
Ernesto Damiani
George Spanoudakis
Leszek A. Maciaszek (Eds.)

14th International Conference, ENASE 2019
Heraklion, Crete, Greece, May 4–5, 2019
Revised Selected Papers

Evaluation of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 1172

Communications
in Computer and Information Science 1172

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Ernesto Damiani • George Spanoudakis •

Leszek A. Maciaszek (Eds.)

Evaluation of Novel Approaches
to Software Engineering
14th International Conference, ENASE 2019
Heraklion, Crete, Greece, May 4–5, 2019
Revised Selected Papers

123

Editors
Ernesto Damiani
Department of Electrical
and Computer Engineering
Khalifa University of Science
and Technology
Abu Dhabi, United Arab Emirates

George Spanoudakis
Department of Computer Science
City University of London
London, UK

Leszek A. Maciaszek
Wroclaw University of Economics
Wroclaw, Poland

Macquarie University
Sydney, Australia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-40222-8 ISBN 978-3-030-40223-5 (eBook)
https://doi.org/10.1007/978-3-030-40223-5

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40223-5

Preface

The present book includes extended and revised versions of a set of selected papers
from the 14th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2019), held in Heraklion - Crete, Greece, during
May 4–5, 2019.

ENASE 2019 received 102 paper submissions from 40 countries, of which 19%
were included in this book. The papers were selected by the event chairs and their
selection was based on a number of criteria that included the classifications and
comments provided by the Program Committee members, the session chairs’
assessment, and also the program chairs’ global view of all papers included in the
technical program. The authors of selected papers were then invited to submit a revised
and extended version of their papers having at least 30% innovative material.

The mission of ENASE is to be a prime international forum to discuss and publish
research findings and IT industry experiences with relation to novel approaches to
software engineering. The conference acknowledges evolution in systems and software
thinking due to contemporary shifts of computing paradigm to e-services, cloud
computing, mobile connectivity, business processes, and societal participation. By
publishing the latest research on novel approaches to software engineering and by
evaluating them against systems and software quality criteria, ENASE conferences
advance knowledge and research in software engineering, including and emphasizing
service-oriented, business-process driven, and ubiquitous mobile computing. ENASE
aims to identify the most hopeful trends and proposes new directions for consideration
by researchers and practitioners involved in large-scale systems and software
development, integration, deployment, delivery, maintenance, and evolution.

The papers included in this book contribute to the understanding of relevant trends
of current research on novel approaches to software engineering for the development
and maintenance of systems and applications, specifically in relation to: model-driven
software engineering, requirements engineering, empirical software engineering,
service-oriented software engineering, business process management and engineering,
knowledge management and engineering, reverse software engineering, software
process improvement, software change and configuration management, software met-
rics, software patterns and refactoring, application integration, software architecture,
cloud computing, and formal methods.

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

May 2019 Ernesto Damiani
George Spanoudakis
Leszek Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wroclaw University of Economics, Poland,
and Macquarie University, Australia

Program Co-chairs

Ernesto Damiani EBTIC-KUSTAR, UAE
George Spanoudakis City University London, UK

Program Committee

Muhammad Ovais Ahmad Karlstad University, Sweden
Marco Aiello University of Stuttgart, Germany
Apostolos Ampatzoglou University of Groningen, The Netherlands
Claudio Ardagna Universita degli Studi di Milano, Italy
Mourad Badri University of Quebec at Trois-Rivières, Canada
Paul Bailes The University of Queensland, Australia
Richard Banach The University of Manchester, UK
Jan Blech RMIT University, Australia
Glauco Carneiro Universidade Salvador (UNIFACS), Brazil
Tomas Cerny Baylor University, USA
William Chu Tunghai University, Taiwan, China
Rem Collier University College Dublin, Ireland
Rebeca Cortazar University of Deusto, Spain
Bernard Coulette Université Toulouse Jean Jaurès, France
Guglielmo De Angelis CNR-IASI, Italy
Fatma Dhaou Faculty of Sciences of Tunis, Tunisia
Sophie Ebersold IRIT, France
Mahmoud El Hamlaoui ENSIAS Mohammed V University in Rabat, Morocco
Vladimir Estivill-Castro Griffith University, Australia
Anna Fasolino Università degli Studi di Napoli Federico II, Italy
Maria Ferreira Universidade Portucalense, Portugal
Tarik Fissaa ENSIAS Mohammed V University Rabat, Morocco
Stéphane Galland Université de Technologie de Belfort Montbéliard,

France
Juan Garbajosa Technical University of Madrid (UPM), Spain
Atef Gharbi INSAT, Tunisia
Claude Godart Henri Poincaré University, France
José-María

Gutiérrez-Martínez
Universidad de Alcalá, Spain

Hatim Hafiddi INPT, Morocco
Peter Herrmann NTNU, Norway
Lom Hillah LIP6, CNRS, Sorbonne Université, France
Benjamin Hirsch Degussa Bank, Germany
Hoda Hosny The American University in Cairo, Egypt
Mirjana Ivanovic University of Novi Sad, Serbia
Stefan Jablonski University of Bayreuth, Germany
Ozgur Kafali University of Kent, UK
Georgia Kapitsaki University of Cyprus, Cyprus
Somnuk Keretho Kasetsart University Bangkok, Thailand
Siau-cheng Khoo National University of Singapore, Singapore
Diana Kirk The University of Auckland, New Zealand
Piotr Kosiuczenko WAT, Poland
Robert Laramee Swansea University, UK
Bixin Li Southeast University, China
Jorge López SAMOVAR, CNRS, Télécom SudParis, Université

Paris-Saclay, France
Ivan Lukovic University of Novi Sad, Serbia
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Nazim Madhavji University of Western Ontario, Canada
Johnny Marques Instituto Tecnológico de Aeronáutica, Brazil
Patricia Martin-Rodilla University of A Coruña, Spain
Raul Mazo Université Paris 1 Panthéon-Sorbonne, France
Francesco Mercaldo Institute of Informatics and Telematics of Pisa, CNR,

Italy
Breno Miranda Federal University of Pernambuco, Brazil
Arthur-Jozsef Molnar University of Babes-Bolyai, Romania
Inès Mouakher Faculty of Sciences of Tunis, University of Tunis

El Manar, Tunisia
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Malcolm Munro Durham University, UK
Andrzej Niesler Wroclaw University of Economics, Poland
Janis Osis Riga Technical University, Latvia
Meriem Ouederni IRIT/INPT, France
Mourad Oussalah Laboratoire Lina, CNRS, University of Nantes, France
Claus Pahl Free University of Bozen-Bolzano, Italy
Dana Petcu West University of Timisoara, Romania
Marcelo Pimenta UFRGS, Brazil
Deepika Prakash NIIT University, India
Naveen Prakash IIITD, India
Adam Przybylek Gdansk University of Technology, Poland
Elke Pulvermueller University of Osnabrueck, Germany
Lukasz Radlinski West Pomeranian University of Technology, Poland
José Redondo López University of Oviedo, Spain
Philippe Roose LIUPPA, IUT de Bayonne, UPPA, France

viii Organization

Francisco Ruiz Universidad de Castilla-La Mancha, Spain
Stefano Russo Universita degli Studi di Napoli Federico II, Italy
Antonella Santone University of Molise, Italy
Markus Schatten University of Zagreb, Croatia
Rainer Schmidt Munich University of Applied Sciences, Germany
Richa Sharma BML Munjal University, India
Josep Silva Universitat Politècnica de València, Spain
Ouali Sonya University of Sfax-Tunisia, Tunisia
Ioana Sora Politehnica University of Timisoara, Romania
Andreas Speck University of Kiel, Germany
Maria Spichkova RMIT University, Australia
Witold Staniszkis Rodan Development, Poland
Miroslaw Staron University of Gothenburg, Sweden
Ulrike Steffens HAW, Hamburg University of Applied Sciences,

Germany
Chang-ai Sun University of Science and Technology Beijing, China
Jakub Swacha University of Szczecin, Poland
Stephanie Teufel University of Fribourg, Switzerland
Feng-Jian Wang National Chiao Tung University, Taiwan, China
Bernhard Westfechtel University of Bayreuth, Germany
Danny Weyns KU Leuven, Belgium
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Igor Wojnicki AGH University of Science and Technology, Poland
Alfred Zimmermann Reutlingen University, Germany

Additional Reviewers

Saloua Bennani ENSIAS Mohammed V University in Rabat, Morocco
Natalia Kushik Télécom SudParis, France
David Lo Singapore Management University, Singapore
Juan Ochoa-Zambrano Universidad Politécnica de Madrid, Spain
Abdelfetah Saadi Houari Boumediene University of Science

and Technology, Algeria
Fadel Touré University of Quebec at Trois-Rivières, Canada
Sihan Xu China

Invited Speakers

Sotiris Ioannidis Foundation for Research and Technology Hellas,
Greece

Danny Menasce George Mason University, USA
Mike Papazoglou Tilburg University, The Netherlands

Organization ix

Contents

Using Stanford CoreNLP Capabilities for Semantic Information
Extraction from Textual Descriptions. 1

Erika Nazaruka, Jānis Osis, and Viktorija Griberman

An Overview of Ways of Discovering Cause-Effect Relations
in Text by Using Natural Language Processing . 22

Erika Nazaruka

From Requirements to Automated Acceptance Tests
with the RSL Language . 39

Ana C. R. Paiva, Daniel Maciel, and Alberto Rodrigues da Silva

Experimenting with Liveness in Cloud Infrastructure Management 58
Pedro Lourenço, João Pedro Dias, Ademar Aguiar,
Hugo Sereno Ferreira, and André Restivo

Live Software Development Environment Using Virtual Reality:
A Prototype and Experiment. 83

Diogo Amaral, Gil Domingues, João Pedro Dias,
Hugo Sereno Ferreira, Ademar Aguiar, Rui Nóbrega,
and Filipe Figueiredo Correia

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 108
Roman Wirtz and Maritta Heisel

Towards GDPR Compliant Software Design: A Formal Framework
for Analyzing System Models. 135

Evangelia Vanezi, Dimitrios Kouzapas, Georgia M. Kapitsaki,
and Anna Philippou

Evaluation of Software Product Quality Metrics . 163
Arthur-Jozsef Molnar, Alexandra Neamţu, and Simona Motogna

Model-Driven Development Applied to Mobile Health
and Clinical Scores . 188

Allan Fábio de Aguiar Barbosa

Model-Driven Software Development Combined with Semantic
Mutation of UML State Machines . 204

Anna Derezinska and Łukasz Zaremba

Model-Driven Automatic Question Generation for a Gamified
Clinical Guideline Training System . 227

Job N. Nyameino, Ben-Richard Ebbesvik, Fazle Rabbi, Martin C. Were,
and Yngve Lamo

New Method to Reduce Verification Time of Reconfigurable Real-Time
Systems Using R-TNCESs Formalism . 246

Yousra Hafidi, Laid Kahloul, Mohamed Khalgui,
and Mohamed Ramdani

On Improving R-TNCES Rebuilding for Reconfigurable
Real-Time Systems . 267

Mohamed Ramdani, Laid Kahloul, Mohamed Khalgui,
and Yousra Hafidi

Towards the Efficient Use of Dynamic Call Graph Generators
of Node.js Applications . 286

Zoltán Herczeg, Gábor Lóki, and Ákos Kiss

Comparison of Computer Vision Approaches in Application
to the Electricity and Gas Meter Reading . 303

Maria Spichkova, Johan van Zyl, Siddharth Sachdev, Ashish Bhardwaj,
and Nirav Desai

Expanding Tracing Capabilities Using Dynamic Tracing Data. 319
Dennis Ziegenhagen, Andreas Speck, and Elke Pulvermueller

Automated Software Measurement Strategies Elaboration
Using Unsupervised Learning Data Analysis . 341

Sarah A. Dahab and Stephane Maag

Agile Scaled Steps of Doneness: A Standardized Procedure
to Conceptualizing and Completing User Stories Across Scrum
Teams and Industries . 364

Matthew Ormsby and Curtis Busby-Earle

Indoor Localization Techniques Within a Home Monitoring Platform 378
Iuliana Marin, Maria-Iuliana Bocicor, and Arthur-Jozsef Molnar

Author Index . 403

xii Contents

Using Stanford CoreNLP Capabilities
for Semantic Information Extraction

from Textual Descriptions

Erika Nazaruka(&) , Jānis Osis , and Viktorija Griberman

Riga Technical University, 1 Setas Str., Riga, Latvia
{erika.nazaruka,janis.osis,

viktorija.gribermane}@rtu.lv

Abstract. Automated extraction of semantic information from textual descrip-
tions can be implemented by processing results of application of Stanford Cor-
eNLP tools. This paper presents a sequence of processing steps and initial results
of their application for two examples of a description of system’s functionality.
The processing steps allow identifying main functional characteristics of the
system and its operational domain. Results obtained as a result of application of
the steps are compared with data obtained as a result of analysis by a developer.
Application of Stanford CoreNLP parsers in certain cases can produce errors and
can influence results of further processing. The comparison of the two results sets
showed that variability of language constructs in descriptions affects an amount
of implicitly expressed knowledge. Nevertheless, results of this research can be
used as a start point of automated text processing for creation of analysis models.

Keywords: Knowledge acquisition � Topological functioning model �
Computation independent model

1 Introduction

Models as a means for analysis and design of a system and as a base for source code
acquisition are suggested in the Object Management Group’s Model Driven Archi-
tecture [1]. MDA helps in considering a system from three main viewpoints, namely, a
computation independent viewpoint, a platform independent viewpoint and a platform
specific viewpoint. Each viewpoint is represented by its corresponding model. The
development process starts from the computation independent model (CIM). Then, the
CIM is transformed to the platform independent model (PIM) and, finally, to the
platform specific model and corresponding code.

Transformations between models can be manual and automated. The automated
approach is more preferable. The MDA suggests automated transformations from the
PIM, since the CIM consists of either textual descriptions (software requirements, use
cases, user stories, etc.) or schemes with textual explanations, where text is written in a
natural language. However, it is necessary to note that the OMG suggests a standard
entitled “Semantics of Business Vocabulary and Rules” (SBVR) [2]. SBVR is dedi-
cated for business domain analysis. It allows creating a formal vocabulary of a business

© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 1–21, 2020.
https://doi.org/10.1007/978-3-030-40223-5_1

http://orcid.org/0000-0002-1731-989X
http://orcid.org/0000-0003-3774-4233
http://orcid.org/0000-0002-8368-9362
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_1

domain and specifying business rules in a formal manner but using a natural language
as a concrete syntax. However, a use of SBVR is perspective only if analysis and
transformation of SBVR documents to design models is automated and the models are
used for generation of code. Otherwise, a natural language is a good choice, because it
does not require additional effort for study and use [3].

The modern state of computer linguistics in general, and natural language processing
(NLP) in particular, gave an impetus for research on text analysis by using NLP where
the aim is automated creation of analysis, design and testing models. This paper focuses
on automated creation of analysis models and extends information presented in [4] with
a discussion on key feature of existing CoreNLP tools for textual specification analysis
and refined steps for knowledge extraction demonstrated on two textual examples.

Our vision of principles of intelligent software development presented in the paper
is related to use of a knowledge model based on the Topological Functioning Model
(TFM) as the CIM to generate code via an intermediary model – Topological UML
model [5]. The TFM elaborated by Janis Osis at Riga Technical University [6] specifies
a functioning system from three viewpoints – functional, behavioural and structural.
This model can serve as a core model for further system and software domain analysis
and transformations to design models and code [7].

Extraction of TFM elements requires textual description of functionality of the
system. At the present, we have manual processing of the unstructured, but processed
text, and automated processing of use case specifications in the form of semi-structured
text [8, 9]. In the latter, results are kept in XMI (XML Metadata Interchange) files using
XML (eXtensible Markup Language) structures. In its turn, the new approach supposes
using a Natural Language Processing (NLP) pipeline for text processing [10] and a
knowledge base [11, 12] for keeping and managing results of the processing. We
assume that joint use of NLP and an inferring mechanism and flexibility of the
knowledge base can give such additional advantages as discovering conflicts in
knowledge, managing synonyms, and inferring new knowledge from the existing one.

The goal of this research is to clarify what key features of the assisting tool are
necessary and to outline steps for processing Stanford CoreNLP outcomes in order to
achieve automated knowledge acquisition of the core elements of the TFM functional
characteristics.

The paper is organized as follows. Section 2 describes the core elements of the
TFM functional characteristics as well as how Stanford CoreNLP is used now. Sec-
tion 3 presents initial guideline for processing CoreNLP outcomes, demonstrates them
using two examples as well as illustrates main results and limitations of text parsing
and outcomes processing. Section 4 gives an overview of the related research. Sec-
tion 5 concludes the paper.

2 Core Elements of the Topological Functioning Model

2.1 TFM Functional Characteristics

The TFM is a formal model for representing and analysis of functionality of the system
of any kind, e.g., business, software, biological, mechanical, etc. [7]. The TFM may

2 E. Nazaruka et al.

represent functionality as a directed graph X;Hð Þ, where X is a closed set of inner
functional characteristics (hereinafter called functional features) of the system, and H is
a topology set on them in the form of a set of cause-and-effect relations. TFM models
can be compared for similarities and differences using the continuous mapping
mechanism of topological spaces [13]. The continuous mapping mechanism is used
also for keeping information during transformations, i.e., simplification and refinement.

The TFM is characterized by its topological and functioning properties [14]. The
topological properties origins are in algebraic topology, they are connectedness,
neighborhood, closure and continuous mapping. The functioning properties come from
the system theory, they are cause-and-effect relations, cycle structure, inputs and out-
puts [6].

Determination of a set domain functional characteristics (e.g., a business process, a
task, an action, or an activity) [15] includes determination of domain objects, external
systems, subsystems, actors, and actions. This information allows determining a set of
functional characteristics (features). A functional feature can be specified by a unique
tuple (1). The tuple can be extended and shortened if needed, but the core elements are
an object O, an action A, a result R, a set of preconditions and a set of executors.

FF ¼ A;R;O;PrCond;PostCond;Pr;Ex; Sh i ð1Þ

Where:

• A is object’s action,
• R is a set of results of the object’s action (it is an optional element),
• O is an object set which contains domain objects that is used or get the result of the

action; for atomic functional feature the size of the set is equal to 1,
• PrCond is a set of preconditions or atomic business rules,
• PostCond is a set of post-conditions or atomic business rules,
• Pr is a set of providers of the feature, i.e. entities (systems or sub-systems) which

provide or suggest action A with a set O of certain objects,
• Ex is a set of executors (direct performers) of the functional feature, i.e. a set of

entities (systems or sub-systems) that enact action A.
• S is a variable Subordination that holds changeable value of belonging of the

functional feature either to the system or to the external environment according to
the value of Pr.

Comparing to the original tuple (1), we have added element D for the better
understanding of meaning of the feature. D is a description of a functional feature, that
can be used for human-understandable representation of the characteristic.

2.2 Natural Language Processing in the IDM Toolset

The starting point of applying NLP of the textual description of system functioning for
acquiring knowledge for the TFM is implementation in the IDM (Integrated Domain
Modelling) toolset, where processing of use case scenario text is performed using the
Stanford Parser Java Library for identifying the executors (Ex) and the description of

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 3

the functional feature D that is the verb phrase from the text of a step in a use case
scenario [8, 9].

The prerequisite for parsing is that sentences of use case steps must be in the
simple form to answer the question “Who does what?”, e.g., “Librarian checks out the
book”.

Parsing is done according to these steps:

• Identify coordinating conjunctions to split a sentence into several clauses, and, thus,
several functional features.

• Identify the verb phrase (VP tag) that is considered as a union of action A, object O
and result R (if it is indicated) and forms the so-called description of the functional
feature.

• Identify the noun phrase (NP tag) that is marked as executor Ex if it meets the same
noun in the list of actors for the use case.

• Preconditions and postconditions are taken directly from the corresponding pre-
ceding step in the use case (if they are specified).

As a result, the following elements of the tuple (1) are obtained: (1) A, R, O im-
plicitly in the description of functional feature, (2) Ex (single element), (3) PrCond and
PostCond if they are specified for the use case. The existing process is limited to use
case specification that is manually proceeded and structured text.

3 Processing Stanford CoreNLP Outcomes for Semantic
Information Extraction

3.1 Task of Semantic Information Extraction

The evolution of the topological functioning modelling leads us to the solution, where
knowledge extracted from text must be kept in the knowledge-frame base. A piece of
knowledge can be generated from the manually entered facts [11]. According to an
initial scheme of the knowledge frame system, the current research puts the focus on
knowledge that is to be entered manually [10]: domain objects, properties of the
domain objects, and TFM functional features.

In case of unstructured text in formal style (hereinafter, formal text) we can process
results of the following NLP tasks: tokenization, part-of-speech (POS) tagging,
chunking, and Name Entity Recognition (NER)/Classification as well as semantic
analysis of noun and verb phrases [10]. In step of NER/Classification noun and verb
ontology banks must be used.

Therefore, the existing processing must be improved to proceed formal text and to
achieve:

• Clear identification of action A, set of results R and a set of domain objects, namely,
objects O with their properties.

• Identification of the Pr and Ex directly or from the context, if it is not stated
explicitly.

4 E. Nazaruka et al.

• Identification of PrCond, PostCond from the text according to the context and
logical operators (OR, AND, XOR).

• Initialization of the default value of Subordination as “not defined”, since the actual
value depends on the values of Pr and a system (sub-system) under analysis.

Since, the last two points require discourse analysis in text, it will be omitted in this
research. Here, the focus is on the sentence and word level analysis.

The Stanford CoreNLP toolkit [16] contains components that deal with tokeniza-
tion, sentence splitting, POS tagging, morphological analysis (identification of base
forms), NER, syntactical parsing, coreference resolution and other annotations such as
gender and sentiment analysis. Phrases can be parsed using both constituent and
dependency representations based on a probabilistic parser that is more accurate
according to the parsers that relate to some predefined structures. Discovering basic
dependencies can help in identification of actions and corresponding objects, results,
modes (that can serve for identification of causal dependencies), executors and pro-
viders. Besides that, the Stanford CoreNLP implements mention detection and
pronominal and nominal coreference resolution that can help in dealing with pronouns
and noun phrases that denote concrete phenomena.

3.2 Guidelines for Processing Outcomes

For the given research we use Stanford CoreNLP version 3.9.2 that for POS tagging
uses tags listed in Penn Treebank II [17]. In this research the following tags are
mentioned: S – simple declarative clause, NN – noun, single, NNS – noun, plural, NP –

noun phrase, PRP – personal pronoun, VBZ – verb, 3rd person singular present, VBP –

verb, non-3rd person singular present, VBD – verb, past tense, VBG – verb, gerund or
present participle, VBN – verb, past participle, VB – base form, VP – verb phrase, IN –

preposition or subordinating conjunction, RP – particle.

Preparational Step “Coreference resolution”. When a personal pronoun (PRP tag)
takes part in the relation, it must be substituted with the corresponding noun (tagged
NN or NNS) using results of coreference resolution. A personal pronoun and the
corresponding noun are linked using the edge coref. For example, in the sentence
“When the reader completes the request for a book, he gives it to the librarian” (Fig. 1),
the pronoun “he” relates to “the reader” and “it” to “the request for a book”.

Step 1. Identification of action A. First, verb phrases VPs must be identified in the
sentence. We are interested only in verbs as such, not their modality. Therefore, in the
found VPs, verbs tagged as VBZ, VBP, VBD, VBN, VBG, or VB must be determined.
The verb word we need to extract must be linked with a noun (tag NN, NNS, or PRP)
by using nsubj, dobj, or nsubjpass edges. The value of action A is the infinitive form of
the verb that can be found using lemmas analysis, as for example for verb in VBZ
“creates” it will be “create”. If the verb has link compound:prt to the particle tagged
RP, then it must be extracted together with it, e.g., “check out”.

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 5

Step 2. Identification of elements of set Ex. An element of Ex is such a noun phrase NP
where a noun (tag NN, NNS, or PRP) is linked with the found verb in step 2 (tag VBZ,
VBP, or VBD) by using: (a) edge nsubj for active voice, or (b) edge nmod:agent for
passive voice. If basic dependencies are used, then nmod:agent (used in enhanced++
dependencies) is replaced by nmod to the noun, and the noun is linked with the
preposition “by” (tag IN) using edge case. This is illustrated by the results of analysis
of two sample sentences: “The authorized librarian creates a new reader account”
(Figs. 2 and 3) and “The new reader card is created by the authorized librarian”
(Fig. 4). The value of Exi is equal to the whole NP that contains the mentioned noun. In
the sample sentence, it is NP “the authorized librarian”. The NER task can be applied to
check extracted nouns whether they are tagged as “TITLE”. However, NER tagging
works only for NN; moreover, NNS are skipped.

Fig. 1. Results of POS identification and coreference resolution [4].

Fig. 2. The result of constituency parsing of the sentence in the active voice (at the sentence and
phrase levels) [4].

Fig. 3. Dependency analysis results of the sentence in the active voice (the word level) [4].

6 E. Nazaruka et al.

Step 3. Identification of object Oi and result Ri should be done in one and the same
step. Object Oi (with or without the compound result Ri) is a direct object of the verb
found in step 1 [15].

Step 3.1. Identification of the direct object of the verb – action A. If a sentence
contains a verb (action A) in the active voice, then the VP structure includes sub-
structure NP, where the direct object is located, i.e. word n1 tagged as NN, NNS,
or PRP and linked by using edge dobj.

In case of the passive voice, the VP structure contains sub-structure NP, where the
subject is located. Thus, we need to extract word n1 tagged as NN, NNS, or PRP
that is linked with the verb by using edge nsubjpass.
Step 3.2. Determination of the object and result of the functional feature.

If the VP of the verb – action A is not linked by using any edge nmod but nmod:
agent with another word n2 tagged as NN, NNS, or PRP, then the following is true:

• If noun n1 is not linked with another noun n2 in the same structure NP by using
either edge compound or in the same structure VP by using one of edges nmod:-
poss, nmod:of, nmod:to, nmod:into, nmod:from, nmod:for, nmod:in (in enhanced++
dependencies; otherwise, nmod to word n2 tagged as NN, NNS or PRP and case to
the preposition “of”, “to”, “into”, “from”, “for”, or “in” tagged as IN), then the
value of Oi is equal to n1. Otherwise, if such links do exist, the value of Oi is equal
to linked NP that contains noun n2.

• In case if noun n1 is linked with n2 by using edge compound, then leaves of the
whole structure NP that contains n1 are extracted and the preposition “of” is added
to the end of the extracted string. The obtained string is the value of element Ri.

• In case if noun n1 is linked with n2 by using edge nmod (and its variations), then
leaves of the whole structure NP that contains n1 are extracted and the preposition
tagged IN linked with n2 by using edge case is added to the end of the extracted
string. The obtained string is the value of element Ri.

• Otherwise, the value of Ri is left empty.

Fig. 4. Dependency analysis results of the sentence in the passive voice (at the word level) [4].

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 7

Otherwise, if the VP of the verb – action A is linked with another word n2 (not a
direct object or nominal passive subject) tagged as NN, NNS, or PRP using edge nmod
but nmod:agent, too, then the following is true:

• Word n2 located in the corresponding NP in the prepositional phase PP is a value of
the element Oi.

• Leaves of the whole structure NP that has direct child n1 are extracted. The
preposition tagged IN in the sibling prepositional phrase PP is added to the end of
the extracted string. The result string is the value of element Ri.

Let us consider the sentence “The librarian removes the reader account from the
registry.” The verb “removes” is linked with the noun “account” (tag NN) by using
edge dobj (Fig. 5). Leaves of the corresponding NP are extracted as string “the reader
account” and supplemented with the preposition “from” (Fig. 6). The final string “the
reader account from” is written as a value of R1. The noun “registry” (tag NN) is
recorded as a value of O1.

Fig. 5. The results of dependency parsing for the sentence with more complex NP [4].

Fig. 6. The results of the constituency parsing for the sentence with more complex NP [4].

8 E. Nazaruka et al.

In case of conjunctions of NPs, e.g. “creates an account and a card”, the head noun
or proposition will be linked with the verb by using edge dobj, while other nouns or
propositions will be linked with the head noun by using edge conj. All the linked words
must be found and processed according to the abovementioned principles.

Let us consider the sentence in the active voice: “The authorized librarian creates a
new reader account”. The VP (Fig. 2) contains the verb creates (tagged VBZ) that is
not linked to any noun or proposition by using nmod (Fig. 3).

The VP contains structure NP, where the direct object (edge dobj in Fig. 3) is the
noun “account”. Let us denote it as n1. Within the same NP, n1 = “account” is linked to
noun n2 = “reader” by the edge compound. Thus, O1 = n2 = “reader”. The NP that
contains n1 = “account” is “a new reader account”. As n1 is linked with n2 by using
edge compound, then, after adding the proposition “of”, R1 = “a new reader account
of”.

In case of the passive voice, “The new reader card is created by the authorized
librarian” (Fig. 4), edge nsubjpass links the verb “created” with noun n1 = “card”. The
verb “created” is linked only with NP that contains the agent “librarian” (Fig. 7). Thus,
following the rules, O1 = n2 = “reader”, and R1 = “the new reader card of”.

Step 4. Identification of description D. The description is a visible part of the functional
feature that is needed for its unique identification by a human. The original form is as in
expression (2).

action A� ing the½ �result R½ � prepos:½ � a½ �object O ð2Þ

For simplicity we have excluded the ending “ing” and articles. The final form is
D = <A> [<Ri>] <Oi>. If one of the elements is empty, then it is replaced by the
question mark “?”.

Fig. 7. The result of constituency parsing of the sentence with the verb in the passive voice [4].

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 9

Step 5. Identification of preconditions. At the beginning, we plan identification of
conditions by using several syntactical patterns. According to the previous results [10]
and logical speculations, the following initial list of patterns could be applied for text
processing:

• “When <clause1>, <clause 2>”. Clause 1 is a precondition for clause 2.
• “When <condition>, <clause>”. A condition in “when” part is a precondition for a

clause in the second part of the sentence.
• “<clause1>. Then/after that <clause 2>”. Clause 1 is a precondition for clause 2 that

is a sentence that starts from words “then” or “after that”. In this case, the algorithm
must take the last previously defined functional feature as a precondition.

• A sequence of verb phrases “<verb phrase 1> and <verb phrase 2> and…”, where
“and” meaning is “if <action 1> is successful, then <action 2>”. The previous verb
phrase is a condition for the consequent verb phrase. However, not in every case
this pattern is valid. Sometimes, consequential verb phrases indicate parallel
actions.

• “If <condition>, <clause>”. A condition in the IF part is a precondition for the
clause from implicit THEN part.

• “If <condition>, “<verb phrase 1> and <verb phrase 2>”. A condition in the IF part
is a precondition for the clause from implicit THEN part.

• “If <clause1>, [then] <clause 2>”. A clause in the IF part is a precondition for the
clause from implicit or explicit THEN part.

• “After <clause1>, <clause 2>”. Clause 1 is a precondition for clause 2.
• “Before <clause1>, <clause 2>”. Clause 2 is a precondition for clause 1.

In general, precondition will be the corresponding clause or condition, i.e. the
complete text fragment as it is given in the description. Since lexical constructs may
differ, we need to use results of the constituency parsing:

• Rule 1: If a sentence contains a fragment marked as SBVR, it must be recorder as a
value of PreCond for all the functional features created from this sentence that are
not located in the SBVR part. The pattern is “S (SBAR(text))”.

• Rule 2: If a sentence contains a fragment marked as SBVR inside a VP, then the
fragment must be recorder as a value of PreCond for the functional features created
from this VP. The pattern is “S (VP (…SBAR (text)…))”.

• Rule 3: If a sentence contains a VP that contains a sequence of VP joined by the
conjunction “and” (tag CC), then IF clause 1 is a predecessor to clause 2 THEN
PreCondi = clause 1. The pattern is “S (…VP (VP () CC= ‘and’ VP())…)”.

3.3 Examples and Discussion

Let us analyze two fragments of text. The text is manually composed in a formal style
to describe functionality of a system. The results of manual processing of the text
according to TFM4MDA approach are done previously and published [18, 19].
Therefore, they can be used to compare them with results obtained using the steps of
the guideline.

10 E. Nazaruka et al.

Example 1 “Library”. The description is the following [18]: “When an unregistered
person arrives, the librarian creates a new reader account and a reader card. The
librarian gives out the card to the reader. When the reader completes the request for a
book, he gives it to the librarian. The librarian checks out the requested book from a
book fund to a reader, if the book copy is available in a book fund. When the reader
returns the book copy, the librarian takes it back and returns the book to the book fund.
He imposes the fine, if the term of the loan is exceeded, the book is lost, or is damaged.
When the reader pays the fine, the librarian closes the fine. If the book copy is hardly
damaged, the librarian completes the statement of utilization, and sends the book copy
to the recycling organization”.

Going through the steps, from eight full sentences we have obtained 19 functional
features (Table 1). Functional feature 1 lacks a direct object. The 6th and 7th sentences

Table 1. Elements of the functional features extracted from text for the example “Library” [4].

Id Description D Action A Result R Object O Executors Ex

1 Arrive <?> <?> arrive ? ? an unregistered
person

2 Create a new reader account
of reader create

a new reader
account of reader the librarian

3 Create a reader card of reader create a reader card reader the librarian
4 Give out the card to reader give out the card to reader the librarian
5 Complete the request for

book complete
the request
for book the reader

6 Give the request for book
give

the request
for book the reader

7 Check out the requested book
from a book fund

check
out

the requested
book from book fund the librarian

8 Return the book copy of book
return

the book
copy of book the reader

9 Take back the book copy of
book take back

the book
copy of book the librarian

10 Return the book to book fund return the book to book fund the librarian
11 Impose <?> fine impose ? fine the librarian
12 Exceed the term of loan exceed the term of loan ?
13 Lose <?> book lose ? book ?
14 Damage <?> book damage ? book ?
15 Pay <?> fine pay ? fine the reader
16 Close <?> fine close ? fine the librarian
17 Damage the book copy of

book damage
the book
copy of

book ?

18 Complete the statement of
utilization complete

the statement
of utilization the librarian

19 Send the book copy to recy-
cling organization send the book

copy to

recycling
organiza-
tion

the librarian

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 11

have no results (Table 1, features 11, 13–16). Functional features 12–14 and 17 have
undefined executors (Table 1), they describe some events that happened beyond the
system.

Looking at functional features 14 and 17 (Table 1), one can found that the 17th is a
refinement of the 14th. Indeed, if we look closer to the initial text, the text “If the book
copy is hardly damaged…” concretizes the statement “…if the book…is damaged”. So,
we may say, that this is one and the same “action” happened outside the system.

Going through the steps, from eight full sentences we have obtained 19 functional
features (Table 1). Functional feature 1 lacks a direct object. The 6th and 7th sentences
have no results (Table 1, features 11, 13–16). Functional features 12–14 and 17 have
undefined executors (Table 1), they describe some events that happened beyond the
system.

Table 2 contains preconditions identified in Step 5. They are not completely equal
to preconditions presented in [18], since the approach of specifying preconditions in the
TFM may differ. This means that preconditions that are clauses may be extracted as a
separate functional feature (as it is demonstrated also in this example) and assigned to
their functional features – effects as a cause feature by using cause-and-effect relations.
However, all the mentioned conditions for actions are correctly extracted using the
three rules.

Discussion on Example 1. Analysis of the results obtained by two approaches shows
main differences of human and step-driven processing of text in the context of
understanding explicit and implicit information. Comparison of the 19 functional
features with 22 features got after manual text processing is illustrated in Table 3.

First, executors are correctly defined for all extracted features.

Table 2. Identification of preconditions for the example “Library”.

Id Description D Precondition Rule
2 Create a new reader account of reader When an unregistered person arrived 1
3 Create a reader card of reader When an unregistered person arrived 1
6 Give the request for book When the reader completes the request

for a book
1

7 Check out the requested book from a
book fund

If the book copy is available in a book
fund

2

9 Take back the book copy of book When the reader returns the book copy 1
10 Return the book to book fund The librarian takes the book copy back 3
11 Impose <?> fine If the term of the loan is exceeded, the

book is lost, or is damaged
2

16 Close <?> fine When the reader pays the fine 1
18 Complete the statement of utilization If the book copy is hardly damaged 1
19 Send the book copy to recycling or-

ganization
The librarian completes the statement of

utilization
3

12 E. Nazaruka et al.

Second, identification of verbs phrases allowed extracting “outside actions” from
adverbial and conditional clauses (features 12–14, 17 on the left side), while in manual
processing the “outside actions” have been transformed into “inner actions” that check
results of those “outside actions” (features 14, 15 on the right side).Besides that, the obtained
feature list is supplemented with implicit “actions” (features 10, 11, 22 on the right side).

Table 3. Functional features extracted using NLP outcomes and manual processing for the
example “Library” [4]. Denotation: UP is an unregistered person, P is a person, L is a librarian, R
is a reader, RO is recycling organization.

Functional features extraction (using NLP) Functional features extraction (manual pro-
cessing)

Id Description
D = <A> <R> <O>

Ex Id Description
<A>-ing [the <R>] [<PRP>]

[a] <O>

Ex

1 Arrive <?> <?> UP 1 Arriving [of] a person P
2 Create a new reader account of

reader
L 2 Creating a reader account L

3 Create a reader card of reader L 3 Creating a reader card L
4 Give out the card to reader L 4 Giving out the card to a reader L

5 Getting the status of a reader R
5 Complete the request for book R 6 Completing a request_for_book R
6 Give the request for book R 7 Sending a request_for_book R

8 Taking out the book copy from
a book fund

L

7 Check out the requested book
from a book fund

L 9 Checking out a book copy L

10 Giving out a book copy L
11 Getting a book copy [by a regis-

tered reader]
R

8 Return the book copy of book R 12 Returning a book copy [by a
registered person]

R

9 Take back the book copy of book L 13 Taking back a book copy L
10 Return the book to book fund L 17 Returning the book copy to a

book fund
L

11 Impose <?> fine L 16 Imposing a fine L
12 Exceed the term of loan ?

14 Checking the term of loan of a
book copy

L

13 Lose <?> book ?
14 Damage <?> book ?

15 Evaluating the condition of a
book copy

L

15 Pay <?> fine R 18 Paying a fine R
16 Close <?> fine L 19 Closing a fine L
17 Damage the book copy of book ?
18 Complete the statement of utili-

zation
L 20 Completing a statement_of_uti-

lization
L

19 Send the book copy to recycling
organization

L 21 Sending the book copy to a re-
cycling organization

L

22 Recycling a book copy RO

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 13

Third, identified objects differ, too. For NLP processed text they are “reader”
(properties: reader account, reader card/card), “book” (properties: request, book copy),
“book fund” (properties: book), “fine”, “loan” (properties: term), “utilization” (prop-
erties: statement), “recycling organization” (properties: book copy), while in the
manual approach they are “person”, “reader account”, “reader card”, “reader” (prop-
erties: card, status), “request_for_book”, “book fund” (properties: book copy), “book
copy” (properties: term_of_loan, condition), “fine”, “statement_of_utilization”, “recy-
cling organization” (properties: book copy). During manual processing, the expert has
used his knowledge to abstract and unify several concepts.

Table 4. Elements of the functional features extracted from text for the example “management
of the research group activities”.

Id Description D Action A Result R Object O Executors Ex
1 Investigate issues in

the field of interest
Investigate issues in the field of in-

terest
the research
group

2 Obtain ? some valua-
ble results

Obtain ? some valuable
results

?

3 Prepare a paper as
authors

Prepare a paper as authors one or more
members

4 Submit the completed
paper to the confer-
ence

Submit the com-
pleted pa-
per to

the conference the responsible
author

5 Accept ? the paper Accept ? the paper the conference
organizers

6 Prepare ? a camera-
ready paper

Prepare ? a camera-ready
paper

the authors

7 Submit the camera-
ready paper to the
conference

Submit the cam-
era-ready
paper to

the conference the responsible
author

8 Present the camera-
ready paper at the
conference

Present the cam-
era-ready
paper at

the conference the responsible
author

9 Publish ? the paper Publish ? the paper ?
10 Record paper’s bibli-

ographical descrip-
tion in authors’ per-
sonal files

Record paper’s
biblio-
graphical
description
in

authors’ per-
sonal files

the responsible
author

11 Record his/her visit
to the conference

Record his/her
visit to

the conference the referent

12 Attend conferences
without accepted pa-
pers

Attend confer-
ences with-
out

accepted pa-
pers

the group
members

13 Record these visits in
their personal files

Record these visits
in

their personal
files

?

14 Archive ? personal
files

Archive ? personal files ?

14 E. Nazaruka et al.

Example 2 “Management of the Research Group Activities”. The fragment is as
follows [19]: “The research group investigates issues in the field of interest. Once some
valuable results are obtained, one or more members of the group prepare a paper as
its authors. The completed paper is submitted to an appropriate conference by the
responsible author. If the paper is accepted by the conference organizers, then the
authors prepare a camera-ready paper in accordance with the obtained reviews. The
responsible author submits the camera-ready paper to the conference and presents it at
the conference. If the paper is published, the responsible author records paper’s
bibliographical description in authors’ personal files. The referent records his/her visit
to the conference and the title of the paper in his/her personal file. Group members
may attend conferences without accepted papers; these visits also are recorded in their
personal files. Personal files of former group members are archived.”

Going through the steps, from nine full sentences we have obtained 14 functional
features (Table 4). Functional feature 2, 5, 6, 9 don’t have a result value (but it is an
optional value). Functional features 2, 9, 13, 14 don’t have a defined executor.

Functional feature “Attend conferences without accepted papers” is logically cor-
rect from the first sight. However, “accepted papers” here plays a role of an object that
is responsible for the action “attend” and the result of this action is “conferences”. This
is the case, when the same lexical pattern gives a false result.

Functional feature “Prepare a paper as authors” also just seems correct. However, it
contains the explanation “as authors” that can be considered as an object. That is
incorrect, since here “authors” plays a role of a synonym to the executor “member of
the research group”.

In the sentence “The referent records his/her visit to the conference and the title of
the paper in his/her personal file”, Stanford CoreNLP could not correctly determine
dependencies between “records” and “the title”. The sentence has two clauses. The first
is recoding a visit to the conference and the second is recording the title of the paper.
However, the dependencies analyzer relates the word “title” to the noun “a visit” and
not to the verb “record”. As a result, the second clause is not determined and recorded
as a functional feature (Table 4).

Table 5. Identification of preconditions for the example “management of the research group
activities”.

Id Description D Precondition Rule
3 Prepare a paper as authors Once some valuable results are obtained 1
6 Prepare ? a camera-ready paper If the paper is accepted 1
10 Record paper’s bibliographical

description in authors’ personal
files

If the paper is published 1

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 15

Table 6. Functional features extracted using NLP outcomes and manual processing for the
example “Management of the research group activities”, where RG is the research group, M is a
member of the group, C is a conference, RA is a responsible author, CO is conference organizers,
A is authors, R is a referent, EE is the external environment.

Functional features extraction (using NLP)
Functional features extraction

(manual processing)
Id Description

D = <A> <R> <O>
Ex Id Description

<A>-ing [the <R>] [<PRP>] [a]
<O>

Ex

1 Investigate issues in the
field of interest

R
G

1 Investigating an issue in the field
of interest

M

2 Obtain ? some valuable re-
sults

?

3 Prepare a paper as authors M 2 Preparing a new paper M
4 Submit the completed paper

to the conference
R
A

3 Submitting a new paper RA

5 Accept ? the paper C
O

4 Notifying the status of a paper CO

6 Prepare ? a camera-ready
paper

A 5 Preparing a camera-ready paper A

7 Submit the camera-ready
paper to the conference

R
A

6 Submitting a camera-ready paper RA

8 Present the camera-ready
paper at the conference

R
A

7 Presenting a camera-ready paper R

9 Publish ? the paper ? 8 Publishing a paper CO
10 Record paper’s bibliograph-

ical description in authors’
personal files

R
A

9 Recording the bibliographical de-
scription of the paper in a personal
file

RA

11 Record his/her visit to the
conference

R 10 Recording the visit to the confer-
ence in a personal file

R,
M

11 Recording the title of the paper in
a personal file

R

14 Archive personal files ? 12 Archiving a personal file RG
12 Attend conferences without

accepted papers
M 13 Visiting a conference M,

R
13 Record these visits in their

personal files
?

14 Identifying the issues in a paper A
15 Ending a membership in the re-

search group
M

16 Starting a membership in the re-
search group

P

17 Creating a personal file M
18 Renewing a membership in the re-

search group
M

19 Restoring a personal file M
20 Existence of an issue in the field EE
21 Appearance of a new member P
22 Appearance of a membership fin-

ishing reason
M

16 E. Nazaruka et al.

Table 5 shows identified preconditions for functional features 3, 6, 10 that
semantically are the same as at the example in [19]. Preconditions for other functional
features initially are found by discourse analysis (at the paragraph level) that is not
considered in this paper.

Discussion. Analysis of the results obtained by two approaches shows main differ-
ences of human and step-driven processing of text in the context of understanding
explicit and implicit information. Comparison of the 14 functional features with 22
features got after human text processing is illustrated in Table 6.

First, executors are correctly defined for most extracted features. However, in step-
driven processing they are got as mentioned in the text. At the same time, in human
processing they are modified to present information more accurately. For example, an
executor of functional feature 1 (Table 6) is the research group (as in the text) and the
member of this group. The same for functional feature 8, where a presenter is either a
responsible author (as in the text) or a referent.

The second variant is less specific, since not only a responsible author can present a
paper at the conference. The same generalization is done in features 10 and 13.

Second, functional features 14–22 obtained as a result of human analysis of the
domain give knowledge not presented in the text fragment. They complement the
explicit knowledge about the research group work with the implicit knowledge on
causes and effects of some actions. In other words, this information is inferred by a
human based on their own experience.

Third, identified objects also differ. Thus, the domain objects defined by a human
are a research group, an issue, a field of interest, a [valuable] result, a [current, former]
member of the group, a [new, completed, accepted, camera-ready, published] paper
(properties: title), a [responsible, co-] author, a(n) [appropriate] conference, conference
organizers, a(n) [obtained] review, a bibliographical description of the paper, a personal
file, a referent, a visit. Step-driven results are not so consistent. They are a field of
interest (properties: issues), [some valuable] results, authors (properties: a paper),
conference (properties: a [completed, camera-ready] paper, a visit), a [completed,
camera-ready, accepted] paper (properties: conference), [authors’] personal files
(properties: paper’s bibliographical description, visits). This means that the initial text
contains incomplete and general information. This requires re-formulating the text or
additional processing of the results.

3.4 Parsing Issues

The result of parsing and POS tagging may be affected by errors in lexical analysis.
Parser models used by CoreNLP sometimes can provide outputs with incorrect lexical
analysis. Until v.3.6.0, the default parser was englishPCFG.ser.gz [20]. Using this
parser alone in CoreNLP GUI, the POS stage was performed correctly, i.e., verbs
“checks” and “records” were recognized as VBZ. While using the newer one English
model in CoreNLP from the command line as well as in online web application
coreNLP.run they were mistakenly recognized as plural nouns NNS. The cause is that
the form of the verb is identical to the form of the plural noun. Thus, the result highly

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 17

depends on the language model used by the parser. As a result, some actions can be
undefined; however, at the same time some additional domain objects O will be
defined.

Sometimes dependency parser indicates incorrect links between words. For
example, in the sentence “The referent writes his/her visit to the conference and the
title of the paper in his/her personal file.” (Fig. 8) a direct object of the verb “write” is
only “a visit”. “A title” is related not to the verb but to the noun “a visit” as a modifier
(edge nmod:to). Such cases lead to the undefined actions.

Another recommendation is to exclude situations when an adjective or a cardinal
number describes the noun. For example, it is better to write rather “Subtract the first
digit from the second digit” than “Subtract the first digit from the second” or “… from
the second one”. Otherwise, the processing will show incorrect results.

4 Related Work

Automated knowledge extraction and model creation can help in reducing time for
analysis of large amount of information.

Creation of models and UML diagrams from textual documents is presented in
several researches, for example:

• Creation of use case diagrams [21] and UML Activity Diagrams using identification
of simple verbal sentences [22] from textual requirements in Arabic.

• Creation of UML class diagrams from textual requirements [23], and from use case
descriptions [24] in English.

• Creation of Use Case Path models, the Hybrid Activity Diagrams model and the
Domain model from textual user requirements in natural language and requirements
engineering diagrams [25].

• Creation of conceptual diagrams from texts in natural language [26] with a par-
ticipation of a human, because sentence structures may have completely unpre-
dictable forms, syntactical errors, as well as ambiguity in determining attributes as
aggregations and in generalization.

• Creation of UML Class diagrams, Object diagrams, Use Case diagrams, and several
of them provide composition of Sequence, Collaboration and Activity diagrams
from textual documents in different approaches [27].

Fig. 8. Incorrect dependency parsing.

18 E. Nazaruka et al.

All the solutions have certain limitations: some require user intervention, some
cannot perform analysis of irrelevant classes, some require structuring text in a certain
form before processing, and some cannot correctly determine several structural rela-
tionships between classes. Some approaches use ontologies predefined by experts in the
field and self-developed knowledge acquisition rules in order to extract knowledge on
necessary properties or elements and their values from text documents [28, 29]. The
only approach that allows complete derivation of the business process model men-
tioned by the authors in [27] is presented by Friedrich, Mendling and Puhlmann [30].

The presented approach also is dedicated for automated extraction of knowledge
and generation of the design models or source code. However, a human participation is
necessary to analyse lexical and syntactical constructs that may have one form but
different meaning for analysis of a system’s functionality.

5 Conclusions

This paper presents the initial sequence of steps for semantic information extraction
from textual descriptions of system’s functionality. The steps cover such points as
pronoun substitution with corresponding noun phrases, identification of actions, their
executors, participating objects, expected results and preconditions of the actions using
predefined patterns formed from parts-of-speech tags and constituency dependencies.

The steps and patterns are applied to two examples of descriptions. The first
example is a description of library’s functioning. The second one is a description of
“Management of the research group activities”. Practical application of steps to the
example texts showed that Stanford CoreNLP parsers can produce errors in tagging
verbs and indicating dependencies between verbs and direct objects.

Comparison of the result set pairs showed that incompleteness in findings in most
cases are caused by implicit knowledge, that a developer can infer based on his
experience. Such a capability is not available for automated processing. Besides that, a
developer applies additional ad hoc modification of the initial text even loosing direct
links with it.

As a result, application of Stanford CoreNLP requires thorough selection of a
parsing model. Particularities of the natural language related to incomplete or implicit
knowledge can be solved to some degree by using machine learning models. Future
research directions are related to finding solutions of these issues.

References

1. Miller, J., Mukerji, J.: Model driven architecture (MDA) (2001)
2. OMG: SBVR (semantics of business vocabulary and rules) (2019). https://www.omg.org/

spec/SBVR
3. Elstermann, M., Heuser, T.: Automatic tool support possibilities for the text-based S-BPM

process modelling methodology. In: Proceedings of the 8th International Conference on
Subject-Oriented Business Process Management, S-BPM 2016, pp. 1–8. ACM Press, New
York (2016)

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 19

https://www.omg.org/spec/SBVR
https://www.omg.org/spec/SBVR

4. Nazaruka, E., Osis, J., Griberman, V.: Extracting core elements of TFM functional
characteristics from stanford CoreNLP application outcomes. In: Damian, E., Spanoudakis,
G., Maciaszek, L. (eds.) Proceedings of the 14th International Conference on Evaluation of
Novel Approaches to Software Engineering - Volume 1: MDI4SE, pp. 591–602. SciTePress
(2019)

5. Osis, J., Donins, U.: Topological UML Modeling: An Improved Approach for Domain
Modeling and Software Development. Elsevier, Amsterdam (2017)

6. Osis, J.: Topological model of system functioning. Autom. Comput. Sci. J. Acad. Sci. 6, 44–
50 (1969). (in Russian)

7. Osis, J., Asnina, E.: Topological modeling for model-driven domain analysis and software
development: functions and architectures. In: Model-Driven Domain Analysis and Software
Development: Architectures and Functions, pp. 15–39. IGI Global, Hershey (2011)

8. Osis, J., Slihte, A.: Transforming textual use cases to a computation independent model. In:
Osis, J., Nikiforova, O. (eds.) Model-Driven Architecture and Modeling-Driven Software
Development: ENASE 2010, 2nd MDA&MTDD Whs, pp. 33–42. SciTePress (2010)

9. Slihte, A., Osis, J., Donins, U.: Knowledge integration for domain modeling. In: Osis, J.,
Nikiforova, O. (eds.) Model-Driven Architecture and Modeling-Driven Software Develop-
ment: ENASE 2011, 3rd MDA&MDSD Whs, pp. 46–56. SciTePress (2011)

10. Nazaruka, E., Osis, J.: Determination of natural language processing tasks and tools for
topological functioning modelling. In: Proceedings of the 13th International Conference on
Evaluation of Novel Approaches to Software Engineering, pp. 501–512. SciTePress –

Science and Technology Publications, Lda., Funchal (2018)
11. Nazaruks, V., Osis, J.: Joint usage of frames and the topological functioning model for

domain knowledge presentation and analysis. In: Proceedings of the 12th International
Conference on Evaluation of Novel Approaches to Software Engineering – Vol. 1: MDI4SE,
pp. 379–390. SciTePress - Science and Technology Publications, Porto (2017)

12. Nazaruks, V., Osis, J.: Verification of causality in the frame system based on the topological
functioning modelling. In: Proceedings of the 13th International Conference on Evaluation
of Novel Approaches to Software Engineering, Portugal, Funchal, Madeira, 23–24 March
2018, pp. 513–521. SciTePress – Science and Technology Publications, Lda. (2018)

13. Asnina, E., Osis, J.: Computation independent models: bridging problem and solution
domains. In: Proceedings of the 2nd International Workshop on Model-Driven Architecture
and Modeling Theory-Driven Development, pp. 23–32. SciTePress - Science and
Technology Publications, Lisbon (2010)

14. Osis, J., Asnina, E.: Is modeling a treatment for the weakness of software engineering? In:
Model-Driven Domain Analysis and Software Development, pp. 1–14. IGI Global, Hershey
(2011)

15. Asnina, E., Osis, J.: Topological functioning model as a CIM-business model. In: Model-
Driven Domain Analysis and Software Development, pp. 40–64. IGI Global, Hershey
(2011)

16. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., Mcclosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–
60 (2014)

17. Bies, A., et al.: Bracketing guidelines for Treebank II style (1995)
18. Osis, J., Asnina, E., Grave, A.: Computation independent modeling within the MDA. In:

IEEE International Conference on Software-Science, Technology & Engineering (SwSTE
2007), pp. 22–34. IEEE, Herzlia (2007)

19. Asnina, E., Osis, J., Jansone, A.: System thinking for formal analysis of domain functioning
in the computation independent model. In: Proceedings of the 7th International Conference

20 E. Nazaruka et al.

on Evaluation of Novel Approaches to Software Engineering - ENASE 2012, pp. 232–240.
SciTePress, Lisbon (2012)

20. Stanford: CoreNLP version 3.9.2. Understanding memory and time usage (2018). https://
stanfordnlp.github.io/CoreNLP/memory-time.html

21. Jabbarin, S., Arman, N.: Constructing use case models from Arabic user requirements in a
semi-automated approach. In: 2014 World Congress on Computer Applications and
Information Systems, WCCAIS 2014, pp. 1–4. IEEE, Hammamet (2014)

22. Nassar, I.N., Khamayseh, F.T.: Constructing activity diagrams from Arabic user require-
ments using natural language processing tool. In: 2015 6th International Conference on
Information and Communication Systems (ICICS), pp. 50–54. IEEE, Amman (2015)

23. Krishnan, H., Samuel, P.: Relative Extraction Methodology for class diagram generation
using dependency graph. In: 2010 International Conference on Communication Control and
Computing Technologies, pp. 815–820. IEEE (2010)

24. Elbendak, M., Vickers, P., Rossiter, N.: Parsed use case descriptions as a basis for object-
oriented class model generation. J. Syst. Softw. 84, 1209–1223 (2011). https://doi.org/10.
1016/j.jss.2011.02.025

25. Ilieva, M.G., Ormandjieva, O.: Models derived from automatically analyzed textual user
requirements. In: Fourth International Conference on Software Engineering Research,
Management and Applications (SERA 2006), pp. 13–21. IEEE (2006)

26. Vidya Sagar, V.B.R., Abirami, S.: Conceptual modeling of natural language functional
requirements. J. Syst. Softw. 88, 25–41 (2014). https://doi.org/10.1016/j.jss.2013.08.036

27. Osman, C.-C., Zalhan, P.-G.: From natural language text to visual models: a survey of issues
and approaches. Inform. Econ. 20, 44–61 (2016). https://doi.org/10.12948/issn14531305/20.
4.2016.01

28. Amardeilh, F., Laublet, P., Minel, J.-L.: Document annotation and ontology population from
linguistic extractions. In: Proceedings of the 3rd International Conference on Knowledge
Capture, K-CAP 2005, pp. 161–168. ACM Press, New York (2005)

29. Jones, D.E., Igo, S., Hurdle, J., Facelli, J.C.: Automatic extraction of nanoparticle properties
using natural language processing: NanoSifter an application to acquire PAMAM dendrimer
properties. PLoS ONE 9, e83932 (2014). https://doi.org/10.1371/journal.pone.0083932

30. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language
text. In: Proceedings of the 23rd International Conference on Advanced Information Systems
Engineering (CAiSE 2011), pp. 482–496 (2011)

Using Stanford CoreNLP Capabilities for Semantic Information Extraction 21

https://stanfordnlp.github.io/CoreNLP/memory-time.html
https://stanfordnlp.github.io/CoreNLP/memory-time.html
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.12948/issn14531305/20.4.2016.01
https://doi.org/10.12948/issn14531305/20.4.2016.01
https://doi.org/10.1371/journal.pone.0083932

An Overview of Ways of Discovering
Cause-Effect Relations in Text by Using

Natural Language Processing

Erika Nazaruka(&)

Riga Technical University, 1 Setas Str., Riga 1048, Latvia
erika.nazaruka@rtu.lv

Abstract. Understanding of cause-effect relations is vital for constructing a
valid model of a system under development. Discovering cause-effect relations
in text is one of the difficult tasks in Natural Language Processing (NLP). This
paper presents a survey on trends in this field related to understanding how
linguistically causal dependencies can be expressed in the text, what patterns
and models exist, which of them are more and less successful and why. The
results show that causal dependencies in text can be described using plenty
lexical expressions as well as linguistic and syntactic patterns. Moreover, the
same constructs can be used for non-causal dependencies. Solutions that com-
bine the patterns, ontologies, temporal models and a use of machine learning
demonstrate more accurate results in extracting and selecting cause-effect pairs.
However, not all lexical expressions are well studied. There are few researches
on multi-cause and multi-effect domains. The results of the survey are to be used
for construction of a Topological Functioning Model (TFM) of a system, where
cause-effect relations are one of key elements. However, they can be used also
for construction of other behavioral models.

Keywords: Causality extraction � Natural Language Processing � Topological
Functioning Model � System modeling � System analysis

1 Introduction

Models are wide used in software development. They represent a system at different
levels of abstraction, using different representation formats, describing a system with
different precision and in different scale. Software industry uses mostly graphical
models for analytical and design purposes to simplify understanding of key charac-
teristics of the product. Knowledge sources for building models are mostly textual, i.e.,
requirements specified in a variety of forms, for example, use case scenarios, user
stories, descriptions.

A usage of models as a main source for code generation was presented by the
Object Management Group in a guide on Model Driven Architecture (MDA) in 2001
[1]. MDA suggests a chain of model transformations, namely, from a computation
independent model (CIM, mostly textual) to a platform independent model (PIM,
mostly graphical), then to a platform specific model (PSM, graphical) and to source
code. The less developed place in this chain is a transformation of the CIM. The CIM

© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 22–38, 2020.
https://doi.org/10.1007/978-3-030-40223-5_2

http://orcid.org/0000-0002-1731-989X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_2

contains software and system requirements, knowledge about the problem and solution
domains, a domain vocabulary and so on. Textual descriptions and schemes are
manually analyzed to discover explicit and implicit knowledge about system’s (soft-
ware’s) functioning, behavior and structure. Domain object analysis and causal rea-
soning [2] results in identification of structural and cause-effect relations. The latter are
those of control flows in the systems and influence also some structural relations [3–
10].

Research on the formalization of the CIM leads us to a use of a knowledge model
based on the Topological Functioning Model (TFM) [11]. The TFM elaborated by
Janis Osis at Riga Technical University [12] specifies a functioning system from three
viewpoints – functional, behavioral and structural. Cause-effect relations are one of the
key elements in the TFM. The source of information for the TFM is verbal descriptions
that could be processed in two ways:

• manually as in the TFM4MDA (Topological Functioning Model for MDA)
approach [13, 14] and

• automatedly from steps in use case scenarios as in the IDM (Integrated Domain
Modelling) toolset [15, 16].

Preparation of text descriptions as well as manual knowledge acquisition are too
resource-consuming [17]. In practice, developers prefer either to skip the step of
preparation of complete descriptions and start from modelling results of analysis of the
available information, or to automate or semi-automate this process.

The key aspect of successful construction of the domain model is correct and
complete identification of causes and effects. The same is in case of the TFM, where
identification of cause-effect (topological) relations between functional characteristics
of the system is crucial. The goal of the given research is to make a survey on ways and
completeness of extracting causal dependencies from text using Natural Language
Processing (NLP), Natural Language Understanding (NLU) and linguistics techniques.
This research is an extended version of the results published in [18]. This paper
supplements them applying the published results to the structured texts used in software
development, i.e. to the use case scenarios and user stories, and finding out more and
less controlled moments in their processing.

The research questions are the following:

• RQ1: What natural language constructs for expressing cause-effect relations in text
are used?

• RQ2: What models, patterns for identification of cause-effect relations in text are
used?

• RQ3: What automatic techniques for extracting cause-effect relations from text are
used?

• RQ4: Is the preprocessed text (in a form of use case scenarios and user stories) able
to eliminate efforts put for identification of cause-effect relations?

The aim is to understand what natural language constructs may be ambiguous for
NLP, what pitfalls exist in discovering cause-effect relations in text and what issues
have been found in application of extracting tools.

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 23

The paper is organized as follows. Section 2 describes the meaning of cause-effect
relations in the TFM. Section 3 presents research results on ways of discovering cause-
effect relations from text with their pros and cons. Section 4 presents a discussion on
application of findings to use case scenarios and user stories. Conclusions contain the
findings and enumeration of future research steps.

2 Cause-Effect Relations in the TFM in Brief

Cause-effect relations in the TFM represents structural relationships between domain
objects and control flows between functional characteristics of a system. They are
allowed having multiple causes and multiple effects joined by logical operators AND,
OR and XOR (exclusive OR).

The TFM is a formal mathematical model that represents system’s functionality in a
holistic manner. It describes functional and structural aspects of the software system in
the form of a directed graph (X; h), where a set of vertices X that are functional
characteristics of the system named in human understandable language, while h is a set
of edges representing cause-effect relations (topology) between them. Specification in a
form of a digraph is more accurate and explicit then a big amount of verbal descrip-
tions. The TFM can be validated according to its topological and functioning properties
[19]. The topological properties are connectedness, neighborhood, closure, and con-
tinuous mapping. The functioning properties are cause-effect relations, cycle structure,
inputs, and outputs. The composition of the TFM is presented in [14].

Rules of composition and derivation processes within TFM4MDA from verbal
descriptions of system’s functionality is provided by examples and described in detail
in [14, 20–22]. The TFM can also be generated automatically from the business use
case scenario specifications, which can be specified in the IDM toolset [23]. It also can
be manually created in the TFM Editor from the IDM toolset.

The cause-effect relations in a TFM are those of causal dependencies that exist
between functional characteristics of the system and define a cause from which trig-
gering of an effect occurs. Formal definitions of a cause-effect relation and a logical
relation among those relations as well as their incoming and outgoing groups are as
follows [11, 24].

Formal Definition of a Cause-Effect Relation. A cause-effect relation Ti is a binary
relationship that relates exactly two functional features Xc and Xe. Both Xc and Xe may
be the same functional feature in case of recursion. The synonym for cause-effect
relation is a topological relation. A cause-effect relation is a unique 5-tuple (1) where:

• ID is a unique identifier of the relation;
• Xc is a cause functional feature;
• Xe is an effect functional feature;
• N is a Boolean value of the necessity of Xc for generating Xe;
• S is a Boolean value of the sufficiency of Xc for generating Xe.

24 E. Nazaruka

Ti ¼ ID;Xc;Xe;N; Sh i ð1Þ

Formal Definition of a Logical Relation. Alogical relation Li specifies the logical
operator conjunction (AND), disjunction (OR), or exclusive disjunction (XOR) be-
tween two or more cause-effect relations Ti. The logical relation denotes system exe-
cution behavior, e.g. decision making, parallel or sequential actions. Each logical
relation is a unique 3-tuple (2), where:

• ID is a unique identifier of the relation;
• T is a set of cause-effect relations {Ti, …, Tn} that participate in this logical relation;
• RT is a logical operator AND, OR, or XOR over T; operator OR is a default value.

Li ¼ ID;T;RTh i ð2Þ

Formal Definition of Incoming Topological Relations. A set of logical relations that
join cause-effect relations, which go into functional feature Xi, is defined as a subset Lin

of set L = {Li, …, Ln}, where at least one topological relation Ti such that its effect
functional feature Xe is equal to Xi is found in the set T of topological relations in each
logical relation Li.

Formal Definition of Outgoing Topological Relations. A set of logical relations that
join cause-effect relations, which go out from functional feature Xi, is defined as a
subset Lout of set L = {Li,…, Ln}, where at least one topological relation Ti such that its
cause functional feature Xc is equal to Xi is found in the set T of topological relations in
each logical relation Li.

The connection between a cause and an effect is represented by a certain condi-
tional expression, the causal implication. It is characterized by the nature or business
laws (or rules) not just by logic rules. In causal connections “something is allowed to
go wrong”, whereas logical statements allow no exceptions. Using this property of
cause-effect relations, logical sequences wherein execution of a precondition guaran-
tees execution of an action can be prescinded. This means that even if a cause is
executed, none corresponding effect can be generated because of a functional damage.

A cause can be characterized by its “causal power”, temporal dimension, suffi-
ciency and necessity:

• In order to construct “a theory of the causal mechanism that produced the effect”,
the human mind applies very sophisticated mechanism as well as empirical infor-
mation and world knowledge [2]. Trying to discover this “causal mechanism” they
analyze “causal power” of events to generate an effect.

• A cause chronologically precedes an effect. This means that the cause-effect con-
ditions contain a time dimension.

• Causes can be sufficient or necessary (or complete or partial, correspondingly) [25].
A sufficient (complete) cause generates its effect ever, or in any conditions.
A necessary cause (partial) only promotes its effect generating and is also a con-
dition. The effect occurs only if this partial cause joins other conditions. However, it
does not mean that each condition is a cause. Most cause-effect relations involve

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 25

multiple factors as in series as in parallel. Thus, a structure of cause-effect relations
can form a causal chain. The causal chain begins with the first cause and follows
with series of intermediate actions or events to some final effect. Though one link
may not be as important or as strong like the other ones, they are all necessary to the
chain.

3 Discovering Cause-Effect Relations in Text

This section represents overview of means for explicit and implicit expressing cause-
effect relations in natural language, what patterns may indicate cause-effect relations in
text at the sentence and discourse levels, as well as overview of research papers on
automatic discovering cause-effect relations from text using NLP tools and other
techniques.

The general view on the process of discovering cause-effect relations is illustrated
in Fig. 1. Parsing text into clauses or phrases allows searching cause-effect pairs within
and between them. The process of discovering cause-effect pairs is highly dependent on
the quality of linguistic/syntactic and semantic patterns in causal or joint causal and
temporal models. The obtained set of cause-effect pairs must be checked manually
using knowledge-based inferring performed by an expert.

3.1 Natural Language Constructs for Expressing Cause-Effect Relations

Considering NLP and NLU tasks, researchers noted that causes and effects usually are
states or events that can have different duration [2, 26]. Besides that, similar language
constructs are used to express both temporal and causal relations [27]. The cause-effect
relations in text may be expressed both explicitly and implicitly.

Parsing the text into phrases / clauses

Annotated phrases / clauses

Discovering cause-effect pairs

Annotated cause-effect pairs
and causative constructs

Filtering non-causal pairs

A set of cause-effect pairs
and causative relations

NLP tokenization, part-of-speech tagging,
constituency dependencies, lemmatization

Linguistic, syntactic patterns
Semantic patterns and ontology
banks
Statistical inferring
Temporal models
ML causal models

Knowledge-based inferring

Fig. 1. General view on the process of discovering cause-effect pairs from text.

26 E. Nazaruka

Explicitly Expressed Relations. Several authors mentioned that linguists have iden-
tified language elements for explicit expression of causes and effects [2, 26]. They are
causal links (used to link two phrases, clauses or sentences) causative verbs, resultative
constructions, conditionals (i.e., if…then constructions), causative adverbs, adjectives,
and prepositions. One may say that causal links include as causal reasons as temporal
reasons [27].

As Khoo et al. [2] stated, Altenberg [28] had classified causal links into four main
types:

• the adverbial link (e.g., so, hence, therefore). It can have a reference to the pre-
ceding clause or to the following clause;

• the prepositional link (e.g., because of, on account of). It connects a cause and an
effect in the same clause;

• subordination. It can be expressed using a subordinator (e.g., because, as, since), a
structural link marked by a non-finite-ing clause, and a correlative comparative
construction (e.g., so…that);

• the clause-integrated link (e.g. that’s why, the result was). Here they distinguish
thematic link¸ when the linking words serve as a subject of the sentence, and a
rhematic link, when the linking words serve as the complement of the verb.

A causal link is usually a reference to a clause that plays a role of explanation in a
complex sentence or a discourse. A clause is a group of words that includes at least a
subject and a verb. A clause can be independent and express a complete thought.
A dependent clause can act as a noun, an adjective, or an adverb.

Causative verbs are “verbs the meaning of which include a causal element” [2], e.g.
“register” that in “X registers Y” means that “X causes Y to be registered”. One of the
working definitions of the causative verbs can be such that “Causative verbs specify the
result of the action, whereas other action verbs specify the action but not the result of
action” [2]. Besides that, causative verbs can be defined taking into account whether
they represents a causal link alone or a causal link with causally related components
[29]: simple, resultative and instrumental causatives. The only pure synonyms for the
verb cause are the simple causatives (e.g., lead to, generate, force etc.). The resultative
causatives refer also a part of the resulting situation (e.g., kill, dry, copy, delete, etc.).
The last one, instrumental, refer to a part of the causing event and the result (e.g.,
punch, clean, hang, etc.). Belonging of the verb to a semantic hierarchy (like, for
example, the verb develop belongs to the hierarchy of the verb cause to <do some-
thing>) can be determined in the WordNet ontology bank.

A resultative construction [2] is “a sentence in which the object of a verb is
followed by a phrase describing the state of the object as a result of the action denoted
by the verb”, e.g. “A user marked records yellow”. A resultative phrase can be an
adjective (the most common kind), a noun phrase, a prepositional phrase or a particle.

If-then conditionals often indicate that the antecedent (the if part) causes the con-
sequent (the then part). However, sometimes they just indicate a sequence of events not
their cause-effect relation [2].

Causative adverbs, adjectives and prepositions also can have a causal element in
their meaning [2]. Causative adverbs can be different, the most interesting for us are
adverbs that involve the notion of a result whose properties are context dependent (e.g.

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 27

successfully), adverbs that refer not to causes but to effects (e.g. consequentially), and
adverbs of means (e.g. mechanically). Causative adverbs and adjectives are not well
studied [2].

Prepositions also can be used to express causality [2]. They can indicate a cause as
proximity, a cause as a source, and a cause as volume.

Implicitly Expressed Relations. Implicit cause-effect relations usually are inferred by
the reader using information in text and their background knowledge [2, 26, 27].
Implicit causality can be inferred from experiential and action verbs [30, 31]. These
groups of verbs “have “causal valence” – they tend to assign causal status to their
subject or object” [2]. Since the experiential verbs usually describes someone’s psy-
chological or mental experience, they can be skipped for software development. Action
verbs describe events. The subject of the verb can take the semantic role agent or actor.
The object of the verb takes the role of patient. Some verbs give greater causal weight
to the subject (actor verbs), other – to the object (non-actor verbs). At the present,
causal weight seems not so important for domain analysis in software development.
However, the interesting thing is that both verbs groups have derived adjectives
referring to the subject or object. This means that some preceding actions can be
expressed in text using not verbs, but adjectives. Some implicit causative verbs trigger
expectations of explanations to occur in subsequent discourse [26].

3.2 Models and Patterns for Identification of Cause-Effect Relations

Models. Many theories exist for identification, modeling and analysis of cause-effect
relations in psycholinguistics, linguistics, psychology and artificial intelligence. Those
of theories attempting to reduce causal reasoning to a domain-general theory can be
grouped as associative theories, logical theories and probabilistic theories [32].

Associative theories underestimate aspects of causality that are important for causal
reasoning. However, in some cases causes and effects can be identified only using
associations [32]. Logical theories model causal reasoning as a special case of
deductive reasoning. However, conditionals do not distinguish between causes and
effects, and background knowledge can be necessary to distinguish them as well as
some temporal priorities [32]. In their turn, probabilistic theories considers causes as
“difference makers, which raise (generative cause) or reduce (preventive cause) the
probability of the effect” [32]. However, as the authors noted, covariation does not
necessarily reflect causation.

All the theories have their limitations in identification of causes and effects. In case
of processing verbal (written) information to develop software, causes and effects
mostly relate to business, mechanical and physical domains that certainly make a task
easier for developers. At the present, logical theories seem to be the most suitable for
this task and domains.

Additionally, temporal reasoning and temporal models can help in identifying
causal dependencies. Many of NLP research papers focus on the lexical-syntactical
patterns (such as causative verb, causal links, discourse relations, etc.) underestimating
temporal reasons. However, several works demonstrate that joint consideration of

28 E. Nazaruka

causal models and temporal models is more valuable for identifying and extracting
cause-effect relations from text [27, 33–35]. Besides that, joint temporal and causal
reasoning correctly identify counterfactual clauses [27]. They include such constructs
as might, would, if only. They indicate possible “state of the world” in case of some
“action” that would be done [26]. For example, as in the sentence “If librarian would
not have ordered the book, a manager assistant would have”.

Patterns. There are several levels where cause-effect relations can be presented. The
one is a sentence level, where cause-effect relations are presented between words,
phrases or clauses. The another is a discourse, where they exist between clauses or
sentences. Patterns are used for initial search of causes-effect pairs in text. The result of
this search is then checked and filtered.

Patterns with Events (Within a Sentence). In case of explicit causality, verbs, both
causative and action, indicate a cause between two events [26] and it can be identified
by using the lexical-syntactical pattern (3) [26] and (4) [36].

event1½ �½ � CAUSE event2½ �½ � ð3Þ

event2 is the result of� ½� ½event1½ �½ � ð4Þ

In this pattern, [[event1]] is when the subject does something, and [[event2]] is
when the object changes its state. Besides that, it is inferred that the object was not in
this state before the [[event1]] if otherwise is not mentioned in the text. In many cases,
the [[event]] is represented as a noun phrase. Classification of semantic relations
between pairs of nominals is discussed based on the results of SemEval-2010 Task 8
[37]. Besides the events, the entities that represent causes or effects can also be con-
ditions, states, phenomena, processes and sometimes facts [29]. The subject of the verb
describing the event must be some agent or actor represented by an object, an abstract
property or an event [26]. In case of implicit causality, verbs in most cases express
causality between two animate objects followed by explanation [26].

CAUSE may be introduced using the preposition “by” [26] together with a passive
causative verbs [38], a noun with a preposition (e.g., cause of), simple causative verbs,
phrasal verbs, and single prepositions (e.g., form, after). Besides that, in order to extent
a number of potential pairs, the ontology bank WordNet can be used [29, 39], where
belonging of a verb to a causative verbs group can be identified. A use of openIE [40]
to extract multiple relationships from the sentence and check whether they form “a
chained reaction” can increase the number of the potential pairs [39].

Patterns with Propositions (a Discourse). The same as within a sentence, in a dis-
course causal relations may be expressed explicitly using causal links or implicitly
using explanations and suggesting inferring by a reader [26].

Some researchers [26, 41] indicate that at this level causal relations differ from
those of at the sentence or clause level. Here, they are supplemented with reasons and
explanations. The authors assumed that the causal relations exist between entities that
are propositional in nature and can be expressed by the lexical-syntactical pattern (5).

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 29

proposition1 CAUSE� ½� ½proposition2½ �½ � ð5Þ

Even when explicitly expressed, it is hard to understand are they describe parallel
or sequential propositions or explanations, as, for instance, in the sentence “The user
access was denied. The hackers taken the control.”

In case of implicit causality, verb and discourse domains are mixed, where causal
expressions connect causative verbs with reasoning and explanations within the same
sentence [26].

Patterns with Conditionals. Conditionals do not express causal relations explicitly, but
they involve causal models in their evaluation. Conditionals, i.e. If…then constructs (or
When…then), may form the so called counterfactual conditionals that are hard for NLP
analysis [26]. Although the counterfactual conditionals may be used in expert systems
[42], they are rear in the descriptions of system’s functionality.

3.3 Automated Acquisition of Cause-Effect Relations

Causal Model. Using linguistic and lexical-syntactic patterns pairs of causes and effect
are identified and then filtered using supplementing rules and regular expressions as
well as ontology banks. The patterns, rules and regular expressions are created man-
ually (at least at the beginning). Linguistic and syntactic patterns are based on means
for explicit expressing causes and effects, e.g. causal links and causative verbs for
linguistic patterns and verb phrases and noun phrases for syntactic patterns [27, 34, 38,
43–45]. Most of the existing techniques consider that an event represented within a
sentence is represented by a single word (a nominal noun) skipping other semantically
related words [39].

A comprehensive survey of automatic extraction of causal relations is presented by
Asghar [33]. The author divided automatic methods into two groups. The first group
employ pattern matching, while the second group uses statistical methods and machine
learning (ML). According to Asghar survey, historically the first group started from
small text fragments prepared manually and evolved till large text corpuses prepared by
automatic processing [44]. At the present, this group uses NLP techniques to prepare
cause-effect pairs (by using linguistic patterns) and then filtering them to reduce a
number of non-causal pairs. Filtering takes into account such features as lexical fea-
tures, semantics features (hyponyms and synonyms) and dependency features [33, 38,
46]. Evolution of the second group started from the early 2000s, when ML techniques
first have been used to gain extracting cause-effect pairs. These techniques do not
require a large set of manually predefined linguistic patterns. However, quality of
learning depends on corpuses used for learning. In order to exclude non-causal pairs, a
Bayesian inference can be applied [38, 46]. The potential of ML application for spe-
cialized domains is low due to a lack of sufficient amount of text corpuses for learning
and testing a causal model. In such cases in order to exclude non-causal pairs a set of
logical rules is used together with filtering.

30 E. Nazaruka

Joint Temporal Causal Model. Joint usage of both the temporal reason model and the
causal model that uses ML helps in dealing with counterfactual conditionals and
increases accuracy of discovered cause-effect pairs.

Such models are presented by several authors [27, 34]. The temporal model dis-
covers a temporal relation between two events. The temporal relation can be annotated
as before, after, include, is_included, vague [27], and simultaneous, begins/begun_by,
ends/ended_by, during/during_inv, identity [34]. Other authors [35] use another
annotations, i.e., before, meets, overlaps, finishes, starts, contain and equals. Their
model distinguishes between a precondition and a cause. The causal models of all the
mentioned authors discover causal relations between events using linguistic patterns.
The authors state that analysis of both relation types allows extracting cause-effect
relations even if they lack explicit causal reason.

3.4 Pros and Cons

Explicitly Expressed Cause-effect Pairs. Discovering cause-effect pairs using lin-
guistic and lexical-syntactic patterns for text processing has small cost of preparation of
patterns and is domain-independent [27, 33, 38, 44, 46]. However, the result of dis-
covering can be ambiguous. The use of patterns limits discovered types of cause-effect
relation only to these patterns. In order to increase accuracy, a huge number of potential
patterns is required.

Most of overviewed research papers is focused on analysis of explicitly expressed
cause-effect relations by using causal links and causative verbs [33–35, 38, 43, 46].
However, few research papers pay their attention also to resultative constructions and
causative prepositions [33, 38, 43, 46]. In other words, causal links, causative verbs and
prepositions are more valuable for creation of linguistic/syntactic patterns for text
processing. Causative adverbs and adjectives up to 2018 are not well studied com-
paring to the main studies on causative verbs, causal links and temporal aspects of
events and propositions.

Although conditionals have the strict syntactical pattern if-then, accuracy of results
of extracting conditionals is satisfactory only using ML techniques [33].

Extracting multiple causes and effects is a very domain-specific task; Therefore
only few researches solve it directly [38, 46, 47].

Implicitly Expressed Cause-Effect Pairs. Discovering implicitly expressed cause-
effect pairs requires a use of ontology banks and inferring elaborated using ML
techniques. Cause-effect relations implicitly expressed by action verbs are analyzed in
the same group of causative verbs. While automated analysis of counterfactual con-
ditionals is a quite hard task and some results are presented just in a few papers [27,
42].

Increase of Accuracy. ML Techniques are used for increasing accuracy of extracting
cause-effect pairs, but they are rather expensive. Filtering and statistical inferencing
may be considered as a less expensive solution in comparison with ML techniques.

The patterns and propositions are limited to the manually predefined set and does
not require large corpuses of text for learning. However, a use of explicit causal

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 31

indicators in most cases leads to ignoring implicit causalities. Additionally, in case of
ambiguous linguistic constructs semantic filtering based on verb’s senses depends on a
set of linguistical/semantic patterns [33, 38, 46], but statistical inferencing requires
large datasets [33]. Ontology banks can also be used, but researchers use the WordNet
in general. VerbNet, PropBank and FrameNet are used sparsely [33, 35, 41].

The more successful results are shown by hybrid solutions where patterns, temporal
reasons, ML and ontologies are presented [27, 33–35]. The limitation of the hybrid
solutions is a lack of enough text corpuses for learning.

4 Implicit and Explicit Cause-Effect Relation in Structured
Descriptions for TFM Construction

TFM construction requires processing verbal descriptions of the modelled environ-
ment. The descriptions contain information on system functioning within and inter-
acting with its environment. Sources of two types of knowledge can be processed for
construction of the TFM. The first one is knowledge about a problem domain or
system’s processes and data. The second one is knowledge about required processes
and data of a corresponding sub-system. Here system and sub-system can be such pairs
like, for instance, an organization and its information system or an information system
and a software product to be included in it. Requirements to the sub-system’s processes
and data are presented in a form of structured text such as requirements specifications,
use case scenarios, user stories and features. Use case scenarios and user stories has
more structured format that a plain text. Therefore, it is interesting to understand what
benefits their structure gives since the main part of knowledge still is presented as plain
text. Thus, discovering cause-effect relations from use case scenarios and user stories is
discussed here.

4.1 Use Case Scenarios

Use case scenarios may have forms with different degrees of structuration. The less
structured form is similar to the plain text with the only exception that it describes
logical scenario or scenarios in a sequential manner. The more structured is a form with
numbered steps. Usually, this form contains slots for a use case name, a purpose or
short description, actors, preconditions, event flows, alternative event flows, postcon-
ditions and in some forms also a dependency from another use case [48, 49].

There are several mechanisms how cause-effect relations are expressed:

• A numbering (sequence) of steps,
• Keywords and predefined phrases for redirections and iterations,
• Dependency links,
• Discourse in plain text.

A numbering is the simplest way that allows indicating a sequence of events in the
flow. Successful termination of each preceding step initiates its direct subsequent
step. Thus, if each step represents just one event, then the current step is a cause of its
direct followers, i.e. effects.

32 E. Nazaruka

Redirections can be to the indicated step, to an alternative flow, from an alternative
flow and to the subordinated use case. If it is necessary to indicate causal dependency
to a numbered step, then some predefined phrases are used, e.g., “the use case con-
tinues at <flow> step <number>”. However, if an alternative flow can be expressed in
several sentences, then it does not contain numbered steps. It is expressed as a plain
text within the same step. The only indicator here is a group’s precondition. If an
alternative flow is not structured, then analysis of sentences or discourse is required.
Redirection from an alternative flow is used when a basic flow contains only the
“correct” flow of events without any redirections. Then an indicator to the basic flow is
in the point, where alternatives start, and is expressed by phrases like “In step
<number>, <precondition>, <step/event>”. Redirections to the subordinated use case
usually make a use of phrases that contains a keyword “include” together with a use
case name as a marker. An extending use case is invoked using its name as a marker
indicating a precondition before the invocation. In order to indicate iterative sequences
constructs For each <element>… end loop and While <action/event>… end loop or
similar are used.

Dependency links are used when there is a need to indicate another independent use
case. Here dependencies may be causal and non-causal, what can be inferred only by a
developer or an expert.

The main pitfall related to use case scenarios is that a step can be represented as a
discourse. Then, the same analysis of clauses and causal links (adverbial, prepositional,
subordination and clause integrated) is required. This means that a set of
linguistic/syntactic as well as semantic patterns must be predefined. For example, a step
may contain such text, “The customer enters a number of the product to make an
order”. A clause “to make an order” acts as an adverb. But “making an order” is a
separate event that must be analyzed whether it is a cause for the “entering” or it is just
an explanatory statement. Moreover, accuracy of discovering causes and effect will be
the same as in case of ordinary textual descriptions.

The conclusion is that structuration of use case scenarios solves the task just
partially, and the completeness and accuracy of discovering cause-effect pairs is highly
dependent on the using of short discourses in steps.

4.2 User Stories

User stories are another form of domain knowledge representation widely used in agile
software development. They are represented by sentences that expresses what a user
needs at the high level of abstraction [50]. There are many forms of a user story
description, but the general form is like “As a [role] I want [feature or function] so that
[value delivered to the business]” [51]. For instance, “As a Lecturer I want to add a
lecture presentation to my course so that my students are able to download it or view
online”. Branches and sequences of different user stories may be presented in a story
map by horizontal and vertical set of activities.

Looking at a user stories structure from the TFM construction perspective, one can
identify functional characteristics that are presented by features/functions as well as
within the value/benefit to the business. In case if they are single events, the former

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 33

element is a cause, while the second element is an effect. However, some form for a
free form description remains in the last two parts [52].

Researches on transforming user stories to other behavioral diagrams using NLP
mostly are related to derivation of use cases. Generation of an UML use case diagram
[50, 51] is based on identification of an actor as a nominal noun or a noun phrase, a use
case name as a predicates of a verb phrase and a noun that are associated to the actor,
and an association relationship derived from the link between the predicate and the
actor. The percentage of correctly obtained use cases and their relationships is 85–87%.

Researchers working on transforming user stories to test cases [53] note that a user
story can contain information similar to a use case scenario, namely, a story name, a
description, an actor, preconditions, postconditions and conditions of satisfaction, i.e. a
flow of events that constitute the correct execution of a feature/function. Here events
can be processed from the precondition’s, conditions’ and postcondition’s
phrases/sentences. Moreover, relations between causes and effects is equal to the
logical sequence of conditions. In order to simplify processing of sentences and
phrases, several restrictions on language constructs are put on. Thanks to them the
precision of NLP is more that 90%.

User story processing for creation of conceptual diagrams [52, 54] increases
accuracy of identification of events, i.e. pairs of the main verb and the main object.
Nevertheless, cause-effect pairs are not investigated there, causal relations can be
potentially obtained from a story map and corresponding sub-stories.

Processing natural language in user stories may help in discovering events. How-
ever, cause-effect pairs here match the pattern “what-why”. Other pairs may be
obtained only by considering the whole story map and processing sequences in it.

4.3 Benefits and Weaknesses

Considering use case scenarios vs user stories as inputs sources for cause-effect pairs
identification, it is clear that the both formats lack information for complete discovering
of the pairs.

Use case scenarios contain all flows in one specification, explicitly indicating
logical sequences and conditions. However, they lack cause-effect relations between
independent use cases. Since they are independent as paths with branches but rela-
tionships between paths cannot be inferred from the available information.

A user story can be used for identification of a single cause-effect pair. Chains of
causes and effects can be inferred only from a story map.

Therefore, from one side a part of cause-effect pairs can be discovered easier than
from a plain text. However, both formats allow free text adding. The free text has a
range from a phrase to a discourse. And here all the difficulties related to the NLP in
text appears, especially in a use case scenario. In this case, the only effective solution is
limitation of sentence structures and a size of the text.

34 E. Nazaruka

5 Conclusions

Discovering and extracting cause-effects pairs is vital for correct identification and
specification of system’s functional characteristics and causal dependencies between
them. Most of research papers investigate cases with one cause and one (or two)
sequential effects. The TFM may have relationships between causal relations. Thus,
multi causes and multi effects must be identified and extracted. However, there is just a
few research papers presenting results on this, since this is a quite hard task.

Starting point for extracting cause-effect pairs is preparation of a corpus of
linguistic/syntactic and sematic patterns as well as more thorough analysis of condi-
tionals. However, main issue with a use of the patterns is that it is impossible to identify
all patterns for all types of cause-effect relations. The expression means of the natural
language differ more than any set of predefined rules, as well as the same pattern may
be applied for both causal and non-causal relations. Moreover, pattern that include, for
example, causal adverbs and adjectives are not well investigated. Accuracy of identi-
fication of the pairs can be increased by using ML techniques for training a causal
model. However, a use of temporal models, filtering and ontology banks for creation of
a set of the patterns seems more promising for specialized (or narrow) domains than a
use of ML techniques.

The more prominent are hybrid solutions that use machine learning, ontology banks
and statistics. However, a challenge is their unsuitability for specific domains due to a
lack of an enough number of text corpuses for model training.

The two considered trends are controversial, since increasing of the accuracy by
ML, ontologies and statistics is expensive, while a use of only the linguistic/syntactic
patterns will always be unsatisfactory. The potential solution is limitation of the source
documents types to the specifications (requirements, scenario, etc.) having less vari-
ability in expressing causality. However, it requires manual effort for text-
preprocessing, what is likely to increase the cost of the development.

The future research direction is related to implementation of extracting causes and
effects from the description of system functioning and forming a knowledge base of
events and cause-effect pairs as well as finding a solution that would show acceptable
accuracy of results and will not be expensive for narrow domains.

References

1. Miller, J., Mukerji, J.: Model driven architecture (MDA) (2001)
2. Khoo, C., Chan, S., Niu, Y.: The many facets of the cause-effect relation. In: Green, R.,

Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships. ISKM, vol. 3, pp. 51–70.
Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0073-3_4

3. Nazaruka, E.: Meaning of cause-and-effect relations of the topological functioning model in
the UML analysis model. In: Proceedings of the 12th International Conference on Evaluation
of Novel Approaches to Software Engineering, pp. 336–345. SciTePress - Science and
Technology Publications (2017)

4. Kardoš, M., Drozdová, M.: Analytical method of CIM to PIM transformation in model
driven architecture (MDA). J. Inf. Organ. Sci. 34, 89–99 (2010)

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 35

https://doi.org/10.1007/978-94-017-0073-3_4

5. Kriouile, A., Gadi, T., Balouki, Y.: CIM to PIM transformation: a criteria based evaluation.
Int. J. Comput. Technol. Appl. 4, 616–625 (2013)

6. Kriouile, A., Addamssiri, N., Gadi, T., Balouki, Y.: Getting the static model of PIM from the
CIM. In: 2014 Third IEEE International Colloquium in Information Science and Technology
(CIST), pp. 168–173. IEEE, Tetouan (2014)

7. Kriouile, A., Addamssiri, N., Gadi, T.: An MDA method for automatic transformation of
models from CIM to PIM. Am. J. Softw. Eng. Appl. 4, 1–14 (2015). https://doi.org/10.
11648/j.ajsea.20150401.11

8. Bousetta, B., El Beggar, O., Gadi, T.: A methodology for CIM modelling and its
transformation to PIM. J. Inf. Eng. Appl. 3, 1–21 (2013)

9. Rhazali, Y., Hadi, Y., Mouloudi, A.: CIM to PIM transformation in MDA: from service-
oriented business models to web-based design models. Int. J. Softw. Eng. Appl. 10, 125–142
(2016). https://doi.org/10.14257/ijseia.2016.10.4.13

10. Essebaa, I., Chantit, S.: Toward an automatic approach to get PIM level from CIM level
using QVT rules. In: 2016 11th International Conference on Intelligent Systems: Theories
and Applications (SITA), pp. 1–6. IEEE, Mohammedia (2016)

11. Osis, J., Donins, U.: Topological UML Modeling: An Improved Approach for Domain
Modeling and Software Development. Elsevier, Amsterdam (2017)

12. Osis, J.: Topological model of system functioning. Autom. Comput. Sci. J. Acad. Sci. 6,
44–50 (1969). (in Russian)

13. Osis, J., Asnina, E., Grave, A.: Formal computation independent model of the problem
domain within the MDA. In: Zendulka, J. (ed.) Proceedings of the 10th International
Conference on Information System Implementation and Modeling, Hradec nad Moravicí,
Czech Republic, 23–25 April 2007, pp. 47–54. Jan Stefan MARQ (2007)

14. Osis, J., Asnina, E.: Topological modeling for model-driven domain analysis and software
development : functions and architectures. In: Model-Driven Domain Analysis and Software
Development: Architectures and Functions, pp. 15–39. IGI Global, Hershey (2011)

15. Osis, J., Slihte, A.: Transforming textual use cases to a computation independent model. In:
Osis, J., Nikiforova, O. (eds.) Model-Driven Architecture and Modeling-Driven Software
Development: ENASE 2010, 2nd MDA&MTDD Whs., pp. 33–42. SciTePress (2010)

16. Slihte, A., Osis, J., Donins, U.: Knowledge integration for domain modeling. In: Osis, J.,
Nikiforova, O. (eds.) Model-Driven Architecture and Modeling-Driven Software Develop-
ment: ENASE 2011, 3rd MDA&MDSD Whs., pp. 46–56. SciTePress (2011)

17. Elstermann, M., Heuser, T.: Automatic tool support possibilities for the text-based S-BPM
process modelling methodology. In: Proceedings of the 8th International Conference on
Subject-Oriented Business Process Management, S-BPM 2016, pp. 1–8. ACM Press, New
York (2016)

18. Nazaruka, E.: Identification of causal dependencies by using natural language processing: a
survey. In: Damian, E., Spanoudakis, G., Maciaszek, L. (eds.) Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to Software Engineering -
Volume 1: MDI4SE, pp. 603–613. SciTePress (2019)

19. Osis, J., Asnina, E.: Is modeling a treatment for the weakness of software engineering? In:
Model-Driven Domain Analysis and Software Development, pp. 1–14. IGI Global, Hershey
(2011)

20. Asnina, E.: The computation independent viewpoint: a formal method of topological
functioning model constructing. Appl. Comput. Syst. 26, 21–32 (2006)

21. Osis, J., Asnina, E., Grave, A.: MDA oriented computation independent modeling of the
problem domain. In: Proceedings of the 2nd International Conference on Evaluation of
Novel Approaches to Software Engineering, ENASE 2007, pp. 66–71. INSTICC Press,
Barcelona (2007)

36 E. Nazaruka

https://doi.org/10.11648/j.ajsea.20150401.11
https://doi.org/10.11648/j.ajsea.20150401.11
https://doi.org/10.14257/ijseia.2016.10.4.13

22. Osis, J., Asnina, E., Grave, A.: Formal problem domain modeling within MDA. In: Filipe, J.,
Shishkov, B., Helfert, M., Maciaszek, L.A. (eds.) ENASE/ICSOFT -2007. CCIS, vol. 22,
pp. 387–398. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88655-6_29

23. Šlihte, A., Osis, J.: The integrated domain modeling: a case study. In: Proceedings of the
11th International Baltic Conference on Databases and Information Systems (DB&IS 2014),
pp, 465–470. Tallinn University of Technology Press, Tallinn (2014)

24. Asnina, E., Ovchinnikova, V.: Specification of decision-making and control flow branching
in topological functioning models of systems. In: International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE 2015), pp. 364–373. SciTePress,
Barcelona (2015)

25. Khoo, C., Chan, S., Niu, Y., Ang, A.: A method for extracting causal knowledge from
textual databases. Singap. J. Libr. & Inf. Manag. 28, 48–63 (1999)

26. Solstad, T., Bott, O.: Causality and causal reasoning in natural language. In: Waldmann, M.
R. (ed.) The Oxford Handbook of Causal Reasoning. Oxford University Press, Oxford
(2017)

27. Ning, Q., Feng, Z., Wu, H., Roth, D.: Joint reasoning for temporal and causal relations. In:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Long Papers), pp. 2278–2288. Association for Computational Linguistics, Melbourne
(2018)

28. Altenberg, B.: Causal linking in spoken and written English. Stud. Linguist. 38, 20–69
(1984)

29. Girju, R.: Automatic detection of causal relations for question answering. In: Proceedings of
the ACL 2003 Workshop on Multilingual Summarization and Question Answering, pp. 76–
83. Association for Computational Linguistics, Morristown (2003)

30. Corrigan, R.: Causal attributions to the states and events encoded by different types of verbs.
Br. J. Soc. Psychol. 32, 335–348 (1993)

31. Corrigan, R., Stevenson, C.: Children’s causal attribution to states and events described by
different classes of verbs. Cogn. Dev. 9, 235–256 (1994)

32. Waldmann, M.R., Hagmayer, Y.: Causal reasoning. In: Reisberg, D. (ed.) Oxford Handbook
of Cognitive Psychology. Oxford University Press, New York (2013)

33. Asghar, N.: Automatic extraction of causal relations from natural language texts : a
comprehensive survey. CoRR abs/1605.0 (2016)

34. Mirza, P.: Extracting temporal and causal relations between events. In: Proceedings of the
ACL 2014 Student Research Workshop, pp. 10–17. Association for Computational
Linguistics, Baltimore (2014)

35. Mostafazadeh, N., Grealish, A., Chambers, N., Allen, J., Vanderwende, L.: CaTeRS : causal
and temporal relation scheme for semantic annotation of event structures. In: Proceedings of
the Fourth Workshop on Events, pp. 51–61. Association for Computational Linguistics, San
Diego (2016)

36. Khoo, C.S.G., Kornfilt, J., Oddy, R.N., Myaeng, S.H.: Automatic extraction of cause-effect
information from newspaper text without knowledge-based inferencing. Lit. Linguist.
Comput. 13, 177–186 (1998)

37. Hendrickx, I., et al.: SemEval-2010 task 8: multi-way classification of semantic relations
between pairs of nominals. In: Proceedings of the 5th International Workshop on Semantic
Evaluation, ACL 2010, Uppsala, Sweden, 15–16 July 2010, pp. 33–38. Association for
Computational Linguistics (2010)

38. Sorgente, A., Vettigli, G., Mele, F.: Automatic extraction of cause-effect relations in natural
language text. In: Lai, C., Semeraro, G., Giuliani, A. (eds.) Proceedings of the 7th
International Workshop on Information Filtering and Retrieval Co-Located with the 13th

An Overview of Ways of Discovering Cause-Effect Relations in Text by Using NLP 37

https://doi.org/10.1007/978-3-540-88655-6_29

Conference of the Italian Association for Artificial Intelligence (AI*IA 2013), pp. 37–48
(2013)

39. Dasgupta, T., Saha, R., Dey, L., Naskar, A.: Automatic extraction of causal relations from
text using linguistically informed deep neural networks. In: Proceedings of the 19th Annual
SIGdial Meeting on Discourse and Dialogue, pp. 306–316. Association for Computational
Linguistics, Stroudsburg (2018)

40. Mausam, Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for
information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pp. 523–
534. Association for Computational Linguistics (2012)

41. Kang, D., Gangal, V., Lu, A., Chen, Z., Hovy, E.: Detecting and explaining causes from text
for a time series event. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 2758–2768. The Association for Computational
Linguistics (2017)

42. Pearl, J.: The seven tools of causal inference, with reflections on machine learning.
Commun. Assoc. Comput. Mach. 62, 54–60 (2019). https://doi.org/10.1145/3241036

43. Blanco, E., Castell, N., Moldovan, D.: Causal relation extraction. In: Proceedings of the
Sixth International Conference on Language Resources and Evaluation (LREC 2008),
pp. 28–30. European Language Resources Association (ELRA) (2008)

44. Blass, J.A., Forbus, K.D.: Natural language instruction for analogical reasoning : an initial
report. In: Workshops Proceedings for the Twenty-Fourth International Conference on Case-
Based Reasoning (ICCBR 2016), pp. 21–30 (2016)

45. Cao, M., Sun, X., Zhuge, H.: The contribution of cause-effect link to representing the core of
scientific paper—the role of Semantic Link Network. PLoS ONE 13, 1–14 (2018). https://
doi.org/10.1371/journal.pone.0199303

46. Sorgente, A., Vettigli, G., Mele, F.: A hybrid approach for the automatic extraction of causal
relations from text. In: Lai, C., Giuliani, A., Semeraro, G. (eds.) Emerging Ideas on
Information Filtering and Retrieval. SCI, vol. 746, pp. 15–29. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-68392-8_2

47. Mueller, R., Hüttemann, S.: Extracting causal claims from information systems papers with
natural language processing for theory ontology learning. In: Proceedings of the 51st Hawaii
International Conference on System Sciences (HICSS). IEEE Computer Society Press,
Hawaii (2018)

48. Schneider, G., Winters, J.P.: Applying Use Cases: A practical Guide, 2nd edn. Pearson
Education Inc., London (2001)

49. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Use Case Approach, 2nd
edn. Addison-Wesley, Boston (2003)

50. Elallaoui, M., Nafil, K., Touahni, R.: Automatic transformation of user stories into UML use
case diagrams using NLP techniques. Procedia Comput. Sci. 130, 42–49 (2018). https://doi.
org/10.1016/j.procs.2018.04.010

51. Azzazi, A.: A framework using NLP to automatically convert user-stories into use cases in
software projects. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 17, 71–76 (2017)

52. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Extracting
conceptual models from user stories with Visual Narrator. Requir. Eng. 22, 339–358 (2017).
https://doi.org/10.1007/s00766-017-0270-1

53. Masud, M., Iqbal, M., Khan, M.U., Azam, F.: Automated user story driven approach for
web-based functional testing. Int. J. Comput. Inf. Eng. 11, 91–98 (2017)

54. Robeer, M., Lucassen, G., van der Werf, J.M.E.M., Dalpiaz, F., Brinkkemper, S.: Automated
extraction of conceptual models from user stories via NLP. In: 2016 IEEE 24th International
Requirements Engineering Conference (RE), pp. 196–205. IEEE (2016)

38 E. Nazaruka

https://doi.org/10.1145/3241036
https://doi.org/10.1371/journal.pone.0199303
https://doi.org/10.1371/journal.pone.0199303
https://doi.org/10.1007/978-3-319-68392-8_2
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1007/s00766-017-0270-1

From Requirements to Automated Acceptance
Tests with the RSL Language

Ana C. R. Paiva1,2(B), Daniel Maciel1, and Alberto Rodrigues da Silva3

1 Faculdade de Engenharia da Universidade do Porto,
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

apaiva@fe.up.pt
2 INESC TEC, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

daniel.ademar.maciel@gmail.com
3 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

alberto.silva@tecnico.ulisboa.pt

Abstract. Software testing can promote software quality. However, this activ-
ity is often performed at the end of projects where failures are most difficult
to correct. Combining requirements specification activities with test design at
an early stage of the software development process can be beneficial. One way
to do this is to use a more structured requirements specification language. This
allow to reduce typical problems such as ambiguity, inconsistency, and incor-
rectness in requirements and may allow the automatic generation of (parts of)
acceptance test cases reducing the test design effort. In this paper we discuss an
approach that promotes the practice of requirements specification combined with
testing specification. This is a model-based approach that promotes the alignment
between requirements and tests, namely, test cases and also low-level automated
test scripts. To show the applicability of this approach, we integrate two com-
plementary languages: (i) the ITLingo RSL (Requirements Specification Lan-
guage) that is specially designed to support both requirements and tests rigor-
ously and consistently specified; and (ii) the Robot language, which is a low-
level keyword-based language for specifying test scripts. This approach includes
model-to-model transformation processes, namely a transformation process from
requirements (defined in RSL) into test cases (defined in RSL), and a second
transformation process from test cases (in RSL) into test scripts (defined accord-
ing the Robot framework). This approach was applied in a fictitious online store
that illustrates the various phases of the proposal.

Keywords: Requirements Specification Language (RSL) · Test case
specification · Model-based Testing (MBT) · Test case generation · Test case
execution

1 Introduction

Software systems are becoming increasingly complex and operating on more critical
systems. This reality makes it more urgent to run software tests that promote the quality
of these systems. One aspect of software quality is its ability to meet the implicit and
c© Springer Nature Switzerland AG 2020

E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 39–57, 2020.
https://doi.org/10.1007/978-3-030-40223-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_3

40 A. C. R. Paiva et al.

explicit needs of customers. For this, it is important to reach a common understanding
between clients and developers about what should be developed.

Requirements Engineering (RE) helps to create the basis of understanding between
stakeholders and programmers about the software system to develop. The resulting sys-
tem requirements specification (SRS) document helps to structure the view on the soft-
ware system and allows [1–4] to agree between users and developers on the validation
and verification support of the scope of the project and support future system mainte-
nance activities. The problem is that the manual effort required to produce requirements
specifications is high and suffers from problems such as incorrectness, inconsistency,
incompleteness and ambiguity [2,3,6].

ITLingo is a long-term initiative aimed at researching, developing and applying rig-
orous IT specification languages, i.e., Requirements Engineering, Test Engineering and
Project Management [22]. ITLingo takes a linguistic approach to improve the accuracy
of technical documentation (e.g., SRS, test case specification, project plans) and, as a
consequence, promote productivity through reuse and model transformations as well as
promote systems quality through semi-automatic validation techniques.

Requirements Specification Language (RSL) is a controlled and integrated natu-
ral language with ITLingo that assists in the production of requirements specifications
in a systematic, rigorous and consistent manner [5]. RSL includes an advanced set of
constructs that are logically organized into views according to specific RE concerns at
different levels of abstraction, such as business, applications, software, or even hard-
ware levels.

Software testing can also be useful as a measure for assessing the software develop-
ment process by measuring the number of tests that pass or fail and conducting regres-
sion tests to foster product quality by alerting developers to potential defects as soon as
code is changed.

Acceptance tests are those that are most closely related to requirements as they
reflect what the end user considers important to test (needs, requirements and business
processes) to accept or not the software that is being developed [25].

To reduce the time and resources required, it may be helpful to perform acceptance
test design and specification requirements in parallel [11]. Although it is considered
a good practice to start testing activities at the beginning of the project when require-
ments are elicited, this does not always happen because elicitation and requirements
testing are separate in traditional development processes. This research paper presents
an approach based on the Model-Based Testing (MBT) technique [25] that aims to fos-
ter the initiation of testing activities early in line with the requirements specification.
MBT is a software testing approach that generates test cases from abstract representa-
tions of the system, named models, either graphical (e.g., Workflow models [16], PBGT
[19,20]) or textual (e.g., requirements documents in an intermediate format) [24].

Fig. 1. Key structural concepts [28].

From Requirements to Automated Acceptance Tests with the RSL Language 41

The process (Fig. 1) starts by producing RSL Requirements specifications based on
the set of constructs provided by the language and according to different perspectives
and concerns. From those Requirements, it is possible to generate RSL Test Cases spec-
ifications, and from these, to generate Test Scripts. Finally, those test scripts can be
automatically executed by the Robot Test Automation Tool1 in the application under
test.

This paper extends [28] in the following aspects:

– It extends Sect. “2.2 – Tests Specification” by detailing the grammar of RSL in
what concerns the following constructs: UseCaseTest, TestScenario, TestStep,
TestOperation and TestCheck.

– It adds new figures: one to illustrate the RSL/Tests Extension and another to illustrate
the Mapping process between GUI elements and keywords.

– It restructures Sect. 4 by splitting it into two sections: Sect. 4 to describe the overall
approach; Sect. 5 called “5 - Illustrative Example” where it illustrates, in more detail,
the applicability of the overall approach over a fictitious online store developed to
practice and validate the test automation.

– It extends the state of the art.

This paper is organized in 7 sections. Section 2 overviews the RSL language, show-
ing its architecture, levels of abstraction, concerns and grammar. Section 3 introduces
the concepts of the selected test automation tool, the Robot Framework. Section 4
presents the proposal approach with a running and illustrative example. Section 5
presents a case study illustrating the overall approach. Section 6 identifies and analyzes
related work. Finally, Sect. 7 presents the conclusion and future work.

2 RSL Language

ITLingo research initiative intends to develop and apply rigorous specification lan-
guages for the IT domain, such as requirements engineering and testing engineering,
with the RSL (Requirements Specification Language) [7–10,17,18]. RSL provides a
vast set of logically organized constructs in views that describe different concerns.
These constructs are defined by linguistic patterns which are represented textually
according to concrete linguistic styles [5]. RSL can be used and adapted by different
organizations because it is a process and tool independent language [5,22]. The con-
structs used by RSL can be classified according to two perspectives [22]: concerns and
abstraction levels. The concerns are: active structure (subjects), behaviour (actions),
passive structure (objects), requirements, tests, other concerns, relations and sets. The
abstraction levels are: business, application, software and hardware levels. This paper
focuses the discussion on the requirements and tests concerns and, in particular, focuses
on the RSL constructs particularly supportive of use case approaches (e.g. actors, use
cases, data entities and involved relationships) as it is further discussed in [22].

1 http://robotframework.org/.

http://robotframework.org/

42 A. C. R. Paiva et al.

2.1 Requirements Specification

Figure 2 shows a part of the RSL metamodel. It defines the hierarchy established among
requirement types, namely: goal, functional requirement, constraint, use case, user story
and quality requirement. This paper focuses only on the discussion of UseCase require-
ment and test types.

Fig. 2. RSL partial metamodel: the hierarchy of requirements [28].

RSL specifications based on Use Cases may involve defining some views with their
inherent constructs and relationships, namely:

– DataEntity view: defines the structural entities within an information system, com-
monly associated with data concepts captured and identified from domain analysis.
A Data Entity denotes an individual structural entity that may include specifying
attributes, foreign keys, and other verification data constraints;

– DataEntityCluster view: denotes a cluster of various structural entities that have a
logical arrangement with each other;

– Actor view: defines the participants of Use Cases or user stories. They represent end
users and external systems that interact directly with the system under study and,
in some particular situations, may represent timers or events that trigger the start of
some Use Cases;

– Use Case view: defines the use cases of a system under study. Traditionally, a use
case means a sequence of actions that one or more actors perform on a system to
achieve a specific outcome [12].

2.2 Tests Specification

RSL supports Test Cases specification and generation directly from the requirements
specifications. As shown in Fig. 3, RSL provides an hierarchy of Test constructs that
supports specifying the following test case specializations [22]:

– DataEntityTest are obtained from equivalence class partitioning and boundary value
analysis techniques applied over the domains defined for the DataEntities [23] in
RSL DataEntities;

From Requirements to Automated Acceptance Tests with the RSL Language 43

Fig. 3. RSL partial metamodel: the hierarchy of Tests [28].

– UseCaseTest explores different sequences of steps defined in RSL use cases’ sce-
narios, and associates data values to the involved DataEntities;

– StateMachineTest applies different algorithms to traverse RSL state machines so that
different test cases can be defined that correspond to valid or invalid paths through
their state machine;

– AcceptanceCriteriaTest defines acceptance criteria based on two distinct
approaches: scenario based (i.e., based on the Given-When-Then pattern) or rule
based; this test case is applied generically to any type of RSL Requirement.

Regardless of these specializations, a Test shall be set to Valid or Invalid depending on
the intended situation. In addition, it is possible to establish relationships with other test
cases through TestsRelation; these relationships can be classified as Requires, Supports,
Obstructs, Conflicts, Identical, and Relates.

With respect to the different RSL Test constructs described, UseCaseTests best fit
the acceptance test. Figure 4 shows the structure and relationships of UseCaseTests.
A UseCaseTest (Listing 1.1) inherits UseCase data associated with it, including
Actors. Optionally, it is possible to add variables for testing purposes as well.

An UseCaseTest may have different TestScenarios (Listing 1.2). Each scenario
must have, at least, one TestStep and, if necessary, values assigned to DataEntities
and V ariables. Since DataEntities are entities of the Application Under Test, it may
be useful to create instances of these entities and assign them values that may be used
later in test cases.

44 A. C. R. Paiva et al.

Fig. 4. RSL/tests extension.

Listing 1.1. UseCaseTest RSL grammar [31].

UseCaseTest:
‘UseCaseTest’ name=ID (nameAlias=STRING)? ‘:’ type=TestType (‘[’
‘useCase’ useCase=[UseCase | QualifiedName]
(‘actorInitiates’ actorInitiates=[Actor | QualifiedName])
(‘actorParticipates’ actorParticipates+=RefActor)?
(‘background’ background=[UseCaseTest | QualifiedName])?
(variables+=TestVariable)∗
(scenarios+=TestScenario)∗
(tags+=Tag)∗
(‘description’ description=STRING)?
‘]’)?;

Variables are temporary data that may be exchanged among TestSteps, e.g., a vari-
able may be used to save text needed to validate the dynamic content on the GUI.

Listing 1.2. TestScenario RSL grammar [31].

TestScenario:
‘testScenario’ name=ID (nameAlias=STRING)? ‘:’ type=ScenarioType (‘[’
((isConcrete ?= ‘isConcrete’) | (isAbstract ?= ‘isAbstract’))?
(‘variable’variable= [TestVariable | QualifiedName] (‘withValues’ ‘(’
variableTable= DataVariableValues ‘)’))?
(‘dataEntity’ entity= [DataEntity | QualifiedName] (‘withValues’ ‘(’ entityTable=
DataAttributeValues ‘)’))?
(‘executionMode’ mode=(‘Sequential’|‘Parallel’))?
(‘description’ description=STRING)?
testSteps+= TestStep+
‘]’)?;

The TestStep (Listing 1.3) is classified by a StepOperationType and, optionally,
by a StepOperationSubType. The operation types are used to define the action that
are performed in each step.

From Requirements to Automated Acceptance Tests with the RSL Language 45

Listing 1.3. TestStep RSL grammar [31].

TestStep:
‘step’ name=ID ‘:’ type=StepOperationType (‘:’ extension=OperationExtension)? (‘[’
(simpleTestStep= SimpleTestStep);

OperationExtension:
(subType=StepOperationSubType)
((target=TestOperationTarget)|(check=TestCheck))?;

enum StepOperationType: Actor PrepareData | Actor CallSystem | System Execute | System ReturnResult | Other |
None;

enum StepOperationSubType: OpenBrowser | CloseBrowser | Reload | GetData | PostData | Select | Click | Over |
Check | Other;

There are four general types of operations performed in TestSteps [30]:

– Actor PrepareData: input data will be entered by the actor, such as text, pass-
words or even choose a file to upload;

– Actor CallSystem: actions performed by the actor in the application, e.g., click a
button, select checkbox;

– System ReturnResult: collect application data to be stored in temporary vari-
ables. This is usually helpful to perform some type of verification;

– System Execute: actions executed by the system, e.g., open the browser and vali-
dations.

The StepOperationSubTypes are an extension of the previous types specifying
the operations performed. These sub types are [31]:

– Open/CloseBrowser: action to open/close the browser;
– Reload: action to reload the browser page;
– GetData: action to collect specific data from the AUT;
– PostData: action to post specific data to the AUT;
– Select/Click/Over: to specify the action to be performed in an AUT element;
– Check: action to verify some AUT content or response; Each step operation must

have a target (TestOperationTarget) or a verification (TestCheck) depending on the
action associated (Listing 1.4).

If the action is an interaction with a GUI element, the TestOperationTarget (List-
ing 1.4) will specify that element through the OperationTargetType. It can be a but-
ton, a generic element, a checkbox or a list. Additionally, the OperationTargetType
may also be used to clarify if such element is used to “write to” or to “read from”.
Finally, the TestOperationTarget can also have a description that is sent as a param-
eter through a variable value or a string.

46 A. C. R. Paiva et al.

Listing 1.4. TestOperation and TestCheck RSL grammar [31].

TestOperationTarget:
(type=OperationTargetType)
((variable+=[DataAttribute | QualifiedName] (‘,’variable+=[DataAttribute |
QualifiedName])∗)|
(‘(’ content+=(STRING) (‘,’content+=STRING)∗ ‘)’))?;
enum OperationTargetType : button | element | checkbox | listByValue | readFrom |
writeTo;

TestCheck:
(type=CheckType) (‘(’
(variable=[DataAttribute | QualifiedName] ‘=’ expected=[DataAttribute |
QualifiedName])?
(‘text’ (textVariable=[DataAttribute | QualifiedName]| textString=STRING))?
(‘timeout’ (timeoutVariable=[DataAttribute | QualifiedName]| timeoutINT=
DoubleOrInt) metric=Metric?)?
(‘limit’ (limitVariable=[DataAttribute | QualifiedName]| limitINT=INT))?
(‘url’ (urlVariable=[DataAttribute | QualifiedName]| urlString=STRING))?
(‘code’ (codeVariable=[DataAttribute | QualifiedName]| codeString=STRING))?
‘)’);
enum CheckType: textOnScreen | textOnElement | elementOnScreen | responseTime | variableValue | script | screen |

Other | None;

The TestCheck defines the validation to perform in the step where it was specified.
There are seven types of validations (CheckTypes) and each of them has different
parameters. Table 1 shows the set of validations available. Each TestScenario must
end with a TestStep that has a TestCheck. If the check succeeds the test passes. If the
check does not succeeds, the test fails.

Table 1. Test step validations [31].

CheckType Parameter Validation

textOnScreen text checks if a specific text is presented in the GUI

textOnElement text checks if a specific text is presented in a specific element
of the GUI

elementOnScreen limit? checks if a specific element is presented in the GUI.
If a limit is sent as parameter checks if a specific
element appears less than the limit established

responseTime timeout checks if the response time is less or equal
than the given timeout

variableValue variable checks if a variable value is equal to the expected value

expected

screen URL checks if the page represents the given URL

script Code uses a custom script to validate an unusual case

3 Robot Framework

Test cases can be run manually by the tester or automatically by a test automation tool.
When a test case is run manually, the tester must execute all test cases and have to
repeat the same tests several times throughout the product life cycle. On the other hand,

From Requirements to Automated Acceptance Tests with the RSL Language 47

when test cases are run automatically, there is the initial effort to develop test scripts,
but from there, the execution process will be automatic. Therefore, if a test case is to be
run multiple times, the automation effort will be less than the effort of frequent manual
execution.

The Robot framework stands out for its powerful keyword-based language, which
includes out-of-the-box libraries. The robot does not require any implementation as it
is possible to use keywords with implicit implementations (using specific libraries such
as Selenium2). Robot is open source and related to acceptance test-driven development
(ATDD) [27]. It is operating system independent and is implemented natively in Python
and Java, and can be run on Jython (JVM) or IronPython (.NET).

The structure of the script is simple and can be divided into four sections. The
first section, Settings, where the paths to helper files and libraries used are set. The
second section, Variables, specifies the list of variables used as well as the associated
values. The third and most important section is the Test Cases, where test cases are
defined. Finally, the Keywords section defines custom keywords to implement the test
cases described in the Test Cases section. Among all four sections, only Test Cases is
mandatory.

As seen in the example shown in Listing 1.5, the libraries used are initially defined.
One of the most widely used is the Selenium library, which introduces keywords related
to interactive application testing, such as ‘Open Browser’ and ‘Input text’. The variables
section assigns ‘Blouse’ to the variable ‘product’ so whenever ‘product’ is used it has
the value ‘Blouse’. The Keywords section defines keywords and their parameters. In
test cases that use keywords, the values are assigned to the corresponding parameters,
placing the values in the same place where the parameters are set.

Listing 1.5. Robot Framework specification example [28].

∗∗∗ Settings ∗∗∗
Documentation Web Store Acceptance Test
Library Selenium2Library

∗∗∗ Variables ∗∗∗
${product} Blouse

∗∗∗ Test Cases ∗∗∗
Login
Open the browser on <www.http://automationpractice.com>
Input Text id=searchBar ${product}
...

∗∗∗ Keywords ∗∗∗
Open the browser on <$(url)>

Open Browser $(url)

4 Proposed Approach

Although it is considered a good practice to start testing activities early in the project,
this is not frequently the common situation due to the traditional separation between the
requirements and testing phases. This research intends to reduce this problem through a

2 www.seleniumhq.org/.

www.seleniumhq.org/

48 A. C. R. Paiva et al.

framework that encourages and supports both requirements and tests practices, namely
by generating test cases from requirements or, at least, foster the alignment of such
test cases with requirements. The proposed approach (defined in Fig. 5) begins with the
(1) requirements specification that serves as a basis for the (2) test cases specification,
which can be further (3) refined by the tester. Then, (4) tests scripts are generated auto-
matically from the high-level test cases, and (5) associated the Graphical User Interface
(GUI) elements. Finally, (6) these test scripts are executed generating a test report.

Fig. 5. Proposed approach (UML activity diagram) [31].

This set of tasks covers the process of acceptance tests in interactive applications
from the specification of requirements to the execution of tests. Applying the approach
will establish an alignment between the specification of requirements and the specifi-
cation of tests, in addition to increasing the processes automation. Besides the use and
extension of the RSL grammar, the approach also uses support tools such as the Robot
framework and Web Scrapper.

4.1 Specify Requirements

The first task of this approach is the requirements definition, an activity that usu-
ally involves the intervention of requirements engineers, stakeholders and eventually
testers. After reaching a consensus, the specification of the requirements in RSL fol-
lows, through the constructs provided by the language that most fit the requirements
domain. In this approach, the specification focuses on the most relevant RSL con-
structs at the application and software level, namely: Actor, UseCase, DataEntity
and involved relationships. This task is usually performed by business analysts or by
requirement engineers.

4.2 Specify Test Cases

UseCaseTests are derived from the various process flows expressed by a RSL
UseCase. Each test contains multiple test scenarios which encompasses of a group
of test steps. From the requirement specifications, it is possible to specify test cases.
UseCaseTest construct begins by defining the test set, including ID, name and the
usecasetype. Then it encompasses the references keys [UseCase] indicating the Use
Case in which the test is proceeding and [DataEntity] referring to a possible data
entity that is managed.

In the UseCaseTest specification, the respective UseCase and DataEntities
specifications are associated, temporary variables are initialized, the TestScenarios

From Requirements to Automated Acceptance Tests with the RSL Language 49

are specified where values are assigned to the variables and TestSteps are inserted
which contain the necessary information for the test scripts.

4.3 Refine Test Cases

Generated test cases may be refined manually (e.g., assign values to entities and create
temporary variables), which results in other test cases.

The information introduced in the requirements specification phase and the RSL
constructs allow to simplify the test cases construction.

The DataEntities and the temporary V ariables are fundamental for transmitting
data between the TestSteps involved in the test and are defined within TestScenarios.

The values of DataEntities and V ariables may be defined in table. By using this
table structure, when an attribute is associated with N values, the test scenario may be
executed N times (one time for each value in the table).

4.4 Generate Test Scripts

Once the specification is complete, the generation of the test scripts for the Robot tool
follows. This generation process is based on relations established between the RSL
specification and the syntax of the Robot framework. An association of the RSL con-
cepts with the Robot framework syntax and some of the keywords made available by
the Selenium library are shown in Table 2.

Table 2. Mapping between test case (RSL) and test scripts (Robot) [28].

Step type Operation
extension type

Operation
extension

Keyword generated

Actor PrepareData Input readFrom INPUT TEXT $locator $variable

Actor CallSystem Select checkbox SELECT CHECKBOX $locator

list by value SELECT FROM LIST BY VALUE
$locator $value

Click button CLICK BUTTON $locator

element CLICK ELEMENT $locator

Over – MOUSE OVER $locator

System ReturnResult GetData writeTo $variable GET TEXT $locator

System Execute OpenBrowser – OPEN BROWSER $url

CloseBrowser – CLOSE BROSER

PostData readFrom INPUT TEXT $locator $variable

Check textOnPage PAGE SHOULD CONTAIN $text

elementOnPage PAGE SHOULD CONTAIN
ELEMENT $locator $msg? $limit?

textOnElement ELEMENT SHOULD CONTAIN
$locator $text

responseTime WAIT UNTIL PAGE CONTAIN
ELEMENT $locator $timeout?

variableValue $variable = $expected

jScript EXECUTE JAVASCRIPT $code

50 A. C. R. Paiva et al.

4.5 Map GUI Elements to Keywords

At this phase of the process, there is the need to complete the test scripts generated
previously with the locators [26], i.e. queries that return a single GUI element which
are used to locate the target GUI elements (e.g., GUI element identifier, xpath, CSS
selector).

This mapping can be established by the user inserting directly the identifiers of the
UI elements in the test script, or by using a ‘point and click’ process (similar to the one
presented in [21]). In this last option Table 2, the user accesses the AUT and, with the
help of the Web Scrapper, points to the desired elements.

The Web Scrapper saves the locators (unique CSS selector) and exports this infor-
mation to JSON code. Then, the tester can execute the Mapping script that creates a
XML file with the relation between locators found and the ones missing from the Robot
test script generated previously. For this process to succeed, it is important to maintain
consistency between the descriptions of the elements in both Web Scrapper and test case
specification. Finally, the tester may execute the Replacement Script that completes the
Robot Script with the locators based on the data provided in the XML file.

Fig. 6. Map GUI Elements to keywords (UML activity diagram) [31].

4.6 Execute Tests

The generated test script is executed by using the Robot framework. For that, the user
should use, at the command prompt, following command:

robot[script name].robot
During execution, a browser instance will open performing automatically every

steps specified in the test script while showing the results of each test case at the com-
mand prompt.

5 Illustrative Example

In order to illustrate and discuss the suitability of the proposed approach, we show its
application with an interactive web application as the application under test (AUT). We

From Requirements to Automated Acceptance Tests with the RSL Language 51

selected the “Web Store”3 app: This is a popular e-commerce web site developed on
purpose to practice test automation. It simulates common online shopping workflows.
Figure 7 shows the home page of this online store.

Fig. 7. Web Store application - Search Product [31].

We consider the use case “Search Product” because it is a simple and illustrative
example. In this use case, the user searches for a product by its name and the number
of items matched must be equal to the expected one defined in the respective test case.

After the requirements specification, that is partially shown in Listing 1.6, it follows
the definition of test cases, where the relationships between the (use case) requirement
and the (use case) tests are kept. A UseCaseTest is generated or manually created
based and aligned with the corresponding UseCase. After that, the test case can be
refined with TestScenarios, TestSteps and references to involved DataEntities
and V ariables.

Listing 1.6. Example of a RSL specification of DataEntity Actor and UseCase [28].

DataEntity e Product ‘‘Product’’ : Master [
attribute ID ‘‘ID’’ : Integer [isNotNull isUnique]
attribute title ‘‘title’’ : Text [isNotNull]
attribute price ‘‘Price’’ : Integer [isNotNull]
attribute composition ‘‘Composition’’ : Text
attribute style ‘‘Style’’ : Text
attribute properties ”Properties” : Text
primaryKey (ID)]

Actor aU Customer ‘‘Customer’’ : User [
description ”Customer uses the system”]

UseCase uc Search ‘‘Search Products’’ : EntitiesSearch [
actorInitiates aU Customer
dataEntity e Product]

...

3 http://automationpractice.com.

http://automationpractice.com

52 A. C. R. Paiva et al.

Listing 1.7 shows a test case specified and refined with the necessary information to
define such tests. In this case, two variables were associated. The first one, v1.search,
is the keyword used to input the name of the search products; the second variable,
v1.expected, is used to define the number of results expected.

Listing 1.7. Example of ‘Search Products’ test case RSL specification [28].

UseCaseTest t uc Search ‘‘Search Products’’ : Valid [
useCase uc Search actorInitiates aU User
description ‘‘As a User I want to search for a product by name or descripton’’
variable v1 [

attribute search: String
attribute expectedResults: String

]

testScenario Search Products :Main [
isConcrete
variable v1 withValues (
| v1.search | v1.expectedResults +|
| ‘‘Blouse’’ | ‘1’ +|
| ‘‘Summer’’ | ‘3’ +|)
step s1:Actor CallSystem:Click element(‘Home’)[‘‘The User clicks on the Home’ element’’]
step s2:Actor PrepareData:PostData readFrom v1.search [‘‘The User writes a word or phrase in the search text field

’’]
step s3:Actor CallSystem:Click button(‘Search Product’)[‘‘The User clicks on the ‘Search’ button’’]
step s4:System Execute:Check elementOnScreen(limit v1.expectedResults) [‘‘The

System checks if the number of results is the expected one’’]]

In the TestScenario (Listing 1.7) it is defined the ordered steps that are necessary
to perform the actions to get the number of search results and compare it with the
expected number.

Once the test case specification is completed, it follows the generation of the equiva-
lent test scripts for the Robot framework: that code generator (integrated in the ITLingo-
Studio) generates a set of test scripts (in Robot language), resulting in a script similar to
the one shown in Listing 1.8. However, there still miss the elements locators specified
in the script, so that the Robot framework could know in which concrete elements of
the AUT it shall perform the command specified by the test script.

Listing 1.8. Generated Test Script example (in Robot) [28].

∗∗∗ Variables ∗∗∗
${search1} Blouse
${search2} Summer
${expectedResults1} 1
${expectedResults2} 4

∗∗∗ Test Cases ∗∗∗
Search Products−Test 1

[Documentation] As a User I want to search for a product by name or descripton
Click element [Home]
Input text [Search Bar] ${search1}
Click button [Search Product]
Page Should Contain Element [Product box] limit=${expectedResults1}

Search Products−Test 2
[Documentation] As a User I want to search for a product by name or descripton
Click element [Home]
Input text [Search Bar] ${search2}
Click button [Search Product]
Page Should Contain Element [Product box] limit=${expectedResults2}

From Requirements to Automated Acceptance Tests with the RSL Language 53

To provide this missing information, it is necessary to map GUI elements with
appropriate keywords as suggested in Fig. 6.

Fig. 8. Web Scrapper [31].

For that purpose the tester shall access the AUT and shall point to the desired ele-
ments with the help of the Web Scrapper (Fig. 8). The information of every locators is
exported to the JSON file. After executing the Mapping script, the XML file (Fig. 9) is
generated with the information about the missing locators of the previous phase. Finally,
the replacement scripts fills in the missing information resulting in a concrete script as
illustrated in Listing 1.9. In this Listing it is possible to see that css : img.logo is the
CSS locator for the element that redirects the user to the “Home Page”. Once complete,
the test script will be able to be executed.

Listing 1.9. Test Script with GUI elements xpath (in Robot) [31].

∗∗∗ Variables ∗∗∗
${search1} Blouse
${search2} Summer
${expectedResults1} 1
${expectedResults2} 4

∗∗∗ Test Cases ∗∗∗
Search Product−Test 1

[Documentation] As a User I want to search for a product by name or descripton
Click Element css:img.logo
Input text css:input.search query ${search1}
Click button css:div.col−sm−4 button.btn
Page should contain element css:li.ajax block product limit=1

Search Product−Test 2
[Documentation] As a User I want to search for a product by name or descripton
Click Element css:img.logo
Input text css:input.search query ${search2}
Click button css:div.col−sm−4 button.btn
Page should contain element css:li.ajax block product limit=3

54 A. C. R. Paiva et al.

Fig. 9. XML file – Map between locators and test script [31].

Once the script is completely filled in, these test scripts can be executed and such test
results can be obtained, as shown in Fig. 10. Regarding the use case “product search”,
when searching for products associated to the word Blouse (Test 1), the test returned
“1” which is the expected result and so, the test succeeded. On the other hand, when
searching for products related to the word Summer (Test 2), the test returned “4”
products which is different from the expected result (“3”) and so, the test failed.

Fig. 10. Result of the test case execution [28].

6 Related Work

It is common to derive acceptance test cases for complex IT systems manually from
functional requirements described in natural language. This manual process is chal-
lenging and time consuming.

One way to diminish this effort is to generate test cases automatically from textual
or graphical models. This is not a new idea. In fact, there are some approaches that
require graphical models (e.g. workflow models [16], or domain models [13]) or, others,
requiring textual models (e.g., use cases [14,15]) of the system.

The approach followed by [16] uses a workflow notation in which the focus is the
casual relationship of the steps without specification of detailed message exchange and
data. From these models it is possible to generate end-to-end test cases that are auto-
mated using the Junit4 testing framework. This approach does not align requirements
and tests like the one described in this paper.

In [13], the UMTG (Use Case Modeling for System Tests Generation) approach
generates automatically system test cases from use case specifications and domain mod-
els (class diagram and constraints). This research work does not include any test execu-
tion automation tool to run the generated tests.

Hsieh et al. [14] proposed the Test-Duo framework for generating (and executing)
acceptance tests from use cases. The testers add specific use cases annotations to clar-
ify the system behaviour. The final test scripts are compatible with Robot framework.
However, this approach does not align requirements with tests.

4 https://junit.org/junit5/.

https://junit.org/junit5/

From Requirements to Automated Acceptance Tests with the RSL Language 55

TestMEReq is an automated tool for early validation of requirements [15] described
by semi-formalized abstract models called Essential Use Cases. From these abstract
models it generates abstract test cases to help validate the requirements. This approach
does not include the execution of the generated abstract test cases.

In [29], the authors present the design of a test automation platform, ETAP-Pro, to
test end-to-end business processes that aims to overcome some challenges in validating
business processes. ETAP-Pro works over BPMN models and is based on a keyword-
driven approach. It generates test cases specifications in Gherkin. This approach pro-
motes alignment between test cases and requirements since it maintains traceability
information among test cases, requirements and keywords. However, test scripts should
be generated manually to be executed afterwords.

In contrast with some tools and approaches mentioned above, our proposal particu-
larly promotes the alignment between high-level requirements and tests specifications,
and with low-level test scripts, that is ensured by the adoption of languages like RSL
and Robot. In addition, this proposal promotes the quality and productivity of both
(Requirements an Testing) tasks by considering model-to-model transformation fea-
tures (e.g., RSLfrom Requirements into RSL Test Cases, or from RSL Test Cases into
Robot Test Scripts), and execution of Robot Test Scripts, with the integration of tools
like ITlingo-Studio and Robot framework.

7 Conclusion

This paper describes a model-based testing approach where acceptance test cases are
derived from RSL requirements specifications and automatically adapted to the test
automation Robot framework to be executed against a web application under test.

This process begins with the requirements elicitation and specification in the RSL.
From these requirement specifications (defined in RSL) are created manually or gen-
erated test case specifications (also in RSL), which are strongly kept aligned. When
these test cases are completely defined, a second model-to-model transformation pro-
cess is performed, which produces quasi-executable test scripts (in Robot language),
which needs to be mapped to concrete GUI elements before be executable by the Robot
framework. This generation is based on mappings between the characteristic constructs
of RSL and the GUI elements identifiers of the AUT with the syntax of the Robot
automation tool. Once test scripts are completed, they are executed and the results pre-
sented in a test execution report.

This approach encourages the practice of specifying both requirements and tests
during the early stages of the projects, and keeping these specifications aligned with
each other. It also promotes the productivity by reducing manual effort, time and
resources dedicated to the development of tests, also ensures higher quality of require-
ments. The adoption of a language like RSL, that supports both requirements and tests
specification in a more consistent and systematic way, is therefore less prone to errors
and ambiguities.

As future work, we intend to extensively apply this approach in both controlled
and real-world scenarios. We also intend to further improve the productivity of the pro-
posed approach by automatically generating RSL test specifications from RSL require-
ment specifications (e.g., considering other types of test cases and other situations like

56 A. C. R. Paiva et al.

security or performance) and generating these test specifications into executable
test scripts that may be executed by multiple test automation frameworks, such as
Gherkin/Cucumber5.

Acknowledgements. This work was partially supported by national funds under FCT projects
UID/CEC/50021/2019 and 02/SAICT/2017/29360.

References

1. Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley, Boston (2000)
2. Kovitz, B.L.: Practical Software Requirements: Manual of Content and Style. Manning Pub-

lications, Greenwich (1998)
3. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting Requirements

Right, 3rd edn. Addison-Wesley Professional, Boston (2012)
4. Withall, S.: Software Requirements Patterns, 1st edn. Microsoft Press (2007)
5. Silva, A.R.: Linguistic patterns and linguistic styles for requirements specification (i): an

application case with the rigorous RSL/business-level language. In: Proceedings of the 22nd
European Conference on Pattern Languages of Programs. ACM (2017)

6. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques, 1st edn.
Springer, Heidelberg (2010)

7. Ferreira, D.A., Silva, A.R.: RSLingo: an information extraction approach toward for-
mal requirements specifications. In: 2nd IEEE International Workshop on Model-Driven
Requirements Engineering, MoDRE 2012 - Proceedings, pp. 39–48 (2012)

8. Videira, C., Ferreira, D., Silva, A.R.: A linguistic patterns approach for requirements specifi-
cation. In: Proceeding 32nd Euromicro Conference on Software Engineering and Advanced
Applications (Euromicro 2006). IEEE Computer Society (2006)

9. Ferreira, D.A., Silva, A.R.: RSL-PL: a linguistic pattern language for documenting software
requirements. In: 3rd International Workshop on Requirements Patterns, RePa 2013 - Pro-
ceedings, pp. 17–24 (2013)

10. Ferreira, D.A., Silva, A.R.: RSL-IL: an interlingua for formally documenting requirements.
In: 3rd International Workshop on Model-Driven Requirements Engineering, MoDRE 2013
- Proceedings, pp. 40–49 (2013)

11. Silva, A.R., Saraiva, J., Ferreira, D., Silva, A.R., Videira, C.: Integration of RE and MDE
paradigms: the ProjectIT approach and tools. IET Softw. 1, 294–314 (2007)

12. Jacobson, I., et al.: Object Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, Boston (2015)

13. Wang, C., Pastore, F., Goknil, A., Briand, L., Iqbal, Z.: Automatic generation of system test
cases from use case specifications. In: Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pp. 385–396 (2015)

14. Hsieh, C., Tsai, C., Cheng, Y.C.: Test-duo: a framework for generating and executing auto-
mated acceptance tests from use cases. In: 8th International Workshop on Automation of
Software Test, AST 2013 - Proceedings, pp. 89–92 (2013)

15. Moketar, N.A., Kamalrudin, M., Sidek, S., Robinson, M., Grundy, J.: TestMEReq: generat-
ing abstract tests for requirements validation. In: Proceedings - 3rd International Workshop
on Software Engineering Research and Industrial Practice, SER and IP 2016, pp. 39–45
(2016)

5 https://cucumber.io/.

https://cucumber.io/

From Requirements to Automated Acceptance Tests with the RSL Language 57

16. Boucher, M., Mussbacher, G.: Transforming workflow models into automated end-to-end
acceptance test cases. In: Proceedings - 2017 IEEE/ACM 9th International Workshop on
Modelling in Software Engineering, MiSE 2017, pp. 68–74 (2017)

17. Silva, A.R., Paiva, A.C.R., Silva, V.: Towards a test specification language for information
systems: focus on data entity and state machine tests. In: Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD)
(2018)

18. Silva, A.R., Paiva, A.C.R., Silva, V.: A test specification language for information systems
based on data entities, use cases and state machines. In: Hammoudi, S., Pires, L., Selic, B.
(eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 455–474. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-11030-7 20

19. Moreira, R.M.L.M., Paiva, A.C.R., Nabuco, M., Memon, A.: Pattern-based GUI testing:
bridging the gap between design and quality assurance. Softw. Test. Verif. Reliab. 27(3),
e1629 (2017)

20. Moreira, R.M.L.M., Paiva, A.C.R.: PBGT tool: an integrated modeling and testing environ-
ment for pattern-based GUI testing. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 2014, pp. 863–866 (2014)

21. Paiva, A.C.R., Faria, J.C.P., Tillmann, N., Vidal, R.A.M.: A model-to-implementation map-
ping tool for automated model-based GUI testing. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/
11576280 31

22. Silva, A.R.: Rigorous specification of use cases with the RSL language. In: Proceedings of
International Conference on Information Systems Development 2019. AIS (2019)

23. Bhat, A., Quadri, S.M.K.: Equivalence class partitioning and boundary value analysis - a
review. In: 2nd International Conference on Computing for Sustainable Global Development
(INDIACom) (2015)

24. Paiva, A.C.R.: Automated specification-based testing of graphical user interfaces. Ph.D. the-
sis, Faculty of Engineering of the University of Porto, Porto, Portugal (2007)

25. ISTQB, ISTQB & #x00AE; Foundation Level Certified Model-Based Tester Syllabus (2015)
26. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated end-to-

end web testing. In: Advances in Computers, 1st edn., vol. 101, pp. 193–237. Elsevier Inc.
(2016)

27. ISTQB, ISTQB & #x00AE; Foundation Level Extension Syllabus Agile Tester, p. 28 (2014)
28. Maciel, D., Paiva, A.C.R., Silva, A.R.: From requirements to automated acceptance tests of

interactive apps: an integrated model-based testing approach. In: 14th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering (ENASE) (2019)

29. Paiva, A.C.R., Flores, N.H., Faria, J.C.P., Marques, J.M.G.: End-to-end automatic business
process validation. In: the 8th International Symposium on Frontiers in Ambient and Mobile
Systems (FAMS) (2018)

30. Silva, A.R., Savic, D., et al.: A pattern language for use cases specification. In: Proceedings
of EuroPLOP 2015. ACM (2015)

31. Maciel, D.A.M.: Model based testing - from requirements to tests. MSc thesis, Master in
Informatics and Computing Engineering, Faculty of Engineering of the University of Porto,
Portugal (2019)

https://doi.org/10.1007/978-3-030-11030-7_20
https://doi.org/10.1007/11576280_31
https://doi.org/10.1007/11576280_31

Experimenting with Liveness in Cloud
Infrastructure Management

Pedro Lourenço1,3, João Pedro Dias1,2,3(B), Ademar Aguiar1,2,3,
Hugo Sereno Ferreira1,2,3, and André Restivo1,2,3

1 DEI, Faculty of Engineering, University of Porto, Porto, Portugal
{pedro.lourenco,jpmdias,ademar.aguiar,hugosf,arestivo}@fe.up.pt

2 INESC TEC, Porto, Portugal
3 LIACC, Porto, Portugal

Abstract. Cloud computing has been playing a significant role in the
provisioning of services over the Internet since its birth. However, devel-
opers still face several challenges limiting its full potential. The difficulties
are mostly due to the large, ever-growing, and ever-changing catalog of
services offered by cloud providers. As a consequence, developers must
deal with different cloud services in their systems; each managed almost
individually and continually growing in complexity. This heterogeneity
may limit the view developers have over their system architectures and
make the task of managing these resources more complex. This work
explores the use of liveness as a way to shorten the feedback loop between
developers and their systems in an interactive and immersive way, as
they develop and integrate cloud-based systems. The designed approach
allows real-time visualization of cloud infrastructures using a visual city
metaphor. To assert the viability of this approach, the authors conceived
a proof-of-concept and carried on experiments with developers to assess
its feasibility.

Keywords: Cloud computing · Internet-of-things software
engineering · Live programming

1 Introduction

The concept of cloud computing was predicted back in 1961 by John McCarthy.
He stated that “computing may someday be organized as a public utility just as
the telephone system is a public utility” [10]. However, it was only in the early
2000’s that this prediction became a reality with the introduction of the Elastic
Compute Cloud (EC2) developed by Amazon Web Services (AWS)—an Amazon
subsidiary [3]—providing computing power in an on-demand self-service way.
Currently, AWS offers more than ninety distinct services spread among twenty
different categories [39], and more companies are providing this kind of services,
e.g., Google and Microsoft.

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 58–82, 2020.
https://doi.org/10.1007/978-3-030-40223-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_4

Experimenting with Liveness in Cloud Infrastructure Management 59

These services are typically made available to the general public, as what is
known as public cloud hosting solution, in a pay-as-you-go fashion by the so-
called Cloud Services Providers [7], who monitor, meter, and price the usage of
resources, depending on service type and usage.

Different service models are offered by cloud providers, depending on the level
of granularity and configuration that the developers require, being the following
the most common [25]:

Infrastructure as a Service (IaaS). The cloud provider gives developers
access to resources such as storage, networking, and servers in a pay-as-you-
go fashion.

Platform as a Service (PaaS). Cloud providers offer developers access to a
cloud-based environment on top of which they can build and deliver applica-
tions, abstracting the underlying infrastructure.

Software as a Service (SaaS). Service providers deliver software and applica-
tions through the Internet and users can subscribe to the software and access
it remotely, e.g., via a web portal or vendor APIs.

This paradigm reshaped how companies provide services, by allowing them to
abstract, at different levels, from hardware infrastructure management, focusing
on the virtual architecture and eradicating any possible concerns dealing with
resource maintenance while improving manageability [7].

Alongside the reduced costs of using cloud computing when compared to on-
premises solutions (i.e., running on computers on the premises of the person or
organization using the software), there is another key advantage: elasticity. The
resources needed to meet the expected Quality-of-Service (QoS) can be rapidly
provisioned, allowing the quick scale outwards and inwards to compensate for
unpredictable business demands. This elasticity gives organizations more flexibil-
ity to focus on the core business instead of focusing on maintaining provisioned
infrastructure. As a consequence, in most cases, there is no definite sense of
location over the provided services beyond the ability, in some cases, to specify
multiple higher regions which can be used as a strategy to increase reliability
and avoid network outages [36].

As the market evolves, it becomes more demanding in terms of cloud services
required, thus new “as-a-service” models start to emerge, leading to what has
been called Everything as a Service (XaaS) [16,33] solutions (e.g., Functions as a
Service (FaaS), also known as Serverless [16,33,44]). As new paradigms emerge,
in terms of connectivity and computation, they directly influence the market
landscape with cloud providers offering even more services to fill the market
needs. Internet-of-Things (IoT) as one of those paradigm-shifts, has lead diverse
cloud providers to offer specialized services that answer the IoT scale, hetero-
geneity, and data-throughput needs. These services range from device manage-
ment systems, to handle the ever-growing number of cloud-connected sensors
and actuators, to specialized data analytics tools [11,42,44].

It is noticeable that cloud computing has brought several benefits for organi-
zations in terms of interoperability and versatility, easing the process of meeting
established QoS levels. However, there is a substantial amount of complexity in

60 P. Lourenço et al.

building and managing consistent and reliable infrastructures, resulting in the
need of expert developers capable of implementing cloud-based systems [9].

In addition to the inherently complex nature of software systems [19,37],
there is extra complexity in building systems within a cloud ecosystem. First,
there is an ever-growing number of different services offered by cloud providers
that make it harder to decide what is the best solution for a given problem
[39]. Second, the final cost of a cloud solution can be highly volatile and hard
to calculate a priori [14]. Third, there is no common taxonomy (or standards)
among cloud providers, which leads to confusion and makes comparing solutions
harder [14,55]. And last, the different services provided by each cloud vendor can
lead to a vendor-lock that impacts an eventual process of migrating a solution,
if needed [14,43,55].

As we move towards more complex cloud-based software systems, we will
eventually come to an explosion of different services, each one managed individ-
ually, possibly leading to serious management challenges. This complexity makes
it harder to understand cloud-based systems and the value that they bring to
the business [31].

Even further, the 2017 edition of RightScale’s State of the Cloud Report [46],
an yearly survey on cloud computing trends, inquired 1002 IT professionals, and
showed that when comparing the years 2016, 2017 and 2018, the most relevant
cloud challenges are the lack of resources/expertise and security in cloud man-
agement (Fig. 1). Moreover, even though there is a decline in nearly all challenges
compared with the previous year, it is interesting to note that governance/control
is the only challenge that has almost stagnated in the three-year comparison.

Fig. 1. Cloud challenges comparing the years 2016, 2017 and 2018. Adapted from [46].

Experimenting with Liveness in Cloud Infrastructure Management 61

Software systems are designed, implemented, tested, debugged, analyzed, and
maintained by many different developers. All these tasks can be facilitated by
using several different visualization techniques. From a historical perspective,
software understanding tasks leveraged the use of models and visual notations.
An example is the Unified Modeling Language (UML), which has been widely
used not only to represent and visualize software systems’ structure, behavior,
and evolution [13], but also to simplify the process of understanding large-scale
architectures [17], and even develop new cloud-based systems [23].

This work addresses the challenges mentioned above by exploring how cloud
management can benefit more from a model-based approach, combined with
more liveness, leading to the notion of live models at run-time. On the one hand,
models would help to abstract the lower-level details by creating and exploiting
domain models, in a similar way to UML [26]. On the other hand, more liveness
would shorten the feedback loop between the developers and the system under
development [1,53], thus helping to reduce management complexity by making
it easier to understand quickly what the system is doing or is supposed to do.

To explore the pros and cons of this combination of concepts, we developed
the CloudCity prototype [32], a live management environment tailored for cloud
infrastructures. CloudCity aims to offer developers a way to gather continuous
feedback about their cloud systems, allowing quick and interactive management
of a running cloud system, and therefore ease the process of fault location (usu-
ally carried by log analysis) and evolution.

The work here presented extends previous work from the authors in the
Live Software Development paradigm [1,2,32], delving further into the catalog
of visual metaphors for representing cloud infrastructures. It also presents the
carried out experiments that evaluate the CloudCity solution both in terms of
scalability and feasibility as well as the obtained results.

This paper is structured as follows: Sect. 2 provides an overview of the main
background concepts of this work and presents some related work. Section 3 gives
an overview of our approach, followed by some implementation details. Section 5
explains the validation process using a controlled experiment, along with the
discussion of the obtained results, followed by final remarks in Sect. 6.

2 Background and Related Work

To ease the process of understanding and managing complex software, many
researchers have investigated different techniques, from high-level abstractions
to tool support aiming at improving the programming experience. In the con-
text of this work, we found of high relevance the state-of-the-art on Software
Visualization, Model-Driven Engineering, and Live Programming, especially the
work more closely related to Cloud Management. In particular, we searched for
similarities with previous research results, key features, and ideas that could
influence our research.

62 P. Lourenço et al.

2.1 Software Visualization

Software visualization is the depiction of software—its structure, behavior, and
evolution—and its development process in a visual fashion, leveraging static,
interactive and multi-dimensional visual metaphors [13]. Different visualization
techniques have been used to ease the understanding of source code, architectural
design, use cases, system modules, and more.

Kapec [24] presented a hypergraph-based software visualization system to
create a visual programming environment for software developers. In this app-
roach, relations between components can be transposed to source code as func-
tion calls or class inheritance with visible links between edges, storing informa-
tion about developers and tasks. As heterogeneous programming environments
(i.e., using diverse languages) are a common practice that contributes to soft-
ware complexity, their approach combines hypergraphs with visual data mining
techniques hiding the actual implementation but capturing the call relation.

Lanza et al. [28,29] presented a software visualization technique enriched
with metrics information, so-called polymetric views. This approach eases the
process of understanding the structure of a software artifact and detects problems
in the initial phases of a reverse engineering process. The actual visualization
requires: (1) a layout considering the selected entities, relationships, and areas of
interest into how they should be sorted and displayed (e.g., a tree layout is better
suited for the display of an inheritance hierarchy than a circle layout); (2) a set
of metrics extracted from the source code entities, which heavily influence the
resulting visualization, being suitable to control the state of a software system
during development; and (3) a set of entities that are the parts of the system
selected for visualization [29].

Wettel et al. [57] software visualization approach, adopted the urban
domain—influenced by the role that civil architecture has on software
engineering—as the central metaphor to abstract the different parts of the sys-
tem. Several similarities can be seen between a city and a software system since
both are conceived during a planning phase, in which requirements are the foun-
dation; and then both are built incrementally and require constant maintenance.

Using this city metaphor, Wettel et al. present city elements (e.g., buildings
and districts) mapped to software system components (classes and packages
respectively). Further, to enhance the visualization, the physical properties of
the urban artifacts (e.g., color, and dimensions) reflect attributes of the software
components.

The concept of such visualization was implemented in CodeCity [57] (Fig. 2).
As to validate the feasibility and utility of the approach, an empirical evaluation
was carried on in a series of experimental runs spanned over six months. Wettel
et al. conclude that for the program comprehension and design quality assess-
ment, the city metaphor enabled the creation of efficient software visualizations.
The experiments showed improved correctness 24% of the cases and reduced
completion time in 12% over similar state-of-the-practice tools.

Merino et al. extended this vision and brought the concept of virtual real-
ity into the idea of the CodeCity, the CityVR [38]. In CityVR, the city visual

Experimenting with Liveness in Cloud Infrastructure Management 63

Fig. 2. A 3D representation of the ArgoUML software using the CodeCity concept by
Wettel et al. [57].

metaphor is enhanced by allowing the developer to explore software pieces in an
immersive 3D environment medium.

Other works explore the same idea, such as: (1) ExplorViz, a VR approach
following the 3D city metaphor [18]; (2) VR City, a modification of the city
metaphor in virtual reality environment, with a different layout technique that
provides a higher level of detail and positioning oriented to the coupling between
classes [56]; (3) SwiftCity, an application of the City visual metaphor to Swift
projects [40]; and (4) Amaral et al. approach for a live development environment
for Java using 3D and VR [2].

2.2 Model-Driven Engineering

Models raise the level of abstraction, revealing the big picture, or providing a
focus on specific aspects of a system. Model-based approaches have been used
as a way to specify the structure and behavior of a system for a long time. UML
is one example of a modeling language that is methodology-independent and
platform-independent [41]. Although not a visualization approach, but rather a
visual notation, it is closely related to software visualization [57].

Sandobalin et al. [47] present ARGON, a solution to help the management
of Infrastructure as Code (IaC), through a Domain-Specific Modeling Language
(DSML). ARGON is a modeling tool for specifying the final state of the infras-
tructure and provisioning of cloud resources. The tool aims mainly on the auto-
matic generation of infrastructure provisioning scripts. One of the advantages
of this approach is the abstraction from the complexity of working with differ-
ent cloud providers, resulting in a platform-independent metamodel and thus
mitigating the vendor lock-in issue.

64 P. Lourenço et al.

Mastelic et al. [33] take advantage of model-driven development for building
and managing arbitrary cloud services in a cloud-agnostic manner. The presented
CoPS metamodel can describe cloud services using three sequential models: (1)
Component, that defines the configuration of each component of the service;
(2) Product, that defines the arrangement of the service; and (3) Service, that
defines services requirements.

Ardagna et al. [6] defends the same purpose of applying model transformation
techniques to instantiate the system into possible multiple clouds. The result
aims to be an Integrated Development Environment (IDE) to build and deploy
applications in a cloud-agnostic way, adding the concept of multi-clouds.

2.3 Live Programming

As pointed by Sean McDirmid, “programming burdens our minds as we must
imagine how the code will execute while editing it” [34,49]. Christopher Han-
cock [20] in his thesis compares this to archery: aiming an arrow (editing code)
involves mentally simulating a physical system while shooting (debugging) pro-
vides discrete feedback for the next shot. In other words, to find the cause of
errors in software, one should resort to debugging to get feedback about how the
code behaves, and this causes a break in the mental flow and the editing process
[34].

Live Programming is an idea pioneered by programming environments from
the earliest days of computing, such as those for Lisp and Smalltalk. One thing
they had in common is liveness: an always-available evaluation and nearly instan-
taneous feedback, usually focused on coding activities. Tanimoto targeted the
“edit-compile-link-run” loop, proposing to blur it into a continuum, where the
programmer and the system interact in a very tight way—live [52,53].

Back to Hancock’s analogy, consider hitting a target with a stream of water:
we keep correcting our aim until the target is hit, where, unlike archery, we
receive continuous feedback on where we are shooting [49].

By unifying the gap between code editing and debugging [49], re-executing
the program and providing continuous feedback while editing eases the burden
of programming [34]. It is not a silver-bullet for software systems development,
but potentially very important for some. While the ability to inspect and modify
is taken for granted in most IDEs, adding liveness is an enhancement [53].

Examples of liveness can be observed in several IDEs that already provide
continuous and responsive feedback on the lexical, syntactic, and type safety
of the developer’s code. Further, many live visual programming languages such
as VIVA, Forms/3, Morphic, and PureData go beyond this by providing live
feedback about how the program executes as the code is edited [34].

Some challenges to this concept have been pointed out on how feedback may
be considered harmful, since that receiving continuous results with change can
be potentially distracting in some cases, forcing the programmer to write in a
particular order to keep it live. For live programming to succeed, it must enhance
programming without restricting what the programmer can do, either beginner
or expert [35].

Experimenting with Liveness in Cloud Infrastructure Management 65

Other frequent critics highlight the fact that the steps in between execution
are the essential part of programming, and, the usage of liveness can result
in hiding some critical parts of the flow of execution, with the developer only
focusing on the program output [34]. Nevertheless, from a debugging perspective,
live programming can address this concern combining editing and debugging,
having debug results readily visible while editing, thus returning the focus to
the program flow and how changes affect specific parts of execution [34].

Although the notion of Live Programming focuses on the particular activity
of programming, there is nothing in its principles that cannot be applied to many
other activities, such as: requirements analysis, design, testing, deployment,
or maintenance. Therefore, Live Software Development concerns on achieving
higher liveness in more development activities beyond programming [1].

2.4 Cloud Management

The trend has been to leverage clouds as complex, highly heterogeneous, and
distributed architectures, including hybrid and multiclouds [31]. This growth
has given rise to new challenges and technologies to deal with them, namely
with governance, security, and management.

The process of obtaining services from the cloud, such as spawning comput-
ers or virtual hosts and tailoring its software and configurations, is known as
provisioning [9]. Inspite of its close relation to deployment of services or appli-
cations, provisioning does not necessarily imply new deployments or vice versa
[48].

The widespread use of cloud computing has been empowering the movement
of DevOps—a software engineering culture aiming to unify software development
(oriented to change) and software operation (oriented to stability) [4,15] – due
to its benefits when comparing to traditional operations processes, namely:

Rapid Delivery. Quickly respond to customer needs and move a change into
production [4,15].

Reliability. Ensure the quality of application updates and infrastructure
changes through testing in practices such as continuous integration and con-
tinuous delivery (CI/CD) [4,15].

Scale. Automation and consistency help changing systems efficiently and with
reduced risk [4].

Collaboration. Developers and operation engineers share responsibilities and
combine workflows [4].

This movement has increased the responsibilities of developers beyond pro-
gramming, having now an increasing role in the building, continuous integration,
and fast delivery (building an effective pipeline of releases) of new services and
applications. Thus, developers now need to focus more on the configuration
management (e.g., cloud configuration management), testing, and production of
these systems [27].

66 P. Lourenço et al.

Configuration Management. Configuration Management (CM) is a core part
of the provisioning process, methodically handling changes to a system to main-
tain its integrity over time. Pressman et al. define such process as [45]:

“A set of activities designed to manage change by identifying the work
products that are likely to change, establishing relationships among them,
defining mechanisms for managing different versions of these work prod-
ucts, controlling the changes imposed, and auditing and reporting on the
changes made.”

One can identify automation—the ability to automatically deploy new sys-
tem versions in the existent infrastructure—as the most fundamental concept in
configuration management. Thus, commonly, configuration management tools
are presented as Automation Tools or IT Automation Tools [22]. Examples of
CM tools include Chef and Puppet [5,46,58]. Both allow the specification of
infrastructure as code (so-called recipes) by using a domain specific language.

Although these approaches spread a notion of controlled and reliable muta-
ble oriented node configuration, it is important to consider the possibility of
configuration drifts, over time, as each server builds a unique history of changes
[8].

Infrastructure Orchestration. The main feature of configuration manage-
ment tools is to install software on resources that already exist. Orchestration per
se has a different purpose than CM. Orchestration tools are typically designed
to enforce a particular workflow order to a set of automated tasks, such as the
provisioning of those resources. However, both orchestration and CM categories
are not mutually exclusive, with some orchestration tools extending its features
to configuration and vice-versa [8].

Examples of Infrastructure Orchestration tools are CloudFormation, the
AWS-based orchestration tool to describe and provision infrastructure as code,
and Terraform, a similar tool but cloud-agnostic, enabling the combination of
multiple cloud service providers with a unified syntax [21]. Both tools focus on
the definition of a blueprint for controlling and versioning resources configura-
tions easily, which typically defaults to an immutable infrastructure paradigm.

As a summary, we conclude that most of the approaches and tools for man-
aging cloud services prevail on the concept of infrastructure as code, with some
following a kind of model-driven approach, namely to manage multiple cloud ser-
vices and thus to avoid vendor lock-in. However, the existing tools only provide
minimal, or even none, live support, one of the aspects we focus on exploring
with this work.

3 CloudCity: The Approach

Resulting from the lack of resources and expertise on how to handle and manage
different cloud services altogether [46], there has been an increasing interest in

Experimenting with Liveness in Cloud Infrastructure Management 67

novel approaches to support infrastructure provisioning, orchestration and con-
figuration management. Most of these approaches have requirements of automa-
tion and orchestration, due to the ever-growing complexity and scale of systems
(e.g., Internet-of-Things) [44,54].

3.1 Overview

To tackle the current issues in cloud computing, while taking into account the
existent requirements, our tool, named CloudCity, uses a 3D visualization app-
roach for managing cloud infrastructures. The chosen visual metaphor, the city
metaphor, was based on the work by Wettel et al. [57] in CodeCity 3D since the
software engineering scientific community already validated it with good empir-
ical results in what regards software visualization. Also, using a city to represent
an infrastructure intends to help the user familiarizing with the domain by using
already known city objects.

The need for metaphors arises from the fact that the cloud is not a phys-
ical entity. Thus, by nature, it cannot be purely synthesized into a straight-
forward, visually understandable mapping. However, it can be transposed into
other dimensions, such as code (c.f. Terraform and CloudFormation) or
models as a way to ease the process of managing such infrastructures. Repre-
senting clouds with a validated metaphor, the city, enables users to gradually
become familiar with the described architecture, due to the many similarities
between the two domains.

CloudCity embraces the concept of liveness, underlying Live Software Devel-
opment [1], allowing the developer to get continuous feedback on how architec-
tural (instead of code) changes affect the whole system, going beyond a static
3D visualization of a cloud architecture.

In detail, the main objective of CloudCity is to allow the design and analysis
of cloud compositions through a mostly-intuitive mapping between city objects
(i.e., houses, streets, skyscrapers) and cloud resources. Each one of the buildings
contains a set of properties reflected from the cloud, which can be inspected
or modified through simple user interaction. Relations between elements are
depicted as curved lines between them, which can be filtered and inspected on-
demand. The main difference from other model-driven approaches is that this
environment does not reflect a static infrastructure mapping, but instead a live
infrastructure showing the real-time state of each component—a metaphor that
we introduce as, the live city. An example of CloudCity ’s main environment is
depicted in Fig. 3.

Regarding the tools provided to the developer, the user interface is com-
posed of the interactive components listed below. All the panels are collapsible,
triggered by a user action, to save visual space.

Information Panel. Acts as an inspector with information about the selected
resource.

Resource Context Menu. Acts as a dynamic options menu, with several
actions depending on the selected resource.

68 P. Lourenço et al.

Fig. 3. CloudCity’s main environment containing an small size example architecture,
displaying all relations.

Plane Main Menu. Contains global infrastructure actions, such as spawning
new resources.

Regarding the environment’s background, it consists of a simple skybox cho-
sen to increase the resemblance to a city’s atmosphere.

3.2 Architecture

CloudCity follows a model-driven engineering philosophy, embracing the concept
of models as a way to express the system and the relation between system parts.

CloudCity high-level architecture, depicted in Fig. 4, is composed of three
core components, namely:

Cloud Service Providers API. Provides a connection to a specific cloud ser-
vice provider, thus allowing to fetch and interact with the cloud architecture.

Importer. Periodically pools or checks the provider and detects changes in the
infrastructure state, forwarding actions to update specific resources.

Resources. The elements correspond to different cloud services. These resources
follow a composite pattern, viz. a group of resources can either contain a
resource or another resource group. If it contains another group, the same
applies recursively downwards the tree structure.

3.3 Proof-of-Concept

For the sake of simplicity, some technological decisions were made to ease the
development of a proof-of-concept. In what regards Cloud Service Providers
API integration, we focused only on Amazon Web Services among the existent

Experimenting with Liveness in Cloud Infrastructure Management 69

Fig. 4. CloudCity’s architecture described in a package diagram [32].

options. Regarding the fetch of information from the cloud provider, we imple-
mented a pooling approach instead of a more efficient one, such as event-driven,
or publish-subscribe approach, due to limitations of the API of the provider
itself.

However, even given the fact that the proof-of-concept integrates with only
one cloud provider, the system is built in a modular way that allows the addi-
tion of new adapters to different cloud services providers, easing the process of
integrating with other sellers such as Microsoft Azure. This capability is accom-
plished by dividing the CloudCity architecture into two decoupled layers:

Platform Independent Model. Illustrated in Fig. 5, this model is independent
of any specific provider.

Platform Specific Model. This model is coupled with a specific provider and
can be obtained with a model to model transformation.

0..1

1

0..*

1 0..*0..*
Auto Scaling Group

1..*

1

0..*

1..*

0..*

Security Group

1
1VM

Database

Inbound Rule

Load balancer

1..*

Target Group

1..*

Listener

Launch Config

1

Scaling Policy

Alarm

Outbound Rule

Fig. 5. Infrastructure metamodel (inspired by the abstract syntax presented by San-
dobalin et al. [47]) [32].

The proof of concept was implemented using a multipurpose three-
dimensional engine, Unity. This solution also opens doors for new features to
be studied and provides support for Virtual/Augmented Reality, an exciting
perspective also studied in other approaches using the City Metaphor [38,56].

70 P. Lourenço et al.

4 CloudCity: The Live Environment

One of the key challenges was to find the most suitable abstractions—within the
urban catalog of metaphors—to portray the cloud architecture infrastructure,
while still being compatible with live features and easy to use and understand.
To be able to achieve this, we decided to start by using the following metaphors:

Resource Mapping. Establishing a correspondence between the resources
offered by cloud providers and the catalog of metaphors available (or per-
mutations of those metaphors).

Layout. Defining a proper environment that lays out the different components
in an understandable way and adjusts automatically as the cloud architecture
is modified while remaining consistent throughout the process.

Updates and Interactions. Support the live aspects of the environment, i.e.,
how to translate the infrastructure updates into a human-understandable
notation in real-time.

The following subsections describe these three aspects in more detail.

4.1 Resource Mapping

The number of services offered by cloud providers is continuously growing. This
growth is mostly driven by the necessity of providers to adapt their offer to
clients, to maintain their position in a demanding market [51].

However, at any given point in time, there is a finite set of services and
resources with properties known a priori. This fact allows the creation of an
alphabet, which can be expanded accordingly to new services that can appear,
with models for each one of the elements that need to be represented, rather
than defining new models on-the-fly.

Even so, due to the current number of services in the portfolio of the cloud
providers, we focused on creating models only for the most common and popular
services across cloud providers [30]. The following list describes those services
along with the respective model and their urban-based visual metaphor.

Security Group. Virtual firewalls to control instances (e.g., virtual machines)
inbound and outbound traffic. Each security group contains a set of rules which
control the port range where traffic is allowed. The metric chosen for the building
height varies according to the port range the security group covers. Due to the
commonality of this element in cloud architectures (a VM instance can have
from one up to five different groups), the building dimensions correspond to the
small building type as depicted in Fig. 6, resulting in the Fig. 7b.

Virtual Machine. VMs are one of the most common elements in cloud comput-
ing since they provide scalable computation capacity in the cloud. Each instance
has a pre-determined size depending on its hardware specifications. The metric
for the building dimensions varies according to this attribute accordingly with
Fig. 6, and their visual representation is given in Fig. 7a.

Experimenting with Liveness in Cloud Infrastructure Management 71

Fig. 6. CloudCity’s reference building dimensions sorted in ascending order [32]. Nano
VM instances are considered small, Micro and Small are considered medium, from
Large to 8x Large are considered big and from 8x Large to 32x Large are considered
large.

(a) Metaphor for a Vir-
tual Machine (VM).

(b) Metaphor for a Secu-
rityGroup.

(c) Metaphor for a
Elastic LoadBalancer.

Fig. 7. Visual notation for a Virtual Machine, Security Group and Load Balancer [32].

Load Balancer. Element that distributes traffic across multiple targets for
achieving multi-tenancy and resource pooling. A Load Balancer can have multi-
ple listeners that receive incoming connections and distribute them across multi-
ple groups of targets. The building size fluctuates depending on the total number
of rules that the load balancer takes into consideration when forwarding connec-
tions, depicted in Fig. 7c. It is part of the big buildings category since it is a
central component between the point of entry and the targets.

Scaling Policy. Policies define how the scaling group increases or decreases the
size, and according to which metrics. The building height varies depending on the
scaling adjustment, Fig. 8a, and the building type falls in the medium buildings
category since it can be considered a subset of the Auto Scaling Group.

72 P. Lourenço et al.

(a) Metaphor for a Scaling
Policy.

(b) Metaphor for a Target
Group.

(c) Metaphor for a Launch
Configuration.

(d) Metaphor for a Lis-
tener.

(e) Metaphor for an Auto
Scaling Group with a VM.

Fig. 8. Visual notation for a Scaling Policy, Target Group, Launch Configuration,
Listener and Auto Scaling Group.

Target Group. A target group routes incoming listener requests to one or
more registered targets. The building height varies depending on the number
of instances registered in it, Fig. 8b. It is considered as part of the medium
buildings category since this component can also be considered a subset of the
load balancer.

Launch Configuration. This is a parental reference of machine specifications
for a VM to be mirrored from, guiding the Auto Scaling Group as it expands
the number of replicated instances. The building type chosen for this component
depends on the instance type attribute (c.f. Fig. 6), and it is represented in
Fig. 8c.

Listener. Listeners are responsible for checking for incoming requests on a
specific port and forward them to a Target Group. The building height varies
in consonance with the number of rules it takes consideration when forwarding
a connection to a specific group of targets, Fig. 8d. The building is part of the
medium buildings category.

Experimenting with Liveness in Cloud Infrastructure Management 73

Auto Scaling Group. This element is not depicted as a building since it is a
group with multiple VMs and scales dynamically. The metaphor chosen was a
plane with sufficient area to support the different availability zones and specific
VM, visually represented on Fig. 8e.

Fig. 9. An example of the rectangle packing layout for a considerable size infrastruc-
ture, composed of: three Auto Scaling Groups containing multiple size instances and
two Scaling Policies; a stopped Virtual Machine; one Load Balancer and several Secu-
rity Groups [32].

4.2 Layout

To be able to manage a cloud infrastructure in a live way, there is the need for a
mechanism to layout and update components quickly in the tool’s environment,
as the architecture expands and is modified. It has to: (1) support laying out all
the imported components of the infrastructure, with different dimensions, in an
ordered and understandable manner; (2) optimize the number of buildings, not
wasting much of the cities’ real-estate [57]; (3) support grouping components
according to a class.

74 P. Lourenço et al.

The strategy picked for layering the elements is CodeCity ’s rectangle packing
algorithm proposed by Wettel et al. [57]. This approach starts with an empty
rectangular space, large enough to host a set of exposed components. In each
step, the elements are laid out in the best free space from a list of potential
candidates. In case the element does not cover the full space, we recursively split
the surplus in two different cuts available to host new components, as depicted
in Fig. 9.

Fig. 10. Visualization of an infrastructural update when an auto-scaling group enters
in action, scaling the number of instances from 1 to 10. As result nine new servers were
spawned (left) and then attached inside the scaling group (right) [32].

4.3 Updates and Interactions

To be able to fetch information about the cloud infrastructure, as well as any
subsequent updates, a pooling approach was implemented, that checks for dif-
ferences between each response. Initially, we planned to use a publish-subscribe
pattern, but due to some limitations by the provider, we had to settle with a
poll mechanism.

(a) Helper window that allows the inspec-
tion of links between elements.

(b) Selection of an element within the
environment.

Fig. 11. Representation of some user interactions within the live environment.

Experimenting with Liveness in Cloud Infrastructure Management 75

Having communication-enabled and a method to detect the change, the next
step is to refresh the infrastructure when changes happen. The most naive app-
roach would be to destroy the whole infrastructure and rebuilt it. However, for
efficiency reasons, we decided not to destroy any element except if it has been
terminated. Instead, every time the layout needs to re-position elements, only
the affected ones change position, as depicted in Fig. 10.

To avoid abrupt changes in the layout, all components change their position
slowly (speed of 1 unit per second) to increase the response feedback (sliding
in-between positions), making it easier for the developer to understand changes.

Relations are mapped as arcs beginning at one instance, or group, and ending
in another. Both resources and their relations may contain a state depending on
their nature; which can be inspected by clicking it, and filtered when a specific
component is selected, as depicted in Fig. 11a. Cloud elements, represented as
different buildings, can be selected (Fig. 11b) and configured with the aid of
windows within the 3D environment.

5 Experiments and Results

There is a broad consensus in the software visualization community, and also in
the broader information visualization community, that a lack of proper evalua-
tion that can demonstrate the effectiveness of tools is detrimental to the devel-
opment of the field [50].

Fig. 12. Different views of the stress test with 10 Auto Scaling Groups and 1000 Virtual
Machines.

5.1 Sanity Checks

To test the visualization of a considerable sized infrastructure, we simulated an
environment composed of 10 different Auto Scaling Groups and a total of 1000
servers, as in Fig. 12.

We concluded that having a large number of resources together in a unique
model eventually becomes unnecessary and inefficient for considerably large
infrastructures. Conversely, if we divided or collapsed large groups of resources
by their Auto Scaling Group, availability zone, or even resource type, we would
accomplish a higher-level analysis of a cloud architecture. Thus, avoiding updates
in locations far away from our focus zone.

76 P. Lourenço et al.

5.2 Controlled Experiment

We designed a controlled experiment to assert the feasibility of CloudCity. In
this experiment, we focused on: (1) creating and managing a collection of related
AWS resources; and (2) inspecting a running architecture and update it on-the-
fly.

The population under survey consisted of 18 MSc students, ranging from
those with experience in cloud computing to those with little or no knowledge
of it. The experiment consisted in performing a similar set of tasks using three
different tools. The goal was to evaluate the effect of the tools on the completion
of the tasks.

The controlled experiment was designed to probe different perspectives,
which were combined into two distinct phases: construction and analysis.

One of the objectives is to compare the feasibility of CloudCity when com-
paring with state-of-the-practice tools, namely AWS CloudFormation, which
allows the specification of architecture in a blueprint file, providing a static visu-
alization of it. However, AWS CloudFormation does not give the ability to
inspect a running architecture, and, as such, an additional tool was used for
fulfilling this aspect, namely AWS Management Console.

Fig. 13. An illustration of the resulting CloudCity model in the construction phase
[32].

Although the data from the experiments are too scarce for definite and sound
conclusions, we could assert the feasibility of the solution, and the experimen-
tal treatment represents a considerable improvement over some of the current
practices, appointing the open potential of adding liveness to current cloud man-
agement tools.

Experimenting with Liveness in Cloud Infrastructure Management 77

Construction Phase. In the construction phase, the participants were asked to
design a simple cloud architecture composed of four resources using CloudCity,
namely: (1) an Auto Scaling Group with a minimum size of two instances; (2)
a Launch Configuration for each new instance to be spawned inside the scaling
group; (3) a Security Group; and (4) a Target Group to route incoming requests
to the targets in the scaling group. The expected, resulting model is depicted in
Fig. 13.

All of the participants were capable of fulfilling this task by using the provided
alphabet and the environment, initially, identifying the right resources and then
proceeding to configure and connect them according to the requirements.

(a) The resulting model of the second
phase of the experiment according to
Terraform’s configuration plan.

(b) The result after the misconfiguration
of a Security Group, for the purpose of
identifying the resulting infrastructural
changes (unhealthy VM instance).

Fig. 14. Resulting visualizations of the experiments. The connections between elements
are representing connections and the floor gives information about the group/context
of those elements. If everything is operating normally both the connections and floor
colors are in green, otherwise the connections and/or floor colors of each element turn
red (Color figure online) [32].

Analysis Phase. As for the analysis phase, it consisted of inspecting an existing
infrastructure. In order to keep the experience randomized and create some inde-
pendence between the two phases of the experiment, we previously prepared a
similar infrastructure using Terraform containing: (1) an Auto Scaling Group
in two zones connected to the respective launch configuration; (2) two Scaling
Policies; (3) a Load Balancer with respective Listener, Target Group and Secu-
rity Group; and (4) a simple HTTP web service running on port 80 (Virtual
Machine).

The rationale of the second phase was to simulate the occurrence of an
unhealthy target, a common event in a cloud environment. In most cases, the

78 P. Lourenço et al.

cause is due to a failed/overloaded VM instance or Security Group misconfigura-
tion. For that purpose, we misconfigured a Security Group (firewall) on purpose
in one of the registered targets and disallowed any traffic coming from the Tar-
get Group. In consequence, the Target Group was not able to send health check
requests, and consider the instance unhealthy. The goal is to locate that specific
instance and analyze its cause, targeting liveness level three: informative, sig-
nificant, and responsive [53]. Both the occurrences can be confirmed in Fig. 14a
and b.

All of the participants were able to identify the issue by observing the red con-
nection (failed health check) between the Target Group and the Virtual Machine
instance. They were able to inspect it (by clicking on the connector) and, by trac-
ing back the origin of the problem to the Security Group, they were able to create
a new rule to allow the traffic.

6 Final Remarks

There are several issues with cloud management resulting from: (1) the cloud
providers being always developing new services to keep up with a demanding
market and as reaction to new paradigms (e.g., IoT), and (2) the unavoidable
increasing complexity when too many resources are under management in an
overwhelming disheveled environment.

From the viewpoint of cloud management, the main contribution of this
work is a development environment for cloud architectures, i.e., an approach
to analyze, architect and configure cloud compositions with a higher level of
abstraction. This environment allows developers to focus more on their business
logic and track the changes as the infrastructure evolves, and its complexity
increases.

The CloudCity approach, resulting from a combination of strengths from sev-
eral tools and methods for developing cloud architectures and software in gen-
eral, explores the concept of Live Software Development [1] in the cloud domain,
by shortening the feedback loop between the developer and the infrastructure,
allowing them to quickly understand, almost immediately, how the infrastructure
reacts to change.

As per the comparison to the current state-of-the-practice, we consider that
increasing liveness improves the developers’ experience in cloud architecture con-
figuration tasks. The carried controlled experiment asserted the feasibility and
sanity (i.e., evaluate if the approach works as the cloud architecture scales) of
the CloudCity approach, although further validation is needed to assert aspects
such as the efficiency—achieving the results in a faster way compared to the
traditional methods doing the same task—and overall developer experience. An
empirical validation within an industrial case scenario would bring useful infor-
mation about the usefulness of the approach.

During the development of this approach several future research directions
where uncovered, such as (1) providing a modifiable layout technique—a user’s
ability to manually modify the position of a specific component; (2) explore

Experimenting with Liveness in Cloud Infrastructure Management 79

other levels of liveness following the Tanimoto 6-level scale [53]; (3) investigate
different metaphors beyond the one of Wettel et al. [57]; and (4) adding other
services offered by cloud providers to the alphabet (e.g., dealing with the new
services related to IoT would bring new challenges such as how to deal with a
mixture of virtual infrastructure and real infrastructure, i.e., gateways, sensors,
and actuators [12]).

References

1. Aguiar, A., Restivo, A., Figueiredo Correia, F., Ferreira, H.S., Dias, J.P.: Live
software development: tightening the feedback loops. In: Conference Companion of
the 3rd International Conference on Art, Science, and Engineering of Programming.
Programming 2019 Companion (2019)

2. Amaral, D., Domingues, G., Dias, J.P., Ferreira, H.S., Aguiar, A., Nóbrega, R.: Live
software development environment for Java using virtual reality. In: Proceedings of
the 14th International Conference on Evaluation of Novel Approaches to Software
Engineering. ENASE, vol. 1, pp. 37–46 (2019)

3. Amazon, A.: Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta
(2006). https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-
amazon-elastic-compute-cloud-amazon-ec2---beta/. Accessed 07 2019

4. Amazon Web Services: what is devops? (2017). https://aws.amazon.com/pt/
devops/what-is-devops/

5. Anicas, M.: Getting started with puppet code: manifests and mod-
ules (2014). https://www.digitalocean.com/community/tutorials/getting-started-
with-puppet-code-manifests-and-modules

6. Ardagna, D., et al.: MODA CLOUDS: a model-driven approach for the design and
execution of applications on multiple clouds. In: Modeling in Software Engineering,
pp. 50–56 (2012)

7. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.H.: Above the clouds:
a Berkeley view of cloud computing. Technical report, University of California,
Berkeley, UCB, p. 1 (2009)

8. Brikman, Y.: Why we use Terraform and not Chef, Puppet, Ansible, SaltStack, or
CloudFormation (2016). https://blog.gruntwork.io/

9. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing Principles and Paradigms.
Wiley, Hoboken (2011)

10. Cachin, C., Schunter, M.: A cloud you can trust. IEEE Spectr. 48(12), 28–51 (2011)
11. Microsoft Corporation: Microsoft Azure IoT Reference Architecture. Techni-

cal report, Microsoft Corporation (2016). https://azure.microsoft.com/de-de/
updates/microsoft-azure-iot-reference-architecture-available/

12. Dias, J.P., Faria, J.P., Ferreira, H.S.: A reactive and model-based approach for
developing internet-of-things systems. In: 2018 11th International Conference on
the Quality of Information and Communications Technology (QUATIC), pp. 276–
281, September 2018

13. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolu-
tion of Software. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
46505-8

14. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: 2010
24th IEEE International Conference on Advanced Information Networking and
Applications, pp. 27–33, April 2010

https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/pt/devops/what-is-devops/
https://aws.amazon.com/pt/devops/what-is-devops/
https://www.digitalocean.com/community/tutorials/getting-started-with-puppet-code-manifests-and-modules
https://www.digitalocean.com/community/tutorials/getting-started-with-puppet-code-manifests-and-modules
https://blog.gruntwork.io/
https://azure.microsoft.com/de-de/updates/microsoft-azure-iot-reference-architecture-available/
https://azure.microsoft.com/de-de/updates/microsoft-azure-iot-reference-architecture-available/
https://doi.org/10.1007/978-3-540-46505-8
https://doi.org/10.1007/978-3-540-46505-8

80 P. Lourenço et al.

15. Edwards, D.: What is devops? (2010). http://dev2ops.org/2010/02/what-is-
devops/

16. Erian, T.E.: The XaaS family: understanding IaaS, PaaS and SaaS
(2018). https://www.ibm.com/blogs/cloud-computing/2014/10/31/xaas-family-
iaas-paas-saas-explained/

17. Fittkau, F., Waller, J., Wulf, C., Hasselbring, W.: Live trace visualization for com-
prehending large software landscapes: the explorviz approach. In: 2013 First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1–4, September
2013

18. Fittkau, F., Krause, A., Hasselbring, W.: Exploring software cities in virtual reality.
In: 2015 IEEE 3rd Working Conference on Software Visualization, VISSOFT 2015
- Proceedings, pp. 130–134 (2015)

19. Fraser, S.D., et al.: No silver bullet reloaded: retrospective on essence and accidents
of software engineering. In: Companion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion, pp. 1026–
1030. ACM (2007)

20. Hancock, C.M.: Real-time programming and the big ideas of computational liter-
acy. Ph.D. thesis, Massachusetts Institute of Technology (2003)

21. HashiCorp: Terraform vs. other software (2017). https://www.terraform.io/intro/
vs/index.html

22. Heidi, E.: An introduction to configuration management (2016). https://
www.digitalocean.com/community/tutorials/an-introduction-to-configuration-
management

23. Junior, F.M.R., da Rocha, T.: Model-based approach to automatic software deploy-
ment in cloud. In: CLOSER, pp. 151–157 (2014)

24. Kapec, P.: Visualizing software artifacts using hypergraphs. In: Proceedings of the
26th Spring Conference on Computer Graphics - SCCG 2010, p. 27 (2010)

25. Kavis, M.J., et al.: Architecting the Cloud: Design Decisions for CloudComputing
Service Models (SaaS, PaaS, and IaaS). Wiley, Hoboken (2013)

26. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. Lecture Notes in Computer Science, vol. 2335, pp. 286–298. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-47884-1 16

27. Kerzazi, N., Adams, B.: Who needs release and devops engineers, and why? In:
Proceedings of the International Workshop on Continuous Software Evolution and
Delivery - CSED 2016, pp. 77–83 (2016)

28. Lanza, M.: CodeCrawler - Polymetric views in action. In: Proceedings - 19th Inter-
national Conference on Automated Software Engineering, ASE 2004, pp. 394–395
(2004)

29. Lanza, M., Ducasse, S.: Polymetric views-a lightweight visual approach to reverse
engineering. Trans. Softw. Eng. (TSE) 29(9), 782–795 (2003)

30. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC 2010, pp. 1–14. ACM, New York (2010)

31. Linthicum, D.S.: Understanding complex cloud patterns. IEEE Cloud Comput.
3(1), 8–11 (2016)

32. LourenÇo, P., Dias, J.P., Aguiar, A., Ferreira, H.S.: CloudCity: a live environment
for the management of cloud infrastructures. In: Proceedings of the 14th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering.
ENASE, vol. 1, pp. 27–36 (2019)

http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
https://www.ibm.com/blogs/cloud-computing/2014/10/31/xaas-family-iaas-paas-saas-explained/
https://www.ibm.com/blogs/cloud-computing/2014/10/31/xaas-family-iaas-paas-saas-explained/
https://www.terraform.io/intro/vs/index.html
https://www.terraform.io/intro/vs/index.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-configuration-management
https://www.digitalocean.com/community/tutorials/an-introduction-to-configuration-management
https://www.digitalocean.com/community/tutorials/an-introduction-to-configuration-management
https://doi.org/10.1007/3-540-47884-1_16

Experimenting with Liveness in Cloud Infrastructure Management 81

33. Mastelic, T., Brandic, I., Garcia, A.G.: Towards uniform management of cloud
services by applying model-driven development. In: 2014 IEEE 38th Annual Com-
puter Software and Applications Conference, pp. 129–138 (2014)

34. McDirmid, S.: Usable live programming. In: Proceedings of the 2013 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2013, pp. 53–62. ACM, New York (2013)

35. Mcdirmid, S.: The promise of live programming. In: LIVE Programming Workshop
(2016)

36. Mell, P., Grance, T.: The NIST definition of cloud computing recommendations of
the national institute of standards and technology. Technical report, NIST (2011)

37. Mens, T.: On the complexity of software systems. Computer 45(8), 79–81 (2012)
38. Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: CityVR: gameful software

visualization. In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 633–637, September 2017

39. Janakiram, M.S.V.: AWS service sprawl starts to hurt the cloud ecosystem (2018).
https://www.forbes.com/sites/janakirammsv/2018/01/08/aws-service-sprawl-
starts-to-hurt-the-cloud-ecosystem/#44616e775c1f. Accesseed July 2019

40. Nunes, R., Reboucas, M., Soares-Neto, F., Castor, F.: Visualizing swift projects
as cities. In: Proceedings - 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion, ICSE-C 2017, pp. 368–370 (2017)

41. Object Management Group, Inc.: Introduction to OMG’s unified modeling lan-
guage (2005). http://www.uml.org/what-is-uml.htm

42. Oladehin, O., Brett, F.: Core tenets of IoT. Technical report, Amazon Web Services
(2017). https://d1.awsstatic.com/whitepapers/core-tenets-of-iot1.pdf

43. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and its
impact on adoption of cloud computing. In: International Conference on Informa-
tion Society (i-Society 2014), pp. 92–97. IEEE (2014)

44. Pinto, D., Dias, J.P., Sereno Ferreira, H.: Dynamic allocation of serverless functions
in IoT environments. In: 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC), pp. 1–8, October 2018

45. Pressman, R.S., Maxim, B.R.: Software Engineering: A Practitioner’s Approach.
McGraw-Hill Education, New York (2015)

46. RightScale: State of the Cloud Report. Technical report, RightScale (2017)
47. Sandobalin, J., Insfran, E., Abrahao, S.: An infrastructure modelling tool for cloud

provisioning. In: Proceedings - 2017 IEEE 14th International Conference on Ser-
vices Computing, SCC 2017, pp. 354–361 (2017)

48. Sayers, D.: Configuration management vs. application release automation
(2017). https://devops.com/configuration-management-vs-application-release-
automation/

49. McDirmid, S.: Live programming as gradual abstraction. In: LIVE Programming
Workshop (2017)

50. Sensalire, M., Ogao, P., Telea, A.: Evaluation of software visualization tools: lessons
learned. In: 2009 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp. 19–26 (2009)

51. Serrano, N., Gallardo, G., Hernantes, J.: Infrastructure as a service and cloud
technologies. IEEE Softw. 32, 30–36 (2015)

52. Tanimoto, S.L.: VIVA: a visual language for image processing. J. Vis. Lang. Com-
put. 1, 127–139 (1990)

53. Tanimoto, S.L.: A perspective on the evolution of live programming. In: 2013 1st
International Workshop on Live Programming, LIVE 2013 - Proceedings, pp. 31–34
(2013)

https://www.forbes.com/sites/janakirammsv/2018/01/08/aws-service-sprawl-starts-to-hurt-the-cloud-ecosystem/#44616e775c1f
https://www.forbes.com/sites/janakirammsv/2018/01/08/aws-service-sprawl-starts-to-hurt-the-cloud-ecosystem/#44616e775c1f
http://www.uml.org/what-is-uml.htm
https://d1.awsstatic.com/whitepapers/core-tenets-of-iot1.pdf
https://devops.com/configuration-management-vs-application-release-automation/
https://devops.com/configuration-management-vs-application-release-automation/

82 P. Lourenço et al.

54. Tosatto, A., Ruiu, P., Attanasio, A.: Container-based orchestration in cloud: state
of the art and challenges. In: Proceedings - 2015 9th International Conference
on Complex, Intelligent, and Software Intensive Systems, CISIS 2015, pp. 70–75
(2015)

55. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2008)

56. Vincur, J., Navrat, P., Polasek, I.: VR City: software analysis in virtual reality envi-
ronment. In: 2017 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 509–516 (2017)

57. Wettel, R., Lanza, M., Robbes, R.: Software systems as cities. In: Proceeding of
the 33rd International Conference on Software Engineering - ICSE 2011 (2011)

58. Wettinger, J., et al.: Integrating configuration management with model-driven
cloud management based on TOSCA. In: CLOSER 2013 - Proceedings of the 3rd
International Conference on Cloud Computing and Services Science, pp. 437–446
(2013)

Live Software Development Environment
Using Virtual Reality: A Prototype

and Experiment

Diogo Amaral1, Gil Domingues1, João Pedro Dias1,2(B),
Hugo Sereno Ferreira1,2, Ademar Aguiar1,2, Rui Nóbrega1,2,

and Filipe Figueiredo Correia1,2

1 Faculty of Engineering, University of Porto, Porto, Portugal
2 INESC TEC, Porto, Portugal

{diogo.amaral,gil.domingues,jpmdias,hugosf,
aaguiar,ruinobrega,filipe.correia}@fe.up.pt

Abstract. Successful software systems tend to grow considerably, end-
ing up suffering from essential complexity, and very hard to understand
as a whole. Software visualization techniques have been explored as one
approach to ease software understanding. This work presents a novel
approach and environment for software development that explores the
use of liveness and virtual reality (VR) as a way to shorten the feedback
loop between developers and their software systems in an interactive and
immersive way. As a proof-of-concept, the authors developed a prototype
that uses a visual city metaphor and allows developers to visit and dive
into the system, in a live way. To assess the usability and viability of
the approach, the authors carried on experiments to evaluate the effec-
tiveness of the approach, and how to best support a live approach for
software development.

Keywords: Software engineering · Virtual reality · Live Software
Development · Live programming · Software visualization

1 Introduction

Much of the software created today is built incrementally from an initial pro-
totype that evolves gradually through the addition of new features. Along this
process, the dimension of the system increases, and the productivity is hampered
by the comprehension tasks.

Software systems can achieve very high complexity, to a great extent due to
their size, which can reach millions of lines of code [2]. Software engineers, when
adding new functionality or merely performing maintenance tasks, should first
understand the system [23,32], which can be challenging due to scalability and
complexity [7,19,33].

We argue that this difficulty can be reduced in many cases by applying the
idea of liveness, i.e., the ability to modify a system while it is running [30],
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 83–107, 2020.
https://doi.org/10.1007/978-3-030-40223-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_5

84 D. Amaral et al.

allowing the developer to receive immediate feedback of changes made, with the
system continually rerunning while being edited.

Additionally, visualizing and interacting with software in a virtual real-
ity environment can increase comprehension by using real-world-based visual
metaphors that represent software in a familiar context that can easily be iden-
tified by the programmer [32]. In a fully-immersive virtual environment, it is
possible to get closer to reality, creating a simulation of a real or virtual world
in which the user can be present, dive, touch and feel objects [29].

In the research work presented in this paper, our goal is to explore how soft-
ware comprehension improves by allowing users to view and change the system in
a live way using virtual reality. A prototype was developed for Java systems that
receives information about the static and dynamic analysis of the system, using
reverse engineering approaches, such as the ones presented by Fauzi et al. [8]
and Guéhéneue et al. [12]. The tool allows visualizing the software using visual
metaphors, in real-time and during the execution of the system. The interaction
with the system in full execution is a crucial factor, to get closer to the experi-
ence of live programming and create a fluid feedback-loop between the program
and the programmer. In this work, the approach of Live Software Development
resorts to the virtual reality for the construction of an environment, through
which it is possible to understand the system and visit it in an interactive and
immersive way.

The work here presented expands on previous work from the authors in the
Live Software Development paradigm [1,3,18] and provides a more detailed
account of a user study that was performed to validate the merits of the
approach.

The paper is structured as follows: Sect. 2 overviews the current state-of-the-
art on live programming, software visualization, software analysis, and virtual
reality; Sect. 3 overviews our approach towards live software development, includ-
ing architecture details; Sects. 4 and 5 present the user study and its results; and,
finally, Sect. 6 provides some final remarks and hints for future work.

2 Literature Review

This work involves different areas, such as Live Programming, Software Visual-
ization, Software Analysis and Virtual Reality.

2.1 Live Programming

The fundamental notion of live programming is not having a traditional program
development cycle involving four phases—edit, compile, link, run—but only one
phase, at least in principle. This phase consists simply of having the program
always running, continuously, even if various editing events occur [30].

Live programming embraces the concept of liveness to ease the program-
ming task by executing a program continuously during editing (real-time pro-
gramming). Looking back at Hancock’s analogy, consider hitting a target with

Live Software Development Environment Using Virtual Reality 85

a stream of water: we receive continuous feedback on where we are shooting,
whereas, with archery, we need to shoot (run the software) and rely on the dis-
crete feedback (debugging) provided by the point the arrow hit, adjusting the
aim if necessary [13,21].

Liveness is a notion originally observed in LISP machines and the Smalltalk
language, as examples of live programming in the earlier days of computing. Live-
ness is closely related to visual programming, which provides a more straight-
forward and intuitive interface to develop and modify software.

2.2 Software Visualization

The software is inherently invisible, which does not help the task of understand-
ing how it functions. Visualization tools are useful to associate a tangible repre-
sentation to the code and the program execution. Visualizations are especially
relevant in the maintenance, reverse engineering, and re-engineering cases [16].

Bassil et al. show evidence that the most common visualization methods
are based on graphs, and there are plenty of examples in literature [4,26] that
represent the relationships between levels of a system using graphs [5].

CodeCrawler [17] is a tool to visualize data retrieved from other reverse
engineering tools, offering a visual encoding that allows representing five metrics
per entity. For this type of visualization, we need to choose the layout, the five
metrics out of a defined list [17], and the entities representing those metrics.

Jinsight is an example of a tool created to visualize program runtime data. It
provides multiple views to increase the probability of the user detecting existing
performance issues, unexpected behavior, or bugs. The JVM profiling agent [6]
provides the data used by this tool.

While the most common software visualization methods are two-dimensional
representations, some authors present a 3D representation of the architecture
of software as a city, where the user can freely move around and observe and
interact with the system [24,34]. This approach is a pure visualization system,
and does not deal with real-time modifications of the running system.

Teyseyre et al. [31] discusses the use of 3D software representations and how
they have been approach up until this point. Representations have mostly been
in one of two ways: abstract visual or real-world representations. Abstract visual
representations are graphs, trees, and other abstract geometric shapes, while an
example of real-world representations is a city metaphor.

2.3 Static and Dynamic Analysis

The source code is the representation most familiar for developers. It is how soft-
ware is built and modified. However, it is not necessarily the best when the goal
is to ease software comprehension. For that purpose, different and higher levels of
abstraction are useful to increase the developers’ understanding of the software.
UML is an example of a higher-level representation of a system’s structure and
behaviour [25], being amongst the most popular for object-oriented systems.

86 D. Amaral et al.

To develop a higher-level abstraction, firstly, it is required to obtain the exis-
tent structural information from the system. Feijs et al. [9] describe a model for
analyzing architecture: Extract-Abstract-Present. Extraction consists of retriev-
ing structural information from the system, abstraction is the derivation of new
relationships between the components obtained in the earlier phase (i.e., further
analysis of those components) and the presentation of that information through
a graphical format.

Software Reverse Engineering. Fauzi et al. [8] identify reverse engineering as
a valid approach to generate sequence diagrams that reflect a system’s behavior.

Although one may assume reverse engineering makes use solely of static rep-
resentations, such as source code or bytecode, this is not the case. There are
several situations where the static and dynamic analysis must be combined.
Guéhéneuc et al. [12] demonstrate how a mixture of static and dynamic models
allows for a more precise automatic generation of class diagrams. Furthermore,
Shi et al. [28] describe PINOT, a tool to automatically detect design patterns
from both the source code and the system’s behavior.

Abstract Syntax Trees. Abstract syntax trees (AST) are data structures
used by compilers to create intermediate representations of the software that
ignores unnecessary syntactic details [14]. This makes it an interesting starting
point for analyzing the structure of a software system. Related works include
visualizing the evolution of a software project by analyzing the AST between
commits, as opposed to the typical file diffs done by version control systems [10].

Dynamic Analysis. Obtaining a software system’s structure is not sufficient to
understand how it behaves. There are multiple sources of variability that cannot
be taken into account during static analysis, such as user input, the performance
of shared resources and variable control flow paths [11].

To compensate for this lack of information, the system should be observed
during runtime. For example, logging is a very common practice in software
development to record dynamic information of a program’s execution [36].

Dynamic analysis can be implemented in multiple ways. Gosain et al. [11]
describe the different approaches and tools associated.

2.4 Virtual Reality

Virtual Reality (VR) is used to create real or virtual simulations, applies the
theory of immersion in a 3D virtual space where the senses resemble the real
world [29]. The presence of investments in the research and development of
VR has been driven by the decrease in size and costs of VR equipment, such
as headsets. For example, nowadays anyone can have a VR device, be it more
sophisticated or cheap, created with a card.

Although still few software visualization tools use VR for comprehension
tasks [22], some applications have already been developed. As an example, VR

Live Software Development Environment Using Virtual Reality 87

City [32] uses an animation to demonstrate which classes and methods undergo
changes in a sequence of commits, previously provided to the tool.

In general, the use of an immersive environment is an added value for visual-
ization and interaction with the created representation of the software system.

3 Live Software Development Environment

This work aims at providing a Live Software Development environment for
improving comprehension by visually representing the software structure and
runtime behavior using VR. The overall architecture is depicted in Fig. 1.

To obtain relevant information about the software system under analysis, we
developed an extraction and storage framework, which uses static and dynamic
analysis strategies. The metadata extracted with the framework (both static
and dynamic) is then used by the VR engine, which renders it following a city
metaphor. The visualization provides different visual elements to help the devel-
opers to understand the software at hand, as, for example, representing class
packages as city blocks and classes as city buildings.

Software
System

Static
Software
Analysis
Tools

Dynamic
Software
Analysis
Tools

Repository

Visualization
Engine

User

Fig. 1. Diagram of the idealized Live Software Development environment [3].

The framework is responsible for the extraction, storage, and provision of
information about a software system, so far in Java. The information is extracted
from the development environment, without the need to modify the source code
itself, and stored in a repository. It is then possible to query this repository and
be notified of any modifications in real-time.

As software comprehension is inherently tied to development and mainte-
nance, we assume that the tools which request information from this framework
will do so from within a development environment.

The environment allows the visualization of spatial and temporal content
through the use of VR. Familiar metaphors allowing the 3D visualization and
interaction favor the understanding of the information. At this point, the use of
VR equipment, such as simple headsets and controls, allows the user to control
the flow of software execution and to traverse the space created by the metaphor.
The control of the execution visualization is in the hands of the user.

88 D. Amaral et al.

To develop the environment, the authors considered a series of design con-
cerns, which we describe in the following sections.

3.1 General Approaches to Analyze Source Code

It was first defined how to best identify and analyze the structure and behavior
of a Java system. This analysis focuses on the source code, and two main paths
can be followed: reverse engineering and forward engineering.

Reverse Engineering. Through reverse engineering, higher-level representa-
tions of the software can be extracted, the basis of the static structural analysis.
Two representations of a Java project are used. First, the Java Model used by
the Eclipse IDE, containing information about the Java elements, such as com-
pilation units, packages, and methods. Second, the AST of the software is used
to overlook minor syntactic details of the code and arrive at an easier to under-
stand representation of the source code structure, from package-level down to
method-level. Combining these two representations provides the information on
how the system is composed and empowers the next process.

Forward Engineering. Forward engineering supports lower-level representa-
tions of the system, a process through which we observe the system’s behavior.

Approaches to forward engineering include instrumentation, virtual machine
profiling, and aspect-oriented programming. After an overall analysis of how
straightforward it is to implement these approaches, we concluded that the best
fit was a mix of both virtual machine profiling and code instrumentation.

The approach was then used for execution tracing, through event logging,
at a granularity that best fits the needs of the visualization component—e.g.,
logging called methods, the calling class, and the used arguments.

Monitoring would also be a viable option for relevant behavior information.
We would need to define resource usage or function execution time thresholds
so that an event is logged when one of those thresholds is violated.

3.2 Structural Analysis

The extraction of structural information regarding the software project focused
explicitly on the Java language. The Java AST can be used to abstract syntactic
details from the program and provides a structure of the elements considerably
more straightforward to interpret than the code itself.

To have easier access to the AST, as well as some other structural details
of a Java project, and given the assumption of a development environment,
the software structure analysis was envisioned as a IDE plug-in. Eclipse is an
IDE containing a set of Java Development Tools (JDT) which allows plug-in
developers access to the internal representations of Java projects. For this reason,
the structure analysis tool was developed as an Eclipse plug-in.

Live Software Development Environment Using Virtual Reality 89

Sources of Program Structure. Before designing the internal representation
of the workspace for the plug-in, it was necessary to understand the structures
that Eclipse JDT provides access to: the abstract syntax tree (AST) and the
Java Model. The AST is composed of ASTNodes that can be composed of other
ASTNodes. Each ASTNode represents a Java source code construct, such as a
name, type, expression, statement or declaration. Other classes exist that extend
ASTNode to include attributes and methods specific to the source code construct
that they represent.

Given its proximity with the source code, the AST allows fine-grained infor-
mation about where elements are located in a source file. Nevertheless, the fact
that the AST is a powerful representation of a project comes with a signifi-
cant drawback. Due to its fine-grained structural nature, it is considerably more
complicated to navigate than the Eclipse Java Model.

The Java Model is composed of the classes which model the elements that
compose a Java program. These classes range from IJavaModel, which represents
the workspace in question, IJavaProject, which represents the project itself, to
IMethod and IType, which represent methods and classes respectively.

As the Java Model structure is considerably easier to traverse than the AST
due to its coarser granularity, it was used as the primary source of information
to build the internal model of the project.

Extraction of Program Structure. The actual process of extracting the
structure of the projects in the workspace is based on a progressive descent
through the Java Model. Before the Java Model can be analyzed, it has to
be generated from the IWorkspace class, which represents the workspace in a
language-agnostic manner. This is done by invoking JavaCore to create a method
with the current IWorkwspace as an argument.

Once the Java Model is obtained, we analyze each project in the workspace.
The analysis of an element of a certain level in the Java Model implies the
analysis of all their child elements. For example, analyzing one project implies
analyzing that project’s package fragments, which further implies analyzing each
package fragment’s compilation units, and so on.

Although this process may seem trivial, there are some points worth noting
regarding the extraction of the lower-level elements in the model. There are
cases in which obtaining the child elements of a specific parent element is not
as linear as calling a getChildElements method which returns an array of said
child elements. This is the case when obtaining both the classes’ methods and
the method invocations within them.

The complexity in obtaining these two types of structural elements arises
from being necessary to, in both cases, obtain information from the AST, to be
used in conjunction with the information from the Java Model.

Live Changes. One of the crucial features of the plug-in developed for the
statistical analysis is the ability to detect changes to the source code in real-
time and reanalyzing the changed elements.

90 D. Amaral et al.

The Eclipse JDT provides the mechanism to implement an element change
listener, which calls a predefined function once there is a change to a Java ele-
ment inside the Eclipse IDE. The callback function will receive as an argument
the ElementChangedEvent, from which we can obtain the IJavaElementDelta
that contains information about the element changed.

As IJavaElementDelta informs us of the element changed, the representation
of the project in the plug-in does not have to be rebuilt from the start. Processing
time is thus saved by only analyzing the affected elements, from the Project level
to the Compilation Unit level.

Although it would be interesting to allow modifications at the Method level,
Eclipse JDT does not provide a notification of a change in a IMethod when the
method body is changed, only a ICompilationUnit level notification. The lowest
change listener implemented was therefore at the Compilation Unit level.

When communicating the result of this partial analysis to the repository, the
JSON data sent is the part of the aforementioned JSON structure relevant to the
element level analyzed. The request is then sent to the endpoint corresponding
to the respective element: /projects, /packages or /i-classes.

Another critical factor in guaranteeing consistency is the analysis of the
workspace when the IDE is launched. This compensates for any changes that
may have been done to the source code from an external tool. Also, this estab-
lishes a mechanism to restore the projects’ representations to a safe state if any
inconsistency issues occur during the detection of live changes.

It is also important to note that if there are any issues with the analysis as a
result of incorrect source code (i.e., invoking nonexistent functions), the model
is not generated, and the changes are not propagated.

3.3 Runtime Analysis

The software’s behavior upon execution is also important, to know how a piece
of software functions.

However, a runtime analyzer should be minimally invasive—the logging con-
cerns should be as decoupled from the software to be analyzed as possible. This
concern excludes the case of merely implementing a logger as a class in the
project and then calling a log method whenever it is relevant, adapting it to
whichever context it is called.

AspectJ provides a way to achieve such segregation of concerns, by weaving
advices into the original code. For the analyzer code to be weaved into the project
in question, we need to choose the relevant join points, define the pointcuts and
the advices [15].

The first concern is to choose the relevant joint points. These are the points
in a Java project in which AspectJ allows us to introduce advice. Examples of
join points are method calls, method executions, constructor calls, field reference,
and exception handlers, among others. For our analyzer, however, we chose to
only focus on method calls.

Secondly, it is necessary to define the pointcuts, that is, exactly what
instances of the joint points are weaved with the advice. Since the goal is to

Live Software Development Environment Using Virtual Reality 91

build a generic method call logger, the conjunction of pointcuts must include
all the calls of the system to be analyzed. The pointcuts used by the analyzer
are the call pointcut, which gathers all method calls, and the within pointcut, to
exclude all method calls from within the classes of the runtime analyzer itself.

Given the fact that the analyzer is provided as a AspectJ project, the user
can add pointcuts to the existing advice. One possible application for this would
be to select method calls originating from a specific class or package by using
the within pointcut. Besides allowing for more targeted analysis, it would help
the communication process run more smoothly since the amount of information
being sent would be reduced.

Finally, we need to define the aspect advice, which specifies the code that
is weaved into the original source code upon compilation, at each pointcut. As
we want to have a notion of the order of method calls, the advice is weaved to
run before the method calls.

Figure 2 shows the partial definition of the aspect used to monitor method
calls (missing the rest of the advice). The joinpoint corresponds to call, while the
rest of the pointcut specifies that the advice should not be weaved into method
calls of the execution analyzer. Finally, the advice recovers information from
the method call and hands it over to the communication interface to send the
method call to the repository.

Fig. 2. Definition of the aspect which monitors the execution [3].

A user-interface was not built for this, but a developer could easily modify
the aspect where the comment “insert other calls here” is done in Fig. 2, and
add within pointcuts to focus the extraction on classes or packages of interest.
This reduces the toll on the repository and allows them to focus specifically on
the particular method calls of a small set of classes.

Upon compiling the project, AspectJ instruments the resulting code by insert-
ing the code defined in the advice in the points specified by the advice.

The main goal of this process is to extract the most valuable information
without compromising the dimension of each event, considering there is a massive
amount of method calls in a typical piece of software and that these events have
to be handled by the repository.

92 D. Amaral et al.

The analyzer also obtains an array of the arguments used in the method call
and for each stores its type (type field) and whether it is null or not (value field).

3.4 Communication

Communication is of utter importance, given the large amount of data it may
transmit. To reduce the impact of the analysis and the latency with which
events arrive at the repository, and, consequently, to the visualization engine,
two approaches are adopted: asynchronous requests and buffering.

Fig. 3. Structure of the visualization using the engine tool on JUnit project [3].

Asynchronous requests are the most straightforward improvement that can
be implemented, especially taking into account that no return information must
be processed. As we favor reduced latency over the guarantee that all events are
received, asynchronous requests avoid stopping the execution of the original soft-
ware from sending a request and await the server’s response. This significantly
reduces the performance impact of the analyzer.

The second mechanism is buffering events, that is, storing events in an array
and sending a request with all the stored events, clearing the array afterward,
and repeating this process at a fixed time interval. The reasoning behind using
buffering is to minimize the impact of the inherent latency of communicating
with the server. Similarly to the reasoning behind sending the whole project
structure in a single request, it is better to send one large request and allow the
server to process it than to send a large batch of smaller requests.

Though buffering may affect the notion of liveness, it prevents unordered
events and avoids, or at least reduces the likelihood of overwhelming the com-
munication channel with massive amounts of small requests.

Live Software Development Environment Using Virtual Reality 93

3.5 Visualization Engine

The visualization engine seeks to combine the best of both worlds: liveness and
virtual reality. The virtual environment is responsible for visualizing static and
dynamic content, while the use of liveness increases and improves the feedback
of the software transmitted to the user. The VR feature for visualizing the 3D
content is critical for the immersion. Figure 3 is a static sample of the tool’s
features.

City-Based Metaphor. The city-based metaphor was selected for this project
due to its frequent appearance among different literature about software visual-
ization. Further, this metaphor is easily recognized by a developer as it is based
on city buildings, roads, and typical city blocks.

The mapping performs the conversion from packages, classes, and invocations
information into districts, buildings, and connections. The whole environment is
built using blocks. The dimensions and colors of the blocks are defined through
metrics obtained from the software. Block allocation also follows a predefined
rule, to minimize the total space required for the construction of the city, main-
taining a rectangular space and instantiating the elements by dimension.

The tangibility created with the city metaphor allows us to take a different
stance on code understanding.

Interaction Actions and Interface. Being a virtual live environment, the
invocations that occur would be imperceptible, since they may happen in less
than a millisecond. To view and analyze the software, the engine generates the
connections when it receives them, and adds 3 s of duration so that the user has
the necessary time to understand what is happening. Also, the user has in his
possession other time controls in the environment menu.

Using the controllers and sensors of the VR devices, the user can perform
several actions. Pause—block any changes in the environment, either with con-
nections or with districts and packages. This is the ideal time for the user to
make his analysis because he has total temporal freedom. Start Live—return
to the live state, after a pause; i.e., back to real-time operation, ignoring every-
thing that might have happened at the time it was paused. Continue—continue
to execute at the next point to the one that was in the moment that paused the
execution. All events that the engine received and were not viewed are cached
and can thus be recovered. Go back 1 second—despite the intentional delay
created in the changes that occur in the environment, the user may lose some
detail, and may want to go back in time. This feature asks the server for the
events that happened in the last second and returns to show them.

Navigating the virtual world is achieved by physically moving the user, or by
using the teleport functionality.

The user interaction with the virtual environment is possible using only one
monitor of a computer. However, the visualization loses its immersiveness and
the interaction becomes impracticable due to the non-existence of controllers.

94 D. Amaral et al.

As a result, it is advised to use VR devices with hand controllers and sensors,
such as HTC Vive or Oculus Rift.

4 User Study Design

The environment presented in Sect. 3 has the goal of reducing the effort of under-
standing a software system, hence shortening the length of the feedback loop
required to change it or debug it. The controlled experiment detailed in this
section has the goals of exploring the potential of the environment for under-
standing concrete software systems, and of validating the relative effectiveness
and efficiency of developers when using it.

4.1 Guidelines

A user study should have into account multiple concerns to reach its goals. The
following guidelines were considered when designing the experiment [34].

– Pedagogical Goals. As other empirical studies with students, there was the
goal of aligning it with educational objectives and the learning process [35].

– Software Development Experience. The participant must be familiar
with the mechanisms of understanding software systems. Thus, all partici-
pants should have experience in software development.

– Participant Motivation. Using new technologies as the case of virtual real-
ity devices often arouses the interest of potential participants and is a moti-
vation for signing up to participate in the experiment [27].

– Familiarity with the Environment. A reliable and fair comparison of
the tool requires prior training with the goal of giving participants the basic
knowledge to use the hardware and software. Such a tutorial should be done,
if possible, sometime in advance from the experience [20,27,34].

– Duration. Participants should have a maximum length of time to perform
the tasks and be informed about this limit [27].

– Project Selection. Identify student project cases to use in research without
interfering with educational goals [35].

– Prior Knowledge. To maximize confidence in the results, the participants
should have roughly the same experience using the environment [27].

4.2 Experimental Design

The guidelines described in the previous section were considered when designing
the experiment, as detailed below.

Participants. The participants were 25 subjects from an academic context—
students, researchers, and professors. All had strong programming training and
participated freely and with the interest of knowing and exploring the tool.

Live Software Development Environment Using Virtual Reality 95

Physical Environment. The experiment was carried out in a closed room in
the Department of Informatics Engineering of the Faculty of Engineering of the
University of Porto. The room had a computer screen, which showed what was
visualized by the participant, and a free space of 3×3 m for the user’s movement.
If the participant approached the boundaries of free space, a bounding grid would
appear in the virtual environment, prompting it to move away. For interaction
with virtual reality, the Oculus Rift device was used.

Questionnaire. The experiment included filling out different parts of a ques-
tionnaire, one for each of the tasks described in Sect. 4.3. The questionnaire
allowed to characterize the participants, to provide insights about the tasks, the
interaction, and the usability of the environment.

The questions were designed using a Likert scale by dividing the possible
answers into Strongly Disagree, Disagree, I Have No Opinion, Agree and Strongly
Agree, or Very difficult, Difficult, I have no opinion, Easy and Very easy. For
analysis, values from 1 to 5 were assigned, respectively, to the two previous
scales, with 1 being the negative evaluation and 5 the most positive evaluation.

Duration. Participants could use the environment for 25 min. Having a hard
limit for the duration of the experiment is valued by the participants as it allows
them to manage their time better. It is also important because it creates the
same time base for the completion of tasks for all participants. Sensalire et al.
investigated the average duration of experiments taking up to several hours [27].

Exposure to the Environment. The participants received, before starting
the experiment, a tutorial of use of the tool and its main functionalities. The
first task had the goal of exposing the participant to all the features of the
environment and obtaining feedback on the ease of interacting or visualizing
elements of the software system. The time allowed for this first task was what
was necessary for the participant to know and understand the functionalities.

Data Integrity. All participants were also informed of the project’s author-
ship before the experiment started. To try to maximize criticism and reduce
participants’ generosity in responses, which would bias the data, criticism was
encouraged by making all responses anonymous.

4.3 Tasks

A small project called Maze was selected as the target for the tasks. The project
was developed by students in an undergraduate course and had the right dimen-
sion to make understanding attainable while still having some degree of archi-
tectural complexity, that is, it contains a reasonable number of each one of the
structural elements (e.g., packages, classes).

The experiment consists of three tasks, accompanied by different sets of ques-
tions, to evaluate different factors in the virtual environment.

96 D. Amaral et al.

Task T1: Learning to use the Virtual Environment.
The participant must learn how to use the available features and con-
trols of the VR device. After this introductory phase, the objective is
to experience the visualization of all possible components and interac-
tions. Figure 4 illustrates several participants performing T1 on their
first exposure to the tool.

Fig. 4. Participants in the first exposure to the virtual environment (Task 1).

Task T2: Identifying an Infinite Loop.
The participant had the goal of identifying an infinite loop by using
the virtual environment (Fig. 5). The invocations within the loop occur
sequentially. The participant could not interfere with the loop, which
had no possibility of being terminated. The participant is informed
that on the IDE side, there is no error, and the system is blocked.

Fig. 5. Display of infinite loop invocations (Task 2).

Task T3: Identifying a null Method Argument.
The participant had the goal of identifying the class that made a
method call with a null argument Fig. 6 shows such class. Its color
flashes red, and an audible alert is triggered so that the participant is
alerted of the event. The sound is useful when the class that performed
the invocation is not in the participant’s field of vision.

Live Software Development Environment Using Virtual Reality 97

Fig. 6. Display of class performing an invocation with a null argument (Task 3). (Color
figure online)

4.4 Data Sources

In addition to the answers in the questionnaires, two attributes of interest were
collected throughout the experiment.

– Duration. Each of the three tasks was timed. This metric is important to
compare participants and to calculate the mean.

– Difficulty. The perception obtained by a control agent—the first author—of
the execution of each task. This perception is quantified from 0 to 5, with 5
corresponding to a task performed integrally and with a good performance.

Participants had no notion of time in the virtual environment and weren’t
aware of the difficulty they showed in solving the tasks as perceived by the control
agent. Duration is a quantitative attribute, easy to measure, and difficulty is a
qualitative attribute, that was based on the opinion of the control agent.

5 Results

The data collected by the questionnaire and the control agent is analyzed and
discussed hereafter.

5.1 Subject Characterization

The experiment had the participation of 19 male subjects and 6 female subjects.
They included undergraduate students (12%), graduate students (72%), people
with a master’s degree (12%) and with a Ph.D. degree (4%). Ages range from
18 to 36 years (x̄ = 23.44 ± 3.15).

98 D. Amaral et al.

All participants confirmed they had programming experience, with 88% of
them programming practically daily. More than half of the participants con-
firmed that they often experienced some difficulty in understanding software
systems (76%) and almost all use tools to help them understand them (92%),
but 88% never used visual tools to aid in code comprehension.

5.2 Experience with the Oculus Rift

The familiarity of the participants with the device used to perform the tasks,
the Oculus Rift VR Headset, in particular with its controls, is shown in Table 1.

Table 1. Number of participants with Oculus Rift experience.

Oculus rift experience # of participants

None 18

Some 4

Considerable 3

Having previous experience with the device, either in the use of controllers
or in the experience of immersing in virtual reality, could make the adaptation
to the environment easier. A small number mentioned that this was their first
experience with VR, but it’s to be expected that many users in a broader context
would also not have had previous access and experience with VR headsets.

5.3 Task 1 (T1)

The first of the three tasks (T1) is explained in Sect. 4.3. It exposed the partic-
ipant for the first time to the virtual environment and its features.

Figure 7 presents the data collected via de questionnaire concerning T1, and
shows a general agreement that it was easy to perform.

Fig. 7. Answers to T1.1—“Task 1 in general was easy to perform”.

The easiness of the recognition and exploration activities of the major fea-
tures of the environment were also classified. The answers to T1.2a and T1.2b
can be seen in Figs. 8 and 9. The first of these figures shows that it’s not as

Live Software Development Environment Using Virtual Reality 99

easy to think about packages. This is due to the small dimension of the system
being used, which contained only 3 package levels—i.e., 3 district levels—and
additionally, all buildings were at the same district level.

Fig. 8. Answers to T1.2a—“These activi-
ties were easy to perform” (identify classes;
identify packages; identify method calls).

Fig. 9. Answers to T1.2b—“These
activities were easy to perform” (see
declarations; start/pause/continue exe-
cution; movement in the environment).

The T1.2b task required more interaction with the headset controllers, which
created difficulties for participants who had less experience using Oculus. Phys-
ical movement was not used as much as it could, because the participants relied
mostly on the teleport functionality.

The evaluation done by the experiment’s control agent regarding the difficulty
shown by participants when doing T1 had a mean of x̄ = 4.56± 0.65. This value
represents the agent’s perception, scored from 1 to 5. This reflects the fact that
the task was, in general terms, done positively and entirely by all participants.

In conclusion, the collected data highlights the low difficulty in using the
environment by users that are exposed to it for the first time.

5.4 Task 2 (T2)

The focus of T2 was to debug an infinite loop, which blocked the system and the
IDE without any error or warning. Upon concluding the task, most of the par-
ticipants reported no difficulty in identifying the infinite loop (Fig. 10). Figure 11
shows the perception of participants regarding how easy it was to find the issue
using the virtual environment when compared with an IDE. Participants found
that finding the problem using the visualization was easier, as the IDE wouldn’t
provide feedback about what is happening and where it is happening, prompting
the user to scrutinize the source code or use additional tools.

100 D. Amaral et al.

The controlling agent’s assessment of the difficulty shown in solving Task 2
had an average rating of x̄ = 4.24 ± 0.78. The average result is lower than
that obtained by the participants in the previous task, possibly because it was
intrinsically harder to accomplishment, requiring more reasoning.

In short, the participants considered it advantageous to use the virtual envi-
ronment to perform this type of activity.

Fig. 10. Answers to T2.1—“I had difficult
identifying the infinite loop”.

Fig. 11. Answers to T2.2—“In my cur-
rent IDE I would have a harder time
finding the system locked in the loop”.

5.5 Task 3 (T3)

Task 3 sought to determine the participants’ ability to find a method call in
which one of the arguments was null, leading to a NullPointerException. In
the environment, this translated into a building with a flashing red color.

The solution would be to use the scroll feature to increase elevation. From
the top of the tallest building, participants would not be able to see the object,
so this strategy would not be enough to spot the building flashing red.

From the analysis of Figs. 12 and 13, we can conclude that most participants
did not have difficulty in performing the task and consider that the visualization
helped them to find the problem.

Fig. 12. Answers to T3.1—“I found it dif-
ficult to identify the invocation that threw
the null exception”.

Fig. 13. Answers to T3.2—“The visu-
alization helped me find the problem”.

Live Software Development Environment Using Virtual Reality 101

Most participants eventually found the most practical solution and used the
scroll functionality. Some others decided to walk all the streets of the city on
the ground and took more time to find the object.

The controlling agent’s assessment of the difficulty shown in solving T3 had
an average rating of x̄ = 4.84±0.37. The task had a low difficulty, and this value
is not higher because some participants didn’t immediately realize that gaining
a top view of the city was the most straightforward way to answer the task.

In conclusion, this feature was found helpful in debugging null exceptions.
Even though the sound alert feature was not used in this experiment, we expect
it to aid in determining the building’s location, as the sound propagates in space
and can be heard from farther or closer.

5.6 Virtual Environment Participant Assessment

After completing the tasks, participants evaluated their experience using the
virtual environment (Figs. 14 and 15).

The set of questionnaire items A1.1a focused on the perception of static and
execution information. The results are similar and positive for both scenarios,
as participants were able to obtain the bits of information that they needed.

Fig. 14. Answers to A1.1a—“Experience
using the virtual environment” (easy per-
ception of static scenario; easy perception
of execution scenario).

Fig. 15. Answers to A1.1b—“Exper-
ience using the virtual environment”
(easy understanding of the use of color;
button usefulness; intuitive user inter-
face; ease of use). (Color figure online)

The set A1.1b consisted of four statements. The usefulness of the buttons was
confirmed for the vast majority of participants except for one who considered

102 D. Amaral et al.

that the buttons should not be in the virtual environment but should be physical
buttons present in the Oculus controllers. The use of colors stood out positively
because it is one more way of expressing information without requiring any inter-
action with objects. Regarding ease of use and interface, despite the majority of
positive responses, participants considered that a longer exposure time favored
the use of the tool and interaction with the interface.

Regarding the participants’ interest in using the tool again, 96% agreed, and
only one participant did not express an opinion on this statement (Fig. 16).

This interest is positive because participants in the VR experience, in some
cases in their first experience, felt no discomfort in using it and considered an
idea with potential for use in real-world contexts.

Participants also expressed if they found the virtual environment beneficial
to understanding software systems (Fig. 17). The results are encouraging to the
objective of the virtual environment, due to the significant presence of positive
responses compared to no negative ones.

Fig. 16. Answers to A1-2—“Would use the
tool again”.

Fig. 17. Answers to A1-3—“I find
the virtual environment beneficial in
understanding software systems”.

In conclusion, considering the overall assessment of the virtual environment,
participants found advantages in using the tool.

5.7 System Usability Scale

Finally, the participants answered the system usability scale, which consists of
10 questions, to help us identify usability aspects that deserve further attention.

Figure 18 shows the percentage of answers given for each of the 10 questions.
The colors used in the table are intended to reduce the effort to understand it,
with values close to 0% being red and those around 100% green.

After analyzing the results and following the calculation of the System Usabil-
ity Scale, a global rating of 83.8 was calculated, which translates into an A grade,
i.e., the highest possible grade. Participants thus show interest in the usability
of the tested tool.

Live Software Development Environment Using Virtual Reality 103

Fig. 18. Overall assessment of the virtual environment. (Color figure online)

5.8 Challenges

From the analysis of the presented data and the feedback received from the
participants, their biggest challenge was the little experience they had using
VR headsets. This issue represented some learning time and greater difficulty in
interactions due to inadequate knowledge of how the controllers worked.

Figure 19 highlights that Oculus Rift’s user experience has favored T1, reduc-
ing the time required to realize it, i.e., the exposure time required to explore the
virtual environment reduced. The coefficient of determination was approximately
0.6339.

Fig. 19. Oculus experiment durations spread for T1.

104 D. Amaral et al.

The controlling agent of the experiment noticed an evolution in the ability
to interact with the system throughout the experiment, suggesting that if there
were additional tasks, or if the same participants would participate of future
experiments, they would feel more confident in using the VR device and would
achieve better results.

A similar analysis was performed for tasks T2 and T3, comparing the dura-
tion of the experiment to the Oculus usage experience, but no significant results
emerged. That is, having more or less experience with the VR device had no
impact on the time required to solve the problem. In T2, it may be more sig-
nificant to compare participant programming practice with duration. However,
as all are programmers, in particular, 88% of participants said they program
practically daily, such an analysis would not produce meaningful results.

6 Conclusions

The contributions described in this paper consist of (1) a structural analysis tool
for Java projects that can be included in any JDT -enabled Eclipse IDE as a
plug-in, and is capable of recognizing changes to several levels of the Java Model
tree; (2) an execution analysis tool for Java projects that can be included in the
relevant workspace and added to a project with minimal required modifications
to the concerning source code; (3) a software repository ready to receive infor-
mation from the previously mentioned analysis tools, and provide it in real-time
through a API ; (4) a VR application for the live visualization of a software
system that makes use of visual and spatial metaphors to facilitate software
understanding; (5) a controlled experiment to directly validate the merits of the
combined use liveness and VR visualization, and indirectly validate the remain-
ing contributions.

The controlled experiment showed mostly agreement for the benefits and
usefulness of this approach for visualizing software and provided some insights
to be used in future work. Regarding future improvements, these include adding
new spatial and temporal interactions, and two-way communication between
the visualization, the repository, and the running system, which would allow
modifications in the virtual environment to be passed to the running system more
instantaneously, therefore improving the liveness of the developers experience.

References

1. Aguiar, A., Restivo, A., Figueiredo Correia, F., Ferreira, H.S., Dias, J.P.: Live
software development – tightening the feedback loops. In: Conference Companion of
the 3rd International Conference on Art, Science, and Engineering of Programming.
Programming 2019 Companion (2019)

2. Alam, S., Dugerdil, P.: EvoSpaces: 3D visualization of software architecture. In:
19th International Conference on Software Engineering and Knowledge Engineer-
ing, vol. 7, pp. 500–505. IEEE (2007)

Live Software Development Environment Using Virtual Reality 105

3. Amaral, D., Domingues, G., Dias, J.P., Ferreira, H.S., Aguiar, A., Nóbrega, R.:
Live software development: an environment for Java using virtual reality. In: Pro-
ceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE, vol. 1, pp. 37–46. INSTICC, SciTePress (2019).
https://doi.org/10.5220/0007699800370046

4. Bartoszuk, C., Timoszuk, G., Dabrowski, R., Stencel, K.: Magnify - a new tool for
software visualization. In: 2013 Federated Conference on Computer Science and
Information Systems, pp. 1485–1488, September 2013

5. Bassil, S., Keller, R.K.: Software visualization tools: survey and analysis. In: Pro-
ceedings of the 9th International Workshop on Program Comprehension, IWPC
2001, pp. 7–17. IEEE Computer Society, Washington, DC (2001)

6. De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.: Visu-
alizing the execution of Java programs. In: Diehl, S. (ed.) Software Visualization.
LNCS, vol. 2269, pp. 151–162. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45875-1 12

7. Elliott, A., Peiris, B., Parnin, C.: Virtual reality in software engineering: affor-
dances, applications, and challenges. In: Proceedings of the 37th International
Conference on Software Engineering, ICSE 2015, vol. 2, pp. 547–550. IEEE Press,
Piscataway (2015)

8. Fauzi, E., Hendradjaya, B., Sunindyo, W.D.: Reverse engineering of source code
to sequence diagram using abstract syntax tree. In: 2016 International Conference
on Data and Software Engineering (ICoDSE), pp. 1–6, October 2016. https://doi.
org/10.1109/ICODSE.2016.7936137

9. Feijs, L., Krikhaar, R., Ommering, R.V.: A relational approach to support software
architecture analysis. Softw. Pract. Exp. 28(4), 371–400 (1998)

10. Feist, M.D., Santos, E.A., Watts, I., Hindle, A.: Visualizing project evolution
through abstract syntax tree analysis. In: 2016 IEEE Working Conference on Soft-
ware Visualization (VISSOFT), pp. 11–20, October 2016. https://doi.org/10.1109/
VISSOFT.2016.6

11. Gosain, A., Sharma, G.: A survey of dynamic program analysis techniques and
tools. In: Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K. (eds.) Pro-
ceedings of the 3rd International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA) 2014. AISC, vol. 327, pp. 113–122. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-11933-5 13

12. Guéhéneuc, Y.G.: A reverse engineering tool for precise class diagrams. In: Proceed-
ings of the 2004 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON 2004, pp. 28–41. IBM Press (2004)

13. Hancock, C.M.: Real-time programming and the big ideas of computational liter-
acy. Ph.D. thesis, Massachusetts Institute of Technology (2003)

14. Jones, J.: Abstract syntax tree implementation idioms. In: Proceedings of the 10th
Conference on Pattern Languages of Programs (PLoP2003) (2003)

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

16. Koschke, R.: Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey. J. Softw. Maint. Evol.: Res. Pract. 15(2),
87–109 (2003). https://doi.org/10.1002/smr.270

17. Lanza, M., Ducasse, S.: Polymetric views-a lightweight visual approach to reverse
engineering. IEEE Trans. Softw. Eng. 29(9), 782–795 (2003). https://doi.org/10.
1109/TSE.2003.1232284

https://doi.org/10.5220/0007699800370046
https://doi.org/10.1007/3-540-45875-1_12
https://doi.org/10.1007/3-540-45875-1_12
https://doi.org/10.1109/ICODSE.2016.7936137
https://doi.org/10.1109/ICODSE.2016.7936137
https://doi.org/10.1109/VISSOFT.2016.6
https://doi.org/10.1109/VISSOFT.2016.6
https://doi.org/10.1007/978-3-319-11933-5_13
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1002/smr.270
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1109/TSE.2003.1232284

106 D. Amaral et al.

18. Lourenço, P., Dias, J.P., Aguiar, A., Ferreira, H.S., Restivo, A.: CloudCity: a live
approach and environment for the management of cloud infrastructures. Commun.
Comput. Inf. Sci. (2019)

19. Maalej, W., Tiarks, R., Roehm, T., Koschke, R.: On the comprehension of pro-
gram comprehension. ACM Trans. Softw. Eng. Methodol. 23(4), 31:1–31:37 (2014).
https://doi.org/10.1145/2622669

20. Marcus, A., Comorski, D., Sergeyev, A.: Supporting the evolution of a software
visualization tool through usability studies. In: 13th International Workshop on
Program Comprehension (IWPC 2005), pp. 307–316, May 2005. https://doi.org/
10.1109/WPC.2005.34

21. McDirmid, S.: Usable live programming. In: Proceedings of the 2013 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software - Onward! 2013, pp. 53–62. ACM Press, New York (2013). https://doi.
org/10.1145/2509578.2509585

22. Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: CityVR: gameful software
visualization. In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 633–637, September 2017. https://doi.org/10.1109/
ICSME.2017.70

23. Panas, T., Berrigan, R., Grundy, J.: A 3D metaphor for software production visu-
alization. In: Proceedings on Seventh International Conference on Information
Visualization, IV 2003, pp. 314–319, July 2003. https://doi.org/10.1109/IV.2003.
1217996

24. Romano, S., Capece, N., Erra, U., Scanniello, G., Lanza, M.: The city metaphor
in software visualization: feelings, emotions, and thinking. Multimed. Tools Appl.
78, 1–37 (2019)

25. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education (2004)

26. Sadar, A., Panicker, V.: DocTool - a tool for visualizing software projects using
graph database. In: 2015 Eighth International Conference on Contemporary
Computing (IC3), pp. 439–442, August 2015. https://doi.org/10.1109/IC3.2015.
7346721

27. Sensalire, M., Ogao, P., Telea, A.: Evaluation of software visualization tools: lessons
learned. In: 2009 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp. 19–26, September 2009. https://doi.org/10.1109/
VISSOF.2009.5336431

28. Shi, N., Olsson, R.A.: Reverse engineering of design patterns from Java source
code. In: Proceedings of the 21st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2006, pp. 123–134. IEEE Computer Society,
Washington, DC (2006). https://doi.org/10.1109/ASE.2006.57

29. Singh, N., Singh, S.: Virtual reality: a brief survey. In: 2017 International Confer-
ence on Information Communication and Embedded Systems (ICICES), pp. 1–6,
February 2017. https://doi.org/10.1109/ICICES.2017.8070720

30. Tanimoto, S.L.: A perspective on the evolution of live programming. In: Proceed-
ings of the 1st International Workshop on Live Programming, LIVE 2013, pp.
31–34. IEEE Press, Piscataway (2013)

31. Teyseyre, A.R., Campo, M.R.: An overview of 3D software visualization. IEEE
Trans. Vis. Comput. Graph. 15(1), 87–105 (2009). https://doi.org/10.1109/
TVCG.2008.86

https://doi.org/10.1145/2622669
https://doi.org/10.1109/WPC.2005.34
https://doi.org/10.1109/WPC.2005.34
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1109/ICSME.2017.70
https://doi.org/10.1109/ICSME.2017.70
https://doi.org/10.1109/IV.2003.1217996
https://doi.org/10.1109/IV.2003.1217996
https://doi.org/10.1109/IC3.2015.7346721
https://doi.org/10.1109/IC3.2015.7346721
https://doi.org/10.1109/VISSOF.2009.5336431
https://doi.org/10.1109/VISSOF.2009.5336431
https://doi.org/10.1109/ASE.2006.57
https://doi.org/10.1109/ICICES.2017.8070720
https://doi.org/10.1109/TVCG.2008.86
https://doi.org/10.1109/TVCG.2008.86

Live Software Development Environment Using Virtual Reality 107

32. Vincur, J., Navrat, P., Polasek, I.: VR city: software analysis in virtual reality
environment. In: 2017 IEEE International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), pp. 509–516, July 2017. https://doi.org/
10.1109/QRS-C.2017.88

33. Wettel, R.: Software systems as cities. Ph.D. thesis, Faculty of Informatics of the
Università della Svizzera Italiana, September 2010

34. Wettel, R., Lanza, M., Robbes, R.: Software systems as cities: a controlled experi-
ment. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, pp. 551–560. ACM, New York (2011). https://doi.org/10.1145/
1985793.1985868

35. Wohlin, C.: Empirical software engineering: teaching methods and conducting stud-
ies. In: Basili, V.R., Rombach, D., Schneider, K., Kitchenham, B., Pfahl, D., Selby,
R.W. (eds.) Empirical Software Engineering Issues. Critical Assessment and Future
Directions. LNCS, vol. 4336, pp. 135–142. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71301-2 42

36. Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source soft-
ware. In: 2012 34th International Conference on Software Engineering (ICSE), pp.
102–112, June 2012. https://doi.org/10.1109/ICSE.2012.6227202

https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1007/978-3-540-71301-2_42
https://doi.org/10.1007/978-3-540-71301-2_42
https://doi.org/10.1109/ICSE.2012.6227202

Model-Based Risk Analysis
and Evaluation Using CORAS and CVSS

Roman Wirtz(B) and Maritta Heisel

University of Duisburg-Essen, Duisburg, Germany
roman.wirtz@uni-due.de

Abstract. The consideration of security during software development
is an important factor for deploying high-quality software. The later one
considers security in a software development lifecycle the higher the effort
to address security-related incident scenarios. Following the principle of
security-by-design, we aim at providing methods to develop secure soft-
ware right from the beginning, i.e. methods for an application during
requirements engineering.

The level of risk can be used to prioritize the treatment of scenarios,
thus spending the required effort in an efficient manner. It is defined
as the likelihood of a scenario and its consequence for an asset. The
higher a risk level, the higher the priority to address the corresponding
incident scenario. In previous work, we proposed a method that allows
to semi-automatically estimate and evaluate risks based on the Com-
mon Vulnerability Scoring System using a template-based description of
scenarios. In the present paper, we show how the method can be inte-
grated into an existing risk management process like CORAS. To relate
the CORAS diagrams and the template, we provide a metamodel. Our
model-based approach ensures consistency and traceability between the
different steps of the risk management process.

Furthermore, we enhance the existing method with a questionnaire to
improve the assessment of an incident scenario’s likelihood.

Keywords: Security · Risk management · Risk analysis risk
evaluation · CVSS · Requirements engineering · Model-based

1 Introduction

In the context of security, risks for software can be defined as the likelihood of an
incident scenario and its consequence for an asset. An asset is anything of value
for a stakeholder, e.g. customer data for a company. We focus on information
security. Therefore, an asset is a piece of value that shall be protected with
regard to confidentiality, integrity, or availability. The level of risk can be used
to prioritize incident scenarios. Such prioritization helps security engineers to
spend the effort of addressing security aspects in an efficient manner.

The principle of security-by-design aims at considering security as early as
possible in a software development process. The later one considers such aspects,
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 108–134, 2020.
https://doi.org/10.1007/978-3-030-40223-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_6

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 109

CORAS
risk diagram

Risk Acceptance

Risk Treatment

Risk Evaluation

CVSS-based
threat description

CVSS-based
threat description

External
input

Risk Analysis

Risk Acceptance

Risk Treatment

Risk Evaluation

Risk Analysis

ISO 27005 Standard

CORAS
risk diagram

Artifacts of our
method

CORAS threat
diagram

Annotated CORAS
threat diagram

Context Establishment

Risk Identification

Level of risk
determination

Assessment of
incident likelihood

Assessment of
consequences

Fig. 1. ISO 27005 overview.

the higher the effort is to address any issue. Therefore, we aim at providing a
risk management process that can be applied during requirements engineering.

The ISO 27005 standard [7] describes a framework for information security
risk management. There are several steps to be carried out for which we provide
an overview in Fig. 1. After establishing the context of software to be analyzed
and identifying relevant risks, the risks need to be analyzed, e.g. to determine the
corresponding likelihood and consequence. The step of risk evaluation provides
activities to decide whether a risk level is acceptable or not. Unacceptable risks
can then be treated in the following step by selecting appropriate controls. Last,
there is a review of the whole process in which it has to be decided whether the
risk treatment plan will be accepted and whether all risks have been reduced
sufficiently.

In this paper, we contribute to the steps of risk analysis and risk evaluation
which are marked in gray in Fig. 1. In previous work [21], we proposed a system-
atic method to estimate and evaluate risks during requirements engineering. The
distinguishing features of that method are (1) to make consequences for different
stakeholders explicit, and (2) to use a template-based description of incident sce-
narios as input [22]. The template is based on the Common Vulnerability Scoring
System (CVSS), which allows a semi-automatic evaluation of identified risks. As

110 R. Wirtz and M. Heisel

final outcome, the method provides a list of risks to be further investigated. The
risks are ordered according their priority.

In the present paper, we show how the method can be embedded into an exist-
ing risk management process. As an example, we consider the CORAS method
[13]. Since the CORAS method is not restricted to requirements engineering, our
method can also be adapted for other phases of a software development process,
e.g. design time.

In Fig. 1, we show the external input we require and the artifacts which we
generate with our method. As the initial input, we require a CORAS threat dia-
gram which contains the identified incident scenarios that might lead to harm
for assets. In addition, we require descriptions of the scenarios based on our
template. To connect CORAS and our template, we follow a model-based app-
roach. By providing a novel metamodel, we relate the elements of the CORAS
language to our template-based description. The metamodel allows to document
the results of the method and ensures traceability and consistency between the
different steps of a risk management process. The instantiation of the meta-
model is supported by a graphical editor that also provides assistance for the
application of our method.

Furthermore, we extend our method with a checklist that assists security
engineers in assessing the incident scenario’s likelihood.

The remainder of this paper is structured in the following way: In Sect. 2,
we describe CORAS and our template to specify security incident scenarios. To
combine both approaches, we propose a metamodel in Sect. 3. Our method to
estimate and evaluate risks is described in Sect. 4, followed by a case study in
Sect. 5. We discuss the achieved results in Sect. 6, and we state related work in
Sect. 7. Section 8 concludes the paper with a summary and an outlook on future
research directions.

2 CORAS and Incident Description

We make use of two basic concepts in this paper which we introduce in the
following. First, we describe the CORAS risk management process along with
its specific language [13]. Second, we introduce our template to specify security
incident scenarios based on the CVSS [22].

2.1 CORAS

CORAS is a model-based method for risk management. It consists of a step-wise
process and different kinds of diagrams to document the results. The method
follows the ISO 31000 risk-management standard [10]. Each step provides guide-
lines for the interaction with the customer on whose behalf the risk management
activities are carried out. The results are documented in diagrams using the
CORAS language. The method starts with the establishment of the context and
ends up with the suggestion of treatments to address the risk.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 111

Human
Threat

Deliberate

Non-
Human
Threat

Unwanted
Incident
Unwanted
Incident

Human
Threat

Accidental

Human
Threat

Accidental

Asset

Threat
Scenario
Threat

Scenario

initiates

leads
to

impacts

Fig. 2. CORAS threat diagram.

For our method, there are two types of diagrams we make use of. The first
type is a so-called threat diagram for which we show an example in Fig. 2. A
threat diagram consists of the following elements: An Asset is an item of value.
There are Human-threats deliberate, e.g. a network attacker, as well as Human-
threats accidental, e.g. an employee pressing a wrong button accidentally. To
describe technical issues there are Non-human threats, e.g. malfunction of soft-
ware. A threat initiates a Threat scenario with a certain likelihood, and a threat
scenario describes a state, which may lead to an unwanted incident with another
likelihood. An Unwanted incident describes the action that actually impacts an
asset and therefore leads to a consequence for the asset.

The second type of diagram is a risk diagram for which we present an example
in Fig. 3. There is a Risk for an asset. A path from a threat to an unwanted
incident in a threat diagram represents a risk with a consequence for the asset.
The risk level depends on the likelihood with which a threat initiates a threat
scenario, on the likelihood with which a threat scenario leads to an unwanted
incident, and the consequence for the asset.

In our method, we consider threat diagrams as input, and we use risk dia-
grams to document our results along with the security incidents.

2.2 Security Incident Description

In the present paper, we make use of the Common Vulnerability Scoring System
(CVSS) [6] to estimate security risks. It consists of different metrics to calculate
the severity of vulnerabilities. In the following, we describe the Base Metric
Group which we consider for our method. For each metric, there is a predefined

Risk
[risk level]

AssetAsset

impacts

Fig. 3. CORAS risk diagram.

112 R. Wirtz and M. Heisel

Table 1. Incident description: injection [22].

Basic information

Name Injection

Context Application that provides some user input to select or
edit some data

Description Data entered by users is not validated and used in queries
to read or modify data, e.g. SQL queries. An attacker
needs to be able to input data which is then used to query
or modify data

Vulnerability User input is not validated before execution

Consequences Data is manipulated, deleted or disclosed by unauthorized
persons

Likelihood information

Threat vector �� Network �� Adjacent �� Local � Physical

Complexity �� Low � High

Privileges required � None �� Low � High

User interaction �� None � Required

Threat scope � Unchanged �� Changed

Impact information

Confidentiality impact � None � Low �� High

Integrity impact � None � Low �� High

Availability impact � None � Low �� High

qualitative scale. To each value of the scale, the CVSS assigns a numerical value.
Those numerical values are then used in formulas to calculate the severity.

In previous work, we related the CVSS to the description of security incidents
for an application during requirements engineering [22]. The proposed template
can be used to further specify security incidents of a CORAS threat diagram.
Table 1 shows the relevant excerpt of a template instance for the security incident
Injection. There are three main sections for which we explain the different metrics
and corresponding values in the following.

The first section contains some Basic Information about the incident, e.g. a
name and informal descriptions.

Furthermore, we distinguish between a section for Likelihood Information
and one for Consequence Information. The template describes the likelihood
that a threat scenario successfully leads to an unwanted incident using different
vectors. The Threat Vector (attack vector in CVSS) describes possible ways how
to realize a threat. There are four different values: (1) network, which means
access from an external network; (2) adjacent, which means a local network;
(3) local, which means direct access to the computer; and (4) physical, which
describes access to the hardware.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 113

ImpactScale

NONE
LOW
HIGH

ThreatVector

NETWORK
ADJACENT
LOCAL
PHYSICAL

Complexity

LOW
HIGH

PrivilegesRequired

NONE
LOW
HIGH

UserInteraction

NONE
REQUIRED

ThreatScope

UNCHANGED
CHANGED

Fig. 4. Metamodel: CVSS datatypes.

The Complexity of a threat is defined by two possible values: low and high.
A high effort is required when a threat agent needs some preparation to realize
the threat and that the threat cannot be repeated an arbitrary number of times.

To state whether privileges are required to successfully realize the threat, we
make use of the corresponding attribute. There are three possible values: (1)
None; (2) Low, e.g. a user account; and (3) High, administrative rights.

A threat realization may require some User Interaction, for example by con-
firming the installation of malicious software.

The Threat Scope may change when a threat uses a component to reach other
parts of the software.

For describing the impact, we focus on the three security properties confi-
dentiality, integrity, and availability. The impact on those properties is defined
by qualitative scales consisting of three values: None, Low and High.

To relate CORAS diagrams to the incident description, we provide a meta-
model in Sect. 3.

3 Metamodel

To combine CORAS with our template, we provide an ECore metamodel based
on the Eclipse Modeling Framework (EMF) [17]. Based on that metamodel,
we also provide a graphical editor which enables security engineers to create
model instances in a user-friendly way and to store the results of our method
persistently.

The overall model consists of four parts which we present in the following.

3.1 CVSS Datatypes

Based on the template structure presented in Sect. 2.2, we define six different
datatypes in form of enumerations. That part of the model is shown in Fig. 4.
The possible values for all datatypes are given as literals. The enumerations
ThreatVector, Complexity, PrivilegesRequired, UserInteraction, and ThreatScope
belong to the likelihood specification. For describing the consequences with
regard to confidentiality, integrity, and availability, the range of possible values
is the same. Therefore, we define only one datatype called ImpactScale (given in
gray).

114 R. Wirtz and M. Heisel

ThreatDiagram CORASDiagram RiskDiagram

[..] threatdiagram

Fig. 5. Metamodel: CORAS diagrams.

3.2 CORAS Diagrams

As described in Sect. 2.1, we consider two types of CORAS diagrams in our
approach which we show in Fig. 5. Both inherit from the abstract class CORAS-
Diagram. The first is represented by the class ThreatDiagram, and the second
one is represented by the class RiskDiagram. A risk diagram holds a reference
to exactly one threat diagram from which it has been derived. In the following,
we will specify the elements that are part of such diagrams.

3.3 CORAS Threat Diagram

In our metamodel, we make use of classes for all elements and relations contained
in a CORAS diagram. In Fig. 6, we show the classes that are related to a threat
diagram. There is an abstract class Threat from which the different threat types
of the CORAS language inherit. Furthermore, there are classes for a threat
scenario, an unwanted incident, and an abstract class for assets. That class is
further refined into a direct and an indirect asset.

Fig. 6. Metamodel: CORAS threat diagram.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 115

Fig. 7. Metamodel: CORAS risk diagram.

We distinguish three classes of relations: Initiates, LeadsTo, and Impacts.
The likelihood that a threat initiates a threat scenario can be specified with
a quantitative value, e.g. the occurrence per year. For a leads to relation, we
make use of the previously presented datatypes to describe the likelihood that
a threat scenario leads to an unwanted incident. The impacts relation provides
attributes to specify the impact on confidentiality, integrity, and availability
using the datatype ImpactScale.

3.4 CORAS Risk Diagram

Figure 7 shows the metamodel for a risk diagram. There is a new class Risk that
has an attribute to specify its corresponding risk level. For that attribute, we
define an additional enumeration called RiskLevel. Its qualitative scale consists
of the values LOW, MEDIUM, and HIGH. By changing the metamodel, it is still
possible to add more values later. Furthermore, the diagram contains an arbi-
trary number of the Impacts relations that connect a risk and the corresponding
assets.

3.5 Graphical Editor

To instantiate the metamodel and to create CORAS diagrams, we provide a
graphical editor1 based on Eclipse Sirius2. The editor can be used to draw
CORAS diagrams which document identified risks. For each diagram type, we
defined a view on the model using the CORAS symbols. The created mod-
els are instances of the metamodel and therefore follow the defined semantics.
Besides, it is possible to upload a template-based description for an identified
incident scenario to automatically set the required attributes for likelihood and
impacts. For that reason, we defined an XML-schema to express the template
1 ProCOR - https://swe.uni-due.de/ (last access: August 14, 2019).
2 Eclipse Sirius - https://www.eclipse.org/sirius/ (last access: August 14, 2019).

https://swe.uni-due.de/
https://www.eclipse.org/sirius/

116 R. Wirtz and M. Heisel

Step 2: Stakeholder
Identification & Asset Values

Step 3: Security
Requirements Definition

Step 4: Severity Calculation

Step 1: Likelihood Estimation

Step 6: Risk Evaluation

More assets?

Step 5: Risk Matrix Definition

No

Input:
(1) Context information
(2) Security goals
Output:
(1) Stakeholders
(2) Asset values

Yes

Step 7: Risk Prioritization

Input:
(1) Stakeholders
(2) Asset values
Output:
(1) Security requirements
metrics per stakeholder

Input:
(1) Identified threats
(2) Security requirements metrics
per stakeholder
Output:
(1) Severy scores
(2) Overall severities

Input:
(1) CORAS threat diagrams
(2) Context information
Output:
(1) Frequencies of occurrence

Input:
(1) Risk matrix
(2) Frequencies
(3) Overall severities
Output:
(1) Risk diagrams

Input:
(1) Context information
(2) CVSS severity scale
Output:
(1) Risk matrix

Input:
(1) Unacceptable risks
Output:
(1) Risk priorities

Fig. 8. Risk estimation method.

in a machine-readable way. Using that schema, it is possible to make the knowl-
edge about incident scenarios reusable and to upload the corresponding files in
different projects.

The model that can be created with the editor contains all threat diagrams
along with the attributes and serves as the initial input for our method we
describe in the following.

4 Risk Analysis and Evaluation Method

As shown in Fig. 1, our method contributes to the steps of risk analysis and risk
evaluation. Overall, there are seven steps for which we provide an overview in
Fig. 8. We marked those steps in gray that can be carried out automatically. The
other steps need some manual effort, but all results can be stored in our model,
and the documentation is supported by our tool. From the second to the sixth
step, the method is carried out iteratively for all assets.

In the following, we describe each step in detail starting with the required
external input.

4.1 Required Input

As mentioned in Sect. 2, the input for the risk analysis in CORAS are threat
diagrams which document the results of the step of risk identification. Therefore,
our method requires the following initial input.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 117

1. Assets: Since our method focusses on information security, we consider an
asset as a piece of information that shall be protected with regard to confiden-
tiality, integrity, or availability. We assume that the definition of assets has
already taken place during context establishment. Hence, we consider assets
as given input which are part of the CORAS threat diagrams.

2. Security Goals: A security goal describes the aim to protect an asset with
regard to confidentiality, integrity, or availability. We consider an unwanted
incident in a CORAS threat diagram as the incident that actually impacts
such security property for an asset.

3. Incident Scenarios: Relevant incident scenarios have been identified dur-
ing risk identification and are therefore required input for the risk analysis.
In addition to CORAS threat diagrams describing those scenarios, we also
require a description for each scenario based on our template.

4.2 Step 1: Likelihood Estimation

For each threat that has been identified, it is necessary to estimate the likelihood
that it leads to a threat scenario. We define that likelihood by its frequency of
occurrence per year.

In contrast to the consequence of a threat, the occurrence of it is independent
of any asset. Therefore, we estimate the values in the beginning.

To assist security engineers in estimating such likelihoods, we propose a
checklist. The checklist provides items for each threat type: human-threat acci-
dental, human-threat deliberate, and non-human threat. For each item, there is
a numerical scale between zero and five. Furthermore, it is possible to state that
an item is not relevant for software under investigation. A higher value reduces
the likelihood that a threat may initiate a threat scenario. Not relevant means
that this item is not relevant for software under investigation or for that com-
bination of threat and threat scenario. Table 2 shows the current version of the
checklist. We consider the checklist as not yet complete since we aim to extend
it with additional items based on ongoing research. More items will improve the
precision of the checklist and therefore of the derived likelihood.

Currently, the checklist has to be applied manually and serves as an indicator
for security engineers to estimate likelihoods. The resulting likelihood can be
annotated in the corresponding CORAS threat diagram using our graphical
editor. We are evaluating different metrics that allow to automatically derive
likelihoods from the filled checklist. The checklists, as well as the metrics, will
later be embedded in our tool to automate this step of our method.

4.3 Step 2: Stakeholder Identification and Asset Values

The specific value of an asset with regard to a security property may differ for
each stakeholder. For example, harming the integrity of health records may lead
to death for a patient, whereas for a hospital, it leads to a loss of reputation. In
existing risk management processes, e.g. CORAS [13], security engineers define

118 R. Wirtz and M. Heisel

Table 2. Checklist for likelihood estimation.

Human threat accidental

(1) The application is used by experienced users

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(2) Users will receive a training before using the software

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(3) The graphical user interface follows style guidelines

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(4) Users are aware of security, e.g. they know how to keep their
credentials secret

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

Human threat deliberate

(5) Comparable software has not often been subject to attacks

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(6) Processed information is of low value

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(7) The attacker needs insider knowledge

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(8) The attacker needs high skills

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(9) The software provider complies to security standards

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

Non-human threat

(10) The underlying operating system is well protected against
any type of virus, trojan horse, etc.

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(11) The hardware and software is maintained by experienced per-
sons

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(12) External libraries can be considered as secure

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

(13) Users are not allowed to install own software

•� not relevant � 0 � 1 � 2 � 3 � 4 � 5

a single point of view to estimate risks. Doing so, consequences for some stake-
holders may be omitted, which leads to incomplete risk estimations.

A distinguishing feature of our method is that we make all stakeholders
explicit. For each identified stakeholder, we estimate the value of an asset with
regard to confidentiality, integrity, and availability independently. Those values
are defined independently of any threat. We consider three types of stakeholders:

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 119

Software Provider. Stakeholder or company that is responsible for the soft-
ware, e.g. development and maintenance. Since all assets are related to the same
piece of software, the software provider is the same for all assets.
Data Owner. Stakeholder to which the asset belongs, e.g. a patient is the data
owner for his/her health record. The data owner may also be a company, for
example when protecting business information.
Third Parties. Set of other stakeholders for which consequences might exist.
We investigate each relevant third party independently of each other.

Using a detailed description of the context, in which the application shall be
deployed, we identify data owner and relevant third parties for each asset. For
each so identified stakeholder, we estimate the impact for each security property
using the same unit, e.g. in terms of monetary impact. The monetary impact
can also later be used to evaluate the costs of selected controls.

Currently, our method does not provide any specific method to elicit stake-
holders. Using context patterns, e.g. the ones proposed by Beckers [3], security
engineers can be assisted in identifying relevant stakeholders.

To document the stakeholders and the corresponding asset values, we extend
our metamodel (cf. Sect. 3). We show that extension in Fig. 9. There is an
abstract class SecurityGoal which refers to exactly one asset. It provides an
attribute to specify a stakeholder’s value for the specific asset. An asset can
have an arbitrary number of security goals. A security goal can be of the class
Confidentiality, Integrity, or Availability. There is also one class to model a
Stakeholder. A stakeholder can have an arbitrary number of security goals. The
attribute and datatype SecurityRequirement will be used in the next step of the
method. There is a graphical editor to document the results in the model. We
provide an example of the resulting diagram in Fig. 12.

Fig. 9. Metamodel: security goals.

4.4 Step 3: Security Requirements Definition

Our template states the maximum impact on confidentiality, integrity, and avail-
ability independently of the concrete context and the asset’s value for a stake-
holder. In contrast to existing methods, we put a special focus on stakeholders
and make them explicit during risk analysis. Therefore, it is necessary to adjust
the importance of impact metrics according to the stakeholders’ asset values.

120 R. Wirtz and M. Heisel

To reweight the importance of impacts, the CVSS contains metrics to define
security requirements. The metric is defined as a qualitative scale with the fol-
lowing values: Not defined, Low, Medium, and High. Not defined means that the
asset has no value for the stakeholder. Using those metrics, we take the differ-
ent stakeholders into account. We define security requirements for each stake-
holder to reflect his/her specific value of the asset with regard to confidentiality,
integrity, or availability.

In the second step of our method, we defined a monetary value for each asset.
From those values, security engineers have to derive the qualitative values for
security requirements. There is no specific algorithm for that. Therefore, the
present step needs manual interaction. To document the security requirements
in the model, we provide an additional metamodel extension which we also show
in Fig. 9. The class for a security goal provides an attribute securityRequirement.
For this attribute, we define a datatype SecurityRequirement as an enumeration.
It provides all values defined by the corresponding CVSS metric, except not
defined since this is implicitly given by the absence of a corresponding security
goal in the model.

4.5 Step 4: Severity Calculation

In our method, we define the severity of an incident scenario as the likelihood
that a threat scenario leads to an unwanted incident and the impact on a specific
asset. Furthermore, we consider the previously defined security requirements as
additional metrics.

Our method provides an easy and precise way to calculate the severity of
each incident scenario. It needs to be calculated for each incident scenario that
impacts the asset under investigation. Since the impact differs per stakeholder,
we calculate the severity for each stakeholder using the security requirements
metrics and the template. The CVSS defines formulas for the severity calculation
[6], which we use for that task.

In case that a security requirement for a security property is not defined, it is
necessary to adjust the related impact metric. Not defined means that harming
the security property will not lead to value loss for the stakeholder. Thus, the
severity of the incident scenario is reduced. To adjust the scenario description
accordingly, we define a so-called modified base metric for that property which
is set to None. During the severity calculation, a modified base metric overwrites
the base metric provided by the scenario description. The calculation yields a
set of severities per incident scenario. There is one severity per stakeholder.

Next, we combine the values of the set to derive the overall severity of an
incident scenario to an asset. For this, we propose two different approaches:

1. Taking the maximal value of all severities.
2. Calculating the average of all severities.

In case that software provider and data owner are the same for the asset, we
consider the corresponding severity only once since the impact for the stakeholder

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 121

can also only happen once. For later prioritization of risks, the values have to be
comparable for all assets. Therefore, the same approach has to be taken for all
calculations.

As mentioned in Sect. 3, the information provided by the template can be
stored in the model. Since we allow to add the security requirements to the
model as well, the severities can be calculated based on the model. To do so, we
implement functions in our tool based on the CVSS specification. The user of
the tool can select between average and maximal severity per asset. Since the
values for the calculation are part of the model, we do not provide a specific
attribute to store the severity persistently.

4.6 Step 5: Risk Matrix Definition

When treating risks, it is important to focus on the most important ones. First, it
is necessary to define risk levels that are considered acceptable or unacceptable.
It is also possible to define further levels, e.g. risks to be monitored. Later on,
only unacceptable risks need further inspection and hence, only those risks need
to be prioritized. We make use of risk matrices to evaluate risks. That kind of
matrix has already been used in other risk methods, for example in CORAS [13].

Define Scales. Prior to the definition of the risk matrix, it is necessary to
define its scales. The CVSS score describes the severity of a threat. The severity
is derived from conditions under which a threat can be successfully realized and
its corresponding impact on an asset. The second dimension is the likelihood
of the occurrence of a threat as mentioned in the first step of the method. For
creating a risk matrix, we define intervals for the occurrence which we use to
define a qualitative scale.

The likelihood scale is the same for all risk matrices and hence, for all assets.
Therefore, it is only necessary to define it once during method execution.

In the CVSS specification document [6], there is an interval-based qualitative
scale. It consists of the following values: None, Low, Medium, High, and Crit-
ical. The numerical severity values can be classified according to the provided
intervals. Therefore, we make use of the qualitative scale in our risk matrices.

Define Risk Matrices. The acceptance threshold for risks highly depends on
the importance of an asset. Therefore, it is necessary to provide a risk matrix
for each asset. We annotate the severity scale horizontally and the likelihood
scale vertically. For each cell of the matrix, it is necessary to define whether the
risk level is acceptable or not. In a graphical representation, we mark acceptable
values in green (white) and unacceptable values in red (gray). An example of
such a risk matrix is shown in Table 8. Other categories of risks may be added, as
well, e.g. for risks that do not need to be treated but which shall be monitored.

The likelihood scale might be reused from other software projects, but the
definition of acceptance needs some manual interaction. Currently, our tool does
not allow to define risk matrices in the model.

122 R. Wirtz and M. Heisel

4.7 Step 6: Risk Evaluation

For each asset, we evaluate the acceptability of identified risks. The risk of an
incident scenario for an asset is composed of the likelihood that a threat initiates
a threat scenario (Step 1) and its severity (Step 4). Using these values, we fill the
risk matrix for the corresponding asset which has been defined in the previous
step.

As mentioned in Sect. 3, we distinguish three different risk levels:

Low. Risk with an acceptable level. No further investigation is necessary.
Medium. Risk with an acceptable level but which shall be monitored.
High. Risk with an unacceptable level. Risk treatment necessary.

The unacceptable risks will be prioritized in the next step.
To bridge the gap between the risk matrices and our model-based approach,

we derive CORAS risk diagrams from the threat diagrams. There is one risk dia-
gram per identified risk, i.e. one diagram for each path between threat and asset.
Our tool generates those diagrams automatically from the underlying model.
Since our tool currently does not support risk matrices, the user has to set the
risk level attribute’s value manually.

4.8 Step 7: Risk Prioritization

The final step of our method is the prioritization of unacceptable risks, i.e. those
risks with a high risk level. A well-known concept for calculating risk levels
is to multiply likelihood and impact [18]. We follow the same approach since
both values are available from previous steps and are available in our model.
By multiplying the numerical values for the likelihood (Step 1) and the overall
severity of a risk (Step 4), we define risk priorities. The higher the value, the
higher the priority.

The final step of our method takes all risks into account. The final outcome of
our method is, therefore, a list of all unacceptable risks which are ordered accord-
ing to their priority. The list ensures that risks can be treated in an effective
manner by considering their priority.

Our tool automatically derives risk priorities for all risks at a high level.
The corresponding priority is annotated at the risk element in a risk diagram.
Furthermore, our tool provides a table that provides an overview of all risks
including different values, e.g. priority.

5 Case Study

To illustrate our risk estimation and evaluation method, we make use of a smart
home scenario. We first describe the scenario and the initial input, and then we
execute the different steps of our method.

Remark: Since our tool does currently not support the export of vector graphics,
we redrew the diagrams and tables for the printed version. In addition, we present
the values contained in the underlying model in tables.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 123

ker

Harm integrity
of tariff
parameters

Harm integrity
of tariff
parameters

Tariff
parameters

Inject malicious
database queries
Inject malicious

database queries

Fig. 10. Case study: CORAS threat diagram for Injection.

5.1 Scenario and Input

Our scenario is a smart grid which enables the energy supplier to measure a
customer’s power consumption remotely. The invoices are calculated automat-
ically based on the measured values. The gateway at the customer’s home is
called Communication Hub, for which the software shall be developed. It is the
bridge between energy supplier and measuring units. Customers can connect to
the communication hub using a mobile app in the local area network to check
the invoices or to change their personal data. The invoices are calculated based
on the customer’s tariff parameters, which are stored at the communication hub,
as well as the personal data and the measured values. We consider the following
two assets for our example:

Customer’s Tariff Parameters. which shall be protected with regard to
integrity.
Customer’s Personal Data. which shall be protected with regard to confi-
dentiality.

In addition, we consider the incident scenarios Injection and Inception as
risk that have been previously identified. We describe those scenarios in more
detail in the following.

Injection. The CORAS threat diagram is given in Fig. 10, and the tem-
plate instance has already been presented in Sect. 2.2 (cf. Table 1). An attacker
(human-threat deliberate) may take the role of a user and uses the connection to
the gateway via the app to inject malicious database queries and updates. The
functional requirement only considers changing the customer’s personal data.
Since the tariff parameters are stored in the same database, it is possible to
harm the integrity of the asset using malicious updates. Since the app can be
used in the local area network, the threat vector is defined as adjacent. The com-
plexity of injecting malicious queries is considered as low. The threat agent only
needs user privileges to realize the threat, which leads to a low privilege value.
There is no additional user interaction and the threat scope is changed, because
the threat agent uses the software to manipulate the database. In general, an
injection may have a high impact for all three security properties.

Interception. Figure 11 shows the CORAS threat diagram, and in Table 3 we
show the corresponding template instance. An attacker (human-threat delib-
erate) may also intercept the local network connection (adjacent) to disclose

124 R. Wirtz and M. Heisel

Attacker

Harm
confide ality
of personal
data

Harm
confidentiality
of personal
data Personal

data

Intercept wireless
connec n

Intercept wireless
connection

Fig. 11. Case study: CORAS threat diagram for Interception.

Table 3. Case study: description of Interception [21].

Basic information

Name Interception

Context Data transmission via an untrusted network connection,
e.g. WLAN

Description An attacker tries to intercept a network connection to
disclose transmitted data

Vulnerability Connection can be intercepted

Consequences Data is manipulated, deleted or disclosed by unauthorized
persons

Likelihood information

Threat vector � Network �� Adjacent
� Local � Physical

Complexity � Low �� High

Privileges
Required

� None � Low �� High

User
Interaction

�� None � Required

Threat scope �� Unchanged � Changed

Consequence information

Confidentiality impact � None � Low �� High

Integrity impact �� None � Low � High

Availability impact �� None � Low � High

transmitted data. Such incident scenario is relevant because customer’s personal
data can be transmitted via the WLAN. Hence, it may impact the confidentiality
of personal data. The scenario has a high complexity and requires high privileges.
Since the attacker intercepts the connection and only discloses data on that level,
the scope remains unchanged. There is a high impact on confidentiality but no
impact on integrity or availability.

Based on the initial input, we describe the application of our method in the
following.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 125

5.2 Step 1: Likelihood Estimation

Using our checklist we have shown in Table 2, we estimate the likelihood that
an attacker initiates the threat scenario as 25 times a year. That is, 25 times a
year an attacker tries to inject malicious code to manipulate tariff parameters.

In the same way, we estimate the likelihood for the interception of a local
network as 25 times a year, too. We document both values in the model
accordingly.

5.3 Step 2: Stakeholder Identification and Asset Values

The software provider in our scenario is the energy supplier, which is the same
for all assets.

Tariff Parameters. The first asset are tariff parameters, which shall be pro-
tected with regard to integrity. Since tariff parameters are defined by the energy
supplier, we consider that stakeholder as the data owner. We define an asset
value per customer of 200 e, because invoices are generated automatically based
on the tariff parameters, and not each invoice is checked for its correctness by
the energy supplier. A lower invoice amount will lead to a loss of money, whereas
a higher amount might harm the reputation of the company and also produces
effort to correct the incorrect invoices manually. In case that the tariff parame-
ters are not manipulated by customers themselves, we consider customers as a
relevant third party. Manipulated tariff parameters lead to an incorrect invoice
and may request the customer to pay more money than necessary. Since most
customers check their invoices, we estimate an impact only at 50 e. Customers
who check their invoices and find errors still have to spend some effort to get it
sorted. Table 4 summarizes the results for the asset tariff parameters which have
been added to the model. SP stands for software provider, DO for data owner
and TP for third party. The corresponding diagram created with our editor is
shown in Fig. 12.

Tariff
parameters

Tariff
parameters

Energy
Supplier
Energy

Supplier
CustomerCustomer

<<integrity>>
value = 50

securityRequirement =
LOW

<<integrity>>
value = 200

securityRequirement =
MEDIUM

Fig. 12. Case study: stakeholders and asset values.

Personal Data. The second asset is the personal data of the customer who is the
data owner. There are no other third parties. When personal data is disclosed, the
software provider may be liable for damages. Therefore, we estimate a value of
400e per customer. The personal data only consists of the customer’s address to
provide the invoice, which may also be accessible via the phone book. Therefore,
we do not consider address data as highly sensitive information, and we estimate
a relatively low value of 50e for the data owner. Table 4 also summarizes the
results for that asset.

126 R. Wirtz and M. Heisel

Table 4. Case study: identified stakeholders and asset values.

Tariff parameters Personal data

Stakeholder Integrity Stakeholder Confidentiality

(SP) Energy supplier 200e (SP) Energy supplier 400e

(DO) Energy supplier 200e (DO) Customer 50e

(TP) Customer 50e – –

5.4 Step 3: Security Requirements Definition

Tariff Parameters. For the asset tariff parameters, there is no impact on con-
fidentiality and availability for both stakeholders. Therefore, there is no cor-
responding security requirement. Using the previously defined asset values, we
define the impact on integrity for the energy supplier as medium and for cus-
tomers as low. Using the graphical editor, the values can be added to the model
as shown in Fig. 12.

Personal Data. For the second asset, there is only an impact on confidentiality.
For the customer, we define the impact as low, whereas for the software provider,
the impact is medium. We summarized the results in Table 5.

Table 5. Case study: stakeholders and security requirements.

Tariff parameters Personal data

Stakeholder Integrity Stakeholder Confidentiality

(SP) Energy supplier medium (SP) Energy supplier medium

(DO) Energy supplier medium (DO) Customer low

(TP) Customer low – –

5.5 Step 4: Severity Calculation

In our example, there is one threat per asset for which we need to calculate its
severity.

Tariff Parameters. For the asset tariff parameters, we identified the threat
Injection. The formulas provided by the CVSS specification document [6] are
filled with the base metrics contained in the instance of the threat pattern. In
the third step of our method, we defined security requirements metrics. Since
the metrics for confidentiality and availability have been set to not defined, we
define corresponding modified base metrics which are set to none.

The severity needs to be calculated for the energy supplier and the customer
independently. The results of the calculation are summarized in Table 6. The

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 127

table states the severities for the energy supplier and the costumer, the maximum
severity and the average severity. In our example, software provider and data
owner are the same. Therefore, that stakeholder counts only once for calculating
the average.

Table 6. Case study: severity for tariff parameters [21].

Stakeholder Severity of injection

(SP) Energy supplier 6.8

(DO) Energy supplier 6.8

(TP) Customer 4.5

Average 5.65

Maximum 6.8

Personal Data. The severity of the threat Interception for the asset personal
data is calculated in the same manner. We state the corresponding results in
Table 7. Here, we do not have any third party. The average severity is only
calculated based on software provider and data owner.

Table 7. Case study: severity for personal data [21].

Stakeholder Severity of intercep-
tion

(SP) Energy supplier 4.2

(DO) Customer 2.4

Average 3.3

Maximum 4.2

5.6 Step 5: Risk Matrix Definition

Likelihood Scale. We define a qualitative likelihood scale for the frequency of
occurrences per year with the following values: Never, Seldom (up to 20 times
a year), Frequently (up to 50 times a year), and Often (more than 50 times a
year).

Risk Matrix. We define a risk matrix to evaluate whether a risk is acceptable
or unacceptable. On the vertical axis, we annotate the previously defined likeli-
hood scale and on the horizontal axis we annotate the CVSS severity score. The
resulting matrix is shown in Table 8. Acceptable risks are shown in white and
unacceptable risks are shown in gray. In the present example, we use the same
matrix for both assets.

128 R. Wirtz and M. Heisel

Table 8. Case study: risk matrix [21].

None
0.0

Low
0.1–3.9

Medium
4.0–6.9

High
7.0–8.9

Critical
9.0–10.0

Never
0 times

Seldom
≤ 20 times

Frequently
≤ 50 times

R2Avg R1Avg , R1Max,

R2Max

Often
> 50 times

5.7 Step 6: Risk Evaluation

To evaluate the risks, we make use of the risk matrix shown in Table 8.

Tariff Parameters. For the asset tariff parameters, there is one risk concern-
ing the threat Injection. In Table 8, we use R1 as an abbreviation for the cor-
responding risk. Max indicates the risk level when using the maximal value of
all severities, and avg indicates the average value. Both approaches lead to an
unacceptable risk which is indicated by a gray cell.

Personal Data. For the asset personal data, there is a risk for the threat Inter-
ception. In Table 8, we use R2 as an abbreviation for the corresponding risk.
Using the risk matrix, we consider the risk as acceptable for using the average
value for the severity, which is indicated by the green cell. The risk is unac-
ceptable for using the maximum of all severities. Hence, further inspection of
the threat is necessary for the asset personal data when taking the maximum
severity.

Figure 13 shows the resulting CORAS risk diagrams that have been derived
from the threat diagrams. For those diagrams, we only consider the maximal
severity.

Injection
[High]

priority=1
[High]

priority=1

Intercep n
[High]

priority=2

Interception
[High]

priority=2
Tariff

parameters
Tariff

parameters Personal
data

Personal
data

Fig. 13. Case study: risk diagrams.

5.8 Step 7: Risk Prioritization

To prioritize risks, we multiply likelihood and severity for each unacceptable
risk. The higher the calculated value, the higher the priority of the risk.

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 129

Using the average of the severities, we only identified one unacceptable risk
in the sixth step. Therefore, a prioritization is not necessary.

Using the maximum of the severities, there are two risks that need to be
prioritized: R1, risk of injection for the asset tariff parameters; and R2, risk
of interception for the asset personal data. The results of the calculation are
summarized in Table 9. The risk of injection has a higher level, and hence will
have priority during risk treatment.

In Fig. 13, we also annotate the risks’ priorities in the diagrams.

Table 9. Case study: calculated risk levels [21].

Risk Likelihood Maximal
severity

Risk level

R1 25 6.8 170

R2 25 4.2 105

6 Discussion

Based on the description of our method in Sect. 4 and the application for the
case study in Sect. 5, we discuss the benefits and limitations of our method.

6.1 Usability

Incident scenarios that have been identified during risk identification are
described in form of CORAS threat diagrams. Using our template format, we
systematically make use of additional information about the identified scenarios.
Limiting the effort for security engineers, the template allows to calculate the
severity without collecting additional information about the scenario. Besides,
the CORAS diagrams present the input and output of the method in a user-
friendly way. For each step, we explicitly state input, output, and procedure
which assists engineers in applying our method. By following a model-based
approach, we ensure consistency and traceability between the different steps of
a risk management process. Our tool, we describe in this paper, supports the
application of our method and helps to document the results systematically.

Security engineers still need some specific expertise, for example in estimating
the likelihood for a threat initiating a threat scenario. With our questionnaire,
we aim to assist them in collecting and documenting the results in an effective
and structured way.

6.2 Scalability

The complexity of our method mainly depends on the number of assets, threats
and identified stakeholders. The complexity of the first step which deals with

130 R. Wirtz and M. Heisel

the likelihood estimation of identified threats cannot be improved. It is always
necessary to estimate the likelihood of a threat depending on the concrete con-
text.

Since we identify different stakeholders for estimating the severity of a threat,
we increase the complexity of some steps. When omitting the stakeholders, we
will improve the scalability of our method but the estimated risk levels will
be less precise. Therefore, it is necessary to find a compromise between both
limitations. We automated all steps as much as possible to limit the manual effort
for engineers to perform those steps. The required calculation can be performed
with our tool based on information stored in the model. For steps that need
manual interaction, our tool guides security engineers.

6.3 Precision

To calculate the severity of an incident scenario concerning a specific asset, we
use the CVSS. The defined metrics are widely accepted by the community and
many industrial partners. For example, the system is used by the National Vul-
nerability Database3, which is provided by the National Institute of Standards
and Technology. Based on the template (cf. Sect. 2), we adapted the scoring
system to estimate the severity of incident scenarios. The corresponding formu-
las to calculate the score have been defined by security experts based on real
vulnerabilities. Although the metrics and formulas have been defined on sound
expertise, there are limitations in their precision. The instances of the template
do not consider the concrete context of the application, and the values for the
metrics are qualitative. As mentioned above, predefined scales have the benefit
of better usability. So there is still a compromise between usability and preci-
sion. We try to address the issue with a context-independent description by an
explicit identification of stakeholders and by adjusting the base metrics with
security requirements.

To evaluate risks, we make use of qualitative scales in risk matrices. Risk
matrices are a well-known concept in the context of risk management, not only
restricted to information security. We only use qualitative scales to define inter-
vals for risk acceptance. The scales we use in this paper can be easily replaced
by arbitrary ones with a more fine-grained resolution. For risk prioritization, we
still consider quantitative scales to ensure precision in this stage.

7 Related Work

To identify related work, we performed a simplified literature using the search
engine of Scopus4. We used the built-in search engine to identify relevant publi-
cations that either describe a risk estimation or risk evaluation method. Those
methods should be applicable during requirements engineering and should put

3 https://nvd.nist.gov/ - NVD by NIST (last accessed on 3 December 2018).
4 www.scopus.com - Scopus (last access: December 4, 2018).

https://nvd.nist.gov/
www.scopus.com

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 131

a special focus on security. Therefore, we defined the following search query:
(Requirements Engineering) AND ((Risk Estimation) OR (Risk Evaluation))
AND Security. We performed the search on December 5, 2018. The initial result
set contained 170 publications. We limited this set to the subject area Computer
Science and to the language English. This limitation leaded to a subset of 97
relevant publications from 1996 to 2018.

From all of these publications, we read title and abstract to decide about the
relevance. From the so identified 28 publications, we read the full text. When
reading the full text, we focused on publications that (1) introduce or extend risk
estimation or evaluation methods, (2) that evaluate such methods or (3) where
such methods are referenced in their contributions. Additionally, we considered
publications that may extend or support our work. In the following, we briefly
state the relevant publications.

Argyropoulos et al. suggest to use the analytic hierarchy process (AHP) [16]
in the context of security [2]. The AHP method allows to prioritize risks relatively
to each other. The approach has a high precision but requires an overhead in
terms of effort because all risks need to be compared pair-wise.

Llansó et al. considers the level of effort to realize a cyber attack as an
important factor to determine the likelihood of the attack [12]. The authors
propose a model-based algorithm to estimate such effort. In our approach, we
consider the level of effort by some attributes of the CVSS, e.g. threat vector.
The proposed algorithm may improve the precision of our method.

Using Bayesian Networks and agent-based simulation, other authors aim to
provide a probabilistic approach to support risk analysis [19,20]. There, a risk
level is defined as the percentage of failure for a functionality. Using the men-
tioned approaches, it is possible to analyze the propagation of risks throughout
the system’s components. There is no prioritization of risks, but the approaches
may extend our method to analyze the dependencies between different risks.

ArgueSecure [8] is a method for argument-based risk assessment that does
not rely on any quantitative estimation of risks. The proposed framework relies
on a qualitative method that is performed in brainstorming sessions. The results
are documented in a tree structure. The proposed graphical notation is designed
for an application by non-experts, but there are no explicit risk levels, which
makes it hard to evaluate the identified risks.

The CORAS [13] risk management process which we use in this paper per-
forms risk analysis in form of a structured brainstorming session.

SERA [1] is a risk analysis framework with a special focus on social engi-
neering attacks. The importance of human factors is also mentioned in other
publications (e.g. [15]). Currently, neither the CVSS nor our method supports
the consideration of social engineering.

Islam et al. propose an attribute-based estimation of risks which is based on
the Common Criteria [4,9]. The attributes to define the likelihood are compara-
ble to the CVSS, whereas the impact is not measured with regard to a specific
security property. The values for the attributes need to be set manually, whereas
we make use of existing pattern-based threat knowledge.

132 R. Wirtz and M. Heisel

Elahi et al. make use of a qualitative method to analyze goal models [5]. The
i*-notation has been extended to model attacks. The authors mention that the
qualitative evaluation makes an application easier, but it is less precise.

Another approach is to combine threat trees with Monte Carlo models [14].
The risk is defined by a set of parameters, such as complexity and motivation
of an attacker. The assigned values are used for a Monte Carlo simulation to
estimate risk values. The method does not rely on existing threat knowledge
and does not allow to prioritize risks.

Labunets et al. have carried out a study to compare graphical and tabular
representations for security risk assessment [11]. The results of the study revealed
that there is no significant difference between both representations with regard
to the perceived efficacy. Our method relies on tabular descriptions for the results
and does not contain any graphical notation. Since the study shows the equiva-
lence of both notations, there is no need to add such a notation.

All other identified publications do not propose any specific risk estimation
or evaluation method. Instead, they only rely on external expertise to deal with
such risks.

In contrast to our method, none of the mentioned methods makes differ-
ent stakeholders’ perspectives explicit for estimating risks. To the best of our
knowledge, it is a novelty in our method.

8 Conclusion and Outlook

Finally, we summarize our results and give an outlook on future research direc-
tions and improvements.

Summary. In this paper, we showed how our method to evaluate risks can
be embedded into the CORAS risk management process. The method provides
several benefits for users of the method: (1) It does not only focus on the impact
of one stakeholder but makes the impact for different stakeholders explicit; (2)
The template allows to systematically consider existing knowledge about incident
scenarios for risk calculation; and (3) our method follows a systematic process
which clearly defines required input and corresponding for each step.

Furthermore, we provide a questionnaire that systematically elicits knowl-
edge to assess the likelihood that a threat initiates a threat scenario. The ques-
tionnaire distinguishes between the different threat types defined by the CORAS
language.

By following a model-based approach, we ensure consistency and trace-
ability between the different steps of our method. As a foundation for the mod-
els to be created, we defined a metamodel that combines CORAS diagrams
with our template. Our graphical editor provides a user-friendly way to create
CORAS diagrams and to carry out our method, which reduces the manual effort
significantly.

Outlook. As future work, we plan to evaluate the usability of our tool in the form
of an experiment. As participants, we consider security engineers that are famil-
iar with the CORAS risk management process. After carrying out our method

Model-Based Risk Analysis and Evaluation Using CORAS and CVSS 133

with the tool, we will systematically ask them for feedback based on a question-
naire. The results will not only be used to improve our tool, but also the method
itself. Therefore, we will compare the results achieved with our method with a
risk estimation without any assistance.

For the questionnaire for assessing the likelihood, we plan to elaborate metrics
that allow to automatic derive likelihoods from the questionnaire’s results.

The next step of the risk management process is risk treatment. The output
of our method serves as the input for that step. For that reason, we will extend
our method and our tool to suggest appropriate controls for the necessary risk
reduction. By adjusting our method, we also plan to assist security engineers in
evaluating their treatment plan.

References

1. Abeywardana, K., Pfluegel, E., Tunnicliffe, M.: A layered defense mechanism for
a social engineering aware perimeter, pp. 1054–1062 (2016). https://doi.org/10.
1109/SAI.2016.7556108

2. Argyropoulos, N., Angelopoulos, K., Mouratidis, H., Fish, A.: Risk-aware decision
support with constrained goal models. Inf. Comput. Secur. 26(4), 472–490 (2018).
https://doi.org/10.1108/ICS-01-2018-0010

3. Beckers, K.: Pattern and Security Requirements - Engineering-Based Establish-
ment of Security Standards. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16664-3

4. Common Criteria: Common Criteria for Information Technology Security Evalu-
ation v3.1. Release 5. Standard (2017). http://www.iso.org/iso/catalogue detail?
csnumber=65694

5. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering
framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Eng. 15(1), 41–62 (2010). https://doi.org/10.
1007/s00766-009-0090-z

6. FIRST.org: Common Vulnerability Scoring System v3.0: Specification Document
(2015). https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf

7. International Organization for Standardization: ISO 27005:2011 Information tech-
nology - Security techniques - Information security risk management. Standard
(2011). http://www.iso.org/iso/catalogue detail?csnumber=65694

8. Ionita, D., Kegel, R., Baltuta, A., Wieringa, R.: Arguesecure: out-of-the-box secu-
rity risk assessment, pp. 74–79 (2017). https://doi.org/10.1109/REW.2016.19

9. Islam, M.M., Lautenbach, A., Sandberg, C., Olovsson, T.: A risk assessment frame-
work for automotive embedded systems. In: Proceedings of the 2Nd ACM Interna-
tional Workshop on Cyber-Physical System Security, CPSS 2016, pp. 3–14. ACM,
New York (2016). https://doi.org/10.1145/2899015.2899018

10. ISO: ISO 31000 Risk management - Principles and guidelines. International Orga-
nization for Standardization (2009)

11. Labunets, K., Massacci, F., Paci, F.: On the equivalence between graphical and
tabular representations for security risk assessment. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 191–208. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 15

https://doi.org/10.1109/SAI.2016.7556108
https://doi.org/10.1109/SAI.2016.7556108
https://doi.org/10.1108/ICS-01-2018-0010
https://doi.org/10.1007/978-3-319-16664-3
https://doi.org/10.1007/978-3-319-16664-3
http://www.iso.org/iso/ catalogue_detail?csnumber=65694
http://www.iso.org/iso/ catalogue_detail?csnumber=65694
https://doi.org/10.1007/s00766-009-0090-z
https://doi.org/10.1007/s00766-009-0090-z
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
http://www.iso.org/iso/catalogue_detail?csnumber=65694
https://doi.org/10.1109/REW.2016.19
https://doi.org/10.1145/2899015.2899018
https://doi.org/10.1007/978-3-319-54045-0_15

134 R. Wirtz and M. Heisel

12. Llansó, T., Dwivedi, A., Smeltzer, M.: An approach for estimating cyber attack
level of effort. In: 2015 Annual IEEE Systems Conference (SysCon) Proceedings,
pp. 14–19 (2015)

13. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis. The CORAS App-
roach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12323-8

14. Pardue, H., Landry, J., Yasinsac, A.: A risk assessment model for voting systems
using threat trees and monte carlo simulation. In: 2009 First International Work-
shop on Requirements Engineering for e-Voting Systems, pp. 55–60, August 2009.
https://doi.org/10.1109/RE-VOTE.2009.1

15. Rajbhandari, L.: Consideration of opportunity and human factor: required
paradigm shift for information security risk management. In: 2013 European Intel-
ligence and Security Informatics Conference, pp. 147–150, August 2013. https://
doi.org/10.1109/EISIC.2013.32

16. Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J.,
Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical Models for
Decision Support, pp. 109–121. Springer, Heidelberg (1988). https://doi.org/10.
1007/978-3-642-83555-1 5

17. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

18. Stonerburner, G., Goguen, A., Feringe, A.: Risk management guide for information
technology systems, 2002 (NIST Special Publication 800-30) (2007)

19. Tundis, A., Mühlhäuser, M., Gallo, T., Garro, A., Saccá, D., Citrigno, S.,
Graziano, S.: Systemic risk analysis through se methods and techniques, vol.
2010, pp. 101–104 (2017). https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85038855133&partnerID=40&md5=513629eb20df7e1f564d579af6a655b8

20. Tundis, A., Mühlhäuser, M., Garro, A., Gallo, T., Saccá, D., Citrigno, S., Graziano,
S.: Systemic risk modeling & evaluation through simulation & Bayesian networks,
vol. Part F130521 (2017). https://doi.org/10.1145/3098954.3098993

21. Wirtz, R., Heisel, M.: CVSS-based estimation and prioritization for security risks.
In: Proceedings of the 14th International Conference on Evaluation of Novel
Approaches to Software Engineering - Volume 1: ENASE, pp. 297–306. INSTICC,
SciTePress (2019). https://doi.org/10.5220/0007709902970306

22. Wirtz, R., Heisel, M.: A systematic method to describe and identify security
threats based on functional requirements. In: Zemmari, A., Mosbah, M., Cuppens-
Boulahia, N., Cuppens, F. (eds.) CRiSIS 2018. LNCS, vol. 11391, pp. 205–221.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12143-3 17

https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1109/RE-VOTE.2009.1
https://doi.org/10.1109/EISIC.2013.32
https://doi.org/10.1109/EISIC.2013.32
https://doi.org/10.1007/978-3-642-83555-1_5
https://doi.org/10.1007/978-3-642-83555-1_5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-850388 55133&partnerID=40&md5=513629eb20df7e1f564d579af6a655b8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-850388 55133&partnerID=40&md5=513629eb20df7e1f564d579af6a655b8
https://doi.org/10.1145/3098954.3098993
https://doi.org/10.5220/0007709902970306
https://doi.org/10.1007/978-3-030-12143-3_17

Towards GDPR Compliant Software
Design: A Formal Framework
for Analyzing System Models

Evangelia Vanezi(B), Dimitrios Kouzapas, Georgia M. Kapitsaki,
and Anna Philippou

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
{evanez01,dimitrios.kouzapas,gkapi,annap}@cs.ucy.ac.cy

Abstract. Software systems nowadays store and process large amounts
of personal data of individuals, rendering privacy protection a major issue
of concern during their development. The EU General Data Protection
Regulation addresses this issue with several provisions for protecting the
personal data of individuals and makes it compulsory for companies and
individuals to comply with the regulation. However, few methodologies
have been considered to date to support GDPR compliance during sys-
tem development. In this paper, we propose a process-calculus framework
for formal modeling of software systems during the design phase, and val-
idation of properties relating to the GDPR notion of Consent, the Right
to Erasure, the Right to Access, and the Right to Rectification. Moreover,
the framework enables the treatment of the notion of purpose through
privacy policy satisfaction. Validation is performed with static analysis
using type checking. Our work is the first step towards a framework that
will implement Privacy-by-Design and GDPR compliance throughout the
development cycle of a software system.

Keywords: GDPR · Privacy protection · Consent · Purpose ·
π-calculus · Static analysis · Privacy by design

1 Introduction

Software systems are nowadays becoming ubiquitous. To provide personalised,
context-aware, or social-networking services, these systems store and process
large amounts of personal data of individuals, thus rendering privacy protection
a core issue during their development. This need has been well recognised with
legislation being enacted to protect the privacy of individuals, a recent impor-
tant example being the European Union’s General Data Protection Regulation
(GDPR) [16] in enforcement since May 2018. The GDPR defines several pro-
visions regarding the collection and processing of EU residents personal data
and all systems that in any way store and process such data are obliged to
comply to the regulation. This obligation raises the challenge of designing and

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 135–162, 2020.
https://doi.org/10.1007/978-3-030-40223-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_7

136 E. Vanezi et al.

developing software systems that are guaranteed to adhere to expected privacy
requirements, as enunciated by the GDPR.

Formal modeling schemes can be a facilitator in designing software system
that comply to GDPR. In our recent work, we proposed the use of a formal
methodology for the design and modelling of software systems that integrates
provisions of the GDPR [46]. The methodology is based on the Privacy Calcu-
lus [33], a formal framework based on the π-calculus [35]. Our framework of [46]
extends the Privacy Calculus with features for providing and withdrawing con-
sent, and a type system that can validate that a system model conforms to asso-
ciated GDPR provisions. Such a static-checking methodology can be thought of
as an automated system, receiving as input the model and producing the result
of the validation as output. A future objective of that work was to incorporate
more GDPR provisions into the framework in order to support an almost fully
compliant software model design and verification and, ultimately, to provide a
rigorous framework for developing GRPR-compliant systems that can support
the entire software development cycle, thus pursuing conformance to Data Pro-
tection by Design [41].

In the current work we embark on that objective by integrating a privacy
policy mechanism within our framework. This addition enhances the framework
by enabling the treatment of the notion of purpose, a central notion in the GDPR
expressing that following consent, personal data must be processed according to
a specific policy to which the user has provided consent. In order to achieve this,
we build on the policy language of [33] with additional permissions as needed for
the GDPR provisions under consideration. Furthermore, we define a type system
that is now able to validate that models implement requirements associated
with consent provision and withdrawal and, additionally, that following consent
provision and before its withdrawal, processing of personal data conforms to a
formally-defined privacy policy. A detailed case study at the end of this paper
is used to present the complete approach of this work.

Outline. The remainder of the paper is organized as follows. In Sect. 2, we discuss
some background work: we present the basic principles of the GDPR focusing on
the ones relevant to our work, and continue to discuss the need of appropriate
frameworks for developing GDPR-compliant systems, the role of formal methods
towards this goal as well as related works in these areas. In Sect. 3 we review the
process calculus from [46], an extension of the Privacy Calculus that incorporates
the GDPR principles of lawfulness of processing by providing consent, consent
withdrawal and right to erasure into the software’s model. Section 4 presents an
associated privacy policy language for specifying the privacy requirements of a
data-processing system, whereas in Sect. 5 we develop a type system for guaran-
teeing compliance of a system to such a privacy policy. Section 6 illustrates the
applicability of our methodology on a case study and, finally, Sect. 7 concludes
the paper and discusses possible directions for future work.

Towards GDPR Compliant Software Design 137

2 Related Work

2.1 The General Data Protection Regulation

The GDPR was enforced in the European Union in May 2018 with the goal of
unifying national laws and laying the rules for the protection of natural persons
with regard to the processing of personal data where, according to GDPR Article
4(1), personal data is “any information relating to an identified or identifiable
natural person (‘data subject’)”. This regulation constitutes a significant depar-
ture over previous regulations as it gives individuals increased rights on how
their personal information is processed. Furthermore, compliance to the GDPR
is compulsory and significant fines are imposed upon its violation.

The GDPR specifies a number of requirements and principles. In this work
we aim to provide a framework that adheres to the following:

– According to Article 6(1a) (“Lawfulness of Processing”), and Recital 40
(“Lawfulness of data processing”), a system may collect and process personal
data only upon the receipt of the respective user’s explicit consent. This is
also supported by Article 5(1) (“Lawfulness, fairness and transparency”), and
specifically the principle of Lawfulness as any processing is considered to be
lawful only in the case that the system has a lawful basis (under Article 6),
one of them being consent.

– According to Article 17 (“Right to erasure (right to be forgotten)”) and Article
7(3) “Conditions for consent” the user has the right to withdraw her consent
at any given time, and additionally have all of her personal data deleted from
the system without undue delay.

– Article 5(1b) principle of “Purpose Limitation”, is discussing the notion of
Purpose, defining that all personal data should be collected for specified,
explicit and legitimate purposes, and be only used in a compatible way. A
user’s consent should be based on such purposes defined in the privacy policy,
and the processing of data should conform to them. Also note that consent can
be given for one or more specific purposes. The notion of purpose is implied in
many other provisions of the GDPR, such as Article 5(1a) principle of “Law-
fulness, fairness and transparency”, 5(1c) Principle of “Data Minimisation”,
and 5(1e) principle of “Storage Limitation”.

– Article 15 “Right of access by the data subject” defines that the user has the
right to access her personal data stored within a system at any time.

– Article 16 “Right to Rectification” and Article 5(d) principle of “Accuracy”
defines the right of the owner to at any time rectify any inaccurate personal
data, or complete any incomplete data.

A few works have already addressed GDPR issues such as the GDPR provi-
sions for consent withdrawal and the right to forget, which are discussed in [38].
Moreover, a pattern catalog in order to help privacy regulation integration in
systems is discussed in [26]. Another example is [40], which discusses GDPR in
the framework of socio-technical systems.

138 E. Vanezi et al.

2.2 Software Design and Modelling and the GDPR

Privacy by Design [41] or, as referred to in the GDPR Article 25(1) Data Protec-
tion By Design [16], is a widely discussed topic advocating that privacy should
be incorporated into systems by default and should be a priority from the begin-
ning of a system’s design. By its definition, Data Protection by Design needs no
specific distinct analysis, handling and mechanisms in order to be fulfilled. If all
relevant principles and rights are embedded in a system’s specifications model
in the right way and are then transferred into the succeeding implementation,
Data Protection by Design is guaranteed. Moreover, Data Protection by Design
advocates the proactive consideration of privacy issues: ensuring a software’s
compliance should take place from the design phase and possible pitfalls should
be anticipated and prevented before they can materialise, rather than remedied
on a reactive basis.

Looking into the software engineering cycle, in the initial steps of the develop-
ment of a software system, its specifications are drafted and subsequently a model
of the software is created during the design phase reflecting these specifications at
a proper level of abstraction. The software model can then be used both to check
if the design of the system indeed represents the gathered specifications, and/or
to produce a skeleton code for the actual system, using a Model Driven Engineer-
ing approach (MDE) [31,42]. For the modelling task, many modelling languages
have been created and are widely used such as the Unified Modeling Language
(UML) [19]. Furthermore, various extensions have been proposed to allow rea-
soning about security-related features, including UMLsec that allows to express
security relevant information for a system specification [28], the Privacy-aware
Context Profile (PCP) that can be exploited in context-aware applications [32],
and the Privacy UML profile that can be used to capture the privacy policies of
a software system [5].

As far as the GDPR is concerned, there have only been few attempts to under-
stand the GDPR, mainly from the legal perspective, and even fewer discussing
mechanisms to support GDPR compliance during system development [20,25].
Approaches include PriS, that integrates privacy requirements in the early stages
of the system development process [29] focusing on organizational processes and
suggesting implementation techniques and privacyTracker, taking into account
the GDPR and proposing a framework that supports some of its basic principles
such as data traceability [20]. Privacy in designing systems for Internet of Things
is discussed in [37]. In [2] modelling is used to analyze the system design and
propose security and privacy controls that can improve it, whereas other works
rely on ontologies and modelling in the Web Ontology Language (OWL) or the
Resource Description Framework (RDF), such as Linked USDL Privacy [30].
Finally, [17] proposes the use of tainting and other static analysis techniques to
detect the potential leak of sensitive information at code level.

2.3 GDPR Software Compliance and Formal Methods

Another dimension towards the development of software systems is that of for-
mal methods. Formal methods are mathematical tools and methodologies for

Towards GDPR Compliant Software Design 139

the rigorous specification, modelling, development, and verification of systems.
The use of formal methods is especially relevant for the development of depend-
able and safety-critical systems and can also prove useful for the development
of systems handling private data, supporting Privacy by Design and GDPR
compliance. In contrast to modelling languages such as UML, languages used
for modelling in formal methods approaches possess formal semantics. Such
semantics enable the enunciation of a system as a mathematical object on which
exhaustive verification can be performed. Verification approaches include model-
checking [12], which enables to verify that a system model satisfies specifications
expressed as temporal logic properties, and type checking, via which properties
of a system can be checked statically.

One formal framework that has been receiving increased attention, and on
which our work is based, is the π-calculus [35]. The π-calculus is a process
calculus that can act as a modelling language for systems and at the same time
support validation of their properties. The π-calculus, being a formal language,
has been used for formalizing aspects of the UML modelling language [34], as
well as for transforming the basic workflow patterns of Business Process Model
and Notation (BPMN) into equivalent π-calculus code [8]. It has also formed the
theoretical basis of the Business Process Modeling Language (BPML) [21] and
of Microsoft’s XLANG [43].

Various extensions of the π-calculus have been proposed to reason about
security and privacy properties. One such extension developed for describing
and analyzing cryptographic protocols is the spi-calculus [1], whereas in [11] the
π-calculus is extended with the notion of groups as types for channels which
are used to statically prohibit the leakage of secrets. Type systems have also
been employed in process calculi to reason about access control that is closely
related to privacy. For instance, the work on the Dπ-calculus has introduced
sophisticated type systems for controlling the access to resources advertised at
different locations [22–24]. Furthermore, discretionary access control has been
considered in [10] employing the π-calculus with groups, while role-based access
control (RBAC) has been considered in [9,13,15]. In addition, authorization
policies and their analysis via type checking has been considered in a number
of papers [3,7,18]. Closest to our work is the Privacy Calculus of [33], a formal
framework based on the π-calculus with groups accompanied by a type system for
capturing privacy-related notions, and a privacy policy language for expressing
privacy policies. Unlike other works the Privacy calculus focuses on consider-
ing privacy as a general notion and addresses a wider class of privacy violation
such as aggregation and identification. Furthermore, our previous work of [46]
extends the Privacy calculus by proposing a modelling language that incorpo-
rates the GDPR notions of consent provision and withdrawal. The present paper
extends [46] by enabling the treatment of the GDPR notion of purpose, with
the incorporation of the privacy policies of [33] appropriately extended, and by
proposing a type system according to which a well-typed system satisfies an
associated GDPR-compliant privacy policy.

140 E. Vanezi et al.

Other formal methods relating to GDPR compliance include [44,45] where
Markov Decision Processes are used to describe semantic requirements relating
to the notion of purpose. Furthermore, in [4], the authors propose identifying
a purpose with a business process, and using formal models of inter-process
communication to audit or derive privacy policies whereas in [27], the authors
define a semantic model for purpose-based privacy policies, a modal logic, and
a corresponding model-checking algorithm to verify whether a particular sys-
tem complies to them. Other related work includes [39], specifying purposes
as work flows modeled by Petri nets and model-checked against actor models,
and [14], proposing semantics of purpose-based privacy policies in temporal logic
and defining a run-time monitoring methodology. The present work is distin-
guished from these approaches mainly in its aim to provide a methodology for
modeling systems during the design phase of the software engineering cycle and
for verifying that they satisfy GDPR-based privacy provisions. Furthermore, the
verification is implemented via type checking, a static approach that does not
suffer from the state-space explosion problem, being complementary to model-
checking methodologies.

3 The Calculus

We propose the use of a process calculus [46], which is an extension of the Privacy
Calculus [33], as a formal modelling language for systems. Privacy Calculus
terms can be considered as black boxes that can be translated, manually or
automatically, into code and/or code templates at the implementation phase of
software development.

In the Privacy Calculus, system entities are modelled as distinct processes
communicating and interacting with each other using channel-based message
passing. Channels are referred to as names, and are dynamically created and
passed between processes. We proceed to present this extended syntax and
semantics, as defined in [46].

3.1 Syntax

Table 1 summarizes the proposed syntax including values and functionality.
Assume a set of names n ∈ N that are partitioned over names, a, and store
references, r. Also, assume a set of constants c ∈ C, and a set of variables
x, y ∈ V . Values ranged over by ι include identities, id, the hidden identity, ,
and variables, x, while values ranged over by δ include constants, c, the empty
constant, ∗, and variables. Data structure id⊗ c associates an identity, id, with a
personal data value, c, integrating the notion of personal data as required by our
framework. It also enables the form ⊗ c, which associates data with an identity
that is hidden, mapping to GDPR provision for anonymous personal data. Vari-
able placeholders for private data are written as x ⊗ y. We use meta-variable u
to range over names or variables. Values, ranging over v, include names, private

Towards GDPR Compliant Software Design 141

Table 1. Extended syntax of the privacy calculus [46]

data, or data; placeholders, ranging over k, include the variable structures of the
calculus, whereas terms, ranging over t, include both values and placeholders.

The Privacy Calculus is defined in two levels; processes and systems. At the
process level the termination term, 0, defines the inactive process; the output
term, u!〈t〉.P , defines a process ready to send a message t on channel u and then
proceed as P , while the input term, u?(k).P , defines a process that waits to
receive a message on channel u, that will be substituted on variable k and then
proceed as P . The name creation term, (ν n)P , defines the creation and restric-
tion of a new name n within the scope of process P . The parallel composition
term, P1 |P2, defines the parallel execution of processes P1 and P2, proceeding
either independently or interacting with each other. The replication term, ∗P ,
defines the option of creating multiple copies of process P . Moreover, the con-
ditional construct, if e then P1 else P2, defines the evolution of the process
based on the evaluation of the condition e, proceeding as a process P1 if true
or as process P2 if not. The Privacy Calculus incorporates the additional store
term r � [id ⊗ c], that defines a store holding and giving access to private data
through reference r. Stores can be mapped into actual software as database table
records, that can be accessed by any system entity through their unique key.

Our extension integrates consent-based terms on the Privacy Calculus. The
consent term, u � consent(x).P , defines a process ready to provide consent on
channel u and receive a new store reference on x. Term u � consent(r).P , is dual
to the consent term and defines a process receiving consent on channel u. Finally,
term u � withdraw.P defines a process that withdraws consent from store u.

At the system level, the Privacy Calculus processes and systems are organized
using groups. System G[P] associates process P with group G. Similarly, system
G[{P}id] associates a process with a user identity, id, and a group G. Associating
an identity with the process allows for the abstract representation of individual
system users and associates them with their personal data. A group hierarchy is
created using system G[S], that associates system S with group G. New names

142 E. Vanezi et al.

can be created at the system level via system (ν n)(S). Finally, systems can be
composed in parallel S1 ||S2.

Example 1 (Modelling a Bank Notification System). We provide the specifica-
tion of a running example that will be used throughout the paper to demonstrate
the modelling capabilities of our framework. Consider a system that monitors
the transaction details of a user’s bank account, in the form of a transactions log,
and sends the user statistical information regarding these data once a month,
with the following specifications:

1. The system handles the transaction logs of the users’ bank accounts, classified
as personal data.

2. The system cannot store or process any user personal data before the provi-
sion of the user’s consent.

3. The user has to provide her consent to register to the service provided by the
system.

4. Upon a new transaction, the accounting entity adds the transaction’s details
to the transactions log in the system’s database.

5. The user may access and view her transactions log at any time.
6. Once a month the notifications entity is triggered and sends the user some

statistical data, such as the amount spent and the amount earned, to the
user.

7. The user has the option to withdraw her consent at any given time, and the
data associated to her should be deleted from the system, and no further
processing should be applied to them.

The Bank Notification system is identified as an entity composed by three subsys-
tems: the Accounting subsystem, the Notification subsystem, and the Database.
We also identify the User entity, as the data subject.

We illustrate how the Bank Notification System can be modelled in our cal-
culus. To implement a system hierarchy, assume the existence of groups User,
DBase, Accounting, Notification, System, and Network. To simplify the exam-
ple, let us assume the existence of a single user, and the termination of the system
functionality immediately after statistical data is sent once to the user.

U
def= (ν a)(ν b)(User[{c!〈a〉.a � consent(x).d!〈b〉.b?(y).x � withdraw.0}id])

DB
def= DBase[c?(y).y � consent(r).e!〈r〉.f !〈r〉.0]

Acc
def= Accounting[e?(x). ∗ (x!〈id ⊗ transaction data〉.0)]

Not
def= Notification[d?(z).f?(x).x?(⊗ y).z!〈stats(y)〉.0]

Sys
def= Network[U || System[DB ||Acc ||Not]]

System U represents the user entity and is characterized by the group User.
It is annotated with the user’s unique identifier, id, which is linked to the user’s
personal data. The user creates channels a and b and shares them, via channel c
and d, with the database system, DB, and the notification system, respectively.

Towards GDPR Compliant Software Design 143

The user provides her consent towards the database via channel a, that results in
the user receiving the store reference substituted on name x. After, receiving data
from the Notification system, the user withdraws her consent and terminates.

The database system, DB, is modelled using group DBase, and is responsible
for receiving and storing the user’s personal data. The database system receives a
private communication channel from the user through the public channel c. Then,
it receives consent from the private communication channel that will dynamically
create a new private data store on reference r, which is associated with the
identity of the user. Reference r is subsequently sent to the notification process,
through channel e, and to the Accounting process, through channel f .

The Accounting system, Acc, is responsible to update the transactions log
in the database through the reference to the store upon each new transaction
occurrence. The Accounting system first receives the reference to the store of the
transaction data from the database via channel e, and then proceeds to append
subsequent transaction data to the transactions log via the received reference. We
abstract the creation of a transactions log by assuming that each time the process
is updating the transaction data, the new transaction details are appended to the
previous transactions log.

The Notification system, Not is defined using group Notification. It first
receives a private channel from the user via channel d, and subsequently the
reference to the database store holding the personal data of the user, via channel
f . It then reads the transaction data from the store using the received reference,
and calculates statistical transaction data via function stats. Finally, it sends the
statistical data to the user through their private shared channel.

The complete system, Sys is realised by the group Network that is composed
by the User system and the Bank Notification System, which is realised by group
System and its subgroups DBase, Accounting and Notification. ��

3.2 Semantics

The calculus is accompanied by semantics prescribing the behavior of each con-
struct, and consequently the behavior of a system. The semantics is defined using
a labelled transition relation, S

�−→ S′, denoting that system S can execute,
i.e. observe, the action indicated by label �, and evolve into system S′. Inter-
action between system components is enabled using dual actions. Two actions
that are dual, i.e. labels that represent dual input and output actions, can be
synchronised when they are observed on parallel systems. The synchronisation
gives rise to interaction between parallel components of a system (cf. Example 2).
Assuming that �1 dual �2 indicates that label �1 is dual to label �2, the rule that
describes parallel interaction is defined as:

S1
�1−→ S′

1 S1
�2−→ S′

2 �1 dual �2
S1 |S2 −→ S′

1 |S′
2

144 E. Vanezi et al.

The set of labels of the Privacy Calculus is extended with the following:

a � consent(r) a � consent(r)@id a � consent(r)@id

r � withdraw r � withdraw@id r � withdraw@id

Label a � consent(r) denotes the basic action for providing consent on channel
a and receiving a reference on channel r, whereas label a � consent(r)@id is
the same action lifted to a user identity, id. Dually action a � consent(r)@id is
the acceptance of a consent on channel a and the creation of a new store with
reference r and identity id. Withdraw labels are r � withdraw that denotes a
withdraw on reference r; r �withdraw@id that lifts a withdraw at the user level;
and r � withdraw@id that denotes the receipt of a withdraw on reference r with
identity id. These labels give rise to the additional dual pairs of actions:

a � consent(r)@id dual a � consent(r)@id r � withdraw@id dual r � withdraw@id

A consent action, a � consent(r)@id may synchronise with a � consent(r)@id,
in order for a user to provide consent for the store of its private data. Sym-
metrically, a withdraw action r � withdraw@id may synchronise with action
r �withdraw@id in order for a user to withdraw its consent for storing its private
data.

Table 2. Extension to privacy calculus labeled transition semantics.

The labeled transition semantics are defined by the rules in Table 2. Rule
[UCons] describes a process that provides consent on channel a by observing
the a � consent(r) label. Rule [SCons] defines the action of receiving consent,
which is done via label a � consent(r)@id. After the label is observed a new
store, r � [id⊗∗] is created on reference r with identity id. Following the dual def-
inition of labels, rules [UCons] and [SCons] can synchronise to create a new store
and exchange the corresponding reference. Withdraw follows a similar fashion.

Towards GDPR Compliant Software Design 145

A process with a withdraw prefix observes a withdraw label r � withdraw, rule
[UWDraw]. Rule [SWDraw] observes a store receiving a withdraw request via
label r � withdraw@id and as a result it deletes the corresponding private data
and assigns the anonymous identity and the empty value to its memory. Rules
[SNOut] and [SNInp] define the interaction of the empty store. Both interaction
has no effect on the private data store. Finally, rule [SId] provides semantics to
the system that associate a process with an identity, G[{P}id]. Operation �@id
is defined as � whenever � /∈ {a � consent(r), t � withdraw}, a � consent(r)@id
whenever � = a � consent(r), and a � withdraw@id whenever � = a � withdraw.

Example 2 (Execution of the Bank Notification System). To further understand
the Privacy calculus semantics, we provide an execution of the Bank Notification
System defined in Example 1.

Sys
τ−→ (ν a)(ν b)(Network[User[a � consent(x).c!〈b〉.b?(y).x � withdraw.0]
|| System[DBase[a � consent(r).DB′] ||Acc ||Not]])
τ−→ (ν a)(ν b)(Network[User[c!〈b〉.b?(y).r � withdraw.0]
|| System[DBase[DB′ | r � [id ⊗ ∗]] ||Acc ||Not]])

As a first step we observe the synchronization between the User and the
Database system, where the User sends a newly created channel a on public
channel c to the Database, which is subsequently substituted on variable y. The
next step, describes the synchronization for the User to provide consent for data
storage to the Database, via channel a. This results in the creation of a new
store on reference r, which is associated with the user identifier, id. The store is
created within the Database system. Upon creation the User system receives a
reference r substituted on name x. ��

4 Privacy Policy Language

As discussed, we extend our framework by enabling the treatment of the notion
of purpose based on Privacy Policy satisfaction, i.e., entities in the system should
process the data according to a defined privacy policy indicating the process-
ing purpose. This work adopts the language used in the Privacy Calculus [33] to
express privacy policies, by incorporating a subset of the Privacy Policy language
permissions and extending them with an additional permission term, capturing
the provision and withdrawal of consent. Note that we embed a set of possi-
ble permissions judged as essential, but our framework is able to accommodate
additional permissions if needed. The Privacy Policy language is structured in
such a way as to formally define the allowed and disallowed actions in the form
of permissions, linked to specific agents distinguished by their roles, for specific
types of private data. As such, the concepts of types, and roles, referred to as
groups, are central for the definition of policies and are explained below. Data
types will be used in policies, where we assume the following set of types to
characterize values and channels used by the processes:

g :: = nat | bool | . . . T :: = t[g] | p[g] | G[T]

146 E. Vanezi et al.

We assume a set of ground types, ranged over by g, which include primitive
data types, e.g. natural numbers, booleans, etc. Type t[g] is used to characterise
private data of the form id ⊗ c with c being of type g, and type p[g] is used to
type constants c. Moreover, we can construct types of the form G[T] used to
type channels that are able to communicate data of type T between processes
belonging to group G.

The Privacy Policy language uses a set of permissions to describe, in regards
to a specific private data type, the actions each group in a system is able to
perform. The permissions we consider for handling private data are the following:

prm :: = read | update | reference | disseminate G | store | readId

| usage{p} | identify{t} | consent

Permission read allows processes to read the private data. Permission update
allows to update the private data content. Permission reference allows to
gain access to the reference of the store holding the private data. Permission
disseminate G defines that the reference to the store of the private data might
be sent to processes of group G. Permission store allows the creation of a new
store to hold private data. Permission readId allows access to the identifier of the
private data. Permission usage{p} allows the matching of a private data with
a constant of type p, and permission identify{t} allows the matching of private
data against other private data. The additional permission consent, when asso-
ciated with a type of private data and a group, indicates that processes of the
specific group are allowed to provide/withdraw their consent for creating a store
to collect private data of that type.

A Privacy Policy can now be defined as an assignment of permissions to a
hierarchy of groups with respect to types of sensitive data and it is defined as
follows:

P :: = t
 H | t
 H;P H :: = G{ ˜prm}[H̃]

where ˜prm is a set of permissions. A Privacy Policy has the form t1

H1; . . . ; tn
 Hn where ti are the base types subject to privacy. Given a pol-
icy P, we write P(t) for Hi where t = ti. The components Hi, which we refer
to as permission hierarchies, specify the group-permission associations for each
base type. A permission hierarchy H has the form G{ ˜prm}[H1, . . . ,Hm] and it
is structured in the same way as the group hierarchy of the Privacy Calculus
system it is associated with. The permission hierarchy expresses that a process
under the hierarchy of group G has permissions ˜prm towards the data in question.
These permissions accumulate as we follow the Privacy Policy hierarchy. For a
more detailed definition of the privacy policy language and the permissions, the
reader is referred to the [33].

The next example illustrates the use of the Privacy Policy language by defin-
ing a Privacy Policy for the Bank Notification System.

Example 3 (Privacy Policy for the Bank Notification System). We define the
Privacy Policy of the Bank Notification System in Example 1. The system has
the following privacy specification:

Towards GDPR Compliant Software Design 147

1. Only the User, i.e. the data subject, can provide and withdraw consent regard-
ing her transaction data being stored and processed by the system, This is
based on the GDPR principle of “Lawfulness of Processing” and “Right to
erasure”.

2. The user should be able to access and read her stored personal transaction
data, conforming to GDPR “Right of access by the data subject”.

3. The user should not be able to update her personal transaction data, as
they are documented by the actual transaction. If the user has an objection
and requires rectification of the data then a distinct rectification mechanism
should be triggered. The above are in compliance with GDPR “Right to Rec-
tification” and principle of “Accuracy”.

4. The Notification entity should be able to access and read the transaction
data.

5. The Notification entity should be able to use the transaction data for statistics
purposes.

6. The Accounting entity should be able to update the transaction data, but
should not be able to read neither the identifier nor the value of the stored
data.

7. The Database entity is the only entity that should be able to store the personal
transaction data. Additionally, the Database entity is able to distribute access
to them to the Accounting and Notification entities.

Privacy requirements (4)–(7) even though not directly mapped to an explicit
GDPR article, are comprising the processing purpose of the system, regarding
personal data of the user, as needed, defined in the GDPR principle of “Purpose
Limitation”. The above requirements are formally described using the following
Privacy Policy:

transaction data
 Network{}[
User{consent, read, reference},
System{}[

DBase{store, disseminate Notification, disseminate Accounting},
Accounting{reference, update}
Notification{reference, read, readId, usage{statistics}}

]
]

The group hierarchy of the Privacy Policy follows the group hierarchy of the
Bank Notification System in Example 1. The permissions assigned to each group
formally describe the privacy requirements of the Bank Notification system.

The User has the permission to provide and withdraw consent regarding the
storage and processing of her transaction log. The User also has the permission
to gain access to the reference and read its private data store. The DBase has the
permissions to create a store for storing the transaction log, and disseminate the
reference for the transaction log store towards the Notification and Accounting
system. The Accounting system has the permissions to receive a transaction
store reference and to update its data. Finally, the Notification system has

148 E. Vanezi et al.

the permissions to receive the reference of the transaction data store. It can also
read the transaction data and use them for statistical analysis. Moreover, it has
the permission to read the identifier associated with the data. ��

5 Typing Policy Compliance

In this section, we present the developed type system, the mechanism within
our framework that is able to validate whether a system model, defined in the
calculus proposed, conforms to a defined privacy policy. As a consequence this
mechanism can statically check for compliance to GDPR-based provisions. The
type system can guarantee the compliance of a model by applying static type-
checking techniques. Given the results of the type-checking analysis, no further
testing is required to examine the system model. At the end of the section, we
prove that well-typed processes do not present errors. Note that we only present
the additional typing rules that we need to add to the Privacy calculus type
system and we refer the reader to [33] for its complete exposition.

Example 4. Consider a system similar to the one in Example 1, that follows the
exact same privacy policy (see Example 3), but is defined with a minor variation
on the definition of the Accounting entity, as follows:

Sys
def= Network[U || System[DB ||Acc ||Not]]

Acc
def= Accounting[e?(z).z?(x ⊗ y).0]

This model defines a system, where an Accounting Department entity tries to
read the personal data of the user. The Privacy Policy in Example 3 assigns
permissions for holding the store reference and for updating the stored value.
Therefore, the above system violates the Privacy Policy because the Accounting
role does not have a read permission. The type system is designed to perform
static analysis in order to verify whether a system satisfies a privacy policy
(Definition 2). ��

5.1 Type System

Our type system uses the following typing environments:

Γ :: = Γ, t : T | ∅ Λ :: = Λ, r | Λ, id | ∅ Z :: = Z, 〈id, t〉 | ∅

Γ associates values, t, with types, T . Γ1, Γ2 is defined as Γ1 ∪Γ2. Λ ensures that
store references r and identity values id are unique within a system. Λ1, Λ2 is
defined as Λ1 ∪ Λ2, whenever Λ1 ∩ Λ2 = ∅ and otherwise undefined. Similarly
linear environment Z tracks identities and associated private data to track unique
private stores for each identity. Z1, Z2 is defined as Z1∪Z2, whenever Z1∩Z2 = ∅,
and otherwise undefined. In addition, we define the following environments:

Δ :: = Δ, t : ˜prm | ∅ θ :: = G[θ] | G[˜prm] Θ :: = Θ, t : θ | ∅

Towards GDPR Compliant Software Design 149

Environment Δ maps private data types to a set of permissions. Structure θ
provides a hierarchy for a set of permissions. Finally, environment Θ, called
interface, maps private types to a set of permissions under a hierarchy. These
environments assume a linear treatment and they are used by the typing sys-
tem to extract information on how private data are being used. We use typing
judgments of the following forms:

Γ � t : T � Δ Γ ;Λ;Z � P � Δ Γ ;Λ � S � Θ

The first judgment states that a variable or value t has a type T given a type
environment Γ . At the same time we derive the permissions applied while pro-
cessing this value, in permissions environment Δ. The second and third typing
judgments state that given environments Γ and Λ process P or system S is well
typed producing a permission environment Δ or an interface Θ respectively. Per-
missions environment Δ and interface Θ are following the same structure and
rules as in the Privacy Calculus. We refer the reader there for more details.

[NVal] Γ � id ⊗ ∗ : t[g] � ∅

[TCons]
Γ ;Λ;Z � P � Δ′ Γ � x : G[t[g]] � ∅ Γ � u : G′[G[t[g]]] � ∅

Γ\x;Λ;Z � u � consent(x).P � t : {consent} � Δ′

[TCreate]
Γ ;Λ;Z � P � Δ′ Γ � r : G[t[g]] � ∅ Γ � u : G′[G[t[g]]] � ∅

Γ ;Λ, r;Z, 〈id, t〉 � u � consent(r).P � t : {store} � Δ′

[TWithdraw]
Γ ;Λ;Z � P � Δ′ Γ � u : G[t[g]] � ∅

Γ ;Λ;Z � u � withdraw.P � t : {consent} � Δ′

[TId]
Γ ;Λ;Z � P � Δ Θ = {G[t : ˜prm] | t : ˜prm ∈ Δ}

Γ ;Λ, id � G[{P}id] � Θ

[Gr]
Γ ;Λ;Z � P � Δ consent /∈ Δ Θ = {G[t : ˜prm] | t : ˜prm ∈ Δ}

Γ ;Λ � G[P] � Θ

Fig. 1. Typing rules.

Our typing system extends the Privacy Calculus typing system with the
additional rules in Fig. 1. Typing rule [TCons] types the u � consent(x).P term.
It checks if channel x is of a store reference type and if channel u can carry
x. Additionally it adds the consent permission to the permissions environment
practiced by process P so far. Rule [TCreate] types the u � consent(r).P term,
similarly to the [TCons] rule, except that permissions store is added to the per-
mission environment of the process. Rule [TWithdraw] types the u � withdraw.P
term by checking that u is indeed a reference channel. The [TWithdraw] rule adds
the consent permission in the environment. As discussed before, providing and

150 E. Vanezi et al.

withdrawing consent practice the same permission. Rule [TId] types the process
annotated with an identifier. It adds the identifier in the linear Λ environment
to ensure that it will not be used by another system. Environment Δ is lifted to
environment Θ. Finally, Rule [Gr] types system G[P]. It ensures that process P
is typed without a consent permission. This is because the consent permission is
only allowed by systems associated with an identity.

Example 5. Consider the system in Example 4 that mishandles personal data
with respect to the Privacy Policy in Example 3. Although the system is
well typed, it fails to produce an interface that can satisfy the Privacy Pol-
icy. Process Acc when type-checked will produce permissions environment Δ =
{readId, read, reference} for the process in the group Accounting. This does not
check against the Privacy Policy, that contains permissions update and reference
only.

Another case of a system that mishandles data in violation is the following:

User[c!〈id ⊗ transaction data〉.a � consent(x).P] ||Sys[c?(x ⊗ y).Q]

This system describes the situation where private data is sent (resp. received)
via a non-reference channel before consent is provided by the user. However, this
absence of consent violates the GDPR provisions. Therefore, this system should
not satisfy any Privacy policy and should be characterized as ill-typed by the
type system. Indeed, the system does not type-checked; the error in this case is
captured by typing rule [TOut] (cf. [33]) checking that in an output action the
type of the data sent must be compatible with the type of data that the channel
can carry. Personal data can only be carried on reference channels, thus this
process is not well-typed and is correctly characterized as non compliant with
the consent provisions of the GDPR.

On the other hand, the system defined in Example 1 is well-typed deriv-
ing a permissions interface that fully matches the privacy policy permissions
assignment. ��

5.2 Soundness and Safety

In this section we provide soundness and safety results for our framework. Our
results extend those of the Privacy Calculus. Specifically, we prove Type Preser-
vation (Theorem 1) that states that a well typed process, (resp. system), contin-
ues to be well typed if it is executed. Furthermore, based on Type Preservation
we show that a well-typed system is Safe (Theorem 2): a system that complies
to a privacy policy will never reach an error state, i.e., a state that violates the
privacy policy requirements.

Towards GDPR Compliant Software Design 151

Prior to stating the Type Preservation Theorem we assume the environment
inclusion relation, �, as defined in [33, Definition 6.4]. The Type Preservation
Theorem states the soundness of our typing system: given a well-typed process
(resp. system), well-typedness is preserved by the labelled transition semantics
relation.

Theorem 1 (Type Preservation). Consider a process P and a system S.

– If Γ ;Λ;Z � P � Δ and P
�−→ P ′, then for some Λ′, Z ′, Δ′ we have

Γ ;Λ′;Z ′ � P ′ � Δ′ and Δ′ � Δ.
– If Γ ;Λ � S � Θ and S

�−→ S′ then, for some Λ′, Θ′, we have Γ ;Λ′ � S′ � Θ′

and Θ′ � Θ.

Before we present the proof of the Type Preservation Theorem assume Weak-
ening [33, Lemma 6.1], Strengthening [33, Lemma 6.2], and Substitution [33,
Lemma 6.3] Lemmas, as well as [33, Proposition 6.8].

Proof. Similarly with the Privacy calculus, the proof is by induction on the
inference tree for �−→. We will be proving the theorem only for the labels added
in this work. For all previously existing labels we the proof remains the same.

– Case: a � consent(x).P
a�consent(r)−→ P{r/x} and Γ ;Λ;Z � a � consent(x).P � Δ.

By the premise of typing rule [TCons] we get that Γ ;Λ; � P � Δ′ with Δ =
consent�Δ′. From the Weakening lemma and the Substitution lemma we get
that for some Λ′ we have Γ, r : G[t[g]];Λ′ � P{r/x} � Δ′. The result is then
immediate from [33, Proposition 6.8].

– Case: a � consent(r).P
a�consent(r)@id−→ P | r � [id ⊗ ∗], and Γ ;Λ, r � a �

consent(r).P � Δ. By the premises of the [TCreate] typing rule we get that
Γ ;Λ1 � P �Δ′ with Δ = t : {store}�Δ′, and Γ � r : G[t[g]]�∅. By the typing
rules [NVal] and [TSt] we get that Γ ; r : G[t[g]]; 〈id, t〉 � r � [id ⊗ ∗] � ∅. By
the [TPar] typing rule, we have Γ ;Λ1; r : G[t[g]]; 〈id, t〉 � P | r � [id ⊗ ∗] � Δ′.
The result is then immediate from [33, Proposition 6.8].

– Case: r�withdraw.P
r�withdraw−→ P , and Γ ;Λ � r�withdraw.P �t : {consent}�Δ.

By the premise of typing rule [TWithdraw] we get that Γ ;Λ � P � Δ′ with
Δ = t : {consent} � Δ′. The result is then immediate from [33, Proposition
6.8].

– Case: r � [⊗ ∗]
r!〈 ⊗∗〉−→ r � [⊗ ∗]. The case is trivial.

– Case: r � [⊗ ∗]
r?(id⊗c)−→ r � [⊗ ∗]. The case is trivial.

– Case: G[{P}id] �−→ G[{P ′}id] and Γ ;Λ, id � G[{P}id] � Θ. By the premise
of the LTS rule [SId] and the typing rule [TId] we get: P

�−→ P ′ if � �=
a � consent(r), r � withdraw and Γ ;Λ � P � Δ. We know from the previous
cases that P

�−→ P ′ preserves the types, thus we know that Γ ;Λ � P ′ � Δ′

and Δ′ � Δ. We apply the typing rule [TId] to the latter and we get: Γ ;Λ, id �
G[{P ′}id] � Θ′ and Θ′ � Θ.

152 E. Vanezi et al.

– Case: r � [id⊗ c] r�withdraw@id−→ r � [−⊗∗]. The case is trivial because value −⊗∗
has no effect on permissions.

��
We provide the notion of policy satisfaction for interfaces, Θ, and a Privacy

Policy, P. Intuitively, Θ satisfies P if Θ is a structural subset and a permission
subset of P.

Definition 1. We define the satisfaction relation, denoted �, as:

– Consider a policy hierarchy H and an interface hierarchy θ. We say that θ
satisfies H, written H � θ, whenever:

∃k ∈ J : Hk = G′ : ˜prm′[Hi]i∈I

G′ : ˜prm′ � ˜prm[Hi]i∈I � θ

G : ˜prm[Hj]j∈J � G[θ]
˜prm2 � ˜prm1

G : ˜prm1[] � G[˜prm2]

– Consider a policy P and an interface Θ. Θ satisfies P, written P � Θ, when-
ever:

H � θ

t
 H;P � t : θ

H � θ P � Θ

t
 H;P � t : θ;Θ

Definition 2 (Policy Satisfaction). Consider P, a type environment Γ , and
system S. We say that S satisfies P, written P;Γ � S, whenever there exist Λ
and Θ such that Γ ;Λ � S � Θ and P � Θ.

The main idea is to check whether a system satisfies a given a privacy policy
under an environment that maps channels, constants, and private data to channel
types, constant types, and private data types, respectively.

The Type Safety Theorem ensures that a System will not mishandle data
with regards to a Privacy Policy given that our system satisfies that Privacy
Policy according to Definition 2. To state the Type Safety Theorem we define
the notion of the Error System displaying the cases where a system does not
follow a given Privacy Policy.

Definition 3 (Error System). Assume G̃ = G1, . . . ,Gn, and consider a policy
P, an environment Γ , and a system:

System ≡ G1[(ν ~x1)(G2[(ν ~x2)(. . . (Gn[(ν ~xn)(P | Q)] || Sn) . . .)])] || S1
System System is an error system with respect to P and Γ , if there exists t such
that P = t
 H;P ′ and at least one of the following holds:

1. consent /∈ perm(HG̃) and ∃u such that Γ � u : G′[G[t[g]]] � ∅ and P ≡
u � consent(x).P ′ or P ≡ u � withdraw.P ′.

2. read /∈ perm(HG̃) and ∃u such that Γ � u : G[t[g]] � Δ and P ≡ u?(k).P ′.
3. update /∈ perm(HG̃) and ∃u such that Γ � u : G[t[g]] � Δ and P ≡ u!〈v〉.P ′.
4. reference /∈ perm(HG̃) and ∃k such that Γ � k : G[t[g]] � ∅ and P ≡ u?(k).P ′.

Towards GDPR Compliant Software Design 153

5. disseminate G′ /∈ perm(HG̃) and ∃u such that Γ � u : G[t[g]] � ∅ and P ≡
u′!〈u〉.P ′.

6. readId /∈ perm(HG̃) and ∃u such that Γ � u : G[t[g]]�Δ and P ≡ u?(x⊗y).P ′.
7. store /∈ perm(HG̃) and ∃u such that Γ � u : G′[G[t[g]]] � ∅ and P ≡ u �

consent(r).P ′ or P ≡ r � [id ⊗ c].
8. usage{p} /∈ perm(HG̃) and ∃c, c′ such that Γ � c : p[g]�∅, Γ � ι⊗ c′ : t[g]�Δ

and P ≡ if c′ then c else P1P2.
9. identify{t′} /∈ perm(HG̃) and ∃c, c′ such that Γ � ι ⊗ c : t′[g] � ∅, Γ � − ⊗ c′ :

t[g] � Δ and P ≡ if c′ = c then P1 else P2.

��
We can now state the Type Safety Theorem.

Theorem 2 (Type Safety). If P;Γ � S � Θ and S
�̃=⇒ S′ then S′ is not an

error with respect to policy P.

Proof. The proof is immediate by [33, Corollary 6.10] and [33, Lemma 6.13]. ��
Neither system entities, S1 nor S2 are able to execute a computational step,

as they are waiting for an input to be sent through channels c and r respectively,
in order to be able to receive it. Thus, the user process, U , is the only one that
can execute its functionality. It can proceed with restricting channel a in its
scope and input it into the public channel c. At this point, it is the user process
that will not be able to proceed, as the action of providing consent requires its
dual action to be executed in order to interact with each other. S2 is still unable
to proceed with reading from channel r as nothing was sent to that channel, so it
is the turn of S1 to execute a computational step, i.e. input from channel c and
substitute variable y with the received value, i.e. channel a. As a result, from
this point on when S1 definition is using the variable y, the channel a will be
referred. We can now observe that the dual action that U needed, is now able to
be executed in S1, thus allowing their interaction that will result into the creation
of a new store for U , associated with the user’s identifier and simultaneously U
will obtain a reference to the specific store, that will be held and referred from
now on into variable x. S1 will then terminate any functionality, except from
holding and managing the store. The only action that is able to be executed at
this point, is the input-output interaction through the store reference, meaning
U outputting into the store reference her personal data structure and the store
in S1 receiving them and storing them.

We have now reached a crucial point of our system’s execution. Both pro-
cesses S2 and U are able to proceed with executing their actions: reading personal
data from the store or withdrawing consent respectively. The model shall only
permit the execution with the above mentioned order and not vice versa. If this
is indeed the case, then S2 will proceed with inputting from the store reference,
interacting with the store in S1 resulting in receiving the data and holding them
into variable placeholder x ⊗ y. Finally, U will proceed with withdrawing its
consent on the store reference and terminate its execution. S2 can then send the
notification to the received phone number.

154 E. Vanezi et al.

The importance is on examining the case where U executes the consent with-
drawing action, resulting in emptying the store, and after that S2 attempts to
receive the data as it already holds the correct store reference. In such a case,
the calculus semantics rule will allow the interaction with the store, sending as
an output to S2 the empty data set and thus, no private data of the user.

6 Case Study: An Electricity IoT Service

In order to demonstrate our framework and methodology, we present a software
system case study. Consider an electricity IoT service receiving, holding, and
processing a set of electric consumption data about households. The data include
the type of electric devices used, the exact date-time each device was used, and its
consumption in power units. The data are gathered from several smart meters
installed in several points of the house. All data are considered personal and
are linked to the user’s id, thus identifying the owner as the data subject. The
service implements two different processing purposes: (i) to collect and store
the electricity data of the user and to calculate the total fee that the user has
to pay; and (ii) to keep a record of the user’s fees for each billing period. The
specification of the electricity IoT service is as follows:

Collecting Electricity Data

1. A user can register to this service by providing her consent.
2. Upon registration, the system creates a record to log the user’s electricity

data.
3. Each time an electrical device is used, the connected smart meter device

updates the electricity data log with new consumption data.
4. The user is able to access and view the record kept for her.
5. At the end of each billing period, the electricity fee is calculated by the billing

department, based on the records collected. The fees is then sent to the user.
6. The user can withdraw her consent at any time, and have her electricity data

record erased from the system.

Keeping Fee Records

1. A user can register to this service by providing her consent.
2. Upon registration, the system creates an empty record for the user’s fee log.
3. The billing department stores the calculated fee in the user’s fee log.
4. The user can view her fees log.
5. The statistics department can read and compare the electricity data with

a consumption threshold and extracts several statistical data based on the
result.

6. The statistical data are sent to the user, and the user’s fee is added to a
graph, anonymously.

7. The user can withdraw her consent and have her fee data erased from the
system. The anonymous data in the statistical graphs can be kept in the
system.

Towards GDPR Compliant Software Design 155

The IoT Service System is identified as entity System, composed by the
following subsystems/groups: the Database, DBase, the Smart Meter enti-
ties, SMeter, the Billing department, BillDept, and the statistics department,
StatDept. We also identify a user entity of group Owner, that the user uses to
interact with the System. To implement a system hierarchy, assume the exis-
tence of groups Owner, DBase1, DBase2, SMeter, BillDept, StatDept, System
and IoT. For the purpose of simplifying the example, we will present the case of
having a single smart meter sending information.

Privacy Policy. The Privacy requirements of the Electricity IoT Service are as
follows:

1. Only the User, i.e., the data subject, can provide and withdraw consent
regarding her electricity data being stored and processed by the system, This
is based on the GDPR principle of “Lawfulness of Processing” and the “Right
to erasure”.

2. The user should be able to access and read her stored electricity data, con-
forming to GDPR “Right of access”.

3. The user should not be able to update her electricity data, as they are map-
ping to the actual consumption. If the user has an objection and requires
rectification of the data then a distinct rectification mechanism should be
triggered. The above are in compliance with GDPR “Right to Rectification”
and principle of “Accuracy”.

4. The databases are the only entities that should be able to store the electricity
and fee data. Additionally, the Database entities are able to distribute access
to them to specific subsystems: to the billing department and to the smart
meter regarding electricity data.

5. The smart meters should be able to update the electricity data.
6. The Billing department should be able to access the electricity data, read

them, and use them to calculate the fee. Furthermore, it should be able to
access and read the fee data as well as update them with new calculated fees.

7. Finally, the Statistics department should be able to access and read the elec-
tricity fee data, and to compare them with a consumption threshold.

Privacy requirements (4)–(8) comprise the processing purpose of the system,
defined in GDPR Principle of “Purpose Limitation”. The permission assignment
for the electricity consumption data, in relation to each process group, is pre-
sented in the form of the entities electricity data
 H1 and electricity fee
 H2,
as follows:

156 E. Vanezi et al.

H1 = electricity data
 Network{}[
Owner{consent, reference, read},
IoTService{}[
DBase1{store, disseminate BillDept, disseminate SMeter},
SMeter{reference, update},
BillDept{reference, read, readId, usage{feeSum}},
StatDept{}

]
]

H2 = electricity fee
 Network{}[
Owner{consent, reference, read},
IoTService{}[
DBase2{store, disseminate StatDept, disseminate BillDept},
SMeter{},
BillDept{reference, read, readId, update},
StatDept{reference, read, usage{threshold}, usage{stat data}}

]
]

The group hierarchy of the Privacy Policy follows the group hierarchy of
the IoT Service System. In regards to the electricity data the Owner has the
permission to provide and withdraw consent, to gain access to the electricity data
store reference, and to read at any given time her electricity data. The database
entity, DBase1, has the permission to define a store for electricity data, and to
disseminate the store reference towards the billing department, BillDept, and
the smart meter, SMeter. The smart meter, SMeter, has the permission to gain
access to an electricity data store reference and to update the electricity data. The
billing department, BillDept, has the permission to gain access to a reference
to the electricity data store, and read its data. Additionally, it can access the
private data identifier to identify the user that should receive the billing fee.
Finally, the statistics department, StatDept, has no permissions regarding the
electricity data.

In regards to the electricity fee data, the owner has the same permissions
as with the electricity data. The database, DBase2 has the permissions to create
an electricity fee data store and the permission to disseminate the electricity fee
store reference towards the billing department, BillDept, and the StatDept.
The smart meter entity, has no permissions regarding the electricity fee data.
The billing department has the same permissions as with the electricity data, and
additionally the permission to update the value in the store with the calculated
fee. Finally, the statistics department, StatDept, has the permissions to read
and compare the electricity fee value anonymously, against a constant threshold.

Towards GDPR Compliant Software Design 157

Modelling the System. The Electricity IoT Service is modelled as follows:

U
def
= (ν a)(ν b)(Owner[{cudb1!〈a〉.a � consent(x1).cudb2!〈b〉.b � consent(x2).

x1?(y1 ⊗ z1).x2?(y2 ⊗ z2).e?(w1).j?(w2).x1 � withdraw.x2 � withdraw.0}id])
DB1

def
= DBase1[cudb1?(y).(ν r1)(y � consent(r1).d!〈r1〉.f !〈r1〉.0)]

DB2
def
= DBase2[cudb2?(y).(ν r2)(y � consent(r2).g!〈r2〉.k!〈r2〉.0)]

SM
def
= SMeter[d?(x). ∗ (x!〈id ⊗ electricity data〉.0)]

BD
def
= BillDept[f?(z1).z1?(x ⊗ y).e!〈feeSum(y)〉.k?(z2).z2!〈id ⊗ feeSum(y)〉.0]

SD
def
= StatDept[g?(z).z?(x ⊗ y).

if y ≥ threshold then (j!〈stat data(y)〉.graph!〈 ⊗ y〉.0) else

(j!〈stat data2(y)〉.graph!〈 ⊗ y〉.0)]

Sys
def
= Network[{U}id || System[DB1 || DB2 || SM || BD || Ad || SD]]

The Owner creates two new channels, a and b, and sends them to DBase1 and
DBase2, respectively. Through a and b the Owner provides her consent for the
creation of two private data stores. The user uses the store reference to read her
data. The user then receives the fee sent by the billing department, via channel
e, and the statistical data sent by the statistics department, via channel j. She
then proceeds with withdrawing both consents.

There are two database entities in the system: DB1 is responsible for storing
and providing access to the electricity data and DB2 for the electricity fee. They
both establish a private communication channel with the Owner. Upon receiv-
ing a consent from the Owner, they create two distinct stores for each type of
personal data. Both store references are disseminates towards the smart meters
via channel d, the billing department via channels f and k, and the statistics
department via channel g.

The smart meter entity, SMeter, upon receiving the electricity data store ref-
erence, updates its contents whenever a device usage occurs.

The Billing Department process, BillDept, receives the electricity data store
reference, reads the store data, and sends to the user the calculation feeSum(y).
It then receives the electricity fee store reference, and then updates the store
with the feeSum(y) calculation. Function feeSum(y) calculates the fee out of the
electricity data.

The Statistics department, StatDept, receives the electricity fee store refer-
ence, reads from the stored data, and compares them with a threshold value.
If the calculated fee is greater or equal to the threshold, then it sends a set
of statistical data to the user, and adds the anonymous electricity fee data to
a graph prepared for statistical purposes. In the case that the condition is not
true, it sends a different set of statistical data to the user and adds the anony-
mous electricity fee data to a graph. Functions stat data1(y) and stat data2(y)
calculate some statistical data taking as input the electricity fee data.

158 E. Vanezi et al.

Functionality, such as reading and writing data directly to the database store,
or calculating the sum of the fee through an abstract function, can be considered
as black boxes in the system’s model. Such functionality is supposed to be fully
implemented during the system development.

Systems DB1, DB2, SM , BD, and SD are composed under the System
group to form the IoT service. Both the Owner and the System are composed
under the IoT group to form the entire service.

By applying the rules of our type system we may show that Γ ; ∅ � System�Θ,
where:

Θ = electricity data : IoT[Owner[{consent, reference, read}]]
electricity data : IoT[System[DBase1[store, disseminate BillDept, disseminate SMeter]]]

electricity data : IoT[System[SMeter[reference, update]]]

electricity data : IoT[System[BillDept[read, readId, usage{feeSum}]]]
electricity fee : IoT[Owner[{consent, reference, read}]]
electricity fee : IoT[System[DBase2[store, disseminate BillDept, disseminate StatDept]]]

electricity fee : IoT[System[BillDept[reference, read, readId, update, usage{feeSum}]]]
electricity fee : IoT[System[StatDept[reference, read, usage{threshold, stat data}]]]

We can check that Θ is compatible with the enunciated policy; therefore, the
policy is satisfied by the system.

7 Conclusions and Future Work

In this paper, we have extended our previous framework of [46] based on the
Privacy calculus of [33] enhanced with features to support the granting and
withdrawal of consent by users, with privacy policies and permissions assign-
ments as in [33]. Moreover, a type system was presented for the type checking of
system models, to ensure satisfaction of requirements pertaining to the purpose
of usage, i.e., indicated by the privacy policy, on top of validating the compli-
ance of the system models to the under discussion GDPR provisions regarding
consent, as in the previous work [46].

7.1 Potential Applications

Our vision is that a π-calculus-based framework can be developed and used by
software engineers to model systems during the design phase, as well as in order
to analyze and validate privacy-related properties, such as the GDPR-based
provisions of Lawfulness of Processing, and the Right to Erasure and Consent
Withdrawal. Analyzing and validating a system’s specifications design model is
a required step of software system creation. The modeling scheme introduced
will provide information on conformance or may reveal any infringements found.
We point out, however, that this process cannot guarantee that the software
engineers will implement the system to precisely conform to its specifications

Towards GDPR Compliant Software Design 159

design, unless MDE techniques relying on the Privacy calculus are employed.
Potential MDE-based applications of our approach include:

– The transformation of the formal model in the extended Privacy calculus to
source code and relevant configuration of the system, in conformance with
GDPR. This process needs to be tailored to the needs of specific kinds of
systems, e.g., mobile applications, and will provide the skeleton of the system
code, whereas additional provisions will need to be added manually by the
developers of the system.

– The same model can be utilized to drive the testing process of the software
system for its privacy aspects, following the notion of test-driven development,
where the tests are created before the actual system implementation [6].

– The documentation of the software system can be automatically generated
using the formal model, targeting different user groups, such as the end user
and the maintenance engineers.

7.2 Future Work

As future work, we intend to embed more GDPR provisions in our framework
and treat the GDPR notion of purpose in a more specific and detailed man-
ner. We will also work towards offering tools for easily expressing a system’s
specifications model in π-calculus-based formalism. Furthermore, tools for static
checking actual code implementations by exploiting the ability of type-checking
techniques at the coding level can be developed to assist GDPR compliance.
Relevant work that does not capture privacy requirements but was developed in
the context of the π-calculus and applies automated static analysis techniques
to software code can be found in [36,47].

Additionally, tools for formally translating verified models to verified devel-
oped systems can be created, thus assisting the transition from the design phase
to the development phase towards the generation of GDPR compliant code.
Thus, as future work we envision the development of the framework into pro-
gramming semantics and analysis tools for supporting the software engineering
development phase and the construction of privacy-respecting code following the
Privacy by Design principle.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the Spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

2. Ahmadian, A.S., Strüber, D., Riediger, V., Jürjens, J.: Supporting privacy impact
assessment by model-based privacy analysis. In: ACM Symposium on Applied
Computing, pp. 1142–1149 (2018)

3. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: Proceedings
of the 2008 ACM Conference on Computer and Communications Security, CCS
2008, pp. 357–370 (2008)

4. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Proceedings of FC 2018 (2018)

160 E. Vanezi et al.

5. Basso, T., Montecchi, L., Moraes, R., Jino, M., Bondavalli, A.: Towards a UML
profile for privacy-aware applications. In: Proceedings of the IEEE International
Conference on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing (CIT/IUCC/DASC/PICOM 2015), pp. 371–378. IEEE
(2015)

6. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Boston (2003)

7. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8
(2011)

8. Boussetoua, R., Bennoui, H., Chaoui, A., Khalfaoui, K., Kerkouche, E.: An auto-
matic approach to transform BPMN models to Pi-calculus. In: Proceedings of the
International Conference of Computer Systems and Applications (AICCSA 2015),
pp. 1–8. IEEE (2015)

9. Braghin, C., Gorla, D., Sassone, V.: Role-based access control for a distributed
calculus. J. Comput. Secur. 14(2), 113–155 (2006)

10. Bugliesi, M., Colazzo, D., Crafa, S., Macedonio, D.: A type system for discretionary
access control. Math. Struct. Comput. Sci. 19(4), 839–875 (2009)

11. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. In: Palamidessi,
C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 365–379. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44618-4 27

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

13. Compagnoni, A.B., Gunter, E.L., Bidinger, P.: Role-based access control for boxed
ambients. Theoret. Comput. Sci. 398(1–3), 203–216 (2008)

14. De Masellis, R., Ghidini, C., Ranise, S.: A declarative framework for specify-
ing and enforcing purpose-aware policies. In: Foresti, S. (ed.) STM 2015. LNCS,
vol. 9331, pp. 55–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24858-5 4

15. Dezani-Ciancaglini, M., Ghilezan, S., Jakšić, S., Pantović, J.: Types for role-based
access control of dynamic web data. In: Mariño, J. (ed.) WFLP 2010. LNCS, vol.
6559, pp. 1–29. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20775-4 1

16. European Parliament and Council of the European Union: General data protection
regulation. Official Journal of the European Union (2015)

17. Ferrara, P., Spoto, F.: Static analysis for GDPR compliance. In: ITASEC (2018)
18. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization in dis-

tributed systems. In: 20th IEEE Computer Security Foundations Symposium, CSF
2007, 6–8 July 2007, Venice, Italy, pp. 31–48 (2007)

19. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Professional, Boston (2004)

20. Gjermundrød, H., Dionysiou, I., Costa, K.: privacyTracker: a privacy-by-design
GDPR-compliant framework with verifiable data traceability controls. In: Caste-
leyn, S., Dolog, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9881, pp. 3–15.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46963-8 1

21. Havey, M.: Essential Business Process Modeling. O’Reilly Media Inc., Sebastopol
(2005)

22. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge
(2007)

https://doi.org/10.1007/3-540-44618-4_27
https://doi.org/10.1007/978-3-319-24858-5_4
https://doi.org/10.1007/978-3-319-24858-5_4
https://doi.org/10.1007/978-3-642-20775-4_1
https://doi.org/10.1007/978-3-642-20775-4_1
https://doi.org/10.1007/978-3-319-46963-8_1

Towards GDPR Compliant Software Design 161

23. Hennessy, M., Rathke, J., Yoshida, N.: safeDpi: a language for controlling mobile
code. Acta Inform. 42(4–5), 227–290 (2005)

24. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Inf.
Comput. 173(1), 82–120 (2002)

25. Hintze, M., LaFever, G.: Meeting upcoming GDPR requirements while maximizing
the full value of data analytics (2017)

26. Huth, D.: A pattern catalog for GDPR compliant data protection (2017)
27. Jafari, M., Fong, P.W., Safavi-Naini, R., Barker, K., Sheppard, N.P.: Towards

defining semantic foundations for purpose-based privacy policies. In: Proceedings
of CODASPY 2011, pp. 213–224. ACM (2011)

28. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

29. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in sys-
tem design: the PriS method. Requir. Eng. 13(3), 241–255 (2008)

30. Kapitsaki, G., Ioannou, J., Cardoso, J., Pedrinaci, C.: Linked USDL privacy:
describing privacy policies for services. In: 2018 IEEE International Conference
on Web Services (ICWS), pp. 50–57. IEEE (2018)

31. Kapitsaki, G.M., Kateros, D.A., Pappas, C.A., Tselikas, N.D., Venieris, I.S.: Model-
driven development of composite web applications. In: Proceedings of the 10th
International Conference on Information Integration and Web-Based Applications
and Services, pp. 399–402. ACM (2008)

32. Kapitsaki, G.M., Venieris, I.S.: PCP: privacy-aware context profile towards
context-aware application development. In: Proceedings of the 10th International
Conference on Information Integration and Web-Based Applications and Services,
pp. 104–110. ACM (2008)

33. Kouzapas, D., Philippou, A.: Privacy by typing in the π-calculus. Log. Methods
Comput. Sci. 13(4) (2017)

34. Lam, V.S.: On π-calculus semantics as a formal basis for UML activity diagrams.
Proc. Int. J. Softw. Eng. Knowl. Eng. 18(04), 541–567 (2008)

35. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Inf. Comput. 100(1), 1–77 (1992)

36. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe
MPI code generation based on session types. In: Franke, B. (ed.) CC 2015. LNCS,
vol. 9031, pp. 212–232. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46663-6 11

37. Perera, C., McCormick, C., Bandara, A.K., Price, B.A., Nuseibeh, B.: Privacy-
by-design framework for assessing internet of things applications and platforms.
In: Proceedings of the 6th International Conference on the Internet of Things, pp.
83–92. ACM (2016)

38. Politou, E., Alepis, E., Patsakis, C.: Forgetting personal data and revoking consent
under the GDPR: challenges and proposed solutions. J. Cybersecur. 4(1), tyy001
(2018)

39. Riahi, S., Khosravi, R., Ghassemi, F.: Purpose-based policy enforcement in actor-
based systems. In: Dastani, M., Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp.
196–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68972-2 13

40. Robol, M., Salnitri, M., Giorgini, P.: Toward GDPR-compliant socio-technical sys-
tems: modeling language and reasoning framework. In: Poels, G., Gailly, F., Serral
Asensio, E., Snoeck, M. (eds.) PoEM 2017. LNBIP, vol. 305, pp. 236–250. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70241-4 16

https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-319-68972-2_13
https://doi.org/10.1007/978-3-319-70241-4_16

162 E. Vanezi et al.

41. Rubinstein, I.S.: Regulating privacy by design. Berkeley Technol. Law J. 26, 1409
(2011)

42. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25 (2006)
43. Thatte, S.: XLANG: web services for business process design. Microsoft Corpora-

tion (2001)
44. Tschantz, M.C., Datta, A., Wing, J.M.: On the semantics of purpose requirements

in privacy policies (2011). arXiv preprint arXiv:1102.4326
45. Tschantz, M.C., Datta, A., Wing, J.M.: Formalizing and enforcing purpose restric-

tions in privacy policies. In: Proceedings of SP 2012, pp. 176–190. IEEE Computer
Society (2012)

46. Vanezi, E., Kapitsaki, G.M., Kouzapas, D., Philippou, A.: A formal modeling
scheme for analyzing a software system design against the GDPR. In: Proceed-
ings of the 14th International Conference on Evaluation of Novel Approaches to
Software Engineering, ENASE 2019, pp. 68–79 (2019)

47. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

http://arxiv.org/abs/1102.4326
https://doi.org/10.1007/978-3-319-05119-2_3

Evaluation of Software Product Quality
Metrics

Arthur-Jozsef Molnar(B), Alexandra Neamţu, and Simona Motogna

Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania

{arthur,motogna}@cs.ubbcluj.ro
nais1841@scs.ubbcluj.ro

Abstract. Computing devices and associated software govern every-
day life, and form the backbone of safety critical systems in banking,
healthcare, automotive and other fields. Increasing system complexity,
quickly evolving technologies and paradigm shifts have kept software
quality research at the forefront. Standards such as ISO’s 25010 express
it in terms of sub-characteristics such as maintainability, reliability and
security. A significant body of literature attempts to link these subchar-
acteristics with software metric values, with the end goal of creating a
metric-based model of software product quality. However, research also
identifies the most important existing barriers. Among them we men-
tion the diversity of software application types, development platforms
and languages. Additionally, unified definitions to make software metrics
truly language-agnostic do not exist, and would be difficult to imple-
ment given programming language levels of variety. This is compounded
by the fact that many existing studies do not detail their methodology
and tooling, which precludes researchers from creating surveys to enable
data analysis on a larger scale. In our paper, we propose a comprehen-
sive study of metric values in the context of three complex, open-source
applications. We align our methodology and tooling with that of existing
research, and present it in detail in order to facilitate comparative eval-
uation. We study metric values during the entire 18-year development
history of our target applications, in order to capture the longitudinal
view that we found lacking in existing literature. We identify metric
dependencies and check their consistency across applications and their
versions. At each step, we carry out comparative evaluation with existing
research and present our results.

Keywords: Software metric · Software quality · Descriptive
statistics · Cross-sectional study · Longitudinal study

1 Introduction

Software development has experienced an exponential increase over the past
decades, which can be observed in the variety of applications available (such as

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 163–187, 2020.
https://doi.org/10.1007/978-3-030-40223-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_8

164 A.-J. Molnar et al.

web, mobile, real time and so on), as well as in application size and complexity.
Large-scale and enterprise applications are being developed over longer periods
of time, using larger teams that are in many cases geographically distributed. In
the same time frame, project management and software methodologies, available
tools and development environments have evolved in an attempt to keep the pace
with increasing requirements.

This increase in size and complexity raises another problem, namely the
necessity to control the software development processes, and implicitly to mea-
sure it, as “you cannot control that which you cannot measure” [11]. In accor-
dance, the domain of software metrics has evolved both as methodology as well
as in terms of available software products, being influenced by the development
of programming languages, paradigms and methodologies.

Software quality assurance is also an important aspect as software products
have to satisfy user needs related to ease of use, security and reliability. Fur-
thermore, development related needs such as maintainability, portability and
testability must also be accounted for. The latest software quality models have
undergone standardization processes, such as ISO standards 9126 and 25010, in
order to establish a set of common criteria for software products. These stan-
dards can significantly benefit from data provided by software metrics, as there
exists consistent research results that report the influence of software metrics on
software quality factors [8,17,22,25,35].

However, additional data analysis is required before general models can be
built [5]. Also, even if the influence of metrics on quality factors is well understood
and accepted, there does not yet exist any general accepted method to evaluate
software quality factors based on software metric values. As such, the relation
between metric values and software quality factors remains an open problem. We
aim to address this issue in the present paper. We carry out a comprehensive
evaluation on values of software metrics that are widely associated with software
product quality. We employ methodology and tooling compatible with existing
results in order to enable comparative evaluation. We carry out a long-term study
targeting three complex, open-source applications, and provide the following
contributions:

(i) A clear description of our methodology, metric definitions and tooling used
to extract metric values. Doing this ensures that our results can be used
for comparative evaluation in future studies. We made all extracted metric
values publicly available1.

(ii) A quantitative evaluation of metric values is carried out and detailed for all
target application versions.

(iii) A longitudinal exploratory study that examines the evolution of metric
values over the course of 18 years of target application development.

(iv) Identification of statistical correlations between metric pairs. We identify
both strongly correlated metrics as well as metrics that appear independent.
We account for the confounding effect of class size and examine the stability
of the correlation strength across application versions.

1 http://www.cs.ubbcluj.ro/∼se/enase2019/.

http://www.cs.ubbcluj.ro/~se/enase2019/

Evaluation of Software Product Quality Metrics 165

(v) A comparative evaluation of metric values and statistical correlations
between target applications. We identify trends in metric values and cor-
relations that are application-specific, together with those that hold across
the target applications.

(vi) An evaluation of our obtained results in the context of existing research
that uses the same methodology and software tools.

One of our study’s key contributions lies in the selection of target applica-
tions. Existing studies are built around one of the following two approaches.
The first one is where a number of applications are selected, and for each of
them several versions are studied [17,32]. The second one considers a large num-
ber of target applications, that in many cases are automatically downloaded
from open-source repositories [5], with a cross-sectional study including all of
them [5,18,19]. Our approach aims to complement existing research. We select
a number of three open-source applications developed on the same platform,
having comparable complexity and scope, and include all their released versions
in our study. This results in a large number of application versions that ensures
statistical significance. More so, our approach includes both initial application
versions, which are sometimes very simple functionality-wise and bug-prone. We
also include the latest application versions, that appear polished, have extensive
features sets and a consistent user base. This enables us to study how metric
values evolve together with the target applications, as well as to identify any
existing trends that might be influenced by application development status.

Another important contribution regards careful selection of software met-
rics and extraction tools. As detailed in our initial evaluation [26], we selected
the evaluated metrics in order to cover complexity, inheritance, coupling and
cohesion [2,22] as important characteristics of object-oriented software. In addi-
tion, the studied metrics can be found in existing literature studying software
product quality [18,19,26,32]. Selection of the right tools for metric value extrac-
tion is also important, as most metrics have more than one definition [4,21]. As
such, comparative evaluation can be carried out only with existing research that
employs the same metrics, and that uses the same tooling to extract metric
values.

In our initial evaluation [26], we employed the VizzAnalyzer tool2, as it pro-
vides formal definitions of the extracted metrics. In addition, using VizzAnalyzer
allows us to compare our results with those reported in [5], where authors use
the same tool to carry out a cross-sectional study of 146 open-source applica-
tions. In our extensive literature survey, we identified [5] as the only paper that
clearly detailed the study methodology and tooling in order to allow a compar-
ative evaluation to be carried out. Since our present paper employs the same
methodology and tooling as our initial evaluation [26], the obtained results are
directly comparable. In addition, in the present paper we explore the effect class
size has on metric correlations across our target applications. We show that met-
ric variability is greatest in early versions, before application architecture is well

2 http://www.arisa.se/vizz analyzer.php.

http://www.arisa.se/vizz_analyzer.php

166 A.-J. Molnar et al.

established. Furthermore, we find that most significant changes to metric values
occur across a small number of application versions, which we examine in detail.

2 Software Metrics

Evolution in the domain of software metrics was influenced by changes in the
development of software, with increasingly specific metrics being proposed for
the measurement of both software products as well as software processes. This is
reflected in the appearance of software metric tools, both general and language
dependent, stand-alone as well as integrated into IDEs in the form of plugins.

The oldest software metrics that remain widely used today include lines of
code (LOC), number of functions or modules, and the number of comment lines.
This was followed by proposed metrics to measure code complexity, such as
cyclomatic complexity [23] and Halstead volume [14]. In turn, these were used
to compute additional, more complex metrics such as the Maintainability Index
[25]. The object oriented paradigm introduced new entities and relations, and
these were reflected by several newly proposed metrics. The reference set of
object-oriented metrics was defined by Chidamber & Kemerer (CK) [8], were
implemented in most software metrics tools, and used in many subsequent stud-
ies. The lack of cohesion in methods (LCOM) metric deserves special mention,
as it was refined from its original definition in [8] by Li and Henry [20], and then
by Hitz and Montazeri [16]. While these changes were driven by a desire to bet-
ter capture the essence of cohesion, LCOM values can only be compared when
extracted using the same definition. Several tools are available to compute the
CK metrics (and many more). Some of them are available as IDE plugins, such
as Metrics23 for Eclipse, MetricsReloaded4 for IntelliJ, NDepend5 for .NET, or
as standalone tools such as JHawk6 or Sourcemeter7. Each of them employs its
own implementation for metric computation, leading to different results for the
same metric when extracted with different tools.

The metrics selected for our study were all computed using the VizzAnalyzer
tool, that uses the definitions provided in [37]. Other studies [5,21] are based
on the same tool, giving us the possibility to compare the obtained results.
According to [22], object-oriented metrics measure one of the four internal char-
acteristics essential to object orientation, namely coupling, inheritance, cohesion
and structural complexity. We present the metrics used in our study, catego-
rized according to the internal characteristics they aim to measure. We start
with metrics dedicated to measuring coupling:

– Coupling Between Objects (CBO , vCBO ∈ [0,∞) ∩ Z) [28] - for class c is
computed as the number of other classes that are coupled to it. Two classes

3 http://metrics.sourceforge.net.
4 https://plugins.jetbrains.com/plugin/93-metricsreloaded.
5 https://www.ndepend.com/.
6 http://www.virtualmachinery.com/jhawkprod.htm.
7 https://www.sourcemeter.com/.

http://metrics.sourceforge.net
https://plugins.jetbrains.com/plugin/93-metricsreloaded
https://www.ndepend.com/
http://www.virtualmachinery.com/jhawkprod.htm
https://www.sourcemeter.com/

Evaluation of Software Product Quality Metrics 167

are coupled when methods declared in one class use methods or instance
variables defined by the other class. CBO indicates the required effort to test
and maintain a class.

– Data Abstraction Coupling (DAC , vDAC ∈ [0,∞)∩Z) [20] - measures when
a class is used in the implementation of methods of another class or when it is
the domain of its instance variables. VizzAnalyzer does not include platform
classes in this measurement.

– Message Pass Coupling (MPC , vMPC ∈ [0,∞) ∩ Z) [28] - counts the num-
ber of methods from other classes that are called. It indicates the degree of
dependency on the system’s other classes.

The following metrics measure the inheritance characteristic:

– Depth of Inheritance Tree (DIT , vDIT ∈ [0,∞) ∩ Z) [28] - represents the
length of the longest path from a given class to the root of the inheritance
tree. DIT also accounts for multiple paths possible in the context of multiple-
inheritance languages such as C++.

– Number of Children (NOC , vNOC ∈ [0,∞) ∩ Z) [28,31] - counts the imme-
diate subclasses found in the inheritance tree for a given class.

System cohesion is measured using the following metrics:

– Lack of Cohesion in Methods (LCOM , vLCOM ∈ [0,∞)∩Z) [28] - represents
the difference between the number of methods pairs that don’t have, respec-
tively have, instance variables in common. This uses the original definition of
the metric [28].

– Improvement to Lack of Cohesion in Methods (ILCOM , vILCOM ∈ [1,∞)∩
Z) [16] - this employs the improved definition provided by Hitz and Montazeri.
In several papers and software tools this is referred to as LCOM5.

– Tight Class Cohesion (TCC , vTCC ∈ [0, 1] ∩ Q) [27] - defined as the ratio
between the number of directly connected public methods in a class divided
by the number of all possible connections between the public methods of that
class.

We employ the following metrics that measure the structural complexity
of classes:

– Locality of Data (LD , vLD ∈ [0, 1]∩Q) [16] - represents the ratio between the
data that is local to a class and all the data used by the class. VizzAnalyzer
includes non-public and inherited attributes.

– Number of Attributes and Methods (NAM , vNAM ∈ [0,∞) ∩ Z) [28] - rep-
resents the total number of attributes and methods that are locally defined
by the class. This includes static methods, but excludes constructors and
inherited fields or methods.

– Number of Methods (NOM , vNOM ∈ [0,∞)∩Z) [28] - represents the number
of methods locally defined in the class. NAM − NOM gives the number of
locally defined attributes.

168 A.-J. Molnar et al.

– Response For a Class (RFC , vRFC ∈ [0,∞) ∩ Z) [28] - counts the number
of methods that could be invoked as a response to a given message. RFC is
the number of methods called by a given class.

– Weighted Method Count (WMC , vWMC ∈ [0,∞) ∩ Z) [28] - defined as the
sum of the complexities of all methods of a given class. The complexity of a
method is its McCabe cyclomatic complexity [23].

Finally, we also examine metrics related with code documentation:

– Length of Class Name (LEN , vLEN ∈ [1,∞) ∩ Z) - the length of the class
name counted in characters.

– Lack of Documentation (LOD , vLOD ∈ [0, 1] ∩ Q) - the ratio of missing
comments in a given class. Each class should have one comment per class, and
an additional one for each defined method. This metric ignores the structure
and the content of the comments.

Beside these metrics, we also measured the Lines of Code (LOC), since it is
considered a universal software metric that can be used across most programming
languages and which gives basic information about the size of a project. The rela-
tion between object-oriented metrics and LOC is worthy of further investigation,
especially as existing research showed that class size has a strong confounding
influence on quality models based on metrics [12].

3 State of the Art

The increasing attention given to software metrics is proven by the large number
of studies in this domain. In most cases, existing research is geared towards one of
the following three main directions: definition and analysis of proposed software
metrics, software metric application in refactoring, and studying the relation
between software metrics and software quality models.

3.1 Metrics

New metrics are being defined in order to fine-tune the characteristics of soft-
ware systems, and in order to better reflect the properties of source code and
associated artefacts. Examples include approaches to improve estimation of the
maintenance effort [30], in order to supersede existing measures such as the
Maintainability Index [25] which was shown to be outdated [10,15,29]. Other
studies propose new metrics to better capture system coupling or cohesion [1,9].

Special interest has been also given to studying inter-metric dependency and
correlation. A large scale study [5] was carried out using 146 Java applications,
with 16 metrics extracted using the VizzAnalyzer tool. Barkman et al. applied
different descriptive statistic techniques in order to detect metric dependencies.
Landman et al. [18] show that typical getters and setters can distort metric
dependencies by artificially increasing dependency values. In [12], authors show
that class size has a significant impact on metric correlation, using experimental

Evaluation of Software Product Quality Metrics 169

data from a large scale telecommunication framework. These results illustrate
that in order to validate strong conclusions derived from data analysis based on
metric values, further research needs to be carried out. This is expected to be of
special importance in the case of large-scale projects that were developed over a
long period of time.

3.2 Refactoring

One of the first applications of software metrics was to use the recorded values
in order to detect design flaws that could be solved through refactoring.

The impact of four refactoring methods on several metrics is described in [7],
based on the source code’s abstract syntax tree representation. Another signif-
icant study [34] refers to the impact 10 refactoring methods have on different
metrics, including the Maintainability Index, cyclomatic complexity, DIT, class
coupling and LOC. Changes to maintainability and modifiability after refac-
toring are presented in [34] through an empirical evaluation. The experimental
evaluations included in the aforementioned studies illustrate that, in the case
of complex systems, refactoring plays an important role for easing maintenance
and keeping system complexity under control. The decision of where and how to
refactor can be taken based on extracted values of suitable software metrics.

3.3 Software Quality Models

In recent years, several contributions attempted to connect software metrics with
software quality factors. A software quality model is a hierarchical set of software
quality factors or characteristics, that are further decomposed in subfactors or
subcharacteristics. The first software quality model was introduced in 1976 by
McCall, to which Boehm and Dromey later proposed important contributions.
These initial contributions were later standardized by the ISO in the form of two
families of standards: first, the ISO 9126, which expressed software quality as a
function of six characteristics, that were comprised of 31 subcharacteristics. The
9126 standard was updated in the form of ISO 250108, which expands to the 8
characteristics shown in Fig. 1.

Fig. 1. ISO/IEC 25010 subcharacteristics hierarchy.

8 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

170 A.-J. Molnar et al.

Some of the factors, like Maintainability, are known to be highly influenced
by coupling and cohesion, such as evaluated by the CBO, TCC and LCOM
metrics. However, in many other cases, dependencies remain to be proven.

The ARISA Compendium [2] offers an exhaustive study of the influence of
over 20 metrics on the software quality characteristics of ISO 9126. The authors’
approach is based on linking metrics with those source code entities that are
involved in the metric’s formal description. In [20], authors claim that metrics
should be adapted for each programming paradigm. They introduce object ori-
ented metrics for the maintenance effort and validate their approach on two
commercial systems using 10 metrics. A complementary study was carried out
in [6], where the CK metrics are assessed in regard to fault proneness, with
experiments performed on eight C++ applications. The study concluded that
LCOM, as defined in the CK suite is not evidential for fault detection, but that
the other CK metrics are well suited for predicting faults. Also, the experimental
data revealed an inverse relation between NOC and faults, a result confirmed
also by the impact of reuse on fault proneness presented in [24].

Another study [33] regarding the relation between CK metrics and faults
evaluated the efficient selection of testing techniques. Authors reported RFC and
WMC as the most suited metrics for this task. A similar study was conducted in
[13] for the open-source Mozilla web and e-mail suite. It concluded that CBO and
LOC are good predictors for faults, while DIT and NOC can lead to false results.
An analysis [35] of CK metrics on a NASA public data set revealed that LOC,
WMC, CBO and RFC can be safely used for defect estimation. The conclusion
of the study recommended further investigation on the relation between metric
values and different dependent variables using statistical and AI techniques.

4 Evaluation

4.1 Target Applications

In order to carry out our evaluation, the first step was to select target applica-
tions. We first established several required criteria. First, we decided to target
open-source applications developed in Java that were user interface driven and
which did not have significant dependencies on external libraries or databases.
We also searched for applications having long-term, consistent development his-
tory that were freely available. Our goals required a longitudinal study, an obser-
vational research method that consists in setting up and collecting metric data
from each of the application versions. As detailed in [5], this can prove difficult
in the case of open-source software, where development effort suffers interrup-
tions, and where there are no guarantees that all software versions are complete
and usable. As such, we selected three popular applications with long develop-
ment histories, which had an established user base as well as public development
repositories populated since project inception. We also ensured selected applica-
tions were free from complex dependencies. This allowed us to run them in order
to check that functionalities worked as expected in all application versions.

Evaluation of Software Product Quality Metrics 171

The selected applications are the FreeMind9 mind mapper, the jEdit10 text
editor and the TuxGuitar11 tablature editor. The entire development history of
these applications can be found on SourceForge12.

FreeMind. Is a mind-mapping application that found many uses in productivity
and content management. FreeMind was also employed in previous software
research [3]. It is also a popular application with a solid user base, having over
465k13 downloads in 2019. FreeMind includes a plugin ecosystem with many
plugins available. However, only the source code of the base application was
included in our study.

jEdit. Is an open-source text editor, developed entirely using the Java pro-
gramming language. It is also a popular system under test for other research
endeavours in software testing [3,36]. jEdit is one of the popular SourceForge
applications, having over 59k downloads in 2019 and reaching over 8.9 millions
downloads in its 19 years of existence. Similar to the case of FreeMind, plugin
code was not included in our evaluation.

TuxGuitar. Is a free, open-source multitrack guitar tablature editor with an
SWT-based user interface. It includes features like multiple format data import
and export, tablature and score editing. TuxGuitar is also a popular application
having over 131k downloads in 2019. In contrast with FreeMind and jEdit, where
we disregarded the applications’ plugin ecosystems, in the case of TuxGuitar
functionalities related to data import and export itself were implemented in the
form of a plugin, and were included in our evaluation.

Table 1 provides information about the earliest and latest application versions
included in our evaluation, indicating their change of complexity during the
considered period.

Table 1. First and last studied version of each target application (from [26]).

Application Version LOC Classes

jEdit 2.3pre2 33,768 322

5.5.0 151,672 952

FreeMind 0.0.3 3,722 53

1.1.0Beta2 63,799 587

TuxGuitar 0.1pre 11,209 122

1.5.2 108,495 1,618

9 http://freemind.sourceforge.net/wiki/index.php/Main Page.
10 http://www.jedit.org/.
11 http://www.tuxguitar.com.ar.
12 https://sourceforge.net.
13 Download data points taken on August 8th, 2019.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://www.jedit.org/
http://www.tuxguitar.com.ar
https://sourceforge.net

172 A.-J. Molnar et al.

0, 5.61, 285, 3, 1
0, 6.71, 184, 4, 1

0, 4.62, 285, 3, 0
0, 6.04, 175, 4, 1

0, 0.65, 6, 0, 0
0, 1.46, 9, 1, 0

0, 0.97, 45, 1, 0
0, 0.99, 298, 1, 0

0, 147.41, 39813, 1, 0
0, 210.11, 1415498, 2, 0

0, 0.4, 22, 0, 0
0, 0.38, 36, 0, 0

1, 124.37, 7001, 43, 13
1, 166.9, 11045, 62, 13

0, 12.12, 552, 4, 0
0, 11.99, 1225, 3, 0

0, 9.42, 329, 4, 1
0, 11.12, 2297, 5, 1

0, 0.54, 300, 0, 0
0, 0.97, 2843, 0, 0

0, 6.11, 267, 3, 1
0, 7.28, 1190, 3, 1

0, 13.46, 407, 6, 2
0, 13.46, 1195, 6, 0

0, 0.14, 1, 0, 0
0, 0.16, 1, 0, 0

0, 12.85, 763, 5, 1
0, 14.87, 2475, 5, 1

Fig. 2. Code metric histograms. Data labels: minimum, mean, maximum, median,
modus. Our results on top row, results from [5] on bottom row for comparison (data
from [26]).

As a preparatory step, each studied version was imported into an IDE. We
ensured that library source code was separated from actual application code
in order to not affect our analysis. Since we employed Java 8, we encountered
compilation errors with older versions of the applications that were developed
using earlier versions of the Java platform. The issues were resolved taking into

Evaluation of Software Product Quality Metrics 173

0, 5.61, 285, 3, 1
0, 6.71, 184, 4, 1

0, 4.62, 285, 3, 0
0, 6.04, 175, 4, 1

Fig. 3. Documentation metric histograms. Data labels: minimum, mean, maximum,
median, modus. Our results on top row, results from [5] on bottom row for comparison.

account not to alter the results of metric extraction. We assured that for each
application, all mandatory source code was included, testing all available func-
tionalities in detail. The raw metric data that was extracted is available on our
website14. Using this data, we developed a number of scripts in order to extract
only the required metric values for our study for each application version as well
as in aggregate form.

Data collection was helped by the fact that for each application, its complete
development history was available on SourceForge. Furthermore, released ver-
sions were clearly marked, dated and had associated binaries and source code.
In total, we included 38 versions of FreeMind, 43 for jEdit and 26 for TuxGuitar.

Table 2. Mean and median metric values per application.

FreeMind jEdit TuxGuitar [5] FreeMind jEdit TuxGuitar [5]

CBO 5.36 4.67 7.32 6.71 3.00 3.00 5.00 4.00

DAC 4.21 4.09 6.08 6.04 2.00 2.00 4.00 4.00

DIT 0.79 0.42 0.87 1.46 0.00 0.00 1.00 1.00

ILCOM 1.00 0.77 1.25 0.99 1.00 1.00 1.00 1.00

LCOM 197.62 124.83 130.81 210.11 2.00 1.00 2.00 2.00

LD 0.49 0.35 0.40 0.38 0.00 0.00 0.00 0.00

LEN 16.87 13.67 16.88 15.04 16.00 13.00 16.00 14.00

LOC 108.62 156.44 90.97 166.90 40.00 51.00 38.00 62.00

LOD 0.80 0.76 0.92 0.47 1.00 1.00 1.00 0.50

MPC 10.92 9.46 17.49 11.99 4.00 3.00 5.00 3.00

NAM 9.75 8.41 10.67 11.12 4.00 3.00 5.00 5.00

NOC 0.65 0.37 0.71 0.97 0.00 0.00 0.00 0.00

NOM 6.88 5.16 6.80 7.28 3.00 2.00 3.00 3.00

RFC 13.54 10.62 17.78 13.46 6.00 5.00 8.00 6.00

TCC 0.14 0.15 0.16 0.16 0.00 0.00 0.00 0.00

WMC 12.51 13.40 12.36 14.87 5.00 5.00 4.00 5.00

Mean values ([26]) Median values

14 http://www.cs.ubbcluj.ro/∼se/enase2019/.

http://www.cs.ubbcluj.ro/~se/enase2019/

174 A.-J. Molnar et al.

4.2 Quantitative Statistics

In this section we provide an initial overview of the extracted metric values, and
compare them with the results presented in [5]. For each of the target applica-
tions, we create its own data set, comprising metric values extracted from all
studied versions of that application. This enables statistical comparison across
applications in order to identify any existing trends. The data from all 107
application versions is coalesced into an aggregated data set. We compare the
aggregated data against the results reported in [5], where authors carried out a
cross-sectional study of 146 open-source Java applications.

Given the large number of data points recorded for our study15, we detail
those aspects that were found of most interest. We remind the interested reader
that the entire metric data set is freely available on our website.

Histograms for code and documentation metric values in our aggregated data
set are shown in Figs. 2 and 3. They also provide a faithful representation of the
value distributions from the three target application data sets. This also holds
when comparing our data with that presented in [5]. We find that histograms
are similar even in the case of metrics having stand-out values, such as LD, LOD
and TCC, where the value of 1 is frequent16. LEN appears to be the only metric
with normal distribution.

Descriptive statistics for every metric in the aggregated data set, as well
as corresponding ones from [5] are shown below the histograms in Figs. 2 and
3. We notice that in every case, the smallest recorded values are the minimal
ones, which is 0 for all metrics with the exception of LOC, where it is 1. Maximal
values are outliers and show much more variance, both across studied application
versions and across the data sets. As such, our study will focus mostly around
median and mean metric values, and detail extreme values only where it makes
sense.

Examination of the mean, median and modus values proves to be of much
more interest. Our first observation is that median and modus values are close
across all the five data sets, for each of the 16 studied metrics. This is detailed
in Table 2, where mean and median values for each application data set, as well
as those recorded by Barkmann et al. [5] are shown. When examining these val-
ues, one must also consider the range for each metric, as detailed in Sect. 2. We
observe that for CBO, NAM, NOM, TCC and WMC mean values are close across
the data sets. Values for LEN and LOD show that while in most cases, the length
of used identifiers is suitable, open-source applications appear to lack inline doc-
umentation. This is especially true in the case of our target applications, where
more than 80% of methods remain undocumented. The data also illustrates the
existance of application-specific trends. We observe that jEdit classes tend to be
larger, as illustrated by higher LOC than FreeMind and TuxGuitar, being very
close to the mean LOC reported in [5]. At the same time, jEdit shows a more flat
inheritance hierarchy, illustrated by lower DIT and NOC values when compared

15 107 application versions x 16 studied metrics x 5 data points = 8,560 data points.
16 In the case of TCC 1 is the maximal value.

Evaluation of Software Product Quality Metrics 175

Table 3. Metric dependencies in FreeMind (top row), jEdit (second row), TuxGuitar
(third row) and as reported in [5] (bottom row). LEN and LOD metrics omitted as no
strong dependencies were found. Data from [26].

Metric CBO DAC DIT ILCOM LCOM LD LOC MPC NAM NOC NOM RFC TCC WMC

DAC 0.97

0.98 1.00

0.96

0.98

DIT 0.28 0.30

0.18 0.20 1.00

0.18 0.10

0.52 0.52

ILCOM 0.46 0.49 0.08

0.44 0.46 −0.00 1.00

0.07 0.11 −0.29

0.53 0.41 0.39

LCOM 0.53 0.56 0.05 0.55

0.55 0.56 −0.03 0.40 1.00

0.20 0.21 −0.12 0.37

0.53 0.55 0.40 0.47

LD 0.20 0.22 0.07 0.40 0.11

0.18 0.21 0.15 0.56 0.07 1.00

0.03 0.06 −0.20 0.43 0.11

0.31 0.33 0.43 0.79 0.44

LOC 0.58 0.61 0.09 0.56 0.77 0.25

0.77 0.78 −0.00 0.55 0.84 0.21 1.00

0.46 0.46 −0.14 0.34 0.66 0.16

0.58 0.60 0.14 0.47 0.58 0.32

MPC 0.83 0.81 0.22 0.46 0.60 0.17 0.66

0.83 0.82 0.06 0.44 0.75 0.15 0.87 1.00

0.62 0.56 0.03 0.18 0.56 0.04 0.82

0.83 0.81 0.53 0.57 0.59 0.50 0.66

NAM 0.69 0.72 0.11 0.72 0.86 0.32 0.85 0.71

0.71 0.72 −0.01 0.65 0.85 0.29 0.94 0.82 1.00

0.30 0.30 −0.23 0.57 0.78 0.29 0.78 0.59

0.51 0.53 0.16 0.63 0.68 0.46 0.83 0.62

NOC −0.01 0.02 −0.03 0.10 0.14 0.01 0.06 0.02 0.13

−0.04 −0.03 −0.05 0.02 0.01 −0.01 0.01 −0.02 0.01 1.00

−0.02 −0.03 −0.06 0.02 0.01 0.02 −0.02 −0.02 0.01

0.06 0.08 0.40 0.57 0.38 0.62 −0.11 0.21 0.06

NOM 0.56 0.60 0.10 0.65 0.91 0.23 0.82 0.63 0.95 0.16

0.68 0.69 −0.05 0.59 0.90 0.20 0.94 0.84 0.96 0.03 1.00

0.32 0.33 −0.23 0.55 0.83 0.27 0.83 0.67 0.92 0.03

0.56 0.58 0.23 0.59 0.79 0.48 0.79 0.65 0.91 0.14

RFC 0.74 0.74 0.18 0.62 0.84 0.23 0.80 0.88 0.91 0.11 0.90

0.83 0.82 0.02 0.53 0.82 0.18 0.92 0.96 0.91 −0.01 0.93 1.00

0.53 0.49 −0.02 0.32 0.62 0.12 0.88 0.92 0.73 −0.01 0.82

0.71 0.70 0.27 0.52 0.71 0.01 0.80 0.81 0.83 0.02 0.90

TCC 0.02 0.02 0.02 0.11 −0.04 0.22 0.03 0.04 0.05 −0.02 0.02 0.04

0.05 0.07 0.05 0.25 −0.01 0.43 0.09 0.06 0.12 −0.04 0.08 0.08 1.00

0.08 0.09 −0.05 0.04 −0.05 0.25 0.03 −0.01 0.07 −0.05 0.02 0.01

0.33 0.35 0.54 0.78 0.46 0.80 0.26 0.51 0.41 0.84 0.45 0.36

WMC 0.53 0.55 0.08 0.61 0.86 0.23 0.89 0.69 0.90 0.12 0.93 0.90 0.04

0.70 0.70 −0.04 0.53 0.88 0.16 0.95 0.87 0.93 0.01 0.96 0.93 0.08 1.00

0.38 0.38 −0.17 0.37 0.72 0.16 0.95 0.82 0.79 −0.01 0.88 0.88 0.01

0.59 0.60 0.20 0.57 0.72 0.44 0.84 0.71 0.88 0.05 0.93 0.93 0.40

176 A.-J. Molnar et al.

to the other applications. As a matter of fact, our studied applications tend to
have shallower inheritance trees than those from [5].

4.3 Metric Dependencies

Several metric value-based characterizations of software have been proposed in
existing literature. However, many of them eschew a thorough study of the rela-
tions between numerical metric values. We believe that understanding existing
correlations between metrics can further assist researchers in proposing and eval-
uating metric-based models. In this section we identify existing metric depen-
dencies in the target applications and cross-check our data against [5].

As shown in Figs. 2 and 3, LEN is the only metric having a normal dis-
tribution. This, together with the difference in metric value ranges shown in
Sect. 2, determined us to employ Spearman’s rank correlation to determine met-
ric dependency. Correlation data per application, including results from [5] are
shown in Table 3. We establish a threshold of 0.8 in absolute value for strong
correlations, which are highlighted and discussed below. In order to keep Table 3
readable, we did not include the LEN and LOD metrics, both of which appeared
to be independent from other metrics as well as each other. The only excep-
tion is a weak correlation between DIT and LEN, which appeared in all studied
applications, as well as [5]. It is explained by the tendency of derived classes in
inheritance hierarchies to have more detailed names than those of base classes
or interfaces.

Metric correlations in our target applications follow the trends identified
by Barkman et al. [5]. We examine our results through the lens of the four
characteristics of object-oriented software presented in Sect. 2.

We observe that strong and consistent correlations exist between coupling
metrics CBO, DAC and MPC, as well as size-related metrics LOC, NAM and
NOM. This was expected, as an increase in attributes or method count leads
to increased class sizes when measured using metrics that predate object ori-
entation. The same explanation covers the strong observed correlation between
structural complexity RFC and WMC.

The NOM metric is also correlated with LCOM and NAM. This confirms
that an increased method count usually leads to a lack of cohesion. As the
number of class methods is a part of the NAM metric, this correlation was also
expected. Inheritance metrics DIT and NOC remain uncorrelated in all data
sets, challenging the expectation that classes at the base of the inheritance tree
have more children.

An interesting result is that cohesion metrics LCOM, ILCOM and TCC do
not show strong correlation in either of the studied data sets. LCOM shows a
weak correlation with its improved variant in all data sets, showing that while
they measure similar software aspects, there is enough differentiation between
them. The result for TCC is more interesting, as the cross-sectional study in
[5] showed much stronger correlation than observed by us. We believe this is a
result of target application selection, which highlights the necessity of backing
up any metric-based model with exploratory evaluation.

Evaluation of Software Product Quality Metrics 177

Table 4. Metric dependencies in FreeMind (top row - below Q1, middle row - inter-
quartile range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.68

0.83 1.00

0.99

DIT 0.34 0.59

0.42 0.55 1.00

0.26 0.25

ILCOM 0.04 0.00 −0.10

0.04 0.17 −0.03 1.00

0.37 0.40 0.00

LCOM −0.10 −0.05 −0.12 −0.20

0.08 0.20 0.07 −0.01 1.00

0.49 0.51 −0.01 0.55

LD 0.09 0.04 −0.07 0.88 −0.16

0.16 0.25 0.08 0.66 −0.07 1.00

0.04 0.06 −0.08 0.18 0.02

MPC 0.67 0.21 −0.07 0.30 −0.13 0.36

0.78 0.59 0.32 −0.03 −0.05 0.14 1.00

0.81 0.79 0.20 0.36 0.56 −0.01

NAM −0.12 −0.12 −0.29 0.37 0.69 0.27 −0.03

0.13 0.32 0.10 0.53 0.64 0.41 0.03 1.00

0.65 0.68 −0.01 0.66 0.89 0.18 0.65

NOC −0.19 −0.04 −0.11 −0.11 0.33 −0.10 −0.26 0.26

−0.10 −0.04 −0.08 −0.03 0.22 −0.03 −0.17 0.19 1.00

0.02 0.02 0.08 0.22 0.21 0.04 0.05 0.18

NOM −0.08 −0.09 −0.25 0.07 0.84 0.00 −0.07 0.88 0.33

0.16 0.32 0.14 0.27 0.80 0.21 0.04 0.90 0.24 1.00

0.48 0.50 −0.04 0.59 0.95 0.07 0.55 0.94 0.23

RFC 0.50 0.07 −0.24 0.23 0.44 0.24 0.71 0.53 0.02 0.57

0.66 0.61 0.29 0.15 0.45 0.25 0.74 0.58 0.06 0.63 1.00

0.68 0.68 0.09 0.54 0.86 0.04 0.85 0.88 0.18 0.88

TCC −0.13 −0.07 0.00 0.48 −0.11 0.27 −0.12 0.32 −0.03 0.18 0.00

−0.01 0.07 0.01 0.31 −0.14 0.35 0.05 0.27 0.00 0.14 0.16 1.00

−0.10 −0.12 −0.10 −0.15 −0.18 0.07 −0.09 −0.17 −0.03 −0.20 −0.16

WMC 0.09 −0.01 −0.23 0.04 0.76 0.01 0.08 0.78 0.27 0.90 0.65 0.12

0.23 0.33 0.09 0.22 0.59 0.24 0.23 0.77 0.13 0.83 0.70 0.18 1.00

0.42 0.43 −0.06 0.53 0.88 0.06 0.60 0.86 0.18 0.91 0.87 −0.13

4.4 The Confounding Effect of Class Size

The confounding effect class size has on metric value-based measurements was
reported by El Emam et al. [12]. Due to its significance, class size must be
accounted for when studying metric dependencies. Authors of [12] showed that
in many cases, metric dependencies could be explained by larger classes having
higher metric values, which confounds data interpretation. As shown in Table 3,
the LOC metric appears correlated with most of the metrics. The exceptions are
DIT, LEN, LOD, NOC and TCC, which do not exhibit correlation with LOC,
or other metrics.

178 A.-J. Molnar et al.

Table 5. Metric dependencies in jEdit (top row - below Q1, middle row - inter-quartile
range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.82

0.94 1.00

0.99

DIT 0.34 0.50

0.33 0.39 1.00

0.09 0.09

ILCOM −0.06 0.01 0.05

−0.08 −0.02 −0.02 1.00

0.36 0.36 −0.13

LCOM 0.07 0.08 −0.06 −0.12

−0.04 −0.02 −0.02 0.11 1.00

0.61 0.62 −0.09 0.47

LD −0.10 −0.02 0.04 0.78 −0.10

−0.11 −0.04 0.11 0.66 −0.03 1.00

−0.02 −0.01 0.16 0.23 0.00

MPC 0.68 0.45 0.11 −0.09 0.01 −0.08

0.74 0.66 0.28 −0.03 −0.04 0.01 1.00

0.84 0.83 0.01 0.40 0.78 −0.03

NAM −0.15 −0.05 −0.21 0.40 0.39 0.38 −0.22

−0.10 −0.02 0.00 0.62 0.34 0.49 −0.01 1.00

0.70 0.70 −0.09 0.59 0.91 0.07 0.82

NOC −0.17 −0.08 −0.11 −0.08 0.16 −0.06 −0.21 0.04

−0.11 −0.07 −0.07 −0.04 0.11 −0.01 −0.14 0.00 1.00

−0.07 −0.06 −0.01 0.07 0.02 0.01 −0.04 0.00

NOM 0.15 0.10 −0.09 0.06 0.88 0.03 0.09 0.33 0.17

−0.06 −0.02 −0.01 0.46 0.70 0.34 −0.02 0.65 0.08 1.00

0.68 0.68 −0.17 0.56 0.94 0.01 0.83 0.97 0.02

RFC 0.56 0.30 −0.05 −0.05 0.44 −0.06 0.76 0.03 −0.06 0.60

0.59 0.52 0.21 0.15 0.26 0.14 0.83 0.22 −0.09 0.41 1.00

0.83 0.82 −0.07 0.49 0.86 −0.02 0.96 0.92 −0.02 0.93

TCC −0.07 −0.07 −0.03 0.21 −0.04 0.08 −0.04 0.15 −0.02 0.08 0.02

−0.08 −0.06 0.06 0.33 −0.13 0.44 −0.02 0.31 −0.05 0.26 0.07 1.00

−0.14 −0.15 −0.06 −0.09 −0.08 0.10 −0.07 −0.09 −0.08 −0.10 −0.09

WMC 0.28 0.07 −0.19 −0.07 0.52 −0.09 0.40 0.08 0.00 0.67 0.71 0.03

0.27 0.21 −0.10 0.18 0.32 0.08 0.39 0.30 −0.08 0.55 0.63 0.13 1.00

0.69 0.69 −0.14 0.49 0.92 −0.05 0.87 0.93 −0.01 0.96 0.94 −0.08

To determine the effect class size has on metric dependencies, we partitioned
all analyzed classes into quartiles using the LOC metric. We calculated the metric
dependencies for each of our three data sets below the first quartile (below Q1),
between the quartiles, and above the third quartile (above Q3). The detailed
result is illustrated per application in Tables 4, 5 and 6. The LOC metric itself
was omitted, as we had already used it to partition the data.

Evaluation of Software Product Quality Metrics 179

Table 6. Metric dependencies in TuxGuitar (top row - below Q1, middle row - inter-
quartile range, bottom row - above Q3).

Metric CBO DAC DIT ILCOM LCOM LD MPC NAM NOC NOM RFC TCC WMC

DAC 0.92

0.92 1.00

0.98

DIT 0.64 0.60

0.60 0.53 1.00

0.10 0.05

ILCOM −0.26 −0.23 −0.32

−0.39 −0.32 −0.43 1.00

0.08 0.08 −0.15

LCOM −0.07 −0.01 −0.12 −0.12

−0.17 −0.15 −0.19 0.49 1.00

0.12 0.11 −0.14 0.41

LD −0.07 −0.04 −0.24 0.41 −0.11

−0.16 −0.07 −0.22 0.36 0.15 1.00

−0.08 −0.06 −0.18 0.42 0.06

MPC 0.82 0.66 0.58 −0.25 −0.21 −0.02

0.77 0.60 0.44 −0.35 −0.14 −0.18 1.00

0.49 0.43 0.09 0.17 0.54 −0.13

NAM −0.10 −0.05 −0.20 0.30 0.66 0.09 −0.20

−0.19 −0.11 −0.30 0.60 0.52 0.30 −0.21 1.00

0.10 0.08 −0.18 0.51 0.84 0.15 0.52

NOC −0.16 −0.13 −0.16 −0.10 0.11 −0.07 −0.18 0.04

0.01 −0.02 −0.06 0.07 0.31 0.05 0.01 0.13 1.00

−0.06 −0.05 −0.08 0.27 0.12 0.20 −0.03 0.15

NOM −0.05 0.03 −0.17 0.12 0.90 −0.03 −0.22 0.75 0.13

−0.23 −0.17 −0.34 0.64 0.77 0.33 −0.15 0.70 0.21 1.00

0.16 0.14 −0.18 0.50 0.88 0.14 0.61 0.92 0.15

RFC 0.79 0.66 0.47 −0.21 0.26 −0.10 0.82 0.18 −0.10 0.30

0.63 0.46 0.28 −0.03 0.26 −0.05 0.83 0.10 0.13 0.29 1.00

0.35 0.30 0.06 0.28 0.61 −0.06 0.90 0.65 0.03 0.77

TCC −0.14 −0.08 −0.20 0.24 −0.08 0.48 −0.12 0.12 −0.06 0.11 −0.10

0.05 0.13 −0.05 0.05 −0.18 0.32 −0.03 0.19 −0.05 0.13 −0.02 1.00

0.02 0.02 0.02 −0.14 −0.15 0.02 −0.11 −0.11 −0.09 −0.18 −0.14

WMC 0.04 0.10 −0.13 0.09 0.86 0.00 −0.12 0.69 0.10 0.95 0.38 0.14

−0.12 −0.07 −0.34 0.45 0.59 0.32 0.04 0.54 0.17 0.83 0.40 0.13 1.00

0.23 0.21 −0.10 0.29 0.72 −0.06 0.79 0.72 0.00 0.84 0.85 −0.17

Immediately we observe that most of the strong metric dependencies occur
in classes above the third quartile, which confirms El Emam et al.’s observation
of the important role played by class size in metric dependencies. LCOM, NAM
and RFC appear sensitive to class size across all target applications, showing
strong dependencies for classes above Q3. An inverse relation is observed between
DIT on one hand, and CBO and DAC on the other. In this case, we notice

180 A.-J. Molnar et al.

Table 7. Extreme values for metric means for early (left) and mature application
versions (right). Includes data from [26].

FreeMind jEdit TuxGuitar

<1.0.0Alpha4 ≥1.0.0Alpha4 <4.0pre4 ≥4.0pre4 <1.0rc1 ≥1.0rc1

Metric Min Max Min Max Min Max Min Max Min Max Min Max

CBO 3.89 6.15 5.33 5.57 3.85 4.29 4.29 4.91 6.03 7.56 7.06 7.88

DAC 2.67 5.30 4.20 4.38 3.45 3.83 3.77 4.30 4.76 5.46 5.16 6.97

DIT 0.15 1.69 0.70 1.03 0.37 0.70 0.32 0.43 0.45 0.55 0.78 1.07

ILCOM 0.81 1.04 0.99 1.04 0.49 0.79 0.79 0.83 1.07 1.33 1.15 1.46

LCOM 84.85 193.25 196.85 237.90 43.44 117.75 126.79 149.31 90.94 130.49 117.15 176.79

LD 0.30 0.52 0.48 0.51 0.23 0.36 0.34 0.37 0.39 0.48 0.35 0.50

LEN 11.77 17.07 16.67 17.17 12.25 13.10 13.01 14.35 14.84 15.09 15.19 18.26

LOC 63.35 157.84 100.05 110.79 91.29 153.94 158.64 177.37 94.93 116.69 73.13 115.25

LOD 0.72 0.91 0.78 0.81 0.73 0.82 0.73 0.80 0.68 0.83 0.88 0.99

MPC 6.99 13.20 10.59 10.92 6.79 9.00 9.34 10.05 14.26 21.27 14.65 22.85

NAM 7.06 9.84 9.85 10.09 5.18 9.02 8.53 9.19 9.71 12.13 9.41 12.98

NOC 0.15 1.44 0.59 0.63 0.31 0.65 0.29 0.38 0.45 0.52 0.58 0.92

NOM 5.26 7.06 6.88 6.99 3.16 5.49 5.28 5.46 6.38 7.23 6.13 8.13

RFC 9.74 15.17 13.49 13.62 7.91 10.39 10.39 11.14 14.81 19.50 15.80 22.21

TCC 0.03 0.16 0.14 0.16 0.06 0.13 0.14 0.17 0.14 0.22 0.12 0.18

WMC 8.52 14.41 12.32 12.55 8.52 14.13 13.43 15.05 12.02 14.53 10.63 15.38

dependency strength decrease for larger class sizes. This is to be expected, as
most metrics capture state and behaviour introduced by the class itself, disre-
garding inherited attributes. As such, many classes deep in inheritance hierar-
chies appear deceptively simple, as much of their complexity is hidden in base
classes.

Even with class size accounted for, we still observe highly dependent metric
pairs. Coupling metrics CBO and DAC, as well as complexity metrics NOM and
WMC illustrate this best. In the same way, metric pairs that we observed to be
independent in the previous section remain so even when partitioned according
to class size. DIT, NOC and TCC showed no strong dependency in any of the
data partitions.

4.5 Longitudinal Evaluation

This section is dedicated to an examination of the changes to metric values
during application development. Data points illustrated in Figs. 2 and 3 are
available for every metric and application version on our website. We found that
values follow the illustrated distributions across all target application versions.
As detailed in Sect. 4.2, maximum data points represent outliers, while minimal
data points coincide with metric minimum values and are not interesting. As
such, the present section is focused on discussing mean and median metric values.
For the sake of brevity, we do not include all 8,560 data points. Our principle
findings are that early application versions show more variability in metric values

Evaluation of Software Product Quality Metrics 181

Table 8. Application versions showing significant variance in metric values.

Application Version LOC Classes

jEdit 2.6final 46,671 453

3.0final 40,756 282

FreeMind 0.7.1 18,928 199

0.8.0 84,199 718

0.8.1 84,089 718

0.9.0Beta17 56,752 577

TuxGuitar 1.2 77,056 736

1.3.0 91,481 1,234

and that key application versions can be identified during which large changes
to metric values occur.

Metric Variability in Early and Mature Versions. We examined the
changes to metric values that occurred between consecutive versions of the same
application. For all three target applications, we found that some of the most
consistent changes occurred within early releases of the application. Of course,
there exists no structured definition for an “early version”, especially not one
that can be used across several applications. As such, we used our familiarity
with the studied applications to identify the earliest version that we considered
mature. In the case of our target applications, they were FreeMind 1.0.0Alpha4,
jEdit 4.0pre4 and TuxGuitar 1.0rc1. These versions include most of the func-
tionalities available in the latest version of the respective application, have the
same look & feel as all subsequent versions and appear to be stable software
releases. Table 7 illustrates minimum and maximum mean metric values in both
early and mature application versions.

We observe that for all applications, metric variability is much higher for the
earlier versions. As shown in Table 1, the first version of FreeMind consisted of
3,722 lines of code, fewer than the first version of TuxGuitar (11,209). In contrast,
the first release of jEdit (33,768 LOC) was much more mature, and already con-
tained the application’s most important functionalities. On the other hand, once
the application architecture is established and the principal functionalities set
is implemented, we observe a significant reduction in the variability of metric
values between versions. This is illustrated for each application, in the right-
hand columns of Table 7. Furthermore, longitudinal examination also showed
that specific trends can be identified for each application with regards to how
object-oriented concepts such as coupling, inheritance and structural complexity
are handled. It is our opinion that additional case studies presenting a longitu-
dinal view are required before desirable metric ranges and most importantly,
reliable metric-based characterisations can be established.

182 A.-J. Molnar et al.

Table 9. Mean metric values for given application versions.

FreeMind jEdit TuxGuitar

0.7.1 0.8.0 0.8.1 0.9.0Beta17 2.6final 3.0final 1.2 1.3.0

CBO 4.75 6.15 6.15 5.31 4.24 4.29 7.05 7.07

DAC 3.10 5.29 5.29 4.14 3.73 3.82 5.22 6.30

DIT 0.50 1.69 1.69 0.74 0.63 0.42 0.79 0.95

ILCOM 0.95 0.80 0.80 1.03 0.52 0.77 1.43 1.22

LCOM 179.54 152.56 152.56 189.32 47.95 114.37 176.79 130.11

LD 0.42 0.43 0.43 0.51 0.25 0.36 0.50 0.35

LEN 15.23 16.91 16.91 17.06 12.62 12.97 15.45 18.26

LOC 102.95 157.83 157.52 97.87 100.16 151.28 115.24 80.74

LOD 0.86 0.72 0.72 0.80 0.82 0.73 0.89 0.98

MPC 11.53 13.19 13.19 10.51 7.58 9.00 22.82 14.64

NAM 9.08 8.99 8.99 9.77 6.01 9.01 12.96 9.85

NOC 0.37 1.44 1.44 0.61 0.56 0.33 0.65 0.64

NOM 6.61 7.06 7.06 6.82 3.72 5.48 8.12 6.31

RFC 13.07 15.16 15.16 13.29 8.84 10.38 22.20 15.80

TCC 0.06 0.08 0.08 0.15 0.08 0.12 0.16 0.12

WMC 12.94 14.40 14.38 12.16 9.27 14.00 15.38 11.30

Causes of Large Variations in Metric Values. We also observed that met-
ric values were consistent between most consecutive version pairs of the studied
applications. At the same time, we could identify version pairs where metric
values were greatly disrupted. We illustrate these pairs using Table 8. The table
also includes information about LOC and the number of classes, in order to help
understand the causes behind observed variations. For example, it is obvious
that a large push in development between FreeMind 0.7.1 and 0.8.0 contributed
to significant changes to metric values, as evidenced by the sharp increase in
application LOC and class count. The same can be said about TuxGuitar ver-
sion 1.3.0. The opposite however is true for jEdit 3.0final, as well as FreeMind
0.9.0Beta17. In these versions we observe important decreases in both LOC and
class count, most likely a result due to refactoring.

Table 9 illustrates mean metric values for the highlighted application versions.
For each version, we manually examined its source code in detail to identify the
underlying changes leading to these variations.

FreeMind 0.8.0 contains major changes, as already evidenced by the sharp
increase in LOC and class count. It is the first version to use external libraries
for XML processing and input forms. During use, it is clear that FreeMind 0.8.0
is more complex and fully-featured, with many changes that are visible at UI
level, including more complex application preferences and features for mind map
and node management. Its scope remains apparent at source file level, with only
21 out of the 92 source files remaining unchanged from 0.7.1. The number of
source files also increased greatly in the newer version, from 92 to 469. Much

Evaluation of Software Product Quality Metrics 183

of the observed discrepancy between numbers of source files, classes and LOC
between the versions can be explained by the newer application including 272
classes that were generated by the JAXB libraries encoding most of the actions
that can be performed using the application. These classes contributed with
49,434 lines to the inflation of LOC witnessed between the studied versions.
Between version 0.8.0 and 0.8.1, no source files were added or deleted, but many
of them have undergone small updates. This includes all generated code, that
was regenerated for version 0.8.1. FreeMind again underwent significant changes
for version 0.9.0Beta17, an evolution from 0.8.1. Out of 469 source files in version
0.8.1, only 127 can be found in the newer version, and all of them have undergone
changes. Version 0.9.0Beta17 also added 230 new Java source files, covering all
functionality areas. Action source files generated using JAXB in version 0.8.0
were replaced with a smaller number of hand-written classes with similar naming
and functionality. This explains most of the class count and LOC difference
between versions 0.8.1 and 0.9.0Beta17.

In the case of jEdit, version 3.0final was the only one where mean met-
ric values were disrupted. A possible contributor to this is that relatively,
early analyzed versions were more mature than equivalent ones from the other
applications. In the case of version 3.0final, we observed that the package
“org.gjt.sp.jedit.actions”, which contained 153 event handler classes with low
statement count and cyclomatic complexity was deleted. These were replaced
with an XML file that provides action descriptors together with Java-like code
snippets that are executed when the action is fired. Only 81 source files out of
341 remained unchanged between these versions.

In the case of TuxGuitar version 1.3.0, the “org.herac.tuxguitar.gui” pack-
age was split into *.app, *.editor and *.graphics packages. Most packages were
updated or refactored. New plugins were added, existing ones have seen source
code changes. Only 62 out of the 650 source code files remained unedited between
these versions. Version 1.3.0 introduced 930 new source files, most of which con-
tain code for custom application actions in the form of small classes having low
complexity, skewing the mean and median metric values.

The last observation is related to the expectation that mean metric values
increase in more advanced application versions. Our data showed this to be
true mostly in the case of FreeMind and jEdit, especially in the case of size
metrics LOC, NAM and NOM. However, as we have shown in this section, this
is alleviated by the refactorings that were carried out in some of the versions.

Our examination resulted in several conclusions. First, we observed that most
of the significant metric variations occurred in early application versions. This
was true both as highlighted in Table 9, as well as when manually identifying
versions with significant metric variations. In addition, we feel that a more in-
depth discussion is warranted regarding the effect that large numbers of small,
relatively straightforward classes have on software quality characteristics. The
importance and magnitude these classes should have when building metric-based
models has yet to be clarified. In several cases, we observed Java source code
being replaced with XML descriptors. This is an illustrative example of the

184 A.-J. Molnar et al.

inherent limitations of metric extraction tools and understanding of software
based on metric values.

4.6 Threats to Validity

We carried out our study using the following steps, in order: preparing applica-
tion versions, extracting metric data, processing the metric data and analysing
it. We presented all the steps required to duplicate our study in detail. Extracted
metric information, as well as aggregated data used for analysis is available on
our website. Each target application version was manually examined in order to
ensure that no factors that could influence metric values were present. We pro-
vided structured definitions for all metrics used, and extracted the data using a
freely-available, cross-platform tool.

We selected three similar applications from a programming language and
architecture standpoint. This helps limit external threats to validity related to
application selection and generalization of results. This also allows comparing
obtained results, as all three applications include the same layers. Application
selection and metric extraction were finalized before data analysis, to eliminate
selection bias. All results are presented both individually, per-application, as well
as in aggregate form.

However, we believe one of our most important contributions was the com-
parative evaluation against a large-scale cross-sectional study that was carried
out using the same methodology as ours. We believe this will help create a solid
basis for additional studies towards a metric-based understanding of software
quality and the software development process.

Among existing threats, we must include the limited number and types of
studied applications. This means that additional research is required in order to
draw conclusions about other types of software, such as non GUI-driven or mobile
applications. Furthermore, as we only included open-source software, they might
not be representative for other applications. As such, we believe that additional
experimental evaluation is required in order to cover additional applications,
programming languages as well as considered metrics.

5 Conclusions and Future Work

In this paper we establish a number of metrics that previous research has associ-
ated with software product quality. We select three open-source, user interface-
driven applications developed in Java and analyze the values and relations
between these metrics within each application’s entire development history.

Each step of our evaluation is detailed and we employ open-source tooling to
ensure that our evaluation is repeatable. At each step, we compare our results
with a comparable large-scale evaluation, obtaining results from an aggregate
of over 25017 application versions. We believe these combined results provide a
sound foundation to be used in further research.
17 [5] evaluated 146 software projects.

Evaluation of Software Product Quality Metrics 185

We found that metric distributions, mean, median and modus values were
consistent across the studies. Mean and median values prove stable once appli-
cations reach maturity, as evidenced in all three target applications. Comparing
values across studied applications revealed the existence of trends in metric val-
ues, driven by the architecture and design of the underlying application.

With regards to identified metric dependencies, we could identify metric pairs
showing strong correlation across applications and application versions, as well
as certain metrics that did not show correlation with any others. We further
investigated the confounding effect of class size in order to confirm our findings.

Our longitudinal approach also revealed that across many application version
we could not witness significant changes to aggregated metric values. Where such
changes occurred, they were mostly driven by application development as well
as refactoring, and were reflected in object-oriented metric values.

An important avenue for further research regards a finer grained analysis,
in order to detect significant changes at package and class levels, not just those
that are visible at aggregated level. Our evaluation should be extended in order
to cover other application types, including mobile and non user interface-driven
software. We believe this type of research can lay the foundation for identifying
suitable metric thresholds that point toward good design practices. Another
aspect regards the role played by the programming language itself, as it too
plays an influence on metric values.

The end goal of this research is represented by a characterization of good
design and development practices, where software metrics will have an important
role for understanding and controlling the software development process.

References

1. Al Dallal, J., Briand, L.C.: An object-oriented high-level design-based class cohe-
sion metric. Inf. Softw. Technol. 52(12), 1346–1361 (2010). https://doi.org/10.
1016/j.infsof.2010.08.006

2. ARISA Compendium - Understandability for Reuse:. http://www.arisa.se/
compendium/node39.html#property:UnderstandabilityR (2018). Accessed Nov
2018

3. Arlt, S., Banerjee, I., Bertolini, C., Memon, A.M., Schaf, M.: Grey-box GUI testing:
efficient generation of event sequences. CoRR abs/1205.4928 (2012)

4. Bakar, N.S.S.A., Boughton, C.V.: Validation of measurement tools to extract met-
rics from open source projects. In: 2012 IEEE Conference on Open Systems, pp.
1–6, October 2012. https://doi.org/10.1109/ICOS.2012.6417648

5. Barkmann, H., Lincke, R., Löwe, W.: Quantitative evaluation of software quality
metrics in open-source projects. In: 2009 International Conference on Advanced
Information Networking and Applications Workshops, pp. 1067–1072, May 2009.
https://doi.org/10.1109/WAINA.2009.190

6. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996). https://
doi.org/10.1109/32.544352

7. Du Bois B., Mens, T.: Describing the impact of refactoring on internal program
quality. In: Proceedings of the 8th International Workshop on Evolution of Large-
scale Industrial Software Applications, pp. 37–48 (2003)

https://doi.org/10.1016/j.infsof.2010.08.006
https://doi.org/10.1016/j.infsof.2010.08.006
http://www.arisa.se/compendium/node39.html#property:UnderstandabilityR
http://www.arisa.se/compendium/node39.html#property:UnderstandabilityR
https://doi.org/10.1109/ICOS.2012.6417648
https://doi.org/10.1109/WAINA.2009.190
https://doi.org/10.1109/32.544352
https://doi.org/10.1109/32.544352

186 A.-J. Molnar et al.

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994). https://doi.org/10.1109/32.295895

9. Poshyvanyk, D., Marcus, A.: The conceptual coupling metrics for object-oriented
systems. In: 2006 22nd IEEE International Conference on Software Maintenance,
pp. 469–478 (2006). https://doi.org/10.1109/ICSM.2006.67

10. Dash, Y., Dubey, S.K., Rana, A.: Maintainability prediction of object oriented
software system by using artificial neural network approach. Int. J. Soft Comput.
Eng. 2(2), 420–423 (2012)

11. DeMarco, T.: Controlling Software Projects: Management, Measurement, and Esti-
mates. Prentice Hall PTR, Upper Saddle River (1986)

12. Emam, K.E., Benlarbi, S., Goel, N., Rai, S.N.: The confounding effect of class size
on the validity of object-oriented metrics. IEEE Trans. Softw. Eng. 27(7), 630–650
(2001). https://doi.org/10.1109/32.935855

13. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10),
897–910 (2005). https://doi.org/10.1109/TSE.2005.112

14. Halstead, M.: Elements of Software Science. Elsevier North-Holland (1977)
15. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-

ability. In: IEEE Proceedings of 6th International Conference on the Quality of
Information and Communications Technology, pp. 30–39 (2007)

16. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented sys-
tems. In: Proceedings of International Symposium on Applied Corporate Comput-
ing, pp. 25–27 (1995)

17. Kanellopoulos, Y., et al.: Code quality evaluation methodology using the ISO/IEC
9126 standard. Int. J. Softw. Eng. Appl. 1(3), 17–36 (2010). https://doi.org/10.
5121/ijsea.2010.1302

18. Landman, D., Serebrenik, A., Vinju, J.: Empirical analysis of the relationship
between CC and SLOC in a large corpus of Java methods. In: Proceedings of
the 2014 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2014, pp. 221–230. IEEE Computer Society, Washington, USA (2014).
https://doi.org/10.1109/ICSME.2014.44

19. Lenhard, J., Blom, M., Herold, S.: Exploring the suitability of source code metrics
for indicating architectural inconsistencies. Softw. Qual. J. 27, 241–274 (2018).
https://doi.org/10.1007/s11219-018-9404-z

20. Li, W., Henry, S.: Maintenance metrics for the object oriented paradigm. In: 1993
Proceedings First International Software Metrics Symposium, pp. 52–60, May 1993.
https://doi.org/10.1109/METRIC.1993.263801

21. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis -
ISSTA 2008, pp. 131–142 (2008). https://doi.org/10.1145/1390630.1390648

22. Marinescu, R.: Measurement and quality in object-oriented design. In: 21st IEEE
International Conference on Software Maintenance (ICSM 2005), pp. 701–704,
September 2005. https://doi.org/10.1109/ICSM.2005.63

23. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE–2(4), 308–320
(1976). https://doi.org/10.1109/TSE.1976.233837

24. Melo, W.L., Briand, L.C., Basili, V.R.: Measuring the Impact of Reuse on Quality
and Productivity in Object-Oriented Systems. University of Maryland, Computer
Science Department, Technical report (1995)

25. Molnar, A., Motogna, S.: Discovering maintainability changes in large software
systems. In: Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Product

https://doi.org/10.1109/32.295895
https://doi.org/10.1109/ICSM.2006.67
https://doi.org/10.1109/32.935855
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.5121/ijsea.2010.1302
https://doi.org/10.5121/ijsea.2010.1302
https://doi.org/10.1109/ICSME.2014.44
https://doi.org/10.1007/s11219-018-9404-z
https://doi.org/10.1109/METRIC.1993.263801
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/ICSM.2005.63
https://doi.org/10.1109/TSE.1976.233837

Evaluation of Software Product Quality Metrics 187

Measurement, IWSM Mensura 2017, pp. 88–93. ACM, New York (2017). https://
doi.org/10.1145/3143434.3143447

26. Molnar, A., Neamţu, A., Motogna, S.: Longitudinal evaluation of software qual-
ity metrics in open-source applications. In: Proceedings of the 14th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE, vol. 1, pp. 80–91. INSTICC, SciTePress (2019). https://doi.org/10.5220/
0007725600800091

27. Ott, L., Bieman, J.M., Kang, B.K., Mehra, B.: Developing Measures of Class Cohe-
sion for Object-Oriented Software. Department of Computer Science, Michigan
Technological University, Technical report (1970)

28. Rodriguez, D., Harrison, R.: An overview of object-oriented design metrics (2001)
29. Motogna, S., Vescan, A., Serban, C., Tirban, P.: An approach to assess maintain-

ability change. In: 2016 IEEE International Conference on Automation, Quality
and Testing, Robotics (AQTR), pp. 1–6 (2016). https://doi.org/10.1109/AQTR.
2016.7501279

30. Saraiva, J.: A roadmap for software maintainability measurement. In: Proceed-
ings of the 2013 International Conference on Software Engineering, ICSE 2013,
pp. 1453–1455. IEEE Press, Piscataway (2013). http://dl.acm.org/citation.cfm?
id=2486788.2487035

31. Sarker, M.: An overview of object oriented design metrics. Ume̊a University, Swe-
den (2005)

32. Silva, R., Costa, H.: Graphical and statistical analysis of the software evolution
using coupling and cohesion metrics - an exploratory study. In: Proceedings - 2015
41st Latin American Computing Conference, CLEI 2015 (2015). https://doi.org/
10.1109/CLEI.2015.7359472

33. Tang, M.H., Kao, M.H., Chen, M.H.: An empirical study on object-oriented met-
rics. In: Proceedings of the 6th International Symposium on Software Metrics,
METRICS 1999, p. 242. IEEE Computer Society, Washington (1999). http://dl.
acm.org/citation.cfm?id=520792.823979

34. Wilking, D., Farooq Kahn, U., Kowalewski, S.: An empirical evaluation of refac-
toring. e-Inform. Softw. Eng. J. 1, 27–42 (2007)

35. Xu, J., Ho, D., Capretz, L.F.: An empirical validation of object-oriented design
metrics for fault prediction. J. Comput. Sci. (2008). https://doi.org/10.3844/jcssp.
2008.571.577

36. Yuan, X., Memon, A.M.: Generating event sequence-based test cases using GUI
run-time state feedback. IEEE Trans. Softw. Eng. 36(1), 81–95 (2010). https://
doi.org/10.1109/TSE.2009.68

37. ARISA Compendium:. http://www.arisa.se/compendium/ (2020). Accessed Jan
2020

https://doi.org/10.1145/3143434.3143447
https://doi.org/10.1145/3143434.3143447
https://doi.org/10.5220/0007725600800091
https://doi.org/10.5220/0007725600800091
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.1109/AQTR.2016.7501279
http://dl.acm.org/citation.cfm?id=2486788.2487035
http://dl.acm.org/citation.cfm?id=2486788.2487035
https://doi.org/10.1109/CLEI.2015.7359472
https://doi.org/10.1109/CLEI.2015.7359472
http://dl.acm.org/citation.cfm?id=520792.823979
http://dl.acm.org/citation.cfm?id=520792.823979
https://doi.org/10.3844/jcssp.2008.571.577
https://doi.org/10.3844/jcssp.2008.571.577
https://doi.org/10.1109/TSE.2009.68
https://doi.org/10.1109/TSE.2009.68
http://www.arisa.se/compendium/

Model-Driven Development Applied
to Mobile Health and Clinical Scores

Allan Fábio de Aguiar Barbosa(B)

Federal University of Maranhao, São Lúıs, Maranhao, Brazil
afabio@lsdi.ufma.br

Abstract. Clinical scores are a widely discussed topic in health as part
of modern clinical practice. In general, these tools predict clinical out-
comes, perform risk stratification, aid in clinical decision making, assess
disease severity or assist diagnosis. However, the problem is that clinical
scores data are traditionally obtained manually, which can lead to incor-
rect data and result. Besides, by collecting biological/health data in real-
time from humans, the current mobile health (mHealth) solutions that
computationally solve that problem are limited because those systems
are developed considering the specificities of a single clinical score. This
work addresses the productivity in developing mHealth solutions for clin-
ical scores through the use of Model-Driven Development concepts. This
paper focuses on describing DSML4ClinicalScores, a high-level domain-
specific modeling language that uses the Ecore metamodel to describe a
clinical score specification. To propose the DSML4ClinicalScores, we ana-
lyzed 89 clinical scores for defining the artifacts of this proposed Meta-
model. From the concrete model created by the DSML4ClinicalScores, we
apply model transformation techniques to automatically generate soft-
ware components in the domains of mHealth and clinical scores. In the
end, we evaluate the proposed approach through the modeling of eight
different clinical scores for validating the DSML4ClinicalScores meta-
model, and the development a practical case study using a specific clin-
ical score for illustrating how to use the proposal in a clinical situation
scenario.

Keywords: Clinical scores · Mobile health model-driven
development · Domain-specific modeling language

1 Introduction

Clinical scores have been discussed as part of modern clinical practice in recent
decades. In general, these tools have been created to predict clinical outcomes,
perform risk stratification, aid in clinical decision making, assess disease severity
or assist diagnosis [1]. In the medical literature, there are many formally defined
clinical scores, in which each one of them deals with a specific type of disease,
especially those considered as chronic. For example, there are clinical scores for
heart diseases, infectious diseases, neurological diseases, and so on.
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 188–203, 2020.
https://doi.org/10.1007/978-3-030-40223-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_9

Model-Driven Development Applied to Mobile Health and Clinical Scores 189

Recently, the importance of scores for clinical practice within the hospital
environment has been investigated with greater emphasis. For example, Aakre
et al. [1,2] examined the feasibility of including these scores within the patient’s
electronic health record (EHR). In this context, clinical scores data are tradi-
tionally obtained in a manual way, which can lead to incorrect data and result,
and they can also involve complex mathematical calculations. Initiatives in the
mobile health (mHealth) field that currently arise to computationally solve the
problem are limited because a software is developed considering the specificities
of a particular clinical score.

In that scenario, the development process of mobile solutions for clinical
scores using traditional approaches requires building a new software for each
clinical score, even if they have similar characteristics, repeating all develop-
ment steps, which limits productivity. To tackle this problem, we propose to use
Model-Driven Development (MDD) concepts that helps to simplify the process
of developing mHealth applications for clinical scores. In particular, we propose
a Domain-Specific Modeling Language (DSML) for specifying clinical scores in
general. Additionally, we apply Model Transformation techniques to generate
software components from the specified clinical score (i.e., concrete model). The
resulting software components describe an Internet of Things (IoT) application
targeting the evaluation of a single clinical score.

This work presents the DSML4ClinicalScores, a high-level DSML that uses
an Ecore metamodel to describe a clinical score specification. In general, a clin-
ical score specification contains a section for defining its variables, a section for
defining the rules for calculating its score, and a section for describing its evalu-
ation models. Our DSML4ClinicalScores can cover all these particular features
and generalizes specific details of different specifications. Thus, the clinical score
modeled by the DSML4ClinicalScores is submitted to a model-to-text (M2T)
transformation that generates an OWL ontology within the domains of mHealth
and clinical scores.

The remaining of the paper is organized as follows. In Sect. 2, we present
concepts related to this research. Section 3 reviews published mHealth solutions
targeting the automation of clinical scores and discusses the issues that have
motivated the development of our approach. Section 4 is an overview of the
proposed approach components and technology. Section 5 evaluates the proposed
approach and discusses its advantages and limitations. Finally, in Sect. 6, we
drive our conclusions and perspectives for future work.

2 Background

2.1 Clinical Scores

According to Thompson [3], clinical scores are based on clinical prediction rules
(CPRs), which are tools that use specific criteria to establish probabilities of
outcomes or assist in management decisions. Falk and Fahey [4] summarize the

190 A. F. de Aguiar Barbosa

critical element of CPR as follows: “CPRs quantify the contribution of symp-
toms, clinical signs, and available diagnostic tests, and stratify patients accord-
ing to the probability of having a target disorder. The outcome of interest can
be diverse and be anywhere along the diagnostic, prognostic, and therapeutic
spectrum”.

In this context, some researchers have classified three types of CPRs and, con-
sequently, three models of clinical scores: (1) Diagnostic CPRs that focuses on
factors related to the clinical diagnosis; (2) Prognostic CPRs that predicts out-
comes; (3) Prescriptive CPRs that provides recommendations for clinical inter-
vention. The format of a CPR is variable and depends on the purpose for which
it is intended, but it should include three or more variables obtained from patient
history, physical examinations, or necessary diagnostic tests [3]. The combination
of these CPRs forms the clinical score specification skeleton.

The process of establishing a clinical score within the clinical practice is
complex and requires considerable time. According to Adams and Leveson [5],
only to prove a CPR, the following steps are necessary: development, validation,
impact analysis and implementation. Development is the stage in which it is
identified the predictors from an observational study. Validation is the stage in
which it is tested the rule on a separate population to see if it remains reliable.
Impact analysis is the stage in which it is measured the usefulness of the rule in a
clinical setting concerning cost-benefit, customer satisfaction and time/resource
allocation. Implementation is the stage that there are universal acceptance and
adoption of the rule in clinical practice.

Table 1. CURB-65 Score specification, where BUN is blood urea nitrogen and BP is
blood pressure.

Variable Rule Score

Confusion Yes/No +1

BUN > 19 mg/dL Yes/No +1

Respiratory rate ≥ 30 Yes/No +1

Systolic BP < 90 mmHg or
Diastolic BP ≤ 60 mmHg

Yes/No 1+1

Age ≥ 65 Yes/No +1

Evaluation Result

0.60% = Low risk; consider home treatment 0

2.70% = Low risk; consider home treatment 1

6.80% = Short inpatient hospitalization or
closely supervised outpatient treatment

2

14.00% = Severe pneumonia; hospitalize
and consider admitting to intensive care

3

27.80% = Severe pneumonia; hospitalize
and consider admitting to intensive care

4 or 5

Model-Driven Development Applied to Mobile Health and Clinical Scores 191

In general, a clinical score specification consists of variables, rules for calcula-
tion of the score and evaluation. Variables are precisely the predictors obtained
in the development phase of the model. Rules define the punctuation of each
variable in the specification according to the methodology used in the valida-
tion step of the model. Evaluation describes the interpretation of a clinical score
according to the result obtained by applying the rules for calculating the score.
For example, the well-known CURB-65 Score [6], which estimates mortality of
pneumonia, has variables, rules for calculating score and evaluations as detailed
in Table 1. It is possible to see in the Table 1 the declared variables, the set of
rules associated with each specified variable and its respective score, and the two
types of evaluation of this clinical score. We propose that mHeatlh applications
can use a DSML to specify different clinical scores, in which transformation rules
will be applied to generate executable code artifacts.

2.2 Model-Driven Development

In the software development process, the key element for MDD is the system
modeling. The main focus of MDD consists of developing and refining a model
of a specific domain, in order to produce a vocabulary for use in software devel-
opment [7]. This approach is based on following two main concepts: Domain-
Specific Languages (DSL) and model transformations. DSL is a programming
language based on abstractions (text, symbol or graph) strongly connected to
the domain for which this language is intended [8]. On the other hand, model
transformation is the technique that allows a platform-independent model to
be translated into another platform-specific model, enabling models to produce
executable software artifacts [9].

In this context of MDD and DSLs, there is a special case of this language
called DSML, which serves to formalize the structure, behavior, and requirements
of an application through metamodels, whose representations define semantic
relationships and constraints between concepts in a domain [10]. The definition
of DSML usually begins with capturing and identifying the domain. The result of
this activity produces the abstract syntax of the language, which corresponds to
a metamodel with all concepts identified at the meta-domain level. The concrete
syntax of the language refers to how it is understood and used by its users, or how
the models are written or designed [11,12]. Moreover, we usually apply a model
transformation technique for code generation. So, it is necessary to go through
the abstract syntax tree (i.e., the specified concrete model) and generate code
in a programming language or other text. As this resulting code is considered
as pure text, there is no recognition of the language to be transformed [8]. This
process is called M2T transformation.

3 Clinical Scores in mHealth

In the literature, there have been some initiatives involving mHealth and clin-
ical scores in recent years. For example, Cook et al. [13] developed and evalu-
ated a mobile application to improve asthma control through proactive actions

192 A. F. de Aguiar Barbosa

and without the need for regular inputs (i.e., treatment plans, patient educa-
tion and encouragement of self-care). The authors used the Asthma Control
Test [14] (ACT) in this application to provide patients with a self-assessment
questionnaire for controlling asthma, as well as making available a collection of
educational archives on audio and video media. Aminian et al. [15] developed a
mobile application that provides quick access to evidence-based risk calculators
for decision-making regarding bariatric surgical procedures. The authors used
the following three clinical scores to ensure the patient and physician understand
the relative risk and benefit of surgery: Sleeve Gastrectomy Risk Calculator [16],
Risk of Post-discharge Venous Thromboembolism after Bariatric Surgery [17],
and Individualized Metabolic Surgery Score [18].

Stamate et al. [19] developed the cloudUDPRS application for clinical evalua-
tion of the motor symptoms of Parkinson’s Disease. The authors based the appli-
cation on the well-known scores: Unified Parkinson’s Disease Rating Scale [20]
(UPDRS) and Parkinson’s Disease Questionnaire [21] (PDQ39). Pereira-Azevedo
et al. [22] created a mobile application for the Rotterdam Prostate Cancer Risk
Calculator [23] (RPCRC). With the application, the authors improved the risk
stratification of prostate cancer, avoiding unnecessary biopsies and reducing the
time for diagnosis and unnecessary treatment.

All works described above tackle the problem of clinical scores in mHealth in
a restricted way, developing a computational system for specific clinical scores.
Their main focus is on solving the clinical score or using it to address a more
significant problem in health domain. This paper presents an extension of what
we exploited in [24] at ENASE Conference. In [24], we proposed a domain-specific
modeling language to specify different clinical scores in mHealth domain. By
modeling many clinical scores using a DSML, we standardize the requirements
of any application that fits within this domain and can use the resulting code
artifacts from our approach in future mHealth applications for different clinical
scores. Once a clinical score is specified using the provided DSML, we takes it
as input in order to apply a model-to-text transformation and generate software
artifacts related to the clinical score evaluation.

4 Proposed Approach

Our approach focuses on the development of software to allow real-time remote
patient monitoring using the processing of data streams generated from peo-
ple and biomedical sensors. Unlike most previous works, which develop a com-
putational system for each specific clinical score, our approach stands out by
allowing the specification of several clinical scores and the automatic generation
of software components through the use of model transformation techniques.
The generated software components allow real-time remote patient monitoring
according to the provided clinical score specifications. Figure 1 illustrates the
proposed approach.

The first part of Fig. 1 (identified by the (1) label) corresponds to the auto-
matic code generation. This step involves using a DSML (DSLM4ClinicalScores)

Model-Driven Development Applied to Mobile Health and Clinical Scores 193

Fig. 1. The proposed approach.

to model different clinical score specifications. Based on the provided spec-
ification (concrete model), our approach applies an M2T transformation for
the generation of OWL ontology classes, which are described according to the
Deklaer language [25]. The generated ontology describes the rules that will be
used for patient monitoring according to the provided clinical score specifica-
tion. The second part of Fig. 1 corresponds to an ontology-driven framework,
which semi-automates the creation of an IoT application comprising the evalua-
tion of the previously specified clinical score. The process of an IoT application
generation and the deployment of the its software components is described in
Pinheiro et al. [25].

4.1 The DSML4ClinicalScores Design

DSML4ClinicalScores is a domain-specific language derived from our work [24].
This language allows the user to model different clinical score specifications using
a DSML. This language allows the user to model different clinical score specifica-
tions using a DSML. To identify which concepts would be included as artifacts in
this language, we adopted the work of Aakre et al. [2] as the initial reference for
the DSML4ClinicalScores definition. In that work, the authors empirically eval-
uated 110 clinical scores regarding the importance of having the scores inserted
automatically into the patient’s electronic record. This evaluation was based on
subjective criteria of US medical specialists, considering a classification divided
in “VERY IMPORTANT”, “NICE TO HAVE” or “NOT IMPORTANT”. From
that, we chose the clinical scores considered as VERY IMPORTANT and NICE
TO HAVE. The resulting set had a total of 89 clinical scores, whose specifications
were the basis for defining the DSML4ClinicalScores metamodel.

In this section, we present the DSML4ClinicalScores metamodel, as shown in
Fig. 2. The only difference between this metamodel and the one presented in [24]
consists of including clinical score results as input variables for a specification.
The DSML4ClinicalScores was implemented on top of the Ecore metamodel
and we used the Eclipse Modeling Framework1 (EMF), a distribution of the
Eclipse community, to edit and create case studies of clinical scores. EMF is a
modeling framework and code generation facility for building tools and other

1 https://www.eclipse.org/sirius/overview.html.

https://www.eclipse.org/sirius/overview.html

194 A. F. de Aguiar Barbosa

Fig. 2. The DSML4ClinicalScores metamodel.

applications based on a structured data model, in addition to providing an API
for the Ecore dialect to UML. Ecore describes models and runtime support for
the models, including change notification, persistence support with default XMI
serialization, and a very efficient reflective API for manipulating EMF objects
generically [26].

Therefore, the definition of the DSML4ClinicalScores metamodel is based on
the extracted concepts from those 89 previously mentioned clinical scores. It is
organized into four main classes (see Fig. 2) in order to separate the element
needed for identifying a clinical score specification (Specification) from those
related to each section model definition (VariableSection, RuleSection and Eval-
uationSection). The Specification class represents a single clinical score specifica-
tion, including an identifier, a description and a type from the SpecificationTypes
class (Diagnostic, Prognostic or Prescriptive). The VariableSection class defines

Model-Driven Development Applied to Mobile Health and Clinical Scores 195

all variables in a clinical score specification, and a variable can be obtained
through sensors, information of the patient’s EHR, interviews with the health
professional or patient, or information from other clinical scores. The RuleSec-
tion class defines all rules for calculating the score of the clinical score, associ-
ated with each variable in the specification, and a rule can be represented by any
possible expression (logical, relational or mathematical). The EvaluationSection
class defines all possible evaluation models for a clinical score specification, and
it can have more than one model described by one information associated with
a result, identifying each one of them.

4.2 The Deklaer Language

Deklaer is a declarative language developed by Pinheiro et al. [25], which
describes an IoT application that uses sensors and actuators through a set of
ontologies. The vocabulary of this language is composed of the following classes:
(1) Entity, which represents different entities (e.g., people, animals, or physi-
cal objects) of the system and each one of them has its identity; (2) ActRule
represents class instances that describe an actuation into the environment; (3)
ActuationEffect is in charge of grouping different forms of actuation; (4) Noti-
fication is a subclass of ActuationEffect and describes a text message and its
recipient; (5) Actuator represents devices that can produce an action in the real
world; (6) Sensor class represents sensors in the real world, in which an individ-
ual sensor can provide one or more type of information; (7) SensorObs, which
describes what should be observed by a specific sensor, and it applies a logical
condition associated with a mensuration value; (8) ObsRule combines one or
more instances of SensorObs with one instance of ActRule to associate several
observations with one response action; (9) LogicalCondition represents types of
logical condition that can be applied to a SensorObs; and (10) ObsActRule class
associates a set of ObsRule to a set of ActRule to associate several observations
with several response actions.

4.3 M2T Transformation from DSML4ClinicalScores to Deklaer

The goal of the M2T transformation implemented by our approach is an OWL
ontology described by the Deklaer language. To implement the M2T transforma-
tion, we used the Acceleo2 tool, which is available as an EMF plug-in. Acceleo
defines transformation rules through templates and queries. In Acceleo, a tem-
plate defines a transformation stage (i.e., code text), and a query obtains values
or collection of objects from the specified concrete model.

First, to understand the M2T transformation applied by our approach, it
is necessary to identify which concepts the DSML4ClinicalScores metamodel
is capable of generating for the Deklaer ontology. Table 2 shows the mapping
between the concepts of these languages. For each specified instance of the type

2 http://www.eclipse.org/acceleo.

http://www.eclipse.org/acceleo

196 A. F. de Aguiar Barbosa

Rule in the concrete model created by the DSML4ClinicalScores, the transfor-
mation uses its id attribute to generate corresponding data properties has id for
the ActRule, ObsRule and ObsActRule classes of the Deklaer ontology. At the
same way, for each specified instance of the type Rule in the concrete model, the
transformation uses its score attribute to generate corresponding data property
has notificationText for the Notification class of the Deklaer ontology. Finally,
all object attributes of the type Expression in the concrete model produce all
data properties for the SensorObs class of the Deklaer ontology.

Table 2. The mapping between the concepts of DSML4ClinicalScores and Deklaer.

DSML4ClinicalScores concepts Deklaer concepts

Rule:id ActRule:has id

ObsRule:has id

ObsActRule:has id

Rule:score Notification:has notificationText

Rule:Expression SensorObs:has valueOneRestriction

SensorObs:has name

SensorObs:isAbout

SensorObs:has numberOfValues

SensorObs:has logicalCondition

SensorObs:has unityOfMeasurement

The transformation process begins with the instantiation of the Specification
object of the concrete model created by the DSML4ClinicalScores. After that,
all specified objects of the type Variable and Rule within the concrete model
are investigated by transformation rules, in order to find specified objects of
the type Sensor and their rules. For each Sensor object found in the concrete
model, our approach generates corresponding codes in the SensorObs, ActRule,
Notification, ObsRule, and ObsActRule classes within the Deklaer ontology.

5 Evaluation

In this section, we describe how we evaluated our approach and the obtained
results. The evaluation aimed: (1) to illustrate the expressiveness of the
DSML4Cli-nicalScores language through the modeling of different concrete cases
and (2) to demonstrate the effectiveness of the proposed approach through the
development of a case study.

5.1 The DSML4ClinicalScores Validation

To illustrate the expressiveness of the DSML4ClinicalScores language, from those
list of 89 clinical scores analyzed in the Sect. 4.1, we developed eight concrete case

Model-Driven Development Applied to Mobile Health and Clinical Scores 197

studies based on clinical scores that exploit different characteristics regarding
variables, calculation rules and evaluations. The list of selected clinical scores
is described in Table 3 and all specifications are available on the MD+Calc3

platform. The DSML4ClinicalScores allowed correctly to model the proposed
concrete cases. The plugins containing the DSML4ClinicalScores metamodel and
the modeling of these mentioned concrete cases can be obtained through the
following URL: http://www.lsdi.ufma.br/projetos/mdd4clinicalscores.

Table 3. List of clinical score used in the DSML4ClinicalScores validation.

Clinical score Health domain

TIMI risk index Acute coronary

HAS-BLED score Bleeding risk

MEWS score Degree of illness

CPIS score Pneumonia

CURB-65 score Pneumonia

Wells’ criteria for PE Pulmonary embolism

CHADS2 score Stroke

4Ts score Thrombocytopenia

5.2 Case Study – CURB-65 Score

To demonstrate the effectiveness of our approach, we developed a case study
for the CURB-65 score. The case study is a method that serves to evaluate
a research theory, confirming that in one specific case this theory works [27].
Here we describe the process of generating a mHealth application focused on the
evaluation of CURB-65 clinical score, involving all steps from the specification
of its concrete model by the DSML4ClinicalScores to the production of the
OWL ontology described according to the Deklaer language. The CURB-65 score
specification is detailed in Table 1 at Sect. 2.1.

Creating the Concrete Model. The first step to create the Deklaer ontology
focused on the CURB-65 score is the modeling of this specification according
to the DSML4ClinicalScores metamodel. Figure 3 shows the concrete model of
CURB-65 in a UML object diagram format. Because this clinical score has a com-
plex specification and due to space limitations, the concrete model is only par-
tially presented here. To start the modeling of CURB-65 score, the user declares
a set of attributes (i.e., id, description, and type), which are part of the Specifi-
cation object. After that, the user can define the CURB-65 score variables, rules
for calculating the score and evaluations.
3 https://www.mdcalc.com.

http://www.lsdi.ufma.br/projetos/mdd4clinicalscores
https://www.mdcalc.com

198 A. F. de Aguiar Barbosa

Fig. 3. The CURB-65 concrete model according to the DSML4ClinicalScores meta-
model.

Figure 3 illustrates the modeling of variables, rules for calculating the score,
and CURB-65 evaluations according to the DSML4ClinicalScores metamodel.
The concrete model has 5 objects of the type Variable and respective attributes
related to confusion, blood urea nitrogen (BUN), respiratory rate, systolic blood
pressure, and age.

Additionally, we can also see in Fig. 3 examples of how to model the CURB-
65 scoring rules, specifically those related to confusion and age variables of this
clinical score. For example, to compose the rule of the type “does the patient
have confusion?” with “String=NoConfusion” as identifier, the user can perform
the following: (1) he/she creates a RelationalOperator of the type “EqualThan”;
(2) from this relational operator, he/she creates one instance of Constant with
value “False”, and one instance of RefVariable associated with the variable with
“Confusion” as identifier.

Finally, Fig. 3 shows only three possible objects of the type Evaluation, which
are part of the CURB-65 evaluation, including their scoring range and respective

Model-Driven Development Applied to Mobile Health and Clinical Scores 199

Fig. 4. The CURB-65 ontology according to the Deklaer language.

interpretation, and one object of the type Result, which represents the final result
of the clinical score.

Generating the Deklaer Ontology. The second and last step to create the
Deklaer ontology focused on the CURB-65 score is the submission of the con-
crete model of Fig. 3 to an M2T transformation implemented by our approach.
Figure 4 shows the resulting ontology after this transformation. In detail, we see
all generated individuals for ActRule, Notification, ObsActRule, ObsRule, and
SensorObs classes. Both ActRule and Notification classes describe the possible
scores for the defined rules. The SensorObs class detail the format of each spec-
ified rule. In turn, both ObsActRule and ObsRule classes associate each possible
punctuation with its corresponding observation.

It is important to note that the Deklaer ontology in Fig. 4 doesn’t have all
the required concepts described by the Deklaer ontology. Therefore, this ontol-
ogy should be edited manually in order to the Deklaer framework is capable of
generating the mHealth application focused on the CURB-65 score. In this case,
the edition refers to the inclusion of the data property Sensor:has sensorName
and the Entity class (e.g., an individual named Allan) and respective data and

200 A. F. de Aguiar Barbosa

object properties. These data cannot be expressed at the DSML4ClinicalScores
metamodel level because they are associated with each particular monitoring
scenario.

5.3 Discussion

Analysis of theResults. To illustrate the expressiveness of the DSML4Clinical-
Scores language, we modeled the eight concrete cases of different clinical scores.
In these developed concrete cases, DSML4ClinicalScores allowed the user to cor-
rectly model different types of variables for a clinical score, regardless of whether
they were manually inserted or electronically obtained. For example, it is possi-
ble to express manual data such as pain perception from the patient, as well as
electronic data such as the age or gender of a patient and sensor measures. Addi-
tionally, DSML4ClinicalScores allowed the user to correctly model different for-
mats of logical, relational, and mathematical rules. For example, it is possible to
express a regular mathematical probability (i.e., mathematical format), as well
as a complex rule involving composed relational expressions (i.e., logical and rela-
tional formats). Finally, DSML4ClinicalScores allowed the user to correctly model

Fig. 5. ICare application described in Pinheiro et al. [25].

Model-Driven Development Applied to Mobile Health and Clinical Scores 201

several types of evaluation. For example, it is possible to express a single probabil-
ity as evaluation such as a probability result, as well as more complex assessments,
which define an evaluation into two or three layers, such as those defined by the
Wells’ Criteria for Pulmonary Embolism.

To demonstrate the viability of the proposed approach, we developed a case
study involving the CURB-65 score. This case study encompassed all the activi-
ties necessary for modeling the clinical score specification and the transformation
process of this specification into the Deklaer ontology. The M2T transforma-
tion implemented by our approach proved to be capable of generating concepts
related to the Deklaer ontology. However, the resulting ontology is an incomplete
version of that language. An example of an acceptable application is described
in Pinheiro et al. [25], as shown in Fig. 5. Unlike the ontology of Fig. 4, this
application describes the monitored individual (named Dalva) and the monitor-
ing sensors (ZephyrBloodPressure, ZephyrBpm and ZephyrTemperature) used for
remote patient monitoring.

Benefits of the Proposed Solution. In mHealth, the current solutions for
automating clinical scores are limited. In this context, we propose to address the
following problem related to the traditional development of mHealth applications
for clinical scores: the development process of mobile solutions for clinical scores
using traditional approaches requires to build a new software for each clinical
score, even if they have similar characteristics, repeating all development steps,
which limits productivity.

Concerning the productivity, our approach has contributed to the provision
of DSML4ClinicalScores, which allows the user to specify clinical scores through
a domain-specific language and, combined with the use of transformation rules,
it semi-automatically generates a mHealth application for a provided score. The
language provides a metamodel that embraces the main characteristics of the
most relevant clinical scores described in the literature. To develop a new soft-
ware for a specific clinical score, it is only necessary to adapt its specificities to
the DSML4ClinicalScores metamodel and use its resulting software components.
Thus, our approach allows to reduce or disregard some steps of the traditional
software development process, such as requirements survey, system design and
part of the implementation, when the application domain is the automation of
clinical scores.

Limitations. Considering the methodology used in the development of the
DSML4ClinicalScores language, our approach does not guarantee that other
clinical scores, which are not included in the list of 89 clinical scores whose
specifications were the basis for the definition of this metamodel, can be correctly
modeled by that language.

202 A. F. de Aguiar Barbosa

6 Conclusion and Future Work

This paper presented an innovative approach applied in the domains of mHealth
and clinical scores. For this purpose, we employed metamodeling and model
transformation techniques proposed by Model-Driven Development. To spec-
ify different clinical scores, we used a domain-specific modeling language called
DSML4ClinicalScores, which models the main characteristics of these specifica-
tions. Then, we perform a M2T transformation that creates an OWL ontology
based on the Deklaer language. The proposed approach was evaluated consid-
ering the expressiveness of DSML4ClinicalScores through the modeling of eight
clinical scores, and the viability of this approach through the development of
case study for a specific clinical score.

Our approach proved to be a plausible solution for solving clinical scores
in mHealth. It is an initial effort that can be improved in some of aspects.
First, since the DSML4ClinicalScores metamodel uses Ecore, the Eclipse Mod-
eling Framework provides an integrated development environment that allows
the developer to create an authoring tool from an Ecore metamodel. An author-
ing tool can assist healthcare professionals to specify several clinical scores and,
hence, support the clinical practice within hospital environments. Second, we
plan to develop an application for managing the data from the Deklaer frame-
work and providing the evaluation of a specific clinical score. This application
will prove the integration viability between our approach and the Deklaer frame-
work for automating clinical scores in mHealth.

References

1. Aakre, C., Dziadzko, M., Keegan, M., Herasevich, V.: Automating clinical score
calculation within the electronic health record. Appl. Clin. Inform. 8(2), 369–380
(2017)

2. Aakre, C., Dziadzko, M., Herasevich, V.: Towards automated calculation of
evidence-based clinical scores. World J. Methodol. 7(1), 16–24 (2017)

3. Thompson, G.: Clinical scoring systems in the management of suspected appen-
dicitis in children. In: Lander, A. (ed.) APPENDICITIS, chapter 4, pp. 63–86.
InTech, Rijeka (2012). https://doi.org/10.5772/25485

4. Falk, G., Fahey, T.: Clinical prediction rules. Br. Med. J. 339(2), b2899 (2009)
5. Adams, S., Leveson, S.: Clinical prediction rules. Br. Med. J. 344(1), 1–7 (2012)
6. Lim, W., et al.: Defining community acquired pneumonia severity on presentation

to hospital: an international derivation and validation study. Thorax 58(5), 377–
382 (2003)

7. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
toolkit, 1st edn. Addison-Wesley, Boston (2009)

8. Voelter, M.: DSL Engineering: Designing, Implementing and Using Domain-specific
Languages (2010). http://dslbook.org. Accessed 21 Aug 2019

9. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels, 1st edn. Addison-Wesley, Boston (2008)

10. Schmidt, D.: Guest editor’s introduction: model-driven engineering. IEEE Comput.
39(1), 25–31 (2006)

https://doi.org/10.5772/25485
http://dslbook.org

Model-Driven Development Applied to Mobile Health and Clinical Scores 203

11. Fowler, M.: Domain-Specific Languages, 1st edn. Addison-Wesley, Boston (2010)
12. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific

languages. ACM Comput. Surv. 37(1), 316–344 (2005)
13. Cook, K., Modena, B., Simon, R.: Improvement in asthma control using a min-

imally burdensome and proactive smartphone. J. Allergy Clin. Immunol. 13(1),
730–737 (2016)

14. Schatz, M., et al.: Asthma control test: reliability, validity, and responsiveness in
patients not previously followed by asthma specialists. J. Allergy Clin. Immunol.
117(1), 549–556 (2006)

15. Aminian, A., Alberts, J., Clemence, S., Schauer, P.: Bariatric surgery decision-
making calculator: a novel mobile app for evidence-based clinical practice. Surg.
Obes. Relat. Dis. 13(1), s147 (2017)

16. Aminian, A., Brethauer, S., Sharafkhah, M., Schauer, P.: Development of a sleeve
gastrectomy risk calculator. Surg. Obes. Relat. Dis. 11(1), 758–764 (2015)

17. Aminian, A., et al.: Who should get extended trhomboprophylaxis after bariatric
surgery?: a risk assesment tool to guide indications for post-discharge pharmaco-
prophylaxis. Ann. Surg. 265(1), 143–150 (2017)

18. Aminian, A., et al.: Individualized metabolic surgery score: procedure selection
based on diabetes severity. Ann. Surg. 266(1), 650–657 (2017)

19. Stamate, C., et al.: The cloudUPDRS app: a medical device for the clinical assess-
ment of Parkinson’s Disease. Pervasive Mobile Comput. 43(1), 146–166 (2018)

20. Goetz, C., et al.: Movement disorder society-sponsored revision of the unified
Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric
testing results. Mov. Disord. 23(1), 2129–2170 (2008)

21. Jenkinson, C., Fitzpatrick, R., Peto, V., Greenhall, R., Hyman, N.: The Parkin-
son’s disease questionnaire (PDQ-39): development and validation of a Parkinson’s
disease summary index score. Age Ageing 26(1), 353–357 (1997)

22. Pereira-Azevedo, N., Osório, L., Fraga, A., Roobol, M.: Rotterdam prostate cancer
risk calculator: development and usability testing of the mobile phone app. JMIR
Cancer 3(1), e1 (2017)

23. Roobol, M., et al.: Importance of prostate volume in the european randomised
study of screening for prostate cancer (ERSPC) risk calculators: results from the
prostate biopsy collaborative group. World J. Urol. 30(1), 149–155 (2012)

24. Barbosa, A., Silva, F., Coutinho, L., Santos, D., Teles, A.: A domain-specific mod-
eling language for specification of clinical scores in mobile health. In: 14th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
pp. 104–113. SCITEPRESS, Heraklion (2019)

25. Pinheiro, V., Neumann, G., Endler, M., Silva, F.: An ontology-driven framework for
generating IoT applications using ContextNet. In: IEEE Symposium on Computers
and Communications, pp. 608–614. IEEE, Natal (2018)

26. Irawan, H.: Ecore (2010). https://wiki.eclipse.org/ecore. Accessed 22 Aug 2019
27. Yin, R.: Case Study Research: Designs and Methods, 5th edn. Sage, Thousand

Oaks (2014)

https://wiki.eclipse.org/ecore

Model-Driven Software Development
Combined with Semantic Mutation of UML

State Machines

Anna Derezinska(&) and Łukasz Zaremba

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

A.Derezinska@ii.pw.edu.pl

Abstract. The paper presents an approach to semantic mutation of state
machines that specify class behavior in Model-Driven Software Development.
The mutations are aimed at different variants of UML state machine behavior.
Mutation testing of a target application allows to compare different semantic
interpretations and verify a set of test cases. We present a notation of a process
combining model-driven development with semantic mutation and semantic
consequence-oriented mutations. Origin and details of the proposed mutation
operators are discussed. The approach has been supported by the Framework for
eXecutable UML (FXU) that creates a C# application from UML classes and
state machines. The tool architecture has been reengineered in order to apply
semantic mutation operators into the model-driven development process and
realize testing on a set of semantic mutants. The tool and the implemented
mutation operators have been verified in a case study on a status service for a
social network.

Keywords: Model-Driven Software Development � State machine code
generation � Mutation testing � Framework for eXecutable UML (FXU) � C#

1 Introduction

Improvement of test sets is a challenging task which can be assisted by mutation testing
[1, 2]. Software artefacts could be modified in different approaches to mutation testing.
Testing of resulting applications can be further verified against test sets in order to
evaluate their quality and enhance with new test cases.

Mutation testing could be applied to any kind of software applications, in partic-
ular, those build in Model-Driven Software Development (MDSD) [3]. In this case, not
only code-based, but also model-based mutations could be considered. Moreover,
potential source models for MDSD could be, apart from structural models, like UML
classes, also behavioral models, as state machines [4]. A proper behavior interpretation
is in such case of the high importance, because behavior of these models could be
directly and automatically reflected in operation of the target application.

In this paper, we address a problem of a process that combines MDSD with
semantic mutation of state machine behavior. An important issue is to automate these

© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 204–226, 2020.
https://doi.org/10.1007/978-3-030-40223-5_10

http://orcid.org/0000-0001-8792-203X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_10

activities and integrate them in a user friendly manner. One of challenges is automating
of test execution for different semantic variants, preserving consistency of generated
and supplemented code, as well as code of test cases.

This paper extends the work presented in the ENASE’2019 conference [5]. It
discusses steps of the processes of concern and some formal issues. The proposed
mutation operators are explained in more detail and supplemented with examples of the
operator origin. We have also added more information about tool support, its archi-
tecture, notation of semantic specification, and realized process. Finally, we present a
case study on a social service that has been used in experimental evaluation of the
approach.

Within this paper, we focus on all state machine concepts approved in the UML
specification [6]. A target application is built in an object-oriented programming lan-
guage, especially in C#.

The rest of the paper is organized as follows: fundamentals and basic notions of the
combined process are presented in Sect. 2. In Sect. 3, related work is discussed. The
semantic mutation operators, their origin and meaning, are presented in Sect. 4.
Information of the automatic support for the process are described in Sect. 5. In Sect. 6,
a case study and the experimental results are discussed. Finally, Sect. 7 concludes the
paper.

2 Process Fundamentals

The basic notions of mutation testing and processes of concern will be introduced.

2.1 Mutation Testing

A main goal of mutation testing is evaluation of quality of a test set and support for
development of additional tests if necessary. A “standard” mutation testing approach
refers to a program and its set of tests. Based on a given program, a set of its mutants is
created. A mutant is a variant of the original program into which a simple change, so-
called mutation, was introduced. A mutation is typically a simple syntactic change of
the program. A mutated program should be syntactically correct, but its functionality
can differ from the original program. This difference could be detected by appropriate
test cases. In the mostly used first-order mutation, a change is injected into one program
location per one mutant. A kind of a change, in fact a kind of a program transformation,
is specified by a mutation operator. Different sets of mutation operators are specified
for different programming languages [1].

The basic process of mutation testing can consist of the following steps:

1. Preparing an original program
2. Generation of a set of mutants for the program.
3. Running all program mutants against a set of test cases.
4. Evaluation of results, creation additional test cases if necessary (and repeat from

step 3).
5. Optionally correcting faults in the original program (and repeat from step 1).

Model-Driven Software Development Combined 205

Apart from a typical code mutation, different source notations can be mutated, e.g.,
domain libraries, selected features of a paradigm – like concurrent mechanism, logical
constraints, component contracts, UML models, and other specifications. According to
a selected notation, corresponding mutation operators often imitate possible faults in
the field of concern.

A special kind of mutation, discussed in this paper, is semantic mutation [7]. In this
case a source notation can remain unchanged, but different mutants refer to different
variants of semantic interpretations.

2.2 Model to Code Transformation

Model to code transformation is a core of Model-Driven Software Development. As a
source of a transformation, structural models, e.g. class diagrams, as well as behavioral
models, e.g. state machines, can be used. When a kind of complete behavioral speci-
fication is submitted, e.g. a complete state machine for each class, the target application
could automatically operate as given in the input specification.

The basic MDSD process consists of the following steps:

1. Preparing of source models
2. Verification of models
3. Generation of code from models
4. Supplementing program with additional code, and building an executable project

using additional standard and specialized libraries [result: code project].
5. Program execution and testing

In general, an MDSD process could be more complicated and cover many feedback
loops. After model verifying or code testing the models could be improved, hand-
written code can be reverse-engineered to models, modified models have to be trans-
formed, new code can be supplemented, etc. Moreover, at different process stages some
tests can be written or generated, e.g. prepared as models or code before source model
development, after verification of models, based on the generated code, etc.

2.3 MSDS Process Combined with Mutation Testing

In general, mutation testing can be combined within an MDSD process in different
ways. We can take into account various selection of:

– process stages at which mutations are applied,
– source artefacts into which mutations are introduced,
– types of software features that are mutated,
– process stages at which software behavior is evaluated,
– kinds of verification applied to the software.

When models and code are mutated, we can distinguish the following steps in a
combined generic process. The main created artefacts are given in brackets.

1. Preparing of source models [result: a base model with its semantics].

206 A. Derezinska and Ł. Zaremba

2. Mutation of source models with structural mutation operators of models [result:
mutated models, unchanged semantics].

3. Verification of mutated models against model constraints
4. Generation of code from models, and creation of mutants
5. Supplementing program with additional code, and building executable projects

using additional standard and specialized libraries [result: code projects].
6. Creating of sets of mutants at a code level [result: code projects].
7. Running program and its mutants against a set of test cases.
8. Evaluation of results, creation additional test cases if necessary (and repeat from

step 7).
9. Optionally correcting faults in the original model (and repeat from step 1).

In the above process, semantics does not change, therefore, it has not to be specially
considered. Information about a mutant constitutes a set of models or a program code,
in dependence of the process stage.

Different situation is in the case of semantic mutation. Below, we show the basic
steps in a combined generic process in which models are not structurally mutated, but a
model semantics is mutated.

1. Preparing of source models [result: a model with its base semantics].
2. Mutation of source models with semantic mutation operators of models [result:

unchanged model, mutated semantics].
3. Verification of mutated models against model constraints
4. Generation of code from models, and creation of mutants
5. Supplementing program with additional code, and building executable projects

using additional standard and specialized libraries [result: code projects].
6. Creating of sets of mutants at a code level [result: code projects].
7. Running program and its mutants against a set of test cases.
8. Evaluation of results, creation additional test cases if necessary (and repeat from

step 7).
9. Optionally correcting faults in the original model (and repeat from step 1).

An important difference should be noticed in the considered artefacts. In the second
variant of the combined generic process, the models are not modified, but variants of
the base semantics are created.

In this paper, we will discuss realization of a subset of the latter proposed process.
We focus on semantic mutation, therefore, the final application will be not mutated at
code-level, i.e. step 6 will be omitted.

2.4 Basic Definitions

Semantic of state machines described in [6] builds on a state machine elements
interpreted in a given manner. Determination of a practical semantics to be used in a
MDSD process is, therefore, a selection of one of interpretations to each notion, taking
into account possible combination of interpretations.

Let us denote by F – a set of all concepts of state machines. A concept or a set of
concepts can be associated with a unique interpretation or with a set of possible

Model-Driven Software Development Combined 207

semantic interpretations. We can assume that a set of interpretations applicable for a
given concept or a group of concepts is countable and finite. Each element of a
powerset of F, P(F) can be associated with a set of applicable interpretations I(P (F)).

Therefore, in a context of a state machine, we can specify a semantics S, as a set of
functions which map an element of P(F) into a selected interpretation from a set
I(P(F)).

In a code-based, or other structural mutation, a mutant is a single artefact, for
example a modified program or model. In semantic mutation, a mutant that would be
tested is specified by a tuple <P, S>, where P is a project code and S one of semantics.

3 Related Work

We discuss here work related to interpretation of state machine behavior, transfor-
mation of UML state machines and mutation testing.

3.1 Behavioral State Machines

UML has incorporated some existing modeling notions, as the well-known concepts of
state machines. State machines are a kind of hierarchical, event-driven automata pro-
posed by Harel [8]. They are a powerful modelling notion to describe behavior of
classes or subsystems. State machines are widely used models in embedded system
domain, and other application areas [9].

While interpreting behavior specified by a state machine, we can face many pos-
sible variants. The UML specification [6] provides the general boundaries of state
machines accepted in UML models. However, it leaves open many unspecified issues
and semantic variation points. Moreover, a precise semantics is not a part of the official
specification. Therefore, different variants of state machine behavior within UML and
apart can be met [10].

This situation might be acceptable during a model development, assuming that a
model should cover various approaches. Though, in some cases this could lead to
ambiguous interpretations. Higher precision is especially important when a model has
to be interpreted or transformed to an executable application. Moreover, in most of
implemented solutions, there are different interpretations of behavioral variants, but
often without direct declarations about their semantics.

One of possibilities is leave to a user decision about behavioral variants. For
example, event handling and queuing polices can be decided by a user of the Umple
tool [11]. A similar approach, in which different variants are selected by a user were
proposed by Chauvel and Jézéquel [12]. Prout presented another generic approach to
creation of a code generator parametrized with semantic variants [13].

An MDSD tool can be associated with a primary selection of possible semantics.
Therefore, during development of initial versions of the FXU tool, different problems
of state machine interpretation have been resolved [14, 15]. In the case discussed in this
paper, incorporation of different variants of state machine behavior into solutions
offered to a user were considered as a mutation in mutation testing.

208 A. Derezinska and Ł. Zaremba

3.2 Transformation of UML State Machines

While considering UML models, class models are the main sources of transformations
[16]. These structural models contain many notions which have direct mapping to basic
structures used in object-oriented programming languages. Apart from structural
models, behavioral models, especially state machines, are also common sources in
model to code transformations [4]. Different methods are used to transform concepts of
state machines into code, e.g., replication of states by attributes, applying state design
patterns, and others, [11, 17–21].

An alternative to the code generation is an interpretation technique. It could be
performed by direct execution of code [22]. Some case studies reported in [23] showed
that interpreting UML state machine, although much slower, can give acceptable
results in the context of network and system management.

It should be noted that the most of solutions dealing with state machines take into
account only a restricted subset of UML notions. More advanced features, such as
composite states, in particular with orthogonal regions, different pseudostates,
including deep and shallow history, deferred events, entry/do/exit actions or internal
transitions have often been omitted. This is, for example, in case of code generation
supported by some commercial tools – as IBM Rational Software Architect Developer
[24].

State machines taken into account in fUML (Foundation Subset for Executable
UML) are also limited [25]. The seminal description of state machine coding in C++
also omits concurrency issues [18].

There are some approaches that try to cover state machine models in more com-
prehensive way. They considered composite states [11, 17], state machines labelled
with constrains in the OCL language [21], or composite states with history [14].

Some solutions apply more complete set of state machine concepts, as IBM
Raphsody [26], Umple [11], although most of them do not support the C# language.
A distinguishing feature of a Framework for eXecutable UML (FXU) [27] is covering
of full UML state machines with a target to the C# language.

3.3 Mutation Testing for Programs and Models

Mutation testing has been primarily applied as fault injection method for programs
written in different programming languages, e.g. C, Fortran, Java, C++ [1, 2]. Mutation
operators and tools have also been developed for programs in C# [28, 29].

Mutation testing approach has also been used to mutate specifications, constraints,
and UML models [30], e.g. class models [31, 32].

Automata-based models were also considered as a mutation source in different
approaches. Fabbri et al. focused on mutations in finite state machines [33] and hier-
archical state charts [34]. Much research on state machines were dealing with syn-
tactical changes of diagrams [35]. Some others related to syntactic changes of
specification expressions labelling transitions in state machines. Those expressions
were mutated in a similar way as any other programming code.

Another direction of mutation testing is semantic mutation. Semantic mutation has
been specified for behavioral models, mainly state machines [7], in some variants

Model-Driven Software Development Combined 209

called an implementation mutation [35, 36]. In semantic mutation, graph structure of a
model is not changed, as in a “standard” mutation testing. In this approach, different
semantic interpretations of a model are analyzed [37, 38].

4 Mutation Operators

Semantic mutation operators can be defined for different aspects of a state machine
behavior.

4.1 Origin of Semantic Mutation Operators

In the code-based mutation testing [1, 2] many mutation operators were defined based
on common mistakes performed by developers. Expert analysis of programming
paradigm, e.g. object-oriented constructions, as well as specific features of different
programming languages contributed also to specification of various mutation testing
operators.

In case of semantic mutation of UML state machines, the primary source of
mutation operators is the UML specification [6]. Operators can be driven from variants
included in the specification and some ambiguities or issues left undefined.

Other variants of state machine behavior could be taken into account, exceeding the
UML limitations. It could be, for example, original Harel-based statemachine as
specified within the STATEMATE environment [39]. However, within this paper we
would only discuss approaches that are consistent with the UML specification.

Many of UML specification variants correspond to orthogonal regions in a state
machine. As an example, we consider entering a composite state using a history
pseudostate. We examine the possible interpretations and show how one of semantic
mutation operators was specified.

A composite state can be entered via a history pseudostate, as State3 in Fig. 1. If
State3 were not active before, or its last active substate were a final state, then after
entering State3 the substate State3_1 will be active.

This is determined by general specification rules. If (i) a composite state was not
active before, or (ii) a last active substate included in this composite state was a final
state, entering the composite state via a history pseudostate means entering via a default
history state. However, specification of such a state in the model is not obligatory. This
description is sufficient if a composite state has only single region.

Though, when a composite state comprises many orthogonal regions then entering
via a history can be interpreted in different ways. This follows from various UML
constrains:

– A composite state can include only one history pseudosate, regardless of the
number of its regions.

– Only one transition can be outgoing a history pseudostate.
– Between substates included in different orthogonal regions of a composite state no

transitions can be specified.
– Entering a composite state causes entering all its orthogonal regions.

210 A. Derezinska and Ł. Zaremba

Therefore, a default history state can only be defined in one orthogonal region that
includes the history pseudostate. The remaining orthogonal regions of this composite
state have no default history states. Behavior of a region without its default history state
can be specified in the following ways:

1. Default Entry. The region of the composite state is entered according to its default
rule.

2. Automatic Completion. The region of the composite state is treated as realized and
finished.

3. Ill-formulation. The model is considered to be ill-formulated. This situation could
abandon processing of the state machine due to an error.

These interpretations are illustrated with an example (Fig. 2). We can consider a
situation when State2 is active and the next event is processing of Operation2. The
transitions terminate the composite state State3 using the history pseudostate. There-
fore, for the upper region of State3, the default history state will be entered, in this case
State4_2. For the bottom region of State3 the default history state could not be spec-
ified, and one of the above interpretations could be selected. In case of the first
interpretation, State5_1 will be entered. In the second case, this region is counted to be
completed. Finally, according to the third interpretation, the state machine is ill-
formulated. The discussed interpretations are further used in a definition of a semantic
mutation operator (IV.2 in Table 4).

Fig. 1. A state machine example with a default history state included in a single region
composite state (State3).

Model-Driven Software Development Combined 211

4.2 Semantic Mutation Operators of State Machine Behavior

The proposed operators can be divided into several groups referring to different aspects
of state machine behavior. In this section we discuss these operators that are sum-
marized in tables (Tables 1, 2, 3 and 4).

Fig. 2. A state machine example with a default history state included in a composite state with
many orthogonal regions (State3).

Table 1. Semantic mutation operators dealing with event processing.

ID Operator Considered semantics

I.1 Queue policy for selection of events
stored in an event pool for a state
machine

(1) FIFO queue of events
(2) FIFO queue of events, with exception of
competition event and time events
(3) Different priorities assigned to different
event types (MessageEvent, ChangeEvent,
TimeEvent). FIFO policy within events of the
same type
(4) Priority queue for all events
(5) LIFO queue of events

I.2 Policy for detection of a change event
trigger associated with an expression

(1) Evaluation of an expression value
periodically for a given time interval, and its
comparison
(2) An expression is calculated and checked
once during a single StateMachine step
(3) An expression value is constantly
monitored and its change (from False to

(continued)

212 A. Derezinska and Ł. Zaremba

Mutation Operators of Event Processing. State machine behavior is defined by a
notion of steps, as in a general labelled transition system. One of basic fundamentals of
semantics of UML state machine is run-to-completion step. One single event is pro-
cessed during a single step of a state machine behavior. Management of events is
supported by a queue, event pool, that stores encountering events. The queue is
specified for each state machine of a model.

Policy of a queue is not determined in the UML specification. Selection of five
different queue strategies establishes the first operator (I.1 in Table 1).

There are different kinds of events that are considered in a state machine. One of
them is a change event. A change event is associated with a Boolean expression. An
event occurs any time when its value changes from False to True. However, the
specification does not determine more details, i.e. when the expression is evaluated,
what happens if the value changes back to False before an event is detected, etc.
Different kinds of a change event management are considered in two mutation

Table 1. (continued)

ID Operator Considered semantics

True) triggers immediately the
corresponding change event

I.3 Policy of removal of a change event
from a state machine event pool

(1) An event is removed from an event pool
any time the expression associated with the
event has changed to False
(2) The corresponding expression is
calculated during processing of the event.
The event is removed from the queue if its
expression amounts to False
(3) Further changes of the associated
expression have no impact the change event
processing, are disregarded

I.4 Selection of handling of a deferred
event for a state machine

(1) A deferred event is placed again in the
corresponding event queue, as if the event
has encountered once again
(2) A deferred event is added to a special
pool of deferred events, globally defined for
the whole state machine
(3) A deferred event is placed in a special
pool of deferred events which is defined
individually for each state

I.5 Queue policy for processing deferred
events of a state

(1) FIFO queue of deferred events
(2) Different priorities assigned to different
event types (MessageEvent, ChangeEvent,
TimeEvent). FIFO policy within events of the
same type
(3) Priority queue for all events
(4) LIFO queue of deferred events

Model-Driven Software Development Combined 213

operators (I.2 and I.3 in Table 1). Operator I.2 covers three policies of detecting an
expression change. A change event could be placed into an event pool and waits for
processing. Operator I.3 determines policies whether and when the event should be
removed from the queue if its value changes to False before processing of the event.

Moreover, some events can be deferred in a state. Occurrences of such an event
remain in a queue until the event is no longer deferred for all active states from a
current state configuration, or the deferred event is explicitly accepted in a trigger of a
transition under concern. Two operators (I.4, I.5) deal with the semantics of deferred
events. Policy of placing deferred events in a queue can be selected using operator I.4.
Policy of selecting deferred event to be processed are considered in operator I.5.

Mutation Operators of Time Management. In the general UML specification there
are only limited notions of time management. No time delay intervals between time
events are established. Event processing time is not predefined neither bounded, by for
example some minimal or maximal time. The time issues are open, in order to meet
requirements of different semantic variants that could be associated with different
application domains. Time concerns might be specified with the MARTE profile [40].
In this paper we have only referred to basic clocks defined in MARTE, logical clock
and chronometric clock. Therefore, only one mutation operator for selection of a time
processing strategy is proposed (Table 2). More details of MARTE are not considered
in this paper.

Mutation Operators of Handling Composite States with Orthogonal Regions.
States in a state machine can be simple or composite. A composite state may have one
or more orthogonal regions. Using many orthogonal regions, we can model concurrent
behavior within a state. Semantic of transition realization into and from such a com-
posite state undergoes the run-to-completion step principle. However, some details are
left open in the UML specification.

One of unspecified issues is a kind of concurrency, i.e. how are performed actions
considered to be executed simultaneously. The following three approaches have been
taken into account. In “truly” concurrent execution, separate physical units are
involved, as e.g. different cores of a processor. In this case actions can be realized in the
same time. The second variant is a parallel execution, which could be implemented by
separate parallel software units, e.g. processes or threads. These software units can be
run on different physical units but also on a single core unit. The third approach
corresponds to sequential interleaved execution of concurrent actions. These

Table 2. Semantic mutation operators dealing with time management.

ID Operator Considered semantics

II.1 Time processing policy in a
state machine

(1) Time events are processed one after another
(2) Logical clock is used for time evaluation and
processing of time events
(3) Chronometric clock is used for time evaluation and
processing of time events

214 A. Derezinska and Ł. Zaremba

approaches are applied as semantic variants in operators III.1, III.2, and III.3 (Table 3).
The operators are related to execution of actions associated with a transition connected
to a state with orthogonal regions. Operator III.1 deals with execution of exit actions
when many source states are left concurrently. Operator III.2 selects strategy for
execution of actions of concurrent transitions. Finally, operator III.3 manages entry
actions in many target states. The actions are supposed to be concurrently executed.

Another undefined issue concern entering a composite state with many orthogonal
regions. In UML, a composite state can be entered via an internal initial pseudostate, or an
internal substate can be used as a direct target of a transition. There might be a problem,
whenmany orthogonal regions are used.Wewould call a region to be ambiguous, if it has
no initial pseudostate, nor any substate is directly pointed as a starting point. Different
strategies resolving this problem are specified in the mutation operator III.4 (Table 3). In
this case it is also assumed that no history pseudostate is used.

Mutation Operators of Handling History. Using of history in a composite state is a
powerful modeling notion of UML state machines. However, if orthogonal regions are
used, the situation might be interpreted in different ways. We propose two mutation
operators related to history. The first one (IV.1) selects an interpretation of a default
history pseudostate in orthogonal regions in which it is not defined explicitly. The
second operator deals with entering an orthogonal state via a history pseudostate. This
problem has been discussed in the previous section.

Table 3. Semantic mutation operators dealing with composite states with orthogonal regions.

ID Operator Considered semantics

III.1 Execution policy of exit actions to be
executed simultaneously

(1) Concurrent execution (physically
true concurrent)
(2) Parallel execution
(3) Sequential execution

III.2 Execution policy of transition actions to
be executed simultaneously

(1) Concurrent execution (physically
true concurrent)
(2) Parallel execution
(3) Sequential execution

III.3 Execution policy of entry actions to be
executed simultaneously

(1) Concurrent execution (physically
true concurrent)
(2) Parallel execution
(3) Sequential execution

III.4 Policy for default entry to a composite
state with at least one region without an
initial pseudostate

(1) Abandonment of an ill-defined
model
(2) Behavior realization in ambiguous
regions is omitted
(3) Ambiguous regions are treated as
executed (final sates are reached if
appropriate)
(4) Initial states are selected and entered
in ambiguous regions

Model-Driven Software Development Combined 215

4.3 Operators for Semantic Consequence-Oriented Mutation

Mutation testing in general can be aimed at revealing weaknesses of test sets. A typical
motivation derives from the fact that test cases could not detect all test data that should
be determined as errors. In this section, we consider another weakness when test data
that should be correct might be treated as errors.

In a level of state machine behavior, such tests could refer to consequences of
dispatching the same sequence of events. For a given semantics, behavior of a state
machine could be different in some random cases. However, it could be still correct and
consistent with the semantics.

In particular, this situation can be observed for composite states with orthogonal
regions. Many actions could be performed during one transition. The order of these
actions is undefined. There are various correct flows that preserve appropriate order of
entry/exit and transition actions within a single transition.

Mutation operators that are oriented to semantic consequence would generate
mutants that reflect such different flows. Further, those mutants are used during testing
in order to verify whether some test cases do not classify a correct sequence flaw as an
erroneous one.

Realization of an operator for semantic consequence-oriented mutation depends of
a selected variant of semantics. Three exemplary operators are shown in Table 5.

Table 4. Semantic mutation operators dealing with history pseudostates.

ID Operator Considered semantics

IV.1 Selection of an interpretation of
a default history psudostate

(1) A history pseudostate refers to all regions of
the composite orthogonal state in which it is
included
(2) A history pseudostate only refers to the region
in which it is included
(3) A history pseudostate refers to the region in
which it is included, and also to other regions of
its orthogonal state to which no concurrent direct
entry exists
(4) A history pseudostate is accepted to be valid
only if there are concurrent direct entries to all
other regions of the orthogonal state, in which it
is included. Otherwise, the model is counted to be
ill-modelled

IV.2 Default entry to an orthogonal
state via a history pseudostate

(1) Default entering a region
(2) A region is considered to be executed (a final
substate is reached)

216 A. Derezinska and Ł. Zaremba

5 Architectural Support for Semantic Mutation

The Framework for eXecutable UML (FXU) has been designed and implemented as a
support for a MDSD process targeted at the C# programming language [20]. Its dis-
tinguishing feature is consideration of all notions of UML state machines, including
different types of events and actions, various pseudostates, history, orthogonal regions
in composite states, etc. The framework consists of two main parts, FXU generator and
FXU run-time library. The FXU generator translates UML class and state machine
models into a corresponding source code. The FXU run-time library provides imple-
mentation for all concepts of state machines. The final application combines a gener-
ated code, the library, and additional application-specific code.

It is assumed that a state machine semantics is fixed and independent of an input
model. The library includes all necessary interpretations of the state machine behavior.
Code generated from a model was used for correct model structure and cooperation of
appropriate library elements.

Table 5. Operators for semantic consequence-oriented mutation of state machines.

ID Considered semantics Operator

V.1 Parallel execution of entry actions while incoming
orthogonal regions - Semantics (2) for operator III.3

Deterministic order of
execution of entry actions

V.2 Parallel execution of transitions in orthogonal
regions - Semantics (2) for operator III.2

Deterministic order of
execution of transitions

V.3 Parallel execution of exit actions while outgoing
orthogonal regions - Semantics (2) for operator III.1

Deterministic order of
execution of exit actions

Fig. 3. FXU general architecture.

Model-Driven Software Development Combined 217

5.1 General Refactored Architecture

Introduction of semantic mutation has required refactoring of the framework archi-
tecture. One of the problems is a “code gap”, concerning supplementary code added to
the application [41]. When many final applications are created as mutants, the sup-
plementary code should be applied to all the mutants automatically. Other issues
concerns performance factors, as e.g. number of projects to be build, number of
compilation runs, number of libraries. Four different architecture have been proposed
and analyzed [42]. The approach based on configurable library proved to be the best
solution. It required only single compilation run and one spot where the additional code
should be placed for all generated mutants. It gives an easy extensibility with other
semantic mutations and simple performing of iterative mutation testing. The selected
approach has been implemented in the extended framework. New architecture allows to
provide the mutations independently.

The new library includes the following main components: StateMachineLogic,
Interfaces, and Infrastructure (Fig. 3). An External Project cooperates with the
interfaces module. It contains a hierarchy of interfaces that corresponds to class hier-
archy of different concepts of state machines. Using these interfaces, the state machine
elements are accessible in the generated code. The Interfaces module includes also
other interfaces to cooperate with the internal library objects.

5.2 Container-Based Specification of Mutant Semantics

The Infrastructure module consists of two parts: Unity and Diagnostics. The Unity
submodule is responsible for dynamic binding of state machine objects according to an
interface type or optionally a full name of a context class. The Diagnostics submodule
provides classes for tracing execution of state machines.

Binding of classes is based on the dependency injection pattern realized with
dedicated dependency containers. Therefore, all dependencies, except inheritance
relations, among classes included in StateMachineLogic are deleted. No such depen-
dencies are also between the generated code and StateMachineLogic classes. Selection
of objects that are provided for a requested interface depends of objects that are
registered in a current container of dependency.

A container should be initialized with a set of dependencies. Configuration of a
single container represents semantics of a mutant and uses dependency injection based
on constructors. It can be stored in an XML-like file. Configurations of all mutants can
be specified in a common configuration file. An appropriate configuration has a name
which is unique for each mutant. An original, non-mutated program has a default
configuration, which corresponds to an unnamed container.

Within a single mutant, various state machines may have different semantics.
Therefore, in a configuration of a container, different state machines of a model have to
be distinguished. In Appendix I, an example of a configuration file is given. It includes
configurations of two containers. The first container describes semantics of an original
program. The second one specifies semantics of Mutant1. We can observe that the
policy of event pool has been changed (in register statement) and mapped for one
selected state machine.

218 A. Derezinska and Ł. Zaremba

5.3 Implementation of State Machine Concepts

Realization of different variants of all state machine notions is included in the State-
MachineLogic module (Fig. 3). Different implementations of provided interfaces are
given. This code can have only inheritance relations between classes. Different classes
that implement the same interface relate to different semantics of the state machine
concept.

For example, an interface of a service for default entry to a region is shown in
Fig. 4. It is implemented by three classes. They correspond to different semantic
policies realizing default entry.

Therefore, the module can be easily extended by new implementation variants for
the interface, i.e. new semantic variants.

The StateMachineLogic module also realizes a required order of actions in
orthogonal regions, according to a given configuration. Execution of a single transition
is treated as an asynchronous task from a Task Parallel Library. Its status can be
monitored on-line. The order of task execution follows the given semantic configu-
ration or is concurrent if it is not specified explicitly. Events in a main event loop are
handled in the similar way, disregarding a direct usage of threads.

A similar architecture has the Marte module (Fig. 3) that implements selected time
concepts from the MARTE profile [40]. It has also been refactored to support semantic
mutation, but application of MARTE is beyond the scope of this paper.

5.4 Realization of the Combined Process

General activity flows of code generation and mutation testing supported by the tool are
shown in Fig. 5. Rounded shaded nodes present activities, and rectangular nodes state
for input and output artefacts.

Fig. 4. Realization of different semantic variants.

Model-Driven Software Development Combined 219

It could be noticed that only one compilation activity is performed regardless of the
mutant numbers; models are input for two activities: code generation and generation of
configurations; mutation operators influence only generation of configurations.

Mutation testing can be performed on two levels:

1. Class Level. Unit tests of classes are used for direct verification of classes. The class
is specified with a state machine. The aim of testing is verification of a class and
improvements of its test cases.

2. Module Level. Test cases are designed for a whole module modelled with classes
and their state machines. The testing is focused on the module functionality.

In the first case, the testing should be performed independently for each class.
Semantic operators can modify the whole model, but modification of only one state
machine will be counted.

The process schema of module testing is similar to the class testing process.
However, initial test cases should be focused of verification of the functionality of the
whole module. The main difference is dealing with not only one but many state
machines. Therefore, it is possible to mutate all state machines with the same mutation
operators (i.e. using the same semantic variants), or to mutate each state machine
behavior independently with different mutations.

6 Case Study Evaluation

The proposed approach has been evaluated by mutating a case study. The case study
focused on a status service for a social network and was used in some previous research
on MDSD [43]. The central part of the system is a presence server (PA) (Fig. 6). Status
data of selected users is stored in the system. The services filter information in

Fig. 5. Mutation testing process with configurable library (configurable semantics).

220 A. Derezinska and Ł. Zaremba

accordance to various relationships among users. The presence server manages statuses
of users, i.e. creates presence status, accepts and delates subscribers, notifies statuses to
a list of subscribers, etc. The presence server can fetch a current status of a user from
the SIP (Session Initial Protocol) service. The system is divided into three layers
dealing with client communication, status management, and inter-system communi-
cation. Each layer has been modeled with a package including further subpackages and
classes. Communication between modules has been modeled by appropriate adapters,
that could correspond to mock solutions in the system execution.

The main part of the system, controller of the presence agent, consists of about
twenty classes and interfaces. Each class has its state machine that specifies its
behavior. In state machines, different modeling structures were applied, including
history, entry/do/exit actions, transitions with guard conditions and triggers, parallel
execution with fork and join pseudostates, composite states with one and many
orthogonal regions, etc. Therefore, the comprehensive set of state machine notions has
been practically used.

The status service model has been treated as an input model for the MDSD process
combined with mutation testing following all its steps. All models have been trans-
formed into code, and apart from code of state machines, some operations have been
additionally implemented or mocked. The final project has been supplemented with the
semantic configuration.

In experiments, all semantic and semantic consequence-oriented mutation operators
have been applied, resulting in a set of corresponding mutants and their semantics.

The application has been tested at the code-level with a set of unit tests devoted to
verification of particular classes and functionality of modules of the status service. The
main tasks of the presence service have been tested, such as:

Fig. 6. General structure of the status service with a presence server.

Model-Driven Software Development Combined 221

– creation of a predefined service status,
– publication of a status to users subscribed in a contact list,
– subscribing to a contact list,
– deleting subscriptions of a presence status.

All the tasks have been realized by a sequence of elementary operations. Different
scenarios of handling various requests and diverse time constraints have been taken
into account. In result, we could observe and compare behavior for different semantic
variants, as primitive tests sometimes do not provide any differences in system
behavior. The tests have not revealed any errors of the original application, but this
application has been tested beforehand.

However, dealing with different semantic variant, we could verify our expectations
of system behavior. Even though, this required creating adequate test scenarios.
Consequently, considering semantic mutations encourages developers to build and
improve comprehensive test scenario, although, this activity demands still many
manual efforts.

7 Conclusion

A process that combines model-driven software development with mutation testing
aimed at semantic mutation of behavioral state machines has been presented and
realized in a tool support. To the best of authors’ knowledge, there is no any other tool
realizing semantic mutation for any kind of models. The appropriate architecture
enables this kind of mutation operators to introduce efficiently. We have shown details
of semantic mutation operators for state machines and their origin. The approach has
been verified experimentally on a status service case study.

There are still some process steps that are too laborious, as preparation of semantic
configuration, which could be facilitate by more comprehensive tool support. Another
challenge to be taken up is assistance in creation of tests to run with mutants. Fur-
thermore, the process support could be extended with other mutations, as structural
mutation of models, and code-mutation of C# programs.

222 A. Derezinska and Ł. Zaremba

Appendix

Configuration File with a Set of Semantics

<container>
<register type="IEventsPool" mapTo="PriorityEventQueue">
<constructor>
<param name="callEventPriority" value="1" />
<param name="changeEventPriority" value="2" />
<param name="signalPriority" value="3" />
<param name="afterEventPriority" value="4" />
<param name="completionEventPriority" value="5" />
</constructor>
</register>

<register type="IDefaultEntryRule"
mapTo="RequiredExactlyOneInitialPseudostate">

<constructor/>
</register>
<register type="IRegion" mapTo="Region">
<constructor>
<param name="defaultEntryRule" dependencyType="IDefaultEntryRule"/>
</constructor>

</register>
</container>
<container name="Mutant1">

<register type="IEventsPool" mapTo="EventQueue">
<constructor/>
</register>
<register name="PresenceAgent.utils.Status" type="IEventsPool"

mapTo="PriorityEventQueue">
<constructor>
<param name="callEventPriority" value="1" />
<param name="changeEventPriority" value="2" />
<param name="signalPriority" value="3" />
<param name="afterEventPriority" value="4" />
<param name="completionEventPriority" value="5" />
</constructor>
</register>

<register type="IDefaultEntryRule" mapTo="UseMostAppropiateState">
<constructor/>

</register>
<register type="IRegion" mapTo="Region">
<constructor>
<param name="defaultEntryRule" dependencyType="IDefaultEntryRule"/>
</constructor>

</register>
</container>

References

1. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/tse.2010.62

Model-Driven Software Development Combined 223

https://doi.org/10.1109/tse.2010.62

2. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Mutation testing
advances: an analysis and survey. Adv. Comput. 112, 275–378 (2019). https://doi.org/10.
1016/bs.adcom.2018.03.015

3. Liddle, S.W.: Model-Driven Software Development. In: Embley, D.W., Thalheim, B. (eds.)
Handbook of Conceptual Modeling, pp. 17–54. Springer, Heidelberg (2011)

4. Domınguez, E., Perez, B., Rubio, A.L., Zapata, M.A.: A systematic review of code
generation proposals from state machine specifications. Inf. Softw. Technol. 54(10), 1045–
1066 (2012). https://doi.org/10.1016/j.infsof.2012.04.008

5. Derezinska, A., Zaremba, Ł.: Mutating UML state machine behavior with semantic mutation
operators. In: Damiani, E., Spanoudakis, G., Maciaszek, L. (eds.) Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE, vol. 1, pp. 385–393. Scitepress, Setubal (2019). https://doi.org/10.5220/
0007735003850393

6. UML (Unified Modelling Language) (2017). http://www.omg.org/spec/UML
7. Clark, J.A., Dan, H., Hierons, R.M.: Semantic mutation testing. Sci. Comput. Program. 78

(4), 345–363 (2013). https://doi.org/10.1016/j.scico.2011.03.011
8. Harel, D.: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274

(1987)
9. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-based engineering in the

embedded systems domain: an industrial survey on the state-of-practice. Softw. Syst. Model.
17(1), 91–113 (2018). https://doi.org/10.1007/s10270-016-0523-3

10. Beeck, M.: A comparison of Statecharts variants. In: Langmaack, H., de Roever, W.-P.,
Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 128–148. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58468-4_163

11. Badreddin, O., Lethbridge, T.C., Forwared, A., Elaasar, M., Aljamaan, H., Garzon, M.A.:
Enhanced code generation from UML composite state machines. In: Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 235–245. SCITEPRESS - Science and Technology Publications,
Setubal (2014). https://doi.org/10.5220/0004699602350245

12. Chauvel, F., Jézéquel, J.-M.: Code generation from UML models with semantic variation
points. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 54–68.
Springer, Heidelberg (2005). https://doi.org/10.1007/11557432_5

13. Prout, A., Atlee, J.M., Day, N.A., Shaker, P.: Code generation for a family of executable
modelling notations. Softw. Syst. Model. 11(2), 251–272 (2012). https://doi.org/10.1007/
s10270-010-0176-6

14. Derezińska, A., Pilitowski, R.: Interpretation of history pseudostates in orthogonal states of
UML state machines. In: Feldman, Y.A., Kraft, D., Kuflik, T. (eds.) NGITS 2009. LNCS,
vol. 5831, pp. 26–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04941-5_5

15. Derezinska, A., Szczykulski, M.: Interpretation problems in code generation from UML state
machines - a comparative study. In: Kwater, T. (ed.) Computing in Science and Technology
2011: Monographs in Applied Informatics, Department of Applied Informatics Faculty of
Applied Informatics and Mathematics, Warsaw University of Life Sciences, pp. 36–50
(2012)

16. Batouta, Z.I., Dehbi, R., Talea, M., Hajoui, O.: Automation in code generation: tertiary and
systematic mapping review. In: 4th IEEE International Colloquium on Information Science
and Technology (CIST), pp. 200–205. IEEE (2017). https://doi.org/10.1109/cist.2016.
7805042

17. Sunitha, E.V., Samuel, P.: Object oriented method to implement the hierarchical and
concurrent states in UML state chart diagrams. In: Lee, R. (ed.) Software Engineering

224 A. Derezinska and Ł. Zaremba

https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/j.infsof.2012.04.008
https://doi.org/10.5220/0007735003850393
https://doi.org/10.5220/0007735003850393
http://www.omg.org/spec/UML
https://doi.org/10.1016/j.scico.2011.03.011
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1007/3-540-58468-4_163
https://doi.org/10.5220/0004699602350245
https://doi.org/10.1007/11557432_5
https://doi.org/10.1007/s10270-010-0176-6
https://doi.org/10.1007/s10270-010-0176-6
https://doi.org/10.1007/978-3-642-04941-5_5
https://doi.org/10.1007/978-3-642-04941-5_5
https://doi.org/10.1109/cist.2016.7805042
https://doi.org/10.1109/cist.2016.7805042

Research, Management and Applications. SCI, vol. 654, pp. 133–149. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33903-0_10

18. Samek, M.: Practical statecharts in C/C ++: quantum programming for embedded systems.
CMP Books (2002)

19. Wasowski, A.: Code generation and model driven development for constrained embedded
software. Ph.D. thesis, University of Copenhagen (2005)

20. Pilitowski, R., Dereziñska, A.: Code generation and execution framework for UML 2.0
classes and state machines. In: Sobh, T. (ed.) Innovations and Advanced Techniques in
Computer and Information Sciences and Engineering, pp. 421–427. Springer, Dordrecht
(2007). https://doi.org/10.1007/978-1-4020-6268-1_75

21. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling and simulation for automated
testing of soft real-time embedded software. Softw. Syst. Model. 14(1), 483–524 (2013).
https://doi.org/10.1007/s10270-013-0328-6

22. Burden, H., Heldal, R., Siljamaki, T.: Executable and translatable UML – how difficult can it
be? In: 18th Asia-Pacific Software Engineering Conference, pp. 5–8. IEEE Computer
Society, Washington (2011). https://doi.org/10.1109/apsec.2011.37

23. Hoefig, E.: Interpretation of behaviour models at runtime: performance benchmark and case
studies. Ph.D. thesis, Berlin Institute of Technology (2011). http://dx.doi.org/10.14279/
depositonce-2842. Accessed 08 Aug 2019

24. IBM RSA (Rational Software Architect). https://www.ibm.com/developerworks/downloads/
r/architect. Accessed 08 Aug 2019

25. fUML: Semantics of a Foundation Subset for Executable UML models (2018). http://www.
omg.org/spec/FUML/. 01 Dec 2018

26. IBM RRD (Rational Rhapsody Developer). https://www.ibm.com/developerworks/
downloads/r/rhapsodydeveloper/. Accessed 08 Aug 2019

27. FXU (Framework for eXecutable UML). http://galera.ii.pw.edu.pl/*adr/FXU/. Accessed 08
Aug 2019

28. Derezińska, A., Szustek, A.: Object-oriented testing capabilities and performance evaluation
of the c# mutation system. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.) CEE-SET 2009.
LNCS, vol. 7054, pp. 229–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28038-2_18

29. Derezińska, A., Trzpil, P.: Mutation testing process combined with test-driven development
in NET environment. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Theory and Engineering of Complex Systems and Dependability.
DepCoS-RELCOMEX 2015. Advances in Intelligent Systems and Computing, vol. 365,
pp. 131–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19216-1_13

30. Belli, F., Budnik, C.J., Hollmann, A., Tuglular, T., Wong, W.E.: Model-based mutation
testing - approach and case studies. Sci. Comput. Program. 120(1), 25–48 (2016). https://doi.
org/10.1016/j.scico.2016.01.003

31. Derezinska, A.: Object-oriented mutation to assess the quality of tests. In: Proceedings of the
29th Euromicro Conference, pp. 417–420 (2003). https://doi.org/10.1109/eurmic.2003.
1231626

32. Strug, J.: Applying mutation testing for assessing test suites quality at model level. In:
Proceedings of the 2016 Federated Conference on Computer Science and Information
Systems, FedCSIS, Annals of Computer Science and Information Systems, vol. 8, pp. 1593–
1596. IEEE (2016). https://doi.org/10.15439/2016f82

33. Fabbri, S.C.P.F., Delmaro, M.E., Maldonado, J.C., Masiero, P.C.: Mutation analysis testing
for finite state machines. In: Proceedings of the 5th IEEE International Symposium on
Software Reliability Engineering, pp. 220–229. IEEE Computer Society Press (1994).
https://doi.org/10.1109/issre.1994.341378

Model-Driven Software Development Combined 225

https://doi.org/10.1007/978-3-319-33903-0_10
https://doi.org/10.1007/978-1-4020-6268-1_75
https://doi.org/10.1007/s10270-013-0328-6
https://doi.org/10.1109/apsec.2011.37
http://dx.doi.org/10.14279/depositonce-2842
http://dx.doi.org/10.14279/depositonce-2842
https://www.ibm.com/developerworks/downloads/r/architect
https://www.ibm.com/developerworks/downloads/r/architect
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
https://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
https://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://galera.ii.pw.edu.pl/%7eadr/FXU/
https://doi.org/10.1007/978-3-642-28038-2_18
https://doi.org/10.1007/978-3-642-28038-2_18
https://doi.org/10.1007/978-3-319-19216-1_13
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1109/eurmic.2003.1231626
https://doi.org/10.1109/eurmic.2003.1231626
https://doi.org/10.15439/2016f82
https://doi.org/10.1109/issre.1994.341378

34. Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero, P.C.: Mutation testing applied to
validate specifications based on statecharts. In: Proceedings 10th International Symposium
on Software Reliability Engineering (Cat. No. PR00443), ISSRE 1999, pp. 210–219. IEEE
Computer Society (1999). https://doi.org/10.1109/issre.1999.809326

35. Trakhtenbrot, M.: New mutations for evaluation of specification and implementation levels
of adequacy in testing of Statecharts models. In: Proceedings of Testing: Academic and
Industrial Conference Practice and Research Techniques – MUTATION, TAICPART-
MUTATION 2007, pp. 151–160. IEEE (2007). https://doi.org/10.1109/taic.part.2007.23

36. Trakhtenbrot, M.: Implementation-oriented mutation testing of Statechart models. In: IEEE
International Conference on Software Testing Verification and Validation Workshops
(ICSTW), pp. 120–125. IEEE (2010). https://doi.org/10.1109/icstw.2010.55

37. Trakhtenbrot, M.: Mutation patterns for temporal requirements of reactive systems. In: IEEE
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 116–121. IEEE (2017). https://doi.org/10.1109/icstw.2017.27

38. Bartolini, C.: Software testing techniques revisited for OWL ontologies. In: Hammoudi, S.,
Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016. CCIS, vol. 692, pp. 132–
153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66302-9_7

39. Harel, D., et al.: STATEMATE: a working environment for the development of complex
reactive systems. IEEE Trans. Softw. Eng. 16(4), 403–414 (1990). https://doi.org/10.1109/
32.54292

40. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems (2018). http://www.omg.org/spec/MARTE/

41. Derezińska, A., Redosz, K.: Reuse of project code in model to code transformation, In:
Borzemski, L., et al. (eds.) Information Systems Architecture and Technology, Contempo-
rary Approaches to Design and Evolution of Information Systems, pp. 79–88. Oficyna
Wydawnicza Politechniki Wroclawskiej, Wroclaw (2014)

42. Derezinska, A., Zaremba, Ł.: Approaches to semantic mutation of behavioral state machines
in model-driven software development. In: Proceedings of the 2018 Federated Conference
on Computer Science and Information Systems, ACSIS, vol. 15, pp 863–866 (2018). https://
doi.org/10.15439/2018f313

43. Derezinska, A., Szczykulski, M.: Towards C# application development using UML state
machines: a case study. In: Sobh, T., Elleithy, K. (eds.) Emerging Trends in Computing,
Informatics, System Sciences, and Engineering. LNEE, vol. 151, pp. 793–803. Springer,
New York (2013). https://doi.org/10.1007/978-1-4614-3558-7_68

226 A. Derezinska and Ł. Zaremba

https://doi.org/10.1109/issre.1999.809326
https://doi.org/10.1109/taic.part.2007.23
https://doi.org/10.1109/icstw.2010.55
https://doi.org/10.1109/icstw.2017.27
https://doi.org/10.1007/978-3-319-66302-9_7
https://doi.org/10.1109/32.54292
https://doi.org/10.1109/32.54292
http://www.omg.org/spec/MARTE/
https://doi.org/10.15439/2018f313
https://doi.org/10.15439/2018f313
https://doi.org/10.1007/978-1-4614-3558-7_68

Model-Driven Automatic Question
Generation for a Gamified Clinical

Guideline Training System

Job N. Nyameino1,4(B), Ben-Richard Ebbesvik1, Fazle Rabbi1,2,
Martin C. Were3,4, and Yngve Lamo2

1 University of Bergen, Bergen, Norway
jbngena@gmail.com

2 Western Norway University of Applied Sciences, Bergen, Norway
3 Vanderbilt University Medical Center, Nashville, TN, USA

4 Institute of Biomedical Informatics, Moi University, Eldoret, Kenya

Abstract. Clinical practice guidelines (CPGs) are a cornerstone of mod-
ern medical practice since they summarize the vast medical literature and
provide care recommendations based on the current best evidence. How-
ever, there are barriers to CPG utilization such as lack of awareness and
lack of familiarity of the CPGs by clinicians due to ineffective CPG dis-
semination and implementation. This calls for research into effective and
scalable CPG dissemination strategies that will improve CPG aware-
ness and familiarity. We describe a model-driven approach to design
and develop a gamified e-learning system for clinical guidelines where
the training questions are generated automatically. We also present the
prototype developed using this approach. We use models for different
aspects of the system, an entity model for the clinical domain, a work-
flow model for the clinical processes and a game engine to generate and
manage the training sessions. We employ gamification to increase user
motivation and engagement in the training of guideline content. We con-
ducted a limited formative evaluation of the prototype system and the
users agreed that the system would be a useful addition to their train-
ing. Our proposed approach is flexible and adaptive as it allows for easy
updates of the guidelines, integration with different device interfaces and
representation of any guideline.

Keywords: Clinical practice guidelines · Model driven engineering
gamification

1 Introduction

The rate at which medical knowledge is produced is accelerating and it is esti-
mated that in 2020, the doubling rate of medical knowledge will be 73 days down
from 7 years in 1980 [9]. At this rate it is virtually impossible for clinicians to

Supported by the HITRAIN project (Norad: Project QZA-0484).

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 227–245, 2020.
https://doi.org/10.1007/978-3-030-40223-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_11

228 J. N. Nyameino et al.

keep up with new knowledge [14]. Clinical practice guidelines (CPGs) provide
a promising solution to this problem. CPGs are systematically developed state-
ments that assist practitioners and patients to make decisions about appropriate
health care for specific circumstances [21]. They are a comprehensive summary
of the available evidence about medical conditions and provide recommendations
for the management of those conditions [15]. A well-developed guideline reduces
variations in care, improves diagnostic accuracy, promotes effective therapy and
discourages ineffective therapies all which contribute to improved quality of care
[37]. The mere availability of guidelines does not necessarily mean that the rec-
ommendations will be used in actual care. Indeed, there has been a reported gap
between recommended care according to the evidence base and actual practice
leading to preventable errors in practice [2,12]. This gap can be attributed to
several barriers to guideline dissemination and implementation which include:
internal barriers (lack of awareness, lack of familiarity, lack of agreement with
the guideline content, and the inability to overcome the inertia of previous prac-
tice) and external barriers (i.e., patient, environmental, and guideline related
factors such as ease of use and complexity of the guideline) [7].

The nature of guideline development means that published guidelines are
well-researched, comprehensive documents that can be prohibitively volumi-
nous. For example, the National Heart, Lung, and Blood Institute (NHLBI)
2007 Guidelines for the Diagnosis and Management of Asthma full report is
440 pages long [24] while the National Institute for Health and Care Excel-
lence (NICE) guidelines for the diagnosis monitoring and management of chronic
asthma (2017) report is 39 pages long [25]. Such large texts are impractical for
use at the point of care. Additionally, poor guideline presentation has been iden-
tified as a factor in the lack of physician familiarity as some of the guidelines
have been described as being tedious, repetitive, confusing, and unclear [6].

To mitigate some of the barriers to knowledge acquisition of guideline con-
tent, new dissemination strategies aimed at improving awareness and familiarity
of guideline content are required. Active guideline dissemination strategies have
been found to be more effective than passive strategies at improving the applica-
tion of evidence based recommendations in patient care [16]. In particular, educa-
tional interventions (e.g. distribution of printed guidelines, educational meetings
and outreaches) strengthen the effect of clinical educational material. Further,
the more intensely the information is provided through these interventions, the
greater its effect on the recipients [23]. Research into active strategies for clinical
guideline dissemination are timely and relevant as they will potentially help to
plug the gap between recommended and actual clinical practice.

One potentially useful active educational intervention is in the distribution
of gamified guidelines. Gamification is the use of game design elements in non-
game contexts [10,11]. It uses game based mechanics, aesthetics and thinking to
engage people, motivate action, promote learning and solve problems [18]. The
concept of Gamification is relatively new and has been used to describe the use of
game-based concepts and techniques, with the goal of increasing the motivation
and engagement of the participants and improving the results.

Model-Driven Automatic Question Generation 229

The implementation of guideline summaries as interactive, gamified
flowcharts on a mobile platform will potentially mitigate the problems of guide-
line complexity and presentation that plague the effective dissemination of guide-
line content. In this paper we present a formal model driven approach to gamifi-
cation of clinical practical guidelines. To illustrate the approach, we present three
models, an entity model of the clinical encounter domain, a workflow model for
the clinical processes and a game model all of which will be integrated to create
our gamified system. We then describe a prototype mobile-based guideline app
that incorporates these models to present a gamified interactive guideline train-
ing tool. Finally we conduct a limited formative evaluation of the prototype to
get user feedback that will inform future improvements of the system. This paper
extends the work presented in an earlier paper by Nyameino et al. [26]. In this
extended version we elaborate on MDE concepts being used in the development
of domain models for gamification, we present an evaluation of our approach and
a discussion on its implications. Finally we present a revised related work section
where we compare our work with existing automated elearning and gamification
approaches. The results indicate the potential of our approach in developing
e-learning tools with MDE techniques.

2 Method

2.1 Diagram Predicate Framework (DPF)

In this work we use a formal diagrammatic approach to model driven software
engineering (MDE), called Diagram Predicate Framework (DPF) [35]. DPF for-
malizes software development activities such as metamodelling [35] and model
transformations [36]. It is based on category theory [3] and graph transformations
[22]. We can use DPF to formalize clinical guidelines in the form of diagram-
matic specifications of clinical domain models at different abstraction levels. The
diagrammatic nature of DPF also facilitates visual representations of guidelines
that can be presented at different level of abstraction. A model in DPF is rep-
resented by a diagrammatic specification S = (S, CS : Σ) which consists of a
graph S and a set of constraints CS specified by a predicate signature Σ.

The predicate signature is composed of a collection of predicates, each having
a name and an arity (shape graph). A constraint consists of a predicate from
the signature together with a binding to the subgraph of the model’s In order
to apply DPF for the modeling of a gamified training system that operates over
clinical practice guidelines we need to formalize the concepts of a guideline using
DPF and also model the gamification concepts with DPF.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) is a system development paradigm that pro-
motes the use of models as the primary artefacts that drives the whole develop-
ment process. In MDE models are specified using a modelling language whose

230 J. N. Nyameino et al.

syntax and semantics are defined by a metamodel [38]. This allows for the
development of domain-specific modelling languages (DSLs) using notations and
abstractions that are unique to a given domain. The use of DSLs allows for the
development of more expressive models and ease of use by domain experts. A
metamodel architecture introduces a generic pattern of metamodeling hierarchy
in which models at each level are specified by a modeling language at the level
above and conform to the corresponding metamodel of the language. Figure 1
illustrates a metamodeling hierarchy where a model Mi at a certain level i con-
forms to a metamodel Mi+1 at the level above until a model Mj has itself as
metamodel, called a reflexive model.

Model0

Model1

Model2

Modelj

conforms to

conforms to

conforms to

Modelling
language

corresp.
metamodel of

specified by

Modelling
language

corresp.
metamodel of

specified by

Modelling
language

corresp.
metamodel of

specified by

conforms tospecified by

M

M

M

M

Fig. 1. Generic pattern: modeling languages and metamodels [34].

According to the traditional metamodeling architecture, proposed by OMG,
a metamodeling architecture is organized in 4 meta-levels M0 − M3, known
as the Object Management Group (OMG) 4-layered hierarchy [5]. A possible
interpretation of the hierarchy is summarized as follows:

– The bottom layer M0 is called the user object layer and it contains the data
of the application (e.g. the instances populating an object- oriented system
at run-time).

– The M1 layer contains models (e.g. a UML class diagram of a software sys-
tem).

– The M2 layer contains metamodels that captures the language (e.g. UML
class diagrams or statechart diagrams).

– The M3 layer is the meta-meta layer that contains the meta-metamodel MOF.
This layer describes the properties of all metamodels.

In the next few paragraphs we are going to describe the different models we
propose to use. First an entity model for the clinical encounter domain, a work-
flow model, a game model and an integrated multi-metamodel that incorporates
the entity and CPG workflow models.

Model-Driven Automatic Question Generation 231

Entity Model. In Fig. 2 we present an entity model from the clinical domain.
The model contains the main entities in the clinical domain, their attributes and
the relationships between them. This is illustrated in Fig. 2 where we have entities
such as Patient with the attributes name, age and weight and corresponding
relationships with other entities such as Patient undergoes Investigation and
receives Treatment.

Fig. 2. A simplified entity model of the clinical encounter domain.

Workflow Model. Clinical practice guidelines are often summarized in algo-
rithmic workflows showing the flow of management. Workflow models may be
used to represent the flow and corresponding branching conditions of a clinical
guideline In Fig. 3 we present an example metamodel (M2) for behavioural mod-
els which specifies that instances of Task can be connected by Flow edges. On the
next abstraction level (M1) we see a generic treatment model that is typed by the
elements from metamodel M2. The treatment model has three tasks Assessment
and Diagnosis, Treatment and Evaluation. Finally, at (M0) we see an instance
of the treatment workflow of a severe asthma diagnosis.

Game Model. Games are goal-oriented activities with reward and progress
tracking mechanisms. These core gamification concepts should be under consid-
eration in the design of gamified e-learning systems. In our system, a game engine
will automatically generate questions from the entity and workflow models to
instantiate a training module. The questions are categorized according to the
learner’s skill level (beginner, intermediate, advanced) and each question has a
reward in the form of points. A game model should also specify a learner profile
that tracks the learner’s activities.

232 J. N. Nyameino et al.

Fig. 3. The workflow model with its metamodel [26].

Gamification Elements. The core concepts of games that should inform the
design of gamified e-learning systems are goal oriented activities with reward
mechanisms and progress tracking [39]. In the training of guideline content, the
main goal is for the trainees to learn how to treat different aspects of a disease
as described in the guideline. The reward mechanisms and progress tracking aid
in increasing the users engagement and motivation [4]. We describe the game
elements below.

– Category: a guideline is developed for a specific medical condition. The
quiz category will be the medical condition for which a guideline has been
developed.

– Level: This is the difficulty level of the question.
– Passing Condition: This is the minimum number of points a student needs

to score to successfully complete a specific difficulty level and be allowed to
move to the next level.

– Entity Instance: a pointer to an instance of an entity graph. It is used
together with a template to generate text.

– Question: a pointer to a template model. By using a template model, we
can reuse templates on many entity instances.

– Alternative: or distraction. It is one of the answer alternatives for a question.
– Reward: a reward or penalty is given based on the correctness of the choice

chosen by the student. A correct choice is rewarded while a wrong choice is
penalised.

Model-Driven Automatic Question Generation 233

Model Integration. Separation of concern is a potential way to reduce the
complexity of software systems. To raise the level of abstraction of complex soft-
ware systems, we may require to model various aspects of a system in different
models. However, to understand the functionality of the system as a whole we
need to study the integrated system. One of the major problem of integrating
complex information system is the heterogeneity of its subsystems. Requirements
for integrating heterogeneous distributed systems are increasing with the rapid
technological advancements. The study of integrating heterogeneous system is a
complex process consisting of information, expert knowledge management, deci-
sion making support. In this paper we study model integration for constructing
e-learning modules. The training model is built by the integration of the entity
and workflow models based on the principles introduced by Rabbi et al. [27]. The
states of the training module TM are defined by a set of elements that include
a pair of workflow instance WI and an entity instance EI: TMi = <EIi,WIi>
where i is a natural number. This integration of models is shown in Fig. 4 and
the concept is discussed in more details in Subsect. 2.3. In Fig. 4, we show a
section of the entity model with values from a given scenario where based on the
History & Examination findings, a Diagnosis of Severe Asthma is made and its
Treatment specified The flow of how this process should happen is shown in the
workflow model.

:Treatment

Oxygen: TreatmentName

Salbutamol: TreatmentName

Prednisolone: TreatmentNametre
at
m
en
tN
am

e

4 years: Age

16 Kg: Weight

:Patient

:h
as
Ag

e
:h
as
W
ei
gh
t

:History&Examination

Cough: Finding

Wheeze: Finding

Cyanosis: Finding

:h
as
Fi
nd
in
g

:Diagnosis

Asthma: DiagnosisName

Severe: Severity

:h
as
Se
ve
ri
ty

:d
ia
gn
os
is
Na

m
e

:receives

:hasTreatment

:hasDiagnosis
:conductedOn

A 4yr old boy weighting
16 kg presents with a

history of cough, wheeze
and on examination he is

found to have central
Cyanosis

Diagnosis: Severe
ashma

Treatment with oxygen,
Salbutamol and

prednisolone

Reassess after 20
minutes and treat

according to new findings

Workflow Model, WI
Entity Model, EIMale: Gender

:h
as
G
en
de
r

Fig. 4. Integrated entity and workflow models [26].

234 J. N. Nyameino et al.

2.3 Training Modules

Rabbi et al. presented an approach where different aspects of a system were
coordinated by means of multiple metamodels [27,28]. The approach is based on
the foundation of DPF.

In the multi-metamodeling approach, a workflow model is integrated with
an entity model by means of metamodel coordination. A workflow metamodel
is used to design the flow of a system and an entity metamodel used to design
the entities and relationship of a domain. A workflow model can be used to
represent an abstraction of a CPG but we need to incorporate the detailed
domain knowledge in our modelling. In this paper we exploit the use of the
multi-metamodeling approach to represent the domain knowledge of a clinical
guideline and the clinical process and apply them to execute a training session.
The idea of using the workflow model is to control the flow of the game such
that the user is interacting with the right gaming element at the right time.

In this subsection we describe a training module which consist of one or
more workflow models and one or more entity models. The states of the training
module TM are defined by a set of elements that include a pair of guideline work-
flow instance and an entity model instance that represents the entities within
a domain and relationships between them. Figure 5 illustrates an example of
two states TM1 and TM2 of a training module. The state TM1 consists of a
set of elements that include a pair of workflow instances and entity instances:
{<WI0, EI0>,<WI1, EI1>, .. < WIn, EIn} where WI1,WI2, ..WIn are work-
flow instances and EI0, EI1, ..EIn are DPF entity instances. Figure 6 shows a
training session flow which consists of a sequence of states of training module
i.e., TrainingFlow1 := <TM1, TM2,TMk>. In Fig. 6 the game engine instan-
tiates a training session by generating questions based on the entity model and
the workflow model. For example, it could initially generate a scenario based
on the patient details and history and examination findings and ask what the
diagnosis is. If answered correctly, it will move on to the next task and ask about
the treatment. A training session is composed of a sequence of training modules
and is evolved from the initial state of a training flow and progresses based on
the answer provided by the user.

Fig. 5. States of training module [26].

Model-Driven Automatic Question Generation 235

Fig. 6. Progression of the states of training module.

In our approach a training session is evolved from the initial state of a training
flow and progresses based on the answer provided by the user. Figure 6 illustrates
the idea of the progression of the states of training session. Depending on the
answer given by the user, a game engine consults with the training flow and
evolves the state of the training session. We use two DPF predicates <Enabled>,
<Disabled> to represent the current status of the training modules. A training
module TM0 when annotated with the <Enabled> predicate indicates that the
training module is currently active and is being considered for training.

2.4 Formative Evaluation

Formative evaluations involve evaluating a product or service during develop-
ment, often iteratively, with the goal of detecting and eliminating usability
problems [31].

An evaluation of the application was done with two cadres of clinicians. We
recruited two medical doctors and two specialist nurses through purposive sam-
pling to participate in our evaluation. Both of the specialist nurses are employees
at the polyclinic for pulmonary diseases at a university hospital in Western Nor-
way. One of the nurses is a specialist in sleep apnea whose masters thesis was
on developing clinical guidelines for sleep apnea. The other nurse is a specialist
in asthma, but in adult medicine. The two doctors are general practitioners and
researchers.

The evaluation methods were a combination of a cognitive walkthrough and
a usability test with follow-up questions. Specifically, the nurses were asked to
play the most difficult level of the game and to speak out loud on what they were

236 J. N. Nyameino et al.

thinking when playing the game and manoeuvring in the application. The two
medical doctors were requested to play the entire game, from the easiest level
and to completing the most difficult one. By playing all the levels, the doctors
would to far greater extent evaluate the learning model.

Discussion points would arise as the clinicians thought out loud. One of
the researchers would observe and take notes when problems and confusions
occurred, or when the clinician expressed emotions such as joy, excitement or
disappointment. After the clinicians had played through the game, the researcher
would go through a check-list of topics to discuss. The discussions would be in a
semi-structured format, where the check-list worked as a guide. The discussion
with the two nurses was done individually, while the discussion with the two
doctors was done in a small focus group.

3 Results

3.1 System Architecture

We propose to use a generic architecture based on the idea of multilevel-
metamodeling and their coordination. Figure 7 shows an overview of the system.
The ‘Game Engine’ controls the training flow, maintains the status of the trainee,
produces dialogues and controls the order of the questions The user should be
able to interact with the game engine via the presentation layer. We describe
the different components of the architecture shown in Fig. 7 below.

Fig. 7. Overview of the proposed system architecture.

Presentation Layer: The presentation layer is what the user sees and interacts
with when using the application. React Native [30] is a JavaScript framework,

Model-Driven Automatic Question Generation 237

used to build cross platform mobile applications for Android, iPhone and UWP.
It is based on React [29], where it uses React components to build user interfaces
for mobile applications.

For managing the state of the application, we use another JavaScript frame-
work, Redux [32]. It is sort of a repository of functions and variables. When the
student clicks on a button in the application, it will trigger a function in the
Redux repository. The function can send a request to the Game Engine or do
some calculations on its own. Then update a variable in the repository which is
connected to a variable in the React Component, and the result is shown on the
student’s phone.

As the Redux repository is synchronous, we need the framework Redux-
Thunk [33] to make asynchronous calls. A student’s scores for a quiz is stored
in the database on the student’s phone. The game engine uses the scores to find
questions at the right difficulty level for the student. As database calls are asyn-
chronous, we need Redux-Thunk to make functions which can do asynchronous
communication between Redux and the database.

Fig. 8. Flow of the mobile application [26].

The presentation layer can be implemented in different interfaces such as in
a mobile application as in this case or virtual assistants such as Google assistant
as in Fig. 9.

HighCharts [17] is a JavaScript framework used for making interactive charts.
We use it to visualize how well the user performed, and how far he is from
advancing to more difficult questions.

Question Flow Manager: The question flow manager selects the questions to be
asked depending on the level of difficulty of a training session. It maintains the
order of questions to be shown to the user. For example, user-A has skill level 1
and chose to go through the beginning session. While randomly selecting ques-
tions that falls under the difficulty of ‘Beginner’, it also looks into the questions

238 J. N. Nyameino et al.

that has been used before for user-A. It puts more emphasize on the questions
that the user has been struggling with.

Conversation Manager: The conversation manager keeps track of the conver-
sation and manages the context of the conversation. For example, if there are
three questions to be asked that is related to a child who is 2 years old, then
the conversation manager produces a context for three questions and starts the
conversation saying “A 2 year old child comes to the emergency department with
<some condition>, answer to the following questions:”. Afterwards it asks the
first question, followed by the 2nd and 3rd questions.

User Management: The user management module keeps track of the trainees
skill, progress and effort. The user management module is also used to produce
visualization showing the performance of a population. If a group of trainee is
particularly struggling with a set of questions or question category then the
user management module will produce a report and the trainer will be able to
monitor it.

3.2 Prototype

Implementation of the Mobile Application. The application is developed
using React-Native and JavaScript. React-Native is based on the React frame-
work, and is used to build mobile applications for Android and iPhone. The
motivation for using such a framework is reuse of code when supporting both
mobile platforms as well as the web.

The game consists of a collection of quizzes, where each quiz contains sev-
eral questions. These questions are based around a scenario, where the student
is presented with answer alternatives. Picking an answer alternative gives the
student points for how close he was to the right action. The student is presented
with the answer key, an explanation, as well as pointers to the evidence and the
relevant guideline for further study.

The quiz conclude with a summary, giving feedback and statistics on students
performance. The quiz should have a passing condition to unlock quizzes at a
higher difficulty level. This is illustrated in Fig. 8.

Question Generation. To generate questions, the game engine first reads
instances of the entity models using a model parser. We then link the parsed
model instances with pre-written scenario questions in the form of narrative
templates where we use tags to refer to variables in the entity model. The tag
refers to a path in the entity graph. The application will traverse through the
graph and return the value of the given vertex.

THe game engine then populates the tags with values from the entity model
instances thereby creating the question as illustrated below. The correct answer
is inferred from the corresponding entity model instance.

Model-Driven Automatic Question Generation 239

<%Ben.name%> arrives at the emergency
department.
He <%Ben.hasConsciousness.value.name%>.

translates to

Ben arrives at the emergency
department.
He is not alert and not verbal,
but responds to pain.

Alternate User Interfaces. As described earlier, the modular architecture
allows for the implementation of different user interfaces in the presentation
layer of the architecture (see Fig. 7). This allows flexibility to accommodate
the various learning styles of trainees. For example, in Fig. 9 we see a sample
conversation from the asthma guideline training using Google assistant. We use
the google account for registering the participant to our system and we plan to
use OAuth 2.0 protocol for authenticating the user from the mobile application
to the participants Google account. It will allow the user to switch from one
device to another. While the participant is using the mobile application they get
more feature such as browsing the guideline.

Hello, welcome to the asthma guideline training program.
In order to con nue, I need your permission to know your
name from google. Is that ok?

Ok

Welcome <<username>>. While the training is going on
you can always choose to go to the main menu or quit.
Please choose from the following op ons: See Progress;
Start Training; Quit.
What do you wish to do?

I would like to start training

I will ask 5 ques ons from the diagnosis and assessment
category. The ques ons have difficulty level ‘Easy’. Lets
start the training. A 2 year old boy comes to the
emergency department with a history of cough and
wheeze. Answer to the following ques ons.
First ques on, Central cyanosis would mean a diagnosis
of severe asthma. True or False

True

Correct answer! Second ques on…..

Fig. 9. Sample flow of conversation from the asthma guideline training [26].

240 J. N. Nyameino et al.

3.3 Formative Evaluation Results

As part of the usability evaluation and cognitive walkthroughs, we asked the
respondents follow-up questions after they used. We present the responses below.

1. Can the application be a useful learning tool for medical students, nurses and
doctors?

– Nurse1: Very useful indeed. It would be nice to take a test after a lecture
about asthma or after having read about asthma to see how much I have
learnt and remember. A quiz is far more fun than a check list in paper
format. The application is also good for scalability, as you can train a lot
of clinicians without adding any resources. Also great if a course leader
can see the progress or the level of his students.

– Nurse2: Absolutely useful, and I feel I have learnt a lot by just doing
this quiz. The nurse found the game to be very engaging, cheering when
getting a correct answer.

– Doctors: For medical doctors, the quiz will be too basic. For nurses it
might be good. For medical students it will be very good, as it fits with
how the students works and how they will be tested for exams.

2. How is the flow of the questions? Is the idea of scenarios where we go from
assessment, diagnosis, management and follow-up a good approach?

– Nurse1: Happy with the flow and the use of scenarios.
– Nurse2: Very happy with the flow, being able to follow the patient from

the start to the end of the treatment.
– Doctors: The categories weren’t very clear. The questions are floating

into each other. One suggestion is to have oxygen and antibiotic adminis-
tration as own categories. Then you can measure how well they perform in
these categories and ask them to repeat the basics if they perform poorly.

3. Is the detail level the element to adjust for the difficulties of questions?
– Nurse1: Yes, but would like to have an even harder level with more

details.
– Nurse2: Yes, it seems like a right approach. The target group of users is

relevant here, that this is meant for the emergency clinic.
– Doctors: Yes, but the detail level of the questions need to be much harder.

One example of going to higher detail level could be “what oxygen admin-
istration device would you initially use to a neonate?” to “administering
oxygen using nasal prong to a neonate doesn’t work. What do you do?”.
In Norway, the patients will visit the hospital with a lot more variation of
illnesses and with a higher frequency of less severe diagnoses. Then differ-
ential diagnoses gets more important and to represent a lot more clinical
conditions as quizzes. The clinicians also work a bit different in Norway.
If a patient comes into the hospital with symptoms of severe asthma, they
will usually just treat and stabilize the really alarming symptoms and not
go through a whole list of treatments.

Model-Driven Automatic Question Generation 241

4. How are the answer key explanations?
– Nurse2: I like how the measurements corresponds and are calculated with

the scenario and the patient they are presented with. The answer key
explanations gives relevant answers to the questions asked.

– Doctors: The answer key explanations are good. We like that we get an
explanation when we answer correctly. We preferred to try until getting
the answer correctly rather than clicking “learn more” and proceed to next
question. It could be nice to get an explanation why the answer was wrong,
but we are rather impatient, we want to proceed and find the correct answer
quickly.

4 Discussion

We have presented a model-driven approach to the design and development of a
gamified system for clinical guideline training. We have also conducted a limited
formative evaluation to get user feedback on the prototype. Our modular app-
roach provides several advantages. First, it makes it easier to separate concerns
and thus updating guidelines requires changes to parts of the entity and work-
flow models change while the rest of the system remains unchanged. Second, the
separation of the game engine from the presentation layer allows for integration
with various devices supporting different means of user-interaction.

The user evaluation provided valuable feedback on the system. Overall, the
respondents thought that the application was useful to clinical workers especially
nurses and medical students as a complement to traditional learning methods.
From the respondents, the training tool as it is now generate relatively basic
questions and may not be very useful to experienced doctors. Both cadres of
respondents (nurses and doctors) agreed that more difficult levels may need to
be incorporated into the system to make it more useful.

There are a number of limitations to the gamified elearning system we
describe in this work. First, full training of some guideline content requires the
learning of some physical skills - such as performing cardiopulmonary resusci-
tation (CPR). This is a limitation as our system can only train on guideline
content that does not require hands on training. Secondly, our system cannot
automatically generate the wrong choices (distractors) for the questions and we
are currently working on distraction generation strategies to make the system
complete.

In the near future, we plan to enhance our conduct a more comprehensive
evaluation of the quality of the questions generated by our system. We will
also evaluate the acceptability and effectiveness of the proposed technique as a
dissemination strategy for clinical guidelines within resource-limited settings.

5 Related Work

Leo et al. presented an ontology based automatic multiple-choice question
(MCQ) generation system that exploits classes and existential restrictions to

242 J. N. Nyameino et al.

generate case-based questions [20]. Their aim is to develop questions with com-
plex stems that are suitable for scenarios beyond mere knowledge recall. Their
system used question templates to generate four types of questions i.e. What is
the most likely diagnosis?, What is the drug of choice?, What is the most likely
clinical finding? and What is the differential diagnosis?. Our narrative templates
are more varied and can generate a wider variety of questions.

Farkash et al. presented a model-driven approach to formalize clinical guide-
lines using natural rule language (NRL) [13]. They specified the constraints of a
CPG with an English-like rule language to reduce the gap of the representation
and processing of guidelines. The authors presented a set of software components
that support the representation, interpretation of CPGs using NRL and that can
also be applied directly to a patient’s EHR data for analysis. Their approach is
supported by a proof-of-concept implementation for a simple essential hyperten-
sion guideline directive. Our approach is different with their approach as we use
a graph based modeling technique and the main contribution of our approach is
to support the training of a guideline by means of gamification.

Kristensen et al. presented a conceptual model for e-learning where the
learning materials are divided into atomic units and organized in several graph
based models such as ‘Knowledge map’, ‘Learning map’ and ‘Student map’ [19].
These conceptual models provide structure for representing an e-learning envi-
ronment and an easy-to-use navigation interface for existing learning materials.
We adopted concepts from this paper for representing CPGs and game elements
by means of Diagram Predicate Framework and multi-metamodelling approach.

In Portugal Del Cura-Gonzalez et al. conducted a study to assess the effec-
tiveness of a teaching strategy for the implementation of clinical guidelines using
educational games [8]. They presented the findings for the use of an e-learning
game EDUCAGUIA to improve knowledge and skills related to clinical decision-
making by residents in family medicine. The system consisted of educational
games with hypothetical clinical scenarios in a virtual environment. To evalu-
ate the effectiveness of teaching strategies through e-learning, they proposed an
average score comparison of hypothetical scenario questionnaires between the
EDUCAGUIA intervention group and the control group. Such evaluation is very
important and it reflects the usefulness of utilizing games in teaching guide-
lines. We plan to conduct similar evaluation of our gamification approach with
healthcare professionals in future [8].

Aouadi et al. used Technology-Enhanced Learning standards to develop seri-
ous games which can be used in technological, professional or academic fields for
learning. Their goal was to develop a scenario-building approach, built upon a
model driven architecture [1]. Their system includes a health course with demon-
strative videos and evaluation quizzes with each course having a passing con-
dition. The game is also demonstrated as a 3D game in a context of medical
training. In their approach, they used a platform independent model for the
development of game components which was transformed into a platform spe-
cific model by means of ATL transformation. While their approach is very close
to our proposed method, they lack modularization and separation of concerns.

Model-Driven Automatic Question Generation 243

In our approach we not only apply multilevel metamodelling but also the integra-
tion of different modeling hierarchies which allows us to conveniently articulate
various aspects of an e-learning system.

6 Conclusion

In this work, we have presented a model-driven approach to the design and
development of a gamified system for clinical guideline training. We also present a
prototype mobile gamified e-learning system that utilized our design approach in
its development. Finally we present the findings of a limited formative evaluation
of the prototype system which received a good response from the users as being
useful and scalable. We plan to incorporate the user feedback to improve the
system and subject it to further more comprehensive evaluations.

References

1. Aouadi, N., Pernelle, P., Amar, C.B., Carron, T., Talbot, S.: Models and mech-
anisms for implementing playful scenarios. In: 2016 IEEE/ACS 13th Interna-
tional Conference of Computer Systems and Applications (AICCSA), pp. 1–8.
IEEE, November 2016. https://doi.org/10.1109/AICCSA.2016.7945774. http://
ieeexplore.ieee.org/document/7945774/

2. Baker, A.: Crossing the quality chasm: a new health system for the 21st century.
BMJ: Br. Med. J. 323(7322), 1192 (2001)

3. Barr, M., Wells, C.: Category Theory for Computing Science, vol. 49. Prentice
Hall, New York (1990)

4. Bernik, A., Bubaš, G., Radošević, D.: Measurement of the effects of e-learning
courses gamification on motivation and satisfaction of students. In: 41th Interna-
tional Convention-Mipro (2018)

5. Bezivin, J., Gerbe, O.: Towards a precise definition of the OMG/MDA framework.
In: Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pp. 273–280, November 2001. https://doi.org/10.1109/
ASE.2001.989813

6. Cabana, M.D., Ebel, B.E., Cooper-Patrick, L., Powe, N.R., Rubin, H.R., Rand,
C.S.: Barriers pediatricians face when using asthma practice guidelines. Arch. Pedi-
atr. Adolesc. Med. 154(7), 685–693 (2000). https://doi.org/10.1001/archpedi.154.
7.685

7. Cabana, M.D., et al.: Why don’t physicians follow clinical practice guidelines?: A
framework for improvement. JAMA 282(15), 1458–1465 (1999)

8. Del Cura-González, I., et al.: Effectiveness of a strategy that uses educational
games to implement clinical practice guidelines among Spanish residents of family
and community medicine (e-EDUCAGUIA project): a clinical trial by clusters.
Implement. Sci. 11, 71 (2016). https://doi.org/10.1186/s13012-016-0425-3

9. Densen, P.: Challenges and opportunities facing medical education. Trans. Am.
Clin. Climatol. Assoc. 122, 48 (2011)

10. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to
gamefulness: defining gamification. In: Proceedings of the 15th International Aca-
demic MindTrek Conference: Envisioning Future Media Environments, pp. 9–15.
ACM (2011)

https://doi.org/10.1109/AICCSA.2016.7945774
http://ieeexplore.ieee.org/document/7945774/
http://ieeexplore.ieee.org/document/7945774/
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1001/archpedi.154.7.685
https://doi.org/10.1001/archpedi.154.7.685
https://doi.org/10.1186/s13012-016-0425-3

244 J. N. Nyameino et al.

11. Deterding, S., Sicart, M., Nacke, L., O’Hara, K., Dixon, D.: Gamification using
game-design elements in non-gaming contexts. In: CHI 2011 Extended Abstracts
on Human Factors in Computing Systems, pp. 2425–2428. ACM (2011)

12. Donaldson, M.S., Corrigan, J.M., Kohn, L.T., et al.: To Err is Human: Building a
Safer Health System, vol. 6. National Academies Press, Washington (2000)

13. Farkash, A., Timm, J.T.E., Waks, Z.: A model-driven approach to clinical practice
guidelines representation and evaluation using standards. Stud. Health Technol.
Inform. 192, 200–204 (2013). http://europepmc.org/abstract/MED/23920544

14. Fervers, B., Carretier, J., Bataillard, A.: Clinical practice guidelines. J. Visceral
Surg. 147(6), e341–e349 (2010)

15. Goud, R., et al.: Effect of guideline based computerised decision support on decision
making of multidisciplinary teams: cluster randomised trial in cardiac rehabilita-
tion. BMJ 338, b1440 (2009)

16. Grimshaw, J.M., et al.: Disseminating and Implementing Guidelines. Proc. Am.
Thorac. Soc. 9(5), 298–303 (2012). https://doi.org/10.1513/pats.201208-066ST.
https://www.atsjournals.org/doi/full/10.1513/pats.201208-066ST

17. Highsoft: Interactive JavaScript charts for your webpage—Highcharts. https://
www.highcharts.com/

18. Kapp, K.M.: The Gamification of Learning and Instruction: Game-Based Methods
and Strategies for Training and Education. Wiley, Hoboken (2012)

19. Kristensen, T., Lamo, Y., Hinna, K.R.C., Hole, G.O.: Dynamic content manager
– a new conceptual model for e-learning. In: Liu, W., Luo, X., Wang, F.L., Lei,
J. (eds.) WISM 2009. LNCS, vol. 5854, pp. 499–507. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05250-7 52

20. Leo, J., et al.: Ontology-based generation of medical, multi-term MCQs. Int. J.
Artif. Intell. Educ. (2019). https://doi.org/10.1007/s40593-018-00172-w

21. Lohr, K.N., Field, M.J., et al.: Guidelines for Clinical Practice: From Development
to Use. National Academies Press, Washington (1992)

22. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci. 109(1–2), 181–224 (1993)

23. Marriott, S., Palmer, C., Lelliott, P.: Disseminating healthcare information: getting
the message across. BMJ Qual. Saf. 9(1), 58–62 (2000)

24. NHLBI: Expert panel report 3: guidelines for the diagnosis and management of
asthma. No. 97, DIANE Publishing (2007)

25. NICE: Asthma: diagnosis, monitoring and chronic asthma management. Nice
Guideline 80 (2017)

26. Nyameino, J.N., Rabbi, F., Ebbesvik, B., Were, M.C., Lamo, Y.: A model driven
approach to the development of gamified interactive clinical practice guidelines. In:
Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) Proceedings of the 14th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2019, Heraklion, Crete, Greece, May 4–5, 2019, pp. 147–158. SciTePress
(2019). https://doi.org/10.5220/0007736401470158

27. Rabbi, F., Lamo, Y., MacCaull, W.: Co-ordination of multiple metamodels, with
application to healthcare systems. In: The 5th International Conference on Emerg-
ing Ubiquitous Systems and Pervasive Networks (EUSPN-2014)/ The 4th Inter-
national Conference on Current and Future Trends of Information and Communi-
cation Technologies in Healthcare (ICTH 2014)/ Affiliated Workshops, September
22–25, 2014, Halifax, Nova Scotia, Canada. Procedia Computer Science, vol. 37,
pp. 473–480. Elsevier (2014). https://doi.org/10.1016/j.procs.2014.08.071

http://europepmc.org/abstract/MED/23920544
https://doi.org/10.1513/pats.201208-066ST
https://www.atsjournals.org/doi/full/10.1513/pats.201208-066ST
https://www.highcharts.com/
https://www.highcharts.com/
https://doi.org/10.1007/978-3-642-05250-7_52
https://doi.org/10.1007/s40593-018-00172-w
https://doi.org/10.5220/0007736401470158
https://doi.org/10.1016/j.procs.2014.08.071

Model-Driven Automatic Question Generation 245

28. Rabbi, F., Lamo, Y., MacCaull, W.: A flexible metamodelling approach for health-
care systems. In: Jaatun, E.A.A., Brooks, E., Berntsen, K.E., Gilstad, H., Jaatun,
M.G. (eds.) Proceedings of the 2nd European Workshop on Practical Aspects of
Health Informatics, Trondheim, Norway, May 19–20, 2014. CEUR Workshop Pro-
ceedings, vol. 1251, pp. 115–128. CEUR-WS.org (2014). http://ceur-ws.org/Vol-
1251/paper11.pdf

29. React: React - A JavaScript library for building user interfaces. https://reactjs.
org/

30. React-Native: React Native · A framework for building native apps using React.
https://facebook.github.io/react-native/

31. Redish, J.G., Bias, R.G., Bailey, R., Molich, R., Dumas, J., Spool, J.M.: Usability
in practice: formative usability evaluations-evolution and revolution. In: CHI 2002
Extended Abstracts on Human Factors in Computing Systems, pp. 885–890. ACM
(2002)

32. Redux: Redux · A Predictable State Container for JS Apps. https://redux.js.org/
33. ReduxJS-thunk: reduxjs/redux-thunk: Thunk middleware for Redux. https://

github.com/reduxjs/redux-thunk
34. Rutle, A.: Diagram predicate framework: a formal approach to MDE (2010)
35. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of

MOF-based modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE
2009. LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02571-6 4

36. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in mde. J. Logic Algebraic Program. 81(4), 422–
457 (2012)

37. Shiffman, R.N., Michel, G., Essaihi, A., Thornquist, E.: Bridging the guideline
implementation gap: a systematic, document-centered approach to guideline imple-
mentation. J. Am. Med. Inform. Assoc. 11(5), 418–426 (2004). https://doi.org/10.
1197/jamia.M1444. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516249/

38. da Silva, A.R.: Model-driven engineering. Comput. Lang. Syst. Struct. 43(C), 139–
155 (2015). https://doi.org/10.1016/j.cl.2015.06.001

39. Strmečki, D., Bernik, A., Radošević, D.: Gamification in e-learning: introducing
gamified design elements into e-learning systems. J. Comput. Sci. Technol. 11(12),
1108–1117 (2015)

http://ceur-ws.org/Vol-1251/paper11.pdf
http://ceur-ws.org/Vol-1251/paper11.pdf
https://reactjs.org/
https://reactjs.org/
https://facebook.github.io/react-native/
https://redux.js.org/
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://doi.org/10.1007/978-3-642-02571-6_4
https://doi.org/10.1007/978-3-642-02571-6_4
https://doi.org/10.1197/jamia.M1444
https://doi.org/10.1197/jamia.M1444
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516249/
https://doi.org/10.1016/j.cl.2015.06.001

New Method to Reduce Verification Time
of Reconfigurable Real-Time Systems

Using R-TNCESs Formalism

Yousra Hafidi1,2,3,4(B) , Laid Kahloul2, Mohamed Khalgui3,4 ,
and Mohamed Ramdani1,2,3,4

1 University of Tunis El Manar, Tunis, Tunisia
ramdani.moh19@gmail.com, yousra hafidi@hotmail.com

2 LINFI Laboratory, Computer Science Department, Biskra University,
Biskra, Algeria

laid.k.b@gmail.com
3 LISI Laboratory, National Institute of Applied Sciences and Technology,

University of Carthage, 1080 Tunis, Tunisia
khalgui.mohamed@gmail.com

4 School of Electrical and Information Engineering,
Jinan University, Guangzhou, China

Abstract. Nowadays, several systems like manufacturing, aerospace,
medical, and telecommunication ones face new challenges such as fault-
tolerance, response in time, flexibility, modularity, etc. To deal with these
requirements, systems had to include new abilities. Consequently, sys-
tems become more complex, and their verification becomes expensive in
terms of computation time and memory. Reconfigurable real-time sys-
tems are ones of those complex systems that encompass reconfigura-
bility constraints and subject to real-time requirements. Their verifica-
tion is often a hard task due to their complex behavior. In this paper,
we formally model these systems using reconfigurable timed net condi-
tion/event systems (R-TNCESs) formalism, which is a Petri net exten-
sion for reconfigurable systems. Then, we propose a new methodology
to efficiently verify real-time properties by avoiding redundant compu-
tations. An application of the paper contributions is carried out on a
benchmark manufacturing system, a performance evaluation is achieved
to demonstrate it and to compare it with other related works.

Keywords: Real-time system · Reconfiguration · Formal verification
model-checking · CTL

1 Introduction

With the continuous development of technology, several systems like manufac-
turing, aerospace, medical, and telecommunication ones face new challenges. To
deal with today’s requirements such as: fault-tolerance, response in time, flexi-
bility, modularity, etc., systems should comprise new abilities. By including new
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 246–266, 2020.
https://doi.org/10.1007/978-3-030-40223-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_12&domain=pdf
http://orcid.org/0000-0002-3543-6731
http://orcid.org/0000-0001-6311-3588
https://doi.org/10.1007/978-3-030-40223-5_12

New Method to Reduce Verification Time 247

abilities, systems become complex and their design contains more constraints.
An indispensable requirement is also having a correct behaviour behind of these
complex systems. Actually, any problem that a critical system may face during
its execution can cause serious consequences like loss of life in safety critical sys-
tems [8]. If it is not a loss of life, failures results can be economically serious. Most
problems of critical systems are due to a faulty and an unreliable design [26].
Formal verification techniques can play an important role in addressing such
issues. Therefore, many academic researchers as well as industrial companies
tackle systems reliability by formal verification [2,12,14,16,24,31].

Formal verification methods exploit techniques based on mathematical and
logical proofs to check whether a system meets the requirements of its initial
specification. Indeed, system requirements are usually specified in a temporal
logic like computational tree logic (CTL), and/or its extensions: extended CTL
(eCTL), timed CTL (TCTL), etc. The system design is carried out using one of
the existing formal languages such as Petri Nets and their extensions. Many sys-
tem properties including safety, deadlock-freedom and liveness that are specified
by a temporal logic can be verified using model-checking [1,4]. Model-checking
is the process that takes as inputs a model (typically a state/transition system)
and a property (typically written in a temporal logic), then proves that the sys-
tem satisfies the given property or provides a counterexample of the execution
that falsifies it.

Reconfigurability is the ability of systems to transform their selves and their
working process in order to adapt to a changed inner/outer environment, respond
to user requirements, prevent malfunctions when hardware failures occur dur-
ing the process, etc. Reconfigurable real-time systems are systems that encom-
pass reconfigurability constraints [20,21,31,33,34] and they subject to real-time
requirements [29,30].

By the inclusion of some new skills, reconfigurable real-time systems become
more complex, i.e., their design includes more details, and their verification
becomes more expensive in terms of computation time and memory. Researchers
have tried to deal with the formal modeling and verification of discrete event
systems using Petri nets and their extensions. Badouel et al. [3] proposed recon-
figurable Petri nets which are considered as high level Petri nets with special abil-
ities of self reconfiguration. Biermann et al. [7] proposed reconfigurable object
Petri nets (RONs) that are used to design reconfigurable manufacturing sys-
tems as demonstrated in [15]. RONs formalism has two types of places (1) net
places that contain ordinary Petri nets as tokens, and (2) rule places that con-
tain rules as tokens. Also, two types of transitions (1) firing transitions that
model the simple firing of Petri nets, and (2) transform transitions that model
the reconfiguration of the system. Rausch and Hanisch [9,17,27] proposed net
condition/event systems (NCESs) formalism which is a modular Petri nets exten-
sion enriched with event/condition signals that models interactions among sys-
tem modules. NCESs are developed through the last years to timed net con-
dition/event systems (TNCESs) [13] involving time constraints on arcs. Zhang
et al. [6,10,11,19,25,32,35] proposed reconfigurable timed net condition/event
systems (R-TNCESs) which is an enriched extension of Petri nets formalism that

248 Y. Hafidi et al.

supports reconfiguration constraints. In R-TNCESs formalism [5,6,10,18], the
system is represented by a couple Sys(Bsys, Rsys) such that (1) Bsys is a set
of TNCESs that represent the behavior module, and (2) Rsys is a set of recon-
figuration rules that represent the control module. All of those research works
are important because they are building convenient formal models. However,
these models face important problems when they are used to verify complex
reconfigurable real-time systems.

The formal verification of reconfigurable real-time systems is a hard compu-
tationally problem that requires so much time and memory, and it is identified as
a very expensive task. Consequently, proposing a new methodology for ensuring
the safety of these systems as well as controlling the complexity of their veri-
fication is an important research area. In this paper, we model reconfigurable
real-time systems using R-TNCESs formalism. In fact, R-TNCESs formalism is
like the well-known formalism timed net condition/event systems (TNCESs) [13]
such that R-TNCESs formalism does not change the semantic of TNCESs but it
just gives functional structure and a pattern for reconfigurable systems in terms
of (Bsys, Rsys). R-TNCES is a suitable model because it provides modularity,
time and reconfiguration abilities. However, many computations and redundan-
cies can be encountered during R-TNCESs verification process. To deal with
the complexity problem, we propose a method that benefits from the similar-
ities between the system’s configurations to avoid unnecessary and repetitive
calculations. Indeed the paper proposes a method that generates an accessibil-
ity graph from another one according to the system’s reconfiguration. Given
an R-TNCES Sys(Bsys, Rsys), where (1) Bsys = {C1, C2} is the set of sys-
tem configurations, (2) Rsys = {ruleC1C2} is the set of possible reconfigura-
tion rules such that ruleC1C2 transforms the configuration C1 to C2, and (3)
tAG(C0) is the timed accessibility graph of the configuration C0. The proposed
method, in this paper, shows how to generate tAG(C2) from tAG(C1) according
to ruleC1C2 , (i.e., rather than computing the whole accessibility graph tAG(C2)
from zero, the new method applies the corresponding graph modifications such
as adding/removing a state/arc in tAG(C1) in order to obtain tAG(C2)).

Hafidi et al. [11] propose a methodology that improves the modeling and the
verification of reconfigurable discrete event control systems using R-TNCESs
formalism. The authors main contribution is efficient for the verification of func-
tional properties in R-TNCESs, i.e., the performance evaluation in [11] demon-
strates an important gain in terms of verification time and used memory. How-
ever, the suggested methodology cannot be used for systems under reconfigura-
bility and real-time constraints. That is in [11], authors do not consider the
verification of real-time properties. The main difference between the paper’s
methodology and the one presented in [11] is that it shows how to generate an
accessibility graph from another one when a reconfiguration on real-time con-
straints occurs which is not considered in other works. In this work, we assume
that functional properties are already verified in the system, we focus on real-
time properties, reconfiguration properties, their modeling in R-TNCES formal-
ism and their efficient verification.

New Method to Reduce Verification Time 249

The main contributions of this paper are summarized as:

– The enrichment of R-TNCESs with new real-time reconfiguration forms such
that modifying the earliest/latest firing times on the timed arcs are included,
i.e., new structure modification instruction for the new reconfiguration forms;

– The proposition of new rewriting rules that generate a new graph from a
given one, according to the reconfiguration on time applied by the system,
i.e., this is used to control the complexity of the verification task.

– The proposition of an algorithm that describes a methodology for R-TNCESs
verification using the suggested method of graph generation.

The originality of this research work can be founded from two general parts,
i.e., the formal modeling and the improved verification of reconfigurable real-
time systems using R-TNCESs. To the best of our knowledge, this is the first
study that deals with the enrichment of R-TNCESs modeling by the new recon-
figuration form of real-time systems, i.e., the modification of time constraints
on timed arcs. In addition, no previous research works have tackled with the
complexity control and optimization of the verification task. The performance
evaluation proves that the complexity of the verification task increases exponen-
tially if it is not controlled such as in the blind method which constructs the
whole accessibility graph of the system after each reconfiguration step. However,
by using the proposed method in this paper, significant gains in computation
time are achieved for the same verification result as in the classical algorithm.
The experimentation and the performance evaluation results are compared using
the model checker SESA [24,28] which analyses TNCESs models and computes
their accessibility graphs.

The present paper is an extended version of our previous paper [12], presented
at ENASE’2019 conference. The methodology is improved by detailing content
and yielding results. For better comparison, a real experimental case study (i.e.,
benchmark production system) was used: in order to illustrate the results of the
conference paper.

The remainder of the paper is organized as follows. Section 2 outlines the def-
inition of R-TNCES formalism and explains its enrichment with the new time
reconfiguration forms. Section 3 defines the proposed method for improving the
verification of real-time and reconfiguration properties in R-TNCESs. Section 4.3
shows the performance of the proposed method on a case study. Section 5 con-
cludes the paper with the limitations and perspectives for future works.

2 Reconfigurable Timed Net Condition/Event Systems
(R-TNCESs)

Reconfigurable timed net condition/event systems (R-TNCESs) are an exten-
sion of Petri nets, firstly introduced in 2013 [35], used for formal specification
of reconfigurable discrete event control systems (RDECSs). An RDECS may
encompass a set of configurations, where each one is modeled by a TNCES.
A TNCES is a set of modules graphically represented as depicted in Fig. 1. To

250 Y. Hafidi et al.

model an RDECS, we use the concept of control components (CCs) introduced in
[16], i.e., the interconnected modules communicating with signals that compose
each TNCES are called control components (CCs). The syntax and semantics of
the previous structures are explained in this subsection.

2.1 Syntax

R-TNCESs are formally defined in [35] as a couple RTN = (B, R) where B
(respectively, R) is the behavior (respectively, the control) module of a reconfig-
urable discrete event control system (RDECS). B is a union of multi-TNCESs
represented by

B = (P, T, F, W, CN, EN, DC, V, Z0)

where,

– P (respectively, T) is a finite set of places (respectively, transitions);
– F ⊆ (P × T) ∪ (T × P) is a superset of flow arcs;
– W : (P × T) ∪ (T × P) −→ {0, 1} maps a weight to a flow arc;
– W (x, : y) > 0 if (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, : y ∈ P ∪T ,

(iv) CN ⊆ (P × T) (respectively, EN ⊆ (T × T)) is a superset of condition
signals (respectively, event signals);

– DC : F ∩ (P × T) → {[l1, h1] , . . . , [l|F∩(P×T)|, h|F∩(P×T)|]} is a
superset of time constraints on transition’s input flow arcs, where ∀i ∈
[1, | F ∩ (P × T) |] , li, hi ∈ N and li < hi, (vi) V : T −→ {∨, ∧} maps
an event-processing mode (AND or OR) for every transition;

– Z0 = (M0, D0), where M0 : P −→ {0, 1} is the initial marking, and
D0 : P −→ {0} is the initial clock position.

R is a set of reconfiguration rules such that rule r is a structure represented by

r = (Cond, s, x)

where,

– Cond → {True, False} is the pre-condition of r, i.e., r is executable only if
Cond = True;

– s : TN(•r) → TN(r•) is the structure-modification instruction such that
TN(•r) (respectively, TN(r•)) represents the structure before (respectively,
after) applying the reconfiguration r;

– x : laststate(•r) → initialstate(r•) is the state processing function.

In this paper, we denote by rij the reconfiguration rule that transforms TNCESi

to TNCESj .
As reported in [35], the basic possible structure-modification instructions for

R-TNCESs are summarized by adding/removing signals (i.e., condition signals
or event signals) between or among modules. However, other possible reconfig-
uration forms should be considered in this paper to express the transformation

New Method to Reduce Verification Time 251

t0

t1

p0

p1

t2

Event input

Time interval

Flow arc

Forced transition

Token

Spontaneous transition

Module boundary

Event output

Condition signal / Condition arc

Signal arc / Event arc

Place

Fig. 1. RTNCESs module graphical model.

of time constraints. Therefore, we present in Table 1 [12] a new time structure-
modification instructions for R-TNCESs. We denote by p a place, t a transition,
eft the earliest firing time, lft the latest firing time, N+ = {1, 2, ...} the set of
positive natural numbers, and N = N

+ ∪ {0} the set of all natural numbers.

Table 1. Time structure-modification instructions [12].

Instruction Symbol

Modify the earliest or/and the latest
firing time value in the time interval
of the flow arc (p, t)

mtime((p, t), [eft, lft])

eft ∈ N
+∧lft, ω ∈ N∧eft < lft < ω

eft: the new earliest firing time;
lft: the new latest firing time;
mtime: symbol of the instruction that modifies time constraints.

2.2 Semantics

The behavior of an R-TNCES RTN(BRTN , RRTN) is described by the
dynamism of tokens inside of each TNCES ∈ BRTN (i.e., its behavior is affected
by the firing conditions of transitions in TNCESs), and the transformations
applied by each reconfiguration rule rule ∈ RRTN . There exist two types of tran-
sitions in TNCESs formalism: spontaneous and forced. Forced transitions have at
least an incoming signal arc from a forcing transition contrarily to spontaneous
ones that do not have any incoming signal arcs. To be enabled, every transition
should have token concession and condition concession which are described in
Table 2. In addition, the forcing transitions with input flow arcs that are asso-
ciated by time interval [eft, lft] should fire after a duration d since it became

252 Y. Hafidi et al.

Table 2. Firing rules.

Firing rules t is a

spontaneous

transition

t is a forced

transition

Preconditions

(conditions before firing

t)

Post-conditions (results

after firing t)

Token concession Requires Requires ∀p ∈• t, M(p) = 1 (1) ∀p ∈• t, M(p) = 0

(2) ∀p ∈ t•, M(p) = 1

Condition

concession

Requires Requires ∀p ∈− t, M(p) = 1 Xa

Requirement to

forcing transition’s

firing

Does not require Requires (1) V (t) = ∧ → ∀t′ ∈∼
t, fired(t′);

Xa

(2) V (t) = ∨ → ∃t′ ∈∼
t, fired(t′)

aNo conditions.

enabled such that eft ≤ d ≤ lft. In Table 2 and in the rest of this paper, we
denote by

– •t (resp, t•) the set of input (resp, output) places of the transition t;
– −t the set of input places that are connected to t through a condition signal;
– M(p) the sum of tokens in the place p;
– fired : T → {True, False} the function that returns True if the transition

is fired, otherwise False;
– ∼t the set of forcing transitions of t (i.e., input transitions that are connected

to t through an event signal).

A reconfiguration rule rule(cond, s, x) has the priority to be applied first
when its condition is verified, i.e., cond = True. In this case, the enability of
transitions falls down and only the reconfiguration rule is applied. A reconfig-
uration rule rst transforms a TNCES source TNSs to a TNCES target TNSt.
laststate(•rst) denotes the last state where the simulation among TNSs ends
(i.e., the dynamism of tokens), it also denotes the source state where the recon-
figuration rule is applied. initialstate(r•

st) denotes the initial state where the
simulation among TNSt starts, it also denotes the target state after applying
the reconfiguration rule.

3 Verification of Time Constraints in Reconfigurable
Systems Using TAG

This section deals with the checking whether the modeled system (R-TNCES)
meets the temporal requirements. In this task, we specify system properties using
TCTL, we compute the accessibility graphs, and we use model-checking to check
whether temporal properties are satisfied or not. Classical accessibility graphs
(AGs) are extended to timed accessibility graphs (TAGs) and a new method is
proposed to optimize the calculation of these last ones.

New Method to Reduce Verification Time 253

3.1 Formalization: TAG

Timed accessibility graph (TAG) of a TNCES TNS is a structure tAG given by

tAG(St, Ed, s0)

where,

– St denotes the set of reachable states;
– Ed : St → St denotes the set of edges that defines state-transitions such that

each edge is labeled by the executed step;
– s0 denotes the initial state.

A state s ∈ St is a structure given by

State(Mp, Pclocks, D)

where,

– Mp is the set of marked places in TNS;
– Pclocks is a vector of integers representing places clock positions;
– D is the delay of the state which denotes the minimal number of time units

after which at least one step becomes enabled.

TNCES1 TNCES2

tAG(TNCES1) tAG(TNCES2)

TAG Generation
from the model

Reconfiguration

TAG Generation
from the model

(a) TAG generation from model.

TNCES1 TNCES2

tAG(TNCES1) tAG(TNCES1)

TAG Generation
from the model

Reconfiguration

TAG Generation
from the graph
iGG

(b) TAG generation from graph.

Fig. 2. TAG generation from graph [12].

254 Y. Hafidi et al.

3.2 TAG Generation from a Graph (Contribution)

Given two TNCESs TNCES1 and TNCES2 such that TNCES2 is obtained
from TNCES1 by applying a time modification instruction. Classically,
tAG(TNCES1) (respectively, tAG(TNCES2)) the timed accessibility graph of
TNCES1 (respectively, TNCES2) is computed using the classical algorithm
explained in [28], where the whole accessibility graph of each structure is com-
puted from zero (Fig. 2(a)) [12].

Actually, tAG(TNCES1) and tAG(TNCES2) share some similar parts (sub-
graphs) that should not be recomputed again while generating tAG(TNCES2).
Consequently, the complexity of the accessibility graphs generation can be opti-
mized if these repetitive computations are avoided. In this paper as depicted in
Fig. 2(b) [12], we propose an improved graph-generation method iGG that com-
putes tAG(TNCES2) from the graph tAG(TNCES1) rather than computing
tAG(TNCES2) from the model. The proposed iGG method then, considers the
already computed parts and does not recalculate them.

3.3 The Improved Graph-Generation Method iGG (Contribution)

In order to verify system properties in an R-TNCES model RTN(B, R), the
timed accessibility graph of each TNCES TS ∈ B should be generated using the
classical method described in [28], i.e., the algorithm is therefore executed | B |
times. Consequently, the operation requires more time and memory.

Given two TNCESs structures TNCESa, TNCESb, where tAGa is the
timed accessibility graph of TNCESa. The TNCES TNCESb is obtained from
TNCESa after applying a transformation of time constraints which is described
by the structure modification instruction SMI in Tables 1 and 3. The new pro-
posed method iGG (improved graph generation) takes as an input tAGa then
transforms it into a new graph tAGb by adding/removing some states/edges from
tAGa. Therefore, the complexity of iGG is O(1) in its best case where O(1) is
the complexity of each instruction of modification on the graph. The complexity
in the worst case is O(em), such that O(em) is the complexity of accessibility
graphs computations as reported in [22]. The resulting graph is exactly the timed
accessibility graph of TNCESb except that by using iGG method, there are less
computed states, i.e., no repetitive calculations for the similar parts.

Table 3 [12] introduces the proposed rewriting rules on timed accessibility
graphs (TAGs) related to the new time structure modification instructions (SMI)
proposed in this paper. We denote by e a TAG edge, t a transition, Ed the set
of edges in a TAG, s a state in a TAG, St the set of states in a TAG, sc(e) the
function that returns the source state of an edge e in a TAG, and Label(e) the
function that returns the label of the edge e in a TAG.

iGG method is applied in the case of having n SMIs to get tAGb as follows.

Step0 Copy tAGa to tAGb, i.e., initially, tAGb is a copy of tAGa;
Step1 For every structure modification instruction SMI apply the indicated

rewriting rules (Table 3) on tAGb;
Step2 Delete all unreachable states in tAGb.

New Method to Reduce Verification Time 255

Table 3. Rewriting rules on TAG [12].

SMI Rewriting rules on TAGs Comments

mtime((p, t), [eft, lft]) (a) ∀e ∈ Ed, t ⊂ Label(e) ::= St ← St \ {sc(e)}; (a) Remove all

source states of

edges labeled by

t in TAG;

(b) ∀s ∈ St ::= SimulationFrom(s) (b) Continue the

simulation from

each state

3.4 iGGgeneralized : iGG for R-TNCESs (Contribution)

Algorithm 1 [12] deals with the application of iGG in the case when having n
TNCESs. The proposed algorithm is recursive and composed of a parallel part
that computes the TAGs of reachable TNCESs in the same time when possible.
The algorithm stops in two cases: (1) if the behavior of a configuration is not
validated by the verification, or (2) if it reaches a configuration that has been
already verified before, i.e., to avoid redundant computations. In Algorithm1,
we denote by: (1) NextConfigs(tAG, R) the function that from the TAG tAG
of the current TNCES and a set of possible reconfiguration rules R returns the
set of reachable TNCESs resulted from reconfigurations (2) newTN(TNCESi)
the Boolean function that returns True if TNCESi has not been verified before,
otherwise it returns False, (3) iGG(tAG, TNCESi) the function that generates
and returns the TAG of TNCESi from the TAG tAG (already explained in
previous subsections), and (4) verifyPropertiesIn(tAGi, p) the Boolean func-
tion that returns True if the system indicated properties p are verified on tAGi,
otherwise it returns False.

Algorithm 1. iGGGeneralized.

Input: RTN(B : Set of TNCESs, R : Set of Reconfiguration Rules): R-TNCES;

tAGcurrent: TAG; p: Set of Properties;

Variables : tAG: TAG; isCorrect: Boolean; ToV erify: Set of TNCESs;

1 tAG ← tAGcurrent;

2 ToV erify ← NextConfigs(tAG,R);

3 foreach TNCESi ∈ ToV erify in parallel do

4 if newTN(TNCESi) /* New TNCES: if its TAG has not been computed

yet */

5 then

6 tAGi ← iGG(tAG, TNCESi);

7 isCorrect ← verifyPropertiesIn(tAGi, p);

8 if isCorrect == True then

9 iGGGeneralized(RTN(B, R), tAGi, p);

10 end

11 end

12 end

256 Y. Hafidi et al.

3.5 Automatic Tool for R-TNCESs: SESA

SESA [24,28] is an automatic model checker for TNCESs formalism. SESA
model-checker is an effective tool to compute the set of reachable states of a
TNCES. It can also verify functional and temporal properties specified using
CTL and its extensions. In this research work, we use SESA to model the differ-
ent configurations of R-TNCESs. After that, we compute the state space of each
configuration automatically using the tool. We use SESA outputs to validate the
results given by our methodology. At this stage of our work, we use comparaison
method to check that informations on behaviour are not lost when including the
proposed methods for improved graph generation.

4 Experimentation

In this section, we apply the proposed method on a hypothetical manufacturing
plant in order to illustrate it. After that, we evaluate its performance on large
scale systems using factors like redundancy rate.

4.1 Running Example: Benchmark Production System

A hypothetical manufacturing system MS is physically composed of a set of
interconnected units. Each unit is a set of components that work together in
order to achieve a system task in a known time interval. MS is a reconfigurable
real-time system, i.e., all its components are subjected to real-time and recon-
figurability constraints. MS can run in several modes, and it can switch from a
mode to another during its working process according to predefined conditions.
This dynamism allows the system to be flexible to manufacturing demands or
to prevent from malfunctions when hardware failures occur during its working
process.

Workpieces
Injection

Feeder/Converter Unit Rotator Unit Tester Unit

Drilling Workpieces

Testing Weight

Testing Shape

Testing Color

[3-4] time units [1-4] time units [1-5] time units

Fig. 3. MS working process.

New Method to Reduce Verification Time 257

Figure 3 represents MS working process and components. MS has three main
units,

– Feeder/Converter unit: composed of a feeder that injects workpieces to the
system, and a converter that converts then elevates them to the rotator unit;

– Rotator unit: composed of a rotator that rotates workpieces and drilling
machines that drills them to perform the required shape;

– Tester unit: composed of sensors that receive workpieces from the rotator
unit and test if they respect required weight, shape and color. After that, it
transfers workpieces to other system units to continue the process of manu-
facturing.

Each system unit is associated by an interval of time. This interval of time
described the earliest and the latest time units that each workpiece takes to
leave that unit. MS has two modes: mode1 and mode2. MS switches from:
mode1 to mode2 when precondition 2 is fulfilled, and from mode2 to mode1 when
precondition 1 is fulfilled. By switching from mode1 to mode2, the system MS
changes its time properties, i.e., time interval of Rotator unit becomes [0–4]. MS
system can make this change in order to increase/decrease system performance,
avoid some malfunctions that are due to material failure, minimize the used
energy or cost, etc. This is actually done according to manufacturing demands
and needs.

System Encoding. To apply the proposed methods, MS should be modeled
using a formalism. MS is a reconfigurable real-time system composed of two
configurations (i.e., configurations represent system modes: mode1 and mode2)
and two reconfigurations (i.e., reconfigurations represent system switching from
a mode to another), can be modeled using R-TNCESs formalism as follows.
MS is an R-TNCES RMS(BRMS , RRMS) such that BRMS = {conf1, conf2}
is the behavior module containing all possible configurations and RRMS =
{rec12, rec21} is the control module containing all possible reconfigurations.
Configuration conf1 represents mode1 and configuration conf2 represents mode2
of MS system. MS system units are presented by R-TNCESs modules in RMS.
conf1 is the initial configuration of MS system, and it is graphically presented
as in Fig. 4.

258 Y. Hafidi et al.

Config1

t4

t5

p5

p6

Module1 Module2

[1, 4]

t1

t2

[3, 4]

p2

p3

t3

p1 p7

p8

p9

t7

t8

t9

p4

t6

Module3

[1, 5]

Other system modules

Fig. 4. RMS: Config1 graphical presentation.

Possible system reconfigurations are: conf1 → conf2 which is described by
the reconfiguration rule rec12 and conf2 → conf1 which is described by the
reconfiguration rule rec21 in the control module RRMS . Reconfiguration rules
elements are described in Table 4.

Table 4. RMS system reconfiguration rules.

Reconfiguration rule Precondition s function x function

rec12 True {mtime((p6, t6), [0, 4])} {(S9, config1), (S1, config2)}
rec21 True {mtime((p6, t6), [1, 4])} {(S16, config2), (S1, config1)}

By applying the transformations described by rec12 on the initial configura-
tion config1, we obtain config2 model as described in Fig. 5.

New Method to Reduce Verification Time 259

Config2

t4

t5

p5

p6

Module1 Module2

[0, 4]

t1

t2

[3, 4]

p2

p3

t3

p1 p7

p8

p9

t7

t8

t9

p4

t6

Module3

[1, 5]

Other system modules

Fig. 5. RMS: Config2 graphical presentation.

System Verification. In this research work, we focus on real-time properties
verification. Thus, we consider that all other functional properties are already
verified in the system RMS. Reconfigurations run spontaneously when their
conditions are fulfilled, i.e., there are no time constraints on reconfiguration sce-
narios. Therefore, the control module RRMS is not considered by the verification
of real-time properties. Contrarily, the behavior module BRMS contains a set of
TNCESs which are timed and should be validated by checking real-time proper-
ties. Note that in the behavior module BRMS , there exist similar parts between
both configurations conf1 and conf2, e.g., module1 in conf1 is similar to module1
in conf2 and module3 in conf1 is similar to module3 in conf2. That because in
reality, only some parts are transformed in reconfigurable systems, other parts
are still the same in all process. The repetitive calculations on those similar parts
are considered as redundancies that make of the verification a complex task.

In this subsection, we try to apply the proposed method to verify the R-
TNCES RMS(BRMS , RRMS) efficiently by avoiding as much as possible unnec-
essary computations. The timed accessibility graph of the initial structure conf1
is computed classically using SESA tool. The resulted graph tAG(conf1) is
depicted in Fig. 6.

To compute tAG(conf2) from tAG(conf1) we use the improved graph-
generation method iGG as following:

Step0 Copy tAG(conf1) to tAG(conf2);
Step1 Apply the rewriting rules (Table 3) on tAGconf2 as in Step11 and Step12;

260 Y. Hafidi et al.

s1

s2 s4

s3

s11

s10

s12

s5 s8

s9

s7s6

Fig. 6. tAG(conf1) [12].

Step1.1 (∀e ∈ Ed2, t6 ⊂ Label(e) ::= St2 ← St2 \ {s6}) ⇒ St2 ← St2 \ {s6}.
Ed2 (respectively, St2) represents the set of edges (respectively, states)
in tAG(conf2);

Step1.2 ∀s ∈ St ::= SimulationFrom(s). By the simulation, new states are
created: St2 ← St2 ∪ {S6, S13 S14 S15 S16 S17 S18};

Step2 Delete all unreachable states in tAG(conf2): St2 ← St2\{S7, S8 S9 S15}.

After following the previous steps, tAG(conf2) the new accessibility graph
of conf2 is achieved.

s1

s2 s4

s3

s11

s10

s12

s5

s6

s13
s15

s14

s16
s17

s18

Fig. 7. tAG(conf2) [12].

tAG(conf2) is depicted in Fig. 7 where the colored states among it denote
the new computed ones.

New Method to Reduce Verification Time 261

Note that the studied system RMS has 12 states in the configuration conf1,
and 15 states in the configuration conf2 where only 7 states are computed using
the improved graph-generation method iGG, i.e., the other states are kept from
the first TAG tAG(conf1). Therefore, iGG has avoided the unnecessary repeti-
tive computations and optimized RMS accessibility graphs generation by more
than 50% calculations.

4.2 Concept of Redundancies

We define the function RRedun(TNCESa, TNCESb) that takes two TNCESs
TNCESa, TNCESb and gives the redundancy rate between them.

RRedun(TNCESa, TNCESb) is computed as follows

RRedun(TNCESa, TNCESb) =
#similarStates

#States

where (1) #similarStates is the number of similar states that appear in both
graphs tAG(TNCESa) and tAG(TNCESb), and (2) #States is the total num-
ber of states in tAG(TNCESb).

We denote by: (1) low redundancy rate LRR the systems with RRedun ≤
30%, (2) medium redundancy rate MRR the systems with 30% < RRedun <
80%, and (3) high redundancy rate HRR the systems with RRedun ≥ 80%,
e.g. in the previous running example RRedun(conf1, conf2) = 8

15 = 53% is the
redundancy rate of RMS which denotes that RMS is in MRR systems. This
concept will be used in performance evaluation part as a factor.

4.3 Evaluation

The proposed method has proven benefits in the experimentation of the previous
running example. We want to study its efficiency in larger systems by measuring
computed states where a parameter namely redundancy rate is used as a factor
to held the performance evaluation in different kinds of problems.

The 3D surfaces in Fig. 8 [12] depict the number of computed states resulted
from the analyzes held on R-TNCESs with: (1) different redundancy rates, and
(2) different numbers of nodes. The study is performed in two cases, the former
by using the proposed iGG method while computing the TAGs, the latter using
the classical method and without any improvement. The surfaces show that the
number of computed states using iGG reduces when the RRedun is higher,
i.e., in HRR systems. Therefore, iGG method performs best for HRR systems
verification regardless the number of nodes. The surface presented in Fig. 8(a)
[12] matches to the surface depicted in Fig. 8(b) [12] when RRedun = 0. Thus,
iGG method turns to classical verification methods when the redundancy rate
is very low, i.e., the method is in its worst case (Table 5).

262 Y. Hafidi et al.

Table 5. RMS reachable states markings and clock positions [12].

State P1 P2 P3 P4 P5 P6 P7 P8 P9 D

S1 Mp 1 0 0 1 0 0 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S2 Mp 0 1 0 1 0 0 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S3 Mp 0 0 1 1 0 0 1 0 0 2

Pclocks 0 0 0 0 0 0 0 0 0

S4 Mp 1 0 0 0 1 0 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S5 Mp 0 1 0 0 0 1 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S6 Mp 0 0 1 0 0 1 1 0 0 1

Pclocks 0 0 0 0 0 0 0 0 0

S7 Mp 0 0 1 1 0 0 0 1 0 0

Pclocks 0 0 1 0 0 0 0 0 0

S8 Mp 0 0 1 1 0 0 0 0 1 0

Pclocks 0 0 1 0 0 0 0 0 0

S9 Mp 0 0 1 1 0 0 1 0 0 2

Pclocks 0 0 1 0 0 0 0 0 0

S10 Mp 1 0 0 0 0 1 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S11 Mp 0 1 0 0 1 0 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S12 Mp 0 0 1 0 1 0 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S13 Mp 0 1 0 1 0 0 0 1 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S14 Mp 0 0 1 1 0 0 0 0 1 0

Pclocks 0 0 0 0 0 0 0 0 0

S15 Mp 0 1 0 1 0 0 0 0 1 0

Pclocks 0 0 0 0 0 0 0 0 0

S16 Mp 0 0 1 1 0 0 0 1 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S17 Mp 0 0 1 0 0 1 1 0 0 0

Pclocks 0 0 0 0 0 0 0 0 0

S18 Mp 1 0 0 1 0 0 0 1 0 0

Pclocks 0 0 0 0 0 0 0 0 0

New Method to Reduce Verification Time 263

(a) IGG method.

(b) Classical method.

Fig. 8. iGG efficiency [12].

5 Conclusion

In this paper, we deal with the formal modeling and verification of reconfig-
urable real-time systems using reconfigurable timed net condition/event systems
(R-TNCESs) formalism. We enrich the modeling with new possible reconfigu-
ration forms: the modification of the earliest/latest firing time in the intervals
associated to flow arcs. We suggest a new method for efficient verification of
R-TNCESs when reconfigurations in time occur in the system. The proposed
method iGG showed how to generate a TAG from another one to avoid repeti-
tive computations when the two TAGs have some similar parts.

We applied the paper contribution on a benchmark manufacturing system.
According to case study and performance evaluation results, it is shown that the
verification task of temporal properties has been improved in terms of computing
time and memory. In addition, it is shown that the proposed method performs
best for HRR systems. The proposed method is less beneficial in LRR sys-
tems. Actually in RDECSs reconfigurations, the transformation includes only
some modules and others will still be identical as those in the source model,
which gives a high similarity between models and makes most of them HRR
systems. Therefore, the proposed methodology is suitable for RDECSs improved

264 Y. Hafidi et al.

verification. Compared with the previous related works, this work presents a
new reconfiguration form to the R-TNCES formalism, a method to verify real-
time properties where the correctness of the system is considered and also the
complexity of its verification is controlled.

Future works will (1) provide a formal proof of correctness proving that
information on the system’s behavior are not lost or corrupted after applying
the proposed improvement method, (2) consider probabilistic constraints in the
verification task, and (3) involve new techniques to reduce the system properties
and TAGs in order to improve the model-checking on R-TNCESs, and (4) include
the proposed improvement method in a model-checker in order to automatize it
and profit from its gain. Finally the proposed techniques will be generalized to
be considered in other formalisms like reconfigurable Petri nets [23].

References

1. Aichernig, B.K., Schumi, R.: Statistical model checking meets property-based test-
ing. In: Proceedings IEEE International Conference on Software Testing, Verifica-
tion and Validation ICST, pp. 390–400. IEEE (2017)

2. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
(TAAS) 11(4), 25 (2017)

3. Badouel, E., Oliver, J.: Reconfigurable nets, a class of high level Petri nets sup-
porting dynamic changes within workflow systems. Ph.D. thesis, Inria (1998)

4. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

5. Ben Salah, H., Benzina, A., Khalgui, M.: Verification of reconfigurable NoC under
quality of service constraints. In: Proceedings IEEE 40th Annual Computer Soft-
ware and Applications Conference (COMPSAC), pp. 329–334. IEEE (2016)

6. Ben Salem, M.O., Mosbahi, O., Khalgui, M., Jlalia, Z., Frey, G., Smida, M.:
BROMETH: methodology to design safe reconfigurable medical robotic systems.
Int. J. Med. Robot. Comput. Assist. Surg. 13(3), 1786 (2016). https://doi.org/10.
1002/rcs.1786

7. Biermann, E., Modica, T.: Independence analysis of firing and rule-based net trans-
formations in reconfigurable object nets. Electron. Commun. EASST 10 (2008)

8. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Heidelberg (2016)

9. Dubinin, V., Vyatkin, V., Hanisch, H.M.: Synthesis of safety controllers for dis-
tributed automation systems on the basis of reverse safe net condition/event
systems. In: Proceedings IEEE Trustcom/BigDataSE/ISPA, vol. 3, pp. 287–292,
August 2015

10. Guellouz, S., Benzina, A., Khalgui, M., Frey, G.: ZiZo: a complete tool chain for the
modeling and verification of reconfigurable function blocks. In: UBICOMM 2016:
the Tenth International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, 10 2016 (2016)

11. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern. Syst. 99, 1–15 (2018)

https://doi.org/10.1002/rcs.1786
https://doi.org/10.1002/rcs.1786

New Method to Reduce Verification Time 265

12. Hafidi, Y., Kahloul, L., Khalgui, M., Ramdani, M.: On improved verification of
reconfigurable real-time systems. In: Proceedings of the 14th International Con-
ference on Evaluation of Novel Approaches to Software Engineering - Volume
1: ENASE, pp. 394–401. INSTICC, SciTePress (2019). https://doi.org/10.5220/
0007736603940401

13. Hanisch, H.M., Thieme, J., Luder, A., Wienhold, O.: Modeling of PLC behavior
by means of timed net condition/event systems. In: Proceedings 6th International
Conference on Emerging Technologies and Factory Automation Proceedings, pp.
391–396. IEEE (1997)

14. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information
Science and Technology, 3rd (edn.), pp. 7162–7170. IGI Global (2015)

15. Kahloul, L., Bourekkache, S., Djouani, K.: Designing reconfigurable manufacturing
systems using reconfigurable object Petri nets. Int. J. Comput. Integr. Manuf.
29(8), 889–906 (2016)

16. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfigurable multiagent embed-
ded control systems: from modeling to implementation. IEEE Trans. Comput.
60(4), 538–551 (2011)

17. Khalgui, M.: NCES-based modelling and CTL-based verification of reconfigurable
embedded control systems. Comput. Ind. 61(3), 198–212 (2010)

18. Khlifi, O., Mosbahi, O., Khalgui, M., Frey, G.: GR-TNCES: new extensions of R-
TNCES for modelling and verification of flexible systems under energy and mem-
ory constraints. In: Proceedings 10th International Joint Conference on Software
Technologies (ICSOFT), vol. 1, pp. 1–8. IEEE (2015)

19. Khlifi, O., Mosbahi, O., Khalgui, M., Frey, G.: New verification approach for recon-
figurable distributed systems. In: Proceedings 12th International Conference on
Software and Data Technologies ICSOFT, pp. 355–362, 01 2017 (2017)

20. Lakhdhar, W., Mzid, R., Khalgui, M., Li, Z., Frey, G., Al-Ahmari, A.: Multiobjec-
tive optimization approach for a portable development of reconfigurable real-time
systems: from specification to implementation. IEEE Trans. Syst. Man Cybern.
Syst. 49, 623–637 (2018)

21. Lyke, J.C., Christodoulou, C.G., Vera, G.A., Edwards, A.H.: An introduction to
reconfigurable systems. Proc. IEEE 103(3), 291–317 (2015)

22. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

23. Padberg, J., Kahloul, L.: Overview of reconfigurable Petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 201–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 11

24. Patil, S., Vyatkin, V., Pang, C.: Counterexample-guided simulation framework
for formal verification of flexible automation systems. In: Proceedings IEEE 13th
International Conference on Industrial Informatics (INDIN), pp. 1192–1197, July
2015

25. Ramdani, M., Kahloul, L., Khalgui, M.: Automatic properties classification app-
roach for guiding the verification of complex reconfigurable systems. In: Pro-
ceedings of the 13th International Conference on Software Technologies - Volume
1: ICSOFT, pp. 591–598. INSTICC, SciTePress (2018). https://doi.org/10.5220/
0006863005910598

26. Ramdani, M., Kahloul, L., Khalgui, M., Hafidi, Y.: R-TNCES rebuilding: a new
method of CTL model update for reconfigurable systems. In: Proceedings of

https://doi.org/10.5220/0007736603940401
https://doi.org/10.5220/0007736603940401
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.5220/0006863005910598
https://doi.org/10.5220/0006863005910598

266 Y. Hafidi et al.

the 14th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering - Volume 1: ENASE, pp. 159–168. INSTICC, SciTePress (2019).
https://doi.org/10.5220/0007736801590168

27. Rausch, M., Hanisch, H.M.: Net condition/event systems with multiple condition
outputs. In: Proceedings Emerging Technologies and Factory Automation, vol. 1,
pp. 592–600. IEEE (1995)

28. Starke, P.H., Roch, S.: Analysing Signal-Net Systems. Citeseer, New York (2002)
29. Wang, C., Pastore, F., Briand, L.: System testing of timing requirements based on

use cases and timed automata. In: Proceedings IEEE International Conference on
Software Testing, Verification and Validation ICST. IEEE (2017)

30. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-
time scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf.
12(1), 101–111 (2016). https://doi.org/10.1109/TII.2015.2500161

31. Yanase, R., Sakai, T., Sakai, M., Yamane, S.: Formal verification of dynamically
reconfigurable systems. In: Proceedings IEEE 4th Global Conference on Consumer
Electronics (GCCE), pp. 71–75, October 2015

32. Zhang, J., Frey, G., Al-Ahmari, A., Qu, T., Wu, N., Li, Z.: Analysis and control
of dynamic reconfiguration processes of manufacturing systems. IEEE Access 6,
28028–28040 (2017)

33. Zhang, J., et al.: Modeling and verification of reconfigurable and energy-efficient
manufacturing systems. Discret. Dyn. Nat. Soc. 2015, 14 (2015)

34. Zhang, J., Khalgui, M., Li, Z., Frey, G., Mosbahi, O., Salah, H.B.: Reconfigurable
coordination of distributed discrete event control systems. IEEE Trans. Control
Sys. Techn. 23(1), 323–330 (2015)

35. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Systems
Man Cybern. Syst. 43(4), 757–772 (2013)

https://doi.org/10.5220/0007736801590168
https://doi.org/10.1109/TII.2015.2500161

On Improving R-TNCES Rebuilding
for Reconfigurable Real-Time Systems

Mohamed Ramdani1,2,3,4(B), Laid Kahloul2, Mohamed Khalgui3,
and Yousra Hafidi1,2,3,4

1 LISI Laboratory, National Institute of Applied Sciences and Technology,
University of Carthage, 1080 Tunis, Tunisia

ramdani.moh19@gmail.com
2 LINFI Laboratory, Computer Science Department, Biskra University,

Biskra, Algeria
laid.k.b@gmail.com

3 School of Electrical and Information Engineering, Jinan University,
Guangzho, China

khalgui.mohamed@gmail.com
4 University of Tunis El Manar, Tunis, Tunisia

yousra hafidi@hotmail.com

Abstract. This paper deals with improved verification of real-time sys-
tems that extend the classical formal verification with the rebuilding of
reconfigurable timed net condition event systems (R-TNCESs). Indeed,
previous computation tree logic (CTL) model repair approaches make
the model checking eligible for generating a new correct model from
a faulty one at the debugging level. We propose R-TNCESs rebuilding
method, which allows both verification and modification of real-time sys-
tem models. The proposed approach generates from an incorrect model a
new one that satisfies a given computation tree logic/Timed computation
tree logic formula. Temporal logic formulas (CTL/TCTL) are defined to
deal with the system functional/temporal properties specification respec-
tively. This paper provides an efficient algorithm with a set of transforma-
tion rules to achieve the rebuilding phase. Finally, FESTO MPS platform
is used as a case study to demonstrate the proposed rebuilding method
for real-time system models. The obtained results show the efficiency of
our contribution and its scalability in large complex systems.

Keywords: Real-time systems · Reconfigurable discrete-event
system · Reconfigurable timed net condition event system ·
Computation tree logic · Model rebuilding

1 Introduction

The explosion of functionalities in asynchronous and non-deterministic systems
and the auto-control deployment in such systems have created a new class of sys-
tems called: reconfigurable discrete event/control systems (RDECSs). RDECSs
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 267–285, 2020.
https://doi.org/10.1007/978-3-030-40223-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_13

268 M. Ramdani et al.

can work under various conditions: concurrency, control, communication, etc.
Such class of systems includes manufacturing systems [16], real time systems [9],
and embedded systems [7], etc. RDECSs represent a class of systems that adapts
the set of internal changes dynamically and timely to the external changes and
user requirements (reconfiguration). This adaptation can be inside the structure,
functionality, or control algorithms [18]. There are two types of reconfiguration:
static reconfiguration at the design time and dynamic reconfiguration at the
runtime [8].

Model-checking is an effective technique for the automatic verification of
functional and nonfunctional (time constraints) properties of RDECSs. In spite
of the complexity of RDECSs, model-checking verifies the satisfaction between
a formal model and a functional/nonfunctional property, which is specified by a
temporal logic (CTL, TCTL, etc.). To deal with reconfigurable systems, it is nec-
essary to develop new methods, formalisms, and tools to reduce the complexity of
computation and to facilitate the design phase. Therefore, many formalisms are
proposed and extended. Petri net is one of the most used formalism developed to
cope with reconfigurability (reconfigurable Petri nets [13]). Reconfigurable time
net condition/event systems (R-TNCES) are one of their extensions [17].

In the last decade, model-checking is also taking its share from the evolution
and the improvement. It becomes more efficient in the debugging of errors and
their auto-correction. The computation tree logic (CTL) update method pro-
posed by [5] is one of these progressions, it modifies the system model in order
to satisfy a given formula. In such context, different works of model modification
are developed. Ding and Zhang in [5,19] proposed an algorithm based on a set of
basic operations and minimal change criteria. Carrillo and Rosenblueth proposed
another algorithm and introduced the protection concept in [4]. Martinez and
Lopez proposed a CTL repair methodology for different classes of Petri nets, [10]
for labeled state machines (LSM), [11] for bounded and deadlock free Petri nets,
and [12] for open work-flow nets (oWFN). [14] have developed a new method to
rebuild reconfigurable systems models using R-TNCESs models.

In the previous verification techniques of reconfigurable models, [14] covers
the impotence of the layer-by-layer verification proposed in [17] and the formal
verification proposed in [6] for automatizing the correction of a model which
does not satisfy a property formula. Unfortunately, all the proposed methods
overlook the nonfunctional properties, which are the time constraints. Indeed,
with the system complexity, the high number of properties to be checked and the
absence of a technique that facilitates the debugging task make the verification
phase of R-TNCESs a hard task.

In this paper, we deal with the verification and model repair of reconfig-
urable systems modeled with R-TNCESs according to functional and temporal
properties. We propose a new methodology called R-TNCESs rebuilding. First,
we compute a Timed automata model from the behavior module of R-TNCES.
Second, based on the original formula to be verified on the R-TNCES, we extract
a CTL/TCTL formula to be verified in the computed automaton with the same
semantic value. Using the five primitives of Ding and the minimal change cri-

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 269

teria [5], the error will be localized and corrected at the automaton level using
Uppaal model checker [2] in the verification of CTL or TCTL formula. Finally,
according to the equivalence between the changes in the timed automata model
and the modification instructions of the R-TNCESs formalism, we apply the
reverse operation to get the new model of the R-TNCES which satisfies the
given property.

To validate our methodology and to illustrate the virtue of the contribution,
we use an academic case study FESTO MPS [17], which is a lab-scale station.
The behavior module of FESTO MPS is deployed to show the performance
of the different algorithms and to check the functional properties (properties of
broadcasting and synchronizations) and the nonfunctional properties (properties
of time constraints). The model-checker Uppaal is used to check CTL/TCTL
properties of the timed automata. It is a toolbox for verification of real-time
systems [2]. SESA model checker [15] is used to confirm the result of R-TNCESs
rebuilding. Indeed, SESA is a software to analyze TNCESs and to compute the
exact reachable set of states.

To address the correctness of the system, our proposition aims to ensure the
viability of the R-TNCES model by checking properties on the broadcasting and
its synchronization and by ensuring the respect of the time limits constraint. In
this research, we provide a generalization of CTL model update approach from
Petri nets formalism to R-TNCESs formalism to ensure the corrections in a com-
plex system (i.e., RDECSs). We present an approach for reconfigurable models
rebuilding, which it is able to generate a new model that satisfies requirements
specified by a CTL/TCTL formula while respecting the original model and the
minimal changes stated by Ding [5]. We have developed an algorithm to compute
a timed automaton from an R-TNCES model, and another algorithm to adapt a
temporal logic formula CTL/TCTL to a timed automaton verification without
losing information.

The paper is organized as follows. Section 2 presents the preliminary con-
cepts used throughout the paper. Section 3 contains the methodologies of the
rebuilding operation for reconfigurable systems. In Sect. 4, experimental results
are showcased through an academic case study. Finally, Sect. 5 concludes the
paper and presents our future research directions.

2 Preliminaries

This section presents the basic concepts and notations used in this paper.

2.1 Reconfigurable Time Net Event Condition Systems

R-TNCESs represent a formalism which was proposed in [17] to specify and
verify reconfigurable discrete event control systems (RDECSs). An R-TNCES
RTN is a couple RTN = (B,R). B is the behavior module such that, B =
(Conf1, . . . , Confn) (n configurations, each one is a TNCES, possibly redun-
dant). R is the control module such that, R = (r1, . . . , rm) (set of reconfiguration

270 M. Ramdani et al.

functions with n,m ∈ N). Formally, the behavior module is a tuple, defined as
follows.

B = (P, T, F,W, CN, EN, DC, V, Z0) (1)

where, P (resp, T) is a superset of places (resp. transitions), F is a superset of
arcs, W : (P × T) ∪ (T × P) → {0, 1} maps a weight to a flow arc, CN (resp.
EN) is a superset of condition signals (resp, event signals), DC is a superset of
clocks on output arcs, V : T → {AND,OR} maps an event processing mode for
every transition, and Z0 = (M0,D0), where M0 is the initial marking, and D0

is the initial clock position.

Definition 1. (Control component CC) is a logical software unit [8], which rep-
resents the data-flows and actions of sensors/actuators (algorithms, extraction or
activation). Every CC resumes the physical process in three actions: activation,
working, and termination. Figure 1 shows a generic model of a CC.

Fig. 1. The generic model of a control component [14].

Definition 2. (Time Net Condition/Event System TNCES) is a set of CCs
interconnected by signals. The order of CCs describes the desired behavior of
the TNCES.

2.2 Timed Automata

A Timed Automaton with Guards, denoted by GTA, is a six-tuple

GTA = (X,E,C, Tra, Inv, x0) (2)

where:

– X is the set of states.
– E is the finite set of events.
– C is the finite set of clocks, c1, ..., cn, /with ci(t) ∈ R+.
– Tra is the set of timed transitions of the automaton.
– Inv is the set of state invariants.
– x0 is the initial state.

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 271

2.3 Temporal Logic

Computation Tree Logic. The model-checking of R-TNCESs is an automatic
verification technique of a system using finite-state systems and their reachabil-
ity graphs. The properties, to be checked, are specified using one temporal logic
such as CTL and its extensions (Timed CTL, extended CTL or Probabilistic
CTL). CTL [1] is used to specify the functional properties. The time is not
explicitly expressed using CTL, but it is possible to say if a property will fre-
quently/infrequently be verified or will never be verified. CTL offers facilities for
the specification of properties that must be fulfilled by the system, like safety,
liveness, reachability, etc. A formula holds in the system if it is proved true in
the initial state of that system. The set of Computation Tree Logic formulas is
defined inductively in [1] by the following grammar.

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ (3)

where a is an atomic proposition and ϕ is a path formula with the following
syntax (E ≡ ∃ and A ≡ ∀):

ϕ ::= EXΦ | AXΦ | EFΦ | AFΦ | EGΦ | AGΦ | EΦ1UΦ2 (4)

where, Φ, Φ1 and Φ2 are CTL state formulas.

Timed Computation Tree Logic. TCTL is an extension of CTL which offers
the possibility to specify qualitative temporal assertions with a time interval
(delay D) which denotes the number of time units that have to elapse before
firing a transition [3]. The relation z0 |= φ for a TCTL formula is given by:

– z0 |= EX[Min,Max]φ: If there exists a successor state z1 such that there is an
edge (z0, z1) with delay D ∈ [Min,Max] and z1 |= φ holds.

– z0 |= EF[Min,Max]φ: It holds True if there exists a future state zj when
zj |= φ holds with the path (z0, zj) and with delay D ∈ [Min,Max].

2.4 Computation Tree Logic Update Method

Ding and Zhang have developed a formal approach for computation tree logic
model update based on minimal change criteria over Kripke structure mod-
els [5]. CTL model update is an approach for the automatic verification and
modification of system models. The principle used is to generate admissi-
ble models that represent the correct design [19] in order to repair software
errors. The model updater functions modify the models using five primitives
(PU1, . . . , PU5).These primitives are described in their simplest forms as fol-
lows.

– PU1: Adding a relation.
– PU2: Removing a relation.
– PU3: Changing the label of one state or onr relation.

272 M. Ramdani et al.

– PU4: Adding a state and its associated relations.
– PU5: Removing a state and its associated relations.

The semantics of the above primitives and of the minimal changes principle are
detailed in [19].

Fig. 2. Working process of FESTO MPS.

2.5 Benchmark Production System: FESTO MPS

FESTO modular production system (FESTO MPS) as shown in Fig. 2 is a lab-
scale production line simulating the functions of production system (distribution,
testing, and processing). The distribution function represents the transport unit,
the testing is responsible for checking the color, material, and height of work-
pieces and the processing represents the drilling of workpieces.

The whole system is composed by 12 physical processes (Election, convert,
Test, Test failed, Evaluate, Rotate, Drill1, Drill2, Drill1 OR Drill2, Drill1 And
Drill2, Checker, Evacuation) each one is modeled by one control component
(CC). FESTO achieves the physical processes sequentially and executes them
in configurations (Config1, Config2, Config3, Config4) and every configura-
tion Configi has one control chain (Cchaini

). The control chains describing the
physical process are as following.

– Cchain1 = (CC1, CC2, CC3, CC4), when Testfailed is executed.
– Cchain2 = (CC1, CC2, CC3, CC5, CC6, CC7, CC9, CC10), when Drill1 is exe-

cuted.
– Cchain3 = (CC1, CC2, CC3, CC5, CC6, CC8, CC9, CC10), when Drill2 is exe-

cuted.
– Cchain4 = (CC1, CC2, CC3, CC5, CC6, CC11, CC9, CC10), when workpieces

alternatively drilled Drill1 or Drill2.
– Cchain5 = (CC1, CC2, CC3, CC5, CC6, CC12, CC9, CC10), when workpieces

intensively drilled Drill1 and Drill2.

The behavior of the FESTO MPS was modeled graphically by [17] (as shown in
Fig. 3). FESTO MPS is well described and detailed in [17].

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 273

Fig. 3. Working process of FESTO MPS.

3 Rebuilding Operation for Reconfigurable Models

3.1 Formalization

Given a system model M with s0 its initial state and a Temporal logic formula
φ such that (M, s0) � φ, the rebuilding problem can be defined as finding a new
model M ′ such that (M ′, s′

0) � φ. M ′ is the repaired model of M , otherwise,
there is a problem in the specification of the model/property (inconsistency). M ′

must respect the good specification and must conserve the good requirements
of the system with minimal changes. Figure 4 illustrates the general problem of
checking and rebuilding.

Fig. 4. General problem [14].

Rebuilding operation (RO) can be formalized as follow:

RO = (Z0, φ, I) (5)

274 M. Ramdani et al.

Where,

– Z0 = (mi,Di) is the initial state of the system, such that mi is the marking
of the system and Di is the clock of the system.

– φ is a CTL (rep. TCTL) formula that specifies a functional (resp. a temporal)
property on the behavior module.

– I is the rebuilding operation instruction chain. I can be restricted to
add/delete components operations.

According to Ding’s primitives in the CTL update approach [5]and the
R-TNCES’s modification instructions [17], we define the following dualities
(Table 1). The performed dualities will be deployed in the rebuilding of recon-
figurable systems specified using R-TNCESs.

Table 1. Equivalence between Ding primitives and R-TNCES rebuilding modifications
[14].

R-TNCES rebuilding modifications Modification instruction

PU1 Add event signal Cr(ev(t, t′))

PU2 Delete event signal De(ev(t, t′))

PU3 on state Add/Delete condition signal Cr(cn(p, t))/De(cn(p, t))

PU3 on relation Update the time limits constraint of CC De(CC)) then Cr(CC))

PU4 Add control component Cr(CC))

PU5 Delete control component De(CC))

3.2 TNCESs Rebuilding

Given a TNCES TN and a formula φ, the rebuilding operation (RO) consists
of synchronization verification between CCs, i.e., checking the synchronization
faults between transitions in different CCs (the broadcasting correctness) then
to repair the TNCES model if necessary. We can resume (RO) of a TNCES as
follows.

1. Structural rebuilding of signals which consists to enable/disable one control
component by adding/deleting its signals.

2. Update of TNCES (configuration) which consists of adding/deleting a whole
CC (or set of CCs).

3. Temporal constraints update which consists of adjusting the time limits in a
CC (or a set of CCs).

We denote by EN(•T)/EN(T •)) the set of entering/exiting events of transition
T . Table 2 recapitulates the above faults and their correction.

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 275

Table 2. Table of synchronization faults and their corrections.

Illustrative Example. Let’s consider the TNCES shown in Fig. 5. As a func-
tional property, CC2 and CC3 should not be joined in the same execution.
Trivially, the CTL formula 6 is not satisfied by this TNCES, so that we need to
rebuild the TNCES to be adequate for the required functional property.

φ = AF (p6 → ¬EFp9) (6)

The rebuilding operation RO, in this case, can be achieved by deleting the
synchronization signal between CC2 and CC3. Formally:

RO = (Z, φ, I = (De(ev(t6, t7))) (7)

276 M. Ramdani et al.

Fig. 5. Illustrative example.

For TNCES update, let’s suppose that the designer needs to substitute CC3

by CC5 and to add a new process after CC4. Formally, instructions chain of this
RO is described as: I = De(ev(t3, t7))+De(CC3)+De(ev(t9, t10))+Cr(CC5)+
Cr(ev(t3, t13)) + Cr(ev(t15, t10)) + Cr(CC6) + Cr(ev(t12, t16)).

Figure 6 depicts the TNCES update result.

Fig. 6. TNCES update illustrative example.

3.3 Generalization of TNCES Rebuilding

Given M an R-TNCES and Φ a set of functional/temporal properties written
in CTL, TCTL respectively. The verification process of M according to those
formulas can be performed in two steps, so that exactitude of the first step
initiates the second, as follows:

1. Check the functional properties and apply the rebuilding if needed.
2. Check the temporal properties of the behavior module and apply the rebuild-

ing if needed.

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 277

Rebuilding an ordinary Petri net consists in adding/deleting place/transition
[4]. Whilst, control module rebuilding, in R-TNCESs, consists in enable/disable
one configuration by adding/deleting of signals or adding/deleting an entire con-
figuration of the control module (according to the fundamental structure modi-
fication instructions of R-TNCES [17]).

Assumption 1. In this work, we assume that the control module is not faulty
and represents the desired behavior, i.e., the reachability of each configuration
is covered by the control module.

Assumption 2. Every CC respects the good requirements of the designer and
it is not in a faulty case.

In this work, we focus on the deployment of the rebuilding of the behavior
module according to the functional and temporal properties. We concentrate on
the behavior module response when a reconfiguration is requested or an error
occurs. Figure 7 illustrates the verification steps of an R-TNCES.

Fig. 7. The verification process of R-TNCES.

3.4 R-TNCES Rebuilding

Rebuilding operation (RO) of an R-TNCES reposes on two basic sub-processes
that assure the needed abstraction of both model and formula to facilitate the
CTL update process. The first one is the computation of a new timed automa-
ton model from the behavior module B using Algorithm 1. Indeed, each control

278 M. Ramdani et al.

Algorithm 1 . TA generation.

Input: B =
∑

TNCES;
Output: TA;

for each control component CCi,i=1..n do
Create state si ∈ S;
Create label L : si → (cci);
if (∃ev(tj , tk)/tj ∈ CCi and tk ∈ CCk) then

Create relation (sj , sk) ∈ R;
if (∃ Time interval [l, h] in (tj)) then

Create clock Ci : [l, h] → (sj , sk) ∈ R;
end

end
if (∃cn(pj , tk)/pj ∈ CCi and tk ∈ CCk) then

Create label L : sk → (ccj);
end

end
s0 ← s1;/*CC1 is the 1st physical process*/
Return (TA);

component (resp, event signal) in B becomes a state (resp, relation) in the timed
automaton. The Time intervals at each CC will become a clock Ci : [l, h] at the
out put relation of its stat.

The second sub-process consists in the transformation of a CTL (resp. TCTL)
formula expressed in R-TNCES to adapt it for the timed automaton verifica-
tion. This transformation preserves path formulas and expresses state’s formulas
according to their CCs. Algorithm 2 computes the abstraction of CTL formulas
without any loss of information for the timed automaton verification.

Given RTN = (B,R) an R-TNCES to be checked according to the formula
φ, we can define a six steps methodology for automatizing the rebuilding of
behavior modules as follows.

1. Generate a timed automaton G from the behavior module B using Algo-
rithm 1.

2. Abstract the formula φ to adapt its semantic value of the verification to the
generated automaton using Algorithm2.

3. Using Uppaal, check the satisfaction of G � φ. If G � φ, then the model is
well specified, otherwise, go to the next step.

4. Modify G according to CTL model update approach [19]; action to be super-
vised by the designer.

5. Re-check the satisfaction of the modified model G′ � φ. If G′ � φ, then the
model is well modified, otherwise, there is an inconsistency in the specification
(formula/model or both).

6. Rebuild B using primitives that are equivalent to those executed in the 4th
step. Table 1 presents the equivalence between CTL update primitives and
R-TNCES rebuilding.

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 279

Algorithm 2 . Formulas transformation.

Input: Φ expressed on R-TNCES;
Output: Φ′ expressed on TA;

for each sub-formula φ ∈ Φ do
if (φ is a path formula) then

CTL transformation(φ, Φ′); . . . /*Recursivity*/
end
else

if (φ is a state formula) then
for each pi, ti expressed in φ do

Replace (pi, si)/pi ∈ CCi; . . . /*repalce pi by si*/
Replace (ti, si)/ti ∈ CCi; . . . /*repalce ti by si*/

end

end

end

end
Return (Φ′);

Figure 8 resumes the rebuilding operation RO for an R-TNCES model.

Fig. 8. Methodology of R-TNCES rebuilding.

280 M. Ramdani et al.

4 Experimental Study

4.1 Case Study

To validate and to demonstrate the gain of the proposed contribution, let us
consider the R-TNCES model shown in Fig. 9. It is a faulty model of behavior
module of FESTO MPS.

Fig. 9. Behavior module B of FESTO MPS.

The model must satisfy the functional requirements and must respect the
quality guidelines. In particular, we must ensure the product quality (i.e., Every
workpiece that fails in the quality test: color, material, and height of workpieces
cannot be drilled). Once the workpiece is rejected at the quality test, it is not
allowed to proceed to the next steps. To check this functional property, we use
the following CTL formula:

Φ := AG(p12 → AF (¬p26)) (8)

First, we need to compute timed automaton of the above behavior module
using Algorithm 1. The computed automaton GTA is modeled using Uppaal and
the result is shown in Fig. 10.

By applying Algorithm2, we give the CTL transformation of Φ as follow.

Φ := AG(cc4 → AF (¬C9)) (9)

Formula 9 is written as a reachability query in Uppaal and is proven to be False.
To rebuild the model according to this formula, we select each path has a state
with C9 in the model and satisfies AF (C9) as following:

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 281

Fig. 10. Uppaal model of the computed timed automaton.

– π1 = [C1, C2, C3, C5, C6, C7, C9, C10];
– π2 = [C1, C2, C3, C5, C6, C8, C9, C10];
– π3 = [C1, C2, C3, C5, C6, C7, C9, C10];
– π4 = [C1, C2, C3, C5, C6, C12, C9, C10];
– π5 = [C1, C2, C3, C4, C9, C10];

Then, we select the path which have C9 and C4 (π5 = [C1, C2, C3, C4, C9, C10];).
According to Ding, eventually we need to update GTA. We apply PU2 to remove
the transition (C4, C9). Thus, we obtain a new model G′

TA, which simply states
that no transition from state C4 to state C9 is allowed. Temporal constraints of
the model must be checked by assuring the lower and upper bounds of the execu-
tion for each control component. Indeed, we investigate that every CC respects
its activation constraint ensured by the TCTL based temporal properties. The
following Formula check that the drill machine can be activated in at least 14
time units after the system starts whatever the production mode.

φ := AF [14, 24](p20 ∨ p23 ∨ p32 ∨ p36) = 1. (10)

By applying Algorithm2, we give the TCTL transformation as follows.

Φ := AF [14, 24](C7 ∨ C8 ∨ C11 ∨ C12) = 1. (11)

Using Uppaal, the property is proven to be False (Fig. 11(a)). The model
rebuilding will be deployed by adjusting the execution limit of the appropriate
CC with property limits (Fig. 11(b)). The result of those updates is depicted in
Fig. 12.

282 M. Ramdani et al.

(a) Before rebuilding (b) After rebuilding

Fig. 11. A screen-shot on TCTL formula verification.

Fig. 12. The new model G′
TA.

Finally, we apply the equivalent R-TNCES rebuilding modifications of PU2
on the module behavior to get a new correct module, i.e., we delete event signal
ev(t12, t25) by modification instruction De(ev(t12, t25)). For the second modifi-
cation, we delete the cc6 by applying the instruction De((cc6) and we create a
new one with a new time limit. Results are shown in Fig. 13.

Fig. 13. Behavior module B of FESTO MPS after rebuilding.

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 283

The exact reachability graph is computed using the SESA model checker
[15], thus 85493 sates are obtained as shown in Fig. 14(a). The computed graph
is finite and it has no dead reachable states. SESA is applied automatically to
verify the deadlock and boundedness properties and it is applied manually to
check functional and temporal properties. Firstly, we check that the new model
satisfies the functional property of quality (Φ := AG(p12 → AF (¬p26))). This
formula is proven to be True (see. Fig. 14(b)). Then, we verify that it time
constraint update is correctly applied. The TCTL formula P8 is proven to be
True at the new obtained R-TNCES as shown in Fig. 14(c).

Fig. 14. A screen-shot on SESA verification.

4.2 Discussion

For real-time reconfigurable systems, there is no study in the rebuilding and
model correction. However, our proposed methodology facilitates the process
of synchronization properties and temporal constraint verification. Thus, the
classical verification of R-TNCES checks these properties based on the whole

Table 3. Qualitative comparison with some related works.

Work Formalism used Reconfiguration Timed model Model repair

[5,19] Kripke structure No No Yes

[4] Kripke structure No No Yes

[10–12] Petri nets No No Yes

[17] R-TNCESs Yes Yes No

[6] R-TNCESs Yes Yes No

[14] R-TNCESs Yes Yes No

Our work R-TNCES Yes Yes Yes

284 M. Ramdani et al.

model, contrariwise, the R-TNCESs rebuilding (RO) provides a verification of an
abstract model with model checking to ensure the correctness of functional and
temporal properties. Table 3 describes a short qualitative comparison between
the proposed contribution and the most recent related works.

5 Conclusion

This research deals, with a new method for the automatic rebuilding of recon-
figurable systems with hard real-time constraints modeled by R-TNCESs.

In this paper, we have presented a functional/temporal rebuilding method-
ology for reconfigurable systems modeled with reconfigurable timed net condi-
tion/event systems (R-TNCESs). We define a method that deals with the mod-
ification of reconfigurable system models according to CTL and TCTL formulas
that express functional and temporal exigences. Our method is based on the
CTL update and models correction proposed by Ding around Kripke structure.

Our contribution reposes on a round-trip in the granularity passage. First,
we deploy an algorithm to compute a timed automaton based on the R-TNCES
and a new technique to transform a CTL formula expressed in the R-TNCESs
model to another one expressed on the computed timed automaton keeping the
same verification value. Second, The property is used to localize the source of
the fault and to rebuild the model using the five primitives of Ding. Then, a
reciprocal process will take place to return the corrected model to the original
version (R-TNCES) using equivalence between Ding primitives and R-TNCESs
rebuilding modification instructions. At the end, the platform FESTO modular
production system is used as an experimental case study to confirm the result
of R-TNCES rebuilding and to show the virtue of the contribution. To validate
the final result, the SESA model checker is applied.

Contrary to the existing works on the verification and updating of models,
our technique repairs the system model according to the functional and temporal
properties directly to result in the gain of design time and effort. Using the contri-
bution of this paper, the debugging cycle for each violated functional/temporal
property is automatically assisted to be repaired on less complex models.

This work opens several possible avenues for future researches. Now, to
extend the current research, we are planning to deal with reconfigurable sys-
tems with distributed behaviors and implementing real large case studies with
different kind of properties.

References

1. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press
(2008)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

3. Bouyer, P.: Model-checking timed temporal logics. Electron. Notes Theor. Comput.
Sci. 231, 323–341 (2009)

https://doi.org/10.1007/978-3-540-30080-9_7

On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems 285

4. Carrillo, M., Rosenblueth, D.A.: CTL update of Kripke models through protec-
tions. Artif. Intell. 211, 51–74 (2014)

5. Ding, Y., Zhang, Y.: System modification case studies. In: 2007 31st Annual Inter-
national Computer Software and Applications Conference, COMPSAC 2007, vol.
2, pp. 355–360. IEEE (2007)

6. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern.: Syst. 1–15 (2018). https://doi.org/10.1109/TSMC.2018.
2855209

7. Housseyni, W., Mosbahi, O., Khalgui, M., Li, Z., Yin, L.: Multiagent architecture
for distributed adaptive scheduling of reconfigurable real-time tasks with energy
harvesting constraints. IEEE Access 6, 2068–2084 (2018). https://doi.org/10.1109/
ACCESS.2017.2781459

8. Khalgui, M., Hanisch, H.M.: Automatic NCES-based specification and sesa-based
verification of feasible control components in benchmark production systems. Int.
J. Model. Identif. Control. 12(3), 223–243 (2011)

9. Lakhdhar, W., Mzid, R., Khalgui, M., Li, Z., Frey, G., Al-Ahmari, A.: Multiobjec-
tive optimization approach for a portable development of reconfigurable real-time
systems: from specification to implementation. IEEE Trans. Syst. Man Cybern.:
Syst. 49(3), 1–15 (2018). https://doi.org/10.1109/TSMC.2017.2781460

10. Mart́ınez-Araiza, U., López-Mellado, E.: A CTL model repair method for Petri
nets. In: 2014 World Automation Congress (WAC), pp. 654–659. IEEE (2014)

11. Mart́ınez-Araiza, U., López-Mellado, E.: CTL model repair for bounded and dead-
lock free Petri nets. IFAC-PapersOnLine 48(7), 154–160 (2015)

12. Martinez-Araiza, U., López-Mellado, E.: CTL model repair for inter-organizational
business processes modelled as oWFN. IFAC-PapersOnLine 49(2), 6–11 (2016)

13. Padberg, J., Kahloul, L.: Overview of reconfigurable Petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 201–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 11

14. Ramdani, M., Kahloul, L., Khalgui, M., Hafidi, Y.: R-TNCES rebuilding: a new
method of CTL model update for reconfigurable systems. In: Proceedings of
the 14th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering - Volume 1: ENASE. INSTICC, pp. 159–168. SciTePress (2019).
https://doi.org/10.5220/0007736801590168

15. Starke, P.H., Roch, S.: Analysing Signal-Net Systems. Professoren des Inst. für
Informatik (2002)

16. Zhang, J., Frey, G., Al-Ahmari, A., Qu, T., Wu, N., Li, Z.: Analysis and control
of dynamic reconfiguration processes of manufacturing systems. IEEE Access 6,
28028–28040 (2018). https://doi.org/10.1109/ACCESS.2017.2757044

17. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst.
Man Cybern.: Syst. 43(4), 757–772 (2013). https://doi.org/10.1109/TSMCA.2012.
2217321

18. Zhang, J., Khalgui, M., Li, Z., Frey, G., Mosbahi, O., Salah, H.B.: Reconfigurable
coordination of distributed discrete event control systems. IEEE Trans. Control
Syst. Technol. 23(1), 323–330 (2015)

19. Zhang, Y., Ding, Y.: CTL model update for system modifications. J. Artif. Intell.
Res. 31, 113–155 (2008)

https://doi.org/10.1109/TSMC.2018.2855209
https://doi.org/10.1109/TSMC.2018.2855209
https://doi.org/10.1109/ACCESS.2017.2781459
https://doi.org/10.1109/ACCESS.2017.2781459
https://doi.org/10.1109/TSMC.2017.2781460
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.5220/0007736801590168
https://doi.org/10.1109/ACCESS.2017.2757044
https://doi.org/10.1109/TSMCA.2012.2217321
https://doi.org/10.1109/TSMCA.2012.2217321

Towards the Efficient Use of Dynamic
Call Graph Generators of Node.js

Applications

Zoltán Herczeg(B), Gábor Lóki, and Ákos Kiss

Department of Software Engineering, University of Szeged,
Dugonics tér 13, Szeged 6720, Hungary

{zherczeg,loki,akiss}@inf.u-szeged.hu

Abstract. JavaScript is the most popular programming language these
days and it is used in many environments such as node.js. The node.js
ecosystem allows sharing JavaScript code easily, and the shared code can
be reused as building blocks to create new applications. However, this
ever growing environment has its own challenges as well. One of them
is security: even simple applications can have many dependencies, and
these dependencies might contain malware software. Another challenge
is fault localization: finding the reason of a fault could be difficult in a
software with many dependencies. Dynamic program analysis can help
solving these problems. In particular, dynamic call graphs were used
successfully in both cases before. Since no call graph generators were
available for node.js before, we created them. In this paper, we compare
the call graphs constructed by our generator tools. We show that a large
amount of engine-specific information is present in the call graphs and
filtering can efficiently remove it. We also discuss how the asynchronous
nature of JavaScript affects call graphs. Finally, we show the performance
overhead of call graph generation and its side effects on module testing.

Keywords: JavaScript · Node.js · Call graph · Security

1 Introduction

Similarly to the previous years, JavaScript is still the most popular [24] pro-
gramming language. Its first version was developed in 1995 and the aim of the
new language was to enrich static web pages with interactive features. Due to its
growing popularity, JavaScript appeared in other areas, such as server side script-
ing and embedded systems [22]. JavaScript fits quite well in these event-driven
environments because of its function model. JavaScript functions are objects,
which are created from a source text and a lexical environment. The lexical
environment allows sharing variables between several functions, and this variable
collection is always available to a function even if it is called by an event handler.
Therefore, developers can create private contexts from variables and functions
to solve a given task, and the functions can rely on these contexts since they
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 286–302, 2020.
https://doi.org/10.1007/978-3-030-40223-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_14

Towards the Efficient Use of Dynamic Call Graph Generators 287

cannot be modified by external code. Although these private contexts can be
emulated by classes, protected members, and inheritance in other languages, the
JavaScript syntax is considerably simpler. The function model is a core concept
of JavaScript, even JavaScript classes are specialized functions, so their analysis
is important for understanding the behaviour of JavaScript programs.

Improving security is among the aims of program analysis. JavaScript can
be easily extended with various application programming interfaces (APIs), and
many APIs provide access to system resources such as file systems, network con-
nections, cameras, or private user data. These resources should be protected from
harmful uses. Enforcing security policies [2,10,29] can prevent certain attacks,
although it could also limit the application developers as well. Another app-
roach can be the dynamic analysis of JavaScript code in order to detect harmful
actions. Most node.js [14] applications depend on JavaScript modules which are
downloaded from software registries such as npm [19] where anybody can upload
their code without any preliminary security checks. Injecting a vulnerability into
a dependency can cause unexpected security threats. Analyzing the call infor-
mation of a software can be used to detect harmful behaviour. One form of call
information is call graphs, which have already been successfully used for malware
detection on both mobile [8] and non-mobile systems [5] to detect both known
and unknown threats.

A call graph [21] is a directed graph which represents calling relationships
between functions of a program. Each called function has a corresponding node
in the graph and the function calls are represented by edges between nodes,
where the direction of an edge points toward the callee. Call graphs can be
constructed without executing a program or during the execution. The former
is called static call graph and it is a well-researched topic [6,7,13,16]. The latter
is called dynamic call graph and we focus on them to pave the way for dynamic
security analysis of JavaScript programs.

Another area where call graphs were successfully used is fault localiza-
tion [20,27]. Finding the reason of test failures without human intervention can
significantly reduce the time and costs for fixing issues. Call graphs can be used
to find those functions which are likely responsible for the fail and developers can
focus only on these functions. Usually, these methods compare the call graphs of
successful and unsuccessful tests and rank the functions based on the probability
of containing an implementation error.

This work is an extension of paper [12], which we improved in several ways.
We improved the call graph generators and the tool that finds the same nodes
in different call graphs. Furthermore, we compared the nodes of the generated
call graphs, not just their edges. We also extended our benchmark set to twelve
modules and these new modules revealed new differences in the call graphs. We
also investigated the performance overhead of constructing call graphs.

In this paper, we investigate the differences of dynamic call graphs con-
structed by two call graph generators. The rest of the paper is organized as
follows. In Sect. 2, we introduce the two call graph generators and describe how
we improved them. In Sect. 3, we compare the nodes and edges of the generated

288 Z. Herczeg et al.

Table 1. Running time and disk space consumed by the express module (adapted from
paper [12], p 474, Table 1).

Nodejs with nodejs-cg

tracing enabled

Running time 48 s 5 s

Disk space 161 MB 0.9 MB

call graphs on a popular JavaScript benchmark. In Sect. 4, we continue our com-
parison with call graphs generated from twelve node.js modules, and also inves-
tigate the performance overhead of call graph construction. In Sect. 5, we review
related work, and finally, conclusions and future works are discussed in Sect. 6.

2 Call Graph Generator Tools

In this section, we present two call graph generator tools, which were introduced
in paper [12]. The paper also introduced a third tool that used the Jalangi2 [23]
framework. However, Jalangi 2 only supports an outdated version of JavaScript
called ECMAScript 5.1 [3] and cannot be used for analysing newer node.js mod-
ules. In the following subsections, we describe the selected two call graph genera-
tors, which produce call graphs in different ways so their results can be validated
against each other.

2.1 Nodeprof.js Framework

The first call graph generator tool is based on nodeprof.js [25], which is a dynamic
program analysis framework for node.js applications. This framework is built on
top of the Graal-nodejs project, which allows running node.js applications using
the Graal.js [28] ECMAScript 2017 [4] compatible engine. Compared to our
earlier work [12], we use a newer version of nodeprof.js that supports a larger
subset of ECMAScript 2018 specification. The newer version also affects our
results, so they cannot be directly compared to results presented in [12]. In fact,
some changes have a large impact on them. For example, the function, which
represented all built-in functions in the previous version is removed, and the
repercussion of this removal is discussed in Sect. 3.3.

To analyze programs, nodeprof.js modifies the abstract syntax tree (AST)
representation created from JavaScript source code. The purpose of these mod-
ifications is to notify nodeprof.js when certain events (e.g., variable assignment,
function call) occure, and nodeprof.js passes these event notifications to custom
JavaScript programs called analyses.

To support existing analyses, nodeprof.js adopted the public API of Jalangi2
with minor modifications. The Jalangi2 analyses are JavaScript programs
because Jalangi2 itself is written purely in JavaScript. This analysis concept

Towards the Efficient Use of Dynamic Call Graph Generators 289

class ClassWithConstructor {

constructor(arg) {

// Prints the "arg" argument.
console.log(arg);

}

}

Fig. 1. An example for defining a class with an explicit constructor.

offers a great flexibility: analyses can subscribe to events supported by Jalangi2
and may run any JavaScript code as a response to that event. The JavaScript
code may even affect certain events, e.g., change the return value of a function.
From nodeprof.js perspective, the call graph generator is an analysis, which is
subscribed to function entry and exit events.

Unlike the other tool in this section, nodeprof.js framework modifies the AST
representation to capture events and pass these events to custom analyses.

2.2 Nodejs-cg – A Modified Node.js

The second tool is a customized node.js called nodejs-cg [15]. The V8 [9] engine is
the default JavaScript interpreter of node.js, and this engine has built-in support
for execution tracing. When tracing is enabled, the V8 engine captures when the
JavaScript exection enters or leaves a function and writes this information to the
console. Nodejs-cg replaces this tracing mechanism with a call graph generator.
The generator is mostly the same as introduced in our previous work [12], but
a few bugfixes and improvements were made.

The call graph generator records all nodes and edges when a node.js appli-
cation is executed and dumps the whole graph when node.js terminates. This
approach is much faster and requires far less space than parsing the output of
tracing. Table 1 shows that generating the call graph directly can be ten times
faster and requires a hundredth of disk space than post-processing the tracing
output. The express module referenced by the Table is among the benchmark
programs in Sect. 4.

Compared to the other generator, the call graph is directly generated by the
JavaScript engine of nodejs-cg without modifying the source code or the inter-
mediate representation. Furthermore, this tool is a pure call graph generator, it
does not support other custom analyses.

3 SunSpider Call Graphs

In this section, we compare the call graphs generated from the widely used Sun-
Spider [1] performance benchmark suite in order to examine the basic character-
istics of the generated call graphs. Version 1.0.2 of the suite contains twenty-six
programs, which are executed one-by-one by a driver application.

290 Z. Herczeg et al.

96 215 314

nodeprof.js nodejs-cg

Nodes

186 205 546

nodeprof.js nodejs-cg

Edges

Fig. 2. Number of call graph nodes and edges on SunSpider.

3.1 Node Identification

To compare multiple call graphs of the same program generated by different
tools, the same nodes need to be identified in all call graphs. This identification
can be done by assigning a unique identifier to each node, which is independent
from the current execution of the program. Such identifier can be created from
the absolute path of the file where the function is defined and the source code
location of the function start. However, the location provided by nodeprof.js and
nodejs-cg are often different: nodejs-cg gives the start of the function argument
list while nodeprof.js gives the start of the function. To identify the same nodes
in the call graphs returned by these two tools, first the locations returned by
nodeprof.js are converted to the locations that would be returned by nodejs-cg
using the source code.

A notable improvement compared to previous work [12] is that explicit con-
structor nodes are also identified as same nodes. Figure 1 shows an explicit con-
structor in JavaScript. When this constructor is called, the locations provided
by nodeprof.js and nodejs-cg are the starting position of the class keyword and
the starting position of the constructor arguments, respectively. These locations
are also converted in the call graph constructed by nodeprof.js.

We have to note that JavaScript supports dynamic script evaluation where
scripts are not stored in files, but are strings constructed at run-time. As a result,
they have no path information. Some heuristics could be designed to try and add
unique identifiers for these strings, but the identification of an element in such
a dynamic code is a complex task. Currently, all of these scripts are assigned to
a single node with <eval> identifier.

3.2 Comparison of Found Nodes and Edges

Figure 2 shows the Venn diagrams of all call graph nodes and edges encountered
during the execution of the SunSpider benchmark suite. The number of nodes
and edges found by each generator tool is shown inside a circle corresponding
to each tool. The intersection of the two circles contain the number of those
nodes and edges that are found by both tools. These are called common nodes
and edges in the rest of the paper. By contrast, unique nodes and edges that
are found by a single tool only are shown in the non-intersected regions of the
circles. If the call graphs generated by both generators had been the same, the

Towards the Efficient Use of Dynamic Call Graph Generators 291

Table 2. Call graph node and edge groups by nodeprof.js.

Group name Number of nodes Number of edges

Common 215 (69.1%) 205 (52.4%)

JS built-ins 0 (0.0%) 0 (0.0%)

Node.js init 91 (29.3%) 117 (29.9%)

Module loading 5 (1.6%) 69 (17.7%)

Total 311 (100.0%) 391 (100.0%)

Table 3. Call graph node and edge groups by nodejs-cg.

Group name Number of nodes Number of edges

Common 215 (40.7%) 205 (27.3%)

JS built-ins 17 (3.2%) 29 (3.8%)

Nodejs init 290 (54.8%) 452 (60.2%)

Module loading 7 (1.3%) 65 (8.7%)

Total 529 (100.0%) 751 (100.0%)

number of unique nodes and edges would have been zero. However, Fig. 2 shows
a large number of unique nodes and edges.

For further analysis, the nodes and edges in Fig. 2 are divided into four
groups. Tables 2 and 3 show these groups and the number of nodes and edges
that belong to these groups for the two call graph generators. The common group
represents the common nodes and edges, and its values are the same as the val-
ues in the intersected regions of the circles in Fig. 2. In the following subsections,
we focus on the other groups, which represent the differences between these two
call graphs.

3.3 JavaScript Built-ins

The first group, which contains unique nodes and edges in Tables 2 and 3 is
called JS built-ins. The ECMAScript standard defines many built-in functions [3,
Sect. 15] and some of them are used by SunSpider. For example, the string-
tagcloud.js benchmark program sorts the elements of an array with the help of
the sort() built-in method. Figure 3 shows an example for using this built-in
method.

A JavaScript engine may implement a built-in function either in JavaScript
or as a native function. (Native functions are non-JavaScript functions, which
can be called from JavaScript.) If a function is implemented in JavaScript, the
call graph generator can construct a node for it and the appropriate edges are
added to the call graph when this function is called or it calls other functions.
However, native built-in functions are often not part of the call graph, because
these functions usually do not notify the engine when they are called.

292 Z. Herczeg et al.

function compare(a, b) {

if (a < b) {

return -1;

}

return (a > b) | 0;

}

function doSort(arr) {

arr.sort(compare);

}

doSort ([3, 2, 1])

Fig. 3. An example for sorting an
array.

doSort()

InnerArraySort()

InsertionSort()

compare()

nodejs-cg

doSort()

compare()

nodeprof.js

Fig. 4. Subgraphs from Fig. 3 example.

Figure 4 shows two different subgraphs where the nodes assigned to the
doSort() and compare() functions declared in Fig. 3 are connected by a directed
path. There is a direct edge between these two nodes on the left subgraph because
the sort() function is implemented as a native function in nodeprof.js and its calls
are not tracked. Earlier versions of nodeprof.js captured the call of native func-
tions and assigned the same ∗<built-in>() source file name for them, but this
feature is removed from newer versions.

The sort() method in nodejs-cg is implemented in JavaScript and calling this
function is visible on the right subgraph of Fig. 4. This subgraph reveals that the
compare() function is indirectly called by doSort(). However, most built-ins are
also native built-ins in nodejs-cg, so these two call graph generators provide little
information about the built-in usage of a module at the moment. This situation
could be improved in the future by adding function entry/exit notifications to
native functions.

3.4 Module Initialization

The next group after JS built-ins in Tables 2 and 3 is the nodejs init group.
The nodes and edges in this group are part of every call graph regardless of the
program.

The node.js initialization process, called bootstrap, is partly implemented in
JavaScript. During bootstrap, node.js runs several core modules, which initialize
the module loading system, message queues, timers, etc. Unlike external modules,
these core modules are part of the node.js binary to ensure that they cannot be
changed and node.js can always rely on them.

As for nodejs-cg, sixty-four modules are loaded and nearly three hundred
functions are executed during the initialization process. These functions are rep-
resented as nodes in the call graph and their precise number can be seen in the
nodejs init group of Table 3. These numbers are much smaller for nodeprof.js: it
only loads nineteen modules and executes nearly a hundred functions as shown

Towards the Efficient Use of Dynamic Call Graph Generators 293

console.log(’Hello!’);

(function(exports , ...) {

console.log(’Hello!’);

})

(a) Original source code (b) Wrapped source code

Fig. 5. Example for source code wrapping.

in Table 2. The reason for these lower numbers is that nodeprof.js loads the anal-
yses at a later stage of the node.js initialization and the call graph generator
cannot capture function calls that happened before it is loaded.

3.5 Module Loading

The last group in Tables 2 and 3 is the module loading group. The number of
nodes in this group is low because a large part of the module loading system is
used during the initialization process and only a few more helper functions are
needed to load other modules.

Although SunSpider consists of only twenty-six single-file programs, there
are more than sixty edges in this group in both tables. The programs of the
SunSpider benchmark suite are loaded as modules by the test driver. The first
step of module loading is wrapping the source code into a function expression
as seen in Fig. 5. (Actually, the function expression has several arguments but
only the first one is shown in the figure and the rest are represented by ellipses.)
The wrapped source code is evaluated by the JavaScript engine of node.js which
creates an internal function from the source code and executes it. This operation
is captured by the call graph generators, and a new edge is appended to the call
graph. Because of wrapping, the internal function simply returns with another
function object. The returned function object is called by node.js later, which
makes the generators add another edge to the call graph. Therefore, at least two
new edges are created when a module is loaded, which explains the large number
of edges in the module loading group.

The conclusion of this section is that although the call graphs generated
by nodejs-cg and nodeprof.js have many common edges, they contain a large
amount of unique edges as well. For example, only twenty-seven percent of the
edges belong to the common group from the call graph generated by nodejs-
cg. This ratio is lower than the common edge ratio of nodeprof.js, where it was
around fifty percent. Hence, the call graphs constructed for the SunSpider bench-
mark suite reveal more information about the internal workings of node.js than
about SunSpider. In Sect. 4, we show how filtering can effectively reduce these
differences between call graphs.

4 Call Graphs of Real-World Programs

In the previous section, we compared the nodes and edges of multiple call graphs
generated from the SunSpider benchmark suite. We found that these call graphs

294 Z. Herczeg et al.

have a large amount of unique nodes and edges, e.g., seventy-three percent of the
edges are unique in the call graph generated by nodejs-cg. However, SunSpider
is a relatively small benchmark suite, so it would be beneficial if additional
investigation was done with other applications before drawing conclusions.

Table 4. Number of call graph nodes found by nodeprof.js and nodejs-cg.

Name All call graph nodes Module call graph nodes

nodeprof.js Common nodejs-cg nodeprof.js Common nodejs-cg

Bower 804 9604 996 1 9604 2

Doctrine 372 1954 581 7 1954 1

Eslint 571 15898 781 15 15898 17

Express 727 5239 928 0 5239 1

Hessian 437 2103 648 0 2103 1

Hexo 541 10076 749 2 10076 1

Jshint 412 2299 627 0 2299 1

Karma 828 9363 1019 0 9363 1

Mongoose 708 12508 890 2 12506 5

Pencilblue 539 6265 745 1 6265 6

Request 876 3675 1067 1 3675 3

Shields 773 9544 976 0 9544 2

0% 20% 40% 60% 80% 100%

shields
request

pencilblue
mongoose

karma
jshint
hexo

hessian
express

eslint
doctrine

bower

nodeprof.js common nodejs-cg

0% 0.5% 99.5% 100%

In this section, we compare the call graphs generated from twelve node.js
modules. Nine modules are taken from the BugsJS [11] framework while the
rest were used in a previous paper [12]. We chose the BugsJS variant of those
four modules which were presented in the previous paper and available in the
BugsJS framework as well. The BugsJS framework has one more module, called
node-redis, which is excluded from this comparison. Further details about why
this module was omitted are provided in Sect. 4.3.

Towards the Efficient Use of Dynamic Call Graph Generators 295

A()

B()

X() C()

Fig. 6. Call graph filtering problem: if the node marked with X() is removed, it cannot
be decided whether C() node is transitively called from A() or B() or both.

Each module has its own testing system, which runs node.js instances to do
the testing. The call graph generators are also working node.js binaries, which
can run these tests and construct the JavaScript call graphs at the same time.
After the testing is completed, a final call graph, which is the union of the
produced call graphs, is built. The final call graph contains all function calls
that performed during testing including the internal calls of node.js and the
JavaScript engine.

4.1 Comparison of Nodes

Table 4 shows the number of nodes recorded for each node.js module. The table
is divided into two subtables: the left half contains all encountered nodes and the
right half contains those nodes that remain after a filter is applied. Similar to
the method described in our previous work [12], the filtering is done during test-
ing and makes the generators to ignore the internal JavaScript functions of the
JavaScript engine and node.js. Although the nodes could be filtered out after the
testing is completed, this is not true for the call graph edges as shown in Fig. 6.
When the filter is applied, only the application-related functions and their rela-
tionships remain in the call graph, e.g., core module functions, functions related
to testing, and functions provided by various external dependencies installed by
the package manager.

Both halves of Table 4 are further divided into three columns. The center
column shows the number of those nodes, which are found by both nodeprof.js
and nodejs-cg, while the columns on each side contain the number of those unique
nodes which were captured by one generator only.

The values in the center columns of the two table halves are nearly always
equal, which means that the filter improves the similarity of these call graphs
because it only removes unique nodes. The exception is the mongoose module: we
observed that test cases may disappear when running the tests of mongoose and
karma modules. Further details about the missing tests is discussed in Sect. 4.3.
Nodes represent the functions belong to these tests are also missing from the
call graphs which reduces the number of common nodes.

Table 4 also reveals that several unique nodes are present in the call graphs
when the filter is not applied. However, this difference is greatly reduced, to a
single digit, after the filter is applied (except for eslint). Hence, most nodes in
the side columns of the left subtable represent internal functions of both the

296 Z. Herczeg et al.

JavaScript engine and node.js. As for eslint, it creates temporary directories and
runs JavaScript source files placed into these directories. Since the source code
of these functions is not available later, they are currently not idenitified as same
nodes in the two call graphs. More about node identification was discussed in
Sect. 3.1.

The rest of the differences will be explained in the next subsection where we
focus on the call graph edges.

Table 5. Number of call graph edges found by nodeprof.js and nodejs-cg.

Name All call graph edges Module call graph edges

nodeprof.js Common nodejs-cg nodeprof.js Common nodejs-cg

Bower 8302 12250 8734 4 18849 6

Doctrine 1751 2788 2237 12 3572 1

Eslint 8153 24093 8791 124 29436 73

Express 4023 9988 4451 0 11455 1

Hessian 2346 2503 2735 0 3399 1

Hexo 6904 15460 7578 2 19856 1

Jshint 2084 2251 2493 0 3189 1

Karma 8463 10787 8892 3 15864 2

Mongoose 9468 28889 10735 148 31859 875

Pencilblue 5358 6856 5811 4 10000 12

Request 4662 3892 5059 9 5776 9

Shields 8329 8400 9035 39 13489 259

0% 20% 40% 60% 80% 100%

shields
request

pencilblue
mongoose

karma
jshint
hexo

hessian
express

eslint
doctrine

bower

nodeprof.js common nodejs-cg

0% 2% 98% 100%

4.2 Comparison of Edges

Table 5 shows the number of edges recorded for each node.js module. Similar
to Table 4, this table is also divided into two halves: the left half contains the

Towards the Efficient Use of Dynamic Call Graph Generators 297

function f() {

return 1;

}

function* g() {

yield f();

}

function h() {

g().next();

}

h();

Fig. 7. An example for JavaScript gen-
erator functions.

function f() {

}

function r(res , rej) {

res("Resolved");

}

var p = new Promise(r);

async function g() {

await p;

f();

}

g();

Fig. 8. An example for using Promises
and await keyword.

number of all and the right half contains the number of filtered edges. The filter
is the same as in Sect. 4.1.

Following the structure of the previous subsection, we discuss the effects of
filtering first. Table 5 shows that after the filter is applied, the number of common
edges increased and the number of unique edges decreased significantly. In sixteen
out of twenty-four cases, the number of unique edges dropped to a single digit,
which is less than 0.1% of the edges in the corresponding call graph. In Sect. 4.1,
we showed that the unique nodes of the filtered call graphs are also very low,
so we can conclude that the filtered call graphs generated by nodeprof.js and
nodejs-cg are very similar.

However, there are two modules where the filtered call graphs have hundreds
of unique edges. The call graphs of the mongoose module have the most unique
edges, which is caused by JavaScript generator functions. Figure 7 shows an
example for the use of a generator function. When the g() generator function is
called, both call graph generators record a function call, although the body of
the g() function is not executed at all. Instead, an object is created, which has a
next() method. When this next() method is invoked, the body of the generator
function is executed until a yield operator is processed or the function returns.
Therefore, the f() function in Fig. 7 is called only when the next() method is
invoked and the nodejs-cg tool correctly records this as a function call from g()
to f(). On the contrary, the call graph generator based on nodeprof.js is not
aware that the execution is entered into the body of the g() function and it
records a function call from h() to f(). This difference may affect the number
of edges considerably. For example, many tests of the mongoose module are
implemented as generator functions, which call the same API functions with
various parameters. If the generator functions represent these tests are ignored,
the test driver becomes the caller of the API functions. Obviously, far less edges

298 Z. Herczeg et al.

Table 6. Performance overhead of generating call graphs.

Name Times as slow Times as slow

without filtering with filtering

nodeprof.js nodejs-cg nodeprof.js nodejs-cg

Bower 1.58 2.40 1.37 2.15

Doctrine 1.99 2.59 2.14 1.78

Eslint 2.76 8.80 2.53 8.70

Express 1.29 1.25 1.13 1.41

Hessian 1.61 4.06 1.57 3.51

Hexo 1.36 2.51 1.57 2.42

Jshint 1.71 1.79 1.50 1.63

Karma 1.20 2.30 1.20 1.14

Mongoose 1.41 2.33 1.02 2.10

Pencilblue 1.35 1.58 1.03 1.58

Request 1.52 1.45 1.03 1.17

Shields 1.60 4.45 1.55 4.15

Average 1.62 2.96 1.47 2.65

are created in this case, which explains why the call graph generated by nodejs-cg
has six times more unique edges.

The call graph generator based on nodeprof.js could be improved in the future
to detect function calls performed by generator functions. This is not a trivial
change though because nodeprof.js only provides the source code location of the
call site, not the source code location of the caller function and the generator
should search the corresponding function for each site.

The call graphs of the shields module have the second biggest number of
unique edges. However, this difference is not caused by generator functions,
although the reason is somewhat similar. The await expression suspends the
execution of an asynchronous JavaScript function until a Promise object is com-
pleted, as seen in Fig. 8. When function g() is called, it runs until the await
expression is reached and the function returns with a Promise object. The return
value of a function declared with the async attribute is always a Promise object
even if the function returns normally. When the Promise argument of the await
expression in the g() function is resolved, the g() function continues its execution
and calls the f() function. Similarly to the generator functions, the call graph
generator based on nodeprof.js is not aware that the g() function execution is
resumed, and it reports that the f() function is called by the Promise callback
executor, which leads to differences between the call graphs.

The rest of the call graph differences (both nodes and edges) are related to
some test failures and the version of node.js used by the call graph generator.
Every module in our benchmark set checks the versions of node.js and its sup-

Towards the Efficient Use of Dynamic Call Graph Generators 299

// shorthand for: let f = function () { ... }
function f() { return true; }

f = function () { return false; }

Fig. 9. An example for redirecting a JavaScript function.

ported command line options, which triggers a slightly different initialization
steps on different versions of node.js. Furthermore, there are a few test failures,
which occure only with nodeprof.js. We have disabled those tests, which caused
engine crashes, because the test systems cannot resume testing after a crash and
a large part of the call graph would be missing.

4.3 Performance Overhead

Now, we discuss the performance overhead of constructing call graphs. Table 6
shows the overhead when node.js is replaced by a call graph generator. The slow-
down is not negligible, the execution is eight times slower on eslint with nodejs-
cg. Overall, the relative slowdown on nodeprof.js is smaller, although nodeprof.js
runs around ten times slower than nodejs-cg. Not surprisingly, filtering speeds
up the call graph construction although the difference is only 10%.

Normally, the mentioned slowdown has no negative effect on testing except
for three modules from the BugsJS framework, namely mongoose, karma and
node-redis. We observed that some tests may be skipped during testing and the
nodes and edges related to these tests are also missing from the call graphs. This
issue might even occure when an unmodified node.js runs the tests, albeit rarely.
However, when the call graph generators are used, we observed more frequent
test disappearences. Usually only a few tests disappear but sometimes 80% of
the test cases are missing.

The aforementioned modules communicate with external tools: mongoose
and node-redis control a database server, and karma controls a web browser.
When an error occures during the communication, the test system captures this
error and aborts the execution of the current batch of tests. Those tests which
have not run yet are not counted as successful or failed tests, they are simply
ignored, and the test system continues the testing with the next batch of tests.
As for mongoose and karma modules, the call graph generators can often run
nearly all of their tests successfully, but node-redis looses its network connection
way too frequently so we decided to omit this module from the comparison.
We suspect that the overhead of call graph construction causes this issue since
node-redis runs several timing sensitive tests.

5 Related Work

Call graphs can be constructed statically or dynamically. Several tools are avail-
able for generating static call graphs from JavaScript code [6,7,13,16]. They can

300 Z. Herczeg et al.

process JavaScript code regardless of the target platform, which can be a web
browser, node.js, or anything else. However, their precision is limited because
JavaScript is a highly dynamic language. Functions are objects, so they can be
kept in any JavaScript value. Even when a function is declared with a name it
is just a shorthand for assigning that function object to a local variable and this
variable can be changed later, as seen in Fig. 9. Tracking which variable refers
to which function object can be difficult for static analyzers.

Some static analyzers try to improve their prediction by supporting well-
known APIs. For example, the event emitter API of node.js allows emitting
named events, and these events can be captured by listener functions. The lis-
tener functions activated by a named event can be predicted statically [17] as
long as certain conditions apply, e.g. the names of the events are string literals.

Besides nodeprof.js, there are other frameworks [18,23], which can be
extended with dynamic call graph generators. They provide an API to cap-
ture events and run custom JavaScript code as a response. Although nodeprof.js
provides an example analysis for generating call graphs, it connects call sites to
called functions rather than two functions. Strictly speaking, this analysis is not
a call graph generator.

There is a dynamic call graph generator [26] for web applications. They run
the tests of a web application and collect method level execution traces. From
these traces they build a call graph. Compared to our work, they focus on browser
based web applications rather than node.js.

6 Summary

In this paper, we have compared two dynamic call graph generator tools. One
of them is using the nodeprof.js framework, while the other is a modification
of nodejs. These generator tools were originally introduced in paper [12], but
we have improved both of them. We have also enhanced the node identification
process to support the correct pairing of explicit class constructors.

First, we compared the generated call graphs for the SunSpider benchmark
suite. Similarly to [12], we have found that a large number of edges are unique
in these call graphs. We have shown that this is true for nodes as well. We have
validated the unique nodes and edges by hand, and organized them in groups.
We have compared these groups and explained the reason of their differences
between call graphs.

To extend our comparison, we have compiled a set of modules from the
BugsJS dataset and the modules used in [12]. We compared the call graphs gen-
erated for this module set with and without applying a filter. Compared to [12],
we have identified new sources of differences. JavaScript supports suspending
the execution of functions and the generators are handled differently when the
execution of a function is resumed. We have also investigated the runtime over-
head of the call graph generators and found that it can slow down the execution
up to eight times. Due to this slowdown, unexpected test failures are more fre-
quent for those modules which control external tools, e.g., database servers or
web browsers.

Towards the Efficient Use of Dynamic Call Graph Generators 301

One direction for future work is fixing the known issues of the tools: improve
the performance of the call graph generators (e.g., by caching the last seen edges),
or support resuming function execution in the nodeprof.js-based call graph gen-
erator. We also plan to support the comparison of dynamic code evaluation and
JavaScript code stored in temporary files.

Another direction for extending this research is to use the call graphs for
detecting unusual program activities or for performing fault localizations. We
also plan to generate and investigate more detailed call information, e.g., call
chains.

Acknowledgments. This research was supported by the EU-supported Hungarian
national grant GINOP-2.3.2-15-2016-00037 and by grant TUDFO/47138-1/2019-ITM
of the Ministry for Innovation and Technology, Hungary.

References

1. Apple: SunSpider benchmark suite. https://webkit.org/perf/sunspider/sunspider.
html

2. Bielova, N.: Survey on JavaScript security policies and their enforcement mecha-
nisms in a web browser. J. Log. Algebraic Program. 82(8), 243–262 (2013). https://
doi.org/10.1016/j.jlap.2013.05.001

3. Ecma International: ECMAScript Language specification 5.1 edition (2011).
https://www.ecma-international.org/ecma-262/5.1

4. Ecma International: ECMAScript 2017 language specification (2017). https://
www.ecma-international.org/ecma-262/8.0

5. Elhadi, A., Maarof, M., Hamza Osman, A.: Malware detection based on hybrid
signature behaviour application programming interface call graph. Am. J. Appl.
Sci. 9, 283–288 (2012)

6. Feldthaus, A., Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Efficient construction
of approximate call graphs for JavaScript IDE services. In: Proceedings of the 2013
International Conference on Software Engineering (ICSE 2013), pp. 752–761. IEEE
Press (2013)

7. Fink, S., Dolby, J.: WALA-The TJ Watson Libraries for Analysis (2012). http://
wala.sourceforge.net

8. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of Android
malware using embedded call graphs. In: Proceedings of the 2013 ACM Work-
shop on Artificial Intelligence and Security (AISec 2013), pp. 45–54. ACM (2013).
https://doi.org/10.1145/2517312.2517315

9. Google: V8 JavaScript engine. https://developers.google.com/v8/
10. Guarnieri, S., Livshits, V.B.: Gatekeeper: mostly static enforcement of security and

reliability policies for JavaScript code. USENIX Secur. Symp. 10, 78–85 (2009)
11. Gyimesi, P., et al.: BugsJS: a benchmark of JavaScript bugs. In: 12th IEEE Interna-

tional Conference on Software Testing, Verification and Validation (2019). https://
github.com/bugsjs

12. Herczeg., Z., Lóki., G.: Evaluation and comparison of dynamic call graph generators
for JavaScript. In: Proceedings of the 14th International Conference on Evaluation
of Novel Approaches to Software Engineering - (ENASE 2019), vol. 1, pp. 472–479.
INSTICC, SciTePress (2019). https://doi.org/10.5220/0007752904720479

https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://doi.org/10.1016/j.jlap.2013.05.001
https://doi.org/10.1016/j.jlap.2013.05.001
https://www.ecma-international.org/ecma-262/5.1
https://www.ecma-international.org/ecma-262/8.0
https://www.ecma-international.org/ecma-262/8.0
http://wala.sourceforge.net
http://wala.sourceforge.net
https://doi.org/10.1145/2517312.2517315
https://developers.google.com/v8/
https://github.com/bugsjs
https://github.com/bugsjs
https://doi.org/10.5220/0007752904720479

302 Z. Herczeg et al.

13. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

14. Joyent: Node.js JavaScript runtime. https://nodejs.org/
15. Lóki, G., Herczeg, Z.: Dynamic call graph generators for JavaScript. https://

github.com/szeged/js-call-graphs/tree/call-graphs (2019)
16. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript appli-

cations in the presence of frameworks and libraries. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pp. 499–509. ACM (2013)

17. Madsen, M., Tip, F., Lhoták, O.: Static analysis of event-driven node.js JavaScript
applications. SIGPLAN Not. 50(10), 505–519 (2015). https://doi.org/10.1145/
2858965.2814272

18. Maier, F.: Iroh a dynamic code analysis for JavaScript (2017). https://maierfelix.
github.io/Iroh/

19. npm Inc.: npm public registry. https://www.npmjs.com/
20. Ren, X., Ryder, B.G.: Heuristic ranking of java program edits for fault localization.

In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis (ISSTA 2007), pp. 239–249. ACM, New York (2007). https://doi.org/10.
1145/1273463.1273495

21. Ryder, B.: Constructing the call graph of a program. IEEE Trans. Softw. Eng. 5,
216–226 (1979). https://doi.org/10.1109/TSE.1979.234183

22. Samsung, University of Szeged: JerryScript: A JavaScript engine for internet of
things. https://jerryscript.net/

23. Sen, K., Sridharan, M., Adamsen, C.Q.: Jalangi2 dynamic analyses framework for
JavaScript (2015). https://github.com/Samsung/jalangi2

24. Stack Overflow: Stack Overflow annual developer survey (2019). https://insights.
stackoverflow.com/survey/2019

25. Sun, H., Bonetta, D., Humer, C., Binder, W.: Efficient dynamic analysis for node.js.
In: Proceedings of the 27th International Conference on Compiler Construction
(CC 2018), pp. 196–206. ACM (2018). https://doi.org/10.1145/3178372.3179527

26. Toma, T.R., Islam, M.S.: An efficient mechanism of generating call graph for
JavaScript using dynamic analysis in web application. In: 2014 International Con-
ference on Informatics, Electronics Vision, pp. 1–6, May 2014. https://doi.org/10.
1109/ICIEV.2014.6850807

27. Turhan, B., Kocak, G., Bener, A.: Software defect prediction using call graph based
ranking (cgbr) framework. In: Proceedings of the 2008 34th Euromicro Conference
Software Engineering and Advanced Applications (SEAA 2008), pp. 191–198. IEEE
Computer Society, Washington, DC, USA (2008). https://doi.org/10.1109/SEAA.
2008.52

28. Wuerthinger, T., et al.: Practical partial evaluation for high-performance dynamic
language runtimes. ACM SIGPLAN Not. 52, 662–676 (2017). https://doi.org/10.
1145/3140587.3062381

29. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser
security. SIGPLAN Not. 42(1), 237–249 (2007). https://doi.org/10.1145/1190215.
1190252

https://doi.org/10.1007/978-3-642-03237-0_17
https://nodejs.org/
https://github.com/szeged/js-call-graphs/tree/call-graphs
https://github.com/szeged/js-call-graphs/tree/call-graphs
https://doi.org/10.1145/2858965.2814272
https://doi.org/10.1145/2858965.2814272
https://maierfelix.github.io/Iroh/
https://maierfelix.github.io/Iroh/
https://www.npmjs.com/
https://doi.org/10.1145/1273463.1273495
https://doi.org/10.1145/1273463.1273495
https://doi.org/10.1109/TSE.1979.234183
https://jerryscript.net/
https://github.com/Samsung/jalangi2
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1109/ICIEV.2014.6850807
https://doi.org/10.1109/ICIEV.2014.6850807
https://doi.org/10.1109/SEAA.2008.52
https://doi.org/10.1109/SEAA.2008.52
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/1190215.1190252
https://doi.org/10.1145/1190215.1190252

Comparison of Computer Vision
Approaches in Application to the
Electricity and Gas Meter Reading

Maria Spichkova(B), Johan van Zyl, Siddharth Sachdev, Ashish Bhardwaj,
and Nirav Desai

School of Science, RMIT University, Melbourne, Australia
maria.spichkova@rmit.edu.au

Abstract. This chapter presents comparison of computer vision
approaches in application to the meter reading process for the standard
(non-smart) electricity and gas. In this work, we analyse four techniques,
Google Cloud Vision, AWS Rekognition, Tesseract OCR, and Azure’s
Computer Vision. Electricity and gas meter reading is a time consuming
task, which is done manually in most cases. There are some approaches
proposing use of smart meters that report their readings automatically.
However, this solution is expensive and requires both replacement of the
existing meters, even when they are functional and new, and extensive
changes of the whole meter reading system dealing.

Keywords: Software engineering · Computer vision · Google Cloud
Vision · Aws Rekognition

1 Introduction

To collect readings of gas and electricity meters manually is a time-consuming
task. For that reason we conducted a project in collaboration with Energy Aus-
tralia, which is an electricity and gas retailing private company that supplies
electricity and natural gas to more than 2.6 million residential and business cus-
tomers throughout Australia. Their current solution involves consumers using
updating their utility reading through using an online portal, which is inconve-
nient for consumers as they (1) need to provide intricate entry details, (2) are
required to calculate their utility reading from their meter. Our goal was to anal-
yse the possibility of providing a convenient alternative method for their current
meter reading updating system. The proposed solution is to use computer vision
techniques for capturing readings.

One of the alternative solutions would be to use smart meter readings. There
are many approaches elaborating on the advantages of smart devices for several
types of utilities, see e.g., [5,15,55]. The core property of the smart meters is
the ability to record energy consumption and to send the corresponding data
automatically to the electricity supplier for monitoring and billing purposes. This
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 303–318, 2020.
https://doi.org/10.1007/978-3-030-40223-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_15

304 M. Spichkova et al.

solution is definitely useful and has many advantages, including the potential to
increase the sustainability of the energy consumption. The core disadvantage
of this solution is its costs. For example, the costs of the transition program
for Australia were estimated to be a total of $ 1.6 billions. In Australia, the
customers have to pay for the upgrade to a smart version from the non-smart
meters, which they are currently using: different energy providers may have
different approaches to how they charge their customers for this change – either
as a lump sum that is added to the first bill after the upgrade or a higher monthly
fee. This leads to the situation that many customers prefer to avoid the upgrade.
On the other hand, the use of smart meters raised privacy concerns: as the smart
meters typically record energy consumption on the hourly basis or even more
frequently, and report it to the system at least daily, this information might be
used to identify whether the residences are at home or not, etc., which is seen
by some consumers as privacy violation.

By the above reasons, many countries delay the transition to the smart meter
systems or purpose a partial transition, even when the smart meters cold help
to have a more sustainable energy consumption. For example, an analysis of on
vulnerability and resistance in the United Kingdom’s smart meter transition was
presented in [38], where an analysis of acceptance and engagement with smart
meters in the United States was discussed in [6]. Thus, until the transition to
the smart meters is completed, another solution is required. In our project, we
investigated the possibility of application computer vision techniques to allow
for an easy way for customers to upload meter readings to their system. The
proposed solution is to use a mobile application for capturing readings, a cloud-
system to manage readings and a blockchain technology, see [30,45,56], to store
reading securely.

Research Embedded in Teaching: The system was elaborated within a research
project at the RMIT University (Melbourne, Australia) under the initiative
Research embedded in teaching, see [36,42]. The aim of this initiative is to
encourage curiosity of Bachelor and Master students to the research in Com-
puter Science, IT and Software Engineering. We include research and analysis
components as a bonus task within the Software Engineering projects (SEPs)
conducted in collaboration with industrial partners. The largest student cohorts
were presented by the following courses:

– COSC 2616 Postgraduate Software Engineering Project, taught for Master of
IT and Master of Computer Science students), and

– COSC 2410/ 2411 Software Engineering Project, taught for the Bachelor of
Software Engineering students.

Short research projects have been sponsored by industrial partners and focused
on the topics related to the project to conduct within semester. These have to be
conducted after the semester end, focusing on research prospective and deeper
analysis of the semester task, see for example [12–14,21,39–41,44].

Contributions: The results presented in this chapter extend our work intro-
duced at the 14th International Conference on Evaluation of Novel Software

Comparison of Computer Vision Approaches 305

Approaches to Software Engineering [43]. This current results introduce the
improved architecture and implementation details of the proposed solution, as
well as the comparison of several computer vision technologies, Google Cloud
Vision1, Amazon Web Services (AWS) Rekognition2, Tesseract OCR [37], and
Azure’s Computer Vision3, applied for recognition in utility meter readings. As
the majority of the currently used meters have digital displays (the old ver-
sions were of dial type) we focused on this type of displays as well as on digit
recognition analysis.

Outline: The rest of the chapter is organised as follows. The proposed comparison
methodology as well as the results of the conducted study to compare the AWS
Rekognition and Google Cloud Vision technologies, are introduced in Sect. 2.
Section 3 introduces the results of the conducted study on Tesseract OCR and
Azure’s Computer Vision. The proposed system is presented in Sect. 4, where
Sect. 5 discusses related work. Finally, Sect. 6 summarises the paper and proposed
future work directions.

2 Case Study: AWS and Google Solutions

We analysed two computer vision technologies, AWS Rekognition vs. Google
Cloud Vision in application to the data sets specific to the meter reading. The
data sets were elaborated taking into account also specific challenges that we
have to deal within this application domain, which include reflection from the
meters’ glass, clipped digits, additional text on the meter that does not belong to
the actual meter reading, blur, noise, as well as cases, where a meter has digital
representation style for some readings but dial representation for other. These
challenges are discussed in details in Sect. 2.1.

The accuracy of recognition was calculated according to the standard formula
(we measure the accuracy in percents, where 100% means a totally accurate
recognition):

Accuracy =
CorrectResults

Total
∗ 100 (1)

where
CorrectResults is the number of results that match with the original readings
completely,
Total presents the total number of images in data set. In our study, we had 30
images in each of the data sets.

The results of the comparison are then discussed in Sect. 2.2.

2.1 Data Sets

Images for the evaluation data set were selected based on their “uniqueness” –
images with unique meters or images with unique lighting. A total of 30 images
1 https://cloud.google.com/vision.
2 https://aws.amazon.com/rekognition.
3 https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision.

https://cloud.google.com/vision
https://aws.amazon.com/rekognition
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision

306 M. Spichkova et al.

Fig. 1. Blurring effect: (a) 30BLUR, (b) 60BLUR, (c) 90BLUR.

were selected. This set of images were duplicated and modified with various
effects in order to test the limitations of the different technologies. These effects
are:

– Scaling: The data set was scaled in steps of 0.1 ranging from a scale of 0.1 to
0.9 (10% to 90%) of the original data set.

– Blurring: Blurring was done in steps of 10 from 10 to 90 with an open
source blur algorithm that is based on the normalised box filter, see [32]. The
algorithm uses a normalised box filter, the numeral value adjusts the kernel
size. Figure 1(a)–(c) present examples of blurring application with 30BLUR,
60BLUR, and 90BLUR, respectively.

– Gamma: The gamma algorithm was used with an open source lookup table
algorithm [32]. The gamma correction to simulate different lightning condi-
tions. Figure 2(a)–(c) present examples of gamma algorithm application with
0.25GAMMA, 1.5GAMMA, and 3.0GAMMA, respectively.

– Noise: The noise algorithm is based upon the salt and pepper noise algorithm
that adds sharp and sudden disturbances in the image in the form of sparsely
occurring white and black pixels, see [22]. This algorithm was included to
further test the performance of the various technologies as noise arguably
emulates “dirt” on meters.

Fig. 2. Gamma correction effect: (a) 0.5GAMMA, (b) 1.5GAMMA, (c) 3.0GAMMA.

Comparison of Computer Vision Approaches 307

2.2 Discussion of the Comparison Results

Figure 3 summarises the comparison of the case study results for Google Cloud
Vision and AWS Rekognition. The bar Original presents the recognition results
for the original data set. For this case, Google Cloud Vision has performed
slightly better than AWS Rekognition having a 3% higher accuracy. In the rest
of the section we discuss the comparison of the data sets in details. Nevertheless,
the achieved accuracy is definitely not enough for fully stable solution, which
makes it necessary to search for further techniques and to provide an option for
a manual adjustment of the recognised data.

Fig. 3. Accuracy comparison: AWS Recognition and Google Cloud Vision.

Scale Data set: There is a variation of 10% in the accuracy of the two models.
AWS Rekognition has an overall higher efficiency than Google Cloud Vision with
the former performing 10% better than the latter in every iteration. As the value
of scaling is increased, accuracy is also increasing.

Gamma Dataset: The variation between the two, in this case, is almost negligible,
as both provide an accuracy of approx. 40%. SP Dataset: AWS Rekognition
outperforms Google Cloud Vision with over 20% margin in accuracy. As the
value of SP increases, so does the accuracy.

Blur Dataset: This dataset proved to be a challenge for both the models, with
AWS Rekognition reaching a top accuracy of 50% whereas the Google Cloud
Vision only reached around 37% when blur level is 10. It dropped down to
almost 0% when it reached around 40% blur in Google Cloud Vision and 90%
blur in the case of AWS Rekognition. Even with higher blurred images, AWS
Rekognition is able to detect some readings, unlike Google Cloud Vision where
accuracy is 0%.

Thus, on average, AWS Rekognition was able to perform approx. 7% better
than Google Cloud Vision when same data set was provided.

308 M. Spichkova et al.

3 Case Study: Tesseract OCR and Azure’s Computer
Vision

As we were not fully satisfied with the results of the first case study, we decided
to investigate two other techniques, Tesseract OCR, an optical character recog-
nition (OCR) engine [37], and Azure’s Computer Vision4.

The applied version of the Tesseract OCR was an untrained version 4.0. Thus,
at the beginning of the case study, Tesseract 4.0 OCR was used to recognise
digits from utility meters. Without training the OCR, it provided no results in
recognising the images from the input dataset for utility meters, see Figure 4.
However, in application to the computer generated images, Tesseract was able
to identify the text with a very high accuracy.

Fig. 4. Failed recognition of the utility meters’ photos using Tesseract.

To analyse the results provided by the Azure’s Computer Vision, we applied
the methodology proposed in Sect. 2. The limitation of the Computer Vision is
that it can process only images up to 4 MB in size, which is a huge drawback
compared to other cloud technologies like, e.g., Google Cloud Vision that has the
limitation of 20MB for APIs and 10MB for JSON Objects. Thus, all the images
were scaled to 1000 pixels with and relative height, before the calls to the API
were made. The analysis of the data demonstrated that all results were fully
or partially incorrect, which means 0% accuracy. In many cases, results were
either non numeric or was not received at all, which is considered as technology
failure for this application domain. To improve the results of image recognition,
we also applied several image filtering techniques, which allowed us to improve
the results slightly, but the overall accuracy was still 0%.

Thus, both techniques Tesseract OCR and Azure’s Computer Vision were
considered as inappropriate to our application domain.

4 Proposed System

Figure 5 presents the proposed process of using the elaborated system, where the
high-level system architecture is presented in Fig. 6.

4 https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision.

https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision

Comparison of Computer Vision Approaches 309

Fig. 5. Proposed process.

Fig. 6. Proposed high-level system architecture.

Fig. 7. Solution architecture.

Figure 7 presents the solution architecture for the proposed system, where
computer vision approaches are applied to capture meter readings using mobile
phones. These readings should then be passed on to the core system to update
consumer utility-charges accordingly. Consumers should then be able to view
their renewed charges and usages in an internet browser. Thus, the mobile appli-
cation is used to capture, upload and store an image of the meter to the system.
The system will then analyse this image to identify meter readings and return the
readings’ values back to the user for confirmation. Once the user has confirmed
the meter reading, it will be stored on a blockchain.

The proposed system has two core components providing interfaces for two
user types:

– an Android application developed for customers; the application was built
using React Native, which provides cross-platform compatibility between
Android and iOS platforms (thus, development of an iOS version of the app
will be less time-consuming);

310 M. Spichkova et al.

– a Web application developed using ReactJS for admin users to audit the
meter readings.

Mobile application and web application acts as a clients and call back-end APIs
(application programming interfaces) running of Spring Boot. Which is deployed
on Amazon Web Services Elastic Beanstalk [35]. AWS Elastic Beanstalk reduces
complexity without restricting choice or control, as it automatically handles the
details of capacity provisioning, load balancing, scaling, and application health
monitoring.

Figure 8 presents an examples of the mobile application pages.

Fig. 8. Mobile application (Customer View): capturing an image of a meter, scanning
the image, and confirming the results.

Spring Boot APIs are secured using JSON Web Token OAuth 2.0 security.
The back-end uses PostgreSQL and Hyperledger Blockchain5 to store data. Ama-
zon Web Services (AWS) Rekognition is used to get the meter reading from the
meter image. The choice of the computer vision technology is justified by the
study presented in Sects. 2 and 3.

When a customer using the mobile application clicks an image of the meter
(the application uses viewfinder technology as shown in Fig. 8), a Spring Boot
API will be called to filter out the meter readings from the image and to forward
the result to AWS Rekognition, which returns all the text at the Spring Boot
level. Figure 9 presents an algorithm we elaborated to filter out all irrelevant
data and return only the relevant results back to the mobile application. The
API takes the image URL and the storage bucket (S3) name from the client
and returns the meter reading. Firstly, image is fetched from the URL and the
bucket name, then the image is passed to the AWS Rekognition library, which is
applied to identify all the text on the image. The algorithm further filters out all
irrelevant text by considering the user’s last meter reading or the initial meter

5 https://www.hyperledger.org.

https://www.hyperledger.org

Comparison of Computer Vision Approaches 311

Fig. 9. Results refinement algorithm for image recognition [43].

reading, which was added to the system when the corresponding account was
created. If the algorithm unable to return the scanned meter reading, it simply
returns the last meter reading to the user, so that user has to change only the
minimal number of digits.

If the customer is satisfied with the image recognition results, the customer
submits the meter reading, thus, another API will be called which stores the
immutable data into Blockchain and mutable data into PostgreSQL database.
The administrator can use the Web application to audit the meter readings at
any time. Web application also calls Spring Boot APIs to get all customer details
and their meter readings.

The blockchain also contains an interface from which the cloud-system can
interact with. The cloud-system provides a portal for administrators, where they
can review customer meter readings through displaying previously uploaded
images along with their respective geo-location coordinates. These features pro-
vide Energy Australia with a manual method of detecting falsified readings.

The blockchain component consists of three nodes, see Fig. 10: Customer
Node, EA (Energy Australia) Node and Orderer Node; deployed using docker
containers on three individual EC2 instances running on Ubuntu 16.04 Xenial
Xerus. The peers are part of the Fabric and represent the node on the blockchain.
Each Node has its own version of the Ledger using LevelDB. Each node also
consists of MSP (Membership service provide) docker container used to provide
signatures and certificates to new joining entities. Node.js is used on all the
instances to expose the APIs for backend to interact with the Network.

312 M. Spichkova et al.

Fig. 10. Blockchain architecture [43].

When an update is made to the meter reading by a customer, it is sent by the
customer node to the channel for verification. The EA node in this case acts as
an endorser to verify the validity of the transaction. The requested transaction
is executed on the endorsers’ version of the ledger. Once it is successful, the
transaction for meter reading update is signed and sent back to the customer
node. This signed transaction is then sent to Orderer. Orderer will verify the
endorsed signature and wait for the next block to come up. Once a block is
available it will update the meter reading and attach this block to the ledger.
The block is then sent to all the nodes for inclusion in the Ledger.

Docker6 containers were used to launch the instances on to AWS EC2
instances. In this case, a docker container consist of six docker images: for
Customer, for EA (Energy Australia), for Orderer, for Chaincode, for EAMSP
(Energy Australia Membership Service Provider) and for Customer Membership
Service Provider. The Chaincode docker consists of the channel on which the
nodes are interacting and the latest version of Chaincode installed and instanti-
ated. A simple web page is hosted to display the amount of transaction that have
been committed to the ledger along with other network specifications. A shell
bash script was written for each AWS EC2 instance to quickly generate all the
artefacts required for Blockchain, to quickly setup and tear down the network
for testing and development and finally for deployment.

6 https://www.docker.com.

https://www.docker.com

Comparison of Computer Vision Approaches 313

5 Related Work

The research on automated and remote meter reading was actively conducted
over the last 20 years. A number of corresponding patents is available. For
example, an automated meter reading system with distributed architecture was
patented by [25]. This system aims to collect and manage data from energy
meters and route this data automatically to upstream systems for a further
analysis.

A automatic meter reading data communication system was patented by
[31]. It has an integrated digital encoder and two-way wireless transceiver that
is attachable to a wide variety of utility meters for meter data collection and
information management. Many other systems with similar ideas were patented
[16,24,27], but the research area is still very active, see e.g., [23,48].

However, the majority of works in this area last years focus on the following
aspects:

– Application of the data mining and data analytics techniques on the meter
reading data.
Thus, an electricity consumption analysis was presented in [33]. The approach
focuses on for consumers, and applies to meter reading data several data
mining techniques.
An approaches to recognise energy theft based on the analysis of meter data
was proposed in [49].
The load profiles of energy consumption to infer household characteristics
using smart meters were analysed in [20].

– Design of smart energy meter for the smart grid, where a smart greed is a next
generation power grid having a two-way flow of electricity and information,
see [52] for more details on smart grids.
An overview of typical smart meter’s aspects and functions wrt. smart grid
aspects was presented in [55].
A survey on the energy meters evolution in smart grids was presented in [3].
An approach on the energy theft detection with energy privacy preservation in
the smart grid was introduced in [54]. Communication network requirements
for smart grid applications were analysed in [28].
An approach on automatic meter reading in the smart grid using contention
based random access over the free cellular spectrum was proposed in [50].
A study on design and development of smart energy meter for the smart grid
was described in [2].

– Privacy and security aspects of smart meters are studied especially inten-
sively over the last years, as the privacy and security concerns provide one of
the biggest obstacles for the (potential) users of smart meters.
A security protocol for advanced metering infrastructure in smart grid was
proposed in [51]. A theoretical framework to analyse privacy aspects of smart
meters was introduced in [34].
The question on what the consumption patterns derived using the smart
meters might say about the consumers, was discussed in [1] and [4].

314 M. Spichkova et al.

An approach for non-intrusive occupancy monitoring using smart meters
was discussed in [8]. This work aimed to implement energy-efficiency opti-
mizations based on the information of home’s occupancy. Other approaches
for occupancy detection from electricity consumption data were proposed in
[11,26,29,53] and [47].
A solution to increase the smart meter privacy through energy harvesting and
storage devices was suggested in [46].
The influence of data granularity on smart meter privacy was analysed in
[18]. The authors also analysed what granularity should be used to prevent
the interference of personal data from load profiles by using non-intrusive
appliance load monitoring methods. Another approach for preventing occu-
pancy detection from smart meters was proposes in [9,10].
A set of use cases for Smart Metering was elaborated in [19].
A study on holiday detection from energy consumption data based on low-
resolution smart meter data was presented in [17].
A study where swimming pools were detected through their filter pumps in
load data with the 15 min granularity prescribed by the European Union for
smart meters, was presented in [7]. It demonstrated how vulnerable the pri-
vate information might be through access to the meter readings data.

6 Conclusions

In this chapter, we presented the core results of a research project conducted
in collaboration with Energy Australia, an Australian electricity and gas retail-
ing company. The project was conducted at the RMIT University (Melbourne,
Australia) under the initiative Research embedded in teaching, which aim is to
familiarise Bachelor and Master students with the applied research in Computer
Science, IT and Software Engineering, and encourage their curiosity for these
topics.

The goal of our project was to provide a convenient alternative method for
their current meter reading updating system focusing on non-smart meters. We
conducted a study to compare four approaches: Google Cloud Vision, AWS
Rekognition, Tesseract OCR, and Azure’s Computer Vision, where the last two
were found completely inappropriate for our application domain. Google Cloud
Vision and AWS Rekognition, applied for recognition in utility meter readings.
The study demonstrated that AWS Rekognition provides better results for our
application domain. Thus, AWS Rekognition was applied within the proposed
system.

The developed system applies computer-vision technology to identify the
meter readings automatically and has two interfaces:

– a mobile application for customers to allow for automated capturing meter
readings and managing the account details and the essential details on the
electricity and gas meters belonging to the customer;

– a web application for administrators to allow for management customers’
accounts and the details on the electricity and gas meters, including the geo-
location of the meters.

Comparison of Computer Vision Approaches 315

Future Work: We consider two directions for our future work. First of all, as the
average accuracy values of Google Cloud Vision and AWS Rekognition applied
for recognition in utility meter readings were not high, we would like to fins a
solution that would provide a higher accuracy. We consider to conduct a study
to analyse further technologies in application to the utility meter readings, for
example an open-source solution Tensorflow and a commercial solution Anyline.
We also consider extending the proposed system to allow incorporation of data
from smart meters.

Acknowledgements. We would like to thank Shine Solutions Group Pty Ltd for
sponsoring this project under the research grant RE-03615. We also would like to
thank Energy Australia for collaboration in this project. We also would like to thank
the experts from the Shine Solutions Group, especially Aaron Brown and Alan Young
for numerous discussions as well as their valuable advice and feedback.

References

1. Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consump-
tion says about you. IEEE Trans. Power Syst. 28(4), 4019–4030 (2013)

2. Arif, A., Al-Hussain, M., Al-Mutairi, N., Al-Ammar, E., Khan, Y., Malik, N.:
Experimental study and design of smart energy meter for the smart grid. In: 2013
International Renewable and Sustainable Energy Conference (IRSEC), pp. 515–520
(2013)

3. Avancini, D.B., Rodrigues, J.J., Martins, S.G., Rabêlo, R.A., Al-Muhtadi, J., Solic,
P.: Energy meters evolution in smart grids: a review. J. Cleaner Prod. 217, 702–715
(2019)

4. Beckel, C., Sadamori, L., Staake, T., Santini, S.: Revealing household characteris-
tics from smart meter data. Energy 78, 397–410 (2014)

5. Benzi, F., Anglani, N., Bassi, E., Frosini, L.: Electricity smart meters interfacing
the households. IEEE Trans. Ind. Electron. 58(10), 4487–4494 (2011)

6. Bugden, D., Stedman, R.: A synthetic view of acceptance and engagement with
smart meters in the united states. Energy Res. Soc. Sci. 47, 137–145 (2019)

7. Burkhart, S., Unterweger, A., Eibl, G., Engel, D.: Detecting swimming pools in 15-
minute load data. In: 17th IEEE International Conference on Trust, Security and
Privacy in Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 1651–1655.
IEEE (2018)

8. Chen, D., Barker, S., Subbaswamy, A., Irwin, D., Shenoy, P.: Non-intrusive occu-
pancy monitoring using smart meters. In: Proceedings of the 5th ACM Workshop
on Embedded Systems For Energy-Efficient Buildings, pp. 1–8. ACM (2013)

9. Chen, D., Irwin, D., Shenoy, P., Albrecht, J., et al.: Combined heat and privacy:
preventing occupancy detection from smart meters. In: 2014 IEEE International
Conference on Pervasive Computing and Communications (PerCom), pp. 208–215.
IEEE (2014)

10. Chen, D., Kalra, S., Irwin, D., Shenoy, P., Albrecht, J.: Preventing occupancy
detection from smart meters. IEEE Trans. Smart Grid 6(5), 2426–2434 (2015)

11. Chen, Z., Jiang, C., Xie, L.: Building occupancy estimation and detection: a review.
Energy Build. 169, 260–270 (2018)

316 M. Spichkova et al.

12. Christianto, A., et al.: Enhancing the user experience with vertical transportation
solutions. Proc. Comput. Sci. 126, 2075–2084 (2018)

13. Chugh, R., et al.: Automated gathering and analysis of cannabinoids treatment
data. In: 23st International Conference on Knowledge-Based and Intelligent Infor-
mation & Engineering Systems. Elsevier Science Publishers BV (2019). p. (to
appear)

14. Clunne-Kiely, L., et al.: Modelling and implementation of humanoid robot
behaviour. In: 21st International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, pp. 2249–2258. Elsevier Science Publishers
BV (2017)

15. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., Gudi, N.: Smart meters for power
grid. challenges, issues, advantages and status. In: 2011 IEEE/PES Power Systems
Conference and Exposition, pp. 1–7. IEEE (2011)

16. Ehrke, L.A., Nap, K.A., Dresselhuys, D.R.: Electronic electric meter for networked
meter reading (2003). US Patent 6,538,577

17. Eibl, G., Burkhart, S., Engel, D.: Unsupervised holiday detection from low-
resolution smart metering data. In: 4th International Conference on Information
Systems Security and Privacy (ICISSP), pp. 477–486 (2018)

18. Eibl, G., Engel, D.: Influence of data granularity on smart meter privacy. IEEE
Trans. Smart Grid 6(2), 930–939 (2015)

19. Eibl, G., Engel, D., Neureiter, C.: Privacy-relevant smart metering use cases. In:
2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1387–
1392. IEEE (2015)

20. Fahim, M., Sillitti, A.: Analyzing load profiles of energy consumption to infer
household characteristics using smart meters. Energies 12(5), 773 (2019)

21. Gaikwad, P., Jayakumar, C., Tilve, E., Bohra, N., Yu, W., Spichkova, M.: Voice-
activated solutions for agile retrospective sessions. In: 23st International Conference
on Knowledge-Based and Intelligent Information & Engineering Systems, Elsevier
Science Publishers BV (2019). p. (to appear)

22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (2001)

23. Grady, B.D., Vaswani, R., Pace, J.: Method and system of reading utility meter
data over a network (2016). US Patent 9,464,917

24. Jenney, W.P., Szydlowski, L.G., Ferguson, R.D., Potaczala, C.A.: Automatic meter
reading system (1999). US Patent 5,897,607

25. Kelley, R.H., Carpenter, R.C., Lunney, R.H., Martinez, M.: Automated meter read-
ing system (2000). US Patent 6,088,659

26. Kleiminger, W., Beckel, C., Staake, T., Santini, S.: Occupancy detection from elec-
tricity consumption data. In: Proceedings of the 5th ACM Workshop on Embedded
Systems For Energy-Efficient Buildings, pp. 1–8. ACM (2013)

27. Knight, N.E., Banks, D.M.: Remote meter reading system (1998). US Patent
5,852,658

28. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: Communication network require-
ments for major smart grid applications in HAN, NAN and WAN. Comput. Netw.
67, 74–88 (2014)

29. Masoudifar, N., Hammad, A., Rezaee, M.: Monitoring occupancy and office equip-
ment energy consumption using real-time location system and wireless energy
meters. In: Simulation Conference (WSC), 2014 Winter, pp. 1108–1119. IEEE
(2014)

30. Michael, J., Cohn, A., Butcher, J.: Blockchain technology. Journal (2018)

Comparison of Computer Vision Approaches 317

31. Nap, K.A., Ehrke, L.A., Dresselhuys, D.R.: Automatic meter reading data com-
munication system (2001). US Patent 6,246,677

32. OpenCV: Open source computer vision (2018). https://docs.opencv.org/3.1.0
33. Rathod, R.R., Garg, R.D.: Regional electricity consumption analysis for consumers

using data mining techniques and consumer meter reading data. Int. J. Electr.
Power Energy Syst. 78, 368–374 (2016)

34. Sankar, L., Rajagopalan, S.R., Mohajer, S.: Smart meter privacy: a theoretical
framework. IEEE Trans. Smart Grid 4(2), 837–846 (2013)

35. Services, A.W.: AWS Elastic Beanstalk: Developer Guide. Amazon Digital Services
LLC, Seattle (2018)

36. Simic, M., Spichkova, M., Schmidt, H., Peake, I.: Enhancing learning experience
by collaborative industrial projects. In: ICEER 2016, pp. 1–8. Western Sydney
University (2016)

37. Smith, R.: An overview of the tesseract ocr engine. In: Ninth International Confer-
ence on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633.
IEEE (2007)

38. Sovacool, B.K., Kivimaa, P., Hielscher, S., Jenkins, K.: Further reflections on vul-
nerability and resistance in the United Kingdom’s smart meter transition. Energy
pol. 124, 411–417 (2019)

39. Spichkova, M.: Industry-oriented project-based learning of software engineering.
In: 24th International Conference on Engineering of Complex Computer Systems.
IEEE (2019). p. (to appear)

40. Spichkova, M., Bartlett, J., Howard, R., Seddon, A., Zhao, X., Jiang, Y.: SMI:
stack management interface. In: 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 156–159 (2018)

41. Spichkova, M.: Automated analysis of the impact of weather conditions on
medicine consumption. In: 2018 25th Australasian Software Engineering Confer-
ence (ASWEC), pp. 166–170. IEEE (2018)

42. Spichkova, M., Simic, M.: Autonomous systems research embedded in teaching. In:
De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST,
vol. 76, pp. 268–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
59480-4 27

43. Spichkova, M., van Zyl, J., Sachdev, S., Bhardwaj, A., Desai, N.: Easy mobile
meter reading for non-smart Meters: comparison of AWS rekognition and google
cloud vision approaches. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering , vol. 1, pp. 179–188.
INSTICC, SciTePress (2019)

44. Sun, C., et al.: Software development for autonomous and social robotics systems.
In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C., Vlacic, L. (eds.) KES-IIMSS-
18 2018. SIST, vol. 98, pp. 151–160. Springer, Cham (2019). https://doi.org/10.
1007/978-3-319-92231-7 16

45. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Newton
(2015)

46. Tan, O., Gunduz, D., Poor, H.V.: Increasing smart meter privacy through energy
harvesting and storage devices. IEEE J. Sel. Areas Commun. 31(7), 1331–1341
(2013)

47. Tang, G., Wu, K., Lei, J., Xiao, W.: The meter tells you are at home! non-intrusive
occupancy detection via load curve data. In: 2015 IEEE International Conference
on Smart Grid Communications (SmartGridComm), pp. 897–902. IEEE (2015)

48. Winter, D.: Methods and systems of reading utility meters and methods and sys-
tems of transmitting utility meter data (2017). US Patent 9,752,895

https://docs.opencv.org/3.1.0
https://doi.org/10.1007/978-3-319-59480-4_27
https://doi.org/10.1007/978-3-319-59480-4_27
https://doi.org/10.1007/978-3-319-92231-7_16
https://doi.org/10.1007/978-3-319-92231-7_16

318 M. Spichkova et al.

49. Xiao, Z., Xiao, Y., Du, D.H.C.: Exploring malicious meter inspection in neighbor-
hood area smart grids. IEEE Trans. Smart Grid 4(1), 214–226 (2013)

50. Yaacoub, E., Abu-Dayya, A.: Automatic meter reading in the smart grid using
contention based random access over the free cellular spectrum. Comput. Netw.
59, 171–183 (2014)

51. Yan, Y., Hu, R.Q., Das, S.K., Sharif, H., Qian, Y.: An efficient security protocol for
advanced metering infrastructure in smart grid. IEEE Netw. 27(4), 64–71 (2013)

52. Yan, Y., Qian, Y., Sharif, H., Tipper, D.: A survey on smart grid communication
infrastructures: motivations, requirements and challenges. IEEE Commun. Surv.
Tutor. 15(1), 5–20 (2013)

53. Yang, L., Ting, K., Srivastava, M.B.: Inferring occupancy from opportunistically
available sensor data. In: 2014 IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), pp. 60–68. IEEE (2014)

54. Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., Yang, B.: Energy theft detection
with energy privacy preservation in the smart grid. IEEE Internet Things J. (2019)

55. Zheng, J., Gao, D.W., Lin, L.: Smart meters in smart grid: an overview. In: Green
Technologies Conference, pp. 57–64. IEEE (2013)

56. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

Expanding Tracing Capabilities Using
Dynamic Tracing Data

Dennis Ziegenhagen1,2(B), Andreas Speck2, and Elke Pulvermueller1

1 Institute of Computer Science, Osnabrück University,
Postfach 4469, 49069 Osnabrück, Germany

2 Department of Computer Science, Christian-Albrechts-University Kiel,
24098 Kiel, Germany

{dez,aspe}@informatik.uni-kiel.de

Abstract. Software traceability enables gaining insight into artifact
relationships and dependencies throughout software development. This
information can be used to support project maintenance and to reduce
costs, e.g. by estimating the impact of artifact changes. Many traceability
applications require manual effort for creating and managing the neces-
sary data. Current approaches aim at reducing this effort by automating
various involved tasks. To support this, we propose an enrichment of
tracing data by capturing interactions that influence the artifacts’ life-
cycle, which we refer to as dynamic tracing data. Its purpose is to expand
capabilities of traceability applications and to enable assistance in devel-
opment tasks. In this paper, we present our research methodology and
current results, most importantly a flexible and modular framework for
capturing and using dynamic tracing data, as well as an example scenario
to demonstrate a possible implementation and usage of the framework.

Keywords: Traceability · Developer-tool interaction · Automation

1 Introduction

Potential benefits and positive effects of using traceability in software project
development have been described and cited in the past decades. Examples are
quality improvements of software systems which may be achieved by using trace-
ability information for maintenance and evolution [32]. Another usage is cost esti-
mation: traceability can be used to analyze the impact of artifact changes and
thus helps in deciding whether the associated costs are acceptable [33]. Amongst
others, additional descriptions of how tracing links may support software engi-
neering tasks are provided by Antoniol et al. [3]. Besides general advantages,
traceability can also be required in specific cases, e.g. for developing safety-
critical systems [20].

This work is supported by the InProReg project. InProReg is financed by Interreg 5A
Deutschland-Danmark with means from the European Regional Development Fund.

c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 319–340, 2020.
https://doi.org/10.1007/978-3-030-40223-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_16

320 D. Ziegenhagen et al.

Various tools and methods exist for creating and managing the necessary
data. These range from manual approaches to automated data generation and
combinations of both. An example for the first type are manually edited lists
and tables in office applications, while information retrieval methods are often
the basis for automation. However, when traceability data is available in either
way, its purpose and actual usage is often to analyze the current project state:
gaining comprehensive insights and answering higher, more abstract questions.
Typical examples are the previously mentioned change impact analysis and the
verification of requirement fulfillments.

Although tools, methods and years of research exist in the field of trace-
ability, it is not broadly used yet and current analyses state necessary research
and problem areas [6]. Rempel and Mäder give a possible explanation for the
low usage and acceptance of traceability: missing evidences regarding actually
achieved benefits [24]. Furthermore, the return on investment has been described
as a key challenge of traceability [5]. Before any benefits could be gained from it,
traceability has to be planned and tailored carefully. According to the specific
organization, project and/or team, an appropriate set of tools and methods has
to be selected. Additionally, a traceability information model has to be created,
which requires knowledge and decisions about the types and amount of cap-
tured artifacts, relationships and processes. This modeling step should also be
guided by the individual goals: which questions should be answered using the
tracing data? More precisely, it is necessary to design the information model in
a way that the actual traces are covered. The expense in connection with plan-
ning, setting up and managing traceability also depends on the importance and
desired correctness of its data. Safety-critical systems, on the one hand, require
higher efforts in order to prove the fulfillment of crucial requirements and func-
tionalities. On the other hand, lower effort is possible by automating individual
tasks, e.g. the generation of tracing link candidates. A potential disadvantage of
automating algorithms like information retrieval methods may be less “correct”
data by missing artifact links or producing false ones. But this can be acceptable
if the tracing data’s main purpose is in a more supportive manner, e.g. to facil-
itate the developer’s work by enabling navigation to related artifacts, provided
that the number of “errors” is below a certain threshold.

The approach proposed in this paper is mainly intended to enable software
traceability of the second type. Amongst others, the goals are supporting pro-
gram comprehension, system understanding and decision-making throughout the
development. Thus, we consider typical processes, tools and the life-cycles of arti-
facts from different perspectives. From a technical viewpoint, we focus on ways
to access artifact data, e.g. using the tools’ application programming interfaces
(APIs) and storage possibilities, e.g. file systems, databases and repositories.
Furthermore, we utilize these in order to receive information about interactions
which influence traced artifacts. Thus, we enrich tracing data with details on
how they are changed during development. In our approach, changing an artifact
leads to an automated updating of the respective tracing data. For this reason,
we call this enrichment dynamic tracing data. Of course, in current traceability

Expanding Tracing Capabilities Using Dynamic Tracing Data 321

applications the data also changes over time, but we use this denomination
to emphasize the fundamental idea of combining artifacts, their relations and
developer-tool interactions which influence them.

Capturing this data allows to integrate various existing approaches and find-
ings on the interactions between developers and their tools. Amongst others,
these include supporting the developer by providing helpful information for
accomplishing a specific task [16] and suggesting error solving solutions [13].
Another example usage is the detection of correlating properties across tool
boundaries, e.g. interdependent real-time constraints which are modeled using
different tools [22]. Besides an extension of traceability features, the goal is to
use dynamic tracing data in order to enable further analysis, research, and finally
to better assist development tasks.

Another information we gain from the gathered data is about the relationship
between tools involved in specific tasks. This, among with other related data,
is also known as a task’s context [16]. By recording interaction timestamps, it
is possible to identify and present interconnections in the time domain. This
enables including and benefiting from methods in the field of interaction and
usage analysis, e.g. as described by Snipes et al. [31]. Furthermore, data about
the origin of artifact changes and similar contextual relationships is intended
to help understanding, analyzing and improving actual development processes.
These are usage examples for which our framework provides a possible basis.

This paper extends our previous publication [37] by presenting more infor-
mation about the research methodology and current results. We discuss the rela-
tion to existing work in Sect. 2. The main contribution is contained in Sect. 3, in
which we provide more details on the overall approach, along with the research
methodology and results to each of its tasks. Furthermore, we extend the example
scenario of our previous work in Sect. 4 by adding details on its implementation.
The presented results and future work are discussed in Sect. 5.

2 Related Work

This section contains an overview of related research in order to indicate the
scope and boundaries of our approach. Additional existing work is described as
part of our research results in Sect. 3.2.

2.1 Traceability

The basic idea of updating tracing data automatically when artifacts are changed
has been presented by Mäder and Gotel [21]. Their approach focuses on a UML
modeling tool and captures changes of model elements. Depending on the cap-
tured events, model traces are updated automatically. To our knowledge, this is
one of only a few approaches that consider changes of traced artifacts as a basis.
Although our approaches share this basic idea, fundamental differences exist.
First of all, Mäder and Gotel use elementary change events primarily to trigger
trace updates and to recognize development activities. Tracing data is updated

322 D. Ziegenhagen et al.

when a detected activity shows the respective necessity. In our approach, the
underlying elementary changes are part of the tracing data and integrated in a
way common interaction analyses do. Furthermore, this enriched tracing data is
provided for further applications in our approach. Amongst others, the identifi-
cation of development activities is an example for this. Another difference can
be found in the quality of tracing links. Their approach focuses on a specific tool
along with a respective traceability definition, which enables a high quality of
tracing links in terms of correctness and validation. We instead aim at a broader
usage of data captured from multiple tools in order to provide a basis for various
traceability applications and analyses. Therefore, we accept seemingly “unnec-
essary” tracing data which may not be used by all integrated applications. In
fact, our framework is designed to enable various previously unknown usages,
and thus cannot rely on predefined traceability.

Sanchez presents an approach which shares another of our motivations by
considering inter-tool relationships of artifacts and including contexts [28]. The
main goal is to design a declarative language for capturing semantic model
relationships, along with an architecture using this language in order to auto-
mate model management tasks. While the solution proposed by the author also
takes artifact-related contexts across tool boundaries into account, developer-
tool interactions are not explicitly considered.

An overview of retrospective and prospective software traceability is provided
by the work of Asuncion et al. [4]. The authors combine these techniques by
applying topic modeling to tracing data which is recorded using various tool
adapters. A difference to our approach can be found in the way working with
multiple projects is integrated. While Asuncion et al. aim at separating the
tracing data of each project from other projects, we instead use it to identify
cross-project relations and e.g. to provide developers with problem solutions
from other projects.

“SAT Analyzer” [23] is an example for comprehensive traceability manage-
ment environments. By including DevOps practices, it is able to track artifact
changes between builds and to create tracing data based on these changes semi-
automatically. In contrast to our work, the tool focuses on a predetermined set
of artifact types and provides respective, specialized functionalities, e.g. change
impact analyses.

2.2 Developer-Tool Interaction

Extending traceability with a developer action has been realized by Mahmoud
and Niu [19]. The authors analyze the impact various types of refactoring have
on the traceability of a software project. Depending on the type, they observed
both, positive and negative effects during refactoring. This confirms our assump-
tion that considering developer interactions may be a valuable extension to the
tracing methodologies.

Research on developer-interaction-analysis can roughly be divided into
“offline” methodologies, i.e. understanding the developer’s work by analyzing
usage logs, and “online” approaches which directly monitor interactions when

Expanding Tracing Capabilities Using Dynamic Tracing Data 323

they occur. Examples for the first type are provided by Snipes et al. [31] and
Damevski et al. [7], who utilize data collected by IDEs. Roehm and Maalej
[27] show an example for the second type. The authors, along with others, also
present an application to support developers by using the monitored data [26].
Although these approaches do not focus on traceability, we compare and analyze
them in order to detect possible generalizations for enriching traceability data.

Recommendation systems are an example for supporting development tasks
based on interaction data. An overview of this field is provided by Robillard
et al. [25]. Common assistance functions which we consider in our work are rec-
ommending artifacts and other data which is related to the element the devel-
oper currently interacts with. Amongst others, representative applications are
provided by Mäder and Egyed [17], Singer et al. [30] and Maalej et al. [15].
Research on the visualization of traceability data with focus on task contexts is
provided by Li and Maalej [14]. Their findings also show insights in how devel-
opers interact with artifacts in various tasks, e.g. during design, implementation
and testing. In our approach, such visualizations techniques are also used for
providing assistance throughout development tasks.

3 Approach

This section contains information about the approach in addition to our previous
work [37]. First of all, we specify the scope of our work and the type of trace-
ability which it is based on. Afterwards, we describe the research methodology
along with its structure, tasks and current results. Of main importance are the
motivation and definition of dynamic tracing data, as well as a framework for
capturing, providing and using it. An example scenario is described in Sect. 4,
focusing on the implementation of its main components.

3.1 Scope and Background

Although an important goal is to support the developer’s activities, it is neces-
sary to consider various other roles of project members and their work during
different phases of software development. Additionally, we want to include a wide
variety of project types, development models, tools and methods. To enable this,
we use a broad definition of the term “traceability”, which Aizenbud-Reshef et al.
propose: “We regard traceability as any relationship that exists between artifacts
involved in the software-engineering life cycle” [1]. In addition to this, we use
terms and definitions provided by Gotel et al. [10]. For example, the authors
describe requirements traceability as a specialized form of general traceability.
This specialization is achieved by delineating the artifact type which is of main
interest. Relating to this methodology, our approach is mostly concerned with
the general traceability term. The authors also include a more detailed definition
of requirements traceability, which originates from Gotel and Finkelstein in 1994
[11] as the “ability to describe and follow the life of a requirement [...] through its
development [...] and through periods of ongoing refinement and iteration” [10].

324 D. Ziegenhagen et al.

Here, we use this in order to clarify, differentiate and further characterize our
term dynamic tracing data. At first glance, this may seem to already cover our
approach: focusing on the life of artifacts; in this case especially requirements. So
what are the differences to our work? Most notably, they use the specialization
to one specific artifact type as the starting point for tracing, as many require-
ment engineering methods do. Additionally, and much more important, there is
a strong difference in what actually substantiates the artifact’s life. In their case,
it is a compilation of other artifacts and the trace links which connect them to
a requirement. For example, a related diagramming artifact may show how the
implementation of a requirement is designed. Then, a linked source code artifact
could contain the implementation of this design, and so forth. These artifacts,
which can potentially be traced starting from a requirement, represent its life
throughout the development process and phases. In contrast to this, we consider
the changes of artifact contents, i.e. actual data modifications, as part of its life.
Examples are source code edits or diagram modeling steps. Compared to the
“life” in the requirements traceability definition, the changes which we consider
are more fine-grained and create new variations or versions of an artifact.

The scope defined in this section enables demonstrating the relation to exist-
ing traceability approaches which are part of our research tasks.

3.2 Research Methodology

In order to examine possibilities for extending current tracing data with
developer-tool interactions, we used the following procedure:

Task 1 Collect and analyze tools and approaches in the field of traceability.
Task 2 Collect and analyze work about developer-tool interactions with possi-

ble connections to tracing data and methods.
Task 3 Use the results of tasks 1 and 2 to compare the involved data (models)

and processes.
Task 4 Draft example scenarios in which the results of tasks 1 and 2 can poten-

tially benefit from each other and which make use of the results of task
3.

Task 5 Design and implement a framework for enabling a reusable, flexible
implementation of the scenarios.

Task 6 Use the framework and the scenario implementations for the purpose
of further research.

For each task, we will summarize main findings and highlight results which play
an important role for our research and the envisaged framework in particular.

Results of Task 1 (Traceability Approaches). The first task has a focus on
reusable aspects, especially components which are capable of being integrated
into other applications. Thus, those containing generally applicable algorithms
or open implementations are most interesting. We determined that the results
can be categorized:

Expanding Tracing Capabilities Using Dynamic Tracing Data 325

1. Comprehensive frameworks and tool collections that cover the overall trace-
ability process.

2. Algorithms for generating tracing data:
(a) Extracting artifacts and artifact data.

Examples: Requirements, modeling elements, source code.
(b) Retrieving link candidates

Example: Requirement-to-code links.
3. Applications for using the generated tracing data.

Examples: Analyzing methods, visualizations.

While the researched frameworks in category 1 enable performing multiple tasks,
e.g. generating, managing and analyzing tracing data, we also found limitations.
“SAT Analyzer” [23], for example, offers various functionalities from data gener-
ation to analyses, but in return relies on predetermined artifact types. Neverthe-
less, common proceedings of traceability frameworks can be found. We identify
and summarize the following steps which are most relevant to our approach:

– Extract artifact data from the actual project contents (e.g. requirement doc-
uments or source code).

– Data equalization, i.e. transforming the various artifact data models to a
common traceability data model.

– Dependency detection, i.e. generation of candidates for artifact link.
– Supervision by the user, e.g. correction of the automatically generated data.
– Usage of the corrected data, e.g. analyzing it with the purpose of assessing

coverage aspects, executing trace queries or applying visualization techniques.

In addition to “SAT Analyzer”, other frameworks following these steps are the
“AMPLE Traceability Framework” [2] and the tool presented by Wijesinghe
et al. [36]. Our approach and especially the framework’s concept make strong
use of the categorized traceability functions and steps. For our work, they also
route the flow of tracing data: Its generation, followed by intermediate processes,
e.g. supplementation, refinement or revision, up to its usage, e.g. for analyses.
Of course, this is a simplified view on the tracing data’s flow and in practice,
there will be multiple iterations, for example further refinements and additions
of missing data after visualizing or analyzing the current state. But for our
approach, this is a rough guideline for classifying traceability functions, which
is also the basis for our framework’s architecture, as described in the results
of task 5. In recent developments and research during this task, we notice a
trend towards increasing automation of the above steps, which encourages our
approach.

Results of Task 2 (Developer-Tool Interaction). Regarding existing
research on interactions between developers and their tools, we differentiate
approaches which either (a) analyze previously recorded data or (b) react to
events when they occur. We interpret approaches of category (a) as “offline”,
because the analyses don’t require simultaneously running tools for generating

326 D. Ziegenhagen et al.

interaction data. But this is the case for category (b), so we attribute these
approaches as “online”. Typical data sources of the first category are IDE log
files. Often, the goal is to detect interaction sequences or reoccurring patterns [7].
The second category is characterized by monitoring developer actions and tool
events in order to provide immediate support and assistance. Examples are sug-
gesting artifacts which are relevant to the current task and context [16], as well as
recommending solutions to error messages [13]. From a technical view, both cat-
egories may share functions like custom data capturing, e.g. by attaching event
listeners. Also, results of the second category often utilize data recorded in the
past, too, but rather aim at supporting the current development work instead of
enabling in-depth analyses. For our approach, the first category provides sources
with regard to data models and characteristics of interaction sequences. The
second category is especially interesting for providing example applications and
potential use cases.

Analyses often include information about the involved GUI elements, e.g.
GUI widgets as targets of user actions or the location of mouse events on the
screen. An example for this is the work of Damevski et al. [7]. The information is
used for aggregating consecutive messages of the analyzed dataset. Furthermore,
the structure of these messages is a good example for typical interaction log files,
as it consists of an action type (e.g. “Edit.Paste” or “View.SolutionExplorer”),
a category (e.g. “Command” or “View”), a timestamp and an user id in order
to distinguish the actions of different developers. It is notable that information
regarding involved artifacts or their type is not included. This applies to other
approaches as well, for example Roehm et al. [26]. The interaction data presented
in their work uses the terms “Artifact Type” and “Artifact Id”, but not in
the sense traceability methods do. Instead, the terms are more related to GUI
elements, e.g. text fields. However, such elements can actually be typical tracing
artifacts, as it could be the case for interactions with model elements like a
UML class. Other information which the authors collect in their approach is
similar to the messages Damevski et al. use, e.g. an event type, a timestamp and
a “Machine Id” for distinguishing events which occur on machines of different
developers.

As mentioned in Sect. 2, recommendation systems are examples for applica-
tions which use interaction data in order to support development tasks. This
domain is also referred to as “recommendation systems in software engineering”
(RSSE) [25]. Maalej et al. [15] present a concept model for interaction data in
RSSE which fits our approach quite well, as it considers interactions to directly
concern specific artifacts. A difference to our approach can be found in the def-
inition of the term “context”. The authors describe it as the circumstances in
which interactions are performed, e.g. the developers intention, or a specific task
or issue. In our approach, these do not primarily define the context, but can
rather be part of it. We instead consider the involved artifacts and tools to be
essential context elements. The author’s view has advantages because it enables
to add structure and purpose to sequences of interaction data. While this can
be important depending on the actual goal, our approach can not require the

Expanding Tracing Capabilities Using Dynamic Tracing Data 327

availability of the necessary information. Thus, we are in accordance with Gas-
paric et al. [9], who replace the “task” aspect of Maalej’s model with activities,
for example reading, navigating, editing, debugging, using version control and
reviewing code.

Results of Task 3 (Data Comparison). In order to form a concept for
“dynamic tracing data”, we analyze and compare main characteristics of both,
current tracing data and interaction data. Of main interest are possible gener-
alizations of how the data is tailored for particular projects, along with usage
aspects and the handling of different granularities.

At least in the scope which we defined for our approach, it is possible to
abstract “static” tracing data to a most basic view: artifacts with relations to
other artifacts [18]. Traceability applications usually add semantics to this basic
model by defining types of artifacts and how they generally are able to relate to
each other. For example, such a model could contain an artifact type “Require-
ment” and a link type “derived from”, indicating possible dependencies between
actual requirement artifacts. These meta models are often referred to as traceabil-
ity information models (TIM) [6], including rules and constraints for modeling
elements. Project-specific definitions and usages of TIMs are getting attention
due to missing universally accepted reference models [6]. But without suitable
and accepted standards, TIMs may be less reusable and probably incompatible
in practice. Thus, we prefer the described abstract data model as a common
basis, which enables to add semantics later instead of predefining them.

As mentioned in the results of task 2, interaction analyses often assign devel-
oper actions to higher tasks or intentions like implementing a specific func-
tionality, debugging or refactoring. While some of these tasks are able to be
automatically identified, e.g. the starting of an IDE’s debug mode by attaching
a respective listener, this is not generally possible. We examine such automated
task identifications and may include them in the future, but currently a more
basic handling shows to be more suitable. Thus, we categorize interactions using
the CRUD functions: create, read, update and delete. For us, performing these
functions using a tool mainly influences and determines an artifacts life; from
its creation, to various accesses and modifications and possibly to its deletion. In
a similar way to the subsequent addition of semantics to abstract tracing data
described above, our approach includes the optional possibility to assign CRUD
events to higher tasks, like bug fixing or refactoring, and thus adding semantic
meanings to interaction events, too. Throughout the development, sequences of
artifact-related interactions happen, which we interpret as a stream of events
more or less continuously changing the tracing data. This denotes our use of the
term “dynamic tracing data”.

We already determined the minimal granularity of interaction data for our
approach by considering CRUD functions. In our previous paper [37], we dis-
cussed further options, e.g. capturing single keystrokes, along with the typical
frequencies in which they typically occur during development. Similar consid-
erations are presented by Roehm et al. [26] and Maalej et al. [15]. A common

328 D. Ziegenhagen et al.

assumption is that there has to be a trade-off between the level-of-detail in which
data is captured, and the amount of information which is necessary for analy-
ses or for providing assistance. Such considerations regarding static tracing data
can also be found in the work of Egyed et al., who additionally explain miss-
ing literature on this topic by “the fact that it is unknown in advance which
trace links will be used” [8]. This completely meets our research results and con-
firms the difficult, maybe even impossible existence of any generally applicable
traceability.

With regard to the results summarized up to this point, the core of our app-
roach can be formulated in the following way: Dynamic tracing data covers
the life cycle of artifacts, which is mainly influenced by developer-
tool interactions. We regard dynamic tracing data as an extension of current
“static” data and aim at providing compatibility with current traceability meth-
ods on the one hand. On the other hand, we examine non-compatible usages
which, in return, offer valuable functionalities that would not be possible other-
wise.

Results of Task 4 (Example Scenarios). For creating the initial example
scenarios, existing applications in the fields of traceability and interaction-based
support are considered. Their functionalities are decomposed and integrated into
the scenarios according to the results of the previous tasks, e.g. by using the
steps described in the results of task 1 as a pattern. We examine what data is
actually used, how it is generated and which are the goals users typically try to
accomplish. The drafted scenarios are substantively characterized by automating
most tasks if possibly, e.g. data extraction and link candidate generation. A
basic scenario has been summarized in our previous work [37]. Additionally, we
outline the detection of possible relations in dynamic tracing data by focusing on
interactions with artifacts. Examples for detecting relations based on interaction
data are:

– Creating a class which has the same name as an element in a UML diagram.
(Possible relation because of similar artifact names.)

– Reading a requirement, followed by implementing a new method.
(Possible relation because of interactions occurring close to each other.)

– Successfully building a previously erroneous project after using the browser.
(Possible relation between an error and a website containing a solution.)

Methods for detecting such relations are part of existing applications. We inte-
grate similar methods in our approach, as described in the example scenario (see
Sect. 4).

Results of Task 5 (Framework Design and Implementation). As a con-
clusion of the previous tasks, we define the following goals for our framework:

1. Create a flexible, reusable and easily expandable infrastructure for integrating
approaches according to the traceability steps identified in task 1.

Expanding Tracing Capabilities Using Dynamic Tracing Data 329

2. Use dynamic tracing data as a basis and keep as much compatibility to static
tracing data and interaction data as possible.

3. Provide two operational modes:
(a) Immediate data usage, e.g. a prompt reaction to changes for enabling

recommendations or similar assistance.
(b) In-depth data usages, e.g. complex or comprehensive analyses.

To give an overview of the framework design, we refer to the data flow and steps
described in the results of task 1 and arrange the components accordingly, as
shown in Fig. 1. The traceability steps are represented as architectural layers in
the figure, and thus enable a logical view on the components and their relations.
As indicated at the right side of the figure, tracing data basically flows from
the bottom components (e.g. artifact extraction) to the ones at the top (e.g.
visualizations or analyzes). The functionalities and interfaces provided by the
framework enable the integration of exchangeable components for specific tasks,
i.e. extracting artifacts, generating link candidates and using the dynamic tracing
data. In Fig. 1, these exchangeable components are indicated by a dashed border.
By integrating the components, the framework forms a comprehensive system.
Thus, it is specialized for specific usages by combining the generally provided
functions with suitable components, e.g. tool adapters or link generators. The
scenario described in Sect. 4 provides examples for such components and how
they are integrated.

The general usage of the framework start with extracting artifact data from
the adapted tools (bottom layer in Fig. 1). Usually, these adapters are also used to
monitor interactions which influence these artifacts. The extracted and captured
data is sent to the framework core, which then enables accessing it in a unified
way (data access provision layer). The subsequent components are mostly link
candidate generators which analyze the provided data. Generated links are sent
to the framework, which enables an optional revision of the stored tracing data.
In order to support automated usages in the application layer, the revision is
not required. Therefore, it is up to the traceability applications whether they
use unrevised, potentially incorrect data, or require revision by the user.

The framework infrastructure forms a distributed system and provides a
RESTful API for connecting the exchangeable components. At the current state,
multi-user usage is handled in a basic way. The framework doesn’t implement
an explicit user management, but as components access framework functions
via the RESTful API, it is possible to distinguish the respective callers - i.e. the
developer’s devices - by using data of the underlying protocols, e.g. IP addresses.

As already mentioned, Fig. 1 contains a logical view. Indeed, examples exist
in which it is reasonable to implement an artifact extractor together with a corre-
sponding link generator inside the same physical component, e.g. an IDE plugin.
This is especially the case when such implementations allow an easier access to
necessary data compared to exclusively rely on the framework’s functions.

Results of Task 6 (Usage and Experiences). This task is currently ongoing
work. One notable result of the implementation and usage so far is the ability

330 D. Ziegenhagen et al.

Fig. 1. Logical view on the framework layers (rows) and components (colored boxes).
The framework connects the exchangeable components across the layers and enables
the tracing data flow from its generation in the bottom layer to the applications in the
top layer. (Color figure online)

to reproduce dynamic tracing data. Amongst other purposes, we use this for
testing and proving the correct integration of interaction-based methods. Fur-
thermore, it enables to compare different versions of tracing data, e.g. in terms
of the previously discussed levels of abstraction and granularity. In order to
(re) create interactions beyond a simple replay of explicitly recorded events, we
created an approach based on GIT repositories of existing projects. The differ-
ences between consecutive repository states, i.e. commits, are used to simulate
step-by-step modifications of artifacts. This procedure is likely to miss the orig-
inal order of changes which occurred between repository versions, because this
information is not part of a commit history. But it offers a simple mechanism
of including a variety of project types and contents. Furthermore, we use this
as a chance and take advantage of the unknown order of changes by creating
respective sequences using pseudo-random number generators, and thus achiev-
ing additional variations of artifact changes. This allows us to reproducibly test
many sequences of modifications.

Another possible source for reproducing and simulating interactions are log
files of development tools. But most of the available datasets which we exam-
ined do not cover the necessary information, especially regarding the involved
artifacts. Generally, interaction logs which refer to specific git repositories could
be a valuable extension for our approach.

With regard to the results presented up to this point, we describe one of the
example scenarios in the following section, focusing on the implementation and
usage the components which are integrated using the framework.

Expanding Tracing Capabilities Using Dynamic Tracing Data 331

4 Example Scenario

In our previous publication [37], we presented the scenario by describing the
usage of static and dynamic tracing data, and how the latter builds upon the
other. Furthermore, we described generally reusable components, for example
a Generic File Adapter which monitors project-related data using the file sys-
tem and forwards observed events to the framework API. Here, we add more
details on the scenario’s implementation. In our approach, this is one possible
prototype, and we consider realizing the same scenario in different ways, e.g. by
exchanging the adapted tools. For example, the current prototype connects the
Eclipse IDE via its plugin API. It would also be possible to adapt any other
Java IDE at this point, e.g. NetBeans. We assume that creating exchangeable
prototype components will give us a better understanding of how to precisely
divide logical and conceptional aspects from the necessary technical realization,
and how the framework could possibly support adapting various tools.

4.1 Description

The example scenario focuses on a simplified software development environment.
The main traceable artifacts are (a) requirement specifications, (b) UML class
diagrams which are designed for their fulfillment and (c) Java classes which
implement the UML designs. The respective development tools are an office
application for writing requirement documents, a UML diagramming tool and
a Java IDE for implementing the designed system. While the UML and Java
tools can be connected using APIs, the office application does not provide a
suitable interface. Thus, the generic file adapter is used, along with a specialized
requirement file handler. It is able to parse the documents and to extract require-
ment artifacts. Besides the extracting artifact data, these adapters also gener-
ate tool-specific artifact links. Amongst others, these are dependencies between
requirements and object-oriented associations contained in diagrams. Further-
more, generators for recovering the cross-tool artifact links are included. These
automatically generate requirement-to-diagram and diagram-to-code link candi-
dates when certain artifact changes are detected. The generated tracing data is
stored using the framework’s data management core, as well as subsequent inter-
action events related to the artifacts. Applications use this data to dynamically
visualize the context of the currently edited artifact and to provide additional
assistance, which is described more detailed in the following section.

4.2 Implementation

In this section, we firstly give an overview of all components which are part of
the scenario. This includes their (inter-) connection from logical and technical
perspectives. Afterwards, we describe the implementation of each component in
a more detailed way.

332 D. Ziegenhagen et al.

Figure 2 shows the scenario’s components, using the general framework struc-
ture presented in Fig. 1 as a template. To give more details on the actual imple-
mentation, two more layers are added at the bottom of Fig. 2. The components
contained in the integration layer provide the technical access to the actual data
sources, e.g. the plugin which adapts to the IDE’s API. Thus, the integration
components enable elements of the extraction layer to use and analyze the cur-
rently available contents of the tools (bottom layer). The extracted artifact data
is send to the framework core, which is represented by the green rectangles
between the layers in Fig. 2. Additionally, subsequent CRUD events which are
related to the extracted artifacts and captured at the integration layer are also
send to the framework. After receiving such artifact-related events, the frame-
work informs the link candidate generators, so that they are able to react to
the changing data. The current prototypic implementation uses a simple pub-
lish/subscribe mechanism in order to control the amount of notifications and
messages between the components. The “requirement-to-diagram” link gener-
ator, for example, doesn’t need to be informed about source code changes. A
similar mechanism is used to update the applications which are connected to
the framework in the top layer.

In the following, the components are described in the order according to the
steps identified in task 1 in Sect. 3.2, from extracting data at the tools’ interfaces
up to its usage in sample applications.

Fig. 2. Logical view on the scenario implementation. The framework integrates the
components (colored boxes) and provides data from components of the bottom layers
to the layers above. (Color figure online)

Expanding Tracing Capabilities Using Dynamic Tracing Data 333

Data Extraction. The descriptions in this section cover components of the
artifact data extraction and integration layer shown in Fig. 2. The separation of
the layers is primarily to be understood from a logical view, while their compo-
nents may technically be implemented close to each other.

The Java IDE Plugin analyses projects which are opened in the IDE. As
a starting point, the files contained in a Java project are classified as artifacts.
This information is sent to the framework core via its RESTful API, as well
as following extracted or generated tracing data. Listeners are attached to the
project, which enable to detect a) project-wide changes, e.g. adding or deleting
files, and b) artifact-related events, e.g. source code edits. The plugin implements
the strategy pattern in order to enable a specialized handling for artifact types, if
available. Java classes, for example, are further analyzed to gather dependencies
to other classes, which are subsequently treated as link candidates. This is an
example for the separation of logical and technical views as described in Sect. 3.2.

In case no suitable strategy exists for an artifact, the default handler forwards
basic information to the framework, without deeper analyses. Figure 3 illustrates
the use of the strategy pattern along with implemented handlers, some of which
are described in the following.

Fig. 3. The strategy pattern enables specialized artifact file handling in the IDE
adapter plugin.

In this scenario, requirement documents are created and edited using an office
tool that does not provide a suitable interface for directly attaching an adapter.
Thus, data related to requirements is extracted using the generic file adapter in
combination with the previously described strategy pattern implementation. The

334 D. Ziegenhagen et al.

resulting component is the Requirement File Adapter. This may seem redun-
dant, but enables covering different usages and interaction scopes. On the one
hand, the artifact handler of the IDE plugin allow accessing further information
via the plugin API, e.g. detailed interaction data. But on the other hand, this
requires additional efforts on the implementation, along with respective knowl-
edge about the interface. Using the generic file adapter approach reduces the
necessary efforts, but offers less possibilities to monitor developer interactions.

The file adapter monitors activities related to contents of project directories
and applies the strategy handlers depending on the file type. To avoid massive
performance issues and overhead, the adapter provides both, a whitelist and a
blacklist mode. Thus, it can either explicitly include or exclude specific files or
file types. The monitoring implementation uses the WatchService which is part
of Java NIO.2 APIs and therefore applicable for various file systems.

The office document handler analyses file contents in order to extract struc-
tured data. The current purpose is to receive requirements, but the same pro-
ceeding could generally be applied to other structured documents. For identifying
requirement data, i.e. names, ids, descriptions and relations to other require-
ments, we implement a simple, configurable parser. Tools which provide similar
functionalities, e.g. Rational DOORS, have been evaluated by Shahid et al. [29].

A general assumption of this scenario is that artifacts are to be handled close
to the respective tools, but without limiting artifact types to specific applica-
tions. A Java source file may primarily be used inside an IDE, but technically it
is also possible to open it in other applications, e.g. a basic text editor. Thus, we
include these non-primarily usages in our approach. In fact, situation in which
such exceptional combinations of tools and artifacts occur may be especially
interesting for tracing and analyzing.

The prototypic UML Editor Extension adds an adapter to the open-
source, Java-based modeling tool “Violet UML Editor”1. The extension moni-
tors the creation, modification and deletion of elements, as well as non-modifying
usages, e.g. selection. The extracted artifacts are class diagrams and their classes.
Furthermore, information about modeled relations, e.g. dependencies and asso-
ciations, is forwarded to the framework core as link candidates. Compared to the
IDE plugin, the editor extension needs to be more specialized to the tool. For
example, the editor’s implementation uses a custom data structure for modeling
elements and thus it is not possible to re-use this extension for other purposes,
e.g. for adapting other UML tools.

Link Candidate Generation. The prototypic Requirement-to-Diagram (R2D)
and Diagram-to-Code (D2C) link generators implement methodologies based on
existing approaches. The work of Antoniol et al. [3] is a representative example
for a similar, more comprehensive solution. The D2C component performs a very
simple matching of diagram elements and source code elements by comparing
names and hierarchies, i.e. classes and their methods. The R2D component gen-
erates link candidates based on simple information retrieval methods. The same
1 http://violet.sourceforge.net/.

http://violet.sourceforge.net/

Expanding Tracing Capabilities Using Dynamic Tracing Data 335

approach could potentially be used for generating Requirement-to-Code link can-
didates, as Antoniol et al. describe [3], but it is purposely limited in order to
keep a strict scope for the scenario’s implementation.

While the R2D and D2C link candidate generators provide typical trace-
ability functionalities, the Temporal Proximity component includes time-related
data for detecting possible artifact relationships. For this, it monitors all CRUD
events which are sent to the framework and creates a link between artifacts when
the events occur close to each other. The respective time window is configurable.
A main purpose of the temporal proximity links is to examine possible advan-
tages of having regularly updated link candidates available instead of explicitly
performing larger analyses.

The link candidate generators in this scenario are designed to be executed
automatically and frequently, i.e. when the framework detects respective artifact
changes. Thus, there is a trade-off between the degree of “correctness” and the
necessary execution time. We currently prefer a faster, more simple usage as the
framework is intended to support the developer’s work. In contrast to this, trace-
ability applications which require correct and validated data, e.g. safety-critical
systems, will need other, suitable link generators and/or additional validation.

Applications. The applications implemented for this scenario provide a gen-
eral usage of all available artifacts and types. The context viewer, for example,
enables the user to view data related to the currently “used” artifact in a desk-
top application. These relationships can either be typical tracing links, e.g. those
between a requirement and a UML diagram, but also time-related in order to
link artifacts which have previously been used at the same time as the selected
one. At “the same time” means that interaction events related to these artifacts
occurred inside a configurable time span. As a starting point, the information
generated by the temporal proximity component is used. The user is also able to
view the past evolution of the context on a timeline. The application automati-
cally adapts to data updates provided by the framework and shows the context of
the artifact which the developer most recently interacted with. This automation
can be turned off in order to focus on a specific artifact.

The second application builds upon the previous, but is limited to the IDE.
It enables navigation to those artifacts which are part of the current context
and accessible in the IDE. “Navigation”, in this case, means that the user is
able to select a related artifact in the application and remotely open and focus
it inside the IDE. This functionality can be compared to tools like “NavTracks”
[30]. Note that this “return path”, i.e. the additional usage of the plugin API,
is up to the application itself and not part of the framework. But it makes use
of data provided by the framework, e.g. the artifact’s id which the IDE uses
internally.

The third application makes further use of the framework’s distributed infras-
tructure. We implemented a mobile application which presents the current con-
text using virtual reality technologies. For this, the application communicates
with the framework API using asynchronous HTTP requests and automatically

336 D. Ziegenhagen et al.

arranges objects representing the received artifacts in a 3D scene. Distances
between the objects are calculated using the relationships available in the cur-
rent context. The scene is displayed in a stereoscopic view, enabling the mobile
device to be used in a suitable VR headset like Google Cardboard. While the
current implementation of this application provides a basic and generic view of
the current context, we examine possibilities to further benefit from the 3D view
to better visualize dynamic data and especially time-related aspects. First ideas
are inspired from tools like Gource2.

While the applications presented in this scenario are available for most arti-
fact types, others are more specialized. To give an example, we implemented an
IDE extension for suggesting solutions based on a) automated web search results
and b) an error/solution repository, which is updated when a web-found solu-
tion successfully removed a bug. For this, the IDE’s error messages are treated
as artifacts which are linked to the respective source code file. The general func-
tionality and support provided by this application resembles those of other tools,
e.g. “HelpMeOut” [13].

5 Conclusion

We propose capturing developer-tool interactions in order to enrich the data
current traceability methodologies usually focus on. This capturing is achieved
by connecting to available interfaces of development tools, e.g. the plugin API
of an IDE. As the interactions result in a frequent change of the traced artifacts,
a more or less continuous event stream is created. Thus, we call the proposed
enrichment dynamic tracing data. A goal of this approach is to enable support
and assistance throughout development processes. As an example, the dynamic
traces could be analyzed in order to offer the developer know-how others already
gained in similar processes or situations. Therefore, our approach combines exist-
ing research in the fields of software traceability and developer-tool interaction
analysis.

The concept and implementation of a framework based on our definition of
dynamic tracing data has been presented. It builds upon existing applications,
methods and experiences. It will not be the final result; it is rather the basis for
future research. We plan to integrate more existing work, e.g. for automatically
generating additional link candidates, while examining possibilities to simplify
and further support the integration. Additionally, we look forward to gather
experiences and feedback from using the framework and dynamic tracing data
in general. Thus, the procedure presented in Sect. 3.2 is basically understood in
an iterative way to refine the results.

Besides examining possible advantages, we are especially interested in sys-
tematically detecting limits of the achieved automation. Current vulnerabilities
are found in the processes of artifact extraction and link generation. For exam-
ple, the proposed generic file adapter may be overloaded when many file-related

2 https://gource.io/.

https://gource.io/

Expanding Tracing Capabilities Using Dynamic Tracing Data 337

events occur close to each other, e.g. when a repository is checked out inside a
directory that the adapter is monitoring.

Furthermore, general challenges regarding the integration of heterogeneous
software components remain, although we aim at creating a solution which
should allow a modular and flexible composition. It is still necessary to write
adapters, equalize heterogeneous data, perform model transformations etc. Effort
spent on integrating components, applications and methods varies much. Often
it depends on the possibilities provided by tools or the availability of implemen-
tations and suitable APIs. The generic file adapter may be a small step towards
a more generally applicable integration of tracing data sources, but implying the
limitation of missing detailed interactions.

Our approach does not require modeling or predetermining tracing data.
But in fact, the tool adapters implicitly include such models because of their
technical limitations. For example, the adapters specify the types of artifacts and
links which they are able to extract and generate. Thus, our approach reduces
the necessity to predefine traceability on the one hand, but shifts parts of the
definition to the actual implementations on the other hand. Finding possible
solutions to improve this is part of our ongoing work.

Also, we want to get insights into how our approach is suitable for various
domains, for example model-driven development (MDD), rapid prototyping and
low code. Existing researches of traceability in MDD tend to feature automa-
tion, e.g. the work of Haouam and Meslati [12] and Walderhaug et al. [35].
Thus, using our framework in this domain seems promising. Furthermore, it is
planned to apply our approach in manufacturing processes, especially in smart
factories and industry 4.0, which aim at highly automated data acquisition and
automation [34].

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceabil-
ity. IBM Syst. J. 45(3), 515–526 (2006). https://doi.org/10.1147/sj.453.0515

2. Anquetil, N., et al.: A model-driven traceability framework for software product
lines. Softw. Syst. Model. 9(4), 427–451 (2010). https://doi.org/10.1007/s10270-
009-0120-9

3. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (2002). https://doi.org/10.1109/TSE.2002.1041053

4. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic
modeling. In: 2010 ACM/IEEE 32nd International Conference on Software Engi-
neering, vol. 1, pp. 95–104, May 2010. https://doi.org/10.1145/1806799.1806817

5. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability.
Springer, London (2012). https://doi.org/10.1007/978-1-4471-2239-5

6. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: Proceedings of the on Future of
Software Engineering (FOSE 2014), pp. 55–69. ACM, New York (2014). https://
doi.org/10.1145/2593882.2593891. http://doi.acm.org/10.1145/2593882.2593891

https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1007/s10270-009-0120-9
https://doi.org/10.1007/s10270-009-0120-9
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1145/1806799.1806817
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1145/2593882.2593891
http://doi.acm.org/10.1145/2593882.2593891

338 D. Ziegenhagen et al.

7. Damevski, K., Shepherd, D., Schneider, J., Pollock, L.: Mining sequences of devel-
oper interactions in visual studio for usage smells. IEEE Trans. Softw. Eng. 43(4),
359–371 (2017). https://doi.org/10.1109/TSE.2016.2592905

8. Egyed, A., Grünbacher, P., Heindl, M., Biffl, S.: Value-based requirements trace-
ability: lessons learned. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robin-
son, B. (eds.) Design Requirements Engineering: A Ten-Year Perspective. LNBIP,
pp. 240–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
92966-6 14

9. Gasparic, M., Murphy, G.C., Ricci, F.: A context model
for ide-based recommendation systems. J. Syst. Softw.
128, 200–219 (2017). https://doi.org/10.1016/j.jss.2016.09.012.
http://www.sciencedirect.com/science/article/pii/S0164121216301807

10. Gotel, O., et al.: Traceability Fundamentals. In: Cleland-Huang, J., Gotel, O.,
Zisman, A. (eds.) Software and Systems Traceability, pp. 3–22. Springer, London
(2012). https://doi.org/10.1007/978-1-4471-2239-5 1

11. Gotel, O.C., Finkelstein, C.: An analysis of the requirements traceability prob-
lem. In: 1994 Proceedings of the First International Conference on Requirements
Engineering, pp. 94–101. IEEE (1994)

12. Haouam, M.Y., Meslati, D.: Towards automated traceability maintenance in model
driven engineering. IAENG Int. J. Comput. Sci. 43(2), 147–155 (2016)

13. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R.: What would other
programmers do: suggesting solutions to error messages. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI 2010), pp.
1019–1028. ACM, New York (2010). https://doi.org/10.1145/1753326.1753478,
http://doi.acm.org/10.1145/1753326.1753478

14. Li, Y., Maalej, W.: Which traceability visualization is suitable in this context?
A comparative study. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS,
vol. 7195, pp. 194–210. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28714-5 17

15. Maalej, W., Fritz, T., Robbes, R.: Collecting and processing interaction data for
recommendation systems. In: Robillard, M.P., Maalej, W., Walker, R.J., Zimmer-
mann, T. (eds.) Recommendation Systems in Software Engineering, pp. 173–197.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-5 7

16. Maalej, W., Sahm, A.: Assisting engineers in switching artifacts by using task
semantic and interaction history. In: Proceedings of the 2nd International Work-
shop on Recommendation Systems for Software Engineering, pp. 59–63. ACM
(2010)

17. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empirical Softw. Eng. 20(2), 413–441
(2015). https://doi.org/10.1007/s10664-014-9314-z

18. Mader, P., Gotel, O., Philippow, I.: Getting back to basics: promoting the use of a
traceability information model in practice. In: Proceedings of the 2009 ICSE Work-
shop on Traceability in Emerging Forms of Software Engineering (TEFSE 2009),
pp. 21–25. IEEE Computer Society, Washington, DC (2009). https://doi.org/10.
1109/TEFSE.2009.5069578. http://dx.doi.org/10.1109/TEFSE.2009.5069578

19. Mahmoud, A., Niu, N.: Supporting requirements traceability through refactoring.
In: 2013 21st IEEE International Requirements Engineering Conference (RE), pp.
32–41, July 2013. https://doi.org/10.1109/RE.2013.6636703

20. Mäder, P., Jones, P.L., Zhang, Y., Cleland-Huang, J.: Strategic traceability for
safety-critical projects. IEEE Softw. 30(3), 58–66 (2013). https://doi.org/10.1109/
MS.2013.60

https://doi.org/10.1109/TSE.2016.2592905
https://doi.org/10.1007/978-3-540-92966-6_14
https://doi.org/10.1007/978-3-540-92966-6_14
https://doi.org/10.1016/j.jss.2016.09.012
http://www.sciencedirect.com/science/article/pii/S0164121216301807
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1145/1753326.1753478
http://doi.acm.org/10.1145/1753326.1753478
https://doi.org/10.1007/978-3-642-28714-5_17
https://doi.org/10.1007/978-3-642-28714-5_17
https://doi.org/10.1007/978-3-642-45135-5_7
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1109/TEFSE.2009.5069578
https://doi.org/10.1109/TEFSE.2009.5069578
http://dx.doi.org/10.1109/TEFSE.2009.5069578
https://doi.org/10.1109/RE.2013.6636703
https://doi.org/10.1109/MS.2013.60
https://doi.org/10.1109/MS.2013.60

Expanding Tracing Capabilities Using Dynamic Tracing Data 339

21. Mäder, P., Gotel, O.: Towards automated traceability maintenance. J. Syst.
Softw. 85(10), 2205–2227 (2012). https://doi.org/10.1016/j.jss.2011.10.023.
http://www.sciencedirect.com/science/article/pii/S0164121211002779. (Auto-
mated Software Evolution)

22. Noyer, A., Iyenghar, P., Engelhardt, J., Pulvermueller, E., Bikker, G.: A model-
based framework encompassing a complete workflow from specification until vali-
dation of timing requirements in embedded software systems. Softw. Qual. J. 25(3),
671–701 (2017). https://doi.org/10.1007/s11219-016-9323-9

23. Palihawadana, S., Wijeweera, C.H., Sanjitha, M.G.T.N., Liyanage, V.K., Perera,
I., Meedeniya, D.A.: Tool support for traceability management of software arte-
facts with DevOps practices. In: 2017 Moratuwa Engineering Research Confer-
ence (MERCon), pp. 129–134, May 2017. https://doi.org/10.1109/MERCon.2017.
7980469

24. Rempel, P., Mäder, P.: Preventing defects: the impact of requirements traceability
completeness on software quality. IEEE Trans. Softw. Eng. 43(8), 777–797 (2017).
https://doi.org/10.1109/TSE.2016.2622264

25. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommen-
dation Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-45135-5

26. Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C., Maalej, W.: Monitoring
user interactions for supporting failure reproduction. In: 2013 21st International
Conference on Program Comprehension (ICPC), pp. 73–82, May 2013. https://
doi.org/10.1109/ICPC.2013.6613835

27. Roehm, T., Maalej, W.: Automatically detecting developer activities and problems
in software development work. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012), pp. 1261–1264. IEEE Press, Piscataway
(2012). http://dl.acm.org/citation.cfm?id=2337223.2337390

28. Sanchez, B.A.: Context-aware traceability across heterogeneous modelling environ-
ments. In: Proceedings of the 21st ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings (MODELS
2018), pp. 174–179. ACM, New York (2018). https://doi.org/10.1145/3270112.
3275332, http://doi.acm.org/10.1145/3270112.3275332

29. Shahid, M., Ibrahim, S., Mahrin, M.N.: An Evaluation of Requirements Manage-
ment and Traceability Tools. World Academy of Science, Engineering and Tech-
nology (WASET), Paris (2011)

30. Singer, J., Elves, R., Storey, M.: NavTracks: supporting navigation in software
maintenance. In: 21st IEEE International Conference on Software Maintenance
(ICSM 2005), pp. 325–334, September 2005. https://doi.org/10.1109/ICSM.2005.
66

31. Snipes, W., et al.: A practical guide to analyzing IDE usage data. In: The Art and
Science of Analyzing Software Data (2015)

32. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap, pp. 395–428. World
Scientific Publishing (2005)

33. Turban, B.: Tool-Based Requirement Traceability Between Requirement and
Design Artifacts. Springer, Wiesbaden (2013). https://doi.org/10.1007/978-3-
8348-2474-5

34. Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: real-
izing the cyber-physical production system for industry 4.0. Procedia
CIRP 61, 335–340 (2017). https://doi.org/10.1016/j.procir.2016.11.152.
http://www.sciencedirect.com/science/article/pii/S2212827116313129. (The
24th CIRP Conference on Life Cycle Engineering)

https://doi.org/10.1016/j.jss.2011.10.023
http://www.sciencedirect.com/science/article/pii/S0164121211002779
https://doi.org/10.1007/s11219-016-9323-9
https://doi.org/10.1109/MERCon.2017.7980469
https://doi.org/10.1109/MERCon.2017.7980469
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1007/978-3-642-45135-5
https://doi.org/10.1007/978-3-642-45135-5
https://doi.org/10.1109/ICPC.2013.6613835
https://doi.org/10.1109/ICPC.2013.6613835
http://dl.acm.org/citation.cfm?id=2337223.2337390
https://doi.org/10.1145/3270112.3275332
https://doi.org/10.1145/3270112.3275332
http://doi.acm.org/10.1145/3270112.3275332
https://doi.org/10.1109/ICSM.2005.66
https://doi.org/10.1109/ICSM.2005.66
https://doi.org/10.1007/978-3-8348-2474-5
https://doi.org/10.1007/978-3-8348-2474-5
https://doi.org/10.1016/j.procir.2016.11.152
http://www.sciencedirect.com/science/article/pii/S2212827116313129

340 D. Ziegenhagen et al.

35. Walderhaug, S., Johansen, U., Stav, E., Aagedal, J.: Towards a generic solution
for traceability in MDD. In: ECMDA Traceability Workshop (ECMDA-TW), pp.
41–50 (2006)

36. Wijesinghe, D.B., Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam,
G., Perera, I., Meedeniya, D.: Establishing traceability links among software arte-
facts. In: 2014 14th International Conference on Advances in ICT for Emerg-
ing Regions (ICTer), pp. 55–62, December 2014. https://doi.org/10.1109/ICTER.
2014.7083879

37. Ziegenhagen, D., Speck, A., Pulvermüller, E.: Using developer-tool-interactions to
expand tracing capabilities. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE, pp.
518–525. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007762905180525

https://doi.org/10.1109/ICTER.2014.7083879
https://doi.org/10.1109/ICTER.2014.7083879
https://doi.org/10.5220/0007762905180525

Automated Software Measurement
Strategies Elaboration Using

Unsupervised Learning Data Analysis

Sarah A. Dahab(B) and Stephane Maag(B)

Samovar, CNRS, Télécom SudParis, Institut Polytechnique de Paris,
Palaiseau, France

{sarah.dahab,stephane.maag}@telecom-sudparis.eu

Abstract. The software measurement becomes more complex as well
as software systems. Indeed, the supervision of such systems needs to
manage a lot of data. The measurement plans are heavy and time and
resource consuming due to the amount of software properties to analyze.
Moreover, the design of measurement processes depends on the software
project, the used language, the used computer etc. Thereby, to evaluate
a software, it is needed to know the context of the measured object, as
well as, to analyze a software evaluation is needed to know the context.
That is what makes difficult to automate a software measurement anal-
ysis. Formal models and standards have been standardized to facilitate
some of these aspects. However, the maintainability of the measurements
activities is still constituted of complex activities.

In our previous work, we conducted a research work to fully automate
the generation of software measurement plans at runtime in order to have
more flexible measurement processes adapted to the software needs. In
this paper we aim at improving this latter. The idea is to learn from an
historical measurements for generating an analysis model corresponding
to the context. For that we propose to use a learning technique, which
will learn from a measurements dataset of the evaluated software, as the
expert does, and generate the corresponding analysis model.

The purpose is to use an unsupervised learning algorithm to gener-
ate automatically an analysis model in order to efficiently manage the
efforts, time and resources of the experts.

This approach is well implemented, integrated on an industrial plat-
form and experiments are processed to show the scalability and effective-
ness of our approach. Discussions about the results have been provided.

Keywords: Software metrics · Formal measurement · Measurement
plan · SVM X-MEANS

1 Introduction

Nowadays, the software systems are more and more complex as well as their
issues. Indeed, software systems are integral parts of our lives. From particular
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 341–363, 2020.
https://doi.org/10.1007/978-3-030-40223-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_17&domain=pdf
http://orcid.org/0000-0003-4253-1857
http://orcid.org/0000-0002-0305-4712
https://doi.org/10.1007/978-3-030-40223-5_17

342 S. A. Dahab and S. Maag

usage to professional one, the systems are more efficient and the expectations
are more exacting. They must meet the needs with accuracy and security, which
implies the needs to design high standard software systems.

Likewise, the software engineering process becomes more complex due to
the complex systems to design. Indeed, in order to design quality software the
engineering process must be adapted to meet this need. In order to ensure a
quality software engineering process as well as a quality product, it is necessary
to have an efficient supervision process. This latter gives crucial information on
the developed product over all the development phases, necessary for a suitable
engineering process and software product.

However, the rise of software systems and their complexity distributed
through diverse development phases and projects lead to a huge amount of data
to manage, estimate and evaluate. Considering the quantity of aspects to be
measured raising the relevant information to be analyzed and reported become
difficult (as concerned by Microsoft Power BI1). In this context software mea-
surement becomes then crucial as part of software development projects while
the measurement processes become tough. Thus, to ensure a quality and efficient
software engineering process, adapted measurement processes are required.

In a previous work [4], we conducted a research work to fully automate the
generation of software measurement plans at runtime in order to have more
flexible measurement processes adapted to the software needs. Indeed, in most
real case studies, that process is fixed in a sense that the expert measures all
what he can and not necessarily what he needs. Then a huge amount of data are
unnecessarily collected and analyzed. This work has shown that measurement
plans can be suggested and adjusted at runtime through a supervised learning-
based methodology in reducing the amount of collected data. However, this
approach is still dependent to the expert for the initialization step, especially
for the elaboration of the training file. This later is manually done and thus, the
cost time of this step is high when the samples to classify are highly numerous.

Software measurement is an empirical science which depends on the experi-
ence [8]. Currently, it is difficult to define a generic measurement analysis model.
It depends on the software project, the used language, the used computer etc.
Thereby, to evaluate a software, it is needed to know the context of the measured
object, as well as, to analyze a software evaluation is needed to know the context.
That is what makes difficult to automate a software measurement analysis.

So as to handle this lack, we proposed, in a more recent work [5], to improve
our previous approach by learning from an historical measurements for generat-
ing automatically an analysis model corresponding to the context. For that we
proposed to use an unsupervised learning technique, which learns from a mea-
surements dataset of the evaluated software, as the expert does, and generates
the corresponding analysis model. From an unlabeled software measurements
sample, a labeled one is generated. This output is then used as training file
to train the classifier used for the analysis and suggestion steps of our previ-
ous approach [4]. To do this, we used the clustering algorithm X-MEANS, to

1 https://powerbi.microsoft.com/.

https://powerbi.microsoft.com/

Automated Software Measurement Strategies Elaboration 343

try to discover vector patterns by grouping in clusters the similar vectors of
measurements. Then according to the clustering result, the expert associates to
each cluster the set of metrics to suggest. Herein, the expert intervention only
appears for determining the correlation between classes corresponding to the
clusters, and set of metrics, which considerably reduces the expert load and the
related time cost.

In this paper, we extend our previous one [5] by explaining in detail the main
object of this latter, the analysis model herein called the knowledge basis. Each
concept is also formalized. We propose a small survey of unsupervised learn-
ing techniques by following our needs and an algorithm describing our hybrid
analysis model generation approach.

First, we will introduce some basics definitions and our previous approach,
the Metrics Suggester, that we aim to improve by automating the initialization
phase. Then we will present our improved approach: first, we will present in
more details the composition of an analysis model to better understand the
issues and needs to automate its elaboration, then we will introduce the notion
of unsupervised learning technique to describe the algorithm X-MEANS [25]
used to reach our expectations. Finally, we will present the integration of our
approach in an industrial platform and experiments that demonstrate that there
is a real interest in integrating an unsupervised learning technique for measuring
software.

2 Related Works

Standardization institutes put lots of efforts in defining. They focus on the def-
inition and formalization of software quality models such as the ISO9126 that
qualifies and quantifies functional and non-functional properties with software
metrics [3]. Besides, two other standardization institutes worked in that way to
propose two commonly used norms namely ISO/IEC25010 [18] and OMG SMM
[2] in order to guide the measurement plan specification. These two last stan-
dards have been reviewed by the research and industrial community, and are
adapted, integrated and applied in many domains. In the research literature,
several works on software metrics selection for software quality have been pro-
vided [9]. Recent techniques based on learning approaches have been proposed.
Most of them are dedicated to software defect prediction [19,20,26], metrics
selection [1] or even Software testing [17,21]. However, even if these techniques
have introduced considerable progress to improve the software quality, they have
still some limitations. The measurement plan is still manually fixed by the project
manager or the experts in charge of its definition. Furthermore, the implemen-
tation of the measures is dependent on the developer and reduce the scalability,
maintainability and the interoperability of the measurement process.

While a current study shows the lacks in the use of learning technique for
software measurement analysis [11], there are in literature some works which use
supervised learning algorithms, especially for software defect prediction [19,26]
or for prioritize software metrics [27]. Indeed, there are a lot of software metrics,

344 S. A. Dahab and S. Maag

and currently the measurement processes execute all the metrics continuously.
This latter shows that we can prioritize the metrics and thus reduce the number
of metrics to be executed.

There are also works which propose to use unsupervised learning technique
to estimate the quality of software [29] as “expert-based”. They also propose
to base on clustering techniques to analyze software quality [28]. Other works
propose to combine supervised and unsupervised learning techniques to predict
the maintainability of an Oriented Object software [16]. But all of these works
focus on the analysis or prediction of one software property. The aim of our
approach is to allow the less of expert dependency to evaluate all the software
engineering process, and to suggest flexible mp continuously according to the
software need.

3 Software Measurement Basics

3.1 Definitions

In this section, we provide some notions of software measurement that we use in
our work.

Definition 1. Measure: this is the calculation evaluating a software property
(e.g., LoC). Formally, this is a function f : A → B|A ∈ X,B ∈ B that, from a set
of measurable properties A of an object X (also named measurand in software
measurement), assigns a value B of a set B.

Definition 2. Measurement: this is a quantification of a measured property [7].
Formally, it refers to the result y of the measure f such as y = f(A)|A ∈ X.

Definition 3. Metric: this is the formal specification of a measurement. It spec-
ifies the measurand, the measure(s) and the software property to be measured.

Definition 4. Measurement Plan: is an ordered set of metrics. It is expected to
be executed at a specific time t or during a well-defined duration (depending on
the measurand(s), the platform, the users, the probes, etc.) and according to an
ordered metrics sequence. Besides, they can be run sequentially or in parallel.

3.2 Software Measurement Standard

We try to improve the software measurement process by using learning algo-
rithms to reduce the costs of management and analysis. For that, we try to
reduce, on one hand, the expertise charge using unsupervised learning algorithm
and on the other hand, to optimize the measurement process performance by
reducing its processing load.

In order to reduce the processing load, we proposed a suggestion algorithm.
The aim of this latter is to analyze a set of measurements during a period of time
and according to the analysis result a suggestion of a new measurement plan is
generated. This allows to reduce the processing load by executing at each time

Automated Software Measurement Strategies Elaboration 345

the metrics of interest according to the software needed instead of executing all
the metrics each time.

To do this, it is necessary to determine the software properties to be analyzed
and the corresponding metrics. Therefore, we base our work on the standard
ISO/IEC 25000 [13] which defines within 4 divisions the software quality and
the measurement of the quality of a software. Especially, the ISO/IEC 25010 [15]
division defines the software properties, 8 for quality product, which describe the
software quality. And the ISO/IEC 25020 [14] division defines the measures (or
metrics), more than 200, which give information on these properties.

4 Automated Software Measurement Analysis
and Suggestion

This approach is built into three procedures: the manual elaboration of the anal-
ysis model; the automated and dynamic analysis based on the analysis model;
and the suggestion of measurement plan based on both latter. And in two main
stages: the initialization phase which consists to define the measurement context
and the interpretations of the measurements; and the computation phase which
includes the measurement analysis and the suggestion of metrics. The first phase
is unique and manually fixed at the beginning of the measurement process while
the second one is dynamic and in continuous.

4.1 Manual Analysis Model

The manual analysis model, called initial measurement plan, is the basis of our
suggestion algorithm. Indeed, the analysis and the suggestion are based on it.

The initial measurement plan MP is elaborated by the expert and it defines
the observed set of metrics, the corresponding software properties and the
mandatory metrics, the ones that must always be in the suggested measurement
plans.

This MP is the definition of the measurement context: what is observed by
the software properties, how it is observed by the set of metrics related to the
properties and the mandatory ones.

The set of metrics groups all the metrics that could be computed during all
the measurement process. Thus, the suggestion is a subset of this set of metrics.

4.2 The Analysis

The analysis consists in classifying a set of measurement data, more precisely a
set of vectors �v. Each vector is classified in one class which refers to a software
property defined in the initial measurement plan and related to ISO/IEC 25000.
To classify the data we use a supervised learning algorithm SVM.

SVM is a linear classifier trained through a training file. This file is elaborated
by the expert and it corresponds to a manual classification. Indeed, the expert
classifies a set of vectors by labelling each vector by a class. Then, a classifier

346 S. A. Dahab and S. Maag

is trained according to this manual classification. Thereby a specific classifier
is then used for a specific analysis. The training file corresponds to the initial
measurement plan. The used labels should correspond to the defined class as
the set of metrics classified. In fact, the suggestion is based on this specific
classification.

It means that each time we want to change the context of the measurement
process, a new training file should be done by an expert to generate the corre-
sponding classifier. And this was the main limitation of our approach. Despite
an automated and “smart” analysis, our approach is still highly dependent to
the expert and quite costly in time.

4.3 The Suggestion

Once all the interesting elements are highlighted by the previous procedure, the
new measurement plan can be generated as a subset of metrics which allows to
gather more information on these highlighted elements. This makes it possible
to orient the next measurement cycle on specific parts of the measured system at
runtime and dynamically. In other words, the measurement process is no longer
static and fixed on the same elements all the time t but flexible according to the
needs at each period of time ti.

The measurement plan mpi is so performed by generating a subset composed
of the set of metrics associated to the property highlighted as the one of interest
by the analysis, the selected metrics by the RFE algorithm and the mandatory
metrics defined in the analysis model. If all the vectors are classified in the same
class, we thus suggest all the metrics defined in the analysis model.

This procedure is formally described below, by the Algorithm 1. It takes as
input the initial measurement plan, herein called mp, the trained classifier f and
the set of vectors to be analyzed {�v}i, gathered during the interval [ti−1 − ti].
And where mpi is the suggested measurement plan, mm the defined mandatory
metrics and fs the feature selection algorithm (RFE).

To summarize, we propose an analysis of measurements and a suggestion of
metrics approach, called the Metrics Suggester, build in three procedures: the
configuration phase, manually done, initializes the analysis model and the train-
ing file; the analysis phase, composed of the classification and features selection
processes; and the suggestion phase that suggests a new measurement plan based
on the analysis results and the mapping system of the analysis model.

Through this method, the measurement load is increased only on needs
and decreased on less interesting properties. This suggestion approach allows to
reach a lighter, complete and relevant measurement during the entire supervision
period of the software project. This expert-based automated measurement plan
suggestion approach allow to add dynamic flexibility and an automated analy-
sis to the measurement process. The learning technique SVM is used combined
with the RFE algorithm to make the automation possible and to manage a huge
amount of data with more lightness, flexibility.

However, the training file, necessary to initialize the analysis tool, is elabo-
rated by the expert and it corresponds to a manual classification. The expert

Automated Software Measurement Strategies Elaboration 347

Algorithm 1 . Metrics Suggestion.

Input mp, f , unlabeled {�v}i

1: Output mpi

2: y ← {}
3: mf ← {}
4: for each �vi in {�v}i do
5: y ← f(�vi)
6: end for
7: if y == 0 or y without duplicate == 1 then
8: return mp
9: else

10: mf ← fs(f, {�v}i)
11: mpi ← mf+mp [most common(y)]+mp [mm]
12: return mpi

13: end if

classifies a set of vectors by labelling each vector by a class. Then, a classifier
is trained according to this manual work. Moreover, as the analysis is based
on a specific context through a specific classifier trained by a file corresponding
to the specific analysis model, each time we want to change the context of the
measurement process, a new analysis model and training file should be done by
an expert to generate the corresponding classifier. This is a major limitation of
our approach. Despite an automated and “smart” analysis, our approach is still
highly dependent to the experts and quite costly in time.

In order to reduce this load of the experts, we aim at improving this app-
roach by using an unsupervised learning technique to generate automatically the
training file. The advantage of using this latter is to reduce the expert cost, but
also the dependency of an expert. Indeed, as the software measurement is an
empirical science, it depends on the experience on the software or on the prop-
erty evaluated. There is as many models as there are software projects. Thereby,
our purpose is to use learning clustering algorithm X-MEANS as expert to gen-
erate automatically the training file according to a measurement dataset of the
evaluated project. The expert would only intervene to define the analysis model
according to the result of X-MEANS application.

5 The Knowledge Basis

The initialization phase of our metrics suggestion approach, described previously,
consists to define the measurement context of a measured software.

This context formally describes what are the software realities to be observed,
how to observe them and how to supervise these observations and how to mon-
itor the information. So many information needed to automate the supervision
process.

In our previous approach, this context was defined manually by the expert
as an analysis model and a training file. The analysis model described what is

348 S. A. Dahab and S. Maag

observed and how to observe it and how to supervise the observation. While the
training file describes the way to monitor the information.

Thus, this phase lays the foundation of the entire measurement process. It
reunites the knowledge of the expert necessary to delegate to the machine this
difficult and repetitive task which is the measurement supervision.

The main objective of this work is to delegate to the maximum the initializa-
tion of the knowledge basis to the machine. Up to now, this phase was manually
done and the defined knowledge was used as basis to automate the supervision
of the measurement. In order to achieve this goal, we describe in details this
knowledge basis so that to grasp how to automate their definition.

5.1 Analysis Model

The analysis model defines three fundamental points:
– what is observed: the observed realities,
– how to observe: the means to observe,
– how to supervise: the observation orchestration.

These three points are the basis of all observations and they are interrelated.
But mostly, this is the basis necessary to be able to automate the measurement
and the supervision.

We associate the first point to the class concept in analysis point of view,
and to the property concept in a formal point of view.

The second point, the means to observe, refers to the metrics. Indeed, the
means to get the information are the metrics.

Finally, the third point, the orchestration of the observation is defined by the
mapping system.

Our analysis model is thus composed of classes, metrics and a mapping sys-
tem between these latter.

Class. The class concept is herein used as the grouping of different elements
that refer to the same thing. Thus, by the notion of class, we refer to one software
reality and to the different data that give an information on this software reality.

As these data are different, they give different information but on the same
reality. In other word, they give different point of view of one reality.

For example, if we want to observe the ability of a man to be a runner. We
have to observe several point: his endurance, his tall, his weight, his tone, his
flexibility, etc. All of this information are different but they give an information
on the same reality which is the ability to a man to be a runner.

Thereby, a class is a cluster of data on one software property. The property
referencing the corresponding reality, such as a class C is a set of atomic reality
or sub reality ri with i ∈ 0, ... , n and n the number of sub realities necessary to
describe the observed reality as formally defined below:

C = {r1, r2, ... , rn} (1)

Thus, to defined a class it is important to know what characterizes the reality
in order to well define the informants.

Automated Software Measurement Strategies Elaboration 349

Metric. The metrics are the informants of the observed reality. They are the
means to get the information on the reality. More precisely, it gives the state of
the observed reality, at the time t.

Knowing that one reality is not totally distinct to another, they can share
characteristics. Thus, a single metric can be used as informant for different real-
ity. As shown in the article [12], there are mutual influences between software
properties defined by the ISO/IEC 25010 [15]. Herein, we use these metrics as
mandatory ones in order to have, through one informant, an information on
several properties.

To resume a metric is the function f that gets an information, or a state x
on a reality r such as:

f(r) = x (2)

Finally, it is useful to notice that, according to the value of x, the information
does not have the same meaning. And this is on this rule that we will base the
automation of the generation of the analysis model.

Mapping. The mapping corresponds to the correlations between what we want
to observe and how we want to observe it. This is what we will use to orient the
measurement process. This is the basis of the orchestration of the measurement
process.

By this mapping, we define how to orient the measurement on a property.
The needed information on the property. For that, we associate the property to
the means that give the information corresponding to the ones needed.

Thus, the mapping map is the union between class with k parameters to be
observed Ck and the set of metrics {fi} with i ∈ {1, ... , k} allowing to gather
the information on these k parameters such as:

map = {Ck ∪ {fi}} (3)

To sum up, the analysis model gathers the knowledge to orchestrate the
measurement process: what and how. It remains to define how to orchestrate,
how to orient the measurement process. And this is the role of the training file.

5.2 Training File

The training file describes how to analyze the information, how to interpret
them. This is the analyst of the data about the observed software. According to
the value x gathered the interpretation will be different.

The training file groups a set of vectors of metrics values associated to a label.
Each field of the vector is a value that corresponds to the state of a reality. Thus,
one vector contains information on several realities. And according to the value of
each field, the vector is associated to the corresponding reality through labeling.

350 S. A. Dahab and S. Maag

Measurement Vector. The analyzed data are in the form of a vector �v. This
vector is composed of all the metrics defined for the measurement process. So,
in one vector we have information on all the observed software properties. And
according to the values of the vector fields, this vector will be associated to one
property Ci through label yi referencing the property Ci. As described by the
Eq. 4.

�v = yi (4)

This association is based on the values of the fields. If a field is associated
to the ith property Ci, that means the values of the fields corresponding to the
metrics that inform on the property Ci are significant while the values of the
other fields corresponding to the other properties do not show any interest. Thus,
a measurement vector is a set of values xk

i giving information on the parameter
k of the ith property Ci, as defined by the Eq. 5, according to its data pattern.

�v = {xk
i } (5)

Data Pattern. The meaning of the fields is related to their values, that is,
depending on whether the value is high or not, their interpretation differs. This
different interpretation is based on threshold that the expert knows and who are
related to the measured system. But that means, for a given field, if its value
is higher or lower than a threshold this field will be interpreted as indicator of
interest or not on the corresponding property. By expanding this rule to all the
fields of the vector, this leads to types of vectors indicator of interest or not on
a property.

Finally, a vector is interpreted as indicator of interest on a property according
to its data pattern. If the set of xi is indicator of interest while the set of xj is
not, then the vector will be related to class Ci. Whereas in the opposite case the
vector will be related to class Cj .

To summarize, the training file describes how to analyze all this gathered
information. It plays the analyst role. And it will also be our basis for generating
automatically the analysis model and the training file.

As our analysis model is a set of clusters (class) corresponding to a set of
measurement values (metrics values). And as the measurement vector is asso-
ciated to a class according to its data pattern, this latter cited, by clustering
vectors of historical measurement of a software according to their pattern, we
will find the classes, the corresponding metrics and the training file. It will only
remain to define the mapping between clusters and metrics for the suggestion.

For that we chosen the clustering algorithm X-MEANS, described in detail
below, which aims to discover the different data patterns of a raw dataset.

Automated Software Measurement Strategies Elaboration 351

6 Automated Initialization Phase

In order to improve the initialization phase, we propose to use an unsupervised
learning algorithm X-MEANS, for learning from raw measurements data and to
initialize automatically the corresponding measurement context.

The purpose is to generate from raw data an analysis model and a training
file which define the measurement context, context used as basis by our Metrics
Suggester approach.

For that, we propose a hybrid algorithm to generate automatically the mea-
surement context corresponding to the measured software.

In this section, we first describe the unsupervised machine learning in gen-
eral to detail the chosen algorithm X-MEANS to build our approach. Then, we
introduce and formally describe our hybrid analysis model generation algorithm.

6.1 Unsupervised Machine Learning

There are two main types of machine learning [10]:

– Supervised machine learning
– Unsupervised machine learning

The unsupervised machine learning aims to learn in autonomy from samples
of data without any prior guidance on the expected prediction. This is the main
difference with supervised machine learning which learns from samples of data
with the expected predictions through labeling and called training file. Thus, an
unsupervised algorithm learns autonomously from experience while searching a
structure in the analyzed sample of raw data. This structure is called a structural
relation.

Formally that means from a random raw data x1, x2, x3... we try to found
the yi structural relation such as: xi → yi.

Unsupervised machine learning is used for different type of tasks. According
to the type of task, the structure relation sought is different. There are 3 main
tasks:

– The clustering
– The association rule
– The dimensionality reduction

The Clustering Algorithm. As its name suggests, this algorithm aims to group
a set of data according to their similarity into clusters such as each data in one
cluster shares common attributes and the data of one given cluster be as distinct
as possible with data of the other clusters.

The Association Rule. This algorithm aims to find relation between data of large
data samples such as correlation or involvement. For example, to find a relation
between a product X and Y such as when x is bought y is too.

352 S. A. Dahab and S. Maag

The Dimensionality Reduction: This algorithm aims to reduce the dimension
of the data. So, it is assumed that the data are vectors with a high number of
features. The principle consists to reduce the size of the vectors by finding the
corresponding smallest dimension without loss of information. In other words,
to remove the features that do not influence the analysis of the data.

The objective of this work is to generate an analysis model that groups
measurements vectors of the same type. Thus, the algorithm corresponding to
our needs is the clustering one. Thereby, subsequently we focus on the clustering
algorithm.

6.2 Clustering Algorithms

The clustering algorithm aims to divide a set of data into cluster by finding
similarities between data. The main objective is to minimize the similarity factor
intra-clusters and to maximize the one inter-cluster (see Fig. 1).

Fig. 1. Clustering aims.

In this case the similarity factor is the distance. But a distance is computed
differently according to type of variable: continue, binary, etc... Likewise, there
are different methods to compute a distance as the Euclidean, Manhattan ones
and so on... Thus, there are several clustering methods whose similarity factor is
differently computed according to the used method. The main methods as cited
in [22] are:

– Partitioning clustering,
– Hierarchical clustering.

The Hierarchical Method. This method generates a tree of clusters in two differ-
ent heuristics: by splitting or merging the clusters.

The splitting method starts by one cluster with all the data assigned into
then it splits the most dissimilar vector in two clusters. The splitting is repeated
until each vector is assigned to its own cluster.

Automated Software Measurement Strategies Elaboration 353

The merging method conversely starts with N clusters, with N the number
of data, then it merges the most similar clusters. The merging is repeated until
all data are assigned in one unique cluster.

The similarity between cluster is computed in different ways: by assessing
the distance of the nearest neighbor, the data in each cluster with the minimum
distance; conversely, by assessing the distance between the furthest neighbor, the
data in each cluster with the maximum distance; or by assessing the distance
between the centröıds of each cluster. The first method is called single linkage, the
second complete linkage and the last one average linkage. The Fig. 2 illustrates
these methods.

Fig. 2. Similarity assessments for the Hierarchical method.

The Partitioning Method. This method randomly partitions the data in K clus-
ters:

1. it starts by initializing K centröıds,
2. then it assigns to each data the closest centröıds,
3. Then, it updates the centröıd of each cluster by assessing the mean distance

of each cluster i ∈ {1, ..,K} between the current centröıd and all the data
assigned to the cluster i: each mean of each cluster becomes the new centröıd
of the cluster.

4. Then, the step 2 and 3 are repeated until the stabilization of the centröıds.

These both methods are complementary, the defaults of one are the advan-
tages of the other [22]. The first method is useful to highlight the embedded
structure while the second is useful to discover patterns.

Moreover, for the hierarchical method the number of clusters to be discover
does not need to be specified unlike the second. However, the first one is very
computationally expensive with a time complexity in O(N2logN) and a space
complexity in O(N2), the clustering is static, a data assigned to a cluster could
not move to another, and it may fail to separate overlapping. While the second is

354 S. A. Dahab and S. Maag

less expensive with a time complexity in O(N), so it is more adapted to analyze
a large data set.

Finally, the method that best fits our needs is the partitioning one. Indeed,
we need to discover types of pattern data. The negative point is that it needs
to specify the number of clusters and we do not know how many there are. But
fortunately, there are algorithms based on this method and free of any prior
specification.

To finish, there are several algorithms based on this method but the one
that best fits with our expectation is the K-MEANS one2. But as K-MEANS
needs to specify the number of clusters, we will use the X-MEANS algorithm
which is an extension of K-MEANS. It is free from prior initialization and it
is more efficient according to the article [24]. There is another algorithm more
efficient PG-MEAN [6], but there is not standard library that implements it
while X-MEANS is supported by the scikit-learn [23] library.

6.3 X-MEANS Algorithm

X-MEANS [24] is a clustering algorithm, more precisely it is an extension of the
K-MEANS algorithm based on the partitioning method.

X-MEANS splits into k clusters a sample of data without initialization of the
expected number of clusters k. It determines the best k clusters by minimizing
the inter-cluster similarity and satisfying the Bayesian Information Criterion
BIC score which is a model selection criterion.

For that, it determines Z initial clusters by defining randomly Z centröıds,
then assigns to each data the closest centröıd. Then, it updates the centröıds
according to the sum of distances of each cluster. This distance D should be
the smallest. Finally, it splits each cluster in two clusters and go to the previous
step to have the lowest inter-cluster. A low inter-cluster similarity is ensured by
assigning a data to the cluster whose distance to its center is the smallest. Thus,
it tends to minimize this following function D.

D =
k∑

i=1

n∑

j=1

|ci, xi
j | (6)

Before each split the BIC score of each cluster model is computed. As exam-
ple, the initial number of cluster Z is 2. So we have 2 clusters, c and i, with one
centröıd each, k = 1. For each cluster we compute its BIC score. Then we split
each cluster in two sub clusters, that means k = 2 for each one. And then we
compute the new BIC score of c and i with k = 2. If this score is lower than the
previous one, we keep the cluster with k = 1. Else we split another time each sub
cluster in two sub-sub clusters etc. So, if BIC(c, k = 1) > BIC < (c, k = 2) we
keep c with k = 1. And if BIC(i, k = 1) < BIC(i, k = 2) we keep i with k = 2
and we split each sub cluster of i in two sub clusters while c remains unchanged.
After the splitting process this score is used to determine the best model: the
one with the higher BIC score.
2 https://scikit-learn.org/stable/modules/clustering.html.

https://scikit-learn.org/stable/modules/clustering.html

Automated Software Measurement Strategies Elaboration 355

6.4 Hybrid Analysis Model Generation Algorithm

This procedure aims to automate the initialization phase to reduce the depen-
dency to the expert and the involved expensive cost in time. The objective is to
dynamically generate an analysis model based on the measured software infor-
mation.

As reminder, the initialization phase is manually built. Moreover, to initialize
the context of the suggestion process of our Metrics Suggester approach, some
inputs is needed: the training file and the analysis model. The first one is used
to trained the analysis process and the second is used as basis to suggest new
measurement plan.

The purpose is then, to learn from historical measurements of the measured
software to generate the corresponding analysis model and training file by using
the X-MEANS algorithm and to design the correlations between the determined
clusters and the sets of metrics correspondingly. Thereby, all needed inputs are
well defined.

This last step is manually done by the experts, that is why we call this
approach: hybrid.

To sum up, our hybrid analysis model generation approach is based on three
procedures:

– The clustering of historical raw measurements of the measured software
through the unsupervised learning approach X-MEANS. The returned result
is used as training file TR.

– The training of the classifier, f, based on this measurement context by using
the supervised learning technique SVM.

– And the manual elaboration of the analysis model AM, based on the clustering
result.

The Measurement Clustering. This procedure aims to discover the data patterns.
From an historical data of the measured software, it will determine the number
of vector types by grouping it in clusters.

The historical data are the measurements gathered at the period of time
t0 of our measurement process. And herein called {�v}0. The X-MEANS algo-
rithm is then applied on this unlabeled dataset and it returns a labeled dataset,
called BestAM, which represents the clustering result. This procedure is formally
defined by the Algorithm2.

The Unsupervised Classifier. Once the clustering process is done, we have a
labeled dataset BestAM. This dataset is used as training file TR to trained the
classifier that will be used for the suggestion.

To train the classifier, we apply the supervised learning technique SVM on the
training file generated by the clustering process. This process returns a trained
classifier f such as:

f = SV M(TR) (7)

356 S. A. Dahab and S. Maag

The Manual Elaboration of Correlations. This procedure manually designs the
correlations between the clusters, herein called Class, determined by the clus-
tering results and the corresponding set of metrics, {Metric}i with i the cluster
i of the set of clusters.

Algorithm 2 . Measurements vectors clustering.

Precondition: Function 2-MEANS
Input Unlabeled {�v}0

Output BestAM
1: BestAM ← {}
2: Clusters ← 2-MEANS({�v}0)
3: for each C in Clusters do
4: C2 ← 2-MEANS(C)
5: if BIC(C) ¿ BIC(C2) then
6: BestAM ← BestAM ∪ C
7: else
8: go to step 1 with the cluster C2

9: end if
10: end for
11: return BestAM

This mapping is then used as analysis model AM to suggest new measurement
plans corresponding to the analysis results.

Our hybrid approach is formally defined by the Algorithm 3.

Algorithm 3 . Hybrid Analysis Model Generation.

Input unlabeled {�v}0

1: Output AM
2: TF ← Algorithm2({�v}0)
3: f ← SVM(TR)
4: AM ← {}
5: for each Classi in TR do
6: AM ← AM ∪ Classi ∪ {Metric}i

7: end for
8: return AM, f

7 Experiments

In this section, we present the results of our improved approach for automat-
ically generating a software measurement analysis model based on experience
and measurements data history.

First, we present the results of our hybrid analysis model generation through
the X-MEANS algorithm and discuss it. Then, we will used this analysis model
as input to the metrics suggester tool and present the ensuing suggestion results.

Automated Software Measurement Strategies Elaboration 357

7.1 Automated Analysis Model Generation

Case Study. The case study of this experiment is an in use Oriented Object
platform of the European project MEASURE3. The measurement data used are
the measurement results applied on this platform.

For evaluating our approach, we used a real industrial use case provided by
one of the MEASURE partners. This one is based on a modeling tool suite. The
analysis of this tool focuses on the developed Java code.

Experimental Setup. The considered set of metrics for the measurement pro-
cess includes 13 metrics giving information on 3 software properties, as described
in Table 1. This MP is defined by the measurement context: the observed met-
rics during all the processes and the mandatory ones. The properties or classes
give information on what is evaluated, but the actual number of classes will be
determined by the X-MEANS algorithm. In fact, the initial measurement plan
will be defined according to the result of the X-MEANS execution, the expert
will define the correlations between subsets of metrics and clusters.

Table 1. Measurement plan.

Index Metric Property Mandatory

1 Code smells Maintainability X

2 New Code smells Maintainability

3 Technical debt Maintainability

4 New Technical debt Maintainability

5 Technical debt ratio Maintainability

6 Bugs Reliability X

7 New Bugs Reliability

8 Reliability remediation effort Reliability

9 New Reliability remediation effort Reliability

10 Vulnerabilities Security X

11 New vulnerabilities Security

12 Security remediation effort Security

13 New Security remediation effort Security

The metrics related to the Maintainability property give information on the
quality of the code. The ones related to Reliability give information on the
reliability of the services and the Security ones are about the vulnerabilities in
the code.

In order to execute X-MEANS, we generate a file with a fixed amount of
data and a fixed number of groups corresponding to a vector type: the data
3 https://itea3.org/project/measure.html.

https://itea3.org/project/measure.html

358 S. A. Dahab and S. Maag

are vectors with values which correspond to a property. For example, the fields
corresponding to the metrics related to the maintainability property are high
and the others are low, herein called vector-type. The objectives are twofold,
first to verify if the clustering result matches with the expectation and if the
suggestion still provides correct results with the automated labeled data set as
input training file.

Clustering Results. As depicted in the Fig. 2, the data are homogeneously
distributed in the files 1 and 2: there is the same amount of vector types in
each group. A group is a vector-type set. Finally, the data in the files 3 and 4
are heterogeneously distributed. There is a different amount of vectors in each
group.

Table 2. Unsupervised clustering results (Source [5]).

File Raw data Pattern distribution Clustering results Time(s)

1 50 3 2 0.03

2 100 3 6 0.05

3 1000 3 6 0.08

4 10000 3 6 0.15

The column Data gives the amount of vectors per file and the column Dis-
tribution gives the number of vector-type (Table 2).

Regarding the clustering result, we can note that when the file is too small,
the clustering accuracy is not high. Indeed, the file 1 with 50 vectors and 3
vector-type is grouped in two homogeneous clusters while we expected 3 groups.
But with files containing more data, the clustering result is better and promising.
The accuracy result is better and they correspond to the expectations and even
more, although the number of clusters does not seem to correspond with the one
expected, in fact clusters corresponds to those in the groups and the distribution
of the vectors in the clusters complies with those in the groups: in fact, in each
group there are two types of vectors, the one with values to all fields and the
one with values only on the fields referencing the same class and the value 0 for
the other fields. The goal was to simulate the case that we gather information
only on one property.

Before the experiment, we consider these two types as a same type as both
was indicator on the same property. But finally, we conclude by the fact that
both are two different types and although they indicate an interest on the same
property, they can not be interpreted in the same way. They can lead to different
suggestions.

To conclude, X-MEANS shows a good performance to learn as an expert
from experiences and to provide a reliable analysis model with considerable
time savings. But also, it can be used to validate models, in order to verify the
validity of data model.

Automated Software Measurement Strategies Elaboration 359

7.2 Suggestion Results

Finally, the initial measurement plan (MP) is defined by the expert according
to the previous step result. In fact, the expert will add to the MP presented in
the Fig. 1 the correlation between clusters and a metrics subset.

Once the initial MP is defined, we train the classifier with the file 3. Then, as
suggestion experiment, we use as input files to analyze, a dataset of 50000 unclas-
sified vectors divided in 10 subsets of 5000 unclassified vectors. The objective is
to see if the suggestion provides correct plans (of metrics).

The Fig. 3 shows the results of suggestions based on the previous analysis
model. The results show a dynamic suggestion of measurement plans (mp). Each
mp is between 5 and 13 metrics. There is no convergence (e.g., deadlock or unde-
sired fixity in the generated plans) and the suggested mp evolves continuously
according to the dataset values.

Fig. 3. Suggestions results (Source [5]).

7.3 Industrial Integration

Our analysis and suggestion tool is built as a web application as illustrated in
the Fig. 4. The architecture is organized around the machine learning unit (ML
tool), which regroups the classification and feature selection algorithms. The
library used to develop the learning algorithms is scikit-learn [23].

As our work is taking part of a European project MEASURE, its imple-
mentation has been integrated in the related industrial platform as an analysis
tool.

360 S. A. Dahab and S. Maag

Fig. 4. Our Metrics Suggester tool architecture (Source [5]).

MEASURE Platform. The MEASURE Platform4 is the research result of the
European project ITEA3 MEASURE5. This project aims to improve the whole
software measurement processes. For that, as described in the Fig. 5, this plat-
form proposes a database as storage of software metrics specified and developed
according to the standard language SMM; a storage of measurement results; a
cover of the entire software engineering process; and analysis tools.

Fig. 5. Overview of the MEASURE platform.

To conclude, our Metrics Suggester tool is integrated in the platform, by
using the REST API of the platform. This latter allows to connect our analysis
tool to the platform, to gather stored measurements and to generate a dashboard
from the platform.

4 https://github.com/ITEA3-Measure.
5 http://measure.softeam-rd.eu.

https://github.com/ITEA3-Measure
http://measure.softeam-rd.eu

Automated Software Measurement Strategies Elaboration 361

8 Conclusion and Perspective

We proposed to improve our previous work by reducing the expert dependency
to the management of the analysis process. For that, we propose to use an
unsupervised learning algorithm X-MEANS to take the place of the expert and
to generate automatically the knowledge basis by learning from an historical
database.

We demonstrate the effectiveness of considering unsupervised learning algo-
rithm to reduce further the management cost and improve the performance of
such a process. We herein use X-MEANS to automatically generate correlations
of a sample of data through clustering by generating an analysis model and a
training file as inputs to our previous suggestion approach.

Well implemented and experimented, this approach shows the possibility to
generate a reliable model with a low time cost, and also to verify the validity of
manual models. The promising results demonstrate us the beneficial contribution
of using learning techniques in the software measurement area.

We add this improvement feature to our previous approach the Metric Sug-
gester tool. The integration of this improved tool in the MEASURE platform
is planned. The user will be free of the configuration load. Indeed, he will sim-
ply have to select the concerned metrics by the measurement process, then the
tool will gather automatically from the platform the dataset of measurements
corresponding to the selected metrics to generate the clusters to be mapped
with the sets of metrics. However, the initialization is not totally automated,
the correlations between clusters and set of metrics are still dependent to the
expert.

In order to increase the independence to the expert by generating automat-
ically the correlations between clusters and metrics subsets. One possibility is
to use a statistic method on the weight of features to found automatically the
correlations between clusters and features. This solution could be envisaged in
future works.

References

1. Bardsiri, A.K., Hashemi, S.M.: Machine learning methods with feature selection
approach to estimate software services development effort. Int. J. Serv. Sci. 6(1),
26–37 (2017)

2. Bouwers, E., van Deursen, A., Visser, J.: Evaluating usefulness of software metrics:
an industrial experience report. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th
International Conference on Software Engineering, ICSE 2013, San Francisco, CA,
USA, 18–26 May 2013, pp. 921–930. IEEE Computer Society (2013). https://doi.
org/10.1109/ICSE.2013.6606641

3. Carvallo, J.P., Franch, X.: Extending the ISO/IEC 9126–1 quality model with
non-technical factors for COTS components selection. In: Proceedings of the 2006
International Workshop on Software Quality, WoSQ 2006, pp. 9–14. ACM, New
York (2006). https://doi.org/10.1145/1137702.1137706

https://doi.org/10.1109/ICSE.2013.6606641
https://doi.org/10.1109/ICSE.2013.6606641
https://doi.org/10.1145/1137702.1137706

362 S. A. Dahab and S. Maag

4. Dahab, S., Porras, J.J.H., Maag, S.: A novel formal approach to automatically
suggest metrics in software measurement plans. In: 2018 13th International Con-
ference on Evaluation of Novel Approaches to Software Engineering (ENASE).
IEEE (2018)

5. Dahab, S.A., Maag, S.: Suggesting software measurement plans with unsupervised
learning data analysis. In: ENASE, pp. 189–197. SciTePress (2019)

6. Feng, Y., Hamerly, G.: PG-means: learning the number of clusters in data. In:
Advances in Neural Information Processing Systems, pp. 393–400 (2007)

7. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach.
CRC Press, Boca Raton (2014)

8. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Confer-
ence on the Future of Software Engineering, pp. 357–370. ACM (2000)

9. Gao, K., Khoshgoftaar, T.M., Wang, H., Seliya, N.: Choosing software metrics for
defect prediction: an investigation on feature selection techniques. Softw.: Pract.
Exp. 41(5), 579–606 (2011)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

11. Hentschel, J., Schmietendorf, A., Dumke, R.R.: Big data benefits for the software
measurement community. In: 2016 Joint Conference of the International Work-
shop on Software Measurement and the International Conference on Software Pro-
cess and Product Measurement (IWSM-MENSURA), pp. 108–114, October 2016.
https://doi.org/10.1109/IWSM-Mensura.2016.025

12. Hovorushchenko, T., Pomorova, O.: Evaluation of mutual influences of software
quality characteristics based ISO 25010:2011, pp. 80–83, September 2016. https://
doi.org/10.1109/STC-CSIT.2016.7589874

13. ISO, I: IEC 25000 software and system engineering-software product quality
requirements and evaluation (square)-guide to square. International Organization
for Standardization (2005)

14. ISO, I: IEC 25020 software and system engineering-software product quality
requirements and evaluation (square)-measurement reference model and guide.
International Organization for Standardization (2007)

15. ISO/IEC: ISO/IEC 25010 system and software quality models. Technical report
(2010)

16. Jin, C., Liu, J.A.: Applications of support vector mathine and unsupervised learn-
ing for predicting maintainability using object-oriented metrics. In: 2010 Second
International Conference on Multimedia and Information Technology (MMIT), vol.
1, pp. 24–27. IEEE (2010)

17. Kim, J., Ryu, J.W., Shin, H.J., Song, J.H.: Machine learning frameworks for auto-
mated software testing tools: a study. Int. J. Contents 13(1), 38–44 (2017)

18. Kitchenham, B.A.: What’s up with software metrics? - A preliminary mapping
study. J. Syst. Softw. 83(1), 37–51 (2010). https://doi.org/10.1016/j.jss.2009.06.
041

19. Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble
learning on selected features. Inf. Softw. Technol. 58, 388–402 (2015). https://doi.
org/10.1016/j.infsof.2014.07.005

20. MacDonald, R.: Software defect prediction from code quality measurements via
machine learning. In: Bagheri, E., Cheung, J. (eds.) Canadian AI 2018. LNCS, vol.
10832, pp. 331–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89656-4 35

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/IWSM-Mensura.2016.025
https://doi.org/10.1109/STC-CSIT.2016.7589874
https://doi.org/10.1109/STC-CSIT.2016.7589874
https://doi.org/10.1016/j.jss.2009.06.041
https://doi.org/10.1016/j.jss.2009.06.041
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1007/978-3-319-89656-4_35
https://doi.org/10.1007/978-3-319-89656-4_35

Automated Software Measurement Strategies Elaboration 363

21. Mouttappa, P., Maag, S., Cavalli, A.R.: Using passive testing based on symbolic
execution and slicing techniques: application to the validation of communication
protocols. Comput. Netw. 57(15), 2992–3008 (2013). https://doi.org/10.1016/j.
comnet.2013.06.019

22. Omran, M., Engelbrecht, A., Salman, A.: An overview of clustering methods. Intell.
Data Anal. 11, 583–605 (2007). https://doi.org/10.3233/IDA-2007-11602

23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

24. Pelleg, D., Moore, A.: X-means: extending k-means with efficient estimation of the
number of clusters. In: Machine Learning (2002)

25. Pelleg, D., Moore, A.: X-means: extending k-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International Conference on
Machine Learning, pp. 727–734. Morgan Kaufmann (2000)

26. Shepperd, M.J., Bowes, D., Hall, T.: Researcher bias: the use of machine learning
in software defect prediction. IEEE Trans. Softw. Eng. 40(6), 603–616 (2014).
https://doi.org/10.1109/TSE.2014.2322358

27. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Trans. Softw. Eng. 37(6), 772–787 (2011). https://doi.org/10.1109/TSE.2010.81

28. Zhong, S., Khoshgoftaar, T., Seliya, N.: Analyzing software measurement data with
clustering techniques. IEEE Intell. Syst. 19(2), 20–27 (2004). https://doi.org/10.
1109/MIS.2004.1274907

29. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Unsupervised learning for expert-based
software quality estimation. In: HASE, pp. 149–155. Citeseer (2004)

https://doi.org/10.1016/j.comnet.2013.06.019
https://doi.org/10.1016/j.comnet.2013.06.019
https://doi.org/10.3233/IDA-2007-11602
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/MIS.2004.1274907
https://doi.org/10.1109/MIS.2004.1274907

Agile Scaled Steps of Doneness:
A Standardized Procedure to Conceptualizing
and Completing User Stories Across Scrum

Teams and Industries

Matthew Ormsby(&) and Curtis Busby-Earle

Department of Computing, University of the West Indies, Mona Campus,
Kingston, Jamaica

matthew.ormsby@mymona.uwi.edu,

curtis.busbyearle@uwimona.edu.jm

Abstract. Agile software development (ASD) requires a shift in culture when
compared to the traditional Waterfall software development. The traditional
methods concentrate on project scope, using them to determine cost and time
schedule. Agile concentrates on business values, using them to determine
quality levels and possible technology constraints. Where waterfall methods are
suitable for well-arranged and predictable environment. For an organization, one
of the most important differences between agile and waterfall is the return of
investment. Organizations are created to generate revenue and moreover profit
for its stakeholders. Agile can help to produce earlier return on that investment.
This enables an organization to get the maximum returns before their com-
petitors start penetrating their market shares. Agile has scaling frameworks to
assist organization transition to ASD. This paper aims to build on the original
ENASE paper titled “Scaling A Standardized Procedure To Conceptualizing
And Completing User Stories Across Scrum Teams And Industries” by
extending the application of the Scaled Steps of Doneness procedure from four
teams to six teams and analyze the results.

Keywords: Scaled Steps of Doneness � Agile � Scaling Agile � User story
documentation � Definition of done � Steps of Doneness � Scrum � Velocity
story points � Estimating � Software development � ENASE

1 Introduction

1.1 Background

For decades, Waterfall software development has been the preferred approach for
software development. Organizations across the globe have built their project based on
this approach. However, though the approach was widely used, the lack of ability to
cope with change frequently resulted in unwanted rework. This would further impact
on project timelines and budgeting.

Thanks to the impact of globalization on society, the world is constantly changing
and the need to swiftly deliver high quality software products is ever growing. With

© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 364–377, 2020.
https://doi.org/10.1007/978-3-030-40223-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_18

these new requirements, Agile software development was born as a reaction. As stated
by Collier [1], Agile is a “set of values and principles for software development under
which requirements and solutions evolve through the collaborative effort of self-
organizing cross-functional teams”. Agile embraced frequent collaboration and com-
munication and switched focus of the software to be more customer-centric. Through
these core principles Agile has emerged on the international scene as the new way
forward for all organizations.

Within Agile there are different methodologies that can be employed to execute on
this emerging approach. A few of these methodologies include: Scrum, Kanban,
ScrumBan, Extreme Programming and Lean Startup. Interestingly, the 13th Annual
State of Agile Report noted Scrum as the most widely operated methodology [2]. 54%
of respondents indicated Scrum as the methodology being used. Further, when con-
sidering the respondents who have employed a hybrid methodology involving Scrum,
the figure grows to 72% of respondents. Scrum is the trendsetter amongst many
software teams across the world. It has been emerging as the methodology of choice.

Within a Scrum environment, the ability of the Scrum team to accurately analyze
user stories and create estimations is a key tool in understanding the team velocity.
Kniberg [3] defines velocity as “a measurement of amount of work done”, and each
item is weighted in terms of its initial estimate. Velocity serves not only as a statistic for
what the team can commit to in the current sprint, but also assists in orchestrating plans
for future sprints. Therefore, if a Scrum team’s velocity is low in comparison to what
was projected, it can result in adjustments to the project roadmap.

This is paramount to the project management triangle (also called the Iron Trian-
gle). The Iron Triangle is a model that encompasses the three constraints of project
management: time, cost and scope. It is used to understand the challenges of imple-
menting and executing a project. Historically, many software development teams have
experienced difficulties in maintaining a high sprint velocity to successfully deliver a
software solution. Difficulties experienced include:

1. User stories not being completed in the current sprint and hence, rolling over to the
following sprint.

2. An increase in the number of defects being created. In some instances, team
members felt pressured to deliver user stories.

3. And most importantly, unsatisfied clients.

Low sprint velocity would either adversely affect the scheduled release date for the
market, project resources or scope. For project success, one of the three areas of the
Iron Triangle would have to be negatively impacted to keep the same scope of work for
the scheduled timeline with the same size team. Agile software development seeks to
continuously deliver project value without affecting the Iron Triangle.

1.2 Motivation

To be accepted by end users, software solutions must comply with and are subject to,
sanctions, regulations and legislations. For example, in healthcare, The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA) is one such legislation,
which healthcare solutions must comply with. HIPAA is a United States legislation that

Agile Scaled Steps of Doneness: A Standardized Procedure 365

speaks to data privacy and security provisions for the protection of individuals’ medical
information. Additionally, there are many other factors that influence the use of
healthcare solutions.

Bin Azhar and Dhillon [4] have identified sixty-eight factors that affect healthcare
solutions. In their study they found that the following seven factors appeared most
often: perceived usefulness, perceived ease of use, behavioral intention, social-
influence, self-efficacy, perceived privacy risk and attitude. Having so many factors to
consider, organizations are starting to adopt the stance that solutions should be built in
small, iterative and incremental steps. Consequently, there has been a shift whereby
organizations are building their consultancy model around Agile Software Develop-
ment and more specifically, the Scrum methodology.

One of the major motivations in Scrum is to make only the absolute minimum
necessary effort to obtain good enough estimates, and then to refine and adjust these
during the project as needed. As opposed to other, traditional methods which may put a
greater emphasis on detail and accuracy of estimation, while the result in practice
hardly justifies the effort spent and gives only a false sense of security to management.
Hence, some degree of estimation is always required in any aspect of project planning.

Sithole and Solms [5] posed that to ascertain when a release can be delivered, or an
important milestone can be accomplished, one must estimate their team’s velocity, that
is, how fast they can complete stories on average, or how many stories they can
complete in a given time frame (sprint). And for that to be meaningful, the relative size
of stories must be known. Therefore, it is recommended for Scrum teams to estimate
story points.

During sprint planning, the Scrum team commits to complete a certain number of
stories within the upcoming sprint. This is especially hard for inexperienced teams who
do not have a feel for their velocity yet, are not good at story point estimation and/or
have a fluctuating performance. For a novice team, it may easily occur that the esti-
mated time is significantly more (or less) than the time they have available in the
coming sprint, requiring an adjustment (dropping stories from or adding more to the
sprint). Majchrzak and Madeyski [6] state that a “proper estimation of time in user
stories is a crucial task for both the IT team as well as for the customer, especially in
Agile projects. Although Agile practices offer a lot of flexibility and promote a culture
of continuous change, there are always clearly defined timeboxed periods where an IT
company must commit to delivering working software. Estimating time of user story
implementation provides clarity and the opportunity to control the project by the
management, yet at the same time, it can increase pressure on software developers.
Thus, incorrectly estimated user stories may lead to quality problems including system
malfunction, technical debt, and general user experience issues”. In their paper, they
observe incomplete user story life cycles as a main reason for user story estimation
inaccuracy and post-release defects.

1.3 Scaling Agile

The term, “Agile at Scale” was coined by Agile industry professionals. It represents an
efficient framework that can be followed when transitioning to Agile. Spotify and
Netflix are two organizations which have been highly successful at transitioning to

366 M. Ormsby and C. Busby-Earle

become Agile organizations via the utilization of Agile at Scale. They have been case
studied and the steps taken at Spotify to transition to Agile have subsequently been
mirrored by thousands of small, medium and large organizations throughout the world.

Challenges When Scaling Agile
Moe and Dingsøyr [7] stated that transitioning an organization to agile is a colossal task
as it needs to be scaled out to all aspects of the organization. They prescribed that
understanding what to scale and what not to scale are two very important aspects in
scaling agile. They suggested the following questions need to be answered by an
organization:

1. What need to be in place before scaling?
2. How not to scale?
3. What are the drivers of scaling?
4. How can project and programs be scaled down?
5. How much or how little standardization is needed to be able to scale agile?
6. What extra roles are needed when scaling?
7. What extra practices are needed and how to change current practices?
8. How to scale communities of practice?
9. Are scaling agile different than scaling classical organizations?

Their questions are supported by Nurdiani et al.’s [8] study in which they put forth a
baseline checklist for assessing the impact of introducing agile in an organization. The
components of their baseline are: workforce, management and organization structure,
process and infrastructure. Pries-Heje and Krohn’s [9] case study on SimCorp also
demonstrates the importance of answering the questions put forth by Moe and
Dingsøyr. In their case study, SimCorp, faced three major challenges in their transition
to an agile organization.

The first challenge stated that SimCorp had to resolve was the reorganizing of
personnel and their skillset as there no direct mapping from old jobs to the new job
roles [9]. Additionally, proper training was not in place for staff. Here Moe and
Dingsøyr’s [7] questions 1, 6 and 7 and Nurdiani et al.’s [8] workforce is highlighted.

Jack Welch submitted “if the rate of change on the outside exceeds the rate of
change on the inside, the end is near”. Changing the organization mindset to be agile
was another challenge experienced by SimCorp as individuals struggled to relinquish
their previous method of working [9]. Questions 3 and 7 which were underscored by
Moe and Dingsøyr [7] and Nurdiani et al.’s [8] management and organization structure
and process are illustrated.

The last reported challenge SimCorp experienced were the effects of isolating the
transition to the development team. By isolating the transition to only the development
team, going full scale was an issue as supporting functions in the organization were not
onboard and it would result in delays of the release and internal friction [9]. This is
inconsistent processes and practices. Questions 2, 5 and 8 [7] and Nurdiani et al.’s [8]
process and infrastructure are demonstrated.

From Moe and Dingsøyr’s [7] questions for organizations wishing to scale, Nurdiani
et al.’s [8] checklist for introducing agile and the challenges experienced when scaling

Agile Scaled Steps of Doneness: A Standardized Procedure 367

in Pries-Heje and Krohn’s [9] case study, the following are observed as challenges
when scaling:

• Organizational culture failing to align with agile values and principles
• Inconsistent processes and practices
• Organization resistance to change
• Inadequate support, training and education

VersionOne’s [2] 13th Annual State of Agile Report further supports this as the report
conveyed the following as the top five (5) challenges Agile organizations have expe-
rienced in both adopting and scaling Agile:

1. Organizational culture at odds with Agile values
2. General organization resistance to change
3. Inadequate management support and sponsorship
4. Lack of skills/experience with agile methods
5. Inconsistent processes and practices across teams.

1.4 Problem Statement

In response to the procedural problem identified by the organization in Ormsby and
Busby-Earle’s [10] Evaluation of Novel Approaches to Software Engineering
(ENASE) study, we propose an extension of that original paper to further analyze and
apply Ormsby and Busby-Earle’s [11] procedure and the Scaled Steps of Doneness
[10] procedure to six (6) of the scrum teams within this organization.

The objectives of this study were:

1. Verify if the Scaled Steps of Doneness procedure could be successful in scrum
teams of different sizes tackling different domain problems;

2. Increase each team’s percentage of story points and the net promoter score for the
solutions that they were each building.

A limitation of Ormsby and Busby-Earle’s [11] study is that it was executed on one
scrum team. The next step that arose from the study was to have the procedure
incorporated in other technology companies across teams with varying compositions,
development tasks and levels of skill.

2 Experimental Approach and Computational Details

Ormsby and Busby-Earle [11] referred to lacunae within the steps of conceptualizing
and completing a user story and put forth a generic procedure to address these gaps.
This procedure resulted in an average increase in velocity of 2.81%, as well as, morale
boosts from all stakeholders as their procedure produced more user-centric user stories
and continuous feedback between the scrum team and clients. This helped to address
Rothman’s [12] concern that teams do not fully understand what done means at dif-
ferent levels in the life cycle of a user story as well as increased the transparency
needed for success.

368 M. Ormsby and C. Busby-Earle

2.1 Experimental Approach

The experimental approach would compromise of applying Ormsby and Busby-Earle’s
[11] procedure, analyze the results and then apply the Scaled Steps of Doneness.

The following data points on each team were tracked and recorded: number of story
points committed to at the beginning of a sprint; number of story points completed at
the end of a sprint; and survey completed by customers in which they rated (on a scale
of 0–10) how likely they would recommend the product to friends or family.

From these data points, we derived two main statistics:

1. Percentage of story points completed – number of story points completed at the end
of a sprint divided by number of story points committed to at the beginning of that
corresponding sprint multiplied by 100

2. Net promoter score (NPS) – subtract the percentage of detractors (customers who
gave a rating of 0 through 6) from the percentage of promoters (customers who gave
a rating of 9 or 10)

Teams used one-week sprints. Each team was also assigned a designated product owner
and scrum master and all teams were collocated (Table 1).

Table 1. Team composition and assigned projects for the six teams. Original table taken from
‘Scaling a Standardized Procedure to Conceptualizing and Completing User Stories across Scrum
Teams and Industries’ by M. Ormsby and C. Busby-Earle, 2019, Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to Software Engineering, 1,
pp. 127–133 [10].

Teams Solution description Team
size

Core competencies Age
range of
team
members

Nationality of
team members

Team 1 A product to alleviate the
account opening process. By
alleviating this process, they
hoped to increase the number
of accounts that were being
opened thus increasing the
available number of
customers that the entire
organization can engage in
cross selling activities

13 Web & Mobile
Development, Banking,
Document Management,
Testing, User Experience
and Marketing

19–51
years old

American,
Antiguan, Indian
and Jamaican

Team 2 A solution to digitally
transform the auto insurance
experience for current and
prospective customers. This
transformation would take the
form of both redefining the
process to be more efficient
and utilize technology to
produce a convenient and
satisfying experience to
customers

9 Mobile Development,
Auto Insurance,
Payment, Testing, User
Experience, Marketing
and Legal & Compliance

22–37
years old

Barbadian,
British and
Jamaican

(continued)

Agile Scaled Steps of Doneness: A Standardized Procedure 369

2.2 Prior Execution of User Stories

Upon the genesis of an Agile team, one of the necessary action items was that the team
was required to create a definition of done for a user story. This is a part of the
organizations process in onboarding teams. The definition of done detailed the criteria
that would indicate that a user story was completed (a checklist) and was expected to
aid each team in understanding, accepting and agreeing the point at which a user story
was complete. A team then began sprinting with their newly-formed definition of done.

Table 1. (continued)

Teams Solution description Team
size

Core competencies Age
range of
team
members

Nationality of
team members

Team 3 A platform to deliver a
revamp of the organization
digital solutions. This revamp
will take the many digital
application currently offered
to customers and bring them
under one platform. This
platform will be data driven to
give the organization a
holistic view of its customers
and the products that will
better fit their needs

17 Web & Mobile
Development, Auto and
Life Insurance, Banking,
Data Analytics, testing,
User Experience,
Marketing and Legal &
Compliance

21–45
years old

American,
Antiguan,
Barbadian,
Canadian, Indian,
Jamaican and
Trinidadian

Team 4 A product to drive the
investment market in a new
direction. This drive will seek
to revolutionize investment in
the region by empowering
existing and prospective
customers

8 Web Development,
Investment, Data
Analytics, Testing, User
Experience and
Marketing

18–36
years old

American, Indian,
and Jamaican

Team 5 A product to engage small-
medium companies to take up
microloans

7 Web Development,
Banking, Data Analytics
and Insight, User
Experience, Legal,
Compliance and Central
Reconciliation

23–41
years old

Jamaican

Team 6 A product to digitize all
onboarding process across the
organization. This product
would be a part of Team 2’s
solution

10 Web & Mobile
Development, Data
Analytics, testing, User
Experience, Marketing
and Legal & Compliance

21–28
years old

American,
Jamaican, and
Trinidadian

370 M. Ormsby and C. Busby-Earle

Table 2 illustrates the percentage of story points completed and the NPS score
of the solution following each sprint for the six Agile teams in their last five sprints
prior to the implementation of our procedure. Three points can be observed from
Table 2:

1. The teams were not stable – the percentage of story points completed and the NPSs
never consistently increased;

2. Only one (1) team, in one (1) sprint was able to exceed the 80% mark;
3. Only one (1) team has an average percentage over 70%.

2.3 Introduction of Ormsby and Busby-Earle’s [11] Procedure

In the first sprint, following the introduction of the procedure, there was a drop in the
percentage of story points completed for all six teams. The teams committed to
approximately the same number of points as they did in their previous sprint. In second
sprint following the introduction of the procedure, it can be observed that there is a
notable increase in efficiency of the teams regarding the percentage of story points
completed. In the sprints that followed, the percentage of story points completed
steadily and consistently increased. There was a positive impact with the introduction
of the procedure as the percentages for the teams were able to surpass the 80% mark.
This solved one of the problems that was previously observed when the teams used
other procedures. However, this did not solve for the issue of team stabilization. As
seen in Table 3, the percentage of story points completed was inconsistent. Our pro-
cedure did however aid in customer satisfaction as NPSs improved for all six solutions
that were built by the teams.

Table 2. Percentage of story points completed and the NPSs for the last five (5) sprints before
introduction of the procedure. Original table taken from ‘Scaling a Standardized Procedure to
Conceptualizing and Completing User Stories across Scrum Teams and Industries’ by M.
Ormsby and C. Busby-Earle, 2019, Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering, 1, pp. 127–133 [10].

of sprint before Team 1 Team 2 Team 3 Team 4 Team 5 Team 6
% NPS % NPS % NPS % NPS % NPS % NPS

5 27.3 18 72.1 31 72.7 23 68.5 23 15.0 9 65.9 24
4 46.7 18 69.2 31 45.0 27 82.1 19 70.6 21 65.2 35
3 58.8 19 63.6 31 63.3 23 76.2 18 56.3 22 72.8 28
2 67.3 23 76.7 30 65.5 25 60.8 24 63.4 17 57.1 26
1 76.4 24 78.3 31 76.7 25 56.6 22 61.9 24 59.3 25

Agile Scaled Steps of Doneness: A Standardized Procedure 371

2.4 Scaled Steps of Doneness Procedure

To stabilize the percentage of story points completed and the NPS of the teams,
adjustments were made to the procedure.

In the first sprint following the adjustment (sprint 1), there was an anticipated drop
in the performance of the teams. The drop-in percentage of story points completed was
very small as the learning from the other teams and the previous experiment was used
by the teams to plan accordingly for the expected drop. In sprint 2, there was a notable
increase in percentages of story points completed and the NPSs. This continued and
resulted in the desired team stabilization in the subsequent sprints.

Table 3. Percentage of story points completed and the NPSs after implementation of our
procedure. Original table taken from ‘Scaling a Standardized Procedure to Conceptualizing and
Completing User Stories across Scrum Teams and Industries’ by M. Ormsby and C. Busby-Earle,
2019, Proceedings of the 14th International Conference on Evaluation of Novel Approaches to
Software Engineering, 1, pp. 127–133 [10].

of sprint before Team 1 Team 2 Team 3 Team 4 Team 5 Team 6
% NPS % NPS % NPS % NPS % NPS % NPS

1 53.5 24 58.0 30 43.5 28 51.7 23 59.3 23 46.3 25
2 70.7 24 68.5 31 72.7 28 70.1 23 80.3 26 60.6 23
3 80.3 25 84.7 33 79.1 29 82.2 26 78.9 30 76.5 27
4 81.3 28 87.4 38 80.6 29 86.7 31 81.5 31 72.8 30
5 84.1 30 85.4 45 85.7 31 83.3 34 83.2 35 85.3 32
6 86.0 33 88.2 46 85.9 37 84.6 34 76.0 35 81.2 33

Table 4. Percentage of story points completed and the NPSs after adjustment to the procedure.
Original table taken from ‘Scaling a Standardized Procedure to Conceptualizing and Completing
User Stories across Scrum Teams and Industries’ by M. Ormsby and C. Busby-Earle, 2019,
Proceedings of the 14th International Conference on Evaluation of Novel Approaches to
Software Engineering, 1, pp. 127–133 [10].

of sprint before Team 1 Team 2 Team 3 Team 4 Team 5 Team 6
% NPS % NPS % NPS % NPS % NPS % NPS

1 68.1 28 73.2 45 71.1 38 75.6 35 74.1 34 80.9 33
2 88.3 32 87.4 43 87.1 41 87.7 38 85.6 36 82.3 33
3 90.1 35 98.4 61 93.8 43 89.3 39 87.5 38 85.6 34
4 90.1 36 98.9 62 94.6 43 88.9 41 88.0 38 85.2 38
5 91.6 38 97.1 64 93.1 42 87.9 44 90.2 40 87.8 38
6 91.2 38 98.2 64 95.1 44 89.2 46 92.3 43 89.4 41
7 90.9 39 100.0 67 95.2 44 87.1 46 93.8 43 95.6 41
8 92.7 39 98.1 67 98.5 46 90.7 48 93.2 48 96.2 41

372 M. Ormsby and C. Busby-Earle

3 Analysis of Adjustments

It can be observed in Table 2 that the percentage of story points completed of the six
teams was very inconsistent. This was due to the teams learning from their mistakes
and applying corrective measures. Teams 1–4 isolated themselves from the rest of the
organization and as such, the lessons learned by each team were not shared with the
other teams [10]. This engendered within teams a practice of developing solutions for
problems that were already solved by another team. Teams 5 and 6 did not isolate
themselves like the other teams, as they learned from the other teams mistakes. Teams
5 and 6 were reusing components from the other teams and as such were able to
produce more effective functionality.

It is to be noted that the introduction of the Scaled Steps of Doneness procedure
came at a cost, as depicted in Table 3. There was an initial drop in the percentage of
story points completed. A steady increase was however observed in the subsequent
sprints. Further, all the teams were able to surpass the 80% mark and remained above
that mark until the completion of their respective development projects.

There was also an increase in the NPS after the introduction of our procedure.
Members of the team 1 to 4 indicated that the new procedure helped them to coordinate
the opportune times to obtain feedback, i.e. receiving the feedback without distracting
the teams [10].

There was insufficient stability in the percentage of story points completed. The
organization sought more stability to be able to more efficiently forecast the amount of
work the teams could manage. Taking this issue into consideration in addition to the
feedback from the respective teams, the Scaled Steps of Doneness procedure was
applied.

Each of the Agile teams implemented the Scaled Steps of Doneness and pre-
dictably, there was a drop in the percentages of story points completed during the initial
sprint for teams 1–4 [10], as seen in Table 4. This was due to team members needing
time to become familiar with the new method of working imposed by the Scaled Steps
of Doneness. However, teams 5 and 6 anticipated the drop based on the observations
from the other teams and planned accordingly. This plan took the form of taking low
risk stories (regarding technical competence and customer impact) to commit in the first
sprint after the introduction of the procedure. The drop in the story points completed
was not considered drastic as all the Agile teams were already familiar with most of the
steps of the new procedure. Ormsby and Busby-Earle [10] noted in the proceeding
sprints, the percentage of story points continued to increase and quickly stabilized. In
the case of teams 1, 2 and 3, they exceeded the 90% mark. Team 4 stabilized in the
high 80% but it can be observed that they broke the 90% mark in sprint 14. Addi-
tionally, the NPSs increased and showed signs of high success for the teams. This can
be observed in Table 4 where all teams increased their net promoter scores, three of the
teams surpassed the 40 mark and one of the teams scored a high 67 in the last two
sprints of this study. These scores reflect the satisfaction by end-users (Fig. 1).

Agile Scaled Steps of Doneness: A Standardized Procedure 373

A key aspect of the Scaled Steps of Doneness procedure is the immediate contact of
the UX team members on a user story, as well as the signoff by the client before the
user story goes to the testing and technical team members [10]. This gives each user
story a better chance of acceptance. Additionally, it has reduced the number of back
and forth interactions between the UX team members and the technical team members.

The Scaled Steps of Doneness procedure also encourages test driven development
by ensuring that testing is at the forefront [10]. It gives the testing team members an
opportunity to present the developers with test scripts before the technical design is
done for the story. This allows the developers to account for edge cases.

4 Conclusion

To summarize, lacunae were identified in the previous processes and analyzed. The
Scaled Steps of Doneness procedure was applied and succeeded in stabilizing the teams
and achieving high net promoter scores. The results found by Ormsby and Earle’s [10]
ENASE paper has been extended by the inclusion of two additional scrum teams. The
results for these additional teams support the results from the original paper for Teams
1–4.

Empirical evidence has been provided that the Scaled Steps of Doneness procedure
helps to solve one of the key problems of working in an Agile environment as stated by
the 13th Annual State of Agile [2] report: inconsistent agile practices and processes.
This is seen in Table 4, whereby having had the teams understand and implement the
procedure, they were able to experience increased percentage of story points completed
and net promoter scores. Moreover, it was observed that team morale improved as a
result. Further the Scaled Steps of Doneness procedure can adapt to teams of varying

Fig. 1. Scaled Steps of Doneness (SSOD) Procedure. Taken from ‘Scaling a Standardized
Procedure to Conceptualizing and Completing User Stories across Scrum Teams and Industries’
by M. Ormsby and C. Busby-Earle, 2019, Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering, 1, pp. 127–133 [10].

374 M. Ormsby and C. Busby-Earle

skillsets, age and nationality. It should be noted that the majority of the nationalities
was represented by North America and The Caribbean. The procedure requires com-
munication among all team members.

Ormsby and Busby-Earle’s [11] procedure did not succor in stabilizing the
velocities of the teams. This lacuna was due to lack of a clear understanding of the end-
users wants as well as the way technology can facilitate the realization of those wants.
The designing steps in the User Experience group needed to encompass more feedback
steps to truly understand the feasible wants of the end-users. This would have resulted
in a clear acceptance of the goal of the user story. Importantly, it enables the organi-
zation to determine whether their timelines are on track at an early stage of a project.
Earlier feedback ultimately leads to more success.

The results observed in Table 4, indicate the successful impact of the adjustments to
the procedure. As the teams continued to settle into the new process, they were able to
stabilize their percentage of story points completed and net promoter scores. A product
owner was able to produce more accurate forecasts of the amount of work a team could
complete when armed with a stabilized percentage of story points completed. This is
important as this enables the organization to deduce whether their timelines are on track
at an early stage of a project. Earlier feedback leads to more success.

The objective of the Scaled Steps of Doneness procedure is to aid Agile teams by
stabilizing their sprint velocity. Jack Welch stated, “when the rate of change outside
exceeds the rate of change inside, the end is in sight”. In this regard, it can be put forth
that if the environment in which solutions is changing is faster than the time it takes to
output a solution, then the end is in sight as the solution will fast become outdated and
no longer needed. Stabilizing a team’s velocity is critical as it helps the team keep pace
with constant changes.

Further the procedure assists with this by defining the steps required to meet the
Definition of Done (DOD) for teams. Definition of Done is a concept in the Scrum
methodology which drives the quality of the work being produced by assessing the
completion of a user story. This concept is defined by each Scrum team at the
beginning of their Agile journey, however, what is often missing is a strategy to aid
teams in reaching this definition. The procedure was able to guide teams in reaching
their Definition of Done, regardless of the technological solution being put forth, by
standardizing the process of conceptualizing, understanding, defining, implementing,
testing and accepting a user story.

Collaboration and communication are key concepts of ASD. The procedure
embraces these concepts by encouraging further collaboration and communication.
Frequent checkpoints by team members are required throughout the process as this
results in an aligned understanding of the user story and an improved chance of
producing a quality user story.

Stabilization of user stories and providing a procedure for teams to relate to in
adapting to changes greatly benefits Product Owners. Armed with this, Product Owners
are better able to forecast the progress of their team and set more accurate expectations
with external stakeholders.

An observation from the experiment was that the cost of change is expensive. This
was illustrated in both Tables 3 and 4. At introduction of a new procedure, there was a
corresponding descent in the percentage of story points completed. Changes are

Agile Scaled Steps of Doneness: A Standardized Procedure 375

expensive and should be both deliberate and strategic. Moreover, communication of a
guiding procedure initially would have also contributed to higher collaboration among
team members and overall, stronger team health in the long run. Change management
is important in Agile teams, but as seen by teams 5 and 6, plans can be put in place to
make the impact minimal.

The research of Silva et al. [13] concluded that there is a need for more and better
empirical studies documenting and evaluating the use of the definition of done. These
results greatly contribute to further assisting in documenting the definition of done. The
goal of the Agile methodology is to create and deliver business value expeditiously.
Therefore, if a user story that is done has resulted in bugs within the production
environment, that user story can be considered incomplete.

The organization has adopted the SSOD procedure within their culture and have
had all subsequent teams incorporate this procedure before they begin sprinting. It
should also be noted that the organization has seventeen (17) Agile teams that have
integrated our SSOD procedure into their ASD. The SSOD procedure is currently being
looked at by another regional organization.

5 Future Work

The Scaled Steps of Doneness procedure was applied to agile teams that were following
the Scrum methodology. As observed in VersionOne’s 13th Annual State of Agile,
Scrum is the primary agile methodology by agile practitioners. The procedure should be
applied to other types of agile methodologies for completeness. If it is not applicable to
other agile methodologies, then further research work can be done to discover a suc-
cessful procedure. Large organizations are composed of several divisions and units that
sometime function very differently from the next. As such, as these organizations
continue to transition to agile, it is probable that they will use multiple methodologies to
achieve their goals. This is seen in the 13th Annual State of Agile [2], as the second
choice in agile methodologies by agile practitioners is multiple methodologies.

During this research, it was observed, analyzed and concluded that the cost of
change for agile teams is expensive. Effective methods to minimize the cost of change
in ASD’s processes is required.

Finally, this research looked at the composition of agile teams. Further research is
required to determine a strategy for team composition based on domain and/or tech-
nology stack needed for a solution.

In quoting Albert Einstein, “Learn from yesterday, live for today, hope for
tomorrow. The important thing is not to stop questioning”.

References

1. Collier, K.: Agile Analytics: A Value-Driven Approach to Business Intelligence and Data
Warehousing, p. 121. Pearson Education, New York (2011)

2. 13th Annual State of Agile Report. https://explore.versionone.com/state-of-agile/versionone-
13th-annual-state-of-agile-report. Accessed 08 Sep 2019

376 M. Ormsby and C. Busby-Earle

https://explore.versionone.com/state-of-agile/versionone-13th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-13th-annual-state-of-agile-report

3. Kniberg, H.: Scrum and XP from the Trenches, 2nd edn. C4 Media Inc, Toronto (2015)
4. Bin Azhar, F., Dhillon, J.: Systematic review of factors influencing the effective use of

mhealth apps for self-care. In: 2016 3rd International Conference on Computer and
Information Sciences (ICCOINS). IEEE, Malaysia (2016)

5. Sithole, V., Solms, F.: Synchronized Agile. In: SAICSIT 2016 Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and Information
Technologists. ACM, New York (2016)

6. Majchrzak, M., Madeyski, L.: Factors influencing user story estimations: an industrial
interview and a conceptual model, Poland (2016)

7. Moe, N., Dingsøyr, T.: emerging research themes and updated research agenda for large-
scale Agile development. A summary of the 5th international workshop at XP2017. In: XP
2017 Proceedings of the XP2017 Scientific Workshops. ACM, Germany (2017)

8. Nurdiani, I., Börstler, J., Fricker, S., Petersen, K.: A preliminary checklist for capturing
baseline situations in studying the impacts of Agile practices introduction. In: 2018
ACM/IEEE 6th International Workshop on Conducting Empirical Studies in Industry. IEEE,
Gothenburg (2018)

9. Pries-Heje, J., Krohn, M.: The SAFe way to the Agile organization. In: Proceedings of the
XP 2017 Scientific Workshops, XP 2017. ACM, Cologne (2017)

10. Ormsby, M., Busby-Earle, C.: Scaling a standardized procedure to conceptualizing and
completing user stories across scrum teams and industries. In: Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to Software Engineering, vol.
1, pp. 127–133. SciTePress (2019)

11. Ormsby, M., Busby-Earle, C.: A standardized procedure to conceptualizing and completing
user stories. In: 2017 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, Las Vegas (2018)

12. Rothman, J.: Create Your Successful Agile Project: Collaborate, Measure, Estimate, Deliver.
The Pragmatic Bookshelf, North Carolina (2017)

13. Silva, A., et al.: A systematic review on the use of definition of done on agile software
development projects. In: EASE 2017 Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, pp. 364–373. ACM, New York (2017)

Agile Scaled Steps of Doneness: A Standardized Procedure 377

Indoor Localization Techniques Within
a Home Monitoring Platform

Iuliana Marin, Maria-Iuliana Bocicor, and Arthur-Jozsef Molnar(B)

S.C. Info World S.R.L., Bucharest, Romania
{iuliana.marin,iuliana.bocicor,arthur.molnar}@infoworld.ro

https://www.infoworld.ro/en/

Abstract. This paper details a number of indoor localization techniques
developed for real-time monitoring of older adults. These were developed
within the framework of the i-Light research project that was funded by
the European Union. The project targeted the development and initial
evaluation of a configurable and cost-effective cyber-physical system for
monitoring the safety of older adults who are living in their own homes.
Localization hardware consists of a number of custom-developed devices
that replace existing luminaires. In addition to lighting capabilities, they
measure the strength of a Bluetooth Low Energy signal emitted by a
wearable device on the user. Readings are recorded in real time and
sent to a software server for analysis. We present a comparative evalua-
tion of the accuracy achieved by several server-side algorithms, includ-
ing Kalman filtering, a look-back heuristic as well as a neural network-
based approach. It is known that approaches based on measuring signal
strength are sensitive to the placement of walls, construction materials
used, the presence of doors as well as existing furniture. As such, we eval-
uate the proposed approaches in two separate locations having distinct
building characteristics. We show that the proposed techniques improve
the accuracy of localization. As the final step, we evaluate our results
against comparable existing approaches.

Keywords: Indoor localization · Received signal strength ·
Trilateration · Kalman filter · Neural network

1 Introduction

The developed world is on the cusp of long-term societal and demographic change
heralded by population ageing. The World Health Organisation estimates the
number of adults over 60 to double worldwide by 2050 [48]. However, the report
finds that advances in healthcare and medicine do not necessarily translate into
improved quality of life for older adults. This situation is expected to increase the
toll on healthcare system and local government expenditures for care programs.
Meijer et al. [27] find that real annual health expenditure increases at 4% per
year, with an important part of these funds to be geared towards the older adult
population in the future.
c© Springer Nature Switzerland AG 2020
E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 378–401, 2020.
https://doi.org/10.1007/978-3-030-40223-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_19

Indoor Localization Techniques Within a Home Monitoring Platform 379

However, advancement in the form of diminutive computing platforms,
advanced wireless networks and a push towards wearable devices provide an
opportunity for technological solutions that supplement healthcare-based mea-
sures in older adult care. Special importance is given to systems that enable
adults to continue living in their own homes, maintaining good social relations.
The European Union identified the increased importance of caring for older
adults and created the Active and Assisted Living Programme [1] to help public
and private organizations develop and bring solutions to market.

Our presented work is part of the i-Light research project funded by the
European Union. Its main objective concerns the development of an extensible
and cost-effective cyber-physical platform for home monitoring and assisted liv-
ing [25]. The main target group are older adults living in their own homes. The
hardware side of the platform is represented by a number of intelligent luminaire
devices that were developed as part of the project. In addition to lighting, they
provide sensing, localization and communication systems using Bluetooth Low
Energy and WiFi. The developed luminaires replace existing light bulbs and can
communicate between them as well as with a remotely-deployed software server.
This approach addresses adoption barriers by reducing deployment costs, sim-
plifying installation and being inconspicuous within the home. Furthermore, a
single cloud-based server deployment can service many household deployments,
improving cost-effectiveness for additional installations.

The most important innovative aspects as well as platform architecture and
main components were already detailed in previous work [4,25,26]. As such, this
paper is focused on presenting and evaluating the implemented localization algo-
rithms. The problem of person localization can be partitioned into outdoor and
indoor localization. The former is covered by existing and well-known technolo-
gies. The first to be made available to the public was the United States’ GPS
system. Recognising the strategic importance of localization, additional such sys-
tems were implemented by the European Union (Galileo), Russia (GLONASS),
China (BeiDou-2) and Japan (QZSS). Currently, these latter systems are focused
to provide good accuracy within the strategic region of its implementing coun-
try. In order to work, all these systems require the device to have direct line of
sight toward several satellites in the constellation. Indoors, these systems range
between inaccurate at best and completely inoperative. As such, achieving accu-
rate indoor localization required the development of new technologies and algo-
rithms. These include communication via visible light [13], acoustic background
fingerprinting [42] and user movements [41]. Given the project requirements
detailed in [10], the selected approach was trilateration of the signal strength
received from a Bluetooth Low Energy device by at least three intelligent lumi-
naires. This has the advantage of not requiring additional wiring or unsightly
devices. System accuracy was evaluated within two locations. The first one was
a small home with thick concrete and brick walls [26], and the second one an
office building having larger rooms, but fewer and thinner walls. In both cases,
the minimum of three devices were deployed.

380 I. Marin et al.

2 Related Work

Previously described trends have lead to an increase in the number of smart home
devices in use, both in homes as well as the workplace and public places. Indoor
localization is one of their strong-suits, as it allows monitoring and analysis
of visitor behaviour, building customer profiles and understanding patterns of
human interaction.

As detailed in the previous section, GPS is the default localization tech-
nology used outdoors. Given that satellite signal is easily blocked by buildings
[32], several alternative technologies were considered and evaluated for indoor
localization. Among them are acoustic and optical signals, radio-frequency iden-
tification (RFID), as well as using WiFi and Bluetooth signals for triangulation
or trilateration [23,40,49]. When electromagnetic waves are used, the distance
between the target of monitoring and a number of beacons is calculated based
on the Received Signal Strength Index (RSSI) [15]. In most cases, the beacons
are fixed in known locations, and they record the strength of an electromagnetic
signal received from the tracked emitter. Due to their ubiquity, a WiFi or Blue-
tooth signal is usually employed. The received power decreases as the distance
the signal must travel increases, using the inverse square law [22,24,31,35]. This
allows calculating the distance between the signal emitter and the beacons receiv-
ing the signal. Using at least three fixed beacons and applying triangulation or
trilateration allows calculating the emitter’s physical location.

However, raw RSSI readings can be misleading due to multipath fading, the
degree of variance being higher indoors [33]. This is exacerbated by the presence
of walls and large items of furniture that affect signal strength. Also, for many use
cases, it is desirable to carry out localization without equipping the monitored
person with a wearable device, leading to continued research interest in the
domain.

One of the proposed solutions to address inherent variance in readings is to
apply a filter on the raw RSSI values. The Simultaneous Localization and Config-
uration algorithm [6] is based on the fast simultaneous localization and mapping
problem for RSSI-based localization and can run on a mobile device. Another
filter-based approach is the Kalman filter [47], which is generally used to smooth
noisy data. The Kalman filter is amenable for smoothing raw RSSI readings and
has low computational overhead. It is a recursive filter that evaluates a system’s
state starting from a series of noisy measurements. Each new measurement is
subjected to a weighted mean calculated based on the covariance for reducing
uncertainty. After a number of readings, the mean and covariance are recalcu-
lated. Kalman filtering can increase the accuracy of indoor localization [34] by
lowering accumulated errors [39]. Furthermore, [39] showed that filtering lowered
energy consumption and enhanced the stability of the readings.

The beacons used in our paper are intelligent luminaires [25] that have WiFi
and Bluetooth communication capabilities and which can replace existing light
bulbs. They were designed to ensure that luminaire-related functionality does
not impede indoor localization by influencing signal quality or directionality.
The luminaires can be mounted into existing wall sockets. In our experiments,

Indoor Localization Techniques Within a Home Monitoring Platform 381

they replaced ceiling-mounted light bulbs, which provided good signal direction-
ality and the advantage that the system looked inconspicuous. Our experiments
were carried out using a smartphone emitting Bluetooth signal recorded and
timestamped by the luminaires. Other Bluetooth compatible devices, such as
smartwatches and emergency buttons can also be used. Our solution’s primary
drivers were cost-effectiveness and unobtrusiveness. The proposed setup leads
to low costs associated with deployment and maintenance, and does not look
inconspicuous when installed in a residential building or office.

3 Platform Overview

The i-Light platform was designed to be a home monitoring system for older
adults and relies on energetically efficient, intelligent luminaires, equipped with
an integrated electronic sensor system, indoor localization and communications
that allow continuous, ubiquitous and inexpensive home monitoring. The high-
level system architecture is presented in Fig. 1 [26]. The hardware subsystem is
represented by a wireless network of luminaires, composed of two types of nodes
designated as smart and dummy. The software subsystem integrates several mod-
ules, distributed on different devices: smart and dummy luminaires, software
server and client devices. Both aforementioned subsystems will be expounded in
the following subsections.

Fig. 1. High-level system architecture [26].

382 I. Marin et al.

3.1 Wireless Network of Luminaires

The luminaire network is deployed within personal homes to monitor the indoor
environment and track the older adult’s location. Together, the installed lumi-
naires form a network that completely covers the indoor environment. All loca-
tion and ambient monitoring data is collected and sent in real time to the soft-
ware server, which computes the person’s indoor location and analyses environ-
mental information continually.

Smart Luminaires. Within the wireless luminaire network smart bulbs rep-
resent the resourceful constituents. Using a Raspberry Pi3 board [14] at their
core, this type of luminaire offer features such as lighting, ambient sensing and
direct communication to the server and with the dummy bulbs. Their design
is modular, as this has proved to be the best option to easily isolate manufac-
turing problems and make changes without rebuilding the entire device. With
regard to lighting, the luminaires provide LED intensity management. They also
include a sensor module for environment monitoring, which measures tempera-
ture, ambient light, humidity, CO2, dust and volatile organic compound gases.
All values measured are sent directly to the software server via WiFi or Ethernet,
where they are subsequently analysed. Smart bulbs can also identify Bluetooth-
equipped devices and record RSSI values. Furthermore, they can collect RSSI
values registered by several dummy luminaires and forward these to the server,
where the localization algorithms are run. At system configuration, each of the
dummy bulbs must be associated to a smart bulb. This design enables smart
luminaires to directly communicate via Bluetooth with their associated dummy
bulbs and collect localization data.

Dummy Luminaires. Dummy luminaires are simpler, smaller and lower-cost
when compared with smart luminaires. Their limited functionality allows using
them for lighting and localization. They rely on a Bluegiga BLE112 Bluetooth
Low Energy module [37], which enables them to establish a connection to the
smart bulb they are associated with. Dummy bulbs have lighting capabilities,
with the light intensity being controlled via the smart luminaire they are con-
nected to. Dummy bulbs also carry out environment scans in order to detect
other Bluetooth devices and acquire RSSI values. Localization is carried out on
the server according to collected RSSIs. Each dummy luminaire must be associ-
ated to a smart one, as the dummies are not WiFi equipped and cannot directly
send data to the server. Dummy luminaires stay connected to their associated
smart bulb using Bluetooth and transfer the RSSIs in real time. The main advan-
tage of using dummy bulbs is that the system’s overall cost is reduced, while
sufficient coverage is possible for accurate localization.

Communication Protocol. Communication between smart and dummy light
bulbs is achieved via Bluetooth Low Energy. For dummy bulbs, this is provided

Indoor Localization Techniques Within a Home Monitoring Platform 383

by the Bluegiga BLE112 module, while the smart bulb employs its onboard Rasp-
berry Pi3. Communication between smart luminaires and the server is accom-
plished through web services with information transmitted in JSON format.

An important concern in two-way Bluetooth Low Energy connectivity is the
master and slave connection roles. Slave devices advertise themselves and wait
for connections. Master devices scan the environment and initiate connections
to slaves. Smart luminaires act as masters, as after they perform a scan for both
Bluetooth devices and dummy luminaires, they initiate connections to both: to
Bluetooth devices in order to acquire RSSI values for localization and to dummy
bulbs in order to receive the RSSIs collected by them. In order to send data from
smart to dummy luminaires, dummy bulbs act as slaves, emitting advertisement
packets allowing them to be identified by the smart bulbs. However, in order to
detect additional devices in the environment, such as the actual device used for
indoor positioning, they must change their role and act as masters. Consequently,
dummy luminaires periodically change roles. All data acquired by both luminaire
types are sent to the system server and stored in the database, where ambient
and RSSI data are processed, localization algorithms executed and real-time
alerts are generated, if necessary.

Communication between smart luminaires and the server is accomplished
using the MQTT messaging protocol1. Bidirectional communication using
JSONs is achieved via the publish/subscribe model. This ensures loose coupling
between the monitoring system’s components. The protocol is characterised by
low bandwidth and energy consumption, reliability, and is dedicated to Internet
of Things applications. Every smart bulb publishes JSONs using a subject. The
subject represents routing information. The server subscribes to several sub-
jects and analyses the received JSONs. The security of sent and received JSON
messages is ensured by encryption.

3.2 Software Server Components

The i-Light software system includes a server and a client component. The server
component is responsible for the communication with the smart luminaires, col-
lecting and storing environment and location data, data analysis, generating
reports and alerts, as well as sending generated alerts to responsible people. The
client component is a web application that allows users to configure the system
by providing the floor plans of monitored dwellings, registering new luminaires
and system users, as well as to generate and view reports.

We briefly depict the main server subsystems. The indoor localization subsys-
tem uses RSSI data collected by smart and dummy luminaires and sent to the
server. Several times each minute, this component calculates the indoor location
of monitored users, and stores this information in the database, where it can be
accessed for analysis. The data acquisition and analysis subsystem receives data
collected by the wireless network’s luminaires and sends these to the persistence
database. Furthermore, it also performs several types of analyses on the data to

1 http://mqtt.org/.

http://mqtt.org/

384 I. Marin et al.

identify abnormal situations. The real-time alerts subsystem is responsible for
creating notifications and alerts if a situation that presents risk for the moni-
tored person has been identified. Alerts are persisted in the database, and are
sent in real time to both the monitored person and their caregivers via short
message service. The reporting subsystem is responsible for creating different
types of reports, using data collected by the intelligent luminaires and stored in
the database. The subsystem exposes a web service for providing statistics and
reports. These can be visualised through the web application. The web applica-
tion is a web interface for configuring system preferences, managing intelligent
luminaires, users and their associated locations, and viewing different types of
reports.

4 Indoor Localization Techniques

In order to increase the accuracy of indoor localization, and achieve a reduction
in positioning errors, we evaluate several approaches starting with direct trilat-
eration, which is then improved using several proposed heuristics. An additional
technique we evaluate is based on an artificial neural network trained to produce
coordinates associated to the person’s indoor location.

4.1 Direct Trilateration

The indoor localization algorithm developed for i-Light is based on trilateration.
As opposed to triangulation, which employs angles, trilateration computes the
position of a target starting from the computed distances between the target and
at least three static receivers. In our case, intelligent luminaires are the receivers
and a smart device worn by the monitored person is the target. To compute the
required distances we start from RSSI measurements and use the RSSI lognor-
mal model described in [9]. Equation 1 describes the manner of calculating the
distance, using the RSSI value and 2 other parameters: n, the path-loss expo-
nent and A, the signal strength expressed in dBm, measured at a distance of one
meter. The path-loss exponent’s value is directly influenced by the physical envi-
ronment in which the system operates. This includes the surrounding structure,
building materials and presence of furniture in the case of indoor environments.
Its values range between 1.4 to 5.1, depending on the environment [16].

d = 10
A−RSSI

10·n (1)

Having three distances computed according to Formula 1, from the target of
monitoring to each of the installed luminaires, the position of the target within
the environment can be inferred. This is computed as the point of intersection
of three circles, each having as centre one luminaire and as radius the computed
distance from that luminaire to the target, as shown in Fig. 2.

The target’s coordinates, denoted (x, y), are obtained by solving the system
of equations in Formula 2, where (xi, yi), i ∈ {1, 2, 3} are the luminaires’ posi-
tions (the circles’ centres) and di, i ∈ {1, 2, 3} represent the respective computed
distances (the circle radii (d1, d2, d3)).

Indoor Localization Techniques Within a Home Monitoring Platform 385

⎧
⎪⎨

⎪⎩

(x − x1)2 + (y − y1)2 = d21
(x − x2)2 + (y − y2)2 = d22
(x − x3)2 + (y − y3)2 = d23

(2)

Fig. 2. Illustration for trilateration. The (xi, yi), i ∈ {1, 2, 3} dots represent luminaires
and the (x, y) dot is the computed position, considering the three circles’ radii.

While the above-mentioned positioning method is theoretically sound, in real-
world environments, RSSI values are attenuated by various types of obstacles,
such as furniture or other indoor objects and walls [5]. Wall type and thickness
has a direct influence on signal strength [50], meaning that the equation system
cannot be effectively solved. To handle signal noise the following subsections
present a number of proposed methods that can be employed on the server side
to improve localization accuracy.

4.2 Kalman Filter

The Kalman filter is an algorithm for optimal estimation in linear Gaussian
systems [7]. It is suitable for dynamic systems in which the goal is to find the
best estimate of a state from indirect or noisy measurements. The technique is
well-suited for real-time application, as in order to estimate the current state
it only needs information from the previous one. Taking into consideration the
technique’s purview and advantages, as well as our objectives regarding indoor
localization, we decided to select this method for experimentation.

Indoor objects and walls directly influence the received signal strength [5],
thus the measurements collected by the intelligent luminaires at discrete points
in time are noisy. To obtain the best estimate for the actual RSSI values at

386 I. Marin et al.

one point in time, Kalman filters use a prediction from the best estimate of
the previous point in time along with a correction for known external factors, all
starting from the assumption that the system variables are random and Gaussian
distributed. Starting from some measured values, the algorithm proceeds with
two major steps: prediction and update. First it makes a prediction of the cur-
rent state, based on the previous state and problem model and then it updates
this prediction, based on values measured at that time point and considering
potential errors. Another aspect worth mentioning is the Kalman gain, which
provides more weight to either the estimate or the measurement, according to
prediction error. A decrease in estimation error will result in more weight given
to estimates. The estimated RSSI values obtained through Kalman filtering will
further be used for trilateration, as described in Subsect. 4.1.

4.3 Look-Back-k Heuristic

We propose and evaluate a second technique for error reduction. It is a gener-
alization of the heuristic first presented in [25]. Its name is representative for
its main feature: it considers the k previous consecutive measurements for the
computation of the current location. The underlying assumption is that a set of
several measurements are more accurate than the last one and that by examin-
ing several measurements instead of just the current one, the precision can be
increased.

In direct trilateration the three distances are computed at each discrete time
point when an RSSI measurement is taken, using as input the currently measured
RSSI value. If one measurement is faulty, it negatively influences the accuracy of
the calculated position. We attempt to alleviate this issue by considering a col-
lection of previous n measurements. For each luminaire li, a series of RSSI values
(v) are collected at m time points {t1, t2, . . . , tm}, as follows: (vt1

li
, vt2

li
, . . . , vtmli)

where v
tj
li

represents the RSSI value for luminaire li, i ∈ {1, 2, 3}, at time point
tj , j ∈ {1, . . . , m}. Instead of computing the indoor position ptj at time point tj

by employing the three values (vtj
l1

, v
tj
l3

, v
tj
l3

), we start from the previous k RSSI

measurements, for each luminaire {v
tj−(k−1)

li
, . . . , v

tj−2
li

, v
tj−1
li

, v
tj
li

} and perform
the following computations for time point tj , on this collection:

1. Eliminate outliers. We take into account two procedures for outliers: (1) The
minimum and maximum values are outliers; (2) We consider a value to be an
outlier if it falls outside of 1.5 times of an interquartile range above the third
quartile and below the first quartile.

2. Compute the mean μtj and the standard deviation σtj for the remaining
values.

3. Eliminate all values that are further than one standard deviation from the
mean, thus all values outside the interval [μtj − σtj , μtj + σtj].

4. Compute the mean of the remaining values μ′
tj and use it in the trilateration

process to compute the distance.

Indoor Localization Techniques Within a Home Monitoring Platform 387

4.4 Hybrid Technique

Previously described techniques are intended to reduce localization errors result-
ing from noisy or erroneous measurements or as a result of interference. A com-
bination of the two could steer towards more accurate indoor positioning results.
Hence, this hybrid technique works in two phases: first, RSSI estimates are com-
puted using the Kalman filter after which the look-back-n technique is applied
using the estimates as input data.

4.5 Neural Network Based Technique

While the first three techniques rely mainly on trilateration and heuristic meth-
ods applied to minimise the impact of noise on input data, this technique stems
from machine learning, where it is ubiquitous for both classification and regres-
sion. Several recent studies tackling indoor positioning have employed such
machine learning models: a four layer deep neural network, combined with a
denoising autoencoder and a hidden Markov model is employed in [51] for indoor
and outdoor localization; a recurrent neural network which uses WiFi signals
for an indoor positioning system is presented in [21]; another recurrent neu-
ral network, more specifically a long short-term memory network is used by
Urano et al. [43] with BLE signal strength data for indoor localization; Mittal
et al. [29] propose a convolutional neural networks based framework for indoor
localization, in which the networks use images created from WiFi signatures.
Another convolutional deep neural network starting from phase data of channel
state information, which is transformed into images based on estimated angles
of arrival is presented in [46]. In our model, the neural network input is a triplet
that contains the three RSSI values recorded by the intelligent luminaires, while
the output is the estimated location, represented as a coordinate pair.

Some of the most important hyper-parameters to fine-tune when working
with an artificial neural network are the number of layers, the number of neu-
rons per each hidden layer, type of optimisation algorithm, types of activation
functions, learning rate or regularisation. However, there is no universal solution
for deciding the optimal parameters’ values for a given problem description (and
non-linearly separable data) and most network architectures are built based on
prior experience, trial and error. Our network starts from a simple architecture,
with only one hidden layer. To this we gradually add hidden layers to investigate
how this influences the obtained accuracy and to contribute to improved local-
ization. The activation function of choice is rectified linear unit (ReLU) [30] and
the optimisation algorithm employed is adam [18], an extension to stochastic
gradient descent often used in the field of deep learning. Stratified k-fold cross
validation is used during training for a more robust model, while the number of
training epochs is varied during experimentation.

388 I. Marin et al.

5 Experimental Evaluation

5.1 Methodology

Given the known impact building layouts and materials have on wireless signal
propagation, we carried out our evaluation in two distinct locations. To allow for
directly comparing the achieved accuracy, the same three intelligent luminaires
were employed in both cases.

The first location was a home, having room dimensions of 2.50 m× 3.29 m
(bedroom), 2.50 m × 1.00 m (study room), 2.34 m× 2.21 m (hallway). Additional
rooms, such as the kitchen and bathroom were not included in our evaluation.
Figure 3a illustrates the layout of the evaluated rooms. One luminaire was ceiling-
mounted in each room, replacing existing lighting infrastructure. Luminaire posi-
tions in Fig. 3 are marked using yellow circles with black outlines.

The second location was a two-room section of a large multi-storey office
building, illustrated in Fig. 3b. Enclosure sizes are 5.60 m × 7.80 m for the meet-
ing room and 1.60 m× 5.60 m for the hallway. The office covers more than 3
times the home’s floor space, as shown in Fig. 3, which is drawn to scale. Two
luminaires were deployed in the meeting room, while the third one was installed
in the hallway. Both figures include major pieces of furniture, which have a
detrimental effect on signal transmission [45]. More importantly, building mate-
rials used differ across the considered locations. The home location has both
interior and exterior walls of brick and cement, with interior walls being 17 cm
thick, while exterior ones are 35 cm [26]. For the office location, exterior walls
were made of autoclaved aerated concrete and the indoor ones made of plaster-
board. It is known that aerated concrete absorbs electromagnetic waves [19]. The
electromagnetic shielding of the plasterboards is proportionally greater as the
fiber content increases, while with increasing environment moisture, the shielding
effect is decreased [36]. Signal interference was significant within the office loca-
tion scenario, with 14 WiFi systems and 11 Bluetooth devices enabled around
the testing area creating impedance. In both locations, a smartphone located
1 m above the floor was used as signal emitter, while the luminaires acted as
signal receivers.

The trilateration formula presented in Sect. 4.1 employs two parameters that
need to be calibrated: A - the signal strength at 1 m from the luminaire and
n - the path loss exponent. As determined in our experiments the value for A
is different for the two scenarios (−87 for the first experiment and −67 for the
second). As reported in existing literature [28,44], the value of n varies depending
on room shapes and sizes, building materials, wall placement as well as furniture.
This value was determined by a grid-search procedure, showing that the most
suitable value for both scenarios is n = 2.5.

The experimental methodology was similar in both locations. First, the
devices were installed and we ensured that a stable link to the remotely-deployed
server was working. Then, one person playing the role of monitored adult was
stationary in several fixed places within the monitored rooms for a duration of
around 15 min. A mobile phone was kept on them at a height of 1 m and with

Indoor Localization Techniques Within a Home Monitoring Platform 389

(a) Home [26] (b) Office

Fig. 3. Partial floor map of dwellings used for evaluation (drawings to scale).

Bluetooth turned on, but not paired to another device. The luminaires recorded
RSSI values from the phone at under 10 s intervals each, and sent the raw data
to the server for further analysis. The following section details the evaluation
carried out on the raw data. Post processing was done exclusively on the soft-
ware server. The presented methods were implemented server-side and can run
in real-time under deployment conditions.

5.2 Results

We present below the results obtained after applying the techniques presented in
Sect. 4 for indoor localization, using the two scenarios presented in Sect. 5.1. The
Euclidean distance was selected as the evaluation measure and the obtained dis-
tances were averaged across time points, for each interval. It must be mentioned
that RSSI timestamps were not exactly identical for all the rooms in which the
measurements were taken. In order to compute the person’s location in any given
moment t, the closest timestamps to moment t, for each room, were used.

390 I. Marin et al.

Home Location. The first location for evaluation is the three-room home.
Figure 4a, b and c provide a visual representation of the evolution of RSSI values,
plotted against the corresponding Kalman estimates. Inspecting these values we
notice that during the last two time periods, when the person was in the study
room and hallway, the values are inconsistent during the time interval. However,
RSSI values recorded by the study bulb while the person was in the bedroom
show a significant rise towards the end of the period, which is inconsistent with
the other values and thus suggests noisy measurements. This jump is significantly
softened using Kalman filtering.

Results obtained using all four direct trilateration-based techniques described
in Sect. 4 are presented in Table 1. Each column corresponds to the period the
monitored person spent in each room and the last column shows the average
error. For the look-back-k technique we consider several values for the param-
eter k and show results for all of them. A first observation is that the look-
back-k heuristic, in which a set of values is used for position computation is on
average more efficient than using time point characteristic values. For the first
time period, when the measurements seem to be noisier, especially towards the
end of the period, we observe a general tendency of decreasing error with the
increase of k. For the other two periods, the error either slightly increases or
remains the same. However the average positioning error is approximately 10cm
lower for k = 50, when compared with using raw RSSI values. The reported
results correspond to the minimum and maximum-based outlier elimination. The
interquartile range-based elimination yields highly similar results: for k = 50,
the returned error is 126.36 cm (as opposed to 125.80 cm, with the minimum
and maximum-based elimination). The same decreasing trend is observed in the
case of interquartile range-based elimination.

Kalman filters bring additional improvements. When applying these filters
on raw values, and further, using trilateration starting from Kalman estimates,
the positioning error is even smaller: more than 21 cm are gained when com-
pared to using raw values and approximately 12 cm when compared to the best
result using the look-back technique. Considering the improvements brought by
both proposed heuristics, the expectation is that combining them will improve
localization even further. This is confirmed by our experiment, as the best result
obtained by the hybrid technique leads to the smallest error. The largest differ-
ence in error is for the first time interval (column 2:33–2:48), which is expected
when considering the noisy values recorded towards the end of the interval, as
shown in Fig. 4. Analysing the results of this experiment we conclude that the
noise reduction induced by Kalman filtering brings significant enhancement for
indoor localization, while the combination of this technique with our proposed
look-back-k heuristic can lead to additional improvements.

Raw RSSI values were fed to the neural network described in Sect. 4.5, whose
architecture was updated in an iterative manner to investigate the changes
in localization accuracy induced by network construction. Table 2 presents the
results obtained for different numbers of hidden layers and increasingly more
training epochs. All hidden layers have the same number of neurons, which was

Indoor Localization Techniques Within a Home Monitoring Platform 391

(a) House - person is in the bedroom. (b) House - person is in the study room.

(c) House - person is in the hallway. (d) Office - person is in meeting room.

(e) Office - person is in meeting room. (f) Office - person is in meeting room.

(g) Office - person is in hallway. (h) Office - person is in hallway.

Fig. 4. Raw RSSIs (continuous lines) and Kalman estimates (dashed lines) for each
time interval. Signal strength (dBm) on vertical axis, time on horizontal axis. Lumi-
naires are color coded as follows: magenta (house hallway), black (study room), red
(bedroom), orange (meeting room, by the window), blue (meeting room by the wall),
green (office hallway). (Color figure online)

determined through experimentation. The network’s performance was measured
using a stratified 10-fold cross validation technique. Reported results are the
averaged errors and standard deviations, based on Euclidean distances, obtained
over 10 runs, for all three time periods. More training epochs generally induce
lower errors, especially when passing from a lower number (100) to considerably

392 I. Marin et al.

Table 1. Localization errors for home location. Errors computed as averaged Euclidean
distances, reported in centimetres.

2:33–2:48 2:49–3:04 3:07–3:22 Avg. error

Raw values 141.67 30.71 233.18 135.19

Look-back-5 137.41 31.98 233.23 134.21

Look-back-10 134.22 33.07 233.24 133.51

Look-back-15 131.39 33.82 233.25 132.82

Look-back-20 128.63 34.43 233.24 132.1

Look-back-30 122.51 34.94 233.17 130.21

Look-back-50 109.40 34.94 233.05 125.80

Kalman filter 64.88 43.16 233.56 113.87

Kalman filter + look-back-5 63.92 43.32 233.56 113.60

Kalman filter + look-back-10 62.79 43.48 233.56 113.28

Kalman filter + look-back-15 61.72 43.59 233.55 112.95

Kalman filter + look-back-20 60.72 43.65 233.55 112.64

Kalman filter + look-back-30 58.79 43.67 233.55 112.00

Kalman filter + look-back-50 55.38 43.67 233.55 110.87

higher ones (500, 1000 and so on). However, as soon as convergence is achieved, a
further increase in the number of epochs does not bring such significant improve-
ment, as can be seen in the case of 1000, 2000 and 3000 epochs. Alteration of the
number of hidden layers causes significant changes in accuracy particularly for
networks that have been trained over few epochs, as can be seen for 100 epochs,
where the minimum error, obtained for 5 layers is approximately 35 cm less than
the maximum one, obtained for just one hidden layer. Again, when the number of
training epochs is high, such significant differences no longer appear. Analysing
the results in Table 2 we observe that accuracy less than 10 cm is obtained for
1000 epochs and fewer hidden layers.

For the conducted experiments, the highest average error obtained by the
network is 48.13 cm, obtained for 100 training epochs and 1 hidden layer. This
indicates that the neural network is clearly superior to the methods based on tri-
lateration, where the lowest error obtained after applying the proposed heuristics
is 110.87 cm in the case of this experiment. The network obtains almost perfect
performance in certain configurations, such as an error of 1.41 cm for 3000 train-
ing epochs and 3 hidden layers. On average, the network’s performance is alto-
gether efficient, as the average error for the conducted experiments is 10.51 cm
and the 95% confidence interval is 10.51± 4.02 cm ([6.49, 14.53]). While the net-
work is trained for three fixed positions, a network constructed for real time
localization should be trained using data collected from multiple positions that
cover the entire indoor area and in various settings. Thus, although the artificial
neural network seems to be more advantageous than direct trilateration, it also

Indoor Localization Techniques Within a Home Monitoring Platform 393

presents some drawbacks, which might make it more difficult to employ during
product deployment.

Table 2. Home location. Average error based on Euclidean distance ± standard devi-
ation obtained using the artificial neural network, over 10 runs, with stratified cross-
validation. Errors reported in centimetres.

Number of hidden layers

Epochs 1 2 3 4 5

100 48.13 ± 37.24 25.98 ± 10.27 21.96 ± 7.88 24.76 ± 21.72 13.02 ± 4.38

500 12.04 ± 3.80 10.92 ± 3.48 9.74 ± 3.23 6.04 ± 2.66 5.81 ± 4.58

1000 9.74 ± 2.56 7.85 ± 4.22 7.35 ± 4.71 7.47 ± 3.39 5.12 ± 3.10

2000 9.59 ± 4.37 6.28 ± 3.57 4.15 ± 3.77 2.94 ± 2.24 2.71 ± 1.67

3000 10.39 ± 3.63 5.20 ± 4.26 1.41 ± 0.87 2.69 ± 2.26 1.57 ± 0.49

The actual and estimated locations obtained using the neural network are
illustrated in Fig. 5. Reported locations present the 5 hidden layers network
configuration, which performed very accurately, with the computed positions
obtained by the network plotted against the actual locations. As seen in Fig. 5a,
predicted positions are very close and in many cases overlap the actual location
of the monitored person.

Figure 6 illustrates the location of the person during the second time interval,
as it is reported by the cyber-physical system’s software application. It allows
users to map and display the dwelling floor plan together with the estimated real-
time location of the monitored person using both 2D and 3D representations.

Office Location. In this section we present the results obtained during the eval-
uation carried out in the office location. In order to facilitate comparison with
results obtained in the previous evaluation, the same methodology was followed.
RSSI values were collected from five positions within the location illustrated
in Fig. 3b. Recorded RSSI values and their Kalman estimates are illustrated in
Fig. 4d–h. For the first three intervals of time (8:55–9:10, 9:10–9:25 and 9:25–
9:40) the person was in different spots in the meting room. While for the first
and third intervals the RSSIs measured by the three luminaires did not change
notably, we noticed that during the second interval values recorded by the win-
dow bulb had a larger variance. The last two intervals of time, during which the
person stood in the hallway, also presented some more significant changes in the
recorded RSSI values. We observe that in all cases Kalman filtering attenuates
the differences.

Table 3 shows the localization errors for this experiment, for each interval of
time and each technique described in Sect. 4. The obtained results are rather
consistent with those obtained during the home scenario: the look-back-n tech-
nique and Kalman filtering seem to improve localization on average, but not in

394 I. Marin et al.

(a) Home (b) Office

Fig. 5. Indoor positions obtained by the neural networks (3 hidden layers - left, 5 hidden
layers - right), after being trained for 3000 epochs, represented on the two-dimensional
floor plan of the dwelling (Fig. 3)

all individual cases. For instance, for the second interval of time we notice that
the error obtained by processing the Kalman estimates is far greater that the one
obtained by processing raw values. We posit this occurs due to Kalman estimates
being more similar to the initially recorded RSSI values, which correspond to the
person moving from one location to the other. Thus, even though for the best
part of the interval the recorded values were lower (−83, for more than 11 out
of 15 min), the Kalman estimates are closer to the initial values ([−74, −77]).
This type of error can be attenuated by increasing the weight given to measure-
ments recorded for longer periods. Like in the case of the previous evaluation,
reported results correspond to the minimum and maximum-based outlier elimi-
nation. Again, the interquartile range-based elimination obtained similar results,
but slightly higher errors (232.13 cm for look-back-50, as opposed to 222.77 cm
and 227.77 cm for Kalman filtering combined with look-back-50).

Using Kalman filters brings additional improvements, similar to the case
of the house scenario. When the filter is applied on raw values, and further,

Indoor Localization Techniques Within a Home Monitoring Platform 395

Fig. 6. Illustration of the person’s indoor location within the system’s interface [26].

when employing trilateration starting from the Kalman estimates, positioning
errors are decreased, as shown in Table 3. Analysing the results presented in
the table, we conclude that the Kalman filtering noise reduction again improves
the accuracy of indoor localization, while its combination with our proposed
look-back-k heuristic leads to additional improvements.

One of the differences between the house and office scenarios regards the
accuracy of the proposed hybrid technique. While in the first scenario, the
hybrid technique produced the smallest errors, in this case we observe different
results. The best results with the hybrid technique are obtained when consider-
ing Kalman estimates and 5 steps back. All average errors output by Kalman
filtering and the look-back-n technique are lower than those generated by using
raw values. We observe that the results of this experiment are strongly influenced
by the selected positions in the office and the trilateration method used.

The results obtained using the neural network lead to conclusions similar to
those obtained within the first location: generally, more layers and more train-
ing epochs mean improved accuracy, as illustrated in Table 4. The largest error,
obtained by a network with just one hidden layer and after only 100 training
epochs is less than half the average error obtained by methods based on trilatera-
tion, while the smallest one is less than 8 cm. The average error for the conducted
experiments is 35.23 cm and the 95% confidence interval is 35.23 ± 11.86 cm
([23.36, 47.10]). The localization accuracy obtained by the network is good and

396 I. Marin et al.

Table 3. Localization errors for office location. Errors computed as averaged Euclidean
distances, reported in centimetres.

8:55–9:10 9:10–9:25 9:25–9:40 9:40–9:55 9.55–10:10 Avg. error

Raw values 154.12 280.32 191.03 211.87 311.31 229.73

Look-back-5 154.13 283.61 190.65 212.37 305.06 229.16

Look-back-10 154.14 287.62 190.18 213.06 299.81 228.96

Look-back-15 154.15 291.62 189.71 213.73 294.82 228.81

Look-back-20 154.11 295.64 189.25 214.39 290.17 228.71

Look-back-30 153.87 304.67 188.39 215.52 274.92 227.47

Look-back-50 153.17 325.41 186.89 217.15 231.23 222.77

Kalman filter 154.4 405.09 174.83 235.13 141.67 222.22

Kalman filter + look-back-5 154.4 405.56 174.74 235.36 143.63 222.74

Kalman filter +look-back-10 154.4 406.14 174.62 235.62 145.99 223.35

Kalman filter + look-back-15 154.4 406.69 174.51 235.88 148.27 223.95

Kalman filter + look-back-20 154.4 407.23 174.40 236.12 150.46 224.52

Kalman filter + look-back-30 154.37 408.24 174.2 236.57 154.56 225.59

Kalman filter + look-back-50 154.33 410.02 173.87 237.33 161.57 227.42

training times were lower than 1 min on a computer with an Intel i5 CPU and
8 GB RAM, with all computations running on the CPU. However, the network
is trained for 5 exact locations using approximately 2000 records. The main dis-
advantage of this method, as remarked for the first experiment, is that training
it for a larger set of locations in a dwelling would require significantly more time,
both for the measurements and for the training process. The results obtained by
the best performing network are presented in Fig. 5b. As seen in the figure, the
predicted positions are very close to the real ones and many of them overlap.

Table 4. Office location. Average error based on Euclidean distance ± standard devi-
ation obtained using the artificial neural network, over 10 runs, with stratified cross-
validation. Errors reported in centimetres.

Number of hidden layers

Epochs 1 2 3 4 5

100 106.98 ± 15.11 96.73 ± 23.50 77.57 ± 22.40 70.79 ± 32.97 51.75 ± 9.77

500 84.36 ± 23.08 46.05 ± 18.69 26.42 ± 12.30 19.16 ± 4.55 15.14 ± 3.71

1000 54.45 ± 17.40 30.23 ± 14.54 15.48 ± 8.04 11.16 ± 4.03 10.68 ± 5.18

2000 38.67 ± 13.38 23.44 ± 13.13 10.82 ± 3.56 10.89 ± 3.99 8.48 ± 3.18

3000 27.44 ± 13.13 16.54 ± 11.47 10.20 ± 5.55 9.68 ± 7.40 7.73 ± 4.08

5.3 Comparison with Related Work

Authors of [2] present RADAR, a system that uses the strength of a 2.4 Ghz
WiFi signal from the k -nearest neighbour devices to detect location using RSSI.
The system was tested in a 980 m2 floor space of a multi-storey building divided

Indoor Localization Techniques Within a Home Monitoring Platform 397

into around 50 rooms. Experimental evaluation showed the system to have a
resolution of 3 m, enough for room-level detection.

A similar result was achieved by Battiti et al. [3], who employ WiFi sig-
nal and a neural network for person positioning, and achieve similar, room-
level resolution. Fariz et al. employ trilateration together with Kalman filters for
determining the person’s location [11]. The error is between 3.58 and 14.82 m.
Deng et al. applied the extended Kalman filter based on fusing WiFi signals [8],
lowering the localization error to 2.83 m. Another experiment regarding indoor
positioning [20] obtained an error equal to 3.29 m when trilateration was used
with Bluetooth and 1.61 m when using a backpropagation neural network.

In Sadowski et al., RSSI-based indoor localization data are collected using
WiFi for two scenarios and the reported positioning errors were low [35]. The first
scenario consisted of one large room in which a few BLE gadgets and different
WiFi systems were placed in order to introduce signal interference. The second
scenario involved a smaller room with furniture and no gadgets. In this case, a
low degree of commotion was present. The average positioning error for the first
scenario was 0.84 m, and for the second scenario it reached 0.48 m. The nodes
used for RSSI value estimation were placed on several tables with similar height,
restricting the quantity of signal reflections and interference.

In the case of long narrow spaces, Gao et al. [12] used same line dual con-
nection for estimating the person location, because trilateration caused tracking
difficulties. This solution considers the loss and gain of RSSI values both for
transmitter and receiver. The reported accuracy of this solution was of 1.6 m.

When compared with most relevant existing systems, our solution integrates
additional capabilities into a cost-effective device that can be easily deployed and
which looks unobtrusive in a typical home or office setting. In our experiments,
the luminaires were ceiling-mounted and indoor localization was attempted in
five rooms using trilateration combined with filter-based approaches. The com-
plexity of carrying out a controlled evaluation of these technologies means that
a detailed comparison with similar approaches cannot be made. Differences in
enclosure sizes, room layouts, building materials, presence of large furniture
or people, as well as signal interference from nearby devices cannot fully be
accounted for outside a laboratory setting.

6 Conclusion

The trend of population ageing started several decades ago and recent data shows
that over medium and long term, it is expected to amplify. The more concerning
aspect however is that this process is not accompanied by an improved quality
of life for older adults [48]. Our research evaluates indoor localization accuracy,
an important aspect for an unobtrusive and cost-effective system designed to
help older adults live within their own homes. To achieve our goals, the system
hardware was implemented in the form of intelligent luminaires that replace
existing lighting infrastructure. In addition to environment sensing [25], they
provide indoor localization using RSSI from a Bluetooth Low Energy device,
such as a standard smartphone or wearable.

398 I. Marin et al.

We extended our initial evaluation [26] to include two different, but rep-
resentative locations for an indoor positioning system. We employed direct
trilateration-based methods with the minimum number of required beacons and
evaluated the accuracy of several post-processing approaches, including Kalman
filtering as well as our proposed look-back-k heuristic. We combined the two
approaches to verify if an initial noise reduction step improves our heuristic’s
accuracy. Finally, we trained an artificial neural network to verify whether the
expected future location of the monitored person can be accurately determined.
While not an actual localization problem, we believe it to represent an impor-
tant step towards behavioural pattern recognition and profiling, which existing
research [17,38] suggests can be important for early detection of several medical
conditions related to ageing.

Our evaluation shows that direct trilateration is suitable for achieving room-
level localization accuracy in realistic scenarios. However, raw readings pre-
sented significant variation. When studying the obtained distance estimations,
we observe that in several situations a common intersection could not be identi-
fied, resulting in large error margins. This situation arises both because of noisy
RSSI readings caused by signal interference, as well as multipath fading and envi-
ronmental factors. We plan to also experiment with other, more complex algo-
rithms, for instance with non-linear least squares optimisation, to compensate
for noisy data. In the undertaken experiments, all post-processing approaches
improved the observed accuracy, starting with the Kalman noise reduction filter.
In both evaluated scenarios, improved results were obtained when the Kalman
filter was combined with our look-back heuristic.

When compared to other indoor positioning systems, our proposed approach
does not require the installation of additional devices or wiring, and as shown,
can achieve room-level accuracy in realistic scenarios that include signal pollu-
tion. Its deployment is straightforward and involves replacing some of the existing
light bulbs with intelligent luminaires. A comparative evaluation of localization
accuracy is however not feasible, as it would require a controlled but realistic
environment where signal pollution can be controlled and where multiple sys-
tems could be deployed. As such, we limited ourselves to comparing each system’s
prerequisites and the obtained results.

With regards to future work, in addition to evaluating more complex algo-
rithms for indoor localization, we aim to carry out an evaluation on the accuracy
that can be achieved when tracking multiple targets, as well as moving subjects.
In both cases, luminaires will have to increase signal strength polling rate. Accu-
rate indoor localization of moving subjects will better help detect older adult
behaviour patterns and identify risky situations, as well as enabling other func-
tionalities in both private and public places.

Acknowledgement. This work was supported by a grant of the Romanian National
Authority for Scientific Research and Innovation, CCCDI UEFISCDI, project
number 46E/2015, i-Light - A pervasive home monitoring system based on intelligent
luminaires.

Indoor Localization Techniques Within a Home Monitoring Platform 399

References

1. AAL - Active and Assisted Living Programme: ICT for ageing well (2016). http://
www.aal-europe.eu/about/

2. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location
and tracking system. In: Proceedings of IEEE INFOCOM 2000, vol. 2, pp. 775–
784 (2000)

3. Battiti, R., Thang Le, N., Villani, A.: Location-aware computing: a neural network
model for determining location in wireless LANs. In: International Semiconductors
Conference, vol. 4 (2002)

4. Bocicor, M.I., et al.: Cyber-physical system for assisted living and home monitor-
ing. In: 13th IEEE International Conference on Intelligent Computer Communica-
tion and Processing, pp. 487–493, September 2017. https://doi.org/10.1109/ICCP.
2017.8117052

5. Brena, R.F., Garćıa-Vázquez, J.P., Galván-Tejada, C.E., Muñoz-Rodriguez, D.,
Vargas-Rosales, C., Fangmeyer, J.: Evolution of indoor positioning technologies: a
survey. J. Sens. 2017, 21 (2017)

6. Bulten, W., Rossum, A.C.V., Haselager, W.F.G.: Human SLAM, indoor localisa-
tion of devices and users. In: IEEE First International Conference on Internet-of-
Things Design and Implementation, pp. 211–222 (2016)

7. De Schutter, J., De Geeter, J., Lefebvre, T., Bruyninckx, H.: Kalman filters: a
tutorial (1999)

8. Deng, Z.A., Hu, Y., Yu, J., Na, Z.: Extended Kalman filter for real time indoor
localization by fusing WiFi and smartphone inertial sensors. Micromachines 6,
523–543 (2015)

9. Dong, Q., Dargie, W.: Evaluation of the reliability of RSSI for indoor localization.
In: Proceedings of the IEEE International Conference on Wireless Communications
in Unusual and Confined Areas, pp. 1–6 (2012)

10. Draghici, I.C., et al.: A quantitative research to decide the user requirements for
the i-Light system. In: Proceedings of the 21st International Conference on Control
Systems and Computer Science (CSCS21), pp. 143–148 (2017)

11. Fariz, N., et al.: An improved indoor location technique using Kalman filter. Int.
J. Eng. Technol. 7(2), 1–4 (2018)

12. Gao, L., et al.: A new approach for wi-fi-based people localization in a long narrow
space. Wirel. Commun. Mobile Comput. 2019, article 9581401 (2019)

13. Haigh, P.A., et al.: Visible light communications: real time 10 mb/s link with a low
bandwidth polymer light-emitting diode. Opt. Express 22(3), 2830–2838 (2014)

14. Halfacree, G., Upton, E.: Raspberry Pi User Guide. Wiley, Hoboken (2012).
ISBN:978-1118464465

15. Huang, K., He, K., Du, X.: A hybrid method to improve the BLE-based indoor posi-
tioning in a dense Bluetooth environment. Sensors 19(2) (2019). https://doi.org/
10.3390/s19020424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359285/

16. Huang, Y., Zheng, J., Xiao, Y., Peng, M.: Robust localization algorithm based on
the RSSI ranging scope. Int. J. Distrib. Sens. Netw. 11(2), 587318 (2015)

17. Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery. IEEE
Pervasive Comput. 9(1), 48–53 (2010). https://doi.org/10.1109/MPRV.2010.7

18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

19. Laukaitis, A., Balevičius, S., Levitas, B.: Investigation of electromagnetic wave
absorber based on carbon fiber reinforced aerated concrete, using time-domain
method. Acta Phys. Pol. A 11303 (2008). https://doi.org/10.12693/APhysPolA.
113.1047

http://www.aal-europe.eu/about/
http://www.aal-europe.eu/about/
https://doi.org/10.1109/ICCP.2017.8117052
https://doi.org/10.1109/ICCP.2017.8117052
https://doi.org/10.3390/s19020424
https://doi.org/10.3390/s19020424
https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC6359285/
https://doi.org/10.1109/MPRV.2010.7
http://arxiv.org/abs/1412.6980
https://doi.org/10.12693/APhysPolA.113.1047
https://doi.org/10.12693/APhysPolA.113.1047

400 I. Marin et al.

20. Li, G., et al.: Indoor positioning algorithm based on the improved RSSI distance
model. Sensors 18(9), article number 2820 (2018). https://www.mdpi.com/1424-
8220/18/9/2820

21. Lukito, Y., Chrismanto, A.R.: Recurrent neural networks model for WiFi-based
indoor positioning system. In: 2017 International Conference on Smart Cities,
Automation & Intelligent Computing Systems (ICON-SONICS) (2017)

22. Luo, X., O’Brien, W.J., Julien, C.: Comparative evaluation of received signal
strength index (RSSI)-based indoor localization techniques for construction job-
sites. Adv. Eng. Inform. 25, 355–363 (2011)

23. Lymberopoulos, D., et al.: A realistic evaluation and comparison of indoor location
technologies: Experiences and lessons learned. In: The 14th ACM/IEEE Conference
on Information Processing in Sensor Networks IPSN 2015, pp. 178–189 (2015)

24. Maduskar, D., Tapaswi, S.: RSSI based adaptive indoor location tracker. Sci. Phone
Apps Mobile Devices 3, article number 3 (2017). https://doi.org/10.1186/s41070-
017-0015-z

25. Marin, I., et al.: i-Light - intelligent luminaire based platform for home monitoring
and assisted living. Electronics 7, article number 220 (2018). https://www.mdpi.
com/2079-9292/7/10/220

26. Marin., I., Bocicor., M.I., Molnar., A.: Indoor localisation with intelligent lumi-
naires for home monitoring. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE, pp.
464–471. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007751304640471

27. de Meijer, C., Wouterse, B., Polder, J., Koopmanschap, M.: The effect of popula-
tion aging on health expenditure growth: a critical review. Eur. J. Ageing 10(4),
353–361 (2013)

28. Miranda, J., Abrishambaf, R., Gomes, T., Cabral, J., Tavares, A., Monteiro, J.:
Path loss exponent analysis in wireless sensor networks: experimental evaluation,
pp. 54–58, July 2013. https://doi.org/10.1109/INDIN.2013.6622857

29. Mittal, A., Tiku, S., Pasricha, S.: Adapting convolutional neural networks for
indoor localization with smart mobile devices. In: Proceedings of the 2018 on Great
Lakes Symposium on VLSI, pp. 117–122 (2018)

30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML2010, Omnipress, USA, pp. 807–814
(2010). http://dl.acm.org/citation.cfm?id=3104322.3104425

31. Nobles, P., Ali, S., Chivers, H.: Improved estimation of trilateration distances
for indoor wireless intrusion detection. J. Wirel. Mobile Netw. Ubiquit. Comput.
Dependable Appl. 2, 93–102 (2011)

32. Ozsoy, K., Bozkurt, A., Tekin, I.: Indoor positioning based on global positioning
system signals. Microw. Opt. Technol. Lett. 55, 1091–1097 (2013)

33. Pu, C.C., Pu, C.H., Lee, H.J.: Indoor location tracking using received signal
strength indicator. In: Emerging Communications for Wireless Sensor Networks
(2011)

34. Robesaat, J., Zhang, P., Abdelaal, M., Theel, O.: An improved BLE indoor local-
ization with Kalman-based fusion: an experimental study. Sensors 17(5), article
number 951 (2017). https://www.mdpi.com/1424-8220/17/5/951

35. Sadowski, S., Spachos, P.: RSSI-based indoor localization with the Internet of
Things. IEEE Access 6, 30149–30161 (2018)

36. Samkova, A., Kulhavy, P., Tunakova, V., Petru, M.: Improving electromagnetic
shielding ability of plaster-based composites by addition of carbon fibers. Adv.

https://www.mdpi.com/1424-8220/18/9/2820
https://www.mdpi.com/1424-8220/18/9/2820
https://doi.org/10.1186/s41070-017-0015-z
https://doi.org/10.1186/s41070-017-0015-z
https://www.mdpi.com/2079-9292/7/10/220
https://www.mdpi.com/2079-9292/7/10/220
https://doi.org/10.5220/0007751304640471
https://doi.org/10.1109/INDIN.2013.6622857
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://www.mdpi.com/1424-8220/17/5/951

Indoor Localization Techniques Within a Home Monitoring Platform 401

Mater. Sci. Eng. 2018, article 3758364 (2018). https://doi.org/10.1155/2018/
3758364

37. Silicon Labs: Bluegiga BLE112 Bluetooth smart module. http://www.silabs.com/
products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-
smart-module (2017)

38. Soto-Mendoza, V., Beltrán, J., Chávez, E., Hernández, J., Garćıa-Maćıas, J.A.:
Abnormal behavioral patterns detection from activity records of institutionalized
older adults. In: Salah, A.A., Kröse, B.J.A., Cook, D.J. (eds.) HBU 2015. LNCS,
vol. 9277, pp. 119–131. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24195-1 9

39. Sung, Y.: RSSI-based distance estimation framework using a Kalman filter for
sustainable indoor computing environments. J. Sustain. 8(11), article 1136 (2016).
https://www.mdpi.com/2071-1050/8/11/1136

40. Ta, V.C.: Smartphone-based indoor positioning using Wi-Fi, inertial sensors
and Bluetooth. Machine Learning, Université Grenoble Alpes (2017). https://tel.
archives-ouvertes.fr/tel-01883828/document

41. Tarrio, P., et al.: An energy-efficient strategy for combined RSS-PDR indoor local-
ization. In: IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), pp. 619–624 (2011)

42. Tarzia, S.P., et al.: Indoor localization without infrastructure using the acous-
tic background spectrum. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, p. 155 (2011)

43. Urano, K., Hiroi, K., Yonezawa, T., Kawaguchi, N.: Basic study of BLE indoor
localization using LSTM-based neural network. In: Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services, pp. 558–
559. ACM (2019)

44. Okorogu, V.N., Onyishi, D.U., Nwalozie, G.C., Utebor, N.N.: Empirical charac-
terization of propagation path loss and performance evaluation for co-site urban
environment. Int. J. Comput. Appl. 70, 34–41 (2013). https://doi.org/10.5120/
12001-7888

45. Wang, J.Y., et al.: High-precision RSSI-based indoor localization using a trans-
mission power adjustment strategy for wireless sensor networks. In: 2012 IEEE
14th International Conference on High Performance Computing and Communica-
tion, 2012 IEEE 9th International Conference on Embedded Software and Systems
(2012)

46. Wang, X., Wang, X., Mao, S.: Deep convolutional neural networks for indoor local-
ization with CSI images. IEEE Trans. Netw. Sci. Eng. (2018). https://doi.org/10.
1109/TNSE.2018.2871165

47. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report,
Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA (1995)

48. World Health Organization: World report on ageing and health (2015). https://
www.who.int/ageing/events/world-report-2015-launch/en/

49. Xiao, J., Zhou, Z.: A survey on wireless indoor localization from the device per-
spective. ACM Comput. Surv. 49, article number 25 (2016). https://doi.org/10.
1145/2933232

50. Zargoun, F., Henawy, I.M., Ziedan, N.I.: Effects of walls and floors in indoor local-
ization using tracking algorithm. Int. J. Adv. Comput. Sci. Appl. 7(3), 34–39 (2016)

51. Zhanga, W., Liua, K., Zhang, W., Zhang, Y., Gu, J.: Deep neural networks for
wireless localization in indoor and outdoor environments. Neurocomputing 194,
279–287 (2016)

https://doi.org/10.1155/2018/3758364
https://doi.org/10.1155/2018/3758364
http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-module
http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-module
http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-module
https://doi.org/10.1007/978-3-319-24195-1_9
https://doi.org/10.1007/978-3-319-24195-1_9
https://www.mdpi.com/2071-1050/8/11/1136
https://tel.archives-ouvertes.fr/tel-01883828/document
https://tel.archives-ouvertes.fr/tel-01883828/document
https://doi.org/10.5120/12001-7888
https://doi.org/10.5120/12001-7888
https://doi.org/10.1109/TNSE.2018.2871165
https://doi.org/10.1109/TNSE.2018.2871165
https://www.who.int/ageing/events/world-report-2015-launch/en/
https://www.who.int/ageing/events/world-report-2015-launch/en/
https://doi.org/10.1145/2933232
https://doi.org/10.1145/2933232

Author Index

Aguiar, Ademar 58, 83
Amaral, Diogo 83

Bhardwaj, Ashish 303
Bocicor, Maria-Iuliana 378
Busby-Earle, Curtis 364

Correia, Filipe Figueiredo 83

da Silva, Alberto Rodrigues 39
Dahab, Sarah A. 341
de Aguiar Barbosa, Allan Fábio 188
Derezinska, Anna 204
Desai, Nirav 303
Dias, João Pedro 58, 83
Domingues, Gil 83

Ebbesvik, Ben-Richard 227

Ferreira, Hugo Sereno 58, 83

Griberman, Viktorija 1

Hafidi, Yousra 246, 267
Heisel, Maritta 108
Herczeg, Zoltán 286

Kahloul, Laid 246, 267
Kapitsaki, Georgia M. 135
Khalgui, Mohamed 246, 267
Kiss, Ákos 286
Kouzapas, Dimitrios 135

Lamo, Yngve 227
Lóki, Gábor 286
Lourenço, Pedro 58

Maag, Stephane 341
Maciel, Daniel 39
Marin, Iuliana 378
Molnar, Arthur-Jozsef 163, 378
Motogna, Simona 163

Nazaruka, Erika 1, 22
Neamţu, Alexandra 163
Nóbrega, Rui 83
Nyameino, Job N. 227

Ormsby, Matthew 364
Osis, Jānis 1

Paiva, Ana C. R. 39
Philippou, Anna 135
Pulvermueller, Elke 319

Rabbi, Fazle 227
Ramdani, Mohamed 246, 267
Restivo, André 58

Sachdev, Siddharth 303
Speck, Andreas 319
Spichkova, Maria 303

van Zyl, Johan 303
Vanezi, Evangelia 135

Were, Martin C. 227
Wirtz, Roman 108

Zaremba, Łukasz 204
Ziegenhagen, Dennis 319

	Preface
	Organization
	Contents
	Using Stanford CoreNLP Capabilities for Semantic Information Extraction from Textual Descriptions
	Abstract
	1 Introduction
	2 Core Elements of the Topological Functioning Model
	2.1 TFM Functional Characteristics
	2.2 Natural Language Processing in the IDM Toolset

	3 Processing Stanford CoreNLP Outcomes for Semantic Information Extraction
	3.1 Task of Semantic Information Extraction
	3.2 Guidelines for Processing Outcomes
	3.3 Examples and Discussion
	3.4 Parsing Issues

	4 Related Work
	5 Conclusions
	References

	An Overview of Ways of Discovering Cause-Effect Relations in Text by Using Natural Language Processing
	Abstract
	1 Introduction
	2 Cause-Effect Relations in the TFM in Brief
	3 Discovering Cause-Effect Relations in Text
	3.1 Natural Language Constructs for Expressing Cause-Effect Relations
	3.2 Models and Patterns for Identification of Cause-Effect Relations
	3.3 Automated Acquisition of Cause-Effect Relations
	3.4 Pros and Cons

	4 Implicit and Explicit Cause-Effect Relation in Structured Descriptions for TFM Construction
	4.1 Use Case Scenarios
	4.2 User Stories
	4.3 Benefits and Weaknesses

	5 Conclusions
	References

	From Requirements to Automated Acceptance Tests with the RSL Language
	1 Introduction
	2 RSL Language
	2.1 Requirements Specification
	2.2 Tests Specification

	3 Robot Framework
	4 Proposed Approach
	4.1 Specify Requirements
	4.2 Specify Test Cases
	4.3 Refine Test Cases
	4.4 Generate Test Scripts
	4.5 Map GUI Elements to Keywords
	4.6 Execute Tests

	5 Illustrative Example
	6 Related Work
	7 Conclusion
	References

	Experimenting with Liveness in Cloud Infrastructure Management
	1 Introduction
	2 Background and Related Work
	2.1 Software Visualization
	2.2 Model-Driven Engineering
	2.3 Live Programming
	2.4 Cloud Management

	3 CloudCity: The Approach
	3.1 Overview
	3.2 Architecture
	3.3 Proof-of-Concept

	4 CloudCity: The Live Environment
	4.1 Resource Mapping
	4.2 Layout
	4.3 Updates and Interactions

	5 Experiments and Results
	5.1 Sanity Checks
	5.2 Controlled Experiment

	6 Final Remarks
	References

	Live Software Development Environment Using Virtual Reality: A Prototype and Experiment
	1 Introduction
	2 Literature Review
	2.1 Live Programming
	2.2 Software Visualization
	2.3 Static and Dynamic Analysis
	2.4 Virtual Reality

	3 Live Software Development Environment
	3.1 General Approaches to Analyze Source Code
	3.2 Structural Analysis
	3.3 Runtime Analysis
	3.4 Communication
	3.5 Visualization Engine

	4 User Study Design
	4.1 Guidelines
	4.2 Experimental Design
	4.3 Tasks
	4.4 Data Sources

	5 Results
	5.1 Subject Characterization
	5.2 Experience with the Oculus Rift
	5.3 Task 1 (T1)
	5.4 Task 2 (T2)
	5.5 Task 3 (T3)
	5.6 Virtual Environment Participant Assessment
	5.7 System Usability Scale
	5.8 Challenges

	6 Conclusions
	References

	Model-Based Risk Analysis and Evaluation Using CORAS and CVSS
	1 Introduction
	2 CORAS and Incident Description
	2.1 CORAS
	2.2 Security Incident Description

	3 Metamodel
	3.1 CVSS Datatypes
	3.2 CORAS Diagrams
	3.3 CORAS Threat Diagram
	3.4 CORAS Risk Diagram
	3.5 Graphical Editor

	4 Risk Analysis and Evaluation Method
	4.1 Required Input
	4.2 Step 1: Likelihood Estimation
	4.3 Step 2: Stakeholder Identification and Asset Values
	4.4 Step 3: Security Requirements Definition
	4.5 Step 4: Severity Calculation
	4.6 Step 5: Risk Matrix Definition
	4.7 Step 6: Risk Evaluation
	4.8 Step 7: Risk Prioritization

	5 Case Study
	5.1 Scenario and Input
	5.2 Step 1: Likelihood Estimation
	5.3 Step 2: Stakeholder Identification and Asset Values
	5.4 Step 3: Security Requirements Definition
	5.5 Step 4: Severity Calculation
	5.6 Step 5: Risk Matrix Definition
	5.7 Step 6: Risk Evaluation
	5.8 Step 7: Risk Prioritization

	6 Discussion
	6.1 Usability
	6.2 Scalability
	6.3 Precision

	7 Related Work
	8 Conclusion and Outlook
	References

	Towards GDPR Compliant Software Design: A Formal Framework for Analyzing System Models
	1 Introduction
	2 Related Work
	2.1 The General Data Protection Regulation
	2.2 Software Design and Modelling and the GDPR
	2.3 GDPR Software Compliance and Formal Methods

	3 The Calculus
	3.1 Syntax
	3.2 Semantics

	4 Privacy Policy Language
	5 Typing Policy Compliance
	5.1 Type System
	5.2 Soundness and Safety

	6 Case Study: An Electricity IoT Service
	7 Conclusions and Future Work
	7.1 Potential Applications
	7.2 Future Work

	References

	Evaluation of Software Product Quality Metrics
	1 Introduction
	2 Software Metrics
	3 State of the Art
	3.1 Metrics
	3.2 Refactoring
	3.3 Software Quality Models

	4 Evaluation
	4.1 Target Applications
	4.2 Quantitative Statistics
	4.3 Metric Dependencies
	4.4 The Confounding Effect of Class Size
	4.5 Longitudinal Evaluation
	4.6 Threats to Validity

	5 Conclusions and Future Work
	References

	Model-Driven Development Applied to Mobile Health and Clinical Scores
	1 Introduction
	2 Background
	2.1 Clinical Scores
	2.2 Model-Driven Development

	3 Clinical Scores in mHealth
	4 Proposed Approach
	4.1 The DSML4ClinicalScores Design
	4.2 The Deklaer Language
	4.3 M2T Transformation from DSML4ClinicalScores to Deklaer

	5 Evaluation
	5.1 The DSML4ClinicalScores Validation
	5.2 Case Study – CURB-65 Score
	5.3 Discussion

	6 Conclusion and Future Work
	References

	Model-Driven Software Development Combined with Semantic Mutation of UML State Machines
	Abstract
	1 Introduction
	2 Process Fundamentals
	2.1 Mutation Testing
	2.2 Model to Code Transformation
	2.3 MSDS Process Combined with Mutation Testing
	2.4 Basic Definitions

	3 Related Work
	3.1 Behavioral State Machines
	3.2 Transformation of UML State Machines
	3.3 Mutation Testing for Programs and Models

	4 Mutation Operators
	4.1 Origin of Semantic Mutation Operators
	4.2 Semantic Mutation Operators of State Machine Behavior
	4.3 Operators for Semantic Consequence-Oriented Mutation

	5 Architectural Support for Semantic Mutation
	5.1 General Refactored Architecture
	5.2 Container-Based Specification of Mutant Semantics
	5.3 Implementation of State Machine Concepts
	5.4 Realization of the Combined Process

	6 Case Study Evaluation
	7 Conclusion
	Appendix
	References

	Model-Driven Automatic Question Generation for a Gamified Clinical Guideline Training System
	1 Introduction
	2 Method
	2.1 Diagram Predicate Framework (DPF)
	2.2 Model Driven Engineering
	2.3 Training Modules
	2.4 Formative Evaluation

	3 Results
	3.1 System Architecture
	3.2 Prototype
	3.3 Formative Evaluation Results

	4 Discussion
	5 Related Work
	6 Conclusion
	References

	New Method to Reduce Verification Time of Reconfigurable Real-Time Systems Using R-TNCESs Formalism
	1 Introduction
	2 Reconfigurable Timed Net Condition/Event Systems (R-TNCESs)
	2.1 Syntax
	2.2 Semantics

	3 Verification of Time Constraints in Reconfigurable Systems Using TAG
	3.1 Formalization: TAG
	3.2 TAG Generation from a Graph (Contribution)
	3.3 The Improved Graph-Generation Method iGG (Contribution)
	3.4 iGGgeneralized: iGG for R-TNCESs (Contribution)
	3.5 Automatic Tool for R-TNCESs: SESA

	4 Experimentation
	4.1 Running Example: Benchmark Production System
	4.2 Concept of Redundancies
	4.3 Evaluation

	5 Conclusion
	References

	On Improving R-TNCES Rebuilding for Reconfigurable Real-Time Systems
	1 Introduction
	2 Preliminaries
	2.1 Reconfigurable Time Net Event Condition Systems
	2.2 Timed Automata
	2.3 Temporal Logic
	2.4 Computation Tree Logic Update Method
	2.5 Benchmark Production System: FESTO MPS

	3 Rebuilding Operation for Reconfigurable Models
	3.1 Formalization
	3.2 TNCESs Rebuilding
	3.3 Generalization of TNCES Rebuilding
	3.4 R-TNCES Rebuilding

	4 Experimental Study
	4.1 Case Study
	4.2 Discussion

	5 Conclusion
	References

	Towards the Efficient Use of Dynamic Call Graph Generators of Node.js Applications
	1 Introduction
	2 Call Graph Generator Tools
	2.1 Nodeprof.js Framework
	2.2 Nodejs-cg – A Modified Node.js

	3 SunSpider Call Graphs
	3.1 Node Identification
	3.2 Comparison of Found Nodes and Edges
	3.3 JavaScript Built-ins
	3.4 Module Initialization
	3.5 Module Loading

	4 Call Graphs of Real-World Programs
	4.1 Comparison of Nodes
	4.2 Comparison of Edges
	4.3 Performance Overhead

	5 Related Work
	6 Summary
	References

	Comparison of Computer Vision Approaches in Application to the Electricity and Gas Meter Reading
	1 Introduction
	2 Case Study: AWS and Google Solutions
	2.1 Data Sets
	2.2 Discussion of the Comparison Results

	3 Case Study: Tesseract OCR and Azure's Computer Vision
	4 Proposed System
	5 Related Work
	6 Conclusions
	References

	Expanding Tracing Capabilities Using Dynamic Tracing Data
	1 Introduction
	2 Related Work
	2.1 Traceability
	2.2 Developer-Tool Interaction

	3 Approach
	3.1 Scope and Background
	3.2 Research Methodology

	4 Example Scenario
	4.1 Description
	4.2 Implementation

	5 Conclusion
	References

	Automated Software Measurement Strategies Elaboration Using Unsupervised Learning Data Analysis
	1 Introduction
	2 Related Works
	3 Software Measurement Basics
	3.1 Definitions
	3.2 Software Measurement Standard

	4 Automated Software Measurement Analysis and Suggestion
	4.1 Manual Analysis Model
	4.2 The Analysis
	4.3 The Suggestion

	5 The Knowledge Basis
	5.1 Analysis Model
	5.2 Training File

	6 Automated Initialization Phase
	6.1 Unsupervised Machine Learning
	6.2 Clustering Algorithms
	6.3 X-MEANS Algorithm
	6.4 Hybrid Analysis Model Generation Algorithm

	7 Experiments
	7.1 Automated Analysis Model Generation
	7.2 Suggestion Results
	7.3 Industrial Integration

	8 Conclusion and Perspective
	References

	Agile Scaled Steps of Doneness: A Standardized Procedure to Conceptualizing and Completing User Stories Across Scrum Teams and Industries
	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Scaling Agile
	1.4 Problem Statement

	2 Experimental Approach and Computational Details
	2.1 Experimental Approach
	2.2 Prior Execution of User Stories
	2.3 Introduction of Ormsby and Busby-Earle’s [11] Procedure
	2.4 Scaled Steps of Doneness Procedure

	3 Analysis of Adjustments
	4 Conclusion
	5 Future Work
	References

	Indoor Localization Techniques Within a Home Monitoring Platform
	1 Introduction
	2 Related Work
	3 Platform Overview
	3.1 Wireless Network of Luminaires
	3.2 Software Server Components

	4 Indoor Localization Techniques
	4.1 Direct Trilateration
	4.2 Kalman Filter
	4.3 Look-Back-k Heuristic
	4.4 Hybrid Technique
	4.5 Neural Network Based Technique

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Results
	5.3 Comparison with Related Work

	6 Conclusion
	References

	Author Index

