®

Check for
updates

A Non-interactive Shuffle Argument
with Low Trust Assumptions

Antonis Aggelakis', Prastudy Fauzi?, Georgios Korfiatis!, Panos Louridas!,
Foteinos Mergoupis-Anagnou', Janno Siim3®) and Michat Zajac*

1 Greek Research and Technology Network, Athens, Greece
2 Simula UiB, Bergen, Norway
3 University of Tartu, Tartu, Estonia
jannosiim@gmail.com
4 (Clearmatics, London, UK

Abstract. A shuffle argument is a cryptographic primitive for proving
correct behaviour of mix-networks without leaking any private informa-
tion. Several recent constructions of non-interactive shuffle arguments
avoid the random oracle model but require the public key to be trusted.

We augment the most efficient argument by Fauzi et al. [Asiacrypt
2017] with a distributed key generation protocol that assures sound-
ness of the argument if at least one party in the protocol is honest and
additionally provide a key verification algorithm which guarantees zero-
knowledge even if all the parties are malicious. Furthermore, we simplify
their construction and improve security by using weaker assumptions
while retaining roughly the same level of efficiency. We also provide an
implementation to the distributed key generation protocol and the shuffle
argument.

Keywords: Subversion security + Non-interactive zero-knowledge -
Shuffle - Secure multi-party computation

1 Introduction

Due to convenience for voters and lower election costs, internet voting (i-voting)
is becoming an increasingly popular alternative to paper-based voting. In fact,
some countries have already provided i-voting solutions in regional (e.g., Aus-
tralia, Switzerland) or even national (e.g., Estonia) elections. While i-voting has
many benefits, the opposing requirements of election transparency and voter’s
privacy are not easy to guarantee in the digital setting.

One common tool to improve voter’s privacy is the mix-network [Cha81].
Essentially, a mix-network can be seen as a digital analogue to ballot-box shaking
in paper-based voting. During the voting phase, encrypted votes are sent to
a bulletin board, a secure append-only storage system. After the voting phase
ends, the ciphertexts are processed sequentially by a mix-network consisting of
multiple independent servers, called mixers. Each mixer receives the ciphertexts
© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 667-692, 2020.
https://doi.org/10.1007/978-3-030-40186-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_28

668 A. Aggelakis et al.

from the previous mixer (or, in the case of the first mixer, from the bulletin
board) and sends shuffled (permuted and rerandomized) ciphertext to the next
mixer. Finally, only the output of the last mixer is decrypted. Assuming that at
least one mixer is honest, it will be impossible to associate the decrypted votes
to the voters that gave the original ciphertexts.

However, observe that a malicious mixer could easily switch out the cipher-
texts and thus break the integrity of the election outcome. We can avoid such
behaviour by requiring each mixer to provide a proof that the shuffling was done
correctly. Additionally, to still maintain voters’ privacy, this proof should not
reveal any' information about the permutation or ciphertext randomizers used
in the shuffle. This can be achieved with a zero-knowledge (ZK) shuffle argument.

Many efficient interactive arguments [FS01,TW10,Grol10,BG12] are known
for shuffling, but interaction is not preferable in practice. For instance, we might
want to audit elections months after it occurred, but mixers storing the private
information might not be available anymore. Hence a better solution would be
a non-interactive zero-knowledge (NIZK) argument, where the prover outputs
a single message which can be later verified by anyone. Most interactive shuffle
arguments can be made non-interactive using the Fiat-Shamir heuristic [FS87],
but this only guarantees security in the random oracle model (ROM), where there
are known cases in which the resulting argument is insecure [GK03,BDG+13,
BBH-+19).

As an alternative, the Common Reference String (CRS) model assumes a
trusted party that samples a public string from some predefined distribution
and provides it to both the prover and the verifier. In recent years several NIZK
shuffle arguments have been proposed in this model [GL07,LZ13,GR16,FL16,
FLZ16,FLSZ17a, FFHR19] that do not need ROM?. Arguably, the most practical
proposal among these is the construction of Fauzi et al. [FLSZ17a]*, which we
refer to as FLSZ throughout the text — it has comparable efficiency to interactive
arguments and uses a standard ElGamal cryptosystem. However, a drawback of
the CRS model is that it is unclear who should produce the CRS in practice.
Sampling the CRS incorrectly, or even just leaking some side information (e.g.,
the simulation trapdoor), typically breaks the security of the argument. Several
works have tried to alleviate this issue.

The Bare Public Key (BPK) model [CGGMO00] requires significantly less
trust than the CRS model. It removes the CRS and only requires the verifier to
register a public key in a publicly accessible file before the protocol has started.
A malicious verifier may choose the public key in any way she likes. However,
BPK model NIZK with a standard auxiliary input ZK property can be cast as a
two-round ZK protocol, which is known to be impossible [GO94]. On the positive

! Actually since the argument presented in this paper is statistically but not perfectly
zero-knowledge, then it can leak information, but only with negligible probability.

2 Even most of the interactive shuffle arguments require a CRS, but typically they
have a less complicated structure and a uniformly random string usually suffices.

3 The full version [FLSZ17a] mentions a security flaw in the conference ver-
sion [FLSZ17b]. We follow the full version.

A Non-interactive Shuffle Argument with Low Trust Assumptions 669

side, Wee [Wee07] has shown that BPK model NIZK is possible for a weaker non-
uniform ZK. More recently, [ALSZ18] shows that NIZK with a related notion
called no-auxiliary-string non-black-box ZK is also possible.

From a different perspective, Ben-Sasson et al. [BCG+15] proposed a secure
multi-party computation (MPC) protocol for CRS generation to distribute
trust requirements. Essentially it is a distributed key generation (DKG) pro-
tocol that is secure if at least one party is honest. However, that protocol
requires the ROM and only works for CRS-s with a very specific structure.
Hence, it cannot be used as a black box, say, for the FLSZ argument. Subse-
quently, Abdolmaleki et al. [ABL+19b], proposed a UC-secure variant of the
Ben-Sasson et al.’s protocol which avoids the ROM by using a DL-extractable
UC-commitment [ABL+19a].

A series of results [BFS16, ABLZ17,Fuc18] have shown that CRS-based NIZK
arguments can satisfy subversion-ZK (Sub-ZK), i.e., the argument’s ZK prop-
erty holds even if the CRS is generated by an untrusted party. In particular,
it has been shown [ABLZ17,Fucl8] that many existing succinct non-interactive
arguments of knowledge (SNARKs) can be enhanced with a CRS verification
algorithm CV, such that if CV(crs) accepts, then the proof will not leak any (non-
negligible) information. So far, there is no general transformation which would
give Sub-ZK property to any NIZK argument, and each new argument needs to
be studied separately. Finally, recent work by Abdolmaleki et al. [ALSZ18] estab-
lishes a straightforward connection between Sub-ZK NIZK in the CRS model and
BPK NIZK. Namely, a Sub-ZK NIZK can be transformed into a BPK NIZK
(with non-auxiliary-input non-black-box ZK) where the verifier uses the CRS as
her public key. This is also the direction we take in this paper as the BPK model
is a more established and better-understood notion.

Our Contribution. We propose a new shuffle argument that we call a transparent
FLSZ (denoted tFLSZ) which builds upon the result of [FLSZ17a] by significantly
reducing the trust requirements, using weaker security assumptions, and also
having a somewhat less complex structure.

FLSZ contains four subarguments: (i) a unit vector argument for showing
that a committed message is a unit vector, i.e., a binary vector with exactly one
1, (ii) a permutation matrix argument for showing that n committed vectors
form a permutation matrix, (iii) a same-message argument for showing that two
committed vectors are equal, and (iv) a consistency argument for showing that
the ciphertexts are shuffled according to the committed permutation matrix.
However, in their case (i) the unit vector argument is not sound unless one also
provides a related same-message argument and (ii) the consistency argument is
only culpably sound, that is, soundness only holds against adversaries that can
provide a witness of their cheating.

In tFLSZ, we combine the unit vector argument and the same-message argu-
ment into a new unit vector argument and prove its knowledge-soundness in the
algebraic group model (AGM) [FKL18] which is a weaker model compared to the
generic bilinear group model (GBGM) used in [FLSZ17a]. Roughly speaking, in
the GBGM an adversary is only allowed to perform group operations using an

670 A. Aggelakis et al.

oracle which hides the actual structure of the group elements. On the other hand,
the AGM allows the adversary to freely use the actual representation of elements
in the group. Therefore security proofs in the AGM are usually reductions to
some known assumption rather than unconditional proofs as in the GBGM. We
show that knowledge-soundness of our new unit vector argument can be reduced
to a quite standard ¢-type assumption in the algebraic group model.

The permutation argument is proven knowledge-sound assuming that the
commitment scheme is binding and the unit vector argument is knowledge-
sound. This again is a much weaker assumption compared to [FLSZ17a], where
the authors prove a similar result but in the GBGM. Finally, we skip the consis-
tency argument altogether, and directly prove that the shuffle argument is sound
given that the permutation argument is knowledge-sound and that a variant of
the Kernel Matriz Diffie-Hellman (KerMDH) assumption holds. We call this
variant GapKerMDH and prove that in the AGM, it also reduces to the pre-
viously mentioned g¢-type assumption. The GapKerMDH assumption is weaker
compared to the auxiliary-input KerMDH assumption used in [FLSZ17a] for
their consistency argument. Interestingly, after simplifying the structure, the
unit vector argument is the only subargument which depends on the AGM; the
rest of the protocol is based on falsifiable assumptions [Nao03], i.e., assumptions
where a challenger can efficiently verify that an adversary breaks the assumption
(e.g., in the discrete logarithm assumption the challenger sends g”, the adversary
responds with z’, and the challenger checks if z =). Falsifiable assumptions are
much better understood and thus usually preferred over non-falsifiable assump-
tions such as knowledge assumptions [Dam92].

Secondly (and perhaps more importantly), we apply the efficient DKG proto-
col of Abdolmaleki et al. [ABL+19b] which takes us from a setting of completely
trusting the setup generator to a setting where we need to trust only one out of k
parties in DKG. The modification, however, turns out to be non-trivial. We start
by observing that the CRS of FLSZ is outside of the class of verification-friendly
CRS-s that the DKG protocol can generate. Hence, in addition to simplifying
the structure of FLSZ we also modify the CRS and make it verification-friendly,
which mostly involves adding some well-chosen elements to the CRS. These addi-
tional elements are not needed for the honest prover or verifier but are available
to dishonest parties. Therefore, after the DKG protocol finishes, these new CRS
elements can be stored somewhere (in case someone wants to verify them in the
future) and the effective CRS size (i.e., the size of the CRS used in the actual
computation) does not change at all. If there is no need for transcript verifica-
tion in the future, these additional elements can be safely disregarded after the
computations are done. Hence, the CRS size in practice stays the same, but the
security proofs must now consider a more powerful adversary.

As mentioned, the DKG protocol guarantees security (soundness and zero-
knowledge) if at least one honest party participated. We take it one step further
and prove that the protocol is also secure in the BPK model, following the
ideas of [ALSZ18]. Namely, we construct a public key verification algorithm Vp
that the prover runs before outputting an argument. If Vi is satisfied, then

A Non-interactive Shuffle Argument with Low Trust Assumptions 671

zero-knowledge holds even if the public key was generated by a single malicious
party, or equivalently, if all of the parties in the DKG protocol colluded. However,
if Vi rejects the key, then the prover simply declines to output anything.

In Table 1 we compare efficiency and assumptions of the state-of-the-art non-
interactive shuffle arguments. The argument by Groth [Grol0] has the best effi-
ciency, but requires ROM and a trusted random string?. It is also worth to
mention the argument by Bayer and Groth [BG12] which has sublinear com-
munication but otherwise has the same drawbacks as [Grol0]. The argument of
Gonzalez and Rélfols [GR16] (and the slight improvement in [DGP+19]) is based
solely on falsifiable assumptions, but requires a quadratic size CRS which is not
efficient enough for many applications. Similarly, Faonio et al. [FFHR19] use
falsifiable assumptions but require pairings for all operations, making it inef-
ficient. The Fauzi et al. [FLSZ17a] construction can be seen as a compromise
between [Grol0] and [GR16]: efficiency is only slightly worse than [Grol0], does
not require ROM, but some subarguments are proven in the GBGM. Our work
retains almost the same efficiency as [FLSZ17a] by only adding n group elements
to the CRS (we do not count elements solely needed by the DKG), but we make
a significant reduction in the trust requirements for the setup phase and also
prove security under weaker assumptions.

In summary, our new NIZK shuffle argument has the following properties:

1. Soundness holds assuming at least one honest party participated in the dis-
tributed key generation protocol and zero-knowledge holds even if all the
parties were malicious.

2. Compared to the most-efficient shuffle argument without ROM [FLSZ17al:
(a) We simplify the structure of the argument.

(b) We improve the security assumptions and isolate the unit vector argument
as the only subargument which requires AGM.
(¢) The efficiency of the argument remains essentially the same.

In Additionally, we implement our solution in Python 3.54. See Sect.7 for
details.

2 Preliminaries

Let A\ denote the security parameter. We write f(A) = 0, if a function f is
negligible in A\. PPT stands for probabilistic polynomial time. We write (a, b) <
(AJ|Ext)(x) if algorithms A and Ext on the same input z and random tape r
output a «— A(x;r) and b «+ Ext(z;r). By RND(A) we denote the random tape
of A and by Range(A(z)) the set of all possible outputs of A given input x.
We write z «s A if is sampled uniformly randomly from the set A. By
default x = (z;)7, € A™ is a column vector and 1,, := (1), 0, := (0)7,. A

set of permutations on n elements is denoted by S,,. A matrix A € {0,1}""" is

4 Namely, [Grol0] requires a commitment key for the extended Pedersen commitment
which could be obtained from a uniformly random string.

672 A. Aggelakis et al.

Table 1. Comparison of state-of-the-art shuffles. Exp. stands for exponentiations, pair.
for pairings, n is the number of input ciphertexts and m is the number of mixers.
Constant terms are neglected, shuffling is included to prover’s efficiency, and shuffled
ciphertexts are included to proof size.

Prover Verifier Decryption | Proof CRS size Reference Assumptions
efficiency efficiency efficiency size string
[Gro10] 8n exp. 6n exp. n exp. 3n X Zp, n x G Uniform ROM, DDH
2n X G
[GR16] 13n exp. 13n pair. n exp. 4n x G, (n? 4+ 24n) | Structured | Falsifiable
2n X Go x G1,23n
X Go
[FLSZ17a] | 11n exp. Tn exp., n exp. 4n x Gy, 4n x Gy, Structured | GBGM
3n pair. 3n x Go n X Gg
[FFHR19] | 72n exp., 22n pair. 2n exp., 12n x Gy, 2m X Gy, Uniform Falsifiable
5n pair. 46n pair. 11n X Gog, 2m X Go
4n X Gp
This work | 11n exp. Tn exp., n exp. 4n x Gy, 5n x Gy, Verifiable AGM
3n pair. 3n x Go n X Gg

a permutation matrix of the permutation o € S,, when A4, ; = 1 iff 0(i) = j. We
call a a unit vector if it contains exactly one 1 and all other positions are 0. Let
IF,, be a finite field of prime order p and F}, := IF,\ {1}. For vectors x,y € Fy}, xoy
denotes the entry-wise product. We use the bracket notation where [z] denotes
the group element with discrete logarithm x. We consider additive groups, thus
[a] + [b] = [a + b]. For integers a < b we denote [a..b] := {a,a+1,...,b}.

Bilinear Pairing. A bilinear group generator BGen(1*) outputs a tuple (p, G,
G2, Gr, Py, P2, e) such that (i) p is a prime of length @(X), (ii) for k € {1, 2},
Gy, is an additive group of order p with a generator Py, and (iii) e is a map
G1 X Gy — Gp. We set Pr := P; @ Py and use the bracket notation by defining
la], :=a- Py, for k € {1,2,T}. We require that

— [a]1 ® [b]2 = [ab]r for all a,b € F, (bilinearity),
— Pr # [0]7 (non-degeneracy), and
— e is efficiently computable.

In the following we use asymmetric bilinear groups where there is no efficiently
computable isomorphism between Gy and Gs. For the state of the art in pairing
constructions see [BD17].

Bracket notation extends naturally to matrices and vectors, e.g., we may
write [A]; o [B]y = [I]; (A[B]y) = [I]; o [AB]; for A € Fp*™, B € Fy*¥,
and identity matrix I € Fp*™. Occasionally we write [a], for z € {1,2} and use

Z := 3 — z to denote the number of the other non-target group. Then [a], o [b].
would mean [a], ® [b], for z =1 and [b], [a], for z = 2.
Lagrange Basis. Let wi,...,wy, 1 be distinct points in F,. For ¢ € [1..n+1], the

X—UJj
J# wi—wj
the unique degree n polynomial such that ¢;(w;) = 1 and ¢;(w;) = 0 for all j # i.
As the name suggests, {£;(X)}1]! is a basis for {f € F,[X] : deg(f) < n}.

i-th Lagrange basis polynomial is defined as ¢;(X) := []

. Hence, it is

A Non-interactive Shuffle Argument with Low Trust Assumptions 673

Encryption Scheme. A public key encryption scheme is a triple of PPT algo-
rithms (KGen, Enc, Dec) such that

— KGen(1*) outputs a public key and a secret key pair (pk., ske).

— Encpi (m;r) outputs a ciphertext ¢ encrypting the message m with random-
ness r under the public key pk,.

— Decy, (¢) outputs the decryption of the ciphertext ¢ using the secret key ske.

We require that Decgy, (Encyi, (m;7)) = m for every message m and randomizer
r. Intuitively, an encryption scheme is IND-CPA-secure if no PPT adversary A
can distinguish between the ciphertext distributions of any two messages.

We use the ElGamal encryption scheme over a group Go defined as follows.
The algorithm KGen(1%) samples ske <—s F,, and outputs (pke := [1, ske]2, ske). An
encryption of a message [m]s is Encpy_ ([m]2;7) := [0,m]2 + 7 - pk, where 7 «—sTF).
A ciphertext [c]a = [c1,c2]2 is decrypted by computing Decg ([c]2) = [ca]2 —
ske - [c1]2. ElGamal is IND-CPA-secure if the DDH assumption holds in group
Gy. ElGamal is also blindable, meaning that Encpy ([m];7) 4 Encp ([0] 1) =
Encpi, ([m] ,7+r') and, assuming that 7" «s[F,,, no PPT adversary can distinguish
if Encpi_([m] ;) and Encpy ([m] ;7 + ') encrypt the same message or not.

Non-interactive Zero-Knowledge. Let R = {(x,w)} be a relation such that
Lr = {x:3w (x,w) € R} is an NP language where w is a witness for x. Fol-
lowing [ALSZ18], we define a NIZK argument in the BPK model as follows.

A NIZK argument W in the BPK model for relation R is a tuple efficient algo-
rithms (Pgen, Kiq, Kok, Vipk, P, V, Sim), where

— Pgen(1?) is a deterministic algorithm that outputs a setup parameter gk.

— Kia(gk) is a PPT algorithm that on input gk outputs a trapdoor td.

— Kpk(gk,td) is a deterministic algorithm that on input gk and td €
Range(K4(gk)) outputs a public key pk.

— Vpk(gk, pk) is a PPT algorithm that on input gk and a public key pk outputs
0 (if the key is malformed) or 1 (if the key is well-formed).

— P(gk, pk,x,w) is a PPT algorithm that given a setup parameter gk, public
key pk, and (x,w) € R, outputs an argument .

— V(gk, pk,x,) is a PPT algorithm that on input a setup parameter gk, public
key pk, statement x, and argument 7, outputs 0 (reject) or 1 (accept).

— Sim(gk, pk, td,x) is a PPT algorithm that on input a setup parameter gk,
public key pk, trapdoor td, and x € L outputs a simulated argument 7.

For the sake of brevity, we sometimes use the algorithm K(gk) :=
Kok(gk, Kia(gk)). By a NIZK argument in the CRS model we mean a tuple
(Pgen, Ky, Kok, P, V, Sim) of the above algorithms (i.e., all except V).
Completeness simply requires that an honestly generated key and argument
are respectively accepted by Vpi and V. We give the definition for the BPK
model. The definition for the CRS model neglects the condition Vpk(gk, pk) = 1.

674 A. Aggelakis et al.

Definition 1. The argument ¥ in BPK model is perfectly complete if for all
A, and (x,w) € R, the following probability is 1,

Pr [gk « Pgen(1), pk < K(gk) : Vpi(gk, pk) = 1 A V(gk, pk, x, P(gk, pk, x, w)) = 1} :

Soundness guarantees that a malicious prover cannot create a valid argument for
a false statement. The definitions match in the BPK model and the CRS model.

Definition 2. The argument ¥ is sound if for any PPT adversary A,

Pr
x & Lr AV(gk,pk,x,7) =1

gk «— Pgen(1%), (pk, td) «— K(gk), (x, 7) «— A(gk, pk) :1 ~ 0
~\ .

Knowledge-soundness strengthens the previous definition by requiring that the
prover “knows” the witness, i.e., there exists an extractor that outputs the wit-
ness given the code and random coins of the adversary.

Definition 3. The argument ¥ is knowledge-sound if for any PPT adversary
A, there exists a PPT extractor Ext, such that

gk — Pgen(1%), (pk, td) «— K(gk), ((x,), w) «— (A|Ext)(gk, pk) : 0
(X’ W) g RA V(gka pk,xaﬂ) =1 ~A Y.

Lastly, zero-knowledge guarantees that the argument leaks no information
besides that x € L by giving an algorithm Sim which, given a trapdoor, can
create a valid argument for any x € Li without knowing the corresponding
witness.

Definition 4. An argument ¥ in the CRS model is statistically zero-knowledge,
if for any adversary A, and any (x,w) € R, g =) €1, where

p gk «— Pgen(1%), (crs, td) « K(gk),if b = 0 then 7w «— P(gk, crs,x, w)
ey :=Pr
’ else ™ «— Sim(gk, crs, td,x) fi : A(gk,crs,m) =1

We say that ¥ is perfectly zero-knowledge if g = €1.

In the BPK model, we use the no-auziliary-string non-black-box zero-
knowledge definition of [ALSZ18] (as mentioned, NIZK is impossible with the
standard BPK ZK definition). Essentially the prover first runs a public key ver-
ification algorithm Vi to check well-formedness of the key pk and only then
outputs a proof. Compared to the previous definition, we require that there
exists an extractor that extracts a trapdoor for any well-formed pk given access
to adversary’s random coins. Intuitively this guarantees that the key genera-
tor knows the trapdoor and thus could generate the proof himself using the
simulator.

A Non-interactive Shuffle Argument with Low Trust Assumptions 675

Definition 5 ([ALSZ18]). The argument ¥ in the BPK model is statistically
no-auxiliary-string non-black-box zero-knowledge (nn-ZK), if for any PPT sub-
verter X there exists a PPT extractor Extx, s.t., for any (stateful) adversary A,
€0 A\ €1, where

gk — Pgen(1%), (pk, auxx||td) «— (X||Extx)(gk), (x,w) — A(auxx),
ep = Pr | if b = 0 thenrw «— P(gk, pk,x,w) else m « Sim(gk, pk, td,x) fi :
(x,w) € RA Vp(gk,pk) =1AA(m) =1

Here auxy is whatever information X wishes to send to A.

Assumptions. In AGM reductions we use ¢-PDL, a ¢-type version of discrete
logarithm assumption. We also require the KerMDH computational assumption,
and the BDH-KE knowledge assumption. The definitions are as follows.

Definition 6 (¢-PDL [Lip12]). The q-Power Discrete Logarithm assumption
holds for BGen if for any PPT A,

Prlgk « BGen(1%), 2 s Zy, 2" A(gk, [(2'){_]1, [(2){_1]2) - 2 = 2] =1 0.

Definition 7 (KerMDH [MRV16]). Let D, be a distribution over IF;;X’“. The
Dy i-KerMDH assumption holds for BGen and z € {1,2} if for any PPT A,
Prlgk < BGen(1"), M s Dy, [c], — Algk,[M],) : ¢ #0Ac'M = 0] =, 0.

z

Definition 8 (BDH-KE [ABLZ17]). We say that BGen is BDH-KE secure if
for any PPT adversary A there erists a PPT extractor Ext 4, such that

Pr[gk — BGen(1%), (la]; , [o'], [|8) « (AllExta)(gk) : e =o' A # o | = 0.

Commitment Scheme. A commitment scheme is a tuple of efficient algorithms
(KGen, Com) such that

— KGen(1*) outputs a commitment key ck.
— Come(m;r) outputs a commitment ¢ given a message m and randomness 7.

Typically a commitment scheme should satisfy at least the following properties.
(i) (perfectly) hiding: the distribution Comey(m;r) (over r «—sTF,,) is the same for
any message m; (i) (computationally) binding: it is infeasible for an adversary
to find (mq,71) and (mg,r2) s.t. Come(my;r1) = Comek(me;r2) and my # mo.

Polynomial Commitment Scheme. For polynomials {T;(Xq,... ,Xk.)}?;ll €
F,[X1,. .., X;] we define a (T;)!-commitment scheme as follows:

— KGen(1*) picks x «s]F’; and returns a commitment key ck « [(Ti(x))?:ll]z.

— Comek((a1,...,an);r) returns a commitment » . a;[T;(x)]1 + r[Tnt1(X)]1-

Clearly, this commitment is perfectly hiding when r «sF, and T,,41(x) # 0. If

{Ti}?jll is a linearly independent set, it is also computationally binding under

a suitably chosen KerMDH assumption, cf. [FLSZ17a, Theorem 1].

676 A. Aggelakis et al.

DL-Extractable Commitment Scheme. The DKG protocol of [ABL+19b] requires
a UCGC-secure Discrete Logarithm FExtractable (DL-extractable) commitment
scheme as defined in [ABL+19a]. In DL-extractable commitments the messages
are field elements z, but commitments can be opened to [z], thus still leaving
itself private. However, since in the UC-model committing to x is equivalent to
giving it to an ideal functionality, then the committer knows z, i.e., the discrete
logarithm = can be extracted from the commitment given a secret key. For a
formal definition and a construction, see [ABL+19a).

Algebraic Group Model. Recently Fuchsbauer et al. [FKL18] introduced the alge-
braic group model (AGM) that lies between the standard and the generic group
model. In the AGM, an adversary A that returns a group element [z], is required
to provide a linear representation of [z], relative to all previously received group
elements. That is, if A received as input group elements [y], then she must
submit along with [z], a representation z such that [z]_ =z [y].. Using tech-
niques similar to [FKL18, Theorem 7.2] we prove knowledge-soundness of the
unit vector argument under the PDL assumption in the AGM.

2.1 FLSZ Shuffle Argument

We give a brief overview of the FLSZ shuffle argument for the shuffle relation

RSh — { ((gk pke7 [()z 1]2’ [(Ci)?:l]Q)a (U’t)) | ocES, At E F;L/\}
" (Vi€ [L..n]: [cl]2 = [co@]2 + Encox, ([0]2::))

They use a ((P;(X))l-;, X,)-commitment scheme to commit to columns of a
permutation matrix, where P;(X) := 2¢;(X) 4 £,4+1(X) for i € [1..n].

Lemma 1. Let Py(X) := £,11(X) — 1 and Q;(X) := (Pi{(X) + Py(X))? — 1 for
€ [L.n]. If (i aiPy(X) + Py(X))* — 1 € Span{Qi(X)}iLy and n <p—1,
then (al, ..., ap) 18 a unit vector.

Proof. Denote T(X) = (31, aiPi(X) 4+ Py(X))? — 1 Firstly, observe that
for J € [0.n, Tlwy) = 5y aiPiiog) + Poliog)? = 1 = (S0 ai(2hioy) +
loi1(wj)) + b1 (wj) —1)2 =1 = (2(1J -1 -1= 4a](aj —1). On the other
hand, Q;(w;) = (Pi(w;) + Po(w;j))> — 1 = 0 for j € [1..n]. Therefore, T(X) €
Span{Q;(X)}?"_, implies that T'(w;) = 0. Hence a; € {0,1} for j € [1..n].
Finally, T(wnH) = ,a2-04+4)+1-1)2-1= " a)* - L
Similarly as before, Q;(wp+1) = 0 80 T'(wp41) = 0. Therefore, (31, a;)* — 1=
ke — 1), a; +1) = 0. Since > ja; = n < p— 1 we must have
i a; =1, so exactly one a; is 1 and all others are 0. Hence (ag,...,a,) is a
unit vector. a

Given the above property, they propose a unit vector argument to show that
the prover could open each commitment to a unit vector. They then enhance it to
a permutation matrix argument by observing that n unit vectors form a permuta-
tion matrix exactly when their sum is 1,,. Next, they would like to show that the

A Non-interactive Shuffle Argument with Low Trust Assumptions 677

committed permutation matrix was used to shuffle the ciphertexts. However, due
to some technical challenges, they are unable to use the same commitment key.
Instead, they commit once more to the columns of the permutation matrix, but
this time with a ((P;(X))™,, X;)-commitment where P;(X) := X +D(+1) for
i € [1..n]. They propose a same-message argument to show that both types of
commitments can be opened to the same matrix. Finally, a consistency argument
proves that the committed permutation was used to shuffle the ciphertexts.
The unit vector argument, the permutation matrix argument, and the same-
message argument are proven to be knowledge-sound in the GBGM. However,
the soundness of the unit vector argument depends on the soundness of the
same-message argument. The consistency argument is culpably sound® under an
application specific variation of the KerMDH assumption. The shuffle argument
itself is sound assuming that other arguments are secure and assuming that
commitments are binding. The shuffle argument has perfect zero-knowledge.

3 Distributed Key Generation Protocol

We apply the UC-secure DKG protocol of Abdolmaleki et al. [ABL+19b] in the
public key generation of our shuffle argument. This protocol avoids the random
oracle model (unlike, e.g., [BCG+15]) and due to UC-security it will not affect
the soundness or zero-knowledge properties of the argument. Of course, any
general MPC protocol can be used as a DKG, but since we potentially require
a large number of parties (e.g., mixers in the mix-network) and since evaluated
circuits can have a large multiplicative depth, specialized protocols will perform
much better. See [BCG+15] for further discussion on efficiency difference.

3.1 Verification-Friendly Public Key

Although the DKG protocols of [BCG+15] and [ABL+19b] are efficient, they are
not general MPC protocols and can only generate certain kinds of keys. Namely,
they require key computation to be represented as a circuit that comes from a
special class (C%, described below) and is evaluated on uniformly random field
inputs. Fortunately, the protocols are still sufficient for generating public keys for
many pairing-based arguments or, as we will later show, slightly modified ver-
sions. Compared to [ABL+19b] we give a more direct, but equivalent, description
of such keys which we call verification-friendly. Intuitively, a verification-friendly
public key means that even if one doesn’t trust the parties generating the public
key, one can at least ensure that it is of the correct structure.

We say that an argument ¥ has a verification-friendly public key if (i) output
td = (xi)iz; of Kiw(gk) is distributed uniformly randomly over (Fy)", and (ii)
Kpk(gk, td) = C(td) where C is a circuit from a class Cg, ,,. Any circuit C € Cg, ,,
takes as input td = (x;)j—; € (IF;,)" and contains two types of gates:

5 Culpable soundness is a weaker form of soundness where an adversary additionally
provides a witness of his cheating.

678 A. Aggelakis et al.

— multiplication-division (multdiv) gate MD,, ,([z],) outputs [(x:/x;)z],,
where z € {1,2} and [z], is a gate input.

— linear combination (lincomb) gate LCc([y],) outputs [22:1 cz-yl} , where z €
z
{1,2}, c € F}, is a constant, and [y], € G is a gate input.

Gates in the circuit C are partitioned into interleaved layers Cy, Lq,...,Cq, Lyg
where each C; contains only multdiv gates and L; contains only lincomb gates.
Furthermore, C satisfies the following conditions:

1. Inputs of gates in C; or L; can be either constants or outputs of the gates on
the current or lower layers of the circuit.

2. The output of each gate is part of the output of the circuit C.

3. Layer C always contains gates MD,, 1([1],) for all i € [1..n], z € {1,2}.
Therefore, [(x:)1]1 and [(x:)F_4]2 are always outputs of the circuit.

3.2 DKG Protocol for Verification-Friendly Keys

We describe the DKG protocol of [ABL+19b] where the parties collectively eval-
uate a Cg’k,n—circuit to generate a verification-friendly public key. The protocol
retains soundness and zero-knowledge of the argument given that at least one
party in the protocol is honest and malicious parties are non-halting. We note
that with a suitable key verification algorithm it is possible to achieve zero-
knowledge even if all the parties are malicious.

Let P1,...,Pr be the parties running the DKG protocol. Each party P,
samples shares (x;)7_; < (F,)" which allows us to define trapdoor elements

as x; = H:f:l Xj,r for j € [1..n]. Note that if at least one value x;, € Iy is
picked independently and uniformly at random, then x; is uniformly random in
[F;. For ease of description, we set xo := 1 and similarly xo, := 1 for 7 € [1.. k].

The protocol starts with a commitment round where all the parties commit to
their shares y; , with a UC-secure DL-extractable commitment scheme. This is
followed by an opening round where each P; reveals [x;r]1, [Xi,r]2. Since the com-
mitment scheme is UC-secure, then it is also non-malleable and thus guarantees
that the adversary chooses her shares independently of the shares of the honest
parties. Next, the parties start to evaluate the circuit layer-by-layer. For evaluat-
ing a single multdiv gate MD,, ., ([z],) = [(xi/x;)z], where i, j € [0..n], parties
run the mpeMD, , , ([z],) protocol given in Fig. 1. Assuming that [z], is public,
P1 broadcasts (xi,1/x;,1) [a], and each subsequent party P, multiplies x;/x;j,r
to the output of her predecessor P,_;. If all the parties follow the protocol, then
the output of Py, is certy = (xi,1 -+ Xik)/ OG-~ Xak) [al, = (xi/x;) [al,-
Computation of each party can be verified with pairings by using the algorithm
VmpcM DXij in Fig. 1. Any linear combination gate LCc([x],) can be computed
locally by each party by simply evaluating the expression 22:1 cilag), -

Let us make a slight restriction for now that multdiv gates on the same layer
do not depend on each other. Then each multi-division layer C; can be evaluated
by running multiple instances of the mpcMD protocol in parallel. More precisely,

A Non-interactive Shuffle Argument with Low Trust Assumptions 679

mpcMDX’,’Xj([x]Z):

1. Set certp « [z],.

2. For r =1,...,k: Party P, broadcasts cert, < (xs,r/Xj,r) - certr—_i.
3. Output certy.

VmpcMD, ([al. , (certy o, [(x5.r)Emrs (i) oa])
1. Set certy « [],.
2. For r =1,...,k: check that cert, ® [x;], = cert,—1 ® [xi,r]
3. If all checks pass output 1 and otherwise output 0.

5

Fig. 1. Multi-party protocol mpcM DXivXj and its transcript verifier VmpcM DXi,Xj

Commitment: Each party P, picks Xi,r,...,Xn,r <sF, and broadcasts DL-
extractable commitments of the values.

Opening: Once all the commitments are received, P, broadcasts openings together
with [(xi,r)iz1]1 and [(xs,r)i=1]2. Each party verifies the openings and aborts if the
verification failed.

Layer computation: For a multi-division layer C; containing a gate MDy, , ([a],), par-
ties run the protocol mpcM sz',Xj ([a],) and verify the computation with the algorithm
VmpcMDXi’Xj. All the gates in C; can be evaluated in parallel. Linear combination
layers L; are locally evaluated by each party.

Output: Output of the protocol is the output of all the evaluated gates.

Fig. 2. Distributed key generation protocol for a circuit C = (C1, L1, ...,C4, Lqg)

the computation begins with the party P; doing its part of computation in
mpcMD for each multdiv gate in C;. Then, given the output produced by P,
the party P, does her part of the computation for each gate in the layer C;
and so on. Hence, a single multdiv layer can be evaluated in k£ rounds since
every party needs to contribute to the output of the previous party just once.
After each multi-division layer, the parties verify the computation by running
the algorithm VmpcM DXij for each gate. If the checks pass, the parties locally
evaluate gates on layer L; and proceed to compute the next layer C;y;. Full
details are given in Fig. 2.

We refer the reader to [ABL+19b] for the more general protocol where k
rounds can be achieved even if the gates on the same layer depend on each
other. That version of the DKG is also used for our shuffle argument, but for
this we provide an explicit description in the full version of our paper. It is
important to note that Abdolmaleki et al. showed that if at least one party
in the DKG is honest, then it UC-realises the CRS ideal functionality (which
essentially samples a public key in the beginning and returns it to anyone that
queries).

680 A. Aggelakis et al.

4 Transparent Shuffle Argument

The DKG protocol requires the public key to be verification-friendly. In partic-
ular, we need to guarantee the following properties:

— Each trapdoor ¢ € td has to be sampled uniformly at random from F, and
the public key has to contain both [¢]; and [¢].

— The public key has to be computable by interleaved multi-division and linear
combination circuit layers and the output of each gate has to be part of the
public key. For example, given that [a], [b]1, [c]1, [d]1 are part of the public
key, it is not possible to have [ab+cd]; in the public key without also revealing
some intermediate gate outputs like [ab]; and [ed];.

In this section, we modify the FLSZ argument and construct a new transpar-
ent shuffle argument tFLSZ which has a verification-friendly public key. Besides
making the argument verification-friendly, we also simplify the construction: (i)
we combine the unit vector argument and the same-message argument of tFLSZ
into a single argument, (ii) we skip the consistency argument and directly con-
struct a shuffle argument from the permutation argument, and (iii) we observe
that one of the trapdoors, g, can be set to 1 without affecting security. The new
argument is given in Fig. 3; we introduce the construction step-by-step in the
following.

Let us take the public key of FLSZ in Fig.4 as a starting point and observe
which modifications need to be introduced to make it verification-friendly.

— Firstly, we need to add all the trapdoor elements to both groups which means
adding [x, G, B]l and [x]2 to the public key.

— To evaluate polynomials P;(X) at point x we add powers of x in both groups
to the public key. Since P; is at most degree n, it suffices to include elements
[(x))™4]1 and [(x*)",]2. However, since (P;(X) + Py(X))? — 1 has at most
degree 2n, we additionally add [(x*)?7, 1)1

~ Polynomials P; have a degree (i 4+ 1)(n + 1), requiring, for the sake of ver-
ification friendliness, to include elements [(Xi)ng{l)Qh which would cause
quadratic overhead. We avoid this by redefining the polynomials P; and
evaluating them at a new random point 6. The first idea would be to set
Pi(Xg) = X} for i = 1,...,n and add [(#")7_,]; and [f]y to the public key.
However, the ((P;(Xg))?;,1)-commitment scheme would not be binding since
the KerMDH assumption does not hold for [M]; = [Pl(Xg), e ,Pn(Xg), 11,
as the adversary can output [c]s = [0, —1,0,...,0]2 such that Mc" = 0 and
c # 0. Instead we set P;(Xy) = X2 for i € [1..n] and include [(#")?",], and
[0]2 to the public key. Now the commitment scheme is binding under a slight
variation of the standard KerMDH assumption, which we prove in Sect.5 to
reduce to PDL assumption in the algebraic group model.

Another challenge is computing crs,,, since it contains elements [3P; + Bpi]l. It
is not possible to reveal [5P;]; and [3F;]; since this breaks knowledge-soundness
of the same-message argument. We propose a new argument to overcome this.

A Non-interactive Shuffle Argument with Low Trust Assumptions 681

Kia(gk): Return td = (x, 0, 8,3, 0) < (F5)°.

Kok(gk, n,td): Let P = (P;(x))iz1, P = (Pi(0))i=1, Q = (Pi(x) + Po(x))* —)i,

ok ([1, Po(x), P, 0. Q/o, 31, Py 0. G, 52P+BBP}1,>
“ [17 PO(X)’ Pu 0, ﬁ27 ﬁﬁ]27 [”T ’

(B ([)

Return pk «— ([f’h, PK s PKpios PR,)

K(gk,n): Run td <« Kw(gk), pk < Kuk(gk, n, td), return (pk, td).

P(gk, (pke, Pk), [Cl2 = [(ci)i1]2 € G5*%, (0 € Sn, t € F})):
1. Fori=1ton—1: % <—$Fp, [ai]1 — [I:’ _1(yl1 4 711
Tper < Pper(gk, pk, [(@:)7=']1, (o, (7‘1). // Permutation argument
P = = 00 Py ey Fm [s]h ¢ [Ph + 1)1
For i =1 to n: [t]]2 « t; - pke.
[N]z « #T[C]2 4 7 - pk.. // Online
[C'l2 «— ([coq)]2 + [ti]2)7=1. // Shuffling, online
Return ([C/]Qﬂ'l'sh — ([(a;)7:1178113 [N]27TFP6T))

V(gk» (pke7 pk), ([C]Qv [C,]Q)v Tr-s'h).

I e

L. Parse msn = ([(a;)= nol 5]1, [N]2, Tper); set [an]r < [0, Pili — S0 a1
2. Check Vper(gk pk, [(&1)1 i, Tper) = 1.
3. Check [P]{ ¢ [C']; —[a]{ o [C]> = [s]: o pk, — [1]: & [N]>.

Fig. 3. tFLSZ argument

K(gk,n): Generate random td = (x, 3, 8, 0,0, ske) < (F3)°. Denote P = (P;(x))i-1,
Po = Po(x), and P = (P,(x))i=1, Q = (P + Po)* — 1)y Let

CrSsm «— ([ﬁP + prﬁga B@]la [ﬁ7 ﬁA]2) 5 CIScon <— [IZ}I , Pk, = [175ke]2
crspm — ([1,P0, Q/0, S0y Py 30y P, [Po, 300y Pila, []r)

Set crs «— (pk [1,1 Q]g,crssm7crspm7crscon) Return (crs, td).

Fig. 4. CRS generation algorithm of FLSZ

New Unit Vector Argument. We combine the same-message argument and unit
vector argument from FLSZ to a new unit vector argument which is a proof
of knowledge for the relation R% := {([a],,(€ [L..n],7#)) | @ = Pr + 7).
The new argument in Fig. 5 has two advantages: (i) it has a verification-friendly
public key, and (ii) the unit vector argument of FLSZ is sound only if we give a

682 A. Aggelakis et al.

Kuv(gk,n): Return (pk,td) < K(gk,n) from Fig. 3.
Puv (gkv pk, [d]l)a (Iv f)) R .

1. r—sFp, [r'l1 — rlol1, [d: — [/321‘_’1 + BBPrh +7"[/329]1 + #[BB1.

2. [ah — [Pi]s + [r'], [bl2 — [Pr]2 + r[g]2.

3. [e]s 7+ (2([al + [Po]1) = [']1) + [((Pr + Po)* = 1) /el

4. Return 7y, < ([d]1, [a]1, [b]2, [€]1)-
Vo (gk, Pk, [a]1, Tuo):

1. Parse myy = ([d]1, [a]1, [b]2, [e]) and pick a «sTF,.

2. Check [d]; e [1]2 = [a,a]1 @ [82, 843 .

3. Check ([a]1 +af1]: + [Po]1) ¢ ([bl2 — a[1]2 + [Po]2) = [e]1 @ [o]2 + (1 — a®)[1].

Fig. 5. New unit vector argument

corresponding proof for the same-message argument; the new argument avoids
this dependency. On a high level, the verification equation in Step 2 of V,, and
the proof element [d]; in Fig.5 correspond to a variation of the same-message
argument in FLSZ and shows that [a]; and [a]; commit to the same message
m respectively with the ((P;(X))7—,1)-commitment and the ((P;(X))};, X,)-
commitment. The verification equation in Step 3 of V,, and elements [b]o and
[e]1 in Fig.5 use the result of Lemma 1 to show that [a]; commits to a unit
vector. This part is identical to the unit vector argument in FLSZ.

The main differences in the new argument are the public key elements for
showing that [a]; and [a]; commit to the same message. Simply revealing ele-
ments [GP;, BRh would be sufficient for verification-friendliness, but breaks the
knowledge-soundness property: the same-message argument of FLSZ relies on
[BP;(x) + 3P;(0)]1 being the only G; elements in the span of {[Bx* + ﬁﬂj] }z j
that are available to the adversary. Instead, we essentially substitute [GP; + ﬂP]
with [32P; + ﬁﬁPJ (and other related elements accordingly), and equivalently
use the fact that those are the only G, elements in the span of {[3%x’+6367]1}:
available to the adversary. This change is significant since the latter elements can
be computed with the DKG protocol without revealing [32P;]; and [36P;);:

(i) compute [3x%]; and [6021]1 = [6P;]; to obtain [BP; + BP)];
(ii) compute [62P; + B3P, = MDg,.1 ([BP; + BPh);
(iii) similarly, from elements [3, 8o, 31 compute [520]; and [8];.

Additionally, in Gy we reveal [3?], and [ﬂﬂ]g. We prove in the full version of our
paper that these changes retain security.

Permutation Argument. The permutation argument is a proof of knowledge for
the relation

per*{ ‘UES /\Zz 1TZ—O/\(VZ€[1 n]:&ingq(i)—i—ﬂ)}.

We show that this relation is fulfilled the same way as previous NIZK shuffle
arguments. Firstly, the prover gives a unit vector argument for each of the com-
mitments [d;]; for ¢ € [1..n — 1]. Next, observe that only if those commitments

A Non-interactive Shuffle Argument with Low Trust Assumptions 683

Kper(gk,n): Return (pk,td) « K(gk,n) from Fig. 3.
Ppﬁ’f(gkv pk, [(dl)?;ll}li(a € Sa, (721 ?;11)): . 1
Lo fn = = 30000 7, [an]y < D072, Pl — 32000 [ailh.
2. For i € [1..0]: Tuv:i — Puv(gk, pk, [@i]1, (01 (i), 7).
3. Return mper «— (Tuvii)iei-
Vier (K, k(@)1 1 e) A
1. Parse Mper = (Tuv:i)iz1 and set [an]1 — Do7_, Pil1 — Z?;ll [@i]1-
2. For i € [1..n] : check Vuy(gk, pk, [@i]1, Tuvii) = 1.

Fig. 6. Permutation argument

are to distinct values P, is [a,]1 := [S1—, PiJi — 317 [a:]1 a unit vector. Hence,
by giving a unit vector argument also for [a,]1, where [a,]; is explicitly com-
puted by the verifier, we have proven the relation. Condition Z?:l 7 = 0 in
Rper comes from the way that [a,];1 is computed. The protocol is given in Fig. 6.

Shuffle Argument. Finally, we prove that ciphertexts were shuffled according
to the permutation o committed in [a];. This is essentially equivalent to the
consistency argument in FLSZ. Intuitively, we check that Z?zl[ﬂ-]l o [ml]s =
Z?Zl[Pg_l(i)}l o [m;]2 (see Step 3 for the actual equation) which guarantees
that 7" | [Pi]1 ® ([mjl2 — [me(i)]2) = [0]p. If [mj]e # [my(y]2 for some i, then
the adversary can find a non-zero element in the kernel of [P]; and thus break
the KerMDH assumption. Of course, the actual messages m; are encrypted and
the verifier knows only a commitment to o. We balance this in the equation
by allowing the prover to produce elements [s]; and [N], which cancels the
randomness in the ciphertexts and the commitments.

Verification-Friendliness of tFLSZ. After making all of the above modifications
we end up with a public key as presented in Fig. 3. There are two new sub-keys:
pk,, Which contains some elements later required by the V. algorithm (used by
prover to guarantee nn-ZK), and pk, s which is a by-product of making the public
key verification-friendly. After the public key generation protocol has finished the
elements in pk,; can be disregarded. It is now simple to verify that the public
key is verification-friendly. We present it as a series of multiplication-division and
linear combination layers in Fig. 7. Hence, the DKG protocol described in Sect. 3
can be applied. For the sake of completeness, we provide an explicit description
of the DKG protocol in the full version of the paper.

For better modularity, we treat the encryption key pk, separately from the
argument’s public key. However, we assume it to be correctly generated by some
secure DKG protocol, such as the one by Gennaro et al. [GJKR99].

Theorem 1 ([ABL+19b]). If tFLSZ is complete, sound, and computational
zero-knowledge in the CRS model, then it is complete, sound, and computational
zero-knowledge if the adversary corrupts all but one party in the DKG protocol.

684 A. Aggelakis et al.

Input: (x,0, 8,03, 0) € (IF;)5.
Layer C1:
1. For v € {3,, 0}, z €{1,2}: [t], < ¢[1],.
2. Fori =1 to 2n: [x]1HX[XZA1]1» (0] — 0[0" 5.
3. Set [0]z « 0[1]2 and denote [Pi]; = [6%]1 for i =1 to n. o
4. Fori=1ton: [x']l2 = x[x' 1]27 [Bx'l < BT, [BP]L — BIPis.
5. (82 — BIBle, [Bar — Bleli, 8%l — B[Belr, 881 — BlA], [88]2 — B[Blo-
Layer L:
1. Compute [(£:i(x), B(x), ()21, [(€00)id 2, [(£i(X) - £ntr(x))ia]1 from
[(xH)2]1, [(Bx) o1, and [(x*)F—o)2 (see the full version of our paper for details).
2. [Po]i — lnta ()]s — 1, [Pol2 — [ntai(X)]2 — [1]2.
3. Fori =1 ton:
(a) [Pi1 = 2[6: 00N + (1 O], [Bil2 = 2(6(X)]
(b) [Qilr — 4[6:(x)*]1+4[ln11(x)*]1 +8[i (X) lns1
(©) [BP; + BBy — 2[8L:(X)11 + [Blar1 (01 + 30
4 [0, Ph— S, P - 3
Layer Co: For i =1 to n: [Qi/0)1 «— [Qil1/e, [8*P:i+ BAP:]1 «— B[BP: + BP]1.

2+ [lni1(X)]2
%O]l— [0 —4[lnt1(X)]1-

Fig. 7. Public key computation as a circuit

5 Security in the CRS Model

In this section, we establish that tFLSZ is secure in the CRS model, where the
CRS is the public key generated by a trusted party. We first claim security of
the unit vector and permutation arguments, as stated in Theorems 2 and 3.

Theorem 2 (Security of unit vector argument). The unit vector argu-
ment in the CRS model (see Fig.5) has perfect completeness and perfect zero-
knowledge. If the (3n — 1)-PDL assumption holds, then it has computational
knowledge-soundness in the AGM.

Theorem 3 (Security of permutation argument). The permutation argu-
ment in the CRS model (see Fig.6) is perfectly complete and perfectly zero-
knowledge. If the unit vector argument is knowledge-sound and ((Py(X))7_,,1)-
commitment is binding, then the permutation argument is also knowledge-sound.

The proofs are given in the full version of our paper. Soundness of the unit-vector
argument uses a common trick of AGM proofs that first defines an idealised ver-
ification, where the verification equation holds true for polynomials V(X) (with
trapdoor elements as variables) rather than for polynomial evaluations V(x)
only (real verification, for concrete trapdoor elements x). We then show that
no element outside the unit vector language can pass the idealised verification.
Moreover, if an adversary manages to pass the real verification but not the ideal
one, then she can be used to break the (3n — 1)-PDL assumption. The proof of
the other properties are quite standard.

We prove soundness of the shuffle argument under a weaker assumption com-
pared to [FLSZ17a]. The assumption, called the GapKerMDH assumption, is

A Non-interactive Shuffle Argument with Low Trust Assumptions 685

novel, but we show that it reduces to the PDL assumption in the AGM. More pre-
cisely, since the KerMDH assumption is insecure for M = (1,0,...,6") € ZZ“
if the adversary is given both [M]; and [f]2, then a slightly modified assumption
is required. We still give the same information to the adversary, but require that
the output is in the kernel of a certain M’ C M that contains periodic gaps.

Definition 9. The n-GapKerMDH assumption holds for BGen if for any PPT
A,

- gk — BGen(1%),0 T, [v]o < A(gk, [(6°)7"]1, [0]2) : 0
V(0P = 0AV # O

Theorem 4. If the (2n)-PDL assumption holds, then the n-GapKerMDH
assumption holds in the AGM.

Proof. Let A be an algebraic PPT adversary that breaks n-GapKerMDH
assumption with probability egqp. More precisely, A gets as an input
(gk, [(69)72]1,[0])2) for 6 «—sZ,, and outputs a non-zero [v]y € G5+ and its
linear representation U € ZI()nH)X2 (that is [v]a = U - [1,6]5) such that
Z?:O 9% cVi41 = 0.

We construct a PPT adversary B that breaks (2n)-PDL assumption using A.
First, B gets as an input (gk, [(0°)?™]1, [(0%)72,]2) and runs A(gk, [(0°)?™]1, [0]2)
to get the output [v]y and U. Let us define polynomials V;(Xy) := U; 1+ U, 2+ Xp
for i € [1..n + 1] which in particular satisfies V;(0) = v;. Similarly for the
expression >, 0% -v; 41 we define a polynomial V (Xp) := >, X5°- Vit1(Xop)
such that if A wins then V() = 0. Adversary B will abort if A either outputs an
incorrect representation U or loses the n-GapKerMDH game. Otherwise B finds
roots of V(Xy) (can be done efficiently), and returns the one which matches [6];.

Finding roots of V(Xjy) is only possible if V(Xjy) is a non-zero polynomial,
but it is easy to see that this is always the case if A wins. We may express

V(Xy) = ZX(;% “(Uig11 +Uiz12- Xo) = Z Ui+1,1X02i + Z Uit1,2 - Xgiﬂ'
i=0 i=0 i=0

So if V(Xy) = 0 then U = 0 and therefore v = 0 which contradicts A winning.
It follows that B can break the (2n)-PDL assumption with probability €gqp. O

Theorem 5 (Security of shuffle argument). tFLSZ is perfectly complete
and perfectly zero-knowledge in the CRS model. If the permutation argument
is knowledge-sound and the n-GapKerMDH assumption holds, then tFLSZ is
sound.

Proof. Perfect Completeness. Can be straightforwardly verified by substituting
an honest proof to the verification equations.

Perfect Zero-Knowledge. We show that the simulator Sim in Fig. 8 outputs an
argument that has the same distribution as an argument output by an honest

686 A. Aggelakis et al.

prover. In both cases [(a;),]1, [(@:)"=!]1, and [s]; are uniformly randomly and

independently distributed group elements. Moreover, both honest and simulated
arguments have b; = q; for i € [1..n] and [a,]; = > AP — S 11 [Gi]1.
Elements [d]1, [e]1, [N]2 are now uniquely fixed by the verification equation and
the elements mentioned before. It is straightforward to check that the simulated
argument satisfies the verification equations. Thus the distributions are equal.

Soundness. Let Ag, be a PPT adversary that breaks soundness of the shuffle
argument with probability e4p,. Let Ay, be the adversary Ay, restricted only to
output ([(@;)71']1,Tper) and Exta,., be an arbitrary extractor such that Ay,
breaks knowledge-soundness of the permutation argument with probability ;.

We construct an adversary Ag,, against the n-GapKerMDH assumption that
on input (gk, [(09)27,]1,[f]2) proceeds as follows:

1. Sample y, 3,5, 0 — (]F*)4 and ske «—sF,. Set pk, < [1, ske].

2. Compute pk using [(67)2",]1, [0]2, and Y, 3, B, 0. In particular, notice that
[BPi(x) + BPi(0)1 = (BP;(x)) - [1h + B - [6*]s and [36%], = 3 [0*]:.
Sample 755, <—s RND(Asp) and run ([C, C'la, wsn) — Asn(gk, (pke, PK); 7s1)-
If V(gk, (pke, pk), ([Cl2, [C']2), Tsn) # 1, then abort. X

Parse my, = ([(dj)?:_ll]lvﬂpera 71'con)) and set [a,]1 — [30;1, Pi]l_Z;:11 (a1
Run (o,) < Exta,,, (gk, pk; 7sp).

If ([a]1, (0,T)) & Rper, then abort.

Set A € {0,1}"*" such that 4; ; = 1iff c71(i) =

Set [m]y <« Decg, ([Cl2), [m']2 « Decg, ([C']2), and []2 < Decg, ([N]2).

10. Return [v]y « (m’]>—A[m]>

[z]l2—#T [m]2

© XN oW

Let us analyse the success probability of Agqp. Let X be the event that A, wins,
i.e., there is no abort on Step 4, and for any permutation matrix P, we have
[m']s # P[m]s. Let Y be the event that Ay, wins, i.e., ([a]1,(0,F)) € Rper-
Firstly, consider the case that X happens and Y does not happen. Then in
particular: (i) Agp does not abort, (ii) A is a permutation matrix that satisfies

[a], = (ﬁ)T [1?]17 (iii) [m’] # A[m]s, and (iv) the verification equation [P]] e
[C’]2—[4]] ®[C]2 = [s]1epk.—[1]1 ®[N]3 is satisfied. By decrypting the ciphertexts

in the last equation, we get

[1
= [P]f o [m]; — [B]{ (;*) o [m]z +[1]1 # [2]:
=[P} o [m' — Am]; + [1]; o [z — # "m];

[

[]o—F " [m]2

=1 e (Tl) = (317 e vl
Since [m']s # A[m]s, then [v]y # [0,41]2 is a solution to the n-GapKerMDH
problem. Finally, we can express the success probability of Ay, as follows:

esh = Pr[X] =Pr[X AY]+Pr[X A Y] < Pr[Y]+ Pr[X A Y] < €per + €gap-

Since there exists an extractor Extg,,, such that e,., ~\ 0, it follows that
Esh S Eper + Egap A 0. a

A Non-interactive Shuffle Argument with Low Trust Assumptions 687

6 Zero-Knowledge in the BPK Model

We augment the prover in the BPK model with a key verification algorithm Vi
in Fig. 9 such that she outputs a proof only if the verification passes. Then we
prove that tFLSZ is nn-ZK in the BPK model with respect to the Vp algorithm.
Firstly, we show that each subverter that creates a valid public key (one that is
accepted by Vpk) will know the trapdoors. Let [td']; denote the vector in pk that

is Supposedly [X’ 9’ ﬂv Ba Q]l

Sim(gk, (pke, pk), td, ([C]2, [C']2)):
1. For ¢ =1 to n — 1: // commits to the identity permutation
(a) ’I‘i,ﬂ‘ <—$Fp; R
(b) [ai]1 < [Pi]1 + 4]]1, [bil2 < [Pil2 + ri[o]2; [as]1 < [Pi]1 + 7i[1]1;
2. rp —sFp; 7y — Zl PEiH
[an]s — [Palt + 7alo]1; [bul2 — [Pal2 + ralo]e; [an]y = 30, [Pl — 3005 (il
4. For i =1 ton: L
(a) [dis — [B°P; + BBP1 + 1:[B%)1 + 74[88)1;
(b) leilr < ri- (2([as]s + [Po]1) —rifo1) +[Qi/0i;
7 —sFp; [s]1 — 0" [P]y +7[1]1; [N]2 — (P +#)[C]2 — P[C']2 + 7 - pk,;
Tper < ([d]1, [a]1, [bl2, [e]1);
7. Return mgp «— ([(&i)zzll, s]1, [N]2, Tper)-

w

o o

Fig. 8. Simulator of tFLSZ

ok (gk, k) :
. Check that pk can be parsed as in Fig. 3 and that each element belongs to the
correct group.

<

2. Check that [g]1 # [0]1.

3. Check that [1]; @ [1]2 = [1]1 e [1]2 for ¢ € {x, 0,3, 3, o}.

4. Check that [1]7 = [1]1 e [1]2.

5. For i = 2 to 2n: check that [07], e [1]2 = [0°!], @ [f]2. // Note that P; = 6%
6. Check that [1]; e [8%]2 = [B]1 @ [8]2.

7. Check that [B%g]l e[l =[o1 e [ﬁQ]Q.

8. Check that [34]1 e [1]2 = [0]1 e [F]2.

9. Check that [1]1 e [86]2 = [B0]1 e [1]2-
10. Check that []_]1 ° [Po]z = [Poh ° [1]2.
11. For i =1 to n: check that

(a) [1]1 0 [Pi]2 = [P5]1 @ [1]2, . R
(b) [8°P; + BAP]1 o [1]z = [P ® [8%]2 + [Pi]1 o [B3]2,
(c) [((Pi+4 Poy)> = 1)/ol1 @ [g]2 = ([P + Pol1 ® [Pi + Pol2) — [1]r.

Fig. 9. The V,« algorithm of tFLSZ. For ease of presentation, the algorithm is described
as if the public key was already well-formed.

688 A. Aggelakis et al.

Lemma 2. Consider Vi in Fig. 9 and suppose the BDH-KE assumption holds.
Then, for any PPT subverter X, there exist a PPT extractor Extx such that,

Pr [(pk, auxx[td) « (X||Extx)(gk) : Vpi(gk, pk) = 1 A [td]y # [td']; C pk] ~» 0.

Proof. The proof is similar to Theorem 4 in [ABLZ17]. If V(gk, pk) = 1, then:
(i) Since Step 1 in Vpy is satisfied, there exist elements [td']; = [/, ', 3, B, 0
and [td"] = [x",0”,3", 5", 0")2 in pk that supposedly correspond to trapdoor
elements. (ii) By Step 3 [t/]; @ [1]2 = [1]1 ® [¢"]2 and therefore o/ = ", for ¢ €
{x, 0,0, B, o}. According to BDH-KE, there exists an extractor Ext, that outputs
! with overwhelming probability on the same random coins as X. Therefore, we
can construct Extx(r) by simply returning (Ext,(r)),ctd- O

Theorem 6. If BDH-KE assumption holds, then tFLSZ has statistical nn-ZK.

Proof. From Lemma 2, we know that for any PPT X, there exists an extractor
Extx that with overwhelming probability outputs the trapdoor td given that
Vpk(gk, pk) = 1. Let us show that if Vi« (gk, pk) = 1 and the extractor outputs
the correct td, then Sim(gk, pk,, pk,8,x) and P(gk, pke, pk,x;w) have the same
distribution for any x = ([C]a, [C']2), w = (0, t) in RS,

We analyse each element of the proof independently.

1. For i € [1..n — 1], G; is chosen independently and uniformly at random in
both distributions since 7; is picked uniformly at random. Moreover, in both
distributions @, = tsum — Z?;ll a; where tgy,, equals > " | P, in the honest
case. Hence, a,, also has the same distribution.

2. Since Step 2 in Vpy is satisfied, then p is non-zero. By similar reasoning as
in the previous step, a; is chosen independently and uniformly at random for
i € [1..n] in both distributions.

3. Given that Step 3 and Step 11a are satisfied in Vpy, then a; = b; for i € [1..n]
in both distributions.

4. Given that Steps 6, 7, 8, 9, 11b are satisfied, then the elements [3? 0], [ﬂﬁ]l,
and [3%P; + ﬁﬁpi]l, for i € [1..n], are well-formed (with respect to possibly
malformed values P; and 151) This is sufficient to show that d; = 5%a; + ﬁB&i
for i € [1..n] in both distributions. Hence, d; is uniquely determined by (3,
B, a; and a;.

5. Given that Steps 4, 10, and 1lc are satisfied, then [((P; + Py)? — 1)/g]1 is
well-formed (again, with respect to a possibly malformed P; and Fy). Given
this, we can verify that e; = ((a; + Py)?> — 1)/0 in both distributions.

6. In both distributions, s is chosen independently and uniformly at random
since 7 is picked uniformly at random.

7. Step 5 in Vi guarantees that P, =0%forie [1..n]. In that case, an honestly
generated proof will always satisfy the verification equation on Step 3 in Fig. 3.
Given that a, s and pk are fixed, then there is a unique value of N which
satisfies that equation, and the simulator picks that exact value N.

Hence the simulator’s output and the prover’s output have the same distribution.
Thus tFLSZ is nn-ZK. O

A Non-interactive Shuffle Argument with Low Trust Assumptions 689

7 Implementation

We have created a reference implementation® to validate the protocol. The imple-
mentation uses Python 3.5+ and covers: (i) the computation of the public key
(K in Fig. 3) together with the distributed key generation protocol (Fig.2), (ii)
the key verification algorithm Vo« (Fig.9), and (iii) proof generation and verifi-
cation (Fig. 3), along with the accompanying new unit vector argument (Fig.5)
and the permutation argument (Fig.6). It follows our exposition closely, except
for some of the local computations in the DKG protocol.

In particular, the complexity of computing polynomials [¢;(x)], (and other
related elements) from [x’], can be reduced from ©(n?) to ©(nlogn) scalar
multiplications using recursive procedures borrowed from FFT. This however
imposes the extra conditions that (n+1) | (p —1) and n+1 is a power of 2. The
current implementation uses a BN-256 curve’, where the only value of n > 1 such
that the conditions hold is n = 3. Work is in progress for moving to a different
curve where p—1 is divisible by a large power of two. Note, nevertheless, that the
correctness of the implementation, protocol testing, and verification of proofs is
independent of this, as the output of local computations are not affected, only
their efficiency.

The multi-party computation of the public key is performed among k peers
(bulletin board members) communicating via sockets (peers run the application
from different terminals). Roughly speaking, each peer computes and shares their
own part of the key with the rest, the final public key being the output of the
distributed procedure explained in Sect. 3.2. For simulation purposes, the initial
values for each peer, as well as their respective listening sockets, are derived from
a configuration file. The total number of exchanged messages is independent of
the number voters n and is equal to 9k(k — 1).

Acknowledgements. This work was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 653497 (project
PANORAMIX). Janno Siim was additionally supported by the Estonian Research
Council grant PRG49. Part of this work was done while Prastudy Fauzi was work-
ing at Aarhus University and was supported by: the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC); the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731583 (SODA).

References

[ABL+19a] Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: DL-
extractable UC-commitment schemes. In: Deng, R.H., Gauthier-Umaia,
V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 385—
405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-
2.19

5 The code is open source and available at https://github.com/grnet/lta_shuffle.
" As provided by OpenPairing, https://github.com/dfaranha/OpenPairing.

https://doi.org/10.1007/978-3-030-21568-2_19
https://doi.org/10.1007/978-3-030-21568-2_19
https://github.com/grnet/lta_shuffle
https://github.com/dfaranha/OpenPairing

690 A. Aggelakis et al.

[ABL+419b)

[ABLZ17]

[ALSZ18]

[BBH+19]

[BCG+15]

[BD17]

[BDG+13]

[BFS16]

[BG12]

[CGGMO0]

[Cha81]

[Dam92]

[DGP+19]

[FFHR19]

Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99-117. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_6
Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017.
LNCS, vol. 10626, pp. 3—-33. Springer, Cham (2017). https://doi.org/10.
1007,/978-3-319-70700-6_1

Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On QA-NIZK in
the BPK model. Cryptology ePrint Archive, Report 2018/877 (2018).
https://eprint.iacr.org/2018 /877

Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On
the (in)security of Kilian-based SNARGs. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019. LNCS, vol. 11892, pp. 522-551. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7_20

Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure
sampling of public parameters for succinct zero knowledge proofs. In:
2015 IEEE Symposium on Security and Privacy, pp. 287-304. IEEE Com-
puter Society Press, May 2015

Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings.
Cryptology ePrint Archive, Report 2017/334 (2017). http://eprint.iacr.
org/2017/334

Bitansky, N., et al.: Why “Fiat-Shamir for proofs” lacks a proof. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 182-201. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2_11

Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi,
T. (eds.) ASTACRYPT 2016. LNCS, vol. 10032, pp. 777-804. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_-26
Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of
a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 263-280. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4_17

Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: 32nd ACM STOC, pp. 235-244. ACM
Press, May 2000

Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84-88 (1981)

Damgard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445-456. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1_36

Daza, V., Gonzdlez, A., Pindado, Z., Rafols, C., Silva, J.: Shorter
quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11442, pp. 314-343. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17253-4_11

Faonio, A., Fiore, D., Herranz, J., Rafols, C.: Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications.
In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT 2019. LNCS, vol.
11923, pp. 159-190. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34618-8_6

https://doi.org/10.1007/978-3-030-23696-0_6
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://eprint.iacr.org/2018/877
https://doi.org/10.1007/978-3-030-36033-7_20
http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2017/334
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-34618-8_6
https://doi.org/10.1007/978-3-030-34618-8_6

A Non-interactive Shuffle Argument with Low Trust Assumptions 691

[FKL18]

[FL16]

[FLSZ17a]

[FLSZ17b]

[FLZ16]

[FS87]

[FS01]

[Fucl8]

[GJKR99]

[GKO3]

[GLOT]

[GOY4]

[GR16]

[Gro10]

Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and
its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 33—62. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96881-0_2

Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument
without random oracles. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol.
9610, pp. 200-216. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29485-8_12

Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based
shuffle argument. Cryptology ePrint Archive, Report 2017/894 (2017).
http://eprint.iacr.org/2017/894

Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based
shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017.
LNCS, vol. 10625, pp. 97-127. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70697-9_4

Fauzi, P., Lipmaa, H., Zajac, M.: A shuffle argument secure in the generic
model. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT 2016. LNCS,
vol. 10032, pp. 841-872. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6_28

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186-194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7_12

Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368-387. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_22
Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315-347. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed
key generation for discrete-log based cryptosystems. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 295-310. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48910-X 21

Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th FOCS, pp. 102-115. IEEE Computer Society Press,
October 2003

Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability.
In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 51-67.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2.4

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptol. 7(1), 1-32 (1994)

Gonzdlez, A., Rafols, C.: New techniques for non-interactive shuffle and
range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 427-444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39555-5_23

Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J.
Cryptol. 23(4), 546-579 (2010)

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-29485-8_12
https://doi.org/10.1007/978-3-319-29485-8_12
http://eprint.iacr.org/2017/894
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-319-39555-5_23

692

A. Aggelakis et al.

[Lip12]

[LZ13]

[MRV16]

[Nao03]

[TW10]

[Wee07]

Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169-189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9_10

Lipmaa, H., Zhang, B.: A more efficient computationally sound non-
interactive zero-knowledge shuffle argument. J. Comput. Secur. 21(5),
685-719 (2013)

Morillo, P., Rafols, C., Villar, J.L.: The Kernel matrix Diffie-Hellman
assumption. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT 2016. LNCS,
vol. 10031, pp. 729-758. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6_27

Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96-109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_6

Terelius, B., Wikstrom, D.: Proofs of restricted shuffles. In: Bernstein,
D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
100-113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12678-9_7

Wee, H.: Lower bounds for non-interactive zero-knowledge. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 103-117. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7_6

https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-540-70936-7_6

	A Non-interactive Shuffle Argument with Low Trust Assumptions
	1 Introduction
	2 Preliminaries
	2.1 FLSZ Shuffle Argument

	3 Distributed Key Generation Protocol
	3.1 Verification-Friendly Public Key
	3.2 DKG Protocol for Verification-Friendly Keys

	4 Transparent Shuffle Argument
	5 Security in the CRS Model
	6 Zero-Knowledge in the BPK Model
	7 Implementation
	References

