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Abstract. Cloud computing has been playing a significant role in the
provisioning of services over the Internet since its birth. However, devel-
opers still face several challenges limiting its full potential. The difficulties
are mostly due to the large, ever-growing, and ever-changing catalog of
services offered by cloud providers. As a consequence, developers must
deal with different cloud services in their systems; each managed almost
individually and continually growing in complexity. This heterogeneity
may limit the view developers have over their system architectures and
make the task of managing these resources more complex. This work
explores the use of liveness as a way to shorten the feedback loop between
developers and their systems in an interactive and immersive way, as
they develop and integrate cloud-based systems. The designed approach
allows real-time visualization of cloud infrastructures using a visual city
metaphor. To assert the viability of this approach, the authors conceived
a proof-of-concept and carried on experiments with developers to assess
its feasibility.

Keywords: Cloud computing · Internet-of-things software
engineering · Live programming

1 Introduction

The concept of cloud computing was predicted back in 1961 by John McCarthy.
He stated that “computing may someday be organized as a public utility just as
the telephone system is a public utility” [10]. However, it was only in the early
2000’s that this prediction became a reality with the introduction of the Elastic
Compute Cloud (EC2) developed by Amazon Web Services (AWS)—an Amazon
subsidiary [3]—providing computing power in an on-demand self-service way.
Currently, AWS offers more than ninety distinct services spread among twenty
different categories [39], and more companies are providing this kind of services,
e.g., Google and Microsoft.

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 58–82, 2020.
https://doi.org/10.1007/978-3-030-40223-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_4


Experimenting with Liveness in Cloud Infrastructure Management 59

These services are typically made available to the general public, as what is
known as public cloud hosting solution, in a pay-as-you-go fashion by the so-
called Cloud Services Providers [7], who monitor, meter, and price the usage of
resources, depending on service type and usage.

Different service models are offered by cloud providers, depending on the level
of granularity and configuration that the developers require, being the following
the most common [25]:

Infrastructure as a Service (IaaS). The cloud provider gives developers
access to resources such as storage, networking, and servers in a pay-as-you-
go fashion.

Platform as a Service (PaaS). Cloud providers offer developers access to a
cloud-based environment on top of which they can build and deliver applica-
tions, abstracting the underlying infrastructure.

Software as a Service (SaaS). Service providers deliver software and applica-
tions through the Internet and users can subscribe to the software and access
it remotely, e.g., via a web portal or vendor APIs.

This paradigm reshaped how companies provide services, by allowing them to
abstract, at different levels, from hardware infrastructure management, focusing
on the virtual architecture and eradicating any possible concerns dealing with
resource maintenance while improving manageability [7].

Alongside the reduced costs of using cloud computing when compared to on-
premises solutions (i.e., running on computers on the premises of the person or
organization using the software), there is another key advantage: elasticity. The
resources needed to meet the expected Quality-of-Service (QoS) can be rapidly
provisioned, allowing the quick scale outwards and inwards to compensate for
unpredictable business demands. This elasticity gives organizations more flexibil-
ity to focus on the core business instead of focusing on maintaining provisioned
infrastructure. As a consequence, in most cases, there is no definite sense of
location over the provided services beyond the ability, in some cases, to specify
multiple higher regions which can be used as a strategy to increase reliability
and avoid network outages [36].

As the market evolves, it becomes more demanding in terms of cloud services
required, thus new “as-a-service” models start to emerge, leading to what has
been called Everything as a Service (XaaS) [16,33] solutions (e.g., Functions as a
Service (FaaS), also known as Serverless [16,33,44]). As new paradigms emerge,
in terms of connectivity and computation, they directly influence the market
landscape with cloud providers offering even more services to fill the market
needs. Internet-of-Things (IoT) as one of those paradigm-shifts, has lead diverse
cloud providers to offer specialized services that answer the IoT scale, hetero-
geneity, and data-throughput needs. These services range from device manage-
ment systems, to handle the ever-growing number of cloud-connected sensors
and actuators, to specialized data analytics tools [11,42,44].

It is noticeable that cloud computing has brought several benefits for organi-
zations in terms of interoperability and versatility, easing the process of meeting
established QoS levels. However, there is a substantial amount of complexity in
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building and managing consistent and reliable infrastructures, resulting in the
need of expert developers capable of implementing cloud-based systems [9].

In addition to the inherently complex nature of software systems [19,37],
there is extra complexity in building systems within a cloud ecosystem. First,
there is an ever-growing number of different services offered by cloud providers
that make it harder to decide what is the best solution for a given problem
[39]. Second, the final cost of a cloud solution can be highly volatile and hard
to calculate a priori [14]. Third, there is no common taxonomy (or standards)
among cloud providers, which leads to confusion and makes comparing solutions
harder [14,55]. And last, the different services provided by each cloud vendor can
lead to a vendor-lock that impacts an eventual process of migrating a solution,
if needed [14,43,55].

As we move towards more complex cloud-based software systems, we will
eventually come to an explosion of different services, each one managed individ-
ually, possibly leading to serious management challenges. This complexity makes
it harder to understand cloud-based systems and the value that they bring to
the business [31].

Even further, the 2017 edition of RightScale’s State of the Cloud Report [46],
an yearly survey on cloud computing trends, inquired 1002 IT professionals, and
showed that when comparing the years 2016, 2017 and 2018, the most relevant
cloud challenges are the lack of resources/expertise and security in cloud man-
agement (Fig. 1). Moreover, even though there is a decline in nearly all challenges
compared with the previous year, it is interesting to note that governance/control
is the only challenge that has almost stagnated in the three-year comparison.

Fig. 1. Cloud challenges comparing the years 2016, 2017 and 2018. Adapted from [46].
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Software systems are designed, implemented, tested, debugged, analyzed, and
maintained by many different developers. All these tasks can be facilitated by
using several different visualization techniques. From a historical perspective,
software understanding tasks leveraged the use of models and visual notations.
An example is the Unified Modeling Language (UML), which has been widely
used not only to represent and visualize software systems’ structure, behavior,
and evolution [13], but also to simplify the process of understanding large-scale
architectures [17], and even develop new cloud-based systems [23].

This work addresses the challenges mentioned above by exploring how cloud
management can benefit more from a model-based approach, combined with
more liveness, leading to the notion of live models at run-time. On the one hand,
models would help to abstract the lower-level details by creating and exploiting
domain models, in a similar way to UML [26]. On the other hand, more liveness
would shorten the feedback loop between the developers and the system under
development [1,53], thus helping to reduce management complexity by making
it easier to understand quickly what the system is doing or is supposed to do.

To explore the pros and cons of this combination of concepts, we developed
the CloudCity prototype [32], a live management environment tailored for cloud
infrastructures. CloudCity aims to offer developers a way to gather continuous
feedback about their cloud systems, allowing quick and interactive management
of a running cloud system, and therefore ease the process of fault location (usu-
ally carried by log analysis) and evolution.

The work here presented extends previous work from the authors in the
Live Software Development paradigm [1,2,32], delving further into the catalog
of visual metaphors for representing cloud infrastructures. It also presents the
carried out experiments that evaluate the CloudCity solution both in terms of
scalability and feasibility as well as the obtained results.

This paper is structured as follows: Sect. 2 provides an overview of the main
background concepts of this work and presents some related work. Section 3 gives
an overview of our approach, followed by some implementation details. Section 5
explains the validation process using a controlled experiment, along with the
discussion of the obtained results, followed by final remarks in Sect. 6.

2 Background and Related Work

To ease the process of understanding and managing complex software, many
researchers have investigated different techniques, from high-level abstractions
to tool support aiming at improving the programming experience. In the con-
text of this work, we found of high relevance the state-of-the-art on Software
Visualization, Model-Driven Engineering, and Live Programming, especially the
work more closely related to Cloud Management. In particular, we searched for
similarities with previous research results, key features, and ideas that could
influence our research.
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2.1 Software Visualization

Software visualization is the depiction of software—its structure, behavior, and
evolution—and its development process in a visual fashion, leveraging static,
interactive and multi-dimensional visual metaphors [13]. Different visualization
techniques have been used to ease the understanding of source code, architectural
design, use cases, system modules, and more.

Kapec [24] presented a hypergraph-based software visualization system to
create a visual programming environment for software developers. In this app-
roach, relations between components can be transposed to source code as func-
tion calls or class inheritance with visible links between edges, storing informa-
tion about developers and tasks. As heterogeneous programming environments
(i.e., using diverse languages) are a common practice that contributes to soft-
ware complexity, their approach combines hypergraphs with visual data mining
techniques hiding the actual implementation but capturing the call relation.

Lanza et al. [28,29] presented a software visualization technique enriched
with metrics information, so-called polymetric views. This approach eases the
process of understanding the structure of a software artifact and detects problems
in the initial phases of a reverse engineering process. The actual visualization
requires: (1) a layout considering the selected entities, relationships, and areas of
interest into how they should be sorted and displayed (e.g., a tree layout is better
suited for the display of an inheritance hierarchy than a circle layout); (2) a set
of metrics extracted from the source code entities, which heavily influence the
resulting visualization, being suitable to control the state of a software system
during development; and (3) a set of entities that are the parts of the system
selected for visualization [29].

Wettel et al. [57] software visualization approach, adopted the urban
domain—influenced by the role that civil architecture has on software
engineering—as the central metaphor to abstract the different parts of the sys-
tem. Several similarities can be seen between a city and a software system since
both are conceived during a planning phase, in which requirements are the foun-
dation; and then both are built incrementally and require constant maintenance.

Using this city metaphor, Wettel et al. present city elements (e.g., buildings
and districts) mapped to software system components (classes and packages
respectively). Further, to enhance the visualization, the physical properties of
the urban artifacts (e.g., color, and dimensions) reflect attributes of the software
components.

The concept of such visualization was implemented in CodeCity [57] (Fig. 2).
As to validate the feasibility and utility of the approach, an empirical evaluation
was carried on in a series of experimental runs spanned over six months. Wettel
et al. conclude that for the program comprehension and design quality assess-
ment, the city metaphor enabled the creation of efficient software visualizations.
The experiments showed improved correctness 24% of the cases and reduced
completion time in 12% over similar state-of-the-practice tools.

Merino et al. extended this vision and brought the concept of virtual real-
ity into the idea of the CodeCity, the CityVR [38]. In CityVR, the city visual



Experimenting with Liveness in Cloud Infrastructure Management 63

Fig. 2. A 3D representation of the ArgoUML software using the CodeCity concept by
Wettel et al. [57].

metaphor is enhanced by allowing the developer to explore software pieces in an
immersive 3D environment medium.

Other works explore the same idea, such as: (1) ExplorViz, a VR approach
following the 3D city metaphor [18]; (2) VR City, a modification of the city
metaphor in virtual reality environment, with a different layout technique that
provides a higher level of detail and positioning oriented to the coupling between
classes [56]; (3) SwiftCity, an application of the City visual metaphor to Swift
projects [40]; and (4) Amaral et al. approach for a live development environment
for Java using 3D and VR [2].

2.2 Model-Driven Engineering

Models raise the level of abstraction, revealing the big picture, or providing a
focus on specific aspects of a system. Model-based approaches have been used
as a way to specify the structure and behavior of a system for a long time. UML
is one example of a modeling language that is methodology-independent and
platform-independent [41]. Although not a visualization approach, but rather a
visual notation, it is closely related to software visualization [57].

Sandobalin et al. [47] present ARGON, a solution to help the management
of Infrastructure as Code (IaC), through a Domain-Specific Modeling Language
(DSML). ARGON is a modeling tool for specifying the final state of the infras-
tructure and provisioning of cloud resources. The tool aims mainly on the auto-
matic generation of infrastructure provisioning scripts. One of the advantages
of this approach is the abstraction from the complexity of working with differ-
ent cloud providers, resulting in a platform-independent metamodel and thus
mitigating the vendor lock-in issue.
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Mastelic et al. [33] take advantage of model-driven development for building
and managing arbitrary cloud services in a cloud-agnostic manner. The presented
CoPS metamodel can describe cloud services using three sequential models: (1)
Component, that defines the configuration of each component of the service;
(2) Product, that defines the arrangement of the service; and (3) Service, that
defines services requirements.

Ardagna et al. [6] defends the same purpose of applying model transformation
techniques to instantiate the system into possible multiple clouds. The result
aims to be an Integrated Development Environment (IDE) to build and deploy
applications in a cloud-agnostic way, adding the concept of multi-clouds.

2.3 Live Programming

As pointed by Sean McDirmid, “programming burdens our minds as we must
imagine how the code will execute while editing it” [34,49]. Christopher Han-
cock [20] in his thesis compares this to archery: aiming an arrow (editing code)
involves mentally simulating a physical system while shooting (debugging) pro-
vides discrete feedback for the next shot. In other words, to find the cause of
errors in software, one should resort to debugging to get feedback about how the
code behaves, and this causes a break in the mental flow and the editing process
[34].

Live Programming is an idea pioneered by programming environments from
the earliest days of computing, such as those for Lisp and Smalltalk. One thing
they had in common is liveness: an always-available evaluation and nearly instan-
taneous feedback, usually focused on coding activities. Tanimoto targeted the
“edit-compile-link-run” loop, proposing to blur it into a continuum, where the
programmer and the system interact in a very tight way—live [52,53].

Back to Hancock’s analogy, consider hitting a target with a stream of water:
we keep correcting our aim until the target is hit, where, unlike archery, we
receive continuous feedback on where we are shooting [49].

By unifying the gap between code editing and debugging [49], re-executing
the program and providing continuous feedback while editing eases the burden
of programming [34]. It is not a silver-bullet for software systems development,
but potentially very important for some. While the ability to inspect and modify
is taken for granted in most IDEs, adding liveness is an enhancement [53].

Examples of liveness can be observed in several IDEs that already provide
continuous and responsive feedback on the lexical, syntactic, and type safety
of the developer’s code. Further, many live visual programming languages such
as VIVA, Forms/3, Morphic, and PureData go beyond this by providing live
feedback about how the program executes as the code is edited [34].

Some challenges to this concept have been pointed out on how feedback may
be considered harmful, since that receiving continuous results with change can
be potentially distracting in some cases, forcing the programmer to write in a
particular order to keep it live. For live programming to succeed, it must enhance
programming without restricting what the programmer can do, either beginner
or expert [35].
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Other frequent critics highlight the fact that the steps in between execution
are the essential part of programming, and, the usage of liveness can result
in hiding some critical parts of the flow of execution, with the developer only
focusing on the program output [34]. Nevertheless, from a debugging perspective,
live programming can address this concern combining editing and debugging,
having debug results readily visible while editing, thus returning the focus to
the program flow and how changes affect specific parts of execution [34].

Although the notion of Live Programming focuses on the particular activity
of programming, there is nothing in its principles that cannot be applied to many
other activities, such as: requirements analysis, design, testing, deployment,
or maintenance. Therefore, Live Software Development concerns on achieving
higher liveness in more development activities beyond programming [1].

2.4 Cloud Management

The trend has been to leverage clouds as complex, highly heterogeneous, and
distributed architectures, including hybrid and multiclouds [31]. This growth
has given rise to new challenges and technologies to deal with them, namely
with governance, security, and management.

The process of obtaining services from the cloud, such as spawning comput-
ers or virtual hosts and tailoring its software and configurations, is known as
provisioning [9]. Inspite of its close relation to deployment of services or appli-
cations, provisioning does not necessarily imply new deployments or vice versa
[48].

The widespread use of cloud computing has been empowering the movement
of DevOps—a software engineering culture aiming to unify software development
(oriented to change) and software operation (oriented to stability) [4,15] – due
to its benefits when comparing to traditional operations processes, namely:

Rapid Delivery. Quickly respond to customer needs and move a change into
production [4,15].

Reliability. Ensure the quality of application updates and infrastructure
changes through testing in practices such as continuous integration and con-
tinuous delivery (CI/CD) [4,15].

Scale. Automation and consistency help changing systems efficiently and with
reduced risk [4].

Collaboration. Developers and operation engineers share responsibilities and
combine workflows [4].

This movement has increased the responsibilities of developers beyond pro-
gramming, having now an increasing role in the building, continuous integration,
and fast delivery (building an effective pipeline of releases) of new services and
applications. Thus, developers now need to focus more on the configuration
management (e.g., cloud configuration management), testing, and production of
these systems [27].
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Configuration Management. Configuration Management (CM) is a core part
of the provisioning process, methodically handling changes to a system to main-
tain its integrity over time. Pressman et al. define such process as [45]:

“A set of activities designed to manage change by identifying the work
products that are likely to change, establishing relationships among them,
defining mechanisms for managing different versions of these work prod-
ucts, controlling the changes imposed, and auditing and reporting on the
changes made.”

One can identify automation—the ability to automatically deploy new sys-
tem versions in the existent infrastructure—as the most fundamental concept in
configuration management. Thus, commonly, configuration management tools
are presented as Automation Tools or IT Automation Tools [22]. Examples of
CM tools include Chef and Puppet [5,46,58]. Both allow the specification of
infrastructure as code (so-called recipes) by using a domain specific language.

Although these approaches spread a notion of controlled and reliable muta-
ble oriented node configuration, it is important to consider the possibility of
configuration drifts, over time, as each server builds a unique history of changes
[8].

Infrastructure Orchestration. The main feature of configuration manage-
ment tools is to install software on resources that already exist. Orchestration per
se has a different purpose than CM. Orchestration tools are typically designed
to enforce a particular workflow order to a set of automated tasks, such as the
provisioning of those resources. However, both orchestration and CM categories
are not mutually exclusive, with some orchestration tools extending its features
to configuration and vice-versa [8].

Examples of Infrastructure Orchestration tools are CloudFormation, the
AWS-based orchestration tool to describe and provision infrastructure as code,
and Terraform, a similar tool but cloud-agnostic, enabling the combination of
multiple cloud service providers with a unified syntax [21]. Both tools focus on
the definition of a blueprint for controlling and versioning resources configura-
tions easily, which typically defaults to an immutable infrastructure paradigm.

As a summary, we conclude that most of the approaches and tools for man-
aging cloud services prevail on the concept of infrastructure as code, with some
following a kind of model-driven approach, namely to manage multiple cloud ser-
vices and thus to avoid vendor lock-in. However, the existing tools only provide
minimal, or even none, live support, one of the aspects we focus on exploring
with this work.

3 CloudCity: The Approach

Resulting from the lack of resources and expertise on how to handle and manage
different cloud services altogether [46], there has been an increasing interest in
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novel approaches to support infrastructure provisioning, orchestration and con-
figuration management. Most of these approaches have requirements of automa-
tion and orchestration, due to the ever-growing complexity and scale of systems
(e.g., Internet-of-Things) [44,54].

3.1 Overview

To tackle the current issues in cloud computing, while taking into account the
existent requirements, our tool, named CloudCity, uses a 3D visualization app-
roach for managing cloud infrastructures. The chosen visual metaphor, the city
metaphor, was based on the work by Wettel et al. [57] in CodeCity 3D since the
software engineering scientific community already validated it with good empir-
ical results in what regards software visualization. Also, using a city to represent
an infrastructure intends to help the user familiarizing with the domain by using
already known city objects.

The need for metaphors arises from the fact that the cloud is not a phys-
ical entity. Thus, by nature, it cannot be purely synthesized into a straight-
forward, visually understandable mapping. However, it can be transposed into
other dimensions, such as code (c.f. Terraform and CloudFormation) or
models as a way to ease the process of managing such infrastructures. Repre-
senting clouds with a validated metaphor, the city, enables users to gradually
become familiar with the described architecture, due to the many similarities
between the two domains.

CloudCity embraces the concept of liveness, underlying Live Software Devel-
opment [1], allowing the developer to get continuous feedback on how architec-
tural (instead of code) changes affect the whole system, going beyond a static
3D visualization of a cloud architecture.

In detail, the main objective of CloudCity is to allow the design and analysis
of cloud compositions through a mostly-intuitive mapping between city objects
(i.e., houses, streets, skyscrapers) and cloud resources. Each one of the buildings
contains a set of properties reflected from the cloud, which can be inspected
or modified through simple user interaction. Relations between elements are
depicted as curved lines between them, which can be filtered and inspected on-
demand. The main difference from other model-driven approaches is that this
environment does not reflect a static infrastructure mapping, but instead a live
infrastructure showing the real-time state of each component—a metaphor that
we introduce as, the live city. An example of CloudCity ’s main environment is
depicted in Fig. 3.

Regarding the tools provided to the developer, the user interface is com-
posed of the interactive components listed below. All the panels are collapsible,
triggered by a user action, to save visual space.

Information Panel. Acts as an inspector with information about the selected
resource.

Resource Context Menu. Acts as a dynamic options menu, with several
actions depending on the selected resource.
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Fig. 3. CloudCity’s main environment containing an small size example architecture,
displaying all relations.

Plane Main Menu. Contains global infrastructure actions, such as spawning
new resources.

Regarding the environment’s background, it consists of a simple skybox cho-
sen to increase the resemblance to a city’s atmosphere.

3.2 Architecture

CloudCity follows a model-driven engineering philosophy, embracing the concept
of models as a way to express the system and the relation between system parts.

CloudCity high-level architecture, depicted in Fig. 4, is composed of three
core components, namely:

Cloud Service Providers API. Provides a connection to a specific cloud ser-
vice provider, thus allowing to fetch and interact with the cloud architecture.

Importer. Periodically pools or checks the provider and detects changes in the
infrastructure state, forwarding actions to update specific resources.

Resources. The elements correspond to different cloud services. These resources
follow a composite pattern, viz. a group of resources can either contain a
resource or another resource group. If it contains another group, the same
applies recursively downwards the tree structure.

3.3 Proof-of-Concept

For the sake of simplicity, some technological decisions were made to ease the
development of a proof-of-concept. In what regards Cloud Service Providers
API integration, we focused only on Amazon Web Services among the existent
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Fig. 4. CloudCity’s architecture described in a package diagram [32].

options. Regarding the fetch of information from the cloud provider, we imple-
mented a pooling approach instead of a more efficient one, such as event-driven,
or publish-subscribe approach, due to limitations of the API of the provider
itself.

However, even given the fact that the proof-of-concept integrates with only
one cloud provider, the system is built in a modular way that allows the addi-
tion of new adapters to different cloud services providers, easing the process of
integrating with other sellers such as Microsoft Azure. This capability is accom-
plished by dividing the CloudCity architecture into two decoupled layers:

Platform Independent Model. Illustrated in Fig. 5, this model is independent
of any specific provider.

Platform Specific Model. This model is coupled with a specific provider and
can be obtained with a model to model transformation.

0..1

1

0..*

1 0..*0..*
Auto Scaling Group

1..*

1

0..*

1..*

0..*

Security Group

1
1VM

Database

Inbound Rule

Load balancer

1..*

Target Group

1..*

Listener

Launch Config

1

Scaling Policy

Alarm

Outbound Rule

Fig. 5. Infrastructure metamodel (inspired by the abstract syntax presented by San-
dobalin et al. [47]) [32].

The proof of concept was implemented using a multipurpose three-
dimensional engine, Unity. This solution also opens doors for new features to
be studied and provides support for Virtual/Augmented Reality, an exciting
perspective also studied in other approaches using the City Metaphor [38,56].
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4 CloudCity: The Live Environment

One of the key challenges was to find the most suitable abstractions—within the
urban catalog of metaphors—to portray the cloud architecture infrastructure,
while still being compatible with live features and easy to use and understand.
To be able to achieve this, we decided to start by using the following metaphors:

Resource Mapping. Establishing a correspondence between the resources
offered by cloud providers and the catalog of metaphors available (or per-
mutations of those metaphors).

Layout. Defining a proper environment that lays out the different components
in an understandable way and adjusts automatically as the cloud architecture
is modified while remaining consistent throughout the process.

Updates and Interactions. Support the live aspects of the environment, i.e.,
how to translate the infrastructure updates into a human-understandable
notation in real-time.

The following subsections describe these three aspects in more detail.

4.1 Resource Mapping

The number of services offered by cloud providers is continuously growing. This
growth is mostly driven by the necessity of providers to adapt their offer to
clients, to maintain their position in a demanding market [51].

However, at any given point in time, there is a finite set of services and
resources with properties known a priori. This fact allows the creation of an
alphabet, which can be expanded accordingly to new services that can appear,
with models for each one of the elements that need to be represented, rather
than defining new models on-the-fly.

Even so, due to the current number of services in the portfolio of the cloud
providers, we focused on creating models only for the most common and popular
services across cloud providers [30]. The following list describes those services
along with the respective model and their urban-based visual metaphor.

Security Group. Virtual firewalls to control instances (e.g., virtual machines)
inbound and outbound traffic. Each security group contains a set of rules which
control the port range where traffic is allowed. The metric chosen for the building
height varies according to the port range the security group covers. Due to the
commonality of this element in cloud architectures (a VM instance can have
from one up to five different groups), the building dimensions correspond to the
small building type as depicted in Fig. 6, resulting in the Fig. 7b.

Virtual Machine. VMs are one of the most common elements in cloud comput-
ing since they provide scalable computation capacity in the cloud. Each instance
has a pre-determined size depending on its hardware specifications. The metric
for the building dimensions varies according to this attribute accordingly with
Fig. 6, and their visual representation is given in Fig. 7a.
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Fig. 6. CloudCity’s reference building dimensions sorted in ascending order [32]. Nano
VM instances are considered small, Micro and Small are considered medium, from
Large to 8x Large are considered big and from 8x Large to 32x Large are considered
large.

(a) Metaphor for a Vir-
tual Machine (VM).

(b) Metaphor for a Secu-
rityGroup.

(c) Metaphor for a
Elastic LoadBalancer.

Fig. 7. Visual notation for a Virtual Machine, Security Group and Load Balancer [32].

Load Balancer. Element that distributes traffic across multiple targets for
achieving multi-tenancy and resource pooling. A Load Balancer can have multi-
ple listeners that receive incoming connections and distribute them across multi-
ple groups of targets. The building size fluctuates depending on the total number
of rules that the load balancer takes into consideration when forwarding connec-
tions, depicted in Fig. 7c. It is part of the big buildings category since it is a
central component between the point of entry and the targets.

Scaling Policy. Policies define how the scaling group increases or decreases the
size, and according to which metrics. The building height varies depending on the
scaling adjustment, Fig. 8a, and the building type falls in the medium buildings
category since it can be considered a subset of the Auto Scaling Group.
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(a) Metaphor for a Scaling
Policy.

(b) Metaphor for a Target
Group.

(c) Metaphor for a Launch
Configuration.

(d) Metaphor for a Lis-
tener.

(e) Metaphor for an Auto
Scaling Group with a VM.

Fig. 8. Visual notation for a Scaling Policy, Target Group, Launch Configuration,
Listener and Auto Scaling Group.

Target Group. A target group routes incoming listener requests to one or
more registered targets. The building height varies depending on the number
of instances registered in it, Fig. 8b. It is considered as part of the medium
buildings category since this component can also be considered a subset of the
load balancer.

Launch Configuration. This is a parental reference of machine specifications
for a VM to be mirrored from, guiding the Auto Scaling Group as it expands
the number of replicated instances. The building type chosen for this component
depends on the instance type attribute (c.f. Fig. 6), and it is represented in
Fig. 8c.

Listener. Listeners are responsible for checking for incoming requests on a
specific port and forward them to a Target Group. The building height varies
in consonance with the number of rules it takes consideration when forwarding
a connection to a specific group of targets, Fig. 8d. The building is part of the
medium buildings category.
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Auto Scaling Group. This element is not depicted as a building since it is a
group with multiple VMs and scales dynamically. The metaphor chosen was a
plane with sufficient area to support the different availability zones and specific
VM, visually represented on Fig. 8e.

Fig. 9. An example of the rectangle packing layout for a considerable size infrastruc-
ture, composed of: three Auto Scaling Groups containing multiple size instances and
two Scaling Policies; a stopped Virtual Machine; one Load Balancer and several Secu-
rity Groups [32].

4.2 Layout

To be able to manage a cloud infrastructure in a live way, there is the need for a
mechanism to layout and update components quickly in the tool’s environment,
as the architecture expands and is modified. It has to: (1) support laying out all
the imported components of the infrastructure, with different dimensions, in an
ordered and understandable manner; (2) optimize the number of buildings, not
wasting much of the cities’ real-estate [57]; (3) support grouping components
according to a class.
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The strategy picked for layering the elements is CodeCity ’s rectangle packing
algorithm proposed by Wettel et al. [57]. This approach starts with an empty
rectangular space, large enough to host a set of exposed components. In each
step, the elements are laid out in the best free space from a list of potential
candidates. In case the element does not cover the full space, we recursively split
the surplus in two different cuts available to host new components, as depicted
in Fig. 9.

Fig. 10. Visualization of an infrastructural update when an auto-scaling group enters
in action, scaling the number of instances from 1 to 10. As result nine new servers were
spawned (left) and then attached inside the scaling group (right) [32].

4.3 Updates and Interactions

To be able to fetch information about the cloud infrastructure, as well as any
subsequent updates, a pooling approach was implemented, that checks for dif-
ferences between each response. Initially, we planned to use a publish-subscribe
pattern, but due to some limitations by the provider, we had to settle with a
poll mechanism.

(a) Helper window that allows the inspec-
tion of links between elements.

(b) Selection of an element within the
environment.

Fig. 11. Representation of some user interactions within the live environment.
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Having communication-enabled and a method to detect the change, the next
step is to refresh the infrastructure when changes happen. The most naive app-
roach would be to destroy the whole infrastructure and rebuilt it. However, for
efficiency reasons, we decided not to destroy any element except if it has been
terminated. Instead, every time the layout needs to re-position elements, only
the affected ones change position, as depicted in Fig. 10.

To avoid abrupt changes in the layout, all components change their position
slowly (speed of 1 unit per second) to increase the response feedback (sliding
in-between positions), making it easier for the developer to understand changes.

Relations are mapped as arcs beginning at one instance, or group, and ending
in another. Both resources and their relations may contain a state depending on
their nature; which can be inspected by clicking it, and filtered when a specific
component is selected, as depicted in Fig. 11a. Cloud elements, represented as
different buildings, can be selected (Fig. 11b) and configured with the aid of
windows within the 3D environment.

5 Experiments and Results

There is a broad consensus in the software visualization community, and also in
the broader information visualization community, that a lack of proper evalua-
tion that can demonstrate the effectiveness of tools is detrimental to the devel-
opment of the field [50].

Fig. 12. Different views of the stress test with 10 Auto Scaling Groups and 1000 Virtual
Machines.

5.1 Sanity Checks

To test the visualization of a considerable sized infrastructure, we simulated an
environment composed of 10 different Auto Scaling Groups and a total of 1000
servers, as in Fig. 12.

We concluded that having a large number of resources together in a unique
model eventually becomes unnecessary and inefficient for considerably large
infrastructures. Conversely, if we divided or collapsed large groups of resources
by their Auto Scaling Group, availability zone, or even resource type, we would
accomplish a higher-level analysis of a cloud architecture. Thus, avoiding updates
in locations far away from our focus zone.



76 P. Lourenço et al.

5.2 Controlled Experiment

We designed a controlled experiment to assert the feasibility of CloudCity. In
this experiment, we focused on: (1) creating and managing a collection of related
AWS resources; and (2) inspecting a running architecture and update it on-the-
fly.

The population under survey consisted of 18 MSc students, ranging from
those with experience in cloud computing to those with little or no knowledge
of it. The experiment consisted in performing a similar set of tasks using three
different tools. The goal was to evaluate the effect of the tools on the completion
of the tasks.

The controlled experiment was designed to probe different perspectives,
which were combined into two distinct phases: construction and analysis.

One of the objectives is to compare the feasibility of CloudCity when com-
paring with state-of-the-practice tools, namely AWS CloudFormation, which
allows the specification of architecture in a blueprint file, providing a static visu-
alization of it. However, AWS CloudFormation does not give the ability to
inspect a running architecture, and, as such, an additional tool was used for
fulfilling this aspect, namely AWS Management Console.

Fig. 13. An illustration of the resulting CloudCity model in the construction phase
[32].

Although the data from the experiments are too scarce for definite and sound
conclusions, we could assert the feasibility of the solution, and the experimen-
tal treatment represents a considerable improvement over some of the current
practices, appointing the open potential of adding liveness to current cloud man-
agement tools.
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Construction Phase. In the construction phase, the participants were asked to
design a simple cloud architecture composed of four resources using CloudCity,
namely: (1) an Auto Scaling Group with a minimum size of two instances; (2)
a Launch Configuration for each new instance to be spawned inside the scaling
group; (3) a Security Group; and (4) a Target Group to route incoming requests
to the targets in the scaling group. The expected, resulting model is depicted in
Fig. 13.

All of the participants were capable of fulfilling this task by using the provided
alphabet and the environment, initially, identifying the right resources and then
proceeding to configure and connect them according to the requirements.

(a) The resulting model of the second
phase of the experiment according to
Terraform’s configuration plan.

(b) The result after the misconfiguration
of a Security Group, for the purpose of
identifying the resulting infrastructural
changes (unhealthy VM instance).

Fig. 14. Resulting visualizations of the experiments. The connections between elements
are representing connections and the floor gives information about the group/context
of those elements. If everything is operating normally both the connections and floor
colors are in green, otherwise the connections and/or floor colors of each element turn
red (Color figure online) [32].

Analysis Phase. As for the analysis phase, it consisted of inspecting an existing
infrastructure. In order to keep the experience randomized and create some inde-
pendence between the two phases of the experiment, we previously prepared a
similar infrastructure using Terraform containing: (1) an Auto Scaling Group
in two zones connected to the respective launch configuration; (2) two Scaling
Policies; (3) a Load Balancer with respective Listener, Target Group and Secu-
rity Group; and (4) a simple HTTP web service running on port 80 (Virtual
Machine).

The rationale of the second phase was to simulate the occurrence of an
unhealthy target, a common event in a cloud environment. In most cases, the
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cause is due to a failed/overloaded VM instance or Security Group misconfigura-
tion. For that purpose, we misconfigured a Security Group (firewall) on purpose
in one of the registered targets and disallowed any traffic coming from the Tar-
get Group. In consequence, the Target Group was not able to send health check
requests, and consider the instance unhealthy. The goal is to locate that specific
instance and analyze its cause, targeting liveness level three: informative, sig-
nificant, and responsive [53]. Both the occurrences can be confirmed in Fig. 14a
and b.

All of the participants were able to identify the issue by observing the red con-
nection (failed health check) between the Target Group and the Virtual Machine
instance. They were able to inspect it (by clicking on the connector) and, by trac-
ing back the origin of the problem to the Security Group, they were able to create
a new rule to allow the traffic.

6 Final Remarks

There are several issues with cloud management resulting from: (1) the cloud
providers being always developing new services to keep up with a demanding
market and as reaction to new paradigms (e.g., IoT), and (2) the unavoidable
increasing complexity when too many resources are under management in an
overwhelming disheveled environment.

From the viewpoint of cloud management, the main contribution of this
work is a development environment for cloud architectures, i.e., an approach
to analyze, architect and configure cloud compositions with a higher level of
abstraction. This environment allows developers to focus more on their business
logic and track the changes as the infrastructure evolves, and its complexity
increases.

The CloudCity approach, resulting from a combination of strengths from sev-
eral tools and methods for developing cloud architectures and software in gen-
eral, explores the concept of Live Software Development [1] in the cloud domain,
by shortening the feedback loop between the developer and the infrastructure,
allowing them to quickly understand, almost immediately, how the infrastructure
reacts to change.

As per the comparison to the current state-of-the-practice, we consider that
increasing liveness improves the developers’ experience in cloud architecture con-
figuration tasks. The carried controlled experiment asserted the feasibility and
sanity (i.e., evaluate if the approach works as the cloud architecture scales) of
the CloudCity approach, although further validation is needed to assert aspects
such as the efficiency—achieving the results in a faster way compared to the
traditional methods doing the same task—and overall developer experience. An
empirical validation within an industrial case scenario would bring useful infor-
mation about the usefulness of the approach.

During the development of this approach several future research directions
where uncovered, such as (1) providing a modifiable layout technique—a user’s
ability to manually modify the position of a specific component; (2) explore
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other levels of liveness following the Tanimoto 6-level scale [53]; (3) investigate
different metaphors beyond the one of Wettel et al. [57]; and (4) adding other
services offered by cloud providers to the alphabet (e.g., dealing with the new
services related to IoT would bring new challenges such as how to deal with a
mixture of virtual infrastructure and real infrastructure, i.e., gateways, sensors,
and actuators [12]).
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