
My Gadget Just Cares for Me - How
NINA Can Prove Security Against

Combined Attacks

Siemen Dhooghe(B) and Svetla Nikova(B)

imec-COSIC, KU Leuven, Leuven, Belgium
{siemen.dhooghe,svetla.nikova}@esat.kuleuven.be

Abstract. Differential Power Analysis and Differential Fault Analysis
threaten the security of even the most trustworthy cryptographic primi-
tives. It is important we protect their implementation such that no sensi-
tive information is leaked using side channels and it withstands injected
faults or combined physical attacks.

In this work, we propose security notions tailored against advanced
physical attacks consisting of both faults and probes on circuit wires. We
then transform the security notions to composable security notions. The
motivation for this research includes the ease of verification time; the
creation of secure components; and the isolation of primitives in larger
protocols such as modes of operations. We dub our notion NINA, which
forms the link between the established Non-Interference (NI) property
and our composable active security property, Non-Accumulation (NA).

To illustrate the NINA property, we use it to prove the security of
two multiplication gadgets: an error checking duplication gadget and an
error correcting duplication gadget. The NINA proofs for error detect-
ing gadgets capture the effect of Statistical Ineffective Fault Analysis
(SIFA), an attack vector which threatens most current masked imple-
mentations. Additionally, we study error correcting techniques. We show
that error correcting gadgets can attain the Independent NINA property.
A stronger property which captures a clear separation between the effect
of faults and probes. Thus, we show that clever error correcting gadgets
improve on error detecting ones by achieving significant higher levels of
combined security along with guaranteed output delivery.

Keywords: Combined security · DFA · DPA · Masking · SIFA

1 Introduction

Differential Fault Analysis (DFA), proposed by Biham and Shamir in 1997 [8], is
an attack on a physical device which effectively reveals the secret key of a cipher
using well-placed faults in the encryption procedure. Differential Power Analy-
sis (DPA) is an attack which uses a cryptographic device’s power consumption
to launch a divide-and-conquer attack on the private key as first described by

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 35–55, 2020.
https://doi.org/10.1007/978-3-030-40186-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_3

36 S. Dhooghe and S. Nikova

Kocher et al. in 1999 [26]. To facilitate key-extraction, several physical attacks
can be used against the implementation, we differentiate passive, active, and
combined attacks. Passive attacks observe the behaviour of a device during its
process, such as observing the process time or the device’s power consumption.
Active attacks tamper with the device’s functioning, such as inducing computa-
tional errors by fault injections. Using passive and/or active attacks for either
enhanced tampering or observation of the device’s reaction to tampering are
called combined attacks.

In order to defend against physical attacks without using expensive custom
hardware such as shields and detectors it is the algorithm that needs to coun-
teract passive, active, and combined attacks by securing it in a formal security
model. Passive adversary models and their corresponding security notions have
improved significantly over the last fifteen years, largely due to the introduction
of the probing adversary by Ishai et al. [25]. This adversary is capable of reading
the exact values on a number of circuit wires. The minimal number of wires the
adversary observes to learn a sensitive variable is defined as the order of probing
security. Duc et al. showed that the noisy leakage model [10,30] reduces to the
probing model assuming the presence of sufficient noise and independent wire
leakage, and more specifically that an implementation’s signal to noise ratio is
exponentially related to its probing security order [18]. While the probing model
helps to verify implementations, the time complexity is exponential in the secu-
rity order which is therefore not cost effective for larger implementations such as
symmetric ciphers. To streamline this verification procedure, Barthe et al. pro-
posed a composable security definition called Strong Non-Interference (SNI) [3].
This approach views circuits as the composition of several components and forms
a sufficient security condition, such that when multiple components are linked
together the total circuit is probing secure. Composable security definitions
allow designers to verify and optimise separate circuit components which are
small enough for a brute force verification technique. This technique has been
adopted in several tools to quickly verify implementations based on modular
designs [4,7,13]. The importance of a formal security notion, such as the probing
model, includes the need of assurance in high-end secure devices. To guarantee
such assurance, the Common Criteria was proposed as an international stan-
dard. These criteria specify the security and assurance users can have in their
sensitive devices where the strongest criterion requires a target of evaluation to
have a verified design which is only possible with formal security notions [20].

Apart from security models, the current literature provides countermeasures
against passive attacks. One example is the methodology of Ishai, Sahai and
Wagner (ISW) which guarantees protection of arbitrary circuits against passive
attacks using the previous discussed probing model [25]. This countermeasure
led to further study to increase its security and efficiency [5–7,9,12,19,22,34].
Another methodology to secure implementations is described in Threshold
Implementations by Nikova et al. [28]. By extensively using the masking scheme’s
and the cipher’s properties, they minimise the countermeasure’s latency and

My Gadget Just Cares for Me - How NINA Can Prove Security 37

randomness costs and, as a result, the method has been used to defend various
symmetric primitives [2,15,23,27,29].

Despite having formal security notions and countermeasures against passive
attacks, there are only few works which consider active and combined attacks.
The first is Private Circuits II [24] which provides a countermeasure where the
active adversary is modelled as one who faults a bounded number of wires per
clock cycle. By viewing faults as probes, the work naturally offers protection
against a combined adversary. However, the implementation of the countermea-
sure and its efficiency is currently still a challenge [14]. Later on, the work of
ParTI [33] proposes to encode intermediate variables with error correcting codes
to detect errors. To protect against passive attacks, they apply threshold imple-
mentations on top of the encoding. The results are promising as they succeed in
protecting the LED cipher on FPGA. However, they only provide argumentation
for active security leaving out combined security and a formal adversary model.
As efficiency is a major concern for practical applications, the work of Impeccable
Circuits [1] only focuses on active attacks to find very efficient countermeasures.
They consider an adversary who faults up to a given number of gates and con-
sider compositional security, i.e., they look at the propagation of faults in their
components. Previous works looked at adversaries faulting and reading separate
wires, the work of CAPA [31] considers stronger adversaries. They use multiparty
computation to provide provable security against combined attacks by proposing
a new adversary model, the tile probe-and-fault model. This model considers an
adversary who is capable of reading and faulting whole areas in the implementa-
tion thus ensuring hardware protection against combined attacks. However, due
to their security model the countermeasures are heavy.

The adversaries considered in Private Circuits II and Impeccable Circuits
are a good start towards formalising active and combined security but they do
not yet allow for composable combined security definitions which are needed
by designers. In this work, we combine the wire faulting adversary with the
usual probing adversary to consider an attacker who can read and fault a given
number of wires in a circuit. Similar to the proposition of Non-Interference by
Barthe et al. [3], we build further on our adversary model by considering a
modularised circuit and proposing sufficient security conditions (Strong Non-
Accumulation and Strong NINA) such that modular compositions remain secure.

1.1 Contributions

The focus of our work is to propose compositional security notions which capture
active and combined attacks. We propose the following three security models
which provide either composable active or combined security.

– Non-Accumulation. With the Non-Accumulation (NA) model, we require
that an injected fault only affects one output share of the gadget. Thus, an
injected fault does not spread (accumulate) to more shares allowing the use
of error detection mechanisms to identify whether faults have occurred in the
design. As a result, the NA model effectively moves the verification process
from large circuits to smaller subcomponents.

38 S. Dhooghe and S. Nikova

– NINA. The models of Non-Interference (NI) and Non-Accumulation (NA)
are combined to form the NINA model capturing combined security. The
model requires that a probed and faulted gadget returns an output where
only a few output shares are faulted and where the adversary learns only a
subset of the input shares. Due to NINA simulating the correctness of the
unmasked output, it captures attackers using ineffective faults [11].

– Independent NINA. As the NINA notion requires the provision of shares
to the simulator for every fault or probe injected in the gadget, its provided
combined security is limited. We propose a stronger notion, dubbed Inde-
pendent NINA, which separates the effect of faults and probes, and relaxes
the requirement of giving shares to the simulator for each injected fault. The
ININA notion can be attained by a gadget using error correction techniques
and clever use of injected randomness.

To show our security notions in action, we propose two Strong NINA
(SNINA) secure multiplication gadgets.

– Error Detection: We propose a multiplication gadget using duplicated
Boolean shares with an error detecting mechanism. We show that the gadget
is vulnerable to a Statistical Ineffective Fault Attack (see [17]) but the prob-
ability for the attack to succeed can be made arbitrarily small by increasing
the number of shares. Thus, we prove that the gadget still attains SNINA
security. Last, we provide an abort mechanism to show the gadget does not
rely on an ideal abort command.

– Error Correction: For the second construction, we adapt the error detect-
ing gadget and add error correction methods. The result is a gadget which is
impervious to ineffective faults and, moreover, we show the gadget achieves
the stronger notion of Strong ININA. This notion proves that the level of
combined security is higher than the error detection variant, i.e., the adver-
sary does not gain any advantage by using faults in addition to probes. This
shows that, although error correction techniques are more expensive, they
give a significant increase in protection against combined attacks as well as
guaranteed output delivery.

For the proofs of the composability of the NINA notion and the security of
our proposed gadgets, we refer to the full version of the work [16].

2 The Circuit Model and Secret Sharing

We introduce gadgets, private circuits, and the notion of simulatability. Similar
to [25], we represent computations in arithmetic circuit form, a directed acyclic
graph whose nodes are operations over a finite field F and whose edges are wires.
Additionally, we consider probabilistic arithmetic circuits, meaning circuits with
nodes having no input and uniform random elements over F as output; this
randomness is independent and identically distributed, and the correctness of
the circuit is not dependent on it. In order to resist fault attacks, we consider

My Gadget Just Cares for Me - How NINA Can Prove Security 39

nodes with no output and which can abort the computation. This abort signal
works as a broadcast making all wires in the circuit read ⊥ when the signal is
sent out.1 The adversary also receives this abort signal as it can view from the
state of the output whether the circuit aborted or not.

In order to defend algorithms against side-channel attacks a sound and widely
deployed approach is the masking countermeasure which was introduced at the
same time by Chari et al. [10] and by Goubin and Patarin [21]. The technique
splits each key-dependent variable x in the algorithm into shares xi such that
x =

∑
i xi over a finite field F. In case this field is binary, this masking method

is referred to as Boolean masking. If no d shares give information on the secret
we say that the masking scheme has a passive threshold d. We also work with
independent share vectors x and y as those where the shares of x are independent
from the shares of y.

To defend an algorithm against fault attacks the core idea is to utilise redun-
dancy to enable detection of the injected faults. This redundancy is found in
encoding intermediate variables using error detecting codes. A popular encoding
method is to duplicate intermediate variables, such that, by checking whether
all duplicates are equal, an algorithm can detect injected faults. If all sets of k
faulty shares in a share vector are detectable, we say that the encoding scheme
has an active threshold k.

Using masking and encoding of variables as the core idea to protect secrets
against passive and active attacks, we introduce terminology to protect algo-
rithms. A probabilistic circuit with shared inputs/outputs and, if needed, the
capability to abort the computation is dubbed a gadget.

Definition 1 (Gadget). A gadget G is a probabilistic circuit with input in
F

nm (m inputs where each input is divided into n shares), uniform randomness
r ∈ F

α, and a shared output in F
nm′

or abort ⊥.

Concerning symmetric primitives, the secrets are each potential intermediate
variable of the primitive. In other words, to protect the primitive against passive
or active attacks, it works solely over shared variables.

Additionally, we define private circuits as probabilistic circuits consisting of
a gadget, where its inputs are first shared and the shared outputs are recon-
structed.

Definition 2 (Private Circuit [25]). A private circuit implementing the func-
tion f : Fm → F

m′
is defined by a triple (I, C,O), where

– I : Fm → F
nm is a probabilistic circuit with uniform randomness, called input

encoder;
– C : Fnm → F

nm′
is a gadget with uniform randomness and the ability to abort;

– O : Fnm′ → F
m′

is a circuit with the ability to abort, called output decoder.

Since we will be working with composable security definitions, we typically
consider that private circuits are composed of several gadgets, i.e., the output
of one gadget forms the input of another.
1 On hardware this functionality is replaced a specialised mechanism such as a cas-

cading gadget from [24].

40 S. Dhooghe and S. Nikova

AC

Input, Probes, Faults

Output, Probed Values, ⊥

Fig. 1. Interaction between a circuit C and an adversary A.

We aim to protect against passive, active or combined adversaries as those
who interact with a circuit by placing probes, faults, or both respectively. As
shown in Fig. 1, the circuit responds to this adversary by setting or toggling the
values on the faulted wires and returning the values on the probed wires. The
state of the abort signal (true or false) is returned as well.

In order to make simulation based proofs for the secrecy of shared variables
in gadgets, we define simulatability similar to the definitions proposed in [5,9].
However, we additionally consider that up to k wires in that gadget have been
faulted and that the gadget can abort. Here the adversary (distinguisher) is
either interacting with the actual gadget or with a simulator. This simulator is
given only a part of the input and does not know the secrets of the gadget. The
distinguisher’s goal is to determine whether it is interacting with the simulator
or with the actual gadget. A failure to do so implies that the adversary can know
at most the shares given to the simulator and as a result only some inputs of
the gadget.

Definition 3 (Simulatability). Let P = {p1, ..., pd} be a set of d probes of a
gadget C with m inputs where each input is divided into n shares. Let the set of q
shares of each input given to the simulator be denoted by I = {(i1, j1), ..., (im, jq)}
⊂ {1, ...,m}×{1, ..., n}. Let F = {(f1, e1), ..., (fk, ek)} be a set of k injected faults
ei (either set or add) on the wire fi in C. Denote CP,F as the circuit C with
probed wires as per P and injected faults as per F . Finally, let ⊥ ∈ {0, 1} denote
the state of the abort signal in the circuit.

We define the simulator S and distinguisher D as the following probabilistic
functions.

S : Fq × F
m × F

k → F
d × {0, 1}

D : Fd × {0, 1} × F
k × F

nm → {0, 1}
We say that the set of probes P and the state of the abort signal ⊥ of the

faulted circuit CF can be simulated with the set of values on the input wires I
if there exists a simulator S, such that for any distinguisher D and any inputs
a∗,∗, we have that

∣
∣ Pr[D(CP,F (a∗,∗), F, a∗,∗) = 1] − Pr[D(S(I, F), F, a∗,∗) = 1]

∣
∣

is negligible in the passive threshold of the sharing scheme, where the probability
is taken over the random coins in C,S and D.

We note that for composable security, as we will see later on, we require that
the probability for the distinguisher to view the difference between the circuit

My Gadget Just Cares for Me - How NINA Can Prove Security 41

and the simulator is negligible and we should take care composing gadgets when
it is not.

3 Security Definitions

In this section we specify orders of passive, active, and combined security and
expand them to composable security notions which is the focus of our work.

3.1 Orders of Security

Passive Security. To model passive security we consider the known probing
adversary who can read the exact values of up to a threshold number of wires
in a gadget. The order of passive security is the well-known order of probing
security.

Definition 4 (Order of passive security [25,32]). A private circuit is dth-
order passive secure (dth-order probing secure) if every d-tuple of the gadget’s
intermediate variables is independent of any sensitive variable.

Active Security. We ensure protection against an adversary who is capable of
faulting a given number of wires in the circuit. We note that similar adversaries
have been proposed in Private Circuits II [24] and Impeccable Circuits [1]. The
order of active security is determined by the number of wires in the circuit the
adversary needs to fault in order to create an incorrect output. Such incorrect
outputs are important as they can activate DFA attacks, thus to secure imple-
mentations we require that the private circuit either gives back a correct output
or the process is aborted.

Definition 5 (Order of active security). A private circuit is kth-order active
secure if any set of k faults on the gadget’s intermediate variables results in either
abort ⊥ or a correct output (reconstructed output of the unfaulted circuit).

Note that active security guarantees output correctness and does not consider
fault attacks which target the privacy of a scheme such as ineffective faults.

Combined Security. We protect against a combined adversary who both faults
and probes wires and consider a private circuit secure if it retains both its privacy
and correctness against the combined adversary. This gives us the following
combined security definition.

Definition 6 (Order of combined security). A private circuit is (d, k)-order
combined secure if for any set of k faults and d probes on the gadget’s interme-
diate variables, the following holds.

(a) Privacy: The probed d-tuple with the state of the abort signal is independent
of any sensitive variable.

(b) Correctness: The circuit either aborts ⊥ or gives a correct output.

42 S. Dhooghe and S. Nikova

The combined security model with d = 0 still differs from the active security
model as the combined security model considers that an adversary can use the
knowledge on the state of the abort signal to derive the private circuit’s internal
variables. The difference between the two models thus lies in the combined secu-
rity model looking at both the privacy and correctness of a circuit while active
security only considers its correctness.

3.2 Composable Notions of Security

We note that the previously discussed security conditions are not composable,
i.e., the composition of multiple secure gadgets can be insecure. Thus, the previ-
ous security conditions should be applied to the entire implementation, instead
we look at composable security notions.

Passive Security. The security notion for composable passive security has been
studied by Barthe et al. [3] who defined the notion of Non-Interference (NI) using
simulation based security (see Definition 3).

Definition 7 (d Non-Interferent (d-NI) [3]). A gadget G is d-NI if any set
of at most d′ ≤ d probes can be simulated with at most d′ shares of each input.

Intuitively, the above model grants composable security since a probed value
in a gadget can be simulated with an input share, which on its turn is the output
share of a previous gadget. In case the latter gadget is also non-interferent, this
output value can again be simulated with an input share. This chains until we
reach the encoding function in a private circuit (Definition 2). Since the adversary
can only probe d values we only need to use a secret sharing scheme of passive
threshold at least d to protect against our probing adversary. While the notion
of non-interference is a good start and captures a composable security notion
over the serial composition of gadgets, the notion is not sufficient to provide
protection when gadgets are composed in parallel (e.g., when two gadgets share
the same input). To this end Barthe et al. introduced the notion of Strong Non-
Interference (SNI).

Definition 8 (d-Strong Non-Interferent (d-SNI) [3]). A gadget G is d-SNI
if any set of d1 probes on its intermediate variables and every set of d2 probes on
its output shares such that d1+d2 ≤ d, the totality of the probes can be simulated
by only d1 shares of each input.

We note that intermediate variables can also be the input or output variables
of the gadget.

When the above notion of non-interference is combined with a sharing scheme
with a high enough passive threshold, the composable notion provides for probing
security.

My Gadget Just Cares for Me - How NINA Can Prove Security 43

Active Security. Recall that we defined the order of active security as the
maximal number of faulty wires such that the circuit still returns a correct
output. We now make this into a composable notion, thus we look at the effect
of a fault in a gadget which is part of a larger whole. Ideally an injected fault
in the gadget is not propagated, i.e., the fault does not affect the output of that
gadget. However, the adversary can always fault its output directly, meaning that
we can never guarantee that all outputs of a faulted gadget are correct. Instead,
we are interested in gadgets which do not accumulate faults. In other words,
we need a fault on a single input or intermediate wire to affect only a single
output of the gadget. We relax this requirement by allowing countermeasures to
abort the computation (e.g., by using error detecting methods). We thus find
composable active security notions which are similar in nature to the definitions
of NI and SNI discussed earlier. Our first notion is Non-Accumulation (NA).

Definition 9 (k-Non-Accumulative (k-NA)). A gadget G is k-NA if for
any set of k′ ≤ k errors, the gadget either aborts or gives an output with at most
k′ errors.

G1 G4

G2

G3

k Faults 2k Faults

k Faults

k Faults

k Faults

k Faults

Fig. 2. An example of the propagation of faults over several k-NA gadgets for which a
stronger composability notion is needed.

For a gadget which is k-NA, k faults on its intermediate variables result in
the gadget giving an output with at most k faults. When composing gadgets, a
stronger notion of non-accumulation is needed to guarantee the security of the
composition. For example, consider the case given in Fig. 2 where each gadget Gi

is k-NA. If an adversary injects k faults in the input of G1, the gadget will give an
output with at most k faulty shares. These faults propagate to the inputs of G2

and G3 which, because both gadgets are k-NA, results in a worst case scenario
where G4 gets an input with a total of 2k faulty shares. The end result is a
sharing with 2k faulty shares even though only k faults were injected. To avoid
such an accumulation of faults, one needs gadgets which are capable of erasing
the errors from their input. The following definition of Strong Non-Accumulation
(SNA) is sufficient to arbitrarily compose gadgets and be assured of their active
security.

Definition 10 (k-Strong Non-Accumulative (k-SNA)). A gadget G is
k-SNA if for any set of k1 errors on each input and every set of k2 errors on
the intermediate variables, with k1 + k2 ≤ k, the gadget either aborts or gives an
output with at most k2 errors.

44 S. Dhooghe and S. Nikova

When the non-accumulation notions are combined with a sharing scheme
with a high enough active threshold, the composable notions provide active
security.

Combined Security. We now look at composable security notions consider-
ing circuits which are both probed and faulted. First, we need to guarantee the
correctness of the output of each gadget. To capture the effect of faults in com-
positions of gadgets, we use an argument similar to the one on active security.
Thus, we need that an injected fault in a gadget propagates to at most one
output share. However, the adversary can now place probes and thus learn part
of the computation made in the gadgets. As a result, the combined security
notion needs to capture the probability of an adversary breaking the correct-
ness of a gadget given several faults and probes. In this work we only propose
countermeasures where the correctness can not be broken, to give an example
of a countermeasure for which this probability is non-trivial we refer the reader
to the CAPA countermeasure [31]. Apart from guaranteeing the correctness of
a gadget, we also guarantee its sensitive variable privacy for which we use sim-
ulation based arguments similar to non-interference. As mentioned by Clavier
et al. [11], fault injections can act as a probing tool (think of an adversary fault-
ing away the randomness in a gadget). Thus, we treat faults as probes giving
extra shares to the simulator per injected fault (though we see later on that this
is not always needed). Additionally, to give the designer the freedom to make
countermeasures more efficient we consider security with abort. To capture the
effect of the abort signal potentially revealing secrets in the gadget, we require
the simulator to reproduce this signal given the injected errors and some input
shares. As a result, we design a composable security notion of order (d, k) such
that the gadget is (d′, k′)-order combined security for all sets of d′+k′ ≤ d probes
and k′ ≤ k faults. We dub our notion NINA derived from the concatenation of
the names Non-Interference (NI) and Non-Accumulation (NA).

Definition 11 ((d, k)-NINA). A gadget G is (d, k)-NINA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′ + k′ ≤ d, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d′ +k′ shares
of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k′

errors.

The NINA notion, combined with a sharing scheme having a sufficient passive
and active threshold, implies the notion of combined security (see Definition 6).
This follows from the simulation based security stating that the adversary can
learn up to a threshold number of the gadget’s inputs which, if lower than the
passive threshold of the sharing scheme, gives no information on the gadget’s
secrets. Similarly, since the adversary can only fault up to a threshold number
of outputs, a decoding gadget can detect or correct those errors given that the
sharing scheme has enough redundancy in it. A formal proof of this implication
is found in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 45

Theorem 1 A (d, k)-NINA gadget G with input encoding I and output decoding
O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d′, k′)-order combined secure for any d′ + k′ ≤ d and
k′ ≤ k.

As a result, if we prove a gadget is NINA, we know it is combined secure.
However, just as with non-interference, the NINA notion is not sufficient for
composability. To this end we introduce “Strong NINA” (SNINA).

Definition 12 ((d, k)-SNINA). A gadget G is (d, k)-SNINA if for any set of
k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1 + d2 + k1 + k2 ≤ d and
k1 + k2 ≤ k, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d1 + k1 + k2
shares of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k2
errors.

The notion of SNINA is sufficient for composability. In other words the com-
position of two SNINA gadgets is again SNINA (a proof is given in the full
version).

Theorem 2. The composition of two (d, k)-SNINA gadgets is (d, k)-SNINA.

The above theorem together with Theorem 1 implies that the notion of
SNINA is a sufficient condition to achieve composable combined security. The
relations between the SNINA notion and other security models is shown in Fig. 3.

(d, k)-
SNINA

(d, k)-NINA (d′, k′)
Comb. Sec.

k-SNA

d-SNI

k-NA

d-NI

k Act. Sec.

d Pas. Sec.

Fig. 3. A short overview of security models and relations between them.

Nevertheless, we find that there is a stronger property than NINA which
gives improved protection. In case we use error correcting techniques instead of
error detecting ones, specialised gadgets can attain a stronger security condition
where faults are no longer modelled as probes. Thus, we propose a security notion
where we claim an adversary can not learn anything by faulting a gadget which
manifests itself in the security definition as the simulator not getting an extra
input share for an injected fault. The result of this change is captured in the
following definition which we dub “Independent NINA” or ININA.

46 S. Dhooghe and S. Nikova

Definition 13 ((d, k)-ININA). A gadget G is (d, k)-ININA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′ ≤ d, the following holds.

(a) Privacy: The probes can be simulated with d′ shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k′ errors.

The above definition can again be made into a property which is sufficient for
arbitrary compositions. This gives us the notion of “Strong Independent NINA”
or SININA for short.

Definition 14 ((d, k)-SININA). A gadget G is (d, k)-SININA if for any set
of k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1+d2 ≤ d and k1+k2 ≤ k,
the following holds.

(a) Privacy: The probes can be simulated with d1 shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k2 errors.

It is evident that the ININA notions are stronger than the NINA notions, thus
the above notions also provide combined security. However, the notion provides
directly (d, k)-combined security instead of (d′, k′)-order combined secure for any
d′ + k′ ≤ d and k′ ≤ k. The proof of the following theorem is given in the full
version of the paper.

Theorem 3. A (d, k)-ININA gadget G with input encoding I and output decod-
ing O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d, k)-order combined secure.

As a result, using the same masking scheme, a SININA secure gadget provides
significant improved combined protection over an SNINA secure gadget.

Similar to SNINA, SININA is sufficient for composability. In other words the
composition of two SININA gadgets is again SININA (a proof is given in the full
version of the paper).

Theorem 4. The composition of two (d, k)-SININA gadgets is (d, k)-SININA.

4 Combined Secure Duplicated Boolean Masking

In this section we introduce a combined secure methodology for an arbitrary
security order. We work over bits F2, share values using Boolean secret shar-
ing and encode using duplication. We first quickly introduce the secret sharing
scheme and then move on to show our methodology. The security of the gadgets
is proven in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 47

4.1 Duplicated Boolean Masking

For the proposed countermeasures, we make use of a duplicated Boolean masking
approach which shares a secret x as a vector

(x1,1, ..., x1,k+1, x2,1, ..., xd+1,k+1) ,

such that
∑d+1

i=1 xi,� = x for all � ∈ [k+1] and xi,1 = ... = xi,k+1 for all i ∈ [d+1].
This method has a passive threshold d meaning that no d shares give information
on the secret x and an active threshold k meaning that any faults on at most k
shares could be detected in the share vector.

4.2 Duplicated Boolean Methodology

We recall that our secret sharing scheme has a passive threshold d, meaning that
an adversary needs to view at least d + 1 shares to recover the secret, and an
active threshold k, thus an adversary needs to inject at least k + 1 errors for the
fault to be undetectable. We note that our methodology is similar to the one
from Private Circuits II [24]. The pseudo-code to secret share a value is given in
Algorithm 1.

Algorithm 1. Duplicated Boolean sharing a secret a

Input: Secret a and uniform random values ri

Output: Duplicated Boolean shares of a

for � ← 1 to k + 1 do
for i ← 1 to d do

ai,� ← ri;
end

ad+1,� ← a +
∑d

i=1 ai,�;

end

The addition between independent shared variables is quite simple and needs
only component-wise addition between the shares. Thus, the addition between
the sharing of a and b, giving a sharing of c = a + b, is made by ci,� = ai,� + bi,�.
To secure operations between shares and constants we ensure that the constant
is not a single point of failure, as such it also needs to be duplicated, namely
each constant is replicated (k + 1) times to form a (k + 1) tuple which is the
encoded value of the constant. The addition of a shared value a with a constant
c is done by adding the duplicated constant to the duplicated first Boolean share
of the variable.

∀� ∈ [k + 1] : a1,� ← a1,� + c�

A multiplication with a constant is done by multiplying the duplicated constant
to each share.

∀i ∈ [d + 1], ∀� ∈ [k + 1] : ai,� ← ai,� · c�

Since the above operations are all local, they are evidently (d, k)-NINA.

48 S. Dhooghe and S. Nikova

While linear operations are easily implemented, the multiplication between
shared and encoded variables is more difficult. We give pseudo-code of our mul-
tiplication gadget in Algorithm 2. The gadget starts by multiplying two inde-
pendent share vectors of a and b to create all cross products of the form aibj .
These cross products are then remasked by adding unique randomness ri,j cre-
ated by an RNG (which is important for the SNI property). Since we add the
same randomness over all duplicated cross products (ui,j,� for � ∈ [k + 1]) all
these cross products should equal each other if no fault was injected. As a result,
we can error check them (which is important for the SNA property).2 To detect
errors in the cross products it is sufficient to compare a share to all its duplicated
versions, in symbols:

∀i, j ∈ [d + 1], ∀� ∈ [k + 1] : ui,j,1 = ui,j,� .

Since we are working over bits, this translates to aborting the computation in
case one of the ui,j,1 +ui,j,� is equal to 1. This abort operation is considered as a
command causing all variables in the implementation to read ⊥ as explained in
Sect. 2 (in Sect. 4.3, we describe a cascading gadget in case an abort operation
is not available). In case no error is detected, the gadget sums up all the cross
products for different indices j and returns a duplicated Boolean sharing of ab.
The proof that this multiplication procedure is SNINA is given in the full version
of the paper. From this proof we see that there is a statistical ineffective fault
attack (see [17]) which breaks the privacy of the algorithm. This attack works as
follows, the adversary adds a non-zero fault to one of the ai,� shares (similarly
bi,� shares). In case the operation does not abort, the adversary learns that all
bi,� = 0 (similarly all ai,� = 0), which means the adversary learns an input secret
and breaks the privacy of the gadget. The probability for this attack to succeed
is equal to 1/|F2|d+1. Due to the attack aborting the computation when it fails,
this attack does not threaten the composability of the gadget.3 To increase the
protection against the ineffective fault, the probability for the attack to succeed
needs to be made sufficiently small which is done by increasing the number of
shares or by increasing the field size |F|. In Sect. 5 we look at an error correcting
variant of the multiplication gadget which is not vulnerable to an ineffective
fault.

In Algorithm 3 we provide a method to refresh the randomness of a shared
variable and check whether there are errors present on its shares. A proof of the
SNINA condition of Algorithm 3 is given in the full version of the work. We
note that this gadget can be used to transform a NINA secure operation into
its SNINA variant by serially composing the NINA gadget with Algorithm 3.

2 Note that if an adversary injects a fault directly in one of the random values ri,j ,
it would not be detected. Nevertheless, the gadget still outputs a valid duplicated
Boolean sharing so it does not affect the correctness of the gadget. This fault should
be carefully investigated for its effects on the gadget’s privacy.

3 To clarify, the passive threshold of the sharing does not need to increase to assure
composability due to the only attack, causing simulator failure, aborting the com-
putation on success.

My Gadget Just Cares for Me - How NINA Can Prove Security 49

Algorithm 2. Multiplying duplicated Boolean shared values
Input: Independent shares of a and b, and uniform random ri,j

Output: Shares of ab or ⊥
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do
ui,i,� ← ai,�bi,�;
for j ← i + 1 to d + 1 do

ui,j,� ← ai,�bj,� + ri,j ;
uj,i,� ← aj,�bi,� + ri,j ;

end

end

end
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
for j ← 1 to d + 1 do

ti,j,� ← ui,j,1 + ui,j,�;
if ti,j,� = 1 then return ⊥;

end

end

end
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do

ci,� ← ∑d+1
j=1 ui,j,�;

end

end

This follows from Theorem 5 which states that the serial composition between a
NINA gadget and an SNINA gadget is again SNINA. The proof of this theorem
is found in the full version of the paper.

Theorem 5. The serial composition of a single input, output (d, k)-NINA gad-
get with a (d, k)-SNINA gadget is again (d, k)-SNINA.

Thus, sometimes one can substitute SNINA gadgets with NINA ones without
sacrificing security. This reduces costs as NINA secure gadgets are generally more
efficient than their SNINA variants.

Together, all gadgets described in this section form a methodology to secure
arbitrary circuits as each algorithm over a finite field can be described in terms
of additions and multiplications.

4.3 A Cascading Gadget

In case an abort mechanism is not available, we provide a circuit which erases
all data when a fault is detected. This method is similar to the cascading gadget
described in [24] and thus we lend its name. We first make variables for the abort

50 S. Dhooghe and S. Nikova

Algorithm 3. Refreshing and checking a duplicated Boolean sharing
Input: Duplicated Boolean shares of a and uniform random values ri,j

Output: Refreshed and checked shares of a or ⊥
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
ti,� ← ai,1 + ai,�;
if ti,� = 1 then return ⊥;

end

end
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do
for j ← i + 1 to d + 1 do

ai,� ← ai,� + ri,j ;
aj,� ← aj,� + ri,j ;

end

end

end

flag, we consider ⊥� for � ∈ [k]. A priori, all ⊥� are equal to zero, however, when a
fault is injected we require that each ⊥� is set to one. In case the abort flag equals
all one, no k − 1 faults can change each ⊥� back to zero. The above described
functionality is implemented by duplicating the error checks in Algorithms 2
and 3. For example, the error checking component (the first lines) of Algorithm 3
would be changed to the following.

for m ← 1 to k do
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
⊥m ← (ai,1 + ai,�) ∨ ⊥m;

end

end

end

From the above algorithm it is clear that in case one of the ai,1 does not
equal ai,�, all ⊥m are set to one and no k − 1 faults can set them all back to
zero.

With the above abort flag as a global variable and its functionality as
described above, we can easily describe a gadget which erases its input in case
a ⊥m is equal to one. We give the pseudo-code of this gadget in Algorithm 4.

In case Algorithm 4 is serially composed with each Algorithm 2 or Algo-
rithm 3, our duplicated Boolean masking methodology is secure against com-
bined attacks without the need of an ideal abort command.

My Gadget Just Cares for Me - How NINA Can Prove Security 51

Algorithm 4. Cascading a duplicated Boolean sharing
Input: Shares of a and the abort state ⊥m for m ∈ [k]
Output: The shares of a or all 0

for � ← 1 to k + 1 do
for i ← 1 to d + 1 do

ai,� ← ai,�

∏k
m=1(1 + ⊥m);

end

end

5 A Correcting Multiplication

In the previous section we gave a combined secure methodology based on detect-
ing errors using duplicated Boolean shares. However, Algorithm 2 is vulnerable
against a statistical ineffective fault. To avoid this vulnerability one can use
an error correction method instead of an error detection one. As there is no
longer an abort signal, a fault does not change the state of the output and as a
result ineffective faults are now actually ineffective. Note that this comes at the
increased cost of using extra shares and operations to enable error correction.

Instead of just replacing the error detection mechanisms with error correction
ones, we go one step further and create an error correcting variant of Algorithm 2
which attains Strong Independent NINA security (Definition 14). Whereas Algo-
rithm 2 was secure against d probes and k faults where the combined number
of probes and faults do not exceed d, our new algorithm does not require this
restriction thus it is secure against up to d probes and k faults at the same time.
In other words, a k-active adversary faulting the new multiplication gadget does
not harm the privacy of the gadget.

We introduce the error correcting multiplication gadget. We again work over
bits F2, share values using d Boolean secret shares, but now encode using 2k +1
duplicated shares (instead of k + 1 shares). As such, the secret sharing scheme
has a passive threshold d, meaning that an adversary needs to view at least
d + 1 shares to recover the secret, and an active threshold 2k, thus an adversary
needs to inject at least k + 1 errors for the fault to be uncorrectable (note the
difference with the undetectability of faults). We give the pseudo-code of the
multiplication gadget in Algorithm 5. The error correcting gadget works similar
to the error detecting one. It starts by multiplying two independent share vectors
of a and b to create all cross products. These cross products are then remasked
by adding k + 1 random elements ri,j,� to each of them. As a result, since each
cross product is masked by k + 1 random values, no set of k faults can remove
all random values on a cross product. Since we add the same randomness over
all duplicated cross products (ui,j,� for � ∈ [2k + 1]) all these cross products still
equal each other if no fault was injected. As a result, we can error correct them.
An error correction on duplicated shares is done by majority voting the shares.
If at least k + 1 out of 2k + 1 cross products were equal to zero, the result of
this majority vote is zero otherwise it is equal to one. For brevity, we denote this

52 S. Dhooghe and S. Nikova

Algorithm 5. Multiplying shares with error correction
Input: Independent shares of a and b, and uniform random ri,j,�

Output: Shares of ab

for � ← 1 to 2k + 1 do
for i ← 1 to d + 1 do

ui,i,� ← ai,�bi,�;
for j ← i + 1 to d + 1 do

ui,j,� ← ai,�bj,�;
uj,i,� ← aj,�bi,� ;
for m ← 1 to k + 1 do

ui,j,� ← ui,j,� + ri,j,m;
uj,i,� ← uj,i,� + ri,j,m;

end

end

end

end
for � ← 1 to 2k + 1 do

for i ← 1 to d + 1 do
for j ← 1 to d + 1 do

vi,j,� ← Maj(ui,j,1, ..., ui,j,2k+1);
end

end

end
for � ← 1 to 2k + 1 do

for i ← 1 to d + 1 do

ci,� ← ∑d+1
j=1 vi,j,�;

end

end

operation “Maj”, where we assume for simplicity that a probing adversary can
view all arguments given to the Maj function with one probe. We stress that this
error correction procedure is independently applied to each cross product, such
that a single fault can only affect one cross product. Our multiplication gadget
again ends by summing up all the cross products for different indices j and
returns a duplicated Boolean sharing of ab. The proof that this multiplication
procedure is SININA is given in the full version of the work.

6 Conclusion

We provided security notions considering circuits with probed and/or faulted
wires. We then extended them to active and combined composable notions sim-
ilar to the extension from the probing model to Non-Interference (NI). The first
notion of Non-Accumulation (NA) addresses composable active security which
states that a gadget is secure if injected faults affect only one output each.

My Gadget Just Cares for Me - How NINA Can Prove Security 53

The second is the notion of composable combined security (NINA). A gadget
is considered NINA if an injected fault only affects one output and a fault or
probe can be simulated using only one input. We discussed both error detection
and error correcting gadgets and showed that the error detection mechanism is
prone to ineffective faults whereas error correction comes at an increased cost
but gives significantly improved protection (Independent NINA).

The notions for composable security offer the ability to efficiently verify build-
ing blocks of larger implementations and allow for the search of efficient functions
which achieve security in the corresponding model. Moreover, these composable
notions enable us to use secured primitives in a larger whole such as modes of
operations.

Acknowledgements. The authors would like to thank Thomas De Cnudde, Adrián
Ranea, Vincent Rijmen, and Nigel Smart for their useful comments and ideas.

This work was supported in part by the Research Council KU Leuven: C16/18/004,
by the NIST Research Grant 60NANB15D346, and by the EU H2020 project FENTEC.
Siemen Dhooghe is supported by a Ph.D. Fellowship from the Research Foundation -
Flanders (FWO). Svetla Nikova was partially supported by the Bulgarian National
Science Fund, Contract No. 12/8.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Schellenberg, F., Schneider, T.: Impecca-
ble circuits. Cryptology ePrint Archive, Report 2018/203 (2018)

2. Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhythmic Keccak:
SCA security and low latency in HW. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(1), 269–290 (2018). https://doi.org/10.13154/tches.v2018.i1.269-290

3. Barthe, G., et al.: Strong non-interference and type-directed higher-order mask-
ing. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, 24–28 October 2016, pp. 116–129. ACM (2016).
https://doi.org/10.1145/2976749.2978427

4. Barthe, G., Beläıd, S., Fouque, P., Grégoire, B.: maskVerif: a formal tool for ana-
lyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive 2018, 562 (2018). https://eprint.iacr.org/2018/562

5. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

6. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 14

7. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 12

https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.1145/2976749.2978427
https://eprint.iacr.org/2018/562
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12

54 S. Dhooghe and S. Nikova

8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

9. Cassiers, G., Standaert, F.: Improved bitslice masking: from optimized non-
interference to probe isolation. IACR Cryptology ePrint Archive 2018, 438 (2018).
https://eprint.iacr.org/2018/438

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

11. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 13

12. Coron, J.-S.: High-order conversion from Boolean to arithmetic masking. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 5

13. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 65–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0 4

14. De Cnudde, T., Nikova, S.: More efficient private circuits II through threshold
implementations. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 114–124.
IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.15

15. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

16. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove
security against combined attacks. IACR Cryptology ePrint Archive 2019, 615
(2019). https://eprint.iacr.org/2019/615

17. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

18. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

19. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
masking schemes in the presence of physical defaults & the robust probing model.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89–120 (2018). https://doi.
org/10.13154/tches.v2018.i3.89-120

20. Gollmann, D.: Computer Security, 3 edn. Wiley (2011). http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-1118801326.html

21. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

https://doi.org/10.1007/BFb0052259
https://eprint.iacr.org/2018/438
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1109/FDTC.2016.15
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://eprint.iacr.org/2019/615
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://doi.org/10.1007/3-540-48059-5_15

My Gadget Just Cares for Me - How NINA Can Prove Security 55

22. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Bilgin, B., Nikova,
S., Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implemen-
tation Security, TIS@CCS 2016 Vienna, Austria, October 2016, p. 3. ACM (2016).
https://doi.org/10.1145/2996366.2996426

23. Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of KECCAK. In: Kubátová, H., Novotný, M., Skavhaug, A. (eds.)
Euromicro Conference on Digital System Design, DSD 2017, Vienna, Austria, 30
August–1 September 2017, pp. 205–212. IEEE Computer Society (2017). https://
doi.org/10.1109/DSD.2017.21

24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

26. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

27. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

28. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

29. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

30. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

31. Reparaz, O., et al.: CAPA: the spirit of beaver against physical attacks. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–
151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 5

32. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

33. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 11

34. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 4

https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-48324-4_4

	My Gadget Just Cares for Me - How NINA Can Prove Security Against Combined Attacks
	1 Introduction
	1.1 Contributions

	2 The Circuit Model and Secret Sharing
	3 Security Definitions
	3.1 Orders of Security
	3.2 Composable Notions of Security

	4 Combined Secure Duplicated Boolean Masking
	4.1 Duplicated Boolean Masking
	4.2 Duplicated Boolean Methodology
	4.3 A Cascading Gadget

	5 A Correcting Multiplication
	6 Conclusion
	References

