance enables inference based on the distribution of
partial derivative observations, instead of function values [86, 87]. Effectively, this
allows us to train GP models in the gradient domain.

This Hessian kernel gives rise to the following gradient domain machine
learning [88, 89] force model as the posterior mean of the corresponding GP:

f̂F(x) =
M∑
i

3N∑
j

(αi)j
∂

∂xj
∇k(x, xi) (7.24)

Because the trained model is a (fixed) linear combination of kernel functions,
integration only affects the kernel function itself. The corresponding expression for
the energy predictor

f̂E(x) =
M∑
i

3N∑
j

(αi)j
∂

∂xj
k(x, xi)+ c (7.25)

is therefore neither problem-specific nor does it require retraining. It is however only
defined up to an integration constant

c = 1

M

M∑
i

Ei + f̂E(xi), (7.26)

that we recover separately in the least-squares sense. Here, Ei are the energy
labels for each training example. We remark that this reconstruction approach yields
two models at the same time, by correctly implementing the fundamental physical
connection between kF and kE (Fig. 7.3).

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 143

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
or

ce
 p

re
di

ct
io

n
ac

cu
ra

cy
 [k

ca
l/m

ol
/A

]

0

0.1

0.2

0.3

E
ne

rg
y

pr
ed

ic
tio

n
ac

cu
ra

cy
 [k

ca
l/m

ol
]

Malonaldehyde
Benzene Uracil

Naphthalene
Aspirin

Salicylic acid
Ethanol

Toluene

0

5

10
N

um
be

r
of

 s
am

pl
es

x 1000

1
kc

al
/m

ol
/Å

1 kcal/mol/Å

a)

b)

c)

Fig. 7.3 Efficiency of GDML predictor versus a model that has been trained on energies. (a)

Required number of samples for a force prediction performance of MAE (1 kcal mol−1 Å
−1

) with
the energy-based model (gray) and GDML (blue). The energy-based model was not able to achieve
the targeted performance with the maximum number of 63,000 samples for aspirin. (b) Force
prediction errors for the converged models (same number of partial derivative samples and energy
samples). (c) Energy prediction errors for the converged models. All reported prediction errors
have been estimated via cross-validation. Figure taken from Chmiela et al. [88]

144 S. Chmiela et al.

7.5 Point Groups and Fluxional Symmetries

Atoms of the same species are interchangeable within a numerical representation of
the molecule, without affecting the corresponding energy or forces. This permuta-
tional invariance is directly inherited from the indistinguishability of identical atoms
in the nuclear Hamiltonian

Hn = Tn + Etot = Tn + Enn + Ee. (7.27)

Here, Tn and Enn are the kinetic and electrostatic energies of the nuclei and Ee

is the eigenvalue of the electronic Hamiltonian He. Ee inherits the parametrical
dependence on the nuclear coordinates of He, which is invariant with respect to
atomic permutations given its analytical form: He = Te+Eee+∑Nn

i=1

∑Ne

j=1
1

|Ri−rj | ,
where the Te and Eee are the electronic kinetic and electrostatic energies. Since the
dependence of He on the nuclear coordinates appears only as a sum, we can freely
permute the nuclear positions, defining the permutations symmetry over the whole
symmetric group.

For example, the benzene molecule with six carbon and six hydrogen atoms can
be indexed (and therefore represented) in 6!6! = 518,400 different, but physically
equivalent ways. However, not all of these symmetric variants are actually important
to define a kernel function that gauges the similarity between pairs of configurations.
To begin with, the 24 symmetry elements in the D6h point group of this molecule
are relevant. In addition to these rigid space group symmetries (e.g., reflections),
there are additional dynamic non-rigid symmetries [90] (e.g., rotations of functional
groups or torsional displacements) that appear as the structure transforms over
time. Fortunately, we can safely ignore the massive amount of the remaining
configurations in the full symmetric group of factorial size if we manage to
identify this relevant subset. While methods for identifying molecular point groups
for polyatomic rigid molecules are readily available [91], dynamical symmetries
are usually not incorporated in traditional force fields and electronic structure
calculations. This is because extracting non-rigid symmetries requires chemical and
physical intuition about the system at hand, which is hard to automate.

Since this is impractical in an ML setting, we will now review a physically
motivated algorithm for purely data-driven recovery of this particularly important
subgroup of molecular symmetries. This will allow us to incorporate these sym-
metries as prior knowledge into a GP to further improve the data-efficiency of the
model.

7.5.1 Positive-Semidefinite Assignment

We begin with the basic insight that MD trajectories consist of smooth consecu-
tive changes in nearly isomorphic molecular graphs. When sampling from these
trajectories the combinatorial challenge is to correctly identify the same atoms

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 145

across the examples such that the learning method can use consistent information
for comparing two molecular conformations in its kernel function. While the so-
called bi-partite matching allows to locally assign atoms R = {r1, . . . , rN } for
each pair of molecules in the training set, this strategy alone is not sufficient as
the assignment needs to be made globally consistent by multi-partite matching in
a second step [92–94]. The reason is that optimal bi-partite assignment yields
indefinite functions in general, which are problematic in combination with kernel
methods. They give rise to indefinite kernel functions, which do not define a Hilbert
space [95]. Practically, there will not exist a metric space embedding of the complete
set of approximate pairwise similarities defined in the kernel matrix and the learning
problem becomes ill-posed. A multi-partite correction is therefore necessary to
recover a non-contradictory notion of similarity across the whole training set. A
side benefit of such a global matching approach is that it can robustly establish
correspondence between distant transformations of a geometry using intermediate
pairwise matchings, even if the direct bi-partite assignment is not unambiguously
possible.

7.5.1.1 Solving theMulti-WayMatching Problem
We start by defining the bi-partite matching problem in terms of adjacency matrices
as representation for the molecular graph. To solve the pairwise matching problem
we therefore seek to find the assignment τ which minimizes the squared Euclidean
distance between the adjacency matrices A of two isomorphic graphs G and H with
entries (A)ij = ‖ri − rj‖, where P(τ) is the permutation matrix that realizes the
assignment:

arg min
τ

L(τ) =
∥∥∥P(τ)AGP(τ)� − AH

∥∥∥2
. (7.28)

Notably, most existing ML potentials use representations based on adjacency
matrices as input [2–5, 7–49, 52–54]. An optimal assignment in terms of Eq. (7.28)
therefore transfers to almost any other model and the GDML model in particular.

Adjacency matrices of isomorphic graphs have identical eigenvalues and eigen-
vectors, only their assignment differs. Following the approach of Umeyama [96],
we identify the correspondence of eigenvectors U by projecting both sets UG and
UH onto each other to find the best overlap. We use the overlap matrix

M = abs(UG)abs(UH)� (7.29)

after sorting eigenvalues and overcoming sign ambiguity. Then −M is provided as
the cost matrix for the Hungarian algorithm [97], maximizing the overall overlap
which finally returns the approximate assignment τ̃ that minimizes Eq. (7.28)
and thus provides the results of step one of the procedure. As indicated, global
inconsistencies may arise, observable as violations of the transitivity property
τjk ◦ τij = τik of the assignments [92]. Therefore a second step is necessary which
is based on the composite matrix P̃ of all pairwise assignment matrices P̃ij ≡ P(τ̃ij)

146 S. Chmiela et al.

Fig. 7.4 T-SNE [98] embedding of all molecular geometries in an ethanol training set. Each data
point is color coded to show the permutation transformations that align it with the arbitrarily chosen
canonical reference state (gray points). These permutations are recovered by restricting the rank of
the pairwise assignment matrix P̃ to obtain a consistent multi-partite matching P

within the training set. We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-partite matching
cost (see Eq. (7.28)) over the training set. The MST is constructed from the most
confident bi-partite assignments and represents the rank N skeleton of P̃, defining
also P (see Fig. 7.4). Finally, the resulting multi-partite matching P is a consistent
set of atom assignments across the whole training set.

As a first test, we apply our algorithm to a diverse set of non-rigid molecules that
have been selected by Longuet-Higgins [90] to illustrate the concept of dynamic
symmetries. Each of the chosen examples changes easily from one conformation to
another due to internal rotations that cannot be described by point groups. Those
molecules require the more complete permutation-inversion group of symmetry
operations that include energetically feasible permutations of identical nuclei. Our
multi-partite matching algorithm successfully recovers those symmetries from short
MD trajectories (see Table 7.1), giving us the confidence to proceed.

7.5.1.2 Symmetric Kernels
The resulting consistent multi-partite matching P enables us to construct symmetric
kernel-based ML models of the form

f̂ (x) =
M∑
ij

αij k(x,Pijxi), (7.30)

by augmenting the training set with the symmetric variations of each molecule [99].
A particular advantage of our solution is that it can fully populate all recovered

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 147

Table 7.1 Recovering the permutation-inversion (PI) group of symmetry operations of fluxional
molecules from short MD trajectories

Molecule PG order PI group order Recovered

Hydrazine 2 8 8

Ammonia 6 6 6

(Difluoromethyl)borane 2 12 12

Cyclohexane 6 12 12

Trimethylborane 2 324 339

Dimethylacetylene 6 36 39

Ethane 6 16 36

We used our multi-partite matching algorithm to recover the symmetries of the molecules used in
Longuet-Higgins [90]. Our algorithm identifies PI group symmetries (a superset that also includes
the PG), as well as additional symmetries that are an artifact of the metric used to compare
molecular graphs in our matching algorithm. Each dataset consists of a MD trajectory of 5000
time steps. Figure taken from Chmiela [74]

permutational configurations even if they do not form a symmetric group, severely
reducing the computational effort in evaluating the model. Even if we limit the
range of j to include all S unique assignments only, the major downside of this
approach is that a multiplication of the training set size leads to a drastic increase in
the complexity of the cubically scaling GP regression algorithm. We overcome this
drawback by exploiting the fact that the set of coefficients α for the symmetrized
training set exhibits the same symmetries as the data, hence the linear system can be
contracted to its original size, while still defining the full set of coefficients exactly.

Without affecting the pairwise similarities expressed by the kernel, we transform
all training geometries into a canonical permutation xi ≡ Pi1xi , enabling the use of
uniform symmetry transformations Pj ≡ P1j . Simplifying Eq. (7.30) accordingly,
gives rise to the symmetric kernel that we originally set off to construct

f̂ (x) =
M∑
i

αi

S∑
q

k(x,Pqxi)

=
M∑
i

αiksym(x, xi),

(7.31)

148 S. Chmiela et al.

Table 7.2 Relative increase
in accuracy of the
sGDML@DFT vs. the
non-symmetric GDML
model: the benefit of a
symmetric model is directly
linked to the number of
permutational symmetries in
the system

! MAE (%)

Molecule # Sym. in ksym Energy Forces

Benzene 12 −1.6 −62.3

Uracil 1 0.0 0.0

Naphthalene 4 0.0 −52.2

Aspirin 6 −29.6 −31.3

Salicylic acid 1 0.0 0.0

Malonaldehyde 4 −37.5 −48.8

Ethanol 6 −53.4 −58.2

Toluene 12 −16.7 −67.4

Paracetamol 12 −40.7 −52.9

Azobenzene 8 −74.3 −47.4

All symmetry counts in this table include the
identity transformation

and yields a model with the exact same number of parameters as the original, non-
symmetric one. This ansatz is known as invariant integration and frequently applied
to symmetrize ML potentials [17, 24, 100]. However, our solution, motivated by
the concept of permutation-inversion groups [90], is able to truncate the sum over
potentially hundreds of thousands permutations in the full symmetric group of the
molecule to a few physically reasonable ones. We remark that this step is essential
in making invariant integration practical beyond systems with five or six identical
atoms (with 5! = 120 and 6! = 720 permutations, respectively). For example, the
molecules benzene, toluene, and azobenzene each only have 12 physically relevant
symmetries, whereas the associated symmetric groups have orders 6!6!, 7!8!, and
12!10!2!, respectively. Our multi-partite matching algorithm is therefore able to
shorten the sum over S in Eq. (7.31) by up to 15 orders of magnitude, without
significant loss of accuracy.

The data-driven symmetry adaptation approach outlined above can be applied
universally, but in particular to the energy-conserving force field kernel that we
have derived in the previous section. It improves the data-efficiency of the model in
proportion to the number of symmetries that are present in molecules (see Table 7.2)
to the point that costly high-level coupled-cluster CCSD(T) calculations become
viable as reference data. We have shown that such a model effectively allows
converged MD simulations with fully quantized electrons and nuclei for molecules
with up to a few dozen atoms [101].

7.6 Conclusion

Typically, the parametrization of ML potentials relies on the availability of large
reference datasets to obtain accurate results, which prevents the construction of ML
models using costly high-level ab initio methods due to the exploding computational
cost. In this chapter, we have shown how to overcome this restrictive requirement

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 149

by informing the model with fundamental physical invariances and conservation
laws. Not only does this make the models more data-efficient, it also guarantees
that the incorporated physics are represented without artifacts. In particular, we
have successively developed a theoretical framework for construction of ML
potentials that include the full set of temporal and spatial symmetries of molecules.
Homogeneity of time implies energy conservation and global spatial symmetries
include rotational and translational invariance of the energy.

Using a generalization of GPs to vector-valued Hilbert spaces, we have defined
a predictor that explicitly maps to energy-conserving solutions and thus allows the
simultaneous prediction of accurate forces and energies at the same time. We have
then extended this model to additionally incorporate all relevant rigid space group
symmetries as well as dynamic non-rigid symmetries. Typically, the identification
of symmetries requires chemical and physical intuition about the system at hand,
which is impractical in an ML setting. Through a data-driven multi-partite matching
approach, we have automated the discovery of permutation matrices of molecular
graph pairs in different permutational configurations and thus between symmetric
transformations undergone within the scope of a dataset. This allowed us to define
a compact symmetric model that can be parametrized from very small training
datasets of just a few hundreds of examples, enabling the direct construction of
flexible molecular force fields from expensive high-level ab initio calculations.

While the resulting sGDML model constitutes a substantial step towards enabling
highly accurate and thus truly predictive MD simulations, there is a number of
challenges that remain to be solved in terms of its applicability and scaling to
larger molecular systems. For example, a fragmentation of large atomistic systems
would allow scaling up and transferable predictions across different molecules
with similar atom types. The well-separated inter- and intramolecular correlation
scales within molecular solids suggest that a hierarchical decomposition is possible
with limited degradation of prediction accuracy. Furthermore, advanced sampling
strategies could be employed to combine forces from different levels of theory to
minimize the need for computationally intensive ab initio calculations even further.

7.7 Data and Software

The ML potentials described in this chapter are implemented in the sGDML
software package—see www.sgdml.org for details. Reconstruct FFs from your own
datasets today!

References

1. M.E. Tuckerman, Ab initio molecular dynamics: basic concepts, current trends and novel
applications. J. Phys. Condens. Matter 14(50), R1297 (2002)

2. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld. Fast and accurate modeling of
molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 58301 (2012)

www.sgdml.org

150 S. Chmiela et al.

3. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld,
A. Tkatchenko, K.-R. Müller, Assessment and validation of machine learning methods for
predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)

4. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller,
A. Tkatchenko, Machine learning predictions of molecular properties: accurate many-body
potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6(12), 2326–2331 (2015)

5. M. Rupp, R. Ramakrishnan, O.A. von Lilienfeld, Machine learning for quantum mechanical
properties of atoms in molecules. J. Phys. Chem. Lett. 6(16), 3309–3313 (2015)

6. V. Botu, R. Ramprasad, Adaptive machine learning framework to accelerate ab initio
molecular dynamics. Int. J. Quantum Chem. 115(16), 1074–1083 (2015)

7. M. Hirn, N. Poilvert, S. Mallat, Quantum energy regression using scattering transforms.
CoRR, abs/1502.02077 (2015)

8. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Big data meets quantum
chemistry approximations: the δ-machine learning approach. J. Chem. Theory Comput. 11(5),
2087–2096 (2015)

9. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural
and alchemical space. Phys. Chem. Chem. Phys. 18(20), 13754–13769 (2016)

10. N. Artrith, A. Urban, G. Ceder, Efficient and accurate machine-learning interpolation of
atomic energies in compositions with many species. Phys. Rev. B 96(1), 14112 (2017)

11. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Machine
learning unifies the modeling of materials and molecules. Sci. Adv. 3(12), e1701816 (2017)

12. A. Glielmo, P. Sollich, A. De Vita, Accurate interatomic force fields via machine learning
with covariant kernels. Phys. Rev. B 95, 214302 (2017)

13. K. Yao, J.E. Herr, J. Parkhill, The many-body expansion combined with neural networks. J.
Chem. Phys. 146(1), 14106 (2017)

14. S.T. John, G. Csányi, Many-body coarse-grained interactions using Gaussian approximation
potentials. J. Phys. Chem. B 121(48), 10934–10949 (2017)

15. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S.
Kearnes, P.F. Riley, O.A. von Lilienfeld, Prediction errors of molecular machine learning
models lower than hybrid DFT error. J. Chem. Theory Comput. 13(11), 5255–5264 (2017)

16. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, Solid harmonic wavelet scattering
for predictions of molecule properties. J. Chem. Phys. 148(24), 241732 (2018)

17. A. Glielmo, C. Zeni, A. De Vita, Efficient nonparametric n-body force fields from machine
learning. Phys. Rev. B 97(18), 184307 (2018)

18. Y.-H. Tang, D. Zhang, G. Em Karniadakis, An atomistic fingerprint algorithm for learning ab
initio molecular force fields. J. Chem. Phys. 148(3), 34101 (2018)

19. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Symmetry-adapted machine learning for
tensorial properties of atomistic systems. Phys. Rev. Lett. 120, 36002 (2018)

20. W. Pronobis, A. Tkatchenko, K.-R. Müller, Many-body descriptors for predicting molec-
ular properties with machine learning: analysis of pairwise and three-body interactions in
molecules. J. Chem. Theory Comput. 14(6), 2991–3003 (2018)

21. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

22. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the
accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403
(2010)

23. K.V. Jovan Jose, N. Artrith, J. Behler, Construction of high-dimensional neural network
potentials using environment-dependent atom pairs. J. Chem. Phys. 136(19), 194111 (2012)

24. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B
87(18), 184115 (2013)

25. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R.
Müller, O.A. von Lilienfeld, Machine learning of molecular electronic properties in chemical
compound space. New J. Phys. 15(9), 95003 (2013)

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 151

26. A.P. Bartók, G. Csányi, Gaussian approximation potentials: a brief tutorial introduction. Int.
J. Quantum Chem. 115(16), 1051–1057 (2015)

27. V. Botu, R. Ramprasad, Learning scheme to predict atomic forces and accelerate materials
simulations. Phys. Rev. B 92, 94306 (2015)

28. T. Bereau, D. Andrienko, O.A. von Lilienfeld, Transferable atomic multipole machine
learning models for small organic molecules. J. Chem. Theory Comput. 11(7), 3225–3233
(2015)

29. Z. Li, J.R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of
quantum-mechanical forces. Phys. Rev. Lett. 114, 96405 (2015)

30. J. Behler, Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys.
145(17), 170901 (2016)

31. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.-R. Müller, Bypassing the Kohn-
Sham equations with machine learning. Nat. Commun. 8, 872 (2017)

32. M. Gastegger, J. Behler, P. Marquetand, Machine learning molecular dynamics for the
simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017)

33. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, A. Tkatchenko, Quantum-chemical
insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

34. K. Schütt, P.-J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller,
SchNet: a continuous-filter convolutional neural network for modeling quantum interactions,
in Advances in Neural Information Processing Systems, vol. 31, pp. 991–1001 (2017)

35. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, SchNet—A deep
learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

36. B. Huang, O.A. von Lilienfeld, The “DNA” of chemistry: scalable quantum machine learning
with “amons”. arXiv preprint:1707.04146 (2017)

37. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, A universal strategy
for the creation of machine learning-based atomistic force fields. NPJ Comput. Mater. 3(1),
37 (2017)

38. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic
potentials. Comput. Mater. Sci. 140, 171–180 (2017)

39. P.O. Dral, A. Owens, S.N. Yurchenko, W. Thiel, Structure-based sampling and self-correcting
machine learning for accurate calculations of potential energy surfaces and vibrational levels.
J. Chem. Phys. 146(24), 244108 (2017)

40. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Deep potential molecular dynamics: a scalable
model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120(14), 143001 (2018)

41. N. Lubbers, J.S. Smith, K. Barros, Hierarchical modeling of molecular energies using a deep
neural network. J. Chem. Phys. 148(24), 241715 (2018)

42. K. Ryczko, K. Mills, I. Luchak, C. Homenick, I. Tamblyn, Convolutional neural networks for
atomistic systems. Comput. Mater. Sci. 149, 134–142 (2018)

43. K. Kanamori, K. Toyoura, J. Honda, K. Hattori, A. Seko, M. Karasuyama, K. Shitara, M.
Shiga, A. Kuwabara, I. Takeuchi, Exploring a potential energy surface by machine learning
for characterizing atomic transport. Phys. Rev. B 97(12), 125124 (2018)

44. T.S. Hy, S. Trivedi, H. Pan, B.M. Anderson, R. Kondor, Predicting molecular properties with
covariant compositional networks. J. Chem. Phys. 148(24), 241745 (2018)

45. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N.E. Charron, G. De Fabritiis, F. Noé, C.
Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent.
Sci. 5(5), 755–767 (2019)

46. T. Bereau, R.A. DiStasio Jr., A. Tkatchenko, O.A. Von Lilienfeld, Non-covalent interac-
tions across organic and biological subsets of chemical space: physics-based potentials
parametrized from machine learning. J. Chem. Phys. 148(24), 241706 (2018)

47. A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets for deep learning of molecular kinetics.
Nat. Commun. 9(1), 5 (2018)

48. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states of
many-body systems with deep learning. Science 365(6457), eaaw1147 (2019)

152 S. Chmiela et al.

49. N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, P. Riley, Tensor field
networks: rotation-and translation-equivariant neural networks for 3D point clouds. arXiv
preprint:1802.08219 (2018)

50. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A. Roitberg, Less is more: sampling chemical
space with active learning. J. Chem. Phys. 148(24), 241733 (2018)

51. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties:
locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)

52. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, Alchemical and structural
distribution based representation for universal quantum machine learning. J. Chem. Phys.
148(24), 241717 (2018)

53. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, Operators in quantum machine learning:
response properties in chemical space. J. Phys. Chem. 150(6), 64105 (2019)

54. R. Winter, F. Montanari, F. Noé, D.-A. Clevert, Learning continuous and data-driven
molecular descriptors by translating equivalent chemical representations. Chem. Sci. 10(6),
1692–1701 (2019)

55. K. Gubaev, E.V. Podryabinkin, G.L.W. Hart, A.V. Shapeev, Accelerating high-throughput
searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci.
156, 148–156 (2019)

56. E. Noether, Invarianten beliebiger Differentialausdrücke. Gött. Nachr. Mathematisch-
Physikalische Klasse 1918, 37–44 (1918)

57. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to kernel-based
learning algorithms. IEEE Trans. Neural Netw. Learn. Syst. 12(2), 181–201 (2001)

58. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond (MIT Press, Cambridge, 2002)

59. G. Wahba, Spline Models for Observational Data, vol. 59 (SIAM, Philadelphia, 1990)
60. B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in International

Conference on Computational Learning Theory (Springer, Berlin, 2001), pp. 416–426
61. C.E. Rasmussen, Gaussian processes in machine learning, in Advanced Lectures on Machine

Learning (Springer, Berlin, 2004), pp. 63–71
62. D. Duvenaud, Automatic Model Construction with Gaussian Processes, PhD thesis, Univer-

sity of Cambridge, Cambridge, 2014
63. C.A. Micchelli, Y. Xu, H. Zhang, Universal kernels. J. Mach. Learn. Res. 7(Dec), 2651–2667

(2006)
64. A. Damianou, N. Lawrence, Deep Gaussian processes, in Artificial Intelligence and Statistics

(2013), pp. 207–215
65. C. Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto,

1949)
66. K. Brading, E. Castellani, Symmetries in Physics: Philosophical Reflections (Cambridge

University Press, Cambridge, 2003)
67. D.J.C. MacKay, Introduction to Gaussian processes, in NATO ASI Series F: Computer and

Systems Sciences, vol. 168 (Springer, Berlin, 1998)
68. A.J. Smola, B. Schölkopf, K.-R. Müller, The connection between regularization operators and

support vector kernels. Neural Netw. 11(4), 637–649 (1998)
69. C. Heil, Metrics, Norms, Inner Products, and Operator Theory (Birkhäuser, Basel, 2018)
70. A. Rahimi, B. Recht, Random features for large-scale kernel machines, in Advances in Neural

Information Processing Systems (2008), pp. 1177–1184
71. P. Politzer, J.S. Murray, The Hellmann-Feynman theorem: a perspective. J. Mol. Model. 24(9),

266 (2018)
72. R.P. Feynman, Forces in molecules. Phys. Rev. 56(4), 340 (1939)
73. C.E. Shannon, Communication in the presence of noise. Proc. IEEE 86(2), 447–457 (1998)
74. S. Chmiela, Towards Exact Molecular Dynamics Simulations with Invariant Machine-

Learned Models, PhD thesis. Technische Universität, Berlin, 2019
75. T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer Series in Statistics (Springer, Berlin, 2009)

7 Accurate Molecular Dynamics Enabled by Efficient Physically. . . 153

76. M.A. Alvarez, L. Rosasco, N.D. Lawrence, et al., Kernels for vector-valued functions: a
review. Found. Trends Mach. Learn. 4(3), 195–266 (2012)

77. P. Boyle, M. Frean, Dependent Gaussian processes, in Advances in Neural Information
Processing Systems (2005), pp. 217–224

78. C.A. Micchelli, M. Pontil, On learning vector-valued functions. Neural Comput. 17(1), 177–
204 (2005)

79. C.A. Micchelli, M. Pontil, Kernels for multi-task learning, in Advances in Neural Information
Processing Systems (2005), pp. 921–928

80. L. Baldassarre, L. Rosasco, A. Barla, A. Verri, Multi-output learning via spectral filtering.
Mach. Learn. 87(3), 259–301 (2012)

81. T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to
ordinary and partial differential equations, in International Conference on Machine Learning
(2003), pp. 234–241

82. S. Särkkä, Linear operators and stochastic partial differential equations in Gaussian process
regression, in International Conference on Artificial Neural Networks (Springer, Berlin,
2011), pp. 151–158

83. E.M. Constantinescu, M. Anitescu, Physics-based covariance models for Gaussian processes
with multiple outputs. Int. J. Uncertain. Quantif. 3(1) (2013)

84. N.C. Nguyen, J. Peraire, Gaussian functional regression for linear partial differential equa-
tions. Comput. Methods Appl. Mech. Eng. 287, 69–89 (2015)

85. C. Jidling, N. Wahlström, A. Wills, T.B. Schön, Linearly constrained Gaussian processes, in
Advances in Neural Information Processing Systems (2017), pp. 1215–1224

86. F.J. Narcowich, J.D. Ward, Generalized Hermite interpolation via matrix-valued conditionally
positive definite functions. Math. Comput. 63(208), 661–687 (1994)

87. E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith, C.E. Rasmussen, Derivative observa-
tions in Gaussian process models of dynamic systems, in Advances in Neural Information
Processing Systems (2003), pp. 1057–1064

88. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Machine
learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015
(2017)

89. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.-R. Müller, A. Tkatchenko, sGDML: constructing
accurate and data efficient molecular force fields using machine learning. Comput. Phys.
Commun. 240, 38–45 (2019)

90. H.C. Longuet-Higgins, The symmetry groups of non-rigid molecules. Mol. Phys. 6(5), 445–
460 (1963)

91. E.B. Wilson, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(McGraw-Hill Interamericana, New York, 1955)

92. D. Pachauri, R. Kondor, V. Singh, Solving the multi-way matching problem by permutation
synchronization, in Advances in Neural Information Processing Systems (2013), pp. 1860–
1868

93. M. Schiavinato, A. Gasparetto, A. Torsello, Transitive Assignment Kernels for Structural
Classification (Springer, Cham, 2015), pp. 146–159

94. N.M. Kriege, P.-L. Giscard, R.C. Wilson, On valid optimal assignment kernels and applica-
tions to graph classification, in Advances in Neural Information Processing Systems, vol. 30
(2016), pp. 1623–1631

95. J.-P. Vert, The optimal assignment kernel is not positive definite. CoRR, abs/0801.4061 (2008)
96. S. Umeyama, An eigendecomposition approach to weighted graph matching problems. IEEE

Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)
97. H.W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2),

83–97 (1955)
98. L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–

2605), 85 (2008)

154 S. Chmiela et al.

99. T. Karvonen, S. Särkkä, Fully symmetric kernel quadrature. SIAM J. Sci. Comput. 40(2),
A697–A720 (2018)

100. B. Haasdonk, H. Burkhardt, Invariant kernel functions for pattern analysis and machine
learning. Mach. Learn. 68(1), 35–61 (2007)

101. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics
simulations with machine-learned force fields. Nat. Commun. 9(1), 3887 (2018)

8QuantumMachine Learning with Response
Operators in Chemical Compound Space

Felix Andreas Faber, Anders S. Christensen, and O. Anatole von
Lilienfeld

Abstract

The choice of how to represent a chemical compound has a considerable effect
on the performance of quantum machine learning (QML) models based on kernel
ridge regression (KRR). A carefully constructed representation can lower the
prediction error for out-of-sample data by several orders of magnitude with the
same training data. This is a particularly desirable effect in data scarce scenarios,
such as they are common in first principles based chemical compound space
explorations. Unfortunately, representations which result in KRR models with
low and steep learning curves for extensive properties, for example, energies,
do not necessarily lead to well performing models for response properties. In
this chapter we review the recently introduced FCHL18 representation (Faber
et al., J Chem Phys 148(24):241717, 2018), in combination with kernel-based
QML models to account for response properties by including the corresponding
operators in the regression (Christensen et al., J Chem Phys 150(6):064105,
2019). FCHL18 was designed to describe an atom in its chemical environment,
allowing to measure distances between elements in the periodic table, and conse-
quently providing a metric for both structural and chemical similarities between
compounds. The representation does not decouple the radial and angular degrees
of freedom, which makes it well-suited for comparing atomic environments.
QML models using FCHL18 display low and steep learning curves for energies
of molecules, clusters, and crystals. By contrast, the same QML models exhibit
less favorable learning for other properties, such as forces, electronic eigenvalues,
or dipole moments. We discuss the use of the electric field differential operator
within a kernel-based operator QML (OQML) approach. Using OQML results in

F. A. Faber · A. S. Christensen · O. A. von Lilienfeld (�)
Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
e-mail: anatole.vonlilienfeld@uibas.ch

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_8&domain=pdf
mailto:anatole.vonlilienfeld@uibas.ch
https://doi.org/10.1007/978-3-030-40245-7_8

156 F. A. Faber et al.

the same predictive accuracy for molecular dipole norm, but with approximately
20× less training data, as directly learning the dipole norm with a KRR model.

8.1 Introduction

The specific architecture of quantum machine learning models (QML) plays a large
role in the predictive accuracy (or learning efficiency) of a model. For example, it
has now become common practice to decompose a model into a sum of atomic
contributions when learning and predicting atomization energies, as it has been
shown to give better and more scalable performance. This is because the atomization
energy is an extensive property, meaning that it tends to grow with system size.
It is therefore natural to formulate an additive model of atomic contributions.
These additive machine learning models have been shown to display remarkable
accuracies for learning extensive properties such as atomization energies [1–5].

A recent benchmark study [6] demonstrates that an efficient model for one
property is not necessarily as efficient for others. For example, the HDAD based
KRR model in Ref. [6] produces less favorable learning curves for intensive
response properties, such as dipole moments, electronic eigenvalues, or forces, than
for atomization energies, due to the fact that the extensive nature of the kernel does
not necessarily reflect the behavior of response properties correctly.

This chapter is divided into two parts: First, we will discuss a way to represent
the surrounding chemistry and structure of an atomic environment, using a set of
many-body distributions [1]. We then proceed with the discussion on how to learn
response properties, and provide examples on how to do this for energy derivatives,
as exemplified for dipole moments [7].

8.2 Representing an Atomic Environment

There are many ways of encoding the composition and structure of a chemical
compound into a representation suitable for machine learning. It has become
common practice to decompose the kernel into contributions from the environment
of each atom in the compound. Representations based on atomic densities [8] have
yielded machine learning models with remarkable predictive power. They are also
easy to understand and modify to the learning problem. For deriving the FCHL18
representation (Ref. [1]), we have therefore chosen to use atomic density based
representations. In essence, the FCHL2018 representation encodes an atom I in its
environment by a set of distributions AM(I) = {A1(I), A2(I), . . . , AM(I)}, based
on many body expansions with up to M atoms.

Each distribution Am(I) with m interatomic contributions encodes both the struc-
tural and chemical environment of atom I . This is done by placing scaled Gaussian
functions, centered on structural and chemical degrees of freedom. The structural
degrees of freedom are among other quantities, distances d, angles θ , or dihedrals
between atoms, and the extension to contributions going beyond four bodies would

8 QuantumMachine Learning with Response Operators in Chemical. . . 157

also be straightforward. The elemental identity is encoded by the atom’s group G

and period P in Mendeleev’s table. This information was already demonstrated to
be helpful in QML models of crystalline properties [9], and was subsequently also
used by others [10]. However, any feature which uniquely differentiates between the
elements in the periodic table would suffice to ensure uniqueness. Uniqueness of the
representation is a necessary condition for representations in order to avoid absurd
results [11, 12]. Note that the FCHL representation is constructed such that the mth

distribution contains m-body information. For example, A1(I) only encodes G and
P of atom I , while A2(I) encodes the chemical identities of atom I and neighboring
atoms, as well as the distances to neighboring atoms.

A given N -dimensional Gaussian distribution with means μ and stan-
dard deviations σ along all dimensions is denoted by N(x) where x =
{μ1, σ1;μ2, σ2; . . . ;μN, σN }. Within FCHL we multiply the interatomic 2 and
3-body Gaussians with a scaling function ξm, which is a function of internal degrees
of freedom, such as distances and/or angles between atom I and its neighboring
atoms. The scaling functions both serve as a way to modulate the relative importance
of the contribution from each atom, depending on vicinity, and to help with the
introduction of a smooth damping function if need be. We will discuss more details
regarding the choice of possible cutoff functions later in this chapter. Before we
do this, however, we will go through and explicitly define each of the distributions
A(I)m, starting from the first-order expansion, and going up to the third order
expansion. Discussion of higher-order terms have been omitted for FCHL18 since
preliminary testing indicated that learning curves do not improve significantly
beyond A3(I).

8.2.1 First-Order TermA1

The first-order expansion A1(I) encodes the elemental identity of atom I . This is
done by placing a Gaussian on the period PI and group GI in the periodic table
of the element I . This is seen in Eq. (8.1), with x(1)

I = {PI , σP ;GI , σG} where σP

and σG are hyperparameters, corresponding to the width of the Gaussians along the
respective dimensions. χi are the dummy variables in the dimensions in which the
Gaussians are placed, and will be integrated out when calculating distances between
any two atoms (also discussed in the next section).

A1(I) = N
(

x(1)
I

)
= e

− (PI−χ1)
2

2σ2
P

− (GI−χ2)
2

2σ2
G (8.1)

The drawback of using Gaussians to measure elemental distances consists of
its locality. It can only be used efficiently as a metric for elements that overlap
due to elemental smearing, i.e., that they are sufficiently close-by in the periodic
table and, for example, will not be able to distinguish between two elements at
opposite sides of the periodic table. Na and Ne, for example, are close to each other

158 F. A. Faber et al.

in the sense that they differ in nuclear charge by only one proton, yet within our
usual parameterization of FCHL they will overlap negligibly. Of course, this could
be rectified by selecting more appropriate widths in Eq. (8.1) but we have not yet
studied this effect in detail. Alternatively, other dimensions or other basis functions
than Gaussians could be studied just as well.

8.2.2 Second-Order TermA2

The second-order term A2(I), in addition to encoding the chemical element of
I , also includes the distance information with respect to all neighbors of atom I .
A2(I) = N(x(1)

I)
∑

i �=I N(x(2)
iI)ξ2(diI) consists of a product between N(x(1)

I) and a
sum that runs over all neighboring atoms {i}. The entries of the sum are Gaussians
x(2)
iI = {diI , σd ;Pi, σP ;Gi, σG}, placed at the distance diI between atom i and I ,

and σd is the corresponding Gaussian width. Here, ξ2(diI) is the aforementioned
scaling function. Figure 8.1 depicts A2(I) for a carbon with sp1, sp2, and sp3

electron configuration as encountered in ethane, ethylene, and ethyne, respectively.
Note that neither elemental smearing is used in this case (σP → 0 and σG → 0),

Fig. 8.1 The two-body term (A2) for one of the carbon atoms in ethane, ethylene, and ethyne,
as a function of radial (d) degrees of freedom. The scaling function ξ2 is set to unity (left) and
1

r4 (right). The elemental smearing is set to zero (σP , σG → 0) so that the five-dimensional

distribution can be reduced to two sets two-dimensional distributions, one for each element triplet

8 QuantumMachine Learning with Response Operators in Chemical. . . 159

which reduces A2(I) to a one-dimensional function for each element pair, nor have
we multiplied in the scaling function yet.

8.2.3 Third Order TermA3

A3(I) = N(x(1))
∑

i �=I N(x(2)
iI)
∑

j �=i,I N(x(3)
ijI)ξ3(diI , djI , θ

I
ij), extends upon

A2(I) by containing an additional sum, running over all the other remaining
neighboring atoms {j �= i}. Again, the elements in the sum consist of Gaussians,
x(3)
ijI = {θI

ij , σθ ;Pj , σP ;Gj, σG}, placed at angles θI
ij , with independent width σθ .

θ is the principal angle between the two distance vectors spanned from atoms I to
i and I to j . Pj and Gj , with accompanying widths σP and σG, are the group and
period of the element of atom j , respectively. ξ3(diI , djI , θ

I
ij) is the scaling function

for A3(I) and will be discussed in the next paragraph. Figure 8.2 depicts how A3(I)

looks like for the oxygen, carbon, and hydrogen atoms in ethanol. Again, neither
elemental smearing is used in the figure (σP → 0 and σG → 0), so A3(I) reduces
to a two-dimensional function for each element triplet, nor has the scaling function
been multiplied in.

Fig. 8.2 Figure taken from Ref. [1]. The three-body term (A3) for the atomic environments of C,
H, and O (circled) in ethanol, as a function of radial (d) and angular (θ) degrees of freedom. For
simplicity, the scaling function is set to unity and elemental smearing is set to zero. It then reduces
to a set of two-dimensional distributions, one for each element triplet

160 F. A. Faber et al.

8.2.4 Scaling Function

As mentioned earlier, the scaling function ξm is used to weight the importance of
the Gaussians based on internal distances and angles. We use power-law scaling
throughout this chapter since resulting ML models have been shown to yield numer-
ically accurate results. Inspired by BAML [11] and SLATM [5], we have modified
the London dispersion interaction ξ2(diI) = 1

d
n2
iI

by optimizing the exponent on

various data-sets: n2 = 4. For the angular scaling function we rely on the Axilrod–

Teller–Muto [13, 14] formula ξ3(diI , djI , θ
I
ij) =

1+3 cos(θI
ij) cos(θ i

Ij) cos(θj
iI)

(diI djI dij)
n3 with

n3 = 2.

8.2.5 Electric Field-Dependent Representation

While any response property, such as atomic forces, chemical potentials, or alchem-
ical derivatives, could be considered, in this chapter we focus on the energy response
resulting from an externally applied electric field. This approach can in principle be
used as long as the derivative of the QML model predicting the energy with respect
to the response operator is non-zero. This is in most cases trivial for forces, since
representations that can recover potential energy surfaces already include an explicit
dependence on the atomic coordinates. For other properties, this dependency can,
for example, be obtained by making the representation dependent on the perturbing
field. In this section, we demonstrate this by modifying the FCHL18 representation
to be dependent on an external electric field.

While an electric field can be included in the representation in multiple ways,
we have chosen to include it via the aforementioned two- and three-body scaling
functions. The importance of the features in the representations is weighted by
applying appropriate scaling factors to those features. For energies a factor of 1

d
n2
iI

is well-suited, since it is expected that atoms that are closer contribute more to
the energy. Similarly, we expect atom pairs with large, opposite partial charges to
contribute more to the dipole moment compared to pairs of atoms that are close
to neutral. Building on this principle, the scaling function for the two-body term is
modified (denoted by an asterisk) to include the electric field response:

ξ∗IJ2 = ξIJ
2 − ε(μIJ · E) (8.2)

where μIJ is the dipole vector due to fictitious partial charges placed on the atoms I

and J , that is μIJ = rI qI + rJ qJ with the coordinate system centered in the center
of nuclear charge, and E is an external electric field, and ε is a scaling parameter
that balances the two terms in the scaling function. Similarly, the three-body term is
modified by including the dipole due to partial charges placed on three atoms I ,J ,
and K .

ξ∗IJK
3 = ξIJK

3 − ε
(
μIJK · E

)
(8.3)

8 QuantumMachine Learning with Response Operators in Chemical. . . 161

where μIJK is the dipole due to fictitious partial charges placed on the three atoms,
calculated similarly to the two-body dipole, that is μIJK = rI qI + rJ qJ + rKqK .
The model seems to be insensitive to the exact value of the fictitious partial charges,
so long as they qualitatively describe a reasonable interaction with the external field.
We have relied on partial charges taken from the Gasteiger charge model [15],
but we found that learning curves are quite insensitive with respect to the specific
charges used, and therefore we think that any reasonable charge model could be
used just as well.

In the absence of an electric field, the kernel elements resulting from the
representation with the modified scaling functions are unchanged, but the derivative
with respect to the electric field is now non-zero. Furthermore, the kernel elements
now can change whenever an electric field is applied. Rotational invariance is
preserved since the model outputs a scalar field, any vectorial properties are obtained
from the gradient of a scalar quantity. The reader should note that the model does
not learn the partial charges of the model nor does it use them as a proxy to
learn the dipole moment. Rather, they serve as dummy variables that enforce a
physically motivated weighting of the molecular features, allowing the energy (and
its responses) to be regressed with improved transferability.

8.3 Kernel-Based RegressionModel

Many important observables can be formulated as a derivative of the energy. For
example, Table 8.1 contains 11 observables that are partial derivatives of the energy
with respect to external electric field, external magnetic field, internal magnetic
moments, and the nuclear coordinates. These measurable quantities are important
in many domains of chemistry, e.g., when used in various types of spectroscopy.
The OQML formalism is capable of treating these properties simultaneously. As
noted in Ref. [6], many machine learning models struggle to simultaneously
describe multiple of these properties accurately. The numerical evidence presented
in Sect. 8.4 suggests that it is advantageous to explicitly exploit these linear
dependencies within the OQML formalism.

This section presents the general frame work of OQML, and the derivative of
the machine learning model of the energy with respect to nuclear coordinates and
external electric field. Some modifications to the representation are still necessary
in order to be able to treat properties resulting from other vector potentials, such as
external magnetic fields and internal magnetic moments.

8.3.1 General Response Formalism

In kernel ridge regression (KRR) the energy of a set of molecules, U, is calculated
as

U = Kα (8.4)

162 F. A. Faber et al.

Table 8.1 The table shows
order of derivatives of the
energy with respect to the
external electric field (E),
external magnetic field (B),
internal magnetic moments
(I), and the nuclear
coordinates (R), and their
corresponding response
properties [16]

E B I R Property

0 0 0 0 Energy

1 0 0 0 Electric dipole moment

0 1 0 0 Magnetic dipole moment

0 0 1 0 Hyperfine coupling constant

0 0 0 1 Molecular (nuclear) gradient

2 0 0 0 Electric polarizability

0 2 0 0 Magnetizability

0 0 2 0 Nuclear spin–spin coupling

0 0 0 2 Harmonic vibrational frequencies

1 0 0 1 Infrared absorption intensities

1 1 0 0 Optical rotation, circular dichroism

0 1 1 0 Nuclear magnetic shielding

where K is the kernel matrix and α is the set of regression coefficients. Most
commonly, basis functions are placed on each of the molecules in the training set,
such that the kernel matrix K is a square symmetric matrix.

By extension, a response property ω with the corresponding response operator
O can be calculated by applying the response operator to the energy calculated in
Eq. (8.4):

ω = O[U] ≈ O[K]α (8.5)

The implication of this relation is that a single set of regression coefficients can
describe both the energy and the energy response simultaneously. This is similar to
the GDML [17] model and Gaussian process regression with covariant kernels [18],
with the main difference being the choice of basis functions in the kernel.

This also exploits the fact that the kernel is well-suited for energy learning, which
then extends the kernels capability to predict energy responses with higher accuracy,
as will be shown later in this chapter.

By training on a set of reference values of O[Uref], the set of regression
coefficients can be obtained by minimizing the following Lagrangian:

J (α) =
∑
γ

βγ

∥∥∥Oγ

[
Uref

]
− Oγ [Kα]

∥∥∥2

L2(#γ)
(8.6)

≡
∑
γ

βγ

∫
#γ

[
Oγ

[
Uref

]
− Oγ [Kα]

]T [
Oγ

[
Uref

]
− Oγ [Kα]

]
(8.7)

where γ denotes the perturbation, so that it is possible to train on multiple response
properties simultaneously, and βγ is a hyperparameter that can balance the weight
of the terms. To avoid a very overdetermined regression problem, the set of basis
functions can be increased by placing the kernel function on each of the atoms in

8 QuantumMachine Learning with Response Operators in Chemical. . . 163

the training set. One consequence of this is that the kernel matrix is no longer a
square matrix, and Eq. (8.6) cannot be solved by simply inverting the kernel, as
is commonly done in KRR and Gaussian Process Regression [19]. The analytical
solution to Eq. (8.6) is given by

α =
[∑

γ

βγ

∫
#γ

Oγ [K]TOγ [K]
]−1[∑

γ

βγ

∫
#γ

Oγ

[
Uref

]T
Oγ [K]

]
(8.8)

As an alternative to this normal-equation solution, the regression coefficients can be
obtained by using an orthogonal decomposition such as a singular-value (SVD) or
a QR decomposition.

Note that the number of training labels in the regression (i.e., the length of
Oγ [Uref]) may exceed the number of molecules in the training set, for example,
when training a model for force components. Consequently, the training error is
non-zero, which is in contrast to conventional KRR where the training error is very
small for noise-less data and unique representations.

8.3.2 Kernel Derivatives in the Basis of Atomic Environments

Here we introduce the kernel derivatives that correspond to force and dipole moment
operators in the basis of kernel functions placed on atomic environment. Firstly, the
kernel that correspond to the unperturbed kernel (corresponding to energy learning)
is given as

(K)iJ =
∑
I∈i

k
(
qJ , q

∗
I

)
(8.9)

where I runs over the atoms in the i’th molecule and J is the index of an atomic
environment in the basis.

From this it follows—by taking the derivative—that the kernel elements that
correspond to the force, i.e., minus the nuclear gradient operator acting on the
kernel, are given by

− ∂

∂x∗I
(K)IJ = −

∑
K∈i

∂k
(
qJ , q

∗
K

)
∂x∗I

where I ∈ i (8.10)

The kernel elements used to learn dipole moments, corresponding to the kernel’s
response to the external electric field E, and are given by

− ∂

∂E∗ν
(K)iνJ = −

∑
K∈i

∂k
(
qJ , q

∗
K

)
∂E∗ν

where ν ∈ {x, y, z} (8.11)

164 F. A. Faber et al.

Similarly, higher-order kernel derivatives are also possible. For example, the nuclear
Hessian kernel is given by

∂2

∂x∗
I ′∂x

∗
I

(K)I ′IJ =
∑
K∈i

∂k
(
qJ , q

∗
K

)
∂x∗

I ′∂x
∗
I

where I ′, I ∈ i (8.12)

Lastly, it is also possible to define higher-order, mixed derivatives of the kernel
as long as the representation has a response to both perturbations. The kernel that
yields the dipole derivatives necessary for the infrared intensities is written as the
following mixed second-order derivative:

∂2

∂E∗ν ∂x∗I
(K)iνIJ =

∑
K∈i

∂k
(
qJ , q

∗
K

)
∂E∗ν ∂x∗I

where I ∈ i and ν ∈ {x, y, z} (8.13)

8.4 Numerical Results

To measure the predictive power of the representation we now consider learning
curves, resulting from using our model on the QM9 data set [20] which was
generated from the SMILES strings stored in GDB-17 [21]. QM9 is built up from
∼134k drug-like molecules with up to nine heavy atoms (C, N, O or F) not counting
hydrogen, and consists of relaxed structures as well as 13 electronic ground-state
properties, obtained using the B3LYP functional in DFT. We begin by examining
how well the model can predict atomization energies. The learning curves of
FCHL18 based KRR models are shown in Fig. 8.3, and show plausible trends and

Fig. 8.3 Learning curves of
atomization energies form the
QM9 dataset, resulting from
including the first, second,
and third order terms in the
representation (Am,
m = 1, 2, 3)

8 QuantumMachine Learning with Response Operators in Chemical. . . 165

behavior: Including only the first-order term (amounting to stoichiometry) yields
hardly any improvement beyond 100 training instances. This is not surprising, since
the dataset contains conformational as well as compositional degrees of freedom,
making this model incapable of distinguishing structures beyond their elemental
composition. Including second-order terms drastically improves the off-set and the
learning rate. Inclusion of three-body effects results in further lowering of the
learning curve, reaching chemical accuracy (∼0.05 eV) already for training set sizes
with ∼1000 molecules. Such physics based understanding and control of learning
efficiency is expected to be important when dealing with data scarce problems where
the quantum reference calculations are very costly.

Figure 8.4 provides a comparison of FCHL based QML models to various alter-
native representations and regressors (including neural networks). Overall, KRR
based models appear to outperform neural networks. And structural distribution
based representations, such as SOAP, (a)SLATM, and FCHL fare most favorably.

As demonstrated above, QML models with the FCHL representation can easily
reach chemical accuracy for energetic properties with small training set sizes.
However, as pointed out in Ref. [6] it can be very difficult for QML models to
reach chemical accuracy for certain properties, even when the QML model shows
very promising learning for extensive properties such as the energy. The reason
for the difference in learning rates can be visualized by employing kernel principal

Fig. 8.4 Performance overview of various QML models published ever since Ref. [22]. Prediction
errors of atomization energies in the QM9 [20] are shown as a function of training set size. The
QML models included differ solely by representation, model architecture, and training/test set and
cross-validation details. They correspond to CM [22], BOB [23], BAML [11], HDAD [6], constant
size [24], DTNN [25], (a)SLATM [26], SOAP [2], enn [27], MTM [28], MBD [29], NN [30],
HIP-NN [31], SchNet [32], Wavelet [33], and FCHL [1]

166 F. A. Faber et al.

Fig. 8.5 Visualization of the two first kernel principal components of a kernel for 1000 randomly
selected QM9 molecules [20], calculated with the FCHL representation [1]. Each dot corresponds
to one molecule. In (a) the molecules are colored by their DFT atomization energy, showing how
the kernel correlates well with the energy of the molecules. In (b) the same molecules are colored
by their dipole norm which correlates worse with the kernel principal components, compared to
the energy i (a), which causes a slower learning rate for the dipole norm

component analysis (PCA). An example is illustrated in Fig. 8.5, where a kernel
PCA is performed for the FCHL kernel for 1000 randomly selected QM9 molecules
with the elements HCNO. The first principal component for this kernel roughly
correspond to the number of atoms in a molecule, while the second principal
component further separates the molecules by chemical composition.

The smooth and monotonic changes in color suggest that this kernel allows
the regressor to easily interpolate energies between the training points, as seen in
Fig. 8.5a. By contrast, when it comes to dipole moments, the coloring of the same
components is much less monotonic, as seen in Fig. 8.5b. The result is that the kernel
is well-suited for learning the energy directly, as demonstrated by steep learning

8 QuantumMachine Learning with Response Operators in Chemical. . . 167

curves, while a comparatively slow learning rate is obtained for intensive response
properties, such as the dipole moment [6].

8.4.1 Dipole Learning for QM9Molecules

As alluded to before, the OQML formalism can now be used to greatly improve
learning rates of molecular dipole norms. Here we compare a standard KRR
approach to learning the dipole norms of the molecules in the QM9 dataset [20],
obtained using DFT for the GDB-9 subset in GDB-17 [21], with the OQML
approach introduced in Ref. [7], and outlined above. In order to quantify the
improvement, two machines have been trained, one using conventional KRR trained
directly on the QM9 dipole norms, the other using our response formalism trained
on the dipole moment components of the same molecules.

The resulting learning curves for the two models are displayed in Fig. 8.6. As
previously observed [6], the learning rate for most KRR models is rather poor, even
for models that work well for energy learning. The same is true for a KRR model
with the FCHL representation [1]. Even at 10,000 training molecules, the MAE on
out-of-sample dipole norms is far from chemical accuracy and at almost 0.6 Debye.
However, the machine trained on the energy response using the OQML formalism
shows a substantial increase in learning rate. Around 20× less data is required to
reach the same accuracy [7].

Fig. 8.6 The figure displays learning curves of the dipole norm of molecules in the QM9 dataset.
The mean absolute error for the predicted dipole norms is plotted against the size of the training
set. The two models are trained on either the dipole norms directly using conventional kernel ridge
regression (KRR), or the dipole vectors using the operator quantum machine learning (OQML)
approach described in this chapter. Despite using the same representation for both models, the
OQML approach requires about 20× less data to reach the same accuracy compared to KRR

168 F. A. Faber et al.

8.5 Outlook

We have discussed the FCHL representation and the generalization of KRR
based QML models to account for response properties through Operator based
QML. While there are still many improvements to be made, we consider these
two developments to represent is a significant steps forward towards the general
QML philosophy, as also recently discussed in Ref. [34]. For example, we only
investigated the use of response operator on kernel-based models. However, OQML
can in principle be applied to any differentiable regression model, including
neural networks, which already have been proven to be well-suited for multitask
learning [35, 36]. Furthermore, we only tested the formalism on dipole moment
and forces, and only trained the model on one of them at a time. Training on
multiple response properties simultaneously, as well as studying the formalism on
other properties will be part of future work.

References

1. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717
(2018)

2. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv.
3(12) (2017). https://doi.org/10.1126/sciadv.1701816

3. J. Behler, J. Chem. Phys. 134, 074106 (2011)
4. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
5. B. Huang, O.A. von Lilienfeld (2017). Preprint. arXiv:1707.04146
6. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13, 5255 (2017)
7. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, J. Chem. Phys. 150(6), 064105 (2019)
8. M.J. Willatt, F. Musil, M. Ceriotti (2018). Preprint. arXiv:1807.00408
9. F.A. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117, 135502

(2016). https://doi.org/10.1103/PhysRevLett.117.135502
10. J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A. Marques, Chem. Mater. 29(12), 5090

(2017)
11. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16) (2016). https://doi.org/10.1063/1.

4964627
12. O.A. von Lilienfeld, R. Ramakrishnan, M. Rupp, A. Knoll, Int. J. Quantum Chem. 115, 1084

(2015). https://arxiv.org/abs/1307.2918
13. B.M. Axilrod, E. Teller, J. Chem. Phys 11(6), 299 (1943). https://doi.org/10.1063/1.1723844
14. Y. Muto, J. Phys. Math. Soc. Jpn. 17, 629 (1943)
15. J. Gasteiger, M. Marsili, Tetrahedron 36(22), 3219 (1980). https://doi.org/10.1016/0040-

4020(80)80168-2
16. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)
17. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv.

3(5), e1603015 (2017)
18. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95(21), 214302 (2017)
19. C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2 (MIT Press,

Cambridge, 2006)
20. R. Ramakrishnan, P. Dral, M. Rupp, O.A. von Lilienfeld, Sci. Data 1, 140022 (2014)
21. L. Ruddigkeit, R. van Deursen, L. Blum, J.L. Reymond, J. Chem. Inf. Model. 52, 2684 (2012)

https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1063/1.4964627
https://doi.org/10.1063/1.4964627
https://arxiv.org/abs/1307.2918
https://doi.org/10.1063/1.1723844
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1016/0040-4020(80)80168-2

8 QuantumMachine Learning with Response Operators in Chemical. . . 169

22. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301
(2012)

23. K. Hansen, F. Biegler, O.A. von Lilienfeld, K.R. Müller, A. Tkatchenko, J. Phys. Chem. Lett.
6, 2326 (2015)

24. C.R. Collins, G.J. Gordon, O.A. von Lilienfeld, D.J. Yaron, J. Chem. Phys. 148(24), 241718
(2018)

25. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Comm. 8, 13890
(2017). https://doi.org/10.1038/ncomms13890

26. B. Huang, O.A. von Lilienfeld, Nature (2017). arXiv:1707.04146
27. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, in Proceedings of the 34th

International Conference on Machine Learning, ICML 2017 (2017)
28. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, J. Chem. Phys. 148(24), 241727 (2018)
29. W. Pronobis, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 14(6), 2991–3003 (2018)
30. O.T. Unke, M. Meuwly, J. Chem. Phys. 148(24), 241708 (2018)
31. B. Nebgen, N. Lubbers, J.S. Smith, A.E. Sifain, A. Lokhov, O. Isayev, A.E. Roitberg,

K. Barros, S. Tretiak, J. Chem. Theory Comput. 9(16), 4495–4501 (2018)
32. H.E. Sauceda, S. Chmiela, I. Poltavsky, K.R. Müller, A. Tkatchenko, Molecular force fields

with gradient-domain machine learning: Construction and application to dynamics of small
molecules with coupled cluster forces. J. Chem. Phys. 150(11), 114102 (2019)

33. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, J. Chem. Phys. 148(24), 241732
(2018)

34. O.A. von Lilienfeld, Angew. Chem. Int. Ed. 57, 4164 (2018). https://doi.org/10.1002/anie.
201709686

35. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.R.
Müller, O.A. von Lilienfeld, New J. Phys. 15(9), 095003 (2013)

36. M. Tsubaki, T. Mizoguchi, J. Phys. Chem. Lett. 9(19), 5733 (2018)

https://doi.org/10.1038/ncomms13890
https://doi.org/10.1002/anie.201709686
https://doi.org/10.1002/anie.201709686

9Physical Extrapolation of Quantum
Observables by Generalization with Gaussian
Processes

R. A. Vargas-Hernández and R. V. Krems

Abstract

For applications in chemistry and physics, machine learning is generally used
to solve one of three problems: interpolation, classification or clustering. These
problems use information about physical systems in a certain range of parameters
or variables in order to make predictions at unknown values of these variables
within the same range. The present work illustrates the application of machine
learning to prediction of physical properties outside the range of the training
parameters. We define ‘physical extrapolation’ to refer to accurate predictions
y(x∗) of a given physical property at a point x∗ = [

x∗1 , . . . , x∗D
]

in the D-
dimensional space, if, at least, one of the variables x∗i ∈

[
x∗1 , . . . , x∗D

]
is outside

of the range covering the training data. We show that Gaussian processes can
be used to build machine learning models capable of physical extrapolation of
quantum properties of complex systems across quantum phase transitions. The
approach is based on training Gaussian process models of variable complexity by
the evolution of the physical functions. We show that, as the complexity of the
models increases, they become capable of predicting new transitions. We also
show that, where the evolution of the physical functions is analytic and relatively
simple (one example considered here is a+b/x+c/x3), Gaussian process models
with simple kernels already yield accurate generalization results, allowing for
accurate predictions of quantum properties in a different quantum phase. For
more complex problems, it is necessary to build models with complex kernels.
The complexity of the kernels is increased using the Bayesian Information
Criterion (BIC). We illustrate the importance of the BIC by comparing the results
with random kernels of various complexity. We discuss strategies to minimize

R. A. Vargas-Hernández (�) · R. V. Krems
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
e-mail: ravh011@chem.ubc.ca; rkrems@chem.ubc.ca

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_9&domain=pdf
mailto:ravh011@chem.ubc.ca
mailto:rkrems@chem.ubc.ca
https://doi.org/10.1007/978-3-030-40245-7_9

172 R. A. Vargas-Hernández and R. V. Krems

overfitting and illustrate a method to obtain meaningful extrapolation results
without direct validation in the extrapolated region.

9.1 Introduction

As described throughout this book, machine learning has in recent years become a
powerful tool for physics research. A large number of machine learning applications
in physics can be classified as supervised learning, which aims to build a model F(·)
of the x �→ y relation, given a finite number of xi �→ yi pairs. Here, x is a vector of
(generally multiple) parameters determining the physical problem of interest and y

is a physics result of relevance. For example, x could be a vector of coordinates
specifying the positions of atoms in a polyatomic molecule and y the potential
energy of the molecule calculated by means of a quantum chemistry method [1–
11]. In this case, F(x) is a model of the potential energy surface constructed based
on n energy calculations y = (y1, . . . , yn)

� at n points xi in the configuration space
of the molecule. To give another example, x could represent the parameters entering
the Hamiltonian of a complex quantum system (e.g., the tunnelling amplitude, the
on-site interaction strength and/or the inter-site interaction strength of an extended
Hubbard model) and y some observable such as the energy of the system. Trained
by a series of calculations of the observable at different values of the Hamiltonian
parameters, F(x) models the dependence of the observable on the Hamiltonian
parameters [12–44], which could be used to map out the phase diagram of the
corresponding system.

The ability of a machine learning model to predict previously unseen data is
referred to as ‘generalization’. These previously unseen data must usually come
from the same distribution as the training data, but may also come from a different
distribution. Most of the applications of machine learning in physics aim to make
predictions within the range of training data. In the present work, we discuss a
method for building machine learning models suitable for physical extrapolation.
We define ‘physical extrapolation’ to refer to accurate predictions y(x∗) of a given
physical property at a point x∗ = [x∗1 , . . . , x∗D

]
in the D-dimensional input space, if,

at least, one of the variables x∗i ∈
[
x∗1 , . . . , x∗D

]
is outside of the range covering the

training data. Thus, in the present work, the training data and test data distributions
are necessarily separated in input space. We will refer to the predictions of machine
learning models as generalization and the physical problems considered here as
extrapolation.

Our particular goal is to extrapolate complex physical behaviour without a priori
knowledge of the physical laws governing the evolution of the system. For this
purpose, we consider a rather challenging problem: prediction of physical properties
of complex quantum systems with multiple phases based on training data entirely in
one phase. The main goal of this work is schematically illustrated in Fig. 9.1. We aim
to construct the machine learning models that, when trained by the calculations or
experimental measurements within one of the Hamiltonian phases (encircled region
in Fig. 9.1), are capable of predicting the physical properties of the system in the

9 Extrapolation of Quantum Observables by Generalization with. . . 173

Fig. 9.1 Schematic diagram
of a quantum system with
three phases. The goal of the
present work is to predict
both of the phase transitions
based on information about
the properties of the system in
the encircled region of
phase I

other phases. Of particular interest is the prediction of the phase transitions, which
are often challenging to find with rigorous quantum calculations.

This problem is challenging because the wave functions of the quantum
systems—as well as the physical observables characterizing the phases—undergo
sharp changes at the phase transitions. Most of the machine learning models used for
interpolation/fitting are, however, smooth functions of x. So, how can one construct
a machine learning model that would capture the sharp and/or discontinuous
variation of the physical properties? The method discussed here is based on the
idea put forward in our earlier work [45].

We assume that the properties of a physical system within a given phase contain
information about multiple transitions and that, when a system approaches a phase
transition, the properties must change in a way that is affected by the presence of
the transition as well as the properties in the other phase(s). In addition, a physical
system is often characterized by some properties that vary smoothly through the
transition. The goal is then to build a machine learning model that could be trained
by such properties within a given phase, make a prediction of these properties in a
different phase and predict the properties that change abruptly at the transition from
the extrapolated properties. We will use Gaussian processes to build such models.

9.1.1 Organization of This Chapter

The remainder of this chapter is organized as follows. The next section describes the
quantum problems considered here. Understanding the physics of these problems
is not essential for understanding the contents of this chapter. The main purpose
of Sect. 9.2 is to introduce the notation for the physical problems discussed here.
These problems are used merely as examples. Section 9.3 briefly discusses the
application of Gaussian process regression for interpolation in multi-dimensional
spaces, mainly to set the stage and define the notation for the subsequent discussion.
Section 9.4 describes the extension of Gaussian process models to the extrapolation
problem. Section 9.5 presents the results and Sect. 9.6 concludes the present chapter.

174 R. A. Vargas-Hernández and R. V. Krems

We will abbreviate ‘Gaussian process’ as GP, ‘Artificial Neural Network’ as NN and
‘machine learning’ as ML throughout this chapter.

9.2 Quantum Systems

In this section, we describe the quantum systems considered in the present work.
In general, we consider a system described by the Hamiltonian Ĥ = Ĥ (�) that
depends on a finite number of free parameters � = {α, β, . . . }. The observ-
ables depend on these Hamiltonian parameters as well as the intrinsic variables
V = {v1, v2, . . . } such as the total linear momentum for few-body systems or
thermodynamic variables for systems with a large number of particles. The set
� + V comprises the independent variables of the problems considered here. The
ML models F will be functions of � + V .

More specifically, we will illustrate the extrapolation method using two com-
pletely different quantum models: the lattice polaron model and the mean-field
Heisenberg model.

9.2.1 Lattice Polarons

The lattice polaron model describes low-energy excitations of a quantum particle
hopping on a lattice coupled to the bosonic field provided by lattice phonons.
We consider a quantum particle (often referred to as the ‘bare’ particle) in a one-
dimensional lattice with N →∞ sites coupled to a phonon field:

H =
∑
k

εkc
†
kck +

∑
q

ωqb
†
qbq + Ve-ph, (9.1)

where ck and bq are the annihilation operators for the bare particle with momentum
k and phonons with momentum q, εk = 2t cos(k) is the energy of the bare particle
and ωq = ω = const is the phonon frequency. The particle–phonon coupling is
chosen to represent a combination of two qualitatively different polaron models:

Ve-ph = αH1 + βH2, (9.2)

where

H1 =
∑
k,q

2i√
N

[sin(k + q)− sin(k)] c†
k+qck

(
b

†
−q + bq

)
(9.3)

9 Extrapolation of Quantum Observables by Generalization with. . . 175

describes the Su–Schrieffer–Heeger (SSH) [46] particle–phonon coupling, and

H2 =
∑
k,q

2i√
N

sin(q)c†
k+qck

(
b

†
−q + bq

)
(9.4)

is the breathing-mode model [47]. We will focus on two specific properties of the
polaron in the ground state: the polaron momentum and the polaron effective mass.
The ground state band of the model (9.1) represents polarons whose effective mass
and ground-state momentum are known to exhibit two sharp transitions as the ratio
α/β increases from zero to large values [48]. At α = 0, the model (9.1) describes
breathing-mode polarons, which have no sharp transitions [49]. At β = 0, the model
(9.1) describes SSH polarons, whose effective mass and ground-state momentum
exhibit one sharp transition in the polaron phase diagram [46]. At these transitions,
the ground-state momentum and the effective mass of the polaron change abruptly.

9.2.2 The HeisenbergModel

The second model we consider here is the Heisenberg model

H = −J

2

∑
〈i,j 〉

Si · Sj . (9.5)

This model describes a lattice of interacting quantum spins Si , which—depending
on the strength of the interaction J—can be either aligned in the same direction
(ferromagnetic phase) or oriented randomly leading to zero net magnetization
(paramagnetic phase). The parameter J is the amplitude of the interaction and the
〈..〉 brackets indicate that the interaction is non-zero only between nearest-neighbour
spins.

Within a mean-field description, this many-body quantum system has free-energy
density [50, 51]

f (T ,m) ≈ 1

2

(
1− Tc

T

)
m2 + 1

12

(
Tc

T

)3

m4, (9.6)

where m is the magnetization, T is the temperature and Tc is the critical temperature
of the phase transition. At temperatures T > Tc, the model yields the paramagnetic
phase, while T < Tc corresponds to the ferromagnetic phase. The main property of
interest here will be the order parameter. This property undergoes a sharp change at
the critical temperature of the paramagnetic—ferromagnetic phase transition.

176 R. A. Vargas-Hernández and R. V. Krems

9.3 Gaussian Process Regression for Interpolation

The purpose of GP regression is to make a prediction of some quantity y at an
arbitrary point x ∈ [xmin, xmax] of a D-dimensional space, given a finite number
of values y = (y1, . . . , yn)

�, where yi is the value of y at xi . Here, xi is a
D-dimensional vector specifying a particular position in the input space and it is
assumed that the values xi sample the entire range [xmin, xmax]. If the training data
are noiseless (as often will be the case for data coming from the solutions of physical
equations), it is assumed that y is represented by a continuous function f that passes
through the points yi , so the vector of given results is y = (f (x1), . . . , f (xn))

�.
The goal is thus to infer the function f (x) that interpolates the points yi ≡ f (xi).
The values yi in the vector y represent the ‘training data’.

GPs infer a distribution over functions p(f |y) given the training data, as
illustrated in Fig. 9.2. The left panel of Fig. 9.2 shows an example of the GP prior, i.e.
the GP before the training. The right panel shows the GP conditioned by the training
data (red dots). The GP is characterized by a mean function μ(x) and covariance
�(x). The matrix elements of the covariance are defined as �ij = k(xi , xj), where
k(·, ·) is a positively defined kernel function.

It is possible to derive the closed-form expressions for the conditional mean and
variance of a GP [52], yielding

μ(x∗) = K(x∗, x)�
[
K(x, x)+ σ 2

n I
]−1

y (9.7)

σ(x∗) = K(x∗, x∗)−K(x∗, x)�
[
K(x, x)+ σ 2

n I
]−1

K(x∗, x), (9.8)

where x∗ is a point in the input space where the prediction y∗ is to be made;
K(x, x) is the n× n square matrix with the elements Ki,j = k(xi , xj) representing

C
on

st
ra

in
ed

 r
an

do
m

 fu
nc

tio
ns

2

0

2

2

0

2

5.0 2.5 0.0 2.5 5.0

Input variable
5.0 2.5 0.0 2.5 5.0

Input variable

R
an

do
m

 fu
nc

tio
ns

Fig. 9.2 Left: Gaussian process prior (grey curves). Right: Gaussian process (grey curves)
conditioned by the training data (red dots). The green curve represents the mean of the GP posterior

9 Extrapolation of Quantum Observables by Generalization with. . . 177

the covariance between y(xi) and y(xj). The elements k(xi , xj) are represented
by the kernel function. Equation (9.7) can then be used to make the prediction of
the quantity y at point x∗, while Eq. (9.8) can be used to define the error of the
prediction.

In this work, the GP models are trained by the results of quantum mechanical
calculations. For the case of the polaron models considered here,

xi ⇒ {polaron momentum K, Hamiltonian parameter α,

Hamiltonian parameter β, phonon frequency ω}.

For the case of the Heisenberg model considered here,

xi ⇒ {Temperature T , magnetization m}

As already mentioned, y ⇒ f (x) is a vector of quantum mechanics results at
the values of the parameters specified by xi . For the case of the polaron models
considered here, y ⇒ polaron energy E. For the case of the Heisenberg model
considered here, y ⇒ free energy density.

To train a GP model, it is necessary to assume some analytic form for the kernel
function k(·, ·). In the present work, we will use the following analytic forms for the
kernel functions:

kLIN(xi , xj) = x�i xj + � (9.9)

kRBF(xi , xj) = exp

(
−1

2
r2(xi , xj)

)
(9.10)

kMAT(xi , xj) =
(

1+√5 r(xi , xj)+ 5

3
r2(xi , xj)

)

× exp
(
−√5 r(xi , xj)

)
(9.11)

kRQ(xi , xj) =
(

1+ |xi − xj |2
2α�2

)−α

, (9.12)

where r2(xi , xj) = (xi − xj)
� ×M × (xi − xj) and M is a diagonal matrix with

different length-scales �d for each dimension of xi . The unknown parameters of
these functions are found by maximizing the log marginal likelihood function,

logp(y|X, θ) = −1

2
y�K−1y − 1

2
log |K| − n

2
log(2π), (9.13)

178 R. A. Vargas-Hernández and R. V. Krems

where θ denotes collectively the parameters of the analytical function for k(·, ·) and
|K| is the determinant of the matrix K . X is known as the design matrix and contains
the training points, {xi}Ni=1. Given the kernel functions thus found, Eq. (9.7) is a GP
model, which can be used to make a prediction by interpolation.

9.3.1 Model Selection Criteria

As Eq. (9.7) clearly shows, the GP models with different kernel functions will
generally have a different predictive power. In principle, one could use the marginal
likelihood as a metric to compare models with different kernels. However, different
kernels have different numbers of free parameters and the second term of Eq. (9.13)
directly depends on the number of parameters in the kernel. This makes the log
marginal likelihood undesirable to compare kernels of different complexity.

As shown in Ref. [53], a better metric could be the Bayesian information criterion
(BIC) defined as

BIC(Mi) = logp(y|x, θ̂ ,Mi)− 1

2
|Mi | log n, (9.14)

where |Mi | is the number of kernel parameters of the kernel Mi . In this equation,
p(y|x, θ̂ ,Mi) is the marginal likelihood for the optimized kernel θ̂ which maxi-
mizes the logarithmic part. The assumption—one that will be tested in the present
work for physics applications—is that more physical models have a larger BIC. The
last term in Eq. (9.14) penalizes kernels with a larger number of parameters. The
optimal BIC will thus correspond to the kernel yielding the largest value of the log
marginal likelihood function with the fewest number of free parameters.

9.4 Physical Extrapolation by Generalization
with Gaussian Processes

As shown Refs. [54, 55], one can use the BIC to increase the generalization
power of GP models. The approach proposed in Refs. [54, 55] aims to build up
the complexity of kernels, starting from the simple kernels (9.9)–(9.13), using a
greedy search algorithm guided by the values of the BIC. Here, we employ this
algorithm to extrapolate the quantum properties embodied in lattice models across
phase transitions.

9.4.1 Learning with Kernel Combinations

The approach adopted here starts with the simple kernels (9.9)–(9.13). For each
of the kernels, a GP model is constructed and the BIC is calculated. The kernel
corresponding to the highest BIC is then selected as the best kernel. We will refer

9 Extrapolation of Quantum Observables by Generalization with. . . 179

to such kernel as the ‘base’ kernel and denote it by k0. The base kernel is then
combined with each of the kernels (9.9)–(9.13). The new ‘combined’ kernels are
chosen to be either of the sum form

c0k0 + ciki (9.15)

or of the product form

ci × k0 × ki, (9.16)

where c0 and ci are treated as independent constants to be found by the maximiza-
tion of the log marginal likelihood. The GP models with each of the new kernels
are constructed and the BIC values are calculated. The kernel of the model with the
largest BIC is then chosen as k0 and the process is iterated. We thus have an ‘optimal
policy’ algorithm [56] that selects the kernel assumed optimal based on the BIC at
every step in the search.

We note that a similar procedure could be used to improve the accuracy of GP
models for the interpolation problems. We have done this in one of our recent articles
[57], where GP models were used to construct a six-dimensional potential energy
surface for a chemically reactive complex with a very small number of training
points. In the case of interpolation problems, it may also be possible to use cross-
validation for kernel selection [58]. Cross-validation could also be applied to kernel
selection for the extrapolation problems. We have not attempted to do this in the
present work. We will compare the relative performance of the validation error and
the BIC as the kernel selection metric in a future work.

9.5 Extrapolation of Quantum Properties

In this section, we present the results illustrating the performance of the algorithm
described above for the prediction of the quantum properties of complex systems
outside the range of the training data. Our particular focus is on predicting properties
that undergo a sharp variation or discontinuity at certain values of the Hamiltonian
parameters. Such properties cannot be directly modelled by GPs because the mean
of a GP is a smooth, differentiable function.

The main idea [45] is to train a GP model with functions (obtained from the
solutions of the Schrödinger equation) that vary smoothly across phase transitions
and derive the properties undergoing sharp changes from such smoothly varying
function. We thus expect this procedure to be generally applicable to extrapolation
across second-order phase transitions. Here, we present two examples to illustrate
this. The particular focus of the discussion presented below is on how the method
converges to the accurate predictions as the complexity of the kernels increases.

180 R. A. Vargas-Hernández and R. V. Krems

9.5.1 Extrapolation Across Sharp Polaron Transitions

As discussed in Sect. 9.2, the Hamiltonian describing a quantum particle coupled
to optical phonons through a combination of two couplings defined by Eq. (9.2)
yields polarons with unusual properties. In particular, it was previously shown [48]
that the ground-state momentum of such polarons undergoes two sharp transitions
as the ratio α/β in Eq. (9.2) as well as the parameter λ = 2α2/th̄ω are varied. The
dimensionless parameter λ is defined in terms of the bare particle hopping amplitude
t and the phonon frequency ω. It quantifies the strength of coupling between the bare
particle and the phonons. One can thus calculate the ground-state momentum or the
effective mass of the polaron as a function of λ and α/β. The values of λ and α/β,
where the polaron momentum and effective mass undergo sharp changes, separate
the ‘phases’ of the Hamiltonian (9.1).

The GP models are trained by the polaron energy dispersions (i.e. the full curves
of the dependence of the polaron energy on the polaron momentum) at different
values of λ, α and β. These models are then used to generalize the full energy
dispersions to values of λ, α and β outside the range of the training data and
the momentum of the polaron with the lowest energy is calculated from these
dispersion curves. The results are shown in Fig. 9.3. Each of the white dots in the
phase diagrams depicted specifies the values of α, β and λ, for which the polaron
dispersions were calculated and used as the training data. One can thus view the
resulting GP models as four-dimensional, i.e. depending on α, β, λ and the polaron
momentum.

Figure 9.3 illustrates two remarkable results:

• The left panel illustrates that the GP models are capable of predicting multiple
new phase transitions by using the training data entirely in one single phase.

Fig. 9.3 Adapted with permission from Ref. [45], Copyright © APS, 2018. The polaron ground-
state momentum KGS for the mixed model (9.1) as a function of β/α for λ = 2α2/th̄ω. The
colour map is the prediction of the GP models. The curves are the quantum calculations from
Ref. [48]. The models are trained by the polaron dispersions at the parameter values indicated
by the white dots. The optimized kernel combination is (kMAT + kRBF) × kLIN (left panel) and
(kMAT × kLIN + kRBF)× kLIN (right panel)

9 Extrapolation of Quantum Observables by Generalization with. . . 181

This proves our conjecture [45] that the evolution of physical properties with the
Hamiltonian parameters in a single phase contains information about multiple
phases and multiple phase transitions.

• While perhaps less surprising, the right panel illustrates that the accuracy of the
predictions increases significantly and the predictions of the phase transitions
become quantitative if the models are trained by data in two phases. The model
illustrated in this panel extrapolates the polaron properties from high values of λ
to low values of λ. Thus, the extrapolation becomes much more accurate if the
models are trained by data in multiple phases.

In the following section we analyse how the kernel selection algorithm described in
Ref. [45] and briefly above arrives at the models used for the predictions in Fig. 9.3.

9.5.2 Effect of Kernel Complexity

Figure 9.4 illustrates the performance of the models with kernels represented by
a simple addition of two simple kernels, when trained by the data in two phases,
as in the right panel of Fig. 9.3. The examination of this figure shows that the
generalization accuracy, including the prediction of the number of the transitions, is
sensitive to the kernel combination. For example, the models with the combination
of the RBF and LIN kernels do not predict any transitions. Most of the other kernel
combinations predict only one of the two transitions. Remarkably, the combination
of two RBF kernels already leads to the appearance of the second transition, and
allows the model to predict the location of the first transition quite accurately. The
combination of Figs. 9.3 and 9.4 thus illustrates that the BIC is a meaningful metric
to guide the kernel selection algorithm, as it rules out many of the kernels leading to
incorrect phase diagrams shown in Fig. 9.4. The results in Fig. 9.4 also raise the
question, how many combinations are required for kernels to allow quantitative
predictions?

To answer this question, we show in Figs. 9.5 and 9.6 the convergence of the
phase diagrams to the results in Fig. 9.3 with the number of iterations in the kernel
selection algorithm. We use the following notation to label the figure panels: GPL-
X, where X is the number of iteration. Thus, X = 0 corresponds to level zero of the
kernel selection algorithm, i.e. GPL-0 is the phase diagram predicted by the model
with the single simple kernel leading to the highest BIC. Level X = 1 corresponds
to kernels constructed as the simple combinations (9.15) or (9.16). Level X = 2
corresponds to kernels of the form (9.15) or (9.16), where ki is a combination of
two kernels. As can be seen from Figs. 9.5 and 9.6, level X = 2 and X = 3 produce
kernels with sufficient complexity for accurate predictions.

It must be noted that increasing the complexity of the kernels further (by
increasing X) often decreases the accuracy of the predictions. This is illustrated in
Fig. 9.7. We assume that this happens either due to overfitting or because the kernels
become so complex that it is difficult to optimize them and the maximization of the
log marginal likelihood gets stuck in a local maximum. To overcome this problem,

182 R. A. Vargas-Hernández and R. V. Krems

Fig. 9.4 The polaron ground-state momentum KGS for the mixed model (9.1) as a function of
β/α for λ = 2α2/th̄ω. The black dashed curves are the calculations from Ref. [48]. The colour
map is the prediction of the GP models with the fully optimized kernels. The models are trained by
the polaron dispersions at the parameter values indicated by the black dots. The different kernels
considered here are all possible pairwise additions (9.15) of two simple kernels from the family of
kernels (kMAT, kRQ and kRBF)

one needs to optimize kernels multiple times starting from different conditions
(either different sets of training data or different initial kernel parameters) and
stop increasing the complexity of kernels when the optimization produces widely
different results. Alternatively, the models could be validated by a part of the training
data and the complexity of the kernels must be stopped at level X that corresponds
to the minimal validation error, as often done to prevent overfitting with NNs [59].

9.5.3 Extrapolation Across Paramagnetic–Ferromagnetic
Transition

In this section, we discuss the Heisenberg spin model described by the lattice
Hamiltonian

H = −J

2

∑
〈i,j 〉

Si · Sj , (9.17)

9 Extrapolation of Quantum Observables by Generalization with. . . 183

Fig. 9.5 Adapted from the supplementary material of Ref. [45]. Improvement of the phase
diagram shown in Fig. 9.3 (upper panel) with the kernel complexity increasing as determined
by the algorithm described in Sect. 9.4.1. The panels correspond to the optimized kernels GPL-
0 (upper left), GPL-1 (upper right), GPL-2 (lowest panel), where “GPL-X” denotes the optimal
kernel obtained after X depth levels

where 〈i, j 〉 only account for nearest-neighbour interactions between different
spins Si . The free energy of the system can be calculated within the mean-field
approximation to yield

f (T ,m) ≈ 1

2

(
1− Tc

T

)
m2 + 1

12

(
Tc

T

)3

m4, (9.18)

where m is the magnetization and Tc = 1.25 is the critical temperature of the phase
transition between the paramagnetic (T > Tc) and ferromagnetic (T < Tc) phase.

We train GP models by the entire free-energy curves at temperatures far above
Tc. The free-energy curves are then predicted by the extrapolation models at
temperatures decreasing to the other side of the transition. The order parameter
m0—defined as the value of magnetization that minimizes free energy—is then
computed from the extrapolated predictions. The results are shown in Fig. 9.8.

As evident from Eq. (9.18), the free-energy curves have an analytic dependence
on temperature T so this is a particularly interesting case for testing the gener-
alization models. Can the kernel selection algorithm adopted here converge to a

184 R. A. Vargas-Hernández and R. V. Krems

Fig. 9.6 Adapted from the supplementary material of Ref. [45]. Improvement of the phase
diagram shown in Fig. 9.3 (lower panel) with the kernel complexity increasing as determined by
the algorithm depicted in Sect. 9.4.1. The panels correspond to the optimized kernels GPL-0 (upper
left), GPL-1 (upper right), GPL-2 (lower left), GPL-3 (lower right), where “GPL-X” denotes the
optimal kernel obtained after X depth levels

model that will describe accurately the analytic dependence of the free energy
(9.18) as well as the order parameter derived from it? We find that the temperature
dependence of Eq. (9.18) can be rather well captured and accurately generalized by
a model already with one simple kernel! However, this kernel must be carefully
selected. As Fig. 9.9 illustrates, the accuracy of the free-energy prediction varies
widely with the kernel. This translates directly into the accuracy of the order-
parameter prediction illustrated by Fig. 9.10. Figure 9.10 illustrates that the RBF
and RQ kernels capture the evolution of the order parameter quantitatively, while
the LIN, MAT and quadratic kernels produce incorrect results.

Table 9.1 lists the BIC values for the models used to obtained the results depicted
in Fig. 9.10, clearly demonstrating that the higher value of the BIC corresponds to
the model with the better prediction power.

9 Extrapolation of Quantum Observables by Generalization with. . . 185

Fig. 9.7 Decrease of the prediction accuracy with increasing kernel complexity. Upper panels:
left—GPL-2 (same as the right panel of Fig. 9.5), right—GPL-3. Lower panels: left—GPL-3 (same
as the lower right panel of Fig. 9.6), right—GPL-4

Fig. 9.8 Adapted with permission from Ref. [45], Copyright © APS, 2018. GP prediction (solid
curves) of the free-energy density f (T ,m) of the mean-field Heisenberg model produced by
Eq. (9.18) (dashed curves). Inset: the order parameter m0 that minimizes f (T ,m): symbols—
GP predictions, dashed curve—from Eq. (9.18). The GP models are trained with 330 points at
1.47 < T < 2.08 (shaded area) and −1.25 < m < 1.25

186 R. A. Vargas-Hernández and R. V. Krems

Fig. 9.9 GP prediction (solid curves) of the free-energy density f (T ,m) of the mean-field
Heisenberg model produced by Eq. (9.18) (dashed curves). All GP models are trained with 330
points at 1.47 < T < 2.08 (shaded area) and −1.25 < m < 1.25. The kernel function used in the
GP models is indicated in each panel

Fig. 9.10 The order parameter m0 that minimizes f (T ,m): symbols—GP predictions, dashed
curve—from Eq. (9.18). The order parameter m0 is computed with the GP predictions using
different kernels, illustrated in Fig. 9.9

9 Extrapolation of Quantum Observables by Generalization with. . . 187

Table 9.1 The numerical
values of the BIC (9.14) for
the models with different
simple kernels (9.9)–(9.13)
used for the predictions of the
order parameter depicted in
Fig. 9.10

Kernel type BIC

RQ 8667.10

RBF 8657.13

MAT 7635.20

LIN −104437128213.0

LIN× LIN −10397873744.9

9.5.4 Validation of Extrapolation

Validation of the generalization predictions in the extrapolated region presents a
major problem. By definition, there are no data in the extrapolated region. One
can, of course, divide the given data into a training set and a validation set outside
of the training data range. The validation set can then be used to verify the
accuracy of the extrapolation. This is what is done throughout this work. However,
this does not guarantee the accuracy of the predictions beyond the range of the
validation data. Finding a proper method to validate the extrapolation predictions is
particularly important for applications of the present approach to making predictions
of observables at physical parameters, where no theoretical or experimental results
are available.

A possible way to verify the accuracy of the extrapolation predictions without
using data in the extrapolated region is to examine the sensitivity of the predictions
to the positions and number of training points. If the predictions are stable to
variations of the training data, one might argue that the predictions are valid. To
illustrate this, we rebuild the models of the phase diagram depicted in Fig. 9.1 with
a variable number of training points. Figure 9.11 shows the results obtained with
models trained by the quantum calculations at different values of λ and α/β. The
figure illustrates the following:

• The generalization models capture both transitions even when trained by the
quantum calculations far removed from the transition line and with a random
distribution of training points.

• The predictions of the transitions become more accurate as the distribution of the
training points approaches the first transition line.

One may thus conclude that the predictions of the sharp transitions are physical.
If possible, this can be further validated by training generalization models with data
in a completely different part of the phase diagram. This is done in Fig. 9.12 that
shows the same phase diagram obtained by the generalization models trained with
quantum results entirely in the middle phase. Given the remarkable agreement of
the results in the last panel of Fig. 9.11 and in the last panel of Fig. 9.12, one can
argue that the predicted phase diagram is accurate.

188 R. A. Vargas-Hernández and R. V. Krems

Fig. 9.11 Dependence of the prediction accuracy on the number and positions of training points.
The white dots indicate the values of the parameters λ and α/β, at which the quantum properties
were calculated for training the GP models. All results are computed with optimal kernels with the
same complexity level GPL-2

Based on these results, we suggest the following algorithm to make stable
predictions of unknown phase transitions by extrapolation:

1. Sample the phase diagram with a cluster of training points at random.
2. Identify the phase transitions by extrapolation in all directions.
3. Move the cluster of the training points towards any predicted transition.

9 Extrapolation of Quantum Observables by Generalization with. . . 189

Fig. 9.12 Dependence of the prediction accuracy on the positions of training points. The black
dots indicate the values of the parameters λ and α/β, at which the quantum properties were
calculated for training the GP models. The different panels correspond to the optimal kernels with
the complexity level ranging from GPL-0 (upper left) to GPL-4 (lowest panel)

4. Repeat the calculations until the predictions do not change with the change of the
training point distributions.

5. If possible, rebuild the models with training points in a completely different part
of the phase diagram.

190 R. A. Vargas-Hernández and R. V. Krems

While step (5) is not necessary, the agreement of the results in steps (4) and (5) can
be used as an independent verification of the extrapolation. The comparison of the
results in steps (4) and (5) may also point to the part of the phase diagram, where
the predictions are least reliable.

9.5.5 Power of the Bayesian Information Criterion

As explained in Sect. 9.4.1, the generalization models used here are obtained by
gradually increasing the complexity of kernels using the BIC (9.14) as a kernel
selection criterion. The algorithm starts with a simple kernel that leads to a model
with the largest BIC. This kernel is then combined with multiple simple kernels
leading to multiple models. The kernel of the model with the largest BIC is selected
as a new kernel, which is again combined with multiple simple kernels. The
procedure is iterated to increase the kernel complexity, one simple kernel at a time.
Since the BIC (9.14) is closely related to the log marginal likelihood and the kernel
parameters are optimized for each step by maximizing the log marginal likelihood,
why not to simply select some complex kernel function at random and maximize
the log marginal likelihood of the model with this kernel?

To illustrate the power of the BIC in the greedy search algorithm, we repeat the
calculations of Fig. 9.12 with kernels of various complexity selected at random. We
mimic the iterative process used above, but instead of using the BIC as a kernel
selection criterion, we select a new kernel at each complexity level at random.
Every model is optimized by maximizing the log marginal likelihood as usual. The
results are depicted in Fig. 9.13. The different panels of Fig. 9.13 are obtained with
models using kernels of different complexity. The models are not physical and there
is no evidence of model improvement with increasing kernel complexity. We thus
conclude that the BIC is essential as the kernel selection criterion to build GP models
for applications targeting physical extrapolation.

9.6 Conclusion

The present article presents clear evidence that Gaussian process models can be
designed to predict the physical properties of complex quantum systems outside the
range of the training data. As argued in Ref. [60], the generalization power of GP
models in the extrapolated region is likely a consequence of the Bayesian approach
to machine learning that underlies GP regression. For this reason, the authors believe
that Bayesian machine learning has much potential for applications in physics and
chemistry [60]. As illustrated here, it can be used as a new discovery tool of physical
properties, potentially under conditions, where neither theory nor experiment are
feasible.

The generalization models discussed here can also be used to guide rigorous
theory in search of specific phenomena (such as phase transitions) and/or particular
properties of complex systems. Generating the phase diagram, such as the one

9 Extrapolation of Quantum Observables by Generalization with. . . 191

Fig. 9.13 Predictions obtained with randomly selected kernels. The black dots indicate the values
of the parameters λ and α/β, at which the quantum properties were calculated for training the
GP models. The different panels correspond to the optimal kernels with the complexity level
ranging from GPL-0 (upper left) to GPL-4 (lowest panel). The initial kernel is selected at random.
The kernel at the next complexity level GPL-X is obtained by combining the kernel from the
previous complexity level with another randomly selected kernel. The parameters of the kernels
thus obtained are optimized using the maximization of the log marginal likelihood. This procedure
illustrates the importance of the BIC for the selection of the type of the kernel function

192 R. A. Vargas-Hernández and R. V. Krems

depicted in Fig. 9.1, presents no computational difficulty (taking essentially minutes
of CPU time). One can thus envision the following efficient approach for the
generation of the full phase diagrams based on a combination of the GP models
with rigorous calculations or experiments:

1. Start with a small number of rigorous calculations or experimental measure-
ments.

2. Generate the full phase diagram with the GP models with complex kernels. This
diagram is likely to be inaccurate at the system parameters far away from the
initial training points.

3. Use rigorous calculations or experiments to add training points in the parts of the
parameter space, where the system exhibits desired properties of interest; and
where the system properties undergo the most rapid change.

4. Repeat the calculations until the predictions in the extrapolated region do not
change with the change of the training point distributions.

With this approach, one can envision generating complete D-dimensional phase
diagrams with about 10 ×D rigorous calculations or experimental measurements.
Training the models and making the predictions in step (2) will generally take a
negligibly small fraction of the total computation time.

It should be pointed out that the results presented in this work suggest algorithms
to construct complex GP models capable of meaningful predictions in the extrap-
olated region without direct validation. To do this, one can examine the sensitivity
of the predictions to the distribution of the training points for models with the same
level of kernel complexity as well as models with different complexity. Increase
of the sensitivity to the training points with the kernel complexity would suggest
overfitting or insufficient optimization of the kernel parameters. In such cases, the
iterative process building up the kernel complexity should be stopped or the process
of optimizing the kernel parameters revised. Constructing algorithms for physical
extrapolation without the need for validation should be the ultimate goal of the effort
aimed at designing ML models for physics and chemistry. Such models could then
use all available chemistry and physics information to make meaningful discoveries.

Acknowledgments We thank Mona Berciu for the quantum results used for training and verifying
the ML models for the polaron problem. We thank John Sous and Mona Berciu for the ideas that
had led to work published in Ref. [45] and for enlightening discussions.

References

1. J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, A.J.C. Varandas, Molecular Potential Energy
Functions (Wiley, Chichester, 1984)

2. T. Hollebeek, T.-S. Ho, H. Rabitz, Annu. Rev. Phys. Chem. 50, 537 (1999)
3. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)
4. M.A. Collins, Theor. Chem. Acc. 108, 313 (2002)
5. C.M. Handley, P.L.A. Popelier, J. Phys. Chem. A 114, 3371 (2010)

9 Extrapolation of Quantum Observables by Generalization with. . . 193

6. S. Manzhos, T. Carrington Jr., J. Chem. Phys. 125, 194105 (2006)
7. J. Cui, R.V. Krems, Phys. Rev. Lett. 115, 073202 (2015)
8. J. Cui, R.V. Krems, J. Phys. B 49, 224001 (2016)
9. R.A. Vargas-Hernández, Y. Guan, D.H. Zhang, R.V. Krems, New J. Phys. 21, 022001 (2019)

10. A. Kamath, R.A. Vargas-Hernández, R.V. Krems, T. Carrington Jr., S. Manzhos, J. Chem. Phys.
148, 241702 (2018)

11. C. Qu, Q. Yu, B.L. Van Hoozen Jr., J.M. Bowman, R.A. Vargas-Hernández, J. Chem. Theory
Comp. 14, 3381 (2018)

12. L. Wang, Phys. Rev. B 94, 195105 (2016)
13. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)
14. E.P.L. van Nieuwenburg, Y.-H. Liu, S.D. Huber, Nat. Phys. 13, 435 (2017)
15. P. Broecker, F. Assaad, S. Trebst, (2017). arXiv:1707.00663
16. S.J. Wetzel, M. Scherzer, Phys. Rev. B 96, 184410 (2017)
17. S.J. Wetzel, Phys. Rev. E 96, 022140 (2017)
18. Y.-H. Liu, E.P.L. van Nieuwenburg, Phys. Rev. Lett. 120, 176401 (2018)
19. K. Chang, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)
20. P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 8823 (2017)
21. F. Schindler, N. Regnault, T. Neupert, Phys. Rev. B 95, 245134 (2017)
22. T. Ohtsuki, T. Ohtsuki, J. Phys. Soc. Jpn 85, 123706 (2016)
23. L.-F. Arsenault, A. Lopez-Bezanilla, O.A. von Lilienfeld, A.J. Millis, Phys. Rev. B 90, 155136

(2014)
24. L.-F. Arsenault, O.A. von Lilienfeld, A.J. Millis, (2015). arXiv:1506.08858
25. M.J. Beach, A. Golubeva, R.G. Melko, Phys. Rev. B 97, 045207 (2018)
26. E. van Nieuwenburg, E. Bairey, G. Refael, Phys. Rev. B 98, 060301(R) (2018)
27. N. Yoshioka, Y. Akagi, H. Katsura, Phys. Rev. B 97, 205110 (2018)
28. J. Venderley, V. Khemani, E.-A. Kim, Phys. Rev. Lett. 120, 257204 (2018)
29. G. Carleo, M. Troyer, Science 355, 602 (2017)
30. M. Schmitt, M. Heyl, SciPost Phys. 4, 013 (2018)
31. Z. Cai, J. Liu, Phys. Rev. B 97, 035116 (2017)
32. Y. Huang, J.E. Moore, (2017). arXiv:1701.06246
33. D.-L. Deng, X. Li, S.D. Sarma, Phys. Rev. B 96, 195145 (2017)
34. Y. Nomura, A. Darmawan, Y. Yamaji, M. Imada, Phys. Rev. B 96, 205152 (2017)
35. D.-L. Deng, X. Li, S.D. Sarma, Phys. Rev. X 7, 021021 (2017)
36. X. Gao, L.-M. Duan, Nat. Commun. 8, 662 (2017)
37. G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, G. Carleo, Nat. Phys. 14, 447

(2018)
38. T. Hazan, T. Jaakkola, (2015). arXiv:1508.05133
39. A. Daniely, R. Frostig, Y. Singer, NIPS 29, 2253 (2016)
40. J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Pennington, J. Sohl-Dickstein, Deep neural

networks as Gaussian processes, in ICLR (2018)
41. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89,

205118 (2014)
42. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114,

105503 (2015)
43. F.A. Faber, A. Lindmaa, O.A, von Lilienfeld, R. Armient, Int. J. Quantum Chem. 115, 1094

(2015)
44. F.A. Faber, A. Lindmaa, O.A, von Lilienfeld, R. Armient, Phys. Rev. Lett. 117, 135502 (2016)
45. R.A. Vargas-Hernández, J. Sous, M. Berciu, R.V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
46. D.J.J. Marchand, G. De Filippis, V. Cataudella, M. Berciu, N. Nagaosa, N.V. Prokof’ev, A.S.

Mishchenko, P.C.E. Stamp, Phys. Rev. Lett. 105, 266605 (2010)
47. B. Lau, M. Berciu, G.A. Sawatzky, Phys. Rev. B 76, 174305 (2007)
48. F. Herrera, K.W. Madison, R.V. Krems, M. Berciu, Phys. Rev. Lett. 110, 223002 (2013)
49. B. Gerlach, H. Löwen, Rev. Mod. Phys. 63, 63 (1991)

194 R. A. Vargas-Hernández and R. V. Krems

50. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University
Press, Cambridge, 1998)

51. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)
52. C.E. Rasmussen, C.K.I. Williams, Gaussian Process for Machine Learning (MIT Press,

Cambridge, 2006)
53. G. Schwarz, Ann. Stat. 6(2), 461 (1978)
54. D.K. Duvenaud, H. Nickisch, C.E. Rasmussen, Adv. Neural Inf. Proces. Syst. 24, 226 (2011)
55. D.K. Duvenaud, J. Lloyd, R. Grosse, J.B. Tenenbaum, Z. Ghahramani, Proceedings of the 30th

International Conference on Machine Learning Research, vol. 28 (2013), p. 1166
56. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,

2016)
57. J. Dai, R.V. Krems, J. Chem. Theory Comput. 16(3), 1386–1395 (2020). arXiv:1907.08717
58. A. Christianen, T. Karman, R.A. Vargas-Hernández, G.C. Groenenboom, R.V. Krems, J. Chem.

Phys. 150, 064106 (2019)
59. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn. Res.

15, 1929 (2014)
60. R.V. Krems, Bayesian machine learning for quantum molecular dynamics. Phys. Chem. Chem.

Phys. 21, 13392 (2019)

Part III

Deep Learning of Atomistic Representations

Atomistic Representations: Preface

Deep learning has led to several breakthroughs in applications such as computer
vision or natural language processing in recent years [1]. Neural networks can
handle millions of training examples and can easily be parallelized on modern
graphics processing units (GPUs) and distributed over large computer clusters.
While the machine learning methods introduced in the last part of this book rely
on the hand-crafted descriptors or kernels, neural networks owe a large part of
their success to the ability to learn powerful multi-scale representations directly
from structured data—a paradigm called end-to-end learning. Just like images or
text, atomistic systems are structured data: their atoms correspond to pixels or
words, and neighboring atoms generally tend to interact stronger than those at larger
distances. Even though neural networks have been used to parametrize potential
energy surfaces before [2–6], these methods still rely on manually crafted features.
Only recently have end-to-end neural networks been applied to learn representations
of molecules and materials.

This part reviews two popular frameworks—deep tensor neural networks
(DTNN) [7] and message-passing neural networks (MPNN) [8]—which were
both extended and generalized by later architectures [9–16]. While mathematically
similar, both frameworks arrived from different underlying concepts: an encoding
of the many-body expansion in a neural network [5, 17] for DTNNs versus the
learning of graph representations [18, 19] in the case of MPNNs. Chapter 10 [20]
reviews the MPNN framework including its numerous variants in the context
of predicting molecular properties. It describes the building blocks of MPNNs
in detail and covers both learning on atomic position and using only molecular
graph connectivity. The deep tensor neural network SchNet [21], as presented in
Chap. 11 [22], models atomic interactions using continuous, spatial convolution
filters while encoding prior information, as described in Part II of this book, into an
end-to-end neural network architecture. A focus of the chapter is the analysis of the
learned representation to gain insights regarding what the model has learned about
molecules and materials in the spirit of explainable AI [23]. Combined with the

196 III Deep Learning of Atomistic Representations

techniques to include prior knowledge presented in the previous part, these chapters
provide the knowledge to design interpretable neural network architectures yielding
accurate predictions for quantum simulations.

Berlin, Germany Kristof T. Schütt
Berlin, Germany Stefan Chmiela
Basel, Switzerland O. Anatole von Lilienfeld
Luxembourg, Luxembourg Alexandre Tkatchenko
Kashiwa, Japan Koji Tsuda
Berlin, Germany Klaus-Robert Müller
September 2019

References

1. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)
2. T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103(10), 4129 (1995)
3. S. Manzhos, T. Carrington Jr, J. Chem. Phys. 125(8), 084109 (2006)
4. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
5. M. Malshe, R. Narulkar, L.M. Raff, M. Hagan, S. Bukkapatnam, P.M. Agrawal, R. Komanduri,

J. Chem. Phys. 130(18), 184102 (2009)
6. A. Pukrittayakamee, M. Malshe, M. Hagan, L. Raff, R. Narulkar, S. Bukkapatnum, R. Koman-

duri, J. Chem. Phys. 130(13), 134101 (2009)
7. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017)
8. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Proceedings of the 34th

International Conference on Machine Learning (2017), pp. 1263–1272
9. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018)

10. P.B. Jørgensen, K.W. Jacobsen, M.N. Schmidt (2018). Preprint. arXiv:1806.03146
11. T.S. Hy, S. Trivedi, H. Pan, B.M. Anderson, R. Kondor, J. Chem. Phys. 148(24), 241745 (2018)
12. N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, P. Riley (2018). Preprint.

arXiv:1802.08219
13. C. Chen, W. Ye, Y. Zuo, C. Zheng, S.P. Ong, Chem. Mater. 31(9), 3564 (2019)
14. O.T. Unke, M. Meuwly, PhysNet: a neural network for predicting energies, forces, dipole

moments, and partial charges. J. Chem. Theory Comput. 15(6), 3678–3693 (2019)
15. N.W. Gebauer, M. Gastegger, K.T. Schütt (2019). Preprint. arXiv:1906.00957
16. K.T. Schütt, M. Gastegger, A. Tkatchenko et al., Unifying machine learning and quantum

chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024
(2019). https://doi.org/10.1038/s41467-019-12875-2

17. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577 (2009)
18. F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, IEEE Trans. Neural Netw.

20(1), 61 (2009)
19. D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R.P.

Adams, in NIPS, ed. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran
Associates, Red Hook, 2015), pp. 2224–2232

20. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, in Machine Learning for
Quantum Simulations of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von
Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin,
2019)

21. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, J. Chem. Phys.
148(24), 241722 (2018)

https://doi.org/10.1038/s41467-019-12875-2

III Deep Learning of Atomistic Representations 197

22. K.T. Schütt, A. Tkatchenko, K.-R. Müller, in Machine Learning for Quantum Simulations of
Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

23. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.-R. Müller, Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, vol. 11700 (Springer, Cham, 2019)

10Message Passing Neural Networks

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl

Abstract

Supervised learning on molecules has incredible potential to be useful in
chemistry, drug discovery, and materials science. Luckily, several promising and
closely related neural network models invariant to molecular symmetries have
already been described in the literature. These models learn a message passing
algorithm and aggregation procedure to compute a function of their entire input
graph. In this chapter, we describe a general common framework for learning
representations on graph data called message passing neural networks (MPNNs)
and show how several prior neural network models for graph data fit into this
framework. This chapter contains large overlap with Gilmer et al. (International
Conference on Machine Learning, pp. 1263–1272, 2017), and has been modified
to highlight more recent extensions to the MPNN framework.

10.1 Introduction

The past decade has seen remarkable success in the use of deep neural networks to
understand and translate natural language [1], generate and decode complex audio

J. Gilmer (�) · S. S. Schoenholz · G. E. Dahl
Google Brain, Mountain View, CA, USA
e-mail: gilmer@google.com; schsam@google.com; gdahl@google.com

P. F. Riley
Google, Mountain View, CA, USA
e-mail: pfr@google.com

O. Vinyals
DeepMind, London, UK
e-mail: vinyals@google.com

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_10

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_10&domain=pdf
mailto:gilmer@google.com
mailto:schsam@google.com
mailto:gdahl@google.com
mailto:pfr@google.com
mailto:vinyals@google.com
https://doi.org/10.1007/978-3-030-40245-7_10

200 J. Gilmer et al.

Fig. 10.1 A message
passing neural network
predicts quantum properties
of an organic molecule by
modeling a computationally
expensive DFT calculation

signals [2], and infer features from real-world images and videos [3]. Although
chemists have applied machine learning to many problems over the years, predicting
the properties of molecules and materials using machine learning (and especially
deep learning) is still in its infancy. A classic approach to applying machine learning
to chemistry tasks [4–10] revolves around feature engineering. Recently, large
scale quantum chemistry calculation and molecular dynamics simulations coupled
with advances in high throughput experiments have begun to generate data at an
unprecedented rate. Most classical techniques do not make effective use of the larger
amounts of data that are now available. The time is ripe to apply more powerful
and flexible machine learning methods to these problems, assuming we can find
models with suitable inductive biases. The symmetries of atomic systems suggest
neural networks that are invariant to the symmetries of graph structured data might
also be appropriate for molecules. Sufficiently successful models could someday
help automate challenging chemical search problems in drug discovery or materials
science.

In this chapter, we describe a general framework for supervised learning on
graphs called message passing neural networks (MPNNs) that simply abstracts the
commonalities between several of the most promising prior neural models for graph
structured data, in order to make it easier to understand the relationships between
them and come up with novel variations. MPNNs have proven to have a strong
inductive bias for graph data, with applications ranging from program synthesis
[11], modeling citation networks [12], reinforcement learning [13], modeling
physical systems, and predicting properties of molecules [14–17]. In this chapter,
we describe the general MPNN framework before discussing specific applications
of this framework in predicting the quantum mechanical properties of small organic
molecules (see task schematic in Fig. 10.1).

In general, the search for practically effective machine learning (ML) models in
a given domain proceeds through a sequence of increasingly realistic and interesting
benchmarks. Here, we focus on the QM9 dataset as such a benchmark [18].
QM9 consists of 130k molecules with 13 properties for each molecule which are
approximated by an expensive1 quantum mechanical simulation method (DFT), to

1By comparison, the inference time of the neural networks discussed in this work is 300k times
faster.

10 Message Passing Neural Networks 201

yield 13 corresponding regression tasks. These tasks serve as a useful benchmark
for developing architectures with a strong inductive bias in the chemical domain.
Additionally, QM9 also includes complete spatial information for the single low
energy conformation of the atoms in the molecule that was used in calculating
the chemical properties. QM9 therefore lets us consider both the setting where the
complete molecular geometry is known (atomic distances, bond angles, etc.) and
the setting where we need to compute properties that might still be defined in terms
of the spatial positions of atoms, but where only the atom and bond information
(i.e., graph) is available as input. In the latter case, the model must implicitly fit
something about the computation used to determine a low energy 3D conformation
and hopefully would still work on problems where it is not clear how to compute a
reasonable 3D conformation.

When measuring the performance of our models on QM9, there are two
important benchmark error levels. The first is the estimated average error of the
DFT approximation to nature, which we refer to as “DFT error.” The second, known
as “chemical accuracy,” is a target error that has been established by the chemistry
community. Estimates of DFT error and chemical accuracy are provided for each
of the 13 targets in Faber et al. [16]. One important goal of this line of research
is to produce a model which can achieve chemical accuracy with respect to the
true targets as measured by an extremely precise experiment. The ability to fit the
DFT approximation to within chemical accuracy would be an encouraging step in
this direction. In the rest of this paper, when we talk about chemical accuracy we
generally mean with respect to our available ground truth labels.

In this chapter, we discuss our original application of the MPNN framework
[17] to the QM9 dataset as well as related work [15, 19, 20] which have improved
upon our initial results. To date MPNNs have been shown to predict DFT to
within chemical accuracy on 11 out of 13 targets in the QM9 benchmark, and
are less than DFT error on all 13 targets. We also show that MPNNs can predict
DFT to within chemical accuracy on 5 out of 13 targets while operating on the
topology of the molecule alone (with no spatial information as input). In this sparse
setting, we explore some simple graph preprocessing techniques which can improve
performance. Finally, we discuss a general method to train MPNNs with larger node
representations without a corresponding increase in computation time or memory,
yielding a substantial savings for high dimensional node representations.

10.2 Message Passing Neural Networks

There are many notable examples of models from the literature that we can describe
using the message passing neural networks (MPNN) framework; in this section, we
discuss a few specific instances. For simplicity, we describe MPNNs which operate
on undirected graphs G with node features xv and edge features evw. It is trivial to
extend the formalism to directed multigraphs. The forward pass has two phases, a
message passing phase and a readout phase. The message passing phase runs for
T time steps and is defined in terms of message functions Mt and vertex update

202 J. Gilmer et al.

functions Ut . During the message passing phase, hidden states ht
v at each node in

the graph are updated based on aggregated messages mt+1
v according to

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (10.1)

ht+1
v = Ut(h

t
v,m

t+1
v) (10.2)

where in the sum, N(v) denotes the neighbors of v in graph G. Note the sum in
Eq. 10.1 can be replaced with any permutation invariant function α operating on
the set of neighbors N(v). Some instantiations of MPNNs use self-attention in this
aggregation step [21]. It has also been shown [22] that for more general aggregation
functions α, other model families such as non local neural networks [23] can be
described in this framework. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v ∈ G}). (10.3)

The message functions Mt , vertex update functions Ut , and readout function R are
all learned differentiable functions. R operates on the set of node states and must be
invariant to permutations of the node states in order for the MPNN to be invariant
to graph isomorphism. Some MPNNs [19, 24] learn edge features by introducing
hidden states for all edges in the graph ht

evw
and updating them using a learned

differentiable edge function E according to Eq. 10.4.

et+1
vw = E(ht

v, h
t
w, etvw) (10.4)

In what follows, we describe several models in the literature as they fit into
the MPNN framework by specifying the specific message, update, and readout
functions used.

10.2.1 Convolutional Networks for LearningMolecular Fingerprints
[14]

The message function used is

M(hv, hw, evw) = (hw, evw), (10.5)

where (· , ·) denotes concatenation. The vertex update function used is

Ut(h
t
v,m

t+1
v) = σ(H

deg(v)
t mt+1

v), (10.6)

10 Message Passing Neural Networks 203

where σ is the sigmoid function, deg(v) is the degree of vertex v, and HN
t is a

learned matrix for each time step t and vertex degree N . The readout function has
skip connections to all previous hidden states ht

v and is

R = f

(∑
v,t

softmax(Wth
t
v)

)
, (10.7)

where f is a neural network and Wt are learned readout matrices, one for each
time step t . This message passing scheme may be problematic since the resulting
message vector is

mt+1
v =

(∑
ht
w,
∑

evw

)
, (10.8)

which separately sums over connected nodes and connected edges. It follows that
the message passing implemented in Duvenaud et al. [14] is unable to identify
correlations between edge states and node states.

10.2.2 Gated Graph Neural Networks (GG-NN) [25]

The message function used is

Mt(h
t
v, h

t
w, evw) = Aevwh

t
w, (10.9)

where Aevw is a learned matrix, one for each edge label e (the model assumes
discrete edge types). The update function is

Ut = GRU(ht
v,m

t+1
v), (10.10)

where GRU is the gated recurrent unit introduced by Cho et al. [26]. This work used
weight tying, so the same update function is used at each time step t . Finally, the
readout function is

R =
∑
v∈V

σ
(
i(hT

v , h
0
v)
)
�
(
j (hT

v)
)
, (10.11)

where i and j are neural networks, and � denotes element-wise multiplication.

10.2.3 Interaction Networks [27]

This work considered both the case where there is a target at each node in the graph
and where there is a graph level target. It also considered the case where there are
node level effects applied at each time step, in such a case the update function takes

204 J. Gilmer et al.

as input the concatenation (hv, xv,mv) where xv is an external vector representing
some outside influence on the vertex v. The message function

M(hv, hw, evw) (10.12)

is a neural network which takes the concatenation (hv, hw, evw). The vertex update
function

U(hv, xv,mv) (10.13)

is a neural network which takes as input the concatenation (hv, xv,mv). Finally, in
the case where there is a graph level output, the readout function is

R = f

(∑
v∈G

hT
v

)
, (10.14)

where f is a neural network which takes the sum of the final hidden states hT
v . Note

the original work only defined the model for T = 1.

10.2.4 Molecular Graph Convolutions [24]

To the best of our knowledge, this work was the first to consider learned edge
representations etvw which are updated during the message passing phase. The
message function used for node messages is

M(ht
v, h

t
w, etvw) = etvw. (10.15)

The vertex update function is

Ut(h
t
v,m

t+1
v) = α

(
W1

(
α
(
W0h

t
v

)
, mt+1

v

))
, (10.16)

where (· , ·) denotes concatenation, α is the ReLU activation, and W1,W0 are
learned weight matrices. The edge state update is defined by

et+1
vw = E(etvw, ht

v, h
t
w) = α

(
W4
(
α
(
W2, e

t
vw

)
, α
(
W3
(
ht
v, h

t
w

))))
, (10.17)

where the Wi are also learned weight matrices.

10 Message Passing Neural Networks 205

10.2.5 Deep Tensor Neural Networks [15]

The message from w to v is computed by

Mt(h
t
v, h

t
w, evw) = tanh

(
Wfc((Wcf ht

w + b1)� (Wdf evw + b2))
)
, (10.18)

where Wfc, Wcf , Wdf are matrices and b1, b2 are bias vectors. The update function
used is

Ut(h
t
v,m

t+1
v) = ht

v +mt+1
v . (10.19)

The readout function passes each node independently through a single hidden layer
neural network and sums the outputs, in particular

R =
∑
v

NN(hT
v). (10.20)

10.2.6 SchNet with Edge Updates [19]

This work extends SchNet [20] to include an edge update function. The message
function used is

Mt(h
t
v, h

t
w, etvw) = (W t

1h
t
w)� g(Wt

3g(W
t
2e

t
vw)) (10.21)

where g is the softplus function, and � denotes the element-wise multiplication
operation. The update function used is

Ut(h
t
v,m

t+1
v) = ht

v +Wt
5g(W

t
4m

t+1
v) (10.22)

while the edge update is

E(ht
v, h

t
w, etvw) = g(Wt+1

E2 g(Wt+1
E1 (ht

v;ht
w; etvw))) (10.23)

and the readout is

R =
∑
v∈G

W7g(W6h
T
v). (10.24)

10.2.7 Laplacian-BasedMethods [12,28,29]

These methods generalize the notion of the convolution operation typically applied
to image datasets to an operation that operates on an arbitrary graph G with a real

206 J. Gilmer et al.

valued adjacency matrix A. The operations defined in Bruna et al. [28], Defferrard
et al. [29] result in message functions of the form

Mt(h
t
v, h

t
w) = Ct

vwht
w, (10.25)

where the matrices Ct
vw are parameterized by the eigenvectors of the graph

Laplacian L, and the learned parameters of the model. The vertex update function
used is

Ut(h
t
v,m

t+1
v) = σ(mt+1

v), (10.26)

where σ is some pointwise non-linearity (such as ReLU). One model [12] results in
a message function

Mt(h
t
v, h

t
w) = cvwht

w (10.27)

where cvw = (deg(v)deg(w))−1/2 Avw. The vertex update function is

Ut
v(h

t
v,m

t+1
v) = ReLU(W tmt+1

v). (10.28)

The exact expressions for the Ct
vw and the derivation of the reformulation of these

models as MPNNs can be found in [17].

10.3 MPNNs for ModelingMolecules

We began our exploration of MPNNs around the GG-NN model which we believe
to be a strong baseline. We focused on trying different message functions, output
functions, finding the appropriate input representation, and properly tuning hyper-
parameters.

For the rest of the chapter, we use d to denote the dimension of the internal hidden
representation of each node in the graph, and n to denote the number of nodes in
the graph. Our implementation of MPNNs in general operates on directed graphs
with a separate message channel for incoming and outgoing edges, in which case
the incoming message mv is the concatenation of min

v and mout
v , this was also used in

Li et al. [25]. When we apply this to undirected chemical graphs, we treat the graph
as directed, where each original edge becomes both an incoming and outgoing edge
with the same label. Note there is nothing special about the direction of the edge, it
is only relevant for parameter tying. Treating undirected graphs as directed means
that the size of the message channel is 2d instead of d.

The input to our MPNN model is a set of feature vectors for the nodes of the
graph, xv , and an adjacency matrix A with vector valued entries to indicate different
bonds in the molecule as well as pairwise spatial distance between two atoms. We
experimented as well with the message function used in the GG-NN family, which
assumes discrete edge labels, in which case the matrix A has entries in a discrete

10 Message Passing Neural Networks 207

alphabet of size k. The initial hidden states h0
v are set to be the atom input feature

vectors xv and are padded up to some larger dimension d. All of our experiments
used weight tying at each time step t , and a GRU [26] for the update function as in
the GG-NN family.

10.3.1 Message Functions

Matrix Multiplication We started with the message function used in GG-NN
which is defined by the equation

M(hv, hw, evw) = Aevwhw.

Edge Network To allow vector valued edge features, we propose the message
function

M(hv, hw, evw) = A(evw)hw,

where A(evw) is a neural network which maps the edge vector evw to a d×d matrix.

Pair Message One property that the matrix multiplication rule has is that the
message from node w to node v is a function only of the hidden state hw and the edge
evw. In particular, it does not depend on the hidden state ht

v . In theory, a network
may be able to use the message channel more efficiently if the node messages are
allowed to depend on both the source and destination node. Thus, we also tried using
a variant on the message function as described in [27]. Here, the message from w

to v along edge e is

mwv = f
(
ht
w, ht

v, evw
)
,

where f is a neural network.

When we apply the above message functions to directed graphs, there are two
separate functions used, M in and an Mout. Which function is applied to a particular
edge evw depends on the direction of that edge.

10.3.2 Virtual Graph Elements

We explored two different ways to change how the messages are passed throughout
the model. The simplest modification involves adding a separate “virtual” edge
type for pairs of nodes that are not connected. This can be implemented as a
data preprocessing step and allows information to travel long distances during the
propagation phase.

208 J. Gilmer et al.

We also experimented with using a latent “master” node, which is connected to
every input node in the graph with a special edge type. The master node serves as
a global scratch space that each node both reads from and writes to in every step
of message passing. We allow the master node to have a separate node dimension
dmaster , as well as separate weights for the internal update function (in our case
a GRU). This allows information to travel long distances during the propagation
phase. It also, in theory, allows additional model capacity (e.g., large values of
dmaster) without a substantial hit in performance, as the complexity of the master
node model is O(|E|d2 + nd2

master).

10.3.3 Readout Functions

We experimented with two readout functions. First is the readout function used in
GG-NN, which is defined by Eq. 10.11. Second is a set2set model from Vinyals et
al. [30]. The set2set model is specifically designed to operate on sets and should
have more expressive power than simply summing the final node states. This model
first applies a linear projection to each tuple (hT

v , xv) and then takes as input the
set of projected tuples T = {(hT

v , xv)}. Then, after M steps of computation, the
set2set model produces a graph level embedding q∗t which is invariant to the order
of the tuples T . We feed this embedding q∗t through a neural network to produce the
output.

10.3.4 Multiple Towers

One issue with MPNNs is scalability. In particular, a single step of the message
passing phase for a dense graph requires O(n2d2) floating point multiplications.
As n or d get large this can be computationally expensive. To address this issue,
we break the d dimensional node embeddings ht

v into k different d/k dimensional
embeddings ht,k

v and run a propagation step on each of the k copies separately to
get temporary embeddings {h̃t+1,k

v , v ∈ G}, using separate message and update
functions for each copy. The k temporary embeddings of each node are then mixed
together according to the equation

(
ht,1
v , ht,2

v , . . . , ht,k
v

)
= g

(
h̃t,1
v , h̃t,2

v , . . . , h̃t,k
v

)
(10.29)

where g denotes a neural network and (x, y, . . .) denotes concatenation, with g

shared across all nodes in the graph. This mixing preserves the invariance to permu-
tations of the nodes, while allowing the different copies of the graph to communicate
with each other during the propagation phase. This can be advantageous in that
it allows larger hidden states for the same number of parameters, which yields a
computational speedup in practice. On dense graphs, when the message function
is matrix multiplication (as in GG-NN) a propagation step of a single copy takes

10 Message Passing Neural Networks 209

O
(
n2(d/k)2

)
time, and there are k copies, therefore the overall time complexity is

O
(
n2d2/k

)
, with some additional overhead due to the mixing network. For k = 8,

n = 9, and d = 200, we see a factor of 2 speedup in inference time over a k = 1,
n = 9, and d = 200 architecture. This variation would be most useful for larger
molecules, for instance, molecules from GDB-17 [31].

10.4 Input Representation

There are a number of features available for each atom in a molecule which capture
both properties of the electrons in the atom and the bonds that the atom participates
in. For a list of all of the features, see Table 10.1. We experimented with making
the hydrogen atoms explicit nodes in the graph (as opposed to simply including the
count as a node feature), in which case graphs have up to 29 nodes. Note that having
larger graphs significantly slows training time, in this case by a factor of roughly
10. For the adjacency matrix, there are three edge representations used depending
on the model.

Chemical Graph In the absence of distance information, adjacency matrix entries
are discrete bond types: single, double, triple, or aromatic.

Distance Bins The matrix multiply message function assumes discrete edge types,
so to include distance information we bin bond distances into 10 bins, the bins are
obtained by uniformly partitioning the interval [2, 6] into 8 bins, followed by adding
a bin [0, 2] and [6,∞]. These bins were hand chosen by looking at a histogram of all
distances. The adjacency matrix then has entries in an alphabet of size 14, indicating
bond type for bonded atoms and distance bin for atoms that are not bonded. We
found the distance for bonded atoms to be almost completely determined by bond
type.

Raw Distance Feature When using a message function which operates on vector
valued edges, the entries of the adjacency matrix are then 5 dimensional, where the
first dimension indicates the Euclidean distance between the pair of atoms, and the
remaining four are a one-hot encoding of the bond type.

Table 10.1 Atom features Feature Description

Atom type H, C, N, O, F (one-hot)

Atomic number Number of protons (integer)

Acceptor Accepts electrons (binary)

Donor Donates electrons (binary)

Aromatic In an aromatic system (binary)

Hybridization sp, sp2, sp3 (one-hot or null)

Number of hydrogens (integer)

210 J. Gilmer et al.

10.5 Training

Each model and target combination was trained using a uniform random hyperpa-
rameter search with 50 trials. T was constrained to be in the range 3 ≤ T ≤ 8 (in
practice, any T ≥ 3 works). The number of set2set computations M was chosen
from the range 1 ≤ M ≤ 12. All models were trained using SGD with the ADAM
optimizer (Kingma and Ba [32]), with batch size 20 for 3 million steps (540 epochs).
The initial learning rate was chosen uniformly between 1e−5 and 5e−4. We used
a linear learning rate decay that began between 10 and 90% of the way through
training and the initial learning rate l decayed to a final learning rate l · F , using a
decay factor F in the range [0.01, 1].

The QM9 dataset has 130,462 molecules in it. We randomly chose 10,000
samples for validation, 10,000 samples for testing, and used the rest for training.
We use the validation set to do early stopping and model selection and we report
scores on the test set. All targets were normalized to have mean 0 and variance
1. We minimize the mean squared error between the model output and the target,
although we evaluate mean absolute error.

10.6 Results

In all of our tables, we report the ratio of the mean absolute error (MAE) of our
models with the provided estimate of chemical accuracy for that target. Thus, any
model with error ratio less than 1 has achieved chemical accuracy for that target.
A list of chemical accuracy estimates for each target can be found in Faber et al.
[16]. In this way, the MAE of our models can be calculated as (Error Ratio) ×
(Chemical Accuracy). Note, unless otherwise indicated, all tables display result of
models trained individually on each target (as opposed to training one model to
predict all 13).

We performed numerous experiments in order to find the best possible MPNN
on this dataset as well as the proper input representation. In our experiments, we
found that including the complete edge feature vector (bond type, spatial distance)
and treating hydrogen atoms as explicit nodes in the graph to be very important for
a number of targets. We also found that training one model per target consistently
outperformed jointly training on all 13 targets. In some cases, the improvement was
up to 40%. Our best MPNN variant used the edge network message function, set2set
output, and operated on graphs with explicit hydrogens.

In Table 10.2, we compare the performance of our best MPNN variant (denoted
with enn-s2s) with several baselines which use feature engineering as reported in
Faber et al. [16]. We also show the performance of several other MPNNs, the GG-
NN architecture [25], graph convolutions [24], and two more recent MPNNs which
have improved upon our initial results reported in [17]. These include the SchNet
MPNN [20], which developed message functions better suited for chemical systems,
as well as [19] which added edge updates to the SchNet architectures. As of writing,
the current state of the art on this benchmark is the MPNN described in [19]. For
the exact functions used in these two models, see Sect. 10.2. For clarity, the error

10 Message Passing Neural Networks 211

Table 10.2 Comparison of hand engineered approaches (left) with different MPNNs (right)

Target BAML BOB CM ECFP4 HDAD GC GG-NN enn-s2s SchNet SchNetE

mu 4.34 4.23 4.49 4.82 3.34 0.70 1.22 0.30 0.33 0.29
alpha 3.01 2.98 4.33 34.54 1.75 2.27 1.55 0.92 2.35 0.77
HOMO 2.20 2.20 3.09 2.89 1.54 1.18 1.17 0.99 0.95 0.85
LUMO 2.76 2.74 4.26 3.10 1.96 1.10 1.08 0.87 0.79 0.72
gap 3.28 3.41 5.32 3.86 2.49 1.78 1.70 1.60 1.47 1.35
R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 0.15 0.06 0.06
ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 1.44 1.37 1.35
U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 0.45 0.33 0.24
U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 0.45 0.44 0.25
H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 0.39 0.33 0.26
G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 0.44 0.33 0.28
Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 0.80 0.66 0.64
Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 0.19 N/A N/A

Table 10.3 Models trained
without spatial information

Model Average error ratio

GG-NN 3.47

GG-NN + virtual edge 2.90

GG-NN + master node 2.62

GG-NN + set2set 2.57

Table 10.4 Towers vs
vanilla GG-NN (no explicit
hydrogen)

Model Average error ratio

GG-NN + joint training 1.92

Towers8 + joint training 1.75
GG-NN + individual training 1.53

Towers8 + individual training 1.37

ratios of the best non-ensemble models are shown in bold. Overall, the best MPNNs
achieve chemical accuracy on 11 out of 13 targets.

Training Without Spatial Information We also experimented in the setting where
spatial information is not included in the input. In general, we find that augmenting
the MPNN with some means of capturing long range interactions between nodes in
the graph greatly improves performance in this setting. To demonstrate this, we
performed 4 experiments, one where we train the GG-NN model on the sparse
graph, one where we add virtual edges, one where we add a master node, and one
where we change the graph level output to a set2set output. The error ratios averaged
across the 13 targets are shown in Table 10.3. Overall, these three modifications help
on all 13 targets, and the Set2Set output achieves chemical accuracy on 5 out of 13
targets. The experiments shown in Tables 10.3 and 10.4 were run with a partial
charge feature as a node input. This feature is an output of the DFT calculation and
thus could not be used in an applied setting. The numbers we report in Table 10.2
do not use this feature.

212 J. Gilmer et al.

Table 10.5 Results from training the edge network + set2set model on different sized training
sets (N denotes the number of training samples)

Target N = 11k N = 35k N = 58k N = 82k N = 110k

mu 1.28 0.55 0.44 0.32 0.30

alpha 2.76 1.59 1.26 1.09 0.92

HOMO 2.33 1.50 1.34 1.19 0.99

LUMO 2.18 1.47 1.19 1.10 0.87

gap 3.53 2.34 2.07 1.84 1.60

R2 0.28 0.22 0.21 0.21 0.15

ZPVE 2.52 1.78 1.69 1.68 1.27

U0 1.24 0.69 0.58 0.62 0.45

U 1.05 0.69 0.60 0.52 0.45

H 1.14 0.64 0.65 0.53 0.39

G 1.23 0.62 0.64 0.49 0.44

Cv 1.99 1.24 0.93 0.87 0.80

Omega 0.28 0.25 0.24 0.15 0.19

Towers Our original intent in developing the towers variant was to improve training
time, as well as to allow the model to be trained on larger graphs. However, we
also found some evidence that the multi-tower structure improves generalization
performance. In Table 10.4, we compare GG-NN + towers + set2set output vs
a baseline GG-NN + set2set output when distance bins are used. We do this
comparison in both the joint training regime and when training one model per
target. The towers model outperforms the baseline model on 12 out of 13 targets
in both individual and joint target training. We believe the benefit of towers is
that it resembles training an ensemble of models. Unfortunately, our attempts so
far at combining the towers and edge network message function have failed to
further improve performance, possibly because the combination makes training
more difficult.2

Additional Experiments In preliminary experiments, we tried disabling weight
tying across different time steps. However, we found that the most effective way to
increase performance was to tie the weights and use a larger hidden dimension d.
We also early on found the pair message function to perform worse than the edge
network function. This included a toy pathfinding problem which was originally
designed to benefit from using pair messages. Also, when trained jointly on the 13
targets the edge network function outperforms pair message on 11 out of 13 targets,
and has an average error ratio of 1.53 compared to 3.98 for pair message. Given the
difficulties with training this function we did not pursue it further. For performance
on smaller sized training sets, see Table 10.5.

2As reported in Schütt et al. [15]. The model was trained on a different train/test split with 100k
training samples vs 110k used in our experiments.

10 Message Passing Neural Networks 213

10.7 Conclusions and FutureWork

Our results show that MPNNs with the appropriate message, update, and output
functions have a useful inductive bias for predicting molecular properties, outper-
forming several strong baselines, and eliminating the need for complicated feature
engineering. Moreover, our results also reveal the importance of allowing long range
interactions between nodes in the graph with either the master node or the set2set
output. The towers variation makes these models more scalable, but additional
improvements will be needed to scale to much larger graphs.

An important future direction is to design MPNNs that can generalize effectively
to larger graphs than those appearing in the training set or at least work with
benchmarks designed to expose issues with generalization across graph sizes.
Generalizing to larger molecule sizes seems particularly challenging when using
spatial information. First of all, the pairwise distance distribution depends heavily on
the number of atoms. Second, our most successful ways of using spatial information
create a fully connected graph where the number of incoming messages also
depends on the number of nodes. To address the second issue, we believe that adding
an attention mechanism over the incoming message vectors could be an interesting
direction to explore.

Acknowledgments We would like to thank Lukasz Kaiser, Geoffrey Irving, Alex Graves, and
Yujia Li for helpful discussions. Thank you to Adrian Roitberg for pointing out an issue with the
use of partial charges in an earlier version of this work.

References

1. Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al., (2016, preprint). arXiv:1609.08144

2. G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T.N. Sainath, et al., IEEE Signal. Proc. Mag. 29(6), 82 (2012)

3. A. Krizhevsky, I. Sutskever, G.E. Hinton, Advances in Neural Information Processing Systems
(The MIT Press, Cambridge, 2012), pp. 1097–1105

4. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller,
A. Tkatchenko, J. Phys. Chem. Lett. 6(12), 2326 (2015). https://doi.org/10.1021/acs.jpclett.
5b00831

5. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16), 161102 (2016). https://doi.org/10.
1063/1.4964627

6. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301
(2012)

7. D. Rogers, M. Hahn, J. Chem. Inf. Model. 50(5), 742 (2010)
8. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, O.A.

von Lilienfeld, K.-R. Müller, Advances in Neural Information Processing Systems (Curran
Associates, Red Hook, 2012), pp. 440–448

9. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). https://doi.org/10.1103/
PhysRevLett.98.146401

10. S.S. Schoenholz, E.D. Cubuk, D.M. Sussman, E. Kaxiras, A.J. Liu, A structural approach to
relaxation in glassy liquids. Nat. Phys. 12(5), 469–471 (2016)

11. M. Allamanis, M. Brockschmidt, M. Khademi, (2017, preprint). arXiv:1711.00740

https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1063/1.4964627
https://doi.org/10.1063/1.4964627
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401

214 J. Gilmer et al.

12. T.N. Kipf, M. Welling, ArXiv e-prints (2016)
13. V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,

T. Lillicrap, E. Lockhart, et al. (2018, preprint). arXiv:1806.01830
14. D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R.P.

Adams, Advances in Neural Information Processing Systems (2015), pp. 2224–2232
15. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Quantum-chemical

insights from deep tensor neural networks. Nat. Commun. 8(1), 1–8 (2017)
16. F. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld, (2017). https://arxiv.org/abs/1702.05532
17. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, International Conference on

Machine Learning (2017), pp. 1263–1272
18. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Quantum chemistry structures and

properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)
19. P.B. Jørgensen, K.W. Jacobsen, M.N. Schmidt (2018, preprint). arXiv:1806.03146
20. K.T. Schütt, P.-J. Kindermans, H.E.S. Felix, S. Chmiela, A. Tkatchenko, K.-R. Müller,

Advances in Neural Information Processing Systems (Curran Associates, Red Hook, 2017),
pp. 991–1001

21. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, (2017, preprint).
arXiv:1710.10903

22. P.W. Battaglia, J.B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., (2018, preprint). arXiv:1806.01261

23. X. Wang, R. Girshick, A. Gupta, K. He, (2017, preprint). arXiv:1711.07971
24. S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, J. Comput.-Aided Mol. Des. 30(8),

595 (2016)
25. Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, International Conference on Learning Repre-

sentations, ICLR (2016)
26. K. Cho, B. Van Merriënboer, D. Bahdanau, Y. Bengio, (2014, preprint). arXiv:1409.1259
27. P. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, K. Kavukcuoglu, Advances in Neural

Information Processing Systems (Curran Associates, Red Hook, 2016), pp. 4502–4510
28. J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, (2013, preprint). arXiv:1312.6203
29. M. Defferrard, X. Bresson, P. Vandergheynst, Advances in Neural Information Processing

Systems (Curran Associates, Red Hook, 2016), pp. 3837–3845
30. O. Vinyals, S. Bengio, M. Kudlur, (2015, preprint). arXiv:1511.06391
31. L. Ruddigkeit, R. Van Deursen, L.C. Blum, J.-L. Reymond, J. Chem. Inf. Model. 52(11), 2864

(2012)
32. D. Kingma, J. Ba, (2014, preprint). arXiv:1412.6980

https://arxiv.org/abs/1702.05532

11Learning Representations of Molecules and
Materials with Atomistic Neural Networks

Kristof T. Schütt, Alexandre Tkatchenko, and Klaus-Robert Müller

Abstract

Deep learning has been shown to learn efficient representations for structured
data such as images, text, or audio. In this chapter, we present neural network
architectures that are able to learn efficient representations of molecules and
materials. In particular, the continuous-filter convolutional network SchNet
accurately predicts chemical properties across compositional and configurational
space on a variety of datasets. Beyond that, we analyze the obtained represen-
tations to find evidence that their spatial and chemical properties agree with
chemical intuition.

K. T. Schütt
Machine Learning Group, Technische Universität Berlin, Berlin, Germany
e-mail: kristof.schuett@tu-berlin.de

A. Tkatchenko
Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg,
Luxembourg
e-mail: alexandre.tkatchenko@uni.lu

K.-R. Müller (�)
Machine Learning Group, Technische Universität Berlin, Berlin, Germany

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
e-mail: klaus-robert.mueller@tu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_11

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_11&domain=pdf
mailto:kristof.schuett@tu-berlin.de
mailto:alexandre.tkatchenko@uni.lu
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_11

216 K. T. Schütt et al.

11.1 Introduction

In recent years, machine learning has been successfully applied to the prediction
of chemical properties for molecules and materials [1–14]. A significant part of
the research has been dedicated to engineering features that characterize global
molecular similarity [15–20] or local chemical environments [21–23] based on
atomic positions. Then, a non-linear regression method—such as kernel ridge
regression or a neural network—is used to correlate these features with the chemical
property of interest.

A common approach to model atomistic systems is to decompose them into local
environments, where a chemical property is expressed by a partitioning into latent
atom-wise contributions. Based on these contributions, the original property is then
reconstructed via a physically motivated aggregation layer. For example, Behler–
Parrinello networks [21] or the SOAP kernel [22] decompose the total energy in
terms of atomistic contributions

E =
natoms∑
i=1

Ei. (11.1)

Atomic forces can be directly obtained as negative derivatives of the energy
model. While this is often a suitable partitioning of extensive properties, intensive
properties can be modeled as the mean

P = 1

natoms

natoms∑
i=1

Pi. (11.2)

However, this might still not be a sufficient solution for global molecular properties
such as HOMO-LUMO gaps or excitation energies [24]. To obtain a better
performance, output models that incorporate property-specific prior knowledge
should be used. For example, the dipole moment can be written as

μ =
natoms∑

i

qiri (11.3)

such that the atomistic neural network needs to predict atomic charges qi [6,25–27].
The various atomistic models differ in how they obtain the energy contributions

Ei , usually employing manually crafted atomistic descriptors. In contrast to such
descriptor-based approaches, this chapter focuses on atomistic neural network
architectures that learn efficient representations of molecules and materials end-
to-end—i.e., directly from atom types Zi and positions ri—while delivering
accurate predictions of chemical properties across compositional and configura-
tional space [11, 28, 29]. The presented models will encode important invariances,
e.g., towards rotation and translation, directly into the deep learning architecture and

11 Learning Representations of Molecules and Materials with. . . 217

obtain predicted property from physically motivated output layers. Finally, we will
obtain spatially and chemically resolved insights from the learned representations
regarding the inner workings of the neural network as well as the underlying data.

11.2 The Deep Tensor Neural Network Framework

In order to construct atom-centered representations xi ∈ RF , where i is the index of
the center atom and F the number of feature dimension, a straight-forward approach
is to expand the atomistic environment in terms of n-body interactions [30, 31],
which can be written in general as

xi = f (1)(Zi)+
∑
j �=i

f (2)((Zi, ri), (Zj , rj))

+
∑
j,k �=i
k �=j

f (3)((Zi, ri), (Zj , rj), (Zk, rk))+ . . . (11.4)

However, such an approach requires definition explicit n-body models f (n) (e.g.,
using neural networks) as well as computing of a large number of higher-order terms
of the atom coordinates. At the same time, all many-body networks must respect the
invariances w.r.t. rotation, translation, and the permutation of atoms.

An alternative approach is to incorporate higher-order interactions in a recursive
fashion. Instead of explicitly modeling an n-body neural network, we design an
interaction network v : RF × R→ RF that we use to model perturbations

x(t+1)
i = x(t)

i + v(t)(x(t)
1 , ri1, . . . , x(t)

n , rin), (11.5)

of the chemical environment x(t)
i by its neighboring environments x(t)

j depending on
their relative position rij = rj − ri . On this basis, we define the deep tensor neural
network (DTNN) framework [28]:

1. Use an embedding depending on the type of the center atom

x(0)
i = AZi

∈ Rd

for the initial representation of local chemical environment i. This corresponds
to the 1-body terms in Eq. 11.4.

2. Refine the embeddings repeatedly using the interaction networks from Eq. 11.5.
3. Arriving at the final embedding xT

i after T interaction refinements, predict the
desired chemical property using a property-specific output network (as described
in Sect. 11.1).

218 K. T. Schütt et al.

The embedding matrix A as well as the parameters of the interaction networks v(t)

and the output network are learned during the training procedure. This framework
allows for a family of atomistic neural network models—such as the deep tensor
neural network [28] and SchNet [11, 29]—that differ in how the interactions v(t)

are modeled and the predictions are obtained from the atomistic representations xT
i .

11.3 SchNet

Building upon the principles of the previously described DTNN framework,
we propose SchNet as a convolutional neural network architecture for learning
representations for molecules and materials. Figure 11.1 depicts an overview of
the SchNet architecture as well as how the interaction refinements are modeled
by interaction blocks shown on the right. In the following, we will introduce
the main component of SchNet—the continuous-filter convolutional layer—before
describing how these are used to construct the interaction blocks.

11.3.1 Continuous-Filter Convolutional Layers

The commonly used convolutional layers [32] employ discrete filter tensors since
they are usually applied to data that is sampled on a grid, such as digital images,
video, or audio. However, such layers are not applicable for atomistic systems, since
atoms can be located at arbitrary positions in space. For example, when predicting
the potential energy, the output of a convolutional layer might change rapidly when
an atom moves from one grid cell to the next. Especially when we aim to predict
a smooth potential energy surface, a continuous and differentiable representation is

Fig. 11.1 The illustration shows an architectural overview of SchNet (left), the interaction block
(right). The shifted softplus activation function is defined as ssp(x) = ln(0.5ex+0.5). The number
of neurons used in the employed SchNet models is given for each parameterized layer

11 Learning Representations of Molecules and Materials with. . . 219

required. For this reason, we use a convolutional layer employing a continuous-filter
function in order to model the interactions.

Given the representations xl
i of the chemical environment of atom i at position

ri and layer l of the neural network, the atomistic system can be described by a
function

ρl(r) =
natoms∑
i=1

δ(r− ri)xl
i . (11.6)

In order to include the interactions of the atom-centered environments, we
convolve ρ : R3 → RF and a spatial filter W : R3 → RF as element-wise

(ρ ∗W)(r) =
∫

ra∈R3

ρ(ra) ◦W(r− ra)dra, (11.7)

where “◦” is the element-wise product. Here, the filter function W describes the
interaction of a representation xi with an atom at the relative position r − ri . The
filter functions can be modeled by a filter-generating neural network similar to those
used in dynamic filter networks [33]. Considering the discrete location of atoms in
Eq. 11.6, we obtain

(ρl ∗W)(r) =
natoms∑
j=1

∫

ra∈R3

δ(ra − rj)xl
j ◦W(r− ra)dra

=
natoms∑
j=1

xl
j ◦W(r− rj). (11.8)

This yields a function representing how the atoms of the system act on another
location in space. To obtain the rotationally invariant interactions between atoms,

xl+1
i =

(
ρl ∗Wl

)
(ri) =

natoms∑
j=1

xl
j ◦W(rj − ri), (11.9)

i.e., we evaluate the convolution at discrete locations in space using continuous,
radial filters.

220 K. T. Schütt et al.

11.3.2 Interaction Blocks

After introducing continuous-filter convolutional layers, we go on to construct the
interaction blocks. Besides convolutions, we employ atom-wise, fully connected
layers

x(l+1)
i = W(l)x(l)

i + b(l) (11.10)

that are applied separately to each atom i with tied weights W(l). Throughout the
network, we use softplus non-linearities [34] that are shifted

f (x) = ln

(
1

2
ex + 1

2

)
(11.11)

in order to conserve zero-activations: f (0) = 0. Figure 11.2 shows this activation
function compared to exponential linear units (ELU) [35]:

f (x) =
{
ex − 1 if x < 0

x otherwise
(11.12)

The derivatives for ELU and softplus are shown in the middle and right panel of
Fig. 11.2, respectively. A crucial difference is that the softplus is smooth while ELUs
exhibit only first-order continuity. However, the higher-order differentiability of the
model, and therefore also of the employed activation functions, is crucial for the
prediction of atomic forces or vibrational frequencies.

Figure 11.1 (right) shows how the interaction block is assembled from these
components. Since the continuous-filter convolutional layers are applied feature-
wise, we achieve the mixing of feature maps by atom-wise layers before and
after the convolution. This is analogous to depth-wise separable convolutional
layers in Xception nets [36] which could outperform the architecturally similar
InceptionV3 [37] on the ImageNet dataset [38] while having fewer parameters.
Most importantly, feature-wise convolutional layers reduce the number of filters,
which significantly reduces the computational cost. This is particularly important

Fig. 11.2 Comparison of shifted softplus and ELU activation function. We show plots of the
activation functions (left), and their first (middle) and second derivatives (right)

11 Learning Representations of Molecules and Materials with. . . 221

for continuous-filter convolutions, where each filter has to be computed by a filter-
generating network.

11.3.3 Filter-Generating Networks

The architecture of the filter-generating network significantly influences the prop-
erties of the predicted filters and, consequently, the learned atomic interactions.
Therefore, we can incorporate invariances or prior chemical knowledge into the
filter. In the following, we describe the considerations that went into designing the
SchNet filter-generating networks.

11.3.3.1 Self-Interaction
In an interatomic potential, we aim to avoid self-interaction of atoms, since this is
fundamentally different than the interaction with other atoms. We can encode this
in the filter network by constraining the filter network such that W(ri − rj) = 0
for ri = rj . Since two distinct atoms cannot be at the same position, this is an
unambiguous condition to exclude self-interaction. This is equivalent to modifying
Eq. 11.9 to exclude the center atom of the environment from the sum:

xl+1
i =

∑
j �=i

xl
j ◦W(rj − ri), (11.13)

11.3.3.2 Rotational Invariance
As the input to the filter W : R3 → R is only invariant to translations of the
molecule, we additionally need to consider rotational invariance. We achieve this
by using interatomic distances rij as input to the filter network, resulting in radial
filters W : R→ RF .

11.3.3.3 Local Distance Regimes
In the spirit of radial basis function (RBF) networks [39, 40], the filter-generating
neural network W(rij) first expands the pair-wise distances

r̂ij =
[
exp(−γ (rij − k!μ)2)

]
0≤k≤rcut/!μ

, (11.14)

with !μ being the spacing of Gaussians with scale γ on a grid ranging from 0
to the distance cutoff rcut. This helps to decouple the various regimes of atomic
interactions and allow for an easier starting point for the training procedure. On top
of the RBF expansion, we apply two fully connected layers with softplus activation
functions.

As an illustrative example, Fig. 11.3 shows two linear models fitted to the
potential energy surface of H2. Using the distance as a feature directly, we obviously
capture only a linear relationship. However, the expanded RBF feature space allows
us to obtain a smooth and accurate fit of the potential.

222 K. T. Schütt et al.

Fig. 11.3 Comparison of features for regression of bond stretching energies of H2. We use scalar
distances rij and distances in a radial basis r̂ij with !μ = 0.1 and γ = 10 as features, respectively.
The energies were computed by Brockherde et al. [9] with DFT at the PBE level of theory

From an alternative viewpoint, if we initialize a neural network with the usual
weight distributions and non-linearities, the resulting function is almost linear
before training as the neuron activations are close to zero. Therefore, the filter values
would be strongly correlated, leading to a plateauing cost function at the beginning
of training. Radial basis functions solve this issue by decoupling the various distance
regimes.

11.3.3.4 Cutoffs
While in principle the size of the filter in a continuous-filter convolutional layer can
be infinite, there are natural limitations on how such a filter can be trained. The
interatomic distances in a dataset of molecule have an upper bound determined by
the size of the largest molecule. More importantly, we cannot consider interactions
with an infinite number of atoms in case of atomistic systems with periodic
boundary conditions. Therefore, it is often beneficial or even required to restrict
the filter size using a distance cutoff.

While it is certainly possible to apply a hard cutoff, this may lead to rapidly
changing energies in molecular dynamics simulations. Therefore, we apply a cosine
cutoff function to the filter, to obtain a local filter

Wlocal(rij) = W(rij)fcut(rij) (11.15)

fcut(rij) = 1

2
cos

(
rij

rcut
π

)
+ 1

2
. (11.16)

In the following, we use a cutoff distance rcut = 5Å for our models. Note that this
constitutes only a cutoff for direct interactions between atoms. Since we perform
multiple interaction passes, the effective perceptive field of SchNet is much larger.

11 Learning Representations of Molecules and Materials with. . . 223

11.3.3.5 Periodic Boundary Conditions (PBC)
For crystalline materials, we have to respect the PBCs when convolving with the
interactions, i.e., we have to include interactions with periodic sites of neighboring
unit cells: Due to the linearity of the convolution, we can move the sum over periodic
images into the filter. Given atomistic representations xi = xia = xib of site i for
unit cells a and b, we obtain

xl+1
i = xl+1

im =
natoms∑
j=0

ncells∑
b=0

xl
jb ◦ W̃ l(rjb − ria)

=
natoms∑
j=0

xl
j ◦
(

ncells∑
b=0

W̃ l(rjb − ria)

)

︸ ︷︷ ︸
W

. (11.17)

When using a hard cutoff, we have found that the filter needs to be normalized with
respect to the number of neighboring atoms nnbh for the training to converge:

Wnormalized(rij) = 1

nnbh
W(rij). (11.18)

However, this is not necessary, when using a cosine cutoff function, as shown above.

11.4 Analysis of the Representation

Having introduced the SchNet architecture, we go on to analyze the representations
that have been learned by training the models on QM9—a dataset of 130k small
organic molecules with up to nine heavy atoms [41]—as well as a molecular
dynamics trajectory of aspirin [20]. If not given otherwise, we use six interaction
blocks and atomistic representations xi ∈ R256. The models have been trained using
stochastic gradient descent with warm restarts [42] and the ADAM optimizer [43].

11.4.1 Locality of the Representation

As described above, atomistic models decompose the representation into local
chemical environments. Since SchNet is able to learn a representation of such an
environment, the locality of the representation may depend on whether a cutoff was
used as well as the training data.

Table 11.1 shows the performance of SchNet models trained on various datasets
with and without cutoff. We observe that the cutoff is beneficial for QM9 as well
as the small aspirin training set with N = 1000 reference calculations. The cutoff
function biases the model towards learning from local interactions, which helps with
generalization since energy contributions from interactions at larger distances are

224 K. T. Schütt et al.

Table 11.1 Mean absolute (MAE) and root mean squared errors (RMSE) of SchNet with and
without cosine cutoff for various datasets over three repetitions

Dataset Property Unit rcut [Å] MAE RMSE

QM9 (N = 110k) U0 kcal mol−1 – 0.259 0.599

5 0.218 0.518

μ Debye
– 0.019 0.037

5 0.017 0.033

Aspirin (N = 1k) Total energy kcal mol−1 – 0.438 0.592

5 0.402 0.537

Atomic forces kcal mol−1Å−1 – 1.359 1.929

5 0.916 1.356

Aspirin (N = 50k) Total energy kcal mol−1 – 0.088 0.113
5 0.102 0.130

Atomic forces kcal mol−1Å−1 – 0.104 0.158
5 0.140 0.203

Materials project
Formation energy eV/atom

(harda) 5 0.037 0.091

(N = 62k) 5 0.039 0.084
aDue to the PBCs, there is no model without a cutoff for bulk crystals. The hard cutoff discards
all atoms at distances rij > rcut.
For the Materials Project data, we use a smaller model (xi ∈ R64) and compare the cosine cutoff
to a normalized filter with hard cutoff. The number of reference calculations, N , is the size of the
combined training and validation set.

much harder to disentangle. On the other hand, the SchNet model with trained on
50,000 aspirin reference calculation benefits from the large chemical environment
when not applying a cutoff. This is because with such a large amount of training
data, the model is now also able to infer more nonlocal interactions within the
molecule. In the case of the Materials Project dataset, we observe that cosine
cutoff and hard cutoff yield comparable results, where the cosine cutoff is slightly
preferable since it obtains the lower root mean squared error (RMSE). Since the
RMSE puts more emphasis on larger errors than MAE, this indicates that the cosine
cutoff improves generalization. This may be due to the more local model which is
obtained by focusing on smaller distances or by eliminating the discontinuities that
are introduced by a hard cutoff.

Figure 11.4 shows the atomization energies of a carbon dimer as predicted by
SchNet models trained on QM9 and the aspirin trajectory of the MD17 dataset.
Since the models were trained on saturated molecules, this does not reflect the real
energy or atomic forces of the dimer. The reason is that the energy contribution
of carbon interactions in the context of equilibrium molecules or MD trajectories,
respectively, includes the inferred contributions of other neighboring atoms. For
instance, if we consider two carbon atoms at a distance of about 2.4 Å in aspirin,
they are likely to be part of the aromatic ring with other carbon at a distance of
1.4 Å. We also observe a large offset for aspiring since the model was not trained on
molecules with a varying number of atoms. If we wanted to eliminate these model

11 Learning Representations of Molecules and Materials with. . . 225

Fi
g
.
1
1
.4

In
te

ra
ct

io
n

en
er

gy
of

ca
rb

on
di

m
er

s
as

pr
ed

ic
te

d
by

Sc
hN

et
tr

ai
ne

d
on

Q
M

9
an

d
an

as
pi

ri
n

M
D

tr
aj

ec
to

ry
(N
=

50
k)

.S
in

ce
th

e
ne

ur
al

ne
tw

or
ks

w
er

e
no

te
xp

lic
itl

y
tr

ai
ne

d
on

ca
rb

on
di

m
er

s,
th

e
en

er
gi

es
as

si
gn

ed
by

Sc
hN

et
ar

e
he

av
ily

in
flu

en
ce

d
by

th
e

cu
to

ff
an

d
in

fe
rr

ed
ne

ig
hb

or
in

g
at

om
s

of
th

e
re

sp
ec

tiv
e

tr
ai

ni
ng

se
t.

T
he

w
id

th
of

th
e

lin
e

re
pr

es
en

ts
th

e
de

vi
at

io
n

of
th

e
en

er
gy

ov
er

th
re

e
m

od
el

s
tr

ai
ne

d
on

di
ff

er
en

tt
ra

in
in

g
sp

lit
s

226 K. T. Schütt et al.

Fig. 11.5 Vibrational spectrum of aspirin as predicted by SchNet without cutoff on 50k reference
calculations (DFT/PBE). The harmonic normal mode vibrations obtained with the electronic
structure reference are shown in grey

biases, we needed to train the neural networks on more diverse datasets, e.g., by
explicitly including dimers with large interatomic distances. While this is necessary
to obtain a general model of quantum chemistry, it might even be detrimental for the
prediction of a certain subset of molecules using a given amount of training data.

Considering the above, the analysis in Fig. 11.4 shows how the neural networks
predict carbon–carbon interaction energies. Since there are no isolated carbon
dimers in the training data, SchNet attributes molecular energies in the context of
the data it was trained on, leading to large offsets in the assigned energies. Still, we
observe that the general shape of the potential is consistent across all four models.
Applying the cosine cutoff leads to constant energy contributions beyond rcut = 5 Å,
however, models without cutoff are nearly constant in this distance regime as well.
SchNet correctly characterizes the carbon bond with its energy minimum between
1.2–1.3 Å and rising energy with larger distances. For the distance regime beyond
about 1.8 Å, the inferred, larger environment dominates the attribution of interaction
energies.

Given that the aspirin model trained on the larger dataset benefits from a larger
attribution of interaction energies to larger distances, we analyze how the cutoff will
affect the vibrational spectrum. Using the SchNet potentials, we have generated two
molecular dynamics trajectories of 50 ps at 300 K using a Langevin thermostat with
a time step of 0.5 fs. Figure 11.5 shows the vibrational spectra of the models with
and without cosine cutoff.

11.4.2 Local Chemical Potentials

In order to further examine the spatial structure of the representation, we observe
how SchNet models the influence of a molecule on a probe atom that is moved
through space and acts as a test charge. This can be derived straight-forwardly
from the definition of the continuous-filter convolutional layer in Eq. 11.8, which

11 Learning Representations of Molecules and Materials with. . . 227

Fig. 11.6 Local chemical potentials of N-formylformamide generated by SchNet trained on QM9
using a hydrogen probe for the complete molecule (left) and after removing one of the hydrogens
(right). The potentials are plotted on the

∑
i ‖r− ri‖ = 3.7 Å isosurface of the saturated molecule

is defined for arbitrary positions in space:

xprobe =
(
ρl ∗W

)
(rprobe) =

natoms∑
j=1

xl
j ◦W(rprobe − rj). (11.19)

The remaining part of the model is left unchanged as those layers are only applied
atom-wise. Finally, we visualize the predicted probe energy on a smooth isosurface
around the molecule [11, 27, 28].

Figure 11.6 (left) shows this for N-formylformamide using a hydrogen probe.
According to this, the probe is more likely to bond on the oxygens, as indicated
by the lower probe energies. To further study this interpretation, we remove one of
the hydrogens in Fig. 11.6 (right). In agreement with our analysis, this leads to even
lower energies at the position of the missing hydrogen as well as the nearby oxygen
due to the nearby unsaturated carbon.

11.4.3 Atom Embeddings

Having examined the spatial structure of SchNet representations, we go on to
analyze what the model has learned about chemical elements included in the data.
As described above, SchNet encodes atom types using embeddings AZ ∈ RF that
are learned during the training process. We visualize the two leading principal
components of these embeddings to examine whether they resemble chemical
intuition. Since QM9 only contains five atom types (H, C, N, O, F), we perform this
analysis on the more diverse Materials Project dataset [44] as it includes 89 atom
types ranging across the periodic table. Figure 11.7 shows the reduced embeddings
of the main group elements of the periodic table. Atoms belonging to the same group
tend to form clusters.

This is especially apparent for main groups 1–7, while group 8 appears to be
more scattered. Beyond that, there are partial orderings of elements according to
their period within some of the groups. We observe a partial order from light to
heavier elements in some groups, e.g., in group 1 (left to right: H–Li–Na–[K, Rb,
Cs]), group 2 (left to right: Be–Mg–Ca–Sr–Ba), and group 5 (left to right: P–As–

228 K. T. Schütt et al.

Fig. 11.7 Two leading principal components of the element embeddings learned by a SchNet
model trained on 60k reference calculations of the Materials Project [44]

Sb–Bi). These results are consistent with those we obtained from previous SchNet
models trained on earlier versions of the Materials Project repository [11, 27].

Note that these extracted chemical insights are not imposed by the SchNet
architecture, but had to be inferred by the model based on the bulk systems and
its energies in the training data.

11.5 Conclusions

We have presented the deep tensor neural network framework and its imple-
mentation SchNet, which obtains accurate predictions of chemical properties for
molecules and materials. Representations of chemical environments are learned
directly from atom types and position while filter-generating networks allow to
incorporate invariance and prior knowledge.

In our analysis, we have found that atomic representations reflect an inferred
chemical environment based on the bias of the training data. The obtained represen-
tations are dominated by local interactions and can be further localized using cosine
cutoff functions that improve generalization. However, if a sufficient amount of
data is available, interaction energies can be reliably attributed to larger interatomic
distances, which will further improve the accuracy of the model. Moreover, we have
defined local chemical potentials that allow for spatially resolved chemical insights
and have shown that the models learn embeddings of chemical elements that show
resemblance of the structure of the periodic table.

In conclusion, SchNet presents an end-to-end atomistic neural network that
we expect to facilitate further developments towards interpretable deep learning
architectures to assist chemistry research.

11 Learning Representations of Molecules and Materials with. . . 229

Acknowledgments The authors thank Michael Gastegger for valuable discussions and feedback.
This work was supported by the Federal Ministry of Education and Research (BMBF) for the Berlin
Big Data Center BBDC (01IS14013A) and the Berlin Center for Machine Learning (01IS18037A).
Additional support was provided by the Institute for Information & Communications Technology
Promotion and funded by the Korean government (MSIT) (No. 2017-0-00451, No. 2017-0-01779).
A.T. acknowledges support from the European Research Council (ERC-CoG grant BeStMo).

References

1. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E. Gross, Phys. Rev. B 89(20),
205118 (2014)

2. H. Huo, M. Rupp, (2017, preprint). arXiv:1704.06439
3. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717

(2018)
4. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18(20), 13754 (2016)
5. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. 113(30), 8368 (2016)
6. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8(10), 6924 (2017)
7. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,

S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017)
8. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017)
9. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8, 872

(2017)
10. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv.

3(12), e1701816 (2017)
11. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
12. S. Chmiela, H.E. Sauceda, K.R. Müller, A. Tkatchenko, Towards exact molecular dynamics

simulations with machine-learned force fields. Nat. Commun. 9(1), 1–10 (2018)
13. A. Ziletti, D. Kumar, M. Scheffler, L.M. Ghiringhelli, Nat. Commun. 9(1), 2775 (2018)
14. D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Phys. Rev. Mater. 2(1), 013808 (2018)
15. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)
16. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett. 108(5), 058301

(2012)
17. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, A.V.

Lilienfeld, K.R. Müller, in Advances in Neural Information Processing Systems 25, ed. by
F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates, Red Hook, 2012),
pp. 440–448

18. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. Von Lilienfeld,
A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)

19. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.R. Müller,
A. Tkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015)

20. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv.
3(5), e1603015 (2017)

21. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
22. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013)
23. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys.

148(24), 241709 (2018)
24. W. Pronobis, K.T. Schütt, A. Tkatchenko, K.R. Müller, Eur. Phys. J. B 91(8), 178 (2018)
25. A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A.E. Roitberg,

K. Barros, S. Tretiak, J. Phys. Chem. Lett. 9(16), 4495 (2018)
26. K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, The TensorMol-0.1 model chemistry:

a neural network augmented with long-range physics. Chem. Sci. 9(8), 2261–2269 (2018)

230 K. T. Schütt et al.

27. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, (2018, preprint). arXiv:1806.10349
28. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017)
29. K.T. Schütt, P.J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller,

Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Red Hook,
2017), pp. 992–1002

30. A. Pukrittayakamee, M. Malshe, M. Hagan, L. Raff, R. Narulkar, S. Bukkapatnum, R. Koman-
duri, J. Chem. Phys. 130(13), 134101 (2009)

31. M. Malshe, R. Narulkar, L.M. Raff, M. Hagan, S. Bukkapatnam, P.M. Agrawal, R. Komanduri,
J. Chem. Phys. 130(18), 184102 (2009)

32. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Neural
Comput. 1(4), 541 (1989)

33. X. Jia, B. De Brabandere, T. Tuytelaars, L.V. Gool, in Advances in Neural Information
Processing Systems, ed. by D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett, vol.
29 (Curran Associates, Red Hook, 2016), pp. 667–675

34. C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia, Advances in Neural Information
Processing Systems (Curran Associates, Red Hook, 2001), pp. 472–478

35. D.A. Clevert, T. Unterthiner, S. Hochreiter, (2015, preprint). arXiv:1511.07289
36. F. Chollet, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(2017)
37. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (2016), pp. 2818–2826
38. J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2009 (IEEE, Piscataway, 2009), pp. 248–255
39. D. Broomhead, D. Lowe, Complex Syst. 2, 321 (1988)
40. J. Moody, C.J. Darken, Neural Comput. 1(2), 281 (1989)
41. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Sci. Data 1, 140022 (2014)
42. I. Loshchilov, F. Hutter, (2016, preprint). arXiv:1608.03983
43. D.P. Kingma, J. Ba, (2014, preprint). arXiv:1412.6980
44. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter,

D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/
1.4812323

https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323

Part IV

Atomistic Simulations

Preface

An important problem of computational chemistry is to perform molecular dynam-
ics simulations for molecules and materials. Therefore, one needs to obtain their
potential energy surfaces (PESs) as accurately as possible. For large systems or
long timescales, however, one has to trade off accuracy against computational cost.
While ab initio electronic structure methods provide the most precise PESs, they are
not affordable for large systems. On the other hand, (semi-)empirical force fields
are fast to evaluate, but are not able to represent all aspects of the PES due to
their constrained functional form and specific physical approximations. For these
reasons, the modeling of PESs and corresponding atomic forces has become an
important application of machine learning in quantum chemistry. In contrast to
traditional force fields, machine learning potentials are more flexible, while at the
same time a variety of proven techniques to avoid overfitting ensures generalization
to unseen configurations [1].

Fully connected neural network was among the first machine learning models
to be fitted to PESs [2, 3] before highly specialized descriptors and networks
were developed. In Chap. 12, [4] give an overview about using high-dimensional
neural network potentials (NNPs) [5] to learn PESs and drive atomistic simulations.
The chapter nicely covers the whole procedure from generation of reference data
sets over the construction of atomistic neural networks to performing molecular
dynamics (MD) simulations and obtaining molecular spectra. Building on this, [6]
go into detail about the future engineering aspects of NNPs using atom-centered
symmetry functions and how atomic forces can be calculated from the NNP. Besides
neural networks, notably Gaussian process (or kernel ridge regression) models have
been successful in modeling molecules [7] and materials [8, 9].

Chapter 15 [10] details the important aspect of building a set of reference
calculations using active learning and uncertainty estimation. This is explored for
various applications (MD simulation, relaxation) and machine learning models
(Gaussian processes, neural networks).

232 IV Atomistic Simulations

While the above chapters deal with the problem to efficiently generate an
MD trajectory, Chap. 16 [11] introduces state-of-the-art methods to analyze MD
trajectories on long timescales. Using these techniques, one can obtain low-
dimensional models of the long-time dynamics of a given trajectory to gain insights
about the metastable states of a system.

Berlin, Germany Kristof T. Schütt
Berlin, Germany Stefan Chmiela
Basel, Switzerland O. Anatole von Lilienfeld
Luxembourg, Luxembourg Alexandre Tkatchenko
Kashiwa, Japan Koji Tsuda
Berlin, Germany Klaus-Robert Müller
September 2019

References

1. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. Von Lilienfeld,
A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)

2. T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103(10), 4129 (1995)
3. S. Manzhos, T. Carrington Jr., J. Chem. Phys. 125(8), 084109 (2006)
4. M. Gastegger, P. Marquetand, in Machine Learning for Quantum Simulations of Molecules and

Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller. Lecture Notes Physics (Springer, Berlin, 2019)

5. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
6. M. Hellström, J. Behler, in Machine Learning for Quantum Simulations of Molecules and

Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller. Lecture Notes Physics (Springer, Berlin, 2019)

7. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Sci. Adv.
3(5), e1603015 (2017)

8. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)
9. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015)

10. A. Shapeev, K. Gubaev, E. Tsymbalov, E. Podryabinkin, in Machine Learning for Quantum
Simulations of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld,
A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

11. F. Noé, in Machine Learning for Quantum Simulations of Molecules and Materials, ed. by K.T.
Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes
Physics (Springer, Berlin, 2019)

12Molecular Dynamics with Neural Network
Potentials

Michael Gastegger and Philipp Marquetand

Abstract

Molecular dynamics simulations are an important tool for describing the evolu-
tion of a chemical system with time. However, these simulations are inherently
held back either by the prohibitive cost of accurate electronic structure theory
computations or the limited accuracy of classical empirical force fields. Machine
learning techniques can help to overcome these limitations by providing access
to potential energies, forces, and other molecular properties modeled directly
after an accurate electronic structure reference at only a fraction of the original
computational cost. The present text discusses several practical aspects of con-
ducting machine learning driven molecular dynamics simulations. First, we study
the efficient selection of reference data points on the basis of an active learning
inspired adaptive sampling scheme. This is followed by the analysis of a machine
learning based model for simulating molecular dipole moments in the framework
of predicting infrared spectra via molecular dynamics simulations. Finally, we
show that machine learning models can offer valuable aid in understanding
chemical systems beyond a simple prediction of quantities.

M. Gastegger
Technical University of Berlin, Machine Learning Group, Berlin, Germany
e-mail: michael.gastegger@tu-berlin.de

P. Marquetand (�)
University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Vienna, Austria
e-mail: philipp.marquetand@univie.ac.at

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_12

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_12&domain=pdf
mailto:michael.gastegger@tu-berlin.de
mailto:philipp.marquetand@univie.ac.at
https://doi.org/10.1007/978-3-030-40245-7_12

234 M. Gastegger and P. Marquetand

12.1 Introduction

Chemistry is—in large part—concerned with the changes that matter undergoes. As
such, chemistry is inherently time-dependent and if we want to model such chemical
processes, then a time-dependent approach is most intuitive. The corresponding
techniques can be summarized as dynamics simulations. In particular molecular
dynamics (MD) simulations—defined usually as treating the nuclear motion with
Newton’s classical mechanics—are commonly used to “mimic what atoms do in
real life” [1]. Such simulations have become indispensable not only in chemistry
but also in adjacent fields like biology and material science [2, 3].

An important ingredient of MD simulations are molecular forces, which deter-
mine how the nuclei move. For the sake of accuracy, it is desirable to obtain these
forces from quantum mechanical electronic structure calculations. However, such
ab initio calculations are expensive from a computational perspective and hence
only feasible for relatively small systems or short timescales. For larger systems
(e.g., proteins) molecular forces are instead modeled by classical force fields, which
are composed of analytic functions based on physical findings. As a consequence of
these approximations, classical force fields are extremely efficient to compute but
fail to reach the accuracy of electronic structure methods.

With the aim to obtain both a high accuracy and a fast evaluation, machine
learning (ML) is employed to predict forces and an increasing number of research
efforts are devoted to this idea. Since the forces are commonly evaluated as the
derivative of the potential energy with respect to the coordinates, the learning of
energies and forces are tightly connected and we often find the term “machine
learning potential” in the literature.

Possibly the first work to use ML of potentials combined with dynamics
simulations appeared in 1995 by Blank et al. [4], where diffusion of CO on a Ni
surface and H2 on Si was modeled. A comprehensive overview over the earlier
work in this field, where mostly neural networks were employed, can be found in the
reviews [5,6]. Later, also other ML methods like Gaussian approximation potentials
[7] were utilized, diversifying the research landscape, which is reflected in various,
more topical reviews, see, e.g., [8–11]. Today, the field has become so active that a
review would be outdated by tomorrow. Here instead, we give an example of what
can be achieved when combining ML and MD.

In this chapter, we describe simulations of one of the most fundamental experi-
ments to detect moving atoms, namely infrared spectra. The simulations utilize MD
based on potentials generated with high-dimensional neural networks, a special ML
architecture. We show, in particular, how the training data can efficiently be gathered
by an adaptive sampling scheme. Several practical aspects, tricks, and pitfalls are
presented. Special emphasis is put also on the prediction of dipole moments and
atomic charges, which are necessary ingredients besides potential energies and
forces for the calculation of infrared spectra from MD.

12 Molecular Dynamics with Neural Network Potentials 235

12.2 Methods

12.2.1 High-Dimensional Neural Network Potentials

High-dimensional neural network potentials (NNPs) are a type of atomistic ML
potentials [12]. Atomistic potentials model the properties of a system based on
the contributions of individual atoms due to their local chemical environment
(Fig. 12.1). In high-dimensional NNPs, atomic environments are represented via
so-called atom-centered symmetry functions (ACSFs) [13]. Typically, ACSFs
are radial and angular distribution functions, which account for rotational and
translation invariances of the system. A radial symmetry function, for example, is a
superposition of Gaussian densities:

Grad
i =

N∑
j �=i

e−η(rij−r0)
2
fcut(rij). (12.1)

The sum includes all atoms j in vicinity of the central atom i. rij is the distance
between i and j . η and r0 are parameters which modulate the width and center of the
Gaussian. A cutoff function fcut ensures that only the local chemical environment
contributes to the ACSF. For a more in-depth discussion on ACSFs and their
features, we refer to References [11, 13–15].

Based on the ACSF representation of each atom, an atomistic neural network then
predicts the contribution of this atom to the global molecular property. Finally, these
contributions are recombined via an atomistic aggregation layer in order to recover
the target property. For NNPs which model the potential energy E of a system, this

Fig. 12.1 In a high-dimensional neural network potential, the local chemical environment of
each atom is first encoded in a structural descriptor. Based on these descriptors, neural networks
predict atomistic energy contributions, where different networks are used for the different chemical
elements. Finally, the atomic energies are summed in order to recover the total energy of the system

236 M. Gastegger and P. Marquetand

layer is usually chosen as a sum over the individual atomic energies Ei :

Ẽm =
Nm∑
i

Ẽm
i , (12.2)

where N is the number of atoms in the molecule m. However, different aggregation
layers can be formulated in order to model various properties, as will be discussed
in the next section.

Due to the form of high-dimensional NNPs, expressions for analytic Cartesian
derivatives of the model are readily available. Hence, NNPs provide access to energy
conserving forces

F̃m
α = −

Nm∑
i

Dm
i∑
d

∂Ẽm
i

∂Gm
d

∂Gm
d

∂Rm
α

, (12.3)

where F̃m
α and Rm

α are the forces acting on atom α and its position, while Dm
i is

the number of ACSFs centered on atom i. NNP forces can also be included into the
training process by minimizing a loss function of the form

L = 1

M

M∑
m

(
Ẽm − Em

)2 + ϑ

M

M∑
m

1

3Nm

Nm∑
i

∥∥F̃m
i − Fm

i

∥∥2
. (12.4)

Here, M is the number of molecules present in the data set. ϑ controls the trade-
off between fitting energies and forces, while Fm

i is the vector of Cartesian force
components acting on atom i of molecule m. By using forces during training, 3N
additional pieces of information are available for each molecule beside the potential
energy. As a consequence, the overall number of reference computations required
to construct an accurate NNP can be reduced significantly [16, 17].

12.2.2 Dipole Model

In addition to energies and forces, atomistic aggregation layers can also be
formulated to model various other molecular properties. One example is the dipole
moment model introduced in reference [18]. Here, the dipole moment μ of a
molecule is expressed as a system of atomic point charges, according to the
relation

μ̃ =
N∑
i

q̃iri . (12.5)

12 Molecular Dynamics with Neural Network Potentials 237

q̃i is the charge located at atom i and ri is the position vector of the atom relative
to the molecules center of mass. The charges q̃ are modeled via atomistic networks
and depend on the local chemical environment. However, these point charges are
never learned directly, but instead represent latent variables inferred by the NNP
dipole model during training, where the following loss function is minimized:

L = 1

M

M∑
m

(
Q̃m −Qm

)2 + 1

3M

M∑
m

∥∥μ̃m − μm

∥∥2 + (12.6)

μ̃ is the expression for the dipole moment given in Eq. 12.5 and μ is the electronic
structure reference, calculated as the expectation value of the dipole moment
operator [19]. Note that the charges are not directly accessible from solving
the Schrödinger equation but are usually obtained a posteriori from different ad
hoc partitioning schemes [20]. The first term in the loss function introduces the
additional constraint that the sum of latent charges Q̃ =∑i q̃i should reproduce the
total charge Q of the molecule. Formulated in this way, the machine learning model
depends only on quantum mechanical observables in the form of a molecule’s elec-
trostatic moments (total charge and dipole moment), which are directly accessible
by all electronic structure methods. Although the above formulation does not guar-
antee the conservation of total charge, it reduces the overall charge fluctuations to
a minimum. The remaining deviations can then be corrected using simple rescaling
or shifting schemes without loss of generality (see, e.g., references [21] and [22]).

Expression 12.6 can easily be extended to include higher moments such as the
quadrupole moment
, as was suggested in reference [18]. In the context of the
above model,
 takes the form

̃ =
∑
i

q̃i (3ri ⊗ ri − 1 ‖ri‖) , (12.7)

where, ri ⊗ ri is the outer product of the Cartesian position vectors of atom i.
However, it was found that the introduction of quadrupole moments offers no
additional advantage, at least when modeling dipoles. Moreover, using an atomistic
model for
 can be problematic for small molecules such as water, since the atom-
centered point charges are not able to resolve features of the charge distribution
arising from, e.g., the lone pair electrons of the oxygen.

It should be emphasized at this point that the atomistic aggregation layers
presented here are not restricted to a single type of machine learning architecture.
They can be coupled with any model in a modular fashion, as long as it provides
access to atomic contributions. This was, for example, done recently with the
SchNet architecture in order to model dipole moment magnitudes [22].

238 M. Gastegger and P. Marquetand

12.2.3 Adaptive Sampling Scheme

Before a NNP can be used for simulations, its free parameters need to be determined
by training on a suitable set of reference data. Typically, a set of reference molecules
is chosen in a two-step process. First, the PES is sampled to obtain a representative
set of molecular configurations. Afterwards, the quantum chemical properties
of these structures (e.g., energies, forces,. . .) are computed with an appropriate
electronic structure method. The sampling can be performed in different ways,
with molecular dynamics and normal mode sampling being only a few examples
[14,23]. However, a feature shared by most sampling methods is that they either use
approximate methods such as molecular force fields to guide the sampling or they
perform all simulations at the final level of theory. Both approaches have drawbacks.
In the first case, the PES regions explored with the lower level of theory need not
correspond to regions relevant for the high-level model (e.g., different molecular
geometries). In the second case, the unfortunate scaling of accurate electronic
structure methods limits either the regions of the PES that can be covered or the
overall accuracy of the reference computations.

A solution to these issues is to use an adaptive sampling scheme, where the ML
model itself selects new data points to improve its accuracy [18]. This approach is
inspired by active learning techniques and proceeds as follows (Fig. 12.2): First, a
crude NNP model is used to explore an initial region of the PES. During simulation,
an uncertainty measure for the NNP predictions is monitored. If this measure
exceeds a threshold, the sampling is stopped and electronic structure computations
are performed for the corresponding configuration. The resulting data is then added
to the reference set and used to update the NNP. Sampling is continued with the
improved model. This procedure is carried out in an iterative fashion until the
desired level of accuracy is reached.

One advantage of this scheme is that the NNP model used to guide the sampling
closely resembles the electronic structure reference method for large stretches of

Fig. 12.2 The adaptive sampling scheme starts by training a preliminary ensemble of NNPs on a
small set of reference computations. This ensemble is then used to sample new configurations via,
e.g., molecular dynamics. For every sampled configuration, an uncertainty measure is computed. If
this measure exceeds a predefined threshold, the simulation is stopped and a reference calculation
is performed. The new data point is then added to the reference data and the next generation of
NNPs is trained. This procedure is repeated in an iterative manner until a convergence threshold is
reached

12 Molecular Dynamics with Neural Network Potentials 239

coordinate space. Hence, similar regions of the PES will be explored (e.g., bond
lengths) as if the simulations were carried out with the reference method exclusively.

In addition, by using the model uncertainty to determine when additional
reference computations should be performed, only a small number of expensive
calculations are necessary. Due to the simplicity of this scheme, it can easily be
combined with different sampling methods, such as those in molecular dynamics,
metadynamics or Monte-Carlo based approaches [24, 25].

Perhaps the most important ingredient for the above scheme is an appropriate
uncertainty measure. Here, it is possible to make use of a trait of NNs in general
and NNPs in particular. Two NNPs trained on the same reference data will agree
closely for regions of the PES described well by both models. However, in regions
sampled insufficiently the predictions of both models will diverge quickly. Using the
disagreement between different models to guide data selection is a popular approach
in active learning called query by committee [26]. Based on the above behavior, one
can formulate the following uncertainty measure for NNPs:

σE =
√√√√ 1

N− 1

N∑
n

(
Ẽn − E

)2
. (12.8)

Ẽn is the energy predicted by one of N different NNPs and E is the average of all
predictions. Hence, σE is the standard deviation of the different model predictions.
Using an uncertainty measure of this form also has the following advantage: Since
different NNPs are used to compute σE , they can be combined into an ensemble,
where the prediction averages (e.g., E) are used to guide PES exploration. The
consequence is an improvement in the overall predictive accuracy of the ML
approach at virtually no extra cost, due to error cancellation in the individual models.

12.3 Generation of Reference Data Sets

The following section discusses different practical aspects of the adaptive sampling
scheme introduced above. After an investigation on the accuracy advantage offered
by NNP ensembles, we study how frequently new reference computations are
requested during a sampling run. Afterwards, the utility of different predicted
properties as uncertainty measures for NNPs is analyzed. Finally, we introduce
an extension to the standard sampling scheme, which improves overall sampling
efficiency.

12.3.1 Accuracy of NNP Ensembles

In order to investigate the accuracy offered by ensembles of NNPs, we compare the
predictions of ensembles containing up to five members to their respective electronic

240 M. Gastegger and P. Marquetand

Fig. 12.3 Accuracy of ensemble predictions for molecular energies (blue) and forces (red)
depending on the number of members. The computed error measures, MAE and RMSE, appear
to decrease according to an 1√

N
relation, where N is the number of models in the ensemble. In all

cases, the gain in accuracy is most pronounced when going from a single network to an ensemble
of two

structure reference. This analysis is based on the protonated alanine tripeptide
data set obtained in reference [18], which also serves as a basis for several other
studies in this text. The data set contains 718 different peptide configurations at
the BLYP/def2-DZVP level of theory sampled with the scheme described above.
Figure 12.3 shows the energy and force mean absolute errors (MAEs) and root mean
squared errors (RMSEs) for the different ensembles. Even the combination of only
two different models already leads to a marked decrease in the prediction error.
Since ensembles thrive on a cancellation of random error fluctuations, this gain in
accuracy is particularly pronounced for the RMSEs. An interesting observation is
that the forces profit to a greater extent than the energies, with a reduction in the error
by approximately 0.3 kcal mol−1 Å−1. This effect is expected to be of importance
in the early stages of an adaptive sampling run, as the improved reliability of the
model increases the likelihood that physically relevant configurations are sampled.

12.3.2 Choice of Uncertainty Measures

An important feature of atomistic NNPs is their ability to operate as fragmentation
approaches, where they predict the energies of large molecules after being trained
on only small fragments [27]. Hence, expensive reference computations never

12 Molecular Dynamics with Neural Network Potentials 241

have to be performed for the whole system, but only for parts of it. This feature
can be combined with the adaptive sampling scheme, as was, for example, done
in reference [18]. In this setup, the uncertainty is not measured for the whole
molecule, but instead for atom-centered fragments. Reference computations are
only performed for those fragments where the uncertainty exceeds a predefined
threshold, thus reducing the computational cost of constructing an accurate NNP
even further. However, the deviation of ensemble energies (Eq. 12.8) can now no
longer serve as the uncertainty measure.

Although substituting the total energies in Eq. 12.8 by their atom-wise counter-
parts Ẽi would in theory be a straightforward choice for an atomistic uncertainty
estimate, it is not feasible in practice. Due to the way NNPs are constructed (see
Eq. 12.2), the partitioning of the total energy into latent atomic contributions is
not unique. Hence, even if two NNPs yield almost identical predictions for the
molecular energies, the distributions of atom-wise contributions can still differ
significantly, as is shown for the alanine tripeptide in Fig. 12.4. If, e.g., the atomic
energies of carbon atoms are used to compute the uncertainty, large deviations
will be encountered for all regions of the PES, no matter how well the global
predictions agree. As a consequence, reference computations will be performed for a

Fig. 12.4 Distribution of atomic energies, forces, and total energies as predicted for the alanine
tripeptide by two NNP models (shown in red and blue). Although the NNP predictions agree well
in the case of the total energies and atomic forces, the energy contributions of individual atoms
vary dramatically between the models

242 M. Gastegger and P. Marquetand

large fraction of encountered configurations, thus effectively negating the advantage
offered by the adaptive sampling scheme.

The better alternative is to reformulate the above measure to instead use the
forces acting on each atom:

σ
(α)
F =

√√√√ 1

N− 1

N∑
n

∥∥∥F̃(α)
n − F

(α)
∥∥∥2

, (12.9)

where F̃(α)
n is the force acting on atom α as predicted by model n of the ensemble.

F
(α)

is the average over all predictions. The measure σ
(α)
F has several advantages.

Since it depends on the molecular forces it is purely atomistic. Moreover, due to
how the forces are computed in NNPs (Eq. 12.3), they are insensitive to the learned
partitioning in a similar manner as the total energy. This property can be observed
in Fig. 12.4, where the distributions of forces acting on, e.g., hydrogen and carbon
atoms show a similar agreement between models as do the molecular energies, but
not the atomic energies.

12.3.3 Frequency of Reference Computations

An important aspect of the adaptive sampling scheme is how frequently new
electronic structure computations need to be performed. Figure 12.5 depicts the
number of configurations added to the reference data set versus the total number
of sampling steps. The studied molecule is an n-alkane (C69H140, see Figure inset)

200

250

300

350

400

450

500

550

1 10 100 1000 10000 100000

#
 R

ef
er

en
ce

 C
on

fig
ur

at
io

ns

Timesteps

Fig. 12.5 Number of configurations accumulated during an adaptive sampling run for the C69H140
n-alkane plotted against the number of molecular dynamics steps. New samples are added
frequently during the early stages of the sampling, while almost no configurations are collected
during the later stages

12 Molecular Dynamics with Neural Network Potentials 243

and the sampling statistics were taken from the supporting information of Reference
[18], obtained with a fragmentation procedure and the aforementioned force based
uncertainty. As can be seen in the figure, there is a marked decrease in the number
of electronic structure queries as the sampling progresses. Initially, new samples are
added frequently, as the model explores the configuration space. More than half of
the new samples are added within the first 2000 exploration steps. After this phase
of determining a reliable first approximation of the electronic structure method, the
sampling process is dominated by fine-tuning the NNP ensemble. Now only samples
corresponding to insufficiently described regions of the PES are collected, reducing
the requirement for expensive reference computations significantly. The efficiency
of this simple approach is remarkable insofar, as only 534 configurations are needed
to obtain an accurate model of the n-alkane sporting 621 degrees of freedom. The
final model achieves RMSEs of 0.09 kcal mol−1 and 1.48 kcal mol−1 Å−1 compared
to the reference energies and forces of the fragments.

12.3.4 Adaptive Sampling with Multiple Replicas

A potential problem of the adaptive sampling scheme is its serial nature. Currently,
only one point of data is collected after each sampling period. Since the NNPs need
to be retrained every time the reference data set is extended, the resulting procedure
can become time consuming in its later stages, especially for large and flexible
molecules (e.g., the tripeptide in reference [18]).

This problem can be overcome by introducing a parallel version of the adaptive
scheme, as outlined in Fig. 12.6. Instead of simulating only a single system at a
time, multiple sampling runs are performed in parallel, each using a copy of the
NNP ensemble trained in the previous cycle. These independent simulations can
be replicas of the system under various conditions (e.g., different temperatures),
a range of conformations or even different molecules. Sampling is once again
carried out until divergence is reached for all parallel simulations. The high
uncertainty configurations are then computed with the reference method and added
to the training data. This setup reduces the frequency with which NNPs need
to be retrained, while at the same time improving PES exploration. A potential
drawback of this scheme is that the collection of data points introduces periods
of unproductivity, where some simulations are already finished while others are still
running. However, this effect is negligible in praxis due to the high computational
speed of the NNP models.

12.4 NNPs for Molecular Dynamics Simulations

Due to their combination of high accuracy and computational efficiency, NNPs
are an excellent tool to accelerate MD simulations. A particularly interesting
application is the computation of molecular spectra via the Fourier transform of
different time autocorrelation functions [28]. Depending on the physical property

244 M. Gastegger and P. Marquetand

Sampling
Period

Sampling
Period

...

Compute collected configurations
and retrain model

Fig. 12.6 Parallel version of the adaptive sampling scheme. Individual adaptive sampling runs
are carried out for different replicas of the system (e.g., different configurations). For each
replica, configurations with high uncertainty are identified. Once samples have been collected for
all replicas, reference computations are carried out and the NNP ensemble model is retrained.
Afterwards, the replica simulations are continued with the new model. In this manner, the NNPs
have to be retrained less frequently and different regions of the PES can be explored more
efficiently

underlying the autocorrelation function, different types of spectra can be obtained.
One example are molecular infrared spectra, which can be modeled according to the
relation:

IIR ∝
∫ +∞

−∞
〈μ̇(τ)μ̇(τ + t)〉τ e−iωtdt, (12.10)

where μ̇ is the time derivative of the molecular dipole moment, τ is a time delay, ω
is the vibrational frequency and t is the time.

The simulation of infrared spectra poses a particular challenge for machine
learning techniques. Due to the dependence of Eq. 12.10 on μ̇, a reliable model
of the molecular dipole moment μ is needed in addition to the PES description
provided by conventional NNPs. In the next sections, we will explore various
aspects and the potential pitfalls associated with such models.

12 Molecular Dynamics with Neural Network Potentials 245

12.4.1 Machine Learning for Molecular Dipole Moments

A straightforward way to model dipole moments in the context of NNPs is to
train individual atomic networks to reproduce quantum chemical partial charges.
The molecular dipoles can then be obtained via the point charge model given in
Expression 12.5, where the q̃i are modeled by environment-dependent networks.
A similar strategy was, e.g., used to model long-range electrostatic energies in
Ref. [21].

However, such a model suffers from the inherent inhomogeneity of the vari-
ous charge partitioning schemes available for electronic structure methods. The
predicted partial charges can differ dramatically between schemes and some of
them fail at reproducing molecular dipole moments entirely [20]. Even when
considering only those methods which yield partial charges consistent with the
molecular dipole moment, a strong dependence on the type of partitioning can
still be observed. Hirshfeld charges [29], for example, appear to work well in
the setup described above, as was demonstrated in reference [30]. Charges fit
to the electrostatic potential (e.g., CHELPG [31]) on the other hand prove to
be more problematic. To illustrate the issue at hand, Fig. 12.7 shows the MD IR
spectrum of single methanol molecule computed with a partial charge model based
on the CHELPG method in comparison to the electronic structure reference. The
partial charge spectrum shows several marked differences from the reference. Small
artificial peaks are introduced at 2100 and 3900 cm−1, respectively. Moreover, the
intensity of several peaks (e.g., at 1400 and 2800 cm−1) is reproduced incorrectly.

Fig. 12.7 Infrared spectra of a methanol molecule in the gas phase computed via ab initio
molecular dynamics (blue), as well as machine-learned molecular dynamics using the dipole
moment model introduced above (red) and a neural network model trained on CHELPG partial
charges (gray). While the dipole moment model shows good agreement with the reference, the
CHELPG model leads to erratic trends in peak positions and intensities

246 M. Gastegger and P. Marquetand

The most likely reason for these issues is the fitting procedure used to determine this
particular type of reference charges. Since an independent least squares optimization
is carried out for every molecular configuration, the obtained partial charges
are not necessarily continuous with respect to incremental changes in the local
environment of each atom. This makes it harder for the atomistic networks to
learn a consistent charge assignment, leading to the erroneous behavior observed
above.

A better approach is to incorporate the point charge model into the atomistic
NNP architecture in the form of a dipole aggregation layer, as described in
Sect. 12.2.2 and reference [18]. Instead of fitting to arbitrary partial charges,
the model can now be trained directly on the molecular dipole moments, which
are quantum mechanical observables. In this manner, the need for choosing an
appropriate partitioning scheme is eliminated. The inherent advantage of such a
model can be seen in Fig. 12.7, where it accurately reproduces the quantum chemical
reference, although trained on the same set of configurations as the partial charge
model.

12.4.2 Latent Partial Charges

A special feature of the above model is that it offers access to atomic partial charges.
These charges are inferred by the NNP model based on the molecular electrostatic
moments in a purely data driven fashion. Moreover, the charge models obtained
with the above partitioning scheme depend on the local chemical environment of
each atom. Hence, the charge distribution of the molecule can adapt to structural
changes. Considering that partial charges are one of the most intuitive concepts
in chemistry, the NNP latent charges represent an interesting analysis tool, e.g.,
for rationalizing reaction outcomes. In the following, we investigate how well
the charges derived from the above dipole model agree with basic chemical
insights.

One potential problem of atomistic properties (e.g., energies and charges)
obtained via specialized aggregation layers is the extent with which the partitioning
varies between different models. A good example are the atomic energies predicted
by the tripeptide NNPs shown in Fig. 12.4. Although the total energies agree well,
the partitioning into atomic contributions is highly non-unique. Such a behavior is
detrimental if the latent contributions should serve as an analysis tool. In order to
investigate whether this phenomenon is also observed for the latent partial charges,
a similar analysis is performed for two dipole moment models of the alanine
tripeptide. The resulting partial charge distributions are compared in Fig. 12.8. The
latent charges obtained with the dipole model are significantly better conserved
than the atomic energies and only small deviations are found between different
NNPs.

12 Molecular Dynamics with Neural Network Potentials 247

Fig. 12.8 Distribution of atomic partial charges predicted for the chemical elements present in the
alanine tripeptide obtained with two dipole models (blue and red). Although differences between
the two models are still present, the atomic charge distributions are better conserved than the atomic
energies

This trend appears to hold in general, as can be seen by repeating the above
experiment for the QM9 database [32] containing approximately 130,000 small
organic molecules. Figure 12.9 shows the distributions of partial charges and atomic
energies of oxygen predicted for all molecules in QM9. In each case, five different
dipole and energy models were trained on growing subsets of the database using
an adapted version of ACSFs, so-called weighted ACSFs [15] composed of 22
radial and 10 angular symmetry functions. In case of the dipole moment models,

we replaced the dipole vector μ̃ in Eq. 12.6 by its magnitude |μ̃| =
∥∥∥∑N

i q̃iri
∥∥∥,

as only the latter is available in QM9. All models used atomistic networks with
three layers of 100 neurons each and shifted softplus nonlinearities and were
trained using the ADAM algorithm [33] with a learning rate of 0.0001 (see
Refs. [34] and [22] for details). Compared to the atomic energies, the distributions
of atomic partial charges are not only better conserved between models, but also
show systematic convergence upon inclusion of additional data. The reason for this
behavior is the geometry-dependent term present in Eq. 12.5, which introduces an
additional constraint into the partitioning procedure. This term encodes information
on the spatial distribution of molecular charge and is different for every molecule.
Moreover, due to the statistical nature of the training procedure, the latent charge
model has to be consistent across a wide range of molecules and configurations.
The combination of both properties strongly limits the number of valid latent charge
assignments. These results are encouraging and demonstrate that the NNP partial
charges are indeed capable to capture aspects of the chemistry underlying a system.
However, care should be taken when using the latent charges as a direct replacement
of their quantum chemical counterparts, as the resulting partitionings—although
well behaved—are still not uniquely determined. This can lead to undesirable effects

248 M. Gastegger and P. Marquetand

Fig. 12.9 Distribution of the atomic partial charges (blue) and energies (red) of oxygen predicted
for all molecules in the QM9 database using different training set sizes (containing 5000, 10,000,
50,000 and 100,000 data points). In each case, five dipole and energy models were trained on the
magnitude of the dipole moment and the total electronic energy each. In contrast to the atomic
energies, the partial charge distributions converge to similar values upon increasing the training set
size

when they are, e.g., used to model long-range electrostatic interactions without
further processing, as it can introduce inconsistencies into the predicted model
energies and forces [35].

A final point of interest is the extent of fluctuations of the total charge observed
during a typical molecular dynamics simulation (see Sect. 12.2.2). Using the
protonated alanine tripeptide as an example, the uncorrected total charge shows
a standard deviation of 0.04 elementary charge units over a total of 150 ps of
simulation time, while fluctuating around the expected average of 1.00. Hence, only
minimal corrections are necessary to guarantee full charge conservation.

12 Molecular Dynamics with Neural Network Potentials 249

12.4.3 Electrostatic Potentials

Having ascertained the general reliability of the charge model, we now study how
well the latent charge assignments agree with the predictions of electronic structure
methods. In order to illustrate and compare different molecular charge distributions,
we use partial charges to construct approximate electrostatic potentials (ESPs) of
the form:

E(r0) =
N∑
i

qiq0

||ri − r0|| , (12.11)

where qi and ri are the partial charge and position vector of atom i. r0 is the position
of a probe charge q0, which was set to q0 = +1 in all experiments.

Figure 12.10 shows the pseudo ESPs obtained with latent and Hirshfeld partial
charges. The latter have been chosen for their general reliability and widespread
use. To assess, how well the latent predictions of the dipole model capture the
charge redistribution associated with changes in the molecular geometry, two
configurations of the protonated alanine tripeptide are modeled, with a hydrogen
transferred from the N-terminal NH+3 group to the neighboring carbonyl moiety.

In all cases, good agreement is found between the charge distributions predicted
by the dipole moment model and the electronic structure equivalent. The latent
charges are able to account for several important features, such as the localization
of the positive charge of the molecule at the N-terminal NH+3 moiety in the
first configuration, as well as its relocation towards the interior of the molecule

L
at
en

t
C
ha

rg
es

H
ir
sh

fe
ld

Fig. 12.10 Electrostatic potential surfaces of the alanine tripeptide based on Hirshfeld partial
charges and latent partial charges yielded by the dipole model. The left-hand side shows a
configuration protonated at the N-terminal NH+3 group, whereas the proton is situated on the
adjacent carbonyl group in the right-hand side structure. Regions of negative charge are depicted
in red, positively charged regions in blue

250 M. Gastegger and P. Marquetand

after proton transfer. The model also accounts for the regions of negative charge
expected for the carbonyl and carboxylic acid groups. These findings are remarkable
insofar, as all this information on the electronic structure of the molecule is inferred
purely from the global dipole moments, demonstrating the power of the partitioning
scheme.

12.4.4 Geometry Dependence of Latent Charges

A final analysis is dedicated to the behavior of the latent dipole model charges under
changes in the local chemical environment. As an example, we study the evolution
of the partial charge of the proton during the proton transfer event occurring in
the alanine tripeptide. Figure 12.11 shows the NNP partial charge attributed to the
proton plotted against the reaction coordinate. The curves for Hirshfeld, Mulliken
[36] and CHELPG charges are included for comparison. Several interesting effects
can be observed.

First, the dipole model curve exhibits a minimum close to the transition state
of the transfer reaction. Since the latent charges can be seen as a proxy of the
local electron density, this result can be interpreted as follows: At the initial and
final stages of the transfer, the positive charge is located mainly at the proton
itself. However, during the transfer and especially close to the transition regions,
electron density is shared between the three participating atoms (O, N and proton).
Hence, the positive charge is reduced for these configurations. This finding serves
as an additional demonstration for the efficacy of the latent charge model. Although
originally only conceived to model dipole moments, it is able to provide insights
directly related to the electronic structure of the molecule at an atomistic resolution.

Fig. 12.11 Changes in the partial charge of the proton during different stages of the proton
transfer event. Shown are charges computed via different conventional charge partitioning schemes
(Hirshfeld, CHELPG and Mulliken), as well as the latent charges predicted by the ML model

12 Molecular Dynamics with Neural Network Potentials 251

Second, Fig. 12.11 illustrates the inherently different behavior found for various
charge partitioning schemes. The Hirshfeld charges show a qualitatively similar
curve to the machine-learned charge model and are well behaved in general,
supporting the results reported in reference [30]. Mulliken and CHELPG charges on
the other hand show completely different trends. The former are generally known
for their unreliability, e.g., showing a strong dependence on the used basis set
and large deviations when attempting to recover molecular dipole moments, hence
the result is little surprising [20]. The counterintuitive behavior of the CHELPG
charges serves as an additional confirmation for the effects observed in the methanol
spectrum shown above (Fig. 12.7). Given this general discrepancy between various
partitioning schemes, the charges derived via the dipole moment model constitute
a viable alternative: They reproduce molecular dipole moments accurately, are
derived directly from quantum mechanical observables and capture the influence
of structural changes on the molecular charge distribution.

12.5 Conclusion

We have presented how molecular dynamics (MD) simulations can benefit from
machine learning (ML) potentials and provided some background for the imple-
mentation of this ML-MD approach. The first challenge during such a task is to
efficiently gather enough training data in order to create a converged potential.
An adaptive sampling scheme can serve for this purpose and the efficiency can
be improved when using (a) an ensemble of neural networks, (b) an adequate
uncertainty measure as selection criterion, and (c) multiple replicas to parallelize
the sampling.

As an ultimate test, experimental observables need to be calculated and compared
to actual experimental results. In our case, infrared spectra are simulated, for which
the neural networks do not only need to learn potentials and forces but also dipole
moments and their atomistic counterparts, the atomic partial charges. If the latter
are plotted in a geometry-dependent manner, e.g., along a reaction coordinate, these
machine-learned charges provide insights directly related to the electronic structure
of the molecule at an atomistic resolution. In this sense, machine learning can not
only deliver potentials with supreme accuracy at compelling speed but also offer
valuable insights beyond a simple prediction of quantities.

Despite this positive picture, many challenges remain, e.g., generalizing the
machine learning models—ideally for all possible substances, different kinds of
molecules and materials alike—or extending the range of properties to be learned.
Possibly the biggest challenge is however to find a universally valid electronic
structure method necessary for the generation of high-fidelity training data.

Acknowledgments M.G. was provided financial support by the European Union Horizon 2020
research and innovation program under the Marie Skłodowska-Curie grant agreement NO 792572.
The computational results presented have been achieved in part using the Vienna Scientific Cluster
(VSC). We thank J. Behler for providing the RuNNer code.

252 M. Gastegger and P. Marquetand

References

1. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(Cambridge University Press, Cambridge, 2009)

2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford,
1987)

3. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, Cambridge, 2001)
4. T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103(10), 4129 (1995)
5. D.A.R.S. Latino, R.P.S. Fartaria, F.F.M. Freitas, J. Aires-De-Sousa, F.M.S. Silva Fernandes,

Int. J. Quantum Chem. 110(2), 432 (2010)
6. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011)
7. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)
8. B. Jiang, J. Li, H. Guo, Int. Rev. Phys. Chem. 35(3), 479 (2016)
9. R. Ramakrishnan, O.A. von Lilienfeld, Machine Learning, Quantum Chemistry, and Chemical

Space. Reviews in Computational Chemistry, chap. 5 (Wiley, Hoboken, 2017), pp. 225–256
10. V. Botu, R. Batra, J. Chapman, R. Ramprasad, J. Phys. Chem. C 121(1), 511 (2017)
11. J. Behler, Angew. Chem. Int. Ed. 56(42), 12828 (2017)
12. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
13. J. Behler, J. Chem. Phys. 134(7), 074106 (2011)
14. J. Behler, Int. J. Quantum Chem. 115, 1032 (2015)
15. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys.

148(24), 241709 (2018)
16. A. Pukrittayakamee, M. Malshe, M. Hagan, L.M. Raff, R. Narulkar, S. Bukkapatnum,

R. Komanduri, J. Chem. Phys. 130(13), 134101 (2009)
17. M. Gastegger, P. Marquetand, J. Chem. Theory Comput. 11(5), 2187 (2015)
18. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017)
19. F. Jensen, Introduction to Computational Chemistry, 2nd edn. (Wiley, Hoboken, 2007)
20. C.J. Cramer, Essentials of Computational Chemistry, 2nd edn. (Wiley, Hoboken, 2004)
21. T. Morawietz, V. Sharma, J. Behler, J. Chem. Phys. 136(6), 064103 (2012)
22. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, arXiv:1806.10349 [physics.comp-ph]

(2018)
23. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017)
24. J.E. Herr, K. Yao, R. McIntyre, D.W. Toth, J. Parkhill, J. Chem. Phys. 148(24), 241710 (2018)
25. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A.E. Roitberg, J. Chem. Phys. 148(24), 241733

(2018)
26. H.S. Seung, M. Opper, H. Sompolinsky, Proceedings of the Fifth Annual Workshop on

Computational Learning Theory (ACM, New York, 1992), pp. 287–294
27. M. Gastegger, C. Kauffmann, J. Behler, P. Marquetand, J. Chem. Phys. 144(19), 194110 (2016)
28. M. Thomas, M. Brehm, R. Fligg, P. Vohringer, B. Kirchner, Phys. Chem. Chem. Phys. 15, 6608

(2013)
29. F. Hirshfeld, Theor. Chim. Acta 44(2), 129 (1977)
30. A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A.E. Roitberg,

K. Barros, S. Tretiak, J. Phys. Chem. Lett. 9(16), 4495 (2018)
31. C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11(3), 361 (1990)
32. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Sci. Data 1, 140022 (2014)
33. D.P. Kingma, J. Ba, arXiv preprint arXiv:1412.6980 (2014)
34. K. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.R. Müller, J. Chem. Theory

Comput. 15(1), 448 (2018)
35. K. Yao, J.E. Herr, D. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9, 2261 (2018)
36. R.S. Mulliken, J. Chem. Phys. 23(10), 1833 (1955)

13High-Dimensional Neural Network Potentials
for Atomistic Simulations

Matti Hellström and Jörg Behler

Abstract

High-dimensional neural network potentials, proposed by Behler and Parrinello
in 2007, have become an established method to calculate potential energy
surfaces with first-principles accuracy at a fraction of the computational costs.
The method is general and can describe all types of chemical interactions
(e.g., covalent, metallic, hydrogen bonding, and dispersion) for the entire
periodic table, including chemical reactions, in which bonds break or form.
Typically, many-body atom-centered symmetry functions, which incorporate the
translational, rotational, and permutational invariances of the potential energy
surface exactly, are used as descriptors for the atomic environments. This chapter
describes how such symmetry functions and high-dimensional neural network
potentials are constructed and validated.

13.1 Introduction

Atomistic simulations in chemistry, physics, and materials science rely on cal-
culations of the potential energy and forces for arbitrary nuclear configurations.
This is typically done either with first-principles methods like density functional
theory (DFT), which provide an approximate solution to the electronic Schrödinger
equation, or by means of atomistic potentials, i.e., direct analytic relations between
the structure and the potential energy.

M. Hellström · J. Behler (�)
Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie,
Göttingen, Germany
e-mail: joerg.behler@uni-goettingen.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_13

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_13&domain=pdf
mailto:joerg.behler@uni-goettingen.de
https://doi.org/10.1007/978-3-030-40245-7_13

254 M. Hellström and J. Behler

A high-dimensional neural network potential [1], the topic of this chapter, is
a type of atomistic potential based on machine learning [2]. In general, atomistic
potentials are much faster to evaluate than first-principles methods, which enables
them to be used in large-scale simulations with hundreds of thousands of atoms,
for example, for the simulation of biomolecules in solution or of extended defects
in crystalline materials, as well as in applications requiring extensive sampling of
many configurations.

Most atomistic potentials are force fields. The equations for evaluating the energy
in such force fields are based on approximations of known physical and chemical
phenomena; for example, two noble gas atoms experience attractive van der Waals
forces when they are far apart, but if the distance between the two atoms decreases,
then at some point the interaction will invariably become repulsive due to the Pauli
exclusion principle. Because this phenomenon is known and rather simple, it can be
described approximately by an equation containing only few parameters. The most
prominent example is the Lennard-Jones 12-6 potential [3], which contains only
two parameters: one describing the strength of the attractive interaction, and one
describing the distance at which the interaction becomes repulsive.

On the other hand, the class of atomistic potentials known as machine learning
potentials [2] do not contain any physical approximations but instead utilize a very
flexible potential energy expression. A variety of machine learning methods can be
used in this context, for example, methods like Gaussian approximation potentials
[4], kernel ridge regression [5], moment tensor potentials [6], and support vector
machines [7]. This chapter focuses on artificial neural networks (NNs), which are
used to construct high-dimensional neural network potentials (NNPs) [1, 8–10].
The flexible energy expression of an NNP typically contains many thousands of
parameters that must be fitted (learned) to reproduce results from a typically very
large training set of structures evaluated using first- principles methods.

High-dimensional NNPs evaluate the energy E of a structure by summing up
individual atomic contributions [8]; each atomic contribution (atomic energy) is
calculated using an individual neural network. The input to such a neural network
is a fingerprint of the environment within some cutoff sphere around the atom. It
is also possible to augment a high-dimensional neural network potential with the
description of long-range interactions between atoms that are very far apart, e.g.,
electrostatic interactions [11–13].

For a high-dimensional neural network potential, the input features should be

• rotationally invariant,
• translationally invariant,
• permutationally invariant with respect to the order in which the atoms of a given

element are provided in the input file,
• and sufficiently different for different atomic environments.

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 255

All of these features can be obtained by using the so-called atom-centered symmetry
function (SFs) as input features [14].

High-dimensional NNPs have been applied to many different systems, e.g., in
materials modelling [15] and aqueous chemistry [16, 17]. This chapter describes
how high-dimensional NNPs can be used to evaluate the energy and forces acting
on atoms in a system, how the neural networks can be fitted and validated, how to
select suitable input features (symmetry functions), and how to construct a suitable
training set.

13.2 Preliminaries

A high-dimensional neural network potential is parameterized to reproduce results
from electronic structure (typically density functional theory) calculations. Thus,
before the construction of a high-dimensional neural network potential can begin,
a reference data set must be generated. This data set contains a set of atomic
structures (periodic and/or non-periodic), together with the properties that are to
be reproduced. In the context of high-dimensional neural network potentials, these
properties are typically the total energies and the force vectors acting on the atoms.
For the total energies, it is not necessary for the electronic structure reference
calculation to output the “true” total energies (including, for example, interactions
with core electrons in case of pseudopotential calculations); instead, the neural
network will simply reproduce a total energy that is consistent with the used DFT
code and the chosen settings like the exchange-correlation functional for a given
system. Therefore, a NNP cannot be expected to produce more reliable results than
a direct application of the reference method would, as any deviation is regarded as
an error of the NNP and should be minimized. Consequently, a high-dimensional
neural network potential can only be as good as the electronic structure method
which is used to calculate the data in the reference set. Thus, the electronic structure
method needs be chosen with care. At the same time, because high-dimensional
neural network potentials often need a lot of training data (tens of thousands of
structures), the electronic structure calculations should not be too costly.

Typically, only a part of the reference data set, the training set, is used to fit the
neural network parameters. The rest of the reference data set, the test set, is used
to evaluate the quality of the neural network potential on structures which were not
present in the training set. This gives a measure of how well the NNP generalizes, at
least as long as the available data spans the full configuration space that is relevant
for the intended application.

256 M. Hellström and J. Behler

13.3 Functional Form of a High-Dimensional Neural Network
Potential

13.3.1 Energy Calculations

In a high-dimensional neural network potential, the potential energy of a system is
a sum of the contributions of the individual atoms,

E =
Nat∑
i

Ei, (13.1)

where Nat is the number of atoms in the system and Ei is the contribution to the
total energy from atom i. If the atom i is of some chemical element I , which we
here write as i ∈ I , then the atomic energy

Ei∈I = χI (GI (i)) (13.2)

is calculated by means of an element-dependent neural network χI , which takes a
representation of the chemical environment around the atom, GI (i), as input.

Thus, the potential energy E can also be written as

E =
Nat∑
i

Ei =
∑
I

∑
i∈I

χI (GI (i)), (13.3)

where the outer sum is taken over all chemical elements in the system, and the inner
sum over each atom of a particular chemical element I .

If there is more than one element in the system, there will be one type
of neural network χI , χJ , etc., per different elements I , J , etc. The different
element-dependent neural networks can have different architectures, and will have
different weight parameters defining the atomic energy output of the neural network.
Similarly, the input vectors GI (i), GJ (j), for two atoms i ∈ I and j ∈ J where
I �= J , can be computed in different ways, and can contain a different number of
components. Of course, the number of components of the input vector GI (i) must
match the number of input features expected by the neural network χI . The input
vectors GI (i) are further discussed in Sect. 13.3.2.

The neural network χI is typically a standard fully-connected feed-forward
neural network with continuously differentiable activation functions and a single
output node, yielding the atomic energy Ei . The neural network is thus a function
χI : Rn → R, where n denotes the number of input features.

Neural networks used in NNPs often contain two hidden layers, although it is
also possible to use deeper neural networks. Some architectures that have been used
in the literature include 30-25-25-1 for O atoms and 27-25-25-1 for H atoms in
liquid water [16], 36-35-35-1 for Na atoms in NaOH(aq) solutions [17], 53-25-

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 257

25-1 for Cu atoms at Cu(s)/H2O(l) interfaces [18], and 50-20-20-1 for Ru atoms
at a Ru(s)/N2(g) interface [19]. In all these examples the first number refers to the
number of input SFs, the next two numbers to the number of nodes in the hidden
layers, and the last number 1 specifies the single output node for the atomic energy
Ei .

We denote the parameters of the neural network χI connecting layer k to layer
k + 1 as a matrix AI,[k] and a vector bI,[k] for the bias weights. These parameters
must be fitted before the high-dimensional NNP can be used. The fitting process is
described in more detail in Sect. 13.4.

Figure 13.1 shows a schematic representation of the calculation of the total
energy for a system containing 100 atoms and two elements, I and J . The atomic
energies of atoms of element I are calculated using the input features and NN
weights colored in purple, while the atomic energies of atoms of element J are
calculated using the input features and NN weights colored in green. As the

Fig. 13.1 A high-dimensional neural network potential for a system containing two elements I

and J and in total 100 atoms

258 M. Hellström and J. Behler

numerical values of the input vectors depend on the geometric environments of
the atoms, they are different for each atom, while the definition of the features is
the same within a given element. A particular naming scheme is used for the input
features; it is further described in the next section.

13.3.2 Symmetry Functions

In the context of high-dimensional neural network potentials it is common to employ
atom-centered symmetry functions as descriptors of the chemical environment
around an atom [14]. Typically, only the local environment within a cutoff sphere
of radius Rc is considered. This is achieved by means of a cutoff function fc(R)

that smoothly decays to 0 in value and slope at R = Rc. Such functions are often
used for constructing atomistic potentials in order to smoothly truncate the atomic
interactions at some point. Some possible choices for fc(R) are

fc(R) =
⎧⎨
⎩

1
2

[
cos
(

πR
Rc

)
+ 1
]

R ≤ Rc

0 R > Rc

(13.4)

or

fc(R) =
⎧⎨
⎩

tanh3
(

1− R
Rc

)

tanh3(1)
R ≤ Rc

0 R > Rc

(13.5)

or

fc(R) =
⎧⎨
⎩

20
R7

c
R7 − 70

R6
c
R6 + 84

R5
c
R5 − 35

R4
c
R4 + 1 R ≤ Rc

0 R > Rc.
(13.6)

The first form (Eq. 13.4) is continuous in value and slope at R = Rc; the second
form (Eq. 13.5) also has a continuous second derivative; the third form (Eq. 13.6)
additionally has a continuous third derivative. Figure 13.2 shows the three cutoff
functions for Rc = 10 Å, a typical cutoff value for high-dimensional neural network
potentials.

We will use uppercase letters I , J , K , to indicate chemical elements, and
lowercase letters i, j , k, to indicate individual atoms, and we use the notation i ∈ I

to indicate that the atom i is of element I .
The input to the neural network should be a descriptor of the atomic environment.

This is done by means of a vector of symmetry function values G for each atom.

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 259

Fig. 13.2 Examples of
cutoff functions for
Rc = 10 Å: cos (Eq. 13.4),
tanh (Eq. 13.5), and
polynomial (Eq. 13.6)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Rc = 10 Å
f c

(R
)

R (Å)

cos
tanh

polynomial

As an example, we consider a two-element system with elements I and J , and the
vector of symmetry function values for an atom i ∈ I is then given by

GI (i ∈ I) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

GI :I
1 (i)
...

GI :I
N sym(I :I)(i)

GI :J
1 (i)
...

GI :J
N sym(I :J)(i)

GI :II
1 (i)
...

GI :II
N sym(I :II)(i)

GI :IJ
1 (i)
...

GI :IJ
N sym(I :IJ)(i)

GI :JJ
1 (i)
...

GI :JJ
N sym(I :JJ)(i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.7)

In Eq. 13.7, the individual symmetry functions are denoted GI :IJ
1 , GI :IJ

2 , etc.
The subscripts indicate the nth symmetry function of a particular kind (of which
there are N sym). A superscript of the form I :JJ denotes that the symmetry function
is evaluated for the environment of an atom of element I (written before the

260 M. Hellström and J. Behler

colon), and that the value depends on all unique pairs of atoms of element J

within the cutoff sphere around the atom for which the function is evaluated. As
another example, the form I :I denotes that the symmetry function depends on all
neighboring atoms of element I (see also the definitions of typical functions below).

The symmetry functions of the type I :J are often called radial symmetry
functions. One commonly used functional form for a radial symmetry function is
[14]

GI :J
n (i ∈ I ; η(n), Rs(n), Rc(n)) = ϕI :J

n

⎛
⎜⎜⎝
∑
j∈J
j �=i

e−η(Rij−Rs)
2 · fc(Rij)

⎞
⎟⎟⎠ . (13.8)

Here, η(n), Rs(n), and Rc(n) are the parameters that define the spatial shape and
extension of the function. Each subscript n corresponds to different values of η

and/or Rs, and potentially also to different cutoff radii Rc (although in practice Rc
is often the same for all symmetry functions). In essence, the symmetry function in
Eq. 13.8 is the summation of one-dimensional Gaussian functions of width η and
centered at Rs evaluated for all distance Rij , where j correspond to all neighboring
atoms of element J (that can be the same as or different from I , cf. Eq. 13.7).
Each contribution is weighted by the cutoff function fc(Rij) in order to ensure that
the contribution from atoms j for which Rij > Rc smoothly vanishes. Finally, an
optional scaling function ϕI :J

n is applied that can scale the symmetry function values
to some desired range (for example, between−1 and 1). The scaling function is used
so that the different symmetry functions in GI (i) (Eq. 13.7) have values in roughly
the same range for different atoms and structures. This kind of feature scaling can
be helpful for the optimization (fitting) algorithm, and also makes it possible to use
dimensionality reduction techniques like principal component analysis.

Figure 13.3a shows the value of the summand in Eq. 13.8 for different distances,
for a few selected values of η and Rs. Here, the cutoff distance is set to the typical

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

(a)

Rij (Å)

exp(−η(Rij−Rs)
2) · fc(Rij)

 = 0 Å–2, Rs = 0 Å

 = 1 Å–2, Rs = 0 Å
 = 0.08 Å–2, Rs = 0 Å

 = 1 Å–2, Rs = 2.5 Å

 = 1 Å–2, Rs = 5 Å

0

0.5

1

1.5

2

−180 −120 −60 0 60 120 180

(b)
ζ = 1, λ = 1

ζ = 4, λ = 1

ζ = 1, λ = −1

θ (deg.)

21−ζ (1 + λcos(θ))ζ

Fig. 13.3 (a) The summand of the radial symmetry function in Eq. 13.8 for some different values
of η and Rs, using the cutoff function fc(Rij) from Eq. 13.4. (b) The angular part of the summand
of the symmetry function in Eq. 13.9, for some selected values of ζ and λ

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 261

value of Rc = 10 Å, and the cutoff function from Eq. 13.4 is used. The black line
(η = 0 Å−2) is equivalent to the plain cutoff function fc(R), as the Gaussian reduces
to a factor 1.

For every combination of central element I and neighboring element J , several
functions of the type in Eq. 13.8 with different values of η and/or Rs are used as input
features to the NN. Using several such symmetry functions provides a significantly
better fingerprint of the atomic environment than could be accomplished with only
a single symmetry function. For example, if the single function with η = 0 Å−2

in Fig. 13.3 is used, then two neighbors around the atom i, both at a distance
R = 6.2 Å, yield the same value of GI (i) = 0.632 as a single neighbor at a distance
R = 4.15 Å. By using several symmetry functions, all the relevant information
about the atomic environment around an atom i can be encoded into the input
vector GI (i), which provides a structural fingerprint of the atomic environment
as the input to the NN. However, the radial symmetry functions only depend on
the interatomic distances Rij . In order to incorporate angular dependencies, it is
necessary to include a different type of symmetry function, an angular symmetry
function [14]. For example, a common choice for an angular symmetry function is

GI :JK
n (i ∈ I ; η(n), ζ(n), λ(n), Rc(n)) =

ϕI :JK
n

⎛
⎜⎜⎜⎜⎜⎝

21−ζ
∑

j∈J, k∈K
j �=i, k �=i

k �=j

(1+ λ cos θjik)
ζ · e−η(R2

ij+R2
ik+R2

jk) · fc(Rij) · fc(Rik) · fc(Rjk)

⎞
⎟⎟⎟⎟⎟⎠

,

(13.9)

where the interatomic distances Rij , Rik , and Rjk and angle θjik between three
atoms i ∈ I , j ∈ J , and k ∈ K are used to compute the value of the symmetry
function, for each of the possible unique combinations of neighbors j and k around
the central atom i. Again, the elements J and K may be the same as or different from
I , and ϕI :JK

n is a scaling function. In Eq. 13.9, ζ determines the range of angles for
which the angular term is approximately 0 (a larger value of ζ will make the peak
less spread out), and λ takes on a value of either +1, for a maximum at θjik = 0◦,
or −1, for a maximum at θjik = 180◦. The angular part [i.e., (1 + λ cos θjik)ζ]
of the symmetry function is shown in Fig. 13.3b, for a few different values of ζ

and λ. The angular part is periodic with a period of 360◦ and symmetric around
0◦ and ±180◦, which is mandatory to obtain the same symmetry function values
for geometrically equivalent structures. It is important to note that the radial and
angular types of symmetry functions in Eq. 13.7 do not correspond to two-body and
three-body terms, but rather the summation of different two and three-body terms,
making each symmetry function a many-body function.

One limitation of using symmetry functions as a description of the chemical
environment around an atom is the use of the cutoff function fc(Rij), because as
a consequence the symmetry functions only describe the chemical environment up

262 M. Hellström and J. Behler

to the cutoff distance Rc, which is usually taken to be a value in the range 6–10 Å.
Thus, interactions that take place over longer distances, for example, electrostatic
interactions, are effectively not captured. To overcome this limitation it is possible to
combine a high-dimensional neural network potential with methods for computing
long-range electrostatic interactions (see Sect. 13.5).

13.3.3 Choosing a Set of Symmetry Functions

The symmetry functions are rotationally and translationally invariant, and also
invariant to permutations with respect to the order in which atoms of a given
element appear in the input file. When applying a set of symmetry functions
as input to a neural network (Eq. 13.7), one needs to decide which and how
many symmetry functions to include for each combination of possible neighboring
elements. Suitable values of the parameters η and Rs must be chosen for the radial
symmetry functions, and η, λ, and ζ for the angular symmetry functions.

A good choice of symmetry functions will lead to a symmetry function vector
GI (i) for an atom i ∈ I being sufficiently different when the atom i is in different
atomic environments. This is what allows the neural network to distinguish between
different chemical environments. Thus, there needs to be a sufficient number of
different symmetry functions. At the same time, the number of symmetry functions
should ideally be kept small, since a larger number of symmetry functions imply a
larger number of parameters (neural network weights) that need to be fitted.

The range of values of a particular symmetry function should not be too small,
when calculated, for example, over the different atoms in the training set. The range
of values should also not be determined by a few outliers. It is possible to check
for this by dividing the difference between the maximum and minimum value for
a given symmetry function in the training set by its standard deviation; a value of
about 10 is often good. Moreover, no two symmetry functions should be too strongly
correlated. By calculating, e.g., the Pearson correlation coefficient, one can remove
symmetry functions that are too strongly correlated (>0.9) [10, 20].

In choosing the parameter η for the radial symmetry functions, the largest value
of η (the most quickly decaying Gaussian function) should be chosen so that the
function starts to decay around the distance corresponding to the shortest possible
meaningful bond between the two pertinent atom types.

If the magnitudes of the forces on two atoms are very different from each other,
the atoms necessarily exist in different chemical environments. This means that at
least one symmetry function should have a substantially different value for one atom
as compared to the other. If this is not the case, the set of symmetry functions needs
to be augmented [14].

Machine learning fitting algorithms usually work best if the different input
features contain numbers of roughly the same order of magnitude. However, in, for
example, the case of the radial symmetry functions in Eq. 13.8, symmetry functions
with a larger value of the parameter η will always yield smaller values of G. For this

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 263

reason, it is common to apply feature scaling (also called feature normalization), to
the symmetry function values before training the neural network. This is a common
preprocessing step for machine learning applications in general.

The scaling functions ϕn in Eqs. 13.8 and 13.9 provide such a scaling. One
possible definition of ϕn, that scales the minimum and maximum values for the
nth symmetry function in the training set to become −1 and 1, is

ϕn(x) = 2(x −minG◦n)
maxG◦n −minG◦n

− 1, (13.10)

where minG◦n and maxG◦n are the smallest and largest values of the non-scaled
(indicated by the circle superscript) nth symmetry function in the training set. One
can also subtract the mean and divide by the standard deviation, to obtain a feature
with mean 0 and unit variance:

ϕn(x) = x −meanG◦n
stdG◦n

. (13.11)

13.3.4 Force Calculations

For many applications involving neural network potentials, for example, geometry
optimizations and molecular dynamics simulations, it is of interest to calculate the
forces acting on the atoms in the system. The forces also provide valuable local
information about the PES, and can be used during the optimization (fitting) of the
neural network parameters (see also Sect. 13.4).

The force with respect to some atomic coordinate αi on an atom i ∈ I ,
which is conservative by construction, is equal to the negative gradient of the total
energy with respect to this coordinate. Modern machine learning computational
frameworks often include functionality for automatic differentiation, so that the
gradients can be calculated automatically with a simple function call. For tutorial
purposes, we will derive the actual equations used in the force calculations, which
are needed for applications that do not include automatic differentiation.

The force can be expressed as

Fαi
= − ∂E

∂αi

= −
Nat∑
j=1

∂Ej

∂αi

= −
∑
J

∑
j∈J

N sym(J)∑
n=1

∂Ej

∂GJ
n (j)

· ∂G
J
n (j)

∂αi

, (13.12)

where the outermost sum runs over all chemical elements J in the system, and
GJ

n (j) is the nth symmetry function for the element J evaluated for the atom j ∈ J .
Typically, αi is one of the force components xi , yi , or zi in a Cartesian coordinate
system. The partial derivatives in Eq. 13.12 can be expressed analytically, if contin-
uously differentiable activation functions are used and if symmetry functions such
as those in Eq. 13.8 or 13.9 are used as descriptors for the chemical environment.

264 M. Hellström and J. Behler

This analytical representation allows for a fast and accurate determination of the
forces, for any possible atomic configuration.

The partial derivative
∂Ej

∂GJ
n (j)

is the derivative of the neural network output for

the atomic neural network on the atom j with respect to its nth input feature.
This factor depends on the neural network architecture (number of input features,
number of hidden layers, and the number of nodes per hidden layer), and can be
evaluated in a standard fashion for common choices of activation functions. The
Appendix illustrates how those terms are calculated for a simple high-dimensional
neural network potential when using a logistic activation function. It should be noted
that

∂Ej

∂GJ
n (j)

depends on the value of all symmetry functions for the atom j , since it is

different linear combinations of all of the symmetry functions that enter into the first
hidden layer, where a nonlinear activation function is applied (the same is true also
for the remaining hidden layers). Thus, the force acting on an atom i ∈ I depends

on the environment around the atom j ∈ J , as long as the second factor, ∂GJ
n (j)

∂αi
, is

nonzero, which can happen only when the symmetry function GJ
n (j) describes the

environment of element I around the atom j (i.e., the symmetry function is of the
type GJ :I or GJ :IK) and i is inside the cutoff sphere of j .

The calculation of the gradient ∂GJ
n (j)

∂αi
depends on the definition of the symmetry

functions. For a radial symmetry function GJ :K (with no scaling; cf. Eq. 13.8)
defined as

GJ :K
n (j) =

∑
k∈K
k �=j

e−η(Rjk−Rs)
2 · fc(Rjk), (13.13)

where η and Rs are constants, the product rule of differentiation gives

∂GJ :K
n (j)

∂αi

=
∑
k∈K
k �=j

e−η(Rjk−Rs)
2
(
−2η(Rjk − Rs)fc(Rjk)

∂Rjk

∂αi

+ ∂fc(Rjk)

∂αi

)
.

(13.14)

The above expression requires the evaluation of the two partial derivatives
∂Rjk

∂αi
and

∂fc(Rjk)

∂αi
. The distance Rjk between two atoms j and k is

Rjk =
√
(xk − xj)2 + (yk − yj)2 + (zk − zj)2. (13.15)

If, for example, α ≡ x, then

∂Rjk

∂αk

≡ ∂Rjk

∂xk
= 2(xk − xj)

2
√
(xk − xj)2 + (yk − yj)2 + (zk − zj)2

= xk − xj

Rjk

,

(13.16)

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 265

or, more generally, for any Cartesian component αi ,

∂Rjk

∂αi

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αj − αk

Rjk

i = j

αk − αj

Rjk

i = k

0 i �= j and i �= k,

(13.17)

where the last equality follows from the fact that the distance between two atoms j

and k does not depend on any other atom i.
If the cutoff function fc(Rjk) is defined as in Eq. 13.4, then

∂fc(Rjk)

∂αi

=
⎧⎨
⎩
− 1

2 sin
(

πRjk

Rc

)
π
Rc

∂Rjk

∂αi
Rjk ≤ Rc

0 Rjk > Rc.
(13.18)

Thus, the terms in the sum in Eq. 13.14 all depend on
∂Rjk

∂αi
, which is naturally equal

to zero if i �= j and i �= k (Eq. 13.17). As a consequence, the sum in Eq. 13.14 for
a radial symmetry function GJ :K reduces to just a single term if i �= j and K = I ,
and completely vanishes if i �= j and K �= I :

∂GJ :K
n (j)

∂αi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈K
k �=j

e−η(Rjk−Rs)
2
(
−2η(Rjk − Rs)fc(Rjk)

∂Rjk

∂αi

+ ∂fc(Rjk)

∂αi

)
i = j

e−η(Rij−Rs)
2
(
−2η(Rij − Rs)fc(Rij)

∂Rij

∂αi

+ ∂fc(Rij)

∂αi

)
i �= j and K = I

0 i �= j and K �= I.

(13.19)

For an angular symmetry function defined as (cf. Eq. 13.9)

GJ :KL(j ∈ J) = 21−ζ
∑

k∈K, l∈L
k �=j, l �=j

k �=l

(1+ λ cos θkjl)
ζ e−η(R2

jk+R2
j l+R2

kl)

× fc(Rjk)fc(Rjl)fc(Rkl) (13.20)

266 M. Hellström and J. Behler

with θkjl defined such that j is the central atom (cos θkjl = Rjk ·Rj l

RjkRjl
), the partial

derivative with respect to αi becomes

∂GJ :KL(j)

αi

= 21−ζ
∑
k∈K
l∈L

j �=k,j �=l

e−η(R2
jk+R2

j l+R2
kl)

×
[
ζ(1+ λ cos θkjl)

ζ−1λ
∂ cos θkjl

∂αi

fc(Rjk)fc(Rjl)fc(Rkl)

− (1+ λ cos θkjl)
ζ 2η

(
Rjk

∂Rjk

∂αi

+ Rjl

∂Rjl

αi

+ Rkl

∂Rkl

∂αi

)

× fc(Rjk)fc(Rjl)fc(Rkl)

+ (1+ λ cos θkjl)
ζ ∂fc(Rjk)

∂αi

fc(Rjl)fc(Rkl)

+ (1+ λ cos θkjl)
ζ fc(Rjk)

∂fc(Rjl)

∂αi

fc(Rkl)

+(1+ λ cos θkjl)
ζ fc(Rjk)fc(Rjl)

∂fc(Rkl)

∂αi

]
,

where

∂ cos θkjl
∂αi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αk − αj)(R
2
j l cos θkjl − RjkRjl)+ (αl − αj)(R

2
jk cos θkjl − RjkRjl)

R2
jkR

2
j l

i = j

(αl − αj)Rjk − (αk − αj)Rjl cos θkjl
R2

jkRjl

i = k

(αk − αj)Rjl − (αl − αj)Rjk cos θkjl
R2

j lRjk

i = l

0 otherwise.

(13.21)

An example, that illustrates how the force components are calculated on an atom,
can be found in Appendix.

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 267

13.3.5 Other Types of Symmetry Functions

Designing good descriptors for machine learning potentials in general, and high-
dimensional neural network potentials in particular, is currently a very active
research field. Here, we give just a few recent examples.

Smith et al. [21] introduced a variation of the angular symmetry function in
Eq. 13.9 (here given without any scaling function) as

GI :JK(i ∈ I ; η, ζ, Rs, θs) = 21−ζ
∑

j∈J, k∈K
j �=i, k �=i

k �=j

(1+ cos(θjik − θs))
ζ

× exp

[
−η

(
Rij + Rik

2
− Rs

)2
]
· fc(Rij) · fc(Rik),

(13.22)

where the parameter θs provides an alternative control over the angular dependence
of the symmetry function to the parameters λ and ζ in Eq. 13.9, and the parameter
Rs is akin to the Rs-parameter from the radial symmetry functions in Eq. 13.8.

Gastegger et al. [22] introduced weighted atom-centered symmetry functions,
wASCFs, where the element-dependent environment is captured not through a set
of symmetry functions for every possible combination of elements, but instead by
element-dependent prefactors. An example of a radial symmetry function would be

GI (i ∈ I ; η,Rs) =
∑
J

∑
j∈J
j �=i

g(J)e−η(Rij−Rs)
2
fc(Rij), (13.23)

where g(J) is a function depending on the element J , for example, g(J) = ZJ ,
where ZJ is the atomic number. This symmetry function is thus calculated for
all elements J , unlike the radial symmetry function GI :J in Eq. 13.8, that was
calculated only for a specific element J . This type of approach could potentially
decrease the number of needed symmetry functions for systems containing many
elements. Another approach in a similar spirit has also been published by Artrith,
Urban, and Ceder [23].

13.4 Construction of a High-Dimensional Neural Network
Potential

A high-dimensional neural network potential is typically iteratively constructed
using the following steps:

1. A reference electronic structure method (e.g., the employed DFT functional) is
decided upon.

268 M. Hellström and J. Behler

2. Initial training and test sets (structures calculated with the reference electronic
structure method) are gathered.

3. Sets of descriptors (e.g., a set of symmetry functions) for each element are
chosen.

4. A fitting algorithm and hyperparameters for the fitting algorithm (e.g., learning
rate) are decided.

5. The neural network weights are fitted.
6. The quality of the fitted parameters is evaluated and structures which are not well

described by the fitted potential are identified.
7. The training and test sets are augmented with more structures.
8. In case the potential is not yet satisfying, the process repeats from Step 3 using

the new extended training and test sets.

The reference electronic structure method must describe the system(s) for which the
potential is constructed with an acceptable accuracy. At the same time, the method
should not be too costly, since typically many thousands of reference calculations
are needed for constructing a large enough training set.

The initial training set can be obtained, by, for example, extracting snapshots
from ab initio molecular dynamics simulations for the system under study. Another
method is normal mode sampling [21], in which the atoms in optimized structures
are displaced along the vibrational normal modes. A third possibility is to simply
randomly displace the atoms in a structure by small amounts.

Some of the considerations that go into choosing a suitable set of symmetry
functions were described in Sect. 13.3.3. Fortunately, it is often possible to reuse
a set of symmetry functions for one system and apply it also to other systems
(and elements). Moreover, automated unsupervised selection schemes, such as CUR
decomposition, can be applied on a large library of symmetry functions, selecting
the most suitable subset of symmetry functions based only on structural information,
without the need for evaluating the neural network potential [20].

Many algorithms exist for fitting neural network weights. The algorithms work
by minimizing a so-called cost function � (also called loss function), which is
calculated by comparing the neural network output to the reference data given in
the training set. The cost function is typically calculated as

� = MSE(E)+ βMSE(F), (13.24)

where MSE denotes the mean squared error and β is a coefficient for weighting
the relative importance of errors, and accounting for the difference in units, in the
energies and forces. The MSEs can also themselves be weighted, so that some
energies or forces in the training set are assigned greater importance than others.
Some of the algorithms for optimizing the neural network weights are, for example,
gradient descent (backpropagation), the Levenberg–Marquardt algorithm [24, 25],
and the global extended Kalman filter [26]. The description of those algorithms lies
outside the scope of the current chapter.

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 269

Often, the quality of a set of NN weights is characterized by the root mean
squared error, RMSE, for the energies E and forces F . RMSE(E) is often reported
as a value normalized per atom to achieve a size-consistent error measure, because
structures containing many atoms typically have larger absolute errors in the energy
as compared to structures containing few atoms. In typical applications of NNPs,
RMSE(E) is of the order of 1–2 meV per atom, and RMSE(F) of the order of about
0.1 eV/Å.

The RMSEs provide a single number as measure of the accuracy of the NNP.
Although this is very useful, a single number can be quite deceiving, if the training
set contains a great variety of structures, or if each individual structure contains
atoms in different environments (e.g., bulk-like atoms and interfacial atoms). During
the construction of the NNP, great care must be taken to ensure that the NNP does, in
fact, describe all the pertinent parts of a system with the desired accuracy. This can
be accomplished, for example, by visualizing the distribution of errors associated
with different structures.

It is very likely that the initial training set used in the parameterization of the NNP
does not contain enough information to fully map out the potential energy surface.
Thus, once a NNP has been trained, it can be used to locate regions of the PES
that are not well described. There are several ways of accomplishing this, in which
the simplest is to simply apply the NNP to the kind of simulation that is targeted.
If the resulting structures obtained from this simulation are sufficiently different
from those in the training set, for example, if the value of a symmetry function on
an atom lies outside the range of values of that symmetry function in the training
set, then the structure is clearly different from those in the training set (the NNP is
extrapolating). Structures obtained in that fashion can then be added to the training
set.

Even if the NNP does not extrapolate, there may not be enough training data
for some types of structures. Such structures can be found by fitting multiple NNPs
(for example, using different random weight initializations) [10]. If different NNPs
predict sufficiently different energies and forces on a single structure, then that type
of structure is underrepresented in the training set and can be used to further expand
the training set.

Finally, another way of gathering structures for the training set is to employ
biased MD simulations, like metadynamics, in order to drive the system towards
exploring new regions of the potential energy surface [27].

13.5 Long-Range Interactions

The use of a cutoff function in the atomic environment descriptors (Eq. 13.4) pre-
vents an atom from interacting with atoms farther away than the cutoff radius. Some
interactions decay only slowly with increasing distance, most notably dispersion and
electrostatic interactions.

Dispersion interactions can be included in two ways: if the reference electronic
structure method itself describes dispersion accurately, then the symmetry functions

270 M. Hellström and J. Behler

in the high-dimensional neural network potential only need a large enough distance
cutoff. Alternatively, dispersion interactions can be added on-the-fly with some
empirical dispersion correction, e.g., Grimme’s D3 dispersion correction [28].

If some charge assignment scheme is used to calculate atomic charges, electro-
static interactions can be evaluated by an application of Coulomb’s law or Ewald
summation, and can then simply added to the total energy expression. In such cases,
it is important to first subtract the long-range contribution to the energies and forces
in the training set before the fitting of the NNP takes place, in order to avoid double-
counting of the long-range contributions.

One type of charge assignment scheme that has been used in conjunction with
high-dimensional NNPs is to use a second, different NNP, to predict atomic charges
instead of atomic energies [11, 12]. The training set must then contain some
approximation for the atomic charges, for example, the calculated Hirshfeld or
Bader charges from the reference electronic structure calculations.

When including long-range interactions, the total energy becomes the sum of the
short-range energy Eshort (as described in Sect. 13.3.1), and the long-range energy
Elong:

E = Eshort + Elong. (13.25)

The force with respect to some atomic coordinate α becomes

Fαi
= F short

αi
+ F

long
αi

= −∂Eshort

∂αi

− ∂Elong

∂αi

, (13.26)

where F short
αi

is calculated as in Eq. 13.12. For a non-periodic system, F long
αi

can be
calculated as

F
long
αi

= −1

2

∂

∂αi

Nat∑
j=1

Nat∑
k=1
k �=j

qj qk

Rjk

= −1

2

Nat∑
j=1

Nat∑
k=1
j �=i

1

R2
jk

[
∂qj

∂αi

qkRjk + qj
∂qk

∂αi

Rjk − qjqk
∂Rjk

∂αi

]
, (13.27)

where qj is the charge on atom j . Note, that this expression contains partial
derivatives of the charge on an atom j with respect to the position of the atom
i, which is important since the atomic charges are environment-dependent. If a
NNP with symmetry functions is used to determine the atomic charges, i.e., qj =
χJ
q (GJ (j ∈ J)), then it can be shown that

F
long
αi

=
∑
J

∑
j∈J

Nat∑
k=1
k �=j

qk

Rjk

·
⎡
⎣1

2

qj

Rjk

∂Rjk

∂αi

−
N

sym
q (J)∑
n=1

∂qj

∂GJ
n (j)

∂GJ
n (j)

∂αi

⎤
⎦ , (13.28)

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 271

where N
sym
q (J) refers to the number of symmetry functions for element J in the

atomic neural network χJ
q used to for the atomic charge determination.

For a periodic system, where the electrostatic energy is evaluated using, for
example, Ewald summation, the expression for F

long
α becomes more complicated,

although it can be derived in a similar fashion. Recently, also alternative approaches
have been proposed, like the derivation of charges based on molecular dipole
moments [13, 29].

13.6 Applications of High-Dimensional Neural Network
Potentials

High-dimensional NNPs have been developed and applied to many different
molecules and materials (for reviews see [1, 9]). Some examples include silicon
[30], carbon [31], sodium [32], zinc oxide [11], germanium telluride [33], copper
[34], Cu clusters on ZnO [35], Cu-Au nanoalloys [36], water–Cu interfaces [18],
titanium dioxide [37], gold [38], copper-palladium-silver alloys [39], N2 on Ru
[19], water on ZnO [40, 41], aqueous NaOH solutions [17, 42], protonated water
clusters [43, 44], and organic molecules [13, 21, 29, 45].

The above examples demonstrate the versatility of high-dimensional neural
network potentials. In the next few years, many more applications of this method
are likely to emerge, not least because it, as well as other machine learning potential
methods, are under highly active development in the academic community.

13.7 Summary

High-dimensional neural network potentials are a type of machine learning potential
and can be fitted to reproduce arbitrary potential energy surfaces from electronic
structure calculations. In a high-dimensional neural network potential, the total
energy is expressed as the sum of atomic contributions, which are evaluated
by means of neural networks taking a representation of the atomic environment
as input. Symmetry functions are examples of such representations, which are
rotationally, translationally, and permutationally invariant. It is also possible to
combine high-dimensional neural network potentials with methods for evaluating
long-range contributions to the total energy, for example, electrostatic interactions.

A successful parameterization requires a large and diverse training set. The
resulting errors from the fitting procedures can usually be made very small
(about 1 meV per atom), making high-dimensional neural network potentials a
very promising method for applications in materials modelling and computational
chemistry.

272 M. Hellström and J. Behler

Appendix: Calculating the Force Components on an Atom

The following example illustrates how the force components on the atom O1 in a
three-atom system consisting of two O atoms, O1 and O2, and one H atom, H3, are
calculated. The NN for O has the architecture 2-2-1 (one hidden layer containing
two nodes; two input features described by two radial symmetry functions GO:H
and GO:O). Similarly, the NN for H also has the architecture 2-2-1 with two radial
symmetry functions GH:H and GH:O.

GO(O1) =
(
GO:H(O1)
GO:O(O1)

)
, GO(O2) =

(
GO:H(O2)
GO:O(O2)

)
, GH(H3) =

(
GH:H(H3)
GH:O(H3)

)

None of the symmetry functions are scaled, and Rs = 0 Å. The activation function
in the hidden layer for both NNs is the logistic function, f (x) = 1

1+exp(−x)
, for

which the derivative can easily be expressed in terms of the function value: f ′(x) =
f (x)(1− f (x)).

The total energy E is obtained as

E = EO1 + EO2 + EH3

and the force along the α-component of O1 (with α often being one of the Cartesian
x, y, or z components) is calculated as

− ∂E

∂αO1
= −∂EO1

∂αO1
− ∂EO2

∂αO1
− ∂EH3

∂αO1

= − ∂EO1

∂GO:H(O1)

∂GO:H(O1)

∂αO1
− ∂EO1

∂GO:O(O1)

∂GO:O(O1)

∂αO1

− ∂EO2

∂GO:H(O2)

∂GO:H(O2)

∂αO1
− ∂EO2

∂GO:O(O2)

∂GO:O(O2)

∂αO1

− ∂EH3

∂GH:H(H3)

∂GH:H(H3)

∂αO1
− ∂EH3

∂GH:O(H3)

∂GH:O(H3)

∂αO1

The partial derivatives of the atomic energies with respect to the NN input features
depend on the NN architecture (number of input features, number of hidden layers,
number of nodes per hidden layer) as well as the activation function employed in
the hidden units. Here, y[1]m denotes the mth node in the first (and only) hidden layer.
The NN weights are stored in matrices

A[1],O =
(
a
[1],O
11 a

[1],O
12

a
[1],O
21 a

[1],O
22

)
, b[1],O =

(
b
[1],O
1

b
[1],O
2

)
, A[2],O =

(
a
[2],O
11

a
[2],O
21

)
, b[2],O

with a similar setup for the weights in the hydrogen NN.

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 273

y
[1],O1
1 = f

(
a
[1],O
11 GO:H(O1)+ a

[1],O
21 GO:O(O1)+ b

[1],O
1

)

y
[1],O1
2 = f

(
a
[1],O
12 GO:H(O1)+ a

[1],O
22 GO:O(O1)+ b

[1],O
2

)

EO1 = a
[2],O
11 y

[1],O1
1 + a

[2],O
21 y

[1],O1
2 + b[2],O

∂EO1

∂GO:H(O1)
= a

[2],O
11

∂y
[1],O1
1

∂GO:H(O1)
+ a

[2],O
21

∂y
[1],O1
2

∂GO:H(O1)

= a
[2],O
11 a

[1],O
11 y

[1],O1
1

(
1− y

[1],O1
1

)
+ a

[2],O
21 a

[1],O
12 y

[1],O1
2

(
1− y

[1],O1
2

)

∂EO1

∂GO:O(O1)
= a

[2],O
11 a

[1],O
21 y

[1],O1
1

(
1− y

[1],O1
1

)
+ a

[2],O
21 a

[1],O
22 y

[1],O1
2

(
1− y

[1],O1
2

)

y
[1],O2
1 = f

(
a
[1],O
11 GO:H(O2)+ a

[1],O
21 GO:O(O2)+ b

[1],O
1

)

y
[1],O2
2 = f

(
a
[1],O
12 GO:H(O2)+ a

[1],O
22 GO:O(O2)+ b

[1],O
2

)

EO2 = a
[2],O
11 y

[1],O2
1 + a

[2],O
21 y

[1],O2
2 + b[2],O

∂EO2

∂GO:H(O2)
= a

[2],O
11 a

[1],O
11 y

[1],O2
1

(
1− y

[1],O2
1

)
+ a

[2],O
21 a

[1],O
12 y

[1],O2
2

(
1− y

[1],O2
2

)

∂EO2

∂GO:O(O2)
= a

[2],O
11 a

[1],O
21 y

[1],O2
1

(
1− y

[1],O2
1

)
+ a

[2],O
21 a

[1],O
22 y

[1],O2
2

(
1− y

[1],O2
2

)

y
[1],H3
1 = f

(
a
[1],H
11 GH:H(H3)+ a

[1],H
21 GH:O(H3)+ b

[1],H
1

)

y
[1],H3
2 = f

(
a
[1],H
12 GH:H(H3)+ a

[1],H
22 GH:O(H3)+ b

[1],H
2

)

EH3 = a
[2],H
11 y

[1],H3
1 + a

[2],H
21 y

[1],H3
2 + b[2],H

∂EH3

∂GH:H(H3)
= a

[2],H
11 a

[1],H
11 y

[1],H3
1

(
1− y

[1],H3
1

)
+ a

[2],H
21 a

[1],H
12 y

[1],H3
2

(
1− y

[1],H3
2

)

∂EH3

∂GH:O(H3)
= a

[2],H
11 a

[1],H
21 y

[1],H3
1

(
1− y

[1],H3
1

)
+ a

[2],H
21 a

[1],H
22 y

[1],H3
2

(
1− y

[1],H3
2

)

The force component along αO1 thus depends on, for example, ∂EO2
∂GO:O(O2)

, which

in turn depends on y
[1],O2
1 and y

[1],O2
2 , which depend on GO:H(O2) and GO:O(O2).

Thus all symmetry functions on the atom O2, and consequently the entire environ-
ment within the cutoff sphere around O2, contribute to the force acting on the atom
O1.

274 M. Hellström and J. Behler

The partial derivatives of the radial symmetry functions with respect to the
coordinate αO1 become

∂GO:H(O1)

∂αO1
= e−ηR2

O1H3

(
−2ηRO1H3fc(RO1H3)

∂RO1H3

∂αO1
+ ∂fc(RO1H3)

∂αO1

)

∂GO:O(O1)

∂αO1
= e−ηR2

O1O2

(
−2ηRO1O2fc(RO1O2)

∂RO1O2

∂αO1
+ ∂fc(RO1O2)

∂αO1

)

∂GO:H(O2)

∂αO1
= e−ηR2

O2H3

(
−2ηRO2H3fc(RO2H3)

∂RO2H3

∂αO1
+ ∂fc(RO2H3)

∂αO1

)

= 0

∂GO:O(O2)

∂αO1
= e−ηR2

O1O2

(
−2ηRO1O2fc(RO1O2)

∂RO1O2

∂αO1
+ ∂fc(RO1O2)

∂αO1

)

∂GH:H(H3)

∂αO1
= 0

∂GH:O(H3)

∂αO1
= e−ηR2

O1H3

(
−2ηRO1H3fc(RO1H3)

∂RO1H3

∂αO1
+ ∂fc(RO1H3)

∂αO1

)

+ e−ηR2
O2H3

(
−2ηRO2H3fc(RO2H3)

∂RO2H3

∂αO1
+ ∂fc(RO2H3)

∂αO1

)

= e−ηR2
O1H3

(
−2ηRO1H3fc(RO1H3)

∂RO1H3

∂αO1
+ ∂fc(RO1H3)

∂αO1

)
,

where η is the η-value of the pertinent symmetry function. All the above partial
derivatives are calculated as sums over neighbors, but in this example, there are
only 1 H and 1 O neighbor around each O atom. There are two O neighbors around

H3, but one of the terms in the sum defining ∂GH:O(H3)
∂αO1

becomes 0, since the position
of O1 does not affect the distance between O2 and H3.

References

1. J. Behler, Angew. Chem. Int. Ed. 56(42), 12828 (2017)
2. J. Behler, J. Chem. Phys. 145(17), 170901 (2016)
3. J.E. Jones, Proc. R. Soc. Lond. A 106, 463 (1924)
4. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)
5. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301

(2012)
6. A.V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016)
7. R.M. Balabin, E.I. Lomakina, Phys. Chem. Chem. Phys. 13, 11710 (2011)
8. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)
9. J. Behler, J. Phys. Condens. Matter 26, 183001 (2014)

10. J. Behler, Int. J. Quantum Chem. 115(16), 1032 (2015). https://doi.org/10.1002/qua.24890
11. N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B 83, 153101 (2011)

https://doi.org/10.1002/qua.24890

13 High-Dimensional Neural Network Potentials for Atomistic Simulations 275

12. T. Morawietz, V. Sharma, J. Behler, J. Chem. Phys. 136, 064103 (2012)
13. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017)
14. J. Behler, J. Chem. Phys. 134, 074106 (2011)
15. M. Hellström, J. Behler, in Handbook of Materials Modeling: Methods: Theory and Modeling,

ed. by W. Andreoni, S. Yip (Springer International Publishing, Cham, 2018), pp. 1–20. https://
doi.org/10.1007/978-3-319-42913-7_56-1

16. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. U.S.A. 113(30), 8368
(2016). https://doi.org/10.1073/pnas.1602375113

17. M. Hellström, J. Behler, J. Phys. Chem. Lett. 7, 3302 (2016). https://doi.org/10.1021/acs.
jpclett.6b01448

18. S.K. Natarajan, J. Behler, Phys. Chem. Chem. Phys. 18, 28704 (2016)
19. K. Shakouri, J. Behler, J. Meyer, G.J. Kroes, J. Phys. Chem. Lett. 8, 2131 (2017)
20. G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, M. Ceriotti, J. Chem. Phys. 148(24),

241730 (2018). https://doi.org/10.1063/1.5024611
21. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017). https://doi.org/10.1039/

C6SC05720A
22. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys.

148(24), 241709 (2018). https://doi.org/10.1063/1.5019667
23. N. Artrith, A. Urban, G. Ceder, Phys. Rev. B 96, 014112 (2017)
24. K. Levenberg, Q. Appl. Math. 2, 164 (1944)
25. D.W. Marquardt, SIAM J. Appl. Math. 11, 431 (1963)
26. S. Haykin, Kalman Filtering and Neural Networks (Wiley, London, 2001)
27. J.E. Herr, K. Yao, R. McIntyre, D.W. Toth, J. Parkhill, J. Chem. Phys. 148(24), 241710 (2018).

https://doi.org/10.1063/1.5020067
28. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010). https://

doi.org/10.1063/1.3382344
29. K. Yao, J.E. Herr, D. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9, 2261 (2018). https://doi.

org/10.1039/C7SC04934J
30. J. Behler, R. Martoňák, D. Donadio, M. Parrinello, Phys. Rev. Lett. 100, 185501 (2008)
31. R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, M. Parrinello, Nat. Mater. 10, 693 (2011)
32. H. Eshet, R.Z. Khaliullin, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. Lett. 108, 115701

(2012)
33. G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85, 174103 (2012)
34. N. Artrith, J. Behler, Phys. Rev. B 85, 045439 (2012)
35. N. Artrith, B. Hiller, J. Behler, Phys. Status Solidi B 250, 1191 (2013)
36. N. Artrith, A.M. Kolpak, Comp. Mater. Sci. 110, 20 (2015)
37. N. Artrith, A. Urban, Comp. Mater. Sci. 114, 135 (2016)
38. J.R. Boes, M.C. Groenenboom, J.A. Keith, J.R. Kitchin, Int. J. Quantum Chem. 116, 979

(2016)
39. S. Hajinazar, J. Shao, A.N. Kolmogorov, Phys. Rev. B 95, 014114 (2017)
40. V. Quaranta, M. Hellström, J. Behler, J. Phys. Chem. Lett. 8, 1476 (2017)
41. V. Quaranta, M. Hellström, J. Behler, J. Kullgren, P.D. Mitev, K. Hermansson, J. Chem. Phys.

148(24), 241720 (2018). https://doi.org/10.1063/1.5012980
42. M. Hellström, J. Behler, J. Phys. Chem. B 121(16), 4184 (2017). https://doi.org/10.1021/acs.

jpcb.7b01490
43. S. Kondati Natarajan, T. Morawietz, J. Behler, Phys. Chem. Chem. Phys. 17, 8356 (2015).

https://doi.org/10.1039/C4CP04751F
44. C. Schran, F. Uhl, J. Behler, D. Marx, J. Chem. Phys. 148(10), 102310 (2018). https://doi.org/

10.1063/1.4996819
45. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, arXiv:1806.10349 (2018)

https://doi.org/10.1007/978-3-319-42913-7_56-1
https://doi.org/10.1007/978-3-319-42913-7_56-1
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1021/acs.jpclett.6b01448
https://doi.org/10.1021/acs.jpclett.6b01448
https://doi.org/10.1063/1.5024611
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5020067
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1063/1.5012980
https://doi.org/10.1021/acs.jpcb.7b01490
https://doi.org/10.1021/acs.jpcb.7b01490
https://doi.org/10.1039/C4CP04751F
https://doi.org/10.1063/1.4996819
https://doi.org/10.1063/1.4996819

14Construction of Machine Learned
Force Fields with Quantum Chemical
Accuracy: Applications and Chemical Insights

Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky,
Klaus-Robert Müller, and Alexandre Tkatchenko

Abstract

Highly accurate force fields are a mandatory requirement to generate predictive
simulations. Here we present the path for the construction of machine learned
molecular force fields by discussing the hierarchical pathway from generating
the dataset of reference calculations to the construction of the machine learning
model, and the validation of the physics generated by the model. We will use
the symmetrized gradient-domain machine learning (sGDML) framework due
to its ability to reconstruct complex high-dimensional potential energy surfaces
(PES) with high precision even when using just a few hundreds of molecular
conformations for training. The data efficiency of the sGDML model allows
using reference atomic forces computed with high-level wave-function-based
approaches, such as the gold standard coupled-cluster method with single,

H. E. Sauceda (�)
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
e-mail: sauceda@tu-berlin.de

S. Chmiela
Machine Learning Group, Technische Universität Berlin, Berlin, Germany

I. Poltavsky · A. Tkatchenko
Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg,
Luxembourg
e-mail: alexandre.tkatchenko@uni.lu

K.-R. Müller
Machine Learning Group, Technische Universität Berlin, Berlin, Germany

Max Planck Institute for Informatics, Stuhlsatzenhausweg, Saarbrücken, Germany

Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu,
Seoul, Korea
e-mail: klaus-robert.mueller@tu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_14

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_14&domain=pdf
mailto:sauceda@tu-berlin.de
mailto:alexandre.tkatchenko@uni.lu
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_14

278 H. E. Sauceda et al.

double, and perturbative triple excitations (CCSD(T)). We demonstrate that
the flexible nature of the sGDML framework captures local and non-local
electronic interactions (e.g., H-bonding, lone pairs, steric repulsion, changes in
hybridization states (e.g., sp2 � sp3), n→ π∗ interactions, and proton transfer)
without imposing any restriction on the nature of interatomic potentials. The
analysis of sGDML models trained for different molecular structures at different
levels of theory (e.g., density functional theory and CCSD(T)) provides empirical
evidence that a higher level of theory generates a smoother PES. Additionally,
a careful analysis of molecular dynamics simulations yields new qualitative
insights into dynamics and vibrational spectroscopy of small molecules close
to spectroscopic accuracy.

14.1 Introduction

In silico studies of molecular systems and materials constitute one of the most
important tools in physics, biology, materials science, and chemistry due to their
great contributions in understanding systems ranging from small molecules (e.g.,
few atoms) up to large proteins and amorphous materials, guiding the exploration
and the discovery of new materials and drugs. This requires the construction
of physical models that faithfully describe interatomic interactions, and quantum
mechanics (QM) is the pertinent methodology to engage such monumental task.
Nevertheless, using the full machinery of QM (e.g., Dirac equation [1] and
Quantum Electrodynamics [2]) would lead not far from simulations of diatomic
molecules. To overcome this limitation, for most of the problems of interest, one can
approximately describe a molecular system by the more tractable non-relativistic
time-independent Schrödinger equation.

Additionally, one often decouples nuclear and electronic degrees of freedom
by employing the Born–Oppenheimer (BO) approximation. This makes predictive
simulations of molecular properties and thermodynamic functions possible by
representing a N -atoms system by the global potential energy surface (PES)
VBO(x), where x = {r1, r2, . . . , rN } and ri the ith nuclear Cartesian coordi-
nates. VBO(x) is defined as the sum of the total electrostatic nuclear repulsion
energy

∑
i,j>i ZiZj r

−1
ij and the electronic energy Eelec solution of the electronic

Schrödinger equation Helec� = Eelec� for a given set of nuclear coordinates x.
Therefore, VBO contains all the information necessary to describe nuclear dynamics
of the molecular system since all electronic quantum interactions are encoded in
it via Eelec within the BO approximation. A systematic partitioning of this energy
could potentially help to gain further insights into the physics and chemistry of
the system, nevertheless, in practice it is not known how to exactly expand the
VBO in different energetic contributions such as hydrogen bonding, electrostatics,
dispersion interactions, or other electronic effects. Furthermore, any attempt in
separating the PES in terms of known analytic forms or empirically derived
interactions will always result in biasing the final model which limits its possible
accuracy and may introduce non-physical artifacts. Therefore, the intricate form

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 279

of VBO resulting from an interplay between different quantum phenomena when
solving the Schrödinger equation should be preserved.

In order to extract the dynamical properties and thermodynamics of molecular
systems, the VBO has to be sampled according to a thermodynamic ensemble (e.g.,
NVE, NVT, μVT, etc.) depending on the property being computed. The two most
popular techniques are Monte Carlo sampling and molecular dynamics simulations
(MD). In particular, MD constitutes the fundamental pillar of contemporary science
by allowing remarkable advances and offering unprecedented insights into complex
chemical and biological systems. However, sampling the VBO using this technique in
any of its flavors (e.g., Langevin or Verlet-velocity propagator) to obtain converged
mechanical and thermodynamical properties often requires millions integration
steps, meaning that the Schrödinger equation Helec� = Eelec� has to be solved and
−F = 〈�∗|∂H/∂x|�〉 evaluated a similar amount of times [3]. Such direct ab initio
molecular dynamics (AIMD) simulations, where the quantum-mechanical energies
and forces are computed on-the-fly for molecular configurations at every time step,
are known to generate highly accurate but computationally very costly predictions.
In practice, most of the works in AIMD use density functional theory (DFT) to
approximate the solution of the Schrödinger equation for a system of electrons
and nuclei. Unfortunately, in some cases different exchange-correlation functionals
yield contrasting results for molecular properties [4] and it is not clear how
to systematically improve their performance. Alternatively, wave-function based
methods that account for electron correlation (e.g., post-Hartree–Fock methods)
offer a systematically improvable framework but they are rarely used in AIMD
simulations due to the steep increase in the required computational resources. For
example, a nanosecond-long AIMD simulation for a single ethanol molecule using
CCSD(T) method would demand approximately a million CPU years on modern
hardware.

It is clear that AIMD is not an affordable route to pursue predictive simulations
for most of the systems of interest. An alternative is to roughly approximate the
VBO by creating handcrafted interatomic and physically inspired potentials with
parameters fitted to experimental data or quantum-mechanical calculations. This
has been a common practice since the early works on molecular dynamics [5–
8]. The complexity of creating reliable interatomic potentials using prior physical
knowledge led to the development of dedicated force fields (FFs) for different
chemical systems, a successful approach as highlighted by the 2013 Nobel Prize in
Chemistry. Examples are the TIPnP FFs for water [9,10], Tersoff potential for cova-
lent materials [11], polarizable FFs [12], tight-binding potentials for semiconductors
and metals [13]. This also includes a plethora of biomolecular FFs such as AMBER,
MMFF, CHARMM, and GROMOS; FFs that often give reliable results for protein
folding under ambient conditions [14–17]. The wide variety of available interatomic
potentials highlights the fact that handcrafting a FF capable of describing different
types of interactions (metallic bonding, covalent chemistry, hydrogen bonding, non-
covalent interactions, etc.) in a unified and seamless fashion is a complex challenge.
Furthermore, it is widely recognized that even dedicated molecular mechanic FFs
cannot generate quantitative predictions from MD simulations due to their lack

280 H. E. Sauceda et al.

of accuracy. These increasingly pressing issues hinder truly predictive modeling,
but at the same time encourage the development of more accurate and efficient
methodologies.

One of the possible pathways is the employment of machine learning (ML)
methods for the reconstruction of the PES function. Machine learned force fields
(ML-FFs) exploit the correlation encoded in molecular datasets generated from
AIMD trajectories (or any other sampling methodology) to reconstruct the underly-
ing PES without imposing any particular explicit analytic form for the interatomic
interactions. Furthermore, machine learning is based on rigorous statistical learning
theory [18, 19], providing a powerful and general framework for FF learning.
ML approaches can reconstruct complex high-dimensional objects with arbitrary
precision given sufficient amount of data samples (e.g., molecular energies and
atomic forces) for training. The accurate learning of VBO is not a trivial task and
it has driven a vast amount of work such as data sampling [20–24], molecular
representations [25–41], neural networks architecture development [42–50], infer-
ence methods [51–66], and explanation methods [67–70]. A crucial contribution
to the further development and understanding of the field is the releasing of ready-
to-use software as well as molecular datasets which guaranties the reproducibility
of published results [68, 71–73]. In terms of the performance, the computational
cost of evaluating ML-FFs lies in between molecular mechanic FFs and ab initio
calculations. In particular, the sGDML framework [64, 65] is 5–10 orders of
magnitude faster than ab initio calculations and 2–3 orders of magnitude slower
than molecular mechanic FFs.1 A precise number depends on the molecular system
under study. As a reference, the sGDML model can be up to 107 and 109 times
faster than CCSD(T)/cc-pVTZ level of theory for a single-point calculation of
malondialdehyde and aspirin, respectively [71], preserving the same accuracy. This
allows the use of these ML-FFs for performing long-time MD simulations and
exploring different molecular properties on the CCSD(T)-level of accuracy.

The PES reconstruction problem can be approached from two different but in
principle equivalent ways,2 by learning directly the scalar function VBO or by first
reconstructing the gradient field associated to the PES, ∇VBO, and then recover
the PES by analytic integration. These two types of ML models are called energy
f̂E and force f̂F models, respectively.3 The two most established methodologies to
create such models are Neural Networks (NN) [42–45, 47, 48, 74–76] and kernel
methods [20, 21, 23, 28, 29, 33, 36, 51, 53, 63–65]. An energy model, f̂E , can be
based on NNs or kernel methods and trained on energies or using a combination

1It is important to notice that while the scaling of the performance in ML-FFs depends only on the
number of atoms, while in the case of ab initio quantum chemical calculations their performance
depends on the level of theory and on the size of the basis used to approximate the wave-function
and the number of electrons.
2To the best knowledge of the authors up to this day these are the only two ways have been used
in the PES reconstruction problem.
3The symbol f̂ will be reserved to represent the predictor function of the machine learning model.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 281

of energies and forces [21, 28, 36, 42, 45–48, 51, 53]. The associated FF to f̂E

is generated by analytic differentiation, f̂F←E = −∇f̂E , which introduces some
disadvantages to be discussed further in the text. In the case of force models f̂F,
they could also be constructed using NNs but the problem is that to recover the
underlying PES requires the analytic integration of the vector field predictor. This
immensely limits their applicability since without an appropriate integration scheme
they will not be able to recover the PES. A more common way to generate force
models is using kernel methods [20,33,63,64] usually trained directly in the gradient
domain. Contrary to the case of NNs based force models, kernels methods offer
a much more flexible framework to conveniently define its analytic form, this is
done by utilizing the robust framework of Gaussian processes which allows the
incorporation of prior physical knowledge. Therefore, recovering the underlying
PES f̂E←F can be easily done by imposing that the mathematical formulation of
f̂F to be analytically integrable and consequently it will, by definition, encode the
fundamental physical law of energy conservation [64].

In the limit of an infinite amount of data, energy and force models should
converge to the same prediction error. Nevertheless, when dealing with finite or
restricted amounts of data these two models do present very different performances.
Some of the fundamental advantages of using force models instead of energy
models are: (1) Learning in the gradient domain yield smoother PESs, (2) training
exclusively on forces generates more accurate models than training using energies or
a combination of both [47, 66, 71], (3) obtaining energies by analytical integration
of force models tends give better behaved predictions as a result of the integral
operator, this is in contrast with forces generated out of energy models by the
gradient operator [66], and (4) force models are more data efficient [64, 65]. It
is important to highlight that the data efficiency of force models arises not only
because the greater amount of information in each force sample (3N components,
where N is the number of atoms), but also because each entry of the force vector
is orthogonal to the rest,4 therefore providing a complete linearized description
of its immediate local neighborhood [77]. Continuing with the discussion of
data efficiency, there is only a handful of models that fulfill this requirement.
Even though formally both NN and kernel-based methods can achieve any desired
accuracy, the realm of scarce data belongs to kernel models.5 This is the case, for
example, when the system under study requires to be described by a highly accurate
reference method and it is only possible to compute a couple of hundreds of data
points, as would be the case of some of the amino acids or large molecules. Such
better reconstruction efficiency of kernel methods is due to their greater use of prior
information, offering a unique and well-defined solution [64].

4The components of the force vector are orthogonal in R3N , space where the function is defined.
5The reason of such difference between NNs and kernel models is that, while kernels rely on
feature engineering (i.e., handcrafted descriptors), NNs represent an end-to-end formalism to
describe the data. This means that NNs require more data to infer the representation that optimally
describes the system.

282 H. E. Sauceda et al.

Here, we will focus on the symmetric Gradient Domain Machine Learning
(sGDML) FF [65]. The sGDML is a kernel-based ML model which directly learns
forces since it is trained explicitly in the gradient domain of VBO. The principal
feature of this model is that it was mathematically conceived as an analytically
integrable curl-free framework. The energy conservation law is explicitly encoded
into the model. Therefore, once the sGDML-FF f̂F is trained, the potential energy
function f̂E←F is also available. It is worth highlighting that only forces are used
for training given that there is empirical evidence that a loss function that combines
energies and forces causes a degradation in the force prediction [47,71,78]. The sec-
ond fundamental property of the model is that the complexity of the reconstruction
process is reduced through the explicit incorporation of molecular symmetries (i.e.,
rigid and fluxional). These permutational symmetries are automatically extracted
from the reference dataset via a multi-partite procedure [79]. Additionally, in this
framework all atomic interactions are modeled globally, meaning that the learning
problem is solved without any inherently non-unique atom-wise, pairwise, or any
other many-body partitioning. Thus, the approach preserves the many-body nature
of the quantum problem. These central properties contribute to the ability of the
sGDML model to learn complex PES for molecules of intermediate size from
limited amounts of reference calculations, an unachievable task for non-dedicated
molecular FFs or even other ML methodologies. In particular, the sGDML model is
able to reconstruct CCSD(T)-quality FFs from a limited amount (few hundreds) of
reference molecular configurations [65].

In this chapter, we present an overview of the sGDML model from the construc-
tion of reliable datasets to the training and validation of the models to performing
analysis of some relevant quantum effects captured by the model. The structure of
the chapter is the following. In Sect. 14.2 we present the problem of imbalanced
database and the idea behind the representative sampling. In Sect. 14.3 we introduce
the idea of physically inspired ML-FFs and present the sGDML model as well as
a comparative analysis of the differences between energy and force models. The
evaluation of the performance of the model is presented in Sect. 14.4. Section 14.5
is dedicated to the analysis of smoothing of the PES by increasing the level of theory.
In Sect. 14.6 the different types of interactions captured learned by the sGDML are
highlighted. Finally, Sect. 14.7 we summarize and present the conclusions.

14.2 Data Generation and Sampling of the PES

The accurate reconstruction process of a high-dimensional surface via ML methods
heavily relies on the available reference data. In the case of PES learning, a well-
known approach is to construct the database by sampling the PES using molecular
dynamics simulations. Of course the data generated with this methodology will
depend on the temperature of MD simulation, therefore higher temperatures will
explore higher energy regions (see Fig. 14.1). MD-generated database will be
biased to lower energy regions of the PES, where the system spend most of the
time. Consequently, this methodology is advisable only when the final application

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 283

300K 500K

Methyl rotor

H
yd

ro
xy

l r
ot

or

Methyl rotorMethyl rotor

0
0 180 360

180

360

0
0 180 360

180

360

0
0 180 360

180

360
100K

P
ot

en
tia

l e
ne

rg
y

[k
ca

l/c
al

]

0

10

20

30

B) Energy
 distribution

100K
300K
500K

Fig. 14.1 (a) Sampling of ethanol’s PES at 100, 300 and 500 K using AIMD at DFT/PBE+TS
level of theory. (b) The potential energy profile is shown in for the different temperatures

involves MD simulation for equilibrium or close to equilibrium properties where
rare events do not play a major role. Examples of this is the study of vibrational
spectra, direct study of minima population, thermodynamic properties, etc. A
general rule of thumb is to generate the database at a higher temperature compared
to the intended use of the ML model trained on this data. For example, if we want
to calculate the vibrational spectrum for ethanol at 300 K, generating the database
at 500 K is a safe option since the subspace of configurations relevant at 300 K is
contained in this database (see Fig. 14.1a).

The main databases used in this study were created by running AIMD (DFT)
simulations at a temperature of 500 K using the FHI-aims package [80] at
the generalized gradient approximation (GGA) level of theory with Perdew–
Burke–Ernzerhof (PBE) [81] exchange-correlation functional and the Tkatchenko–
Scheffler (TS) method [82] to account for van der Waals interactions using the light
basis set. In the literature this is known as the MD17 dataset [64].

14.2.1 Imbalanced Sampling

From the ergodic hypothesis we know that the expected value of an observable
A can be obtained from 〈A〉time = N−1

t

∑Nt
t A(xt), where xt is the step t of the

dynamics trajectory. This, of course, is valid only in the case in which the dynamics
are long enough to visit all the possible configurations of the system under the given
constraints. In practice, and in particular for AIMD this is not feasible due to its
computational demands; therefore, in the context of databases generation this leads
to biased databases. Figure 14.2 displays the sampling of the PESs for ethanol, keto
form of malondialdehyde (keto-MDA), and Aspirin at 500 K using AIMD. It is easy
to notice that even at high temperatures and more than 200 ps of simulation time,
the sampling is biased and non-symmetric in the case of ethanol and Aspirin.

It is imperative to mention that when creating such databases and using them
for generating ML models, many of the limitations of the database will be passed
to the learned model. Then, the final user of ML model has to be aware of its

284 H. E. Sauceda et al.

keto-MDAEthanol
Aspirin

Fig. 14.2 Molecular dynamics’ sampling of PESs for ethanol, keto-MDA and aspirin at 500 K
using DFT/PBE+TS level of theory. The black dashed lines indicate the symmetries of the molecule

range of applicability. On the other hand, a robust ML framework would be able
to remove some of the imperfections of the data by using prior information of the
underlying nature of the data. As an example, if training a ML-FF using the ethanol’s
or Aspirin’s data in Fig. 14.2 the ML model must be able to handle non-symmetric
databases. Usually this is done by incorporating the indistinguishability between
atoms of the same species.

14.2.2 Representative Sampling: FromDFT to CCSD(T)

Constructing reliable molecular databases can be very complicated even for small
molecules, since efficiently exploring the molecular PES not only depends on the
size of the molecule but also on many other molecular features such as intramolec-
ular interactions and fluxional groups. Generating ∼2 × 105 conformations from
AIMD using a relatively affordable level of theory (e.g., PBE+TS with a small basis)
can take from a couple of days to a couple of weeks. Higher levels of theory (e.g.,
PBE0+MBD) would require weeks or months of server time. Finally, whenever
the system under study demands the use of highly accurate methodologies such as
CCSD(T), generating an extensive database becomes computationally prohibitively
expensive. To resolve this issue one can first sample the PES using a lower but
representative level of theory in the AIMD simulations to generate trajectory

{XPBE+TS
t }Nsteps

t=1 , and then sub-sample this database to generate a representative set
of geometries. These geometries serve as an input for higher level of theory single-

point calculations, e.g., {XCCSD(T)
t }Nsub-sample

t=1 (represented by red dots in Fig. 14.3),
resulting in accurate and computationally affordable database.

From Fig. 14.3 we see that, in this 2D projection, the reference and the desired
PESs look similar, which allows to use a PES@PBE+TS sampling as a good approx-

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 285

PES@CCSD(T)PES@PBE+TS

keto-MDA

Reference PES Desired PES

Sampled PES Sub-sampling CCSD(T) single-
point calculation

AIMD@PBE+TS ML-FF

Fig. 14.3 Procedure followed to generate CCSD(T) database for the keto-MDA molecule. An
AIMD simulation at 500 K using DFT/PBE+TS level of theory was used as a reference sampling
of the molecular PES. Afterwards the obtained trajectory is sub-sampled (black dots) to generate
a subset of representative geometries, then this is used to perform single-point calculations at a
higher level of theory (red dots). In this case, CCSD(T) was the desired PES and the ML-FF used
was sGDML

imation to the one that we would get by sampling PES@CCSD(T) directly [65].
This is a crucial concept that should be carefully used since even if the test error of
the ML model is good, that does not mean that the predictions generated by the ML
model will be physically valid. This would be the case in which the reference data
comes from a PES that considerably differs from the desired PES, for example, the
combination of HF and CCSD(T). Another example, when the reference data does
not provide a reliable ML model, is the use of a database generated by an AIMD
trajectory at 100 K for training a ML-FF, and then running MD simulations with
this FF at higher temperatures. The problem is that the ML model will be generating
predictions in the extrapolation regime, and therefore, there is no certainty that the
results would be physically valid.

For building sGDML models, the CCSD and CCSD(T) databases were generated
by using the subsampling scheme (Fig. 14.3) for some of the molecules from the
MD17 database. In the case of keto-MDA, enol-MDA, and ethanol, the molecular
configurations were recomputed using all-electron CCSD(T), while in the case of
Aspirin all-electron CCSD were employed [83–85].

286 H. E. Sauceda et al.

14.3 Physically InspiredMachine Learned Force Fields

Machine learning offers a wide variety of different universal approximators to
reconstruct any function in the limit of data availability. In practice, the amount
of accessible data is restricted, especially when reconstructing complex PESs
from highly accurate reference calculations such as CCSD(T). Consequently, it
is highly advantageous to mathematically constrain the space of solution of our
approximator by enforcing universal physical laws, therefore naturally creating a
data efficient model capable of delivering physically meaningful predictions. Below
we summarize the desirable properties for a machine learned force field from the
physics and computational point of view:

Physical Properties

• Global model. Building this property in the model will keep the many-body
nature of the quantum interactions resulting from the solution of the Schrödinger
equation H� = E� and from the evaluation of the Hellmann–Feynman
forces −F = 〈�∗|∂H/∂x|�〉. In practice, this means to avoid the non-unique
partitioning of the total energy VBO in atomic contributions.

• Temporal symmetry. This constraint demands that the ML generated Hamiltonian
H = T+ f̂E , with T and f̂E the kinetic and potential energies, respectively, must
be time-invariant, which means that the fundamental law of energy conservation
has to be enforced in the ML model, f̂F = −∇f̂E .

• Indistinguishability of atoms. In quantum mechanics, two atoms of the
same species cannot be distinguished.6 This means that permuting two
identical atoms in a molecule does not change the energy of the system:
VBO(. . . , xi , . . . , xj , . . .) = VBO(. . . , xj , . . . , xi , . . .). This spatial symmetry
often represents a big challenge for ML global models, but it is trivially fulfilled
by models that learn energy per atom.

Each one of the above mentioned physical properties of a quantum system
constitute a constraint that narrows the space of solutions of the universal ML
approximator down, contributing to a more efficient and accurate reconstruction of
the original data generator.

Computational Requirements

• Accuracy and data efficiency. This is a highly desirable requirement in the
reconstruction of PES from ab initio data since the generation of each data point
constitute a considerable computational cost. As an example, a CCSD(T) single-
point force calculation can take several days in a single processor for a medium
sized molecule.

6Even though this is a fundamental property of quantum systems, the invariance of the energy to
permutations of atoms of the same species is preserved even in classical mechanics. As will be the
case in all the examples discussed in this chapter.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 287

• Robust and stable predictions. To minimize the chance of artifacts in the
reconstruction of the PES, the solution needs to be derived from a hypothesis
space that satisfies the fundamental physical laws. Models that start from a
general set of assumptions cannot be expected to generalize from small datasets.

• Fast evaluation. The main purpose of ML-FFs is their use in PES sampling
techniques such as MD or Monte Carlo. This requires fast evaluations (few
milliseconds per single-point energy/force calculations).

Whenever a ML model does not fulfill at least one of the properties or require-
ments mentioned above, it becomes either unreliable or inefficient for practical
applications.

14.3.1 Symmetrized Gradient-DomainMachine Learning

Gradient-domain machine learning (GDML) is one of the approaches that fulfills
all the properties discussed previously. The key idea is to use a Gaussian process
(GP) to model the force field f̂F as a transformation of an unknown potential energy
surface f̂E such that,

f̂F = −∇f̂E ∼ GP
[
−∇μE(x),∇xkE

(
x, x′

)∇�x′
]

, (14.1)

where μE and kE are the mean and covariance of the energy GP, respectively [77].
Furthermore, the model is symmetrized (sGDML) to reflect the indistinguishability
of atoms, while retaining the global nature of the interactions. With the inclusion of
a descriptor D : X→D as representation of the input, it takes the form

f̂F(x) =
M∑
i

S∑
q

PqαiJD(x)kF
(
D(x),D(Pqxi)

)
J�D(Pqxi)

, (14.2)

where JD(x) is the Jacobian of the descriptor, M is the number or training data
points, Pq is the qth permutation in the molecular permutational group, and S is the
size of the group. The parameters αi are the ones to be learned during the training
procedure. Due to linearity, the corresponding expression for the energy predictor
can be simply obtained via (analytic) integration. It is generally assumed that overly
smooth priors are detrimental to data efficiency, even if the prediction target is in fact
indefinitely differentiable. For that reason, (s)GDML uses a Matérn kernel kE(x, x′)
with restricted differentiability to construct the force field kernel function,

kF (x, x′) = ∇xkE
(
x, x′

)∇�x′
=
(

5
(
x− x′

) (
x− x′

)� − Iσ(σ +√5d)
)
· 5

3σ 4
exp

(
−
√

5d

σ

)
.

(14.3)

288 H. E. Sauceda et al.

Instead of using directly the molecular coordinates as representations of the system,
a descriptor is used to facilitate the learning procedure. In general, it is a non-linear
transformation fulfilling a set of required invariances. Here, the geometry of the
molecule is represented in terms of inverse distances between all atom pairs

Dij =
{∥∥ri − rj

∥∥−1 for i > j

0 for i ≤ j
(14.4)

making the model invariant to roto-translations.
A full symmetrization of the model requires summing over all possible per-

mutations of its inputs. To avoid the combinatorial challenge associated with
summing over large symmetry groups, we restrict ourselves to the much smaller
subset of physically plausible rigid space group and fluxional symmetries, {Pq}Sq=1.
Extracting those symmetries usually requires chemical and physical intuition about
the system under study, e.g., rotational barriers, which is impractical in a ML setting.
To automate that step, we employ a multi-partite matching scheme that identifies
and recovers the permutational transformations undergone by the system within
the training dataset. This is achieved by finding the permutation operation τ that
minimizes the cost function,

arg min
τ

L(τ) = ‖P(τ)AGP(τ)� − AH‖2, (14.5)

between adjacency matrices (A)ij = ‖ri − rj‖ of all molecular graph pairs G and
H in different energy states. A particular challenge is to find matchings that are
consistent across the whole training set. The set of permutations {Pq}Sq=1 obtained
by this method, also known as the Higgins group, omits unfeasible transformations
that do not contribute any valuable information to the inference task and thus help
in reducing the computational effort required to evaluate the model.

A sketch of the general training procedure is shown in Fig. 14.4, from sampling
a molecular dynamics trajectory and extracting the Higgins group to solving the
normal equation and generating the embedded PES in the data.

In Refs. [64–66, 71] it was demonstrated that the sGDML framework is highly
data efficient being able to achieve state-of-the-art predictions even when trained on
only a few hundred reference data points. As example, it is possible to reconstruct
molecular PESs with a mean absolute error of less than 0.06 kcal mol−1 for small
molecules (e.g., with up to 15 atoms) and 0.16 kcal mol−1 for more complex
molecules (e.g., aspirin, paracetamol, and azobenzene) [65]. Such accuracy is
achieved while following physical requirements and therefore resulting in robust
learning models which are capable of decoding complex subtleties hidden in the
reference data.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 289

Reconstructed PES

-150

0

150

-150
0

150

0
5

{ i}M
i=1

KHess(κ) + λI = −F

f̂F, f̂E = − f̂F · dx

Molecular Dynamics

150-150 0

150

-150

0

Sampling

150-150 0

150

-150

0

xi,Fi

M

i=1
=

Pa

S

a=1

Multi-partite
Matching

Fig. 14.4 Construction of the sGDML model. (1) The data used for training, {xi , Fi}M
i=1, is

created by subsampling molecular dynamics trajectories (blue dots). The forces are represented by
green arrows on top of each atom. (2) The set of molecular permutation symmetries, {Pa}S

a=1, are
extracted from the training set by the multi-partite matching approach. This effectively enhances
the size of the training set by a factor S and symmetrizes the PES. (3) The force field is trained by
solving the linear system for {αj}. The reconstructed PES is obtained by analytical integration of
the force predictor

14.3.2 Force vs. EnergyMLModels

As stated in the previous section, the sGDML framework is constructed for being
trained in the gradient domain of the energy function. This approach contrasts with
conventional ML methodologies based on direct energy function learning (using
energies and forces for training) in which the forces are computed via analytic

290 H. E. Sauceda et al.

differentiation [5–17, 28, 29, 33, 42–45, 47, 48, 51, 53, 74–76], as represented in the
next diagram:

Trained Derived

sGDML : f̂F −−−−→ f̂E←F = −
∫

f̂F · dx+ C

E-ML : f̂E −−−−→ f̂F←E = −∇f̂E,

where E-ML refers to energy machine learned models.
Any ML model has an associated learning uncertainty. This uncertainty is also

present during the evaluation of the model. Given the nature of the operations in
obtaining the derived quantities in the previous diagram, we can see that there is an
advantage in learning the force field directly over the energy models. Let us consider
the ensembles of models {f̂F} and {f̂E} with mean 〈f̂F〉 and 〈f̂E〉 and uncertainties
γF and γE , respectively. It can be shown that, in the case of the sGDML model the
uncertainty that propagates from the ensemble to the ensemble of energies− ∫ f̂F·dx
is given by ∼γF!x, where !x is a small number in the length scale. In the case
of the uncertainty in the derived forces from E-ML, −∇f̂E is given by ∼γE/!x.
From this simple analysis we conclude that: the error attached to energies from
the sGDML model will be attenuated while errors in predicted forces from E-ML
models will be amplified [66,78]. Another intuitive proof of this effect was reported
from signal processing theory point of view in the GDML original article [64]. This
fundamental result highlights the irrefutable advantage of gradient-domain learning
over energy-based learning, which evince the robustness and stability of such ML
framework.

14.4 Gradient-Domain Learning and Its Performance

In this section we analyze the performance of the sGDML framework in reconstruct-
ing molecular force fields and their underlying potential energy surfaces. First, from
the point of view of cross validation which judge its ability to predict unseen data,
and second, perhaps a more physically relevant validation, a direct comparison with
the reference method (e.g., DFT) of statistical properties computed from molecular
dynamics simulation.

14.4.1 Static Validation

Table 14.1 shows the sGDML prediction results for six molecule datasets trained
on 1000 geometries, sampled uniformly according to the MD@DFT trajectory
energy distribution (see Fig. 14.4). It is easy to notice that for all the considered
molecules the mean absolute error (MAE) in the energies is below 0.2 kcal mol−1,
and even lower than 0.1 kcal mol−1 for small molecules. Remarkable achievement
considering that the model was trained using only 1000 training data points.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 291

Table 14.1 Prediction accuracy for total energies and forces of the sGDML@DFT

Dataset Energies Forces

Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE

keto-MDA 1000 0.10 0.13 0.41 0.62 0.39 0.56 0.0055 0.0087

Ethanol 1000 0.07 0.09 0.33 0.49 0.46 0.63 0.0051 0.0083

Salicylic acid 1000 0.12 0.15 0.28 0.44 0.32 0.45 0.0038 0.0064

enol-MDA 1000 0.07 0.09 0.13 0.22 – – – –

Paracetamol 1000 0.15 0.20 0.49 0.70 0.60 0.84 0.0073 0.0118

Aspirin 1000 0.19 0.25 0.68 0.96 0.52 0.68 0.0094 0.0139

The mean absolute errors (MAE) and root mean squared error (RMSE) for the energy and forces are

in kcal mol−1 and kcal mol−1Å
−1

, respectively. These results were originally published in Refs.
[65] and [66]

This contrasts with pure energy-based models (e.g., other kernel models [64] or
neural networks [86]) which require up to two orders of magnitude more samples to
achieve a similar accuracy. As shown in the original GDML article [64], the superior
performance of gradient based learning cannot be simply attributed to the greater
information content of force samples (one energy value per 3N force components
per sample). Let us consider a direct comparison of two kernel models, energy and
gradient based, for energy learning with the same number of degrees of freedom
(non-symmetrized versions for simplicity),

− f̂E←F(x) =
M∑
i

{αi · ∇}κ(x, xi) . (14.6)

− f̂E(x) =
3N×M∑

j

βj κ(x, xj) . (14.7)

Then, each model has 3N ×M parameters with the difference that, in the energy
model the {βj }3N×M

j=1 parameters are correlation only by the learning procedure,
while in the force model exist the additional correlation imposed in the triads
{αx

i , α
y
i , α

z
i }N×M

i=1 by the gradient operator. Hence, this extra correlation between
the parameters imposed by learning in the gradient domain reduces our space of
solutions and therefore the model becomes more data efficient. Such fundamental
characteristic positions the sGDML modes in a privileged place for learning force
fields from highly accurate quantum chemical methodologies (e.g., CCSD(T)) in
which data is very scarce, where even generating 100 data points is a monumental
computational task. In the next section we will analyze this topic, but for now let us
validate the sGDML models by direct comparison with MD simulations generated
with the reference method.

292 H. E. Sauceda et al.

14.4.2 Dynamic Validation

In the previous section, we saw that the prediction errors in sGDML learned models
are very low. Nevertheless, a natural question to ask is if the molecular dynamics
simulations using the learned models (i.e., MD@sGDML{DFT}) can actually
replicate the statistical properties of the physical system as computed running MD
simulations using the ab initio reference theory (i.e., MD@DFT). To address this
issue, in this section we present MD simulations with sGDML and DFT forces for
benzene, uracil, and aspirin molecules. All the simulations have been done within
precisely the same conditions (temperature, integrator, integration step, software,
etc.) using the i-PI molecular dynamics package [87].

14.4.2.1 Benzene and Uracil
In the case of benzene, we have performed MD simulations at 300 K using the same
initial conditions for both MD@DFT and MD@sGDML{DFT}. Figure 14.5a shows
the evolution of the potential energy in time and we can see a very good agreement.
From this we can deduce that, at least in the first 10 ps of the trajectory, a MAE of
0.1 kcal mol−1/0.06 kcal mol−1 Å−1 in energies/forces for benzene’s sGDML model
does not generate significant deviations from the reference MD@DFT trajectory.
In the case of uracil we repeated the same experiment but this time we started
the simulations from different initial conditions and ran the simulations for 25 ps
to collect more statistics. Figure 14.5b displays the evolution of the two potential
energies, MD@DFT in red and MD@sGDML{DFT} in blue. It can be seen that
both methods generate the same potential energy sampling (Fig. 14.5b-middle) and
the same interatomic distance distribution (Fig. 14.5b-right). Therefore, the MAE of
0.11 kcal mol−1/0.24 kcal mol−1 Å−1 in energies/forces for uracil’s model does not
generate significant deviations from the exact reference data up to 25 ps of trajectory.

14.4.2.2 Aspirin
A more interesting case is aspirin, which is a much more complex molecule. In this
case by running MD@GDML at 300 K, overall we observe a quantitative agreement
in interatomic distance distribution between MD@DFT and MD@GDML simula-
tions (Fig. 14.6-left). The small differences can be observed only in the distance
range between 4.3 and 4.7 Å. This region mainly belongs to the distances between
the two main functional groups in aspirin. Slightly higher energy barriers in the
GDML model affect the collective motion of these groups, which results in a
small difference in the interatomic distance distributions. These differences in the
interatomic distance distributions vanish once the quantum nature of the nuclei is
introduced via path integral molecular dynamics (PIMD) simulations (Fig. 14.6-
right) [64]. Consequently, by running more realistic simulations we overcome the
small imperfections in the reconstruction of the PES allowing to generate more
accurate results.

By performing static and dynamic validations in sGDML learned models we
have demonstrated the robustness and data efficiency (the models were trained only

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 293

b
 U

ra
ci

l

a
B

en
ze

n
e

15 10 5 0 –5 –1
0

–1
5

–2
0

–2
5

–3
0 0

1
2

3
4

tim
e

(p
s)

En
er

gy
 H

is
to

gr
am

Potential Energy (kcal/mol)

15 10 5 0 –5 –1
0

–1
5

–2
0

–2
5

–3
0

Potential Energy (kcal/mol)

5
6

7
8

9
0.

00

0.
00

0
5

10
15

tim
e

(p
s)

Potential Energy (kcal/mol)

20
25

0.
05

0.
10

D
is

tri
bu

tio
n

0.
15

0.
20

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
8

0.
6

0.
4

0.
2

0.
0

0.
8

15 10 5 0 –5 –1
0

Potential Energy (kcal/mol)

15 10 5 0 –5 –1
0

M
D

@
M

L
PI

M
D

@
G

D
M

L
PI

M
D

@
D

FT
M

D
@

D
FT

M
D

@
D

FT
M

D
@

G
D

M
L

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

1
2

3
4

5

1
2

3
4

5

r[
Å

]

r[
Å

]

g(r) g(r)

Fi
g
.
1
4
.5

A
cc

ur
ac

y
of

po
te

nt
ia

le
ne

rg
ie

s
(m

in
us

th
e

m
ea

n
va

lu
e)

sa
m

pl
in

g
fo

r
sG

D
M

L
@

D
FT

(u
si

ng
PB

E
+

T
S

fu
nc

tio
na

l)
an

d
sG

D
M

L
@

C
C

SD
(T

)
m

od
el

s
on

va
ri

ou
s

m
ol

ec
ul

ar
dy

na
m

ic
s

da
ta

se
ts

.E
ne

rg
y

er
ro

rs
ar

e
in

kc
al

m
ol
−1

.T
he

se
re

su
lts

,w
ith

th
e

ex
ce

pt
io

n
of

en
ol

-M
D

A
,w

er
e

or
ig

in
al

ly
pu

bl
is

he
d

in
R

ef
.

[6
5]

.
A

ll
th

e
m

od
el

s
w

er
e

tr
ai

ne
d

us
in

g
at

om
ic

fo
rc

es
fo

r
10

00
m

ol
ec

ul
ar

co
nf

or
m

at
io

ns

294 H. E. Sauceda et al.

Aspirin

PIMD

3 81 752 4 6

Classical MD

GDML

DFT

3 81 752 4 6

0.2

0.4

0.6

Fig. 14.6 Comparison of the interatomic distance distributions obtained from GDML (blue line)
and DFT (dashed red line) with classical MD (left), and PIMD (right)

on 1000 data points) of the framework. In the next section, we briefly analyze
interesting synergistic behavior between the data efficiency of the sGDML and using
more accurate reference calculations.

14.5 Smoothness Hypothesis in Quantum Chemistry

Within the Born–Oppenheimer approximation, the potential energy surface VBO(x)
is the energy eigenvalue of the Schrödinger equation H� = VBO�, which
parametrically depends on a given set of nuclear coordinates x, and the level
of theory used to approximate its solution will of course define its accuracy. A
very basic approximation is given by the Hartree–Fock theory (HF) in which
the correlation between electrons of the same spin is treated as a mean field
rather than as an instantaneous interaction and the correlation between electrons
of opposite spins is omitted. To incorporate the missing electron correlation, other
post-HF approximations were built on top of HF solutions, such as Møller–Plesset
perturbation theory (e.g., MP2, MP3, and MP4), coupled cluster (e.g., CCSD,
CCSD(T), and CCSDT), and configuration interaction (e.g., CISD and Full CI),
etc. Unfortunately, moving to more accurate approximations is associated with a
steep increase in the needed computational resources, making unfeasible to perform
calculations, for example, using Full CI for molecules such as ethanol. In the case of
density functional theory, which is less computationally demanding, it is not clear
how to hierarchically increase electron correlation by going from one exchange-
correlation functional to another one. Therefore, we focus only on post-HF methods.

The smoothness hypothesis states that systematically increasing the amount of
electron correlation will systematically smoothen the ground state potential energy
surface (see Fig. 14.7).

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 295

Fig. 14.7 Pictorial representation of the smoothness hypothesis in quantum chemistry

Energy
MAE

[kcal/mol]

0.20

0.00

0.10

0.15

0.05

DFT

0.20

0.00

0.10

0.15

0.05

CCSD(T)

Aspirin

keto-MDA

Toluene

Benzene

Ethanol

Fig. 14.8 Accuracy of total energies for sGDML@DFT (using PBE+TS functional) and
sGDML@CCSD(T) models on various molecular dynamics datasets. Energy errors are in
kcal mol−1. These results, with the exception of enol-MDA, were originally published in Ref. [65].
All the models were trained using atomic forces for 1000 molecular conformations

As stated in the previous section, the sGDML framework is characterized for
delivering state-of-the-art accuracies while using only a handful of training data
points. This allows to construct compact sGDML models that faithfully reconstruct
molecular force fields even from computationally costly ab initio methods such as
the gold standard in quantum chemistry all-electron coupled cluster with single,
double, and perturbative triple excitations (CCSD(T)). Now, by following the
procedure described in Fig. 14.3 we trained a set of molecules using CCSD(T)
reference data, giving very interesting results as displayed in Fig. 14.8. For all the
molecules in this study, the prediction energy error of the sGDML models dropped
just by increasing the level of theory of the training data. Furthermore, in the case
of benzene the MAE drastically reduces to only few cal mol−1!

From the signal reconstruction point of view, the smoother or the lower the
complexity of the signal the easier to reconstruct. Meaning that less complex
functions from the space of solutions can be used to capture the intrinsic features
encoded in the reference data. Hence, given that increasing the electron correlation

296 H. E. Sauceda et al.

(going from DFT to CCSD(T)) makes the problem easier to learn (see Fig. 14.8)
and because of the above given argument, we can say that for the studied molecules
our results support the smoothness hypothesis (Fig. 14.7) [66]. An explanation why
some molecules profit more than others by increasing the level of theory is not clear
and needs further research.

14.6 LearningMolecular PES: What Type of Interactions Can Be
Captured?

In this section, we exemplify the insights obtained with sGDML model for ubiqui-
tous and challenging features of general interest in chemical physics: intramolecular
hydrogen bonds, electron lone pairs, electrostatic interactions, proton transfer effect,
and other electronic effects (e.g., bonding–antibonding orbital interaction and
change in the bond nature).

The PES, VBO, contains all the information necessary to describe the dynamics
of a molecular system. Its intricate functional form results from the interplay
between different quantum interactions, characteristic that should be preserved
during the learning process. Consequently, it is not known how to expand the
VBO in different energetic contributions (e.g., hydrogen bonding, electrostatics,
dispersion interactions, or other electronic effects) to make it more interpretable.
Nevertheless, by accurately learning the VBO at a high level of theory using the
sGDML framework, we can perform careful analysis on the learned models and its
results from applications (e.g., MD simulations) to decode many of the complex
features contained in the quantum chemical data.

In practice, these features or intramolecular interactions (e.g., van der Waals
interactions, energy barriers or H-bond interactions) are subtle variations in the
energy surface of less than 0.1 kcal mol−1, one order of magnitude lower than
so-called chemical accuracy. An particular example is the ethanol molecule. The
relative stability of its trans and gauche(l,r) conformers is within 0.1 kcal mol−1.
Furthermore, the energetic barriers trans � gauche(l,r) and gauche(l) � gauche(r)

differ only by ∼0.1 kcal mol−1 too. Any machine learning model with an expected
error above those stringent accuracies risk misrepresenting the molecular system
or even inverting this subtle energy difference, which will lead to incorrect
configuration probabilities and hence quantitatively wrong dynamical properties.
The robust sGDML framework has been shown to satisfy such stringent demands,
obtaining MAEs of 0.1–0.2 kcal mol−1 for molecules with up to 15 atoms [65].7

Moreover, as shown in Fig. 14.8, the prediction error can be even lower by training
on coupled-cluster reference data. With the certainty that we are working with very
accurate ML models, we can confidently analyze and interpret their results.

7Even though the MAE is in the same order as the required accuracy, we have to mention that this
error is computed in the whole dataset. This means that the error in the highly sampled regions
(e.g., local minima) will be lower than the reported MAE.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 297

14.6.1 Electrostatic Interactions and Electron Lone Pairs

First, we focus our attention on electrostatic interactions, in particular lone-pair–
atom interaction. The concept of electron lone pairs plays a central role in chemistry,
these are ubiquitous atomic features responsible for a wide variety of phenomena.
A simple way to define lone pairs is as atomic valence electrons that are not shared
with any other atom in a molecule, i.e. they are not involved in bond formation.
They are often present as lone pairs of nitrogen and oxygen atoms in a molecule.

14.6.1.1 Electron Lone Pairs in Ethanol
A very illustrative case used along this chapter is ethanol molecule: (1) it has two
rotors—hydroxyl and methyl groups—as main degrees of freedom making very
easy to visualize its PES, (2) due to its complex electronic structure it requires
at least CCSD(T) to correctly describe its PES, (3) despite its simple appearance
it is not trivial to reconstruct its force field, and (4) it presents a rich variety of
intramolecular interactions such as the strong effects of electron lone pairs on its
dynamics.

By analyzing its PES, we find a subtle quasi-linear coupling between the methyl
and hydroxyl rotors in the trans configuration (highlighted by the gray arrow in
Fig. 14.9a). This dihedral dependence between the two functional groups is due to
the electrostatic attraction between the lone pairs (negative charge) in the oxygen
atom and the partially positively charged hydrogen atoms in the methyl rotor as
shown in the inset in Fig. 14.9a. Such coupling becomes clear when analyzing con-
figurational sampling obtained from molecular dynamics simulations (Fig. 14.9b),
where the dynamical implications of the coupling between the two rotors at finite
temperature is evident. Accurately capturing such interaction is crucial to correctly

Ethanol

600 120

0

180

-180

Methyl rotor

H
yd

ro
xy

l r
ot

or

0

5

150

-150

0

150

-150

0

E
ne

rg
y

trans

gauche-

gauche+

A) PES B) MD
-

+

-

+
+

Lone pairs in ethanol

Fig. 14.9 (a) Ethanol’s PES (sGDML@CCSD(T) model). The molecule shows the effect of
oxygen’s lone pair and the partial positive charges in methyl’s hydrogen atoms and their coupling is
represented by a gray arrow in the PES of ethanol. (b) PES sampling generated by MD@sGDML
simulations at 300 K using the NVE ensemble

298 H. E. Sauceda et al.

replicate and explain experimental measurements such as population analysis and
vibrational spectra [65].

14.6.1.2 Oxygen–Oxygen Atom Repulsion in Keto-MDA
From the subtle interaction described in the previous section we move to a stronger
electrostatic repulsion in the keto-MDA molecule as shown in Fig. 14.10. In a
similar way as the ethanol molecule, keto-MDA can be taken as benchmark system
in learning, given the complexity of its PES despite its small size (see also Fig. 14.3).
The PES of keto-MDA molecule contains flat regions corresponding to global
minimum (dark blue region in Fig. 14.10) represented by the molecular structures
in Fig. 14.10d and convoluted pathways to move from minimum to minimum (see
Fig. 14.10F1, F2, F3). Additionally, one can notice the sudden increase in the
molecular energy when the two oxygen atoms are in the closest configuration as
illustrated in Fig. 14.10a. From Fig. 14.10 we can see that even though the molecule

-
-

PES

(a)

(a)

(b) (b)

(c)

(d)

(c)

(d)

periodic boundaries

150-150 0

F2F1

F3

keto-Malondialdehyde

Fig. 14.10 PES for keto-MDA with periodic boundary conditions. The structure (a) leads to
a steep increase in energy due to the close distance between two negatively charged oxygen
atoms. (b) and (c) represent local minima and (d) display the dynamics of the global minimum.
By analyzing the dynamics, the trajectories F1, F2, and F3 were found to be the most frequent
transition paths

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 299

only has two main degrees of freedom (the two rotors) it has a rough PES as a
result of many complex interactions. By considering the electron lone pairs in each
oxygen atom and their closeness in configuration Fig. 14.10a, it suggests that the
steep increase in the energy can be primarily attributed to the electrostatic repulsion
between the lone pairs in each atom. Additionally, it could be that steric effects
caused by electron cloud overlap could play also an important role.

14.6.2 Intramolecular H-Bond and Proton Transfer

One of the most important phenomenon in biology and materials science is
hydrogen bonding (H-bond), which is responsible of a plethora of chemical and
physical effects [88–92]. Molecular mechanic force fields fail in representing this
interaction due to the simple fact that we do not have an appropriate analytical
model for it. Therefore, ML is a very promising framework to attack this problem as
recently shown by the low errors accomplished by the sGDML model. This includes
good performances in describing two different types of H-bonds: standard donor–
acceptor H-bond and the symmetric H-bond. A pictorial representation of their PES
and two examples of molecules containing such interaction, salicylic acid, and the
enol form of malondialdehyde (enol-MDA) are shown in Fig. 14.11.

Fig. 14.11 Intramolecular hydrogen bond of (a) conventional type with salicylic acid as example
and (b) symmetric type exemplified by enol-Malondialdehyde molecule

300 H. E. Sauceda et al.

In the particular case of regular asymmetric H-bond, as salicylic acid molecule,
the interaction is a standard donor–acceptor kind of H-bond between the hydroxyl
and carboxylic acid groups. The main characteristic of this kind of interaction
consists in allowing the proton to stretch from the PD oxygen towards the PA oxygen
(Fig. 14.11a), which results in the well-known red-shift in the stretching frequency
of O–H in the participating hydroxyl group [89–91]. Additionally, the H-bond
also generates a blue shift in normal modes perpendicular to the H-bond, which
is directly related to a O–H· · ·O interaction [66]. These effects can be measured
experimentally via IR and Raman spectroscopy.

In the case of the symmetric H-bond, we observe a symmetric double-well PES
as schematically represented in Fig. 14.11b. The energetic barrier separating the
two minima will be determined by the nature of the molecule under study and
on the participating functional groups in the H-bond. In this case the symmetrized
nature of the sGDML approach is crucial to consistently describe such interaction.
When the energy barrier is low, as in the case of enol-MDA: ∼4 kcal mol−1, proton
transfer between the two oxygen atoms is allowed even at room temperature and
it is enhanced when considering nuclear quantum effects. Something to highlight
here is that the energy barrier can depend strongly on the level of theory used to
generate the reference data. This is due to the intricate and subtle quantum nature of
this interaction, which requires high-level quantum chemistry methods. It has been
found that by systematically increasing the amount of electron correlation energy in
the case of enol-MDA, the energy barrier decreases as∼13→∼5→∼4 kcal mol−1

for HF → CCSD → CCSD(T), respectively [66]. Results that demonstrate the
importance of the correlation energy in such complex phenomena as the H-bond
interaction and their potential effects in proton transfer.

These two types of intramolecular H-bond are ubiquitous in nature and their
presence can drastically change the chemistry and physical properties of any
molecular system. Therefore the accuracy achieved by the sGDML model for the
description of this interaction is particularly important.

14.6.3 Hybridization and Electronic Delocalization

Previously in this section we have shown that sGDML can learn interactions such as
electrostatics and H-bonds. Here we analyze much more subtle interactions: change
of hybridization and electronic interaction. Contrary to electrostatic interactions and
H-bonds, that can often be approximated and implemented in empirical FFs, purely
quantum phenomena (i.e., no classical analogue) are always missing in conventional
FFs. In the case of flexible and fully data-driven model, learning any quantum
interaction coming from −F = 〈�∗|∂H/∂x|�〉, is a trivial task accomplished
without relying on prior knowledge of the phenomena or its connection to any
classical electrodynamic or mechanical concepts. Two examples are capturing the
configuration and energetic features associated to changes in hybridization states
and n→ π∗ interactions.

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 301

Fig. 14.12 Hybridization change. The hybridization change of the nitrogen atom is illustrated for
the paracetamol molecule

In general, changes in the molecular electronic state are related to rearrangements
of the electronic configuration to minimize the energy for a given molecular
conformation. This could be, for example, a transition from a singlet to a triplet state,
as in the case of some metallic clusters or molecules [93], or locally modifying an
atomic hybridization state. The paracetamol molecule, for example, is a system that
presents a sp2 ↔ sp3 hybridization change in the nitrogen atom for configurations
in which the dihedral angle of the acetamide group is increasing while keeping the
interatomic distance dO···H constant (see Fig. 14.12). This generates a steep energy
increase as illustrated by yellow regions in the PES in Fig. 14.12. In that region
of configuration space the conjugated state in the molecule breaks, given that the
nitrogen atom changes its hybridization state from sp2 → sp3.

Another important, but less studied electronic interaction, is the overlap between
occupied (lone pair n) and antibonding (π∗) orbitals: n → π∗ interactions. The
analysis of this interaction is beyond the scope of the current book chapter but it
is worth to mention a couple of things. The n → π∗ interactions is a ubiquitous
interaction in biological and other molecular systems but only recently it was found
the importance of such weak interaction [94]. In particular, it plays a very decisive
role in the dynamics of the aspirin molecule. The n → π∗ attraction interaction
is responsible for the binding between the ester and carbonyl groups, defining the
structure of the global minimum even at room temperature [65].

There are many other electronic effects (e.g., hyperconjugation, configuration
dependent charge densities, Jahn–Teller effect, π–hole interactions, etc. [95])
for which we do not have analytical approximations. Therefore, they cannot be
incorporated in conventional FFs limiting their reliability and predictive power.
The rigorous requirement of accurately capturing such effects in ML models is
justified by the increasing precision in state-of-the-art spectroscopic experimental
results [95–101] which demand computationally inexpensive and highly accurate
PESs to interpret and obtain further insights.

In summary, in this section we have analyzed a wide variety of interatomic
interaction via high fidelity energy landscapes learning with the sGDML model. In

302 H. E. Sauceda et al.

particular, we described hydrogen bonds, electrostatic and electronic interactions.
But as a final comment in this chapter, it is fair to ask the question: How relevant
these interactions are in larger systems? This is because up to this moment, we
have shown the importance of these phenomena in small molecules where it is
understandable that such interactions play a major role. The answer is yes, all
these interactions together play a major role in protein folding as recently suggested
by Deepak and Sankararamakrishnan [94]. The edge where some proteins fold is
a result of a complex interplay between many of the interactions analyzed here.
Consequently, one of the main challenges in the route to model bigger systems is to
preserve the reliability of the sGDML framework on describing such interactions.

14.7 Conclusions

In this book chapter we have presented the construction of molecular force fields
using the symmetrized gradient-domain machine learning model. In particular, we
have introduced what are the desirable requirements of machine learning force fields
from the point of view of physics and computation efficiency. In this context, the
sGDML framework is able to reconstructs high-dimensional manifolds embedded
in the training data even from a few 100s of samples. Achievement that allows the
use of highly accurate ab initio reference data such as the “gold standard” CCSD(T)
method. The flexibility of such universal approximator comes from its fully data-
driven nature, characteristic that grants the adaptability to describe any quantum
interaction coming from −F = 〈�∗|∂H/∂x|�〉. Here we have also described a
simple way to systematically increase the level of theory from DFT to CCSD(T) by
the subsampling—and—recomputing method, keeping in mind that the DFT’s PES
is already close to the CCSD(T) one.

The main advantages over other machine learning methods are: (1) highly data
efficient originated by being trained in the gradient domain, (2) its robustness
acquired by modeling all atomic interactions globally without any inherent non-
unique partitioning of the energy or force, (3) it encodes the fundamental physical
law of energy conservation as well as (4) atomic indistinguishability as a prior,
correctly representing spatial and temporal symmetries.

Some challenges remain to be solved within the sGDML framework, mainly
consisting in how to extend its applicability to larger systems. Many of the
advantages of the model are related to its global nature, unfortunately this also
imposes limits on the maximum size of the molecules that can be considered as well
as the training set size. Solving this fundamental problem requires careful and well-
reasoned fragmentation schemes to divide the problem into smaller independent
subproblems without compromising its robustness. A possible direction to go can
be a data-driven approach in a way that is tailored to preserving the intricate
phenomena and quantum interactions studied in this chapter. The existence of
such approach would benefit from the explicit knowledge of fluxional symmetries
within the system and well-defined functional groups. In its current formulation,
the sGDML framework captures different types of interaction as well as interaction

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 303

scales, with no need to separating them. Nevertheless, an explicit decoupling of
long-range interactions, e.g., van der Waals forces, could be a new avenue to further
increase its applicability to increasingly larger and complex molecules.

Acknowledgments S.C., A.T., and K.-R.M. thank the Deutsche Forschungsgemeinschaft, Ger-
many (projects MU 987/20-1 and EXC 2046/1 [ID: 390685689]) for funding this work. A.T. is
funded by the European Research Council with ERC-CoG grant BeStMo. This work was supported
by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A)
and Berlin Center for Machine Learning (01IS18037I). This work was also supported by the
Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (No. 2017-0-00451). This publication only reflects the authors views. Funding
agencies are not liable for any use that may be made of the information contained herein. Part
of this research was performed while the authors were visiting the Institute for Pure and Applied
Mathematics, which is supported by the National Science Foundation, United States.

References

1. T. Saue, L. Visscher, H.J. Aa. Jensen, R. Bast, with contributions from V. Bakken, K.G. Dyall,
S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard,
A.S.P. Gomes, E.D. Hedegård, T. Helgaker, J. Henriksson, M. Iliaš, Ch.R. Jacob, S. Knecht,
S. Komorovský, O. Kullie, J.K. Lærdahl, C.V. Larsen, Y.S. Lee, H.S. Nataraj, M.K. Nayak,
P. Norman, G. Olejniczak, J. Olsen, J.M.H. Olsen, Y.C. Park, J.K. Pedersen, M. Pernpointner,
R. di Remigio, K. Ruud, P. Sałek, B. Schimmelpfennig, A. Shee, J. Sikkema, A.J. Thorvald-
sen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, S. Yamamoto, DIRAC,
a relativistic ab initio electronic structure program, Release DIRAC18 (2018). Available at
https://doi.org/10.5281/zenodo.2253986, see also http://www.diracprogram.org

2. L.F. Pašteka, E. Eliav, A. Borschevsky, U. Kaldor, P. Schwerdtfeger, Phys. Rev. Lett. 118(2),
023002 (2017)

3. M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University
Press, Oxford, 2010)

4. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley,
Weinheim, 2015)

5. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31(2), 459 (1959). https://doi.org/10.1063/1.
1730376

6. A. Rahman, Phys. Rev. 136, A405 (1964). https://doi.org/10.1103/PhysRev.136.A405
7. L. Verlet, Phys. Rev. 159, 98 (1967). https://doi.org/10.1103/PhysRev.159.98
8. A. Rahman, F.H. Stillinger, J. Chem. Phys. 55(7), 3336 (1971). https://doi.org/10.1063/1.

1676585
9. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys.

79(2), 926 (1983). https://doi.org/10.1063/1.445869
10. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112(20), 8910 (2000). https://doi.org/10.

1063/1.481505
11. J. Tersoff, Phys. Rev. B 37, 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991
12. A. Warshel, P.K. Sharma, M. Kato, W.W. Parson, Biochim. Biophys. Acta Proteins Pro-

teomics 1764(11), 1647 (2006). https://doi.org/10.1016/j.bbapap.2006.08.007
13. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.

6443
14. P.K. Weiner, P.A. Kollman, J. Comput. Chem. 2(3), 287 (1981). https://doi.org/10.1002/jcc.

540020311
15. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J.

Comput. Chem. 4(2), 187 (1983). https://doi.org/10.1002/jcc.540040211

https://doi.org/10.5281/zenodo.2253986
http://www.diracprogram.org
https://doi.org/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1063/1.1676585
https://doi.org/10.1063/1.1676585
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.481505
https://doi.org/10.1063/1.481505
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1016/j.bbapap.2006.08.007
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540040211

304 H. E. Sauceda et al.

16. T.A. Halgren, J. Comput. Chem. 17(5–6), 490 (1996). https://doi.org/10.1002/(SICI)1096-
987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

17. T.A. Soares, P.H. Hünenberger, M.A. Kastenholz, V. Kräutler, T. Lenz, R.D. Lins, C. Oosten-
brink, W.F. van Gunsteren, J. Comput. Chem. 26(7), 725 (2005). https://doi.org/10.1002/jcc.
20193

18. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, vol. 1 (Springer
Series in Statistics, New York, 2001)

19. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1995)
20. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114, 096405 (2015). https://doi.org/10.

1103/PhysRevLett.114.096405
21. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017). https://doi.org/10.

1016/j.commatsci.2017.08.031
22. P.O. Dral, A. Owens, S.N. Yurchenko, W. Thiel, J. Chem. Phys. 146(24), 244108 (2017).

https://doi.org/10.1063/1.4989536
23. A. Mardt, L. Pasquali, H. Wu, F. Noé, Nat. Commun. 9(1), 5 (2018). https://doi.org/10.1038/

s41467-017-02388-1
24. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states of

many-body systems with deep learning. Science, 365(6457), eaaw1147 (2019)
25. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 58301

(2012). https://doi.org/10.1103/PhysRevLett.108.058301
26. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010).

https://doi.org/10.1103/PhysRevLett.104.136403
27. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld,

A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013). https://doi.org/10.
1021/ct400195d

28. A.P. Bartók, G. Csányi, Int. J. Quantum Chem. 115(16), 1051 (2015). https://doi.org/10.1002/
qua.24927

29. M. Rupp, R. Ramakrishnan, O.A. von Lilienfeld, J. Phys. Chem. Lett. 6(16), 3309 (2015).
https://doi.org/10.1021/acs.jpclett.5b01456

30. S. De, A.P. Bartok, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016).
https://doi.org/10.1039/C6CP00415F

31. N. Artrith, A. Urban, G. Ceder, Phys. Rev. B 96(1), 014112 (2017). https://doi.org/10.1103/
PhysRevB.96.014112

32. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv.
3(12), e1701816 (2017). https://doi.org/10.1126/sciadv.1701816

33. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95, 214302 (2017). https://doi.org/10.1103/
PhysRevB.95.214302

34. K. Yao, J.E. Herr, J. Parkhill, J. Chem. Phys. 146(1), 014106 (2017). https://doi.org/10.1063/
1.4973380

35. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals,
S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017).
https://doi.org/10.1021/acs.jctc.7b00577

36. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, J. Chem. Phys. 148(24), 241732
(2018). https://doi.org/10.1063/1.5023798

37. A. Glielmo, C. Zeni, A. De Vita, Phys. Rev. B 97(18), 184307 (2018). https://doi.org/10.
1103/PhysRevB.97.184307

38. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018). https://
doi.org/10.1103/PhysRevLett.120.036002

39. Y.H. Tang, D. Zhang, G.E. Karniadakis, J. Chem. Phys. 148(3), 034101 (2018). https://doi.
org/10.1063/1.5008630

40. W. Pronobis, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 14(6), 2991 (2018).
https://doi.org/10.1021/acs.jctc.8b00110

41. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717
(2018). https://doi.org/10.1063/1.5020710

https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1002/jcc.20193
https://doi.org/10.1002/jcc.20193
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1063/1.4989536
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
https://doi.org/10.1002/qua.24927
https://doi.org/10.1002/qua.24927
https://doi.org/10.1021/acs.jpclett.5b01456
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1103/PhysRevB.96.014112
https://doi.org/10.1103/PhysRevB.96.014112
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1103/PhysRevB.95.214302
https://doi.org/10.1103/PhysRevB.95.214302
https://doi.org/10.1063/1.4973380
https://doi.org/10.1063/1.4973380
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1063/1.5023798
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1063/1.5008630
https://doi.org/10.1063/1.5008630
https://doi.org/10.1021/acs.jctc.8b00110
https://doi.org/10.1063/1.5020710

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 305

42. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007). https://doi.org/10.1103/
PhysRevLett.98.146401

43. K.V.J. Jose, N. Artrith, J. Behler, J. Chem. Phys. 136(19), 194111 (2012). https://doi.org/10.
1063/1.4712397

44. J. Behler, J. Chem. Phys. 145(17), 170901 (2016). https://doi.org/10.1063/1.4966192
45. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017). https://doi.org/10.1039/

C7SC02267K
46. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017). https://doi.org/10.1038/ncomms13890
47. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018). https://doi.org/10.1063/1.5019779
48. K.T. Schütt, P.J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller, in

Advances in Neural Information Processing Systems 30 (Curran Associates, New York, 2017),
pp. 991–1001

49. K. Ryczko, K. Mills, I. Luchak, C. Homenick, I. Tamblyn, Comput. Mater. Sci. 149, 134
(2018). https://doi.org/10.1016/j.commatsci.2018.03.005

50. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Phys. Rev. Lett. 120(14), 143001 (2018).
https://doi.org/10.1103/PhysRevLett.120.143001

51. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013). https://doi.org/10.
1103/PhysRevB.87.184115

52. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.R.
Müller, O.A. von Lilienfeld, New J. Phys. 15(9), 95003 (2013)

53. V. Botu, R. Ramprasad, Phys. Rev. B 92, 094306 (2015). https://doi.org/10.1103/PhysRevB.
92.094306

54. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8(1),
872 (2017). https://doi.org/10.1038/s41467-017-00839-3

55. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, NPJ Comput. Mater.
3(1), 37 (2017). https://doi.org/10.1038/s41524-017-0042-y

56. T. Bereau, R.A. DiStasio Jr., A. Tkatchenko, O.A. Von Lilienfeld, J. Chem. Phys. 148(24),
241706 (2018). https://doi.org/10.1063/1.5009502

57. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018). https://doi.org/
10.1063/1.5011181

58. K. Kanamori, K. Toyoura, J. Honda, K. Hattori, A. Seko, M. Karasuyama, K. Shitara,
M. Shiga, A. Kuwabara, I. Takeuchi, Phys. Rev. B 97(12), 125124 (2018). https://doi.org/
10.1103/PhysRevB.97.125124

59. T.S. Hy, S. Trivedi, H. Pan, B.M. Anderson, R. Kondor, J. Chem. Phys. 148(24), 241745
(2018). https://doi.org/10.1063/1.5024797

60. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017). https://doi.org/10.1039/
C6SC05720A

61. J. Wang, S. Olsson, C. Wehmeyer, A. Perez, N.E. Charron, G. de Fabritiis, F. Noé, C.
Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent.
Sci. 5(5), 755–767 (2019)

62. R. Winter, F. Montanari, F. Noé, D.A. Clevert, Chem. Sci. 10, 1692 (2019). https://doi.org/
10.1039/C8SC04175J

63. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, J. Chem. Phys. 150(6), 064105 (2019).
https://doi.org/10.1063/1.5053562

64. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv.
3(5), e1603015 (2017). https://doi.org/10.1126/sciadv.1603015

65. S. Chmiela, H.E. Sauceda, K.R. Müller, A. Tkatchenko, Nat. Commun. 9(1), 3887 (2018).
https://doi.org/10.1038/s41467-018-06169-2

66. H.E. Sauceda, S. Chmiela, I. Poltavsky, K.R. Müller, A. Tkatchenko, J. Chem. Phys. 150(11),
114102 (2019)

67. M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K.T. Schütt, G. Montavon, W. Samek,
K.R. Müller, S. Dähne, P.J. Kindermans, iNNvestigate neural networks. J. Mach. Learn. Res.

https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/1.4712397
https://doi.org/10.1063/1.4712397
https://doi.org/10.1063/1.4966192
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1063/1.5019779
https://doi.org/10.1016/j.commatsci.2018.03.005
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.92.094306
https://doi.org/10.1103/PhysRevB.92.094306
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1063/1.5009502
https://doi.org/10.1063/1.5011181
https://doi.org/10.1063/1.5011181
https://doi.org/10.1103/PhysRevB.97.125124
https://doi.org/10.1103/PhysRevB.97.125124
https://doi.org/10.1063/1.5024797
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1063/1.5053562
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1038/s41467-018-06169-2

306 H. E. Sauceda et al.

20(93), 1–8 (2019)
68. M. Meila, S. Koelle, H. Zhang, A regression approach for explaining manifold embedding

coordinates. Preprint. (2018). arXiv:1811.11891
69. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.R. Müller, Nat. Commun.

10(1), 1096 (2019)
70. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.R. Muller (eds.), Explainable AI:

Interpreting, Explaining and Visualizing Deep Learning. LNCS, vol. 11700 (Springer, 2019).
https://doi.org/10.1007/978-3-030-28954-6

71. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.R. Müller, A. Tkatchenko, Comput. Phys.
Commun. (2019). https://doi.org/10.1016/j.cpc.2019.02.007

72. K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9(8), 2261 (2018). https://
doi.org/10.1039/C7SC04934J

73. K.T. Schütt, P. Kessel, M. Gastegger, K.A. Nicoli, A. Tkatchenko, K.R. Müller, J. Chem.
Theory Comput. 15(1), 448 (2019). https://doi.org/10.1021/acs.jctc.8b00908

74. J. Behler, S. Lorenz, K. Reuter, J. Chem. Phys. 127(1), 014705 (2007). https://doi.org/10.
1063/1.2746232

75. J. Behler, J. Chem. Phys. 134(7), 074106 (2011). https://doi.org/10.1063/1.3553717
76. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011). https://doi.org/10.1039/C1CP21668F
77. E. Solak, R. Murray-smith, W.E. Leithead, D.J. Leith, C.E. Rasmussen, in Advances in Neural

Information Processing Systems 15 (MIT Press, Cambridge, 2003), pp. 1057–1064
78. S. Chmiela, Towards exact molecular dynamics simulations with invariant machine-learned

models. Ph.D. thesis, Technische Universität Berlin, 2019. https://doi.org/10.14279/
depositonce-8635

79. D. Pachauri, R. Kondor, V. Singh, in Advances in Neural Information Processing Systems
(2013), pp. 1860–1868

80. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput.
Phys. Commun. 180(11), 2175 (2009). https://doi.org/10.1016/j.cpc.2009.06.022

81. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.
1103/PhysRevLett.77.3865

82. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). https://doi.org/10.1103/
PhysRevLett.102.073005

83. J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T. Fermann,
B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen,
E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, T.D. Crawford,
WIREs Comput. Mol. Sci. 2(4), 556 (2012). https://doi.org/10.1002/wcms.93

84. R.M. Parrish, L.A. Burns, D.G.A. Smith, A.C. Simmonett, A.E. DePrince, E.G. Hohenstein,
U. Bozkaya, A.Y. Sokolov, R. Di Remigio, R.M. Richard, J.F. Gonthier, A.M. James, H.R.
McAlexander, A. Kumar, M. Saitow, X. Wang, B.P. Pritchard, P. Verma, H.F. Schaefer,
K. Patkowski, R.A. King, E.F. Valeev, F.A. Evangelista, J.M. Turney, T.D. Crawford, C.D.
Sherrill, J. Chem. Theory Comput. 13(7), 3185 (2017). https://doi.org/10.1021/acs.jctc.
7b00174

85. D.G.A. Smith, L.A. Burns, D.A. Sirianni, D.R. Nascimento, A. Kumar, A.M. James, J.B.
Schriber, T. Zhang, B. Zhang, A.S. Abbott, E.J. Berquist, M.H. Lechner, L.A. Cunha,
A.G. Heide, J.M. Waldrop, T.Y. Takeshita, A. Alenaizan, D. Neuhauser, R.A. King, A.C.
Simmonett, J.M. Turney, H.F. Schaefer, F.A. Evangelista, A.E. DePrince, T.D. Crawford,
K. Patkowski, C.D. Sherrill, J. Chem. Theory Comput. 14(7), 3504 (2018). https://doi.org/10.
1021/acs.jctc.8b00286

86. B. Anderson, T.S. Hy, R. Kondor (2019). Preprint. arXiv:1906.04015
87. M. Ceriotti, J. More, D.E. Manolopoulos, Comput. Phys. Commun. 185(3), 1019 (2014).

https://doi.org/10.1016/j.cpc.2013.10.027
88. S. Scheiner, Molecules 22(9), 1521 (2017). https://doi.org/10.3390/molecules22091521
89. P. Hobza, Int. J. Quantum Chem. 90(3), 1071 (2002). https://doi.org/10.1002/qua.10313
90. A. Karpfen, E.S. Kryachko, J. Phys. Chem. A 113(17), 5217 (2009). https://doi.org/10.1021/

jp9005923

https://doi.org/10.1007/978-3-030-28954-6
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1063/1.2746232
https://doi.org/10.1063/1.2746232
https://doi.org/10.1063/1.3553717
https://doi.org/10.1039/C1CP21668F
https://doi.org/10.14279/depositonce-8635
https://doi.org/10.14279/depositonce-8635
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1002/wcms.93
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1021/acs.jctc.8b00286
https://doi.org/10.1021/acs.jctc.8b00286
https://doi.org/10.1016/j.cpc.2013.10.027
https://doi.org/10.3390/molecules22091521
https://doi.org/10.1002/qua.10313
https://doi.org/10.1021/jp9005923
https://doi.org/10.1021/jp9005923

14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy 307

91. C. Wang, D. Danovich, S. Shaik, Y. Mo, J. Chem. Theory Comput. 13(4), 1626 (2017). https://
doi.org/10.1021/acs.jctc.6b01133

92. B. Kuhn, P. Mohr, M. Stahl, J. Med. Chem. 53(6), 2601 (2010). https://doi.org/10.1021/
jm100087s

93. A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi, G. Orlandi, J. Am. Chem. Soc. 126(10),
3234 (2004)

94. R. Deepak, R. Sankararamakrishnan, Biophys. J. 110(9), 1967 (2016). https://doi.org/10.
1016/j.bpj.2016.03.034

95. R. Sarkar, S.R. Reddy, S. Mahapatra, H. Köppel, Chem. Phys. 482, 39 (2017). https://doi.org/
10.1016/j.chemphys.2016.09.011

96. P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke,
Science 321(5889), 674 (2008). https://doi.org/10.1126/science.1161166

97. C. Romanescu, D.J. Harding, A. Fielicke, L.S. Wang, J. Chem. Phys. 137(1), 014317 (2012).
https://doi.org/10.1063/1.4732308

98. R.M. Balabin, Phys. Chem. Chem. Phys. 12, 5980 (2010). https://doi.org/10.1039/b924029b
99. J.A. Ruiz-Santoyo, J. Wilke, M. Wilke, J.T. Yi, D.W. Pratt, M. Schmitt, L. Álvarez Valtierra,

J. Chem. Phys. 144(4), 044303 (2016). https://doi.org/10.1063/1.4939796
100. J.A. Davies, L.E. Whalley, K.L. Reid, Phys. Chem. Chem. Phys. 19, 5051 (2017). https://doi.

org/10.1039/C6CP08132K
101. F. Gmerek, B. Stuhlmann, E. Pehlivanovic, M. Schmitt, J. Mol. Struct. 1143, 265 (2017).

https://doi.org/10.1016/j.molstruc.2017.04.092

https://doi.org/10.1021/acs.jctc.6b01133
https://doi.org/10.1021/acs.jctc.6b01133
https://doi.org/10.1021/jm100087s
https://doi.org/10.1021/jm100087s
https://doi.org/10.1016/j.bpj.2016.03.034
https://doi.org/10.1016/j.bpj.2016.03.034
https://doi.org/10.1016/j.chemphys.2016.09.011
https://doi.org/10.1016/j.chemphys.2016.09.011
https://doi.org/10.1126/science.1161166
https://doi.org/10.1063/1.4732308
https://doi.org/10.1039/b924029b
https://doi.org/10.1063/1.4939796
https://doi.org/10.1039/C6CP08132K
https://doi.org/10.1039/C6CP08132K
https://doi.org/10.1016/j.molstruc.2017.04.092

15Active Learning and Uncertainty Estimation

Alexander Shapeev, Konstantin Gubaev, Evgenii Tsymbalov,
and Evgeny Podryabinkin

Abstract

Active learning refers to collections of algorithms of systematically constructing
the training dataset. It is closely related to uncertainty estimation—we, generally,
do not need to train our model on samples on which our prediction already has
low uncertainty. This chapter reviews active learning algorithms in the context of
molecular modeling and illustrates their applications on practical problems.

15.1 Introduction

Active learning refers, generally, to a class of machine learning algorithms for
automatic assembling of the training set from a list of samples or a statistical
distribution. Their goal is to reduce the error compared to a simple (for instance,

A. Shapeev (�) · E. Podryabinkin
Skolkovo Institute of Science and Technology, Center for Energy Science and Technology,
Moscow, Russia
e-mail: a.shapeev@skoltech.ru

K. Gubaev
Skolkovo Institute of Science and Technology, Center for Energy Science and Technology,
Moscow, Russia

Present Address: Materials Science and Engineering, Delft University of Technology, Delft, The
Netherlands

E. Tsymbalov
Skolkovo Institute of Science and Technology, Center for Energy Science and Technology,
Moscow, Russia

Skolkovo Institute of Science and Technology, Center for Computational and Data-Intensive
Science and Engineering, Moscow, Russia

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_15

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_15&domain=pdf
mailto:a.shapeev@skoltech.ru
https://doi.org/10.1007/978-3-030-40245-7_15

310 A. Shapeev et al.

random) sampling. It is achieved by, roughly speaking, avoiding similar samples
in the training set—adding a similar configuration to the training set gives little
extra information to the model. Such algorithms are introduced and reviewed in
Sect. 15.2. In molecular modeling, however, active learning has found another
important application than merely reducing the error. In some applications, like
sampling molecular reactions paths, finding the relevant molecular configurations
is a part of the problem—in order to sample representative configurations we must
have an accurate approximation to the potential energy surface obtaining which
requires the set of representative configurations. Such a vicious circle can be broken
by active learning as will be explained in Sect. 15.3.

The scope of this chapter is limited to regression problems, although, tradition-
ally, active learning is applied to classification problems more often. For the ease of
exposition, we will often limit generality; e.g., we will assume a least-square loss
functional in the regression problem without emphasizing that this is not the only
option.

15.2 Active Selection fromGiven Samples: Uncertainty
Estimation

Suppose we have a way of finding a property f̄ (x) of a given molecular config-
uration x, which we may refer to simply as molecule. For instance, x could be
the geometry of the molecular configuration, expressed as a collection of the types
and coordinates of its atoms and f̄ (x) could be its energy. When finding such a
property is a computationally or experimentally hard problem, machine learning
can be applied in order to reduce the related costs.

Let us introduce the notations. Let our machine-learning model f = f (x; θ) be
a family of functions parametrized by a collection of parameters θ among which we
look for an approximant of f̄ (x). The configurations for which we need to predict
f̄ (x) are encoded by a probability distribution X from which possible x are sampled.
Our goal is to find θ that minimizes the mean-square error E

∣∣f (θ; x) − f̄ (x)
∣∣2,

where the expectation is taken with respect to x ∼ X. The machine-learning, or
data-driven, approach to that problem is to generate a training set {x1, . . . , xN },
compute the labels f̄ (x1), . . . , f̄ (xN), and find θ̄ minimizing the mean-square
training error

1

N

N∑
i=1

∣∣f (θ; xi)− f̄ (xi)
∣∣2. (15.1)

It is often a bad idea to take the training error (15.1) as an approximation of
the true error E

∣∣f (θ; x) − f̄ (x)
∣∣2, often called generalization error. Indeed, by

adding parameters one can often make the training error as small as one wishes,
but the generalization error will be large—this is known as overfitting. To reliably
estimate the generalization error, one needs to choose another set x′1, . . . , x′N , called

15 Active Learning and Uncertainty Estimation 311

test set, on which the error is measured. If x′j are chosen from the distribution X

independently from each other and the training set, then the test error,

1

N ′
N ′∑
j=1

∣∣f (θ; x′j)− f̄ (x′j)
∣∣2, (15.2)

is a good (unbiased) estimation of the generalization error.
Suppose that we already have a training set x1, . . . , xN and a trained model

f (θ̄; x), but we are additionally allowed to make evaluation of f̄ (xi) for a small
number1 of molecules xi . We can, of course, sample molecules randomly from
our distribution X and add them to the training set. Instead, we may decide to add
molecules systematically—the latter is called active learning. While deciding if xi
should be added we, of course, are not allowed to evaluate f̄ (xi), but we can use the
structure of our machine-learning model f (θ̄; x).

The problem of active learning can be reduced to the following problem: given
a new molecular structure x∗ sampled from X, decide whether to add x∗ to the
training set. This, in turn, can be reduced to the problem of uncertainty estimation
of the model. An uncertainty of (the prediction on x∗ of) the model f (θ; x) is a
function γ (x) that is expected to correlate with the generalization error, the larger
the error is, the higher γ (x) should be. In active learning one uses γ (x) to rank
molecular structures from the pool for the query strategy. The query strategy is
an algorithm that decides whether x∗ should be added to the training set. A query
strategy could simply be to add x∗ to the training set if γ (x∗) > γtsh for a selected
threshold γtsh or to add a certain number of configurations with the highest value of
γ . More complicated strategies can be employed, e.g., accounting for the differences
in the cost of obtaining f̄ (x∗).

It should be emphasized that designing a reliable uncertainty measure γ (x) is
often hard; one reason being that if we have a model f (x∗; θ) and be able to
reliably predict the error f (x∗; θ) − f̄ (x∗), then we could immediately create a
better model by subtracting the error from f (x∗; θ). For this reason, we can only
predict an absolute value of the error |f (x∗; θ)− f̄ (x∗)|, but not its sign.

One should be aware that actively selected training samples xN+1, xN+2, . . .

statistically differ from the distribution X. This could lead, for example, to an
increase in mean absolute generalization error while significantly decreasing the
maximal absolute generalization error, see, e.g., [10, 28]. This disturbing feature
of active learning could be desirable in some applications. For example, a critical
superconductivity temperature Tc of an “average” material is zero, however, when
searching for high-temperature superconductors we want accurate predictions for
those rare cases when Tc is large, rather than competing for a milli-Kelvin accuracy
of predicting Tc for an “average” material. Even if we were lucky to find those rare
cases, we would not know them in advance and therefore we cannot encode them
into the distribution X upon designing the search space. Below we briefly review
several common ways to defining the model uncertainly.

1Small because evaluation of f̄ (xi) is expensive.

312 A. Shapeev et al.

15.2.1 Predictive Variance for Gaussian Process Regression

This uncertainty estimate is defined in the context of Gaussian processes. In
Gaussian process regression it is assumed that the predicted function is Gaussian-
distributed and its variance given by some function k(x, x′) called kernel:

cov(f (x), f (x′)) = k(x, x′).

The kernel k(x, x′) defines how similar the molecules are, the larger k(x, x′) is the
more similar x and x′ are (up to physical symmetries). The examples of kernels
include SOAP (Smooth Overlap of Atomic Positions) [2], MBTR [16], BoB
[12], and the one used within the symmetrized gradient-domain machine learning
(sGDML) approach [4].

Suppose that for a certain molecule x∗ we need to predict the variance of obser-
vation of f (x∗) given training data. To that end, we denote by x := (x1, . . . , xN) the
collection of training data, by k(x, x) the matrix whose (i, j)-th element is k(xi, xj),
k(x∗, x) := (k(x∗, x1), . . . , k(x

∗, xN)
)
, y := (y1, . . . , yN).

One can then derive that the most probable guess for the underlying function
f̄ (x), in the sense of mathematical expectation, is2

f (θ, x) := k(x∗, x)k(x, x)−1y (15.3)

and its variance is

γpv(x) = k(x∗, x∗)− k(x∗, x) k(x, x)−1k(x, x∗), (15.4)

which is called the predictive variance. Typically, if a kernel represents well the
underlying law (distribution) that the data follow, the predictive variance is a good
estimate of the actual generalization error. The corresponding query strategy can
assume that the higher γpv(x

∗) is, the more useful x∗ is. A detailed exposition of
Gaussian processes can be found in [31].

15.2.2 Query by Committee

In the context of the previous subsection, if we sampled independent functions
f1, . . . , fM with mean (15.3) and variance (15.4), then

γqc(x) = 1

M − 1

M∑
m=1

(
fm(x)− 1

M

M∑
�=1

f�(x)

)2

(15.5)

2Here we have implicitly assumed that the distribution of f (θ, x) has zero mean.

15 Active Learning and Uncertainty Estimation 313

is an unbiased estimate of the predictive variance (15.4). This fact is often used in
practice: instead of fitting one single model f to the training data, an ensemble of
models f1, . . . , fM is fitted. One then uses (15.5) as the uncertainty estimate.

In neural networks one can start with different realizations of random initial
parameters and do the fitting. The fitting procedure would stop (if early stopping
is used) near a random local minimum of the loss function. There are many works
aimed at further diversification of the ensemble f1, . . . , fM—models are made
different from each other structurally (using different architectures [27] and models
[20]), use different data subsets (bagging) [41]. This approach is being actively
used for molecular modeling [1, 36] due to the simplicity of both the method
and its implementation. The main disadvantage of this approach is an increased
training time: using M model trained independently increases the time required for
training M times and also requires M times more memory to store weights. This
leads to a significant drop of the performance for the modern large neural network
architectures. One of the options for speeding up this approach in case of neural
networks is to use weights from the previous training steps (snapshot ensemble
[15]) but this reduces the diversification of models and imposes additional costs
on the model weights storage.

15.2.3 D-Optimality

The next uncertainty estimator considered in this chapter is D-optimality [34]. Here
we present it in a way it was introduced in molecular modeling [28], which is
slightly different from the conventional way, as will be discussed below.

D-optimality is easiest to understand in the context of linear regression,

f (x; θ) =
L∑

�=1

θ�B�(x),

where B�(x) is a set of basis functions. Suppose that each training sample yi is given
with some normally distributed noise εi :

yi = f̄ (xi)+ εi .

Assuming the same number of training data points as the number of basis functions,
we can solve f (xi; θ) = yi for θ and express f (x; θ) through f̄ (xi)+ εi . The noise
of the prediction of f (x) will hence be

f (x; θ)− f̄ (x) = (B1(x) . . . BL(x)
)
⎛
⎜⎝

B1(x1) . . . BL(x1)
...

. . .
...

B1(xL) . . . BL(xL)

⎞
⎟⎠
−1

︸ ︷︷ ︸
=:B−1

⎛
⎝ ε1

. . .

εL

⎞
⎠ .

314 A. Shapeev et al.

Assuming εi are independent and identically distributed with variance 1 then the
variance of f (x; θ)− f̄ (x) would be

L∑
i=1

γ 2
i ,

where γi is the ith element of the following vector:

γ = (B1(x) . . . BL(x)
)

B−1. (15.6)

In practice, instead of this expression, the uncertainty estimate is defined as

γdo := max
i
|γi |.

The query strategy based on γdo is known as a D-optimality criteria. The reason for
calling it D-optimality is that γdo is the maximal value by which the determinant
det(B) can increase (by absolute value) if we try changing one of its rows by(
B1(x) . . . BL(x)

)
.

In this implementation of D-optimality, we have an active set of exactly L

configurations—those that correspond to the L rows of the square matrix B. The
training set could be larger and consist of all the configurations that ever were in
the active set. This is slightly different from the conventional way of implementing
D-optimality which allows for non-square matrices B by considering det

(
BT B

)
.

In our learning-on-the-fly molecular simulations, Sect. 15.3, our query strategy
is to add a configuration x∗ to the active set if |γdo(x

∗)| > γtsh for some γtsh =
1 + δtsh > 1 and remove the configuration corresponding to the maximal γi from
(15.6) from the active set. As mentioned, when following this strategy, det(B)

always increases by at least 1 + δtsh when a new configuration is added, thus
guaranteeing that only a limited number of configuration will be added in practice
to the training set.3

To further motivate D-optimality, we note that we can express θ =
B−1(y1, . . . , yL)

T and hence for any configuration x we have

f (x; θ) = (B1(x) . . . BL(x)
) · (θ1, . . . , θL

) =∑
i

γiyi .

Hence not adding x to the training set implies that f (x; θ) is predicted as a linear
combination of the labels yi with coefficients that are less than γtsh = 1 + δtsh by
absolute value. This is a way to mathematically formalize the statement that if x

3To be precise, it could be mathematically proved that only a limited number configurations will
be added to the training set if the configurations are sampled from a distribution with a compact
support.

15 Active Learning and Uncertainty Estimation 315

is not added to the training set then its prediction is an interpolation, or at most an
extrapolation by δtsh.

Finally, to give an information-theoretic justification to D-optimality, let us
consider the vector

(
B1(x) . . . BL(x)

)
as a descriptor of a configuration x. Then

one can analytically compute the L-dimensional volume of the region formed by
configurations x for which the prediction of f (x; θ) involves only interpolation.
This volume is equal to 2L|det(B)|, which justifies us introducing the information
the training set has for making predictions for other configurations as log(|det(B)|).
(The training set-independent factor of 2L is safely ignored.) Hence another way to
interpret D-optimality is to say that it adds those configurations to the training set
that increase the information contained in the training set by at least log(1+ δtsh).

15.2.4 BayesianMethods for Neural Networks

In the context of neural network-based models, a typical approach to uncertainty
estimation is often associated with Bayesian neural networks [3, 18]. In Bayesian
neural networks, weights are represented as random variables with an explicitly
defined distribution (prior), and the output consists of both predictive mean and
predictive variance, as in Gaussian processes. In some cases, it is possible to
explicitly express the variance of the model output [32] thus producing an
uncertainty estimate γ in the spirit of Sect. 15.2.1. Alternatively, this framework
allows one to rapidly generate an ensemble of models on-the-fly, producing an
uncertainty estimate in the spirit of Sect. 15.2.2. Unfortunately, the straightforward
use of the Bayesian approach for the neural networks is very costly in terms of
computational resources due to a large number of neural network parameters and
large amounts of data often accompanying the use of this type of models. Most of the
works in this field are aimed at reducing this complexity and theoretically justifying
the existing heuristic methods for training models from the Bayesian point of view
[22, 24, 25, 38].

To the best of our knowledge, pure Bayesian neural networks have not been
applied to the problems of computational materials science. Implicitly, however,
researchers may use dropout [14, 37]—random omission of the weights in fully
connected layers of the neural network. First introduced as an empirical method to
fight the correlation of weights of a neural network, dropout found its theoretical
justification as stochastic averaging over an ensemble of models [37] or realization
of a Bayesian neural network with Bernoulli weights distribution [8]. The idea of
the use of dropout not only at the training stage but also at the inference stage
was a breakthrough; this approach appeared recently in the works of Gal [7],
where uncertainty estimates based on the Bayesian approach and the dropout were
proposed and analyzed. This approach is attractive due to the simplicity of its
implementation and the possibility of application to the already trained models
and established architectures. Dropout-based uncertainty estimates are often less
computationally expensive compared to the Bayesian analogues. However, most
of the works in this direction focus on the classification task [9, 17] rather the
regression.

316 A. Shapeev et al.

15.2.4.1 Example of Active Learning with SchNet
To demonstrate the power of a neural network-based approach to active learning,
we conducted a series of numerical experiments with a state-of-the-art neural
network architecture in the field of chemoinformatics—SchNet [33]. This network
takes information about an organic molecule as input, and, after preprocessing and
intricate training procedure, outputs a property of the molecule. Despite its complex
structure, SchNet contains two consecutive fully connected layers, therefore it is
possible to use a dropout layer between them.

We tested our approach on the problem of predicting the molecular internal
energy at 0 K from the QM9 dataset [30]. We used the TensorFlow implementation
of SchNet with the same architecture as in the original paper [33] except for
an increased size of hidden layers (from 64 and 32 units to 256 and 128 units,
respectively) and a dropout layer placed between them. It is expected that wider
hidden layers lead to a better uncertainty estimation, as the infinite-width layer
will theoretically result in an unbiased estimate of both mean and variance for
the corresponding Bayesian neural network [7]. This layer was turned on during
inference only.

We compare the basic dropout-based approach for uncertainty estimation
(MCDUE, as in [39]), its improved version that uses Gaussian process (NN+GP, as
in [40]), and random sampling. In our experiment, we separate the whole dataset
of 133,885 molecules into the initial set of 10,000 molecules, the test set of 5000
molecules, and the rest of the data allocated as the pool. On each active learning
iteration, we perform 100,000 training epochs and then calculate the uncertainty
estimates using either MCDUE or NN+GP approach. We then select 2000 molecules
with the highest uncertainty from the pool, add them to the training set, and perform
another active learning iteration.

The results are shown in Fig. 15.1. Both MCDUE and NN+GP demonstrate
steady 15% accuracy increase in terms of mean absolute test error. This might not

Fig. 15.1 The training curve
for the active learning
scenario: starting from 10,000
random molecules we pick
2000 based on the uncertainty
estimate. Dropout-based
algorithms result in the 15%
decrease in mean absolute
test error compared to
random sampling. The results
are averaged over three
independent runs with
random choices of the
starting 10,000 molecules

15 Active Learning and Uncertainty Estimation 317

seem substantial, however, it may be significant in terms of the time savings for the
computationally expensive quantum-mechanical calculations. For example, to reach
the error of 1 kcal/mol starting from the SchNet trained on 10,000 molecules, one
need to additionally sample 15,000 molecules in case of random sampling or just
10,000 molecules using the NN+GP uncertainty estimation procedure.

15.3 Learning-On-the-Fly

In molecular simulations active learning approaches are used to solve a more
important problem than merely reducing prediction errors. Active learning can
ensure reliability of a molecular simulation, as will be illustrated in this section.
In the majority of such applications the molecular configurations to be labeled are
sampled by a generating algorithm which typically takes the labels of the previously
generated configurations as an input. The typical examples are molecular dynamics
(MD), crystal structure prediction, Monte-Carlo methods, structure relaxation, etc.
In these cases one deals with the stream of molecular configurations x1, . . . , xi
rather than a pool of them and the next configurations xi+1, xi+2, . . . are typically
unknown at the ith step. At some step i of such process the configuration xi can
significantly differ from those in the training set. Since machine-learning methods
are typically inaccurate outside the training domain, calculation of the forces may
have a poor accuracy due to extrapolation. At the same time, incorrect values of
the forces can lead to failure of the simulation process, because they are used as an
input for generation of the next configuration xi+1. This issue makes the simulation
process non-reliable.

Thus, to train a reliable machine-learning model one needs to have a set of
relevant configurations sampled from the stream xi+1, xi+2, . . . by a generating
algorithm. On the other hand, to generate a stream of configurations, the generating
algorithm requires a well-trained machine-learning model. Breaking this vicious
circle can be done by learning-on-the-fly. Here we present an adaptation of
active learning for learning-on-the-fly. All the examples involve the moment tensor
potentials [35]—a particular form of machine-learning potentials, and the D-
optimality approach [11, 28].

15.3.1 Active Learning in Molecular Dynamics

Algorithmically, an MD simulation is numerical integration of Newton’s equation
of motion, which is done in two alternating steps:

1. for a given configuration, forces acting on atoms are calculated;
2. for given forces, the equation of motion is numerically integrated and new

atomic positions and velocities are calculated, thereby the next configuration is
generated.

318 A. Shapeev et al.

To calculate forces for a given configuration one needs an interatomic interaction
model. Traditionally, either an empirical interatomic potential or a quantum-
mechanical model is used for these purposes. Empirical potentials are typically
computationally efficient but often have insufficient accuracy for a quantitative
prediction; quantum-mechanical models, on the contrary, can make a quantitative
prediction but are computationally very expensive. Machine-learning potentials
come to rescue—they combine the advantages of the two aforementioned models:
the accuracy and efficiency.

Machine-learning potentials are fitted to quantum-mechanical energy and
forces—the derivatives of the energy with respect to atomic positions—on
the training set of configurations. To avoid extrapolation during MD, these
configurations should be sampled from a region in the configurational space
accessible to the MD trajectories. But to sample an MD trajectory, a reliable
potential is required for an MD algorithm.

The simplest learning-on-the-fly method for sampling training configurations
while exploring a potential energy surface as proposed in [19] (see also [5, 6])
is to add configurations to the training set regularly, with a certain frequency.
For instance, during MD for crystalline Si [19], all the configurations from the
first 1000 MD steps were added to the training set and then one configuration
was added every 30 time steps. The speed-up of this approach, in the limit of
long molecular-dynamics trajectories is a factor of 30. This strategy is somewhat
analogous to random sampling: in an ideal situation, the configurations in the
training set and the configurations in molecular dynamics are samples drawn from
the same (Boltzmann) distribution. This learning strategy does not guarantee that
extrapolation is completely avoided—30 time steps may be enough for a trajectory
to completely escape the region spanned by the training set, e.g., where the distances
between atoms become unphysically small which a potential was not trained for.
This could be mitigated by learning more often which would, however, reduce
computational efficiency.

As it was shown in [28] the use of active learning offers an elegant solution to
the problem of extrapolation. The active learning algorithm detects and learns only
the extrapolative configurations—see the workflow diagram in Fig. 15.2. Namely,
the configuration x is considered extrapolative if the prediction uncertainty exceeds
some threshold value: γ (x) > γtsh. At each MD time step, prior to calculation
of the forces, the configuration is tested and if it appears extrapolative then the
corresponding quantum-mechanical energy is calculated and this configuration is
learned by the machine-learning potential.

Thus, the training domain is expanded automatically by adding only relevant
configurations sampled from an MD trajectory. This ensures reliable prediction
of the forces and keeps the MD trajectory within the relevant domain of the
configurational space, as illustrated by the following example. In [28] we studied
the reliability of an MD process with three potentials trained in a different manner.
For testing we take an NVT ensemble of 128 atoms of BCC-lithium at the
temperature T = 300 K. We ran a quantum-mechanical MD and added the first
1000 configurations to the training set of all the three potentials. The first potential

15 Active Learning and Uncertainty Estimation 319

Fig. 15.2 Workflow in
actively training a potential
on-the-fly. An active-learning
scheme gets a molecular
configuration as an input and
returns as output its energy,
forces, and stresses, by
possibly retraining the
interatomic potential

Ac�ve
learning

yes no

Molecular Dynamics

en
er

gy
, f

or
ce

s

Machine
learning
poten�al

co
nfi

gu
ra

�o
n

Large
uncertainty?

Get quantum-mechanical data

was trained passively on these 1000 configurations. The second one was trained
passively on-the-fly by adding one configuration every 100 time steps. The third
potential was trained actively on-the-fly from scratch. In the course of an MD
simulation we measured the time until the minimal interatomic distance becomes
smaller than 1.5 Å—this was an indicator of MD failure. The distance of 1.5 Å was
chosen as a safe threshold to avoid false positives in determining failure—this is
about 1.5 times smaller than the typical minimal distance seen in a simulation at
T = 300 K [28]. Figure 15.3 illustrates the average time until failure and the
number of quantum-mechanical calculations made during an MD. In the test the
third potential, the one trained on-the-fly, was completely robust in contrast to the
other two training strategies. This illustrates how active learning makes an MD with
a machine-learning potential reliable.

In addition to ensuring reliability of an MD simulation, the active learning-
on-the-fly algorithm is very computationally efficient. Indeed, the overhead of
evaluating the uncertainty γ (x) in the above example is less than the complexity
of forces computation, and the main computational efforts are spent on quantum-
mechanical calculations. The frequency of the latter decreases as the MD simulation
time advances. This is seen well in another computational experiment in which the
actively learning potential starts learning from an empty training set, the results are
shown in Fig. 15.4.

As one can see from Fig. 15.4, most of quantum-mechanical simulations take
place at the initial stage of MD. When the region spanned by the MD trajectory in
the configurational space is well-explored, the extrapolative configurations appear
very rarely. Therefore a practical way to reduce the amount of quantum-mechanical
calculations is to pre-explore the relevant region in configurational space with
another model of interatomic interaction. Such model can be from the class
of empirical potentials or a quantum-mechanical model with low accuracy but
computationally cheap. The purpose of this model is to sample unlabeled config-
urations to a pool for initial pre-training of the potential using the active learning
approach. The energies and forces for the pre-training set are still computed with a

320 A. Shapeev et al.

Fig. 15.3 Comparison of ab initio molecular dynamics (AIMD) with no-learning MD, classical
learning-on-the-fly (LOTF) inspired by [19], and active LOTF. The no-learning and classical LOTF
MD are not completely reliable: on average every 15 ps the no-learning MD fails, i.e., escapes into
an unphysical region in the phase space. The classical LOTF makes this ten times more reliable
(failure time of 150 ps) at the expense of extra 1500 quantum-mechanical calculations. In contrast,
the active LOTF makes MD completely reliable (i.e., failures are not observed) at the cost of only
50 quantum-mechanical calculations as measured over the first 0.5 μs of simulation time. Reprinted
from [28], with permission from Elsevier

0

1000

2000

3000

4000
AIMD

0 5000 10000 15000 20000 25000 30000

QM calcs

MD steps

= 1

= 1.01

= 1.1

= 2

= 11

Fig. 15.4 Number of quantum-mechanical calculations in a learning-on-the-fly MD as a function
of the MD time step with different thresholds γtsh (first 30 ps). Reprinted from [28], with
permission from Elsevier

quantum-mechanical model, therefore the cheap model is only required to produce
geometrically reasonable configurations. After pre-training, active learning-on-the-
fly will still add configurations to the training set, however, the total number of
configurations will be less—see Fig. 15.5.

15 Active Learning and Uncertainty Estimation 321

0

1000

2000

3000

4000

5000

6000

0 20000 40000 60000 80000 100000

Number of QM
calcula�ons

MD steps

 abini�o MD

 LOTF from scratch

 LOTF with pre-training

Fig. 15.5 Number of quantum-mechanical calculations in a learning-on-the-fly MD as a function
of the MD time step. The blue curve corresponds to learning “from scratch,” the red curve
corresponds to learning from the pre-trained potential

The machine-learning potential learning-on-the-fly can be considered, effec-
tively, as an independent model of interatomic interaction from an algorithmic
point of view, as seen on the diagram in Fig. 15.2. Indeed, it takes a molecular
configuration as input and returns energy and forces as the output—just like a
quantum-mechanical model, for example. It should be noted that the model itself
slightly changes during an MD run—it is undesired if one needs, for instance,
the exact energy conservation, but it does not appear critical for an MD with
a thermostat. It may cause more trouble for structure relaxation: even a slight
change in potential energy may trick a minimization algorithm that it found a local
minimum. Therefore for structure relaxation the procedure needs to be slightly
modified as explained in the next section.

15.3.2 Active Learning in Crystal Structure Prediction

Crystal structure prediction is aimed at searching for the most stable structures for a
given atomic composition. It is typically done at zero Kelvin temperature, at which
the problem is reduced to finding of the global minimum, or several deepest minima,
on the potential energy surface. Methods for crystal structure prediction involve
two main components: an algorithm for sampling the configurational space and the
interatomic interaction model. The first one is used for exploration and efficient
sampling of the potential energy surface. This algorithm uses the interatomic
interaction model to calculate the energy and also to locate the local minima. The
examples of sampling algorithms include evolutionary algorithms, particle swarm

322 A. Shapeev et al.

optimization, metadynamics, and minima hopping; a detailed survey on crystal
structure prediction methods can be found in [26]. For the interatomic interaction
model, the density functional theory (DFT) is typically used, since it is able to
provide the sufficient quantitative accuracy for predicting the correct structures.

Practical crystal structure prediction involves evaluation of energies (sometimes
with forces and stresses) for extremely large amount of different structures that
typically takes more than 99.99% of the total computational time. This fact
motivates application of machine-learning to crystal structure prediction.

Applying machine-learning potentials to crystal structure prediction yields sim-
ilar problems as in MD: a potential should predict properties of configurations not
present in a training set, with a chance of extrapolation resulting in an inaccurate
prediction for a given structure. Similarly to the case of MD, using active learning
makes it possible to perform a simulation in which evaluation of new structures and
their sampling for the training set is done simultaneously, i.e., a machine-learning
model is learned on-the-fly.

Active learning in crystal structure prediction is used similarly as in MD (see
Fig. 15.2), with the molecular dynamics “driver” changed to the crystal structure
generation and relaxation “driver.” We thus replace computationally expensive DFT
with a learning-on-the-fly interatomic potential, whereas the sampling algorithm is
kept as is. At the same time, in crystal structure prediction additional difficulties
arise, not typical for MD. First of all, the structures are searched for over a much
larger domain of configuration space than is explored during an MD. Indeed,
running an MD at some temperature without phase transitions would result in
configurations of the same composition and the same topology, only perturbed by
temperature fluctuations. On the contrary, in the present context we need to calculate
the properties of many structures that differ in both composition and geometry.
Therefore, to efficiently exploit the active learning approach, a scheme different
from the one described in Sect. 15.3.1 is used, as explained below.

Our active learning algorithm is tested together with two sampling algorithms:
in [29] with the evolutionary method USPEX [21], and in [11] with simply
generating a pool of structures to reproduce a diverse set of geometries and chemical
compositions typical for most of alloys [13, 23]. For the ease of exposition of
our active learning algorithm, we will consider only the latter structure sampling
strategy. Here relaxation produces a sequence of structures with stresses and
forces decreasing in absolute value and ending in a structure with zero forces and
stresses (equilibrium structure). The process of relaxation of a configuration x (also
called equilibration or structure optimization), essentially, consists of repeating the
following two steps:

1. for a given configuration xi (x0 ≡ x) the energy gradients (forces acting on atoms
and stresses acting on the lattice) are calculated;

2. based on the gradients, a new configuration xi+1 with lower energy is derived
from the configuration xi by slight displacements of atoms and a slight lattice
deformation.

15 Active Learning and Uncertainty Estimation 323

Forma�on energy,
meV/atom

-0.07 -0.08 -0.09

1) Candidate
structure 2) Intermediate structures

(Relaxa�on trajectory)

3) Equilibrium structure
(forces ≈ 0, strains ≈ 0)

Cu Cu

Cu Cu

Pd Pd

Cu Cu

Cu Cu

Pd Pd

Cu Cu

CuCu

Pd
Pd

= changing of
atomic posi�ons
and la�ce cell

Fig. 15.6 Illustration of the relaxation trajectory concept: the lattice vectors and positions of the
atoms are gradually changed to minimize the formation energy of the structure. The equilibrium
structures are then added to a formation energy vs concentration graph based on which the convex
hull is constructed. Reprinted from [10], with permission from Elsevier

The initial structures (before relaxation) are sometimes called the candidate
structures. Similarly to the MD case, while performing relaxation of some candidate
structure, we encounter new configurations (see Fig. 15.6) forming a relaxation
trajectory ending in some equilibrated structure.

We demonstrate our active learning approach based on an example of application
of active learning to the search for stable ternary Al-Ni-Ti alloys [11]. We
choose a set of candidate structures containing 377,000 structures with different
types of lattices and populated with different types of atoms (up to 12 atoms
in the unit cell). To pre-train the potential we randomly sampled from candidate
structures few hundreds of configurations for the training set. Once the potential is
trained, we perform relaxation of each candidate structure with an active learning
approach, where each relaxation can have two outcomes: it can either be finished
successfully resulting in an equilibrated structure, or it can be terminated if an
extrapolative configuration occurs (see Fig. 15.7). We do not immediately train on
each extrapolative configuration occurred in some particular relaxation trajectory:

324 A. Shapeev et al.

Off-equilibrium
structures

Training
domain

PES

MTP
Extrapola�on!

Relaxa�on path

Poten�al
energy

Equilibrated (relaxed)
structures

Fig. 15.7 While performing structure relaxation, an extrapolative configuration occurs when the
potential, MTP [11], fails to approximate the potential energy surface (PES) outside the training
domain. Reprinted from [10], with permission from Elsevier

there can be hundreds of thousands of relaxation trajectories, and selecting even
one configuration from each trajectory would be computationally infeasible. Thus,
we use an algorithm of selecting an optimal subset for training from a pool of
configurations, exactly in the framework introduced in Sect. 15.2, with a size of
such a subset being up to few hundred. Once it has been calculated with DFT, the
selected subset is added to the training set. After retraining on the new data, the
machine-learning potential can successfully relax more structures, as its training set
is larger and more diverse (see Fig. 15.8). We then perform the next iteration of the
algorithm: relax the candidate structures with the next-generation potential. Some
relaxation trajectories will still contain extrapolative configurations, from which we
again shortlist the configurations to enter the next-generation training set. After
several iterations of:

• relaxing the candidate structures,
• selecting the optimal subset of extrapolative structures to be calculated with DFT

and added to the training set, and
• retraining of the potential,

15 Active Learning and Uncertainty Estimation 325

Off-equilibrium
structures

Training
domain

Relaxa�on path

Poten�al
energy

PES

MTP

Training set
extension

Equilibrated (relaxed)
structures

Fig. 15.8 After retraining on extrapolative configuration (extension of the training domain) the
potential can provide a reliable prediction. Reprinted from [10], with permission from Elsevier

we obtain a training set of 2400 configurations formed by the active learning. The
root-mean-square error on this training set is σ := 27 meV/atom. Once trained on
this training set, the potential is able to relax all the candidate structures without
exceeding the threshold γtsh for extrapolation grade. Once all the structures are
relaxed, we calculate their energies and select the most stable structures, which
are put on a convex hull, sometimes informally called a zero-temperature phase
diagram. If we had the exact values of energies, the task would have already been
solved at this stage, as we need nothing more. However, as any potential has
finite accuracy, the obtained convex hull is not accurate—it may contain structures
with non-minimal energy and, conversely, some minimal-energy structures may be
missing. We therefore perform an additional procedure to make the convex hull
more accurate.

After constructing a convex hull based on the approximate energies, we assume
that all the stable structures are contained within a 4σ interval from the lowest
energy level (convex hull level). Following this assumption, we throw out all the
structures not falling into this range—this gives us the new region for the search for
the stable structures. We call this process screening (see Fig. 15.9 for a graphical
illustration of screening for a binary alloy case). Thus, after the first screening,
62,000 structures remained. We then start the next stage of convex hull constructing:
we repeat the procedure from scratch, but with smaller amount of candidate

326 A. Shapeev et al.

Fig. 15.9 Illustration of the
screening concept on a
different, binary Ag-Pd
system: only the structures
with formation energies lying
within 4σ = 16 meV/atom
from the convex hull level are
selected, the others are
thrown out

- Convex hull structures

- Structures close to the convex hull

- Thrown out structures

structures—only those 62,000 which energies are in 4σ interval from the previous
convex hull level. These second-stage candidates are already equilibrated during
the first stage of relaxation, i.e., their lattices are less deformed and their atoms are
less displaced, compared to the initial pool of candidate structures. Consequently,
once the training set is formed by active learning (976 configurations), the potential
exhibits lower approximation errors (σ = 9 meV/atom root-mean-square training
error), compared to the first stage of relaxation, as the same functional form
incorporated in the potential is applied to approximate the data (energies, forces,
and stresses) in a smaller and less diverse domain of configurations space. Once the
second generation of candidate structures is relaxed, we again construct a convex
hull with the approximate energies, narrowing down the list of structures to a
4σ = 36 meV/atom interval from the convex hull level.

After the second screening only 7000 structures remained, which were then
relaxed with DFT to obtain the exact energies. This way, applying a machine-
learning potential allowed us to relax 377,000 structures doing only 7000 actual
DFT relaxations (starting from already pre-equilibrated structures, which is much
faster), providing time savings of two orders of magnitude. If we were interested
in constructing a convex hull with the 9 meV/atom error, we could have done
only about 3400 single-point VASP calculations (time savings of three orders of
magnitude), which would consume 90% of the computational time, while the rest
10% would be spent on fitting and relaxation with a machine-learning potential. The
details of the proposed methodology are provided in [11].

The scheme of using active learning, described in this section, can be applied not
only to the search of stable metallic alloys, but to the search of other materials, e.g.,
non-periodic organic molecules. The benefit it provides comes from the fact that the
majority of costly quantum-mechanical calculations are replaced by much faster
calculations, which in turn provide sufficient accuracy for successful screening
of candidate structures. The evaluation of relatively small amount of shortlisted
structures can be done with a quantum-mechanical model to obtain the exact values
of the energies.

15 Active Learning and Uncertainty Estimation 327

15.4 Conclusion

One of the major problems in molecular modeling solved by machine learning
is the reduction of the amount of expensive quantum-mechanical calculations.
When the molecules of interest, or more generally, atomistic configurations, are
known in advance, active learning offers a way to reduce the number of quantum-
mechanical calculations by picking the most informative molecules to be evaluated
with quantum mechanics. In this chapter we have described four active learning
methods: predictive variance in the framework of Gaussian processes, query by
committee, D-optimality, and Bayesian methods for neural networks.

In some applications, for instance, discovery of stable crystal structures, explo-
ration and learning of the potential energy surface has to be done simultaneously.
Active learning-on-the-fly becomes indeed indispensable for this purpose as was
demonstrated on the practical examples of molecular dynamics and crystal structure
prediction.

Acknowledgments The work was supported by the Skoltech NGP Program No. 2016-7/NGP
(a Skoltech-MIT joint project). The authors acknowledge the usage of the Skoltech CEST cluster
(Magnus) from Prof. Shapeev’s group for obtaining the results presented in this work.

References

1. N. Artrith, J. Behler, High-dimensional neural network potentials for metal surfaces: a
prototype study for copper. Phys. Rev. B 85(4), 045439 (2012)

2. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B
87(18), 184115 (2013)

3. C.M. Bishop, Bayesian neural networks. J. Braz. Comput. Soc. 4(1), 61–68 (1997)
4. S. Chmiela, H.E. Sauceda, K.-R. Muller, A. Tkatchenko, Towards exact molecular dynamics

simulations with machine-learned force fields. Nat. Commun. 9(1), 1–10 (2018)
5. G. Csányi, T. Albaret, M. Payne, A. De Vita, Learn on the fly: a hybrid classical and quantum-

mechanical molecular dynamics simulation. Phys. Rev. Lett. 93(17), 175503 (2004)
6. A. De Vita, R. Car, A novel scheme for accurate MD simulations of large systems, in MRS

Proceedings, vol. 491 (Cambridge University Press, Cambridge, 1997), p. 473
7. Y. Gal, Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016
8. Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: representing model uncertainty

in deep learning, in International Conference on Machine Learning (2016), pp. 1050–1059
9. Y. Gal, R. Islam, Z. Ghahramani, Deep Bayesian active learning with image data. in

Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017),
pp. 1183–1192. www.JMLR.org

10. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties:
locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)

11. K. Gubaev, E.V. Podryabinkin, G.L. Hart, A.V. Shapeev, Accelerating high-throughput
searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci.
156, 148–156 (2019)

12. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. Von Lilienfeld, K.-R. Muller,
A. Tkatchenko, Machine learning predictions of molecular properties: accurate many-body
potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6(12), 2326–2331 (2015)

www.JMLR.org

328 A. Shapeev et al.

13. G.L.W. Hart, L.J. Nelson, R.W. Forcade, Generating derivative structures at a fixed concentra-
tion. Comput. Mater. Sci. 59, 101–107 (2012)

14. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural
networks by preventing co-adaptation of feature detectors (2012). Preprint. arXiv:1207.0580

15. G. Huang, Y. Li, G. Pleiss, Z. Liu, J.E. Hopcroft, K.Q. Weinberger, Snapshot ensembles: Train
1, get M for free. Paper presented at the 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings, 2017.
https://openreview.net

16. H. Huo, M. Rupp, Unified representation for machine learning of molecules and crystals for
machine learning (2017). Preprint. arXiv:1704.06439

17. M. Kampffmeyer, A.-B. Salberg, R. Jenssen, Semantic segmentation of small objects and
modeling of uncertainty in urban remote sensing images using deep convolutional neural
networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2016), pp. 1–9

18. I. Kononenko, Bayesian neural networks. Biol. Cybern. 61(5), 361–370 (1989)
19. Z. Li, J.R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of

quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015)
20. Z. Lu, J. Bongard, Exploiting multiple classifier types with active learning, in Proceedings

of the 11th Annual Conference on Genetic and Evolutionary Computation (ACM, New York,
2009), pp. 1905–1906

21. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, New developments in evolutionary structure
prediction algorithm USPEX. Comput. Phys. Commun. 184(4), 1172–1182 (2013)

22. A.G. de G. Matthews, J. Hron, M. Rowland, R.E. Turner, Z. Ghahra-mani, Gaussian process
behaviour in wide deep neural networks. Paper presented at the 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, Canada, 30 April–3 May 2018. Confer-
ence Track Proceedings, 2018. https://openreview.net

23. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, S. Curtarolo, The AFLOW
library of crystallographic prototypes: part 1. Comput. Mater. Sci. 136:S1–S828 (2017)

24. D. Molchanov, A. Ashukha, D. Vetrov, Variational dropout sparsifies deep neural networks,
in Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017),
pp. 2498–2507. www.JMLR.org

25. K. Neklyudov, D. Molchanov, A. Ashukha, D.P. Vetrov, Structured Bayesian pruning via log-
normal multiplicative noise, in Advances in Neural Information Processing Systems (2017),
pp. 6775–6784

26. A. Oganov (ed.), Modern Methods of Crystal Structure Prediction (Wiley-VCH, Weinheim,
2010)

27. D.W. Opitz, J.W. Shavlik, Generating accurate and diverse members of a neural-network
ensemble, in Advances in Neural Information Processing Systems (1996), pp. 535–541

28. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic
potentials. Comput. Mater. Sci. 140, 171–180 (2017)

29. E. Podryabinkin, E. Tikhonov, A. Shapeev, A. Oganov, Accelerating crystal structure
prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99(6),
064114 (2019)

30. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Quantum chemistry structures and
properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

31. C.E. Rasmussen, Gaussian processes in machine learning, in Advanced Lectures on Machine
Learning (Springer, Berlin, 2004), pp. 63–71

32. M.D. Richard, R.P. Lippmann, Neural network classifiers estimate Bayesian a posteriori
probabilities. Neural Comput. 3(4), 461–483 (1991)

33. K. Schütt, P.-J. Kindermans, H.E.S. Felix, S. Chmiela, A. Tkatchenko, K.-R. Müller, SchNet: a
continuous-filter convolutional neural network for modeling quantum interactions, in Advances
in Neural Information Processing Systems (2017), pp. 991–1001

34. B. Settles, Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

https://openreview.net
https://openreview.net
www.JMLR.org

15 Active Learning and Uncertainty Estimation 329

35. A.V. Shapeev, Moment tensor potentials: a class of systematically improvable interatomic
potentials. Multiscale Model. Simul. 14(3), 1153–1173 (2016)

36. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A.E. Roitberg, Less is more: sampling chemical
space with active learning. J. Chem. Phys. 148(24), 241733 (2018)

37. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

38. M. Teye, H. Azizpour, K. Smith, Bayesian uncertainty estimation for batch normalized deep
networks, ed. by J.G. Dy, A. Krause, in Proceedings of the 35th International Conference on
Machine Learning, ICML2018, Stockholm, Sweden, 10–15 July 2018, vol. 80. Proceedings of
Machine Learning Research PMLR (2018), pp. 4914–4923

39. E. Tsymbalov, M. Panov, A. Shapeev, Dropout-based active learning for regression, in
International Conference on Analysis of Images, Social Networks and Texts (Springer, Cham,
2018), pp. 247–258

40. E. Tsymbalov, S. Makarychev, A. Shapeev, M. Panov, Deeper connections between neural net-
works and Gaussian processes speed-up active learning, in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. Main track (2019), pp. 3599–3605

41. Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all. Artif.
Intell. 137(1–2), 239–263 (2002)

16Machine Learning for Molecular Dynamics
on Long Timescales

Frank Noé

Abstract

Molecular dynamics (MD) simulation is widely used to analyze the properties
of molecules and materials. Most practical applications, such as comparison
with experimental measurements, designing drug molecules, or optimizing
materials, rely on statistical quantities, which may be prohibitively expensive
to compute from direct long-time MD simulations. Classical machine learning
(ML) techniques have already had a profound impact on the field, especially for
learning low-dimensional models of the long-time dynamics and for devising
more efficient sampling schemes for computing long-time statistics. Novel ML
methods have the potential to revolutionize long timescale MD and to obtain
interpretable models. ML concepts such as statistical estimator theory, end-to-
end learning, representation learning, and active learning are highly interesting
for the MD researcher and will help to develop new solutions to hard MD
problems. With the aim of better connecting the MD and ML research areas and
spawning new research on this interface, we define the learning problems in long
timescale MD, present successful approaches, and outline some of the unsolved
ML problems in this application field.

16.1 Introduction

Molecular dynamics (MD) simulation is a widely used method of computational
physics and chemistry to compute properties of molecules and materials. Examples
include to simulate how a drug molecule binds to and inhibits a protein, or how

F. Noé (�)
Freie Universität Berlin, Berlin, Germany
e-mail: frank.noe@fu-berlin.de

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_16

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_16&domain=pdf
mailto:frank.noe@fu-berlin.de
https://doi.org/10.1007/978-3-030-40245-7_16

332 F. Noé

a battery material conducts ions. Despite its high computational cost, researchers
use MD in order to get a principled understanding of how the composition and
the microscopic structure of a molecular system translate into such macroscopic
properties. In addition to scientific knowledge, this understanding can be used for
designing molecular systems with better properties, such as drug molecules or
enhanced materials.

MD has many practical problems, but at least four of them can be considered
to be fundamental, in the sense that none of them is trivial for a practically relevant
MD simulation, and there is extensive research on all of them. We refer to these four
fundamental MD problems as SAME (Sampling, Analysis, Model, Experiment):

1. Sampling: To compute expectation values via MD simulations the simulation
time needs to significantly exceed the slowest equilibration process in the
molecular system. For most nontrivial molecules and materials, the presence of
rare events and the sheer cost per MD time step make sufficient direct sampling
unfeasible.

2. Analysis: If enough statistics can be collected, we face huge amounts of simula-
tion data (e.g., millions of time steps, each having 100,000s of dimensions). How
can we analyze such data and obtain comprehensive and comprehensible models
of the most relevant states, structures, and events sampled in the data?

3. Model: MD simulations employ an empirical model of the molecular system
studied. As the simulation computes forces from an energy model, this model is
often referred to a MD force field. MD energy models are built from molecular
components fitted to quantum-mechanical and experimental data. The accuracy
of such a model is limited by the accuracy of the data used and the errors involved
in transferring the training data usually obtained for small molecules to the often
larger molecules simulated.

4. Experiment: Experiments and simulations cannot access the same observables.
While in MD simulation, the positions and velocities of all particles are available
at all times, experiments usually probe complex functions of the positions and
velocities, such as emission or absorption spectra of certain types of radiation.
Computing these functions from first principles often requires the solution of a
quantum-mechanical calculation with an accuracy that is unfeasible for a large
molecular system. The last problem thus consists of finding good approximations
to compute how an experiment would “see” a given MD state.

Machine learning (ML) has the potential to tackle these problems, and has
already had profound impact on alleviating them. Here I will focus on the analysis
problem and its direct connections to the sampling problem specifically for the case
of long-time MD where these problems are most difficult and interesting. I believe
that the solution of these problems lies on the interface between chemical physics
and ML, and will therefore describe these problems in a language that should be
understandable to audiences from both fields.

Let me briefly link to MD problems and associated ML approaches not covered
by this chapter. The present description focuses on low-dimensional models of long-

16 Machine Learning for Molecular Dynamics on Long Timescales 333

time MD and these can directly be employed to attack the sampling problem. The
direct effect of these models is that short MD simulations that are individually not
sampling all metastable states can be integrated, and thus an effective sampling
that is much longer than the individual trajectory length, and on the order of the
total simulation time can be reached [84]. The sampling efficiency can be further
improved by adaptively selecting the starting points of MD simulations based on the
long-time MD model, and iterating this process [21, 22, 36, 81, 82, 125, 137]. This
approach is called “adaptive sampling” in the MD community, which is an active
learning approach in ML language. Using this approach, timescales beyond seconds
have been reached and protein–protein association and dissociation has recently
been sampled for the first time with atomistic resolution [81].

A well-established approach to speed up rare events in MD is to employ the
so-called enhanced sampling methods that change the thermodynamic conditions
(temperature, adding bias potentials, etc.) [26, 30, 31, 49, 113], and to subsequently
reweight to the unbiased target ensemble [3,4,24,27,59,106]. Recently, ML methods
have been used to adaptively learn optimal biasing functions in such approaches
[86,118]. A conceptually different approach to sampling is the Boltzmann generator
[71], a directed generative network to directly draw statistically independent
samples from equilibrium distributions. While these approaches are usually limited
to compute stationary properties, ML-based MD analysis models have recently
been integrated with enhanced sampling methods in order to also compute unbiased
dynamical properties [89, 126, 128, 129]. These methods can now also access all-
atom protein dynamics beyond seconds timescales [77].

ML methods that use MD trajectory data to obtain a low-dimensional models of
the long-time dynamics are extensively discussed here. Not discussed are manifold
learning methods that purely use the data distribution, such as kernel PCA [98],
isomap [18, 111], or diffusion maps [17, 88]. Likewise, there is extensive research
on geometric clustering methods—both on the ML and the MD application side—
which only plays a minor role in the present discussion.

Learning an accurate MD model—the so-called force-field problem—is one of
the basic and most important problems of MD simulation. While this approach has
traditionally been addressed by relatively ad hoc parametrization methods it is now
becoming more and more a well-defined ML problem where universal function
approximators (neural networks or kernel machines) are trained to reproduce
quantum-mechanical potential energy surfaces with high accuracy [5–7, 13, 14, 91,
99, 100]. See other chapters in this book for more details. A related approach to
scale to the next-higher length-scale is the learning of coarse-grained MD models
from all-atom MD data [119, 120, 134]. These approaches have demonstrated that
they can reach high accuracy, but employing the kernel machine or neural network
to run MD simulations is still orders of magnitude slower than simulating a highly
optimized MD code with an explicitly coded model. Achieving high accuracy while
approximately matching the computational performance of commonly used MD
codes is an important future aim.

Much less ML work has been done on the interpretation and integration of exper-
imental data. MD models are typically parametrized by combining the matching

334 F. Noé

of energies and forces from quantum-mechanical simulations with the matching
of thermodynamic quantities measured by experiments, such as solvation free
energies of small molecules. As yet, there is no rigorous ML method which learns
MD models following this approach. Several ML methods have been proposed to
integrate simulation data on the level of a model learned from MD simulation data
(e.g., a Markov state model), typically by using information-theoretic principles
such as maximum entropy or maximum caliber [20, 37, 74]. Finally, there is an
emerging field of ML methods that predict experimental quantities, such as spectra,
from chemical or molecular structures, which is an essential task that needs to
be solved to perform data integration between simulation and experiment. An
important step-stone for improving our ability to predict experimental properties is
the availability of training datasets where chemical structures, geometric structures,
and experimental measurements under well-defined conditions are linked [85].

16.2 Learning Problems for Long-TimeMolecular Dynamics

16.2.1 WhatWouldWe Like to Compute?

The most basic quantitative aim of MD is to compute equilibrium expectations.
When x is state of a molecular system, such as coordinates and velocities of
the atoms in a protein system in a periodic solvent box, the average value of an
observable A is given by:

E[A] =
∫

A(x) μ(x) dx (16.1)

where μ(x) is the equilibrium distribution, i.e. the probability to find a molecule in
state x at equilibrium conditions. A common choice is the Boltzmann distribution
in the canonical ensemble at temperature T :

μ(x) ∝ e
−U(x)

kBT (16.2)

where U(x) is a potential energy and the input constant kBT is the mean thermal
energy per degree of freedom. The observable A can be chosen to compute, e.g., the
probability of a protein to be folded at a certain temperature, or the probability
for a protein and a drug molecule to be bound at a certain drug concentration,
which relates to how much the drug inhibits the protein’s activity. Other equilibrium
expectations, such as spectroscopic properties, do not directly translate to molecular
function, but are useful to validate and calibrate simulation models.

Molecules are not static but change their state x over time. Under equilibrium
conditions, these dynamical changes are due to thermal fluctuations, leading to
trajectories that are stochastic. For Markovian dynamics (e.g., classical MD), given
configuration xt at time t , the probability of finding the molecule in configuration

16 Machine Learning for Molecular Dynamics on Long Timescales 335

xt+τ at a later time can be expressed by the transition density pτ :

xt+τ ∼ pτ (xt+τ | xt). (16.3)

Thus, a second class of relevant quantities is that of dynamical expectations:

E[G; τ] =
∫ ∫

μ(xt) pτ (xt+τ | xt) G(xt , xt+τ) dxt dxt+τ . (16.4)

As above, the observable G determines which dynamical property we are interested
in. With an appropriate choice we can measure the average time a protein takes
to fold or unfold, or dynamical spectroscopic expectations such as fluorescence
correlations or dynamical scattering spectra.

16.2.2 What Is Molecular Dynamics?

MD simulation mimics the natural dynamics of molecules by time-propagating
the state of a molecular system, such as coordinates and velocities of the atoms
in a protein system in a periodic solvent box. MD is a Markov process involving
deterministic components such as the gradient of a model potential U(x) and
stochastic components, e.g., from a thermostat. The specific choice of these
components determines the transition density (16.3). Independent of these choices,
a reasonable MD algorithm should be constructed such that it samples from μ(x) in
the long run:

lim
τ→∞pτ (xt+τ | xt) = μ(x) ∝ e−U(x)/kBT . (16.5)

Thus, if a long enough MD trajectory can be generated, the expectation values (16.1)
and (16.4) can be computed as direct averages. Unfortunately, this idea can only be
implemented directly for very small and simple molecular systems. Most of the
interesting molecular systems involve rare events, and as a result generating MD
trajectories that are long enough to compute the expectation values (16.1) and (16.4)
by direct averaging becomes unfeasible. For example, the currently fastest special-
purpose supercomputer for MD, Anton II, can generate simulations on the order of
50 μs per day for a protein system [104]. The time for two strongly binding proteins
to spontaneously dissociate can take over an hour, corresponding to a simulation
time of a century for a single event [81].

16.2.3 Learning Problems for Long-TimeMD

Repeated sampling from pτ (xt+τ | xt) “simulates” the MD system in time steps
of length τ and will, due to (16.5), result in configurations sampled from μ(xt).
Hence, knowing pτ (xt+τ | xt) is sufficient to compute any stationary or dynamical

336 F. Noé

expectation ((16.1), (16.4)). The primary ML problem for long-time MD is thus to
learn a model of the probability distribution pτ (xt+τ | xt) from simulation data
pairs (xt , xt+τ) which allows xt+τ ∼ pτ (xt+τ | xt) to be efficiently sampled.
However, this problem is almost never addressed directly, because it is unnecessarily
difficult. Configurations x live in a very high-dimensional space (typically 103

to 106 dimensions); the probability distributions pτ (xt+τ | xt) and μ(x) are
multimodal and complex such that direct sampling is not tractable, and because
of the exponential relationship between energies and probabilities (16.2), small
mistakes in sampling x will lead to completely unrealistic molecular structures.

Because of these difficulties, ML methods for long-time MD usually take
the detour of finding a low-dimensional representation, often called latent space
representation, y = E(x), using the encoder E, and learning the dynamics in that
space

xt
E−→ yt

MD ↓ ↓ P

xt+τ
D/G←− yt+τ

A relatively recent but fundamental insight is that for many MD systems there exists
a natural low-dimensional representation in which the stationary and dynamical
properties can be represented exactly if we give up time resolution by choosing
a large lag time τ [60, 83, 92]. Thus, for long-time MD the intractable problem to
learn pτ (xt+τ | xt) can be broken down into three learning problems (LPs) out of
which two are much less difficult, and the third one does not need to be solved in
order to compute stationary or dynamical expectations ((16.1), (16.4)), and that will
be treated in the remainder of the article:

1. LP1: Learn propagator P in representation y. The simplest problem is to learn
a model to propagate the latent state yt in time for a given encoding E(xt). This
model is often linear using the propagator matrix P, and hence shallow learning
methods such as regression are used. In addition to obtaining an accurate model,
it is desirable for P to be compact and easily interpretable/readable for a human
specialist.

2. LP2: Learn encoding E to representation y. Learning the generally nonlinear
encoding y = E(x) is a harder problem. Both shallow methods (regression in
kernel and feature spaces, clustering, and likelihood maximization) and deep
methods (neural networks) are used. LP1 and LP2 can be coupled to an end-
to-end learning problem for pτ (E(xt+τ) | E(xt)). LP2 has only become a
well-defined ML problem recently with the introduction of a variational approach
that defines a meaningful loss function for LP2 [66, 127].

3. LP3: Learn decoding D/G to configuration space. The most difficult problem
is to decode the latent representation y back to configuration space. Because
configuration space is much higher dimensional than latent space, this is an
inverse problem where each y corresponds to many x configurations. The most

16 Machine Learning for Molecular Dynamics on Long Timescales 337

Fig. 16.1 Overview of
network structures for
learning Markovian
dynamical models E

x y ~

noise

Encoder

Propagator yt yt+τ

x
y

a) c)

d) P(τ)

G

Generator
y

D

Decoder ~x

b)

faithful solution is to learn a generator G, representing a conditional probability
distribution, x ∼ G(y). This problem contains the hardest parts of the full
learning problem for pτ (xt+τ | xt) and addressing it is still in its infancy.

These learning problems lead to different building blocks that can be imple-
mented by neural networks or linear methods and can be combined towards different
architectures (Fig. 16.1).

16.3 LP1: Learning Propagator in Feature Space

The simplest and most established learning problem is to learn a propagator, P, for
a given, fixed encoding E. Therefore we discuss this learning problem first before
defining what a “good” encoding E is and how to find it. As will be discussed
below, for most MD systems of interest, there exists an encoding E to a spectral
representation in which the dynamics is linear and low-dimensional. Although this
spectral representation can often not be found exactly, it can usually be well enough
approximated such that a linear dynamic model

E [yt+τ] = P�E [yt] (16.6)

is an excellent approximation as well. E denotes an expectation value over time
that accounts for stochasticity in the dynamics, and can be omitted for deterministic
dynamical systems. For example, if yt indicates which state the system is in at time
t , E [yt] corresponds to a probability distribution over states.

Finding a linear model P is a shallow, unsupervised learning problem that
in many cases has an algebraic expression for the optimum. Having a linear
propagator also has great advantages for the analysis of the dynamical system.
The analyses that can be done depend on the type of the representation and the
mathematical properties of P. If E performs a one-hot-encoding that indicates which
“state” the system is in, then the pair (E,P) is called Markov state model (MSM
[12, 16, 67, 84, 101, 108]), and P is the transition matrix of a Markov chain whose
elements pij are nonnegative and can be interpreted as the conditional probabilities
to be in a state j at time t + τ given that the system was in a state i at time t

(Sects. 16.3.2 and 16.3.3). For MSMs, the whole arsenal of Markov chains analysis
algorithms is available, e.g., for computing limiting distributions, first passage times,

338 F. Noé

or the statistics of transition pathways [58, 68]. If the transition matrix additionally
has a real-valued spectrum, which is associated with dynamics at thermodynamic
equilibrium conditions (Sect. 16.3.3), additional analyses are applicable, such as
the computation of metastable (long-lived) sets of states by spectral clustering
[19, 67, 101].

A broader class of propagators arise from encodings E that are partitions of
unity, i.e. where yi(x) > 0 and

∑
i yi(x) = 1 for all x [33, 48, 55]. Such

encodings correspond to a “soft clustering,” where every configuration x can still
be assigned to a state, but the assignment is no longer unique. The resulting
propagators P are typically no longer transition matrices whose elements can be
guaranteed to be nonnegative, but they can still be used to propagate probability
densities by means of Eq. (16.6), and if they have a unique eigenvalue of 1, the
corresponding eigenvector π = [πi] still corresponds to the unique equilibrium
distribution:

π = P�π . (16.7)

For arbitrary functions E, we can still use P to propagate state vectors according
to Eq. (16.6), although these state vectors do no longer have a probabilistic
interpretation, but are simply coefficients that model the configuration in the
representation’s basis. Owing to the Markovianity of the model, we can test how
well the time-propagation of the model in time coincides with an estimation
of the model at longer times, by means of the Chapman–Kolmogorov equa-
tion:

Pn(τ) ≈ P(nτ) (16.8)

In order to implement this equation, one has to decide which matrix norm should
be used to compare the left and right hand side. A common choice is to compare
the leading eigenvalues λi(τ). As these decay exponentially with time in a Markov
process, it is common to transform them to relaxation rates or timescales by means
of:

ti (τ) = − τ

log |λi(τ)| . (16.9)

A consequence of the Chapman–Kolmogorov equality is that these relaxation
timescales are independent of the lag time τ at which P is estimated [108].
For real-valued eigenvalues, ti corresponds to an ordinary relaxation time of the
corresponding dynamical process. If P has complex-valued eigenvalues, ti is the
decay time of the envelope of an oscillating process whose oscillation frequency
depends on the phase of λi .

16 Machine Learning for Molecular Dynamics on Long Timescales 339

16.3.1 Loss Function and Basis Statistics

Given one or many MD simulation trajectories {xt }, we apply E in order to map
them to the representation {yt }, defining the input to LP1. The basic learning
problem is the parameter estimation problem which consists of obtaining the
optimal estimator P̂ as follows:

1. Define a loss function L(P; {yt })
2. Obtain the optimal estimator as P̂ = arg minP L(P; {yt })

As most texts about molecular kinetics do not use the concept of a loss function, I
would like to highlight the importance of a loss (or score) function from a ML point
of view. The difference between fitting a training dataset {yt } and ML is that ML
aims at finding the estimator that performs best on an independent test dataset. To
this end we need to not only optimize the parameters (such as the matrix elements of
P), but also hyper-parameters (such as the size of P), which requires the concept of
a loss function. Another important learning problem is to estimate the uncertainties
of the estimator P̂.

To express the loss function and the optimal estimator of linear propagators P,
we do not actually need the full trajectory {yt }, but only certain sufficient statistics
that are usually more compact than {yt } and thus may require less storage space and
lead to faster algorithms. The most prominent statistics are the empirical means and
covariance matrices:

μ0 = 1

T

T−τ∑
t=1

yt (16.10)

μτ =
1

T

T−τ∑
t=1

yt+τ (16.11)

C00 = 1

T

T−τ∑
t=1

yty�t (16.12)

C0τ = 1

T

T−τ∑
t=1

yty�t+τ (16.13)

Cττ = 1

T

T−τ∑
t=1

yt+τy�t+τ . (16.14)

A common modification to (16.12), (16.14) is the so-called shrinkage estimator that
is used in ridge or Tikhonov regularization [50,93]. Since many algorithms involve
the inversion of (16.12), (16.14) which might be rank-deficient, these estimators are

340 F. Noé

often modified by adding a second matrix which ensures full rank, e.g.:

C̃00 = C00 + λI (16.15)

C̃ττ = Cττ + λI, (16.16)

where the small number λ is a regularization hyper-parameter.

16.3.2 Maximum Likelihood andMarkov State Models

The concepts of maximum likelihood estimators and Markov state models (MSMs)
are naturally obtained by defining an encoding which is a set characteristic
function/indicator function:

yt,i =
{

1 xt ∈ Si

0 else,
(16.17)

where S1, . . . , Sn is a partition of configuration space into n discrete states, i.e.
each point x is assigned to exactly one state Si , indicated by the position of the 1
in the encoding vector. In ML, (16.17) is called one-hot encoding. A consequence
of (16.17) is that the covariance matrix (16.13) becomes:

c0τ,ij = Nij ,

where Nij counts the total number of transitions observed from i to j . The
covariance matrix (16.12) is a diagonal matrix with diagonal elements

c00,ii = Ni =
∑
j

Nij ,

where we use Ni to count the total number of transitions starting in state i. With
this encoding, a natural definition for the propagator P is a transition matrix whose
elements indicate the transition probability from any state i to any state j in a time
step τ :

pij = P
[
yt+τ,j = 1 | yt,i = 1

]

A natural optimality principle is then the maximum likelihood estimator (MLE):
find the transition matrix P̂ that has the highest probability to produce the observa-
tion {yt }. The likelihood is given by:

L ∝
∏
i,j

p
Nij

ij . (16.18)

16 Machine Learning for Molecular Dynamics on Long Timescales 341

Where the last term collects equal transition events along the trajectory and discards
the proportionality factor. Maximizing L is equivalent to minimizing−L. However,
as common in likelihood formulations we instead use − logL as a loss, which is
minimal at the same P̂ but avoids the product:

LML(P; {yt }) = − logL = −
∑
i,j

Nij logpij . (16.19)

The MLE P̂ can be easily found by minimizing (16.19) with the constraint
∑

j pij =
1 using the method of Lagrange multipliers. The result is intuitive: the maximum
likelihood transition probability equals the corresponding fraction of transitions
observed out of each state:

pij = Nij

Ni

.

In matrix form we can express this estimator as

P = C−1
00 C0τ , (16.20)

an expression that we will find also for other optimization principles. As we have a
likelihood (16.18), we can also define priors and construct a full Bayesian estimator
that not only provides the maximum likelihood result (16.20), but also posterior
means and variances for estimating uncertainties. Efficient samplers are known that
allow us to sample transition matrices directly from the distribution (16.18), and
these samples can be used to compute uncertainties on quantities derived from P
[36, 107].

An important property of a transition matrix is its stationary distribution π (which
we will assume to exist and be unique here) with

πi =
∫

x∈Si

μ(x) dx,

π that can be computed by solving the eigenvalue problem (16.7).

16.3.3 MSMs with Detailed Balance

In thermodynamic equilibrium, i.e. when a molecular system is evolving purely as a
result of thermal energy at a given thermodynamic condition and no external force is
applied, the absolute probability of paths between any two end-points is symmetric.
As a consequence of this, there exists no cycle in state space which contains net flux
in either direction, and no network can be extracted from the system, consistently

342 F. Noé

with the second law of thermodynamics. We call this condition detailed balance and
write it as:

μ(x) pτ (y | x) = μ(y) pτ (x | y) ∀x, y, τ > 0. (16.21)

Integrating x and y over the sets Si and Sj in this equation leads to detailed balance
for MSMs:

πipij = πjpji . (16.22)

When the molecular system is simulated such that Eq. (16.21) hold, we also want to
ensure that the estimator P̂ fulfills the constraint (16.22). Enforcing (16.21) in the
estimator reduces the number of free parameters and thus improves the statistics.
More importantly, propagators that fulfill (16.21) or (16.22) have a real-valued
spectrum for which additional analyses can be made (see beginning of Sect. 16.3).

The trivial estimator (16.20) does not fulfill (16.22), unless Nij is, by chance,
a symmetric matrix. Maximum likelihood estimation with (16.22) as a constraint
can be achieved by an iterative algorithm first developed in [9] and reformulated
as in Algorithm 1 in [116]. Enforcing (16.22) is only meaningful if there is a
unique stationary distribution, which, requires the transition matrix to define a fully
connected graph. For this reason, graph algorithms are commonly used to find the
largest connected set of states before estimating an MSM with detailed balance
[9, 84, 94].

Algorithm 1 Detailed balance πipij = πjpji with unknown π [9, 116]

1. Initialize: π(0)
i =

∑n
j=1 cij∑n
i,j=1 cij

2. Iterate until convergence: π(k+1)
i =∑n

j=1
cij+cji

ci/π
(k)
i +cj /π

(k)
j

3. pij = (cij+cji)πj

ciπi+cj πi

When the equilibrium distribution π is known a priori or obtained from another
estimator as in [115, 128, 129], the maximum likelihood estimator can be obtained
by the iterative Algorithm 2 developed in [116]:

Algorithm 2 Detailed balance πipij = πjpji with known π [116]

1. Initialize Lagrange parameters: λ(0)
i = 1

2

∑
j (cij + cji)

2. Iterate until convergence: λ(k+1)
i =∑n

j,cij+cji>0
(cij+cji)λ

(k)
i πj

λ
(k)
j πi+λ

(k)
i πj

3. pij = (cij+cji)πj

λiπi+λjπi

As for MSMs without detailed balance, methods have been developed to perform
a full Bayesian analysis of MSMs with detailed balance. No method is known to

16 Machine Learning for Molecular Dynamics on Long Timescales 343

sample independent transition matrices from the likelihood (16.18) subject to the
detailed balance constraints (16.22); however, efficient Markov Chain Monte Carlo
methods have been developed and implemented to this end [2, 15, 57, 63, 94, 114,
116].

16.3.4 Minimal Regression Error

We can understand Eq. (16.6) as a regression from yt onto yt+τ where P contains
the unknown coefficients. The regression loss is then directly minimizing the error
in Eq. (16.6):

minEt

[∥∥∥yt+τ − P�yt

∥∥∥2
]

and for a given dataset {yt } we can define matrices Y0 = (y0, . . . , yT−τ)
� and

Yτ = (yτ , . . . , yT)
� resulting in the loss function:

LLSQ(P; {yt }) = ‖Y0 − YτP‖2
F , (16.23)

where F indicates the Frobenius norm, i.e. the sum over all squares. The direct
solution of the least squares regression problem in (16.23) is identical with
the trivial MSM estimator (16.20). Thus, the estimator (16.20) is more general
than for MSMs—it can be applied for to any representation yt . Dynamic mode
decomposition (DMD) [90,96,97,117] and extended dynamic mode decomposition
(EDMD) [124] are also using the minimal regression error, although they usually
consider low-rank approximations of P.

In general, the individual dimensions of the encoding E may not be orthogonal,
and if not, the matrix C00 is not diagonal, but contains off-diagonal elements
quantifying the correlation between different dimensions. When there is too much
correlation between them, C00 may have some vanishing eigenvalues, i.e. not full
rank, causing it not to be invertible or only invertible with large numerical errors. A
standard approach in least squares regression is to then apply the ridge regularization
(Eq. (16.15)). Using (16.15) in the estimator (16.20) is called ridge regression.

16.3.5 Variational Approach for Dynamics with Detailed Balance
(VAC)

Instead of using an optimality principle to estimate P directly, we will now
derive a variational principle for the eigenvalues and eigenvectors of P, from
which we can then easily assemble P itself. At first, this approach seems to be
a complication compared to the likelihood or least squares approach, but this
approach is key in making progress on LP2 because the variational principle for

344 F. Noé

P has a fundamental relation to the spectral properties of the transition dynamics in
configuration space (16.3). It also turns out that the variational approach leads to a
natural representation of configurations that we can optimize in end-to-end learning
frameworks. We first define the balanced propagator:

P̃ = C
− 1

2
00 C0τC

− 1
2

ττ . (16.24)

In this section, we will assume that detailed balance holds with a unique stationary
distribution, Eq. (16.21). In the statistical limit this means that C00 = Cττ holds and
C0τ is a symmetric matrix. Using these constraints, we find the stationary balanced
propagator:

P̃ = C
− 1

2
00 C01C

− 1
2

00 = C
1
2
00PC

− 1
2

00 . (16.25)

Where we have used Eq. (16.6). Due to the symmetry of C0τ , P̃ is also symmetric
and we have the symmetric eigenvalue decomposition (EVD):

P̃ = Ũ�Ũ� (16.26)

with eigenvector matrix Ũ = [
ũ1, . . . , ũn

]
and eigenvalue matrix � =

diag(λ1, . . . , λn) ordered as λ1 ≥ λ2 ≥ · · · ≥ λn. This EVD is related to the
EVD of P via a basis transformation:

P = C
− 1

2
00 Ũ�

(
ŨC

− 1
2

00

)�
= U�U−1 (16.27)

such that U = C
− 1

2
00 Ũ are the eigenvectors of P, their inverse is given by U−1 =

C
− 1

2
00 Ũ�, and both propagators share the same eigenvalues. The above construction

is simply a change of viewpoint: instead of optimizing the propagator P, we might as
well optimize its eigenvalues and eigenvectors, and then assemble P via Eq. (16.27).

Now we seek an optimality principle for eigenvectors and eigenvalues. For
symmetric eigenvalue problems such as (16.26), we have the following variational
principle: The dominant k eigenfunctions r̃1, . . . , r̃k are the solution of the maxi-
mization problem:

k∑
i=1

λi = max
f̃1,...,f̃k

k∑
i=1

f̃�i P̃f̃i(
f̃�i f̃i

) 1
2
(

f̃�i f̃i
) 1

2

= max
f1,...,fk

k∑
i=1

f�i C0τ fi(
f�i C00fi

) 1
2
(
f�i C00fi

) 1
2

=
k∑

i=1

u�i C0τui(
u�i C00ui

) 1
2
(
u�i C00ui

) 1
2

=
(

U�C00U
)− 1

2
U�C0τU

(
U�C00U

)− 1
2
.

(16.28)

16 Machine Learning for Molecular Dynamics on Long Timescales 345

This means: we vary a set of vectors fi = C
− 1

2
00 f̃i , and when the so-called Rayleigh

quotients on the right hand side are maximized, we have found the eigenvectors.
In this limit, the argument of the Rayleigh quotient equals the sum of eigenvalues.
As the argument above can be made for every value of k starting from k = 1,
we have found each single eigenvalue and eigenvector at the end of the procedure
(assuming no degeneracy). This variational principle becomes especially useful for
LP2, because using the variational approach of conformation dynamics (VAC [66,
72]), it can also be shown that the eigenvalues of P are lower bounds to the true
eigenvalues of the Markov dynamics in configurations x (Sect. 16.4.2).

Now we notice that this variational principle can also be understood as a direct
correlation function of the data representation. We define the spectral representation
as:

ys
t =

(
y�t u1, . . . , y�t un

)
(16.29)

inserting the estimators for C00 and C0τ (Eqs. (16.12), (16.13)) into Eq. (16.28), we
have:

k∑
i=1

λi =
∑T−τ

t=1 ys
t y

s�
t+τ∑T−τ

t=1 ys
t y

s�
t

= (Cs
00

)− 1
2 Cs

0τ

(
Cs

00

)− 1
2 ,

where the superscript s denotes the covariance matrices computed in the spectral
representation.

The same calculation as above can be performed with powers of the eigenvalues,
e.g.,

∑k
i=1 λ2

i . We therefore get a whole family of VAC-optimization principles, but
two choices are especially interesting: we define the VAC-1 loss, that is equivalent
to the generalized matrix Rayleigh quotient employed in [56], as:

LVAC−1(U; {yt }) = −trace

[(
U�C00U

)− 1
2

U�C0τU
(

U�C00U
)− 1

2
]

(16.30)

LVAC−1({ys
t }) = −trace

[(
Cs

00

)− 1
2 Cs

0τ

(
Cs

00

)− 1
2

]
. (16.31)

The VAC-2 loss is the Frobenius norm, i.e. the sum of squared elements of the
matrix:

LVAC−2(U; {yt }) = −
∥∥∥∥
(

U�C00U
)− 1

2
U�C0τU

(
U�C00U

)− 1
2

∥∥∥∥
2

F

(16.32)

LVAC−2({ys
t }) = −

∥∥∥∥
(
Cs

00

)− 1
2 Cs

0τ

(
Cs

00

)− 1
2

∥∥∥∥
2

F

. (16.33)

346 F. Noé

This loss induces a natural spectral embedding where the variance along each
dimension equals the squared eigenvalue and geometric distances in this space are
related to kinetic distances [64].

16.3.6 General Variational Approach (VAMP)

The variational approach for Markov processes (VAMP) [127] generalizes the
above VAC approach to dynamics that do not obey detailed balance and may not
even have an equilibrium distribution. We use the balanced propagator (16.24)
that is now no longer symmetric. Without symmetry we cannot use the variational
principle for eigenvalues, but there is a similar variational principle for singular
values. We therefore use the singular value decomposition (SVD) of the balanced
propagator:

P̃ = ŨṼ�. (16.34)

Again, this SVD is related to the SVD of P via a basis transformation:

P = C
− 1

2
00 Ũ

(
C
− 1

2
ττ Ṽ

)�
= UV� (16.35)

with U = C
− 1

2
00 Ũ and V = C

− 1
2

ττ Ṽ. Using two sets of search vectors fi = C
− 1

2
00 f̃i and

gi = C
− 1

2
ττ g̃i , we can follow the same line of derivation as above and obtain:

k∑
i=1

σi = max
f̃1,...,f̃k,g̃1,...,g̃k

k∑
i=1

f̃�i P̃g̃i(
f̃�i f̃i

) 1
2 (

g̃�i g̃i

) 1
2

=
(

U�C00U
)− 1

2
U�C0τV

(
V�CττV

)− 1
2
.

Now we define again a spectral representation. If we set C00 = Cττ (equilibrium
case) as above, we can define a single spectral representation, otherwise we need
two sets of spectral coordinates:

ys,0
t =

(
y�t u1, . . . , y�t un

)
(16.36)

ys,τ
t =

(
y�t v1, . . . , y�t vn

)
. (16.37)

16 Machine Learning for Molecular Dynamics on Long Timescales 347

As in the above procedure, we can define a family of VAMP scores, where the
VAMP-1 and VAMP-2 scores are of special interest:

LVAMP-1(U,V; {yt }) = −trace

[(
U�C00U

)− 1
2

U�C0τV
(

V�CττV
)− 1

2
]

(16.38)

LVAMP-1({ys,0
t , ys,τ

t }) = −trace

[(
Cs

00

)− 1
2 Cs

0τ

(
Cs

ττ

)− 1
2

]
. (16.39)

The VAMP-2 score is again related to an embedding where geometric distance
corresponds to kinetic distance [78]:

LVAMP-2(U,V; {yt }) = −
∥∥∥∥
(

U�C00U
)− 1

2
U�C0τV

(
V�CττV

)− 1
2

∥∥∥∥
2

F

(16.40)

LVAMP-2({ys,0
t , ys,τ

t }) = −
∥∥∥∥
(
Cs

00

)− 1
2 Cs

0τ

(
Cs

ττ

)− 1
2

∥∥∥∥
2

F

. (16.41)

16.4 Spectral Representation and Variational Approach

Before turning to LP2, we will relate the spectral decompositions in the VAC and
VAMP approaches described above to spectral representations of the transition
density of the underlying Markov dynamics in xt . These two representations are
connected by variational principles. Exploiting this principle leads to the result that
a meaningful and feasible formulation of the long-time MD learning problem is to
seek a spectral representation of the dynamics. This representation may be thought
of as a set of collective variables (CVs) pertaining to the long-time MD, or slow
CVs [65].

16.4.1 Spectral Theory

We can express the transition density (16.3) as the action of the Markov propagator
in continuous-space, and by its spectral decomposition [92, 127]:

p(xt+τ) =
∫

p(xt+τ | xt ; τ)p(xt) dxt (16.42)

≈
n∑

k=1

σ ∗k 〈p(xt) | φ(xt)〉ψ(xt+τ). (16.43)

348 F. Noé

The spectral decomposition can be read as follows: The evolution of the probability
density can be approximated as the superposition of basis functions ψ . A second set
of functions, φ is required in order to compute the amplitudes of these functions.

In general, Eq. (16.43) is a singular value decomposition with left and right sin-
gular functions φk, ψk and true singular values σ ∗k [127]. The approximation then is
a low-rank decomposition in which the small singular values are discarded. For the
special case that dynamics are in equilibrium and satisfy detailed balance (16.21),
Eq. (16.43) is an eigenvalue decomposition with the choices:

σ ∗k = λ∗k(τ) = e−τκk ∈ R

φk(x) = ψk(x)μ(x).

Hence Eq. (16.43) simplifies: we only need one set of functions, the eigenfunctions
ψk . The true eigenvalues λ∗k are real-valued and decay exponentially with the time
step τ (hence Eq. (16.9)). The characteristic decay rates κk are directly linked to
experimental observables probing the processes associated with the corresponding
eigenfunctions [12, 69]. The approximation in Eq. (16.43) is due to truncating all
terms with decay rates faster than κn. This approximation improves exponentially
with increasing τ .

Spectral theory makes it clear why learning long-time MD via LP1-3 is sig-
nificantly simpler than trying to model p(xt+τ | xt ; τ) directly: For long time
steps τ , p(xt+τ | xt ; τ) becomes intrinsically low-dimensional, and the problem
is thus significantly simplified by learning to approximate the low-dimensional
representation (ψ1, . . . , ψn) for a given τ .

16.4.2 Variational Principles

The spectral decomposition of the exact dynamics, Eq. (16.43), is the basis for the
usefulness of the variational approaches described in Sects. 16.3.5 and 16.3.6. The
missing connection is filled by the following two variational principles that are
analogous to the variational principle for energy levels in quantum mechanics. The
VAC variational principle [66] is that for dynamics obeying detailed balance (16.21),
the eigenvalues λk of a propagator matrix P via any encoding y = E(x) are, in the
statistical limit, lower bounds of the true λ∗k . The VAMP variational principle is more
general, as it does not require detailed balance (16.21), and applies to the singular
values:

λk ≤ λ∗k (with DB)

σk ≤ σ ∗k (no DB).

Equality is only achieved for E(x) = span(ψ1, . . . , ψn) when detailed balance
holds, and for E(x) = span(ψ1, . . . , ψn, φ1, . . . , φn) when detailed balance does
not hold. Specifically, the eigenvectors or the singular vectors of the propagator

16 Machine Learning for Molecular Dynamics on Long Timescales 349

then approximate the individual eigenfunctions or singular functions (assuming no
degeneracy):

λk = λ∗k −→u�k E(x) = ψ(x)

σk = σ ∗k −→
{

u�k E(x) = ψ(x)

v�k E(x) = φ(x).

As direct consequence of the variational principles above, the loss function
associated with a given embedding E is, in the statistical limit, also an upper bound
to the sum of true eigenvalues:

LVAC−r ≥ −
n∑

k=1

(
λ∗k
)r

LVAMP−r ≥ −
n∑

k=1

(
σ ∗k
)r

and for the minimum possible loss, E has identified the dominant eigenspace or
singular space.

16.4.3 Spectral Representation Learning

We have seen in Sect. 16.3 (LP1) that a propagator P can be equivalently represented
by its eigenspectrum or singular spectrum. We can thus define a spectral encoding
that attempts to directly learn the encoding to the spectral representation:

ys
t = Es(xt)

with the choices (16.29) or (16.36), (16.37), depending on whether the dynamics
obey detailed balance or not. In these representations, the dynamics are linear. After
encoding to this representation, the eigenvalues or singular values can be directly
estimated from:

� =
(

R�Cs
00R
)−1

R�Cs
0τR (16.44)

 =
(

U�Cs
00U
)− 1

2
U�Cs

0τV
(

V�Cs
ττV

)− 1
2
. (16.45)

Based on these results, we can formulate the learning of the spectral representation,
or variants of it, as the key approach to solve LP2.

350 F. Noé

16.5 LP2: Learning Features and Representation

Above we have denoted the full MD system configuration x and y the latent
space representation in which linear propagators are used. We have seen that
there is a special representation ys . In general there may be a whole pipeline of
transformations, e.g.,

x → xf → y → ys ,

where the first step is a featurization from full configurations x to features, e.g.,
the selection of solute coordinates or the transformation to internal coordinates
such as distances or angles. On the latent space side y we may have a handcrafted
or a learned spectral representation. Instead of considering these transformations
individually, we may construct a direct end-to-end learning framework that performs
multiple transformation steps.

To simplify notation, we commit to the following notation: x coordinates are the
input to the learning algorithm, whether these are full Cartesian coordinates of the
MD system or already transformed by some featurization. y are coordinates in the
latent space representations that are the output of LP2, y = E(x). We only explicitly
distinguish between different stages within configuration or latent space (e.g., y vs
ys) when this distinction is explicitly needed.

16.5.1 Suitable and Unsuitable Loss Functions

We first ask: What is the correct formulation for LP2? More specifically: which of
the loss functions introduced in LP1 above are compatible with LP2? Looking at the
sequence of learning problems:

x
LP2→ y

LP1→ P.

It is tempting to concatenate them to an end-to-end learning problem and try to
solve it by minimizing any of the three losses defined for learning of P in Sect. 16.3.
However, if we make the encoding y = E(x) sufficiently flexible, we find that only
one of the loss functions remains as being suitable for end-to-end learning, while
two others must be discarded as they have trivial and useless minima:

Likelihood Loss The theoretical minimum of the likelihood loss (16.19) is equal to
0 and is achieved if all pij ≡ 1 for the transitions observed in the dataset. However,
this maximum can be trivially achieved by learning a representation that assigns all

16 Machine Learning for Molecular Dynamics on Long Timescales 351

microstates to a single state, e.g., the first state:

arg max
E,P

LML(P; {E(xt)}) =

⎛
⎜⎜⎜⎝

E(x) ≡ 1

P =
⎛
⎜⎝

1 0 · · · 0
n/a · · · · · · n/a
...

...

⎞
⎟⎠

⎞
⎟⎟⎟⎠ .

Maximizing the transition matrix likelihood while varying the encoding E is
therefore meaningless.

Regression Loss A similar problem is encountered with the regression loss. The
theoretical minimum of (16.23) is equal to 0 and is achieved when yt+τ ≡ P�yt for
all t . This, can be trivially achieved by learning the uninformative representation:

arg max
E,P

LLSQ(P; {E(xt)}) =
(
E(x) ≡ 1

P = Id

)
.

Minimizing the propagator least squares error while varying the encoding E is
therefore meaningless. See also discussion in [76].

Variational Loss The variational loss (VAC or VAMP) does not have trivial
minima. The reason is that, according to the variational principles [66, 127], the
variational optimum coincides with the approximation of the dynamical compo-
nents. A trivial encoding such as E(x) ≡ 1 only identifies a single component and
is therefore variationally suboptimal. The variational loss is thus the only choice
among the losses described in LP1 that can be used to learn both y and P in an
end-to-end fashion.

16.5.2 Feature Selection

We next address the problem of learning optimal feature vectors xf . We can view
this problem as a feature selection problem, i.e. we consider a large potential set of
features and ask which of them leads to an optimal model of the long-time MD. In
this view, learning the featurization is a model selection problem that can be solved
by minimizing the validation loss.

We can solve this problem by employing the variational losses as follows:

1. Compute the eigenvectors U (Eq. (16.27)) or the singular vectors U,V

(Eq. (16.35)) directly from the training set Xtrain =
(

xf

0 , . . . , xf
T

)�
.

2. Using U or U,V, transform both training and test trajectories into spectral
representation (Eq. (16.29) or (16.36)–(16.37)).

352 F. Noé

3. Compute VAC or VAMP validation scores as LVAC(Utrain; {ytest
t }) (Eqs. (16.30),

(16.32)) or LVAMP(Utrain,Vtrain; {ytest
t }) (Eqs. (16.38), (16.40)).

In [95] we follow this feature selection procedure using VAMP-2 validation for
describing protein folding. We find that a combination of torsion backbone angles
and exp(−dij) with dij being the minimum distances between amino acids performs
best among a large set of candidate features.

16.5.3 Blind Source Separation and TICA

For a given featurization, a widely used linear learning method to obtain the
spectral representation is an algorithm first introduced in [61] as a method for blind
source separation that later became known as time-lagged independent component
analysis (TICA) method [35, 62, 80, 102], sketched in Algorithm 3. In [80],
it was shown that the TICA algorithm directly follows from the minimization
of the VAC variational loss ((16.31), (16.33)) to best approximate the Markov
operator eigenfunctions by a linear combination of input features. As a consequence,
TICA approximates the eigenvalues and eigenfunctions of Markov operators that
obey detailed balance (16.21), and therefore approximates the slowest relaxation
processes of the dynamics.

Algorithm 3 performs a symmetrized estimation of covariance matrices in order
to guarantee that the eigenvalue spectrum is real. In most early formulations,
one usually symmetrizes only C0τ while computing C00 by (16.12), which is
automatically symmetric. However these formulations might lead to eigenvalues
larger than 1, which do not correspond to any meaningful relaxation timescale
in the present context—this problem is avoided by the step 1 in Algorithm 3
[130]. Note that symmetrization of C0τ introduces an estimation bias if the data
is non-stationary, e.g., because short MD trajectories are used that have not been
started from the equilibrium distribution. To avoid this problem, please refer to Ref.
[130] which introduces the Koopman reweighting procedure to estimate symmetric
covariance matrices without this bias, although at the price of an increased estimator
variance.

Furthermore, the covariance matrices in step 1 of Algorithm 3 are computed after
removing the mean. Removing the mean has the effect of removing the eigenvalue
1 and the corresponding stationary eigenvector, hence all components return by
Algorithm 3 approximate dynamical relaxation processes with finite relaxation
timescales estimates according to Eq. (16.9).

The TICA propagator can be directly computed as P̄ = C̄−1
00 C̄0τ , and is a

least squares result in the sense of Sect. 16.3.4. Various extensions of the TICA
algorithm were developed: Kernel formulations of TICA were first presented in
machine learning [32] and later in other fields [103,123]. An efficient way to solve
TICA for multiple lag times simultaneously was introduced as TDSEP [135, 136].
Efficient computation of TICA for very large feature sets can be performed with a
hierarchical decomposition [79], or a compressed sensing approach [53]. TICA

16 Machine Learning for Molecular Dynamics on Long Timescales 353

is closely related to the dynamic mode decomposition (DMD) [90, 96, 97, 117]
and the subsequently developed extended dynamic mode decomposition (EDMD)
algorithms [124]. DMD approximates the left eigenvectors (“modes”) instead of the
Markov operator eigenfunctions described here. EDMD is algorithmically identical
to VAC/TICA, but is in practice also used for dynamics that do not fulfill detailed
balance (16.21), although this leads to complex-valued eigenfunctions that are more
difficult to interpret and work with.

Algorithm 3 TICA({xt}, τ , n)
1. Compute symmetrized mean free covariance matrices

C̄00 = λI+
T−τ∑
t=1

(xt − μ0)(xt − μ0)
� + (xt+τ − μτ)(xt+τ − μτ)

�

C̄0τ =
T−τ∑
t=1

(xt − μ0)(xt+τ − μτ)
� + (xt+τ − μτ)(xt − μ0)

�

with means μ0,μτ defined analogously as in (16.10)–(16.11), where λ is an optional ridge
parameter.

2. Compute the largest n Eigenvalues and Eigenvectors of:

C̄0τ ui = λiC̄00ui

3. Project to spectral representation: yt =
(
x�t u1, . . . , x�t un

)
for all t

4. Return {yt }

16.5.4 TCCA/VAMP

When the dynamics do not satisfy detailed balance (16.21), e.g., because they are
driven by an external force or field, the TICA algorithm is not meaningful, as it will
not even in the limit of infinite data approximate the true spectral representation. If
detailed balance holds for the dynamical equations, but the data is non-stationary,
i.e. because short simulation trajectories started from a non-equilibrium distribution
are used, the symmetrized covariance estimation in Algorithm 3 introduces a
potentially large bias.

These problems can be avoided by going from TICA to the time-lagged or
temporal canonical correlation analysis (TCCA, Algorithm 4) [8], which can be
viewed as a direct implementation of the VAMP approach [127], i.e. it results
from minimizing the VAMP variational loss ((16.39),(16.41)), when approximating
the Markov operator singular functions with a linear combination of features. The
TCCA algorithm performs a canonical correlation analysis (CCA) applied to time
series. The price of using TCCA instead of TICA is that the interpretation of
the embedding is less straightforward: in the detailed balance case, the Markov

354 F. Noé

operator eigenvalues and their variational approximation are directly related to
relaxation timescales, and thus one finds a “slow” embedding. The singular values
maximized in TCCA have no direct relation to a relaxation timescale, TCCA rather
approximates the Markov operator at time step τ with minimal error [127].

TCCA returns two sets of features approximating the left and right singular
functions of the Markov operator and that can be interpreted as the optimal spectral
representation to characterize state of the system “before” and “after” the transition
with time step τ . For non-stationary dynamical systems, these representations are
valid for particular points in time, t and t + τ [47].

VAMP/TCCA as a method to obtain a low-dimensional spectral representation
of the long-time MD is discussed in detail in [78], where the algorithm is used to
identify low-dimensional embeddings of driven dynamical systems, such as an ion
channel in an external electrostatic potential.

Algorithm 4 TCCA({yt}, τ , n)
1. Compute covariance matrices C00, C0τ , Cττ from {xt}, as in Eqs. ((16.12)–(16.14)) or

Eqs. ((16.15), (16.16)).
2. Perform the truncated SVD:

P̃ = C
− 1

2
00 C0τ C

− 1
2

ττ ≈ U′SV′�

where P̃ is the propagator for the representations C
− 1

2
00 xt and C

− 1
2

ττ xt+τ , S=diag(s1, . . . , sk)

is a diagonal matrix of the first k singular values that approximate the true singular values
σ1, . . . , σk , and U′ and V′ consist of the k corresponding left and right singular vectors
respectively.

3. Compute U = C
− 1

2
00 U′, V = C

− 1
2

ττ V′
4. Project to spectral representation: y0

t =
(
x�t u1, . . . , x�t un

)
and yτ

t =
(
x�t v1, . . . , x�t vn

)
for all t

5. Return {(y0
t , yτ

t)}

16.5.5 MSMs Based on Geometric Clustering

For the spectral representations found by TICA and TCCA, a propagator P(τ) can
be computed by means of Eq. (16.6); however, this propagator is harder to interpret
than a MSM propagator whose elements correspond to transition probabilities
between states. For this reason, TICA, TCCA, and other dimension reduction
algorithms are frequently used as a first step towards building an MSM [79,80,102].
Before TICA and TCCA were introduced into the MD field, MSMs were directly
built upon manually constructed features such as distances, torsions, or in other
metric spaces that define features only indirectly, such as the pairwise distance of
aligned molecules [43, 112]—see Ref. [40] for an extensive discussion.

In this approach, the trajectories in feature space, {xf
t }, or in the representation

{yt }, must be further transformed into a one-hot encoding (16.17) before the
MSM can be estimated via one of the methods described in Sect. 16.3. In other

16 Machine Learning for Molecular Dynamics on Long Timescales 355

words, the configuration space must be divided into n sets that are associated
with the n MSM states. Typically, clustering methods group simulation data by
means of geometric similarity. When MSMs were built on manually constructed
feature spaces, research on suitable clustering methods was very active [1, 9,
11, 12, 16, 39, 42, 44, 67, 94, 105, 109, 132]. Since the introduction of TICA and
TCCA that identify a spectral representation that already approximates the leading
eigenfunctions, the choice of the clustering method has become less critical, and
simple methods such as k-means++ lead to robust results [39,41,94]. The final step
towards an easily interpretable MSM is coarse-graining of P down to a few states
[23, 28, 38, 48, 70, 75, 133].

The geometric clustering step introduces a different learning problem and
objective whose relationship to the original problem of approximating long-term
MD is not clear. Therefore, geometric clustering must be at the moment regarded
as a pragmatic approach to construct an MSM from a given embedding, but this
approach departs from the avenue of a well-defined machine learning problem.

16.5.6 VAMPnets

VAMPnets [55] were introduced to replace the complicated and error-prone
approach of constructing MSMs by (1) searching for optimal features xf , (2)
combining them to a representation y, e.g., via TICA, (3) clustering it, (4) estimating
the transition matrix P, and (5) coarse-graining it, by a single end-to-end learning
approach in which all of these steps are replaced by a deep neural network.
This is possible because with the VAC and VAMP variational principles, loss
functions are available that are suitable to train the sequence of learning problems 1
and 2 simultaneously. A similar architecture is used by EDMD with dictionary
learning [51], which avoids the problem of the regression error to collapse to trivial
encodings E (Sect. 16.5.1) by fixing some features that are not learnable.

VAMPnets contain two network lobes that transform the molecular config-
urations found at a time delay τ along the simulation trajectories (Fig. 16.2a).
VAMPnets can be minimized with any VAC or VAMP variational loss. In Ref. [55],
the VAMP-2 loss (16.41) was used, which is meaningful for both dynamics with
and without detailed balance. When detailed balance (16.22) is enforced in the
propagator obtained by (16.6), the loss function automatically becomes VAC-
2. VAMPnets may either use two distinct network lobes to encode the spectral
representation of the left and right singular functions (which is important for non-
stationary dynamics [46, 47]), whereas for MD with a stationary distribution we
generally use parameter sharing and have two identical lobes. For dynamics with
detailed balance, the VAMPnet output then encodes the space of the dominant
Markov operator eigenfunctions (Fig. 16.3b).

In order to obtain a propagator that can be interpreted as an MSM, [55] chose to
use a Softmax layer as an output layer, thus transforming the spectral representation
to a soft indicator function similar to spectral clustering methods such as PCCA+
[19, 87]. As a result, the propagator computed by Eq. (16.6) is almost a transition

356 F. Noé

P(τ)

noise

Generator

Markov
model

e) f)

P(τ)~
Markov
model

sample
expectation

d)

E µt, t

~N(µt, t)

G
noise

GeneratorEncoderxt

c)

E D
DecoderEncoder

E
Encoder

E
Encoder

x t
x t+τyt

b)

E
DEncoderx t

xt
yt

D
xt+τP(τ)

Propagator

yt+τ

D
xt+2τt+2τP(τ)

Propagator

y

Decoder

Decoder

Decoder

xt

xt+τ

yt

yt+τ

P(τ)

Encoder

Encoder

Markov
model

a)
VAMP score

xt

xt+τ

x t+τ~
xt+τ
~

xt+τ~

yt

yt +τ

y t yt+τ

G
G E

E

E

Fig. 16.2 Overview of network structures for learning Markovian dynamical models. (a) VAMP-
nets [55]. (b) Time-autoencoder with propagator [54, 76]. (c) Time-autoencoder (TAE) [121]. (d)
Variational time-encoder [34]. (e) Deep Generative Markov State Models [131]. (f) The rewiring
trick to compute the propagator P for a deep generative MSM

matrix. It is guaranteed to be a true transition matrix in the limit where the output
layer performs a hard clustering, i.e. one-hot encoding (16.17). Since this is not true
in general, the VAMPnet propagator may still have negative elements, but these are
usually very close to zero. The propagator is still valid for transporting probability
distributions in time and can therefore be interpreted as an MSM between metastable
states (Fig. 16.4d).

The results described in [55] (see, e.g., Figs. 16.3, and 16.4) were competitive
with and sometimes surpassed the state-of-the-art handcrafted MSM analysis
pipeline. Given the rapid improvements of training efficiency and accuracy of deep
neural networks seen in a broad range of disciplines, we expect end-to-end learning
approaches such as VAMPnets to dominate the field eventually.

16 Machine Learning for Molecular Dynamics on Long Timescales 357

Fig. 16.3 Figure adapted from [55]: Approximation of the slow transition in a bistable potential
by a VAMPnet with one input node (x) and five output nodes. (a) Potential energy function
U(x) = x4 − 6x2 + 2x. (b) Eigenvector of the slowest process calculated by direct numerical
approximation (black) and approximated by a VAMPnet with five output nodes (red). Activation
of the five Softmax output nodes defines the state membership probabilities (blue). (c) Relaxation
timescales computed from the Koopman model using the VAMPnet transformation. (d) Chapman–
Kolmogorov test comparing long-time predictions of the Koopman model estimated at τ = 1 and
estimates at longer lag times. Panels (c) and (d) report 95% confidence interval error bars over 100
training runs

Fig. 16.4 Figure adapted from [55]: Kinetic model of alanine dipeptide obtained by a VAMPnet
with 30 input nodes (x, y, z Cartesian coordinates of heavy atoms) and six output nodes. (a)
Structure of alanine dipeptide. The main coordinates describing the slow transitions are the
backbone torsion angles φ and ψ ; however, the neural network inputs are only the Cartesian
coordinates of heavy atoms. (b) Assignment of all simulated molecular coordinates, plotted as
a function of φ and ψ , to the six Softmax output states. Color corresponds to activation of
the respective output neuron, indicating the membership probability to the associated metastable
state. (c) Relaxation timescales computed from the Koopman model using the neural network
transformation. (d) Representation of the transition probabilities matrix of the Koopman model;
transitions with a probability lower than 0.5% have been omitted. (e) Chapman–Kolmogorov test
comparing long-time predictions of the Koopman model estimated at τ = 50 ps and estimates at
longer lag times. Panels (c) and (e) report 95% confidence interval error bars over 100 training runs
excluding failed runs

16.6 LP3 Light: Learn Representation and Decoder

As discussed in Sect. 16.5.1, end-to-end learning combining LP1 and LP2 are
limited in their choice of losses applied to the propagator resulting from LP2:
Variational losses can be used, leading to the methods described in Sect. 16.5,
while using the likelihood and regression losses are prone to collapse to a trivial
representation that does not resolve the long-time dynamical processes.

358 F. Noé

One approach to “rescue” these approaches is to add other loss functions to
prevent this collapse to a trivial, uninformative representation from happening. An
obvious choice is to add a decoder that is trained with some form of reconstruction
loss: the representation r should still contain enough information that the input (x
or y) can be approximately reconstructed. We discuss several approaches based
on this principle. Note that if only finding the spectral embedding and learning
the propagator P is the objective, VAMPnets solve this problem directly and
employing a reconstruction loss unnecessarily adds the difficult inverse problem of
reconstructing a high-dimensional variable from a low-dimensional one. However,
approximate reconstruction of inputs may be desired in some applications, and is
the basis for LP3.

16.6.1 Time-Autoencoder

The time-autoencoder [121] shortcuts LP2 and constructs a direct learning problem
between xt and xt+τ (Fig. 16.2c).

xt
E−→ y?

D−→ xt+τ . (16.46)

The time-autoencoder is trained by reconstruction loss:

LTAE(E,D; {xt }) =
T−τ∑
t=0

‖xt+kτ −D (E(xt))‖ , (16.47)

where ‖·‖ is a suitable norm, e.g., the squared 2-norm.
The TAE has an interesting interpretation: If E and D are linear transformations,

i.e. encoder and decoder matrices E ∈ RN×n, D ∈ Rn×N , the minimum of (16.47)
is found by VAMP/TCCA, and for data that is in equilibrium and obeys detailed
balance by VAC/TICA [121]. The reverse interpretation is not true: the solution
found by minimizing (16.47) does not lead to TICA/TCCA modes, as there is no
constraint in the time-autoencoder for the components rt—they only span the same
space. Within this interpretation, the time-autoencoder can be thought of a nonlinear
version of TCCA/TICA in the sense of being able to find a slow but nonlinear
spectral representation.

Time-autoencoders have several limitations compared to VAMPnets: (1) Adding
the decoder network makes the learning problem more difficult. (2) As indicated
in scheme (16.46), it is not clear what the time step pertaining to the spectral
representation y is (t , t + τ , or something in between), as the time stepping is done
throughout the entire network. (3) Since the decoding problem from any given y to
xt+τ is underdetermined but the decoder network D is deterministic, it will only
be able to decode to a “mean” x for all x mapping to the same y. Thus, time-
autoencoders cannot be used to sample the transition density (16.3) to generated
sequences xt → xt+τ .

16 Machine Learning for Molecular Dynamics on Long Timescales 359

16.6.2 Time-Autoencoder with Propagator

Both [54, 76] have introduced time-autoencoders that additionally learn the propa-
gator in the spectral representation, and thus fix problem (2) of time-autoencoders,
while problems (1) and (3) still remain.

Instead of scheme (16.46), time-autoencoders with propagator introduce a time-
propagation step that makes the time step explicit for every step:

xt
E−→ yt

P−→ yt+τ

D−→ xt+τ , (16.48)

where P is the matrix defined by a n × n linear layer. Training this network
exclusively with the standard autoencoder loss would not impose the correct internal
structure—in particular, it would not be possible to control that E learns only the
representation and P performs the time step. Lusch et al. [54] and Otto and Rowley
[76] enforce the dynamical consistency by training several lag times simultaneously
with variants of the following type of loss:

LTAE-P=
T−kτ∑
t=0

(
K∑

k=0

αk

∥∥∥xt+kτ−D
(

PkE(xt)
)∥∥∥+

K∑
k=1

βk

∥∥∥E(xt+kτ)−PkE(xt)

∥∥∥
)
,

(16.49)

where αk, βk are coefficients, the first term correspond to a autoencoder reconstruc-
tion loss and the second term trains the correct time-propagation of P in latent space.
The number of lag times, K , to be considered is a user-defined choice. Note that
it is not a typical hyper-parameter as matching the dynamics at more lag times
makes the learning problem harder, and thus the cross-validation score of (16.49)
cannot be used to select K . Unrolling the network for K = 2 results in Fig. 16.2b.
This approach works excellently in deterministic (but highly nonlinear) dynamical
systems with short time steps [54, 76].

In stochastic systems such as MD, it appears more difficult to learn rt and
P such that they span the spectral components of the underlying propagator and
recover its largest eigenvalues. While this observation needs more study, potential
explanations are that in long-time MD we need large time steps τ , in order to make
the spectral representation learning problem low-dimension (see Sect. 16.4.1), and
that the stochastic fluctuations are large which makes learning a decoder D difficult.

16.6.3 Variational (Time-)Autoencoders

Several recent approaches employ variational autoencoders (VAEs) for the long-
time MD or related learning problems. Variational autoencoders [45] learn to
sample a probability distribution that approximates the distribution underlying
observation data. To this end, VAEs employ variational Bayesian inference [25]

360 F. Noé

in order to approximately minimize the KL divergence between the generated and
the observed distribution. VAEs have a similar structure as usual autoencoders, with
an inference network mapping from a high-dimensional variable x to a typically
lower-dimensional latent variable r, and attempting to reconstruct x in a decoder
network. The main difference is that every latent point r encodes the moments of a
distribution which are used to sample x such that the distributions become similar.

VAEs have been used in RAVE [86] for enhancing the sampling by identifying
a space of “reaction coordinates” in which MD sampling can be efficiently driven,
and in Autograin [119] to find a way to coarse-grain a molecule into effective beads.
Both methods use VAEs without an inference network that employs a time step τ ,
and therefore they address learning problems that are conceptually different from
long-time MD learning problem as treated here.

A much more closely related work are variational time-encoders [34]
(Fig. 16.2d), which employ a VAE between time steps xt at the input and xt+τ

at the output:

xt
E−→ μ(xt)→ yt →⊕→ yt+τ

D−→ xt+τ

↑
N(0, 1)

As [34] notes, this approach does not achieve the sampling of the xt+τ distribution
(the variational theory underlying VAEs requires that the same type of variable is
used at input and output) and hence does not act as a propagator xt → xt+τ , but
succeeds in learning a spectral representation of the system. For this reason, the
variational time-encoder is listed in this section rather than in LP3.

16.7 LP3 Heavy: Learn Generative Models

The full solution of LP3 involves learning to generate samples xt+τ from the lower-
dimensional feature embedding or spectral representation. This is a very important
goal as its solution would yield an ability to sample the MD propagator xt → xt+τ

at long time steps τ , which would yield a very efficient simulator. However, because
of the high dimensionality of configuration space and the complexity of distributions
there, this aim is extremely difficult and still in its infancy.

Clearly standard tools for learning directed generative networks, such as Varia-
tional Autoencoders [45] and generative adversarial nets [29] are “usual suspects”
for the solution of this problem. However, existing applications of VAEs and GANs
on the long-time MD problem have focused on learning a latent representation that
is suitable to encode the long-time processes or a coarse-graining, and the decoder
has been mostly used to regularize the problem (Sect. 16.6.3). The first approach
to actually reconstruct molecular structures in configuration space, so as to achieve
long time step sampling, was made in [131], which will be analyzed in some detail
below.

16 Machine Learning for Molecular Dynamics on Long Timescales 361

16.7.1 Deep Generative MSMs

The deep generative MSMs described [131] (Fig. 16.2e), we propose to address
LP1-3 in the following manner. We first formulate a machine learning problem to
learn the following two functions:

• A probabilistic encoding of the input configuration to a low-dimensional
latent space, xt → E(xt). Similar to VAMPnets with a probabilistic output
(Sect. 16.5.6), E has n elements, and each element represents the probability of
configuration x to be in a metastable (long-lived) state i:

Ei(x) = P(xt ∈ state i | xt = x).

Consequently, these functions are nonnegative (Ei(x) ≥ 0 ∀x) and sum up to
one (

∑
i Ei(x) = 1 ∀x). The functions E(x) can, e.g., be represented by a neural

network mapping from Rd to Rm with a Softmax output layer.
• An n-element probability distribution q(x; τ) = (q1(x; τ), . . . , qn(x; τ)), which

assigns to each configuration x a probability density that a configuration that was
in metastable state i at time t will “land” in x at time t + τ :

qi(x; τ) = P(xt+τ = x|xt ∈ state i).

We thus briefly call these densities “landing densities.”

Schematically, deep generative MSMs treat LP1-3 in the way:

xt
E→ yt

↙
q

xt+τ

Deep generative MSMs represent the transition density (16.3) in the following form
(Fig. 16.2e):

pτ (xt+τ |xt) = E(xt+τ)
�q(y; τ) =

m∑
i=1

Ei(xt)qi(xt+τ ; τ). (16.50)

To work with this approach we finally need a generator G, which is a structure that
samples from the density q:

G(i, ε; τ) = y ∼ qi(y; τ) (16.51)

362 F. Noé

It appears that deep generative MSMs do not learn the propagator explicitly.
However, the propagator can be obtained from E and q by means the “rewiring”
trick (Fig. 16.2f): By exchanging the order in which E and G are applied and then
computing the propagator P as a sample average over q, obtained from repeatedly
applying the generator:

pij (τ) = EG

[
Ej (G(i, ε; τ))] . (16.52)

In contrast to VAMPnets (Sect. 16.5.6), it is guaranteed that the propagator (16.52)
is a true transition matrix with nonnegative elements.

16.7.2 Deep ResamplingMSMs

We first describe a very simple generator that generates no new (unseen) configura-
tions, but only learns a function q that can be used to resample known configurations
[131]. While this approach is clearly limited, it has two advantages: it will not
generate any illegal configuration, and it can be trained with maximum likelihood.
For this approach, we model the landing densities by

qi(xt+τ) = w(xt+τ)γi(xt+τ)∑T−τ
s=0 w(xs+τ)γi(xs+τ)

. (16.53)

Where γi(xt+τ) is a trainable, unnormalized density function and w is an additional
weight function which may be employed to change the weights of configurations,
but is usually identical to 1. In [131], γi(y) is a deep neural network that receives y
as an input as well as the condition i by means of a one-hot-encoding with n input
units, and has a single output node encoding the probability weight. The normalized
density q is computed by evaluating the γ -network for all configurations at time
points τ, . . . , T and then normalizing over all time points.

Deep resampling MSMs can be trained by maximizing the likelihood based on
expression (16.50), resulting in the following loss function:

LDeepResampleMSM =
T−τ∑
t=1

pτ (xt+τ |xt)

=
T−τ∑
t=1

m∑
i=1

Ei(xt)qi(xt+τ ; τ)

where qi is evaluated by (16.53). Alternatively, we can optimize χi and γi using the
Variational Approach for Markov Processes (VAMP) [127]. However, we found the
ML approach to perform significantly better in [131].

16 Machine Learning for Molecular Dynamics on Long Timescales 363

Fig. 16.5 Reproduced from [131]: Performance of deep versus standard MSMs for diffusion in
the Prinz potential. (a) Potential energy as a function of position x. (b) Stationary distribution
estimates of all methods with the exact distribution (black). (c) Implied timescales of the Prinz
potential compared to the real ones (black line). (d) True transition density and approximations
using maximum likelihood (ML) DeepResampleMSM, four and ten state MSMs. (e) KL diver-
gence of the stationary and transition distributions with respect to the true ones for all presented
methods (also DeepResampleMSM)

In deep resample MSMs, the propagator according to (16.52) becomes simply:

P = 1

T − τ

T−τ∑
t=1

q(xt+τ)E(xt+τ)
�. (16.54)

Deep resample MSMs were found to accurately reproduce the eigenfunctions and
dominant relaxation timescales of benchmark examples [131], and learn to represent
the transition density in configuration space (Fig. 16.5).

16.7.3 Deep Generative MSMs with Energy Distance Loss

In contrast to resampling MSMs, we now want to develop generative MSMs, which
can produce genuinely new configurations. This makes the method promising for
performing active learning in MD [10, 81], and to predict the future evolution of
the system in other contexts. To this end, we train a directed generative network to
represent (16.51). Such a generator can be trained with various principles, e.g. by
means of a variational autoencoder or with adversarial training [29, 45]. In [131],
we found that a third principle works well: training the generator G by minimizing
the conditional energy distance (ED). The standard ED, introduced in [110], is a
metric between the distributions of random vectors, defined as

DE (P(x),P(y)) = E
[
2 ‖x− y‖ − ∥∥x− x′

∥∥− ∥∥y− y′
∥∥] (16.55)

for two real-valued random vectors x and y. x′, y′ are independently distributed
according to the distributions of x, y. Based on this metric, we introduce the
conditional energy distance between the transition density of the system and that

364 F. Noé

Fig. 16.6 Reproduced from [131]: Performance of deep generative MSMs for diffusion in the
Prinz Potential. Comparison between exact reference (black), deep generative MSMs estimated
using only energy distance (ED) or combined ML-ED training. (a) Stationary distribution. (b–d)
Transition densities. (e) Relaxation timescales

of the generative model:

D � E
[
DE

(
P(xt+τ | xt),P(x̂t+τ | xt)

) | xt

]
(16.56)

= E
[
2
∥∥x̂t+τ − xt+τ

∥∥− ∥∥x̂t+τ − x̂′t+τ

∥∥− ∥∥xt+τ − x′t+τ

∥∥] .
Here xt+τ and x′t+τ are distributed according to the transition density for given xt

and x̂t+τ , x̂′t+τ are independent outputs of the generative model. Implementing the
expectation value with an empirical average results in an estimate for D that is
unbiased, up to an additive constant. We train G to minimize D, and subsequently
estimate P by using the rewiring trick and sampling (16.52).

Deep generative MSMs trained with the energy distance were also found
to accurately reproduce the eigenfunctions and dominant relaxation timescales
of benchmark examples [131], and learn to represent the transition density in
configuration space (Fig. 16.6). In contrast to resampling MSMs described in the
previous section, they can also be used to generalize to sampling new, previously
unseen, configurations, and are therefore a first approach to sample the long-time
propagator xt → xt+τ in configuration space (Fig. 16.7).

16.8 Data and Software

Many of the algorithms described above are implemented in the PyEMMA [94]
software—see [122] and www.pyemma.org for a tutorials and installation instruc-
tions. Some of the deep learning algorithms can be found on Github.1

The field is still lacking good resources with public datasets, partially because
long-time MD data of nontrivial systems is typically extremely large (giga- to
terabytes), and due to the unsupervised nature of the learning problems, the role of a

1https://github.com/markovmodel/deeptime.

www.pyemma.org
https://github.com/markovmodel/deeptime

16 Machine Learning for Molecular Dynamics on Long Timescales 365

Fig. 16.7 Reproduced from [131]: DeepGenMSMs can generate physically realistic structures in
areas that were not included in the training data. (a) Distribution of training data. (b) Generated
stationary distribution. (c) Representative “real” molecular configuration (from MD simulation) in
each of the metastable states (sticks and balls), and the 100 closest configurations generated by the
deep generative MSM (lines)

benchmarking dataset is less straightforward as in supervised learning. Commonly
used datasets for the evaluation of long-time MD models are the fast folding protein
trajectories produced by D. E. Shaw research on the Anton supercomputer [52],
which can be obtained from them on request. We provide datasets for small peptides
via the Python package mdshare (https://markovmodel.github.io/mdshare/).

16.9 Conclusions

The present chapter attempts to establish a better connection of the MD and ML
research areas by coining the SAME (Sampling, Analysis, Model, Experiment) MD
problems as ML tasks and pointing out existing solutions for them. Besides the
open problems mentioned en passant in this chapter, I would like to highlight two
outstanding challenges:

Firstly, both ML research on the approximation of quantum-chemical energies
and forces [5–7, 13, 14, 91, 99, 100] (see other chapters in this book), and the
analysis of long-time molecular thermodynamics and kinetics described in the
present chapter have made impressive strides in the last decade. However, these two
areas have not yet been combined. The time is ripe to do so—ML learned force fields
can be used to simulate ensembles of MD trajectories, and the methods described in
this chapter can be used to learn models of their stationary and long-time behavior.
This combination, that we may loosely call “Quantum Kinetics,” will likely teach
us much new physics, as traditional ab initio MD that attempts to compute direct
approximations of the Schrödinger equation in every MD time step is prohibitively
expensive, and this territory is consequently uncharted.

Secondly, most of the methods described herein are fundamentally descriptive for
a given molecular system but do not make predictions for other molecular systems or
even simulation conditions. The role of held-out datasets is merely to select hyper-
parameters and therefore to balance over- and underfitting. As generating vast MD

https://markovmodel.github.io/mdshare/

366 F. Noé

datasets is extremely expensive even when classical force fields are used, it would
be a fundamental progress if kinetic models could be learned that are transferable
across chemical space. While much research on transferable models has been done
in the ML prediction of quantum-mechanical energies, this problem is much harder
for intensive properties such as rates or metastable states. A possible starting point
might be the treatment of metastable kinetics as the combination of local switches,
as proposed recently [73].

Acknowledgments I am grateful to Brooke E. Husic and Klaus-Robert Müller for valuable
comments on this chapter. Funding is acknowledged from the European Commission (ERC
CoG 772230 “ScaleCell”), Deutsche Forschungsgemeinschaft (SFB 1114/A04) and the MATH+
excellence cluster (Projects AA1-8, EF1-2).

References

1. A. Altis, P.H. Nguyen, R. Hegger, G. Stock, Dihedral angle principal component analysis of
molecular dynamics simulations. J. Chem. Phys. 126, 244111 (2007)

2. S. Bacallado, J.D. Chodera, V.S. Pande, Bayesian comparison of Markov models of molecular
dynamics with detailed balance constraint. J. Chem. Phys. 131, 045106 (2009)

3. C. Bartels, Analyzing biased Monte Carlo and molecular dynamics simulations. Chem. Phys.
Lett. 331, 446–454 (2000)

4. C. Bartels, M. Karplus, Multidimensional adaptive umbrella sampling: application to main
chain and side chain peptide conformations. J. Comput. Chem. 18, 1450–1462 (1997)

5. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B
87, 184115 (2013)

6. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)

7. T. Bereau, R.A. DiStasio Jr, A. Tkatchenko, O.A. Von Lilienfeld, Non-covalent inter-
actions across organic and biological subsets of chemical space: physics-based potentials
parametrized from machine learning. J. Chem. Phys. 148, 241706 (2018)

8. F. Bießmann, F.C. Meinecke, A. Gretton, A. Rauch, G. Rainer, N.K. Logothetis, K.-R. Müller,
Temporal kernel CCA and its application in multimodal neuronal data analysis. Mach. Learn.
79, 5–27 (2010)

9. G.R. Bowman, K.A. Beauchamp, G. Boxer, V.S. Pande, Progress and challenges in the
automated construction of Markov state models for full protein systems. J. Chem. Phys.
131, 124101 (2009)

10. G.R. Bowman, D.L. Ensign, V.S. Pande, Enhanced modeling via network theory: adaptive
sampling of Markov state models. J. Chem. Theory Comput. 6(3), 787–794 (2010)

11. G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their
Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine
and Biology, vol. 797 (Springer, Heidelberg, 2014)

12. N.V. Buchete, G. Hummer, Coarse master equations for peptide folding dynamics. J. Phys.
Chem. B 112, 6057–6069 (2008)

13. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Machine
learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017)

14. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics
simulations with machine-learned force fields. Nat. Commun. 9, 3887 (2018)

15. J.D. Chodera, F. Noé, Probability distributions of molecular observables computed from
Markov models. II: Uncertainties in observables and their time-evolution. J. Chem. Phys.
133, 105102 (2010)

16 Machine Learning for Molecular Dynamics on Long Timescales 367

16. J.D. Chodera, K.A. Dill, N. Singhal, V.S. Pande, W.C. Swope, J.W. Pitera, Automatic
discovery of metastable states for the construction of Markov models of macromolecular
conformational dynamics. J. Chem. Phys. 126, 155101 (2007)

17. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, S.W. Zucker,
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion
maps. Proc. Natl. Acad. Sci. U. S. A. 102, 7426–7431 (2005)

18. P. Das, M. Moll, H. Stamati, L.E. Kavraki, C. Clementi, Low-dimensional, free-energy
landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc. Natl.
Acad. Sci. U. S. A. 103, 9885–9890 (2008)

19. P. Deuflhard, M. Weber, Robust Perron cluster analysis in conformation dynamics, in Linear
Algebra Appl., ed. by M. Dellnitz, S. Kirkland, M. Neumann, C. Schütte, vol. 398C (Elsevier,
New York, 2005), pp. 161–184

20. P.D. Dixit, K.A. Dill, Caliber corrected Markov modeling (C2M2): correcting equilibrium
Markov models. J. Chem. Theory Comput. 14, 1111–1119 (2018)

21. S. Doerr, G. De Fabritiis, On-the-fly learning and sampling of ligand binding by high-
throughput molecular simulations. J. Chem. Theory Comput. 10, 2064–2069 (2014)

22. S. Doerr, M.J. Harvey, F. Noé, G. De Fabritiis, HTMD: high-throughput molecular dynamics
for molecular discovery. J. Chem. Theory Comput. 12, 1845–1852 (2016)

23. K. Fackeldey, M. Weber, Genpcca – Markov state models for non-equilibrium steady states.
WIAS Rep. 29, 70–80 (2017)

24. A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63,
1195–1198 (1989)

25. C.W. Fox, S.J. Roberts, A tutorial on variational Bayesian inference. Artif. Intell. Rev. 38,
85–95 (2012)

26. H. Fukunishi, O. Watanabe, S. Takada, On the Hamiltonian replica exchange method for
efficient sampling of biomolecular systems: application to protein structure prediction. J.
Chem. Phys. 116, 9058 (2002)

27. E. Gallicchio, M. Andrec, A.K. Felts, R.M. Levy, Temperature weighted histogram analysis
method, replica exchange, and transition paths. J. Phys. Chem. B 109, 6722–6731 (2005)

28. S. Gerber, I. Horenko, Toward a direct and scalable identification of reduced models for
categorical processes. Proc. Natl. Acad. Sci. U. S. A. 114, 4863–4868 (2017)

29. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
J. Bengio, Generative adversarial networks, in NIPS’14 Proceedings of the 27th International
Conference on Neural Information Processing Systems, vol. 2 (MIT Press, Cambridge, 2014),
pp. 2672–2680

30. H. Grubmüller, Predicting slow structural transitions in macromolecular systems: conforma-
tional flooding. Phys. Rev. E 52, 2893 (1995)

31. U.H.E. Hansmann, Parallel tempering algorithm for conformational studies of biological
molecules. Chem. Phys. Lett. 281(1–3), 140–150 (1997)

32. S. Harmeling, A. Ziehe, M. Kawanabe, K.-R. Müller, Kernel-based nonlinear blind source
separation. Neural Comput. 15, 1089–1124 (2003)

33. M.P. Harrigan, V.S. Pande, Landmark kernel tICA for conformational dynamics (2017).
bioRxiv, 123752

34. C.X. Hernández, H.K. Wayment-Steele, M.M. Sultan, B.E. Husic, V.S. Pande, Variational
encoding of complex dynamics. Phys. Rev. E 97, 062412 (2018)

35. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York,
2001)

36. N.S. Hinrichs, V.S. Pande, Calculation of the distribution of eigenvalues and eigenvectors in
Markovian state models for molecular dynamics. J. Chem. Phys. 126, 244101 (2007)

37. G. Hummer, J. Köfinger, Bayesian ensemble refinement by replica simulations and
reweighting. J. Chem. Phys. 143, 243150 (2015)

38. G. Hummer, A. Szabo, Optimal dimensionality reduction of multistate kinetic and Markov-
state models. J. Phys. Chem. B 119, 9029–9037 (2015)

368 F. Noé

39. B.E. Husic, V.S. Pande, Ward clustering improves cross-validated Markov state models of
protein folding. J. Chem. Theory Comp. 13, 963–967 (2017)

40. B.E. Husic, V.S. Pande, Markov state models: from an art to a science. J. Am. Chem. Soc.
140, 2386–2396 (2018)

41. B.E. Husic, R.T. McGibbon, M.M. Sultan, V.S. Pande, Optimized parameter selection reveals
trends in Markov state models for protein folding. J. Chem. Phys. 145, 194103 (2016)

42. A. Jain, G. Stock, Identifying metastable states of folding proteins. J. Chem. Theory Comput.
8, 3810–3819 (2012)

43. W. Kabsch, A solution for the best rotation to relate two sets of vectors. Acta Cryst. A32,
922–923 (1976)

44. B.G. Keller, X. Daura, W.F. van Gunsteren, Comparing geometric and kinetic cluster
algorithms for molecular simulation data. J. Chem. Phys. 132, 074110 (2010)

45. D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in Proceedings of the 2nd
International Conference on Learning Representations (ICLR) (2014). arXiv:1312.6114

46. P. Koltai, G. Ciccotti, Ch. Schütte, On metastability and Markov state models for non-
stationary molecular dynamics. J. Chem. Phys. 145, 174103 (2016)

47. P. Koltai, H. Wu, F. Noé, C. Schütte, Optimal data-driven estimation of generalized Markov
state models for non-equilibrium dynamics. Computation 6, 22 (2018)

48. S. Kube, M. Weber, A coarse graining method for the identification of transition rates between
molecular conformations. J. Chem. Phys. 126, 024103 (2007)

49. A. Laio, M. Parrinello, Escaping free energy minima. Proc. Natl. Acad. Sci. U. S. A. 99,
12562–12566 (2002)

50. O. Ledoit, M. Wolf, Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 30,
110–119 (2004)

51. Q. Li, F. Dietrich, E.M. Bollt, I.G. Kevrekidis, Extended dynamic mode decomposition with
dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator.
Chaos 27, 103111 (2017)

52. K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, How fast-folding proteins fold. Science
334, 517–520 (2011)

53. F. Litzinger, L. Boninsegna, H. Wu, F. Nüske, R. Patel, R. Baraniuk, F. Noé, C. Clementi,
Rapid calculation of molecular kinetics using compressed sensing. J. Chem. Theory Comput.
24, 2771–2783 (2018)

54. B. Lusch, S.L. Brunton J.N. Kutz, Deep learning for universal linear embeddings of nonlinear
dynamics (2017). arXiv:1712.09707

55. A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets: deep learning of molecular kinetics. Nat.
Commun. 9, 5 (2018)

56. R.T. McGibbon, V.S. Pande, Variational cross-validation of slow dynamical modes in
molecular kinetics. J. Chem. Phys. 142, 124105 (2015)

57. P. Metzner, F. Noé, C. Schütte, Estimation of transition matrix distributions by Monte Carlo
sampling. Phys. Rev. E 80, 021106 (2009)

58. P. Metzner, C. Schütte, E. Vanden-Eijnden, Transition path theory for Markov jump processes.
Multiscale Model. Simul. 7, 1192–1219 (2009)

59. A.S.J.S. Mey, H. Wu, F. Noé, xTRAM: Estimating equilibrium expectations from time-
correlated simulation data at multiple thermodynamic states. Phys. Rev. X 4, 041018 (2014)

60. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dyn. 41, 309–325 (2005)

61. L. Molgedey, H.G. Schuster, Separation of a mixture of independent signals using time
delayed correlations. Phys. Rev. Lett. 72, 3634–3637 (1994)

62. Y. Naritomi, S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure
based independent component analysis: the case of domain motions. J. Chem. Phys. 134(6),
065101 (2011)

63. F. Noé, Probability distributions of molecular observables computed from Markov Models.
J. Chem. Phys. 128, 244103 (2008)

16 Machine Learning for Molecular Dynamics on Long Timescales 369

64. F. Noé, C. Clementi, Kinetic distance and kinetic maps from molecular dynamics simulation.
J. Chem. Theory Comput. 11, 5002–5011 (2015)

65. F. Noé, C. Clementi, Collective variables for the study of long-time kinetics from molecular
trajectories: theory and methods. Curr. Opin. Struct. Biol. 43, 141–147 (2017)

66. F. Noé, F. Nüske, A variational approach to modeling slow processes in stochastic dynamical
systems. Multiscale Model. Simul. 11, 635–655 (2013)

67. F. Noé, I. Horenko, C. Schütte, J.C. Smith, Hierarchical analysis of conformational dynamics
in biomolecules: transition networks of metastable states. J. Chem. Phys. 126, 155102 (2007)

68. F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, T.R. Weikl, Constructing the full ensemble
of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. U. S. A.
106, 19011–19016 (2009)

69. F. Noé, S. Doose, I. Daidone, M. Löllmann, J.D. Chodera, M. Sauer, J.C. Smith, Dynamical
fingerprints for probing individual relaxation processes in biomolecular dynamics with
simulations and kinetic experiments. Proc. Natl. Acad. Sci. U. S. A. 108, 4822–4827 (2011)

70. F. Noé, H. Wu, J.-H. Prinz, N. Plattner, Projected and hidden Markov models for calculating
kinetics and metastable states of complex molecules. J. Chem. Phys. 139, 184114 (2013)

71. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators – sampling equilibrium states of
many-body systems with deep learning (2019). arXiv:1812.01729

72. F. Nüske, B.G. Keller, G. Pérez-Hernández, A.S.J.S. Mey, F. Noé, Variational approach to
molecular kinetics. J. Chem. Theory Comput. 10, 1739–1752 (2014)

73. S. Olsson, F. Noé, Dynamic graphical models of molecular kinetics. Proc. Natl. Acad. Sci.
U. S. A. 116, 15001–15006 (2019)

74. S. Olsson, H. Wu, F. Paul, C. Clementi, F. Noé, Combining experimental and simulation data
of molecular processes via augmented Markov models. Proc. Natl. Acad. Sci. U. S. A. 114,
8265–8270 (2017)

75. S. Orioli, P. Faccioli, Dimensional reduction of Markov state models from renormalization
group theory. J. Chem. Phys. 145, 124120 (2016)

76. S.E. Otto, C.W. Rowley, Linearly-recurrent autoencoder networks for learning dynamics
(2017). arXiv:1712.01378

77. F. Paul, C. Wehmeyer, E.T. Abualrous, H. Wu, M.D. Crabtree, J. Schöneberg, J. Clarke,
C. Freund, T.R. Weikl, F. Noé, Protein-ligand kinetics on the seconds timescale from atomistic
simulations. Nat. Commun. 8, 1095 (2017)

78. F. Paul, H. Wu, M. Vossel, B.L. de Groot, F. Noé, Identification of kinetic order parameters
for non-equilibrium dynamics. J. Chem. Phys. 150, 164120 (2019)

79. G. Perez-Hernandez, F. Noé, Hierarchical time-lagged independent component analysis:
computing slow modes and reaction coordinates for large molecular systems. J. Chem. Theory
Comput. 12, 6118–6129 (2016)

80. G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, F. Noé, Identification of slow
molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102
(2013)

81. N. Plattner, S. Doerr, G. De Fabritiis, F. Noé, Protein-protein association and binding
mechanism resolved in atomic detail. Nat. Chem. 9, 1005–1011 (2017)

82. J. Preto, C. Clementi, Fast recovery of free energy landscapes via diffusion-map-directed
molecular dynamics. Phys. Chem. Chem. Phys. 16, 19181–19191 (2014)

83. J.-H. Prinz, J.D. Chodera, V.S. Pande, W.C. Swope, J.C. Smith, F. Noé, Optimal use of
data in parallel tempering simulations for the construction of discrete-state Markov models of
biomolecular dynamics. J. Chem. Phys. 134, 244108 (2011)

84. J.-H. Prinz, H. Wu, M. Sarich, B.G. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte,
F. Noé, Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134,
174105 (2011)

85. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Quantum chemistry structures
and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

86. J.M.L. Ribeiro, P. Bravo, Y. Wang, P. Tiwary, Reweighted autoencoded variational Bayes for
enhanced sampling (RAVE). J. Chem. Phys. 149, 072301 (2018)

370 F. Noé

87. S. Röblitz, M. Weber, Fuzzy spectral clustering by PCCA+: application to Markov state
models and data classification. Adv. Data Anal. Classif. 7, 147–179 (2013)

88. M.A. Rohrdanz, W. Zheng, M. Maggioni, C. Clementi, Determination of reaction coordinates
via locally scaled diffusion map. J. Chem. Phys. 134, 124116 (2011)

89. E. Rosta, G. Hummer, Free energies from dynamic weighted histogram analysis using
unbiased Markov state model. J. Chem. Theory Comput. 11, 276–285 (2015)

90. C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D.S. Henningson, Spectral analysis of
nonlinear flows. J. Fluid Mech. 641, 115 (2009)

91. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld, Fast and accurate modeling of
molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)

92. M. Sarich, F. Noé, C. Schütte, On the approximation quality of Markov state models.
Multiscale Model. Simul. 8, 1154–1177 (2010)

93. J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and
implications for functional genomics, in Statistical Applications in Genetics and Molecular
Biology, vol. 4 (Walter de Gruyter GmbH & Co. KG, Berlin, 2005), pp. 2194–6302

94. M.K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Perez-Hernandez, M. Hoffmann, N. Plat-
tner, C. Wehmeyer, J.-H. Prinz, F. Noé, PyEMMA 2: a software package for estimation,
validation and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015)

95. M.K. Scherer, B.E. Husic, M. Hoffmann, F. Paul, H. Wu, F. Noé, Variational selection of
features for molecular kinetics. J. Chem. Phys. 150, 194108 (2019)

96. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid
Mech. 656, 5–28 (2010)

97. P.J. Schmid, J. Sesterhenn, Dynamic mode decomposition of numerical and experimental
data, in 61st Annual Meeting of the APS Division of Fluid Dynamics (American Physical
Society, Philadelphia, 2008)

98. B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput. 10, 1299–1319 (1998)

99. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Quantum-chemical
insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

100. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, SchNet – a deep
learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

101. C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, A direct approach to conformational
dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151, 146–168 (1999)

102. C.R. Schwantes, V.S. Pande, Improvements in Markov state model construction reveal many
non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9, 2000–2009
(2013)

103. C.R. Schwantes, V.S. Pande, Modeling molecular kinetics with tICA and the kernel trick. J.
Chem. Theory Comput. 11, 600–608 (2015)

104. D.E. Shaw, J.P. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao, M.M. Deneroff, R.O.
Dror, A. Even, C.H. Fenton, A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C.R. Ho, D.J.
Ierardi, L. Iserovich, J.S. Kuskin, R.H. Larson, T. Layman, L.-S. Lee, A.K. Lerer, C. Li, D.
Killebrew, K.M. Mackenzie, S. Yeuk-Hai Mok, M.A. Moraes, R. Mueller, L.J. Nociolo, J.L.
Peticolas, Anton 2: raising the bar for performance and programmability in a special-purpose
molecular dynamics supercomputer, in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (IEEE, Piscataway,
2014)

105. F.K. Sheong, D.-A. Silva, L. Meng, Y. Zhao, X. Huang, Automatic state partitioning for
multibody systems (APM): an efficient algorithm for constructing Markov state models to
elucidate conformational dynamics of multibody systems. J. Chem. Theory Comput. 11, 17–
27 (2015)

106. M.R. Shirts, J.D. Chodera, Statistically optimal analysis of samples from multiple equilibrium
states. J. Chem. Phys. 129, 124105 (2008)

107. N. Singhal, V.S. Pande, Error analysis and efficient sampling in Markovian state models for
molecular dynamics. J. Chem. Phys. 123, 204909 (2005)

16 Machine Learning for Molecular Dynamics on Long Timescales 371

108. W.C. Swope, J.W. Pitera, F. Suits, Describing protein folding kinetics by molecular dynamics
simulations: 1. Theory. J. Phys. Chem. B 108, 6571–6581 (2004)

109. W.C. Swope, J.W. Pitera, F. Suits, M. Pitman, M. Eleftheriou, Describing protein folding
kinetics by molecular dynamics simulations: 2. Example applications to alanine dipeptide
and beta-hairpin peptide. J. Phys. Chem. B 108, 6582–6594 (2004)

110. G. Székely, M. Rizzo, Testing for equal distributions in high dimension. InterStat 5, 1249–
1272 (2004)

111. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323 (2000)

112. D.L. Theobald, Rapid calculation of RMSDs using a quaternion-based characteristic
polynomial. Acta Cryst. A61, 478–480 (2005)

113. G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy
estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977)

114. B. Trendelkamp-Schroer, F. Noé, Efficient Bayesian estimation of Markov model transition
matrices with given stationary distribution. J. Phys. Chem. 138, 164113 (2013)

115. B. Trendelkamp-Schroer, F. Noé, Efficient estimation of rare-event kinetics. Phys. Rev. X
(2015). Preprint. arXiv:1409.6439

116. B. Trendelkamp-Schroer, H. Wu, F. Paul, F. Noé, Estimation and uncertainty of reversible
Markov models. J. Chem. Phys. 143, 174101 (2015)

117. J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J.N. Kutz, On dynamic mode
decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

118. O. Valsson, M. Parrinello, Variational approach to enhanced sampling and free energy
calculations. Phys. Rev. Lett. 113, 090601 (2014)

119. W. Wang, R. Gómez-Bombarelli, Variational coarse-graining for molecular dynamics (2018).
arXiv:1812.02706

120. J. Wang, C. Wehmeyer, F. Noé, C. Clementi, Machine learning of coarse-grained molecular
dynamics force fields. ACS Cent. Sci. 5, 755–767 (2019)

121. C. Wehmeyer, F. Noé, Time-lagged autoencoders: deep learning of slow collective variables
for molecular kinetics. J. Chem. Phys. 148, 241703 (2018)

122. C. Wehmeyer, M.K. Scherer, T. Hempel, B.E. Husic, S. Olsson, F. Noé, Introduction to
Markov state modeling with the PyEMMA software. LiveCoMS 1, 5965 (2018)

123. M.O. Williams, C.W. Rowley, I.G. Kevrekidis, A kernel-based approach to data-driven
Koopman spectral analysis (2014). arXiv:1411.2260

124. M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data-driven approximation of the Koopman
operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307–1346 (2015)

125. W. Wojtas-Niziurski, Y. Meng, B. Roux, S. Bernèche, Self-learning adaptive umbrella
sampling method for the determination of free energy landscapes in multiple dimensions.
J. Chem. Theory Comput. 9, 1885–1895 (2013)

126. H. Wu, F. Noé, Optimal estimation of free energies and stationary densities from multiple
biased simulations. Multiscale Model. Simul. 12, 25–54 (2014)

127. H. Wu, F. Noé, Variational approach for learning Markov processes from time series data
(2017). arXiv:1707.04659

128. H. Wu, A.S.J.S. Mey, E. Rosta, F. Noé, Statistically optimal analysis of state-discretized
trajectory data from multiple thermodynamic states. J. Chem. Phys. 141, 214106 (2014)

129. H. Wu, F. Paul, C. Wehmeyer, F. Noé, Multiensemble Markov models of molecular
thermodynamics and kinetics. Proc. Natl. Acad. Sci. U. S. A. 113, E3221–E3230 (2016)

130. H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, F. Noé, Variational Koopman models: slow
collective variables and molecular kinetics from short off-equilibrium simulations. J. Chem.
Phys. 146, 154104 (2017)

131. H. Wu, A. Mardt, L. Pasquali, F. Noé, Deep generative Markov state models, in NIPS (2018).
Preprint. arXiv:1805.07601

132. Y. Yao, J. Sun, X. Huang, G.R. Bowman, G. Singh, M. Lesnick, L.J. Guibas, V.S. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular folding
pathways. J. Chem. Phys. 130, 144115 (2009)

372 F. Noé

133. Y. Yao, R.Z. Cui, G.R. Bowman, D.-A. Silva, J. Sun, X. Huang, Hierarchical Nyström
methods for constructing Markov state models for conformational dynamics. J. Chem. Phys.
138, 174106 (2013)

134. L. Zhang, J. Han, H. Wang, R. Car, W. E, DeePCG: constructing coarse-grained models via
deep neural networks. J. Chem. Phys. 149, 034101 (2018)

135. A. Ziehe, K.-R. Müller, TDSEP – an efficient algorithm for blind separation using time
structure, in ICANN 98 (Springer Science and Business Media, New York, 1998), pp. 675–
680

136. A. Ziehe, P. Laskov, G. Nolte, K.-R. Müller, A fast algorithm for joint diagonalization with
non-orthogonal transformations and its application to blind source separation. J. Mach. Learn.
Res. 5, 777–800 (2004)

137. M.I. Zimmerman, G.R. Bowman, Fast conformational searches by balancing explo-
ration/exploitation trade-offs. J. Chem. Theory Comput. 11, 5747–5757 (2015)

Part V

Discovery and Design

Discovery and Design: Preface

The discovery and design of novel molecules and materials with desired chemical
properties is crucial for a wide range of technologies, ranging from the development
of new drugs to improving the efficiency of batteries and solar cells [1]. High-
throughput computational methods which combine electronic structure calculations
with data analysis methods have proven to be valuable tools to tackle this chal-
lenge [2]. Yet, the computational cost of quantum-chemical calculations constitutes
a serious bottleneck to the design of novel systems. The final part of this book
shows that machine learning approaches can not only be used to accelerate
quantum-chemical computations, but also to effectively guide the search of chemical
compound space and even directly generate promising candidate systems.

Armiento [3] starts off with a review of combining high-throughput ab initio
calculations with machine learning predictions of chemical properties for materials
design. It covers the whole design pipeline from building a dataset of reference
calculations to the training of machine learning models with focus on bulk materials.
Connecting to this, Chandrasekaran et al. [4] present an application of the
introduced principles to soft materials for the example of polymers in Chap. 18.
Beyond that, an online platform for polymer design is introduced that provides an
easily accessible interface to the machine learning models.

Since the reference calculations used for training machine learning models
populate only a fraction of the vast chemical space, it is important to detect when
one strays too far from the known domain and the model becomes unreliable. This
topic has already been described in Chap. 15 [5] covering uncertainty estimation for
machine learning force fields. However, when searching for novel materials, we are
actively looking simultaneously for uncharted territory and promising candidates.
In Chap. 19, Hou and Tsuda [6] give an introduction to Bayesian optimization—
a machine learning-based, global optimization method that tackles this issue. The
chapter reviews several applications of this technique to materials science, such as
discovery of functional materials and crystal structure prediction. Next, Chap. 20
[7] discusses two alternative recommender systems for materials discovery: a

374 V Discovery and Design

descriptor-free approach based on tensor decomposition and a knowledge-based
approach.

Part III showed how deep neural networks can learn representations of molecules
and materials to obtain accurate property predictions and to accelerate atomistic
simulation. Beyond that, generative neural networks can be used to solve the inverse
problem and, thus, are a promising tool for chemical design [8–10]. Given the
desired properties, one could in principle sample suitable candidate structures from
these models in the form of SMILES strings, molecular graphs, or even the full
equilibrium geometries. Chapter 21 by Schwalbe-Koda and Gómez-Bombarelli [11]
concludes in this part with an extensive review of such deep generative mod-
els covering the predominant architectures—variational auto-encoders, generative
adversarial networks, and auto-regressive models. In this way, this last part of the
book also aims to bridge the gap between machine learning for quantum simulations
and ML approaches in materials and chemo-informatics.

Berlin, Germany Kristof T. Schütt
Berlin, Germany Stefan Chmiela
Basel, Switzerland O. Anatole von Lilienfeld
Luxembourg, Luxembourg Alexandre Tkatchenko
Kashiwa, Japan Koji Tsuda
Berlin, Germany Klaus-Robert Müller
September 2019

References

1. D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath,
M. Aykol, C. Ortiz, H. Tribukait, et al., Nat. Rev. Mater. 3(5), 5 (2018)

2. E.O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, A. Aspuru-Guzik,
Annu. Rev. Mater. Res. 45, 195 (2015)

3. R. Armiento, in Machine Learning for Quantum Simulations of Molecules and Materials, ed.
by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture
Notes Physics (Springer, Berlin, 2019)

4. A. Chandrasekaran, C. Kim, R. Ramprasad, in Machine Learning for Quantum Simulations of
Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

5. A. Shapeev, K. Gubaev, E. Tsymbalov, E. Podryabinkin, in Machine Learning for Quantum
Simulations of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld,
A. Tkatchenko, K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

6. Z. Hou, K. Tsuda, in Machine Learning for Quantum Simulations of Molecules and Materials,
ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R. Müller.
Lecture Notes Physics (Springer, Berlin, 2019)

7. A. Seko, H. Hayashi, H. Kashima, I. Tanaka, in Machine Learning for Quantum Simulations
of Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

8. Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Advances in Neural Information Processing
Systems (2018), pp. 7795–7804

9. J. You, B. Liu, Z. Ying, V. Pande, J. Leskovec, in Advances in Neural Information Processing
Systems (2018), pp. 6410–6421

V Discovery and Design 375

10. N.W. Gebauer, M. Gastegger, K.T. Schütt, Advances in Neural Information Processing Systems
33 (in press). Preprint arXiv:1906.00957

11. D. Schwalbe-Koda, R. Gómez-Bombarelli, in Machine Learning for Quantum Simulations of
Molecules and Materials, ed. by K.T. Schütt, S. Chmiela, A. von Lilienfeld, A. Tkatchenko,
K. Tsuda, K.-R. Müller. Lecture Notes Physics (Springer, Berlin, 2019)

17Database-Driven High-Throughput
Calculations andMachine Learning
Models for Materials Design

Rickard Armiento

Abstract

This chapter reviews past and ongoing efforts in using high-throughput ab-initio
calculations in combination with machine learning models for materials design.
The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal
structures, although the methods naturally extend into more complicated config-
urations. Efficient and robust computational methods, computational power, and
reliable methods for automated database-driven high-throughput computation
are combined to produce high-quality data sets. This data can be used to train
machine learning models for predicting the stability of bulk materials and their
properties. The underlying computational methods and the tools for automated
calculations are discussed in some detail. Various machine learning models and,
in particular, descriptors for general use in materials design are also covered.

17.1 Background

Design of new materials with desired properties is a crucial step in making many
innovative technologies viable. The aim is to find materials that fulfill requirements
on efficiency, cost, environmental impact, length of life, safety, and other properties.
During the past decades, we have seen major progress in theoretical materials
science due to the combination of improved computational methods and a massive
increase in available computational power. It is now standard practice to obtain
insights into the physics of materials by using supercomputers to find numerical
solutions to the basic equations of quantum mechanics. When using the appropriate

R. Armiento (�)
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
e-mail: rickard.armiento@liu.se

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_17

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_17&domain=pdf
mailto:rickard.armiento@liu.se
https://doi.org/10.1007/978-3-030-40245-7_17

378 R. Armiento

level of theory, these calculations can be robust enough to run in unsupervised
high-throughput. Hence, materials design can be done via automated theoretical
screening of candidate materials and substances, picking out those with desired
properties. Early examples of this methodology include works in the fields of
catalysts [1], battery materials [2, 3], detector materials for ionizing radiation [4],
superconductivity [5], thermoelectricity [6, 7], piezoelectrics [8, 9], transparent
conducting oxides [10], and two-dimensional materials [11]. There is a wealth of
further examples in the literature, see, e.g., the reviews in Ref. [12–15].

Early adoption of high-throughput methodology for materials design has invoked
the ambition that it may be possible to computationally predict the existence and
basic properties of essentially every single material, i.e., any composition that, in
principle, can be synthesized as a reasonably long-lived “stable” compound (in the
context of an environment.) This ambition has been referred to as the materials
genome project [13,16,17], which in 2011 was endorsed as a White House initiative
[18]. The idea is that access to materials genome data with sufficient coverage would
greatly accelerate materials design. It would be possible to perform queries against
this data to pick out compositions that have some sought combination of desired
properties for a specific application at, essentially, no additional computational cost
[12, 13].

A large number of databases of materials-genome-type are now available,
many of them open and free for access over the Internet. Some notable examples
include: the Electronic Structure Project (http://gurka.physics.uu.se/esp/; 2002),
the Automatic FLOW repository (aflowlib.org; 2011), the Materials Project
(materialsproject.org; 2011), the Open Materials Database (openmaterialsdb.se;
2013), the Open Quantum Materials Database (oqmd.org; 2013), the Theoretical
Crystallographic Open Database (www.crystallography.net/tcod; 2013), the
Novel Materials Discovery Repository (nomad-repository.eu; 2014), the High
Performance Computing Center Materials Database—NREL MatDb (materials.
nrel.gov; 2015), and the Materials Cloud (materialscloud.org; 2017).

To use machine learning models for, e.g., molecular dynamics simulations of
systems with up to a few chemical species has become increasingly popular (i.e., to
accelerate simulations of the movement of some types of atoms in a material.) To
train more general models with data from materials genome-type databases opens
a way forward towards the vision of a complete coverage of materials and their
properties. This chapter reviews the use of high-throughput techniques and tools
to produce training data for these models and recent developments in the area of
models with the aim of a general description of atomistic systems (i.e., molecules
and materials.) This development is, at its core, the adoption of an informatics
perspective to materials science and design, which has been referred to as materials
informatics [19, 20].

It has been posed as a hypothesis that the progress of general AI methods
will eventually reach “the singularity,” a moment in time when self-improving AI
methods set off a runaway technological development that fundamentally changes

http://gurka.physics.uu.se/esp/
aflowlib.org
materialsproject.org
openmaterialsdb.se
oqmd.org
www.crystallography.net/tcod
nomad-repository.eu
materials.nrel.gov
materials.nrel.gov
materialscloud.org

17 High-Throughput and Machine Learning Models for Materials Design 379

society.1 One can, in a similar way, formulate the hypothesis that the development
of increasingly sophisticated machine learning models for atomistic systems will
reach a singularity of its own, i.e., a point in time of fundamental change in our
theoretical description of physical matter. This change would happen when fully
trained, general, machine learning models appear that are capable of predictions
at the same accuracy as physics-based quantum mechanical simulations but at
negligible computational effort. The result would turn the present materials genome-
type databases obsolete and enable true inverse design of molecules and materials
with desired properties across the full chemical space at near zero computational
expense. Such a development would bring far-reaching changes across the natural
sciences.

In conclusion, advancing the present state of materials design with machine
learning models requires progress in three key areas: (1) progress in the theory and
methods used in physics-based calculations that can be used to improve the quality
of training data. This requires developing methods with improved accuracy without
sacrificing the low computational demand and the high level of generality that are
necessary for the methods to be useful for high-throughput calculations; (2) further
improved methods and tools for running automated calculations in high throughput.
While there are many software packages and solutions available today for running
calculations in high-throughput, major work of both practical and theoretical nature
remains to turn methods that were developed and tested only on a few systems
into automated workflows capable of running unsupervised at large scale without
human interference; and (3) further improved machine learning models for general
atomistic systems.

17.2 Computational Methods

Kohn–Sham density functional theory [23, 24] (KS-DFT) is the standard theo-
retical framework for high-throughput computation in present materials property
databases. There is a range of software implementations for performing the numer-
ical solution of the basic equations of DFT. A few prominent examples include the
Vienna Ab-initio Simulation Package—VASP (vasp.at), ABINIT (www.abinit.org),
Wien2K (susi.theochem.tuwien.ac.at), and Quantum ESPRESSO (www.quantum-
espresso.org). Of primary concern for these software packages is the numerical
convergence towards the exact solution with respect to the approximations used.
Most approximations are fairly straightforward to systematically improve towards
a converged result, which has led to a number of standard practices for setting
convergence parameters that are typically documented in relation to the respective
database. See, e.g., Ref. [17] for the practices used in the Materials Project database.

1The term was recently popularized by a 2006 book by Kurzweil [21], but its use goes back to a
1958 account by Stanislaw Ulam of a discussion with John von Neumann that references a point
in time of fundamental change due to runaway technological development [22].

vasp.at
www.abinit.org
susi.theochem.tuwien.ac.at
www.quantum-espresso.org
www.quantum-espresso.org

380 R. Armiento

One aspect of numerical convergence that frequently is in focus when discussing
the accuracy of KS-DFT calculations in the context of chemistry-oriented calcu-
lations is the basis set used to represent the single particle wave functions (also
known as the KS orbitals.) While more or less all basis sets can be systematically
extended towards numerical convergence, this can be impractical for some choices.
Nevertheless, in the context of materials design of bulk materials, we are mostly
concerned with fully periodic crystals where the most common choice is a plane-
wave basis set where systematic convergence is more straightforward.

In contrast to the numerical approximations that can be, at least in principle,
systematically refined to arbitrary accuracy towards the solution of the KS-DFT
equations, there is one aspect of the calculations where this is not possible. This
is the choice of exchange-correlation density functional. This choice is crucial for
the description of the physics of the system and, by extension, which properties are
available in the output. The kind of systems and properties for which one can obtain
reliable data is of key importance in the present context of using high-throughput
computation to produce reliable training data for machine learning models. Hence,
we will in the following review the important aspects of this choice in detail.

The level of theory that so far has been the standard for high-throughput computa-
tion in first-principles materials property databases is the semi-local, “second-rung”
[25] level, which uses exchange-correlation functionals on the generalized gradient
approximation (GGA) form. The most commonly used functional in the context
of high-throughput calculations for materials databases is the one by Perdew,
Burke, and Ernzerhof [26] (PBE) with the +U correction [27]. This level of
theory strikes a desirable balance between computational speed and accuracy while
maintaining a high level of transferability. Nevertheless, the most popular GGA-
type functionals, including PBE, have known shortcomings in their description of
the electronic structure. The primary issues include: (1) a tendency to give energetics
that in geometrical relaxations lead to a systematic over- or underestimation of
bond lengths (the local density approximation, LDA, overbinds, whereas PBE
underbinds); (2) an insufficient description of the physics of weak dispersion
forces/van der Waals bonding; and (3) a systematically overdelocalized description
of the KS orbitals that leads to inaccuracies in a number of properties that are derived
from the orbitals. These three issues will be discussed in some more detail in the
subsections below.

17.2.1 Overdelocalized Orbitals

The fundamental issue of overdelocalized KS orbitals is related to various aspects of
the self-interaction error present at the semi-local exchange-correlation functional
level of theory. A simplified picture is that the self-interaction introduces a repulsive
electrostatic interaction of an electron with itself, leading to a delocalization that
becomes more severe the more localized the correct representation of the orbital
was supposed to be, i.e., the effect more severely impacts the more localized d-,
and even more so, the f orbitals, compared to the less localized s and p states.

17 High-Throughput and Machine Learning Models for Materials Design 381

The result is a number of deficiencies in predicted materials properties. Examples
of problematic properties include redox reaction energies [28,29], the polarizability
of extended systems [30, 31], and the silicon interstitial formation energy [32, 33].

In addition to these examples, issues are also seen in a number of properties
calculated from the single-particle orbitals from the KS-DFT framework, where they
are used as approximations of the “true quasi-electron orbitals” of the many-electron
system (to the extent that such can be defined). However, from a fundamental
perspective, the discussion of the accuracy of such properties is delicate because the
DFT orbitals and the quasi-electron orbitals are not the same thing, even in theory
for the exact exchange-correlation functional. Hence, one cannot a priori assume
that an improved functional increases the agreement with the experimental values
of, e.g., optical properties calculated from the KS band structure. Nevertheless,
if one compares common GGA functionals to higher order methods that are still
within the framework of KS-DFT (e.g., exact DFT exchange) one finds a qualitative
difference in the orbital physics. This difference translates to that when materials
properties which are directly associated with the electronic structure are calculated
using higher-order theory, the results come out qualitatively closer to experiments
than those calculated using standard GGAs. One can, therefore, take the position
that it is a worthwhile improvement over standard semi-local functionals if improved
functionals can make the orbitals to more closely mimic the orbital features given
by higher order methods. This motivation is independent of the justification, or
lack thereof, of using KS states to approximate quasi-particle bands for calculating
materials properties. For an expanded discussion on this delicate topic, see, e.g.,
Ref. [34].

There are a range of well-known methods to address the description of localized
states in semi-local DFT, (i) an explicit orbital-dependent correction that removes
the surplus electrostatic term (sic correction) [35–37]; (ii) exact exchange DFT [38];
(iii) interpolating the DFT functional with Hartree–Fock exchange energy (hybrid
functionals) [39–41]; (iv) use of the many-body Green’s function for a more precise
description of the localized quasi-particle orbitals (GW) [42]; (v) the DFT+U

correction that adds an effective Hubbard-like term to the Hamiltonian to make
selected localized orbitals energetically preferable [27]; and (vi) various attempts
to modify the KS potential directly to make it reproduce essential features of exact
exchange [31, 43–48]. All these methods, except for the last two (v, vi), require a
vastly increased computational expense. Hybrid density functional methods (iii) are
increasingly adopted for resolving these issues when the extra computational cost is
acceptable. However, at a cost of roughly 50 times of that of standard GGAs, they
are very inconvenient, or even completely unsuitable for, e.g., larger systems and
high-throughput-type calculations.

Of the two less computationally expensive methods, DFT+U (v) is widely
adopted as, arguably, the standard way of dealing with the issue of overdelocalized
orbitals in high-throughput calculations and materials genome-type databases.
However, DFT+U is not a highly transferable method; it requires attention in
the assignment of site-specific “U -values.” In setting the value of U , one selects
how strongly a given localized orbital on a specific site prefers full occupation

382 R. Armiento

over partial occupation. In low throughput calculations, it is common to somewhat
thoroughly investigate a system to arrive at a value of U that reasonably reproduces
the expected physics of the system, but this is clearly not an option for high-
throughput calculations. There are schemes to obtain sets of values that work well
for systems with some specific type of physics, e.g., for typical oxides. However,
in systems of mixed chemistries and intermixed types of bonding physics, the
non-universality of U values becomes a serious problem. Energies obtained for
different systems using different U -values for the same species cannot easily be
mixed. Furthermore, since U values are usually only assigned to specific orbital
projections on a pre-selected set of transition metal species, they cannot help with
overdelocalized states of different origin, e.g., for defect states that are not atomic-
orbital-like.

The second computationally less expensive method in the list above is (v) the
approach to model the exchange-correlation potential directly to make it reproduce
essential “non-local” features of exact exchange, instead of obtaining it as a
functional derivative of an energy functional. Such potentials are known as model
potentials, and have in some cases been quite successful [31, 43–48]. Some recent
interest has been generated by the model potential of Becke and Johnson (BJ) [45],
which was observed to mimic some of the crucial features of exact exchange for
atoms. With various adjustments and extensions, it improves the polarization of
hydrogen chains [31, 47], gives closer correspondence to experimental band gaps
[48], and, to some extent, gives other improved properties [49, 50]. These model
potentials seem promising for future adoption in high-throughput calculations to
access properties that would otherwise be problematic because of orbital delocal-
ization.

However, there are some fundamental issues with the general approach of
model potentials. Since they directly model the exchange-correlation potential, the
corresponding energy functionals are not merely unknown, they usually do not
exist [46, 51, 52], and this deficiency cannot easily be corrected [53]. Since the KS
equations are derived from a variational treatment of an energy equation, the use of
such potentials has to be regarded on a weak formal basis, and are, strictly, outside
the framework of KS-DFT. One cannot calculate any energy-derived properties from
model potentials, e.g., one cannot do a geometry optimization that is consistent
with the potential. Hence, if one starts from, e.g., theoretically generated structure
candidates, one would have to use another method first to pre-relax the structure.

A closely related promising direction of functional development is the Armiento–
Kümmel exchange functional (AK13) [54] (co-authored by the author of this
chapter.) This is a normal GGA exchange energy functional that mimics the behavior
of the BJ potential while avoiding the fundamental issues with model potentials.
Similar to the modified BJ-based model potentials, the AK13 exchange energy
functional gives qualitatively different orbitals from common GGA functionals. The
results are a KS potential with improved atomic shell structure [54], improved
ionization potentials from the highest eigenvalue [54] (but see the discussion in
Ref. [55]), overall a KS band structure that better match that of higher order meth-
ods, including enlarged band gaps, and improved optical properties [34, 54, 56, 57].

17 High-Throughput and Machine Learning Models for Materials Design 383

As mentioned, the AK13 functional avoids the problem of undefined energies and
energetics in model potentials. However, their values are not as accurate as those
of commonly used GGAs and mostly insufficient. In addition, other issues appear
from the AK13 construction that prevent its broader indiscriminate application
[55,58,59]. We are hopeful that further research into modifications of the expression
can overcome the difficulties while still retaining the favorable exchange potential
features.

17.2.2 Under- and Overestimated Lattice Constants

On the issue of systematic under- and overestimation of lattice constants, this
has mostly been resolved in functional development beyond PBE. The Armiento–
Mattsson 2005 functional (AM05) [60, 61] is a semi-local functional with the same
computational difficulty as PBE, but which gives roughly half the error for lattice
constants. The comprehensive testing of Haas et al. finds for the lattice constants of
60 solids that the mean absolute error is 0.053 Å for PBE and 0.033 Å for AM05
[62–64]. Later functionals developed by Wu–Cohen in 2006 [65–67], SOGGA
by Zaho, and Truhlar in 2008 [68], and PBEsol by Perdew et al. in 2009 [69–
72] report similar improvements [63, 64, 70]. Further progress has been made
by Perdew and coworkers on the meta-GGA level of theory, where, in addition
to the electron density and its derivatives, a functional may also depend on the
local value of the kinetic energy density of the KS particles. While meta-GGAs
are technically more complex expressions than GGAs, implementations can be
made that do not significantly increase the computational cost. The 2015 Strongly
Constrained and Appropriately Normed Semilocal Density Functional (SCAN)
meta-GGA [73] reportedly performs well for a wide range of properties for both
solids and molecules, including lattice constants [74, 75]. However, some issues
have recently been reported in the description of systems with itinerant magnetism
[76].

17.2.3 Weak Dispersion Forces

On the topic of the description of van der Waals/London dispersion forces/weak
interactions by semi-local DFT functionals, there exist a range of post-correction
schemes of the energy to handle such interactions that can be deployed without
any significant additional computational cost, see, e.g., Refs. [77–83]. Furthermore,
there is a series of successful exchange-correlation functionals known as the vdW-
DF from a collaboration between Chalmers University and Rutgers University [84–
86] which allow a self-consistent treatment of these interactions. These functionals
are not semi-local, but still fairly computationally inexpensive compared to, e.g.,
hybrid functionals. Furthermore, it has been shown that information about weak
interactions can be extracted from local values of the kinetic energy density which
are available to meta-GGAs [73, 87], at least to a level where the region around the

384 R. Armiento

equilibrium in van der Waals bonds can be described. This development has been
incorporated in the SCAN functional [73].

17.3 Materials Properties

One of the central questions with the materials genome effort is what basic
properties are within reach to be collected and included in these databases. This
is determined by a combination of what can be described by the level of theory
used for the computations (as carefully reviewed in the previous section), and
what methods are available as automated workflows. The starting point, crucial
for building any materials genome-type resource, is the crystal structures and
corresponding formation energies. The importance of the formation energies is due
to their use in creating composition phase diagrams to estimate the zero temperature
thermodynamic stability of a material. The composition phase diagram gives the
ground state crystal structure of a material at zero temperature as a function of
composition. It is constructed by determining the convex hull of the predicted
formation energies of all competing crystal structures in a chemical subspace
[16, 88, 89]. A compound with a formation energy on the convex hull is stable,
whereas a compound that ends up above the hull is unstable. The distance to the hull
can be used as a rough estimate of the degree to which a material is unstable (i.e.,
how unlikely it is to be observed, and if observed, how quickly it would deteriorate
into a combination of lower energy structures.) Crystal structures with a small hull
distance (very roughly up to ∼50 meV) may still be regarded as candidates for
materials that in practice may be stable since such an “error margin” can account
for meta-stability, stability at limited elevated temperatures, and the computational
inaccuracy of the methods.

Several works have investigated the accuracy of DFT calculations of formation
energies. The standard deviation of formation energies calculated with PBE+U

to experiments for the formation of ternary oxides from binary oxides was found
to be 0.024 eV/atom; meaning 90% of the errors are within 0.047 eV/atom, which
corresponds to a mean absolute error of approximately 0.02 eV/atom [90]. Kirklin
et al. determined a mean absolute error of PBE formation energies of systems over
all chemistries to be 0.136 eV/atom, but with energy corrections that are often used
in high-throughput databases to some of the elemental phase energies, this lowers
to 0.081 eV/atom [91]. However, the same paper notes that for 75 intermetallic
structures they found experimental results from more than one source, giving an
estimate for the mean absolute error in the experiments of 0.082 eV/atom. (Note
that the latter estimate may be affected by selection bias, i.e., there may be a larger
probability of finding multiple experimental values if the results are uncertain.)

Presently the set of materials properties beyond stability and formation energies
available for large data sets is somewhat limited. There is an ongoing competition
between the online materials genome-type databases to grow the data they provide
both in terms of included structures and materials properties. There is a wealth
of methods in the literature that could potentially be used to produce data for

17 High-Throughput and Machine Learning Models for Materials Design 385

many different properties. However, to turn these methods into a form where they
can run reliably in high-throughput is non-trivial. Among the available databases,
the Materials Project is quite comprehensive in terms of properties. In addition
to structural information and formation energies, they have over the years added
the KS-DFT band structure (in some cases corrected using the GW approximation
[42, 92]), elastic tensors [93], piezoelectric tensors [94], dielectric properties [95],
phonon spectra [96], synthesis descriptors [97], and X-ray absorption spectra [98].

17.4 Database-Driven High-Throughput Calculations

A basic flowchart for materials design using database-driven high-throughput
calculations is shown in Fig. 17.1. There are many software packages with partially
overlapping aims for helping with the steps in the flowchart. Some recognized
open source examples are the atomic simulation environment—ASE (wiki.fysik.
dtu.dk/ase), pymatgen, custodian, and fireworks (pymatgen.org, see also the infor-
mation at materialsproject.org/infrastructure; connected to the Materials Project),
aflow (materials.duke.edu/AFLOW; connected to the AFLOW repository), AiiDA
(aiida.net; connected to materials cloud), qmpy (connected to the open quantum
materials database). The author is involved in the development of the open source
high-throughput toolkit—httk (httk.org) framework, which we use extensively for
high-throughput computation in our own research, and which provides the backend
for the open materials database. This toolkit provides functionality for preparing
and running unsupervised workflows of calculations (electronic structure, mostly
targeted towards the software package VASP), analyzing the results, and storing

Fig. 17.1 A schematic flowchart representation of database-driven high-throughput materials
design, largely inspired by the setup used in the Materials Project [16]. The steps on the right-hand
sides represent the use of the database to find materials with desirable properties. In the context
of machine learning models, the materials and materials properties in the database can be used for
training and validation

wiki.fysik.dtu.dk/ase
wiki.fysik.dtu.dk/ase
pymatgen.org
materialsproject.org/infrastructure
materials.duke.edu/AFLOW
aiida.net
httk.org

386 R. Armiento

them in a global and/or in a personalized database. The basic functionalities of these
software packages are quite similar; in the following, we discuss the functionality
of httk.

The primary focus of httk is for running automated calculations with as little
human intervention as possible. This is crucial when working with large data sets,
but can also be convenient when working with smaller projects. The toolkit consists
of a software library developed in Python and a set of script programs that enable the
interaction with supercomputers. The primary strengths of this framework compared
to common alternatives are (1) the Python library provides a very integrated object-
relational mapper, where classes in object-oriented Python are used to introduce
abstractions that remove much of the difficulty in setting up a personal database
of SQL type in which one can store, search, retrieve, and analyze results; (2) httk
consistently allows the use of exact rational numbers in place of the more commonly
used floating-point numbers. The exact rational numbers allow processing of crystal
structures, application of transforms, etc., without the usual loss of precision. Hence,
httk can deterministically produce an internal representation of structures read from
a source file (e.g., on the cif file format), which is not the case in most other
frameworks due to their use of floating-point numbers means the precise end result
is influenced by the computer architecture.

The httk framework is distributed in several ways, including the PyPI service.
Hence, it can easily be installed by issuing: pip install httk on a system
with a modern distribution of Python. There is a set of tutorial steps and a large
number of examples available to show how the framework can be utilized in the
various steps of database-driven high-throughput as shown in Fig. 17.1. These are
available via the project website (httk.openmaterialsdb.se).

17.5 Machine LearningModels for Materials Design

17.5.1 Models for Molecules

The primary focus in this chapter is on a type of machine learning models for use
in materials design that can be said to begin with a 2012 paper by Rupp et al. on
the use of kernel ridge regression for small molecules [99]. They define a matrix
representation for molecules named the “Coulomb matrix.” In this representation
a system of N atoms generates an N × N matrix where the off-diagonal elements
(i,j) are the Coulomb repulsion between the ith and j th bare atomic cores, and
the diagonal elements are based on a polynomial fit to energies of free atoms to
represent a static energy contribution pertaining to the ith atom,

Cij =
{

0.5Z2.4
i if i = j

ZiZj/(‖ri − rj‖2) if i �= j
(17.1)

httk.openmaterialsdb.se

17 High-Throughput and Machine Learning Models for Materials Design 387

One may note that the Coulomb interaction between the bare atomic cores is not a
good indicator of the physics of the bonds in a system. However, the representation
does not aim to push the machine learning model into a specific physics-based
description, but just to constitute a well-formed way to represent the structural
information (i.e., the positions of the atoms) so that the machine is free to learn
the physics from the data. This model was trained on small organic molecules (with
up to 7 atoms from the elements C, O, N, and S, and with the valencies satisfied by
hydrogen atoms; this data set is named qm7.) It was shown in the original paper that
the machine can be trained to predict atomization energies of molecules not in the
training set down to a mean absolute error of 10 kcal/mol at a training set size of 7k.
In units more common for materials, this model reaches 20 meV/atom at a training
set of 3000 molecules from qm7 [100].

17.5.2 General Models for Periodic Systems

In a 2015 work Faber, Lindmaa, von Lilienfeld, and Armiento (the author of the
present chapter) extended the Coulomb matrix construct into a suitable form for
periodic crystals [100]. This extension is non-trivial, since there exist more than one
way to choose a unit cell in a periodic system, and therefore representations based
on the Coulomb matrix easily become non-unique. As pointed out in that paper, the
aim when seeking a representation for atomistic systems is to find one that is (1)
complete: incorporates all features of the structural information that are relevant for
the underlying problem, but at the same time; (2) compact: avoids representation of
features irrelevant for the underlying problem (e.g., static rotations); (3) descriptive:
structural similarity should give representations that are close; and (4) simple: low
computational effort to compute, and conceptually easy to understand.

The end result of Ref. [100] was three alternative Coulomb matrix inspired
representations applicable to periodic crystals. The first one was based on replacing
the bare Coulomb interactions in the off-diagonal matrix elements with the corre-
sponding expression for fully periodic systems, i.e., the sum of the total Coulomb
interaction energy per unit cell between the infinite periodic lattices of the bare
cores of repetitions of two separate atoms in the unit cell. These expressions
are evaluated via Ewald sums [101]. The issue with this expression is that it
is somewhat computationally expensive and non-trivial to evaluate correctly. The
second generalization of the Coulomb matrix was to duplicate the unit cell a number
of times and then use the same expression as for the non-periodic Coulomb matrix,
however, with a screened Coulomb interaction (i.e., where the interaction decays
exponentially to give a finite reach.) This is very similar to just using the short
range term in the Ewald sum. To get an even simpler descriptor, a third expression
was invented. It was shown how the Ewald sum can be replaced by an expression
that mimics the basic shape and periodicity of the Ewald expression, but which still
remains on a simple closed form that is easy to evaluate. This expression was named
the “sine” or “sinusoidal” descriptor, because of how it reproduced the periodicity
over the unit cell via a sine function.

388 R. Armiento

The three alternative extensions of the Coulomb matrix to periodic systems were
tested on a data set that is now known as FLAA (from the authors’ initials). It
consists of structures with up to 25 atoms that were randomly selected out of the
Materials Project database. In these structures most atomic species occur, in propor-
tions roughly similar to their occurrence in structures published in the literature and
extracted into the inorganic crystal structure database (ICSD) [102, 103] which is
the main source of crystal structures for the Materials Project. The conclusion of the
2015 paper [100] was that all three alternative extensions of the Coulomb matrix to
periodic systems performed approximately equal. The sine descriptor did slightly
better than the others, with a 370 meV/atom mean absolute error for predicting
formation energies when trained on 3k structures from the FLAA data set.

Two main conclusions follow from the above results. Firstly, the performance of
kernel ridge regression-based machines for atomistic systems does not appear to be
particularly sensitive to the exact details of how the generalized Coulomb matrix
descriptors are constructed, as long as they reasonably well adhere to the aims for
a good representation listed above. Secondly, at first glance it may appear as if the
performance of the models for molecules far outperforms the corresponding ones
for periodic crystals (20 meV/atom vs. 0.370 meV/atom). However, the sizes of the
chemical space for the two cases are not comparable, and arguably the one used for
crystals in Ref. [100] is far larger.

17.5.3 Crystal-Structure Specific Models

To demonstrate that these types of models are capable of reaching a level of accuracy
directly useful for applications if one restricts the chemical space, the same authors
investigated in 2016 a machine learning model operating on such a smaller space
[104]. This work considered all substitutions of main group elements into four
sites of one specific quaternary crystal structure, the elpasolite. This structure was
selected because it is the quaternary crystal most frequently occurring with different
substitutions in the ICSD database, indicating that this structure can accommodate
many types of bonds and thus to be rewarding to characterize fully. High-throughput
DFT calculations using the httk framework were used to produce data for ca 10k
substitutions of elements into the elpasolite crystal structure out a total of two
million possibilities. Furthermore, a subset of 12 main group elements was selected
to give a reduced chemical space of 12k possible substitutions, which were run
exhaustively.

A substitution into a fixed crystal structure can be uniquely specified by giving
which chemical species are at which atomic site in the structure. Hence, the 2016
paper used a very straightforward representation of, essentially, a 2× 4 matrix that
specified the row and column in the periodic table of the atom species at each
of the four sites in the elpasolite structure. This leaves out the precise structural
information of the system from the descriptor, i.e., the bond lengths between the
atoms. The 2× 4 matrix descriptor should be understood to technically refer to the
system relaxed while confined to the elpasolite crystal structure.

17 High-Throughput and Machine Learning Models for Materials Design 389

A kernel ridge regression machine learning model was trained using this descrip-
tor on formation energies for structures in the elpasolite data set, and it was shown
that (1) by training on a sufficiently large subset of the exhaustive 12k data set,
the model can reach essentially any level of accuracy for predictions of structures
outside the training set, at least below <10 meV/atom which is significantly less
than the errors in the DFT data. (See the discussions of accuracy of DFT formation
energies in Sect. 17.3.) This shows that the performance of this machine learning
model is merely a question of having a large enough training set; (2) when training
on data in the larger chemical space of two million possible substitutions of main
group elements into the elpasolite structure, it was sufficient to train on about 10k
structures to reach roughly the accuracy of the DFT calculations, 100 meV/atom.
This result means that the machine learning model was capable of producing DFT-
quality formation energies with a net ×200 speedup, including all the time used
to produce the training data. The resulting two million formation energies are
illustrated in Fig. 17.2 reproduced from the original paper.

Furthermore, the 2016 paper also demonstrated a practical use of the large
set of predicted formation energies. Phase diagrams were created for most of the
elpasolite systems by using information about competing compositions from the
Materials Project using the pymatgen Python library (some systems were outright
dismissed on grounds of containing rare-gas elements). From these phase diagrams
a number of candidates for thermodynamically stable materials were obtained
by identifying compositions with a predicted formation energy on the convex
hull. These candidates were validated by DFT calculations and 90 systems were
confirmed to be thermodynamically stable within this level of theory. However, the
compounds that passed validation only constituted a small fraction of the candidates.
As explained in the paper, the reason is that the process of identifying structures on
the convex hull is a screening for systems with the lowest formation energies, which
are outliers in the full data set. The interpolative nature of machine learning models
leads to them being significantly less accurate in predicting properties of outlier
systems. Nevertheless, even with this limitation, the scheme far reduced the number
of DFT calculations needed to identify thermodynamically stable elpasolite systems
compared to just obtaining all formation energies from DFT calculations. The net
result was a ×11 speedup, including the full time spent both on the training set and
the calculations used to validate the materials picked out as candidates for stability.

Hence, the crystal-structure-specific machine was demonstrated to be very
successful for generating large amounts of formation energy data which is useful
for greatly accelerating predictions of stable compounds in a considered crystal
structure. The predictions allow extending the available data in materials genome-
type databases. The structures identified as stable in the work discussed above are
now available (with some singular exceptions) via the Materials Project and, e.g.,
enters the predictions of convex hulls for user-generated phase diagrams via their
online service, thus contributing to the accuracy of those predictions.

390 R. Armiento

Fig. 17.2 Color matrix of the two million elpasolite energies predicted with the crystal-structure
specific machine learning model of Faber et al. [104]. The x- and y-axes specify which atomic
species sits on two of the four sites in the crystal structure. At those coordinates one finds a
miniature diagram over the species at the remaining two sites. Every pixel in the miniature diagram
shows a formation energy of the corresponding composition of four atomic species. The figure is
reproduced from the original paper and is licensed under the Creative Commons Attribution 3.0
License

17.5.4 Models for Predicting Composition Phase Diagrams, Crystal
Structures

The success of the crystal-structure-specific machine notwithstanding, it does not
directly answer the most typical materials design problem. It is, arguably, more
common to seek the stable crystal structures that can be formed from a given set
of chemical species, rather than all the stable chemical compositions that share the
same crystal structure. This is, in essence, the crystal structure prediction problem.

In 2016, Tholander, Andersson, Armiento, Tasnádi, and Alling [105] (TAATA)
produced a data set by high-throughput calculations using the httk framework. The
aim was to seek stable crystal structures in the ternary chemical systems Ti-Zn-
N, Zr-Zn-N, and Hf-Zn-N for possible use in piezoelectrics. This high-throughput
data set is a good real-world test case to evaluate the possible acceleration of

17 High-Throughput and Machine Learning Models for Materials Design 391

the generation of phase diagrams for identifying stable structures using machine
learning models.

The author of this chapter and coworkers have since then engaged in a project
of trying out new machine learning models on this problem and to develop new
ones for it; the progress on this was recently reported in, e.g., Ref. [106]. At
the present stage, it appears the original Coulomb matrix-based descriptors from
Ref. [100] perform similar on this data set as for the original FLAA data set,
which is encouraging in establishing the generality of these models. However, the
resulting accuracy is not sufficient to be useful for accelerating the production of the
phase diagrams. Compared to the FLAA set, the TAATA data set has much fewer
atomic species, but at the same time is comprised of structures over a very wide
range of formation energies. The origin of the structures in the FLAA set is the
Materials Project which, as explained above, are based on structures from the ICSD
database. The ICSD primarily indexes materials seen in nature which means most
are thermodynamically stable and have comparably low formation energies. This
restriction lowers the dimensionality of the chemical space of FLAA relative to that
of TAATA.

Other recent machine learning models perform better; e.g., in Ref. [106] it
was found that a descriptor by Ward et al. that encodes structural information
using a Voronoi tessellation reaches a mean absolute error of 0.28 eV/atom for 10k
structures from the TAATA data set [107]. While errors on this level are not small
enough to replace the need for DFT calculations with model predictions, one may
still be able to use predictions to identify and remove competing structures that are
highly unstable and therefore would not influence the phase diagram, thus reducing
the number of DFT calculations necessary, giving an overall reduction in the effort
of producing the phase diagram. The field moves rapidly forward, and some other
interesting recent developments are found in Refs. [108–111].

17.6 Conclusions and Outlook

This chapter has reviewed several aspects of producing training data by database-
driven high-throughput calculations, and the use of this data to train machine
learning models with the aim of accelerating materials design. All these aspects
are making rapid and encouraging progress. The research-front machine learning
methods are now on the edge of producing results that are accurate and reliable
enough to accelerate theoretical prediction of thermodynamic stability via the
creation of convex hulls; i.e., the crystal prediction problem which arguably is
the most important first step for materials design of bulk materials with desired
properties. Further progress towards this goal, and for predicting other properties,
is continuously being made. Looking forward, two crucial points can be raised: (1)
further development of general machine learning models for atomistic systems with
improved accuracy and a reduced need for training data is needed; but how far can
that development go before it hits a fundamental wall where not enough information
about the underlying physics is present in the data?; (2) the rapid development of

392 R. Armiento

machine learning models will drive a need for more accurate training data. Will
the progress of physics-based computational methods be able to keep up with this
need of methods with improved accuracy but low enough computational effort to be
useful in high-throughput?; or will the lack of a sufficient amount of high quality
training data become a major bottleneck for further progress? Future research needs
to target both these areas.

Acknowledgments The author thanks Anatole von Lilienfeld and Felix Faber for many insightful
discussions on topics in the overlap of machine learning and materials design. Joel Davidsson is
acknowledged for help with supervising the master’s thesis discussed in the text as Ref. [106].
The author acknowledges support from the Swedish e-Science Centre (SeRC), Swedish Research
Council (VR) Grants No. 2016-04810, and the Centre in Nano science and Nanotechnology
(CeNano) at Linköping University. Some of the discussed computations were performed on
resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National
Supercomputer Centre (NSC) at Linköping University.

References

1. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5(11), 909
(2006)

2. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science 311(5763), 977 (2006)
3. S. Kirklin, B. Meredig, C. Wolverton, Adv. Energy Mater. 3(2), 252 (2013)
4. C. Ortiz, O. Eriksson, M. Klintenberg, Comput. Mater. Sci. 44(4), 1042 (2009)
5. M. Klintenberg, O. Eriksson, Comput. Mater. Sci. 67, 282 (2013)
6. G.K.H. Madsen, J. Am. Chem. Soc. 128(37), 12140 (2006)
7. S. Wang, Z. Wang, W. Setyawan, N. Mingo, S. Curtarolo, Phys. Rev. X 1(2), 021012 (2011)
8. R. Armiento, B. Kozinsky, M. Fornari, G. Ceder, Phys. Rev. B 84(1) (2011)
9. R. Armiento, B. Kozinsky, G. Hautier, M. Fornari, G. Ceder, Phys. Rev. B 89(13), 134103

(2014)
10. G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Nat. Commun. 4, 2292 (2013)
11. S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen, O. Eriksson, Phys. Rev. X 3(3),

031002 (2013)
12. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12(3),

191 (2013)
13. G. Ceder, K.A. Persson, Sci. Amer. 309(6), 36 (2013)
14. K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari,

N. Marzari, I. Takeuchi, M.L. Green, M. Kanatzidis, M.F. Toney, S. Butenko, B. Meredig,
S. Lany, U. Kattner, A. Davydov, E.S. Toberer, V. Stevanovic, A. Walsh, N.G. Park,
A. Aspuru-Guzik, D.P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li, R. Xiao,
A. Ludwig, L.W. Martin, A.M. Rappe, S.-H. Wei, J. Perkins, J. Phys. D: Appl. Phys. 52(1),
013001 (2019)

15. F. Oba, Y. Kumagai, Appl. Phys. Express 11(6), 060101 (2018)
16. A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson,

G. Ceder, Comput. Mater. Sci. 50(8), 2295 (2011)
17. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter,

D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013)
18. Executive Office of the President National Science and Technology Council, Washington.

Materials Genome Initiative for Global Competitiveness (2011). https://www.mgi.gov/sites/
default/files/documents/materials_genome_initiative-final.pdf; https://www.mgi.gov/

19. K. Rajan, Mater. Today 8(10), 38 (2005)

https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
https://www.mgi.gov/

17 High-Throughput and Machine Learning Models for Materials Design 393

20. J.R. Rodgers, D. Cebon, MRS Bull. 31(12), 975 (2006)
21. R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (Penguin Books,

New York, 2006)
22. S. Ulam, Bull. Amer. Math. Soc. 64(3), 1 (1958)
23. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)
24. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)
25. J.P. Perdew, K. Schmidt, in AIP Conference Proceedings, vol. 577 (AIP, College Park, 2001),

pp. 1–20
26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)
27. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter 9(4), 767 (1997)
28. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder, Phys. Rev. B 70(23), 235121

(2004)
29. V.L. Chevrier, S.P. Ong, R. Armiento, M.K.Y. Chan, G. Ceder, Phys. Rev. B 82(7), 075122

(2010)
30. S. Kümmel, L. Kronik, J.P. Perdew, Phys. Rev. Lett. 93(21), 213002 (2004)
31. R. Armiento, S. Kümmel, T. Körzdörfer, Phys. Rev. B 77(16), 165106 (2008)
32. A.E. Mattsson, R.R. Wixom, R. Armiento, Phys. Rev. B 77(15), 155211 (2008)
33. P. Rinke, A. Janotti, M. Scheffler, C.G. Van de Walle, Phys. Rev. Lett. 102(2), 026402 (2009)
34. V. Vlček, G. Steinle-Neumann, L. Leppert, R. Armiento, S. Kümmel, Phys. Rev. B 91(3),

035107 (2015)
35. J.P. Perdew, Chem. Phys. Lett. 64(1), 127 (1979)
36. J.P. Perdew, A. Zunger, Phys. Rev. B 23(10), 5048 (1981)
37. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61(3), 689 (1989)
38. M. Städele, M. Moukara, J.A. Majewski, P. Vogl, A. Görling, Phys. Rev. B 59(15), 10031

(1999)
39. A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)
40. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)
41. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124(21), 219906 (2006)
42. L. Hedin, Phys. Rev. 139(3A), A796 (1965)
43. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49(4), 2421 (1994)
44. O. Gritsenko, R. van Leeuwen, E. van Lenthe, E.J. Baerends, Phys. Rev. A 51(3), 1944 (1995)
45. A.D. Becke, E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006)
46. N. Umezawa, Phys. Rev. A 74(3), 032505 (2006)
47. E. Räsänen, S. Pittalis, C.R. Proetto, J. Chem. Phys. 132(4), 044112 (2010)
48. F. Tran, P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009)
49. M.J.T. Oliveira, E. Räsänen, S. Pittalis, M.A.L. Marques, J. Chem. Theory Comput. 6(12),

3664 (2010)
50. D.J. Singh, Phys. Rev. B 82(20), 205102 (2010)
51. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 51(1), 170 (1995)
52. A.P. Gaiduk, V.N. Staroverov, Phys. Rev. A 83(1), 012509 (2011)
53. A. Karolewski, R. Armiento, S. Kümmel, J. Chem. Theory Comput. 5(4), 712 (2009)
54. R. Armiento, S. Kümmel, Phys. Rev. Lett. 111(3), 036402 (2013)
55. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 96(7), 075140 (2017)
56. T.F.T. Cerqueira, M.J.T. Oliveira, M.A.L. Marques, J. Chem. Theory Comput. 10(12), 5625

(2014)
57. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Phys. Rev. B 91(16), 165121 (2015)
58. A. Lindmaa, R. Armiento, Phys. Rev. B 94(15), 155143 (2016)
59. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 95(24), 245118 (2017)
60. R. Armiento, A.E. Mattsson, Phys. Rev. B 72(8), 085108 (2005)
61. A.E. Mattsson, R. Armiento, Phys. Rev. B 79(15), 155101 (2009)
62. A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, T.R. Mattsson, J. Chem. Phys.

128(8), 084714 (2008)
63. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79(8), 085104 (2009)
64. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79(20), 209902 (2009)

394 R. Armiento

65. Z. Wu, R.E. Cohen, Phys. Rev. B 73(23), 235116 (2006)
66. Y. Zhao, D.G. Truhlar, Phys. Rev. B 78(19), 197101 (2008)
67. Z. Wu, R.E. Cohen, Phys. Rev. B 78(19), 197102 (2008)
68. Y. Zhao, D.G. Truhlar, J. Chem. Phys. 128(18), 184109 (2008)
69. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin,

X. Zhou, K. Burke, Phys. Rev. Lett. 100(13), 136406 (2008)
70. A.E. Mattsson, R. Armiento, T.R. Mattsson, Phys. Rev. Lett. 101(23), 239701 (2008)
71. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin,

X. Zhou, K. Burke, Phys. Rev. Lett. 101(23), 239702 (2008)
72. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin,

X. Zhou, K. Burke, Phys. Rev. Lett. 102(3), 039902 (2009)
73. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115(3), 036402 (2015)
74. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul,

U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Nat. Chem. 8(9), 831 (2016). https://doi.
org/10.1038/nchem.2535. https://www.nature.com/articles/nchem.2535

75. Y. Zhang, D.A. Kitchaev, J. Yang, T. Chen, S.T. Dacek, R.A. Sarmiento-Pérez, M.A.L.
Marques, H. Peng, G. Ceder, J.P. Perdew, J. Sun, npj Comput. Mater. 4(1), 9 (2018). https://
doi.org/10.1038/s41524-018-0065-z. https://www.nature.com/articles/s41524-018-0065-z

76. M. Ekholm, D. Gambino, H.J.M. Jönsson, F. Tasnádi, B. Alling, I.A. Abrikosov, Phys. Rev. B
98(9), 094413 (2018). https://doi.org/10.1103/PhysRevB.98.094413. https://link.aps.org/doi/
10.1103/PhysRevB.98.094413

77. S. Grimme, J. Comput. Chem. 27(15), 1787 (2006)
78. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010)
79. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102(7), 073005 (2009)
80. A. Tkatchenko, R.A. DiStasio, R. Car, M. Scheffler, Phys. Rev. Lett. 108(23), 236402 (2012)
81. A. Ambrosetti, A.M. Reilly, R.A. DiStasio, A. Tkatchenko, J. Chem. Phys. 140(18), 18A508

(2014)
82. S.N. Steinmann, C. Corminboeuf, J. Chem. Theory Comput. 7(11), 3567 (2011)
83. S.N. Steinmann, C. Corminboeuf, J. Chem. Phys. 134(4), 044117 (2011)
84. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92(24),

246401 (2004)
85. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82(8), 081101

(2010)
86. K. Berland, P. Hyldgaard, Phys. Rev. B 89(3), 035412 (2014)
87. J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G.I. Csonka, G.E. Scuseria,

J.P. Perdew, Phys. Rev. Lett. 111(10), 106401 (2013)
88. A.R. Akbarzadeh, V. Ozoliņš, C. Wolverton, Adv. Mater. 19(20), 3233 (2007)
89. S.P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20(5), 1798 (2008)
90. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, G. Ceder, Phys. Rev. B 85(15), 155208 (2012)
91. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C.M.

Wolverton, npj Comput. Mater. 1, 15010 (2015)
92. I.E. Castelli, F. Hüser, M. Pandey, H. Li, K.S. Thygesen, B. Seger, A. Jain, K.A. Persson,

G. Ceder, K.W. Jacobsen, Adv. Energy Mater. 5(2), 1400915 (2015)
93. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter,

C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson,
M. Asta, Sci. Data 2, 150009 (2015)

94. M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2, 150053 (2015)
95. I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt,

K.A. Persson, F.B. Prinz, Sci. Data 4, 160134 (2017)
96. G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. van Setten,

X. Gonze, K.A. Persson, G. Hautier, G.M. Rignanese, Sci. Data 5, 180065 (2018)
97. E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder, E. Olivetti, Chem. Mater. 29(21),

9436 (2017)

https://doi.org/10.1038/nchem.2535
https://doi.org/10.1038/nchem.2535
https://www.nature.com/articles/nchem.2535
https://doi.org/10.1038/s41524-018-0065-z
https://doi.org/10.1038/s41524-018-0065-z
https://www.nature.com/articles/s41524-018-0065-z
https://doi.org/10.1103/PhysRevB.98.094413
https://link.aps.org/doi/10.1103/PhysRevB.98.094413
https://link.aps.org/doi/10.1103/PhysRevB.98.094413

17 High-Throughput and Machine Learning Models for Materials Design 395

98. K. Mathew, C. Zheng, D. Winston, C. Chen, A. Dozier, J.J. Rehr, S.P. Ong, K.A. Persson, Sci.
Data 5, 180151 (2018)

99. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301
(2012)

100. F. Faber, A. Lindmaa, O.A.V. Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094
(2015)

101. P.P. Ewald, Ann. Phys. 369(3), 253 (1921)
102. G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23(2), 66 (1983)
103. A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, Acta Cryst. B 58(3–1), 364 (2002)
104. F.A. Faber, A. Lindmaa, O.A.v. Lilienfeld, R. Armiento, Phys. Rev. Lett. 117(13), 135502

(2016)
105. C. Tholander, C.B.A. Andersson, R. Armiento, F. Tasnádi, B. Alling, J. Appl. Phys. 120(22),

225102 (2016)
106. C. Bratu, Machine Learning of Crystal Formation Energies with Novel Structural Descriptors.

Master’s Thesis, Linköping University, Sweden, 2017. http://urn.kb.se/resolve?urn=urn:nbn:
se:liu:diva-143203

107. L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Phys.
Rev. B 96(2), 024104 (2017)

108. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717
(2018)

109. H. Huo, M. Rupp (2017). arXiv:1704.06439
110. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys.

148(24), 241722 (2018)
111. W. Ye, C. Chen, Z. Wang, I.H. Chu, S.P. Ong, Nat. Commun. 9(1), 3800 (2018)

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203

18Polymer Genome: A Polymer Informatics
Platform to Accelerate Polymer Discovery

Anand Chandrasekaran, Chiho Kim, and Rampi Ramprasad

Abstract

The Materials Genome Initiative has brought about a paradigm shift in the design
and discovery of novel materials. In a growing number of applications, the
materials innovation cycle has been greatly accelerated as a result of insights
provided by data-driven materials informatics platforms. High-throughput com-
putational methodologies, data descriptors, and machine learning are playing
an increasingly invaluable role in research development portfolios across both
academia and industry. Polymers, especially, have long suffered from a lack of
data on electronic, mechanical, and dielectric properties across large chemical
spaces, causing a stagnation in the set of suitable candidates for various
applications. The nascent field of polymer informatics seeks to provide tools and
pathways for accelerated polymer property prediction (and materials design) via
surrogate machine learning models built on reliable past data. With this goal
in mind, we have carefully accumulated a dataset of organic polymers whose
properties were obtained either computationally (bandgap, dielectric constant,
refractive index, and atomization energy) or experimentally (glass transition
temperature, solubility parameter, and density). A fingerprinting scheme that
captures atomistic to morphological structural features was developed to numer-
ically represent the polymers. Machine learning models were then trained by
mapping the polymer fingerprints (or features) to their respective properties.
Once developed, these models can rapidly predict properties of new polymers
(within the same chemical class as the parent dataset) and can also provide
uncertainties underlying the predictions. Since different properties depend on
different length-scale features, the prediction models were built on an optimized

A. Chandrasekaran · C. Kim · R. Ramprasad (�)
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
e-mail: chiho.kim@gatech.edu; rampi.ramprasad@mse.gatech.edu

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_18

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_18&domain=pdf
mailto:chiho.kim@gatech.edu
mailto:rampi.ramprasad@mse.gatech.edu
https://doi.org/10.1007/978-3-030-40245-7_18

398 A. Chandrasekaran et al.

set of features for each individual property. Furthermore, these models are
incorporated in a user friendly online platform named Polymer Genome (www.
polymergenome.org). Systematic and progressive expansion of both chemical
and property spaces are planned to extend the applicability of Polymer Genome
to a wide range of technological domains.

18.1 Introduction: Applications of Machine Learning
in Materials Science

The past few years have been witness to a surge in the application of data-driven
techniques to a broad spectrum of research and development fields. The discipline
of machine learning [1], responsible for bringing such techniques to light, has seen
multiple breakthroughs over the past two decades. One of the factors responsible
for such rapid advancements in the field is the development of novel algorithms and
quantitative approaches capable of learning any arbitrary mapping between a given
input and the corresponding output. The increased availability of vast amounts of
data and the reduction in the cost of fast computational resources are other reasons
that have abetted in the preeminence of the field of machine learning.

The materials science and chemistry communities have greatly benefited from
machine learning approaches over the past few years. In these communities, there
have been many large-scale efforts to curate accurate and reliable databases of
materials properties (both computational [2–4] and experimental). Large-scale
programs such as the Materials Genome Initiative [5] (in the USA), NOMAD [6] (in
Europe), and MARVEL [7] (in Switzerland) have contributed to the development of
novel database infrastructures tailored to materials science challenges and have also
resulted in high-throughput frameworks capable of leveraging the power of modern
high-performance computing facilities [8, 9].

In materials science, the increasing availability of large amounts of data (both
computational and experimental) has led to the prominent field of materials
informatics [10–24]. The overarching goal of the field materials informatics is
to accelerate the development of novel materials for specific applications. To this
end, the materials science community has used machine learning to accelerate
various stages of the materials discovery pipeline. For example, a variety of machine
learning force-fields [25–28] have been developed to provide rapid predictions of
energies and forces with quantum-mechanical accuracy. Other approaches involve
the utilization of machine learning approaches to bypass the Kohn–Sham equations
to directly obtain important electronic properties such as the charge density [29].

This chapter, however, focuses on the ability of surrogate models to directly
predict higher length-scale properties of materials. As shown in Fig. 18.1, the
measurement of materials properties has traditionally involved computationally
expensive quantum-mechanical simulations or perhaps the utilization of a time-
consuming or laborious experimental technique. A novel paradigm has emerged in
recent years wherein the properties of materials can be directly and rapidly obtained
using predictive frameworks employing machine learning methodologies.

www.polymergenome.org
www.polymergenome.org

18 Polymer Genome: A Polymer Informatics Platform 399

Fig. 18.1 The top two workflows indicate how the physical properties of materials can be obtained
using traditional computational or experimental pipelines. Recent efforts, such as the Polymer
Genome paradigm, seeks to accelerate the prediction of materials properties using machine
learning approaches

A specific example where such a paradigm has been of great utility is the
nascent field of polymer informatics. Polymers form an important (and challenging)
materials class and they are pervasive with applications ranging from daily products,
e.g., plastic packaging and containers, to state-of-the-art technological components,
e.g., high-energy density capacitors, electrolytes for Li-ion batteries, polymer light-
emitting diodes, and photovoltaic materials. Their chemical and morphological
spaces are immensely vast and complex [30], leading to fundamental obstacles
in polymer discovery. Some recent successes in rationally designing polymer
dielectrics via experiment-computation synergies [10, 11, 19, 23, 31–38] indicate
that there may be opportunities for machine learning and informatics approaches in
this challenging research and development area.

We have created an informatics platform capable of predicting a variety of
important polymer properties on-demand. This platform utilizes surrogate (or
machine learning) models, which link key features of polymers to properties, trained
on high-throughput DFT calculations and experimental data from literature and
existing databases. The main elements of the polymer property prediction pipeline
are summarized in the lowermost pipeline of Fig. 18.1.

In the following sections, we explain in detail the various stages of abovemen-
tioned pipeline [39], starting from the curation of the dataset all the way up to the
machine learning algorithms that we have employed.

400 A. Chandrasekaran et al.

Fig. 18.2 Overview of our polymer dataset used for development of property prediction mod-
els [39]. The dataset consists of 854 polymers spanning a chemical space of nine elements and
comprises properties obtained using computations as well as experiments

18.2 Dataset

Two strategic tracks were followed for the creation of our dataset (see Fig. 18.2):
(1) via high-throughput computation using density functional theory (DFT) as
presented earlier [31,40,41] and (2) by utilizing experimentally measured properties
from literature and data collections [42, 43]. The overall dataset includes 854
polymers made up of a subset of the following species: H, C, N, O, S, F, Cl, Br,
and I. Seven different properties were included in the present study. The bandgap,
dielectric constant, refractive index, and atomization energy were determined using
DFT computations whereas the Tg , solubility parameter, and density were obtained
from experimental measurements.

All the computational data were generated through a series of studies related
to advanced polymer dielectrics [31, 40, 41]. The computational dataset includes
polymers containing the following building blocks, CH2, CO, CS, NH, C6H4,
C4H2S, CF2, CHF, and O [19, 22, 40, 41, 44]. Repeat units contained 4–8 building
blocks, and 3D structure prediction algorithms were used to determine their struc-
ture [31,40,41]. The building blocks considered in the dataset are found in common
polymeric materials including polyethylene (PE), polyesters, and polyureas, and
could theoretically produce an enormous variety of different polymers. The bandgap
was computed using the hybrid Heyd–Scuseria–Ernzerhof (HSE06) electronic
exchange-correlation functional [45]. Dielectric constant and refractive index (the
square root of the electronic part of the dielectric constant) were computed using
density functional perturbation theory (DFPT) [46]. The atomization energy was
computed for all the polymers following previous work [33–36, 41, 44, 47–52].
The DFT computed properties and associated 3D structures are available from
Khazana [53](khazana.gatech.edu).

The Tg , solubility parameter, and density data were obtained from the existing
databases of experimental measurements [42, 43]. Tg , which is an indication of the
transition point between the glassy and supercooled liquid phases in an amorphous
polymer, is important in many polymer applications because the structural charac-

khazana.gatech.edu

18 Polymer Genome: A Polymer Informatics Platform 401

teristics (and, consequently, other properties) of the polymer changes dramatically
at this point. The solubility parameter of a polymer is typically used to determine a
suitable solvent to use during polymer synthesis. In this particular study we consider
the Hildebrand solubility parameter.

We have determined the chemical formula and the associated topological
structure from the name of polymers listed in the literature. The dataset contains
a total of 854 organic polymers composed of 9 frequently found atomic species,
i.e., C, H, O, N, S, F, Cl, Br, and I with properties listed in the right side panel
of Fig. 18.2. Figure 18.3 shows a summary of the property space for the polymer
dataset, including the range of property values, distribution, standard deviation, and
the number of polymers associated with each property.

Fig. 18.3 Property space of Polymer Genome dataset [39]. The seven properties considered
in this study were the (a) bandgap, (b) dielectric constant, (c) refractive index, (d) atomization
energy, (e) Tg , (f) solubility parameter, and (g) density. The histograms represent the distribution
of each individual property. The solid line depicts the mean of the distribution whereas the distance
between the solid line and dashed line represents the standard deviation. (h) Table detailing the
number of data-points, range, and mean of each individual property considered

402 A. Chandrasekaran et al.

18.3 Hierarchical Fingerprinting

Fingerprinting is a crucial step of our data-driven property prediction pipeline. In
this step, the geometric and chemical information of the polymers is converted to
a numerical representation. This numerical representation, more often than not,
is a vector of fixed number of dimensions that can be provided as an input to
any given machine learning algorithm. The different dimensions of this vector
would represent different characteristics of the polymer repeat unit. Such numerical
descriptors of organic molecules have been utilized extensively in the past in the
form quantitative structure-property relationship (QSPR) or quantitative structure-
activity relationship (QSAR) models. In the current work, we go beyond existing
QSPR/QSAR descriptors in order to systematically capture different length-scale
features that are specific to polymeric materials built up of very long polymer
chains. In essence, given a particular repeat unit, we assume that the polymer chain
constructed from that repeat unit is infinitely long and therefore the descriptors that
we construct must take into account this “one-dimensional” periodicity.

To comprehensively capture the key features that may control the diversity of
properties of interest, we consider three hierarchical levels of descriptors spanning
different length scales. At the atomic-scale, the number of times that a fixed set
of atomic fragments (or motifs) occur are counted [54]. An example of such a
fragment is O1-C3-C4, made up of three contiguous atoms, namely, a one-fold
coordinated oxygen, a three-fold coordinated carbon, and a four-fold coordinated
carbon, in this order. For a given polymer repeat unit, we count the number of times
the O1-C3-C4 fragment occurs and then proceed to normalize this value by the
number of atoms in polymer repeat unit (to account for the abovementioned one-
dimensional periodicity). Such a series of predefined “triplets” has been shown to
be a good fingerprint for a diverse range of organic materials [23, 54]. A vector
of such triplets form the fingerprint components at the lowest hierarchy. For the
polymer class under study, there are 108 such components.

Next in the hierarchy of fingerprint components are larger length-scale descrip-
tors of the quantitative structure-property relationship (QSPR) type mentioned
earlier. A detailed description of such descriptors can be found in the RDKit Python
library [55–57] that was used for the current work. Examples of such descriptors are
van der Waals surface area [58], the topological polar surface area (TPSA) [59,60],
the fraction of atoms that are part of rings (i.e., the number of atoms associated with
rings divided by the total number of atoms in the formula unit), and the fraction of
rotatable bonds. TPSA is the sum of surfaces of polar atoms in the molecule and
we observed this descriptor to be strongly correlated to the solubility. Descriptors
such as the fraction of ring atoms and fraction of rotatable bonds strongly influenced
properties such as Tg and density. Such descriptors, 99 in total, form the next set of
components of our overall fingerprint vector.

The highest length-scale fingerprint components we considered may be classi-
fied as “morphological descriptors.” These include features such as the shortest
topological distance between rings, fraction of atoms that are part of side chains,

18 Polymer Genome: A Polymer Informatics Platform 403

and the length of the largest side-chain. Properties such as Tg strongly depend on
such features which influence the way the chains are packed in the polymer. For
instance, if two rings are very close, the stiffness of the polymer backbone is much
higher than if the rings were separated by a larger topological distance. Both the
number and the length of the side chains strongly influence the amount of free
volume in the polymeric material and therefore directly influence Tg . The larger
the free volume, the lower the Tg . We include 22 such morphological descriptors in
our overall fingerprint.

Figure 18.4a shows the hierarchy of polymer fingerprints, including atomic
level, QSPR and morphological descriptors. The overall fingerprint of a polymer
is constructed by concatenating the three classes of fingerprint components. In total,
this leads to a fingerprint with 229 components. Since certain descriptors are more
relevant for certain properties, in the next section, we outline a methodology to dis-
card irrelevant descriptors for every target property. Moreover, during performance
assessment, we use different combinations of the three fingerprint hierarchies. For

Fig. 18.4 Hierarchy of descriptors used to fingerprint the polymers, and an example demonstra-
tion for the systematic improvement of model performance depending on the type of fingerprint
considered. (a) Classification of descriptors according to the physical scale and chemical charac-
teristics are shown with representative examples. Dimension of the fingerprint in each level can be
reduced by a recursive feature elimination (RFE) process. In the “+RFE” panel, N , #, and Emin
are total number of features in fingerprint, optimal number of features determined by RFE, and
minimum error of prediction model, respectively. Plots at the bottom panel show the performance
of machine learning prediction models for glass transition temperature (Tg) with (b) only atomic
level descriptors, (c) atomic level and QSPR descriptors, and (d) entire fingerprint components
including morphological descriptors. (e) Shows how the optimal subset selected by RFE improves
the prediction model for Tg [39]

404 A. Chandrasekaran et al.

clarity of the ensuing discussion, we introduce some nomenclature. The atom triples
fingerprint, QSPR descriptors, and morphological descriptors are denoted by “A,”
“Q,” and “M,” respectively. Therefore, “AQ” implies a combination of just the atom
triples and QSPR descriptors.

In order to visualize the chemical diversity of polymers considered here, we
have performed principal component analysis (PCA) of the complete fingerprint
vector. PCA identifies orthogonal linear combinations of the original fingerprint
components that provide the highest variance; the first few principal components
account for much of the variability in the data [13]. Figure 18.5 displays the dataset
with the horizontal and vertical axes chosen as the first two principal components,
PC1 and PC2. Molecular models of some common polymers are shown explicitly,
and symbol color, symbol size, and symbol type are used to represent the fraction of
sp3 bonded C atoms, fraction of rings, and TPSA of polymers, respectively. As an
example from the figure, PE is composed of only sp3 bonded C without any rings in
the chain, while poly(1,4-phenylene sulfide) contains no sp3 bonded C atoms, and
more than 90% of its atoms are part of rings. As a result, these two polymers are
situated far from each other in 2D principal component space.

Fig. 18.5 Graphical summary of chemical space of polymers considered. 854 chemically unique
organic polymers generated by structure prediction method (minima-hopping [61]) and experimen-
tal sources [42, 43] distributed in 2D principal component space. Two leading components, PC1
and PC2, are produced by principal component analysis, and assigned to axes of the plot. Fraction
of sp3 bonded C atoms, fraction of rings, and normalized TPSA per atoms in a formula unit are
used for color code, size, and symbol of each polymer. A few representative structures with various
number of aromatic and/or aliphatic rings and their position on the map are shown [39]

18 Polymer Genome: A Polymer Informatics Platform 405

18.4 Surrogate (Machine Learning) Model Development

18.4.1 Recursive Feature Elimination

As alluded to earlier, our general fingerprint is rather high in dimensionality, and
not all of the components may be relevant for describing a particular property. In
fact, irrelevant features often lead to a poor prediction capability. On the practical
side, large fingerprint dimensionality also implies longer training times. There is
thus a need to determine the optimal subset of the complete fingerprint necessary
for the prediction of a particular property (i.e., different properties may require
different subsets of the fingerprint vector). Rather than manually deciding which
fingerprint components to use, one may utilize a wide variety of dimensionality
reduction techniques to automatically select a set of features that best represent a
particular property. In the current work, we utilize the recursive feature elimination
(RFE) algorithm to sequentially eliminate the least important features for a given
property [62]. First, linear regression is performed using the complete fingerprint
vector via support vector regression. Through this process, each of the features are
weighted by certain coefficients and are then ranked based on the square of these
coefficients [62]. The feature with the lowest rank is subsequently eliminated and
the iteration is repeated to remove the next least-important-feature. As shown in
right-most panel of Fig. 18.4, the optimal number of features for a given property
can be obtained by plotting the cross-validated root mean square error (RMSE) as
a function of the number of descriptors. The final set of features is passed forward
to the non-linear machine learning algorithm described next in Sect. 18.4.2. These
features can also be used to obtain an intuitive understanding of how certain key
fingerprint components influence particular materials properties.

18.4.2 Gaussian Process Regression

In our past work [12, 19, 31], we have successfully utilized kernel ridge regression
(KRR) [63] to learn the non-linear relationship between a polymer’s fingerprint and
its properties. However, in this work we utilize Gaussian process regression (GPR)
because of two key benefits. Firstly, GPR learns a generative, probabilistic model of
the target property and thus provides meaningful uncertainties/confidence intervals
for the prediction. Secondly, the optimization of the model hyperparameters is
relatively faster in GPR because one may perform gradient-ascent on the marginal
likelihood function as opposed to the cross-validated grid-search which is required
for KRR. We use a radial basis function (RBF) kernel defined as

k(xi , xj) = σ 2 exp

{[
− (xi − xj

)2
2l2

]}
+ σ 2

n δ(xi , xj), (18.1)

406 A. Chandrasekaran et al.

where σ , l, and σn are hyperparameters to be determined during the training process
(in the machine learning parlance, these hyperparameters are referred to as signal
variance, length-scale parameter, and noise level parameter, respectively). xi and xj

are the fingerprint vectors for two polymers i and j . (xi is an m dimensional vector
with components x1

i , x2
i , x3

i , . . . , x
m
i , determined and optimized by the RFE step

described above). Performance of the model was evaluated based on the root mean
square error (RMSE) and the coefficient of determination (R2). 80% of the data was
used for training and the remaining 20% was set aside as a test set.

18.5 Model Performance Validation

The final machine learning models for each of the properties under consideration
here were constructed using the entire polymer dataset for each property. To avoid
overfitting the data, and to ensure that the models are generalizable, we employed
five-fold cross-validation, wherein the dataset is divided into 5 different subsets and
one subset was used for testing while remaining sets were employed for training.
Table 18.1 summarizes the best fingerprint, dimension of fingerprint vector, and
performance based on RMSE for the entire dataset. As shown in the table, the best
machine learning model for the atomization energy can be constructed using just the
atom triples and QSPR descriptors (i.e., “AQ”) whereas most of the other properties
necessitate the inclusion of morphological descriptors (i.e., ‘AQM”). In Fig. 18.6, we
demonstrate the sensitivity of the bandgap and dielectric constant models to the size
of the training set. We see a convergence in the train and test errors as the training
set size increases. Therefore, the accuracy of the ML models may be systematically
improved as more polymer property values are added to the dataset.

Parity plots in Fig. 18.7 are shown to compare experimental or DFT computed
properties with respect to machine learning predicted values with percentage relative
error distribution. Several error metrics, such as RMSE, mean absolute error (MAE),

Table 18.1 Summary of fingerprint used for development of machine learning prediction model,
and the performance of prediction for each property [39]

Property Best fingerprint Dimension of fingerprint RMSE

Bandgap AQM + RFE 88 0.30 eV

Dielectric constant AQ + RFE 35 0.48

Refractive index AQM + RFE 19 0.08

Atomization energy AQ 207 0.01 eV/atom

Glass transition temperature AQM + RFE 69 18 K

Solubility parameter AQM + RFE 24 0.56 MPa1/2

Density AQ + RFE 9 0.05 g/cm3

Best fingerprint is selected based on average RMSE of test set for 100 models. (A Atomic level
descriptors; Q QSPR descriptors; M Morphological descriptors;+RFE subject to the RFE process)

18 Polymer Genome: A Polymer Informatics Platform 407

Fig. 18.6 Learning curves constructed from the RMSE of the machine learning models for (a)
bandgap and (b) dielectric constant. For each model, data was obtained from 100 independent runs
with different selection of train and test set

mean absolute relative error (MARE), and 1 − R2 were considered to evaluate the
performance of these models, and shown together in Fig. 18.7h.

As mentioned earlier, the utilization of GPR provides meaningful uncertainties
associated with each prediction. Moreover, the noise parameter of the GPR kernel
gives insights into the overall errors and uncertainties associated with the prediction
of that particular property for a given dataset. These uncertainties could arise as
a result of variation in measurement techniques (in the case of Tg , for example)
or it may even arise as a result of limitations of our representation technique.
For example, we are providing estimates of the bandgap through purely the
SMILES string rather than the 3D crystal structure of the polymer. Therefore,
the representation technique itself results in partial loss of information and this
underlying uncertainty can be estimated statistically using the GPR noise parameter.

18.6 Polymer Genome Online Platform

For easy access and use of the prediction models developed here, an online platform
called Polymer Genome has been created. This platform is available at www.
polymergenome.org [64]. The Polymer Genome application was developed using
Python and standard web languages such as Hypertext Preprocessor (php) and
Hypertext Markup Language (HTML). As user input, the repeat unit of a polymer
or its SMILES string may be used (following a prescribed format described in the
Appendix). One may also use an integrated drawing tool to sketch the repeat unit of
the polymer.

www.polymergenome.org
www.polymergenome.org

408 A. Chandrasekaran et al.

Fig. 18.7 The performance of the cross-validated machine learning models developed by GPR
with combination of RBF and white noise kernels [39]. Comparison of DFT computed (a)
bandgap, (b) dielectric constant, (c) refractive index, (d) atomization energy, experimental (e) Tg ,
(f) Hildebrand solubility parameter, and (g) density for the predicted values are shown with inset of
distribution of % relative error, (y−Y)/Y ×100 where Y is DFT computed or experimental value,
and y is machine learning predicted value. The error bars in the parity plots represent uncertainties
(standard deviations) obtained using GPR. Other error metrics including RMSE, mean absolute
error (MAE), mean absolute relative error (MARE), and 1− R2 are summarized in (h)

Once the user input is delivered to Polymer Genome by the user, property
predictions (with uncertainty) are made, and the results are shown in an organized
table. The names of polymers (if there are more than one meeting the search
criteria) with SMILES and repeat unit are provided with customizable collection of
properties. Upon selection of any polymer from this list, comprehensive information
is reported. This one-page report provides the name and class of the polymer, 3D
visualization of the structure with atomic coordinates (if such is available), and
properties determined using our machine learning models. A typical user output
of Polymer Genome is captured in Fig. 18.8.

18 Polymer Genome: A Polymer Informatics Platform 409

Fig. 18.8 Overview of Polymer Genome online platform available at www.polymergenome.org.
Keyword PE is used as an example user input to show resulting Polymer details page [39]

18.7 Conclusions and Outlook

The Materials Genome Initiative and similar other initiatives around the world have
provided the impetus for data-centric informatics approaches in several subfields of
materials research. Such informatics approaches seek to provide tools and pathways
for accelerated property prediction (and materials design) via surrogate models
built on reliable past data. Here, we have presented a polymer informatics platform
capable of predicting a variety of important polymer properties on-demand. This
platform utilizes surrogate (or machine learning) models that link key features
of polymers (i.e., their “fingerprint”) to properties. The models are trained on
high-throughput DFT calculations (of the bandgap, dielectric constant, refractive
index, and atomization energy) and experimental data from polymer data handbooks
(on the glass transition temperature, solubility parameter, and density). Certain
properties, like the atomization energy, depend mainly on the atomic constituents
and short-range bonding, whereas other properties, such as the glass transition
temperature, are strongly influenced by morphological characteristics like the chain-
stiffness and branching. Our polymer fingerprinting scheme is thus necessarily
hierarchical and captures features at multiple length scales ranging from atomic
connectivity to the size and density of side chains. The property prediction models

www.polymergenome.org

410 A. Chandrasekaran et al.

are incorporated in a user friendly online platform named Polymer Genome (www.
polymergenome.org), which utilizes a custom Python-based machine learning and
polymer querying framework.

Polymer Genome, including the dataset, fingerprinting scheme, and machine
learning models, remains in early stages. Coverage of the polymer chemical space
needs to be progressively increased, and further developments on the fingerprinting
scheme are necessary to adequately capture conformational (e.g., cis versus trans,
tacticity, etc.) and morphological features (e.g., copolymerization, crystallinity,
etc.). Systematic pathways to achieve such expansion are presently being examined
to extend the applicability of the polymer informatics paradigm to a wide range
of technological domains. Moreover, looking to the future, the ability of our
informatics platform to automatically suggest polymers that are likely to possess a
given set of properties would be of tremendous value within the context of “inverse
design” [65]. Approaches involving Bayesian active learning techniques [66]
and variational autoencoders [67] will allow the automated search of chemical
and morphological space for materials with desired properties at a significantly
accelerated pace.

References

1. M.I. Jordan, T.M. Mitchell, Science 349(6245), 255 (2015)
2. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301

(2012)
3. L. Ruddigkeit, R. van Deursen, L.C. Blum, J.L. Reymond, J. Chem. Inf. Model. 52(11), 2864

(2012). https://doi.org/10.1021/ci300415d. PMID: 23088335
4. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Sci. Data 1, 140022 (2014)
5. Materials Genome Initiative. https://www.mgi.gov/
6. The Novel Materials Discovery (nomad) Laboratory. https://nomad-coe.eu/
7. National Center for Competence in Research - Marvel. nccr-marvel.ch
8. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 111, 218

(2016)
9. K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang, I.h. Chu,

T. Smidt, B. Bocklund, M. Horton, et al., Comput. Mater. Sci. 139, 140 (2017)
10. A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu,

R. Ramprasad, Mater. Today 21, 785–796 (2017). https://doi.org/10.1016/j.mattod.2017.11.
021

11. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, npj Comput. Mater. 3,
54 (2017). https://doi.org/10.1038/s41524-017-0056-5

12. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, Comput. Mater. Sci. 125, 123 (2016).
https://doi.org/10.1016/j.commatsci.2016.08.039

13. T. Mueller, A.G. Kusne, R. Ramprasad, Machine Learning in Materials Science: Recent
Progress and Emerging Applications, vol. 29 (Wiley, Hoboken, 2016), pp. 186–273

14. G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22(12), 3762 (2010)
15. A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, A. Mar,

Chem. Mater. 28(20), 7324 (2016)
16. P. Pankajakshan, S. Sanyal, O.E. de Noord, I. Bhattacharya, A. Bhattacharyya, U. Waghmare,

Chem. Mater. 29(10), 4190 (2017). https://doi.org/10.1021/acs.chemmater.6b04229
17. C. Kim, G. Pilania, R. Ramprasad, Chem. Mater. 28(5), 1304 (2016). https://doi.org/10.1021/

acs.chemmater.5b04109

www.polymergenome.org
www.polymergenome.org
https://doi.org/10.1021/ci300415d
https://www.mgi.gov/
https://nomad-coe.eu/
http://nccr-marvel.ch
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1016/j.commatsci.2016.08.039
https://doi.org/10.1021/acs.chemmater.6b04229
https://doi.org/10.1021/acs.chemmater.5b04109
https://doi.org/10.1021/acs.chemmater.5b04109

18 Polymer Genome: A Polymer Informatics Platform 411

18. A. Jain, Y. Shin, K.A. Persson, Nat. Rev. Mater. 1, 15004 (2016). https://doi.org/10.1038/
natrevmats.2015.4

19. A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, R. Ramprasad, Sci. Rep. 6,
20952 (2016). https://doi.org/10.1038/srep20952

20. L. Ghadbeigi, J.K. Harada, B.R. Lettiere, T.D. Sparks, Energy Environ. Sci. 8, 1640 (2015).
https://doi.org/10.1039/C5EE00685F

21. J. Hattrick-Simpers, C. Wen, J. Lauterbach, Catal. Lett. 145(1), 290 (2015). https://doi.org/10.
1007/s10562-014-1442-y

22. J. Hill, A. Mannodi-Kanakkithodi, R. Ramprasad, B. Meredig, Materials Data Infrastructure
and Materials Informatics (Springer International Publishing, Cham, 2018), pp. 193–225.
https://doi.org/10.1007/978-3-319-68280-8_9

23. A. Mannodi-Kanakkithodi, T.D. Huan, R. Ramprasad, Chem. Mater. 29(21), 9001 (2017).
https://doi.org/10.1021/acs.chemmater.7b02027

24. C. Kim, T.D. Huan, S. Krishnan, R. Ramprasad, Sci. Data 4, 170057 (2017). https://doi.org/
10.1038/sdata.2017.57

25. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)
26. V. Botu, R. Batra, J. Chapman, R. Ramprasad, J. Phys. Chem. C 121(1), 511 (2017). https://

doi.org/10.1021/acs.jpcc.6b10908
27. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, npj Comput. Mater.

3(1), 37 (2017). https://doi.org/10.1038/s41524-017-0042-y
28. V. Botu, J. Chapman, R. Ramprasad, Comput. Mater. Sci. 129, 332 (2017). https://doi.org/10.

1016/j.commatsci.2016.12.007
29. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8(1),

872 (2017)
30. L. Chen, T.D. Huan, R. Ramprasad, Sci. Rep. 7(1), 6128 (2017)
31. A. Mannodi-Kanakkithodi, G.M. Treich, T.D. Huan, R. Ma, M. Tefferi, Y. Cao, G.A. Sotzing,

R. Ramprasad, Adv. Mater. 28(30), 6277 (2016). https://doi.org/10.1002/adma.201600377
32. G.M. Treich, M. Tefferi, S. Nasreen, A. Mannodi-Kanakkithodi, Z. Li, R. Ramprasad, G.A.

Sotzing, Y. Cao, IEEE Trans. Dielectr. Electr. Insul. 24(2), 732 (2017). https://doi.org/10.1109/
TDEI.2017.006329

33. A.F. Baldwin, T.D. Huan, R. Ma, A. Mannodi-Kanakkithodi, M. Tefferi, N. Katz, Y. Cao,
R. Ramprasad, G.A. Sotzing, Macromolecules 48, 2422 (2015)

34. Q. Zhu, V. Sharma, A.R. Oganov, R. Ramprasad, J. Chem. Phys. 141(15), 154102 (2014).
https://doi.org/10.1063/1.4897337

35. R. Lorenzini, W. Kline, C. Wang, R. Ramprasad, G. Sotzing, Polymer 54(14), 3529 (2013).
https://doi.org/10.1016/j.polymer.2013.05.003

36. A.F. Baldwin, R. Ma, T.D. Huan, Y. Cao, R. Ramprasad, G.A. Sotzing, Macromol. Rapid
Commun. 35, 2082 (2014)

37. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, J.E. Gubernatis, Comput.
Mater. Sci. 125, 92 (2016). https://doi.org/10.1016/j.commatsci.2016.08.018

38. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Prog.
Mater. Sci. 83, 236 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001

39. C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, J. Phys. Chem. C 122(31),
17575 (2018). https://doi.org/10.1021/acs.jpcc.8b02913

40. T.D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, R. Ramprasad, Sci. Data
3, 160012 (2016). https://doi.org/10.1038/sdata.2016.12

41. V. Sharma, C.C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R.
Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, R. Ramprasad, Nat. Commun. 5, 4845 (2014)

42. J. Bicerano, Prediction of Polymer Properties (Dekker, New York, 2002)
43. A.F.M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters (CRC

Press, Florida, 1983)
44. C.C. Wang, G. Pilania, S.A. Boggs, S. Kumar, C. Breneman, R. Ramprasad, Polymer 55, 979

(2014)
45. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)

https://doi.org/10.1038/natrevmats.2015.4
https://doi.org/10.1038/natrevmats.2015.4
https://doi.org/10.1038/srep20952
https://doi.org/10.1039/C5EE00685F
https://doi.org/10.1007/s10562-014-1442-y
https://doi.org/10.1007/s10562-014-1442-y
https://doi.org/10.1007/978-3-319-68280-8{_}9
https://doi.org/10.1021/acs.chemmater.7b02027
https://doi.org/10.1038/sdata.2017.57
https://doi.org/10.1038/sdata.2017.57
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1016/j.commatsci.2016.12.007
https://doi.org/10.1016/j.commatsci.2016.12.007
https://doi.org/10.1002/adma.201600377
https://doi.org/10.1109/TDEI.2017.006329
https://doi.org/10.1109/TDEI.2017.006329
https://doi.org/10.1063/1.4897337
https://doi.org/10.1016/j.polymer.2013.05.003
https://doi.org/10.1016/j.commatsci.2016.08.018
https://doi.org/10.1016/j.pmatsci.2016.05.001
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1038/sdata.2016.12

412 A. Chandrasekaran et al.

46. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73(2), 515 (2001).
https://doi.org/10.1103/RevModPhys.73.515

47. T.D. Huan, M. Amsler, V.N. Tuoc, A. Willand, S. Goedecker, Phys. Rev. B 86, 224110 (2012)
48. H. Sharma, V. Sharma, T.D. Huan, Phys. Chem. Chem. Phys. 17, 18146 (2015)
49. T.D. Huan, V. Sharma, G.A. Rossetti, R. Ramprasad, Phys. Rev. B 90, 064111 (2014)
50. T.D. Huan, M. Amsler, R. Sabatini, V.N. Tuoc, N.B. Le, L.M. Woods, N. Marzari,

S. Goedecker, Phys. Rev. B 88, 024108 (2013)
51. A.F. Baldwin, R. Ma, A. Mannodi-Kanakkithodi, T.D. Huan, C. Wang, J.E. Marszalek,

M. Cakmak, Y. Cao, R. Ramprasad, G.A. Sotzing, Adv. Matter. 27, 346 (2015)
52. R. Ma, V. Sharma, A.F. Baldwin, M. Tefferi, I. Offenbach, M. Cakmak, R. Weiss, Y. Cao,

R. Ramprasad, G.A. Sotzing, J. Mater. Chem. A 3, 14845 (2015). https://doi.org/10.1039/
C5TA01252J

53. Khazana, a Computational Materials Knowledgebase. https://khazana.gatech.edu
54. T.D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad, Phys. Rev. B 92(014106), 14106 (2015).

https://doi.org/10.1103/PhysRevB.92.014106
55. C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul, EXCLI J. 8, 74

(2009)
56. C. Nantasenamat, C. Isarankura-Na-Ayudhya, V. Prachayasittikul, Expert Opin. Drug Discov.

5(7), 633 (2010). https://doi.org/10.1517/17460441.2010.492827. PMID: 22823204
57. Rdkit, Open Source Toolkit for Cheminformatics. http://www.rdkit.org/
58. P. Labute, J. Mol. Graph. Model. 18(4), 464 (2000). https://doi.org/10.1016/S1093-

3263(00)00068-1
59. P. Ertl, B. Rohde, P. Selzer, J. Med. Chem. 43(20), 3714 (2000). https://doi.org/10.1021/

jm000942e. PMID: 11020286
60. S. Prasanna, R. Doerksen, Curr. Med. Chem. 16, 21 (2009)
61. M. Sicher, S. Mohr, S. Goedecker, J. Chem. Phys. 134(4), 044106 (2011)
62. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Mach. Learn. 46(1), 389 (2002). https://doi.org/

10.1023/A:1012487302797
63. K. Vu, J.C. Snyder, L. Li, M. Rupp, B.F. Chen, T. Khelif, K.R. Müller, K. Burke, Int. J.

Quantum Chem. 115(16), 1115 (2015). https://doi.org/10.1002/qua.24939
64. Polymer Genome. http://www.polymergenome.org
65. B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 361(6400), 360 (2018)
66. D.A. Cohn, Z. Ghahramani, M.I. Jordan, J. Artif. Intell. Res 4, 129 (1996)
67. H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song (2018, preprint). arXiv:1802.08786

https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1039/C5TA01252J
https://doi.org/10.1039/C5TA01252J
https://khazana.gatech.edu
https://doi.org/10.1103/PhysRevB.92.014106
https://doi.org/10.1517/17460441.2010.492827
http://www.rdkit.org/
https://doi.org/10.1016/S1093-3263(00)00068-1
https://doi.org/10.1016/S1093-3263(00)00068-1
https://doi.org/10.1021/jm000942e
https://doi.org/10.1021/jm000942e
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1002/qua.24939
http://www.polymergenome.org

19Bayesian Optimization in Materials Science

Zhufeng Hou and Koji Tsuda

Abstract

Bayesian optimization (BO) algorithm is a global optimization approach, and
it has been recently gained growing attention in materials science field for
the search and design of new functional materials. Herein, we briefly give an
overview of recent applications of BO algorithm in the determination of physical
parameters of physics model, the design of experimental synthesis conditions,
the discovery of functional materials with targeted properties, and the global
optimization of atomic structures. The basic methodologies of BO in these
applications are also addressed.

19.1 Introduction

The materials design and discovery mostly involve the choice of atomic elements,
chemical compositions, structure, or processing condition of a material to meet a
design criteria. Mathematically, the design or discovery of a material with a targeted
property is often formulated as an optimization problem of a black-box function [1].
The traditional trial-and-error approach for discovering a new functional material
is laborious, time-consuming, and costly. Its success also depends on the intuition
and prior knowledge of researcher. Thanks to the rapid advancement of computing
power and of predictive power of first-principles calculations, the high-throughput

Z. Hou
Research and Services Division of Materials Data and Integrated System, National Institute
for Materials Science, Tsukuba, Ibaraki, Japan

K. Tsuda (�)
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
e-mail: tsuda@k.u-tokyo.ac.jp

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_19

413

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_19&domain=pdf
mailto:tsuda@k.u-tokyo.ac.jp
https://doi.org/10.1007/978-3-030-40245-7_19

414 Z. Hou and K. Tsuda

computational method becomes an alternative approach for materials design [2]. In
both approaches, the exhaustive search is mostly prohibited because of the limitation
in assigned budget. The more valuable experiment is desired to try in a higher
priority.

Bayesian optimization (BO), aka kriging, is a well-established technique for
the black-box optimization [1, 3, 4]. Bayesian prediction model, most commonly
Gaussian processes (GP) [5], is used to predict the black-box function, where
the uncertainty of the predicted function is also evaluated as predictive variance.
Based on the predicted values and variances, next experiments are suggested. In the
early stage, the BO was popular in engineering [6]. Recently, the BO has gained
momentum in machine-learning research due to the success of hyperparameter
tuning in deep learning algorithms [7,8]. The application of BO in materials science
started from 2015 [9]. We are aware of one chapter [10] and one monograph [11]
that have discussed the basic methodologies of BO for materials design. Nowadays,
the BO has been gained more attention for its applications in either the experimental
condition design [12, 13] or the computational design of functional materials [14].
Herein, we will give an overview of the recent applications of BO in several subjects
of materials science.

19.2 Bayesian Optimization

The BO proceeds by iteratively developing a global statistical model of objective
function f (x). We start with a prior distribution P(f) over the objective function
and a likelihood function P(D|f) that describes the data generation process. Then,
at each iteration, a posterior distribution P(f |D) is computed by conditioning on the
previous evaluations of the objective function, namely P(f |D) ∝ P(D|f)P (f),
treating them as observations in a Bayesian nonlinear regression with Gaussian
process prior. An acquisition function is then used to map beliefs about the objective
function to a measure of how promising each location in the input space is, if
it was to be evaluated next. The goal is then to find the input that maximizes
the acquisition function, and select it for function evaluation. Once the function
evaluation is complete, the new observation is added to the dataset and we begin the
next iteration. The termination condition is often a maximum number of function
evaluations. This procedure is illustrated in Algorithm 5.

19 Bayesian Optimization in Materials Science 415

Algorithm 5: General algorithm of Bayesian optimization

Input: search space X, model M, initial design D, acquisition function α,
objective f

1: repeat
2: Fit the model M to the data D
3: Maximize the acquisition function: x̂ = argmaxx∈Xα(x,M)

4: Evaluate the function: ŷ = f (x̂)
5: Add the new data to the dataset: D = D ∪ {(x̂, ŷ)}
6: until termination condition is met

Output: the optimal candidate x∗ = argmaxx∈XEM [f (x)]

In the recent years, several open-source packages of BO were designed especially
for the materials science. We list them as below:

• COMBO (COMmon Bayesian Optimization Library): https://github.com/
tsudalab/combo;

• BASC (Bayesian Active Site Calculator): https://gitlab.com/caml/basc;
• Phoenics (Probabilistic Harvard Optimizer Exploring Non-Intuitive Complex

Surfaces): https://github.com/aspuru-guzik-group/phoenics;
• Matpredict: https://gitlab.com/tammal/matpredict;
• MOE (Metric Optimization Engine): https://github.com/Yelp/MOE.

Herein, we briefly present the technical features of BO in the COMBO code [15],
which was developed by Ueno et al. in Tsuda’s research group. Both the most
commonly used GP [5] and the Bayesian linear regression (BLR) were implemented
for the prediction model. The GP in the COMBO code was constructed using
the squared-exponential kernel function, while the BLR was constructed using the
random feature map [16] to approximate the kernel function. Since the details
of GP have been well explained in a book by Rasmussen and Williams [5],
herein we will skip them and give a bit more about the implementation of BLR
in the COMBO code. Let us now assume that we have observed a set of data
D = {(yi, xi), i = 1, . . . , n, xi ∈ Rd}. The BLR model for this dataset can be
specified as follows:

y = w�φ(x)+ ε, (19.1)

where φ : Rd → R� is a feature map, w ∈ R� is a weight vector, and ε is the noise
subject to N(0, σ 2). The feature map is defined so that the inner product φ(x)�φ(x′)
corresponds to the Gaussian kernel:

φ(x)�φ(x′) = exp

(
−‖x− x′‖2

η2

)
. (19.2)

https://github.com/tsudalab/combo
https://github.com/tsudalab/combo
https://gitlab.com/caml/basc
https://github.com/aspuru-guzik-group/phoenics
https://gitlab.com/tammal/matpredict
https://github.com/Yelp/MOE

416 Z. Hou and K. Tsuda

Using � random samples {ωi , bi}�i=1, the feature map is defined as below:

φ(x) =
(
zω1,b1

(
x
η

)
, . . . , zω�,b�

(
x
η

))�
, (19.3)

where zω,b(x) =
√

2 cos(ω� + b), in which ω is drawn from the Fourier transform
p(ω) of kernel and b is drawn uniformly from [0, 2π]. A � × n matrix � can be
constructed by choosing its ith column to be φ(xi). The posterior distribution of w
at given data D is described as below:

w|D ∼ N(μ, �), (19.4)

where

μ =
(
��� + σ 2I

)−1
�y, (19.5)

� = σ 2
(
��� + σ 2I

)−1
. (19.6)

The predicted value for candidate point xi is given by w�φ(xi). The hyperparam-
eters σ and η in the kernel functions can be tuned automatically by maximizing
the type-II likelihood [5]. Three types of acquisition functions, namely maximum
probability of improvement (MPI) [1], maximum expected of improvement (MEI)
[17], and Thompson sampling (TS) [18], have been implemented in the COMBO
code. The combination of TS and BLR was designed to improve the optimization
efficiency for the large-scale problems. To use BO in the COMBO code, the user
shall feed a search space as input and prepare the evaluation of objective function
via calling the simulator or feeding the experimental measurement results as input.
Depending on the evaluation approach of objective function, the materials design
and discovery using BO in the COMBO code can be performed in an automatic
or interactive manner. The flowchart of BO in the COMBO code is illustrated in
Fig. 19.1.

19.3 Application of Bayesian Optimization in Materials Science

19.3.1 Determine the Parameters in a Physics Model

In materials science the understanding of material properties at a microscopic or
macroscopic scale in many cases can be rationalized using some (semi-)empirical
physics models, such as tight-binding (TB) model, model Hamiltonian, classical
molecular dynamics, and so on. Such physics models may contain lots of ad hoc
parameters, whose values can be determined by fitting the model to a reference
of available experimental data or of pre-generated high-level (e.g., first-principles)

19 Bayesian Optimization in Materials Science 417

Fig. 19.1 Flowchart of BO in the COMBO code. The evaluation of objective function may be
experimental measurement or theoretical simulations. The candidate points for next evaluation of
objective function can be recommended by maximum expected of improvement, which is a widely
used acquisition function, or Thompson sampling for a large-scale problem. The stopping criterion
may be the allowed maximum iteration steps or the predefined convergence threshold of objective
function

simulation data [19, 20], although some of which can be rigorously derived in an
ab initio manner. In the former case, the fitting problem of a set of parameters θ =
{θ1, θ2, . . . , θm} in a physics model can be formulated by minimizing a loss function
as defined below to search for optimal parameters θ∗:

L(θ) =
n∑

α=1

|fα(θ)− fα|2 , (19.7)

where fα(θ) is the outputted data of the considered physical properties from
the employed physics model at a given set of parameters θ , while fα is the
reference data of the considered physical properties that may be collected from
experimental measurement or more accurate ab initio simulation. We note that
the derivatives of loss function (Eq. 19.7) with respect to θ may be numerically
inaccessible, particularly in the case of reference data obtained from an experimental
measurement. Therefore, a derivative-free optimization approach is highly desired
for the determination of optimal parameters θ∗ in Eq. 19.7.

Since BO is derivative free, it has become a successful tool for the hyper-
parameter optimization of machine-learning algorithms, such as support vector
machines or deep neural networks [8]. The BO has also gained attention for
fitting the parameters in a physics model. Recently, Tamura and Hukushima have
demonstrated the BO for estimating spin–spin interactions in the classic Ising model
and in the quantum Heisenberg model under magnetic field H [21, 22]. The BO
showed much better efficiency than the random search method, steepest descent

418 Z. Hou and K. Tsuda

method, and Monte Carlo method in the estimation of three or five parameters in
these model Hamiltonians [22].

19.3.2 Discovery of New Functional Materials

The discovery of new materials, or innovative use of existing materials, is essential
to make progress in many areas such as electronics, information technologies,
automotive and aerospace transportation, biomedicine, energy storage as well as
nanotechnologies. The design of materials with the optimal properties for each
individual application is a long-standing topic in materials research. The approach
from an integration of experimental, computational, and data sciences increasingly
shows promising powerfulness in accelerating the materials discovery and design.

The BO, which is also known as a machine-learning framework to optimize
expensive black-box functions, can be easily integrated not only with experimen-
tation to effectively optimize developmental stage processes for synthesis of novel
materials [13,23–26], but also with first-principles simulations for high-throughput
virtual screening of large-scale space of candidate compounds [9, 27]. In the
former case, the materials composition and operating parameters in synthesis are
of most interest, and they can form a continuous and large search space. Generally,
both material property of interest and process-related variables are used as inputs,
the machine-learning algorithm in BO recommends a next experimental setup or
specification, the experimental synthesis and measurement for the recommended
specification are performed, and the return of experimental data values to the
algorithm is proceeded in an iterative cycle until the target goal of material property
is achieved. The whole procedure is schematically illustrated in Fig. 19.2. Very
recently, we applied such an approach to assist the synthesis of off-stoichiometric
samples of Al2Fe3Si3 compound and were able to find its optimal composition
ratio for a significant enhancement of thermoelectric performance within several
iterations [28].

Thanks to rapid advances in computational power and techniques over recent
decades, many material properties at atomic scale can now be predicted reliably
from first-principles calculations [29,30]. Recently, high-throughput first-principles
computation has been recognized as an efficient tool to accelerate materials
discovery [2]. However, because of the computational cost, a straightforward high-
throughput screening with first-principles techniques is usually limited to hundreds
or thousands of stoichiometric materials, which are a small fraction of the overall
phase space of inorganic compounds [31]. The integration of BO with high-
throughput first-principles calculations enables a possibility of virtual screening to
reduce computational cost and to cover the overall phase space. In this approach,
the search space may be chosen from the experimental crystal structure database,
such as Inorganic Crystal Structure Database (ICSD) [32], Pauling File [33],
Atomwork [34], and Crystallography Open Database (COD) [35], or be generated
for prototype structures by enumerating the ways in which the constituent elements
of periodic table can be combined. In this context, the search space is usually

19 Bayesian Optimization in Materials Science 419

Fig. 19.2 Framework of machine-learning assisted synthesis of functional materials with targeted
properties. The initial dataset comprises the material property for already explored specifications,
which may be pre-generated or even collected from literature. The machine-learning algorithm
recommends a next experimental specification for synthesis according to a selection policy. Next,
synthesis of the recommended specification and measurements of its properties are performed. The
measured data is appended to the dataset as a feedback, and the next iteration is repeated until the
target goal of material property is achieved

represented by material descriptors and thus is discrete. The features of constituent
elements, the crystalline volume, or the mass density of every candidate compound
can be used in the material descriptors, which form a vector [36–38]. The features of
constituent elements may include the information of atoms in periodic table, such as
the mass, radius, electron affinity, ionization energy, and so on [36–39], and they are
usually called elemental descriptors. The choice of materials descriptors can affect
the practice efficiency of BO in the virtual screening of materials. This has been
pointed out by Seko et al. [9] in the application of BO for seeking low-thermal-
conductivity compounds.

19.3.3 Global Optimization of Atomic Structure

One of the most fundamental properties of a material is its atomic structures, such
as cluster, crystal, surface, and interface structures. Knowledge of a material’s
atomic structure is a prerequisite to many computational materials studies. Once
the structure is known, a large number of physical properties can be predicted
using first-principles calculations. Computationally finding the most stable (lowest
in energy or free energy) structure of a large assembly of atoms is a very difficult
problem because of two aspects [40]. One is that the number of minima in the
potential energy surface (PES) of a large system increases exponentially with the
number of atoms [40–42]. The other one is that finding the global minimum energy
structure with certainty presumably involves visiting every local minimum and
consequently the computational cost also increases exponentially with the number
of atoms [40]. Despite these difficulties, steady progress has been made over

420 Z. Hou and K. Tsuda

the last two decades owing to the rapid advances in computing power and the
improved efficiency in ab initio total energy calculation methods. So far, a variety
of approaches have been developed for the atomic structure prediction, including
the genetic algorithm (GA) [43], the evolutionary algorithm (EA) [42], the particle
swarm optimization (PSO) [44], the random search [40], the minima hopping (MH)
method [45], and so on. The implementation and the successful applications of these
approaches for the global search of atomic structure have been reviewed recently in
three books [46–48]. Compared with the aforementioned approaches for the global
search of atomic structure, the BO is a new comer and shows competing features,
namely the free of ad hoc parameters in the algorithm itself and the capability of
predicting the total energies of unvisited structures based on the visited PES. Herein,
we discussed the applications of BO in the global optimization of atomic structure
for three typical systems, namely the interface structure, the adsorption structure of
a molecule on solid surface, and the crystal structure.

19.3.3.1 Optimization of Interface Structure
A solid interface is defined as a small number of atomic layers that separate two
solids in intimate contact with one another, where the properties differ significantly
from those of the bulk material it separates [49]. Grain boundaries (GBs) are a
special type of interface that form when grains of the same phase but different
crystallographic orientations abut [50]. The simulation of an interface structure
using the supercell model requires a larger number of atoms than those of bulk
structures. Because of the increased computational cost, it is much more difficult
to perform straightforward structure search using accurate quantum mechanics
methods. Much less work on the global prediction of interface structures has been
reported [51–53].

Very recently, Kiyohara and his coworkers [54] have taken the case of simplified
coincidence-site lattice (CSL) GB of a metal as an example and employed the
BO algorithm with the empirical potential method to determine its stable atomic
structure. For such a simplified CSL GB, each side of the interface could be
approximated as a rigid body and thus the corresponding atomic structure is
characterized by three parameters that arise from three-dimensional translations
in the used supercell, namely the in-plane relative displacement (denoted as !x

and !y) of the two rigid atomic layers along the interface plane (assumed in the
xy plane) and the interlay distance (denoted as !z) along the normal direction of
interface plane. Here, we shall mention that this treatment is also applicable in the
simulation of vertical heterostructure of two-dimensional (2D) materials [55], since
the structure reconstruction rarely occurs therein. So that, the search of stable atomic
structure of simplified CSL GBs is formulated as the minimization of GB energy in
a three-dimensional space. For a given structure (namely !x, !y, and !z) of GB,
the GB energy can be evaluated from a static lattice calculation using the empirical
potential method. Kiyohara et al. showed that the stable interface structure among
ten hundreds possible structures of GB can be determined by only several tens to a
hundred calculations using the BO algorithm [54].

19 Bayesian Optimization in Materials Science 421

19.3.3.2 Adsorption Structure of Molecule on Solid Surface
Molecule adsorption on solid surfaces plays a key role in many surface chemical
processes, including heterogeneous catalysis, gas sensing, and building nanoelec-
tronic device from a bottom-up approach. The process of a molecule binding to
a surface (called adsorption) involves searching for energetically favorable binding
sites. That is to say, for a given solid surface and a given molecule, which adsorption
structure does correspond to the globally minimized potential energy?

By taking several assumptions to simplify the degrees of freedom, i.e., no
dissociation for molecule adsorbate, negligible deformation of molecule caused by
the adsorption, and no molecular-adsorption-induced surface reconstruction, which
might be reasonable particularly in the gas sensing and in the self-organization of
organic molecules on solid surface, the molecule adsorbate can be treated as a rigid
body. So that the search of adsorption structure could be formulated as the minimiza-
tion of a low-dimensional objective function, that is, the energy minimization with
respect to six parameters. These six parameters include the location of the center of
molecule along the surface plane, which can be characterized by two parameters,
x and y; the distance of the center of molecule with respect to the topmost surface
atoms, which is denoted as z; and the orientation of molecule adsorbate in space,
which can be fully specified by three parameters, ϕ, θ , and ψ , commonly known
as the Euler angles [56–58]. By taking into account the symmetry, e.g., the in-
plane translation symmetry of solid surface due to the periodic boundary along the
surface plane and the molecule symmetry, one may rationally choose the constraint
ranges for the parameters x, y, ϕ, θ , and ψ . The constraint range for the parameter
z can be chosen according to the typical bonding range that covers from a strong
covalent bonding to a weak Van der Waals one. Very recently, Carr et al. [56, 57]
and Todorović et al. [58] have independently demonstrated the BO algorithm in
treating the energy minimization of such a six-dimensional potential surface. The
results in both of their studies showed that BO can efficiently accelerate the search
of adsorption structure of a molecule on solid surface. To find the minimum potential
energy, the number of density functional theory evaluations called in BO was much
smaller than that in the other two used algorithms, namely the differential evolution
and the constrained minima hopping algorithms [56, 57].

For the self-organization of medium-sized organic molecules on solid surface,
not only the molecule adsorption but also the molecule arrangement are needed
to be considered. Taking the adsorption of two molecules on solid surface as an
example for simplicity, the distance between the centers of two adsorbed molecule
shall be taken into account, which increases the dimensionality of the potential
energy surface. However, it does not affect the efficiency of BO algorithm in
the determination of molecule arrangement on solid surface, as demonstrated by
Packwood and Hitosugi [59]. Their results showed that BO can optimize the
arrangement of two medium-sized aromatic adsorbates on a copper (111) surface
within tens of density functional theory energy evaluations.

422 Z. Hou and K. Tsuda

19.3.3.3 Crystal Structure Prediction
Crystal structure is a unique arrangement of atoms in a crystalline material, which
is represented by the coordinates of atoms and the lattice vectors. The PES of a
crystal structure is exceedingly multidimensional, namely the number of degree of
freedom is 3N + 3 [42], where N is the number of atoms in the unit cell. The
crystal structure prediction might be much more complex, as compared with the
aforementioned optimizations of a CSL GB structure and a molecule adsorption
structure. The central problem in crystal structure prediction is to find the globally
stable structure for a given chemical composition from first-principles [60, 61].

Based on the BO algorithm, as implemented in the COMBO code [15],
Yamashita et al. [62] have developed the approach of BO for crystal structure
prediction. It involves the following steps.

The search space in the BO for crystal structure prediction was predefined by
a large number of initial structures that were randomly generated. The random
generation of an initial structure was performed in three steps. First, the space group
of a structure was randomly selected. And then the unique lattice parameters of a
structure with the selected space group were randomly taken from their predefined
constraint ranges. Finally, a combination of the Wyckoff positions corresponding to
the selected space group is randomly selected so that the number of atoms in the cell
meets the predefined chemical composition. Such a scheme for randomly generating
initial structures has also been employed in other approaches [40,42,44] for crystal
structure prediction. The number of initial structures required to find the globally
stable structure depends on the system size.

In the BO approach for crystal structure prediction, the descriptors of a crystal
structures are required to describe similarity of crystal structures and to establish the
correlation between energy and structure. The general aspect of structure descriptors
has been discussed by Bartók et al. [63] The choice of structure descriptors is
not unique. One of them is the fingerprint function of Oganov and Valle [64], as
adopted by Yamashita et al. [62] in the BO approach for crystal structure prediction.
For the structure of substitution alloy, the structure descriptor can be properly
constructed using the bits of 0 or 1 for the host or substitution sites. Such a choice of
structure descriptors has been used in the applications of BO for the design of SiGe
nanostructure [14] and for the determination of the stable structures of boron-doped
graphene [65].

In crystal structure prediction, the local structure optimization was usually
performed using gradient-based methods for every calculated structure, namely
the total energy, the residual forces on atoms, and the residual stress on cell were
relaxed until their predefined convergence thresholds were reached. If all generated
structures were relaxed to reach their respective local minima, it will be very time-
consuming. In the BO approach for crystal structure prediction, one first randomly
selected ten or twenty structures from the all generated crystal structures and
then optimized their structures using the first-principles calculations. The structure
descriptors of the optimized structures were calculated. The obtained total energies
and structure descriptors of the optimized structures were used as a training dataset

19 Bayesian Optimization in Materials Science 423

in the BO, and then the next candidate structures to be optimized were recommended
by the BO according to an acquisition function. Such a procedure of local structure
optimization and structure selection was repeated in the BO until the most stable
structure was found.

Yamashita et al. [62] has taken the NaCl and Y2Co17 as the test cases to check
the efficiency of BO approach for crystal structure prediction. The most stable
structures of NaCl and Y2Co17 at ambient are known to be the rocksalt and Th2Zn17
structures, respectively. The BO approach can reduce the average number of trials
by 31 and 39% to find their most stable structures among the 800 and 1000 initial
structures, respectively, leading to a much less computational cost. This is because
the BO enables us to balance the trade-off between the exploration and exploitation
of search space in crystal structure prediction.

19.4 Conclusions

The Bayesian optimization, which is a machine-learning-based global optimization
method, has been gained attention in materials science. It has been shown to
accelerate the fitting of low-dimensional physical parameters and the search of
global stable crystal structure in a high-dimensional potential energy surface. The
integration of the high-throughput first-principles calculations with the Bayesian
optimization provides a more efficient way for materials design and discovery.

In materials design and discovery, multiple targeted properties are often encoun-
tered. For searching new functional materials, not only the thermodynamic stability
but also the figure of merits are vital objectives, some of which may compete.
To solve such a problem, the optimal candidates could be discovered by using a
multi-stage screening procedure [66,67], by converting the multiple objectives into
a single objective, or via the Pareto front [68–74]. The multi-objective Bayesian
optimization is called to treat more complex problems in materials science. The
extension of COMBO code for such a purpose will be released in its coming
development version.

Acknowledgments This work was supported by the “Materials research by Information Integra-
tion” Initiative (MI2I) project of the Support Program for Starting Up Innovation Hub from Japan
Science and Technology Agency (JST).

References

1. D.R. Jones, M. Schonlau, W.J. Welch, J. Glob. Optim. 13(4), 455 (1998)
2. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191

(2013). https://doi.org/10.1038/nmat3568
3. H.J. Kushner, J. Basic. Eng. 86(1), 97 (1964). https://doi.org/10.1115/1.3653121
4. J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications (Kluwer

Academic, Dordrecht, 1989). https://doi.org/10.1007/978-94-009-0909-0

https://doi.org/10.1038/nmat3568
https://doi.org/10.1115/1.3653121
https://doi.org/10.1007/978-94-009-0909-0

424 Z. Hou and K. Tsuda

5. C.E. Rasmussen, C.K.I. Williams (eds.), Gaussian Processes for Machine Learning (MIT
Press, Cambridge, 2006)

6. A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, M.W. Trosset, Struct. Optim.
17(1), 1 (1999). https://doi.org/10.1007/BF01197708

7. J. Snoek, H. Larochelle, R.P. Adams, Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’12 (Curran Associates Inc., Red
Hook, 2012), pp. 2951–2959

8. A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, Electron. J. Statist. 11(2), 4945 (2017).
https://doi.org/10.1214/17-EJS1335SI

9. A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, I. Tanaka, Phys. Rev. Lett. 115, 205901
(2015). https://doi.org/10.1103/PhysRevLett.115.205901

10. P.I. Frazier, J. Wang, in Information Science for Materials Discovery and Design, ed. by
T. Lookman, F.J. Alexander, K. Rajan (Springer International Publishing, Cham, 2016), pp.
45–75. https://doi.org/10.1007/978-3-319-23871-5_3

11. D. Packwood, Bayesian Optimization for Materials Science (Springer, Singapore, 2017).
https://doi.org/10.1007/978-981-10-6781-5

12. P.B. Wigley, P.J. Everitt, A. van den Hengel, J.W. Bastian, M.A. Sooriyabandara, G.D.
McDonald, K.S. Hardman, C.D. Quinlivan, P. Manju, C.C.N. Kuhn, I.R. Petersen, A.N.
Luiten, J.J. Hope, N.P. Robins, M.R. Hush, Sci. Rep. 6, 25890 (2016). https://doi.org/10.1038/
srep25890

13. C. Li, D. Rubín de Celis Leal, S. Rana, S. Gupta, A. Sutti, S. Greenhill, T. Slezak, M. Height,
S. Venkatesh, Sci. Rep. 7(1), 5683 (2017). https://doi.org/10.1038/s41598-017-05723-0

14. S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, J. Shiomi, Phys. Rev. X 7, 021024 (2017). https://
doi.org/10.1103/PhysRevX.7.021024

15. T. Ueno, T.D. Rhone, Z. Hou, T. Mizoguchi, K. Tsuda, Mat. Discov. 4, 18 (2016). https://doi.
org/10.1016/j.md.2016.04.001

16. A. Rahimi, B. Recht, in Advances in Neural Information Processing Systems 20, ed. by J.C.
Platt, D. Koller, Y. Singer, S.T. Roweis (Curran Associates, Inc., Red Hook, 2008), pp. 1177–
1184

17. J. Močkus, in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974,
ed. by G.I. Marchuk (Springer, Berlin, 1975), pp. 400–404. https://doi.org/10.1007/3-540-
07165-2_55

18. O. Chapelle, L. Li, in Advances in Neural Information Processing Systems 24, ed. by J. Shawe-
Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, K.Q. Weinberger (Curran Associates, Inc., Red
Hook, 2011), pp. 2249–2257

19. G.L.W. Hart, V. Blum, M.J. Walorski, A. Zunger, Nat. Mater. 4(5), 391 (2005). https://doi.org/
10.1038/nmat1374

20. R.A. DiStasio, E. Marcotte, R. Car, F.H. Stillinger, S. Torquato, Phys. Rev. B 88, 134104
(2013). https://doi.org/10.1103/PhysRevB.88.134104

21. R. Tamura, K. Hukushima, Phys. Rev. B 95, 064407 (2017). https://doi.org/10.1103/PhysRevB.
95.064407

22. R. Tamura, K. Hukushima, PLoS One 13(3), 1 (2018). https://doi.org/10.1371/journal.pone.
0193785

23. D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman, Nat. Comm. 7, 11241
(2016). https://doi.org/10.1038/ncomms11241

24. D. Xue, P.V. Balachandran, R. Yuan, T. Hu, X. Qian, E.R. Dougherty, T. Lookman, Proc. Natl.
Acad. Sci. USA 113(47), 13301 (2016). https://doi.org/10.1073/pnas.1607412113

25. J. Gao, Y. Liu, Y. Wang, X. Hu, W. Yan, X. Ke, L. Zhong, Y. He, X. Ren, J. Phys. Chem. C
121(24), 13106 (2017). https://doi.org/10.1021/acs.jpcc.7b04636

26. P.V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman, Nat. Comm. 9(1), 1668 (2018).
https://doi.org/10.1038/s41467-018-03821-9

27. R. Jalem, K. Kanamori, I. Takeuchi, M. Nakayama, H. Yamasaki, T. Saito, Sci. Rep. 8(1), 5845
(2018). https://doi.org/10.1038/s41598-018-23852-y

https://doi.org/10.1007/BF01197708
https://doi.org/10.1214/17-EJS1335SI
https://doi.org/10.1103/PhysRevLett.115.205901
https://doi.org/10.1007/978-3-319-23871-5_3
https://doi.org/10.1007/978-981-10-6781-5
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/s41598-017-05723-0
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1103/PhysRevX.7.021024
https://doi.org/10.1016/j.md.2016.04.001
https://doi.org/10.1016/j.md.2016.04.001
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1038/nmat1374
https://doi.org/10.1038/nmat1374
https://doi.org/10.1103/PhysRevB.88.134104
https://doi.org/10.1103/PhysRevB.95.064407
https://doi.org/10.1103/PhysRevB.95.064407
https://doi.org/10.1371/journal.pone.0193785
https://doi.org/10.1371/journal.pone.0193785
https://doi.org/10.1038/ncomms11241
https://doi.org/10.1073/pnas.1607412113
https://doi.org/10.1021/acs.jpcc.7b04636
https://doi.org/10.1038/s41467-018-03821-9
https://doi.org/10.1038/s41598-018-23852-y

19 Bayesian Optimization in Materials Science 425

28. Z. Hou, Y. Takagiwa, Y. Shinohara, Y. Xu, K. Tsuda, ACS Appl. Mater. Interfaces 11(12),
11545 (2019). https://doi.org/10.1021/acsami.9b02381

29. E.A. Carter, Science 321(5890), 800 (2008). https://doi.org/10.1126/science.1158009
30. C.K. Skylaris, Science 351(6280), 1394 (2016). https://doi.org/10.1126/science.aaf3412
31. D. Davies, K. Butler, A. Jackson, A. Morris, J. Frost, J. Skelton, A. Walsh, Chem 1(4), 617

(2016). https://doi.org/10.1016/j.chempr.2016.09.010
32. Royal Society of Chemistry. CDS: National Chemical Database Service. http://icsd.cds.rsc.org.
33. P. Villars, M. Berndt, K. Brandenburg, K. Cenzual, J. Daams, F. Hulliger, T. Massalski,

H. Okamoto, K. Osaki, A. Prince, H. Putz, S. Iwata, J. Alloys. Compd. 367(1), 293 (2004).
https://doi.org/10.1016/j.jallcom.2003.08.058. http://paulingfile.com/

34. Y. Xu, M. Yamazaki, P. Villars, Jap. J. Appl. Phys. 50(11S), 11RH02 (2011). https://doi.org/
10.1143/JJAP.50.11RH02. https://atomwork-adv.nims.go.jp/

35. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova,
J. Butkus, P. Moeck, A. Le Bail, J. Appl. Crystallogr. 42(4), 726 (2009). https://doi.org/10.
1107/S0021889809016690. http://www.crystallography.net/cod/

36. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114,
105503 (2015). https://doi.org/10.1103/PhysRevLett.114.105503

37. R. Jalem, M. Nakayama, Y. Noda, T. Le, I. Takeuchi, Y. Tateyama, H. Yamazaki, Sci. Tech.
Adv. Mater. 19(1), 231 (2018). https://doi.org/10.1080/14686996.2018.1439253

38. L. Ward, A. Dunn, A. Faghaninia, N.E. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen,
K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.J. Snyder, I. Foster, A. Jain, Comp.
Mater. Sci. 152, 60 (2018). https://doi.org/10.1016/j.commatsci.2018.05.018

39. A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Phys. Rev. B 89, 054303 (2014). https://doi.org/10.
1103/PhysRevB.89.054303

40. C.J. Pickard, R.J. Needs, J. Phys.: Condens. Matter 23(5), 053201 (2011). https://doi.org/10.
1088/0953-8984/23/5/053201

41. F.H. Stillinger, Phys. Rev. E 59, 48 (1999). https://doi.org/10.1103/PhysRevE.59.48
42. A.R. Oganov, C.W. Glass, J. Chem. Phys. 124(24), 244704 (2006). https://doi.org/10.1063/1.

2210932
43. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995). https://doi.org/10.1103/PhysRevLett.

75.288
44. Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82, 094116 (2010). https://doi.org/10.1103/

PhysRevB.82.094116
45. M. Amsler, S. Goedecker, J. Chem. Phys. 133(22), 224104 (2010). https://doi.org/10.1063/1.

3512900
46. A.R. Oganov (ed.), Modern Methods of Crystal Structure Prediction (Wiley, Weinheim, 2010).

https://doi.org/10.1002/9783527632831
47. C.V. Ciobanu, C. Wang, K. Ho, Atomic Structure Prediction of Nanostructures, Clusters and

Surfaces (Wiley, Weinheim, 2013). https://doi.org/10.1002/9783527655021
48. Ş. Atahan-Evrenk, A. Aspuru-Guzik (eds.), Prediction and Calculation of Crystal Structures:

Methods and Applications (Springer International Publishing, Switzerland, 2014). https://doi.
org/10.1007/978-3-319-05774-3

49. L. H, Solid Surfaces, Interfaces and Thin Films (Springer, Berlin, 2010). https://doi.org/10.
1007/978-3-642-13592-7_1

50. W.C. Carter, Nat. Mater. 9, 383–385 (2010). https://doi.org/10.1038/nmat2754
51. A.L.S. Chua, N.A. Benedek, L. Chen, M.W. Finnis, A.P. Sutton, Nat. Mater. 9, 418–422 (2010).

https://doi.org/10.1038/nmat2712
52. X. Zhao, Q. Shu, M.C. Nguyen, Y. Wang, M. Ji, H. Xiang, K.M. Ho, X. Gong, C.Z. Wang, J.

Phys. Chem. C 118(18), 9524 (2014). https://doi.org/10.1021/jp5010852
53. G. Schusteritsch, C.J. Pickard, Phys. Rev. B 90, 035424 (2014). https://doi.org/10.1103/

PhysRevB.90.035424
54. S. Kiyohara, H. Oda, K. Tsuda, T. Mizoguchi, Jpn. J. Appl. Phys. 55(4), 045502 (2016). https://

doi.org/10.7567/JJAP.55.045502

https://doi.org/10.1021/acsami.9b02381
https://doi.org/10.1126/science.1158009
https://doi.org/10.1126/science.aaf3412
https://doi.org/10.1016/j.chempr.2016.09.010
http://icsd.cds.rsc.org
https://doi.org/10.1016/j.jallcom.2003.08.058
http://paulingfile.com/
https://doi.org/10.1143/JJAP.50.11RH02
https://doi.org/10.1143/JJAP.50.11RH02
https://atomwork-adv.nims.go.jp/
https://doi.org/10.1107/S0021889809016690
https://doi.org/10.1107/S0021889809016690
http://www.crystallography.net/cod/
https://doi.org/10.1103/PhysRevLett.114.105503
https://doi.org/10.1080/14686996.2018.1439253
https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/10.1103/PhysRevB.89.054303
https://doi.org/10.1103/PhysRevB.89.054303
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1103/PhysRevE.59.48
https://doi.org/10.1063/1.2210932
https://doi.org/10.1063/1.2210932
https://doi.org/10.1103/PhysRevLett.75.288
https://doi.org/10.1103/PhysRevLett.75.288
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1063/1.3512900
https://doi.org/10.1063/1.3512900
https://doi.org/10.1002/9783527632831
https://doi.org/10.1002/9783527655021
https://doi.org/10.1007/978-3-319-05774-3
https://doi.org/10.1007/978-3-319-05774-3
https://doi.org/10.1007/978-3-642-13592-7_1
https://doi.org/10.1007/978-3-642-13592-7_1
https://doi.org/10.1038/nmat2754
https://doi.org/10.1038/nmat2712
https://doi.org/10.1021/jp5010852
https://doi.org/10.1103/PhysRevB.90.035424
https://doi.org/10.1103/PhysRevB.90.035424
https://doi.org/10.7567/JJAP.55.045502
https://doi.org/10.7567/JJAP.55.045502

426 Z. Hou and K. Tsuda

55. B.V. Lotsch, Annu. Rev. Mater. Res. 45(1), 85 (2015). https://doi.org/10.1146/annurev-matsci-
070214-020934

56. S.F. Carr, R. Garnett, C.S. Lo, J. Chem. Phys. 145(15), 154106 (2016). https://doi.org/10.1063/
1.4964671

57. S. Carr, R. Garnett, C. Lo, in Proceedings of The 33rd International Conference on Machine
Learning Research, vol. 48, ed. by M.F. Balcan, K.Q. Weinberger (PMLR, New York, 2016),
pp. 898–907

58. M. Todorović, M.U. Gutmann, J. Corander, P. Rinke, npj Comput. Mater. 5(1), 35 (2019).
https://doi.org/10.1038/s41524-019-0175-2

59. D.M. Packwood, T. Hitosugi, Appl. Phys. Express 10(6), 065502 (2017). https://doi.org/10.
7567/APEX.10.065502

60. J. Maddox, Nature 335, 201 (1988). https://doi.org/10.1038/335201a0
61. S.M. Woodley, R. Catlow, Nat. Mater. 7, 937 (2008). https://doi.org/10.1038/nmat2321
62. T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, T. Oguchi, Phys. Rev. Materials 2,

013803 (2018). https://doi.org/10.1103/PhysRevMaterials.2.013803
63. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013). https://doi.org/10.1103/

PhysRevB.87.184115
64. A.R. Oganov, M. Valle, J. Chem. Phys. 130(10), 104504 (2009). https://doi.org/10.1063/1.

3079326
65. T. M. Dieb, Z. Hou, K. Tsuda, J. Chem. Phys. 148(24), 241716 (2018). https://doi.org/10.1063/

1.5018065
66. D. Davies, K.T. Butler, J.M. Skelton, C. Xie, A.R. Oganov, A. Walsh, Chem. Sci. 9, 1022

(2018). https://doi.org/10.1039/C7SC03961A
67. R. Matsumoto, Z. Hou, H. Hara, S. Adachi, H. Takeya, T. Irifune, K. Terakura, Y. Takano,

Appl. Phys. Express 11(9), 093101 (2018). https://doi.org/10.7567/apex.11.093101
68. A.M. Gopakumar, P.V. Balachandran, D. Xue, J.E. Gubernatis, T. Lookman, Sci. Rep. 8(1),

3738 (2018). https://doi.org/10.1038/s41598-018-21936-3
69. M. Nún̋ez-Valdez, Z. Allahyari, T. Fan, A.R. Oganov, Comput. Phys. Commun. 222, 152

(2018). https://doi.org/10.1016/j.cpc.2017.10.001
70. P. Singh, I. Couckuyt, K. Elsayed, D. Deschrijver, T. Dhaene, J. Optimiz. Theory App. 175(1),

172 (2017). https://doi.org/10.1007/s10957-017-1114-3
71. I. Couckuyt, D. Deschrijver, T. Dhaene, J. Global Optim. 60(3), 575 (2014). https://doi.org/10.

1007/s10898-013-0118-2
72. A. Solomou, G. Zhao, S. Boluki, J.K. Joy, X. Qian, I. Karaman, R. Arróyave, D.C. Lagoudas,

Mater. Des. 160, 810 (2018). https://doi.org/10.1016/j.matdes.2018.10.014
73. M.T.M. Emmerich, A.H. Deutz, J.W. Klinkenberg, in 2011 IEEE Congress of Evolutionary

Computation (CEC) (2011), pp. 2147–2154. https://doi.org/10.1109/CEC.2011.5949880
74. A. Talapatra, S. Boluki, P. Honarmandi, A. Solomou, G. Zhao, S.F. Ghoreishi, A. Molkeri,

D. Allaire, A. Srivastava, X. Qian, E.R. Dougherty, D.C. Lagoudas, R. Arróyave, Front. Mater.
6, 82 (2019). https://doi.org/10.3389/fmats.2019.00082

https://doi.org/10.1146/annurev-matsci-070214-020934
https://doi.org/10.1146/annurev-matsci-070214-020934
https://doi.org/10.1063/1.4964671
https://doi.org/10.1063/1.4964671
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.7567/APEX.10.065502
https://doi.org/10.7567/APEX.10.065502
https://doi.org/10.1038/335201a0
https://doi.org/10.1038/nmat2321
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1063/1.3079326
https://doi.org/10.1063/1.3079326
https://doi.org/10.1063/1.5018065
https://doi.org/10.1063/1.5018065
https://doi.org/10.1039/C7SC03961A
https://doi.org/10.7567/apex.11.093101
https://doi.org/10.1038/s41598-018-21936-3
https://doi.org/10.1016/j.cpc.2017.10.001
https://doi.org/10.1007/s10957-017-1114-3
https://doi.org/10.1007/s10898-013-0118-2
https://doi.org/10.1007/s10898-013-0118-2
https://doi.org/10.1016/j.matdes.2018.10.014
https://doi.org/10.1109/CEC.2011.5949880
https://doi.org/10.3389/fmats.2019.00082

20Recommender Systems for Materials
Discovery

Atsuto Seko, Hiroyuki Hayashi, Hisashi Kashima, and Isao Tanaka

Abstract

Chemically relevant compositions (CRCs) and atomic arrangements of inorganic
compounds have been collected as inorganic crystal structure databases. Machine
learning is a unique approach to search for currently unknown CRCs from a vast
number of candidates. Firstly, we show matrix- and tensor-based recommender
system approaches to predict currently unknown CRCs from database entries of
CRCs. Secondly, we demonstrate classification approaches using compositional
similarity defined by descriptors obtained from a set of well-known elemental
representations. They indicate that the recommender system has great potential
to accelerate the discovery of new compounds.

20.1 Introduction

A reliable and quantitative prediction of chemically relevant compositions (CRCs)
where stable crystals are formed is highly demanded because the synthesis of new
inorganic compounds is an important target of physicists, chemists, and material
scientists. Density functional theory (DFT) calculations have played a central role in
such predictions. However, exhaustive DFT calculations without prior knowledge of
the crystal structures are expensive even for a given composition. New compounds
have also been discovered by inspecting the similarity between chemical elements
and their compositions. Similarity has been measured using heuristic quantities

A. Seko (�) · H. Hayashi · I. Tanaka
Department of Materials Science and Engineering, Kyoto University, Kyoto, Japan
e-mail: seko@cms.mtl.kyoto-u.ac.jp

H. Kashima
Department of Intelligence Science and Technology, Kyoto University, Kyoto, Japan

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_20

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_20&domain=pdf
mailto:seko@cms.mtl.kyoto-u.ac.jp
https://doi.org/10.1007/978-3-030-40245-7_20

428 A. Seko et al.

Ge
Sn
Pb
Be
Zn
Cd
Hg
Mg
Cu
Ag
Pd
Pt
Ni

Co
Fe
Mn
Cr
V
Ti

Eu
Ca
Sr
Ba

Li2O-M 2O-M 2O-M 2O-M 2O-MO Na O K O Rb O Cu O Ag2O-MO
E

le
m

en
t
M

Composition of MO

0 1 0 1 0 1 0 1 0 1 0 1

Fig. 20.1 ICSD entries in A2O-MO pseudo-binary systems, where A and M denote monovalent
and divalent cations, respectively. Closed triangles indicate the compositions of the ICSD entries.
Divalent cations are indicated in the order of Mendeleev number conceived by D.G. Pettifor [1]
(reproduced from [2], with the permission of AIP Publishing)

such as the proximity in the periodic table, electronegativity, ionicity, and ionic
radius. These quantities are derived from either simplified theoretical considerations
or chemists’ intuition. Based on the similarity between given compositions and
entries of experimental databases for existing crystals, currently unknown CRCs
may be discovered. As an example, consider searching for CRCs in Li2O-MO
(M: divalent cation) pseudo-binary systems from known CRCs. Figure 20.1 shows
the compositions in both Li2O-MO and A2O-MO (A: monovalent cation) systems
where the Inorganic Crystal Structure Database (ICSD) [3] entries exist. Known
CRCs are widely scattered and depend on both elements M and A, suggesting
that cationic similarity may identify many currently unknown CRCs. However, a
quantitative figure of merit such as phase stability cannot be given for numerous
compositions without using machine learning (ML)-based methods.

20 Recommender Systems for Materials Discovery 429

Recent developments and the popularization of ML have facilitated the prediction
of currently unknown CRCs. For example, a ML model with respect to only the
composition, which was estimated from a DFT database of the formation energies,
predicts currently unknown CRCs (e.g., [4–6]). Another ML-based approach to
search for currently unknown CRCs uses inorganic crystal structure databases such
as ICSD. This approach estimates the CRC probability for a candidate composition
using a given compositional similarity. A procedure to estimate the CRC probability
uses the compositional similarity on the basis of the entries in the database itself [7,
8].

These approaches based on inorganic crystal structure databases can be referred
to as “recommender systems” for the discovery of currently unknown CRCs.
Recommender systems [9, 10] developed in the ML community have become
increasingly popular in a variety of scientific and non-scientific areas. In the field
of commerce, recommender systems suggest items to a user. Such a recommender
system predicts the rating or preference for an item from an existing dataset
comprised of the users’ history such as items purchased and numerical ratings given
to items to generate a recommendation for the user.

Simple matrix- and tensor-based recommender system approaches can be
adopted to discover currently unknown CRCs. These approaches show a robust
performance of recommendations for a wide variety of datasets in the ML
community [11–13]. Here we introduce recommender systems to discover currently
unknown CRCs using matrix- and tensor-based approaches, which are descriptor-
free approaches [14]. A different procedure adopts the compositional descriptors
defined by a set of well-known elemental representations (for example, Ref. [15])
as prior knowledge [2, 16]. We also show ML approach using compositional
similarity defined by descriptors obtained from a set of well-known elemental
representations [2]. We demonstrate the potential possibility of descriptors
for predicting currently unknown CRCs. This method corresponds to a kind
of knowledge-based recommender system that utilizes prior knowledge about
compositions. A major advantage of knowledge-based recommender systems is
avoiding the so-called cold-start problems. In the present case, the cold-start
problem is that a meaningful figure of merit cannot be estimated for a given
composition due to the lack of related known CRCs. As a result, few compositions
are recommended. This may occur in applications to multicomponent systems
such as a pseudo-ternary system where few known CRCs exist, which are the
most interesting application of ML-based methods. Therefore, the use of a
knowledge-based method should contribute significantly to the recommendation
of multicomponent CRCs.

430 A. Seko et al.

(a)

(b)

(c)

(d)

Fig. 20.2 Schematic illustration of the approximation of the rating matrix by (a) NMF and (b)
SVD and the rating tensor by (c) CP and (d) Tucker decomposition. Dimensions of factorized
matrices are also shown

20.2 Matrix- and Tensor-Based Recommender System

In this section, we introduce recommender systems to discover currently unknown
CRCs using matrix- and tensor-based approaches, which are descriptor-free
approaches.1

20.2.1 Matrix and Tensor Factorization

A historical dataset used to build a recommender system is simply described as a
form of an incomplete matrix or tensor with missing values [13], called a “rating
matrix” or a “rating tensor.” The underlying assumption of many recommender
system approaches is that the complete rating matrix or tensor has a low-rank
structure. Using this assumption, the ratings of missing elements are predicted as an
approximated rating matrix or tensor with a given reduced rank. They are hereafter
called “predicted rating.” Compositions are recommended on the basis of the values
of the predicted ratings.

The nonnegative matrix factorization (NMF) factorizes nonnegative rating matrix
X into two nonnegative matrices W and H with given rank r . W and H do not
have negative elements. Figure 20.2a illustrates the behavior of NMF. The original
(n,m)-dimensional matrix X is approximated as

X) WH (20.1)

1This section is reproduced from [14].

20 Recommender Systems for Materials Discovery 431

using (n, r)-dimensional matrix W and (r,m)-dimensional matrix H with a given
rank r . Each of the r dimensions corresponds to a distinctive rating trend. The
distinctive rating trends enable predicting similar ratings for similar elements.

Another matrix factorization approach is the singular value decomposition
(SVD). Figure 20.2b illustrates the behavior of SVD. SVD factorizes original rating
matrix X into three matrices. The rating matrix is approximated as

X) UDV � (20.2)

using (n, r)-dimensional matrix U , r-dimensional diagonal matrix D, and (m, r)-
dimensional matrix V . The diagonal matrix contains only r largest singular values.
Hence, each of the r dimensions corresponds to a distinctive rating trend as well as
the NMF.

Matrix factorization approaches require that the original data is transformed
into a matrix form when the rating depends on three or more factors. On the
other hand, tensor factorization approaches can include information of all factors
naturally as a form of the rating tensor. A tensor factorization technique is the tensor
rank decomposition or canonical polyadic (CP) decomposition [17]. Figure 20.2c
illustrates the behavior of CP decomposition. CP decomposition factorizes rating
tensor X into a set of matrices and a super diagonal core tensor. Third-order rating
tensor X is approximated using three matrices A(1), A(2), and A(3) as

X) G×1 A(1) ×2 A(2) ×3 A(3) (20.3)

where G denotes the core tensor.
A more flexible tensor factorization is the Tucker decomposition [18], which

is also known as higher-order SVD (HOSVD) [19]. The Tucker decomposition
is an extension of SVD and decomposes rating tensor X into a set of matrices
and a small dense core tensor. In the Tucker decomposition, A(1), A(2), and
A(3) contain the orthonormal vector called mode-1, mode-2, and mode-3 singular
vectors, respectively. Figure 20.2d illustrates the behavior of Tucker decomposition.
Third-order tensor X can also be approximated as Eq. (20.3), where G is also the
core tensor, but unlike in CP decomposition, the core tensor is not a super diagonal
tensor. In Tucker decomposition, the rank value can be independently given for each
mode of the rating tensor. Distributed packages such as SCIKIT-TENSOR [20] are
available for tensor factorization methods.

20.2.2 Datasets

We employ three inorganic crystal structure databases of the ICSD, Powder
Diffraction File (PDF) by the International Centre for Diffraction Data (ICDD) [21],
and SpringerMaterials (SpMat) [22]. Only ICSD entries, including entries reported
to show a partial occupancy behavior, are regarded as known CRCs. Both ICDD

432 A. Seko et al.

Table 20.1 Numbers of
ICSD, ICDD, and SpMat
entries

Ternary Quaternary Quinary

ICSD 9313 7742 1321

ICDD 2369 2647 639

(9278) (7864) (1326)

SpMat 2708 3066 1169

(10,461) (8141) (1893)

ICDD+SpMat 4134 4961 1616

(12,573) (11,307) (2562)

Candidates 7,405,200 1,188,038,460 23,104,706,560

Numbers of candidate compositions are also shown. ICSD entries
are regarded as known CRCs. In the rows of ICDD and SpMat
databases, the numbers of entries that are not included in the
ICSD are shown. Numbers in the parentheses indicate the num-
bers of all entries

and SpMat entries, which are not included in the ICSD, are used to validate the
recommender systems.

To build a recommender system for ternary CRCs, only a set of ternary known
CRCs is employed. Candidate ternary compositions of AaBbXx are generated,
where elements A and B correspond to a cation (66 possible) and element X
corresponds to an anion (10 possible). The possible cations and anions correspond to
elements included in the dataset of known CRCs. One hundred seventy (170) integer
sets (a, b, x) that satisfy the condition of max(a, b, x) ≤ 8 and are included in the
dataset of known CRCs are also considered. Therefore, there are 662 × 10× 170 =
7,405,200 ternary compositions. Of these, 9313 CRCs are known. The combined
database of ICDD and SpMat has 4134 ternary compositions that are not included
in ICSD. This corresponds to 0.056% of the candidate compositions. Table 20.1
summarizes the numbers of database entries and candidate compositions.

In addition to ternary compositions, candidate quaternary AaBbCcXx compo-
sitions are generated, where elements A, B, and C denote a cation and element
X denotes an anion. Integer sets (a, b, c, x) satisfy max(a, b, c, x) ≤ 20. The
dataset of known quaternary CRCs includes 53 cations, 10 anions, and 798 integer
sets. Therefore the number of quaternary compositions is 533 × 10 × 798 =
1,188,038,460, which includes 7742 known CRCs. The combined database of
ICDD and SpMat includes 4961 quaternary compositions (4.2 × 10−4% of the
candidate compositions) that are not the entries of ICSD.

Candidate quinary AaBbCcDdXx compositions are also generated, where ele-
ments A, B, C, and D denote cations and element X denotes an anion. Integer sets
(a, b, c, d, x) satisfy max(a, b, c, d, x) ≤ 20. The dataset of known quinary CRCs
includes 52 cations, 10 anions, 316 integer sets. Therefore, the number of quinary
compositions is 524× 10× 316 = 23,104,706,560, where only 1321 known CRCs
are included. The combined database of ICDD and SpMat contains 1616 quinary
compositions (7.0×10−6% of the candidate compositions) that are not ICSD entries.

20 Recommender Systems for Materials Discovery 433

20.2.3 RatingMatrix and Tensor Representations

The performance of a recommender system strongly depends on the representation
of the composition dataset as a rating matrix or tensor. Experts’ knowledge is
required to introduce a good representation. In particular, a composition dataset
must be transformed into only two sets of features, which corresponds to users and
items in a user-item rating matrix. The ratings of missing elements are approxi-
mately predicted on the basis of feature similarity given by the representation.

We introduce three kinds of matrix representations for the ternary composition
dataset. A composition is decomposed into two feature sets in the following three
ways:

1. {A} and {B, X, (a, b, x)}
2. {A, X} and {B, (a, b, x)}
3. {A, B} and {X, (a, b, x)}

Each of the feature sets corresponds to the row or column of the rating matrix. For
example, the first matrix representation is schematically illustrated in Fig. 20.3a. In
the first representation, the row corresponds to cation A. The column corresponds
to the combination of cation B, anion X, and integer set (a, b, x). Each composition
is expressed by the collection of features included in the row and column. Only the
values of the rating matrix elements corresponding to known CRCs are set to unity.
The other compositions are classified as either currently unknown CRCs or non-
existent compositions, and their values are set to zero in the original rating matrix.

Figure 20.3b illustrates the tensor representation used in this study. A mode of
the rating tensor means each cation type A, cation type B, anion type X, and integer
set {a, b, x} for ternary compositions AaBbXx . Therefore, the rating tensor for

Na

Mg

Al

Cu

Zn

Ga

Li,O
(1,1,1)

Li,O
(1,1,2)

Li,O
(1,2,2)

Li,O
(1,3,3)

Li,O
(1,4,3)

In,O
(1,1,2)

In,O
(1,1,3)

In,O
(1,2,4)

In,O
(2,2,5)

In,O
(3,3,8)

Li

Na

Mg

Zn

Al

Ti

Cr

C
at

io
n

ty
pe

Anio
n

typ
e

O
N

C
S
Se

F
Cl

(1,1)(1,2)(1,3
Integer set

) (2,3) (3,4)

Ti
3
O

4

(1,4) (2,4)
(a) (b)

Fig. 20.3 Schematic illustration of (a) a matrix representation and (b) a tensor representation for
a composition dataset. As a simple example, a tensor representation for binary compositions is
illustrated. In a tensor element highlighted by the orange block, modes for cation type, anion type,
and integer set indicate Ti, O, and (3, 4), respectively. Hence, this tensor element represents the
composition of Ti3O4

434 A. Seko et al.

ternary compositions is a (66, 66, 10, 170)-dimensional tensor. Similar to the matrix
representations, the composition is expressed by the collections of features included
in all modes, corresponding to an element of the rating tensor. Only the values of
the rating tensor elements corresponding to known CRCs are set to unity. The values
of tensor elements corresponding to the other compositions are assumed to be zero
in the original rating tensor. By representing quaternary and quinary compositions
in tensor forms as well as ternary compositions, the numbers of modes of the
rating tensor correspond to five and six for quaternary and quinary compositions,
respectively.

20.2.4 Discovery Performance of Unknown CRCs

The performance of matrix factorization based on the recommender systems to
discover currently unknown ternary CRCs is evaluated. Only 4134 of 7,405,200
compositions (0.056%) are used as the test dataset of known CRCs (test CRCs).
The test CRCs correspond to ICDD and SpMat entries that are not included in ICSD.
The low percentage obviously confirms that discovering ICDD and SpMat entries
by random sampling is not efficient.

Figure 20.4 shows the rank dependence of the number of test CRCs found in
the top 3000 compositions of NMF and SVD recommender systems. The rank
dependences of NMF and SVD are qualitatively similar but weak. They also exhibit
similar matrix representation dependences. The performance of discovering test

 0

 200

 400

 600

 800
(a) NMF, type 1 (b) NMF, type 2 (c) NMF, type 3

 0

 200

 400

 600

 800

 0 10 20 30 40 50

(d) SVD, type 1

 0 20 40 60 80 100

(e) SVD, type 2

 0 20 40 60 80 100

(f) SVD, type 3

Rank

N
um

be
r

of
 te

st
 C

R
C

s

 0

 100

 200

 300

 400

 500

 600

 700

 800

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(5,5,4,30)
(5,5,8,30)
(10,10,4,30)
(10,10,8,30)
(15,15,4,30)
(15,15,8,30)
(20,20,4,30)
(20,20,8,30)
(25,25,4,30)
(25,25,8,30)

N
um

be
r

of
 te

st
 C

R
C

s

Rank

CP decomposition Tucker decomposition

Best matrix factorization
(SVD, type2)

(g)

Fig. 20.4 Numbers of test CRCs included in the top 100 and 3000 compositions of NMF
recommender systems for (a) type-1, (b) type-2, and (c) type-3 matrix representations. Numbers
of test CRCs included in the top 100 and 3000 compositions of SVD recommender systems for
(d) type-1, (e) type-2, and (f) type-3 matrix representations. Horizontal axis indicates a given rank
for NMF and SVD. Orange and blue bars denote the top 100 and 300 compositions, respectively.
(g) Rank dependence of the number of test CRCs included in the top 100 and 3000 compositions
of the CP and Tucker decomposition recommender systems. Here only the performance of Tucker
decomposition with a rank value of 30 for the composition integer set is shown

20 Recommender Systems for Materials Discovery 435

CRCs of type-1 and type-2 matrix representations is much better than that of type-3
matrix representations. This implies that it is important to consider the cation and
anion combination as a feature when building a rule to distinguish CRCs and non-
existent compositions.

When adopting type-1 and type-2 matrix representations, NMF recommender
systems with type-1 and type-2 matrix representations show the best performance
at r = 38 and r = 24, respectively, indicating that the maximum number of test
CRCs are included in the top 3000 compositions of the recommender system. For
type-1 and type-2 representations, 576 and 594 test CRCs (19.2 and 19.8%) are
found in the top 3000 compositions, respectively. These percentages are much larger
than the number of test CRCs discovered by random sampling (0.056%). A much
larger discovery rate of test CRCs is seen in the sampling of top 100 compositions.
The numbers of test CRCs are 44 and 41 (44.0 and 41.0%), respectively. SVD
recommender systems with type-1 and type-2 matrix representations show the best
performance at r = 12 and r = 40, respectively. The top 3000 compositions
include 590 and 640 test CRCs (19.7 and 21.3%), respectively. Additionally, 53 and
45 of the top 100 compositions (53.0 and 45.0%) correspond to test CRCs. These
results indicate that SVD recommender systems perform slightly better than NMF
recommender systems.

Figure 20.4g shows the number of test CRCs included in the top 3000 ternary
compositions of the ranking by CP decomposition. The horizontal axis indicates a
given rank for CP decomposition. Since only a single value of rank is given in CP
decomposition, the maximum value of rank is identical to the number of anion types
included in the ternary composition dataset. The CP recommender system with r =
9 shows the best performance. That is, 478 of the top 3000 compositions (15.9%)
correspond to test CRCs. In the top 100 compositions, 32 test CRCs (32.0%) are
found. However, CP decompositions detect fewer test CRCs than the best matrix
decomposition-based recommender system. This is attributed to the fact that only a
single value of rank is given in CP decomposition.

Figure 20.4g shows the number of test CRCs included in the top 3000 composi-
tions of the ranking by Tucker decomposition. The candidate values of ranks for the
cation mode, anion mode, and integer set mode are given by arithmetic sequences
of {5, 10, 15, 20, 25}, {4, 8}, and {10, 20, 30, . . . , 100}, respectively. The optimal
set of ranks is obtained by a grid search using these candidates. This means that
the performance of discovering test CRCs is examined for 100 combinations of
rank values. The Tucker decomposition recommender system with ranks of (15, 15,
8, 30) shows the best performance; 735 test CRCs (24.5%) are found in the top
3000 compositions. In the top 100 compositions, 59 CRCs (59.0%) are found in the
test dataset. The Tucker recommender system detects more test CRCs than the best
matrix-based recommender system. This means that Tucker decompositions allow
a hidden low-rank data-structure included in the composition dataset to be extracted
more flexibly than matrix factorizations and CP decompositions.

The Tucker decomposition should be the best approach to discover currently
unknown CRCs. Therefore, the performance to discover currently unknown qua-
ternary and quinary CRCs using the Tucker decomposition is examined. The

436 A. Seko et al.

performances for quaternary and quinary systems are particularly important features
required for recommender systems because the numbers of candidate composi-
tions and currently unknown CRCs should be exponentially huge. As shown in
Table 20.1, only 7742 and 4961 of 1.2 × 109 (6.5 ×10−4 and 4.2 ×10−4%)
quaternary compositions are ICSD and ICDD+SpMat entries, respectively. Even
for quinary compositions, only 1321 and 1616 of 2.3 × 1010 (5.7 ×10−6 and 7.0
×10−6%) compositions correspond to ICSD and ICDD+SpMat entries, respec-
tively.

Figure 20.5a and b shows the performance to determine test ternary, quaternary,
and quinary CRCs of the Tucker recommender system. The discovery rate gradually
decreases as the number of samples all for ternary, quaternary, and quinary compo-
sitions increases. In the top 20 compositions, 16 and 15 compositions (80 and 75%)
correspond to test CRCs for ternary and quaternary compositions, respectively.
The discovery rate of quaternary test CRCs is higher than expected. The rate is
close to that of ternary test CRCs. For quaternary compositions, 52 and 524 CRCs
are found in the top 100 and 3000 compositions (52.0 and 17.5%), respectively.
The discovery rates for the top 20, 100, and 3000 compositions are approximately
180,000, 120,000, and 40,000 times larger than the random sampling discovery rate,
respectively. Even for quinary compositions, seven test CRCs (35%) are found in
the top 20 compositions. In addition, 14 and 82 CRCs are found in the top 100
and 3000 compositions (14.0 and 2.7%), respectively. Although the discovery rate
of quinary test CRCs is lower than those of ternary and quaternary test CRCs, it
is much larger than the random sampling. In particular, the discovery rate for the
top 100 compositions is astonishingly large despite the fact that few known quinary
CRCs are included in the quinary composition dataset.

Figure 20.5c and d shows the relationship between the predicted rating and the
discovery rate of test CRCs. Figure 20.5c shows the histogram of the discovery rate
of the test CRCs obtained with a bin width of predicted rating of 0.1. Figure 20.5d
replots the relationship between the median of the bin and discovery rate from the
histogram of the discovery rate. For ternary, quaternary, and quinary compositions,
the discovery rate of test CRCs is almost proportional to the median of the bin
for predicted rating, and slightly smaller than the predicted rating. This is strong
evidence that the predicted rating can be regarded as a figure of merit to identify
currently unknown CRCs. This may also indicate that the predicted rating is almost
identical to the discovery rate of currently unknown CRCs because test CRCs can
be regarded as a part of currently unknown CRCs. In addition, quinary compositions
with a predicted rating exceeding 0.7 are not observed. Consequently, the discovery
rate of test CRCs is smaller than that of the ternary and quaternary test CRCs. This is
mainly ascribed to the lack of quinary known CRCs. The number of quinary known
CRCs is inadequate to predict currently unknown quinary CRCs.

The discovery of new ternary compounds is also demonstrated using a com-
bination of the Tucker recommender system and DFT calculations. A Tucker
decomposition recommender system is constructed using all of the available entries
of the ternary compositions included in ICSD, ICDD, and SpMat as known CRCs.
The rank values are the same values as those optimized above. The existence

20 Recommender Systems for Materials Discovery 437

 0

 200

 400

 600

 800

 0 1000 2000 3000

Number of samples

Ternary

Quaternary

Quinary

 0

20

40

60

80

 100

 0 20 40 60 80 100

N
um

be
r

of
 te

st
 C

R
C

s

Number of samples

Ternary

Quaternary

Quinary

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

>
0.

9

Predicted rating

 0 0.2 0.4 0.6 0.8 1

D
is

co
ve

ry
 r

at
e

of
 te

st
 C

R
C

s

Median of bin for predicted rating

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

Ternary

Quaternary

Quinary

Ternary

Quaternary

Quinary

Fig. 20.5 Dependence of the number of test quaternary and quinary CRCs on the number of
samples by the Tucker decomposition recommender system up to (a) 100 and (b) 3000 samples.
Diagonal line in (a) indicates the performance of the ideal sampling (i.e., the number of test CRCs
is identical to the number of samples). (c) Dependence of the discovery rate of test CRCs on the
predicted rating for ternary, quaternary, and quinary compositions. (d) Relationship between the
predicted rating and the discovery rate of the test CRCs. Horizontal axis indicates the median of
bin for the predicted rating

of stable compounds at compositions with high predicted ratings is examined by
evaluating the phase stability of the corresponding pseudo-binary systems using
DFT calculations. DFT calculations were performed only for pseudo-binary systems
containing the top 27 compositions composed only of elements in Groups 1, 2, 3, 4,
5, 6, 12, 13, 14, 15, 16, and 17 in the periodic table. For each pseudo-binary system,
DFT calculations were performed for all possible prototype structures included in
the ICSD. Totally, the number of DFT calculations was 13,274.

438 A. Seko et al.

ICSD entry
ICDD or SpMat entry

RbInO2(1.01) NaGaS2(0.98)

AlInO3(0.80)

BaAs2O6(0.93)

Ba2Ga2O5(0.85)

BaSc2S4(0.79)

Ca2TiO4(0.95)

CaGa2Te4(0.78)

CsZnCl3(0.92)

CsInF4(0.77)

CsY2F7(0.88)
CsYS2(0.87)

 K2GeS3(0.79)

LiLaS2(0.76)

MgAs2O6(0.74)
NaGaSe2(0.76)

RbZnCl3(0.85)
RbInF4(0.91)

Rb3SbO3(0.91)

RbAlS2(0.79)

RbScS2(0.79)

Rb2O-In2O3 Na2S-Ga2S3 KCl-PbCl2 CaO-TiO2 BaO-As2O5 CsCl-ZnCl2

RbF-InF3 Rb2O-Sb2O3 CsF-YF3 Cs2S-Y2S3 BaO-Ga2O3 RbCl-ZnCl2

Al2O3-In2O3 Rb2S-Al2S3 Rb2S-Sc2S3 Tl2Te-Al2Te3 K2S-GeS2 BaS-Sc2S3

KCl-ZnCl2 CaS-Bi2S3 CaTe-Ga2Te3 KF-TiF4 CsF-InF3 Rb2Se-P2Se5

Na2Se-Ga2Se3 Li2S-La2S3 MgO-As2O5

TlAlTe2(0.79)

Rb3PSe4

(0.76)

F
or

m
at

io
n

en
er

gy
 (

eV
/fo

rm
ul

a
un

it)

0

–3

–2

–1

0

–3

–2

–1

0

–3

–2

–1

0

–3

–2

–1

0

–3

–2

–1

Composition y in (AaXx1)1-y-(BbXx2)y

101010

101010

Fig. 20.6 Stable compounds on the convex hull of the formation energy computed by the DFT
calculations for the 27 pseudo-binary systems containing the top 27 compositions with high
predicted ratings. Compositions with high predicted ratings are shown along with their predicted
ratings as the values in parentheses. Closed triangles and squares denote the stable compounds
corresponding to ICSD entries and ICDD+SpMat entries, respectively

All DFT calculations were performed using the plane-wave basis projector
augmented wave (PAW) method [23, 24] within the Perdew–Burke–Ernzerhof
exchange-correlation functional [25] as implemented in the VASP code [26,27]. The
cutoff energy was set to 400 eV. The total energy converged to less than 10−3 meV.
The atomic positions and lattice constants were optimized until the residual forces
became less than 10−2 eV/Å.

Figure 20.6 shows the stable compounds or CRCs obtained by the DFT
calculations for the 27 pseudo-binary systems. The predicted ratings of the top
27 compositions range from 0.74 to 1.01. Among the 27 compositions, most (23
compositions) are located on the convex hull, meaning that they are CRCs according
to the DFT calculations. In other words, 85% of the recommended compositions
can be regarded as new CRCs. We emphasize that they are not included in the
databases of ICSD, ICDD, and SpMat. Such compounds can be discovered with
a high probability.

The results of the DFT calculations also demonstrate that the predicted rating
can be regarded as the discovery rate of new CRCs as described above. In addition
to the top 27 compositions, some other compositions can be CRCs depending on
the predicted rating. In compositions with a predicted rating of 0.2–0.4, only two

20 Recommender Systems for Materials Discovery 439

of the 14 compositions (14%) correspond to CRCs. On the other hand, four of
the five compositions (80%), 13 of the 16 compositions (81%), and 11 of the 12
compositions (92%) are CRCs with predicted ratings of 0.4–0.6, 0.6–0.8, and 0.8–
1.0, respectively. In other words, compounds with a predicted rating exceeding 0.4
have a high probability of being a CRC.

The remaining 15% of recommended compositions have a high predicted rating,
but do not correspond to the CRCs in the DFT calculations. Plausible explanations
include the following: (1) A stable or metastable compound does not truly exist at
the composition. (2) A metastable compound can be found at the composition. (3)
A stable compound with a structure other than the prototype structures is observed.

In addition, stable compounds can be found at the other compositions with a
high predicted rating. The compositions are classified into two types. The first
corresponds to compositions omitted in the candidate dataset, which do not satisfy
the condition of max(a, b, x) ≤ 8. This type may be predicted with a high rating
if a larger maximum value of the integer is considered. The other corresponds
to compositions with a low predicted rating. They may be the true DFT stable
compound when a low rating is predicted due to the lack of known CRCs similar
to the corresponding composition. On the other hand, they may be artificial stable
compounds attributed to the use of only the prototype structures for the DFT
calculations.

20.3 Compositional Descriptor-Based Approach

We will show a different procedure adopting the compositional descriptors defined
by a set of well-known elemental representations as prior knowledge.2 The potential
possibility of descriptors for predicting currently unknown CRCs will be shown.

20.3.1 Classification

A figure of merit for CRC is estimated on the basis of a ML two-class classification,
where responses have two distinct values of y = 1 and 0. Since a supervised or semi-
supervised classification approach requires a dataset with observations for both
responses y = 1 and 0 (i.e., datasets for CRCs as well as non-existent compositions),
we initially labeled compositions based on the criterion of whether the composition
exists. Entries in a crystal structure database are regarded as y = 1 because they
are known to exist. On the other hand, it is not as simple to judge if a compound
is non-existent at a given composition because the absence of a compound at a
specific composition in the database does not necessarily mean that the compound
does not exist. There are two reasons for a lack of entry: (1) A stable compound
does not actually exist for a given composition. (2) The composition has not been

2This section is reproduced from [2], with the permission of AIP Publishing.

440 A. Seko et al.

well investigated. It should be emphasized that inorganic compound databases are
biased to common metals, their intermetallics, and oxides. Few experiments have
been devoted to other compositions. In the present study, we simply assume that
all candidate compositions are y = 0 in the training process. Then the predicted
response, ŷ, is regarded as a figure of merit for CRC. Therefore, a candidate
composition with high figure of merit is expected to be a CRC. Here three kinds
of classifiers: logistic regression [28,29], gradient boosting [30], and random forest
classifiers [29, 31] are adopted.

20.3.2 Descriptors

Herein, the compositional similarity is defined by a set of 165 descriptors composed
of means, standard deviations, and covariances of established elemental representa-
tions [15], which is also similar to descriptors used in the literature [16]. This set
of descriptors can cover a wide range of compositions. Structural representations
were not used because crystal structures with candidate compositions are unknown.
We adopted twenty-two elemental representations: (1) atomic number, (2) atomic
mass, (3) period and (4) group in the periodic table, (5) first ionization energy,
(6) second ionization energy, (7) electron affinity, (8) Pauling electronegativity, (9)
Allen electronegativity, (10) van der Waals radius, (11) covalent radius, (12) atomic
radius, (13) pseudopotential radius for the s orbital, (14) pseudopotential radius for
the p orbital, (15) melting point, (16) boiling point, (17) density, (18) molar volume,
(19) heat of fusion, (20) heat of vaporization, (21) thermal conductivity, and (22)
specific heat.

20.3.3 Datasets

The training dataset is composed of entries in the ICSD (known CRCs) and
candidate compositions. The known CRCs correspond to compounds up to septe-
nary compositions. Compounds reported to show a partial occupancy behavior are
excluded. Thus, the number of the known CRCs is 33,367. The candidate compo-
sitions are used as the training data and the prediction data to find unknown CRCs.
Although the present method is applicable to any kind of compound, we restrict the
results to ionic compounds with normal cation/anion charge states. Candidates of
pseudo-binary compositions AaBbXx are generated by considering combinations
of {A,B,X, a, b, x}. We consider 930,142,080 chemical compositions expressed
by integers satisfying the condition of max(a, b, x) ≤ 15. Here, all charge states
are adopted whenever Shannon’s ionic radii are reported. Compositions that do not
satisfy the charge neutrality condition of nAa+ nBb+ nXx = 0 are removed where
nA, nB, and nX denote the valences for elements A, B, and X, respectively. Finally,
known CRCs are removed from the set of candidate compositions. Thereafter,
1,294,591 pseudo-binary compositions remain, which are used as the candidate

20 Recommender Systems for Materials Discovery 441

composition data. Additionally, pseudo-ternary oxides (AOxA)a(BOxB)b(COxC)c,
nitrides (ANxA)a(BNxB)b(CNxC)c, and sulfides (ASxA)a(BSxB)b(CSxC)c are also
considered to be candidate composition data. Only a smaller number of elements
and their charge states are adopted for pseudo-ternary compounds. In all, there are
3,846,928 pseudo-ternary compositions.

20.3.4 Discovery Performance of Unknown CRCs

The power of discovering currently unknown CRCs is the most important feature
of the classification model. We measured the efficiency for finding compositions
of entries included in another inorganic compound database, PDF by the ICDD,
from pseudo-binary and pseudo-ternary oxide candidate compositions of the ICSD.
Only 3731 (0.3%) of the 1,294,591 pseudo-binary and 842 (0.04%) of the 1,933,994
pseudo-ternary oxide candidate compositions in the ICSD are included in the ICDD,
respectively. Therefore, it is obvious that discovering ICDD entries by random
sampling is not effective.

Figure 20.7a shows the efficiency of the three classifiers for discovering ICDD
entries from the pseudo-binary compositions. Sampling of the candidate composi-

0

500

1000

1500

2000

0 5000 10000 15000 20000

N
um

be
r

of
 IC

D
D

 e
nt

rie
s

Number of samples

Gradient
boosting

Random forest

Logistic
regression

Random

(b)(a)

0 1000 2000 3000 4000 5000
0

10

20

30

40

Pseudo-binary

Pseudo-binary

Pseudo-ternary
oxides

Fig. 20.7 (a) Number of ICDD entries found in “no entries” pseudo-binary compositions sampled
by classification models and random sampling. (b) Distributions of the increment of the number
of ICDD entries as “no entries” pseudo-binary and pseudo-ternary oxide samples increase in the
random forest model (reproduced from [2], with the permission of AIP Publishing)

442 A. Seko et al.

tions is performed in decreasing order of the predicted y. Figure 20.7b shows the
increment of the number of ICDD entries that can be discovered by the random
forest model for pseudo-binary and pseudo-ternary oxide compositions. When
sampling 100 and 1000 candidate pseudo-binary compositions according to the
ranking by the random forest model, which is the best among the three models,
33 and 180 compositions are found in the ICDD, respectively. Even for pseudo-
ternary oxide compositions, 11 and 85 compositions are found in the ICDD. These
discovery rates are approximately 250 and 190 times higher than that of random
sampling (0.04%), respectively. Figure 20.7b also indicates that the increment of
the number of ICDD entries tends to decrease as the predicted y decreases. This
provides evidence that the predicted y can be regarded as a figure of merit for
exploring currently unknown CRCs.

The discovery rates of recommender systems are much higher than that of
random sampling, demonstrating that the use of descriptors as a prior knowledge
for compositional similarity is helpful for the discovery of currently unknown CRCs
that are not present in the training database. The most meaningful application of
such descriptor-based recommender systems for currently unknown CRCs can be
demonstrated in multicomponent systems, where only a small number of CRCs are
known and a huge number of compositions can be candidates of CRCs. Therefore,
the knowledge-based method of the present study should contribute significantly to
the prediction of multicomponent currently unknown CRCs.

20.4 Conclusion

In this chapter, we show ML approaches to discover currently unknown CRCs,
including matrix- and tensor-based recommender system and knowledge-based
recommender system approaches, only from existing inorganic crystal structure
databases. The present study indicates that the performance of the recommender
systems depends on not only the given rank corresponding to a low-rank structure
hidden in the rating matrix and tensor but also on the representation of rating matrix
and tensor. The discovery rates of recommender systems are much higher than
that of random sampling, which indicates that the recommender system has great
potential to accelerate the discovery of new compounds.

Also, the use of descriptors as a prior knowledge for compositional similarity is
helpful for the discovery of currently unknown CRCs. A major advantage of the
knowledge-based recommender systems should be avoiding cold-start problems.
The cold-start problems may occur in applications to multicomponent systems such
as a pseudo-ternary system where few known CRCs exist, which are the most
interesting application of recommender systems. Although matrix- and tensor-based
recommender systems may work well in a general case, the use of a knowledge-
based method should contribute significantly to the prediction of multicomponent
CRCs.

20 Recommender Systems for Materials Discovery 443

References

1. D. Pettifor, J. Phys. C Solid State Phys. 19(3), 285 (1986)
2. A. Seko, H. Hayashi, I. Tanaka, J. Chem. Phys. 148(24), 241719 (2018). https://doi.org/10.

1063/1.5016210
3. G. Bergerhoff, I.D. Brown, in Crystallographic Databases, ed. by F.H. Allen et al. (Interna-

tional Union of Crystallography, Chester, 1987)
4. B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choud-

hary, C. Wolverton, Phys. Rev. B 89, 094104 (2014). https://doi.org/10.1103/PhysRevB.89.
094104

5. F.A. Faber, A. Lindmaa, O.A. Von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117(13), 135502
(2016)

6. J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A. Marques, Chem. Mater. 29(12), 5090
(2017)

7. G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22(12), 3762 (2010)
8. G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Inorg. Chem. 50(2), 656 (2010)
9. P. Resnick, H.R. Varian, Commun. ACM 40(3), 56 (1997)

10. C.C. Aggarwal, Recommender Systems (Springer, Berlin, 2016)
11. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in

recommender system-a case study. Technical Report, Minnesota Univ Minneapolis Dept of
Computer Science (2000)

12. E. Frolov, I. Oseledets, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(3), e1201 (2017)
13. P. Symeonidis, A. Zioupos, Matrix and Tensor Factorization Techniques for Recommender

Systems (Springer, Berlin, 2016)
14. A. Seko, H. Hayashi, H. Kashima, I. Tanaka, Phys. Rev. Materials 2, 013805 (2018). https://

doi.org/10.1103/PhysRevMaterials.2.013805
15. A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95, 144110 (2017).

https://doi.org/10.1103/PhysRevB.95.144110
16. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput. Mater. 2, 16028 (2016)
17. F.L. Hitchcock, Stud. Appl. Math. 6(1–4), 164 (1927)
18. L.R. Tucker, Psychometrika 31(3), 279 (1966)
19. L. De Lathauwer, B. De Moor, J. Vandewalle, SIAM J. Matrix Anal. Appl. 21(4), 1253 (2000)
20. M. Nickel. SCIKIT-TENSOR. Available Online (2013). https://pypi.org/project/scikit-tensor/
21. ICDD, PDF-4/Organics 2011 (Database), ed. by S. Kabekkodu, International Centre for

Diffraction Data, Newtown Square (2010)
22. SpringerMaterials. http://materials.springer.com
23. P.E. Blöchl, Phys. Rev. B 50(24), 17953 (1994)
24. G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758 (1999)
25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)
26. G. Kresse, J. Hafner, Phys. Rev. B 47(1), 558 (1993)
27. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996)
28. D.R. Cox, The Regression Analysis of Binary Sequences. J. Roy. Stat. Soc. Ser. B 20, 215–242

(1958)
29. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edn. (Springer,

New York, 2009)
30. L. Breiman, Arcing the edge. Technical Report 486, Statistics Department, University of

California at Berkeley (1997)
31. T.K. Ho, in Proceedings of the Third International Conference on Document Analysis and

Recognition, vol. 1 (IEEE, Piscataway, 1995), pp. 278–282

https://doi.org/10.1063/1.5016210
https://doi.org/10.1063/1.5016210
https://doi.org/10.1103/PhysRevB.89.094104
https://doi.org/10.1103/PhysRevB.89.094104
https://doi.org/10.1103/PhysRevMaterials.2.013805
https://doi.org/10.1103/PhysRevMaterials.2.013805
https://doi.org/10.1103/PhysRevB.95.144110
https://pypi.org/project/scikit-tensor/
http://materials.bibliotecabuap.elogim.com

21Generative Models for Automatic
Chemical Design

Daniel Schwalbe-Koda and Rafael Gómez-Bombarelli

Abstract

Materials discovery is decisive for tackling urgent challenges related to energy,
the environment, health care, and many others. In chemistry, conventional
methodologies for innovation usually rely on expensive and incremental strate-
gies to optimize properties from molecular structures. On the other hand, inverse
approaches map properties to structures, thus expediting the design of novel
useful compounds. In this chapter, we examine the way in which current deep
generative models are addressing the inverse chemical discovery paradigm.
We begin by revisiting early inverse design algorithms. Then, we introduce
generative models for molecular systems and categorize them according to their
architecture and molecular representation. Using this classification, we review
the evolution and performance of important molecular generation schemes
reported in the literature. Finally, we conclude highlighting the prospects and
challenges of generative models as cutting edge tools in materials discovery.

21.1 Introduction

Innovation in materials is the key driver for many recent technological advances.
From clean energy [1] to the aerospace industry [2] or drug discovery [3], research
in chemical and materials science is constantly pushed forward to develop com-
pounds and formulae with novel applications, lower cost, and better performance.
Conventional methods for the discovery of new materials start from a well-defined

D. Schwalbe-Koda · R. Gómez-Bombarelli (�)
Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, MA, USA
e-mail: dskoda@mit.edu; rafagb@mit.edu

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
K. T. Schütt et al. (eds.), Machine Learning Meets Quantum Physics,
Lecture Notes in Physics 968, https://doi.org/10.1007/978-3-030-40245-7_21

445

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40245-7_21&domain=pdf
mailto:dskoda@mit.edu
mailto:rafagb@mit.edu
https://doi.org/10.1007/978-3-030-40245-7_21

446 D. Schwalbe-Koda and R. Gómez-Bombarelli

set of substances from which properties of interest are derived. Then, intensive
research on the relationship between structures and properties is performed. The
gained insights from this procedure lead to incremental improvements in the
compounds and the cycle is restarted with a new search space to be explored.
This trial-and-error approach to innovation often leads to costly and incremental
steps towards the development of new technologies and in occasion relies on
serendipity for leap progress. Materials development may require billions of dollars
in investments [4] and up to 20 years to be deployed to the market [1, 4].

Despite the challenges associated with such direct approaches, they have not
prevented data-driven discovery of materials from happening. High-throughput
materials screening [5–14] and data mining [15–20] have been responsible for sev-
eral breakthroughs in the last two decades [21, 22], leading to the establishment of
the Materials Genome Initiative [23] and multiple collaborative projects around the
world built around databases and analysis pipelines [24–27]. Automated, scalable
approaches leverage from datasets in the thousands to millions of simulations to
offer a cornucopia of insights on materials composition, structure, and synthesis.

Developing materials with the inverse perspective departs from these traditional
methods. Instead of exhaustively deriving properties from structures, the perfor-
mance parameters are chosen beforehand and unknown materials satisfying these
requirements are inferred. Hence, innovation in this setting is achieved by reverting
the mapping between structures and their properties. Unfortunately, this approach
is even harder than the conventional one. Inverting a given Hamiltonian is not a
well-defined problem, and the absence of a systematic exploratory methodology
may result in delays, or outright failure, of the discovery cycle of materials [28].
Furthermore, another major obstacle to the design of arbitrary compounds is the
dimensionality of the missing data for known and unknown compounds [29]. As an
example, the breadth of accessible drug-like molecules can be on the order of 1060

[30, 31], rendering manual searches or enumerations through the chemical space
an intractable problem. In addition, molecules and crystal structures are discrete
objects, which hinders automated optimization, and computer-generated candidates
must follow a series of hard (valence rules, thermal stability) and soft (synthetic
accessibility, cost, safety) constraints that may be difficult to state in explicit form.
As the inverse chemical design holds great promise for economic, environmental,
and societal progress, one can ask how to rationalize the exploration of unknown
substances and accelerate the discovery of new materials.

21.1.1 Early Inverse Design Strategies for Materials

The inverse chemical design is usually posed as an optimization problem in which
molecular properties are extremized with respect to given parameters [32]. This
concept splits the inverse design problem into two parts: (i) efficiently sampling
materials from an enormous configuration space and (ii) searching for global
maxima in their properties [33] corresponding to minima in their potential energy
surface [34, 35]. Early approaches towards the inverse materials design used

21 Generative Models for Automatic Chemical Design 447

chemical intuition to address (i), narrowing down and navigating the space of
structures under investigation with probabilistic methods [33,36–40]. Nevertheless,
even constrained spaces can be too large to be exhaustively enumerated. Especially
in the absence of an efficient exploratory policy, this discovery process demands
considerable computational resources and time. Several different strategies are
required to simultaneously navigate the chemical space and evaluate the properties
of the materials under investigation.

Monte Carlo methods resort to statistical sampling to avoid enumerating a space
of interest. When combined with simulated annealing [41], for example, they
become adequate to locate extrema within property spaces. In physics, reverse
Monte Carlo methods have long been developed to determine structural information
from experimental data [42–44]. However, the popularization of similar methods
to de novo design of materials is more recent. Wolverton et al. [40] employed
such methods to aid the design of alloys and avoid expensive enumeration of
compositions and Franceschetti and Zunger [45] improved the idea to design
AlxGa1−xAs and GaxIn1−xP superlattices with a tailored band gap. They started
with configurations sampled using Monte Carlo, relaxed the atomic positions using
valence-force-field methods, and calculated their band gap by fast diagonalization
of pseudopotential Hamiltonians. Through this practical process, they predicted
superlattices with optimal band gaps after analyzing less than 104 compounds
among 1014 structures [45].

Other popular techniques for multidimensional optimization that also involve
a stochastic component are genetic algorithms (GAs) [46]. Based on evolution
principles, GAs refine specific parameters of a population that improve a targeted
property. In materials design, GAs have been vastly employed in the inverse design
of small molecules [47, 48], polymers [49, 50], drugs [51, 52], biomolecules
[53, 54], catalysts [55], alloys [56, 57], semiconductors [58–60], and photovoltaic
materials [61]. Furthermore, evolution-inspired approaches have been used as
a general modeling tool to predict stable structures [62–67] and Hamiltonian
parameters [68, 69]. Many more applications of GAs in materials design are still
being demonstrated after decades of its inception [31, 70–73].

Monte Carlo and evolutionary algorithms are interpretable and often produce
powerful implementations. The combination of sampling and optimization is a
great improvement over random searches or full enumeration of a chemical space.
Nonetheless, they still correspond to discrete optimization techniques in a combi-
natorial space and require individual evaluation of their properties at every step.
This discrete form hinders chemical interpolations and the definition of property
gradients during optimization processes, thus retaining a flavor of “trial-and-error”
in the computational design of materials, rather than an invertible structure–
property mapping. One of the first attempts to use a continuous representation
on the molecular design was performed by Kuhn and Beratan [33]. The authors
varied coefficients in linear combination of atomic orbitals while keeping the
energy eigenvalues fixed to optimize linear chains of atoms. Later, von Lilienfeld
et al. [74] generalized the discrete nature of atoms by approximating atomic
numbers by continuous functions and defining property gradients with respect to

448 D. Schwalbe-Koda and R. Gómez-Bombarelli

this “alchemical potential.” They used this theory to design ligands for proteins
[74] and tune electronic properties of derivatives of benzene [75]. A similar
strategy was proposed by Wang et al. [76] around the same time. Instead of
atomic numbers, a linear combination of atomic potentials was used as a basis
for optimizations in property landscapes. Following the bijectiveness between
potential and electronic density in the Hohenberg–Kohn theory [77], nuclei–
electrons interaction potentials were employed as quasi-invertible representations
of molecules. Potentials resulting from optimizations with property gradients can be
later interpolated or approximated by a discrete molecular structure whose atomic
coordinates give rise to a similar potential. Over the years, the approach was further
refined within the tight-binding framework [78, 79] and gradient-directed Monte
Carlo method [80, 81], its applicability demonstrated in the design of molecules
with improved hyperpolarizability [76, 78, 80] and acidity [82].

Despite these promising approaches, many challenges in inverse chemical design
remain unsolved. Monte Carlo and genetic algorithms share the complexity of
discrete optimization methods over graphs, particularly exacerbated by the rugged
property surfaces. They rely on stochastic steps that struggle to capture the
interrelated hard and soft constraints of chemical design: converting a single into
a double bond may produce a formally valid, but impractical and unacceptable
molecule depending on chemical context. On the other hand, a compromise between
validity and diversity of the chemical space is difficult to achieve with continuous
representations. Lastly, finding optimal points in the 3D potential energy surface
that produce a desired output is still not the same as molecular optimization, since
the generated “atom cloud” may not be a local minimum, stable enough in operating
conditions, or synthetically attainable. An ideal inverse chemical design tool would
offer the best of the two worlds: an efficient way to sample valid and acceptable
regions of the chemical space; a fast method to calculate properties from the given
structures; a differentiable representation for a wide spectrum of materials; and
the capacity to optimize them using property gradients. Furthermore, it should
operate on the manifold of synthetically accessible, stable compounds. This is where
modern machine learning (ML) algorithms come into play.

21.1.2 Deep Learning and Generative Models

Deep learning (DL) is emerging as a promising tool to address the inverse design of
many different applications. Particularly through generative models, algorithms in
DL push forward how machines understand real data. Roughly speaking, the role of
a generative model is to capture the underlying rules of a data distribution. Given a
collection of (training) data points {Xi} in a space X , a model is trained to match
the data distribution PX by means of a generative process PG in such a way that the
generated data Y ∼ PG resembles the real data X ∼ PX. Earlier generative models
such as Boltzmann Machines [83, 84], Restricted Boltzmann Machines [85], Deep
Belief Networks [86], or Deep Boltzmann Machines [87] were the first to tackle the
problem of learning probability distributions based on training examples. Their lack

21 Generative Models for Automatic Chemical Design 449

of flexibility, tractability, and generalizing ability, however, rendered them obsolete
in favor of more modern ones [88].

Current generative models have been successful in learning and generating novel
data from different types of real-world examples. Deep neural networks trained
on image datasets are able to produce realistic-looking house interiors, animals,
buildings, objects, and human faces [89, 90], as well as embed pictures with
artistic style [91] or enhance it with super-resolution [92]. Other examples include
convincing text [93, 94], music [95], voices [96], and videos [97] synthesized
by such networks. Most interesting is the creation of novel data conditioned on
latent features, which allows tuning models with vector and arithmetic operations
in a property space [98, 99]. The adaptable architectures of these models also
enable straightforward training procedures based on backpropagation [100]. Within
the DL framework, a proper loss function drives gradients so that the generative
model, typically parameterized by a neural network, learns to minimize the distance
between the two distributions.

Among the popular architectures for generating data from deep neural networks,
the Variational Auto-Encoder (VAE) [101] is a particularly robust architecture. It
couples inference and generation by mapping data to a manifold conditioned to
implicit data descriptors. To do so, the model is trained to learn the identity function
while constrained by a dimensional bottleneck called latent space (see Fig. 21.1a).
In this scheme, data is first encoded to a probability distribution Qφ(z|X) matching
a given prior distribution Pz(z), where z is called latent vector. Then, a sample from
the latent space is reconstructed with the generative algorithm Pθ(X|z). In the VAE
[101], outcomes of both processes are parameterized by φ and θ to maximize a lower
bound for the log-likelihood of the output with respect to the input data distribution.
The VAE objective is, therefore,

L(θ, φ) = −DKL

(
Qφ(z|X)||Pz(z)

)+ Ez∼Qφ

[
logPθ(X|z)

]
. (21.1)

The encoder is regularized with a divergence term DKL, while the decoder is
penalized by a reconstruction error logPθ(X|z), usually in the form of mean-
squared or cross entropy losses. This maximization can then be performed by
stochastic gradient ascent.

The probabilistic nature of VAE manifolds approximately accounts for many
complex interactions between data points. Although functional in many cases,
the modeled data distribution does not always converge to real data distributions
[102]. Furthermore, Kullback–Leibler or Jensen–Shannon divergences cannot be
analytically computed for an arbitrary prior, and most works are restricted to
Gaussian distributions. Avoiding high-variance methods to determine this regular-
izing term is also an important concern. Recently, this limitation was simplified
by employing the Wasserstein distance as a penalty for the encoder regularization
[102, 103]. As a result, richer latent representations are computed more efficiently
within Wasserstein Auto-Encoders, resulting in disentanglement, latent shaping, and
improved reconstruction [102–104].

450 D. Schwalbe-Koda and R. Gómez-Bombarelli

Another approach to generative models are the Generative Adversarial Networks
(GANs) [90]. Recognized by their sharp reconstructions, GANs are constructed by
making two neural networks compete against each other until a Nash equilibrium
is found. One of the networks is a deterministic generative model. It applies a non-
linear set of transformations to a prior probability distribution Pz in order to match
the real data distribution PX. Interestingly, the generator (or actor) only receives the
prior distribution as input and has no contact with the real data whatsoever. It can
only be trained through a second network, called discriminator or critic. The latter
tries to distinguish real data X ∼ PX from fake data Y = G(z) ∼ PG, as depicted
in Fig. 21.1b. The objective of the critic is to perfectly distinguish between PX and
PG, thus maximizing the prediction accuracy. On the other hand, the generator tries
to fool the discriminator by creating data points that look like real data points,
minimizing the prediction accuracy of the critic. Consequently, the complete GAN
objective is written as [90]

min
G

max
D

V (D,G) = EX∼PX

[
logD(X)

]+ Ez∼Pz

[
log (1−D(G(z)))

]
. (21.2)

Despite the impressive results from GANs, their training process is highly
unstable. The min–max problem requires a well-balanced training from both
networks to ensure non-vanishing gradients and convergence to a successful model.
Furthermore, GANs do not reward diversity of generated samples and the system
is prone to mode collapse. There is no reason why the generated distribution PG

should have the same support of the original data PX, and the actor produces only
a handful of different examples which are realistic enough. This does not happen
for the VAE, since the log-likelihood term gives an infinite loss for a generated data
distribution with a disjoint support with respect to the original data distribution.
Several different architectures have been proposed to address these issues among
GANs [102,105–116]. Although many of them may be equivalent to a certain extent
[117], steady progress is being made in this area, especially through more complex
ways of approximating data distributions, such as with f-divergence [112] or optimal
transport [102, 114, 115].

Other models such as the auto-regressive PixelRNN [118] and PixelCNN [119,
120] have also been successful as generators of images [118–120], video [121], text
[122], and sound [96]. Differently from VAE and GANs, these models approximate
the data distribution by a tractable factorization PX. For example, in an n×n image,
the generative model P(X) is written as [118]

P(X) =
n2∏
i=1

P (xi |x1, . . . , xi−1) , (21.3)

where each xi is a pixel generated by the model (see Fig. 21.1c). These models
with explicit distributions yield samples with very good negative log-likelihood and
diversity [118]. The model evaluation is also straightforward, given the explicit

21 Generative Models for Automatic Chemical Design 451

Fig. 21.1 Schematic diagrams for three popular generative models: (a) VAE, (b) GAN, and (c)
auto-regressive

computation of P(X). As a drawback, however, these models rely on the sequential
generation of data, which is a slow process. A diagram of the architectures of the
three generative models here discussed is seen in Fig. 21.1.

21.1.3 Generative Models Meet Chemical Design

Apart from their numerous aforementioned applications, generative models are
also attracting attention in chemistry and materials science. DL is being employed
not only for the prediction and identification of properties of molecules, but also
to generate new chemical compounds [100]. In the context of inverse design,
generative models provide benefits such as generating complex samples from simple
probability distributions; providing meaningful latent representations, over which
optimizations can be performed; and the ability to perform inference when coupled
to supervised models. Therefore, unifying generative models with chemical design
is a promising venue to accelerate innovation in chemistry and related fields.

To go beyond the limitations of traditional inverse design strategies, an ideal way
to discover new materials should satisfy some requisites [123]. To be a completely
hands-free model, the model should be data-driven, thus avoiding fixed libraries and
expensive labeling. It is also desirable that it outputs as many potential molecules as
possible under a subset of interest, which means that the model needs a powerful
generator coupled with a continuous representation for molecules. Furthermore,
such a representation should be interpretable, allowing a correct description of
structure–property relationships within molecules. If, additionally, the model is
differentiable, it would be possible to optimize certain properties using gradient
techniques and, later, look for molecules satisfying such constraints.

The development of such a tool is currently a priority for ML models in chemistry
and for the inverse chemical design. It relies primarily on two decisions: which
model to use and how to represent a molecule in a computer-friendly way. Following
our brief introduction to the early inverse design strategies and main generative
models in the literature, we describe which molecular representations are possible.

In quantum mechanics, a molecular system is represented by a wave function
that is a solution of the Schrödinger equation for that particular molecule. To

452 D. Schwalbe-Koda and R. Gómez-Bombarelli

derive most properties of interest, the spatial wave function is enough. Computing
such a representation, however, is equivalent to solving an (approximate) version
of the Schrödinger equation itself. Many methods for theoretical chemistry, such
as Hartree–Fock [124, 125] or Density Functional Theory [77, 126], represent
molecules using wave functions or electronic densities and obtain other properties
from it. Solving quantum chemical calculations is computationally demanding in
many cases, though. The idea with many ML methods is not only to avoid these
calculations, but also to make a generalizable model that highlights different aspects
of chemical intuition. Therefore, we should look for other representations for
chemical structures.

Thousands of different descriptors are available for chemical prediction methods
[127]. Several relevant features for ML have demonstrated their capabilities for
predicting properties of molecules, such as fingerprints [128], bag-of-bonds [129],
Coulomb matrices [130], deep tensor neural networks train on the distance
matrix [131], many-body tensor representation [132], SMILES strings [133], and
graphs [134–136]. Not all representations are invertible for human interpretation,
however. To teach a generative model how to create a molecule, it may suffice for
it to produce a fingerprint, for example. However, how can one map any possible
fingerprint to a molecule is an extra step of complexity equivalent to the generation
of libraries. This is undesirable in a practical generative model. In this chapter, we
focus on two easily interpretable representations, SMILES strings and molecular
graphs, and how generative models perform with these representations. Examples
of these two forms of writing a molecule are shown in Fig. 21.2.

Fig. 21.2 Two popular ways of representing a molecule using: (a) SMILES strings converted to
one-hot encoding or (b) a graph derived from the Lewis structure

21 Generative Models for Automatic Chemical Design 453

21.2 Chemical Generative Models

21.2.1 SMILES Representation

SMILES (Simplified Molecular Input Line Entry System) strings have been widely
adopted as representation for molecules [133]. Through graph-to-text mapping
algorithms, it determines atoms by atomic number and aromaticity and can capture
branching, cycles, ionization, etc. The same molecule can be represented by
multiple SMILES strings, and thus a canonical representation is typically chosen,
although some works leverage non-canonical strings as a data augmentation and
regularization strategy. Although SMILES are inferior to the more modern InChI
(International Chemical Identifier) representation in their ability to address key
challenges in representing molecules as strings such as tautomerism, mesomerism,
and some forms of isomerism, SMILES follow a much simpler syntax that has
proven easier to learn for ML models.

Since SMILES rely on a sequence-based representation, natural language pro-
cessing (NLP) algorithms in deep learning can be naturally extended to them.
This allows the transferability of several architectures from the NLP community
to interpret the chemical world. Mostly, these systems make use of recurrent neural
networks (RNNs) to condition the generation of the next character on the previous
ones, creating arbitrarily long sequences character by character [88]. The order of
the sequence is very relevant to generate a valid molecule, and observation of such
restrictions can be typically incorporated in RNNs with long short-term memory
cells (LSTM) [137], gated recurrent units (GRUs) [138], or stack-augmented
memory [139].

A simple form of generating molecules using only RNN architectures is to
extensively train them with valid SMILES from a database of molecules. This
requires post-processing analyses, as it resembles traditional library generation. As
a proof of concept, Ikebata et al. [140] used SMILES strings to design small organic
molecules by employing Bayesian sampling with sequential Monte Carlo. Ertl et al.
[141] instead generated molecules using LSTM cells and later employed them in a
virtual screening for properties.

Generating libraries, however, is not enough for the automatic discovery of
chemical compounds. Asking an RNN-based model to simply create SMILES
strings does not improve on the rational exploration of the chemical space. In
general, the design of new molecules is also oriented towards certain properties, like
solubility, toxicity, and drug-likeness [123], which are not necessarily incorporated
in the training process of RNNs. In order to skew the generation of molecules and
better investigate a subset of the chemical space, Segler et al. [142] used transfer
learning to first train the RNN on a whole dataset of molecules and later fine-tune
the model towards the generation of molecules with physico-chemical properties of
interest. This two-part approach allows the model to first learn the grammar inherent
to SMILES to then create new molecules based only on the most interesting ones.
In line with this depth-search, Gupta et al. [143] demonstrated the application of

454 D. Schwalbe-Koda and R. Gómez-Bombarelli

transfer learning to grow molecules from fragments. This technique is particularly
useful for drug discovery [3,144], in which the search of the chemical space usually
begins from a known substructure with certain desired functionalities.

Recently, the usage of reinforcement learning (RL) to generate molecules with
certain properties became popular among generative models. Since the representa-
tion of a molecule using SMILES requires the generator to output a sequence of
characters, each decision can be considered as an action. The successful completion
of a valid SMILES string is associated with a reward, for example, and undesired
features in the sequence are penalized. Jaques et al. [145] used RL to impose a
structure on sequence generation, avoiding repeating patterns not only in SMILES
strings but also in text and music. By penalizing large rings, short sequences
of characters, and long, monotonous carbon chains, they were able to increase
the number of valid molecules their model produced. Olivecrona et al. [146]
demonstrated the usage of augmented episodic likelihood and traditional policy
gradient methods to tune the generation of molecules from an RNN. Their method
achieved 94% of validity on generating molecules sampled from a prior distribution.
It was also taught to avoid functional groups containing sulfur and to generate
structures similar to a given structure or with certain target activities. Similarly,
Popova et al. [139] designed molecules for drugs using a stack-augmented RNN.
It demonstrated improved capacity to capture the grammar of SMILES while using
RL to tune their synthetic accessibility, solubility, inhibition, and other properties.

As the degree of abstraction grows in the molecule design, more complex
generative models are proposed to explore the chemical space. VAEs, for example,
can include a direct mapping between structures and properties and vice versa.
Its joint training with an encoder and a decoder is capable of approximating
very complex data distributions using a real-valued and compressed representation,
which is essential for improving the search for chemical compounds. Since the latent
space is meaningful, the generator learns to associate patterns in the latent space
with properties of the real data. After both the encoding and the decoding networks
are jointly trained, the generative model can be decoupled from the inference
step and latent variables then become the field for exploration. Therefore, VAEs
map the original chemical space to a continuous, differentiable space conveying
all the information about the original molecules, over which optimization can be
performed. Additionally, conditional generation of molecules based on properties is
made possible without hand-made constraints in SMILES, semi-supervised methods
can be used to tune the model with relevant properties. This approach is closer to
the model of an ideal, automatic, chemical generative model as discussed earlier.

Constructed over RNNs as both encoder and decoder, Gómez-Bombarelli et al.
[123] trained a VAE on prediction and reconstruction tasks for molecules extracted
from the QM9 and ZINC datasets. The latent space allowed not only sampling of
molecules but also interpolations, reconstruction, and optimization using a Gaussian
process predictor trained on the latent space (Fig. 21.3). Kang and Cho [147] used
partial annotation on molecules to train a semi-supervised VAE to decrease the error
for property prediction and to generate molecules conditioned on targets. It can
also be enhanced in combination with other dimensionality reduction algorithms

21 Generative Models for Automatic Chemical Design 455

Fig. 21.3 Variational Auto-Encoder for chemical design. The architecture in (a) allows for
property optimization in the latent space, as depicted in (b). Figure reproduced from [123]

[148]. Within the chemical world, VAEs based on sequences also show promise
for investigating proteins [149], learning chemical interactions between molecules
[150], designing organic light-emitting diodes [151], and generating ligands [152,
153].

In the field of molecule generation, GANs usually appear associated with RL. To
fine-tune the generation of long SMILES strings, Guimaraes et al. [154] employed
a Wasserstein GAN [102] with a stochastic policy that increased the diversity,
optimized the properties, and maintained the drug-likeness of the generated samples.
Sanchez-Lengeling et al. [155] and Putin et al. [156] further improved upon this
work to bias the distribution of generated molecules towards a goal. In addition,
Mendez-Lucio et al. [157] used a GAN to generate molecules conditioned on
gene expression signatures, which is particularly useful to create active compounds
towards a certain target. Similarly to what is done with molecules, Killoran et
al. [158] employed a GAN to create realistic samples of DNA sequences from
a small subset of configurations. The model was also tuned to design DNA
chains adapted to protein binding and look for motifs representing functional
roles. Adversarial training was also employed in the discovery of drugs for using
molecular fingerprints as opposed to a reversible representation [159–161] and
SMILES [162]. However, avoiding the unstable training and mode collapse while
generating molecules is still a hindrance for the usage of GANs in chemical design.

Although SMILES have proved to be a reliable representation for molecule
generation, their sequential nature imposes some constraints to the architectures
being learned. Forcing an RNN to implicitly learn their linguistic rules poses addi-
tional difficulties to the model under training. Additionally, decoding a sequence
of generated characters into a valid molecule is especially difficult. In [123], the

456 D. Schwalbe-Koda and R. Gómez-Bombarelli

rate of success when decoding molecules depended on the proximity of the latent
point to the valid molecule and could be as low as 4% for random points on
the latent space. Although RL is as an alternative to reward the generation of
valid molecules [145, 154, 155], other architecture changes can also circumvent
this difficulty. Techniques to generate valid sequences imported from NLP studies
include: using revision to improve the outcome of sequences [163]; adding a
validator to the decoder to generate more valid samples [164]; introducing a
grammar within the VAE to teach the model the fundamentals of SMILES strings
[165]; using compiler theory to constrain the decoder to produce syntactically and
semantically correct data [166]; and using machine translation methods to convert
between representations of sequences and/or grammar [167].

Validity of generated sequences, however, is not the only thing that makes
working with SMILES difficult. The sequential representation cannot represent
similarity between molecules within edit distances [168] and a single molecule may
have several different SMILES strings [169,170]. The trade-off between processing
this representation with text-based algorithms and discarding its chemical intuition
calls for other approaches in the study and design of molecules.

21.2.2 Molecular Graphs

An intuitive way of representing molecules is by means of its Lewis structure,
computationally translated as a molecular graph. Given a graph G = (V, E), the
atoms are represented as nodes vi ∈ V and chemical bonds as edges (vi, vj) ∈ E .
Then, nodes and edges are decorated with labels indicating the atom type, bond
type, and so on. Many times, hydrogen atoms are treated implicitly for simplicity,
since their presence can be inferred from traditional chemistry rules.

Molecular graphs and DL were first jointly used for property prediction.
Molecules were treated as undirected cyclic graphs and further processed using
RNNs [171]. Using graph convolutional networks [172], Duvenaud et al. [135]
demonstrated the usage of machine-learned fingerprints to achieve better prediction
of properties on neural networks. This approach started with a molecular graph and
led to fixed-size fingerprints after several graph convolutions and graph pooling
layers. Kearnes et al. [134] and Coley et al. [173] also evaluated the flexibility and
promise of learned fingerprints from graph structures, especially because models
could learn how to associate its chemical structure to their properties. Later, Gilmer
et al. [136] unified graph convolutions as message-passing neural networks for
quantum chemistry predictions, achieving DFT accuracy within their predictions of
quantum properties, interpreting molecular 3D geometries as graphs with distance-
labeled edges. Many more studies have explored the representative power of graphs
within prediction tasks [174, 175]. These frameworks paved the way for using
graph-based representations of molecules, especially because of their proximity
with chemistry and geometrical interpretation.

The generation of graphs is, however, non-trivial, especially because of the
challenges imposed by graph isomorphism. As in SMILES strings, one way to

21 Generative Models for Automatic Chemical Design 457

generate molecular graphs is by sequentially adding nodes and edges to the graph.
The sequential nature of decisions over graphs has already been implemented using
an RNN [176] for arbitrary graphs. Specifically for a small subset of graphs
corresponding to valid molecules, Li et al. [177] used a decoder policy to improve
the outcomes of the model. The conditional generation of graphs allowed for
molecules to be created with improved drug-likeness, synthetic accessibility, as
well as allowed scaffold-based generations from a template (Fig. 21.4a). Similar
procedure was adopted by Li et al. [177], in which a graph-generating decision
process using RNNs was proposed for molecules. These node-by-node generations
rely on the ordering of nodes in the molecular graph and thus suffer with random
permutations of the nodes.

In the VAE world, several methods have been proposed to deal with the problem
of directly generating graphs from a latent code [178–182]. However, when working
with reconstructions, the problem of graph isomorphism cannot be addressed
without expensive calculations [179]. Furthermore, graph reconstructions suffer
from validity and accuracy [179], except when these constraints are enforced in
the graph generation process [181–183]. Currently, one of the most successful
approaches to translate molecular graphs into a meaningful latent code while
avoiding node-by-node generation is the Junction Tree Variational Auto-Encoder
(JT-VAE) [168]. In this framework, the molecular graph is first decomposed into
a vocabulary of subpieces extracted from the training set, which include rings,
functional groups, and atoms (see Fig. 21.4b). Then, the model is trained to encode
the full graph and the tree structure resulting from the decomposition into two
latent spaces. A two-part reconstruction process is necessary to recover the original
molecule from the two vector representations. Remarkably, the JT-VAE achieves
100% of validity when generating small molecules, as well as 100% of novelty
when sampling the latent code from a prior. Moreover, a meaningful latent space
is also seen for this method, which is essential for optimization and the automatic
design of molecules. The authors later improve over the JT-VAE with graph-to-
graph translation and auto-regressive methods towards molecular optimization tasks
[184, 185].

Other auto-regressive approaches combining VAE and sequential graph genera-
tion have been proposed to generate and optimize molecules. Assouel et al. [186]
introduced a decoding strategy to output arbitrarily large molecules based on their
graph representation. The model, named DEFactor, is end-to-end differentiable,
dispenses retraining during the optimization procedure, and achieved high recon-
struction accuracy (>80%) even for molecules with about 25 heavy atoms. Despite
the restrictions on node permutations, DEFactor allows the direct optimization of
the graph conditioned to properties of interest. This and other similar models also
allow the generation of molecules based on given scaffolds [187].

Auto-regressive methods for molecules have also been reported with the use of
RL. Zhou et al. [188] created a Markov decision process to produce molecules
with targeted properties through multi-objective RL. Similarly to what is done with
graphs, this strategy adds bonds and atoms sequentially. However, as the actions
are restricted to chemically valid ones, the model scores 100% of validity in the

458 D. Schwalbe-Koda and R. Gómez-Bombarelli

Fig. 21.4 Generative models for molecules using graphs. (a) Decision process for sequential
generation of molecules from Li et al. [177]. (b) Junction Tree VAE for molecular graphs [168].
Figures reproduced from [168, 177] with the permission of the authors

generated compounds. The optimization process forgoes pre-training and allows
flexibility in the choice of the importances for each objectives. As a follow-up to
this work, the same group reports the usage of this generation scheme as a decoder
in a RL-enhanced VAE for molecules [189].

In line with the usage of sequences of actions to create graphs, several groups
have been working on different ways to represent and generate graphs through
sequences. One approach is to split a graph in permutation-invariant N-gram path
sets [190], in analogy with NLP with atoms as words and molecules as sentences.

21 Generative Models for Automatic Chemical Design 459

This representation performs competitively with message-passing neural networks
in classification and regression tasks. The combination of strings and graph methods
is also seen in the work of Krenn et al. [191], which developed a sequence
representation for general-purpose graphs. Their scheme shows high robustness
against mutations in sequences and outperforms other representations (including
SMILES strings) in terms of diversity, validity, and reconstruction accuracy when
employed in sequence-based VAEs.

The adversarial generation of graphs is still very incipient, and few models
of GANs with graphs have been demonstrated [192–194]. De Cao and Kipf
[195] demonstrated MolGAN, a GAN trained with RL for generating molecular
graphs, but their system is too prone to mode collapse. The output structure can be
made discrete by differentiable processes such as Gumbel-softmax [196, 197], but
balancing the adversarial training with molecular constraints requires more study.
Pölsterl and Wachinger [198] build on MolGAN by adding an adversarial training
to avoid calculating the reconstruction loss and extending the graph isomorphism
network [199] to multigraphs. Further improvements include the approach from
Maziarka et al. [200], which relies on the latent space of a pretrained JT-VAE to
produce and optimize molecules, and the work of Fan and Huang [201], which
aims to generate labeled graphs.

While the combination of DL with graph theory and molecular design seems
promising, large room for improvement is available in the field of graph generation.
Outputting an arbitrary graph is still an open problem and scalability to larger graphs
is still an issue [136]. Computing graph isomorphism is a class-NP problem, and
the measure of similarity between two graphs usually resorts to expensive kernels
or edit distances [202], as are other problems with reconstruction, ordering, and so
on [203]. In some cases, a distance metric can be defined for such data structures
[204, 205] or a set of networks can be trained to recognize similarity patterns
within graphs [206]. Furthermore, adding attention to graphs could also help in
classification tasks [207] or in the extraction of structure–property relationships
[208], and specifying grammar rules for graph reconstruction may lead to improved
results in molecular validity and stereochemistry [209].

21.3 Challenges and Outlook for Generative Models

The use of deep generative models is a powerful approach for teaching computers
to observe and understand the real world. Far from being just a big-data crunching
tool, DL algorithms can provide insights that augment human creativity [122]. Com-
pletely evaluating a generative model is difficult [210], since we lack an expression
for the statistical distribution being learned. Nevertheless, by approximating real-
life data with an appropriate representation, we are embedding intuition in the
machine’s understanding. In a sense, this is what we do, as human beings, when
formulating theoretical concepts on chemistry, physics, and many other fields of
study. Furthering our limited ability to probe the inner workings of deep neural
networks will allow us to transform learned embeddings into logical rules.

460 D. Schwalbe-Koda and R. Gómez-Bombarelli

Fig. 21.5 Summary and timeline of current generative models for molecules. Newer models are
located in the bottom of the diagram. Figures reproduced from [123, 154, 165, 168, 195, 203]. (a)
SMILES generators with GANs papers. (b) SMILES generators with RNNs papers. (c) Graph
generators with RNNs papers. (d) Graph generators with GANs papers. (e) SMILES VAE papers.
(f) NLP + SMILES VAE papers. (g) Graph VAE papers

In the field of chemical design, generative models are still in their infancy (see
timeline summary in Fig. 21.5). While many achievements have been reported for
such models, all of them share many challenges before a “closed loop” approach
can be effectively implemented. Some of the trials are still inherent to all generative
models: the generalization capability of a model, its power to make inferences on the
real world, and the capacity to bring novelty to it. In the chemical space, originality
can be translated as the breadth and quality of possible molecules that the model
can generate. To push forward the development of new technologies, we want our
generative models to explore further regions of the chemical space in search of
new solutions to current problems and extrapolate the training set, avoiding mode
collapses or naïve interpolations. At the same time, we want it to capture rules
inherent to the synthetically accessible space. Finally, we want to critically evaluate
the performance of such models. Several benchmarks are being developed to assess
the evolution of chemical generative models, providing quantitative comparisons
beyond the mere prediction of solubility or drug-likeness [211–214].

The ease of navigation throughout the chemical space alone is not enough to
determine a good model, however. Tailoring the generation of valid molecules for

21 Generative Models for Automatic Chemical Design 461

certain applications such as drug design [142] is also an important task. It reflects
how well a generative model focuses on the structure–property relationships for
certain applications. This interpretation leads to even more powerful understandings
of chemistry and is closely tied to Gaussian processes [123], Bayesian optimization
[215], and virtual screening.

In the generation process, outputting an arbitrary molecule is still an open
problem and is closely conditioned to the representation. While SMILES have
been demonstrated useful to represent molecules, graphs are able to convey real
chemical features in it, which is useful for learning properties from structures.
However, three-dimensional atomic coordinates should be considered for decoding
as well. Recent works are going well beyond the connectivity of a molecule to
provide equilibrium geometries of molecules using generative models [216–220].
This is crucial to bypass expensive sampling of low-energy configurations from
the potential energy surface of molecules. We should expect advances not only on
decoding and generating graphs from latent codes, but also in invertible molecular
representations in terms of sequences, connectivity, and spatial arrangement.

Finally, as the field of generative models advances, we should expect even
more exciting models to design molecules. The normalizing-flow based Boltzmann
Generator [217] and GraphNVP [221] are examples of models based on more recent
strategies. Furthermore, the use of generative models to understand molecules in
an unsupervised way advances along with the inverse design, from coarse-graining
[222,223] and synthesizability of small molecules [224,225] to genetic variation in
complex biomolecules [226].

In summary, generative models hold promise to revolutionize the chemical
design. Not only they allow optimizations or learn directly from data, but also
bypass the necessity of a human supervising the generation of materials. Facing the
challenges among these models is essential for accelerating the discovery cycle of
new materials and, perhaps, improvement of the human understanding of the nature.

Acknowledgments D.S.-K. acknowledges the MIT Nicole and Ingo Wender Fellowship and the
MIT Robert Rose Presidential Fellowship for financial support. R.G.-B. thanks MIT DMSE and
Toyota Faculty Chair for support.

References

1. D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath,
M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C.J. Brabec, B. Maruyama, K.A.
Persson, A. Aspuru-Guzik, Nat. Rev. Mater. 3(5), 5 (2018)

2. R.F. Gibson, Compos. Struct. 92(12), 2793 (2010)
3. H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke, Drug Discov. Today 23(6), 1241

(2018)
4. J. A. DiMasi, H. G. Grabowski, R. W. Hansen, J. Health Econ. 47, 20 (2016)
5. B. K. Shoichet, Nature 432(7019), 862 (2004)
6. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5(11), 909

(2006)
7. S.V. Alapati, J.K. Johnson, D.S. Sholl, J. Phys. Chem. B 110(17), 8769 (2006)

462 D. Schwalbe-Koda and R. Gómez-Bombarelli

8. W. Setyawan, R.M. Gaume, S. Lam, R.S. Feigelson, S. Curtarolo, ACS Comb. Sci. 13(4), 382
(2011)

9. S. Subramaniam, M. Mehrotra, D. Gupta, Bioinformation 3(1), 14 (2008)
10. R. Armiento, B. Kozinsky, M. Fornari, G. Ceder, Phys. Rev. B 84(1) (2011)
11. A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder,

Comput. Mater. Sci. 50(8), 2295 (2011)
12. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12(3),

191 (2013)
13. E.O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, A.A.A. Aspuru-

Guzik, R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, A.A.A. Aspuru-Guzik, D.R. Clarke,
Annu. Rev. Mater. Res. 45(1), 195 (2015)

14. R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin,
M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon,
H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S.I. Hong, M. Baldo, R.P. Adams,
A. Aspuru-Guzik, Nat. Mater. 15(10), 1120 (2016)

15. D. Morgan, G. Ceder, S. Curtarolo, Meas. Sci. Technol. 16(1), 296 (2004)
16. C. Ortiz, O. Eriksson, M. Klintenberg, Comput. Mater. Sci. 44(4), 1042 (2009)
17. L. Yu, A. Zunger, Phys. Rev. Lett. 108(6) (2012)
18. K. Yang, W. Setyawan, S. Wang, M.B. Nardelli, S. Curtarolo, Nat. Mater. 11(7), 614 (2012)
19. L.-C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher, K. Jariwala, C.H. Rycroft, A.S.

Bhown, M.W. Deem, M. Haranczyk, B. Smit, Nat. Mater. 11(7), 633 (2012)
20. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E.

Castelli, A. Cepellotti, G. Pizzi, et al., Nat. Nanotechnol. 13(3), 246 (2018)
21. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, ACS Comb. Sci. 13(6),

579 (2011)
22. A. Jain, Y. Shin, K.A. Persson, Nat. Rev. Mater. 1(1) (2016)
23. National Science and Technology Council (US), Materials Genome Initiative for Global

Competitiveness (Executive Office of the President, National Science and Technology
Council, Washington, 2011)

24. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart,
S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012)

25. C.E. Calderon, J.J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M.J. Mehl,
G. Hart, M.B. Nardelli, S. Curtarolo, Comput. Mater. Sci. 108, 233 (2015)

26. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013)

27. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65(11), 1501 (2013)
28. B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 361(6400), 360 (2018)
29. A. Zunger, Nat. Rev. Chem. 2(4), 0121 (2018)
30. P.G. Polishchuk, T.I. Madzhidov, A. Varnek, J. Comput. Aided Mol. Des. 27(8), 675 (2013)
31. A.M. Virshup, J. Contreras-García, P. Wipf, W. Yang, D.N. Beratan, J. Am. Chem. Soc.

135(19), 7296 (2013)
32. K.G. Joback, Designing Molecules Possessing Desired Physical Property Values. Ph.D.

Thesis, Massachusetts Institute of Technology, 1989
33. C. Kuhn, D.N. Beratan, J. Phys. Chem. 100(25), 10595 (1996)
34. D.J. Wales, H.A. Scheraga, Science 285(5432), 1368 (1999)
35. J. Schön, M. Jansen, Z. Kristallogr. Cryst. Mater. 216(6) (2001)
36. R. Gani, E. Brignole, Fluid Phase Equilib. 13, 331 (1983)
37. S.R. Marder, D.N. Beratan, L.T. Cheng, Science 252(5002), 103 (1991)
38. P.M. Holmblad, J.H. Larsen, I. Chorkendorff, L.P. Nielsen, F. Besenbacher, I. Stensgaard,

E. Lægsgaard, P. Kratzer, B. Hammer, J.K. Nøskov, Catal. Lett. 40(3–4), 131 (1996)
39. O. Sigmund, S. Torquato, J. Mech. Phys. Solids 45(6), 1037 (1997)
40. C. Wolverton, A. Zunger, B. Schönfeld, Solid State Commun. 101(7), 519 (1997)
41. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys.

21(6), 1087 (1953)

21 Generative Models for Automatic Chemical Design 463

42. R. Kaplow, T.A. Rowe, B.L. Averbach, Phys. Rev. 168(3), 1068 (1968)
43. V. Gerold, J. Kern, Acta Metall. 35(2), 393 (1987)
44. R.L. McGreevy, L. Pusztai, Mol. Simul. 1(6), 359 (1988)
45. A. Franceschetti, A. Zunger, Nature 402(6757), 60 (1999)
46. J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1992)
47. R. Judson, E. Jaeger, A. Treasurywala, M. Peterson, J. Comput. Chem. 14(11), 1407 (1993)
48. R.C. Glen, A.W.R. Payne, J. Comput. Aided Mol. Des. 9(2), 181 (1995)
49. V. Venkatasubramanian, K. Chan, J. Caruthers, Comput. Chem. Eng. 18(9), 833 (1994)
50. V. Venkatasubramanian, K. Chan, J.M. Caruthers, J. Chem. Inf. Model. 35(2), 188 (1995)
51. A.L. Parrill, Drug Discov. Today 1(12), 514 (1996)
52. G. Schneider, M.-L. Lee, M. Stahl, P. Schneider, J. Comput. Aided Mol. Des. 14(5), 487

(2000)
53. D.B. Gordon, S.L. Mayo, Structure 7(9), 1089 (1999)
54. M.T. Reetz, Proc. Natl. Acad. Sci. 101(16), 5716 (2004)
55. D. Wolf, O. Buyevskaya, M. Baerns, Appl. Catal. A 200(1–2), 63 (2000)
56. G.H. Jóhannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nørskov, Phys.

Rev. Lett. 88(25) (2002)
57. S.V. Dudiy, A. Zunger, Phys. Rev. Lett. 97(4) (2006)
58. P. Piquini, P.A. Graf, A. Zunger, Phys. Rev. Lett. 100(18) (2008)
59. M. d’Avezac, J.-W. Luo, T. Chanier, A. Zunger, Phys. Rev. Lett. 108(2) (2012)
60. L. Zhang, J.-W. Luo, A. Saraiva, B. Koiller, A. Zunger, Nat. Commun. 4(1) (2013)
61. L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Adv. Energy Mater. 3(1), 43 (2012)
62. T. Brodmeier, E. Pretsch, J. Comput. Chem. 15(6), 588 (1994)
63. S.M. Woodley, P.D. Battle, J.D. Gale, C.R.A. Catlow, Phys. Chem. Chem. Phys. 1(10), 2535

(1999)
64. C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175(11–12), 713 (2006)
65. A.R. Oganov, C.W. Glass, J. Chem. Phys. 124(24), 244704 (2006)
66. N.S. Froemming, G. Henkelman, J. Chem. Phys. 131(23), 234103 (2009)
67. L.B. Vilhelmsen, B. Hammer, J. Chem. Phys. 141(4), 044711 (2014)
68. G.L.W. Hart, V. Blum, M.J. Walorski, A. Zunger, Nat. Mater. 4(5), 391 (2005)
69. V. Blum, G.L.W. Hart, M.J. Walorski, A. Zunger, Phys. Rev. B 72(16) (2005)
70. C. Rupakheti, A. Virshup, W. Yang, D.N. Beratan, J. Chem. Inf. Model. 55(3), 529 (2015)
71. J.L. Reymond, Acc. Chem. Res. 48(3), 722 (2015)
72. T.C. Le, D.A. Winkler, Chem. Rev. 116(10), 6107 (2016)
73. P.C. Jennings, S. Lysgaard, J.S. Hummelshøj, T. Vegge, T. Bligaard, npj Comput. Mater. 5(1)

(2019)
74. O.A. von Lilienfeld, R.D. Lins, U. Rothlisberger, Phys. Rev. Lett. 95(15) (2005)
75. V. Marcon, O.A. von Lilienfeld, D. Andrienko, J. Chem. Phys. 127(6), 064305 (2007)
76. M. Wang, X. Hu, D.N. Beratan, W. Yang, J. Am. Chem. Soc. 128(10), 3228 (2006)
77. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)
78. D. Xiao, W. Yang, D.N. Beratan, J. Chem. Phys. 129(4), 044106 (2008)
79. D. Balamurugan, W. Yang, D.N. Beratan, J. Chem. Phys. 129(17), 174105 (2008)
80. S. Keinan, X. Hu, D.N. Beratan, W. Yang, J. Phys. Chem. A 111(1), 176 (2007)
81. X. Hu, D.N. Beratan, W. Yang, J. Chem. Phys. 129(6), 064102 (2008)
82. F.D. Vleeschouwer, W. Yang, D.N. Beratan, P. Geerlings, F.D. Proft, Phys. Chem. Chem.

Phys. 14(46), 16002 (2012)
83. G.E. Hinton, T.J. Sejnowski, in Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1, ed. by D.E. Rumelhart, J.L. McClelland, C. PDP
Research Group (MIT Press, Cambridge, 1986), pp. 282–317

84. G.E. Hinton, T.J. Sejnowski, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (1983)

85. P. Smolensky, in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, ed. by D.E. Rumelhart, J.L. McClelland, C. PDP Research Group (MIT
Press, Cambridge, 1986), pp. 194–281

464 D. Schwalbe-Koda and R. Gómez-Bombarelli

86. G.E. Hinton, S. Osindero, Y.-W. Teh, Neural Comput. 18(7), 1527 (2006)
87. R. Salakhutdinov, G. Hinton, in Proceedings of the Twelth International Conference on

Artificial Intelligence and Statistics. PMLR, vol. 5, 2009, pp. 448–455
88. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
89. T. Karras, T. Aila, S. Laine, J. Lehtinen (2017). arXiv:1710.10196
90. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

Y. Bengio (2014). arXiv:1406.2661
91. L.A. Gatys, A.S. Ecker, M. Bethge (2015). arXiv:1508.06576
92. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,

J. Totz, Z. Wang, W. Shi (2016). arXiv:1609.04802
93. S.R. Bowman, L. Vilnis, O. Vinyals, A.M. Dai, R. Jozefowicz, S. Bengio, G. Brain (2015),

pp. 1–15. arXiv:1511.06349
94. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio (2015).

arXiv:1502.03044
95. S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, Y. Bengio (2016).

arXiv:1612.07837
96. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,

A. Senior, K. Kavukcuoglu (2016). arXiv:1609.03499
97. C. Vondrick, H. Pirsiavash, A. Torralba (2016). arXiv:1609.02612
98. A. Radford, L. Metz, S. Chintala (2015). arXiv:1511.06434
99. J. Engel, M. Hoffman, A. Roberts (2017). arXiv:1711.05772

100. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)
101. D.P. Kingma, M. Welling (2013). arXiv:1312.6114
102. M. Arjovsky, S. Chintala, L. Bottou (2017). arXiv:1701.07875
103. I. Tolstikhin, O. Bousquet, S. Gelly, B. Schölkopf, B. Schoelkopf (2017). arXiv:1711.01558
104. P.K. Rubenstein, B. Schoelkopf, I. Tolstikhin, B. Schölkopf, I. Tolstikhin (2018).

arXiv:1802.03761
105. M. Mirza, S. Osindero (2014). arXiv:1411.1784
106. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel (2016).

arXiv:1606.03657
107. T. Che, Y. Li, A.P. Jacob, Y. Bengio, W. Li (2016). arXiv:1612.02136
108. A. Odena, C. Olah, J. Shlens (2016). arXiv:1610.09585
109. X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, S.P. Smolley (2016). arXiv:1611.04076
110. R.D. Hjelm, A.P. Jacob, T. Che, A. Trischler, K. Cho, Y. Bengio (2017). arXiv:1702.08431
111. J. Zhao, M. Mathieu, Y. LeCun (2016). arXiv:1609.03126
112. S. Nowozin, B. Cseke, R. Tomioka (2016). arXiv:1606.00709
113. J. Donahue, P. Krähenbühl, T. Darrell (2016). arXiv:1605.09782
114. D. Berthelot, T. Schumm, L. Metz (2017). arXiv:1703.10717
115. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville (2017). arXiv:1704.00028
116. Z. Yi, H. Zhang, P. Tan, M. Gong (2017). arXiv:1704.02510
117. M. Lucic, K. Kurach, M. Michalski, S. Gelly, O. Bousquet (2017). arXiv:1711.10337
118. A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu (2016). arXiv:1601.06759
119. A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, K. Kavukcuoglu

(2016). arXiv:1606.05328
120. T. Salimans, A. Karpathy, X. Chen, D.P. Kingma (2017). arXiv:1701.05517
121. N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves,

K. Kavukcuoglu (2016). arXiv:1610.00527
122. N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves, K. Kavukcuoglu

(2016). arXiv:1610.10099
123. R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-

Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik,
ACS Cent. Sci. 4(2), 268 (2018)

124. D.R. Hartree, Math. Proc. Cambridge Philos. Soc. 24(01), 89 (1928)
125. V. Fock, Z. Phys. A At. Nucl. 61(1–2), 126 (1930)

21 Generative Models for Automatic Chemical Design 465

126. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)
127. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors. Methods and Principles in

Medicinal Chemistry (Wiley-VCH, Weinheim, 2000)
128. D. Rogers, M. Hahn, J. Chem. Inf. Model. 50(5), 742 (2010)
129. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller,

A. Tkatchenko, J. Phys. Chem. Lett. 6(12), 2326 (2015)
130. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301

(2012)
131. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890

(2017)
132. H. Huo, M. Rupp (2017). arXiv:1704.06439
133. D. Weininger, J. Chem. Inf. Model. 28(1), 31 (1988)
134. S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, J. Comput. Aided Mol. Des. 30(8),

595 (2016)
135. D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel,

A. Aspuru-Guzik, R.P. Adams, Advances in Neural Information Processing Systems (2015),
pp. 2215–2223

136. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl (2017). arXiv:1704.01212
137. S. Hochreiter, J. Schmidhuber, Neural Comput. 9(8), 1735 (1997)
138. J. Chung, C. Gulcehre, K. Cho, Y. Bengio (2014). arXiv:1412.3555
139. M. Popova, O. Isayev, A. Tropsha, Sci. Adv. 4(7), eaap7885 (2018)
140. H. Ikebata, K. Hongo, T. Isomura, R. Maezono, R. Yoshida, J. Comput. Aided Mol. Des.

31(4), 379 (2017)
141. P. Ertl, R. Lewis, E. Martin, V. Polyakov (2017). arXiv:1712.07449
142. M.H.S. Segler, T. Kogej, C. Tyrchan, M.P. Waller, ACS Cent. Sci. 4(1), 120 (2018)
143. A. Gupta, A.T. Müller, B.J.H. Huisman, J.A. Fuchs, P. Schneider, G. Schneider, Mol. Inf.

37(1–2), 1700111 (2017)
144. T. Ching, D.S. Himmelstein, B.K. Beaulieu-Jones, A.A. Kalinin, B.T. Do, G.P. Way,

E. Ferrero, P.-M. Agapow, M. Zietz, M.M. Hoffman, W. Xie, G.L. Rosen, B.J. Lengerich,
J. Israeli, J. Lanchantin, S. Woloszynek, A.E. Carpenter, A. Shrikumar, J. Xu, E.M. Cofer,
C.A. Lavender, S.C. Turaga, A.M. Alexandari, Z. Lu, D.J. Harris, D. DeCaprio, Y. Qi,
A. Kundaje, Y. Peng, L.K. Wiley, M.H.S. Segler, S.M. Boca, S.J. Swamidass, A. Huang,
A. Gitter, C.S. Greene, J. R. Soc. Interface 15(141), 20170387 (2018)

145. N. Jaques, S. Gu, D. Bahdanau, J.M. Hernández-Lobato, R.E. Turner, D. Eck, in Proceedings
of the 34th International Conference on Machine Learning Research, vol. 70, ed. by
D. Precup, Y.W. Teh (PMLR, International Convention Centre, Sydney, 2017), pp. 1645–1654

146. M. Olivecrona, T. Blaschke, O. Engkvist, H. Chen, J. Cheminf. 9(1), 48 (2017)
147. S. Kang, K. Cho, J. Chem. Inf. Model. 59(1), 43 (2018)
148. B. Sattarov, I.I. Baskin, D. Horvath, G. Marcou, E.J. Bjerrum, A. Varnek, J. Chem. Inf. Model.

59(3), 1182 (2019)
149. S. Sinai, E. Kelsic, G.M. Church, M.A. Nowak (2017), pp. 1–6. arXiv:1712.03346
150. S. Kwon, S. Yoon, in Proceedings of the 8th ACM International Conference on Bioinformat-

ics, Computational Biology, and Health Informatics - ACM-BCB ’17 (ACM Press, New York,
2017), pp. 203–212

151. K. Kim, S. Kang, J. Yoo, Y. Kwon, Y. Nam, D. Lee, I. Kim, Y.-S. Choi, Y. Jung, S. Kim, W.-J.
Son, J. Son, H.S. Lee, S. Kim, J. Shin, S. Hwang, npj Comput. Mater. 4(1) (2018)

152. V. Mallet, C.G. Oliver, N. Moitessier, J. Waldispuhl (2019). arXiv:1905.12033
153. J. Lim, S. Ryu, J.W. Kim, W.Y. Kim, J. Cheminf. 10(1) (2018)
154. G.L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P.L.C. Farias, A. Aspuru-Guzik, C. Out-

eiral, P.L.C. Farias, A. Aspuru-Guzik (2017). arXiv:1705.10843
155. B. Sanchez-Lengeling, C. Outeiral, G.L.L. Guimaraes, A.A. Aspuru-Guzik (2017), pp. 1–18.

chemRxiv:5309668
156. E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling, A. Aspuru-Guzik,

A. Zhavoronkov, J. Chem. Inf. Model. 58(6), 1194 (2018)

466 D. Schwalbe-Koda and R. Gómez-Bombarelli

157. O. Mendez-Lucio, B. Baillif, D.-A. Clevert, D. Rouquié, J. Wichard (2018). chem-
rXiv:7294388

158. N. Killoran, L.J. Lee, A. Delong, D. Duvenaud, B.J. Frey (2017). arXiv:1712.06148
159. A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper, A. Zhavoronkov, Mol. Pharm. 14(9), 3098

(2017)
160. A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Vanhaelen, K. Khrabrov, A. Zha-

voronkov, Oncotarget 8(7), 10883 (2017)
161. T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, H. Chen, Mol. Inf. 37(1–2), 1700123

(2018)
162. D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Aladinskiy, P. Mamoshina,

M. Bozdaganyan, A. Aliper, A. Zhavoronkov, A. Kadurin, Mol. Pharm. 15(10), 4398 (2018)
163. J. Mueller, D. Gifford, T. Jaakkola, in Proceedings of the 34th International Conference

on Machine Learning Research, vol. 70, ed. by D. Precup, Y.W. Teh (PMLR, International
Convention Centre, Sydney, 2017), pp. 2536–2544

164. J.P. Janet, L. Chan, H.J. Kulik, J. Phys. Chem. Lett. 9(5), 1064 (2018)
165. M.J. Kusner, B. Paige, J.M. Hernández-Lobato (2017). arXiv:1703.01925
166. H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song (2018). arXiv:1802.08786
167. R. Winter, F. Montanari, F. Noé, D.-A. Clevert, Chem. Sci. 10(6), 1692 (2019)
168. W. Jin, R. Barzilay, T. Jaakkola (2018). arXiv:1802.04364
169. E.J. Bjerrum (2017). arXiv:1703.07076
170. Z. Alperstein, A. Cherkasov, J.T. Rolfe (2019). arXiv:1905.13343
171. A. Lusci, G. Pollastri, P. Baldi, J. Chem. Inf. Model. 53(7), 1563 (2013)
172. J. Bruna, W. Zaremba, A. Szlam, Y. LeCun (2013). arXiv:1312.6203
173. C.W. Coley, R. Barzilay, W.H. Green, T.S. Jaakkola, K.F. Jensen, J. Chem. Inf. Model. 57(8),

1757 (2017)
174. P. Hop, B. Allgood, J. Yu, Mol. Pharmaceutics 15(10), 4371 (2018)
175. K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez, T. Hopper,

B. Kelley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K. Jensen, R. Barzilay (2019).
arXiv:1904.01561

176. J. You, R. Ying, X. Ren, W.L. Hamilton, J. Leskovec (2018). arXiv:1802.08773
177. Y. Li, L. Zhang, Z. Liu (2018). arXiv:1801.07299
178. T.N. Kipf, M. Welling (2016). arXiv:1611.07308
179. M. Simonovsky, N. Komodakis (2018). arXiv:1802.03480
180. A. Grover, A. Zweig, S. Ermon (2018). arXiv:1803.10459
181. B. Samanta, A. De, N. Ganguly, M. Gomez-Rodriguez (2018). arXiv:1802.05283
182. Q. Liu, M. Allamanis, M. Brockschmidt, A.L. Gaunt (2018). arXiv:1805.09076
183. T. Ma, J. Chen, C. Xiao (2018). arXiv:1809.02630
184. W. Jin, K. Yang, R. Barzilay, T. Jaakkola, International Conference on Learning Representa-

tions (2019)
185. W. Jin, R. Barzilay, T.S. Jaakkola (2019). chemrXiv:8266745
186. R. Assouel, M. Ahmed, M.H. Segler, A. Saffari, Y. Bengio (2018). arXiv:1811.09766
187. J. Lim, S.-Y. Hwang, S. Kim, S. Moon, W.Y. Kim (2019). arXiv:1905.13639
188. Z. Zhou, S. Kearnes, L. Li, R.N. Zare, P. Riley (2018). arXiv:1810.08678
189. S. Kearnes, L. Li, P. Riley (2019). arXiv:1904.08915
190. S. Liu, T. Chandereng, Y. Liang (2018). arXiv:1806.09206
191. M. Krenn, F. Häse, A. Nigam, P. Friederich, A. Aspuru-Guzik (2019). arXiv:1905.13741
192. X. Guo, L. Wu, L. Zhao (2018). arXiv:1805.09980
193. A. Bojchevski, O. Shchur, D. Zügner, S. Günnemann (2018). arXiv:1803.00816
194. Y. Xiong, Y. Zhang, H. Fu, W. Wang, Y. Zhu, P.S. Yu, Database Systems for Advanced

Applications (Springer International Publishing, Cham, 2019), pp. 536–552
195. N. De Cao, T. Kipf (2018). arXiv:1805.11973
196. E. Jang, S. Gu, B. Poole (2016). arXiv:1611.01144
197. M.J. Kusner, J.M. Hernández-Lobato (2016). arXiv:1611.04051
198. S. Pölsterl, C. Wachinger (2019). arXiv:1905.10310

21 Generative Models for Automatic Chemical Design 467

199. K. Xu, W. Hu, J. Leskovec, S. Jegelka (2018). arXiv:1810.00826
200. Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, M. Warchoł (2019). arXiv:1902.02119
201. S. Fan, B. Huang (2019). arXiv:1906.03220
202. M. Neuhaus, H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines

(World Scientific Publishing, River Edge, 2007)
203. Y. Li, O. Vinyals, C. Dyer, R. Pascanu, P. Battaglia (2018). arXiv:1803.03324
204. T.A. Schieber, L. Carpi, A. Díaz-Guilera, P.M. Pardalos, C. Masoller, M.G. Ravetti, Nat.

Commun. 8, 13928 (2017)
205. H. Choi, H. Lee, Y. Shen, Y. Shi (2018). arXiv:1807.00252
206. S.I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, D. Rueckert (2017).

arXiv:1703.02161
207. K. Do, T. Tran, T. Nguyen, S. Venkatesh (2018). arXiv:1804.00293
208. S. Ryu, J. Lim, W.Y. Kim (2018). arXiv:1805.10988
209. H. Kajino (2018). arXiv:1809.02745
210. L. Theis, A. van den Oord, M. Bethge (2015). arXiv:1511.01844
211. K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, G. Klambauer, J. Chem. Inf. Model. 58(9),

1736 (2018)
212. D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov, O. Tatanov, S. Belyaev,

R. Kurbanov, A. Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin, S. Nikolenko,
A. Aspuru-Guzik, A. Zhavoronkov (2018). arXiv:1811.12823

213. Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K. Leswing,
V. Pande, Chem. Sci. 9(2), 513 (2018)

214. N. Brown, M. Fiscato, M.H. Segler, A.C. Vaucher, J. Chem. Inf. Model. 59(3), 1096 (2019)
215. F. Häse, L.M. Roch, C. Kreisbeck, A. Aspuru-Guzik (2018). arXiv:1801.01469
216. N.W.A. Gebauer, M. Gastegger, K.T. Schütt (2018). arXiv:1810.11347
217. F. Noé, H. Wu (2018). arXiv:1812.01729
218. N.W.A. Gebauer, M. Gastegger, K.T. Schütt (2019). arXiv:1906.00957
219. M.S. Jørgensen, H.L. Mortensen, S.A. Meldgaard, E.L. Kolsbjerg, T.L. Jacobsen, K.H.

Sørensen, B. Hammer (2019). arXiv:1902.10501
220. E. Mansimov, O. Mahmood, S. Kang, K. Cho (2019). arXiv:1904.00314
221. K. Madhawa, K. Ishiguro, K. Nakago, M. Abe (2019). arXiv:1905.11600
222. J. Wang, S. Olsson, C. Wehmeyer, A. Perez, N.E. Charron, G. de Fabritiis, F. Noe, C. Clementi

(2018). arXiv:1812.01736
223. W. Wang, R. Gómez-Bombarelli (2018). arXiv:1812.02706
224. J. Bradshaw, M.J. Kusner, B. Paige, M.H.S. Segler, J.M. Hernández-Lobato, International

Conference on Learning Representations (2019)
225. J. Bradshaw, B. Paige, M.J. Kusner, M.H.S. Segler, J.M. Hernández-Lobato (2019).

arXiv:1906.05221
226. A.J. Riesselman, J.B. Ingraham, D.S. Marks, Nat. Methods 15(10), 816 (2018)

	Contents
	1 Introduction
	References

	Part I Fundamentals
	Preface
	References
	2 Introduction to Material Modeling
	2.1 Introduction
	2.2 Structure–Property Relationship
	2.2.1 Atomic Structure
	2.2.2 Molecular and Material Properties

	2.3 Quantum Mechanics
	2.4 Statistical Mechanics
	Glossary
	References

	3 Kernel Methods for Quantum Chemistry
	3.1 Introduction
	3.2 Representations of Physical Systems
	3.3 Implicit Feature Mapping: The Kernel Trick
	3.4 Kernel Methods
	3.4.1 Kernel Ridge Regression
	3.4.2 Kernel Principal Component Analysis

	3.5 Relevant Dimension Estimation
	3.6 Conclusion
	References

	4 Introduction to Neural Networks
	4.1 Introduction
	4.2 Neural Network Basics
	4.2.1 The Forward Pass
	4.2.2 The Backward Pass
	4.2.3 Optimizing Neural Networks

	4.3 Efficient Training of Neural Networks
	4.3.1 Hessian-Based Analysis of the Error Function
	4.3.2 Normalizing the Input Data
	4.3.3 Choosing the Activation Function
	4.3.4 Initialization and Network Size
	4.3.5 Learning Rate, Momentum, and Mini-Batches

	4.4 Improving Neural Network Generalization
	4.4.1 Model Regularization
	4.4.2 Invariant Input Representations
	4.4.3 Structured Neural Networks
	4.4.4 Smoothness of the Prediction Function

	4.5 Model Selection, Evaluation, and Understanding
	4.5.1 Model Selection and Evaluation
	4.5.2 Understanding Neural Network Predictions
	4.5.3 Layer-Wise Relevance Propagation
	4.5.4 What Did the Neural Network Actually Learn?

	4.6 Conclusion
	References

	Part II Incorporating Prior Knowledge: Invariances, Symmetries, Conservation Laws
	Preface
	References
	5 Building Nonparametric n-Body Force Fields Using Gaussian Process Regression
	5.1 Introduction
	5.2 Nonparametric n-body Force Field Construction
	5.2.1 Gaussian Process Regression
	5.2.2 Local Energy from Global Energies and Forces
	5.2.3 Incorporating Prior Information in the Kernel
	5.2.3.1 Function Smoothness
	5.2.3.2 Physical Symmetries
	5.2.3.3 Interaction Order

	5.2.4 Smooth, Symmetric Kernels of Finite Order n
	5.2.5 Choosing the Optimal Kernel Order
	5.2.6 Kernels for Multiple Chemical Species
	5.2.7 Summary

	5.3 Practical Considerations
	5.3.1 Applying Model Selection to Nickel Systems
	5.3.2 Speeding Up Predictions by Building MFFs

	5.4 Conclusions
	References

	6 Machine-Learning of Atomic-Scale Properties Based on Physical Principles
	6.1 Introduction
	6.2 Kernel Fitting
	6.2.1 Selection of a Representative Set
	6.2.2 Linear Combination of Kernels
	6.2.3 Derivatives
	6.2.4 Learning from Linear Functionals
	6.2.5 Learning Multiple Models Simultaneously

	6.3 Density-Based Representations and Kernels
	6.3.1 A Dirac Notation for Structural Representations
	6.3.2 Smooth Overlap of Atomic Positions
	6.3.3 Body-Order Potentials
	6.3.4 Kernel Operators and Feature Optimization
	6.3.5 λ-SOAP: Symmetry-Adapted Gaussian Process Regression
	6.3.6 Computing SOAP Representations Efficiently
	6.3.7 Back to the Structures
	6.3.8 Multi-Kernel Learning

	6.4 Conclusions
	References

	7 Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approaches
	7.1 Introduction
	7.2 Hilbert Space Learning
	7.2.1 Hilbert Spaces
	7.2.1.1 Reproducing Kernels
	7.2.1.2 Representer Theorem

	7.2.2 Gaussian Process Models
	7.2.2.1 Gaussian Process Regression

	7.3 Encoding Prior Knowledge
	7.3.1 Representation
	7.3.2 Covariance Function
	7.3.2.1 Integral Transforms

	7.3.3 Mean Function

	7.4 Energy-Conserving Force Field Reconstructions
	7.4.1 Forces Are Quantum-Mechanical Observables
	7.4.2 Differentiation Amplifies Noise
	7.4.3 Constructing Conservative Vector-Valued GPs

	7.5 Point Groups and Fluxional Symmetries
	7.5.1 Positive-Semidefinite Assignment
	7.5.1.1 Solving the Multi-Way Matching Problem
	7.5.1.2 Symmetric Kernels

	7.6 Conclusion
	7.7 Data and Software
	References

	8 Quantum Machine Learning with Response Operators in Chemical Compound Space
	8.1 Introduction
	8.2 Representing an Atomic Environment
	8.2.1 First-Order Term A1
	8.2.2 Second-Order Term A2
	8.2.3 Third Order Term A3
	8.2.4 Scaling Function
	8.2.5 Electric Field-Dependent Representation

	8.3 Kernel-Based Regression Model
	8.3.1 General Response Formalism
	8.3.2 Kernel Derivatives in the Basis of Atomic Environments

	8.4 Numerical Results
	8.4.1 Dipole Learning for QM9 Molecules

	8.5 Outlook
	References

	9 Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processes
	9.1 Introduction
	9.1.1 Organization of This Chapter

	9.2 Quantum Systems
	9.2.1 Lattice Polarons
	9.2.2 The Heisenberg Model

	9.3 Gaussian Process Regression for Interpolation
	9.3.1 Model Selection Criteria

	9.4 Physical Extrapolation by Generalization with Gaussian Processes
	9.4.1 Learning with Kernel Combinations

	9.5 Extrapolation of Quantum Properties
	9.5.1 Extrapolation Across Sharp Polaron Transitions
	9.5.2 Effect of Kernel Complexity
	9.5.3 Extrapolation Across Paramagnetic–Ferromagnetic Transition
	9.5.4 Validation of Extrapolation
	9.5.5 Power of the Bayesian Information Criterion

	9.6 Conclusion
	References

	Part III Deep Learning of Atomistic Representations
	Atomistic Representations: Preface
	References
	10 Message Passing Neural Networks
	10.1 Introduction
	10.2 Message Passing Neural Networks
	10.2.1 Convolutional Networks for Learning Molecular Fingerprints [14]
	10.2.2 Gated Graph Neural Networks (GG-NN) [25]
	10.2.3 Interaction Networks [27]
	10.2.4 Molecular Graph Convolutions [24]
	10.2.5 Deep Tensor Neural Networks [15]
	10.2.6 SchNet with Edge Updates [19]
	10.2.7 Laplacian-Based Methods [12,28,29]

	10.3 MPNNs for Modeling Molecules
	10.3.1 Message Functions
	10.3.2 Virtual Graph Elements
	10.3.3 Readout Functions
	10.3.4 Multiple Towers

	10.4 Input Representation
	10.5 Training
	10.6 Results
	10.7 Conclusions and Future Work
	References

	11 Learning Representations of Molecules and Materials with Atomistic Neural Networks
	11.1 Introduction
	11.2 The Deep Tensor Neural Network Framework
	11.3 SchNet
	11.3.1 Continuous-Filter Convolutional Layers
	11.3.2 Interaction Blocks
	11.3.3 Filter-Generating Networks
	11.3.3.1 Self-Interaction
	11.3.3.2 Rotational Invariance
	11.3.3.3 Local Distance Regimes
	11.3.3.4 Cutoffs
	11.3.3.5 Periodic Boundary Conditions (PBC)

	11.4 Analysis of the Representation
	11.4.1 Locality of the Representation
	11.4.2 Local Chemical Potentials
	11.4.3 Atom Embeddings

	11.5 Conclusions
	References

	Part IV Atomistic Simulations
	Preface
	References
	12 Molecular Dynamics with Neural Network Potentials
	12.1 Introduction
	12.2 Methods
	12.2.1 High-Dimensional Neural Network Potentials
	12.2.2 Dipole Model
	12.2.3 Adaptive Sampling Scheme

	12.3 Generation of Reference Data Sets
	12.3.1 Accuracy of NNP Ensembles
	12.3.2 Choice of Uncertainty Measures
	12.3.3 Frequency of Reference Computations
	12.3.4 Adaptive Sampling with Multiple Replicas

	12.4 NNPs for Molecular Dynamics Simulations
	12.4.1 Machine Learning for Molecular Dipole Moments
	12.4.2 Latent Partial Charges
	12.4.3 Electrostatic Potentials
	12.4.4 Geometry Dependence of Latent Charges

	12.5 Conclusion
	References

	13 High-Dimensional Neural Network Potentials for Atomistic Simulations
	13.1 Introduction
	13.2 Preliminaries
	13.3 Functional Form of a High-Dimensional Neural Network Potential
	13.3.1 Energy Calculations
	13.3.2 Symmetry Functions
	13.3.3 Choosing a Set of Symmetry Functions
	13.3.4 Force Calculations
	13.3.5 Other Types of Symmetry Functions

	13.4 Construction of a High-Dimensional Neural Network Potential
	13.5 Long-Range Interactions
	13.6 Applications of High-Dimensional Neural Network Potentials
	13.7 Summary
	Appendix: Calculating the Force Components on an Atom
	References

	14 Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights
	14.1 Introduction
	14.2 Data Generation and Sampling of the PES
	14.2.1 Imbalanced Sampling
	14.2.2 Representative Sampling: From DFT to CCSD(T)

	14.3 Physically Inspired Machine Learned Force Fields
	14.3.1 Symmetrized Gradient-Domain Machine Learning
	14.3.2 Force vs. Energy ML Models

	14.4 Gradient-Domain Learning and Its Performance
	14.4.1 Static Validation
	14.4.2 Dynamic Validation
	14.4.2.1 Benzene and Uracil
	14.4.2.2 Aspirin

	14.5 Smoothness Hypothesis in Quantum Chemistry
	14.6 Learning Molecular PES: What Type of Interactions Can Be Captured?
	14.6.1 Electrostatic Interactions and Electron Lone Pairs
	14.6.1.1 Electron Lone Pairs in Ethanol
	14.6.1.2 Oxygen–Oxygen Atom Repulsion in Keto-MDA

	14.6.2 Intramolecular H-Bond and Proton Transfer
	14.6.3 Hybridization and Electronic Delocalization

	14.7 Conclusions
	References

	15 Active Learning and Uncertainty Estimation
	15.1 Introduction
	15.2 Active Selection from Given Samples: Uncertainty Estimation
	15.2.1 Predictive Variance for Gaussian Process Regression
	15.2.2 Query by Committee
	15.2.3 D-Optimality
	15.2.4 Bayesian Methods for Neural Networks
	15.2.4.1 Example of Active Learning with SchNet

	15.3 Learning-On-the-Fly
	15.3.1 Active Learning in Molecular Dynamics
	15.3.2 Active Learning in Crystal Structure Prediction

	15.4 Conclusion
	References

	16 Machine Learning for Molecular Dynamics on Long Timescales
	16.1 Introduction
	16.2 Learning Problems for Long-Time Molecular Dynamics
	16.2.1 What Would We Like to Compute?
	16.2.2 What Is Molecular Dynamics?
	16.2.3 Learning Problems for Long-Time MD

	16.3 LP1: Learning Propagator in Feature Space
	16.3.1 Loss Function and Basis Statistics
	16.3.2 Maximum Likelihood and Markov State Models
	16.3.3 MSMs with Detailed Balance
	16.3.4 Minimal Regression Error
	16.3.5 Variational Approach for Dynamics with Detailed Balance (VAC)
	16.3.6 General Variational Approach (VAMP)

	16.4 Spectral Representation and Variational Approach
	16.4.1 Spectral Theory
	16.4.2 Variational Principles
	16.4.3 Spectral Representation Learning

	16.5 LP2: Learning Features and Representation
	16.5.1 Suitable and Unsuitable Loss Functions
	16.5.2 Feature Selection
	16.5.3 Blind Source Separation and TICA
	16.5.4 TCCA/VAMP
	16.5.5 MSMs Based on Geometric Clustering
	16.5.6 VAMPnets

	16.6 LP3 Light: Learn Representation and Decoder
	16.6.1 Time-Autoencoder
	16.6.2 Time-Autoencoder with Propagator
	16.6.3 Variational (Time-)Autoencoders

	16.7 LP3 Heavy: Learn Generative Models
	16.7.1 Deep Generative MSMs
	16.7.2 Deep Resampling MSMs
	16.7.3 Deep Generative MSMs with Energy Distance Loss

	16.8 Data and Software
	16.9 Conclusions
	References

	Part V Discovery and Design
	Discovery and Design: Preface
	References
	17 Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design
	17.1 Background
	17.2 Computational Methods
	17.2.1 Overdelocalized Orbitals
	17.2.2 Under- and Overestimated Lattice Constants
	17.2.3 Weak Dispersion Forces

	17.3 Materials Properties
	17.4 Database-Driven High-Throughput Calculations
	17.5 Machine Learning Models for Materials Design
	17.5.1 Models for Molecules
	17.5.2 General Models for Periodic Systems
	17.5.3 Crystal-Structure Specific Models
	17.5.4 Models for Predicting Composition Phase Diagrams, Crystal Structures

	17.6 Conclusions and Outlook
	References

	18 Polymer Genome: A Polymer Informatics Platform to Accelerate Polymer Discovery
	18.1 Introduction: Applications of Machine Learning in Materials Science
	18.2 Dataset
	18.3 Hierarchical Fingerprinting
	18.4 Surrogate (Machine Learning) Model Development
	18.4.1 Recursive Feature Elimination
	18.4.2 Gaussian Process Regression

	18.5 Model Performance Validation
	18.6 Polymer Genome Online Platform
	18.7 Conclusions and Outlook
	References

	19 Bayesian Optimization in Materials Science
	19.1 Introduction
	19.2 Bayesian Optimization
	19.3 Application of Bayesian Optimization in Materials Science
	19.3.1 Determine the Parameters in a Physics Model
	19.3.2 Discovery of New Functional Materials
	19.3.3 Global Optimization of Atomic Structure
	19.3.3.1 Optimization of Interface Structure
	19.3.3.2 Adsorption Structure of Molecule on Solid Surface
	19.3.3.3 Crystal Structure Prediction

	19.4 Conclusions
	References

	20 Recommender Systems for Materials Discovery
	20.1 Introduction
	20.2 Matrix- and Tensor-Based Recommender System
	20.2.1 Matrix and Tensor Factorization
	20.2.2 Datasets
	20.2.3 Rating Matrix and Tensor Representations
	20.2.4 Discovery Performance of Unknown CRCs

	20.3 Compositional Descriptor-Based Approach
	20.3.1 Classification
	20.3.2 Descriptors
	20.3.3 Datasets
	20.3.4 Discovery Performance of Unknown CRCs

	20.4 Conclusion
	References

	21 Generative Models for Automatic Chemical Design
	21.1 Introduction
	21.1.1 Early Inverse Design Strategies for Materials
	21.1.2 Deep Learning and Generative Models
	21.1.3 Generative Models Meet Chemical Design

	21.2 Chemical Generative Models
	21.2.1 SMILES Representation
	21.2.2 Molecular Graphs

	21.3 Challenges and Outlook for Generative Models
	References

