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Abstract. Computing devices and associated software govern every-
day life, and form the backbone of safety critical systems in banking,
healthcare, automotive and other fields. Increasing system complexity,
quickly evolving technologies and paradigm shifts have kept software
quality research at the forefront. Standards such as ISO’s 25010 express
it in terms of sub-characteristics such as maintainability, reliability and
security. A significant body of literature attempts to link these subchar-
acteristics with software metric values, with the end goal of creating a
metric-based model of software product quality. However, research also
identifies the most important existing barriers. Among them we men-
tion the diversity of software application types, development platforms
and languages. Additionally, unified definitions to make software metrics
truly language-agnostic do not exist, and would be difficult to imple-
ment given programming language levels of variety. This is compounded
by the fact that many existing studies do not detail their methodology
and tooling, which precludes researchers from creating surveys to enable
data analysis on a larger scale. In our paper, we propose a comprehen-
sive study of metric values in the context of three complex, open-source
applications. We align our methodology and tooling with that of existing
research, and present it in detail in order to facilitate comparative eval-
uation. We study metric values during the entire 18-year development
history of our target applications, in order to capture the longitudinal
view that we found lacking in existing literature. We identify metric
dependencies and check their consistency across applications and their
versions. At each step, we carry out comparative evaluation with existing
research and present our results.

Keywords: Software metric · Software quality · Descriptive
statistics · Cross-sectional study · Longitudinal study

1 Introduction

Software development has experienced an exponential increase over the past
decades, which can be observed in the variety of applications available (such as
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web, mobile, real time and so on), as well as in application size and complexity.
Large-scale and enterprise applications are being developed over longer periods
of time, using larger teams that are in many cases geographically distributed. In
the same time frame, project management and software methodologies, available
tools and development environments have evolved in an attempt to keep the pace
with increasing requirements.

This increase in size and complexity raises another problem, namely the
necessity to control the software development processes, and implicitly to mea-
sure it, as “you cannot control that which you cannot measure” [11]. In accor-
dance, the domain of software metrics has evolved both as methodology as well
as in terms of available software products, being influenced by the development
of programming languages, paradigms and methodologies.

Software quality assurance is also an important aspect as software products
have to satisfy user needs related to ease of use, security and reliability. Fur-
thermore, development related needs such as maintainability, portability and
testability must also be accounted for. The latest software quality models have
undergone standardization processes, such as ISO standards 9126 and 25010, in
order to establish a set of common criteria for software products. These stan-
dards can significantly benefit from data provided by software metrics, as there
exists consistent research results that report the influence of software metrics on
software quality factors [8,17,22,25,35].

However, additional data analysis is required before general models can be
built [5]. Also, even if the influence of metrics on quality factors is well understood
and accepted, there does not yet exist any general accepted method to evaluate
software quality factors based on software metric values. As such, the relation
between metric values and software quality factors remains an open problem. We
aim to address this issue in the present paper. We carry out a comprehensive
evaluation on values of software metrics that are widely associated with software
product quality. We employ methodology and tooling compatible with existing
results in order to enable comparative evaluation. We carry out a long-term study
targeting three complex, open-source applications, and provide the following
contributions:

(i) A clear description of our methodology, metric definitions and tooling used
to extract metric values. Doing this ensures that our results can be used
for comparative evaluation in future studies. We made all extracted metric
values publicly available1.

(ii) A quantitative evaluation of metric values is carried out and detailed for all
target application versions.

(iii) A longitudinal exploratory study that examines the evolution of metric
values over the course of 18 years of target application development.

(iv) Identification of statistical correlations between metric pairs. We identify
both strongly correlated metrics as well as metrics that appear independent.
We account for the confounding effect of class size and examine the stability
of the correlation strength across application versions.

1 http://www.cs.ubbcluj.ro/∼se/enase2019/.
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(v) A comparative evaluation of metric values and statistical correlations
between target applications. We identify trends in metric values and cor-
relations that are application-specific, together with those that hold across
the target applications.

(vi) An evaluation of our obtained results in the context of existing research
that uses the same methodology and software tools.

One of our study’s key contributions lies in the selection of target applica-
tions. Existing studies are built around one of the following two approaches.
The first one is where a number of applications are selected, and for each of
them several versions are studied [17,32]. The second one considers a large num-
ber of target applications, that in many cases are automatically downloaded
from open-source repositories [5], with a cross-sectional study including all of
them [5,18,19]. Our approach aims to complement existing research. We select
a number of three open-source applications developed on the same platform,
having comparable complexity and scope, and include all their released versions
in our study. This results in a large number of application versions that ensures
statistical significance. More so, our approach includes both initial application
versions, which are sometimes very simple functionality-wise and bug-prone. We
also include the latest application versions, that appear polished, have extensive
features sets and a consistent user base. This enables us to study how metric
values evolve together with the target applications, as well as to identify any
existing trends that might be influenced by application development status.

Another important contribution regards careful selection of software met-
rics and extraction tools. As detailed in our initial evaluation [26], we selected
the evaluated metrics in order to cover complexity, inheritance, coupling and
cohesion [2,22] as important characteristics of object-oriented software. In addi-
tion, the studied metrics can be found in existing literature studying software
product quality [18,19,26,32]. Selection of the right tools for metric value extrac-
tion is also important, as most metrics have more than one definition [4,21]. As
such, comparative evaluation can be carried out only with existing research that
employs the same metrics, and that uses the same tooling to extract metric
values.

In our initial evaluation [26], we employed the VizzAnalyzer tool2, as it pro-
vides formal definitions of the extracted metrics. In addition, using VizzAnalyzer
allows us to compare our results with those reported in [5], where authors use
the same tool to carry out a cross-sectional study of 146 open-source applica-
tions. In our extensive literature survey, we identified [5] as the only paper that
clearly detailed the study methodology and tooling in order to allow a compar-
ative evaluation to be carried out. Since our present paper employs the same
methodology and tooling as our initial evaluation [26], the obtained results are
directly comparable. In addition, in the present paper we explore the effect class
size has on metric correlations across our target applications. We show that met-
ric variability is greatest in early versions, before application architecture is well

2 http://www.arisa.se/vizz analyzer.php.
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established. Furthermore, we find that most significant changes to metric values
occur across a small number of application versions, which we examine in detail.

2 Software Metrics

Evolution in the domain of software metrics was influenced by changes in the
development of software, with increasingly specific metrics being proposed for
the measurement of both software products as well as software processes. This is
reflected in the appearance of software metric tools, both general and language
dependent, stand-alone as well as integrated into IDEs in the form of plugins.

The oldest software metrics that remain widely used today include lines of
code (LOC), number of functions or modules, and the number of comment lines.
This was followed by proposed metrics to measure code complexity, such as
cyclomatic complexity [23] and Halstead volume [14]. In turn, these were used
to compute additional, more complex metrics such as the Maintainability Index
[25]. The object oriented paradigm introduced new entities and relations, and
these were reflected by several newly proposed metrics. The reference set of
object-oriented metrics was defined by Chidamber & Kemerer (CK) [8], were
implemented in most software metrics tools, and used in many subsequent stud-
ies. The lack of cohesion in methods (LCOM) metric deserves special mention,
as it was refined from its original definition in [8] by Li and Henry [20], and then
by Hitz and Montazeri [16]. While these changes were driven by a desire to bet-
ter capture the essence of cohesion, LCOM values can only be compared when
extracted using the same definition. Several tools are available to compute the
CK metrics (and many more). Some of them are available as IDE plugins, such
as Metrics23 for Eclipse, MetricsReloaded4 for IntelliJ, NDepend5 for .NET, or
as standalone tools such as JHawk6 or Sourcemeter7. Each of them employs its
own implementation for metric computation, leading to different results for the
same metric when extracted with different tools.

The metrics selected for our study were all computed using the VizzAnalyzer
tool, that uses the definitions provided in [37]. Other studies [5,21] are based
on the same tool, giving us the possibility to compare the obtained results.
According to [22], object-oriented metrics measure one of the four internal char-
acteristics essential to object orientation, namely coupling, inheritance, cohesion
and structural complexity. We present the metrics used in our study, catego-
rized according to the internal characteristics they aim to measure. We start
with metrics dedicated to measuring coupling:

– Coupling Between Objects (CBO , vCBO ∈ [0,∞) ∩ Z) [28] - for class c is
computed as the number of other classes that are coupled to it. Two classes

3 http://metrics.sourceforge.net.
4 https://plugins.jetbrains.com/plugin/93-metricsreloaded.
5 https://www.ndepend.com/.
6 http://www.virtualmachinery.com/jhawkprod.htm.
7 https://www.sourcemeter.com/.

http://metrics.sourceforge.net
https://plugins.jetbrains.com/plugin/93-metricsreloaded
https://www.ndepend.com/
http://www.virtualmachinery.com/jhawkprod.htm
https://www.sourcemeter.com/
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are coupled when methods declared in one class use methods or instance
variables defined by the other class. CBO indicates the required effort to test
and maintain a class.

– Data Abstraction Coupling (DAC , vDAC ∈ [0,∞)∩Z) [20] - measures when
a class is used in the implementation of methods of another class or when it is
the domain of its instance variables. VizzAnalyzer does not include platform
classes in this measurement.

– Message Pass Coupling (MPC , vMPC ∈ [0,∞) ∩ Z) [28] - counts the num-
ber of methods from other classes that are called. It indicates the degree of
dependency on the system’s other classes.

The following metrics measure the inheritance characteristic:

– Depth of Inheritance Tree (DIT , vDIT ∈ [0,∞) ∩ Z) [28] - represents the
length of the longest path from a given class to the root of the inheritance
tree. DIT also accounts for multiple paths possible in the context of multiple-
inheritance languages such as C++.

– Number of Children (NOC , vNOC ∈ [0,∞) ∩ Z) [28,31] - counts the imme-
diate subclasses found in the inheritance tree for a given class.

System cohesion is measured using the following metrics:

– Lack of Cohesion in Methods (LCOM , vLCOM ∈ [0,∞)∩Z) [28] - represents
the difference between the number of methods pairs that don’t have, respec-
tively have, instance variables in common. This uses the original definition of
the metric [28].

– Improvement to Lack of Cohesion in Methods ( ILCOM , vILCOM ∈ [1,∞)∩
Z) [16] - this employs the improved definition provided by Hitz and Montazeri.
In several papers and software tools this is referred to as LCOM5.

– Tight Class Cohesion (TCC , vTCC ∈ [0, 1] ∩ Q) [27] - defined as the ratio
between the number of directly connected public methods in a class divided
by the number of all possible connections between the public methods of that
class.

We employ the following metrics that measure the structural complexity
of classes:

– Locality of Data (LD , vLD ∈ [0, 1]∩Q) [16] - represents the ratio between the
data that is local to a class and all the data used by the class. VizzAnalyzer
includes non-public and inherited attributes.

– Number of Attributes and Methods (NAM , vNAM ∈ [0,∞) ∩ Z) [28] - rep-
resents the total number of attributes and methods that are locally defined
by the class. This includes static methods, but excludes constructors and
inherited fields or methods.

– Number of Methods (NOM , vNOM ∈ [0,∞)∩Z) [28] - represents the number
of methods locally defined in the class. NAM − NOM gives the number of
locally defined attributes.
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– Response For a Class (RFC , vRFC ∈ [0,∞) ∩ Z) [28] - counts the number
of methods that could be invoked as a response to a given message. RFC is
the number of methods called by a given class.

– Weighted Method Count (WMC , vWMC ∈ [0,∞) ∩ Z) [28] - defined as the
sum of the complexities of all methods of a given class. The complexity of a
method is its McCabe cyclomatic complexity [23].

Finally, we also examine metrics related with code documentation:

– Length of Class Name (LEN , vLEN ∈ [1,∞) ∩ Z) - the length of the class
name counted in characters.

– Lack of Documentation (LOD , vLOD ∈ [0, 1] ∩ Q) - the ratio of missing
comments in a given class. Each class should have one comment per class, and
an additional one for each defined method. This metric ignores the structure
and the content of the comments.

Beside these metrics, we also measured the Lines of Code (LOC), since it is
considered a universal software metric that can be used across most programming
languages and which gives basic information about the size of a project. The rela-
tion between object-oriented metrics and LOC is worthy of further investigation,
especially as existing research showed that class size has a strong confounding
influence on quality models based on metrics [12].

3 State of the Art

The increasing attention given to software metrics is proven by the large number
of studies in this domain. In most cases, existing research is geared towards one of
the following three main directions: definition and analysis of proposed software
metrics, software metric application in refactoring, and studying the relation
between software metrics and software quality models.

3.1 Metrics

New metrics are being defined in order to fine-tune the characteristics of soft-
ware systems, and in order to better reflect the properties of source code and
associated artefacts. Examples include approaches to improve estimation of the
maintenance effort [30], in order to supersede existing measures such as the
Maintainability Index [25] which was shown to be outdated [10,15,29]. Other
studies propose new metrics to better capture system coupling or cohesion [1,9].

Special interest has been also given to studying inter-metric dependency and
correlation. A large scale study [5] was carried out using 146 Java applications,
with 16 metrics extracted using the VizzAnalyzer tool. Barkman et al. applied
different descriptive statistic techniques in order to detect metric dependencies.
Landman et al. [18] show that typical getters and setters can distort metric
dependencies by artificially increasing dependency values. In [12], authors show
that class size has a significant impact on metric correlation, using experimental
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data from a large scale telecommunication framework. These results illustrate
that in order to validate strong conclusions derived from data analysis based on
metric values, further research needs to be carried out. This is expected to be of
special importance in the case of large-scale projects that were developed over a
long period of time.

3.2 Refactoring

One of the first applications of software metrics was to use the recorded values
in order to detect design flaws that could be solved through refactoring.

The impact of four refactoring methods on several metrics is described in [7],
based on the source code’s abstract syntax tree representation. Another signif-
icant study [34] refers to the impact 10 refactoring methods have on different
metrics, including the Maintainability Index, cyclomatic complexity, DIT, class
coupling and LOC. Changes to maintainability and modifiability after refac-
toring are presented in [34] through an empirical evaluation. The experimental
evaluations included in the aforementioned studies illustrate that, in the case
of complex systems, refactoring plays an important role for easing maintenance
and keeping system complexity under control. The decision of where and how to
refactor can be taken based on extracted values of suitable software metrics.

3.3 Software Quality Models

In recent years, several contributions attempted to connect software metrics with
software quality factors. A software quality model is a hierarchical set of software
quality factors or characteristics, that are further decomposed in subfactors or
subcharacteristics. The first software quality model was introduced in 1976 by
McCall, to which Boehm and Dromey later proposed important contributions.
These initial contributions were later standardized by the ISO in the form of two
families of standards: first, the ISO 9126, which expressed software quality as a
function of six characteristics, that were comprised of 31 subcharacteristics. The
9126 standard was updated in the form of ISO 250108, which expands to the 8
characteristics shown in Fig. 1.

Fig. 1. ISO/IEC 25010 subcharacteristics hierarchy.

8 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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Some of the factors, like Maintainability, are known to be highly influenced
by coupling and cohesion, such as evaluated by the CBO, TCC and LCOM
metrics. However, in many other cases, dependencies remain to be proven.

The ARISA Compendium [2] offers an exhaustive study of the influence of
over 20 metrics on the software quality characteristics of ISO 9126. The authors’
approach is based on linking metrics with those source code entities that are
involved in the metric’s formal description. In [20], authors claim that metrics
should be adapted for each programming paradigm. They introduce object ori-
ented metrics for the maintenance effort and validate their approach on two
commercial systems using 10 metrics. A complementary study was carried out
in [6], where the CK metrics are assessed in regard to fault proneness, with
experiments performed on eight C++ applications. The study concluded that
LCOM, as defined in the CK suite is not evidential for fault detection, but that
the other CK metrics are well suited for predicting faults. Also, the experimental
data revealed an inverse relation between NOC and faults, a result confirmed
also by the impact of reuse on fault proneness presented in [24].

Another study [33] regarding the relation between CK metrics and faults
evaluated the efficient selection of testing techniques. Authors reported RFC and
WMC as the most suited metrics for this task. A similar study was conducted in
[13] for the open-source Mozilla web and e-mail suite. It concluded that CBO and
LOC are good predictors for faults, while DIT and NOC can lead to false results.
An analysis [35] of CK metrics on a NASA public data set revealed that LOC,
WMC, CBO and RFC can be safely used for defect estimation. The conclusion
of the study recommended further investigation on the relation between metric
values and different dependent variables using statistical and AI techniques.

4 Evaluation

4.1 Target Applications

In order to carry out our evaluation, the first step was to select target applica-
tions. We first established several required criteria. First, we decided to target
open-source applications developed in Java that were user interface driven and
which did not have significant dependencies on external libraries or databases.
We also searched for applications having long-term, consistent development his-
tory that were freely available. Our goals required a longitudinal study, an obser-
vational research method that consists in setting up and collecting metric data
from each of the application versions. As detailed in [5], this can prove difficult
in the case of open-source software, where development effort suffers interrup-
tions, and where there are no guarantees that all software versions are complete
and usable. As such, we selected three popular applications with long develop-
ment histories, which had an established user base as well as public development
repositories populated since project inception. We also ensured selected applica-
tions were free from complex dependencies. This allowed us to run them in order
to check that functionalities worked as expected in all application versions.



Evaluation of Software Product Quality Metrics 171

The selected applications are the FreeMind9 mind mapper, the jEdit10 text
editor and the TuxGuitar11 tablature editor. The entire development history of
these applications can be found on SourceForge12.

FreeMind. Is a mind-mapping application that found many uses in productivity
and content management. FreeMind was also employed in previous software
research [3]. It is also a popular application with a solid user base, having over
465k13 downloads in 2019. FreeMind includes a plugin ecosystem with many
plugins available. However, only the source code of the base application was
included in our study.

jEdit. Is an open-source text editor, developed entirely using the Java pro-
gramming language. It is also a popular system under test for other research
endeavours in software testing [3,36]. jEdit is one of the popular SourceForge
applications, having over 59k downloads in 2019 and reaching over 8.9 millions
downloads in its 19 years of existence. Similar to the case of FreeMind, plugin
code was not included in our evaluation.

TuxGuitar. Is a free, open-source multitrack guitar tablature editor with an
SWT-based user interface. It includes features like multiple format data import
and export, tablature and score editing. TuxGuitar is also a popular application
having over 131k downloads in 2019. In contrast with FreeMind and jEdit, where
we disregarded the applications’ plugin ecosystems, in the case of TuxGuitar
functionalities related to data import and export itself were implemented in the
form of a plugin, and were included in our evaluation.

Table 1 provides information about the earliest and latest application versions
included in our evaluation, indicating their change of complexity during the
considered period.

Table 1. First and last studied version of each target application (from [26]).

Application Version LOC Classes

jEdit 2.3pre2 33,768 322

5.5.0 151,672 952

FreeMind 0.0.3 3,722 53

1.1.0Beta2 63,799 587

TuxGuitar 0.1pre 11,209 122

1.5.2 108,495 1,618

9 http://freemind.sourceforge.net/wiki/index.php/Main Page.
10 http://www.jedit.org/.
11 http://www.tuxguitar.com.ar.
12 https://sourceforge.net.
13 Download data points taken on August 8th, 2019.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://www.jedit.org/
http://www.tuxguitar.com.ar
https://sourceforge.net


172 A.-J. Molnar et al.

0, 5.61, 285, 3, 1
0, 6.71, 184, 4, 1

0, 4.62, 285, 3, 0
0, 6.04, 175, 4, 1

0, 0.65, 6, 0, 0
0, 1.46, 9, 1, 0

0, 0.97, 45, 1, 0
0, 0.99, 298, 1, 0

0, 147.41, 39813, 1, 0
0, 210.11, 1415498, 2, 0

0, 0.4, 22, 0, 0
0, 0.38, 36, 0, 0

1, 124.37, 7001, 43, 13
1, 166.9, 11045, 62, 13

0, 12.12, 552, 4, 0
0, 11.99, 1225, 3, 0

0, 9.42, 329, 4, 1
0, 11.12, 2297, 5, 1

0, 0.54, 300, 0, 0
0, 0.97, 2843, 0, 0

0, 6.11, 267, 3, 1
0, 7.28, 1190, 3, 1

0, 13.46, 407, 6, 2
0, 13.46, 1195, 6, 0

0, 0.14, 1, 0, 0
0, 0.16, 1, 0, 0

0, 12.85, 763, 5, 1
0, 14.87, 2475, 5, 1

Fig. 2. Code metric histograms. Data labels: minimum, mean, maximum, median,
modus. Our results on top row, results from [5] on bottom row for comparison (data
from [26]).

As a preparatory step, each studied version was imported into an IDE. We
ensured that library source code was separated from actual application code
in order to not affect our analysis. Since we employed Java 8, we encountered
compilation errors with older versions of the applications that were developed
using earlier versions of the Java platform. The issues were resolved taking into
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0, 5.61, 285, 3, 1
0, 6.71, 184, 4, 1

0, 4.62, 285, 3, 0
0, 6.04, 175, 4, 1

Fig. 3. Documentation metric histograms. Data labels: minimum, mean, maximum,
median, modus. Our results on top row, results from [5] on bottom row for comparison.

account not to alter the results of metric extraction. We assured that for each
application, all mandatory source code was included, testing all available func-
tionalities in detail. The raw metric data that was extracted is available on our
website14. Using this data, we developed a number of scripts in order to extract
only the required metric values for our study for each application version as well
as in aggregate form.

Data collection was helped by the fact that for each application, its complete
development history was available on SourceForge. Furthermore, released ver-
sions were clearly marked, dated and had associated binaries and source code.
In total, we included 38 versions of FreeMind, 43 for jEdit and 26 for TuxGuitar.

Table 2. Mean and median metric values per application.

FreeMind jEdit TuxGuitar [5] FreeMind jEdit TuxGuitar [5]

CBO 5.36 4.67 7.32 6.71 3.00 3.00 5.00 4.00

DAC 4.21 4.09 6.08 6.04 2.00 2.00 4.00 4.00

DIT 0.79 0.42 0.87 1.46 0.00 0.00 1.00 1.00

ILCOM 1.00 0.77 1.25 0.99 1.00 1.00 1.00 1.00

LCOM 197.62 124.83 130.81 210.11 2.00 1.00 2.00 2.00

LD 0.49 0.35 0.40 0.38 0.00 0.00 0.00 0.00

LEN 16.87 13.67 16.88 15.04 16.00 13.00 16.00 14.00

LOC 108.62 156.44 90.97 166.90 40.00 51.00 38.00 62.00

LOD 0.80 0.76 0.92 0.47 1.00 1.00 1.00 0.50

MPC 10.92 9.46 17.49 11.99 4.00 3.00 5.00 3.00

NAM 9.75 8.41 10.67 11.12 4.00 3.00 5.00 5.00

NOC 0.65 0.37 0.71 0.97 0.00 0.00 0.00 0.00

NOM 6.88 5.16 6.80 7.28 3.00 2.00 3.00 3.00

RFC 13.54 10.62 17.78 13.46 6.00 5.00 8.00 6.00

TCC 0.14 0.15 0.16 0.16 0.00 0.00 0.00 0.00

WMC 12.51 13.40 12.36 14.87 5.00 5.00 4.00 5.00

Mean values ([26]) Median values

14 http://www.cs.ubbcluj.ro/∼se/enase2019/.

http://www.cs.ubbcluj.ro/~se/enase2019/
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4.2 Quantitative Statistics

In this section we provide an initial overview of the extracted metric values, and
compare them with the results presented in [5]. For each of the target applica-
tions, we create its own data set, comprising metric values extracted from all
studied versions of that application. This enables statistical comparison across
applications in order to identify any existing trends. The data from all 107
application versions is coalesced into an aggregated data set. We compare the
aggregated data against the results reported in [5], where authors carried out a
cross-sectional study of 146 open-source Java applications.

Given the large number of data points recorded for our study15, we detail
those aspects that were found of most interest. We remind the interested reader
that the entire metric data set is freely available on our website.

Histograms for code and documentation metric values in our aggregated data
set are shown in Figs. 2 and 3. They also provide a faithful representation of the
value distributions from the three target application data sets. This also holds
when comparing our data with that presented in [5]. We find that histograms
are similar even in the case of metrics having stand-out values, such as LD, LOD
and TCC, where the value of 1 is frequent16. LEN appears to be the only metric
with normal distribution.

Descriptive statistics for every metric in the aggregated data set, as well
as corresponding ones from [5] are shown below the histograms in Figs. 2 and
3. We notice that in every case, the smallest recorded values are the minimal
ones, which is 0 for all metrics with the exception of LOC, where it is 1. Maximal
values are outliers and show much more variance, both across studied application
versions and across the data sets. As such, our study will focus mostly around
median and mean metric values, and detail extreme values only where it makes
sense.

Examination of the mean, median and modus values proves to be of much
more interest. Our first observation is that median and modus values are close
across all the five data sets, for each of the 16 studied metrics. This is detailed
in Table 2, where mean and median values for each application data set, as well
as those recorded by Barkmann et al. [5] are shown. When examining these val-
ues, one must also consider the range for each metric, as detailed in Sect. 2. We
observe that for CBO, NAM, NOM, TCC and WMC mean values are close across
the data sets. Values for LEN and LOD show that while in most cases, the length
of used identifiers is suitable, open-source applications appear to lack inline doc-
umentation. This is especially true in the case of our target applications, where
more than 80% of methods remain undocumented. The data also illustrates the
existance of application-specific trends. We observe that jEdit classes tend to be
larger, as illustrated by higher LOC than FreeMind and TuxGuitar, being very
close to the mean LOC reported in [5]. At the same time, jEdit shows a more flat
inheritance hierarchy, illustrated by lower DIT and NOC values when compared

15 107 application versions x 16 studied metrics x 5 data points = 8,560 data points.
16 In the case of TCC 1 is the maximal value.
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Table 3. Metric dependencies in FreeMind (top row), jEdit (second row), TuxGuitar
(third row) and as reported in [5] (bottom row). LEN and LOD metrics omitted as no
strong dependencies were found. Data from [26].

Metric CBO DAC DIT ILCOM LCOM LD LOC MPC NAM NOC NOM RFC TCC WMC

DAC 0.97

0.98 1.00

0.96

0.98

DIT 0.28 0.30

0.18 0.20 1.00

0.18 0.10

0.52 0.52

ILCOM 0.46 0.49 0.08

0.44 0.46 −0.00 1.00

0.07 0.11 −0.29

0.53 0.41 0.39

LCOM 0.53 0.56 0.05 0.55

0.55 0.56 −0.03 0.40 1.00

0.20 0.21 −0.12 0.37

0.53 0.55 0.40 0.47

LD 0.20 0.22 0.07 0.40 0.11

0.18 0.21 0.15 0.56 0.07 1.00

0.03 0.06 −0.20 0.43 0.11

0.31 0.33 0.43 0.79 0.44

LOC 0.58 0.61 0.09 0.56 0.77 0.25

0.77 0.78 −0.00 0.55 0.84 0.21 1.00

0.46 0.46 −0.14 0.34 0.66 0.16

0.58 0.60 0.14 0.47 0.58 0.32

MPC 0.83 0.81 0.22 0.46 0.60 0.17 0.66

0.83 0.82 0.06 0.44 0.75 0.15 0.87 1.00

0.62 0.56 0.03 0.18 0.56 0.04 0.82

0.83 0.81 0.53 0.57 0.59 0.50 0.66

NAM 0.69 0.72 0.11 0.72 0.86 0.32 0.85 0.71

0.71 0.72 −0.01 0.65 0.85 0.29 0.94 0.82 1.00

0.30 0.30 −0.23 0.57 0.78 0.29 0.78 0.59

0.51 0.53 0.16 0.63 0.68 0.46 0.83 0.62

NOC −0.01 0.02 −0.03 0.10 0.14 0.01 0.06 0.02 0.13

−0.04 −0.03 −0.05 0.02 0.01 −0.01 0.01 −0.02 0.01 1.00

−0.02 −0.03 −0.06 0.02 0.01 0.02 −0.02 −0.02 0.01

0.06 0.08 0.40 0.57 0.38 0.62 −0.11 0.21 0.06

NOM 0.56 0.60 0.10 0.65 0.91 0.23 0.82 0.63 0.95 0.16

0.68 0.69 −0.05 0.59 0.90 0.20 0.94 0.84 0.96 0.03 1.00

0.32 0.33 −0.23 0.55 0.83 0.27 0.83 0.67 0.92 0.03

0.56 0.58 0.23 0.59 0.79 0.48 0.79 0.65 0.91 0.14

RFC 0.74 0.74 0.18 0.62 0.84 0.23 0.80 0.88 0.91 0.11 0.90

0.83 0.82 0.02 0.53 0.82 0.18 0.92 0.96 0.91 −0.01 0.93 1.00

0.53 0.49 −0.02 0.32 0.62 0.12 0.88 0.92 0.73 −0.01 0.82

0.71 0.70 0.27 0.52 0.71 0.01 0.80 0.81 0.83 0.02 0.90

TCC 0.02 0.02 0.02 0.11 −0.04 0.22 0.03 0.04 0.05 −0.02 0.02 0.04

0.05 0.07 0.05 0.25 −0.01 0.43 0.09 0.06 0.12 −0.04 0.08 0.08 1.00

0.08 0.09 −0.05 0.04 −0.05 0.25 0.03 −0.01 0.07 −0.05 0.02 0.01

0.33 0.35 0.54 0.78 0.46 0.80 0.26 0.51 0.41 0.84 0.45 0.36

WMC 0.53 0.55 0.08 0.61 0.86 0.23 0.89 0.69 0.90 0.12 0.93 0.90 0.04

0.70 0.70 −0.04 0.53 0.88 0.16 0.95 0.87 0.93 0.01 0.96 0.93 0.08 1.00

0.38 0.38 −0.17 0.37 0.72 0.16 0.95 0.82 0.79 −0.01 0.88 0.88 0.01

0.59 0.60 0.20 0.57 0.72 0.44 0.84 0.71 0.88 0.05 0.93 0.93 0.40
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to the other applications. As a matter of fact, our studied applications tend to
have shallower inheritance trees than those from [5].

4.3 Metric Dependencies

Several metric value-based characterizations of software have been proposed in
existing literature. However, many of them eschew a thorough study of the rela-
tions between numerical metric values. We believe that understanding existing
correlations between metrics can further assist researchers in proposing and eval-
uating metric-based models. In this section we identify existing metric depen-
dencies in the target applications and cross-check our data against [5].

As shown in Figs. 2 and 3, LEN is the only metric having a normal dis-
tribution. This, together with the difference in metric value ranges shown in
Sect. 2, determined us to employ Spearman’s rank correlation to determine met-
ric dependency. Correlation data per application, including results from [5] are
shown in Table 3. We establish a threshold of 0.8 in absolute value for strong
correlations, which are highlighted and discussed below. In order to keep Table 3
readable, we did not include the LEN and LOD metrics, both of which appeared
to be independent from other metrics as well as each other. The only excep-
tion is a weak correlation between DIT and LEN, which appeared in all studied
applications, as well as [5]. It is explained by the tendency of derived classes in
inheritance hierarchies to have more detailed names than those of base classes
or interfaces.

Metric correlations in our target applications follow the trends identified
by Barkman et al. [5]. We examine our results through the lens of the four
characteristics of object-oriented software presented in Sect. 2.

We observe that strong and consistent correlations exist between coupling
metrics CBO, DAC and MPC, as well as size-related metrics LOC, NAM and
NOM. This was expected, as an increase in attributes or method count leads
to increased class sizes when measured using metrics that predate object ori-
entation. The same explanation covers the strong observed correlation between
structural complexity RFC and WMC.

The NOM metric is also correlated with LCOM and NAM. This confirms
that an increased method count usually leads to a lack of cohesion. As the
number of class methods is a part of the NAM metric, this correlation was also
expected. Inheritance metrics DIT and NOC remain uncorrelated in all data
sets, challenging the expectation that classes at the base of the inheritance tree
have more children.

An interesting result is that cohesion metrics LCOM, ILCOM and TCC do
not show strong correlation in either of the studied data sets. LCOM shows a
weak correlation with its improved variant in all data sets, showing that while
they measure similar software aspects, there is enough differentiation between
them. The result for TCC is more interesting, as the cross-sectional study in
[5] showed much stronger correlation than observed by us. We believe this is a
result of target application selection, which highlights the necessity of backing
up any metric-based model with exploratory evaluation.
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Table 4. Metric dependencies in FreeMind (top row - below Q1, middle row - inter-
quartile range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.68

0.83 1.00

0.99

DIT 0.34 0.59

0.42 0.55 1.00

0.26 0.25

ILCOM 0.04 0.00 −0.10

0.04 0.17 −0.03 1.00

0.37 0.40 0.00

LCOM −0.10 −0.05 −0.12 −0.20

0.08 0.20 0.07 −0.01 1.00

0.49 0.51 −0.01 0.55

LD 0.09 0.04 −0.07 0.88 −0.16

0.16 0.25 0.08 0.66 −0.07 1.00

0.04 0.06 −0.08 0.18 0.02

MPC 0.67 0.21 −0.07 0.30 −0.13 0.36

0.78 0.59 0.32 −0.03 −0.05 0.14 1.00

0.81 0.79 0.20 0.36 0.56 −0.01

NAM −0.12 −0.12 −0.29 0.37 0.69 0.27 −0.03

0.13 0.32 0.10 0.53 0.64 0.41 0.03 1.00

0.65 0.68 −0.01 0.66 0.89 0.18 0.65

NOC −0.19 −0.04 −0.11 −0.11 0.33 −0.10 −0.26 0.26

−0.10 −0.04 −0.08 −0.03 0.22 −0.03 −0.17 0.19 1.00

0.02 0.02 0.08 0.22 0.21 0.04 0.05 0.18

NOM −0.08 −0.09 −0.25 0.07 0.84 0.00 −0.07 0.88 0.33

0.16 0.32 0.14 0.27 0.80 0.21 0.04 0.90 0.24 1.00

0.48 0.50 −0.04 0.59 0.95 0.07 0.55 0.94 0.23

RFC 0.50 0.07 −0.24 0.23 0.44 0.24 0.71 0.53 0.02 0.57

0.66 0.61 0.29 0.15 0.45 0.25 0.74 0.58 0.06 0.63 1.00

0.68 0.68 0.09 0.54 0.86 0.04 0.85 0.88 0.18 0.88

TCC −0.13 −0.07 0.00 0.48 −0.11 0.27 −0.12 0.32 −0.03 0.18 0.00

−0.01 0.07 0.01 0.31 −0.14 0.35 0.05 0.27 0.00 0.14 0.16 1.00

−0.10 −0.12 −0.10 −0.15 −0.18 0.07 −0.09 −0.17 −0.03 −0.20 −0.16

WMC 0.09 −0.01 −0.23 0.04 0.76 0.01 0.08 0.78 0.27 0.90 0.65 0.12

0.23 0.33 0.09 0.22 0.59 0.24 0.23 0.77 0.13 0.83 0.70 0.18 1.00

0.42 0.43 −0.06 0.53 0.88 0.06 0.60 0.86 0.18 0.91 0.87 −0.13

4.4 The Confounding Effect of Class Size

The confounding effect class size has on metric value-based measurements was
reported by El Emam et al. [12]. Due to its significance, class size must be
accounted for when studying metric dependencies. Authors of [12] showed that
in many cases, metric dependencies could be explained by larger classes having
higher metric values, which confounds data interpretation. As shown in Table 3,
the LOC metric appears correlated with most of the metrics. The exceptions are
DIT, LEN, LOD, NOC and TCC, which do not exhibit correlation with LOC,
or other metrics.
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Table 5. Metric dependencies in jEdit (top row - below Q1, middle row - inter-quartile
range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.82

0.94 1.00

0.99

DIT 0.34 0.50

0.33 0.39 1.00

0.09 0.09

ILCOM −0.06 0.01 0.05

−0.08 −0.02 −0.02 1.00

0.36 0.36 −0.13

LCOM 0.07 0.08 −0.06 −0.12

−0.04 −0.02 −0.02 0.11 1.00

0.61 0.62 −0.09 0.47

LD −0.10 −0.02 0.04 0.78 −0.10

−0.11 −0.04 0.11 0.66 −0.03 1.00

−0.02 −0.01 0.16 0.23 0.00

MPC 0.68 0.45 0.11 −0.09 0.01 −0.08

0.74 0.66 0.28 −0.03 −0.04 0.01 1.00

0.84 0.83 0.01 0.40 0.78 −0.03

NAM −0.15 −0.05 −0.21 0.40 0.39 0.38 −0.22

−0.10 −0.02 0.00 0.62 0.34 0.49 −0.01 1.00

0.70 0.70 −0.09 0.59 0.91 0.07 0.82

NOC −0.17 −0.08 −0.11 −0.08 0.16 −0.06 −0.21 0.04

−0.11 −0.07 −0.07 −0.04 0.11 −0.01 −0.14 0.00 1.00

−0.07 −0.06 −0.01 0.07 0.02 0.01 −0.04 0.00

NOM 0.15 0.10 −0.09 0.06 0.88 0.03 0.09 0.33 0.17

−0.06 −0.02 −0.01 0.46 0.70 0.34 −0.02 0.65 0.08 1.00

0.68 0.68 −0.17 0.56 0.94 0.01 0.83 0.97 0.02

RFC 0.56 0.30 −0.05 −0.05 0.44 −0.06 0.76 0.03 −0.06 0.60

0.59 0.52 0.21 0.15 0.26 0.14 0.83 0.22 −0.09 0.41 1.00

0.83 0.82 −0.07 0.49 0.86 −0.02 0.96 0.92 −0.02 0.93

TCC −0.07 −0.07 −0.03 0.21 −0.04 0.08 −0.04 0.15 −0.02 0.08 0.02

−0.08 −0.06 0.06 0.33 −0.13 0.44 −0.02 0.31 −0.05 0.26 0.07 1.00

−0.14 −0.15 −0.06 −0.09 −0.08 0.10 −0.07 −0.09 −0.08 −0.10 −0.09

WMC 0.28 0.07 −0.19 −0.07 0.52 −0.09 0.40 0.08 0.00 0.67 0.71 0.03

0.27 0.21 −0.10 0.18 0.32 0.08 0.39 0.30 −0.08 0.55 0.63 0.13 1.00

0.69 0.69 −0.14 0.49 0.92 −0.05 0.87 0.93 −0.01 0.96 0.94 −0.08

To determine the effect class size has on metric dependencies, we partitioned
all analyzed classes into quartiles using the LOC metric. We calculated the metric
dependencies for each of our three data sets below the first quartile (below Q1),
between the quartiles, and above the third quartile (above Q3). The detailed
result is illustrated per application in Tables 4, 5 and 6. The LOC metric itself
was omitted, as we had already used it to partition the data.
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Table 6. Metric dependencies in TuxGuitar (top row - below Q1, middle row - inter-
quartile range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.92

0.92 1.00

0.98

DIT 0.64 0.60

0.60 0.53 1.00

0.10 0.05

ILCOM −0.26 −0.23 −0.32

−0.39 −0.32 −0.43 1.00

0.08 0.08 −0.15

LCOM −0.07 −0.01 −0.12 −0.12

−0.17 −0.15 −0.19 0.49 1.00

0.12 0.11 −0.14 0.41

LD −0.07 −0.04 −0.24 0.41 −0.11

−0.16 −0.07 −0.22 0.36 0.15 1.00

−0.08 −0.06 −0.18 0.42 0.06

MPC 0.82 0.66 0.58 −0.25 −0.21 −0.02

0.77 0.60 0.44 −0.35 −0.14 −0.18 1.00

0.49 0.43 0.09 0.17 0.54 −0.13

NAM −0.10 −0.05 −0.20 0.30 0.66 0.09 −0.20

−0.19 −0.11 −0.30 0.60 0.52 0.30 −0.21 1.00

0.10 0.08 −0.18 0.51 0.84 0.15 0.52

NOC −0.16 −0.13 −0.16 −0.10 0.11 −0.07 −0.18 0.04

0.01 −0.02 −0.06 0.07 0.31 0.05 0.01 0.13 1.00

−0.06 −0.05 −0.08 0.27 0.12 0.20 −0.03 0.15

NOM −0.05 0.03 −0.17 0.12 0.90 −0.03 −0.22 0.75 0.13

−0.23 −0.17 −0.34 0.64 0.77 0.33 −0.15 0.70 0.21 1.00

0.16 0.14 −0.18 0.50 0.88 0.14 0.61 0.92 0.15

RFC 0.79 0.66 0.47 −0.21 0.26 −0.10 0.82 0.18 −0.10 0.30

0.63 0.46 0.28 −0.03 0.26 −0.05 0.83 0.10 0.13 0.29 1.00

0.35 0.30 0.06 0.28 0.61 −0.06 0.90 0.65 0.03 0.77

TCC −0.14 −0.08 −0.20 0.24 −0.08 0.48 −0.12 0.12 −0.06 0.11 −0.10

0.05 0.13 −0.05 0.05 −0.18 0.32 −0.03 0.19 −0.05 0.13 −0.02 1.00

0.02 0.02 0.02 −0.14 −0.15 0.02 −0.11 −0.11 −0.09 −0.18 −0.14

WMC 0.04 0.10 −0.13 0.09 0.86 0.00 −0.12 0.69 0.10 0.95 0.38 0.14

−0.12 −0.07 −0.34 0.45 0.59 0.32 0.04 0.54 0.17 0.83 0.40 0.13 1.00

0.23 0.21 −0.10 0.29 0.72 −0.06 0.79 0.72 0.00 0.84 0.85 −0.17

Immediately we observe that most of the strong metric dependencies occur
in classes above the third quartile, which confirms El Emam et al.’s observation
of the important role played by class size in metric dependencies. LCOM, NAM
and RFC appear sensitive to class size across all target applications, showing
strong dependencies for classes above Q3. An inverse relation is observed between
DIT on one hand, and CBO and DAC on the other. In this case, we notice
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Table 7. Extreme values for metric means for early (left) and mature application
versions (right). Includes data from [26].

FreeMind jEdit TuxGuitar

<1.0.0Alpha4 ≥1.0.0Alpha4 <4.0pre4 ≥4.0pre4 <1.0rc1 ≥1.0rc1

Metric Min Max Min Max Min Max Min Max Min Max Min Max

CBO 3.89 6.15 5.33 5.57 3.85 4.29 4.29 4.91 6.03 7.56 7.06 7.88

DAC 2.67 5.30 4.20 4.38 3.45 3.83 3.77 4.30 4.76 5.46 5.16 6.97

DIT 0.15 1.69 0.70 1.03 0.37 0.70 0.32 0.43 0.45 0.55 0.78 1.07

ILCOM 0.81 1.04 0.99 1.04 0.49 0.79 0.79 0.83 1.07 1.33 1.15 1.46

LCOM 84.85 193.25 196.85 237.90 43.44 117.75 126.79 149.31 90.94 130.49 117.15 176.79

LD 0.30 0.52 0.48 0.51 0.23 0.36 0.34 0.37 0.39 0.48 0.35 0.50

LEN 11.77 17.07 16.67 17.17 12.25 13.10 13.01 14.35 14.84 15.09 15.19 18.26

LOC 63.35 157.84 100.05 110.79 91.29 153.94 158.64 177.37 94.93 116.69 73.13 115.25

LOD 0.72 0.91 0.78 0.81 0.73 0.82 0.73 0.80 0.68 0.83 0.88 0.99

MPC 6.99 13.20 10.59 10.92 6.79 9.00 9.34 10.05 14.26 21.27 14.65 22.85

NAM 7.06 9.84 9.85 10.09 5.18 9.02 8.53 9.19 9.71 12.13 9.41 12.98

NOC 0.15 1.44 0.59 0.63 0.31 0.65 0.29 0.38 0.45 0.52 0.58 0.92

NOM 5.26 7.06 6.88 6.99 3.16 5.49 5.28 5.46 6.38 7.23 6.13 8.13

RFC 9.74 15.17 13.49 13.62 7.91 10.39 10.39 11.14 14.81 19.50 15.80 22.21

TCC 0.03 0.16 0.14 0.16 0.06 0.13 0.14 0.17 0.14 0.22 0.12 0.18

WMC 8.52 14.41 12.32 12.55 8.52 14.13 13.43 15.05 12.02 14.53 10.63 15.38

dependency strength decrease for larger class sizes. This is to be expected, as
most metrics capture state and behaviour introduced by the class itself, disre-
garding inherited attributes. As such, many classes deep in inheritance hierar-
chies appear deceptively simple, as much of their complexity is hidden in base
classes.

Even with class size accounted for, we still observe highly dependent metric
pairs. Coupling metrics CBO and DAC, as well as complexity metrics NOM and
WMC illustrate this best. In the same way, metric pairs that we observed to be
independent in the previous section remain so even when partitioned according
to class size. DIT, NOC and TCC showed no strong dependency in any of the
data partitions.

4.5 Longitudinal Evaluation

This section is dedicated to an examination of the changes to metric values
during application development. Data points illustrated in Figs. 2 and 3 are
available for every metric and application version on our website. We found that
values follow the illustrated distributions across all target application versions.
As detailed in Sect. 4.2, maximum data points represent outliers, while minimal
data points coincide with metric minimum values and are not interesting. As
such, the present section is focused on discussing mean and median metric values.
For the sake of brevity, we do not include all 8,560 data points. Our principle
findings are that early application versions show more variability in metric values
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Table 8. Application versions showing significant variance in metric values.

Application Version LOC Classes

jEdit 2.6final 46,671 453

3.0final 40,756 282

FreeMind 0.7.1 18,928 199

0.8.0 84,199 718

0.8.1 84,089 718

0.9.0Beta17 56,752 577

TuxGuitar 1.2 77,056 736

1.3.0 91,481 1,234

and that key application versions can be identified during which large changes
to metric values occur.

Metric Variability in Early and Mature Versions. We examined the
changes to metric values that occurred between consecutive versions of the same
application. For all three target applications, we found that some of the most
consistent changes occurred within early releases of the application. Of course,
there exists no structured definition for an “early version”, especially not one
that can be used across several applications. As such, we used our familiarity
with the studied applications to identify the earliest version that we considered
mature. In the case of our target applications, they were FreeMind 1.0.0Alpha4,
jEdit 4.0pre4 and TuxGuitar 1.0rc1. These versions include most of the func-
tionalities available in the latest version of the respective application, have the
same look & feel as all subsequent versions and appear to be stable software
releases. Table 7 illustrates minimum and maximum mean metric values in both
early and mature application versions.

We observe that for all applications, metric variability is much higher for the
earlier versions. As shown in Table 1, the first version of FreeMind consisted of
3,722 lines of code, fewer than the first version of TuxGuitar (11,209). In contrast,
the first release of jEdit (33,768 LOC) was much more mature, and already con-
tained the application’s most important functionalities. On the other hand, once
the application architecture is established and the principal functionalities set
is implemented, we observe a significant reduction in the variability of metric
values between versions. This is illustrated for each application, in the right-
hand columns of Table 7. Furthermore, longitudinal examination also showed
that specific trends can be identified for each application with regards to how
object-oriented concepts such as coupling, inheritance and structural complexity
are handled. It is our opinion that additional case studies presenting a longitu-
dinal view are required before desirable metric ranges and most importantly,
reliable metric-based characterisations can be established.
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Table 9. Mean metric values for given application versions.

FreeMind jEdit TuxGuitar

0.7.1 0.8.0 0.8.1 0.9.0Beta17 2.6final 3.0final 1.2 1.3.0

CBO 4.75 6.15 6.15 5.31 4.24 4.29 7.05 7.07

DAC 3.10 5.29 5.29 4.14 3.73 3.82 5.22 6.30

DIT 0.50 1.69 1.69 0.74 0.63 0.42 0.79 0.95

ILCOM 0.95 0.80 0.80 1.03 0.52 0.77 1.43 1.22

LCOM 179.54 152.56 152.56 189.32 47.95 114.37 176.79 130.11

LD 0.42 0.43 0.43 0.51 0.25 0.36 0.50 0.35

LEN 15.23 16.91 16.91 17.06 12.62 12.97 15.45 18.26

LOC 102.95 157.83 157.52 97.87 100.16 151.28 115.24 80.74

LOD 0.86 0.72 0.72 0.80 0.82 0.73 0.89 0.98

MPC 11.53 13.19 13.19 10.51 7.58 9.00 22.82 14.64

NAM 9.08 8.99 8.99 9.77 6.01 9.01 12.96 9.85

NOC 0.37 1.44 1.44 0.61 0.56 0.33 0.65 0.64

NOM 6.61 7.06 7.06 6.82 3.72 5.48 8.12 6.31

RFC 13.07 15.16 15.16 13.29 8.84 10.38 22.20 15.80

TCC 0.06 0.08 0.08 0.15 0.08 0.12 0.16 0.12

WMC 12.94 14.40 14.38 12.16 9.27 14.00 15.38 11.30

Causes of Large Variations in Metric Values. We also observed that met-
ric values were consistent between most consecutive version pairs of the studied
applications. At the same time, we could identify version pairs where metric
values were greatly disrupted. We illustrate these pairs using Table 8. The table
also includes information about LOC and the number of classes, in order to help
understand the causes behind observed variations. For example, it is obvious
that a large push in development between FreeMind 0.7.1 and 0.8.0 contributed
to significant changes to metric values, as evidenced by the sharp increase in
application LOC and class count. The same can be said about TuxGuitar ver-
sion 1.3.0. The opposite however is true for jEdit 3.0final, as well as FreeMind
0.9.0Beta17. In these versions we observe important decreases in both LOC and
class count, most likely a result due to refactoring.

Table 9 illustrates mean metric values for the highlighted application versions.
For each version, we manually examined its source code in detail to identify the
underlying changes leading to these variations.

FreeMind 0.8.0 contains major changes, as already evidenced by the sharp
increase in LOC and class count. It is the first version to use external libraries
for XML processing and input forms. During use, it is clear that FreeMind 0.8.0
is more complex and fully-featured, with many changes that are visible at UI
level, including more complex application preferences and features for mind map
and node management. Its scope remains apparent at source file level, with only
21 out of the 92 source files remaining unchanged from 0.7.1. The number of
source files also increased greatly in the newer version, from 92 to 469. Much
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of the observed discrepancy between numbers of source files, classes and LOC
between the versions can be explained by the newer application including 272
classes that were generated by the JAXB libraries encoding most of the actions
that can be performed using the application. These classes contributed with
49,434 lines to the inflation of LOC witnessed between the studied versions.
Between version 0.8.0 and 0.8.1, no source files were added or deleted, but many
of them have undergone small updates. This includes all generated code, that
was regenerated for version 0.8.1. FreeMind again underwent significant changes
for version 0.9.0Beta17, an evolution from 0.8.1. Out of 469 source files in version
0.8.1, only 127 can be found in the newer version, and all of them have undergone
changes. Version 0.9.0Beta17 also added 230 new Java source files, covering all
functionality areas. Action source files generated using JAXB in version 0.8.0
were replaced with a smaller number of hand-written classes with similar naming
and functionality. This explains most of the class count and LOC difference
between versions 0.8.1 and 0.9.0Beta17.

In the case of jEdit, version 3.0final was the only one where mean met-
ric values were disrupted. A possible contributor to this is that relatively,
early analyzed versions were more mature than equivalent ones from the other
applications. In the case of version 3.0final, we observed that the package
“org.gjt.sp.jedit.actions”, which contained 153 event handler classes with low
statement count and cyclomatic complexity was deleted. These were replaced
with an XML file that provides action descriptors together with Java-like code
snippets that are executed when the action is fired. Only 81 source files out of
341 remained unchanged between these versions.

In the case of TuxGuitar version 1.3.0, the “org.herac.tuxguitar.gui” pack-
age was split into *.app, *.editor and *.graphics packages. Most packages were
updated or refactored. New plugins were added, existing ones have seen source
code changes. Only 62 out of the 650 source code files remained unedited between
these versions. Version 1.3.0 introduced 930 new source files, most of which con-
tain code for custom application actions in the form of small classes having low
complexity, skewing the mean and median metric values.

The last observation is related to the expectation that mean metric values
increase in more advanced application versions. Our data showed this to be
true mostly in the case of FreeMind and jEdit, especially in the case of size
metrics LOC, NAM and NOM. However, as we have shown in this section, this
is alleviated by the refactorings that were carried out in some of the versions.

Our examination resulted in several conclusions. First, we observed that most
of the significant metric variations occurred in early application versions. This
was true both as highlighted in Table 9, as well as when manually identifying
versions with significant metric variations. In addition, we feel that a more in-
depth discussion is warranted regarding the effect that large numbers of small,
relatively straightforward classes have on software quality characteristics. The
importance and magnitude these classes should have when building metric-based
models has yet to be clarified. In several cases, we observed Java source code
being replaced with XML descriptors. This is an illustrative example of the
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inherent limitations of metric extraction tools and understanding of software
based on metric values.

4.6 Threats to Validity

We carried out our study using the following steps, in order: preparing applica-
tion versions, extracting metric data, processing the metric data and analysing
it. We presented all the steps required to duplicate our study in detail. Extracted
metric information, as well as aggregated data used for analysis is available on
our website. Each target application version was manually examined in order to
ensure that no factors that could influence metric values were present. We pro-
vided structured definitions for all metrics used, and extracted the data using a
freely-available, cross-platform tool.

We selected three similar applications from a programming language and
architecture standpoint. This helps limit external threats to validity related to
application selection and generalization of results. This also allows comparing
obtained results, as all three applications include the same layers. Application
selection and metric extraction were finalized before data analysis, to eliminate
selection bias. All results are presented both individually, per-application, as well
as in aggregate form.

However, we believe one of our most important contributions was the com-
parative evaluation against a large-scale cross-sectional study that was carried
out using the same methodology as ours. We believe this will help create a solid
basis for additional studies towards a metric-based understanding of software
quality and the software development process.

Among existing threats, we must include the limited number and types of
studied applications. This means that additional research is required in order to
draw conclusions about other types of software, such as non GUI-driven or mobile
applications. Furthermore, as we only included open-source software, they might
not be representative for other applications. As such, we believe that additional
experimental evaluation is required in order to cover additional applications,
programming languages as well as considered metrics.

5 Conclusions and Future Work

In this paper we establish a number of metrics that previous research has associ-
ated with software product quality. We select three open-source, user interface-
driven applications developed in Java and analyze the values and relations
between these metrics within each application’s entire development history.

Each step of our evaluation is detailed and we employ open-source tooling to
ensure that our evaluation is repeatable. At each step, we compare our results
with a comparable large-scale evaluation, obtaining results from an aggregate
of over 25017 application versions. We believe these combined results provide a
sound foundation to be used in further research.
17 [5] evaluated 146 software projects.
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We found that metric distributions, mean, median and modus values were
consistent across the studies. Mean and median values prove stable once appli-
cations reach maturity, as evidenced in all three target applications. Comparing
values across studied applications revealed the existence of trends in metric val-
ues, driven by the architecture and design of the underlying application.

With regards to identified metric dependencies, we could identify metric pairs
showing strong correlation across applications and application versions, as well
as certain metrics that did not show correlation with any others. We further
investigated the confounding effect of class size in order to confirm our findings.

Our longitudinal approach also revealed that across many application version
we could not witness significant changes to aggregated metric values. Where such
changes occurred, they were mostly driven by application development as well
as refactoring, and were reflected in object-oriented metric values.

An important avenue for further research regards a finer grained analysis,
in order to detect significant changes at package and class levels, not just those
that are visible at aggregated level. Our evaluation should be extended in order
to cover other application types, including mobile and non user interface-driven
software. We believe this type of research can lay the foundation for identifying
suitable metric thresholds that point toward good design practices. Another
aspect regards the role played by the programming language itself, as it too
plays an influence on metric values.

The end goal of this research is represented by a characterization of good
design and development practices, where software metrics will have an important
role for understanding and controlling the software development process.
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