
Stanislaw Jarecki (Ed.)
LN

CS
 1

20
06

The Cryptographers’ Track at the RSA Conference 2020
San Francisco, CA, USA, February 24–28, 2020
Proceedings

Topics in Cryptology –
CT-RSA 2020

Lecture Notes in Computer Science 12006

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Stanislaw Jarecki (Ed.)

Topics in Cryptology –

CT-RSA 2020
The Cryptographers’ Track at the RSA Conference 2020
San Francisco, CA, USA, February 24–28, 2020
Proceedings

123

Editor
Stanislaw Jarecki
University of California
Irvine, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-40185-6 ISBN 978-3-030-40186-3 (eBook)
https://doi.org/10.1007/978-3-030-40186-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40186-3

Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts several hundred
vendors and over 40,000 participants from industry, government, and academia. Since
2001, the RSA conference has included the Cryptographer’s Track (CT-RSA), which
provides a forum for current research in cryptography.

This volume represents the proceedings of the 2020 convening of the RSA
Conference Cryptographer’s Track, which was held at Moscone Center, San Francisco,
California, during February 24–28, 2020.

As chair of the Program Committee, I would like to thank all the authors who
contributed the results of their innovative research. My appreciation also goes to all the
members of the Program Committee and their designated external reviewers, who
carefully read and reviewed all of the submissions.

A total of 95 submissions were received for review, of which 28 papers were
selected for presentation and publication. The selection process was a difficult task
since there were many more high quality submissions than we could accept. The
submissions were anonymous, and each submission was assigned to at least three
reviewers (four if the paper included a Program Committee member as an author). The
review and selection process was carried out with great care and transparency, and I am
thankful to all Program Committee members for participating in discussions and giving
valuable feedback to the authors of the submitted papers. I am also grateful to the
Program Committee members who put in their time to shepherd some of the
submissions.

The submission and review process, as well as the editing of the final proceedings,
were greatly simplified by the webreview software written by Shai Halevi, which we
used by the permission of the International Association for Cryptologic Research
(IACR). Shai assisted us whenever we had any question about this software, and I
would like to thank him for his generous support throughout the entire process. My
sincere thanks go also to Ms. Christine Reiss from Springer Verlag and everyone on
her team for their assistance in preparing and producing these proceedings.

Last but not least, on behalf of all CT-RSA participants I would like to thank
Ms. Ashley Sutton who served as an RSA Conference liaison to the Cryptographer’s
Track. In this capacity, Ashley essentially played the role of a General Chair for the
CT-RSA conference, and we are very grateful to her for all the work she did in
organizing this conference and making it run smoothly.

February 2020 Stanislaw Jarecki

Organization

Program Chair

Stanisław Jarecki University of California, Irvine, USA

Program Commitee

Masayuki Abe NTT Secure Platform Laboratories, Japan
Shi Bai Florida Atlantic University, USA
Paulo Barreto University of Washington, USA
Josh Benaloh Microsoft Research, USA
Olivier Blazy Université de Limoges, France
Jeremiah Blocki Purdue University, USA
Chris Brzuska Aalto University, Finland
David Cash University of Chicago, USA
Dario Catalano University of Catania, Italy
Jung Hee Cheon Seoul National University, South Korea
Céline Chevalier Université Panthéon-Assas Paris 2, France
Sherman S. M. Chow Chinese University of Hong Kong, Hong Kong, China
Pooya Farshim University of York, UK
Rosario Gennaro The City University of New York, USA
Goichiro Hanaoka AIST, Japan
Helena Handschuh Rambus Cryptography Research, USA
Marc Joye OneSpan, Belgium
Vlad Kolesnikov Georgia Tech, USA
Tancrède Lepoint Google, USA
Anna Lysyanskaya Brown University, USA
Mitsuru Matsui Mitsubishi Electric, Japan
David Naccache ENS/PSL, France
Svetla Nikova KU Leuven, Belgium
Jiaxin Pan Norwegian University of Science and Technology

(NTNU), Norway
Kenneth Paterson ETH Zurich, Switzerland
Ludovic Perret CryptoNext Security, France
Bertram Poettering IBM Research, Switzerland
David Pointcheval CNRS and ENS/PSL, France
Bart Preneel KU Leuven, Belgium
Alexander Russell University of Connecticut, USA
Rei Safavi-Naini University of Calgary, Canada
Victor Shoup New York University, USA
Nigel Smart KU Leuven, Belgium
Martijn Stam Simula UiB, Norway

Michael Walter IST Austria, Austria
Hong-Sheng Zhou Virginia Commonwealth University, USA

External Reviewers

Thomas Agrikola
Yusuke Aikawa
Younes Talibi Alaoui
Tomer Ashur
Matilda Backendal
Josep Balasch
Carsten Baum
Arthur Beckers
Olivier Blazy
Estuardo Alpirez Bock
Carl Bootland
Cecilia Boschini
Hervé Chabanne
Yilei Chen
Wonhee Cho
Jérémy Chotard
Jean Paul Degabriele
Siemen Dhooghe
Jesus Diaz
Benjamin Dowling
Francois Dupressoir
Sabyasachi Dutta
Keita Emura
Mia Filic
Georg Fuchsbauer
Irene Giacomelli
Kristian Gjøsteen
Lorenzo Grassi
Vincent Grosso
Johann Großschädl
Aurore Guillevic
Thomas Haines
Mike Hamburg
Ben Harsha
Kenichiro Hayasama
Annelie Heuser
Seungwan Hong
Chloé Hébant
Ilia Iliashenko

Yanxue Jia
Dongwoo Kim
Jaeyoon Kim
Jaeyun Kim
Jiseung Kim
Sumin Kim
Lisa Kohl
Jooyoung Lee
Keewoo Lee
Seungbeom Lee
Seunghoon Lee
Shuai Li
Lin Lyu
Jack P. K. Ma
Varun Maram
Giorgia Azzurra Marson
Mark Marson
Takahiro Matsuda
Bart Mennink
Nele Mentens
Lauren De Meyer
Michael Meyer
Brice Minaud
Hiraku Morita
Elke De Mulder
Yusuke Naito
Tran Ngo
Ngoc Khanh Nguyen
Miyako Ohkubo
Michele Orrù
Rafail Ostrovsky
Clara Paglialonga
Duong Hieu Phan
Thomas Prest
Emmanuel Prouff
Chen Qian
Yuan Quan
Mario Di Raimondo
Adrian Ranea

viii Organization

Mélissa Rossi
Paul Rösler
Yusuke Sakai
Simona Samardjiska
Paolo Santini
Jacob C. N. Schuldt
Gregor Seiler
Jae Hong Seo
Setareh Sharifian
Kyung-Ah Shim
Tjerand Silde
Azam Soleimanian
Yongha Son
Daisuke Suzuki
Katsuyuki Takashima
Phuc Thai
Elmar Tischhauser

Mike Tunstall
Furkan Turan
Muni Venkateswarlu
Fre Vercauteren
Benedikt Wagner
Xiuhua Wang
Yuyu Wang
Lennert Wouters
Yanhong Xu
Shota Yamada
Kyosuke Yamashita
Michal Zajac
Wuwei Zhang
Yongjun Zhao
Ko Stoffelen
Khoa Nguyen

Organization ix

Contents

Generic Attack on Iterated Tweakable FX Constructions 1
Ferdinand Sibleyras

Universal Forgery Attack Against GCM-RUP. 15
Yanbin Li, Gaëtan Leurent, Meiqin Wang, Wei Wang, Guoyan Zhang,
and Yu Liu

My Gadget Just Cares for Me - How NINA Can Prove Security Against
Combined Attacks. 35

Siemen Dhooghe and Svetla Nikova

Modeling Memory Faults in Signature and Authenticated
Encryption Schemes . 56

Marc Fischlin and Felix Günther

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 85
Morten Øygarden, Patrick Felke, Håvard Raddum, and Carlos Cid

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 106
Jihoon Kwon, Byeonghak Lee, Jooyoung Lee, and Dukjae Moon

Extending NIST’s CAVP Testing of Cryptographic Hash
Function Implementations . 129

Nicky Mouha and Christopher Celi

A Fast Characterization Method for Semi-invasive Fault Injection Attacks . . . 146
Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher,
and Stjepan Picek

Tightly Secure Two-Pass Authenticated Key Exchange Protocol
in the CK Model. 171

Yuting Xiao, Rui Zhang, and Hui Ma

Symmetric-Key Authenticated Key Exchange (SAKE) with Perfect
Forward Secrecy . 199

Gildas Avoine, Sébastien Canard, and Loïc Ferreira

TMPS: Ticket-Mediated Password Strengthening. 225
John Kelsey, Dana Dachman-Soled, Sweta Mishra,
and Meltem Sönmez Turan

Overdrive2k: Efficient Secure MPC over Z2k from Somewhat
Homomorphic Encryption . 254

Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren

SoK: A Consensus Taxonomy in the Blockchain Era. 284
Juan Garay and Aggelos Kiayias

Consensus from Signatures of Work . 319
Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos

Faster Homomorphic Encryption is not Enough: Improved Heuristic
for Multiplicative Depth Minimization of Boolean Circuits. 345

Pascal Aubry, Sergiu Carpov, and Renaud Sirdey

Better Bootstrapping for Approximate Homomorphic Encryption 364
Kyoohyung Han and Dohyeong Ki

Improved Secure Integer Comparison via Homomorphic Encryption 391
Florian Bourse, Olivier Sanders, and Jacques Traoré

Efficient FPGA Implementations of LowMC and Picnic 417
Daniel Kales, Sebastian Ramacher, Christian Rechberger,
Roman Walch, and Mario Werner

Traceable Ring Signatures with Post-quantum Security 442
Hanwen Feng, Jianwei Liu, Qianhong Wu, and Ya-Nan Li

Post-quantum Provably-Secure Authentication and MAC
from Mersenne Primes. 469

Houda Ferradi and Keita Xagawa

Another Look at Some Isogeny Hardness Assumptions 496
Simon-Philipp Merz, Romy Minko, and Christophe Petit

How to Construct CSIDH on Edwards Curves . 512
Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi

Policy-Based Sanitizable Signatures. 538
Kai Samelin and Daniel Slamanig

Traceable Inner Product Functional Encryption . 564
Xuan Thanh Do, Duong Hieu Phan, and David Pointcheval

One-More Assumptions Do Not Help Fiat-Shamir-type Signature
Schemes in NPROM . 586

Masayuki Fukumitsu and Shingo Hasegawa

Cut-and-Choose for Garbled RAM . 610
Peihan Miao

xii Contents

Universally Composable Accumulators . 638
Foteini Badimtsi, Ran Canetti, and Sophia Yakoubov

A Non-interactive Shuffle Argument with Low Trust Assumptions 667
Antonis Aggelakis, Prastudy Fauzi, Georgios Korfiatis, Panos Louridas,
Foteinos Mergoupis-Anagnou, Janno Siim, and Michał Zając

Author Index . 693

Contents xiii

Generic Attack on Iterated Tweakable
FX Constructions

Ferdinand Sibleyras(B)

Inria, Paris, France
ferdinand.sibleyras@inria.fr

Abstract. Tweakable block ciphers are increasingly becoming a com-
mon primitive to build new resilient modes as well as a concept for mul-
tiple dedicated designs. While regular block ciphers define a family of
permutations indexed by a secret key, tweakable ones define a family of
permutations indexed by both a secret key and a public tweak. In this
work we formalize and study a generic framework for building such a
tweakable block cipher based on regular block ciphers, the iterated tweak-
able FX construction, which includes many such previous constructions
of tweakable block ciphers. Then we describe a cryptanalysis from which
we can derive a provable security upper-bound for all constructions fol-
lowing this tweakable iterated FX strategy. Concretely, the cryptanalysis
of r rounds of our generic construction based on n-bit block ciphers with
κ-bit keys requires O(2

r
r+1 (n+κ)) online and offline queries. For r = 2

rounds this interestingly matches the proof of the particular case of XHX2
by Lee and Lee (ASIACRYPT 2018) thus proving for the first time its
tightness. In turn, the XHX and XHX2 proofs show that our generic crypt-
analysis is information theoretically optimal for 1 and 2 rounds.

Keywords: Tweakable · Block cipher · Provable security · FX ·
Cryptanalysis · Optimality · XHX2

1 Introduction

Tweakable block ciphers have been the focus of many recent works in the field of
symmetric cryptography as it provides a very interesting flexibility compared to
regular block ciphers. Formally, a block cipher is defined as a family of permu-
tations indexed by a secret key, thus an n-bit block cipher E indexed by a κ-bit
key is an application E : {0, 1}κ ×{0, 1}n → {0, 1}n. Whereas a tweakable block
cipher is a family of permutations indexed by both a secret key and a public
tweak, thus an n-bit tweakable block cipher Ẽ indexed by a κ̃-bit secret key and
a τ -bit public tweak is an application Ẽ : {0, 1}κ̃ × {0, 1}τ × {0, 1}n → {0, 1}n.
They have been formalized by Liskov, Rivest and Wagner [LRW11].

On the other hand, regular block ciphers benefit from a longer history of
research which gave birth to many designs and implementations notably includ-
ing the DES [DES77] and the AES [AES01]. Therefore a natural question is:

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-40186-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_1

2 F. Sibleyras

how can we build a tweakable block cipher out of regular block ciphers? In
fact this line of study inspired new modes of operations like OCB [RBBK01]
and PMAC [BR02] that benefits from a relatively easy two-step proof: first we
show that the main construction is secure when used along with a tweakable
block cipher then we construct such tweakable block cipher with a regular block
cipher to fully describe the mode. A first approach can be to append a tweak
with the secret key such that the concatenation becomes the effective key to the
regular block cipher. Given security under related key attacks this can work but
at the cost of security: the size of the secret key will have to be reduced to make
space for the tweak.

To go around this limitation Liskov et al. described two constructions LRW1
and LRW2 [LRW11]. In particular LRW2 is somehow remindful of the FX con-
struction that adds an n-bit key before the input and another after the output
of the underlying block cipher. The FX construction has been proposed by Kil-
lian and Rogaway [KR96] in a different context: they investigated DESX, an
easy solution to protect DES against an exhaustive key search. FX consists in
adding one n-bit subkey before and another one after the block cipher. With such
strategy they proved that the time complexity of the best generic cryptanalysis
goes from O(2κ) to O(2κ+n/D) where D is the data or online query complexity.
The FX construction has since been notably used in PRINCE [BCG+12] and
PRIDE [ADK+14]. We can naturally iterate r rounds of the FX construction
which requires to have r κ-bit subkeys along with (r + 1) n-bit subkeys. Then
the idea to build a tweakable block cipher is to blend the tweak and the master
key together in a predefined key schedule to obtain all the required subkeys for
the computation.

1.1 Notations

First we formally describe the r-round tweakable iterated FX construction
(Fig. 2) on which our results apply. Let E1,2,...,r(u, ·) be r block ciphers with
κ-bit key u and n-bit input and output. Let k be the κ̃-bit master key of the
tweakable block cipher construction. Let t be a tweak of arbitrary length. Let
γi(k, t) be the subkey for the ith block cipher of length κ-bit for 1 ≤ i ≤ r and
λi(k, t) the n-bit subkeys to XOR in the state for 0 ≤ i ≤ r. For example the
r = 2-round tweakable FX construction (Fig. 1) Ẽk(t,m) is described as:

Ẽk(t,m) = E2

(
γ2(k, t), E1

(
γ1(k, t),m ⊕ λ0(k, t)

)
⊕ λ1(k, t)

)
⊕ λ2(k, t)

We will focus on generic key recovery attacks. The goal of the cryptanalysis of
Ẽk(t,m) is to recover k by doing offline queries to E1,2,...,r(·, ·) and online queries
to Ẽk(·, ·). We don’t count the number of calls to the γ and λ functions generating
the subkeys as queries because we don’t assume any security property for them.
In fact it is common for the subkeys to assume some almost uniformity, almost
universality or almost XOR-universality property with respect to the tweak (See
Definition 1). This makes the analysis proper for most of the constructions we cite

Generic Attack on Iterated Tweakable FX Constructions 3

except for F̃ [2] by Mennink [Men15] which can be seen as a 1-round tweakable
FX where the subkey functions reuse the block cipher itself.

Definition 1. Let δ > 0 and a function λ : K × T → Y for non-empty sets
K, T ,Y.

– λ(k, t) is said to be δ-almost uniform if for any t ∈ T and any y ∈ Y,

Pr
(
k ←$ K : λ(k, t) = y

)
≤ δ .

– λ(k, t) is said to be δ-almost universal (AU) if for any distinct t and t′ ∈ T ,

Pr
(
k ←$ K : λ(k, t) = λ(k, t′)

)
≤ δ .

– λ(k, t) is said to be δ-almost XOR-universal (AXU) if for any distinct t and
t′ ∈ T and any y ∈ Y,

Pr
(
k ←$ K : λ(k, t) ⊕ λ(k, t′) = y

)
≤ δ .

While our results do not depend on the repartition of the tweak space, having
arbitrary long tweaks is justified by the XTX transformation of Minematsu and
Iwata [MI15]. Indeed XTX transforms a tweakable block cipher with a tweak of
limited length to one with a tweak of arbitrary length without, in our case,
affecting the general iterated tweakable FX structure as it simply affects the
subkey functions.

Fig. 1. 2-Round tweakable FX.

1.2 Previous Works

In the same paper where they formalize the concept of tweakable block ciphers,
Liskov, Rivest and Wagner proposed two constructions often known as LRW1
and LRW2 [LRW11]. LRW1 consists in adding the tweak between two calls of
the block cipher while LRW2 evaluates a keyed universal hash function on the
tweak and adds it twice: before the input and after the output of the block
cipher. These modes are described as Ẽk(t,m) = Ek(t⊕Ek(m)) and Ẽk(t,m) =
Ek(m⊕h(t))⊕h(t) respectively with the requirement that h be an almost XOR-
universal function. They also provide security proofs roughly up to 2n/2 for both

4 F. Sibleyras

schemes. Matching attacks on LRW1 and LRW2 are trivial as they both allow
for an easy distinguisher after the first collision at the birthday bound. Other
constructions of tweakable block cipher related to LRW2 include XE and XEX by
Rogaway [Rog04] and used in the OCB mode of operation.

In the quest for optimal security Mennink proposed the constructions F̃ [1]
and F̃ [2] [Men15]. The latter reaches a provable security of 2n queries which
is the optimal security in the standard model for regular block ciphers. Other
works tried to build a tweakable block cipher based solely on public permutations
in the style of Even-Mansour [EM93]. Such tweakable block ciphers includes
TEM [CLS15] and XPX [Men16] that are also subject to a tight birthday bound
security of O(2n/2). Then Jha, List, Minematsu, Mishra and Nandi described
a framework called XHX [JLM+17] and proved its security up to 2(n+κ)/2. They
also describe generalised XHX, GXHX. In particular this means that a provable
security beyond 2n is reachable but in the ideal cipher model where rekeying is
possible. This framework uses a single-round FX framework where all 3 subkeys
are derived from a universal hash function on the secret master key and an
arbitrarily long tweak.

So far, with the exception of GXHX, the proofs of all schemes cited can be
shown to be tight. However, things become more involved when trying to iterate
those constructions. Landecker et al. [LST12] proposed to iterate two indepen-
dent evaluations of LRW2 and proved a security up to 22n/3 queries. An attack
on cascaded LRW2 (or CLRW2) has been later proposed by Mennink [Men18] in
query complexity O(23n/4) not completely closing the gap. Then, recently, Lee
and Lee proposed XHX2 [LL18] by iterating two independent rounds of XHX. They
managed to prove a query security lower bound of min{2 2

3 (n+κ), 2n+κ/2} and left
the tightness of this bound as an open question which we will be able to answer
positively in this work.

On the other hand, a generic cryptanalysis of the r-round iterated FX con-
struction has already been made with the original attack by Gaži [Gaž13] in
query complexity O(2

r−1
r n+κ). Obviously this attack can be used against our

tweakable version when we fix the tweak to a single value. As it is written, the
attack starts by querying all the code books of the secret cipher that makes
the maximum possible 2n calls. However this natural limitation of regular block
ciphers has no ground in the presence of tweaks. Much like one can have security
proofs beyond 2n calls, one could attack a tweakable cipher using more than 2n

tweak/plaintext/ciphertext triples.

1.3 Results

Our generic iterated tweakable FX framework is pertinent to all cited construc-
tions as shown in Table 1. Using a single-round FX to blend in the tweak is the
most common approach and may be considered as well understood. However
there seem to be additional security to be gained in iterating those construc-
tions. Some works [LST12,LL18] tend to do and prove just that. The focus on 2
rounds is justified by the fact that we don’t know of any constructions based on

Generic Attack on Iterated Tweakable FX Constructions 5

Table 1. Some previously proposed schemes and description of how it fits in our
iterated tweakable FX generic framework. Multiplications (×) are over the finite field
GF(2n).

Ref. Scheme r Subkey functions

[LRW11] LRW2 1 λ0(k, t) = λ1(k, t) a uniform and AXU function.
γ1(k, t) = k

[Men15] F̃ [1] 1 λ0(k, t) = λ1(k, t) = t × k γ1(k, t) = t ⊕ k

[Men15] F̃ [2] 1 λ0(k, t) = λ1(k, t) = E1(2 × k, t) γ1(k, t) = t ⊕ k

[Men16] XPX 1 κ = 0 so E1(·, m) = P (m) t = t11 ‖ t12 ‖ t21 ‖ t22

λ0(k, t) = t11k ⊕ t12P (k) λ1(k, t) = t21k ⊕ t22P (k)

[JLM+17] XHX 1 γ1(k, t) a uniform and AU function.
λ0(k, t) = λ1(k, t) a uniform and AXU function.

[LRW11] LRW1 2 λ0(k, t) = λ2(k, t) = 0 λ1(k, t) = t

γ1(k, t) = γ2(k, t) = k

[LST12] CLRW2 2 λ0(k, t) and λ2(k, t) two uniform and AXU functions.
λ1(k, t) = λ0(k, t) ⊕ λ2(k, t) γ1(k, t) = γ2(k, t) = k

[LL18] XHX2 2 γ1(k, t) and γ2(k, t) two uniform and AU functions.
λ0(k, t) and λ2(k, t) two uniform and AXU functions.
λ1(k, t) = λ0(k, t) ⊕ λ2(k, t)

block ciphers using more than 2 rounds and the single-round ones mostly have
already well understood matching attacks (Table 2). However we believe it is also
interesting to know what kind of security bounds we might hope to achieve by
iterating even further.

So in this paper we ask ourselves what is the best security bound attain-
able when using the iterated FX paradigm for building tweakable block ciphers
from regular block ciphers. To do this we improve on the attack described by
Gaži [Gaž13] to apply it in the tweakable block cipher setting.

First we show an information theoretic attack for r = 2 rounds when κ ≤ 2n
with offline and online query complexity of:

Q = O(2
2
3 (n+κ) · 3

√
κ̃/n) .

Note that Q = O(2
2
3 (n+κ)) under the reasonable assumption that the size of the

master secret key is linear with respect to the state size, that is, κ̃ = O(n).
The recent construction XHX2 by Lee and Lee [LL18] is a particular case of

our setting where λ1(k, t) = λ0(k, t) ⊕ λ2(k, t). Their provable security bound
is 2

2
3 (n+κ) whenever κ ≤ 2n and therefore matches our attack. Thus our results

prove the tightness of their bound and their bound proves the optimality of the
attack.

6 F. Sibleyras

We then extend the attack to multiple rounds of the same construction. This
gives an attack on r rounds when κ ≤ rn with query complexity:

Q = O(2
r

r+1 (n+κ) · r+1
√

κ̃/n) .

Again note that Q = O(2
r

r+1 (n+κ)) under the assumption that κ̃ = O(n).

Table 2. Some previously proposed schemes with their known asymptotic bounds.

Ref. Scheme r Proof Known attack Our generic attack

[LRW11] LRW2 1 2n/2 2n/2 2
1
2 (n+κ)

[Men15] F̃ [1] 1 2
2
3 n 2n 2n (as κ = n)

[Men16] XPX 1 2n/2 2n/2 2n/2 (as κ = 0)
[JLM+17] XHX 1 2

1
2 (n+κ) 2

1
2 (n+κ) 2

1
2 (n+κ)

[JLM+17] GXHX 1 2
1
2 (n+κ) none 2

1
2 (n+κ)

[Men15] F̃ [2] 1 2n 2n N.A.
[LRW11] LRW1 2 2n/2 2n/2 2

2
3 (n+κ)

[LST12] CLRW2 2 22n/3 23n/4 2
2
3 (n+κ)

[LL18] XHX2 2 2
2
3 (n+κ) none 2

2
3 (n+κ)

2 Cryptanalysis of 2-Round Tweakable FX

In this section we give an algorithm to extract the master key of a 2-round
tweakable FX construction, Algorithm 1, then we show how it works by deriving
the constants used and thus deriving the total query complexity.

2.1 The Algorithm

This cryptanalysis of Algorithm 1 is a key recovery attack and follows the idea
of the original cryptanalysis by Gaži [Gaž13]: we want just enough data to con-
struct contradictory paths for each wrong key. First we do all the required offline
computations under all possible κ-bit key. Input values are the sets S1 and S2

which can be chosen randomly and the input/output pairs under the key j are
stored in Lj,1 and Lj,2 for E1 and E2 respectively. Then we store all observable
tweak/plaintext/ciphertext triples in L0. We don’t need to choose the set S0 of
inputs to the tweakable block cipher as the attack works in the known plaintext
setting. At last we can test all the κ-bit keys; potential master keys k only using
the stored values by reconstructing the paths round by round.

Indeed sets A and B reconstruct the paths under the current key guess and
the condition ∀(t,m, b) ∈ B : (t,m, b ⊕ γ5(k, t)) ∈ L0 is checking whether there
is a contradictory path (if not satisfied) or not (if satisfied). The additional
condition |B| ≥ ν is simply here to ensure a good reduction.

Generic Attack on Iterated Tweakable FX Constructions 7

For completeness we provide Algorithm 2 to show how to construct the sets A
and B. To construct A is to apply Algorithm 2 with inputs S0,Lγ1(k,t),1, λ0(k, t).
It is basically looking over all elements of the first set and checking if a shifted
version of a value exists somewhere in the second set then, if found, it records
the starting and ending values.

The constants ν and Q are derived in Sect. 2.2 and the algorithm already
ensures that the total query complexity is of magnitude Q. Indeed once we
construct the sets Lj,i and L0 we will have all the necessary queries to perform
the attack. Since |Lj,i| = |Si| = Q/2κ and there are 2κ different possible subkeys
then the total number of queries to E1 and E2 is Q. Then we also construct L0

so the number of online queries will also be |L0| = |S0| = Q.

Algorithm 1. Cryptanalysis of 2-round tweakable FX construction.
Input: κ̃, n, κ ≤ 2n, Ẽ, E1, E2, γ1, γ2, λ0, λ1, λ2

Output: k : the master key of Ẽ
ν ← κ̃/n

Q ← 2
2
3 (n+κ) · 3

√
ν � Constants derived in Section 2.2

Randomly sample S1 ⊂ {0, 1}n with |S1| = Q/2κ = 2
2n−κ

3 3
√

ν .
Randomly sample S2 ⊂ {0, 1}n with |S2| = Q/2κ = 2

2n−κ
3 3

√
ν .

for all j ∈ {0, 1}κ do
Lj,1 ← {(

m, E1(j, m)
)
: m ∈ S1

}

Lj,2 ← {(
m, E2(j, m)

)
: m ∈ S2

}
� Offline Queries Sets

end for

Let S0 ⊂ {0, 1}∗ × {0, 1}n with |S0| = Q be an observable tweak/message set.
L0 ← {(

t, m, Ẽ(t, m)
)
: (t, m) ∈ S0

}
� Online Queries Set

for all k ∈ {0, 1}κ̃ do
A ← {(

t, m, a
)
: (t, m) ∈ S0, (m ⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

B ← {(
t, m, b

)
: (t, m, a) ∈ A, (a ⊕ λ1(k, t), b) ∈ Lγ2(k,t),2

}
� by Algorithm 2

if |B| ≥ ν and ∀(t, m, b) ∈ B : (t, m, b ⊕ λ2(k, t)) ∈ L0 then
return k

end if
end for
return ∅ � No proper key in the set

2.2 Deriving the Constants

The Query Complexity. To derive the constant Q used in Algorithm 1 we first
focus on what happens when we guess the correct master key k. In that case
we want to make sure that |B| ≥ ν happens with good probability as the other
constraint is always true by construction of the scheme.

First let’s look at the set A:

A ←
{(

t,m, a
)
: (t,m) ∈ S0, (m ⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

8 F. Sibleyras

By construction there are Q values (t,m) ∈ S0 and, as S1 is chosen randomly
and independently, there is a |S1|/2n probability that (m ⊕ λ0(k, t)) ∈ S1 for
each (t,m) observed and thus that there exists an a such that (m⊕λ0(k, t), a) ∈
Lγ1(k,t),1. Therefore in expectation we have |A| = Q2/2n+κ.

We do the same reasoning for B:

B ←
{(

t,m, b
)
: (t,m, a) ∈ A, (a ⊕ λ1(k, t), b) ∈ Lγ2(k,t),2

}

to find that in expectation |B| = Q3/22n+2κ.

Algorithm 2. Set construction.
Input: S1, S2, �
Output: S3 ← {(

e, s3
)
: (e, s1) ∈ S1, (s1 ⊕ �, s3) ∈ S2

}

S3 ← ∅
for all (e, s1) ∈ S1 do

if ∃s3 : (s1 ⊕ �, s3) ∈ S2 then
S3 ← S3 ∪ {(e, s3)}

end if
end for
return S3

With some regularity assumptions, if |B| = ν in expectation then |B| ≥ ν
with constant probability. Therefore we put:

Q3/22n+2κ = ν =⇒ Q = 2
2
3 (n+κ) · 3

√
ν

The Number of Paths. The constant Q was derived so that we don’t have false
negatives, that is, we succeed with good probability when we guess the good key
k. Now we derive the constant ν so that we don’t have any false positive that
means the test fails with good probability for all the wrong guesses of k.

First notice that the fact that |B| = ν in expectation is true for all guesses of
k, good or wrong. If |B| < ν then the test fails as it should. If |B| ≥ ν then we need
to look at the second condition that is ∀(t,m, b) ∈ B : (t,m, b⊕λ3(k, t)) ∈ L0. If
the guess is wrong then for a given (t,m, b) ∈ B we have (b⊕λ3(k, t)) = Ẽ(t,m)
with a 2−n probability. Since |B| ≥ ν then the second condition is satisfied with
probability (2−n)ν = 2−ν·n. The test must fail for all the wrong guesses and
there are 2κ̃ − 1 such wrong guesses so all the tests should fail at least with
constant probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃ − ν · n ≤ 0 =⇒ ν ≥ κ̃/n

thus we take ν = κ̃/n.

Generic Attack on Iterated Tweakable FX Constructions 9

2.3 Constraints

For all of this to work there are some constraints that need to be spelled out.
First we require that:

1 ≤ |Si|
⇐⇒ 1 ≤ 2

2
3n− 1

3κ · 3
√

ν

⇐⇒ κ ≤ 2n + log(ν)

which limits to possible size of κ to a multiple of the state size n. Very few block
ciphers admit a key larger than 2n so this is not a strong limitation in practice.

We also need to have diverse tweakable subkeys. Indeed so far we did not
require that the functions γi(k, t) depends on t which means that the tweak can
be put, or not, at any stage of the construction but we still require that the
tweak changes something. Therefore we can deduce such requirement:

∀k ∈ {0, 1}κ̃ ∀(t,m) ∈ S0 ∀(t′,m′) ∈ S0 :
t �= t′ =⇒ ∃i : γi(k, t) �= γi(k, t′) OR λi(k, t) �= λi(k, t′)

which means that for every pairs of two different observed tweaks at least one of
the respective implied subkeys must be different. This condition mostly ensure
that this is a reasonable tweakable block cipher construction. Indeed in the case
where two tweaks imply the exact same subkeys then one can quickly realise
that it gets the same permutation for two different tweaks which is a near zero
probability event for a perfect tweakable block cipher and hence it’s a distin-
guisher.

3 Cryptanalysis of r-Round Tweakable FX

Starting from the attack of Sect. 2 we show how to generalise it to attack r ≥ 1
rounds of the same construction in Q = O(2

r
r+1 (n+κ) · r+1

√
κ̃/n) query com-

plexity. The strategy is the same, we begin by doing all the necessary queries
before reconstructing paths round by round to finally check whether there is a
contradictory path or not. This is Algorithm 3.

Fig. 2. r-Round tweakable FX.

10 F. Sibleyras

3.1 Constants and Complexity

The Query Complexity. We derive the constant Q used in Algorithm 3 in the
same way as we did for the 2-round version. First we focus on what happens
when we guess the correct master key k. In that case we want to make sure
that |B| ≥ ν happens with good probability as contradictory paths cannot exist
under the correct key.

Let’s look at the set A1:

A1 ←
{(

t,m, a
)
: (t,m) ∈ S0, (m ⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

Algorithm 3. Cryptanalysis of r-round tweakable FX construction.
Input: κ̃, n, κ ≤ rn, Ẽ, E1, E2, ..., Er, γ1, γ2, ..., γr, λ0, λ1, λ2, ..., λr

Output: k : the master key of Ẽ
1: ν ← κ̃/n

2: Q ← 2
r

r+1 (n+κ) · r+1
√

ν

3: for all i ∈ {1, ..., r} do
4: Randomly sample Si ⊂ {0, 1}n with |Si| = Q/2κ = 2

rn−κ
r+1 r+1

√
ν .

5: end for
6: for all j ∈ {0, 1}κ do
7: for all i ∈ {1, ..., r} do
8: Lj,i ← {(

m, Ei(j, m)
)
: m ∈ Si

}
� Offline Queries Sets

9: end for
10: end for

11: Let S0 ⊂ {0, 1}∗ × {0, 1}n with |S0| = Q be an observable tweak/message set.
12: L0 ← {(

t, m, Ẽ(t, m)
)
: (t, m) ∈ S0

}
� Online Queries Set

13: for all k ∈ {0, 1}κ̃ do
14: A1 ← {(

t, m, a
)
: (t, m) ∈ S0, (m ⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

15: for all i ∈ {2, ..., r} do
16: Ai ← {(

t, m, a
)
: (t, m, ā) ∈ Ai−1, (ā ⊕ λi−1(k, t), a) ∈ Lγi(k,t),i

}

17: end for � by Algorithm 2
18: if |Ar| ≥ ν and ∀(t, m, a) ∈ Ar : (t, m, a ⊕ λr(k, t)) ∈ L0 then
19: return k
20: end if
21: end for
22: return ∅ � No proper key in the set

By construction there are Q values (t,m) ∈ S0 and, as S1 is chosen randomly
and independently, there is a |S1|/2n probability that ∃a : (m ⊕ λ0(k, t), a) ∈
Lγ1(k,t),1 for all observed tweak/message pairs (t,m). Therefore, in expectation,
we have |A1| = Q2/2n+κ.

Then we can easily prove by induction that |Ai| = Qi+1/2i(n+κ) as it is true
for |A1| and |Ai+1| = |Ai| · |Si+1|/2n. Thus we get |Ar| = Qr+1/2r(n+κ).

Generic Attack on Iterated Tweakable FX Constructions 11

With some regularity assumptions, if in expectation |Ar| = ν then |Ar| ≥ ν
with constant probability. Therefore we put:

Qr+1/2r(n+κ) = ν =⇒ Q = 2
r

r+1 (n+κ) · r+1
√

ν

The Number of Paths. The constant Q was derived so that we avoid false negative
when we guess the good key k. Now we derive the constant ν to avoid false
positives.

If |Ar| < ν then the test fails as it should. If |Ar| ≥ ν then the second
condition is satisfied with probability (2−n)ν = 2−ν·n. The test must fail for
all the 2κ̃ − 1 wrong guesses so all the tests should fail at least with constant
probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃ − ν · n ≤ 0 =⇒ ν ≥ κ̃/n

thus we take ν = κ̃/n.
For all of this to work there are again some constraints. First we require that:

1 ≤ |Si|
⇐⇒ κ ≤ rn + log(ν)

which limits to possible size of κ to a multiple of the state size n.
Then we have the condition that the tweak changes something:

∀k ∈ {0, 1}κ̃ ∀(t,m) ∈ S0 ∀(t′,m′) ∈ S0 :
t �= t′ =⇒ ∃i : γi(k, t) �= γi(k, t′) OR λi(k, t) �= λi(k, t′)

Notice that this condition prevents the known matching attack on XHX. Indeed,
as for XHX r = 1 and λ0 = λ1, a collision on the full subkeys is expected after
trying O(2(n+κ)/2) different tweaks. Our attack has the same complexity and
also work on the generalised setting GXHX that doesn’t enforce λ0 = λ1. This
shows that the security cannot improve even if a collision on the full subkeys
is made hard by, for example, choosing many different subkey functions or by
using a mode of operation that limits the amount of different observable tweaks.

3.2 Discussion

Using Tweakable Block Ciphers. If instead of regular block ciphers we use tweak-
able block ciphers then it is not trivial to adapt this attack. Indeed we use the
fact that the master key and the tweak must be blended before computation
and not separately plugged in a tweakable block cipher. Such construction of a
tweakable block cipher based on another tweakable block cipher could be used
to increase security and/or the size of the tweak in a way that the original FX
construction builds a stronger block cipher from another block cipher. However
on the cryptanalysis side what can always be done is to fix a single tweak and
apply the original attack by Gaži [Gaž13] in query complexity O(2

r−1
r n+κ) or

O(2
r

r+1 (n+κ)) when κ ≤ n
r .

12 F. Sibleyras

Weaker Constructions. This attack is generic given any reasonable key schedule
represented by the λ and γ functions. However they are particular cases where
better attacks are possible. In particular the cascaded LRW2 construction is a
2-round tweakable FX construction where the key in the block cipher does not
vary with the tweaks (γ1 and γ2 don’t depend on t). This construction permits
an attack in O(2

3n
4) by Mennink [Men18] using only two different tweaks which

beats our generic attack as soon as κ > n
8 .

Tweak-Rekeying. In fact our generic attack being a key recovery attack it will
require at least 2κ calls to the underlying block cipher. As soon as k ≥ n this
implies a complexity above 2n. Mennink [Men17] showed that provable 2n secu-
rity is unattainable in the standard block cipher model used for the proofs of
schemes without tweak-rekeying. Therefore our generic attack can only hope to
be tight for schemes that use tweak-rekeying and thus that are proved in the
ideal block cipher model.

Key Recovery and Distinguisher. The fact that the complexity of this crypt-
analysis depends on the size of the master key, even if a little, makes it hardly
comparable to distinguishers that are independent of the master key size. Instead
of waiting for some bad event to occur we collect just enough information to com-
pletely determine the master key. In the case of XHX the known distinguisher has
the same asymptotic complexity but the widely different approaches make them
hard to combine: a bad event for the known distinguisher gives no information
on the master key. However for XHX2, and generally for r ≥ 2 rounds of the
tweakable FX construction proved in the ideal cipher model, it may well be the
case that a key recovery approach is more relevant than looking for a suitable
bad event for a distinguisher.

Towards Simplicity. The attack on generic 2-round tweakable FX is also tight
since Lee and Lee could prove with XHX2 [LL18] that we can reach this level of
security even when λ1(k, t) = λ0(k, t) ⊕ λ2(k, t) with some conditions on those
functions. Moreover the previously known matching attack on XHX [JLM+17]
exploited the fact that λ0(k, t) = λ1(k, t) but our generic attack shows that it
cannot be made more secure without this simplification. Another way to say it
is that enforcing λ0(k, t) = λ1(k, t) does not affect the provable security bound.

Using this iterated tweakable FX paradigm, one can therefore wonder how
much it is possible to simplify the subkey functions while maintaining an optimal
provable security with respect to the generic security upper bound shown in this
work.

Acknowledgement. The author would like to thank the 2018 Asian Symmetric Key
Workshop and Gaëtan Leurent for useful discussions. This work was partially supported
by the French DGA.

Generic Attack on Iterated Tweakable FX Constructions 13

References

[ADK+14] Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın,
T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_4

[AES01] Advanced Encryption Standard (AES). National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
November 2001

[BCG+12] Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive
computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34961-4_14

[BR02] Black, J., Rogaway, P.: A block-cipher mode of operation for paralleliz-
able message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-46035-7_25

[CLS15] Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
189–208. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47989-6_9

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce, January 1977

[EM93] Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASI-
ACRYPT 1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57332-1_17

[Gaž13] Gaži, P.: Plain versus randomized cascading-based key-length extension for
block ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 551–570. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4_30

[JLM+17] Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - a framework
for optimally secure tweakable block ciphers from classical block ciphers and
universal hashing. Cryptology ePrint Archive, Report 2017/1075 (2017).
https://eprint.iacr.org/2017/1075

[KR96] Kilian, J., Rogaway, P.: How to protect DES against exhaustive key
search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_20

[LL18] Lee, B.H., Lee, J.: Tweakable block ciphers secure beyond the birthday
bound in the ideal cipher model. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 305–335. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_11

[LRW11] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol.
24(3), 588–613 (2011)

[LST12] Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers
with beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5_2

[Men15] Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5_21

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-662-47989-6_9
https://doi.org/10.1007/978-3-662-47989-6_9
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-642-40041-4_30
https://doi.org/10.1007/978-3-642-40041-4_30
https://eprint.iacr.org/2017/1075
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/978-3-030-03326-2_11
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-662-48116-5_21

14 F. Sibleyras

[Men16] Mennink, B.: XPX: generalized tweakable even-mansour with improved
security guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 64–94. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4_3

[Men17] Mennink, B.: Insuperability of the standard versus ideal model gap for
tweakable blockcipher security. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 708–732. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0_24

[Men18] Mennink, B.: Towards tight security of cascaded LRW2. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 192–222. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_8

[MI15] Minematsu, K., Iwata, T.: Tweak-length extension for tweakable block-
ciphers. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_5

[RBBK01] Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode
of operation for efficient authenticated encryption. In: Reiter, M.K., Sama-
rati, P. (eds.) ACM CCS 2001, pp. 196–205. ACM Press, November 2001

[Rog04] Rogaway, P.: Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30539-2_2

https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-030-03810-6_8
https://doi.org/10.1007/978-3-319-27239-9_5
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2

Universal Forgery Attack Against
GCM-RUP

Yanbin Li1,2, Gaëtan Leurent3, Meiqin Wang1,2(B), Wei Wang1,2,
Guoyan Zhang1,2, and Yu Liu1,2

1 School of Cyber Science and Technology, Shandong University, Jinan, China
mqwang@sdu.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security
(Shandong University), Ministry of Education, Jinan, China

3 Inria, Paris, France

Abstract. Authenticated encryption (AE) schemes are widely used to
secure communications because they can guarantee both confidentiality
and authenticity of a message. In addition to the standard AE security
notion, some recent schemes offer extra robustness, i.e. they maintain
security in some misuse scenarios. In particular, Ashur, Dunkelman and
Luykx proposed a generic AE construction at CRYPTO’17 that is secure
even when releasing unverified plaintext (the RUP setting), and a con-
crete instantiation, GCM-RUP. The designers proved that GCM-RUP is
secure up to the birthday bound in the nonce-respecting model.

In this paper, we perform a birthday-bound universal forgery attack
against GCM-RUP, matching the bound of the proof. While there are
simple distinguishing attacks with birthday complexity on GCM-RUP,
our attack is much stronger: we have a partial key recovery leading to
universal forgeries. For reference, the best known universal forgery attack
against GCM requires 22n/3 operations, and many schemes do not have
any known universal forgery attacks faster than 2n. This suggests that
GCM-RUP offers a different security trade-off than GCM: stronger pro-
tection in the RUP setting, but more fragile when the data complexity
reaches the birthday bound. In order to avoid this attack, we suggest a
minor modification of GCM-RUP that seems to offer better robustness
at the birthday bound.

Keywords: GCM-RUP · Partial key recovery · Universal forgery ·
Birthday bound

1 Introduction

Authenticated encryption (AE) schemes aim to achieve both confidentiality and
authentication of the encapsulated data. The first AE schemes were designed
by combining a symmetric encryption scheme with a message authentication
code (MAC). The encryption scheme provides confidentiality while the message
authentication code ensures authenticity. Several generic composition schemes
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 15–34, 2020.
https://doi.org/10.1007/978-3-030-40186-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_2

16 Y. Li et al.

have been formalized and analyzed by Bellare and Namprempre [3]: Encrypt-
and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. Their analysis consid-
ers black-box composition, without specific details of the underlying symmetric
encryption scheme and MAC, in order to only focus on the security of the generic
composition at a high level. Their analysis shows that only the Encrypt-then-
MAC composition is generically secure.

Later, new AE modes have been proposed [11,18,30] to provide confiden-
tiality and authentication in a single scheme, which is more efficient than the
generic composition of conventional mechanisms. AE schemes are now widely
used in Internet protocols, and there is an ongoing effort to design and stan-
dardize new AE schemes with the recent CAESAR competition [35], and the
NIST lightweight standardisation effort [38] currently running. The design and
cryptanalysis of AE schemes is a very active topic in the cryptographic commu-
nity today.

One of the most widely used AE schemes today is the Galois/Counter mode
(GCM) [8,23], an AE scheme following the Encrypt-then-MAC paradigm. GCM
has been widely deployed thanks to its excellent software performance and hard-
ware support, and because there are no intellectual property restrictions to its
use. It has been standardized in TLS [7], ISO/IEC [37], NSA Suite B [39] and
IEEE 802.1 [36]. GCM encrypts data using a variation of the counter mode of
operation (CTR) which requires a single block cipher encryption per message
block, and does not need to perform block cipher decryption, even when decrypt-
ing the message. The ciphertext and associated data are authenticated with a
Wegman-Carter-Shoup authenticator, where the keyed universal hash function is
a polynomial evaluation over a binary Galois field. However, GCM is not robust
against implementation errors or misuse. In particular, if a nonce is used just
two times, the confidentiality and authentication for GCM are compromised with
Joux’s “forbidden attack” [17]. GCM also loses its security if a device releases
the plaintext corresponding to invalid ciphertext before verifying the tag. There-
fore, variants of GCM have been proposed to achieve some more robust security
notions.

In 2015, Gueron et al. presented GCM-SIV [12] combining GCM’s underlying
components with the SIV paradigm designed by Rogaway and Shrimpton [31], to
provide nonce-misuse resistance. Later, at CRYPTO’17, Ashur et al. introduced
a generic construction of AE scheme using a tweakable block cipher (TBC),
which resists attacks in the RUP setting [2] (with Release of Unverified Plain-
text). Based on the generic AE scheme, an instantiation GCM-RUP with high-
efficiency is put forward using AES-GCM’s components. The designers proved
that GCM-RUP is secure up to the birthday bound in the nonce-respecting
model and RUP setting. On the other hand, no attacks are known so far against
the authentication part of GCM-RUP. Therefore we do not know whether the
proof is tight, and we do not know what kind of security degradation to expect
after the birthday bound.

Universal Forgery Attack Against GCM-RUP 17

1.1 Contributions

In this paper we describe a universal forgery attack against GCM-RUP with
time and data complexity close to 2n/2, where n denotes the block size of the
underlying block cipher. This attack matches the security proof given in [2],
showing that it is tight. However, our main result is not only about tightness
of the (birthday) security bound, but rather about how badly the construction
of GCM-RUP breaks when the bound is reached: a universal forgery attack is
much stronger than a distinguishing attack.

This is significant because no similar attack is known against GCM: on the
one hand there are attacks with roughly

√
n×2n/2 queries and time 2n [20,22,26],

and on the other hand attacks with
√

n × 22n/3 queries and time n × 22n/3 [20].
Our results show that universal forgery attacks against GCM-RUP are easier
than against GCM, even though the security bounds from the proofs are similar,
and both proofs are known to be tight (with simple distinguishing attacks).

Our attack is based on the following techniques:

– We show that inner collisions in the authentication part of GCM-RUP can be
detected efficiently, and give out the output difference of the universal hash
function GHASHK2 ;

– Due to the structure of GHASH, we build a polynomial equation in K2, which
can be solved efficiently;

– Finally, when K2 is known, we can sign arbitrary messages. This defines a
universal forgery attack with complexity 2n/2 (time and data).

Since our attack points out a weakness in the structure of GCM-RUP, we also
suggest a minor modification to GCM-RUP to prevent the leakage of the output
of GHASHK2 by using an extra block cipher call EK4 to encrypt the output of
GHASHK2 . The objective of our variant is to achieve better security in the RUP
setting and in the classical setting.

Many designs use GHASH because of its high performances. However, the
output of GHASH may leak information about the key, as exploited in our
attack. Therefore, the stronger GHASH variant we proposed could be applied to
not only GCM like scheme but also future GHASH-based designs.

1.2 Related Works

Modes of operation are usually studied with security proofs, but there is a grow-
ing interest in generic attacks, showing how the security degrades when the proof
doesn’t hold. In particular, many attacks focus on (partial) key-recovery: most
modes of operations have distinguishing attacks with birthday complexity 2n/2,
but key-recovery and universal forgery attacks with the same complexity show
that some schemes are more fragile than others when approaching the birthday
bound.

For instance, in 1996, Preneel and Van Oorshot gave a full key recovery attack
against the Envelope MAC with complexity 2n/2 [29]. In 2003, Mitchell studied
several variants of CBC-MAC and compared their security against key-recovery

18 Y. Li et al.

attacks [25]; for some schemes the best attack reported requires an exhaustive
search over an n-bit key, but attacks with birthday complexity can recover a
partial key for TMAC and OMAC [33], leading to stronger forgery attacks. More
recently, a series of works has shown birthday attacks against HMAC, with full
key recovery when the hash function uses an internal checksum [19] and universal
forgeries [27] in general. During the CAESAR competition, it was pointed out
that the security of AEZ [14] collapses at the birthday bound, with a full key
recovery [10]. The scheme was modified to avoid the attack, but a variant is still
applicable [6].

Besides MAC algorithms, there has also been work on message-recovery
attacks on encryption modes, with a stronger impact than distinguishers. The
well-known collision attack against CBC has been shown to be usable in practice
with 64-bit block ciphers [4], and message-recovery attacks have also been shown
against the CTR mode [20], even though the well-known distinguisher is much
weaker.

All these results clearly show the importance of cryptanalysis work against
modes of operation, even when the attacks do not contradict the proofs. In
addition, this type of work sometimes detects mistakes in the proofs, as shown
with GCM [16] and OCB2 [15].

1.3 Organization

The remainder of this paper is organized as follows. Section 2 gives the prelim-
inaries. Section 3 briefly describes the generic construction and its instantiation
GCM-RUP. We recover the authentication key in Sect. 4, and a universal forgery
is provided in Sect. 5. Section 6 recommends a minor modification to GCM-RUP
to resist our forgery attack. Finally, Sect. 7 concludes this paper.

2 Preliminaries

This section will show notations, operations, some cryptographic schemes and
security definitions used in this paper.

2.1 Notations and Operations

– n: The block size of the block cipher (for GCM-RUP, n = 128).
– {0, 1}≤x: The set of strings with length no greater than x bits.
– {0, 1}∗: The set of strings with arbitrary length.
– |X|: Length of X, if X ∈ {0, 1}∗.
– X ⊕ Y : Bit-wise exclusive OR of X and Y , if X,Y ∈ {0, 1}∗.
– X · Y : Galois field multiplication of X and Y , if X,Y ∈ {0, 1}n.
– X‖Y or XY : Concatenation of X and Y , if X,Y ∈ {0, 1}∗.
– ε: The empty string.
– 0n: n-bit string consisting of only zeros.
– lenn(X): Length of X modulo 2n as an n-bit string.

Universal Forgery Attack Against GCM-RUP 19

– X0∗n: X padded on the right with 0-bits to get a string of length a multiple
of n.

– |X|n: X’s length in n-bit blocks |X|n = �|X|/n�.
– X[1]X[2] . . . X[x] n←− X: Split X into substrings such that |X[i]| = n for i =

1, . . . , x − 1, 0 < |X[x]| ≤ n, and X[1]‖ . . . ‖X[x] = X.
– int(Y): Map the j bits string Y = aj−1 . . . a1a0 to the integer i = aj−12j−1 +

· · · + a12 + a0.
– strj(i): Map the integer i = aj−12j−1 + · · ·+a12+a0 < 2j to the j-bit string

aj−1 . . . a1a0.
– incm(X): The function which adds one modulo 2m to X when viewed as an

integer: incm(X) := strm(int(X) + 1 mod 2m).
– msbj(X): j most significant bits of X: msbj(ai−1 . . . a1a0) := ai−1 . . . aa−j .
– lsbj(X): j least significant bits of X: lsbj(ai−1 . . . a1a0) := aj−1 . . . a0.
– F ← E(C‖·): Define F (X) = E(C‖X) where C is fixed as constant.
– a

?= b: Evaluate to
 if a equals b, and ⊥ otherwise.

2.2 AE, Separated AE and TBC

An authenticated encryption scheme is a symmetric key algorithm that provides
both confidentiality and authenticity. Bellare and Namprempre [3] defined the
formal notion of authenticated encryption as follows:

Definition 1 (AE [3]). An AE scheme consists of a pair of functions, the
encryption function Enc and the decryption function Dec,

Enc : K × N × A × M → C,

Dec : K × N × A × C → M ∪ {⊥},

with K the key space, N the nonce space, A the associated data space, M the
message space, C the ciphertext space, and ⊥ an error symbol not contained in
M, which represents verification failure. It must be the case that for all K ∈ K,
N ∈ N , A ∈ A and M ∈ M,

DecN
K(A,EncN

K(A,M)) = M.

The decryption process typically has two phases: plaintext computation and
verification; the plaintext obtained from decryption is only given out after suc-
cessful verification. However, keeping the full plaintext in memory can be an issue
for constrained devices, and side-channel attacks can potentially recover infor-
mation about the plaintext while it is decrypted. Therefore, new models have
been introduced to take into account the effect of releasing unverified plaintext.
In particular, Andreeva et al. [1] defined separated AE schemes where the plain-
text computation is disconnected from verification; in this model the decryption
function always releases the plaintext, without verifying it. Formally, a separated
AE scheme is defined as:

20 Y. Li et al.

Definition 2 (separated AE [1]). A separated AE scheme consists of a triplet
of functions, the encryption function SEnc, the decryption function SDec, and
the verification function SVer, where

SEnc : K × N × A × M → C,

SDec : K × N × A × C → M,

SVer : K × N × A × C → {
,⊥},

with K the key space, N the nonce space, A the associated data space, M the
message space, C the ciphertext space. The special symbols
 and ⊥ indicate the
success and failure of the verification, respectively. It must be the case that for
all K ∈ K, N ∈ N , A ∈ A and M ∈ M,

SDecN
K(A,SEncN

K(A,M)) = M and SVerNK(A,SEncN
K(A,M)) =
.

Finally, we need to introduce the notion of tweakable block cipher (TBC),
which is used in GCM-RUP. A tweakable block cipher is a generalization of a
block cipher with an additional tweak input, generating a family of independent
block ciphers [21]:

Definition 3 (TBC [21]). A TBC could be regarded as a pair of functions
(E,D), with

E : K × T × X → X ,

D : K × T × X → X ,

where K is the key space, T is the tweak space, and X is the domain. For all
K ∈ K, T ∈ T and X ∈ X , ET

K is a permutation of X with DT
K as inverse and

DT
K(ET

K(X)) = X.

3 Brief Description of GCM-RUP [2]

Ashur, Dunkelman and Luykx proposed a generic construction of an efficient
separated AE scheme at CRYPTO’17 [2]. Their construction uses an encryption
scheme and a TBC, and achieves security in the RUP setting, assuming that the
encryption scheme is strongly indistinguishable-from-random-bits (SRND) [13,
32], and the TBC is a strong pseudorandom permutation (SPRP) [32]. Based
on the generic construction, a dedicated instantiation GCM-RUP is built using
AES-GCM’s primitives. This section will describe this construction and GCM-
RUP.

3.1 Generic Construction with RUP Security [2]

Let (Enc,Dec) be an encryption scheme (without authentication), with K the key
space, N the nonce space, M the message space, and C the ciphertext space. Let

Universal Forgery Attack Against GCM-RUP 21

(E,D) denote a TBC with key space L, tweak space T = C, and domain X = N .
Then define the separated AE scheme (SEnc,SDec,SVer) as follows,

SEncN
K,L(A,M) :=

(
S = EA,C

L (N), C = EncN
K(α‖M)

)
,

SDecK,L(A,S,C) := lsb|C|−τ (DecD
A,C
L (S)

K (C)),

SVerK,L(A,S,C) := msbτ (DecD
A,C
L (S)

K (C)) ?= α,

where (K,L) ∈ K × L is the key, N is the nonce space, A is the associated data
space, M is the message space, N ×C is the ciphertext space, and α ∈ {0, 1}τ is
some pre-defined constant. The construction is depicted in Fig. 1. The procedures
of encryption, decryption and verification are illustrated in Fig. 1(a), (b) and (c),
respectively.

The novelty of the generic construction is that the nonce is encrypted using
the ciphertext as a tweak. This provides security in the RUP setting, because
if an attacker modifies the ciphertext or the encrypted nonce, the decryption
oracle will output a random plaintext. The authentication security comes from
the redundancy in the plaintext, with the pre-defined constant α (known by
both sides); the length of α determines the security level. In order to maintain
security up to the birthday bound on the block size, the size of α and the nonce
size are fixed to be the same as the block size n.

3.2 GCM-RUP [2]

GCM-RUP is an instantiation of the generic construction using the counter mode
(CTR) for encryption and the XTX construction [24] with GHASH for the tweak-
able block cipher. It reuses the component of GCM in order to benefit from the
efficient implementations available, while offering more robustness with security
in the RUP setting. Before describing GCM-RUP itself, we first define the prim-
itives borrowed from GCM. Let n denote the block length of the available block
cipher, in this case n = 128.

The first one is the universal hash function GHASH, which takes a key H and
two strings M and M ′ as input (in GCM, GHASH is used in the Wegman-Carter
construction to build a MAC [34]). The core of GHASH is defined with a single
string M constituted of full blocks, and evaluates a polynomial defined from M
at H as follows,

GHASHcoreH(M) =
|M |n−1⊕

i=0

M [i] · H |M |n−i. (1)

The symbol “·” represents multiplication in the Galois field GF (2n). All the
computations are performed by the rule of operations defined in finite field.
GHASH is defined from GHASHcore; it takes two strings M and M ′ as input,
zero-pads and concatenates them, and adds the binary representation of the
lengths of M and M ′ before processing the result through GHASHcore,

GHASHH(M,M ′) = GHASHcoreH(M0∗n‖M ′0∗n‖strn/2(|M |)‖strn/2(|M ′|)),

22 Y. Li et al.

Fig. 1. Generic construction with RUP security

Fig. 2. GCM-RUP (Figure from [2])

Universal Forgery Attack Against GCM-RUP 23

where the function strj(i) maps the integer i = aj−12j−1 + · · ·+a12+a0 < 2j to
the j-bit string aj−1 . . . a1a0. Algorithm 1 describes the procedure of the function.

Algorithm 1. GHASHH(M,M ′)

Input: H ∈ {0, 1}n, M ∈ {0, 1}≤n(2n/2−1), M ′ ∈ {0, 1}≤n(2n/2−1)

Output: Y ∈ {0, 1}n

1: X ← M0∗n‖M ′0∗n‖strn/2(|M |)‖strn/2(|M ′|)
2: X[1]X[2] . . . X[x]

n←− X
3: Y ← 0n

4: for 1 ≤ j ≤ x do
5: Y ← H · (Y ⊕ X[j])
6: end for
7: return Y

The second important auxiliary function is the CTR mode. Given a counter
value X, a positive integer m and a predefined keyed function F as input, this
function CTR[F](X,m) outputs a string S with m blocks. Each block of S is
computed by S[i] = F (inci

x(X)), where incx represents counter incrementation,
adding one modulo 2x to X, with the convention that inci

x represents i successive
implementations. The CTR mode is defined in Algorithm2.

Algorithm 2. CTR[F](X,m)
Input: F : {0, 1}x → {0, 1}n, X ∈ {0, 1}x, m ∈ N

Output: S ∈ {0, 1}mn

1: I ← X
2: for 1 ≤ j ≤ m do
3: S[j] ← F (I)
4: I ← incx(I)
5: end for
6: S ← S[1]S[2] . . . S[m]
7: return S

Finally, GCM-RUP uses three keys: K1 is used for the CTR encryption, and
K2 and K3 are used for the TBC following the XTX construction (K2 is used
for GHASH, and K3 is used for the underlying block cipher call). GCM-RUP
encrypts a message M together with its associated data A and a nonce N , into
a ciphertext C and an encrypted nonce S. The associated data, the message and
the ciphertext are all seen as sequences of blocks of length n. GCM-RUP follows
the generic construction given above, and is described in Fig. 2, with pseudocode
in Algorithm 3 (with ε an empty string). In the figure, EncK1 corresponds to CTR
mode encryption, and EK2,K3 to the TBC.

24 Y. Li et al.

Algorithm 3. GCM-RUPK1,K2,K3(N,A,M)

Input: K1K2K3 ∈ {0, 1}3n, A ∈ {0, 1}n232 , M ∈ {0, 1}n232

Output: (S, C) ∈ {0, 1}n × {0, 1}τ+|M|

1: M ← 0τ‖M
2: L ← EK1(0

n)
3: I ← GHASHL(ε, N)
4: m ← |M |n
5: F ← EK1(msb96(I)‖·)
6: S ← CTR[F](inc32(lsb32(I)), m)
7: C ← M ⊕ msb|M|(S)
8: G ← GHASHK2(A, C)
9: S ← EK3(N ⊕ G) ⊕ G

10: return (S, C)

As an instantiation of the generic construction with RUP security, GCM-RUP
is secure under RUP setting. More precisely, GCM-RUP can provide security
up to the birthday bound on the block size (because this is the security of the
underlying AE scheme and TBC).

4 Partial Authentication Key Recovery for GCM-RUP

Our analysis focuses on the GHASHK2 function, which can be written as a poly-
nomial in K2. In this section, we analyze properties of GHASHK2 which are then
used to recover K2. After recovering K2, it is possible to perform a forgery attack
for GCM-RUP.

The main property used in our attacks is that G, the output of GHASHK2 as
defined in Fig. 2, is linearly dependent on the input (A,C) for fixed K2. There-
fore, the output difference ΔG of values G emerging in encryption operations
of two input tuples (N1, A,M) and (N2, A,M) is independent of the value of
(A,M), and is only a function of N1 and N2.

Based on this property, we retrieve K2 with the following two steps.

– For a fixed associated data and message, we search for a pair of nonces
(N1, N2) which produce a collision for the input of EK3 using a birthday
attack. For such pair of nonces (N1, N2), ΔG = N1 ⊕ N2 = S1 ⊕ S2.

– With a known ΔG, a polynomial equation in K2 is derived from the GHASHK2

definition. Then K2 can be retrieved by solving this equation.

In this section, we will give the detailed description of the recovery of K2.

4.1 Properties of GHASH

Let Π = (SEnc,SDec,SVer) denote the scheme GCM-RUP. We focus on the
component GHASHK2 with inputs the associated data A and the ciphertext C.
In order to clearly describe the attack, we rewrite GHASHK2 as

G = GHASHK2(A,C) = GHASHcoreK2(A‖C‖strn/2(|A|)‖strn/2(|C|)).

Universal Forgery Attack Against GCM-RUP 25

According to the definition of GHASHcore given by Eq. (1), G is linear in the
GHASHcore input (A‖C‖strn/2(|A|)‖strn/2(|C|)) for a fixed K2. Therefore, we
consider the difference ΔG in the output of GHASHK2 for a pair of inputs.

Property 1. When processing a fixed associated data A and message M under
two distinct nonces (N1, N2) with GCM-RUP, the output difference ΔG of
GHASHK2 is only dependent on N1 and N2, but independent on A and M . This
also holds for the input difference of EK3 .

Proof. For two tuples (N1, A,M) and (N2, A,M), query SEnc and get

(S1, C1) ← GCM-RUP(N1, A,M),
(S2, C2) ← GCM-RUP(N2, A,M).

Let G1 and G2 represent the corresponding outputs of the function GHASHK2

in the encryptions under nonces N1 and N2, respectively,

G1 = GHASHK2(A,C1),
G2 = GHASHK2(A,C2),

where
C1 = (0τ‖M) ⊕ EncK1(N1),
C2 = (0τ‖M) ⊕ EncK1(N2),

the function EncK1 is defined in the upper dotted box in Fig. 2. Hence,

ΔG = G1 ⊕ G2

= GHASHK2(A,C1) ⊕ GHASHK2(A,C2).
(2)

From the definition of GHASH, we have

ΔG = GHASHcoreK2

(
A ⊕ A‖C1 ⊕ C2‖

(strn/2(|A|)‖strn/2(|C1|)) ⊕ (strn/2(|A|)‖strn/2(|C2|))
)

= GHASHcoreK2(0
|A|‖ΔC‖0n)

= GHASHcoreK2(0
|A|‖EncK1(N1) ⊕ EncK1(N2)‖0n),

(3)

which shows that the output difference of the function GHASHK2 depend only
on N1 and N2 for two tuples (N1, A,M) and (N2, A,M). The input difference
of EK3 can be computed as

ΔIn = N1 ⊕ N2 ⊕ ΔG

= N1 ⊕ N2 ⊕ GHASHcoreK2(0
|A|‖ΔC‖0n),

(4)

so it is also independent of A and M . �
In particular, if we can recover a value ΔG, we can then extract K2 by

solving a polynomial equation, given the ciphertext difference ΔC and the output
difference ΔG:

ΔG = GHASHcoreK2(0
|A|‖ΔC‖0n).

26 Y. Li et al.

For simplicity, we assume that |M | = n and τ = n, this implies |C1| = |C2| = 2n:

ΔG = ΔC[0] · K3
2 ⊕ ΔC[1] · K2

2 .

This a polynomial equation in K2 in the Galois field with 2128 elements. Luckily,
there are efficient algorithm to factor polynomials over finite fields. For instance,
the Cantor-Zassenhaus algorithm [5] requires O(n2(log(r) log(q)+n)) field oper-
ations to factor a degree-n polynomial with r irreducible factors over a field with
q elements. In practice, with the parameters used here, this takes negligible time
using the implementation of SageMath [40].

4.2 Recovering K2 from Inner Collisions

As explained earlier, the first step of the attack is to identify collisions in the
input of EK3 , defined as In = N ⊕ G. Following the analysis above, we start
with a fixed associated data A and message M , and query SEnc for q different
nonces, to receive the corresponding encrypted nonces S and ciphertexts C.

In order to simplify the description, we focus on the value In, and we consider
the function mapping N,A,M to In, denoted as PEnc, and represented by Fig. 3.
The output values of PEnc can not be accessed by the attacker, but collisions in
PEnc can be detected. As for In and the output Out of EK3 ,

In = N ⊕ G,

Out = S ⊕ G.

When the collisions happen, ΔIn = ΔOut = 0, which means

N1 ⊕ N2 ⊕ G1 ⊕ G2 = 0,

S1 ⊕ S2 ⊕ G1 ⊕ G2 = 0.

Thus, N1 ⊕ N2 = S1 ⊕ S2 = ΔG. If the collisions ΔN = ΔS can be detected,
the collisions in PEnc can be detected. Meanwhile, this type of collisions give out
the value of ΔG, which can be used to recover K2. Moreover, the corresponding
pairs can be identified efficiently. We just build a list of all nonces indexed by
Ni ⊕ Si, sort the list and look for collisions: each collision corresponds to a pair
with N1 ⊕ S1 = N2 ⊕ S2 i.e. N1 ⊕ N2 = S1 ⊕ S2. We now consider the converse,
and evaluate the probability of a collision in PEnc when N1 ⊕ N2 = S1 ⊕ S2.

We formally define the two events as X and Y :

– X (N1 ⊕ N2 = S1 ⊕ S2): the event identifying pairs of nonces (N1, N2) with
the input difference equal to the output difference of EK3 , which is called
outer collision (equivalently, it can be defined as ΔIn = ΔOut).

– Y (ΔIn = 0): the event identifying pairs of nonces with collision in PEnc, i.e.
zero input difference for EK3 , which is called inner collision.

First, we observe that Y ⊆ X, because if ΔIn = 0, then ΔOut = 0 and
N1 ⊕ N2 = S1 ⊕ S2 = ΔG. Therefore, we have

Pr[Y |X] =
Pr[Y]
Pr[X]

.

Universal Forgery Attack Against GCM-RUP 27

Fig. 3. Representation of the function PEnc

Moreover, we have Pr[Y] = 2−n because the output of PEnc with a fresh
nonce is random, assuming that E is a PRF. In order to compute Pr[X], we
consider two cases, depending on event Y :

1. ΔIn = 0. Then we have necessarily ΔOut = 0, i.e. Pr[X|ΔIn = 0] = 1.
2. ΔIn �= 0. A pair with non-zero input difference must produce a non-zero

output difference. Assuming that E is a PRF, we have Pr[X|ΔIn �= 0] =
1

2n−1 .

Therefore,

Pr(X) = Pr[ΔIn = ΔOut]
= Pr[ΔIn = ΔOut|ΔIn = 0] × Pr[ΔIn = 0]

+ Pr[ΔIn = ΔOut|ΔIn �= 0] × Pr[ΔIn �= 0]

= 1 × 1
2n

+
1

2n − 1
× 2n − 1

2n

=
1

2n−1
.

(5)

Finally, we can conclude

Pr[ΔIn = 0|N1 ⊕ N2 = S1 ⊕ S2] =
2−n

2−n+1
=

1
2
. (6)

Attack Procedure. We can now give the detailed procedure to recover K2:

1. Choose an arbitrary associated data A and a single-block message M , then
query SEnc for q different nonces N and receive the corresponding encrypted

28 Y. Li et al.

nonces S and ciphertexts C; save them in a table indexed by N ⊕ S. With
a suitable value of q (in the order of 2n/2), there are two pairs of nonces
(N1, N2) satisfying N1 ⊕ N2 = S1 ⊕ S2, one of which is expected to further
satisfy ΔIn = 0.

2. For each pair with N1 ⊕ N2 = S1 ⊕ S2, assuming that ΔIn = 0, we have
ΔG = ΔS and we obtain a cubic polynomial equation with unknown variable
K2, which can be solved with factoring tools:

ΔS = GHASHcoreK2(0
|A|‖ΔC‖0n) = ΔC[0] · K3

2 ⊕ ΔC[1] · K2
2 .

3. Identify the correct candidate for K2 with forgery attempts.

Using two pairs of nonces, this attack suggests a small set of six key candi-
dates. The correct key can be identified with forgery attempts, or by using more
pairs and looking for a repeated key candidate.

More precisely, we will describe how to construct a forgery with known can-
didate of K2 for GCM-RUP in Sect. 5 for a given message, which can be used to
filter the correct K2. There would be two cases:

– If the forgery is constructed under the correct candidate for K2, it can pass
the verification algorithm of GCM-RUP.

– If the forgery is constructed under the wrong candidate for K2, it will receive
a failure of the verification of GCM-RUP.

We only need to query the verification oracle SVer six times to identify the
correct K2. The cost for this step is negligible.

Complexity Estimation. As already mentioned, the probability of two ran-
dom nonces N1 and N2 satisfying ΔIn = 0 is 2−128. Starting from a set of q
queries, we can evaluate the probability p of finding an inner collision following
the analysis of the birthday paradox:

p � 1 − e−q2/(2×2128).

Thus,

q �
√

2 × 2128 ln
1

1 − p
.

Table 1 shows number of nonces needed to achieve the given probability of
success.

4.3 Experimental Verification with Mini-GCM-RUP

In order to verify our attack theory, we use a mini version of GCM-RUP con-
structed with the 16-bit block cipher 4-round Mini-AES [28] to experimentally
recover K2. This experiment identifies pairs of nonces in event X and Y from
29 random nonces, and recover K2 with SageMath. We execute this experiment
several times to give some results to show the validity of probabilities of event
X and Y in our paper, the detail is listed in Table 2.

In this table, we see that probabilities of event X and Y conform to Eqs. 5
and 6, respectively. The complexity of this experiment is dominated by 29.

Universal Forgery Attack Against GCM-RUP 29

Table 1. Number of nonces needed to achieve the given success probability

Number of nonces to identify inner collision Probability of finding inner collision

263 11%

264 39%

265 86%

266 99.9%

Table 2. Experimental verification with Mini-GCM-RUP

(K1, K2, K3) Pair of nonces in X ΔIn Pr(X) Pr(Y |X)

(0x3d0e,0x2afc,0x2e91) (0x2704,0x0889) 0 1
28

1

(0x7649,0x7b0d) 0

(0x4ef3,0x454b,0x1e9a) (0x2323,0x602d) 0 7
29

3
7

(0x11b7,0x2b2e) 0x0af7

(0x7bab,0x3a72) 0

(0x1215,0x1e05) 0xa3b5

(0x6593,0x093d) 0xbce8

(0x09bd,0x2db2) 0x03cf

(0x7d35,0x5e97) 0

(0x5388,0x2641,0x7a4f) (0x0ba9,0x46f5) 0x5393 3
28

1
2

(0x684d,0x5786) 0

(0x334c,0x22e1) 0x0636

(0x4487,0x13f0) 0

(0x5413,0x03d8) 0

(0x5a91,0x179f) 0x0c06

(0x5691,0x2ee9,0x5a68) (0x3874,0x7546) 0x3fcb 1
28

1
2

(0x44b0,0x4323) 0

5 Universal Forgery Attack of GCM-RUP

In this section, we will construct forgeries for GCM-RUP given a candidate for
K2. We consider a challenge message M∗ (and possibly a challenge associated
data A∗), and our goal is to construct a valid ciphertext for M∗.

5.1 Almost Universal Forgery Attack

The first forgery attack makes only one query to the encryption oracle SEnc and
then constructs a forgery by solving an equation over GF (2128).

For an arbitrary nonce N , associated data A and message M (with |M | =
|M∗|), query (N,A,M), and receive the corresponding ciphertext (S,C). Let
G = GHASHK2(A,C), and the keystream used to XOR message is computed by

30 Y. Li et al.

Fig. 4. A variant for GCM-RUP

EncK1(N) = C ⊕ (0τ‖M).

We create a valid encryption of M∗ by reusing the same nonce N and the values
G and S.

First, we compute C∗ corresponding to M∗:

C∗ = 0τ‖M∗ ⊕ EncK1(N)
= 0τ‖M∗ ⊕ (C ⊕ 0τ‖M).

(7)

Then we construct A′ such that

GHASHK2(A
′, C∗) = GHASHK2(A,C),

where A, C, C∗ and K2 are known. This gives a linear equation over GF (2128)
which can easily be solved assuming that |A′| ≥ 128 and K2 �= 0.

To summarize, for any chosen message M∗, we can give a successful forgery
(A′,M∗, S′, C ′) satisfying (S′ = S,C ′ = 0τ‖M∗⊕(C⊕0τ‖M)). This is an almost
universal forgery, because we can choose M∗ freely but not A′.

Universal Forgery Attack Against GCM-RUP 31

5.2 Universal Forgery Attack

Alternatively, we can design an attack where we choose both A∗ and M∗, using
2n/2 queries. First, we make 2n/2 queries (Ni, A,M), for fixed A and M with
|M | = |M∗|, and receive the corresponding (Si, Ci). Since K2 is known, we can
compute Gi = GHASH(A,Ci), and recover the corresponding inputs and outputs
to EK3 : EK3(Ni ⊕ Gi) = Si ⊕ Gi.

Then, we can use the same nonces Ni to build a forgery. For each Ni, we
build the corresponding C ′

i from M∗ and Ci as above, and we check whether
Ni⊕GHASH(A∗, C ′

i) is in the set of known inputs to EK3 . With high probability,
one of the nonces will result in a match Ni ⊕ GHASH(A∗, C ′

i) = Nj ⊕ Gj , and
we deduce a forgery using S′ = Sj ⊕ Gj ⊕ GHASH(A∗, C ′

i).

6 Variant of GCM-RUP

Our forgery attack against GCM-RUP highlights a potential weakness on the
structure of GCM-RUP: the output difference of the function GHASHK2 can
be recovered with birthday complexity and this leads to a recovery of K2. In
order to prevent this attack, we suggest to add a block cipher call in the TBC
construction used in GCM-RUP, as shown in Fig. 4, to avoid leakage of the
output difference of the function GHASHK2 .

This modified TBC still follows the XTX construction of Iwata and Mine-
matsu [24], using universal hash function EK4(GHASHK2(A,C)) instead of the
original GHASHK2(A,C). The new universal hash function has the same security
bounds, but does not leak the key from an output difference. Thus, the security
proof of GCM-RUP is still applicable to this variant. But we do not provide a
formal security proof. The extra block cipher has a limited impact on efficiency,
and might offer better security by avoiding our attack.

More generally, the modified GHASH could replace GHASH in other designs.
In particular, the corresponding modification of GCM would prevent the uni-
versal forgery attack with complexity 22n/3 given in [20]. We believe that this
construction is worth further study. Further work will be needed to determine
whether this modification actually provides extra security and how much.

7 Conclusion

This paper shows a birthday-bound attack against GCM-RUP [2] using inner
collisions to recover the output difference of the function GHASHK2 . Hence, K2

can be retrieved by solving a polynomial equation, and this directly leads to
a universal forgery attack against GCM-RUP. This forgery attack shows that
the construction of GCM-RUP breaks drastically when the security bound is
reached. This is surprising because no such attack is known on GCM: the best
known universal forgery attack requires 22n/3 operations.

Finally, a minor modification of GCM-RUP is suggested to prevent this kind
of attack, using an additional block cipher to protect the output of GHASH.

32 Y. Li et al.

With little performance loss, this design focusing on GHASH can be applied to
all GHASH-based designs.

In a more general setting, our attack technique can be applied to the LRW
construction [21] with a polynomial universal hash function, as used in OCB, for
instance. Actually, the corresponding attack on OCB would match the previous
attack by Ferguson [9].

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 61572293 and 61602276, National Cryptography
Development Foundation of China under Grant No. MMJJ20170102, Major Scien-
tific and Technological Innovation Projects of Shandong Province, China under Grant
No. 2017CXGC0704, Natural Science Foundation of Shandong Province, China under
Grant No. ZR2016FM22.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

2. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

4. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 456–467.
ACM Press, October 2016

5. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Math. Comput. 36, 587–592 (1981)

6. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-
recovery attacks? IACR Trans. Symm. Cryptol. 2016(1), 114–133 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view/538

7. Dierks, T., Allen, C.: RFC 2246 - The TLS Protocol Version 1.0. Internet Activities
Board, January 1999

8. Dworkin, M.: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. National Institute of Standards and
Technology. SP 800–38D, November 2007

9. Ferguson, N.: Collision attacks on OCB. Comment to NIST, February 2002
10. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates -

forgery and key-recovery against AEZ and marble. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 21

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/3-540-44448-3_41
http://tosc.iacr.org/index.php/ToSC/article/view/538
https://doi.org/10.1007/978-3-662-48800-3_21

Universal Forgery Attack Against GCM-RUP 33

11. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X 8

12. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.) Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12–16 October 2015, pp. 109–119. ACM (2015)

13. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2 23

14. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

15. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 3–31. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 1

16. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 3

17. Joux, A.: Comments on the Draft GCM Specification - Authentication Failures in
NIST Version of GCM. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
comments/800-38Series-Drafts/GCM/Jouxcomments.pdf

18. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 32

19. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 1

20. Leurent, G., Sibleyras, F.: The missing difference problem, and its applications to
counter mode encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 745–770. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 24

21. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

22. Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs and
GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 445–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9 17

23. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

24. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27239-9 5

https://doi.org/10.1007/3-540-45473-X_8
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-32009-5_3
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38Series-Drafts/GCM/Jouxcomments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38Series-Drafts/GCM/Jouxcomments.pdf
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-27239-9_5

34 Y. Li et al.

25. Mitchell, C.J.: On the security of XCBC, TMAC and OMAC. Technical
Report RHUL-MA-2003-4, 19 August 2003. http://www.rhul.ac.uk/mathematics/
techreports. Also available from NIST’s web page at http://csrc.nist.gov/
CryptoToolkit/modes/comments/

26. Nandi, M.: Bernstein bound on WCS is tight - repairing Luykx-Preneel optimal. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 213–238.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 8

27. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 147–164. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 9

28. Phan, R.C.W.: Mini advanced encryption standard (mini-AES): a testbed
for cryptanalysis students. Cryptologia XXVI(4), 283–306 (2002).
https://staff.guilan.ac.ir/staff/users/rebrahimi/fckeditorrepo/file/mini-aes-spec.pdf

29. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 3

30. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)

31. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

32. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8269, pp. 405–423. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42033-7 21

33. Sung, J., Hong, D., Lee, S.: Key Recovery attacks on the RMAC, TMAC, and
IACBC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
265–273. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X 23

34. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)

35. The CAESAR committee: CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html

36. IEEE Standard for Local and Metropolitan Area Networks Media Access Control
(MAC) Security. IEEE Std 802.1AE-2006 (2006)

37. Information Technology - Security Techniques - Authenticated Encryption,
ISO/IEC 19772:2009. International Standard ISO/IEC 19772 (2009)

38. NIST: Lightweight Cryptography. https://csrc.nist.gov/Projects/Lightweight-
Cryptography

39. National Security Agency, Internet Protocol Security (IPsec) Minimum Essential
Interoperability Requirements, IPMEIR Version 1.0.0 Core (2010). http://www.
nsa.gov/ia/programs/suitebcryptography/index.shtml

40. Sage Documentation. SageMath Help. http://www.sagemath.org/

http://www.rhul.ac.uk/mathematics/techreports
http://www.rhul.ac.uk/mathematics/techreports
http://csrc.nist.gov/CryptoToolkit/modes/comments/
http://csrc.nist.gov/CryptoToolkit/modes/comments/
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://staff.guilan.ac.ir/staff/users/rebrahimi/fckeditorrepo/file/mini-aes-spec.pdf
https://doi.org/10.1007/3-540-68339-9_3
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/3-540-45067-X_23
http://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
http://www.nsa.gov/ia/programs/suitebcryptography/index.shtml
http://www.nsa.gov/ia/programs/suitebcryptography/index.shtml
http://www.sagemath.org/

My Gadget Just Cares for Me - How
NINA Can Prove Security Against

Combined Attacks

Siemen Dhooghe(B) and Svetla Nikova(B)

imec-COSIC, KU Leuven, Leuven, Belgium
{siemen.dhooghe,svetla.nikova}@esat.kuleuven.be

Abstract. Differential Power Analysis and Differential Fault Analysis
threaten the security of even the most trustworthy cryptographic primi-
tives. It is important we protect their implementation such that no sensi-
tive information is leaked using side channels and it withstands injected
faults or combined physical attacks.

In this work, we propose security notions tailored against advanced
physical attacks consisting of both faults and probes on circuit wires. We
then transform the security notions to composable security notions. The
motivation for this research includes the ease of verification time; the
creation of secure components; and the isolation of primitives in larger
protocols such as modes of operations. We dub our notion NINA, which
forms the link between the established Non-Interference (NI) property
and our composable active security property, Non-Accumulation (NA).

To illustrate the NINA property, we use it to prove the security of
two multiplication gadgets: an error checking duplication gadget and an
error correcting duplication gadget. The NINA proofs for error detect-
ing gadgets capture the effect of Statistical Ineffective Fault Analysis
(SIFA), an attack vector which threatens most current masked imple-
mentations. Additionally, we study error correcting techniques. We show
that error correcting gadgets can attain the Independent NINA property.
A stronger property which captures a clear separation between the effect
of faults and probes. Thus, we show that clever error correcting gadgets
improve on error detecting ones by achieving significant higher levels of
combined security along with guaranteed output delivery.

Keywords: Combined security · DFA · DPA · Masking · SIFA

1 Introduction

Differential Fault Analysis (DFA), proposed by Biham and Shamir in 1997 [8], is
an attack on a physical device which effectively reveals the secret key of a cipher
using well-placed faults in the encryption procedure. Differential Power Analy-
sis (DPA) is an attack which uses a cryptographic device’s power consumption
to launch a divide-and-conquer attack on the private key as first described by

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 35–55, 2020.
https://doi.org/10.1007/978-3-030-40186-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_3

36 S. Dhooghe and S. Nikova

Kocher et al. in 1999 [26]. To facilitate key-extraction, several physical attacks
can be used against the implementation, we differentiate passive, active, and
combined attacks. Passive attacks observe the behaviour of a device during its
process, such as observing the process time or the device’s power consumption.
Active attacks tamper with the device’s functioning, such as inducing computa-
tional errors by fault injections. Using passive and/or active attacks for either
enhanced tampering or observation of the device’s reaction to tampering are
called combined attacks.

In order to defend against physical attacks without using expensive custom
hardware such as shields and detectors it is the algorithm that needs to coun-
teract passive, active, and combined attacks by securing it in a formal security
model. Passive adversary models and their corresponding security notions have
improved significantly over the last fifteen years, largely due to the introduction
of the probing adversary by Ishai et al. [25]. This adversary is capable of reading
the exact values on a number of circuit wires. The minimal number of wires the
adversary observes to learn a sensitive variable is defined as the order of probing
security. Duc et al. showed that the noisy leakage model [10,30] reduces to the
probing model assuming the presence of sufficient noise and independent wire
leakage, and more specifically that an implementation’s signal to noise ratio is
exponentially related to its probing security order [18]. While the probing model
helps to verify implementations, the time complexity is exponential in the secu-
rity order which is therefore not cost effective for larger implementations such as
symmetric ciphers. To streamline this verification procedure, Barthe et al. pro-
posed a composable security definition called Strong Non-Interference (SNI) [3].
This approach views circuits as the composition of several components and forms
a sufficient security condition, such that when multiple components are linked
together the total circuit is probing secure. Composable security definitions
allow designers to verify and optimise separate circuit components which are
small enough for a brute force verification technique. This technique has been
adopted in several tools to quickly verify implementations based on modular
designs [4,7,13]. The importance of a formal security notion, such as the probing
model, includes the need of assurance in high-end secure devices. To guarantee
such assurance, the Common Criteria was proposed as an international stan-
dard. These criteria specify the security and assurance users can have in their
sensitive devices where the strongest criterion requires a target of evaluation to
have a verified design which is only possible with formal security notions [20].

Apart from security models, the current literature provides countermeasures
against passive attacks. One example is the methodology of Ishai, Sahai and
Wagner (ISW) which guarantees protection of arbitrary circuits against passive
attacks using the previous discussed probing model [25]. This countermeasure
led to further study to increase its security and efficiency [5–7,9,12,19,22,34].
Another methodology to secure implementations is described in Threshold
Implementations by Nikova et al. [28]. By extensively using the masking scheme’s
and the cipher’s properties, they minimise the countermeasure’s latency and

My Gadget Just Cares for Me - How NINA Can Prove Security 37

randomness costs and, as a result, the method has been used to defend various
symmetric primitives [2,15,23,27,29].

Despite having formal security notions and countermeasures against passive
attacks, there are only few works which consider active and combined attacks.
The first is Private Circuits II [24] which provides a countermeasure where the
active adversary is modelled as one who faults a bounded number of wires per
clock cycle. By viewing faults as probes, the work naturally offers protection
against a combined adversary. However, the implementation of the countermea-
sure and its efficiency is currently still a challenge [14]. Later on, the work of
ParTI [33] proposes to encode intermediate variables with error correcting codes
to detect errors. To protect against passive attacks, they apply threshold imple-
mentations on top of the encoding. The results are promising as they succeed in
protecting the LED cipher on FPGA. However, they only provide argumentation
for active security leaving out combined security and a formal adversary model.
As efficiency is a major concern for practical applications, the work of Impeccable
Circuits [1] only focuses on active attacks to find very efficient countermeasures.
They consider an adversary who faults up to a given number of gates and con-
sider compositional security, i.e., they look at the propagation of faults in their
components. Previous works looked at adversaries faulting and reading separate
wires, the work of CAPA [31] considers stronger adversaries. They use multiparty
computation to provide provable security against combined attacks by proposing
a new adversary model, the tile probe-and-fault model. This model considers an
adversary who is capable of reading and faulting whole areas in the implementa-
tion thus ensuring hardware protection against combined attacks. However, due
to their security model the countermeasures are heavy.

The adversaries considered in Private Circuits II and Impeccable Circuits
are a good start towards formalising active and combined security but they do
not yet allow for composable combined security definitions which are needed
by designers. In this work, we combine the wire faulting adversary with the
usual probing adversary to consider an attacker who can read and fault a given
number of wires in a circuit. Similar to the proposition of Non-Interference by
Barthe et al. [3], we build further on our adversary model by considering a
modularised circuit and proposing sufficient security conditions (Strong Non-
Accumulation and Strong NINA) such that modular compositions remain secure.

1.1 Contributions

The focus of our work is to propose compositional security notions which capture
active and combined attacks. We propose the following three security models
which provide either composable active or combined security.

– Non-Accumulation. With the Non-Accumulation (NA) model, we require
that an injected fault only affects one output share of the gadget. Thus, an
injected fault does not spread (accumulate) to more shares allowing the use
of error detection mechanisms to identify whether faults have occurred in the
design. As a result, the NA model effectively moves the verification process
from large circuits to smaller subcomponents.

38 S. Dhooghe and S. Nikova

– NINA. The models of Non-Interference (NI) and Non-Accumulation (NA)
are combined to form the NINA model capturing combined security. The
model requires that a probed and faulted gadget returns an output where
only a few output shares are faulted and where the adversary learns only a
subset of the input shares. Due to NINA simulating the correctness of the
unmasked output, it captures attackers using ineffective faults [11].

– Independent NINA. As the NINA notion requires the provision of shares
to the simulator for every fault or probe injected in the gadget, its provided
combined security is limited. We propose a stronger notion, dubbed Inde-
pendent NINA, which separates the effect of faults and probes, and relaxes
the requirement of giving shares to the simulator for each injected fault. The
ININA notion can be attained by a gadget using error correction techniques
and clever use of injected randomness.

To show our security notions in action, we propose two Strong NINA
(SNINA) secure multiplication gadgets.

– Error Detection: We propose a multiplication gadget using duplicated
Boolean shares with an error detecting mechanism. We show that the gadget
is vulnerable to a Statistical Ineffective Fault Attack (see [17]) but the prob-
ability for the attack to succeed can be made arbitrarily small by increasing
the number of shares. Thus, we prove that the gadget still attains SNINA
security. Last, we provide an abort mechanism to show the gadget does not
rely on an ideal abort command.

– Error Correction: For the second construction, we adapt the error detect-
ing gadget and add error correction methods. The result is a gadget which is
impervious to ineffective faults and, moreover, we show the gadget achieves
the stronger notion of Strong ININA. This notion proves that the level of
combined security is higher than the error detection variant, i.e., the adver-
sary does not gain any advantage by using faults in addition to probes. This
shows that, although error correction techniques are more expensive, they
give a significant increase in protection against combined attacks as well as
guaranteed output delivery.

For the proofs of the composability of the NINA notion and the security of
our proposed gadgets, we refer to the full version of the work [16].

2 The Circuit Model and Secret Sharing

We introduce gadgets, private circuits, and the notion of simulatability. Similar
to [25], we represent computations in arithmetic circuit form, a directed acyclic
graph whose nodes are operations over a finite field F and whose edges are wires.
Additionally, we consider probabilistic arithmetic circuits, meaning circuits with
nodes having no input and uniform random elements over F as output; this
randomness is independent and identically distributed, and the correctness of
the circuit is not dependent on it. In order to resist fault attacks, we consider

My Gadget Just Cares for Me - How NINA Can Prove Security 39

nodes with no output and which can abort the computation. This abort signal
works as a broadcast making all wires in the circuit read ⊥ when the signal is
sent out.1 The adversary also receives this abort signal as it can view from the
state of the output whether the circuit aborted or not.

In order to defend algorithms against side-channel attacks a sound and widely
deployed approach is the masking countermeasure which was introduced at the
same time by Chari et al. [10] and by Goubin and Patarin [21]. The technique
splits each key-dependent variable x in the algorithm into shares xi such that
x =

∑
i xi over a finite field F. In case this field is binary, this masking method

is referred to as Boolean masking. If no d shares give information on the secret
we say that the masking scheme has a passive threshold d. We also work with
independent share vectors x and y as those where the shares of x are independent
from the shares of y.

To defend an algorithm against fault attacks the core idea is to utilise redun-
dancy to enable detection of the injected faults. This redundancy is found in
encoding intermediate variables using error detecting codes. A popular encoding
method is to duplicate intermediate variables, such that, by checking whether
all duplicates are equal, an algorithm can detect injected faults. If all sets of k
faulty shares in a share vector are detectable, we say that the encoding scheme
has an active threshold k.

Using masking and encoding of variables as the core idea to protect secrets
against passive and active attacks, we introduce terminology to protect algo-
rithms. A probabilistic circuit with shared inputs/outputs and, if needed, the
capability to abort the computation is dubbed a gadget.

Definition 1 (Gadget). A gadget G is a probabilistic circuit with input in
F

nm (m inputs where each input is divided into n shares), uniform randomness
r ∈ F

α, and a shared output in F
nm′

or abort ⊥.

Concerning symmetric primitives, the secrets are each potential intermediate
variable of the primitive. In other words, to protect the primitive against passive
or active attacks, it works solely over shared variables.

Additionally, we define private circuits as probabilistic circuits consisting of
a gadget, where its inputs are first shared and the shared outputs are recon-
structed.

Definition 2 (Private Circuit [25]). A private circuit implementing the func-
tion f : Fm → F

m′
is defined by a triple (I, C,O), where

– I : Fm → F
nm is a probabilistic circuit with uniform randomness, called input

encoder;
– C : Fnm → F

nm′
is a gadget with uniform randomness and the ability to abort;

– O : Fnm′ → F
m′

is a circuit with the ability to abort, called output decoder.

Since we will be working with composable security definitions, we typically
consider that private circuits are composed of several gadgets, i.e., the output
of one gadget forms the input of another.
1 On hardware this functionality is replaced a specialised mechanism such as a cas-

cading gadget from [24].

40 S. Dhooghe and S. Nikova

AC

Input, Probes, Faults

Output, Probed Values, ⊥

Fig. 1. Interaction between a circuit C and an adversary A.

We aim to protect against passive, active or combined adversaries as those
who interact with a circuit by placing probes, faults, or both respectively. As
shown in Fig. 1, the circuit responds to this adversary by setting or toggling the
values on the faulted wires and returning the values on the probed wires. The
state of the abort signal (true or false) is returned as well.

In order to make simulation based proofs for the secrecy of shared variables
in gadgets, we define simulatability similar to the definitions proposed in [5,9].
However, we additionally consider that up to k wires in that gadget have been
faulted and that the gadget can abort. Here the adversary (distinguisher) is
either interacting with the actual gadget or with a simulator. This simulator is
given only a part of the input and does not know the secrets of the gadget. The
distinguisher’s goal is to determine whether it is interacting with the simulator
or with the actual gadget. A failure to do so implies that the adversary can know
at most the shares given to the simulator and as a result only some inputs of
the gadget.

Definition 3 (Simulatability). Let P = {p1, ..., pd} be a set of d probes of a
gadget C with m inputs where each input is divided into n shares. Let the set of q
shares of each input given to the simulator be denoted by I = {(i1, j1), ..., (im, jq)}
⊂ {1, ...,m}×{1, ..., n}. Let F = {(f1, e1), ..., (fk, ek)} be a set of k injected faults
ei (either set or add) on the wire fi in C. Denote CP,F as the circuit C with
probed wires as per P and injected faults as per F . Finally, let ⊥ ∈ {0, 1} denote
the state of the abort signal in the circuit.

We define the simulator S and distinguisher D as the following probabilistic
functions.

S : Fq × F
m × F

k → F
d × {0, 1}

D : Fd × {0, 1} × F
k × F

nm → {0, 1}
We say that the set of probes P and the state of the abort signal ⊥ of the

faulted circuit CF can be simulated with the set of values on the input wires I
if there exists a simulator S, such that for any distinguisher D and any inputs
a∗,∗, we have that

∣
∣ Pr[D(CP,F (a∗,∗), F, a∗,∗) = 1] − Pr[D(S(I, F), F, a∗,∗) = 1]

∣
∣

is negligible in the passive threshold of the sharing scheme, where the probability
is taken over the random coins in C,S and D.

We note that for composable security, as we will see later on, we require that
the probability for the distinguisher to view the difference between the circuit

My Gadget Just Cares for Me - How NINA Can Prove Security 41

and the simulator is negligible and we should take care composing gadgets when
it is not.

3 Security Definitions

In this section we specify orders of passive, active, and combined security and
expand them to composable security notions which is the focus of our work.

3.1 Orders of Security

Passive Security. To model passive security we consider the known probing
adversary who can read the exact values of up to a threshold number of wires
in a gadget. The order of passive security is the well-known order of probing
security.

Definition 4 (Order of passive security [25,32]). A private circuit is dth-
order passive secure (dth-order probing secure) if every d-tuple of the gadget’s
intermediate variables is independent of any sensitive variable.

Active Security. We ensure protection against an adversary who is capable of
faulting a given number of wires in the circuit. We note that similar adversaries
have been proposed in Private Circuits II [24] and Impeccable Circuits [1]. The
order of active security is determined by the number of wires in the circuit the
adversary needs to fault in order to create an incorrect output. Such incorrect
outputs are important as they can activate DFA attacks, thus to secure imple-
mentations we require that the private circuit either gives back a correct output
or the process is aborted.

Definition 5 (Order of active security). A private circuit is kth-order active
secure if any set of k faults on the gadget’s intermediate variables results in either
abort ⊥ or a correct output (reconstructed output of the unfaulted circuit).

Note that active security guarantees output correctness and does not consider
fault attacks which target the privacy of a scheme such as ineffective faults.

Combined Security. We protect against a combined adversary who both faults
and probes wires and consider a private circuit secure if it retains both its privacy
and correctness against the combined adversary. This gives us the following
combined security definition.

Definition 6 (Order of combined security). A private circuit is (d, k)-order
combined secure if for any set of k faults and d probes on the gadget’s interme-
diate variables, the following holds.

(a) Privacy: The probed d-tuple with the state of the abort signal is independent
of any sensitive variable.

(b) Correctness: The circuit either aborts ⊥ or gives a correct output.

42 S. Dhooghe and S. Nikova

The combined security model with d = 0 still differs from the active security
model as the combined security model considers that an adversary can use the
knowledge on the state of the abort signal to derive the private circuit’s internal
variables. The difference between the two models thus lies in the combined secu-
rity model looking at both the privacy and correctness of a circuit while active
security only considers its correctness.

3.2 Composable Notions of Security

We note that the previously discussed security conditions are not composable,
i.e., the composition of multiple secure gadgets can be insecure. Thus, the previ-
ous security conditions should be applied to the entire implementation, instead
we look at composable security notions.

Passive Security. The security notion for composable passive security has been
studied by Barthe et al. [3] who defined the notion of Non-Interference (NI) using
simulation based security (see Definition 3).

Definition 7 (d Non-Interferent (d-NI) [3]). A gadget G is d-NI if any set
of at most d′ ≤ d probes can be simulated with at most d′ shares of each input.

Intuitively, the above model grants composable security since a probed value
in a gadget can be simulated with an input share, which on its turn is the output
share of a previous gadget. In case the latter gadget is also non-interferent, this
output value can again be simulated with an input share. This chains until we
reach the encoding function in a private circuit (Definition 2). Since the adversary
can only probe d values we only need to use a secret sharing scheme of passive
threshold at least d to protect against our probing adversary. While the notion
of non-interference is a good start and captures a composable security notion
over the serial composition of gadgets, the notion is not sufficient to provide
protection when gadgets are composed in parallel (e.g., when two gadgets share
the same input). To this end Barthe et al. introduced the notion of Strong Non-
Interference (SNI).

Definition 8 (d-Strong Non-Interferent (d-SNI) [3]). A gadget G is d-SNI
if any set of d1 probes on its intermediate variables and every set of d2 probes on
its output shares such that d1+d2 ≤ d, the totality of the probes can be simulated
by only d1 shares of each input.

We note that intermediate variables can also be the input or output variables
of the gadget.

When the above notion of non-interference is combined with a sharing scheme
with a high enough passive threshold, the composable notion provides for probing
security.

My Gadget Just Cares for Me - How NINA Can Prove Security 43

Active Security. Recall that we defined the order of active security as the
maximal number of faulty wires such that the circuit still returns a correct
output. We now make this into a composable notion, thus we look at the effect
of a fault in a gadget which is part of a larger whole. Ideally an injected fault
in the gadget is not propagated, i.e., the fault does not affect the output of that
gadget. However, the adversary can always fault its output directly, meaning that
we can never guarantee that all outputs of a faulted gadget are correct. Instead,
we are interested in gadgets which do not accumulate faults. In other words,
we need a fault on a single input or intermediate wire to affect only a single
output of the gadget. We relax this requirement by allowing countermeasures to
abort the computation (e.g., by using error detecting methods). We thus find
composable active security notions which are similar in nature to the definitions
of NI and SNI discussed earlier. Our first notion is Non-Accumulation (NA).

Definition 9 (k-Non-Accumulative (k-NA)). A gadget G is k-NA if for
any set of k′ ≤ k errors, the gadget either aborts or gives an output with at most
k′ errors.

G1 G4

G2

G3

k Faults 2k Faults

k Faults

k Faults

k Faults

k Faults

Fig. 2. An example of the propagation of faults over several k-NA gadgets for which a
stronger composability notion is needed.

For a gadget which is k-NA, k faults on its intermediate variables result in
the gadget giving an output with at most k faults. When composing gadgets, a
stronger notion of non-accumulation is needed to guarantee the security of the
composition. For example, consider the case given in Fig. 2 where each gadget Gi

is k-NA. If an adversary injects k faults in the input of G1, the gadget will give an
output with at most k faulty shares. These faults propagate to the inputs of G2

and G3 which, because both gadgets are k-NA, results in a worst case scenario
where G4 gets an input with a total of 2k faulty shares. The end result is a
sharing with 2k faulty shares even though only k faults were injected. To avoid
such an accumulation of faults, one needs gadgets which are capable of erasing
the errors from their input. The following definition of Strong Non-Accumulation
(SNA) is sufficient to arbitrarily compose gadgets and be assured of their active
security.

Definition 10 (k-Strong Non-Accumulative (k-SNA)). A gadget G is
k-SNA if for any set of k1 errors on each input and every set of k2 errors on
the intermediate variables, with k1 + k2 ≤ k, the gadget either aborts or gives an
output with at most k2 errors.

44 S. Dhooghe and S. Nikova

When the non-accumulation notions are combined with a sharing scheme
with a high enough active threshold, the composable notions provide active
security.

Combined Security. We now look at composable security notions consider-
ing circuits which are both probed and faulted. First, we need to guarantee the
correctness of the output of each gadget. To capture the effect of faults in com-
positions of gadgets, we use an argument similar to the one on active security.
Thus, we need that an injected fault in a gadget propagates to at most one
output share. However, the adversary can now place probes and thus learn part
of the computation made in the gadgets. As a result, the combined security
notion needs to capture the probability of an adversary breaking the correct-
ness of a gadget given several faults and probes. In this work we only propose
countermeasures where the correctness can not be broken, to give an example
of a countermeasure for which this probability is non-trivial we refer the reader
to the CAPA countermeasure [31]. Apart from guaranteeing the correctness of
a gadget, we also guarantee its sensitive variable privacy for which we use sim-
ulation based arguments similar to non-interference. As mentioned by Clavier
et al. [11], fault injections can act as a probing tool (think of an adversary fault-
ing away the randomness in a gadget). Thus, we treat faults as probes giving
extra shares to the simulator per injected fault (though we see later on that this
is not always needed). Additionally, to give the designer the freedom to make
countermeasures more efficient we consider security with abort. To capture the
effect of the abort signal potentially revealing secrets in the gadget, we require
the simulator to reproduce this signal given the injected errors and some input
shares. As a result, we design a composable security notion of order (d, k) such
that the gadget is (d′, k′)-order combined security for all sets of d′+k′ ≤ d probes
and k′ ≤ k faults. We dub our notion NINA derived from the concatenation of
the names Non-Interference (NI) and Non-Accumulation (NA).

Definition 11 ((d, k)-NINA). A gadget G is (d, k)-NINA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′ + k′ ≤ d, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d′ +k′ shares
of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k′

errors.

The NINA notion, combined with a sharing scheme having a sufficient passive
and active threshold, implies the notion of combined security (see Definition 6).
This follows from the simulation based security stating that the adversary can
learn up to a threshold number of the gadget’s inputs which, if lower than the
passive threshold of the sharing scheme, gives no information on the gadget’s
secrets. Similarly, since the adversary can only fault up to a threshold number
of outputs, a decoding gadget can detect or correct those errors given that the
sharing scheme has enough redundancy in it. A formal proof of this implication
is found in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 45

Theorem 1 A (d, k)-NINA gadget G with input encoding I and output decoding
O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d′, k′)-order combined secure for any d′ + k′ ≤ d and
k′ ≤ k.

As a result, if we prove a gadget is NINA, we know it is combined secure.
However, just as with non-interference, the NINA notion is not sufficient for
composability. To this end we introduce “Strong NINA” (SNINA).

Definition 12 ((d, k)-SNINA). A gadget G is (d, k)-SNINA if for any set of
k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1 + d2 + k1 + k2 ≤ d and
k1 + k2 ≤ k, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d1 + k1 + k2
shares of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k2
errors.

The notion of SNINA is sufficient for composability. In other words the com-
position of two SNINA gadgets is again SNINA (a proof is given in the full
version).

Theorem 2. The composition of two (d, k)-SNINA gadgets is (d, k)-SNINA.

The above theorem together with Theorem 1 implies that the notion of
SNINA is a sufficient condition to achieve composable combined security. The
relations between the SNINA notion and other security models is shown in Fig. 3.

(d, k)-
SNINA

(d, k)-NINA (d′, k′)
Comb. Sec.

k-SNA

d-SNI

k-NA

d-NI

k Act. Sec.

d Pas. Sec.

Fig. 3. A short overview of security models and relations between them.

Nevertheless, we find that there is a stronger property than NINA which
gives improved protection. In case we use error correcting techniques instead of
error detecting ones, specialised gadgets can attain a stronger security condition
where faults are no longer modelled as probes. Thus, we propose a security notion
where we claim an adversary can not learn anything by faulting a gadget which
manifests itself in the security definition as the simulator not getting an extra
input share for an injected fault. The result of this change is captured in the
following definition which we dub “Independent NINA” or ININA.

46 S. Dhooghe and S. Nikova

Definition 13 ((d, k)-ININA). A gadget G is (d, k)-ININA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′ ≤ d, the following holds.

(a) Privacy: The probes can be simulated with d′ shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k′ errors.

The above definition can again be made into a property which is sufficient for
arbitrary compositions. This gives us the notion of “Strong Independent NINA”
or SININA for short.

Definition 14 ((d, k)-SININA). A gadget G is (d, k)-SININA if for any set
of k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1+d2 ≤ d and k1+k2 ≤ k,
the following holds.

(a) Privacy: The probes can be simulated with d1 shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k2 errors.

It is evident that the ININA notions are stronger than the NINA notions, thus
the above notions also provide combined security. However, the notion provides
directly (d, k)-combined security instead of (d′, k′)-order combined secure for any
d′ + k′ ≤ d and k′ ≤ k. The proof of the following theorem is given in the full
version of the paper.

Theorem 3. A (d, k)-ININA gadget G with input encoding I and output decod-
ing O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d, k)-order combined secure.

As a result, using the same masking scheme, a SININA secure gadget provides
significant improved combined protection over an SNINA secure gadget.

Similar to SNINA, SININA is sufficient for composability. In other words the
composition of two SININA gadgets is again SININA (a proof is given in the full
version of the paper).

Theorem 4. The composition of two (d, k)-SININA gadgets is (d, k)-SININA.

4 Combined Secure Duplicated Boolean Masking

In this section we introduce a combined secure methodology for an arbitrary
security order. We work over bits F2, share values using Boolean secret shar-
ing and encode using duplication. We first quickly introduce the secret sharing
scheme and then move on to show our methodology. The security of the gadgets
is proven in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 47

4.1 Duplicated Boolean Masking

For the proposed countermeasures, we make use of a duplicated Boolean masking
approach which shares a secret x as a vector

(x1,1, ..., x1,k+1, x2,1, ..., xd+1,k+1) ,

such that
∑d+1

i=1 xi,� = x for all � ∈ [k+1] and xi,1 = ... = xi,k+1 for all i ∈ [d+1].
This method has a passive threshold d meaning that no d shares give information
on the secret x and an active threshold k meaning that any faults on at most k
shares could be detected in the share vector.

4.2 Duplicated Boolean Methodology

We recall that our secret sharing scheme has a passive threshold d, meaning that
an adversary needs to view at least d + 1 shares to recover the secret, and an
active threshold k, thus an adversary needs to inject at least k + 1 errors for the
fault to be undetectable. We note that our methodology is similar to the one
from Private Circuits II [24]. The pseudo-code to secret share a value is given in
Algorithm 1.

Algorithm 1. Duplicated Boolean sharing a secret a

Input: Secret a and uniform random values ri

Output: Duplicated Boolean shares of a

for � ← 1 to k + 1 do
for i ← 1 to d do

ai,� ← ri;
end

ad+1,� ← a +
∑d

i=1 ai,�;

end

The addition between independent shared variables is quite simple and needs
only component-wise addition between the shares. Thus, the addition between
the sharing of a and b, giving a sharing of c = a + b, is made by ci,� = ai,� + bi,�.
To secure operations between shares and constants we ensure that the constant
is not a single point of failure, as such it also needs to be duplicated, namely
each constant is replicated (k + 1) times to form a (k + 1) tuple which is the
encoded value of the constant. The addition of a shared value a with a constant
c is done by adding the duplicated constant to the duplicated first Boolean share
of the variable.

∀� ∈ [k + 1] : a1,� ← a1,� + c�

A multiplication with a constant is done by multiplying the duplicated constant
to each share.

∀i ∈ [d + 1], ∀� ∈ [k + 1] : ai,� ← ai,� · c�

Since the above operations are all local, they are evidently (d, k)-NINA.

48 S. Dhooghe and S. Nikova

While linear operations are easily implemented, the multiplication between
shared and encoded variables is more difficult. We give pseudo-code of our mul-
tiplication gadget in Algorithm 2. The gadget starts by multiplying two inde-
pendent share vectors of a and b to create all cross products of the form aibj .
These cross products are then remasked by adding unique randomness ri,j cre-
ated by an RNG (which is important for the SNI property). Since we add the
same randomness over all duplicated cross products (ui,j,� for � ∈ [k + 1]) all
these cross products should equal each other if no fault was injected. As a result,
we can error check them (which is important for the SNA property).2 To detect
errors in the cross products it is sufficient to compare a share to all its duplicated
versions, in symbols:

∀i, j ∈ [d + 1], ∀� ∈ [k + 1] : ui,j,1 = ui,j,� .

Since we are working over bits, this translates to aborting the computation in
case one of the ui,j,1 +ui,j,� is equal to 1. This abort operation is considered as a
command causing all variables in the implementation to read ⊥ as explained in
Sect. 2 (in Sect. 4.3, we describe a cascading gadget in case an abort operation
is not available). In case no error is detected, the gadget sums up all the cross
products for different indices j and returns a duplicated Boolean sharing of ab.
The proof that this multiplication procedure is SNINA is given in the full version
of the paper. From this proof we see that there is a statistical ineffective fault
attack (see [17]) which breaks the privacy of the algorithm. This attack works as
follows, the adversary adds a non-zero fault to one of the ai,� shares (similarly
bi,� shares). In case the operation does not abort, the adversary learns that all
bi,� = 0 (similarly all ai,� = 0), which means the adversary learns an input secret
and breaks the privacy of the gadget. The probability for this attack to succeed
is equal to 1/|F2|d+1. Due to the attack aborting the computation when it fails,
this attack does not threaten the composability of the gadget.3 To increase the
protection against the ineffective fault, the probability for the attack to succeed
needs to be made sufficiently small which is done by increasing the number of
shares or by increasing the field size |F|. In Sect. 5 we look at an error correcting
variant of the multiplication gadget which is not vulnerable to an ineffective
fault.

In Algorithm 3 we provide a method to refresh the randomness of a shared
variable and check whether there are errors present on its shares. A proof of the
SNINA condition of Algorithm 3 is given in the full version of the work. We
note that this gadget can be used to transform a NINA secure operation into
its SNINA variant by serially composing the NINA gadget with Algorithm 3.

2 Note that if an adversary injects a fault directly in one of the random values ri,j ,
it would not be detected. Nevertheless, the gadget still outputs a valid duplicated
Boolean sharing so it does not affect the correctness of the gadget. This fault should
be carefully investigated for its effects on the gadget’s privacy.

3 To clarify, the passive threshold of the sharing does not need to increase to assure
composability due to the only attack, causing simulator failure, aborting the com-
putation on success.

My Gadget Just Cares for Me - How NINA Can Prove Security 49

Algorithm 2. Multiplying duplicated Boolean shared values
Input: Independent shares of a and b, and uniform random ri,j

Output: Shares of ab or ⊥
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do
ui,i,� ← ai,�bi,�;
for j ← i + 1 to d + 1 do

ui,j,� ← ai,�bj,� + ri,j ;
uj,i,� ← aj,�bi,� + ri,j ;

end

end

end
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
for j ← 1 to d + 1 do

ti,j,� ← ui,j,1 + ui,j,�;
if ti,j,� = 1 then return ⊥;

end

end

end
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do

ci,� ← ∑d+1
j=1 ui,j,�;

end

end

This follows from Theorem 5 which states that the serial composition between a
NINA gadget and an SNINA gadget is again SNINA. The proof of this theorem
is found in the full version of the paper.

Theorem 5. The serial composition of a single input, output (d, k)-NINA gad-
get with a (d, k)-SNINA gadget is again (d, k)-SNINA.

Thus, sometimes one can substitute SNINA gadgets with NINA ones without
sacrificing security. This reduces costs as NINA secure gadgets are generally more
efficient than their SNINA variants.

Together, all gadgets described in this section form a methodology to secure
arbitrary circuits as each algorithm over a finite field can be described in terms
of additions and multiplications.

4.3 A Cascading Gadget

In case an abort mechanism is not available, we provide a circuit which erases
all data when a fault is detected. This method is similar to the cascading gadget
described in [24] and thus we lend its name. We first make variables for the abort

50 S. Dhooghe and S. Nikova

Algorithm 3. Refreshing and checking a duplicated Boolean sharing
Input: Duplicated Boolean shares of a and uniform random values ri,j

Output: Refreshed and checked shares of a or ⊥
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
ti,� ← ai,1 + ai,�;
if ti,� = 1 then return ⊥;

end

end
for � ← 1 to k + 1 do

for i ← 1 to d + 1 do
for j ← i + 1 to d + 1 do

ai,� ← ai,� + ri,j ;
aj,� ← aj,� + ri,j ;

end

end

end

flag, we consider ⊥� for � ∈ [k]. A priori, all ⊥� are equal to zero, however, when a
fault is injected we require that each ⊥� is set to one. In case the abort flag equals
all one, no k − 1 faults can change each ⊥� back to zero. The above described
functionality is implemented by duplicating the error checks in Algorithms 2
and 3. For example, the error checking component (the first lines) of Algorithm 3
would be changed to the following.

for m ← 1 to k do
for � ← 2 to k + 1 do

for i ← 1 to d + 1 do
⊥m ← (ai,1 + ai,�) ∨ ⊥m;

end

end

end

From the above algorithm it is clear that in case one of the ai,1 does not
equal ai,�, all ⊥m are set to one and no k − 1 faults can set them all back to
zero.

With the above abort flag as a global variable and its functionality as
described above, we can easily describe a gadget which erases its input in case
a ⊥m is equal to one. We give the pseudo-code of this gadget in Algorithm 4.

In case Algorithm 4 is serially composed with each Algorithm 2 or Algo-
rithm 3, our duplicated Boolean masking methodology is secure against com-
bined attacks without the need of an ideal abort command.

My Gadget Just Cares for Me - How NINA Can Prove Security 51

Algorithm 4. Cascading a duplicated Boolean sharing
Input: Shares of a and the abort state ⊥m for m ∈ [k]
Output: The shares of a or all 0

for � ← 1 to k + 1 do
for i ← 1 to d + 1 do

ai,� ← ai,�

∏k
m=1(1 + ⊥m);

end

end

5 A Correcting Multiplication

In the previous section we gave a combined secure methodology based on detect-
ing errors using duplicated Boolean shares. However, Algorithm 2 is vulnerable
against a statistical ineffective fault. To avoid this vulnerability one can use
an error correction method instead of an error detection one. As there is no
longer an abort signal, a fault does not change the state of the output and as a
result ineffective faults are now actually ineffective. Note that this comes at the
increased cost of using extra shares and operations to enable error correction.

Instead of just replacing the error detection mechanisms with error correction
ones, we go one step further and create an error correcting variant of Algorithm 2
which attains Strong Independent NINA security (Definition 14). Whereas Algo-
rithm 2 was secure against d probes and k faults where the combined number
of probes and faults do not exceed d, our new algorithm does not require this
restriction thus it is secure against up to d probes and k faults at the same time.
In other words, a k-active adversary faulting the new multiplication gadget does
not harm the privacy of the gadget.

We introduce the error correcting multiplication gadget. We again work over
bits F2, share values using d Boolean secret shares, but now encode using 2k +1
duplicated shares (instead of k + 1 shares). As such, the secret sharing scheme
has a passive threshold d, meaning that an adversary needs to view at least
d + 1 shares to recover the secret, and an active threshold 2k, thus an adversary
needs to inject at least k + 1 errors for the fault to be uncorrectable (note the
difference with the undetectability of faults). We give the pseudo-code of the
multiplication gadget in Algorithm 5. The error correcting gadget works similar
to the error detecting one. It starts by multiplying two independent share vectors
of a and b to create all cross products. These cross products are then remasked
by adding k + 1 random elements ri,j,� to each of them. As a result, since each
cross product is masked by k + 1 random values, no set of k faults can remove
all random values on a cross product. Since we add the same randomness over
all duplicated cross products (ui,j,� for � ∈ [2k + 1]) all these cross products still
equal each other if no fault was injected. As a result, we can error correct them.
An error correction on duplicated shares is done by majority voting the shares.
If at least k + 1 out of 2k + 1 cross products were equal to zero, the result of
this majority vote is zero otherwise it is equal to one. For brevity, we denote this

52 S. Dhooghe and S. Nikova

Algorithm 5. Multiplying shares with error correction
Input: Independent shares of a and b, and uniform random ri,j,�

Output: Shares of ab

for � ← 1 to 2k + 1 do
for i ← 1 to d + 1 do

ui,i,� ← ai,�bi,�;
for j ← i + 1 to d + 1 do

ui,j,� ← ai,�bj,�;
uj,i,� ← aj,�bi,� ;
for m ← 1 to k + 1 do

ui,j,� ← ui,j,� + ri,j,m;
uj,i,� ← uj,i,� + ri,j,m;

end

end

end

end
for � ← 1 to 2k + 1 do

for i ← 1 to d + 1 do
for j ← 1 to d + 1 do

vi,j,� ← Maj(ui,j,1, ..., ui,j,2k+1);
end

end

end
for � ← 1 to 2k + 1 do

for i ← 1 to d + 1 do

ci,� ← ∑d+1
j=1 vi,j,�;

end

end

operation “Maj”, where we assume for simplicity that a probing adversary can
view all arguments given to the Maj function with one probe. We stress that this
error correction procedure is independently applied to each cross product, such
that a single fault can only affect one cross product. Our multiplication gadget
again ends by summing up all the cross products for different indices j and
returns a duplicated Boolean sharing of ab. The proof that this multiplication
procedure is SININA is given in the full version of the work.

6 Conclusion

We provided security notions considering circuits with probed and/or faulted
wires. We then extended them to active and combined composable notions sim-
ilar to the extension from the probing model to Non-Interference (NI). The first
notion of Non-Accumulation (NA) addresses composable active security which
states that a gadget is secure if injected faults affect only one output each.

My Gadget Just Cares for Me - How NINA Can Prove Security 53

The second is the notion of composable combined security (NINA). A gadget
is considered NINA if an injected fault only affects one output and a fault or
probe can be simulated using only one input. We discussed both error detection
and error correcting gadgets and showed that the error detection mechanism is
prone to ineffective faults whereas error correction comes at an increased cost
but gives significantly improved protection (Independent NINA).

The notions for composable security offer the ability to efficiently verify build-
ing blocks of larger implementations and allow for the search of efficient functions
which achieve security in the corresponding model. Moreover, these composable
notions enable us to use secured primitives in a larger whole such as modes of
operations.

Acknowledgements. The authors would like to thank Thomas De Cnudde, Adrián
Ranea, Vincent Rijmen, and Nigel Smart for their useful comments and ideas.

This work was supported in part by the Research Council KU Leuven: C16/18/004,
by the NIST Research Grant 60NANB15D346, and by the EU H2020 project FENTEC.
Siemen Dhooghe is supported by a Ph.D. Fellowship from the Research Foundation -
Flanders (FWO). Svetla Nikova was partially supported by the Bulgarian National
Science Fund, Contract No. 12/8.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Schellenberg, F., Schneider, T.: Impecca-
ble circuits. Cryptology ePrint Archive, Report 2018/203 (2018)

2. Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhythmic Keccak:
SCA security and low latency in HW. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(1), 269–290 (2018). https://doi.org/10.13154/tches.v2018.i1.269-290

3. Barthe, G., et al.: Strong non-interference and type-directed higher-order mask-
ing. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, 24–28 October 2016, pp. 116–129. ACM (2016).
https://doi.org/10.1145/2976749.2978427

4. Barthe, G., Beläıd, S., Fouque, P., Grégoire, B.: maskVerif: a formal tool for ana-
lyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive 2018, 562 (2018). https://eprint.iacr.org/2018/562

5. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

6. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 14

7. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 12

https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.1145/2976749.2978427
https://eprint.iacr.org/2018/562
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12

54 S. Dhooghe and S. Nikova

8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

9. Cassiers, G., Standaert, F.: Improved bitslice masking: from optimized non-
interference to probe isolation. IACR Cryptology ePrint Archive 2018, 438 (2018).
https://eprint.iacr.org/2018/438

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

11. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 13

12. Coron, J.-S.: High-order conversion from Boolean to arithmetic masking. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 5

13. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 65–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0 4

14. De Cnudde, T., Nikova, S.: More efficient private circuits II through threshold
implementations. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 114–124.
IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.15

15. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

16. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove
security against combined attacks. IACR Cryptology ePrint Archive 2019, 615
(2019). https://eprint.iacr.org/2019/615

17. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

18. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

19. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
masking schemes in the presence of physical defaults & the robust probing model.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89–120 (2018). https://doi.
org/10.13154/tches.v2018.i3.89-120

20. Gollmann, D.: Computer Security, 3 edn. Wiley (2011). http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-1118801326.html

21. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

https://doi.org/10.1007/BFb0052259
https://eprint.iacr.org/2018/438
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1109/FDTC.2016.15
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://eprint.iacr.org/2019/615
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://doi.org/10.1007/3-540-48059-5_15

My Gadget Just Cares for Me - How NINA Can Prove Security 55

22. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Bilgin, B., Nikova,
S., Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implemen-
tation Security, TIS@CCS 2016 Vienna, Austria, October 2016, p. 3. ACM (2016).
https://doi.org/10.1145/2996366.2996426

23. Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of KECCAK. In: Kubátová, H., Novotný, M., Skavhaug, A. (eds.)
Euromicro Conference on Digital System Design, DSD 2017, Vienna, Austria, 30
August–1 September 2017, pp. 205–212. IEEE Computer Society (2017). https://
doi.org/10.1109/DSD.2017.21

24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

26. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

27. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

28. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

29. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

30. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

31. Reparaz, O., et al.: CAPA: the spirit of beaver against physical attacks. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–
151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 5

32. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

33. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 11

34. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 4

https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-48324-4_4

Modeling Memory Faults in Signature
and Authenticated Encryption Schemes

Marc Fischlin1 and Felix Günther2(B)

1 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
mail@felixguenther.info

Abstract. Memory fault attacks, inducing errors in computations, have
been an ever-evolving threat to cryptographic schemes since their discov-
ery for cryptography by Boneh et al. (Eurocrypt 1997). Initially requir-
ing physical tampering with hardware, the software-based rowhammer
attack put forward by Kim et al. (ISCA 2014) enabled fault attacks also
through malicious software running on the same host machine. This led to
concerning novel attack vectors, for example on deterministic signature
schemes, whose approach to avoid dependency on (good) randomness
renders them vulnerable to fault attacks. This has been demonstrated in
realistic adversarial settings in a series of recent works. However, a uni-
fied formalism of different memory fault attacks, enabling also to argue
the security of countermeasures, is missing yet.

In this work, we suggest a generic extension for existing security mod-
els that enables a game-based treatment of cryptographic fault resilience.
Our modeling specifies exemplary memory fault attack types of different
strength, ranging from random bit-flip faults to differential (rowhammer-
style) faults to full adversarial control on indicated memory variables. We
apply our model first to deterministic signatures to revisit known fault
attacks as well as to establish provable guarantees of fault resilience
for proposed fault-attack countermeasures. In a second application to
nonce-misuse resistant authenticated encryption, we provide the first
fault-attack treatment of the SIV mode of operation and give a prov-
ably secure fault-resilient variant.

Keywords: Fault attacks · Security model · Fault resilience ·
Deterministic signatures · Nonce-misuse resistant authenticated
encryption

1 Introduction

Since their first treatment in the cryptographic realm by Boneh, DeMillo, and
Lipton [20] in 1997, fault attacks (i.e., attacks that induce unexpected distur-
bances during computations) have evolved as an important class of attacks to

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 56–84, 2020.
https://doi.org/10.1007/978-3-030-40186-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_4

Modeling Memory Faults in Signature 57

assess the strength of cryptographic systems. While the possibility of faults acci-
dentally occurring in hardware chips was already known in the 1970s [42], the
work by Boneh et al. as well as others [20,39] demonstrated that faults can
have devastating effects on the security of cryptographic systems, more specifi-
cally RSA and other signatures making use of the Chinese Remainder Theorem.
The attack by Boneh, DeMillo, and Lipton inspired—beginning with Biham and
Shamir introducing differential fault analysis [18]—a long line of research on
different types of fault attacks challenging the security of cryptographic sys-
tems. These in particular encompass a wealth of different hardware tampering
attacks, ranging from manipulation of the system’s voltage, clock, or tempera-
ture to electromagnetic disturbances or laser irradiation (see, e.g., [3,4] for an
overview).

For a long time, countermeasures against fault attacks focused on making
the cryptographic hardware tamper-resilient (or tamper-proof). In 2014 how-
ever, a break-through research result by Kim et al. [40] demonstrated that faults
can be remotely injected in modern hardware through software access only. More
specifically, their attack leveraged that high-frequency repeated read/write oper-
ations to some memory address (“hammering”) in DRAM memory may induce
disturbance errors in other nearby addresses. Kim et al. described how in a so-
called rowhammer attack a malicious process can induce controlled disturbances
(i.e., bit flips as differential faults) in the memory of another process, circum-
venting the memory isolation security mechanisms of the computing system. In
follow-up work, the rowhammer attack was refined further. Specifically, Razavi
et al. [50] improved the attack in a way that enabled flipping individual bits in
nearby memory in a fine-grained manner, even across the boundaries of virtual
machines hosted on the same hardware.

It does not come as a surprise that software fault attacks like rowhammer can
have critical security implications for cryptographic systems. Razavi et al. [50]
already demonstrated how bit-flipping attacks in RSA public-keys stored by
the SSH protocol for authentication [61] enable easy factorization and thereby
break the authentication system. More recently, Poddebniak et al. [48] formal-
ized rowhammer-style attacks that specifically target the setting of deterministic
signature schemes, opening up a new type of attack vector in this area.

Deterministic signature schemes emerged from the insight that good ran-
domness might not always be available in the signing process due to failures
in the random number generation. This may be due to restricted hardware
settings where no good randomness source is available or a result of badly
implemented or flawed random number generators [24,28,34,36]. In such cases,
signature schemes like DSA or ECDSA [46] that crucially rely on good per-
message randomness in the signing process will fail catastrophically. Prominent
incident examples include the compromise of the ECDSA signature keys for
Sony’s Playstation 3 [30] or key leaks in cryptocurrencies [21,22].

To obviate the dependency on good randomness in the signing process,
M’Räıhi et al. [44] put forward the concept of making signature schemes deter-
ministic through what we call de-randomization. The idea is to replace the

58 M. Fischlin and F. Günther

ephemeral randomness sampled in the signing process by the output of a ran-
dom oracle [14] evaluated on the secret signing key and the message to be signed.
This way, no genuine randomness source is required for signing while the used
input remains uniformly random from the perspective of an adversary with-
out knowledge of the secret signing key. The de-randomizing approach has been
widely adopted, e.g., in the specification of deterministic versions of DSA and
ECDSA through RFC 6979 [49] or upfront in the design of the EdDSA signature
algorithm proposed by Bernstein et al. [16].

Poddebniak et al. [48] now show that the introduced determinism in such
schemes enables new kinds of fault attacks. More specifically, they formalize
how rowhammer-style attacks can be deployed to recover signing keys by inject-
ing faults in the deterministic computation of ECDSA and EdDSA signatures.
This is done in such a way that two signatures on two different messages are
computed (one original, and one resulting from the memory fault attack), but
with the signing algorithm (re-)using the same per-message random nonce. They
then demonstrate the practical feasibility of their attacks on an EdDSA imple-
mentation in a realistic setting across virtual machines.

In their work, Poddebniak et al. [48, Section 9] touch upon a number of
countermeasures. Notably, they specifically highlight that the commonly sug-
gested countermeasure to verify the signature before releasing it in order to
check correctness of the computation [20,41] turns out to be ineffective in pro-
tecting against their attack: the resulting signature is actually valid for the mes-
sage modified through the fault attack. They conclude that the only crypto-
graphic mechanism that would render their attack infeasible is to re-integrate
randomness in the signing process in addition to the deterministically derived
per-message nonce. This supports the design of the XEdDSA signature scheme
by Perrin [47] deployed in the Signal secure messaging protocol [58], which aug-
ments the EdDSA nonce derivation with an additional random value in order
to protect against glitches in the computation, referring to an observation by
Schmidt [57].

In several works concurrent and closely related to that by Poddebniak et
al. [48], Romailler and Pelissier [54], Ambrose et al. [1], as well as Samwel et
al. [55,56] studied differential fault and side-channel attacks on deterministic
signatures in general and the ECDSA and EdDSA schemes specifically, also
revisiting a previous result by Barenghi and Pelosi [5]. Notably, all works agree
that adding randomness back into the signing process is necessary in order to
prevent the described fault attacks. Indeed, the lattice-based signature proposals
qTesla1 and Dilithium2 for NIST’s post-quantum standardization process both
include now a randomized version in the second round update because of the
attacks.

Contributions. At this point, the current state of understanding of memory
fault attacks (on deterministic signatures and more generally) leaves us with
1 https://qtesla.org/.
2 https://pq-crystals.org/.

https://qtesla.org/
https://pq-crystals.org/

Modeling Memory Faults in Signature 59

the questions of how to formally capture different types of memory faults and
relate their strength, and how to assess whether proposed attack countermea-
sures indeed provide security against certain classes of fault attacks. In this
work, we approach an answer to these questions through establishing a gener-
alized game-based security model capturing cryptographic fault resilience. We
then apply this model to recapitulate the fault attacks discussed, establish prov-
able security results for proposed countermeasures, and derive novel measures
for the setting of nonce-based authenticated encryption.

Security Model Extension for Fault Resilience. We introduce, in Sect. 2, a game-
based framework for extending existing security models in order to capture mem-
ory fault attacks resp. resilience against such attacks. Our approach generalizes
fault attacks of different strength on memory variables through a modeling tech-
nique akin to callback functions in programming languages. The specific types
we define range from full adversarial control to controlled (rowhammer-style) bit
flips to random faults, both transient and persistent; further types of memory
fault attacks can be easily captured in our formalism.

As a result, our security model on the one hand allows us to formalize weak-
nesses in a cryptographic scheme through describing memory fault attacks as an
abstract set of adversarial interactions with the scheme. On the other hand, the
model enables us to positively establish provable security results for the fault
resilience of a scheme against well-defined classes of fault attacks. We will use our
model in the former way to demonstrate how known memory fault attacks are
reflected in the model. In the latter way, we employ it to evaluate the provable
security guarantees of potential countermeasures reconciling weak-randomness
and fault-attack protection.

Fault Resilience of Signatures. We then apply our model (in Sect. 3) to assess
the fault resilience of digital signature schemes. To this end, we first augment the
classical notion of unforgeability with our security model extension to capture
memory fault attacks. A key point in the augmented model is to attribute the
signature to a message, because the adversary may alter the message content
during the signing process. The extension enables us to formally restate the
concept of above fault attacks on deterministic signatures [1,48,54,56] in terms
of our security model, as a sanity check for our modeling so to speak.

More importantly, we then formalize the proposed countermeasure to include
additional randomness in the signature generation process along with potential
fault-attack vectors. One countermeasure, used in XEdDSA, is to derive the
necessary randomness for signing by applying a pseudorandom function to the
message, but also mixing in a random value in this pseudorandom function
evaluation. An alternative countermeasure is to compute the exclusive-or of the
pseudorandom value with the random string. We are able to formally establish
that both approaches indeed achieve the desired goal of providing combined secu-
rity: achieving fault resilience when good randomness is present while upholding
regular security of a de-randomized scheme under arbitrarily weak randomness.

60 M. Fischlin and F. Günther

Fault Resilience of Authenticated Encryption. Finally, we demonstrate the gen-
erality of our security model extension by applying it to another setting (in
Sect. 4), namely that of nonce-based and nonce-misuse resistant authenticated
encryption [51–53]. Somewhat similar to the setting of deterministic signatures,
nonces were introduced to authenticated encryption schemes in order to obviate
the need for randomness in the encryption process, again for (good) randomness
not always being available.

There has been some preliminary work on fault attacks on nonce-based
authenticated encryption (e.g., [26,27]). To the best of our knowledge, we how-
ever provide the first fault-attack treatment of the SIV mode of operation pro-
posed by Rogaway and Shrimpton [53], aiming also at nonce-misuse resistance.
Unfortunately, the SIV mode does not provide any fault resilience even under
the weakest types of (random single-bit flip) fault attacks in our model. How-
ever, we can show that translating concepts similar to the additional-randomness
countermeasure for deterministic signatures allows us to derive a randomness-
augmented mode SIV$ which provides strong misuse-resistant authenticated
encryption security while protecting against differential fault attacks.

Further Related Work. Faults in cryptographic schemes and formal ways
of establishing fault resilience have been studied in different settings before.
Ishai et al. [37] model faults in gate-wise computations in (conducting) circuits,
focusing rather on hardware than on memory-based faults like rowhammer. Their
approach ensures security through “self-destructing circuits,” whereas our model
aims at upholding functionality and security under a defined class of faults.
Faults in (memory) variables of cryptographic schemes have been considered by
Coron and Mandal [25] in their provable-security model tailored to random faults
in RSA signatures. Barthe et al. [6] treated non-random fault attacks on RSA in
a model generalizing attacks from [32]. Extending the principle idea of provable-
security treatment of memory-variable faults, we provide a generic security model
capturing general memory faults in arbitrary cryptographic primitives.

Memory-based fault attacks like rowhammer can also be used to modify
the control flow of programs (through return addresses and the like). Similar
tampering with program control flow is possible through a range of hardware
tampering, in cases enabling fine-grained instruction skipping [3,4]. This nat-
urally also effects cryptographic implementations (see, e.g., attacks on elliptic
curve cryptography [17,19,59]) and could potentially be seen as an extreme,
transient form of algorithm substitution attacks [13]. It remains unclear how
cryptographic schemes themselves can counter control-flow faults, and thus in
this work we focus on faults modifying their data residing in memory.

Related-key attack (RKA) security [12,33] studies fault attacks in a setting
where faults are restricted to the key material of cryptographic primitives, bound
to a class of related-key deriving functions. While RKA security can be a building
block for achieving strong fault resilience, our model more generally considers
memory faults of various types that affect arbitrary memory variables. We leave

Modeling Memory Faults in Signature 61

studying the detailed relationship between RKA security notions and memory
fault resilience as a possible avenue for future work.

As remarked above, one of the challenges for signature schemes is to link
the signature to a message, because the message may change during the signing
process. The notion of incremental cryptography [10] faces a similar problem
of attributing signature creations to messages in a setting where the adversary
may tamper with the input. The idea of incremental signature schemes is to sign
a message from scratch, and when the message is later slightly edited, one is
able to update the signature fast by accessing only a few message blocks. In a
strong notion for virus protection [11], Bellare et al. consider the possibility that
the adversary may alter the message before making an update call to create a
new signature. Since the update algorithm can only access a bounded number
of message blocks it cannot check validity of the entire message and potentially
works on a substituted message. From a security viewpoint this too raises the
question which message one assigns to the derived signature. Bellare et al. [11]
correlate the unaltered message which the signer would have expected to the
signature.

Note that incremental signatures on the one hand touch a simpler problem
than in our case. This is so because, there, the adversary can change the message
only once, before calling the signature creation. In contrast, our adversary may
continuously provide different values during the signing process, every time the
data is accessed. At the same time our case does not deal with fast updates
and may read the entire message. When adapting our fault-resilience model to
the setting of signatures in Sect. 3.1, we will see that with introduced faults, the
challenge message-signature pair to record turns out to be the (at most) one
valid combination seen among all faulted variables.

In the setting of hedged public-key encryption as introduced by Bellare et
al. [7], similar combiner techniques are employed as in the countermeasures rec-
onciling weak-randomness and fault-attack protection for deterministic signa-
tures and authenticated encryption we discuss in Sects. 3.3 and 4.3. We leave it
as an open question for future work to study whether such techniques enable
fault-resilient security for hedged public-key encryption, too.

Concurrent Work. In concurrent and independent work, Aranha et al. [2]
studied the security of hedged randomness derivation in Fiat-Shamir–type sig-
natures under fault attacks. Focusing on the Fiat-Shamir transform, they treat
tailored (memory) fault types occurring in such design and particularly study
Schnorr signatures as well as the NIST post-quantum signature candidate Pic-
nic23. Their model considers a limited adversary capable of injecting (only) a
single fault as setting or flipping a single bit in a function input or output.
Our approach is more generic, introducing a generic extension to capture arbi-
trary and strong memory fault attacks in any cryptographic scheme. Beyond also
studying signatures and their de-randomization and hedging as prime practical

3 https://microsoft.github.io/Picnic/.

https://microsoft.github.io/Picnic/

62 M. Fischlin and F. Günther

example, we exemplify this generality by furthermore treating nonce-misuse–
resistant authenticated encryption in our framework.

2 Modeling Fault Resilience

We begin with developing our generic security model extension for capturing
memory fault attacks on cryptographic primitives. Such attacks arise through
various means in practice and may range from single or few random bit-flips over
rowhammer-style controlled flips of one or several bits to full control over the
memory enabling injection of arbitrary values. Their effects may be transient
and vanish after some subsequent memory access, or a persistent change to
the affected bits in memory. In the security model extension we propose in the
following, we capture all these different types of faults in a generic manner and
formally relate their strength.

At the heart of our model is the observation that while memory fault attacks
may be executed at arbitrary points during an execution, they come into effect
only when variables are read from memory. We therefore capture the adversary’s
capability to induce faults (of various types) into memory by providing it with
means to influence variable values when an algorithm reads them from memory
(i.e., uses them). Technically, we model such influence by introducing callbacks
to the adversary whenever a variable x is used within an algorithm. Resembling
callback functions in programming languages, an adversary is then given the
option to alter (i.e., fault) the value read/used for this variable.

The ways the adversary is allowed to alter the variable reflects the type of
fault attack in consideration: In a full fault attack the adversary can provide
an arbitrary value to be used. In a differential fault attack (flipping bits in
a controlled way, as in the rowhammer attack [40,50]), the adversary instead
provides a bitstring to be XORed to the variable it is used (while not learning the
resulting value itself). In a fault attack introducing random faults, the adversary
finally can merely choose how many bits to be flipped (with neither control
over the position nor obtaining the resulting value). In all cases, the introduced
fault can be either transient, applying only to the one read operation faulted, or
persistent, in which case the variable is overwritten with the faulted value.

Our model does not fix one type of fault attack, but flexibly allows to consider
different attack types for each individual memory variables in a scheme. This
captures that some memory variables may be harder to fault than others, e.g.,
for being shorter (and thus more difficult to target with rowhammer-style bit
flips) or residing in specially-protected memory. To enable this flexibility, we first
of all explicitly indicate in syntax that some memory variable x is considered
to be faultable by writing it as �x� with corner brackets when assigned. We
then indicate positions where a variable x can be faulted, modeled through
an adversarial callback, by writing its usage as 〈x〉 within angle brackets. This
finally enables security statements that formalize individual fault attacks on each
annotated variable. For example, we can that way capture an attacker injecting
(in the same attack) differential fault attacks into some variable x and random
fault attacks into some other variable y.

Modeling Memory Faults in Signature 63

Applying our security model extension to existing game-based security defi-
nitions yields notions that capture the original type of security under the con-
sidered fault attacks. To this end, the cryptographic scheme under consideration
is augmented by adding indications for faultable memory variables (e.g., �x�)
and callbacks (e.g., 〈x〉) in its algorithm descriptions. The actual security exper-
iments remain syntactically largely unchanged, but now incorporate adversarial
faulting access to memory variables as indicated by the scheme.

Observe that while the extended security model’s dependency on the par-
ticular implementation and memory variable layout of a scheme might, at first
glance, seem to yield a somewhat dedicated security result, such dependency is
ultimately not surprising: the (non-)vulnerability of a scheme to memory fault
attacks inevitably depends on the handling of memory variables. At the same
time, abstract cryptographic algorithm representations are still reasonably close
to their implementation in terms of memory variables, and our model captures
strong and fine-grained adversarial faults on those variables.

A noteworthy change in the augmented security experiment however may
regularly be required in the evaluation of winning conditions and permissible
queries. As the latter may rely on faultable variables, we need to define which of
possibly several values of the now changing variable to use when evaluating such
conditions. For this purpose, our extension further provides access to the list of
values that each faultable variable took within some algorithm: we write xAlg for
the sequential list of values that variable x took within some previously invoked
algorithm Alg. The unforgeability experiment for signatures detailed in Sect. 3
is an example for such a modified winning condition. There, we will make use
of the list mSign containing all values of the message variable m used within the
signing algorithm to define the list of original signatures the adversary obtained
through the signing oracle.

2.1 Fault Types

For our security model extension, we explicitly specify four different types of
faults that an adversary may inject, and further distinguish between transient
and persistent faults. We however stress that the model itself is generic and can
be extended to encompass further fault types if desired.

On any read of a faultable variable x indicated by a callback 〈x〉, the adver-
sary A is invoked with an identifier for the read variable, indicated by A(〈x〉).
(A implicitly keeps state between callbacks.) Note that this identifier is merely
a handle in order for A to know which variable the callback is for, but without
learning the variable value itself. Of course, the adversary knows the scheme’s
code itself; we furthermore let the handle for a variable also disclose the vari-
able’s bit-length to A. In case of transient faults, the callback only temporarily
modifies the value read for this variable for this specific read operation, but does
not alter the variable itself beyond that. I.e., several transient-fault callbacks 〈x〉
on some variable x are always with respect to the original, non-faulted variable
value of x. In contrast, for persistent faults, the callback modifies the variable
in memory, which then also is used for the actual read operation.

64 M. Fischlin and F. Günther

Fig. 1. Illustration of how our proposed extension for fault resilience (on the right in
blue) integrates through callbacks with the interaction of an adversary A and ora-
cles O1, . . . , On within some classical security experiment (on the left in black). As an
example, we depict the callback query 〈x〉 and response for a transient differential fault
on some variable x. (Color figure online)

Beyond the distinction between transient and persistent faults, the fault-
injection callback 〈x〉 for some variable x behaves differently for each fault type
as described in the following and formalized in Fig. 2. We further illustrate the
integration of our callback-based model with an existing security experiment at
the example of a transient differential fault attack in Fig. 1.

Full faults: In a full fault attack, the adversary is allowed to arbitrarily modify
the faulted memory variable x.4 This is modeled by giving the adversary full
control over the variable whenever it is read.

Differential faults: In a differential-fault attack, the adversary can flip (up to)
a certain number w ∈ N of bits in the faulted memory variable x in a con-
trolled way. This is modeled by having the adversary supply a difference
value Δ which is then XORed to the variable value whenever read, where
the Hamming weight hw(Δ) of the difference value must not exceed w. As a
shorthand, whenever w ≥ |x|, we omit w.

Random faults: In a random-fault attack, the adversary can flip (up to) a cer-
tain number N ∈ N of random bits in the faulted memory variable, without
controlling which bits are flipped. This is modeled by letting the adversary
specify a number n ≤ N whenever the variable is read and then flip n ran-
domly positioned bits of the variable value in the callback response. As a
shorthand, whenever N ≥ |x|, we omit N .

No faults: For completeness, we also specify a “no-fault” behavior of the vari-
able callback (directly returning x), which enables formal comparisons of

4 The adversary can opt to not modify the variable by returning a special symbol ⊥.

Modeling Memory Faults in Signature 65

Fig. 2. Specification of and implications between the four fault types: full faults,
(w-)differential faults, (N -)random faults, and no faults. In case of a persistent fault,
the returned value also overwrites the variable value. Implication arrows are annotated
with the respective lemma (above) and conditions (below).

classical security notions within the same notational framework. In general,
we omit annotating callbacks for non-faulted variables, though.

2.2 Relations

It is not surprising that full faults represent the strongest fault attacks in our
model on memory variables known by the adversary at the time of the callback,
e.g., some public parameter or a message input provided to a signing algorithm
by A. An adversary can capture any other fault behavior on such variables (which
we call “A-known”) by providing the resulting faulted variable value directly.
Note that this is not true for memory variables unknown to the adversary (e.g.,
the secret-key input to a signing algorithm): for such variables, the capability to
flip bits is incomparable in power to overwriting the value with an adversarially-
chosen one.

Furthermore, differential faults imply random faults for N ≤ w, as the adver-
sary can sample a difference value Δ encoding n ≤ N random bit flips on its
own, which has permissible Hamming weight hw(Δ) = n ≤ N ≤ w. Finally, all
fault types imply no faulting, as each allow the choice to leave the variable value
unchanged.

Regarding the relations between transient and persistent faults, both variants
are trivially equivalent for the full and no-fault types. In the case of differential

66 M. Fischlin and F. Günther

and random faults, however, transient and persistent faults are indeed distinct
adversarial capabilities, as the accumulation of persistent fault injections cannot
be reproduced transiently if the number of bit flips or random bit faults on a
variable is restricted (to less than |x| for a differentially-faulted variable x).

We capture these expected relations between the different fault types in the
following three lemmas, providing a brief formal argument in each case. The
resulting implications are indicated by arrows in Fig. 2.5

Lemma 1 (Full faults
(A-known)

=⇒ w-differential faults). For any security
experiment, any PPT adversary A, and any w ∈ N, if A is successful in the
experiment with (transient or persistent) w-differential faults on some variable x
in algorithm Alg, with x being known by A, then there exists an adversary A′

successful in the experiment with (transient or persistent) full faults on x in Alg.

Proof Sketch. Since A knows x itself, an adversary A′ can mimic A’s behav-
ior through full faults. Whenever A replies to a differential-fault callback 〈x〉
on x with a difference value Δ, A′ replies to its full-fault callback with x ⊕ Δ
(accumulating persistent faults), resulting in the same variable value being
used. 	

Lemma 2 (w-differential faults
(N≤w)
=⇒ N-random faults). For any secu-

rity experiment, any PPT adversary A, and any w,N ∈ N with N ≤ w, if A is
successful in the experiment with transient (resp. persistent) N -random faults on
some variable x in algorithm Alg, then there exists an adversary A′ successful in
the experiment with transient (resp. persistent) w-differential faults on x in Alg.

Proof Sketch. Observe that A′ can mimic A’s behavior as follows: whenever
A replies with some value n ≤ N to a random-fault callback 〈x〉 on x, A′

instead samples n distinct random positions p1, . . . , pn
$←− {1, . . . , |x|} and replies

with a difference value Δ ∈ {0, 1}|x| which is the all-zero string except for bit
positions p1, . . . , pn. Such response results in the same variable value and is
permissible as hw(Δ) = n ≤ N ≤ w. This strategy works both in the transient
and in the persistent fault setting. In the persistent case, the differential faults
of A′ accumulate, correctly mimicking the accumulating random faults of A. 	

Lemma 3 (Full/w-differential/N-random faults =⇒ no faults). For
any security experiment, any PPT adversary A, and any w,N ∈ N, if A is
successful in the experiment without faults on some variable x in algorithm Alg,
then there exist adversaries A′, A′′, and A′′′ successful in the experiment with
(transient or persistent) full faults, w-differential faults, resp. N -random faults
on x in Alg.
5 One can also argue that the notions form a strict hierarchy (i.e., that the reverse

implications do not hold), if used to attack cryptographic schemes. E.g., bending an
A-known λ-bit string x to some random string r (say, to trigger randomness reuse
in a scheme) is easily achieved via full faults, but only with probability 2−λ/2 for
differential faults with w = λ/2. Similarly, flipping w = λ/2 bits in x to 0 is easy
with w-differential faults, but hard with random faults.

Modeling Memory Faults in Signature 67

Proof Sketch. In the case of full faults, A′ can mimic A’s behavior by always
returning the special symbol ⊥ on a callback 〈x〉. In the case of differential
faults, A′ mimics the behavior by always replying with the zero-string Δ = 0|x|

to 〈x〉. In the case of random faults, A′ does so by always replying 0 to 〈x〉. 	

3 Fault-Resilient Signatures

As the first application of our security model extension, we consider fault attacks
against signature schemes and study the resilience of different designs against
such attacks. We begin by augmenting the classical security notions for existen-
tial and strong unforgeability under chosen-message attacks for signatures with
our extension to capture fault resilience, as described in Sect. 2. We then study
the effects of faults specifically on a de-randomized (deterministic) signature
schemes and analyze to which extent the proposed countermeasure to include
additional randomness [1,48,54,56] provably provides fault resilience.

3.1 Fault-Resilient Signature Unforgeability

When augmenting the security notion for classical signature unforgeability, the
essential question to answer is: which message–signature pairs did the adversary
trivially learn through its signing oracle OSign while tampering the message input
during the signing process?

In the classical EUF-CMA security experiment without faults, the adversary A
obtains a signature σ on message m under secret key sk, and the oracle OSign

records (m,σ) in the set of oracle signatures Q. In the fault-resilience setting, the
adversary however is now able to modify the message while the signing process
is going on. As the simplest case, imagine A submitting some message m to the
signing oracle, but then introducing a single-bit fault when the message is read
once within the scheme’s Sign algorithm, leading to the signature being produced
on some m′ = m. If the fault-resilient unforgeability experiment simply recorded
(m,σ) in the oracle signature list Q, then A could trivially win against any
signature scheme by outputting (m′, σ) as its forgery.

The key observation for lifting the classical signature unforgeability exper-
iment to the fault-resilience setting is hence that the list Q should record the
signature σ together with the actual message it was generated on by the signing
algorithm. With the adversary being able to potentially fault the message sev-
eral times during the signing process (depending on the structure of the latter),
it at first sight may seem unclear which of the messages in the set mSign of mes-
sages accessed during the signing process to record in Q. Our definition is based
on the idea to include the messages which the signer “assumes to have signed
correctly” during the attack, i.e., we restrict ourselves to the subset mvalid

Sign of
messages for which the output signature σ actually verifies under the challenge
public key pk and which are not already included in Q. In other words, these are
the new messages which the signer may have authenticated in the signing step.
If there are two or more such valid messages in mvalid

Sign then the signer cannot

68 M. Fischlin and F. Günther

Fig. 3. Security experiment for fault-resilient existential unforgeability under chosen-
message attacks (frEUF-CMA) for signature schemes. We write (a, ∗) /∈ Q if � b s.t.
(a, b) ∈ Q. The lines 2–4 in OSign are changed compared to the classical EUF-CMA
notion. Recall that mSign is the set of values the message variable m took during the
signing process in line 1 due to fault callbacks.

reliably identify the intended message. In this case we declare the adversary to
win, captured via a flag clash which is set to true if there are multiple messages
in mvalid

Sign for any request.
The above definition in particular complies with the case that the adversary

mounts a regular attack and does not tamper with the messages at all. In this
case we would collect all signed messages in Q—one for each OSign query (unless
a message repeats and we do not extend Q)—as in the regular case, but clash
would never become true. The fact that we declare the adversary to win if
there are two messages in mvalid

Sign immediately, without requiring the adversary
to output the other (faulted) message as a forgery, releases the adversary from
having to know the other message. This gives a stronger security guarantee,
especially for random faults where bit flips may happen at unknown positions.

Put together, our signature unforgeability experiment adapted to the fault
resilience setting allows the adversary to inject faults within the signature gen-
eration (as specified by the signature scheme in question). In its list of obtained
signatures Q, it records the first value of the messages m used within the signing
algorithm for which the generated signature σ verifies under the challenge public
key. The augmented security definition for fault-resilient signature unforgeability
is as follows; the according security experiment in Fig. 3 highlights the changes
from the classical experiment.

Definition 1 (Fault-resilient existential unforgeability of signatures).
Let S = (KGen,Sign,Verify) be a signature scheme and experiment ExptfrEUF-CMA

S,A
for an adversary A be defined as in Fig. 3.

We say that S provides fault-resilient existential unforgeability under chosen-
message attacks (frEUF-CMA) if for all PPT adversaries the following advantage
function is negligible in the security parameter:

AdvfrEUF-CMA
S,A (λ) := Pr

[
ExptfrEUF-CMA

S,A (1λ) = 1
]
.

Modeling Memory Faults in Signature 69

3.2 De-randomized Signatures Are Not Fault-Resilient

We now exercise our fault-resilient unforgeability notion to establish that de-
randomized schemes are vulnerable to the weakest fault injection attack of ran-
dom one-bit flips. This in particular confirms the corresponding observations
by Poddebniak et al. and others [1,48,54,56] in our formalism. To recap, de-
randomization here refers to the approach to deterministically extract a per-
message random value from the secret signing key and message input, replacing
an otherwise needed true random sampling of a per-message nonce. This app-
roach is employed, e.g., in the deterministic variants of the DSA and ECDSA
signature schemes [49] and similarly in a more direct manner in the EdDSA sig-
nature scheme [16]. The latter scheme actually uses two pseudorandomly derived
sub keys for signing and for nonce generation but this does not invalidate the
attack.

We establish our result through the following abstractly de-randomized sig-
nature scheme Sdr generalizing the above approach. The scheme Sdr = (KGendr,
Signdr,Verifydr) de-randomizes a randomized signature scheme S = (KGen,Sign,
Verify). In order to generate necessary randomness for S’s signing algorithm,
Signdr invokes a cryptographic hash function H : {0, 1}∗ → {0, 1}≥λ (modeled as
a random oracle [14]) on the scheme’s secret signing key and the message to be
signed. The key generation and verification algorithms KGendr and Verifydr are
as for the randomized scheme, the modified signing algorithm Signdr is defined
as follows:

Signdr(sk, �m�):
1 r ← H(sk, 〈m〉)
2 σ ← Sign(sk, 〈m〉; r)
3 return σ

In order to capture fault attacks, the definition of Signdr defines the mes-
sage m to be faultable (indicated through corner brackets �m� on definition and
angle brackets 〈m〉 on reads).6

As required by the DSA and ECDSA standards [46], the per-message random
number (or nonce) r must be freshly generated for each message to be signed.
If not, two signatures σ0, σ1 generated on distinct messages m0 = m1 using the
same nonce r enable recovery of the secret signing key sk from the two signature
equations [60]. In the de-randomized versions of DSA and ECDSA, and likewise
in the deterministic EdDSA scheme, this requirement is aimed to be satisfied
through deterministically deriving the random nonce via a hash function from
the secret signing key and input message.

However, as observed before [1,48,54,56], a fault introduced within the mes-
sage memory variable m between reading m for deriving the nonce r and read-
ing m again for computing the signature (with nonce r), recovers the nonce reuse

6 For completeness, observe that the fault attack described in the following applies
also when introducing faults into r instead of m. Due to the usually larger size of m,
facilitating bit flips in m through row-hammer attacks, we focus on faulting m, but
note that similar results apply for faulting r.

70 M. Fischlin and F. Günther

scenario and, with it, a signing key extraction attack. In the following theorem,
we formalize this observation in our generalized fault resilience setting. Let us
call the underlying randomized signature scheme S forgeable under nonce repe-
tition when given two distinct messages m0 = m1 and two valid corresponding
signatures σ0, σ1 generated with the same random nonce r it is easy to produce
an EUF-CMA forgery signature σ∗ for some fresh message m∗ /∈ (m0,m1). In par-
ticular, DSA, ECDSA, and the signing process underlying EdDSA are forgeable
under nonce repetition.

Theorem 1. Let S be a signature scheme forgeable under nonce repetition.
Then the de-randomized signature scheme Sdr = (KGendr,Signdr,Verifydr) derived
as described above is not frEUF-CMA-secure for any type of fault resilience.

Proof. We show that Sdr is not frEUF-CMA-secure under the weakest form of
fault attacks, namely (transient or persistent) 1-random faults (i.e., N = 1).
This immediately also establishes the result under N -random faults with N > 1
and, through Lemmas 1 and 2, under differential and full faults.

The adversary A begins by calling the OSign oracle on message m0 = 0λ.
For the resulting two callbacks 〈m〉 on m (in lines 1, resp. 2, of the Signdr algo-
rithm) the adversary returns 0, i.e., introduces no faults. It obtains the resulting
signature σ0 (generated using some nonce r) which is valid for m0.

The adversary then calls OSign on message m0 = 0λ again, this time return-
ing 0 on the first callback to leave the message unchanged, but 1 on the second
callback (line 2 of Signdr) to flip a message bit at a random position. This call
results in a signature σ1 generated using the same nonce r as in the first call
which is valid on m1, where by m1 we denote the message value resulting from
the single-bit random fault introduced through the second callback.

The adversary finally iterates over i ∈ {1, . . . , λ} to find the flipped bit
position in m1 (i.e., the single 1-entry in m1) by invoking the Verifydr algorithm
on an λ-bit message with the i-th bit set to 1, together with σ1. As the underlying
signature scheme S is forgeable under nonce repetition and m0 = m1, A can now
use (m0, σ0) and (m1, σ1) to produce a valid EUF-CMA signature and win in the
frEUF-CMA experiment. 	

We note that similar attacks apply to other deterministic signature schemes
such as RSA-FDH [15], showing that the additional property of uniqueness may
not help to overcome fault attacks. If we describe the FDH scheme as a two-
stage process �h� ← H(〈m〉), σ ← Sign(sk, 〈h〉), then the adversary can compute
a hash value h∗ of some message m∗, then call the signing oracle about some
other message m, overwriting 〈h〉 with h∗ in the signing process to get a signature
for m∗. Even in case of a hash collision h = h∗ only m would be considered as
used up, such that A would win the fault-resistance game. This works for full
and differential faults but is unknown to work for random faults.

3.3 Combining Randomization and De-randomization

In seeking to overcome security failures due to weak randomness sources, de-
randomized signature schemes forgo using any ephemeral randomness in the

Modeling Memory Faults in Signature 71

signing process. As discussed before, fault attacks can however revive these secu-
rity failures by introducing nonce repetitions in the signing process. To insulate
a signature scheme against both weak randomness and fault attacks—or, viewed
differently, the de-randomization of a randomized signature scheme against fault
attacks—, it is hence advisable to follow an approach that combines ephemeral
randomness and de-randomization techniques. The agreed-upon only counter-
measure effective against the previously described fault attacks [1,48,54,56] is
to use an additional randomness value in the per-message nonce derivation. This
is in support of the XEdDSA signature scheme design [47] deployed in the Signal
protocol [58] for secure messaging, which combines deterministically generating
a per-message nonce with an additional random value in order to derive the
randomness used in the signing process.

We capture this combiner approach again through a generalized, abstract
signature scheme Sc. The scheme Sc = (KGenc,Signc,Verifyc) is based on a ran-
domized signature scheme S = (KGen,Sign,Verify) for which it generates the
randomness needed in S’s signing algorithm in two steps: First, it samples an
ephemeral random value r′ (e.g., in the case of XEdDSA, r′ is sampled as a
random 512-bit string). Then, r′ together with the signing key and input mes-
sage enters a cryptographic hash function H : {0, 1}∗ → {0, 1}≥λ (again modeled
as a random oracle) in order to derive the signing randomness r.7 Key gener-
ation and verification are as for the randomized scheme, the modified signing
algorithm Signc is defined as follows:

Signc(sk, �m�):
1 �r′� $←− {0, 1}λ

2 �r� ← H(sk, 〈m〉, 〈r′〉)
3 σ ← Sign(sk, 〈m〉; 〈r〉)
4 return σ

The definition of Signc is accordingly annotated to capture fault attacks.
This time, we consider faults not only for message m but also in the randomness
variables r′ and r. Note that the Signc algorithm can furthermore be seen to
tolerate (transient) faults in the secret signing key sk when used in the derivation
of randomness through H; yet considering fault attacks on sk also in the signing
process will require signature schemes secure against related-key attacks [9,12,
33], whose fault-resilience treatment we leave as an avenue for future work.

We now establish that the combiner countermeasure captured in Sc indeed
provides security against either weak randomness sources or (differential) fault
attacks. We do so by showing that the approach lifts EUF-CMA security of the
underlying signature scheme to fault-resilient unforgeability frEUF-CMA for Sc,
when H is modeled as a random oracle. Note that the security statement is

7 Note that we treat the underlying (randomized) signature scheme S as well as the
hash function H in a black-box manner both for the positive fault resilience results
here, as well as for the generic fault attacks on Sdr before. Of course, studying the
fault resilience of specific such constructions is a valuable target on its own, which
we leave for future work.

72 M. Fischlin and F. Günther

closely linked to the description of the scheme: We move from a purely functional
description of the signature scheme to a high-level procedural representation in
which the adversary can now interfere with sub steps. Such an algorithmic imple-
mentation still treats some steps as atomic (or, monolithic) procedures in which
the adversary can only tamper with the input, but not interact with intermediate
steps. Examples of such atomic steps are basic operations like assignments but
may also refer to cryptographic procedures. For instance, Signc(sk, �m�) treats
the hashing with H and signing with the original signing algorithm Sign as atomic
operations. One can thus view the algorithmic implementation as determining
points in executions in which attacks can modify variables.

We make use of our strongest full fault attack type in order to capture that
weak randomness samples r′ may be fully controlled by the adversary. Let us
stress that this first part of the result—full fault resilience in r′—is not meant
as establishing resilience against strong faults targeted (only) at r′, but really
constitutes a baseline result showing that the combiner construction Sc provides
at least the security of S even if the added randomness r′ is completely flawed.
The second part then establishes differential-fault resilience—for any number w
of faulted bits—if r′ is indeed random.

A noteworthy fact in the proof is that it shows we can use the same secret
key sk for the signing step and the hash evaluation, when assuming H behaves
like a random oracle. Usually, the secret key consists of two (possibly pseudoran-
domly derived) portions, one used for signing and one in the hash evaluation. An
example where the key splitting is done is the EdDSA signature algorithm [16].
Our proof, of course, could be adapted to capture this case as well.

Theorem 2. Let S be a randomized EUF-CMA-secure signature scheme. Then,
in the random oracle model, the algorithmic implementation of the combined
signature scheme Sc = (KGenc,Signc,Verifyc) given above is

(a) frEUF-CMA-secure under full faults on variable r′, with

AdvfrEUF-CMA
Sc,A (λ) ≤ AdvEUF-CMA

S,A′ (λ), and

(b) frEUF-CMA-secure under differential faults on variables m, r′, and r, with

AdvfrEUF-CMA
Sc,A (λ) ≤ qH · qS · 2−λ + AdvEUF-CMA

S,A′ (λ),

for A′ given in the proofs and qH , qS denoting the number of queries made to
the random oracle and the signing oracle, respectively, by A.

Let us stress again that the theorem refers to the actual algorithmic imple-
mentation of Signc, treating the underlying signature procedure Sign as atomic.
There might still be fault attacks on this step if one fleshed out the algorithmic
implementation of that signing procedure. But this would depend on the actual
scheme and is not captured by our general theorem. Note that the de-randomized
solution Signdr in the previous section is indeed insecure even if the underlying
scheme is atomic, as long as it breaks under nonce repetitions. In this sense the
theorem here confirms that putting the randomness in the hashing helps.

Modeling Memory Faults in Signature 73

Proof. We separately prove the two sub-cases.

Ad (a). The first case models that r′ is drawn from a weak randomness source.
Here, the full-fault capabilities allow A to arbitrarily chose any value for r′

through the callback in line 1 of the Signc algorithm, including repeating r′

across different signatures. We will rely on the non-faultable secret key sk input
to the hash function, unknown to the adversary, to establish that the derived
value r (per message m) is indeed uniformly random as required. Since the
message cannot be faulted in the case here, the adversary cannot win due to
clash and we do not need to consider this attack option here.

To see the security in this case, we first exclude (by aborting the security
experiment) the case that the adversary A ever queries the random oracle H on
an input (sk, ·, ·) including the scheme’s secret key sk as the first component.
This can reduce A’s advantage AdvfrEUF-CMA

Sc,A by at most the advantage of the
following adversary A′ against the EUF-CMA security of S, which by assumption
is negligible.

Adversary A′ simulates ExptfrEUF-CMA
Sc,A for A, using its own signing oracle for

computing the signature in line 3 of Signc as follows. At the outset of the exper-
iment, A′ initializes an empty list L. Whenever Sign is to be invoked on some
message m and randomness r in the simulation, A′ first checks if (m, r, σ) ∈ L
for some σ. If so, A′ returns σ. Otherwise, A′ invokes its signing oracle on m
to obtain a signature σ, stores (m, r, σ) in a list L, and returns σ. Further-
more, whenever A queries the random oracle H on some value (x, ·, ·), adver-
sary A′ checks whether x equals the challenge secret key sk by computing
σ ← Sign(x,m∗; r∗) for a fresh message and randomness m∗, r∗ and checking
whether Verify(pk,m∗, σ∗) = 1. If so, A′ outputs (m∗, σ∗) as its forgery and
stops. Otherwise, A returns a random value as the answer for the hash query
(but obeying consistency across queries). Eventually, A′ outputs the forgery of A
as its own forgery when A stops.

Whenever ExptfrEUF-CMA
Sc,A would abort due to A querying sk to the random

oracle, A′ wins in the ExptEUF-CMA
S,A′ experiment through its valid forgery (m∗, σ∗).

The probability of the first event occurring is hence bounded by the (negligible)
advantage of A′ in the latter experiment.

Otherwise, whenever A does not query sk to the random oracle, r is derived
as a uniformly random value per message m which is secret to A in each of its
OSign queries. Observe that, by construction, Signc is deterministic when fixing
r′ (and thus r), which is taken into account in the reduction through A′ keeping
the list L of signatures for each (m, r) pair seen. Adversary A′ hence provides
a sound simulation of the non-aborting ExptfrEUF-CMA

Sc,A when implicitly setting r
to the internal randomness choice of its signature oracle. As the trial signature
computation under candidate secret keys x do not involve the signing oracle
of A′, a valid forgery by A in ExptfrEUF-CMA

Sc,A also constitutes a valid forgery by
A′ in ExptEUF-CMA

S,A′ . This again is bounding the advantage of A in the former by
the (negligible) advantage of A′ in the latter.

74 M. Fischlin and F. Günther

Ad (b). The second case models strong differential fault attacks (like rowham-
mer). This time, the adversary is allowed to inject arbitrary bit flips in the
message variable m as well as the internal randomness variables r′ and r. We
will rely on the randomness of r′ persisting through bit flips in r′, the random
oracle derivation, and the resulting r to establish that the derived value r is still
uniformly random.

Consider the reduction A′ of a successful A in ExptfrEUF-CMA
Sc,A to the EUF-CMA

security of S, which simulates ExptfrEUF-CMA
Sc,A by simply invoking its own OSign

oracle to compute the signature in line 3 of Signc. When A outputs its forgery,
A′ outputs the same forgery in its experiment ExptEUF-CMA

S,A′ .
We need to argue that the simulation provided to A is sound. In particular,

this requires that the potentially faulted values r used to invoke the signing
oracle OSign are indeed uniformly random and secret to the adversary for each
call as required for the EUF-CMA security of S. To this end, let us trace the
randomness used by A′ in any invocation of Signc, originating from sampling r′

to submitting (faulted) value r to the OSign oracle.

– In line 1 of Signc, the value r′ is sampled uniformly at random (and hidden
from A).

– In line 2, A is first invoked through the callback 〈r′〉 on r′ and returns some
difference value Δ0. The callback returns the value r′

Δ0
= r′ ⊕ Δ0 to be used

in the hash function computation, which is still uniformly random distributed
and unknown to A as r′ was.
Since H is a random oracle, the resulting value r is again uniformly random.
Furthermore, the probability that A guesses r′

Δ0
in a query to the random

oracle H is at most 2−λ, so r remains unknown to A with all but negligible
probability over all random oracle queries. Note that we do not rely on the
secrecy (nor integrity) of sk in this step since the unknown r′

Δ0
acts as an

ephemeral key here.
– In line 3, A may again inject a differential fault Δ1, this time on r. For

the same reason as above, the resulting value rΔ1 = r ⊕ Δ1 stays uniformly
distributed and unknown to A.

Using the faulted value rΔ1 of r as the input to the OSign oracle by A′ is hence
sound. Thus, if A wins in the original attack, either via a forgery or via a clash,
then this also holds in the simulated attack with the (randomized) signing algo-
rithm. For forgeries of fresh messages, the (negligible) advantage of A′ against
the EUF-CMA of S bounds the frEUF-CMA advantage of A against Sc, as desired.

Finally, we have to account for A winning through a potential clash during the
(now probabilistic) signing step. In each query there are at most two messages
appearing during the signing process, the first one m(1) in the computation of
�r� ← H(sk, 〈m〉, 〈r′〉) in Line 2, the second one m(2) in the computation of
σ ← Sign(sk, 〈m〉; 〈r〉) in Line 3. The second one certainly verifies with σ under
the public key. Now, if A triggers a clash, both messages must be included in the
set mvalid

Sign . This means that the first message m(1), too, needs to verify, be different
from the second one, and must not have been included in Q by any prior OSign

Modeling Memory Faults in Signature 75

query. Hence, when detecting a clash, A′ can immediately output m(1) together
with σ as its own forgery. That forgery is valid, as m(1) was never asked to the
signing oracle of A′ before. Hence, the probability for this attack option of A to
succeed can also be bounded by the EUF-CMA security of S. 	

An XOR Variant. For completeness, let us note that a variant of the combiner
scheme Sc above that merges the additional randomness via an XOR instead of
including it under the hash function evaluation achieves similar security results;
see the full version [31] for a technical description and security argument.

4 Fault-Resilient Authenticated Encryption

We now turn to studying the effects of fault attacks on authenticated encryption
schemes and how to enable fault resilience in this setting. In an effort to obvi-
ate the need for strong randomness in the encryption process, the understand-
ing of modern authenticated encryption switched to a nonce-based syntax, in
which a non-repeating nonce value enters encryption in replacement of fresh per-
message randomness. Regularly, authenticated encryption schemes then indeed
rely on the nonce not to repeat and generally do not uphold any security guar-
antees if this condition is violated. A prominent example is the widely adopted
Galois/Counter mode (GCM) [29], combined, e.g., with the AES block cipher.
While being secure as an authenticated encryption scheme [43], authentication
guarantees are immediately lost in case of nonce repetitions [38].

A strengthened security notion introduced by Rogaway and Shrimpton [53]
augments authenticated-encryption security with resistance against nonce mis-
use: it demands that security is upheld even if nonces repeat, such that an
adversary may only learn when a full triple (N,A,m) of nonce, associated data,
and message is repeated, but ciphertexts otherwise look random. Since its intro-
duction, nonce-misuse resistance has become a design target for authenticated
encryption schemes, put forth, e.g., in the CAESAR competition for authenti-
cated encryption ciphers [23].

4.1 Fault-Resilient Security of Authenticated Encryption

In order to study the effects of fault attacks on authenticated encryption schemes
based on our generic model, we first lift the security notions for authenticated
encryption to the fault resilience setting. Our notion liberally allows probabilis-
tic encryption to accommodate fault-resilient constructions combining nonces
and randomness under the same syntax. We focus on faults in the encryption
process here, as it is encryption where different variants for avoiding ephemeral
randomness and nonce glitches are implemented. Our notions can however be
extended to also consider faults attacks on the decryption process.

As the major change from regular security definitions, we need to define how
to rule out trivial queries decrypting the response of an encryption query. We

76 M. Fischlin and F. Günther

Fig. 4. Security experiments for fault-resilient authenticated encryption schemes.
Lines 9–12 in OEnc are changed compared to the classical notions. Recall that NEnc

and AEnc are the set of values the nonce, resp. AD, variable N , resp. A, took during
the encryption process in line 8 due to fault callbacks.

do so analogously to the signature setting described in Sect. 3.1, namely by con-
sidering, through a list NAvalid

Enc , the new combinations of (N,A, c) which decrypt
successfully, taking candidate values for N and A from NEnc, resp. AEnc, the lists
of values taken by N , resp. A, within Enc. Intuitively, these are the new tuples
which the encryption algorithm can be considered to have produced. If there is
just one such combination this gets added to Q as the single resulting challenge
ciphertext to be prohibited for the decryption oracle. If there are however multi-
ple combinations, we declare the adversary to win by setting the clash flag. One
can think of this saying that the adversary has managed to produce multiple
(valid) encryption tuples from a single, faulted encryption call. We again then
declare the adversary to win immediately.

We again consider both randomness and real-or-random indistinguishability
under fault attacks, with the latter being weaker than the former.

Modeling Memory Faults in Signature 77

Fig. 5. The synthetic initialization vector (SIV) mode of operation based on a pseudo-
random function PRF and an IV-based encryption scheme E .

Definition 2 (Fault-resilient security of authenticated encryption). Let
AE = (KGen,Enc,Dec) be an authenticated encryption scheme and experiments
ExptfrAE-$,b

AE,A and ExptfrAE-ror,bAE,A for an adversary A and a bit b be defined as in
Fig. 4. We restrict A to ask any query (N,A,m) to OEnc at most once.

We say that AE is AE-$-secure with fault resilience, resp. AE-ror-secure with
fault resilience, if for all PPT adversaries and AE-SEC = AE-$, resp. AE-SEC =
AE-ror, the following advantage function is negligible in the security parameter:

AdvfrAE-SECAE,A :=
∣∣ Pr

[
ExptfrAE-SEC,0

AE,A (1λ) = 1
]

− Pr
[
ExptfrAE-SEC,1

AE,A (1λ) = 1
] ∣∣.

When A never repeats the nonce value N between any two OEnc calls, we call it
nonce-respecting; otherwise we say the scheme is nonce-misuse resistant.

4.2 SIV Is Not Fault-Resilient

As an example for a nonce-misuse resistant authenticated encryption scheme, we
will study the SIV (for “synthetic initialization vector”) mode of operation intro-
duced by Rogaway and Shrimpton [53]. It achieves classical, misuse-resistant
randomness indistinguishability AE-$ by combining a pseudorandom function
and an IND$-CPA-secure IV-based encryption scheme [53]. SIV was also con-
sidered for generic composition in a work together with Namprempre [45] and
optimized through combination with GCM by Gueron and Lindell [35].

SIV is defined as in Fig. 5 based on a pseudorandom function PRF : {0, 1}λ ×
{0, 1}∗ → {0, 1}λ and a conventional IV-based encryption scheme E = (KGen,
Enc,Dec) with initialization vectors from {0, 1}λ. We write the IV-based encryp-
tion algorithm Enc as c ← Enc(K,m; IV) for encrypting a message m under
key K and initialization vector IV into a ciphertext c. Analogously, we write
IV-based decryption as m ← Dec(K, c; IV) for decrypting a ciphertext c under
key K and initialization vector IV into a message m.

In our definition of SIV, we consider potential fault attacks on the nonce N ,
associated data A, message m, and synthetic initialization vector IV within

78 M. Fischlin and F. Günther

Fig. 6. The randomness-augmented synthetic initialization vector mode SIV$ based on
a pseudorandom function PRF and an IV-based encryption scheme E .

the encryption algorithm (cf. the according annotation in Fig. 5). Our following
result shows that SIV does not achieve fault-resilient security, even in the weaker
AE-ror sense. More specifically, assuming pseudorandomness of the deployed
PRF, AE-ror security of SIV breaks under (transient or persistent) single-bit
random faults (i.e., the weakest form of fault attacks in our model) on either of
the adversarially-provided values N , A, or m for encryption. As for AE-$ secu-
rity, it is easy to see that faults can induce collisions in the IV computation,
which then are easy to distinguish from randomly sampled values. Due to space
restrictions, we defer the proof to the full version [31].

Theorem 3. Let PRF be a pseudorandom function. Then the SIV authenticated
encryption mode AESIV = (KGenSIV,EncSIV,DecSIV) from Fig. 5 is not frAE-ror-
secure against any type of faults on the encryption inputs N , A, and m.

4.3 SIV$: Randomness-Augmented SIV

In order to overcome SIV’s vulnerability to fault attacks in the encryption inputs,
we propose and discuss an approach of augmenting the encryption process with
ephemeral randomness in order to protect against faults. This approach trans-
lates concepts employed in the setting of signature schemes (e.g., in the XEdDSA
scheme [47], cf. Section 3.3) to the realm of authenticated encryption which, to
the best of our knowledge, have not been previously considered in this setting
before.

Observe that the reason for SIV falling short of protecting against fault
attacks is that such attacks can force the synthetic IV value to collide for differ-
ent inputs (N,A,m) of nonce, associated data, and message. This resembles the
setting for de-randomized deterministic signatures, where fault attacks may lead
to the random per-message nonce being repeated. We show that an analogous
combiner approach to derive the synthetic IV from both the values N , A, and m
as well as an additional ephemeral random input provides strong combined secu-
rity against either weak randomness sources or fault attacks.

Modeling Memory Faults in Signature 79

We denote the randomness-augmented synthetic initialization vector mode
as SIV$, described in Fig. 6. Like SIV, the scheme SIV$ = (KGenSIV$,EncSIV$,
DecSIV$) is based on a pseudorandom function PRF : {0, 1}λ × {0, 1}∗ → {0, 1}λ

and an IV-based encryption scheme E = (KGen,Enc,Dec). In contrast to SIV,
the encryption operation of SIV$ is now randomized. Prudently including the
ephemeral randomness value r as a λ-bit prefix to the encrypted message, we
ensure that SIV$ maintains the same outer ciphertext format as SIV, including
its strong randomness indistinguishability.8 The ciphertext size increases by one
block.

As we show next, SIV$ indeed protects against (either) weak randomness
sources (modeled as full-fault attacks on the ephemeral randomness r)9 or strong
differential fault attacks (for any number w of faulted bits) on all adversarial
encryption inputs N , A, and m as well as the internal randomness r and syn-
thetic initialization vector IV . Under the same assumptions needed to establish
regular security for SIV [53], namely PRF being a pseudorandom function and
E being IND$-CPA-secure, we show that SIV$ upholds strong randomness indis-
tinguishability (frAE-$) under such faults. Again, considering fault attacks also
on the PRF and encryption keys requires schemes secure against related-key
attacks [8,12,33] and is left for future work. Due to space restrictions, we defer
the proof to the full version [31].

Theorem 4. Let PRF be a pseudorandom function and E an IND$-CPA-
secure IV-based encryption scheme. Then the algorithmic implementation of
the randomness-augmented SIV mode SIV$ = (KGenSIV$,EncSIV$,DecSIV$) from
Fig. 6 is, in a nonce-misuse resistant manner,

(a) frAE-$-secure under full faults on variable r, with

AdvfrAE-SIV,A(λ) ≤ 2 ·
(
AdvPRF-secPRF,A′ (λ) + qD · 2−λ + AdvIND$-CPA

E,A′′ (λ)
)

, and

(b) frAE-$-secure under differential faults on all of the variables N , A, m, r,
and IV , with

AdvfrAE-SIV,A(λ) ≤ AdvPRF-secPRF,A′ (λ) + AdvIND$-CPA
E,A′′ (λ),

for A′, A′′ given in the proofs and qD denoting the number of queries made to
the decryption oracle by A.

8 Alternatively, one may include r as additional component in the ciphertext. This
however degrades security to real-or-random indistinguishability in case of weak
randomness values r.

9 Analogous to the signature case in Theorem 2, the first part of the statement again
only serves as a baseline result. It shows that SIV$ provides at least the security of
SIV even if the added randomness r′ is completely flawed.

80 M. Fischlin and F. Günther

5 Conclusion

We introduced a game-based treatment of cryptographic fault resilience which
enables generic extensions of existing security notions to capture memory fault
attacks. Our model exemplifies how different attack types can be captured
through a hierarchy of callback-style adversarial interactions within accordingly
augmented security notion. Applying our modeling technique to deterministic
signature schemes, we revisit known fault attacks on deterministic signature
schemes. Moreover, we can, for the first time, give provable security guaran-
tees for proposed countermeasures in the realm of signatures and translate both
attacks and provably-secure countermeasures to the setting of nonce-misuse resis-
tant authenticated encryption.

Potential future research questions arise both in modeling and applications.
Applying the modeling of fault resilience to other security notions possibly yields
new insights into fault attacks and protection for other cryptographic primitives.
Security against related-key attacks targeting partial effects of memory faults
lends itself to be a viable building block here. Another worthwhile effort is to
look beyond our strict monolithic treatment of the cryptographic primitives and
investigate in how far the structure of the primitive, say, iterative hashing as
in SHA-2 or SHA-3, affects memory fault attacks. Of course, such a treatment
could be performed all the way down to the lower implementation level. Finally,
while our modeling provides a general way to capture memory faults, capturing
control-flow fault attacks in a meaningful way for game-based, cryptographic
security notions remains a challenging open problem.

Acknowledgments. Felix Günther is supported in part by Research Fellowship grant
GU 1859/1-1 of the German Research Foundation (DFG) and National Science Foun-
dation (NSF) grants CNS-1526801 and CNS-1717640. This work has been co-funded
by the DFG as part of project P2 within the CRC 1119 CROSSING. Most of the work
on this paper was done while Felix Günther was at UC San Diego.

References

1. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 339–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0 18

2. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged Fiat-
Shamir signatures under fault attacks. Cryptology ePrint Archive, Report 2019/956
(2019). https://eprint.iacr.org/2019/956

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

4. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

5. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp.
182–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44524-3 11

https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://eprint.iacr.org/2019/956
https://doi.org/10.1007/978-3-319-44524-3_11

Modeling Memory Faults in Signature 81

6. Barthe, G., Dupressoir, F., Fouque, P.-A., Grégoire, B., Tibouchi, M., Zapalowicz,
J.-C.: Making RSA–PSS provably secure against non-random faults. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 206–222. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44709-3 12

7. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 14

8. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

9. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 26

10. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 22

11. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: 27th ACM STOC, pp. 45–56. ACM Press, May/Jun
1995

12. Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
401–418. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 24

13. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 1

14. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

15. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

16. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

17. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

18. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

19. Blömer, J., Günther, P.: Singular curve point decompression attack. In: 2015 Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 71–84 (2015)

20. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-69053-0 4

https://doi.org/10.1007/978-3-662-44709-3_12
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/3-540-48658-5_22
https://doi.org/10.1007/978-3-540-24676-3_24
https://doi.org/10.1007/978-3-540-24676-3_24
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

82 M. Fischlin and F. Günther

21. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7 1

22. Brengel, M., Rossow, C.: Identifying key leakage of bitcoin users. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 623–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 29

23. CAESAR: Competition for authenticated encryption: Security, applicability, and
robustness. https://competitions.cr.yp.to/caesar.html

24. CERT Vulnerability Notes Database: Vulnerability note VU#925211: Debian and
Ubuntu OpenSSL packages contain a predictable random number generator (2008).
https://www.kb.cert.org/vuls/id/925211

25. Coron, J.-S., Mandal, A.: PSS is secure against random fault attacks. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 653–666. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7 38

26. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 369–395. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 14

27. Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based
authenticated encryption: application to keyak and ketje. In: Cid, C., Jacobson,
M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 257–277. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-10970-7 12

28. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.)
ACM CCS 2007, pp. 476–485. ACM Press, October 2007

29. Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC, November 2007. nIST Special
Publication 800–38D

30. fail0verflow: Console hacking 2010: PS3 epic fail. In: 27th Chaos Communication
Congress. Chaos Computer Club (2010)

31. Fischlin, M., Günther, F.: Modeling memory faults in signature and authenticated
encryption schemes. Cryptology ePrint Archive, Report 2019/1053 (2019). https://
eprint.iacr.org/2019/1053

32. Fouque, P.-A., Guillermin, N., Leresteux, D., Tibouchi, M., Zapalowicz, J.-C.:
Attacking RSA–CRT signatures with faults on montgomery multiplication. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 447–462.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 26

33. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

34. Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr. Dobb’s J.
21, 66–71 (1996)

35. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 109–119. ACM Press, October 2015

36. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy, pp. 371–385. IEEE
Computer Society Press, May 2006

https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-030-00470-5_29
https://competitions.cr.yp.to/caesar.html
https://www.kb.cert.org/vuls/id/925211
https://doi.org/10.1007/978-3-642-10366-7_38
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.1007/978-3-030-10970-7_12
https://eprint.iacr.org/2019/1053
https://eprint.iacr.org/2019/1053
https://doi.org/10.1007/978-3-642-33027-8_26
https://doi.org/10.1007/978-3-540-24638-1_15

Modeling Memory Faults in Signature 83

37. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

38. Joux, A.: Authentication failures in NIST version of GCM (2006). http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/Joux comments.pdf

39. Joye, M., Lenstra, A.K., Quisquater, J.J.: Chinese remaindering based cryptosys-
tems in the presence of faults. J. Cryptol. 12(4), 241–245 (1999)

40. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA 2014, pp. 361–372. IEEE Press,
Piscataway, NJ, USA (2014)

41. Lenstra, A.K.: Memo on RSA signature generation in the presence of faults (1996)
42. May, T.C., Woods, M.H.: A new physical mechanism for soft errors in dynamic

memories. In: 16th International Reliability Physics Symposium, pp. 33–40, April
1978

43. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

44. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8 6

45. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

46. National Institute of Standards and Technology: Digital Signature Standard (DSS)
(FIPS PUB 186–4), July 2013

47. Perrin, T.: The XEdDSA and VXEdDSA signature schemes (2016). https://signal.
org/docs/specifications/xeddsa/

48. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
deterministic signature schemes using fault attacks. In: 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, pp. 338–352. IEEE, April 2018

49. Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (Informational),
August 2013. https://www.rfc-editor.org/rfc/rfc6979.txt

50. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: Holz, T., Savage, S. (eds.)
USENIX Security 2016, pp. 1–18. USENIX Association, August 2016

51. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

52. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

53. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://www.rfc-editor.org/rfc/rfc6979.txt
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23

84 M. Fischlin and F. Günther

54. Romailler, Y., Pelissier, S.: Practical fault attack against the Ed25519 and EdDSA
signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pp. 17–24 (2017)

55. Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: the
case of EdDSA. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018.
LNCS, vol. 10831, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89339-6 17

56. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519
in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 1

57. Schmidt, B.: [curves] EdDSA specification (2016). https://moderncrypto.org/mail-
archive/curves/2016/000768.html

58. Signal: Technical documentation. https://whispersystems.org/docs/
59. Takahashi, A., Tibouchi, M.: Degenerate fault attacks on elliptic curve parame-

ters in OpenSSL. In: 2019 IEEE European Symposium on Security and Privacy,
EuroS&P 2019. IEEE, June 2019, to appear

60. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36288-6 23

61. Ylonen, T., Lonvick, C. (ed.) The Secure Shell (SSH) Authentication Protocol.
RFC 4252 (Proposed Standard), January 2006. https://www.rfc-editor.org/rfc/
rfc4252.txt, updated by RFCs 8308, 8332

https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-76953-0_1
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://whispersystems.org/docs/
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1007/3-540-36288-6_23
https://www.rfc-editor.org/rfc/rfc4252.txt
https://www.rfc-editor.org/rfc/rfc4252.txt

Cryptanalysis of the Multivariate
Encryption Scheme EFLASH

Morten Øygarden1(B), Patrick Felke2, H̊avard Raddum1, and Carlos Cid1,3

1 Simula UiB, Bergen, Norway
{morten.oygarden,haavardr}@simula.no

2 University of Applied Sciences Emden-Leer, Emden, Germany
patrick.felke@hs-emden-leer.de

3 Royal Holloway University of London, Egham, UK
carlos.cid@rhul.ac.uk

Abstract. EFLASH is a multivariate public-key encryption scheme pro-
posed by Cartor and Smith-Tone at SAC 2018. In this paper we investi-
gate the hardness of solving the particular equation systems arising from
EFLASH, and show that the solving degree for these types of systems
is much lower than estimated by the authors. We show that a Gröbner
basis algorithm will produce degree fall polynomials at a low degree for
EFLASH systems. In particular we are able to accurately predict the
number of these polynomials occurring at step degrees 3 and 4 in our
attacks. We performed several experiments using the computer algebra
system MAGMA, which indicate that the solving degree is at most one
higher than the one where degree fall polynomials occur; moreover, our
experiments show that whenever the predicted number of degree fall
polynomials is positive, it is exact. Our conclusion is that EFLASH does
not offer the level of security claimed by the designers. In particular, we
estimate that the EFLASH version with 80-bit security parameters offers
at most 69 bits of security.

1 Introduction

Public-key cryptosystems whose security is based on the hardness of solving
multivariate polynomial systems over finite fields have been studied for several
decades. This problem is believed to be hard to solve even for full–scale quantum
computers, and so multivariate cryptography has received increasing attention
the past years as post–quantum cryptography has become ever more important.
A noteworthy initiative in this area is the ongoing post–quantum standardization
process by the National Institute of Standards and Technology (NIST).

One of the earliest and most notable examples of multivariate cryptosystems
is the encryption scheme C∗ proposed by Matsumoto and Imai in 1988 [22]. Their
idea was to let the public polynomial system defined over a small base field have
a secret, but simple description over a larger extension field, where decryption
can be done efficiently. While C∗ was broken by Patarin in 1995 [23], several
schemes were later proposed based on the same underlying idea; these are often
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 85–105, 2020.
https://doi.org/10.1007/978-3-030-40186-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_5

86 M. Øygarden et al.

referred to as big field schemes. One generalisation is to make the central map
over the extension field more complex. Examples include HFE and its variants
[24], as well as k–ary C∗ [18]. Another idea is to keep the simple description
over the extension field, but alter the resulting public key with modifiers that
enhance the security against known attacks, as for example done in SFLASH [25]
and PFLASH [7].

While there are presently several multivariate signature schemes that have
resisted years of cryptanalysis, designing multivariate encryption schemes seems
to be much more challenging. Examples of multivariate encryption schemes that
have been successfully cryptanalysed include not only the original C∗ [22,23], but
also HFE [3,24], ABC [21,28], ZFHE [5,27] and SRP [26,29]. This observation
is further echoed by the fact that all four multivariate cryptosystems that have
made it to the second round of the NIST standardization process are signature
schemes. EFLASH [6], proposed by Cartor and Smith-Tone at SAC 2018, is yet
another attempt to design a secure and efficient multivariate encryption scheme.
At its core, EFLASH is a modified C∗ scheme with a new decryption strategy
to maintain effectiveness.

1.1 Our Contribution

We present a direct algebraic cryptanalysis of EFLASH, based on the notion
of first fall degree. We do so by developing a method to estimate this degree
for the equation systems arising from EFLASH – an original approach which
is different from the rank–based analysis that has been used against somewhat
similar HFE variants. We are not only able to predict the first fall degree itself,
but also the exact number of first fall polynomials occurring at step degrees 3
and 4. Our analysis indicates that EFLASH does not offer the level of security
claimed by the designers; in particular, we are able to successfully cryptanalyse
the EFLASH version with 80-bit security parameters. Ultimately, we hope that
our approach can lead to a deeper understanding of the impact similar modifiers
have on big field schemes.

1.2 Organisation

The paper is organised as follows. In Sect. 2 we go through the required prelimi-
naries for our analysis. This includes a description of EFLASH, a brief discussion
on the complexity of Gröbner basis algorithms, along with the notions of first
fall and solving degrees, as well as some results on univariate and multivariate
representation of polynomials. In Sect. 3 we present and discuss the previously
suggested bound on the first fall degree of EFLASH. In Sect. 4 we develop the
theory behind our new approach for estimating this degree for EFLASH, and
put it to the test by experiments in Sect. 5. We discuss the implications that our
analysis and experiments have on the security of EFLASH in Sect. 6. Potential
follow-up work is discussed in Sect. 7, with our conclusions in Sect. 8.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 87

2 Preliminaries

2.1 Description of EFLASH

EFLASH is a public-key encryption scheme proposed at SAC 2018 [6]. The
system is built around the C∗ encryption scheme by Matsumoto and Imai [22],
using both the minus-modifier that removes some polynomials from the public
key, and the embedding of the plaintext space F

n
q into a larger space F

d
q . The

signature scheme PFLASH [7,13] is built in the same way, and EFLASH can be
seen as the encryption variant of PFLASH.

The C∗ scheme has operations taking place in F
d
q and Fqd . The encryption

for C∗ can be explained as follows: the plaintext and ciphertext spaces are both
F

d
q . Let S and T be two invertible d × d-matrices over Fq, defining linear trans-

formations of Fd
q . Fix an isomorphism between F

d
q and Fqd , denoted by φ, where

φ : Fd
q −→ Fqd . Finally, we have the central mapping X �→ X1+qΘ

over Fqd .
These mappings are combined together into P ′ as follows

P ′ = T ◦ φ−1 ◦ X1+qΘ ◦ φ ◦ S. (1)

Since the exponent of X has q-weight 2 and all other operations are linear, P ′

can be expressed as d quadratic polynomials in d variables over Fq. The secret
key of the C∗ scheme are the two matrices S, T , and the public key consists of
the polynomials P ′. Encryption of a plaintext x into the ciphertext y is done by
computing y = P ′(x). Decryption by someone knowing S and T can be done
efficiently by inverting all operations in (1).

In [23] the basic C∗ scheme was broken, by finding bilinear polynomials
fi(x, y) = 0 that relate the plaintext x with the ciphertext y. Computing the
polynomials fi’s turns out to be easy, more so when knowing S and T . In fact,
the most efficient decryption is actually done by inserting the values of y in the
fi’s, and solving the resulting linear system of equations to recover the plaintext.

EFLASH expands the C∗ scheme by adding an embedding π at the beginning
and a projection τ in the end. More specifically, for n < m < d, the operations
π and τ are defined as

π : F
n
q −→ F

d
q

(x1, . . . , xn) �−→ (x1, . . . , xn, 0, . . . , 0)

and
τ : F

d
q −→ F

m
q

(y1, . . . , yd) �−→ (y1, . . . , ym).

The plaintext space of EFLASH is then F
n
q and the ciphertext space is F

m
q .

The mappings π and τ are added as wrappers around the C∗ scheme, so the
complete EFLASH mapping P becomes

P = τ ◦ P ′ ◦ π.

The complete diagram of mappings is shown in Fig. 1.

88 M. Øygarden et al.

F
n
q

π

F
d
q

S
F
d
q

φ

Fqd

X1+qΘ

Fqd

φ−1

F
d
q

T
F
d
q

τ

F
m
q

Fig. 1. Diagram of EFLASH mappings.

The extra mappings π and τ just add and remove some coordinates, so P
can still be expressed as m quadratic polynomials over Fq in n variables. The
size of the projection τ is an important parameter, so for convenience we define
a = d − m to be the number of polynomials removed from P ′. The public key of
EFLASH consists of the m polynomials in P , and the secret key is still the two
matrices S, T (we assume the exponent Θ is publicly known).

Encryption in EFLASH is done the same way as for C∗: the plaintext x
is transformed into ciphertext y by computing y = P (x). On the other hand
decryption is not as completely straightforward as for C∗. For a given ciphertext
y = (y1, . . . , ym), the decryptor will exhaustively try all possible values for the
missing coordinates ym+1, . . . , yd, and decrypt every choice using the bilinear
polynomials fi(x, y) from the C∗ scheme. This results in up to qa possible plain-
texts embedded in F

d
q , and the one whose last d − n coordinates are all zero

is chosen as the correct one. As n < m we can expect there will be only one
possible plaintext fulfilling the restriction given by π. In [6] the authors analyse
the probability of there being two or more possible plaintexts matching a given
ciphertext, which would lead to a decryption failure. For the suggested choices
of n,m, d the probability is approximately 2−17, which is still non-negligible.

Table 1 shows the parameters suggested in [6] for 80- and 128-bit security
levels against an attacker with either a classical or quantum computer available.

In the remainder of the paper we will fix q = 2. Although most of the theory
presented in later sections can be generalised to other fields, this is what is often
used in practice and in particular what is suggested in EFLASH (Table 1).

Table 1. Suggested parameters (q, n, m, d) for EFLASH.

80-bit security 128-bit security

Classical adversary (2, 80, 96, 101) (2, 134, 150, 159)

Quantum adversary (2, 160, 176, 181) (2, 256, 272, 279)

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 89

2.2 Gröbner Basis Algorithms

As is the case for all multivariate encryption schemes, the plaintext (a1, ..., an)
associated to the ciphertext (y1, ..., ym) can be found through direct attacks,
that is, by solving the polynomial system

p1(x1, ..., xn) + y1 = ... = pm(x1, ..., xn) + ym = 0,

where pi(x1, ..., xn), 1 ≤ i ≤ m, are the quadratic polynomials that make up
the public key P . The usual strategy for solving such a system is to compute
a Gröbner basis (see [8] for further details) for the ideal 〈pi + yi〉1≤i≤m in the
grevlex monomial order, using a state–of–the–art algorithm such as F4 [14] or
F5 [15]. Since we implicitly include the field equations, the system generates a
radical ideal. The solution of this system can by design be assumed to be unique
and thus we are able to solve it directly from the Gröbner basis, which is by the
above remark x1 + a1, . . . , xn + an for any term ordering.

In our setting the F4 algorithm will proceed step–wise, and to each step there
is an associated step degree D, which is the maximal degree of the polynomials
involved in this step. The complexity of each step is dominated by reduction of
a Macaulay matrix associated with these polynomials. If we define the solving
degree, Dsolv, to be the step degree associated with the largest such matrix (this
notation was introduced in [12]), then the complexity of the algorithm (in the
Boolean case) can be estimated by:

ComplexityGB = O
((Dsolv∑

i=0

(
n

i

))ω)
, (2)

where n is the number of variables and 2 ≤ ω ≤ 3 is the linear algebra constant.
This makes Dsolv crucial for estimating the complexity of a direct attack, but
in general this value is difficult to determine. It is also worth noting that Dsolv

is not necessarily the highest degree encountered in the algorithm; indeed [12]
shows examples of this for HFE–systems, while we will also see examples where
this is the case for EFLASH in Sect. 5.

An important class of polynomial systems where Dsolv can be determined is
the class of semi–regular sequences [1]. In this case Dsolv will coincide with the
degree of regularity Dreg, which for quadratic polynomial systems over F2 can
be calculated as the degree of the first non–positive term in the series [2]:

Tm,n(z) =
(1 + z)n

(1 + z2)m
. (3)

From experiments it seems to be the case that randomly generated polynomial
systems will behave as semi–regular sequences [1], and the degree of regularity is
in many instances sensible to use for complexity estimation. However, it is well
known that polynomial systems associated with big field multivariate cryptogra-
phy tend to have a lower solving degree than what is predicted by the degree of
regularity; see for example [16]. For these schemes the notion of first fall degree

90 M. Øygarden et al.

(Definition 1), which in general provides a lower bound for the solving degree,
has often been used to estimate the complexity of solving such systems [10,11].
The authors of EFLASH have also chosen this path, and in [6] a bound for the
first fall degree was derived and used to estimate the resistance of this scheme
against algebraic attacks. We will later argue that this derived bound for the first
fall degree is not tight, but the idea of using this invariant as an approximation
for the solving degree seems justified for EFLASH. Indeed, in all our experiments
we find the solving degree to be either the same or one greater than the first fall
degree (see Sect. 5). We end this subsection by recalling the definition of first fall
degree.

Consider the graded quotient ring B = F2[x1, ..., xn]/〈x2
1, ..., x

2
n〉, where Bν ⊂

B is the set of homogeneous polynomials of degree ν in B. Let ph
1 , ..., ph

m ∈ B2

be the homogeneous quadratic part of the polynomials in the public-key P ,
and pl

i, 1 ≤ i ≤ m be the corresponding linear, or lower-degree, terms, so that
pi = ph

i + pl
i. We can then define the map

ψν−2 : Bm
ν−2 −→ Bν

(f1, ..., fm) �−→ ∑m
i=1 fip

h
i

Any element of ker(ψν−2) is called a syzygy. Now let ν = 4. Then particu-
lar syzygies are the Kozul syzygies, generated by (0, ..., 0, ph

j , 0, ..., 0, ph
i , 0, ..., 0)

where ph
j is in position i and ph

i is in position j, and the field syzygies generated
by (0, ..., 0, ph

i , 0, ..., 0) (ph
i in position i). These syzygies will boil down to the

relations ph
j ph

i + ph
i ph

j = 0 and (ph
i)2 = 0. Since they are always present, and not

depending on the polynomials ph
i themselves, these syzygies generate the trivial

syzygies, T (ψν−2) ⊆ ker(ψν−2).

Definition 1. The first fall degree associated with the quadratic polynomial sys-
tem p1, ..., pm is the natural number

Dff = min{ d ≥ 2 | ker(ψd−2)/T (ψd−2) �= 0 }.

Remark 1. The elements (0, ..., 0, ph
j , 0, ..., 0, ph

i , 0, ..., 0) and (0, ..., 0, ph
i , 0, ...,

0) will, strictly speaking, not be syzygies themselves when solving for p1, ..., pm in
F2[x1, ..., xn]. For example, ph

j pi+ph
i pj �= 0 will in general be of degree 3. We still

call these degree falls trivial, as they do not give any new or useful information
in an actual attack. This fact can be seen as follows.

When trying to solve a system by multiplying equations with all monomials
up to some degree, the multiplications are done by increasing degrees. That is,
all monomials of degree ≤ D − 1 are used before multiplying with monomials of
degree D. The Kozul syzygies will give the degree fall polynomial

ph
j pi + ph

i pj = ph
j (ph

i + pl
i) + ph

i (ph
j + pl

j) = ph
j pl

i + ph
i pl

j .

However, the very same polynomial can be expressed using only multiplication
with the lower-degree monomials in pl

j and pl
i:

pl
ipj + pl

jpi = pl
i(p

h
j + pl

j) + pl
j(p

h
i + pl

i) = pl
ip

h
j + pl

jp
h
i .

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 91

Hence the degree fall generated by ph
i and ph

j does not give us anything new
when we already have multiplied with all lower-degree terms. Moreover it is a
priori clear that these polynomials reduce to zero modulo pj , pi and therefore
give no new information when computing a Gröbner basis, except slowing the
computation down.

The same holds for the field syzygies, where it is easy to see that the polyno-
mial pipi = pi can be “generated” by the (lower-degree) constant 1 as 1 · pi.

2.3 Univariate and Multivariate Representation of Polynomials

Our analysis will heavily rely on the easy description the central map of EFLASH
has as univariate polynomial over the extension field. The idea of exploiting this
simple description in cryptanalysis was also used in the Kipnis–Shamir attack
on HFE in [20], and we refer to their work for further details on the following
result. We will write w(t) to denote the binary weight of an integer t. Recall that
this is defined as

∑
zi, where t =

∑
zi2i is the 2–adic representation of t.

Theorem 1. Let P (X) ∈ F2d [X]/〈X2d

+X〉 and fix an isomorphism φ between
F2d and (F2)d. With this isomorphism, P (X) admits d unique polynomials
p1, ..., pd ∈ F2[x1, ..., xd]/〈x2

1 + x1, ..., x
2
d + xd〉. Furthermore, the degree of the

polynomials p1, ..., pd is given by max{w(t) | Xt ∈ MP }, where MP is the set of
monomials in P (X) with non-zero coefficients.

Based on this result we will define the 2–weight associated with a polynomial
P (X) ∈ F2d [X]/〈X2d

+ X〉 to be w(P) =max{w(t) | Xt ∈ MP }. There are two
particular actions over the extension field, and their corresponding actions over
the base field, that are worth pointing out. First, we note that raising P (X)
to a power of 2, i.e. (P (X))2

i

, will correspond to applying an invertible linear
transformation on the associated multivariate polynomials p1, ..., pd.

The second action is that the multivariate polynomials associated with the
product H(X)P (X) will be d sums of the form

∑
hjpi, where hi is a multivariate

polynomial of maximum degree equal to w(H). These actions (on the multivari-
ate polynomials) are exactly the ones performed by Gröbner basis algorithms.
Linear maps do not affect the degree of the polynomials, so if T ◦φ−1◦P (X)◦φ◦S
is the central map of an unmodified big field scheme (e.g. original C∗ or HFE),
then the degree fall polynomials encountered when computing a Gröbner basis
can be described by the two aforementioned actions on the univariate polynomial
P (X). More specifically, we will call any combination

F (X) =
∑
i,j

[Ci,jHi(X)P (X)]2
j ∈ F2d [X]/〈X2d

+ X〉,

where

w(F) < w(P) + max{w(Hi)},

a 2–weight fall polynomial. This will in turn admit d multivariate degree fall
polynomials.

92 M. Øygarden et al.

We note that in the Faugère–Joux attack on HFE [16] these 2–weight fall
polynomials are the reason for the effectiveness of algebraic attacks on this cryp-
tosystem. Likewise, in [18] specific q–weight fall polynomials (i.e. the natural
generalisation to other fields of size q) were constructed in order to show the
first fall degree of k–ary C∗, another generalisation of C∗. Things get more com-
plicated as modifiers are added to the public key, particularly in the case for the
minus modifier. However we will describe how to deal with this in Sect. 4.

3 Suggested First Fall Degree Bound

In this section we discuss an upper bound for the first fall degree that was sug-
gested for EFLASH in [6]1. Since EFLASH can be seen as a special case of HFE-,
the bound is derived following a similar line of reasoning as was used for this
latter scheme in [11]. The idea is to first examine how the minus modifier affects
the Q–rank of the quadratic form associated with the central map, and then
apply this to the upper bound derived in Theorem 4.1 of [10]. The arguments
made in Section 5.1 of [6] is that the minus modifier is even more effective at
increasing the Q–rank when applied to EFLASH than it is for HFE-, due to the
extreme sparseness of the central map of the former. This led to the following
upper bound for EFLASH [6]:

Dff,EFLASH ≤ a + 3. (4)

However we argue that focusing on Q–rank alone does not reveal the entire
picture when the (unmodified) central map is as simple as it is in EFLASH. To
this end we introduce the following notation, which will also be important for
our own estimates of first fall degree:

Definition 2. Consider the quotient ring F2d [X]/〈X2d

+ X〉, and an instance
of C∗. Let y ∈ F

d
2 represent a given ciphertext, and V = φ ◦ T−1(y). We then

define

Q = X1+2Θ

+ V (5)

to represent the central map associated to C∗ over F2d [X]/〈X2d

+ X〉. We also
define the following 2–weight fall equations:

α = X2d−Θ

Q + X2Θ

Q2d−Θ

= X2d−Θ

V + X2Θ

V 2d−Θ

, (6)

β1 = XQ = X2+2Θ

+ XV and (7)

β2 = X2Θ

Q = X1+2Θ+1
+ X2Θ

V. (8)

1 The authors call this the degree of regularity, but are in fact describing the first fall
degree.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 93

Since we are not removing any polynomials (i.e. a = 0), Eq. (4) predicts that
the polynomial Q defined above has first fall degree 3 (this is also pointed out
in Example 4.3 in [10]). Here Q is treated as any polynomial with Q–rank 2,
and following the proof of Theorem 4.1 in [10], we find that the predicted first
fall degree is due to the existence of the univariate polynomials β1 and β2,
which would correspond to quadratic multivariate polynomials. However, in the
definition above there is also a third 2–weight fall polynomial, α, which will
correspond to linear multivariate polynomials (these are the same that Patarin
found in his original attack on C∗ [23]). Thus there seems to be more information
in the system than what is captured by methods based on the Q–rank alone. It is
indeed the case that removing public polynomials makes it more difficult for an
attacker, but we will see in the next section that there may still be combinations
of multivariate degree fall polynomials, generated by the relations α, β1 and β2

present in the polynomial system. Again, methods based on the Q–rank alone
do not seem to fully capture this.

Another notable difference between EFLASH and HFE- is the large dimen-
sion of the embedding (n < d) present in the former. We will see that this
modifier also plays a role in determining the number of degree fall polynomials
in a system. While it does not have the same impact as the minus modifier, there
are parameters for which this affects the first fall degree of a system; see Sect. 5
for examples.

4 The First Fall Degree of EFLASH

This section starts off with a brief discussion on the impact the choice of Θ may
have on the security of EFLASH. The condition that gcd(2d − 1, 2Θ + 1) = 1 is
needed for the map X1+2Θ

to be a bijection, and has been a requirement for this
family of cryptosystems ever since the original paper of Matsumoto and Imai
[22]. While not explicitly stated in [6], it seems reasonable to assume that this is
also the case for EFLASH. We will later see that the total number of degree fall
polynomials in the original C∗–scheme will have a big impact on the complexity
of algebraic attacks towards EFLASH.

The question of how different choices of Θ affect the number of degree fall
polynomials has partly been studied in [9]. In that work the authors consider
the effect Θ has on the number of linearisation equations, which can be seen as a
special subset of degree fall polynomials of degree 1. Examples of special values
for Θ from this work are Θ = d/3 and Θ = 2d/3. In these cases it is shown
that there are only 2d/3 linearisation equations, and so it is unlikely that these
choices for Θ can be used in an efficient instantiation of EFLASH (as d linear
equations are used for decryption). On the other hand, there are also cases found
in [9] that renders more than d linear equations, which could benefit an attacker.
What would amount to special cases in our analysis will ultimately go beyond
linear equations: for D = 3, degree falls polynomials will also include quadratic
polynomials, and cubic polynomials when D = 4. It is beyond the scope of this
paper to identify every such special case. Therefore for the rest of this paper, all

94 M. Øygarden et al.

equations and formulas are assumed to hold for general choices of Θ. General is
here used in a non–technical sense by which we mean that we expect the result
in question to hold for all values Θ = 0, 1, . . . , d − 1, save for a few exceptions.

4.1 The Effect of Removing Polynomials

We wish to obtain a representation of the central map of EFLASH that in
some sense not only preserves the easy description given over the univariate
polynomial ring, but also keeps track of what is lost due to the minus modifier,
τ . Consider the cryptosystem in a state before τ has been applied (but after
the linear transformation T , see Fig. 1). Finding a plaintext associated with a
fixed ciphertext would amount to solving the system of quadratic polynomials
pi(x1, ..., xn) = 0, for 1 ≤ i ≤ d (for ease of notation we are assuming the fixed
ciphertext to be part of the pi–polynomials). Let⎡

⎢⎢⎢⎣
q1
q2
...
qd

⎤
⎥⎥⎥⎦ = T−1

⎡
⎢⎢⎢⎣

p1
p2
...

pd

⎤
⎥⎥⎥⎦ , (9)

in other words, each qi is a linear combination of the polynomials p1, ..., pd.
Even though the polynomials pj are depending on the x–variables, we will at

an intermediate step want to consider them as formal variables. In an effort to
keep the notation precise, we will write p̂1, ..., p̂a to denote the polynomials as
formal variables that will be removed by τ . On the other hand, p̄a+1, ..., p̄d will
denote the formal variables associated with the polynomials unaffected by τ (i.e.
the public polynomials). We will also write q∗

i to denote the linear combinations
defined in Eq. (9), but now depending on the formal variables p̂j and p̄k.

In the previous section we have considered sums of the form∑
X2i1+...+2ik Q2j

in the univariate polynomial ring F2d [X]/〈X2d

+X〉. We will
now inspect the same sums, but treat Q as a formal variable in the bivariate
polynomial ring AXQ := F2d [X,Q]/〈X2d

+ X,Q2d

+ Q〉. We will furthermore
write Q as Q = (q∗

1+q∗
2γ+...+q∗

dγd−1), where γ is a primitive element associated
with the isomorphism φ. We then consider the following composition of maps:

AXQ (F2[x1, ..., xn, p̂1, ..., p̂a, p̄a+1, ..., p̄d])d (F2[x1, ..., xn])dφ−1 evP,a

where evP,a acts entry–wise in the d–vector space by “evaluating” the formal
variables p̂ to 0, and regarding p̄ as polynomials in x–variables. To be more
precise, evP,a : (z1, ..., zd) �→ (ev∗

P,a(z1), ..., ev∗
P,a(zd)), where:

ev∗
P,a : F2[x1, ..., xn, p̂1, ..., p̄d] −→ F2[x1, ..., xn]

xi �−→ xi for 1 ≤ i ≤ n

p̂j �−→ 0 for 1 ≤ j ≤ a

p̄k �−→ pk(x1, ..., xn) for a + 1 ≤ k ≤ d.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 95

It is straightforward to check that if t is an integer with 2–weight D − 2, then
evP,a ◦ φ−1(XtQ) will result in d polynomials of degree at most D, which are
generated by the public polynomials pa+1, ..., pd. We will use this new notation
to show the following lemma, which will be key in our ensuing analysis. An
interpretation is that the minus modifier τ only obscures the degree fall poly-
nomials by adding polynomials generated from a small set, namely the removed
polynomials p1, ..., pa.

Lemma 1. Let evP,0◦φ−1(
∑

Xk1Qk2) give d polynomials over F2[x1, ..., xn] that
are degree fall polynomials of degree < D = w(k1) + 2w(k2). Then, for a > 0
the degree D–parts of the d polynomials evP,a ◦ φ−1(

∑
Xk1Qk2) are generated

by p1, ..., pa.

Proof. Let g be any of the d polynomials in F2[x1, ..., xn, p̂1, ..., p̄d], that are in
the image of φ−1(

∑
Xk1Qk2). Fix polynomials h1, h2, ..., ha+1 such that we can

write g on the triangular form:

g =h1(x1, ..., xn, p̂2, ..., p̂a, p̄a+1, ..., p̄d)p̂1
+ h2(x1, ..., xn, p̂3, ..., p̂a, p̄a+1, ..., p̄d)p̂2
...
+ ha(x1, ..., xn, p̄a+1, ..., p̄d)p̂a

+ ha+1(x1, ..., xn, p̄a+1, ..., p̄d)

Recall that when a > 0 then ev∗
P,a(p̂j) = 0 for 1 ≤ j ≤ a. Since we are working

over a field of characteristic 2, we can equivalently think of this as addition with
all terms containing the p̂j–variables and then evaluating everything using ev∗

P,0.
Note that all p̂i change to p̄i when evaluated with ev∗

P,0 instead of ev∗
P,a. This

can then be written out as follows:

ev∗
P,a(g) = ev∗

P,0(g +
∑

1≤i≤a

hip̄i)

= ev∗
P,0(g) + ev∗

P,0(
∑

1≤i≤a

hip̄i)

= ev∗
P,0(g) +

∑
1≤i≤a

hipi.

By assumption ev∗
P,0(g) has degree < D so any term of degree D must come

from
∑

1≤i≤a hipi, which proves the statement. �
One observation that can be drawn from this lemma is that if the number of

degree fall polynomials that would be generated by a similar polynomial system
with a = 0 exceed the number of highest degree combinations generated by the
removed polynomials (i.e. the possible combinations of xi1 ...xiD−2 p̂j), then there
will be linear combinations of the degree fall polynomials that can be written
without the use of p̂j–elements. These can in turn be found by an attacker

96 M. Øygarden et al.

through the use of Gröbner basis algorithms. This is the intuition that will be
further explored in the following subsections, but first we illustrate the point for
the bilinear equations in the following example:

Example 1. Consider an EFLASH instance with a = 1. Recall from Eq. (6) in
Definition 2 that the bilinear relations come from α = X2d−Θ

Q+X2Θ

Q2d−Θ

. By
Lemma 1 we can write evP,1 ◦φ−1(α) as d polynomials in the ring F2[x1, ..., xn],
whose degree 3–part are linear combinations of xip̂1 for 1 ≤ i ≤ n. This means
that the homogeneous degree 3–part has at most dimension n, whereas the image
of evP,1 ◦ φ−1(α) has dimension d (under the assumption that the resulting d
polynomials are linearly independent). Since d > n for EFLASH, this means that
there will be d−n different independent linear combinations of these polynomials
that can be written without using p̂1. As a result a Gröbner basis algorithm will
find d − n linear relations at D = 3.

It is worth pointing out that the embedding modifier π, while needed to
protect against differential attacks and more sophisticated attacks, as e.g. in
[4], actually weakens the effect of the minus modifier τ . Indeed, had there been
no embedding, i.e. d = n, we would not expect to find any linear relations at
D = 3 in the example above. Thus in this special case we see there is a trade-off
between π and τ . Without the embedding one would have to deal with the above
mentioned attacks while the classic attack by Patarin would be prevented. On the
other hand, by applying the embedding you would get back parts of the linear
relations from Patarin’s classical attacks while preventing the above attacks.
This shows that more research is required to better understand how to securely
combine the two kinds of modifiers.

In the next two subsections we will focus on how things evolve when increas-
ing the step degree D. We start by generalising Example 1 to include more degree
falls at D = 3.

4.2 First Fall Polynomials at D = 3

In Definition 2 we saw that with a = 0, we will in addition to the linear polyno-
mials given by α (Eq. (6)) also have two more quadratic degree falls given by β1

and β2 (Eqs. (7) and (8)). The 3d multivariate polynomials associated to these
will in general account for all the degree fall polynomials that show up at step
degree D = 3. Lemma 1 implies that when a > 0 these polynomials will generally
be of degree 3, where the degree 3–part is further generated by the polynomials
xipj , for 1 ≤ i ≤ n and 1 ≤ j ≤ a. Hence there are 3d resulting polynomials
where the top degree is generated by na elements, and so an estimate of the
number of degree fall polynomials at D = 3 can be found by merely subtract-
ing the two. To be more precise, recall from Sect. 2.2 that ker(ψD−2)/T (ψD−2)
denotes the vector space of non–trivial degree fall polynomials at degree D. We
write {#Pdf}D = dim

(
ker(ψD−2)/T (ψD−2)

)
for its dimension, and derive the

following estimate for {#Pdf}3:
N3(n, d, a) = 3d − na. (10)

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 97

When N3 is negative, we do not expect to find any degree fall polynomials. In
this case we take max{N3, 0} as the estimate for {#Pdf}3. The accuracy of this
estimate will be tested in Sect. 5

4.3 First Fall Polynomials at D = 4

The analysis gets more complicated at step degree 4, mainly due to the syzygies
appearing in the polynomial system at this degree. More specifically we wish to
find out what polynomials in AXQ that will correspond to multivariate degree
falls that are considered trivial, in the sense of Remark 1, by Gröbner basis
algorithms. The following lemma classifies these polynomials.

Lemma 2. The polynomials associated with

evP,a ◦ φ−1
[
(X1+2Θ

)2
k1

Q2k2]
, for 0 ≤ k1, k2 ≤ d − 1.

can be written on the form:
∑

1≤i≤d
a+1≤j1≤d

i�=j1

bi,j1pipj1 +
∑

a+1≤j2≤d

cj2pj2 , for bi,j1 , cj2 ∈ F2. (11)

Proof. We prove the statement for the case k2 = 0 (other values of k2 can be
written as a power of 2 of this case). For the ciphertext (y1, ..., yd), write:

⎡
⎢⎢⎢⎣

y′
1

y′
2
...

y′
d

⎤
⎥⎥⎥⎦ = T−1

⎡
⎢⎢⎢⎣

y1
y2
...

yd

⎤
⎥⎥⎥⎦ .

Recall that we included the ciphertext in the definition of the pi–polynomials,
so this must be accounted for when considering X1+2Θ

(which will contain no
constant terms). We then have:

(X1+2Θ

)2
k1

Q =
[d∑

i=1

(qi + y′
i)γ

(i−1)2k1

]
·
[d∑

j=1

q∗
j γj−1

]
,

and so if g is any of the d polynomials in φ−1
(
(X1+2Θ

)2
k1

Q
)
, we can write:

g = q∗
1

[d∑
i=1

g1i(qi + y′
i)

]
+ ... + q∗

d

[d∑
i=1

gdi(qi + y′
i)

]

for some gji ∈ F2. Recall that the qi’s are linear combinations of p1, ...pd (written
out in F2[x1, ..., xn]) and will be unaffected by ev∗

p,a. The q∗
i ’s are linear com-

binations of the formal variables p̂1, ..., p̄d. Since the evaluation map sends all
the variables p̂1, ...p̂a to zero, the statement (11) in the lemma now follows from
ev∗

p,a(g). �

98 M. Øygarden et al.

We note that a system of quadratic polynomials p1, ..., pd with the property that
a sum of the form

∑
i�=j bi,jpipj , with bi,j ∈ F2, results in a non–trivial degree fall

(i.e. one not generated by Kozul Syzygies) would be a very degenerate system,
not suitable for multivariate cryptography. We may assume therefore that a
polynomial system associated with C∗ is very unlikely to have this property.
Thus, under the assumption that no such non–trivial relation exists, Lemma
2 implies that any degree fall polynomial that originates from a sum of the
form

∑
k1,k2

ck1,k2(X
1+2Θ

)2
k1

Q2k2 is simply a linear combination of the public
polynomials pa+1, ..., pd. As this gives no new information to an attacker, it
should be regarded as trivial (similar to what was discussed in Remark 1).

We may now return to the question of what degree fall combinations that
should be counted. The polynomials α, β1 and β2 discussed earlier, when multi-
plied with X2i

will also generate degree fall polynomials for D = 4. Indeed, our
experiments suggest that all of degree fall polynomials at this step degree are
generated by these elements.

At first glance there will be 3dn multivariate polynomials associated with
the elements X2i

α, X2i

β1 and X2i

β2 for 1 ≤ i ≤ d. Note that here we are using
the fact that the variable X may be written using linear combinations of the
n variables x1, ..., xn. Hence, multiplying by all X,X2, ...,X2d−1

will effectively
only give n different combinations, as opposed to d. However, not all of these
should be counted, for various reasons. We list the exceptions below:

– Xβ1 = X2Q and X2Θ

β2 = X2Θ+1
Q are both generated at step degree D = 3,

and not step degree D = 4.
– X2Θ

β1 = X1+2Θ

Q = Xβ2, will be cases of the trivial degree falls discussed
in Lemma 2. The same is true for X2d−Θ

β1 = (X1+2Θ

)2
d−Θ

Q and X22Θ

β2 =
(X1+2Θ

)2
Θ

Q. Lastly, the following is a sum of two trivial degree falls: Xα =
(X1+2Θ

)2
d−Θ

Q + X1+2Θ

Q2d−Θ

.

– From X2d−Θ

α = X2d−Θ+1
Q + X2d−Θ+2Θ

Q2d−Θ

= X2d−Θ+1
Q +

(
X22Θ

β1

)2d−Θ

we see that X2d−Θ

α can be written out as a polynomial generated by β1, and
one regular polynomial of degree 3. For this reason, the degree fall polynomials
generated by either X2d−Θ

α or X22Θ

β1 do not bring anything new to the
system once the other has been created, and so only one should be counted.
The same is true for X2Θ

α = X2d−Θ

β2 + X2Θ+1
Q2d−Θ

.

There are two, five and two relations from the first to last bullet point,
respectively, which do not count towards generating new degree fall polynomials
made from X2i

α,X2i

β1 and X2i

β2. Summing these up we find that the adjusted
number of degree fall polynomials at a = 0 should be (3n − 9)d.

It may initially seem like there are a
(
n
2

)
removed polynomials of degree 4,

namely all combinations xixj p̂k, but this does not take into account the trivial
syzygies arising from the fact that the p̂k’s are ultimately polynomials in the xi–
variables. Thus one should retract all combinations of trivial syzygies involving
the p̂k–elements, namely the field syzygies; p̂2k + p̂k = 0 and Kozul syzygies of the
types p̂ip̂k+p̂kp̂i = 0, for i, k ∈ {1, . . . , a}, and p̂kp̄j +p̄j p̂k = 0, for k ∈ {1, . . . , a}

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 99

and j ∈ {a+1, . . . , d}. There are a such field equations,
(
a
2

)
of the Kozul syzygies

of the first type and a(d−a) Kozul syzygies of the second type. This sums up to

a +
(

a

2

)
+ a(d − a) = ad +

a − a2

2
,

which should be subtracted from a
(
n
2

)
to give the precise number of degree

fall polynomials lost due to τ . Similar to the case D = 3, we can now add
together everything discussed so far to obtain an estimate of the number of
linearly independent degree fall polynomials at D = 4:

N4(n, d, a) = (3n − 9)d − a

(
n

2

)
+ ad +

a − a2

2
. (12)

Again, N4 may become negative, so we take max{N4, 0} to be our estimate
for {#Pdf}4.

5 Experimental Results

We now present experimental results to test the validity of the formulas from
the previous section predicting the number of first fall polynomials. In the first
set of experiments (Table 2) we vary the choices of parameters d, n, a and Θ.
The numbers N3 and N4 have been calculated according to Eqs. (10) and (12),
and the predicted first fall degree is the first degree where we expect a positive
value. We then give the first fall degree and the number of first fall polynomials
obtained at this step from the Gröbner basis routine in the MAGMA computer
algebra system. In all our experiments the degree of the first fall polynomials were
maximal, i.e. one less than the first fall degree. The solving degree is measured as
the degree associated with the step having the largest matrix in the algorithm.

Table 2. Experimental results for EFLASH with varying parameters.

d n a θ N3/N4 Dff

(predicted)
Dff

(Magma)
{#Pdf}Dff

(Magma)
Dsolv a + 3 Dreg

51 49 5 13 −92/1403 4 4 1403 4 8 9

51 49 3 13 6/3660 3 3 6 4 6 9

53 39 7 13 −114/887 4 4 887 5 10 7

56 40 9 8 −192/−336 ≥ 5 4 20 5 12 7

56 40 4 8 8/3314 3 3 8 4 7 7

60 50 4 8 −20/3794 4 4 3794 4 7 8

63 50 3 7 39/5394 3 3 39 4∗ 6 8

63 50 3 5 39/5394 3 3 39 4∗ 6 8

∗ The highest degree reached in MAGMA was 5, but this step occurred after 50 linear
relations were found, and consequently had little impact on the running time.

100 M. Øygarden et al.

In Section 5.1 of [6] the authors note that smaller EFLASH–systems could be
solved at degree equal to or one lower than for random systems of the same
parameters (Dreg in our notation). As the systems (and hence also Dreg) grow
in size, it was suggested to use the bound in Eq. (4), namely a + 3. We have
included both Dreg and this bound in the last two columns of the table for
comparison. One can notice that these values do not seem to be an adequate
measure of the solving degree in our experiments.

Note that the first two entries satisfy the condition n > d−a = m. This is to
emphasise that the validity of our theory is not only restricted to EFLASH (e.g.
the parameters in the PFLASH signature scheme are taken to be n > d − a).
There are several observations from Table 2 that we would like to point out.
The first is that when at least one of the predictions N3 and N4 is positive,
then our theory accurately predicts both the first fall degree and the number
of polynomials obtained. An odd case in this regard happens in the fourth row,
where we do not expect any degree fall polynomials at D = 4, but the GB
algorithm is still able to find a small number of them. Secondly, we note that
the recorded first fall degree and solving degrees are either the same or one
apart in all the experiments. It is possible that this relation may be understood
through the number of first fall polynomials. For example, a low {#Pdf}Dff

could imply Dsolv = Dff + 1, whereas a large {#Pdf}Dff
implies Dsolv = Dff ,

but any further exploration into this is beyond the scope of this paper.
The third point we wish to elaborate on from Table 2 is that the last two

experiments differs only in Θ = 7 and 5. Here 7 is a divisor of d = 63, while 5 is
not. We obtain the same number of degree fall polynomials, indicating that for
direct methods it does not seem to make a difference whether Θ divides d, as
opposed to other attacks (see e.g. [17]).

In the next set of experiments we have fixed the value of the parameters
d = 56, n = 40 and Θ = 8, while only varying the number a of removed public
polynomials. Note that when a = 9 this is the same case as presented in row 2
of Table 2. In these experiments we only present N4 from Eq. (12) and the first
fall degree and number of first fall polynomials measured by MAGMA.

For 6 ≤ a ≤ 8 in Table 3 we find a positive value for N4 and in these cases
the theory exactly matches the experimental results. For 9 ≤ a ≤ 11 the theory
predicts no degree fall polynomials at D = 4, but MAGMA is still able to find a
small number of degree fall polynomials here. We see that this number decreases
by 9 as a is increased. When a = 12 public polynomials have been removed, no
degree fall polynomials are detected at D = 4, but a substantial amount is found
at D = 5.

This type of behaviour observed for 9 ≤ a ≤ 11, with a small set of degree
fall polynomials not predicted by Eq. (12) has also been observed for other sets
of parameters, so we do not believe that the parameters considered in Table 3
form a special case with regards to this. At this point we are not able to explain
what causes these degree fall polynomials.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 101

Table 3. Effects of increasing a for d = 56, n = 40, Θ = 8. The entry marked with ∗

has been measured at D = 5.

a Measured Dff N4 {#Pdf}Dff

6 4 1857 1857

7 4 1127 1127

8 4 396 396

9 4 −336 20

10 4 −1069 11

11 4 −1803 2

12 5 −2538 8552∗

6 Security Estimation for EFLASH

Based on our results from previous sections, we now examine the suggested 80–
bit security parameters for EFLASH versus classical and quantum adversaries
(Table 1), using our formula for N4(n, d, a) in Eq. (12). We find

N4(80, 101, 5) = 8026 and N4(160, 181, 5) = 22546,

which means that we expect that these sets of parameters will both admit a first
fall degree of 4. From the experiments in the previous section we observed that
when N4 gives a positive number, it predicts the number of degree fall polynomi-
als precisely. Furthermore, in all our experiments we find that the solving degree
is at most one greater than the first fall degree. In Table 4 we have computed
the complexity of solving the EFLASH equation system on these parameter sets
using Eq. (2) when Dsolv is 4 and 5. We have chosen to include two values that
are typically used for ω: 2.4 corresponding to the smallest known value (here
up to 1 decimal precision), and 2.8 which is the value from Strassen’s algorithm.
From Table 4 we find that both sets of parameters fail to achieve 80–bit security
in all scenarios, with the exception of the parameters versus quantum adver-
saries under the most pessimistic (for an attacker) assumptions (ω = 2.8 and
Dsolv = 5).

For the suggested 128–bit security parameters in Table 1 we get a negative
number for N4 and so we are not able to predict the first fall degree for these
cases. We have however seen that the minus modifier does not work as effectively
for EFLASH as initially believed, and so it is very likely that these parameters
will also fail to achieve their proposed security level.

102 M. Øygarden et al.

Table 4. The complexity of solving the 80–bit security parameters suggested with
respect to a classical adversary (left table) and a quantum adversary (right table).

ω
Dsolv 4 5

2.4 250 259

2.8 258 269

ω
Dsolv 4 5

2.4 259 271

2.8 269 283

7 Further Work

Following the attack described in this paper, one may wonder whether it is
possible to fix the EFLASH scheme. We have seen that the relations β1 and β2

play a crucial role in the low first fall degree for this system. They are a direct
consequence of the small base field, so it seems natural to try and choose a larger
base field to mitigate this. The problem with this approach is that the condition
for the central map to be injective, gcd(qd − 1, qΘ + 1) = 1, can only be satisfied
when q is even. Furthermore, if Fq is chosen to be a small extension field of F2,
then the system can always be solved as a system over F2, and so the existence
of β1, β2 ultimately seems unavoidable. The minus modifier does help, but as we
have seen it also strongly affects the efficiency of decryption in EFLASH. Since
qa needs to be low in order for decryption to be efficient, the designer is limited
in the use of this modifier. For these reasons we cannot think of parameters that
would result in instances of EFLASH that seem both efficient and secure.

A related question is whether the analysis presented here would have an
impact on the security of the signature scheme PFLASH. As mentioned earlier,
EFLASH and PFLASH share the same central map, and so the latter will also
suffer from the same degree fall generators α, β1 and β2. The main difference is
that signature schemes can allow a significant number of public polynomials to
be removed without becoming inefficient. This can be seen from the suggested
parameters for PFLASH in [7], where roughly one third of the public polynomials
are removed. We are at this point not able to conclude either way on the security
of the current PFLASH parameters, but our work shows the need for an updated
security analysis against direct attacks for this scheme.

It will also be interesting to see if the ideas presented in this work may have
an impact on other multivariate big field schemes that also benefit from the
minus modifier. We point out that our methods not only predict the first fall
degree, but also the number of degree fall polynomials obtained at this degree. It
remains to be seen if this information can be used in other ways by an attacker.

One idea is to use this information in conjunction with the Joux–Vitse algo-
rithm [19]. For example, if we predict k degree fall polynomials at degree D, then
it may be the case that combining MacD−1 and the k degree fall polynomials of
degree ≤ D − 1 leads to optimal parameter choices for this algorithm (see [19]
for notation and more details on this). This could be particularly interesting in
cases where the first fall degree and solving degree may be far apart.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 103

8 Conclusions

With the prospect of quantum computers becoming a reality, cryptographers
have looked for quantum-safe public-key encryption algorithms that can replace
RSA. The C∗ scheme was proposed more than 30 years ago and is based on the
MQ problem which is considered quantum-safe. However, the basic C∗ scheme
was quickly broken and cryptographers have since tried to find variants that
may lead to secure quantum-safe public-key schemes. Some signature schemes
built around the C∗ construction have indeed withstood cryptanalysis; however
it has proven to be much harder to come up with secure and efficient encryption
algorithms based on it. EFLASH is one recent attempt.

However we have shown in this work that non-trivial degree fall polynomi-
als arise rather early in a Gröbner basis attack when the central mapping is
just a power-function and q is even (in particular when q = 2, as suggested for
EFLASH). Two techniques that have been proposed for overcoming the deficien-
cies of the basic C∗ system are to embed the plaintext space in a larger field,
and to remove some of the polynomials in the public key before it is published.
In this work we have seen that these two techniques to some extent work against
each other, and we have shed some light on how much security is actually gained
by the removal of some of the public polynomials.

During this work we were able to explain and give formulas for how many
degree fall polynomials will appear at step degrees 3 and 4 in a solving algorithm.
Experiments of fairly large instances show that our formulas give the exact
number of degree fall polynomials when the predicted number is positive, giving
confidence that we have captured the whole picture in our analysis. However, in
some cases we get a few non-trivial degree fall polynomials when our formulas
predict none, so more research is needed to explain these.

Based on our analysis we are very confident that we will indeed see a large
number of non-trivial degree fall polynomials at step degree 4 for the suggested
80-bit security parameter sets for EFLASH. In all likelihood the solving degree
for an actual EFLASH system will then be at most 5, giving solving complexities
significantly lower than the claimed security. This means that EFLASH does
not withstand direct Gröbner basis attacks, and should therefore be considered
insecure.

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner basis computation
for Semi-regular overdetermined sequences over F2 with solutions in F2. [Research
Report] RR-5049, INRIA, inria-00071534 (2003)

2. Bardet, M., et al.: Asymptotic behaviour of the degree of regularity of semi-regular
polynomial systems. In: Proceedings of MEGA, vol. 5 (2005)

3. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Des. Codes Cryptogr. 69(1), 1–52 (2013).
https://doi.org/10.1007/s10623-012-9617-2

https://doi.org/10.1007/s10623-012-9617-2

104 M. Øygarden et al.

4. Bouillaguet, C., Fouque, P.-A., Macario-Rat, G.: Practical key-recovery for all pos-
sible parameters of SFLASH. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 667–685. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 36

5. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 17

6. Cartor, R., Smith-Tone, D.: EFLASH: a new multivariate encryption scheme. In:
Cid, C., Jacobson Jr., M. (eds.) SAC 2018. Lecture Notes in Computer Science,
vol. 11349, pp. 281–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-10970-7 13

7. Chen, M.-S., Yang, B.-Y., Smith-Tone, D.: PFLASH - secure asymmetric signatures
on smart cards. In: Lightweight Cryptography Workshop (2015). https://ws680.
nist.gov/publication/get pdf.cfm?pub id=926103

8. Cox, D.A., Little, J., O’shea, D.: Using Algebraic Geometry, vol. 185. Springer,
New York (2006). https://doi.org/10.1007/b138611

9. Diene, A., Ding, J., Gower, J.E., Hodges, T.J., Yin, Z.: Dimension of the lineariza-
tion equations of the matsumoto-imai cryptosystems. In: Ytrehus, Ø. (ed.) WCC
2005. LNCS, vol. 3969, pp. 242–251. Springer, Heidelberg (2006). https://doi.org/
10.1007/11779360 20

10. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 41

11. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. In: IACR Cryptology ePrint
Archive 2011, p. 570 (2011)

12. Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial sys-
tems over a finite fields. In: Fischlin, M., Katzenbeisser, S. (eds.) Number The-
ory and Cryptography. LNCS, vol. 8260, pp. 34–49. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42001-6 4

13. Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH
be repaired? In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 691–701.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 56

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

15. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F 5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, pp. 75–83. ACM (2002)

16. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 3

17. Felke, P.: On the affine transformations of HFE-cryptosystems and systems with
branches. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 229–241. Springer,
Heidelberg (2006). https://doi.org/10.1007/11779360 19

18. Felke, P.: On the security of biquadratic C∗ public-key cryptosystems and its gen-
eralizations. Crypt. Commun. 11, 1–16 (2018)

19. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1 1

https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-319-59879-6_17
https://doi.org/10.1007/978-3-030-10970-7_13
https://doi.org/10.1007/978-3-030-10970-7_13
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=926103
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=926103
https://doi.org/10.1007/b138611
https://doi.org/10.1007/11779360_20
https://doi.org/10.1007/11779360_20
https://doi.org/10.1007/978-3-642-22792-9_41
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-540-70583-3_56
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/11779360_19
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 105

20. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

21. Liu, J., et al.: Structural key recovery of simple matrix encryption scheme family.
Comput. J. 61 (2018). https://doi.org/10.1093/comjnl/bxy093

22. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

23. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 20

24. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

25. Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algo-
rithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 22

26. Perlner, R., Petzoldt, A., Smith-Tone, D.: Total break of the SRP encryption
scheme. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp.
355–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9 18

27. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 14

28. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 16

29. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing,
S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6 19

https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1093/comjnl/bxy093
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-45353-9_22
https://doi.org/10.1007/978-3-319-72565-9_18
https://doi.org/10.1007/978-3-319-11659-4_14
https://doi.org/10.1007/978-3-642-38616-9_16
https://doi.org/10.1007/978-3-319-29814-6_19

FPL: White-Box Secure Block Cipher
Using Parallel Table Look-Ups

Jihoon Kwon1, Byeonghak Lee2, Jooyoung Lee2(B), and Dukjae Moon1

1 Samsung SDS, Seoul, Korea
{jihoon.kwon,dukjae.moon}@samsung.com

2 KAIST, Daejeon, Korea
{lbh0307,hicalf}@kaist.ac.kr

Abstract. In this work, we propose a new table-based block cipher
structure, dubbed FPL, that can be used to build white-box secure block
ciphers. Our construction is a balanced Feistel cipher, where the input
to each round function determines multiple indices for the underlying
table via a probe function, and the sum of the values from the table
becomes the output of the round function. We identify the properties
of the probe function that make the resulting block cipher white-box
secure in terms of weak and strong space hardness against known-space
and non-adaptive chosen-space attacks. Our construction, enjoying rig-
orous provable security without relying on any ideal primitive, provides
flexibility to the block size and the table size, and permits parallel table
look-ups.

We also propose a concrete instantiation of FPL, dubbed FPLAES,
using (round-reduced) AES for the underlying table and probe functions.
Our implementation shows that FPLAES provides stronger security with-
out significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM.

Keywords: Feistel cipher · White-box security · Space hardness ·
Provable security

1 Introduction

The white-box threat model in cryptography, introduced by Chow et al. [9] in
2002, assumes that the adversary is accessible to the entire information on the
encryption process, and can even change parts of it at will. Numerous primitives
claiming for security at the white-box model were proposed in the last few years.
These primitives can be roughly divided into two classes.

The first class includes algorithms which take an existing block cipher (usually
AES orDES), and use various methods (e.g., based on large look-up tables and ran-
dom encodings) to obfuscate the encryption process, so that a white-box adversary

J. Lee was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 106–128, 2020.
https://doi.org/10.1007/978-3-030-40186-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_6

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 107

will not be able to extract the secret key. Pioneered by Chow et al. [9], this app-
roach was followed by quite a few designers. Unfortunately, most of these designs
were broken by practical attacks a short time after their presentation [3,14,17],
and the remaining ones are very recent and have not been subjected to extensive
cryptanalytic efforts yet.

The second class includes new cryptographic primitives designed with white-
box protection in mind. Usually such designs are based on key-dependent tables,
designed in such a way that even if a white-box adversary can recover the full dic-
tionary of such a table, it still cannot use this knowledge to recover the secret key.
Stronger security notions than key extraction hardness are also considered in the
provable security setting. In this line of research, a number of block ciphers have
been proposed, including ASASA [4], SPACE [6], SPNbox [7], WhiteBlock [12],
and WEM [8].1 Alternatively, key generators have also been proposed that are
claimed to be secure in the white-box model. In this case, an initial vector is
chosen uniformly at random, and it determines the corresponding secret key via
the key generator. With this key, a plaintext is encrypted using a conventional
block cipher such as AES, and the resulting ciphertext is sent to the recipient
together with the initial vector. This approach has been rigorously analyzed in
the bounded retrieval model [1,2]. However, key generators might not be suit-
able for protecting data at rest in any stable medium since an adversary might
try to exploit the initial vector first, and then the corresponding table entries to
recover the secret key.

As the white-box security notion for our construction, we will consider space
hardness [6,7] (also called incompressibility [11] and weak white-box security [4]),
meaning that an adversary with access to the white-box implementation can-
not produce a functionally equivalent program of significantly smaller size. This
property is needed, as a white-box adversary can perform code lifting, i.e., extract
the entire code and use it as an equivalent secret key. While space hardness does
not make code lifting impossible, it does make it harder to implement in practice.
The attack models can be classified into three types: known-space attack, non-
adaptive chosen-space attack and adaptive chosen-space attack (as described in
Sect. 2 in detail).

1.1 Our Contribution

In this work, we propose a new table-based block cipher construction, dubbed
FPL (Feistel cipher using Parallel table Look-ups), that can be used to build
white-box secure block ciphers. FPL is a balanced Feistel cipher, where the input
to each round function determines multiple indices for the underlying table via
a probe function, and the sum of the values from the table becomes the output
of the round function (see Fig. 1). The motivation behind our design (compared
to existing constructions) can be listed as follows.

1 Some instantiations of ASASA have been broken [13,16].

108 J. Kwon et al.

– The block size and the table size can be chosen flexibly, compared to
substitution-permutation ciphers such as SPNbox, WhiteBlock and WEM using
128-bit dedicated block ciphers as their components. For this reason, FPLmight
be suitable for protecting database, e.g., format preserving encryption.2

– The underlying table is easy to generate (compared to substitution-
permutation ciphers) since they do not need to be bijective.

– Encryption can be made faster in an environment where parallel or pipelined
table look-ups are possible (compared to SPACE).

Provable security of FPL depends on the properties of the probe function; we
identify such properties, dubbed superposedness and linear independence, that
make the resulting block cipher white-box secure. Assuming these properties, we
prove the security of FPL in terms of weak and strong space hardness against
known-space and non-adaptive chosen-space attacks. Our security proof does not
rely on the randomness of the probe function. On the other hand, we show that
a random function satisfies the desirable properties except with negligible prob-
ability. This observation will be useful particularly when we use a pseudorandom
function (e.g., a block cipher with a fixed key) to construct a probe function.

From a practical point of view, we propose a concrete instantiation of FPL,
dubbed FPLAES, using (round-reduced) AES for the underlying table and probe
functions. Our implementation shows that FPLAES provides stronger security
without significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM. To make a fair comparison, we focused on AES-
based constructions, not including SPNbox as it is a fully dedicated construction.
We also remark that Lin et al. proposed an unbalanced Feistel-type white-box
secure construction [15], while its security has not been proved nor claimed in
terms of space hardness; their security model seems to be incomparable to space
hardness.

Discussion. The known-space attack models the limited control of the adversary
over the platform and captures trojans, malwares and memory-leakage software
vulnerability, while the chosen-space attack captures stronger adversarial ability
to isolate a certain part of the underlying table and send it out via a communi-
cation channel with a limited capacity. In particular, the adaptive chosen-space
attack, which is the most powerful attack, assumes an adversary with full access
to the table at any time during the execution of the block cipher. However, it
should be noted that strong space hardness cannot be achieved against adaptive
chosen-space attacks for any (table-based) white-box design; an adversary would
be able to fix an arbitrary plaintext, and exploit all the table entries needed to
compute the corresponding ciphertext. As for weak space hardness of FPL against
adaptive chosen-space attacks, we provides only a heuristic argument using the
approach given in [7].

2 It would also be possible to tweak the probe function when it is instantiated with a
pseudorandom function such as AES.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 109

Fig. 1. The i-th round of FPL with four table look-ups. The probe function and the
secret table of the i-th round are denoted by g and Fi, respectively.

2 Preliminaries

2.1 Table-Based Block Cipher

(Conventional) Block Cipher. Let κ and n be positive integers. An n-bit
block cipher using κ-bit keys is a function family

E : {0, 1}κ × {0, 1}n → {0, 1}n

such that for all k ∈ {0, 1}κ the mapping E(k, ·) is a permutation on {0, 1}n.
Table-based Block Cipher. For positive integers s and t, a table with s-bit
inputs and t-bit outputs can be viewed as a function

f : {0, 1}s → {0, 1}t.

By viewing this table as a key of a block cipher, we will consider a table-based
block cipher

˜E : Fs,t × {0, 1}n → {0, 1}n

where Fs,t denotes the set of all functions from {0, 1}s to {0, 1}t bits, and for
each f ∈ Fs,t the mapping ˜E(f, ·) is a permutation on {0, 1}n. A table-based
block cipher ˜E using a secret table f ∈ Fs,t will be written as ˜E[f]. A main
difference of a table-based block cipher from conventional ones is that ˜E[f] is
assumed to make a fixed number of oracle queries (or table look-ups) to the
underlying table f in its implementation. By a table-look up with an s-bit input
x, f(x) will be returned.

Keyed-table-based Block Cipher. A pair of a table-based block cipher ˜E
and a family of tables

F : {0, 1}κ × {0, 1}s → {0, 1}t

will be called a keyed-table-based block cipher.3 Each key k ∈ {0, 1}κ defines an
n-bit permutation ˜E[F (k, ·)] as in a conventional block cipher, while in its white-
box implementation, the keyed table F (k, ·) will be stored instead of the key k.
3 A table-based block cipher ˜E can be regarded as keyed since each table in Fs,t can be

indexed by t · 2s bits.

110 J. Kwon et al.

2.2 Security Notions

Let (˜E,F) be a keyed-table-based block cipher. At the beginning of the attack,
an adversary A is allowed access to the table F (k, ·), where k is chosen uniformly
at random from {0, 1}κ and kept secret to the adversary. More precisely, we will
assume that A makes q oracle queries to F (k, ·) for a positive integer q. In this
phase, we can distinguish three different types of attacks as follows.

1. Known-space attack (KSA): A obtains q pairs of inputs and the corresponding
outputs of F (k, ·), namely (xi, F (k, xi)), i = 1, . . . , q, where xi are randomly
chosen from {0, 1}s without replacement.

2. Non-adaptive chosen-space attack (NCSA): A chooses a priori q inputs xi

and obtains the corresponding outputs F (k, xi) for i = 1, . . . , q.

3. Adaptive chosen-space attack (CSA): A adaptively chooses q inputs xi and
obtains the corresponding outputs F (k, xi) for i = 1, . . . , q. (So A is allowed
to choose xj based on the previous responses F (k, xi), i = 1, . . . , j − 1.)

After making all the oracle queries to the table, A is supposed to achieve a certain
security goal. We will consider three different goals, defining three notions of
security.

Weak Space Hardness. A is given a random plaintext u ∈ {0, 1}n, and asked
to encrypt ˜E[F (k, ·)](u). Note that A makes oracle queries to F (k, ·) without
knowing the plaintext u. So in the definition of the adversarial advantage, A
consists of two phases A1 and A2, where A1 relays a certain state σ to A2 after
making oracle queries to the underlying table, and A2 tries to find v on receipt
of σ and u.

Advatk-wsh
˜E,F

(A)

= Pr
[

k
$← {0, 1}κ, u

$← {0, 1}n, σ ← AF (k,·)
1 , v ← A2(σ, u) : v = ˜E[F (k, ·)](u)

]

,

where atk ∈ {ksa, ncsa, csa} represents the attack model.

Strong Space Hardness. A is asked to come up with a valid plaintext-
ciphertext pair (u, v) such that v = ˜E[F (k, ·)](u). The adversarial advantage
is formally defined as follows: for atk ∈ {ksa, ncsa, csa},

Advatk-ssh
˜E,F

(A) = Pr
[

k
$← {0, 1}κ, (u, v) ← AF (k,·) : v = ˜E[F (k, ·)](u)

]

.

Key Extraction Hardness. A is asked to recover the secret key k. The
adversarial advantage is formally defined as

Advatk-keh
˜E,F

(A) = Pr
[

k
$← {0, 1}κ, k′ ← AF (k,·) : k′ = k

]

.

For q, τ > 0 and (atk, sec) ∈ {ksa, ncsa, csa} × {wsh, ssh, keh}, we define

Advatk-sec
˜E,F

(q, τ) = max
A

Advatk-sec
˜E,F

(A),

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 111

where the maximum is taken over all adversaries A running in time τ and making
at most q queries.

Pseudorandomness. Later, we will consider the security of F in terms of
its pseudorandomness (as a keyed function family); in this notion of security,
A would like to tell apart two worlds F (k, ·) and a truly random function f by
adaptively making (forward) queries to the function, where k is chosen uniformly
at random from the key space and kept secret to A, while f is chosen uniformly
at random from Fs,t. Formally, A’s distinguishing advantage is defined by

Advprf
F (A) =

∣

∣

∣Pr
[

f
$← Fs,t : 1 ← Af

]

− Pr
[

k
$← {0, 1}κ : 1 ← AF (k,·)

]∣

∣

∣ .

For q, τ > 0, we define

Advprf
F (q, τ) = max

A
Advprf

F (A),

where the maximum is taken over all adversaries A running in time τ and making
at most q queries.

3 FPL: Block Cipher Using Parallel Table Look-Ups

In this section, we define the FPL keyed-table-based block cipher. This construc-
tion is a Feistel cipher; let n and r denote the block size and the number of
rounds, respectively. We will assume that n is even, writing n = 2m for a posi-
tive integer m. For a (keyed) round function H from m-bits to m-bits, let Φ[H]
denote a single-round Feistel cipher such that

Φ[H](uL, uR) = (uR, uL ⊕ H(uR))

for (uL, uR) ∈ {0, 1}m×{0, 1}m (identifying {0, 1}n with {0, 1}m×{0, 1}m). The
FPL block cipher is an r-round balanced Feistel cipher;

FPL = Φ[Hr] ◦ · · · ◦ Φ[H2] ◦ Φ[H1]

for r round functions Hi, i = 1, . . . , r.

Round Functions of FPL. Once parameters κ, s, d are fixed, each round
function Hi, i = 1, . . . , r, is defined by a probe function

g : {0, 1}m → ({0, 1}s)d

and a keyed table

F : {0, 1}κ × ({1, . . . , r} × {1, . . . , d} × {0, 1}s) → {0, 1}m.

We separate this table into smaller ones by writing Fi,j = F (·, i, j, ·) for i ∈
{1, . . . , r} and j ∈ {1, . . . , d}. Then for x ∈ {0, 1}m,

Hi(x) = Fi,1(y1) ⊕ Fi,2(y2) ⊕ · · · ⊕ Fi,d(yd),

112 J. Kwon et al.

where we write g(x) = (y1, y2, . . . , yd) ∈ ({0, 1}s)d. In this way, FPL becomes a
keyed-table-based block cipher that encrypts n-bit blocks using a κ-bit key. The
size of the underlying keyed table is rdm2s bits.

Security Requirements for Probe Functions. The (provable) security
of FPL depends on the property of its probe function. We need the following
definitions.

Definition 1. Let p and q be positive integers, and let g : {0, 1}m → ({0, 1}s)d.
If for any subsets Y1, . . . , Yd ⊂ {0, 1}s such that |Y1| + · · · + |Yd| ≤ q,

|{x ∈ {0, 1}m : g(x) ∈ Y1 × · · · × Yd}| < p,

then we will say that g is (p, q)-superposing.

Definition 2. Given a function g : {0, 1}m → ({0, 1}s)d, the incidence matrix
of g, denoted Mg, is a 2m ×d2s zero-one matrix, where the rows and the columns
are indexed by {0, 1}m and {1, . . . , d}×{0, 1}s, respectively, and (Mg)x,(j,yj) = 1
for j = 1, . . . , d if and only if g(x) = (y1, y2, . . . , yd).

Note that each row of Mg contains exactly d 1’s.

Definition 3. Let � be a positive integer, and let g : {0, 1}m → ({0, 1}s)d. If any
� rows of Mg are linearly independent over GF(2), then g is called �-independent.

The superposedness and linear independence of the probe function will turn out
to be essential in the security proof of FPL.

4 Probabilistic Construction of Secure Probe Functions

In this section, we will consider probabilistic construction of secure probe func-
tions. This approach is relevant when we instantiate the probe function with
a block cipher (adding a prefix to inputs and truncating its outputs) in prac-
tice, since a block cipher is typically modeled as a pseudorandom function. So
we will see how the randomness of the probe function is related to the secu-
rity requirements discussed in Sect. 3, namely the superposedness and the linear
independence.

Once we fix an integer q such that 0 ≤ q ≤ d2s, and subsets Y1, . . . , Yd ⊂
{0, 1}s such that |Y1| + · · · + |Yd| = q, then a random function g : {0, 1}m →
({0, 1}s)d will map an element of {0, 1}m to an element of Y1 × · · · × Yd with
probability

∏d
i=1 (|Yi|/2s), which is upper bounded by qd/(d2s)d. So the number

of x ∈ {0, 1}m such that g(x) ∈ Y1 × · · · × Yd will be close to 2mqd/(d2s)d. This
intuition is formalized in the following lemma.

Lemma 1. Let λ be a positive integer. A random function g : {0, 1}m →
({0, 1}s)d is (p(q), q)-superposing for every q such that 0 ≤ q ≤ d2s except with
probability at most 2−λ, where

p(q) = 3
(q

d2s

)d

2m + d2s + λ.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 113

Proof. Let c = q/(d2s), where 0 ≤ c ≤ 1, and let

δ =
d2s + λ

cd2m
+ 2

as a function in c. So we have p = (1+δ)cd2m. We fix subsets Y1, . . . , Yd ⊂ {0, 1}s

such that |Y1| + · · · + |Yd| = q.
For each x ∈ {0, 1}m, let Yx be a random variable, where Yx = 1 if g(x) ∈

Y1 × · · · × Yd, and Yx = 0 otherwise. Random variables Yx, x ∈ {0, 1}m, are all
independent, and Pr [Yx = 1] ≤ cd for every x ∈ {0, 1}m. Let Zx, x ∈ {0, 1}m,
be independent Bernoulli random variables such that Pr [Zx = 1] = cd and
Pr [Zx = 0] = 1 − cd. We can couple Yx and Zx so that Zx = 1 whenever
Yx = 1.

Let Y =
∑

x∈{0,1}m Yx and let Z =
∑

x∈{0,1}m Zx. Then Y counts the
number of x ∈ {0, 1}m such that g(x) ∈ Y1 × · · · × Yd, while Z is the sum of
independent Bernoulli random variables such that Ex [Z] = cd2m. By applying
the Chernoff bound to the variable Z, we obtain

Pr [Y ≥ p] ≤ Pr
[

Z ≥ (1 + δ)cd2m
]

≤ e− δ2·cd·2m

2+δ ≤ e−(δ−2)cd2m

= e−(d2s+λ).

Since the number of possible choices for subsets Y1, . . . , Yd ⊂ {0, 1}s is upper
bounded by

d2s
∑

q=0

(

d2s

q

)

= 2d2s

,

we can use the union bound to conclude that a random function g : {0, 1}m →
({0, 1}s)d is (p, q)-superposing for every q such that 0 ≤ q ≤ d2s except with
probability at most 2d2s · e−(d2s+λ), where 2d2s · e−(d2s+λ) ≤ 2−λ.
�
Lemma 2. For a positive integer �, a random function g : {0, 1}m → ({0, 1}s)d

is �-independent except with probability at most

Pm,s,d,�
def=

� �
2 �

∑

j=1

(

jd−2

2ds−2m−1

)j

.

If 2ds−2m−2 ≥ (

e�
2

)d−2
, then we have Pm,s,d,� ≤ 1

2ds−2m−2 .

Proof. A probe function g : {0, 1}m → ({0, 1}s)d defines a 2m × d2s incidence
matrix Mg. This matrix can be viewed as obtained by concatenating d matrices
Mg[i], i = 1, . . . , d, where the rows and the columns of Mg[i] are indexed by
{0, 1}m and {0, 1}s, respectively, and (Mg)[i]x,y = 1 if the i-th entry of g(x)
is y and (Mg)[i]x,y = 0 otherwise. When g is chosen uniformly at random, the
position of the nonzero entry will also be random and independent for each row
of (Mg)[i], i = 1, . . . , d.

114 J. Kwon et al.

Let Mg[i]x denote the row of Mg[i] indexed by x ∈ {0, 1}m. If g is not
�-independent, then there will be indices x1, . . . , x2j ∈ {0, 1}m for a positive
integer j such that 2j ≤ �, satisfying

Mg[i]x1 ⊕ Mg[i]x2 ⊕ · · · ⊕ Mg[i]x2j−1 ⊕ Mg[i]x2j
= 0 (1)

for every i = 1, . . . , d, where 0 denotes the zero vector. In order for (1) to hold
for a fixed i ∈ {1, . . . , d} and a set of indices X = {x1, . . . , x2j} ⊂ {0, 1}m,
there should be a perfect matching in a complete graph on X (or equivalently
an involution without fixed points on X) such that for any edge {xα, xβ} the
corresponding rows have “1” at the same position. For a fixed edge {xα, xβ},
the corresponding rows have “1” at the same position with probability 1/2s over
the randomness of g. Since the number of perfect matchings is

(2j − 1) · (2j − 3) · · · · · 3 · 1 =
(2j)!
2jj!

,

and Mg[1], . . . , Mg[d] are chosen independently, the probability that g is not
�-independent is upper bounded by

� �
2 �

∑

j=1

(

2m

2j

)(

(2j)j

2(s+1)j

)d

≤
� �
2 �

∑

j=1

(

2m

2j

)

(

(2j)!
2jj!

(

1
2s

)j
)d

≤
� �
2 �

∑

j=1

(

e2m

2j

)2j (

j

2s

)dj

≤
� �
2 �

∑

j=1

(

jd−2

2ds−2m−1

)j

.

Let pj =
(

jd−2

2ds−2m−1

)j

for j = 1, . . . , � �
2. One can easily show that pj+1 ≤ pj/2

if

2ds−2m−2 ≥
(

e�

2

)d−2

. (2)

In this case, we have

Pm,s,d,� =
� �
2 �

∑

j=1

pj ≤
� �
2 �

∑

j=1

p1
2j−1

≤ 1
2ds−2m−2

. (3)

5 White-Box Security of FPL

Throughout this section, we will fix the parameters of FPL, namely, m, s, d, κ,
r, where we assume r ≥ 7. Furthermore, we suppose that an r-round FPL block
cipher is based on a probe function

g : {0, 1}m → ({0, 1}s)d

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 115

and a keyed table

F : {0, 1}κ × ({1, . . . , r} × {1, . . . , d} × {0, 1}s) → {0, 1}m,

writing Fi,j = F (·, i, j, ·) for i ∈ {1, . . . , r} and j ∈ {1, . . . , d}.

5.1 Key Extraction Hardness of FPL

Up to the pseudorandomness of the keyed table, one would not be able to recover
the secret key by exploiting the table entries. More precisely, it is easy to see

Advcsa-keh
FPL,F (q, τ) = Advprf

F (q′, τ ′),

where q′ = q + O(κ/n) and τ ′ = τ + O(κ/n). So in the following, we will focus
on the space hardness of FPL.

5.2 Space Hardness of FPL

Throughout this section, we will replace the underlying keyed tables Fi,j , (i, j) ∈
{1, . . . , r} × {1, . . . , d}, by independent uniform random functions fi,j up to the
pseudorandomness of F , so all the security bounds have an additional term
Advprf

F (q, τ). In this setting, we will consider an information theoretic adversary
A with unbounded computational power.

A Useful Lemma. Note that for x ∈ {0, 1}m,

Hi(x) = Fi,1(y1) ⊕ Fi,2(y2) ⊕ · · · ⊕ Fi,d(yd)

where g(x) = (y1, y2, . . . , yd) ∈ ({0, 1}s)d. For i and j such that 1 ≤ i ≤ j ≤ r,
let

FPLi,j = Φ[Hj] ◦ · · · ◦ Φ[Hi+1] ◦ Φ[Hi]

be the subcipher of FPL containing rounds i to j, and for w ∈ {0, 1}m, let

FPLw
i,j : {0, 1}m → {0, 1}m,

be a function such that FPLw
i,j(u) = v if FPLi,j(w, u) = (v′, v) for some v′ ∈

{0, 1}m. In other words, FPLw
i,j sets the left half of the input to FPLi,j to w, and

takes only the right half of the output from FPLi,j .
In order to prove the strong space hardness of FPL, we need to prove the

multi-collision security of FPLw
i,j over the random choice of the underlying tables.

Lemma 3. Let 1 ≤ i ≤ j ≤ r, let � ≥ 2, and let w ∈ {0, 1}m. If a probe
function g is �-independent, then the probability that there are � distinct elements
u1, . . . , u� ∈ {0, 1}m such that FPLw

i,j(u1) = · · · = FPLw
i,j(u�) is upper bounded by

2m
(e

�

)�

.

116 J. Kwon et al.

Proof. We will first fix v ∈ {0, 1}m and � distinct elements u1, . . . , u� ∈ {0, 1}m,
and then upper bound the probability that

FPLw
i,j(uα) = v (4)

for every α = 1, . . . , �. Let (w′
α, u′

α) = FPLi,j−1(w, uα) (with arbitrary tables for
rounds i to j − 1) and let

g(u′
α) = (yα,1, yα,2, . . . , yα,d)

for α = 1, . . . , �. Then (4) implies the following � equations:

Hj(u′
α) = Fj,1(yα,1) ⊕ Fj,2(yα,2) ⊕ · · · ⊕ Fj,d(yα,d) = w′

α ⊕ v (5)

for α = 1, . . . , �. If u′
α1

= u′
α2

for some 1 ≤ α1 < α2 ≤ �, then it should be the
case that w′

α1
⊕ v �= w′

α2
⊕ v since (w′

α, u′
α) are all distinct. Therefore we can

assume that u′
α are all distinct.

Rewriting Fj,β(yα,β) by zβ,yα,β
for 1 ≤ α ≤ � and 1 ≤ β ≤ d, we obtain

a system of equations in unknowns zβ,yα,β
. If the number of the unknowns is

denoted by L, then the number of solutions to this system is given as 2(L−�)m

since g is �-independent. Furthermore, for each solution, say (z∗
β,yα,β

), the prob-
ability that Fj,β(yα,β) = z∗

β,yα,β
is given as 1/2Lm. Therefore, the probability of

an �-multicollision in FPLw
i,j is upper bounded by

2m

(

2m

�

)

2(L−�)m

2Lm
= 2m

(

2m

�

)

1
2�m

≤ 2m
(e

�

)�

.
�

Security Against Known-space Attacks. Weak and strong space hardness
of FPL against known-space attacks is summarized by the following theorem.

Theorem 1. Suppose that g is �-independent for a positive integer �. Then for
any integers q, r1 and r2 such that 0 ≤ q ≤ rd2s, r1, r2 ≥ 3 and r1 + r2 < r, we
have

Advksa-wsh
FPL,F (q, τ) ≤ Advprf

F (q, τ) +
2mqr1d

(rd2s)r1d
+

22mqr2d

(rd2s)r2d
+ 2m

(e

�

)�

+
�

22m
.

(6)

We also have

Advksa-ssh
FPL,F (q, τ) ≤ Advprf

F (q, τ) + 22m+1
(q

rd2s

)(� r
2�−1)d

+ 2m
(e

�

)�

+
�

22m
.

(7)

Proof. We will give the proof of (6); The upper bound (7) is proved similarly.
In the first phase of the attack, A is given q queries fiα,jα

(yα), α = 1, . . . , q,
where iα ∈ {1, . . . , r}, jα ∈ {1, . . . , d} and yα ∈ {0, 1}s are chosen independently

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 117

at random. In the second phase of the attack, A is given a random plaintext
u ∈ {0, 1}n, where u is written as uL‖uR for uL, uR ∈ {0, 1}m.

For i ∈ {1, . . . , r} and j ∈ {1, . . . , d}, let Yi,j ⊂ {0, 1}s be a set of queries
y such that fi,j(y) have been fixed (so i = iα, j = jα and y = yα for some
α ∈ {1, . . . , q}). If there are r1 + 1 elements, denoted x0, x1, . . . , xr1 ∈ {0, 1}m,
such that

1. x0 = uL and x1 = uR,
2. g(xi)

def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1,
3. xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for i = 1, . . . , r1 − 1,

then we will give a win to A. For each (r1+1)-tuple (x0, . . . , xr1) ∈ ({0, 1}m)r1+1,
the probability that x0 = uL, x1 = uR, and g(xi) ∈ Yi,1 × · · · × Yi,d for i =
1, . . . , r1 is upper bounded by

1
22m

(q

rd2s

)r1d

.

Furthermore, the probability that xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for
i = 2, . . . , r1 − 1 is upper bounded by

(

1
2m

)r1−2

over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by

2mqr1d

(rd2s)r1d
. (8)

On the other hand, if there are r2 elements x1, . . . , xr2 ∈ {0, 1}m, such that

1. g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = r − r2 + 1, . . . , r,

2. xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for i = r − r2 + 2, . . . , r − 1,

then we will also give a win to A. The probability of A’s winning in this game
is upper bounded by

22mqr2d

(rd2s)r2d
. (9)

Suppose that A outputs v ∈ {0, 1}2m at the end of the attack, where we will
write v = vL‖vR for vL, vR ∈ {0, 1}m. Without the winning events above, one
can find a sequence of r′ + 1 elements, say x0, x1, . . . , xr′ ∈ {0, 1}m, for some r1
such that 1 ≤ r′ ≤ r1, where

1. x0 = uL and x1 = uR,
2. for i = 1, . . . , r′ − 1,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d),

118 J. Kwon et al.

3. g(xr′) /∈ Yr′,1 × · · · × Yr′,d.

Similarly, there is a sequence of r′′+1 elements, say xr−r′′+1, xr−r′′+2, . . . , xr+1 ∈
{0, 1}m, for some r′′ such that 1 ≤ r′′ ≤ r2, where

1. xr = vL and xr+1 = vR,
2. for i = r − r′′ + 2, . . . , r,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d),

3. g(xr−r′′+1) /∈ Yr−r′′+1,1 × · · · × Yr−r′′+1,d.

Next, we focus on r − r′ − r′′ (≥ 1) rounds in the middle from round r′ + 1
to r − r′′. By Lemma 3, the number of inputs that collides on xr−r′′+1 under
FPL

xr′
r′+1,r−r′′ is at most � except with probability

2m
(e

�

)�

. (10)

Without any �-multicollision, we would have two sets of �′ different values, say
{x1

r′+1, . . . , x
�′
r′+1} and {x1

r−r′′ , . . . , x�′
r−r′′}, for some �′ ≤ �, such that

Φ[Hr−r′′] ◦ · · · ◦ Φ[Hr′+2] ◦ Φ[Hr′+1](xr′ , xj
r′+1) = (xj

r−r′′ , xr−r′′+1)

for j = 1, . . . , �′. Therefore, FPL(u) = v implies that

Φ[Hr′](xr′−1, xt) = (xr′ , xj
r′+1),

Φ[Hr−r′′+1](x
j
r−r′′ , xr−r′′+1) = (xr−r′′+1, xr−r′′+2)

for some j = 1, . . . , �′, which hold with probability at most

�

22m
. (11)

The proof of (6) is complete by (8), (9), (10) and (11).
�

Security Against Non-adaptive Chosen-space Attacks. Weak and
strong space hardness of FPL against non-adaptive chosen-space attacks is sum-
marized by the following theorem.

Theorem 2. Let � be a positive integer and let p(·) be an increasing function
defined on {0, . . . , d2s}. Suppose that g : {0, 1}m → ({0, 1}s)d is �-independent
and (p(q′), q′)-superposing for every q′ ∈ {0, . . . , d2s}. For any q ∈ {0, . . . , rd2s}
and r′ ∈ {1, . . . , r}, let p∗(q, r′) be the maximum of

∏r′

i=1 p(qi) subject to the
constraints

∑r′

i=1 qi = q and 0 ≤ qi ≤ d2s for i = 1, . . . , r′. Then for any r1 and
r2 such that r1, r2 ≥ 3 and r1 + r2 < r, we have

Advncsa-wsh
FPL,F (q, τ) ≤ Advprf

F (q, τ) +
p∗(q, r1)

2mr1
+

p∗(q, r2)
2m(r2−2)

+ 2m
(e

�

)�

+
�

22m
.

(12)

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 119

We also have

Advncsa-ssh
FPL,F (q, τ) ≤ Advprf

F (q, τ) +
p∗ (

q,
⌈

r
2

⌉ − 1
)

2(� r
2�−3)m−1

+ 2m
(e

�

)�

+
�

22m
. (13)

Proof. We will give the proof of (12); The upper bound (13) is proved similarly.
At the first phase of the attack, A chooses sets of queries Yi,j ⊂ {0, 1}s and

obtains fi,j(y) for each y ∈ Yi,j , where i ∈ {1, . . . , r} and j ∈ {1, . . . , d}. At the
second phase of the attack, A is given a random plaintext u ∈ {0, 1}n, where u
is written as uL‖uR for uL, uR ∈ {0, 1}m.

If there are r1 + 1 elements, denoted x0, x1, . . . , xr1 ∈ {0, 1}m, such that

1. x0 = uL and x1 = uR,
2. g(xi)

def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1,
3. xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for i = 1, . . . , r1 − 1,

then we will give a win to A. Since |Yi,1| + · · · + |Yi,d| = qi and g is (p(qi), qi)-
superposing, we have

|{x ∈ {0, 1}m : g(x) ∈ Yi,1 × · · · × Yi,d}| < p(qi)

for i = 1, . . . , r1. Therefore the number of tuples (x0, x1, . . . , xr1) such that
g(xi) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1 is upper bounded by

2m
r1
∏

i=1

p(qi) ≤ 2mp∗(q, r1),

since q1 + · · ·+ qr1 ≤ q; for each (r1 +1)-tuple (x0, . . . , xr1), the probability that
uL = x0, uR = x1 and xi−1⊕xi+1 = fi,1(yi,1)⊕· · ·⊕fi,1(yi,d) for i = 1, . . . , r1−1
is upper bounded by

(

1
2m

)r1+1

over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by

p∗(q, r1)
2mr1

. (14)

Similarly, if there are r2 elements x1, . . . , xr2 ∈ {0, 1}m, such that

1. g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = r − r2 + 1, . . . , r,

2. xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for i = r − r2 + 2, . . . , r − 1,

then we will also give a win to A. The probability of A’s winning in this game
is also upper bounded by

p∗(q, r2)
2m(r2−2)

. (15)

Suppose that A outputs v ∈ {0, 1}2m at the end of the attack, where we will
write v = vL‖vR for vL, vR ∈ {0, 1}m. Without the winning events above, one
can find a sequence of r′ + 1 elements, say x0, x1, . . . , xr′ ∈ {0, 1}m, for some r′

such that 1 ≤ r′ ≤ r1, where

120 J. Kwon et al.

1. x0 = uL and x1 = uR,
2. for i = 1, . . . , r′ − 1,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d),

3. g(xr′) /∈ Yr′,1 × · · · × Yr′,d.

Similarly, there is a sequence of r′′+1 elements, say xr−r′′+1, xr−r′′+2, . . . , xr+1 ∈
{0, 1}m, for some r′′ such that 1 ≤ r′′ ≤ r2, where

1. xr = vL and xr+1 = vR,
2. for i = r − r′′ + 2, . . . , r,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d),

3. g(xr−r′′+1) /∈ Yr−r′′+1,1 × · · · × Yr−r′′+1,d.

Next, we focus on r − r′ − r′′ (≥ 1) rounds in the middle from round r′ + 1
to r − r′′. By Lemma 3, the number of inputs that collides on xr−r′′+1 under
FPL

xr′
r′+1,r−r′′ is at most � except with probability

2m
(e

�

)�

. (16)

Without any �-multicollision, we would have two sets of �′ different values, say
{x1

r′+1, . . . , x
�′
r′+1} and {x1

r−r′′ , . . . , x�′
r−r′′}, for some �′ ≤ �, such that

Φ[Hr−r′′] ◦ · · · ◦ Φ[Hr′+2] ◦ Φ[Hr′+1](xr′ , xj
r′+1) = (xj

r−r′′ , xr−r′′+1)

for j = 1, . . . , �′. Therefore, FPL(u) = v implies that

Φ[Hr′](xr′−1, xt) = (xr′ , xj
r′+1),

Φ[Hr−r′′+1](x
j
r−r′′ , xr−r′′+1) = (xr−r′′+1, xr−r′′+2)

for some j = 1, . . . , �′, which hold with probability at most

�

22m
. (17)

The proof of (12) is complete by (14), (15), (16) and (17).
�

Security Against Adaptive Chosen-space Attacks. We claim weak space
hardness of FPL against adaptive chosen-space attacks with a somewhat heuristic
argument.

We first estimate how large space is necessary to compute L plaintexts in
advance. When L plaintexts are encrypted, each table has L accesses, and for L

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 121

table accesses, the expected number of used entries in each table Fi,j is estimated

as
(

1 − eL
in

) · 2s, where ein
def= 1 − 1/2s. Therefore an adaptive chosen-space

attack of table leakage δ (= q/rd2s) enables to compute
⌈

logein
(1 − δ)

⌉

pairs of
plaintexts and the corresponding ciphertexts. A randomly-drawn plaintext will
be included in the set of the prepared pairs with probability

⌈

logein
(1 − δ)

⌉

/2n.
On the other hand, if the plaintext is not in the set of the prepared pairs, then
the adversary is able to successfully guess its ciphertext with probability at most
δdr. Overall, the adversarial success probability is upper bounded by

⌈

logein
(1 − δ)

⌉

2n
+ δdr.

For example, when the parameters are given as (n, s, d, r) = (128, 12, 40, 11) (as
used in Table 3) and when δ = 0.25, the success probability is limited to 2−117.

5.3 Numerical Interpretation

Table 1 compares the security of FPL for various sets of parameters when n = 128
and n = 64. In this table, FPL-(n, s, d, r) denotes the n-bit FPL cipher of r rounds
using d table look-ups for each round, where each table has 2s entries. We will
assume that the probe function g is pseudorandom so that we can probabilistically
guarantee its superposedness and linear independence using Lemmas 1 and 2, and
this probability is represented by the security parameter λ. Since all the security
bounds in Sect. 5 include the term 2

n
2

(

e
�

)� + �
2n , which is optimized when � is

close to n, we will set the target security level to (n− log n) bits, and compare the
maximum table leakage δ (= q/rd2s) that achieves this level of security.

For each set of parameters (n, s, d, r), the maximum table leakage is computed
as follows.

1. Fix sufficiently large λ, and by Lemma 1, assume that the probe function g is
(Aqd +B, q)-superposing for every q such that 0 ≤ q ≤ d2s, where A = 3·2m

(d2s)d

and B = d2s + λ.

2. Find � that minimizes 2
n
2

(

e
�

)� + �
2n over positive integers � such that Pm,s,d,�

is sufficiently small, say ≤ 2−λ for the fixed parameter λ.

3. In order to analyze the ncsa-wsh security, for each (r1, r2) such that r1, r2 ≥ 3
and r1 + r2 < r, maximize q ∈ {0, . . . , rd2s} such that

p∗(q, r1)
2mr1

+
p∗(q, r2)
2m(r2−2)

+ 2m
(e

�

)�

+
�

22m
(18)

is upper bounded by n/2n, where p∗(·, ·) is as defined in Theorem 2. Let q∗
r1,r2

denote this maximum.

4. Maximize q∗
r1,r2

over (r1, r2) such that r1, r2 ≥ 3 and r1 + r2 < r. Let q∗∗

denote this maximum. Then q∗∗/rd2s becomes the maximum table leakage
that achieves (n − log n)-bit security.

5. The ksa-wsh, ksa-ssh, ncsa-ssh security is analyzed similarly.

122 J. Kwon et al.

In the third step, we need to compute p∗(q, r1) and p∗(q, r2) for each q and
(r1, r2), and see if (18) is upper bounded by n/2n. For a fixed pair (q, r), p∗(q, r)
is the maximum of

r
∏

i=1

(

Aqd
i + B

)

subject to the constraints
∑r

i=1 qi = q and 0 ≤ qi ≤ d2s for i = 1, . . . , r. We
observe that

ln

(

r
∏

i=1

(

Aqd
i + B

)

)

=
r

∑

i=1

ln
(

Aqd
i + B

)

, (19)

where
C(x) def= ln

(

Axd + B
)

is concave in [(B/A)
1
d , rd2s].4 For simplicity of analysis, we upper bound C(x)

by C(x), where

C(x) def=

{

C((B/A)
1
d) if x ≤ (B/A)

1
d ,

C(x) if x ≥ (B/A)
1
d .

Once we fix the number of indices i, denoted r′, such that qi ≥ (B/A)
1
d , then

∑r
i=1 ln C(x) is upper bounded by

(r − r′)C((B/A)
1
d) + r′C(q/r′)

by Jensen’s inequality.5 So we conclude that

ln p∗(q, r) ≤ max
0≤r′≤r

{

(r − r′)C((B/A)
1
d) + r′C(q/r′)

}

.

For example, let n = 128 (i.e., m = 64) and let (s, d, r) = (12, 20, 17). As a
function of �,

2
n
2

(e

�

)�

+
�

2n

is minimized when � = 47. We also see that P64,12,20,47 ≤ 1/2111, so we let
λ = 111. This means that when we use AES with a fixed key as a probe function
it would satisfy �-linear independence except with probability 1/2111. When
q = 0.17 · (rd2s), we have

Advncsa-wsh
FPL,(Fi,j)(q, τ) ≤ 2−122.2

assuming that the underlying tables are truly random.

4 We assume that 0 < (B/A)
1
d < rd2s. All the parameters in Table 1 satisfy this

inequality.
5 We let r′C(q/r′) = 0 when r′ = 0.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 123

Table 1. Security of FPL

(a) Security of FPL with n = 128.

Cipher Table size λ ksa ncsa

wsh ssh wsh ssh

FPL-(128, 12, 20, 17) 10.63 MB 111 0.38 0.33 0.17 0.12

FPL-(128, 12, 20, 33) 20.62 MB 111 0.61 0.58 0.28 0.26

FPL-(128, 16, 16, 17) 136.00 MB 127 0.30 0.25 0.13 0.09

FPL-(128, 16, 16, 33) 264.00 MB 127 0.54 0.50 0.24 0.22

FPL-(128, 20, 12, 17) 1.59 GB 111 0.20 0.16 0.09 0.05

FPL-(128, 20, 12, 33) 3.09 GB 111 0.44 0.40 0.22 0.22

(b) Security of FPL with n = 64.

Cipher Table size λ ksa ncsa

wsh ssh wsh ssh

FPL-(64, 8, 16, 9) 144.00 KB 63 0.26 0.26 0.00 0.00

FPL-(64, 8, 16, 17) 272.00 KB 63 0.55 0.51 0.13 0.08

FPL-(64, 8, 16, 33) 528.00 KB 63 0.74 0.71 0.30 0.26

FPL-(64, 16, 8, 17) 34.00 MB 63 0.30 0.26 0.00 0.00

FPL-(64, 16, 8, 33) 66.00 MB 63 0.55 0.51 0.20 0.14

FPL-(64, 16, 16, 17) 68.00 MB 63 0.55 0.51 0.00 0.00

6 FPLAES: Concrete Instantiation

Given probabilistic construction of a secure probe function, one might want to
use AES (with a fixed key) as the probe function, assuming AES is pseudorandom.
In this section, we propose a concrete instantiation of FPL, dubbed FPLAES, using
(round-reduced) AES for the underlying table and probe functions.

6.1 Specification

The FPLAES cipher is defined by parameters r, m, d, s, where m is even and
s ≤ 16.6 Let n = 2m, and let FPLAES-(n, s, d, r) denote the n-bit FPLAES cipher
of r rounds using d table look-ups for each round, where each table has 2s entries.
The probe function uses AES reduced to 5 rounds (without the linear mixing
operation in the last round), denoted AES[5], while the table is generated using
the full-round AES using 128-bit keys. In the following, Tra(·) denotes truncation
of the first a bits from the input, and 〈x〉a denotes the a-bit binary representation
of integer x.

Probe Functions. The probe function g : {0, 1}m → ({0, 1}s)d is computed
as follows.

6 The definition can be straightforwardly extended to s > 16.

124 J. Kwon et al.

1. On input x ∈ {0, 1}m, compute

y = AES[5]0128(〈1〉128−m‖x)‖ · · · ‖AES[5]0128(〈�d/8�〉128−m‖x),

where 0128 denotes the zero vector of 128 bits,7 and the input prefixes are
represented by 128 − m bits.

2. Break down y as y′
1‖ · · · ‖y′

d‖∗, where y′
j ∈ {0, 1}16 for j = 1, . . . , d and

∗ denotes the remaining bits; the index yj for the j-th table is defined as
Tr16−s(y′

j) for j = 1, . . . , d. So we have g(x) = (y1, . . . , yd).

Tables. The FPLAES cipher uses a single keyed table

F : {0, 1}128 × {1, . . . , r} × {1, . . . , d} × {0, 1}s −→ {0, 1}m,

where F (k, i, j, y) = Tr128−m (AESk(〈i〉64‖〈j〉64−s‖y)).

6.2 Black-Box Security of FPLAES

In this section, we analyze the differential and the linear properties of FPLAES.

Differential Cryptanalysis. Fix an s-to-m bit function f : {0, 1}s →
{0, 1}m. Given an input difference α and an output difference β, the differential
probability of f is defined as

DP(α, β) = |{(u, v)|u ⊕ v = α and f(u) ⊕ f(v) = β}|

for u, v ∈ {0, 1}s. The distribution of DP(α, β) over all s-to-m bit functions
has been shown to be binomial for sufficiently large s and m [5,10]. For a non-
trivial differential (α, β) with fixed α and β, this distribution is binomial with
the following probability;

Pr [DP(α, β) = λ] = (2−m)λ · (1 − −2−m)2
s−1−λ ·

(

2s−1

λ

)

.

In [6], the probability pB that DP(α, β) is at most B over all non-trivial values
of α and β is lower bounded by

(

1 − (2s−1 · 2−m)B+1

(B + 1)!

)2s+m+1

.

Table 2a shows pB for f with s = 12, 16, 20 when n = 128 (so m = 64). By using
this probability pB , the differential probability of f is estimated as B/2s. Suppose
that the differential probability of f to be 2−10.4 (= 3/212), 2−14 (= 4/216) and
2−18 (= 4/220), since p3, p4 and p5 are very close to 1 in f with s = 12, 16 and
20, respectively. Due to diffusion properties of the probe function, FPLAES with
s = 12, 16 and 20 have at least 13, 10 and 8 active Fi,j functions after 3 rounds.

7 Any constant key will not affect the overall security (compared to 0128).

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 125

When n = 64, the lower bounds on pB are listed in Table 2b. The differential
probability of f with s = 8 and 16 is 2−6.4 (= 3/28) and 2−13.4 (= 6/216),
respectively. FPLAES with s = 8 and 16 have at least 10 and 5 active Fi,j functions
after 3 rounds.

Table 2. Lower bounds on pB

(a) Lower bounds on pB with n = 128.

s p1 p2 p3 p4 p5 p6

12 1-2−30 1-2−85 1-2−140 1-2−195 1-2−250 1-2−306

16 1-2−18 1-2−69 1-2−120 1-2−171 1-2−222 1-2−274

20 1-2−6 1-2−53 1-2−100 1-2−147 1-2−194 1-2−242

(b) Lower bounds on pB with n = 64.

s p1 p2 p3 p4 p5 p6

8 1-2−10 1-2−37 1-2−64 1-2−91 1-2−118 1-2−146

16 - 1-2−5 1-2−24 1-2−43 1-2−62 1-2−82

Linear Cryptanalysis. Fix an s-to-m bit function f : {0, 1}s → {0, 1}m.
Given an input mask γ ∈ {0, 1}s and an output mask δ ∈ {0, 1}m, the correlation
of a linear approximation with respect to (γ, δ) is defined as

Cor = 2s·(|{x ∈ {0, 1}s|γ · x ⊕ δ · f(x) = 0}|−|{x ∈ {0, 1}s|γ ·x ⊕ δ · f(x) = 1}|).

The linear probability LP for (γ, δ) is defined as Cor2. If LP of f is assumed to
be normally distributed, then LP of a non-trivial linear approximation of f has
mean μ(LP) = 2−s and variance σ2(LP) = 2 × 2−2s [10].

In [6], LP of f with a fixed key is upper bounded by 2−s+10σ with probability
at least 1 − 2−148. Therefore, the maximum linear probabilities can be assumed
to be 2−4, 2−8, 2−12 and 2−16 for s = 8, 12, 16 and 20, respectively. So FPLAES
with s = 12, 16, 20 and n = 128 have at least 16, 11 and 8 active Fi,j functions
after 3 rounds. When n = 64, FPLAES with s = 8 and 16 have at least 16 and 6
active Fi,j functions after 4 and 3 rounds, respectively.

6.3 Performance

In this section, all of our experiments are done in the Zen+ microarchitecture
(AMD Ryzen 7 2700X @ 3.70 GHz) which supports AVX (including AVX2),
SSE, and AES instructions. The machine has L1-data, L2, and L3 caches with
32 KB, 512 KB, and 8192 KB sizes as well as 64 GB DDR4 RAM with a clock
frequency of 2400 MHz. The source codes have been compiled by the GNU C
Compiler 7.4.0 in O2 optimization level.

126 J. Kwon et al.

Figure 2 compares the performance of FPLAES in the white-box setting for
a various number of rounds r. When s and d are fixed, the table size is pro-
portional to the number of rounds, and so is the execution time (in cycles per
byte). We also observe that FPLAES-(128, 12, 40, r) is significantly faster than
FPLAES-(128, 12, 20, 2r) (e.g., when r = 10, 15), where FPLAES-(128, 12, 20, 2r)
and FPLAES-(128, 12, 40, r) use tables of the same size with the same number
of table look-ups. The reason is that FPLAES-(128, 12, 40, r) makes more tables
looks-ups per round than FPLAES-(128, 12, 20, 2r), which can be pipelined mini-
mizing latency.

Fig. 2. Performance of FPLAES-(n, s, d, r) for a various number of rounds r.

Table 3 compares the performance of FPLAES to SPACE, WhiteBlock and WEM
with block size n = 128. The comparison has been made with table sizes around
13 MB.8 The table size is not exactly the same as some constructions recommend
only a small number of sets of parameters with their security analysis, while
the table size affects both efficiency and security. That said, we observe that
FPLAES-(128, 12, 40, 11) provides the strongest security without significant loss
of efficiency; it provides ksa-wsh and ksa-ssh security up to the leakage of 44%
and 41%, respectively. Note that SPACE uses a single table for every round, so
its provable security is also heuristic.

Black Box Implementation. A key owner might want to use a compact imple-
mentation of the encryption scheme by storing keys instead of the correspond-
ing tables. For example, in an environment where a single server communicates
with all the users, it would be infeasible to store all the keyed tables. Table 4
compares performance of FPLAES to existing schemes in the black-box setting,
where the underlying tables are all generated using the full AES block cipher.

8 This is the table size of WEM for their recommended parameters.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 127

Table 3. Comparison of FPLAES to existing schemes with block size n = 128. The
security is compared in terms of weak space hardness against known-space attacks.

Cipher Table size Security Table look-ups Cycles per byte

SPACE-(20, 64) 13.50 MB 128 bits @ 0.25 64 RAM-TL 891.60

WhiteBlock-20 24.00 MB 108 bits @ 0.25 69 RAM-TL 582.62

WEM-(16, 12) 13.00 MB 112 bits @ 0.25 104 RAM-TL 356.49

FPLAES-(12, 40, 11) 13.75 MB 121 bits @ 0.44 440 RAM-TL 357.52

This comparison does not include WEM, since the bijective S-boxes of the WEM
are generated by the Fisher-Yates shuffle, which is too slow when implemented
with AES. We see that FPLAES is comparable to existing schemes in the black
box implementation.

Table 4. Black-box performance of FPLAES and existing schemes in cycles/byte.

SPACE-(20, 64) WhiteBlock-20 WEM-(16, 12) FPLAES-(12, 40, 11)

166.40 93.30 − 200.35

References

1. Bellare, M., Dai, W.: Defending against key exfiltration: efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In: Proceedings of
the 22nd ACM SIGSAG Conference on Computer and Communications Security,
pp. 923–940. ACM (2017)

2. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
373–402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 14

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

4. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 4

5. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 204–221.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 12

6. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In:
Proceedings of the 22nd ACM SIGSAG Conference on Computer and Communi-
cations Security, pp. 1058–1069. ACM (2015)

https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-45611-8_4
https://doi.org/10.1007/978-3-642-40041-4_12

128 J. Kwon et al.

7. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 5

8. Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg,
A.: WEM: a new family of white-box black ciphers based on the even-mansour
construction. In: Handschuh, H. (ed.) Topics in Cryptology - CT-RSA 2017. LNCS,
vol. 10159, pp. 293–308. Springer, Berlin (2017)

9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

10. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007)

11. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 13

12. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 6

13. Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem
with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 475–490. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 23

14. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

15. Lin, T.-T., Lai, X.-J., Xue, W.-J., Jia, Y.: A new feistel-type white-box encryption
scheme. J. Comput. Sci. Technol. 32(2), 386–395 (2017)

16. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 1

17. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-47989-6_23
https://doi.org/10.1007/978-3-662-47989-6_23
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/978-3-540-77360-3_17

Extending NIST’s CAVP Testing
of Cryptographic Hash Function

Implementations

Nicky Mouha(B) and Christopher Celi

National Institute of Standards and Technology, Gaithersburg, MD, USA
nicky@mouha.be, christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in Apple’s CoreCrypto
library, which affects 11 out of the 12 implemented hash functions: every
implemented hash function except MD2 (Message Digest 2), as well as
several higher-level operations such as the Hash-based Message Authen-
tication Code (HMAC) and the Ed25519 signature scheme. The vulnera-
bility is present in each of Apple’s CoreCrypto libraries that are currently
validated under FIPS 140-2 (Federal Information Processing Standard).
For inputs of about 232 bytes (4 GiB) or more, the implementations do
not produce the correct output, but instead enter into an infinite loop.
The vulnerability shows a limitation in the Cryptographic Algorithm
Validation Program (CAVP) of the National Institute of Standards and
Technology (NIST), which currently does not perform tests on hash func-
tions for inputs larger than 65 535 bits. To overcome this limitation of
NIST’s CAVP, we introduce a new test type called the Large Data Test
(LDT). The LDT detects vulnerabilities similar to that in CoreCrypto
in implementations submitted for validation under FIPS 140-2.

Keywords: CVE-2019-8741 · FIPS · CAVP · ACVP · Apple ·
CoreCrypto · Hash function · Vulnerability

1 Introduction

The security of cryptography in practice relies not only on the resistance of
the algorithms against cryptanalytical attacks, but also on the correctness and
robustness of their implementations. Software implementations are vulnerable
to software faults, also known as bugs.

A (cryptographic) hash function turns a message of a variable length into
an output of a fixed length, often called a message digest, or digest. This fixed-
length output can then serve as a “fingerprint” for the message, in the sense that
it should be computationally infeasible to construct two messages that result in
the same digest. Hash functions are crucial to the security of many higher-level
cryptographic algorithms and protocols.

In the context of digital signature schemes, hash functions are used to ensure
that only the given message and the corresponding signature (along with the
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 129–145, 2020.
https://doi.org/10.1007/978-3-030-40186-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_7

130 N. Mouha and C. Celi

public key) passes the signature verification process. Digital signatures provide
authentication in a similar manner to signatures in the real world. For example,
a web browser can verify a package that is downloaded comes from a specific
website by verifying the signature that was provided with the download using the
known, trusted public key of the website. As a part of this verification process,
the browser hashes the downloaded data so that the fixed-length digest can stand
in place of the large variable-length data in the digital signature scheme.

A recent study by Mouha et al. [12] of the National Institute of Standards
and Technology (NIST) SHA-3 (Secure Hash Algorithm) competition found that
about half of the implementations submitted to the SHA-3 competition con-
tained bugs, including two out of the five finalists. It appears that cryptographic
algorithms can be difficult to implement, given that even the designers of the
algorithm can have trouble to develop a correct implementation. Furthermore,
even for a secure and well-designed cryptographic algorithm, bugs can be par-
ticularly severe with respect to the cryptographic properties of the algorithm’s
implementation.

For example, in the case of all submitted implementations of the BLAKE [4]
algorithm to the SHA-3 competition, given one message and its corresponding
hash function output, it is easy to construct another message that produces the
same hash value. This “second preimage attack” is not due to a weakness in
the BLAKE algorithm specification, but due to an implementation bug that
remained undiscovered for seven years.

In [12], Mouha et al. did not find any bugs in the submission packages of
Keccak [6], the hash function algorithm that won the SHA-3 competition and
that is now standardized in Federal Information Processing Standard (FIPS)
202 [17]. In this paper, we explore whether implementations of hash functions
that are standardized by NIST and currently used in commercial products may
also contain bugs. Furthermore, we investigate how these bugs can impact more
complex cryptographic operations such as digital signature schemes.

2 Testing Within NIST’s CAVP

NIST maintains the Cryptographic Algorithm Validation Program (CAVP),
which provides validation testing for the NIST-recommended cryptographic algo-
rithms. The CAVP is a prerequisite for validating cryptographic implementations
according to FIPS 140-2 under the Cryptographic Module Validation Program
(CMVP). Since the Federal Information Security Management Act (FISMA)
of 2002, U.S. Federal Agencies no longer have a statutory provision to waive
FIPS 140-2. This means that commercial vendors must validate their crypto-
graphic implementations, also known as modules, according to CAVP/CMVP
before they can be deployed by U.S. Federal Agencies.

The CAVP testing methodology is derived directly from the algorithm spec-
ification, independent of the actual code that a vendor’s implementation uses.
Therefore, it is realistic to expect three main limitations of the CAVP:

Extending NIST’s CAVP Testing 131

1. The CAVP does not require that the internals of an implementation are known
in order to generate tests, and is therefore restricted to black-box testing.
For many widely-used cryptographic libraries, however, the software is either
open source or available on the vendor’s website, which may be used to reveal
additional bugs through static analysis (including checking software coding
standards), or white-box testing.

2. The CAVP tests only the capabilities of the implementation that are declared
by the vendor. For example, a hash function implementation may declare that
it can only process messages up to 65 535 bits, corresponding to the largest
test vectors currently in the CAVP, even though it may encounter much larger
inputs under typical use. When NIST introduces tests for larger inputs, it is
therefore the vendor’s responsibility to declare whether or not their imple-
mentation supports such inputs. However, it is in the vendor’s interest to
avoid bugs and therefore declare the capabilities of the implementations as
broadly as possible.

3. The CAVP focuses mostly on the correct processing of valid inputs (positive
testing), rather than the rejection of invalid inputs (negative testing). Because
of the nature of black-box testing, the CAVP provides test vector data to the
implementation. A developer of the module must program a test harness
to submit this data to the interfaces of the cryptographic library itself and
collect the output to send back to the CAVP. As the test harness is outside
the bounds of the CAVP, it is difficult to know from a validation perspective
whether invalid inputs are handled by the module, or by the test harness.
There are a few notable exceptions to this, such as the CAVP tests for digital
signature schemes that test whether the implementation can recognize valid
versus invalid signatures.1

Furthermore, the focus of most cryptographic algorithm testing is on cor-
rectness towards common cases within the specification. This may leave crypto-
graphic algorithms vulnerable to malicious inputs that manifest themselves very
rarely under random testing. Notable examples exploit bugs in modular arith-
metic [7], incorrect group order validation [21], or improper primality testing [1]
to result in full or partial key recovery attacks on OpenSSL and other imple-
mentations. These examples show the importance to consider not just random
but also “rare” and “unusual” inputs for cryptographic implementations, as they
may lead to catastrophic security failures.

In spite of these limitations, the CAVP can be highly effective at detecting
many types of bugs. This is because the CAVP test design is aware of the inter-
nals of “typical” implementations of cryptographic algorithms. The focus of the
CAVP is not just conformance testing but also regression testing, as the CAVP
test design is also aware of how changes to the implementations may lead to
certain bugs. To see this, we now explain how the CAVP tests are generated.

The two test types in the CAVP are the Algorithm Functional Test (AFT),
and the Monte Carlo Test (MCT). They were introduced in 1977 by the National
1 For the signature verification operation, the CAVP also includes some invalid

padding tests.

132 N. Mouha and C. Celi

Bureau of Standards (NBS), the former name of NIST, in the (now-withdrawn)
Special Publication (SP) 500-20 [13] to test the Data Encryption Standard
(DES). In this standard, static AFTs known as Known Answer Tests (KATs)
were provided in order to “fully exercise the non-linear substitution tables” (S-
boxes), whereas MCTs contained “pseudorandom data to verify that the device
has not been designed just to pass the [fixed] test set.” Additionally, the large
amount of data of the MCT was intended to detect whether it can “cause the
device to hang or otherwise malfunction,” for example due to a memory leak [8]
in present-day implementations. The spirit and design of these tests was carried
over to other algorithms such as the Advanced Encryption Standard (AES) in
FIPS 197 [14] and hash functions.

This paper focuses on testing for hash functions within the CAVP at NIST.
FIPS 180-4 [16] standardizes the hash functions SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256. As these hash functions
closely resemble each other, they are considered functionally equivalent for the
purpose of this document. Testing for SHA-3 was added after the publication
of FIPS 202 [16], and with the exception of the SHAKE extendable-output
functions (XOFs), mimics the testing done for the FIPS 180-4 hash functions.
As with the other CAVP tests, the Secure Hash Algorithm Validation System
(SHAVS) [5] specifies both AFTs and MCTs.

Testing by the CAVP was done for many years using the Cryptographic
Algorithm Validation System (CAVS) tool. An implementation under test (IUT)
is accompanied with a declaration to the CAVS tool of which digest sizes it
supports along with a couple of other properties such as whether or not it can
hash an empty message, whether or not it can hash incomplete bytes (i.e. a 7-bit
message), and the maximum message size. The maximum message size allowed
by the tool is 65 535 bits.

As of 2019, the CAVP is undergoing a transition to use the Automated Cryp-
tographic Validation Protocol (ACVP) to enable the generation and validation
of standardized algorithm test vectors. This involves a shift of generating and
validating tests at remote, approved laboratories, to performing these actions on
NIST-hosted servers. The concept of first-party testing is introduced to allow
vendors to test and validate their implementations without laboratories as inter-
mediaries. This combined with hosting a demo server (a sandbox environment
for algorithm testing), allows vendors to incorporate continuous testing of crypto
implementations in their development process. The ACVP thereby significantly
speeds up testing and validation.

The ACVP uses a JSON (JavaScript Object Notation) format to specify the
test cases. The client to the NIST ACVP servers would then correspond to the
test harness in the previous CAVS model, and is responsible for communicating
with the server and exercising the proper interfaces on the module. In the JSON
examples below, some of the original content has been trimmed for readability.
For more information on the protocol itself, as well as the complete examples,
we refer to the GitHub repository of the ACVP [11].

Extending NIST’s CAVP Testing 133

2.1 Algorithm Functional Test (AFT)

AFTs take a single message as input, and verify the correctness of the corre-
sponding output. A JSON file is sent from the server to the client, which usually
provides inputs to a cryptographic algorithm, and is very simple for an individual
test case:

{
"msg": "BCE7",
"len": 16

}

where "msg" corresponds to the message represented as hexadecimal, and "len"
corresponds to the length in bits of the message. The messages have fixed values
that have been drawn uniformly at random from the space of messages of a
certain bit length, ranging from the client’s specified minimum to their specified
maximum or 65 535, whichever comes first. The expected response to this test
case is another simple JSON object:

{
"md": "1FA29E9B23060562F9370453EF817E18C56AE844E5B85F2ED34B4B38"

}

where "md" corresponds to the message digest. The hash function in this example
is SHA-224.

AFTs can vary in length from byte-oriented messages (i.e., "len" is a multiple
of 8) or bit-oriented messages (with any bit lengths). This allows implementations
to specify their properties to the CAVP to receive appropriate test cases.

These tests are intended to provide assurance that an implementation can
handle messages of various sizes. However, the assurance that the AFTs currently
offer may be limited, as they may not test more than one message of any specific
bit length.

2.2 Monte Carlo Test (MCT)

MCTs, on the other hand, construct a chain of hash outputs by combining the
previous three hash outputs into a single message, and use it to produce the next
hash output. Each chain consists of 1000 iterations, and returns the hash output
that is obtained at the end. This whole process is repeated 100 times with the
original message replaced by the latest hash output.

The initial condition for an MCT is as follows:

{

"msg": "B4FCB616B3A4A7C9E6AF1D836CF1576709A67F16141217B827E52611",

"len": 224

}

134 N. Mouha and C. Celi

where "msg" becomes the seed in the pseudocode of the MCT, which is given in
Algorithm 1. The seed is not fixed, but is drawn uniformly at random for every
invocation of the test.

Algorithm 1. The Monte Carlo Test (MCT) for hash functions
Require: seed (random string of same length as hash output)

for i = 1 to 100 do
MD[0] = MD[1] = MD[2] = seed;
for j = 3 to 1002 do

Msg[j] = MD[j − 3] ‖ MD[j − 2] ‖ MD[j − 1];
MD[j] = Hash(Msg[j]);

end for
seed = MD[1002];
Output seed;

end for

The response is an array of 100 hash outputs as follows:

{
"resultsArray": [
{
"md": "7B893BC7322AA6578A2EC565593B86776FB8376AC16B0A354E6DA016"

},
{
"md": "4BCB655F36D976ADAAE620B485DA7FD8ED321E0BF060E0FE2B5F9AFE"

},
{
"md": "57AA388954B3D52645BFAC69E87F48B3D57A86CF385F38A2549FE957"

}
]
}

shortened to only three outputs for brevity, and again using the SHA-224 hash
function in the example. The CAVP makes an implicit assumption here that the
client’s implementation can handle a message that is three times the size of the
hash output.

These tests are intended to provide assurance that an implementation is
correct for valid inputs over thousands of iterations. However, the assurance
that the MCTs currently offer may be limited, as the bit lengths of the messages
do not vary between test cases. Furthermore, as this bit length is three times
the digest size, the MCTs only cover a negligibly small percentage of the total
input space of the given bit length.

Extending NIST’s CAVP Testing 135

Hash();

Update();

Update();

Init();

Update();

Final();

Fig. 1. Hash functions are commonly implemented using a Hash interface that takes a
variable-length message, and returns a fixed-length output. It is common to also have
an Init-Update-Final interface, which can be convenient to process large messages
on the fly.

3 Common Hashing Interfaces

Although not mentioned in the NIST hash function standards [16,17], many
cryptographic implementations have at least two distinct functional interfaces for
hash operations, as shown in Fig. 1. One of the two interfaces, or both interfaces,
may be available to a consumer of the module or to higher-level algorithms within
the module. The first is an Init-Update-Final interface. This structure allows
implementations to constantly stream smaller chunks of data into Update()
repeatedly, rather than keep the message as a single large chunk. Perhaps the
entire message is not available at once, or perhaps there is a limit to the capacity
of a single Update() call.

The other interface is a more intuitive Hash() call that expects the whole
message up front. This is different from the previous interface and the same
module could potentially behave differently under these two interfaces [12].

In practice, the Init-Update-Final interface can be convenient to hash the
concatenation of various elements. For example, the American National Stan-
dards Institute (ANSI) X9.63 Key Derivation Function (KDF) [2] computes the
hash of a secret value Z, a counter, and an optional SharedInfo string that
is shared between two entities. This hash can be computed using one Init()
call, followed by an Update() call to process Z, another Update() call for the
counter, and then an optional third Update() call for SharedInfo. The Final()
call can then be used to compute the hash function output.

To hash the contents of a file, there are two approaches that are commonly
encountered in practice. One approach is to loop through the contents of the file
(e.g., using fread() in C), and process each chunk using a call to Update().
Another common approach is to map the file to the virtual address space (e.g.,
using mmap() in C), and then compute the hash by calling Hash(). This second

136 N. Mouha and C. Celi

approach must be used when the interface requires the data to be located in
memory. For example, the interface of the Ed25519 signature scheme in Apple’s
CoreCrypto requires a pointer for the data to be hashed, therefore if an appli-
cation wants to compute (or verify) a digital signature on a file (e.g., containing
a large software update), it must first use mmap() to map this file into memory.

4 Vulnerability in Apple’s CoreCrypto Library

We show how adding test cases beyond the current coverage of the CAVP can
reveal previously undiscovered bugs in cryptographic implementations.

First, we look the SHAVS document [5], which states that:

“While the specification for SHA specifies that messages up to at least
2 64 − 1 bits are possible, these tests only test messages up to a limited size
of approximately 100,000 bits. This is adequate for detecting algorithmic
and implementation errors.”

In contrast, the SHA-3 Competition Test Suite [15] also contains an
“Extremely Long Message Test,” which contains a message of 233 bits (1 GiB),
with the intention of checking whether messages of more than 232 bits were pro-
cessed correctly. This test from the SHA-3 competition is not adopted by the
CAVP however. We now explain how adding a similar test for large messages
reveals a bug in the widely-used Apple CoreCrypto library.

Apple makes the source code of its CoreCrypto library publicly available [3]
to allow for “verification of its security characteristics and correct functioning.”2

The CoreCrypto library provides low-level cryptographic primitives that are fun-
damental to the security of Apple’s products, and is currently deployed in iPhone,
iPad, and Mac devices worldwide. The library has also undergone rigorous test-
ing, and is currently present in 20 FIPS 140-2-validated modules.

In the latest CoreCrypto library, the bug is present in the
ccdigest update.c file, which is located in the ccdigest/src subdirectory.
This code is shared by all implemented hash functions except for MD2. The full
code of the function is given in Appendix A. All the implemented hash func-
tions are iterated hash functions, which means that an underlying compression
function processes the message in multiples of a block size that is specific to the
algorithm. Part of the code to process message in multiples of the block size is
as follows:

1 //low-end processors are slow on division

2 if (di->block_size == 1<<6){ //sha256

3 nblocks = len >> 6;

4 nbytes = len & 0xFFFFffC0;

5 } else if(di->block_size == 1<<7){ //sha512

2 We refer to the latest CoreCrypto that is available online at the time of writing
(November 25, 2019). It does not appear to have a version number, but can be
identified by the year 2018 in the copyright notice.

Extending NIST’s CAVP Testing 137

6 nblocks = len >> 7;

7 nbytes = len & 0xFFFFff80;

8 } else {

9 nblocks = len / di->block_size;

10 nbytes = nblocks * di->block_size;

11 }

In this code, the variables len, nblocks, and nbytes are declared as size t,
which corresponds to a 64-bit unsigned integer on a 64-bit architecture. The len
variable is the length of the message in bytes. In case len is less than 232, the
value of nblocks is the number of complete blocks to be hashed: len divided
by the block size (in bytes), whereas nbytes is the number of bytes of these
complete blocks.

However, for block sizes of 64 or 128 bytes (i.e., when di->block size is
1<<6 or 1<<7), the calculation of nbytes contains a bug: the four highest bytes
of size t are incorrectly set to zero by the bitwise AND (&) operation. Conse-
quently, when len is at least 232 (corresponding to messages of at least 4 GiB),
the value of nbytes does not contain the correct number of complete blocks.
Therefore, later in the code, the statement len -= nbytes does not decrement
len by the correct amount; instead len remains 232 or larger. Given that all these
statements are contained in a while-loop with condition len > 0, the program
enters into an infinite loop.

A list of affected hash function implementations is given in Table 1.

Table 1. Hash function implementations in Apple’s CoreCrypto library.

Algorithm Block size (in bytes) Vulnerable

MD2 16 ✗

MD4 64 ✓

MD5 64 ✓

RIPEMD-128 64 ✓

RIPEMD-160 64 ✓

RIPEMD-256 64 ✓

RIPEMD-320 64 ✓

SHA-1 64 ✓

SHA-224 64 ✓

SHA-256 64 ✓

SHA-384 128 ✓

SHA-512 128 ✓

When this code was written, perhaps the assumption was made that size t
corresponds to a 32-bit value, in which case the code would have been correct.
When size t is 64 bits, however, the integer constant used to perform the AND
operation is incorrect.

138 N. Mouha and C. Celi

One way to avoid this type of bug, could be to follow software cod-
ing standards, such as the Computer Emergency Response Team (CERT)
C Coding Standard. This standard states in INT17-C: “Define integer con-
stants in an implementation-independent manner” [19], and gives an exam-
ple that is very similar to the bug in Apple’s CoreCrypto library. Note that
it is possible to avoid masks altogether, by using nbytes = nblocks << 6 or
nbytes = nblocks << 7 for 64-byte and 128-byte blocks respectively.

4.1 Experimental Verification

We downloaded the latest CoreCrypto library from Apple’s website [3], and
compiled it using the Xcode IDE (Integrated Development Environment) on
macOS 10.14 (Mojave) on a mid 2015 MacBook Pro, as well as using Clang 8
under Ubuntu 14.04 on an Intel Skylake processor. For Linux, the README.md
file warns that the Linux Makefile is not up-to-date, therefore we needed to make
some minor changes to the Makefile to allow compilation.

Because the bug is due to incorrect C code, we expect that the bug will
manifest itself on any 64-bit platform for which the code is compiled. To confirm
that the executable is stuck in an infinite loop, we added some source code
instrumentation.

In our proof of concept code, we generated an input with a length of 232

bytes. Because the actual value of the input is not relevant for the bug, we
arbitrarily set all bits to zero in our experiments. When this input is provided to
MD4, MD5, RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, SHA-1,
SHA-224, SHA-256, SHA-384, or SHA-512, we verified that the implementation
enters into an infinite loop. We mentioned earlier that the MD2 implementation
does not share the code of ccdigest update.c, and we also confirmed that the
same input does not cause an infinite loop for MD2. This provides experimental
confirmation for the results of Table 1.

Then, we looked into higher-level cryptographic operations. We found that
the implementation of the ANSI X9.63 KDF is not vulnerable when provided
with a secret value Z of length 232 bytes. This is due to a range check in the
input length, which is documented by the following source code comment in
CoreCrypto: “ccdigest update only supports 32bit length.”

However, such a range check is not applied to every hash function calculation,
and most other cryptographic algorithms inside Apple’s CoreCrypto library that
use hash functions are vulnerable. We verified that HMAC enters into an infinite
loop for all the vulnerable algorithms in Table 1 when provided with a message
of 232 bytes.

For the Ed25519 signature scheme, we found that a message of at least 232 +
64 bytes is needed to trigger the bug. To explain this, note that the Ed22519
algorithm always prepends some data to the message before computing the hash
value using SHA-512. This is implemented in Apple’s CoreCrypto using the
Init-Update-Final interface. When there are 64 bytes already in the buffer,
the first 64 bytes of the message are used to complete a 128-byte block, which
we recall is the block size for the SHA-512 algorithm. After processing the first

Extending NIST’s CAVP Testing 139

64 bytes of the message, if there are at least 232 bytes or more left, then the
bug is triggered. For details, we refer to the full code of the ccdigest update()
function in Appendix A.

We verified that the Ed25519 implementation indeed enters into an infinite
loop when a message of 232 + 64 bytes is digitally signed or verified. Note that
in order to trigger the bug in the verification operation, it is not necessary to
provide a valid signature. Therefore, even if the private key is stored properly
and never used to sign long messages, the verification operation still enters into
an infinite loop for an incorrectly-signed message of 232 +64 bytes or more. Note
that digitally signed messages typically come from untrusted sources, because
the concern that a message can be modified by an adversary is typically the
reason to apply a digital signature in the first place.

Another cryptographic operation in Apple’s CoreCrypto that uses hash func-
tions, is the Secure Remote Password (SRP) protocol. This protocol is run
between a client and a server, which can create additional security concerns
when communication is done over a network and the adversary controls either
the client or the server, and may therefore send malicious inputs. In CoreCrypto’s
SRP implementation, the username is provided as a null-terminated string.

We verified that when this string contains 232 repetitions of the 'a' character
followed by a null character, then the SRP implementation of both the client
and the server enter into an infinite loop. Note that in contrast to the previous
examples, the length in this case is not provided by the adversary as a separate
parameter, but it is derived inside CoreCrypto using C’s strlen() function.
Therefore, range checking all input length values to CoreCrypto would not have
been effective to avoid this attack using a long null-terminated string.

In Sect. 2, we recalled that an input that would “cause the device to hang”
was already a concern when the MCT test was introduced for DES in 1977.
But an infinite loop is also a security vulnerability, categorized under Common
Weakness Enumeration (CWE) 835 [20], where it is also known as a “Loop with
Unreachable Exit Condition.” More specifically, an adversarially-crafted input
that causes an implementation to enter an infinite loop, can lead to a “denial of
service” (DoS) attack when it consumes excessive CPU resources.

5 Proposing the Large Data Test (LDT)

In the current CAVP tests, the length of the largest message is 65 535 bits. Such
small testing sizes are not realistic towards normal usage. We propose a new
Large Data Test (LDT) for the CAVP to provide a greater assurance for the
implementations that undergo validation.

The LDT would be a type of AFT, and could be specified similarly to the exam-
ple in Sect. 2.1. Implementations could specify the size of the largest message size
that they can handle, for example on the order of 2 GiB to 8 GiB. The ACVP server
can select one of many large supported arbitrary sizes to craft messages. However,
a test for such messages may be impractical to communicate natively within the
normal JSON structures. To work around this limitation, the LDT employs a sim-
ple function to generate the test input, as defined in Algorithm 2.

140 N. Mouha and C. Celi

Algorithm 2. The Large Data Test (LDT)
Require: Msg (a non-zero number of bytes), fullLength (in bits)

FullMsg = "";
for i = 0 to ceil(fullLength / bitlength(Msg)) do

FullMsg = FullMsg ‖ Msg;
end for
FullMsg = truncate(FullMsg, fullLength);
Output FullMsg;

Due to the truncation at the end, it is possible for the LDT to output mes-
sages of any number of bits, instead of only multiples of the size of the repeating
Msg pattern. The Msg pattern itself needs to be an integer number of bytes,
in order to greatly simplify implementations in C-like programming languages.
This is, however, not an actual restriction to the messages that can be output.
The reason is that any 7-bit repeating pattern (for example) can also be written
as a 56-bit (= 7-byte) repeating pattern, where 56 is the least common multiple
of 7 and 8 (the number of bits in one byte).

With a generator function defined to expand a short message of a few bytes,
into a large message of any arbitrary size, we can define the JSON structure for
the LDT as the following:

{
"largeMsg": {

"content": "D6F7",
"contentLength": 16,
"fullLength": 34359738368,
"expansionTechnique": "repeating"

}
}

We define an "expansionTechnique" to allow extensibility in the future
for other methods of producing a message of the proper size. In this example
"repeating" corresponds to the repeating nature of Algorithm 2.

After the test generates a message of a specific number of bits, this message
would then be hashed on the server to produce a single hash output similar to the
AFTs. Once the test is sent to the client, this could flush out implementations for
faults from long messages that produce incorrect outputs. As hashing is a core
operation to many other cryptographic operations, it is important to consider
scenarios where an adversary may maliciously generate large inputs.

Note that to unearth the bug in the Apple CoreCrypto library, it is neces-
sary to use either the Hash() interface on a message of 4 GiB or more, or the
Init-Update-Final interface where at least one of the Update() calls contains
4 GiB or more. In the latter case, it may be necessary to make the message a
few bytes longer, as explained in Sect. 4.1.

Given that the LDT is designed to work with large data, we need to take into
consideration that the implementation may run out of memory. When allocating

Extending NIST’s CAVP Testing 141

dynamic memory (e.g., using malloc() in C) or mapping files to the virtual
address space (e.g., using mmap() in C) are unsuccessful on the target platform,
it may be an option to consider increasing the memory available to the platform
or even simulating the environment for the purposes of testing.

6 Discussion

As hash functions are a core primitive within many other cryptographic algo-
rithms, it is critically important to ensure correctness under all valid inputs. Yet
the methods with which these algorithms are tested are still based on techniques
from 1977. While the original tests are still valid, an automated system allows
the CAVP to continually add test types and boost the assurances gained from
the program. With a publicly standardized JSON protocol, and open-source test
harnesses such as libacvp [9], the CAVP is in a good position to move forward
with improved testing techniques. We suggest the LDT as a way to directly
improve the assurances gained from the CAVP. Of course, one needs to design,
specify, publicly review the tests, etc. before they can be used in a program
such as CAVP. Openness and transparency are important for acceptance in this
highly sensitive domain.

To test the limits of common variable types such as 32-bit unsigned integers,
the LDT would need to be on the order of 232 bytes or 4 GiB. This would be
sufficient to detect the CoreCrypto bug, and potentially similar bugs in other
cryptographic implementations.

However, an inherent limitation of the CAVP and of software testing in gen-
eral, is that it is a selection process, where a very small subset is selected from
the total number of possible test cases. Therefore, testing is not a method to
prove the correctness over all types of inputs for an implementation. As stated
by Dijkstra, “Program testing can be used to show the presence of bugs, but
never to show their absence!” Indeed, the entire goal of software testing is to
determine how to perform this selection process, in order to try to quantify the
assurance that we get from testing.

Furthermore, the CAVP only tests the capabilities that are declared by the
vendor, and would therefore not detect the bug if it only declares support for
short messages. While this is reflected in the final validation certificate the vendor
receives, this shows the potential need for a wider amount of negative testing.
Negative tests are those that test not only well-defined inputs that may be
beyond the advertised capabilities, but also invalid inputs.

We note the potential hazards of exposing multiple entry points to a single
set of functionality. As mentioned, hash functions often provide at least two
interfaces: an Init-Update-Final interface and a Hash() interface. Often both
are exposed such as within CoreCrypto.

Lastly, it can be interesting to explore the parallels between different levels
at which vulnerabilities can be handled, as we now explain.

A security vulnerability report to the vendor can allow for a rapid response
to address a vulnerability. The FIPS 140-2 Implementation Guidance (IG) [18]

142 N. Mouha and C. Celi

encourages this process by providing the vendors with a “means to quickly fix,
test and revalidate a module that is subject to a security-relevant CVE.” A CVE
(Common Vulnerability and Exposure) is security-relevant if it affects how the
module meets the requirements of the FIPS 140-2 standard.

For FIPS 140-2 validated cryptographic modules, publishing a vulnerability
with a CVE can accelerate the time for end users to obtain crucial security
updates. Yet the very nature of the CVE system is an ad hoc procedure, and
there is no mechanism in place to ensure that a vendor has learned from such a
vulnerability. A vendor may implement test cases within their own development
process to detect similar issues in the future, but this holds a very limited scope.
The implementations of other vendors could be susceptible to similar issues, but
there may be no incentive to react.

If the CAVP implements tests based on CVEs (e.g., as done by Project Wyche-
proof [10]), then lessons learned from a CVE are not restricted to a single imple-
mentation. The requirement of FIPS validation would then also provide stronger
assurances to government and private entities that rely on the program. If a CVE
can be detected via existing test types, a static test could be seamlessly included
from the NIST server. By using an existing test type, no additional code is needed
from a test harness to understand how to process the test. In addition, with the
speed of testing under ACVP, it is mutually beneficial to constantly test while
developing cryptographic implementations.

7 Conclusion

Apple’s CoreCrypto library contains a bug due to the implementation-dependent
manner in which integer constants are specified. Due to this bug, the MD4, MD5,
and the RIPEMD and SHA family hash function implementations enter into an
infinite loop for messages of 4 GiB or larger. The bug affects all implemented hash
functions (except MD2), and higher-level operations such as HMAC, Ed25519,
and SRP. To detect the bug in NIST’s CAVP, we proposed a new Large Data
Test (LDT) to calculate the hash value for large messages. We also pointed out
that stricter coding standards might be helpful to avoid this type of bug.

Responsible Disclosure. The Apple Product Security team was notified of
the vulnerability described in this paper on May 30, 2019, and has since taken
steps to address the issue. In a conference call on July 17, 2019, Apple Product
Security clarified that they do not object to the publication of the research results
presented in this paper. On July 23, 2019, Apple Product Security informed us
that they are planning to assign a CVE to this issue. On October 29, 2019, Apple
publicly announced CVE-2019-8741 to address the vulnerability described in this
paper for macOS Catalina 10.15, tvOS 13, watchOS 6, iOS 13, iTunes 12.10.1
for Windows, and iCloud for Windows 7.14.

Extending NIST’s CAVP Testing 143

Acknowledgments. The authors would like to thank the anonymous reviewers and
their NIST colleagues for providing useful comments and suggestions. Special thanks
go to Patrick Kamongi, Andrew Regenscheid, Apostol Vassilev, and Jeffrey Marron for
their detailed feedback. Certain algorithms and commercial products are identified in
this paper to foster understanding. Such identification does not imply recommendation
or endorsement by NIST, nor does it imply that the algorithms or products identified
are necessarily the best available for the purpose.

A The ccdigest update() function of Apple’s CoreCrypto

Here, we provide the implementation of the ccdigest update() in Apple Core-
Crypto, which is made available to the public on Apple’s website [3]. For read-
ability, we made minor changes to the indentation, corrected the spelling of the
word “division” and expanded the CC MEMCPY macro to memcpy.
1 void ccdigest_update(const struct ccdigest_info *di, ccdigest_ctx_t ctx,

2 size_t len, const void *data) {

3 const char * data_ptr = data;

4 size_t nblocks, nbytes;

5

6 while (len > 0) {

7 if (ccdigest_num(di, ctx) == 0 && len > di->block_size) {

8 //low-end processors are slow on division

9 if (di->block_size == 1<<6){ //sha256

10 nblocks = len >> 6;

11 nbytes = len & 0xFFFFffC0;

12 } else if(di->block_size == 1<<7){ //sha512

13 nblocks = len >> 7;

14 nbytes = len & 0xFFFFff80;

15 } else {

16 nblocks = len / di->block_size;

17 nbytes = nblocks * di->block_size;

18 }

19

20 di->compress(ccdigest_state(di, ctx), nblocks, data_ptr);

21 len -= nbytes;

22 data_ptr += nbytes;

23 ccdigest_nbits(di, ctx) += nbytes * 8;

24 } else {

25 size_t n = di->block_size - ccdigest_num(di, ctx);

26 if (len < n)

27 n = len;

28 memcpy(ccdigest_data(di, ctx) + ccdigest_num(di, ctx), data_ptr, n);

29 /* typecast: less than block size, will always fit into an int */

30 ccdigest_num(di, ctx) += (unsigned int)n;

31 len -= n;

32 data_ptr += n;

33 if (ccdigest_num(di, ctx) == di->block_size) {

34 di->compress(ccdigest_state(di, ctx), 1, ccdigest_data(di, ctx));

35 ccdigest_nbits(di, ctx) += ccdigest_num(di, ctx) * 8;

36 ccdigest_num(di, ctx) = 0;

37 }

38 }

39 }

40 }

144 N. Mouha and C. Celi

References

1. Albrecht, M.R., Massimo, J., Paterson, K.G., Somorovsky, J.: Prime and prejudice:
primality testing under adversarial conditions. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October
2018, pp. 281–298. ACM (2018). https://doi.org/10.1145/3243734.3243787

2. American National Standards Institute: Public Key Cryptography for the Finan-
cial Services Industry - Key Agreement and Key Transport Using Elliptic Curve
Cryptography. ANSI X9.63 (2017). https://webstore.ansi.org/standards/ascx9/
ansix9632011r2017

3. Apple: Security - Apple Developer, September 2019. https://developer.apple.com/
security/

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition (Round 3) (2010). http://131002.
net/blake/blake.pdf

5. Bassham III, L.E., Hall, T.A.: The Secure Hash Algorithm Validation System
(SHAVS), May 2014. https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-
Algorithm-Validation-Program/documents/shs/SHAVS.pdf

6. Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: The Keccak SHA-3 sub-
mission. Submission to the NIST SHA-3 Competition (Round 3) (2011). http://
keccak.noekeon.org/Keccak-submission-3.pdf

7. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ECC-related software bug attack. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 171–186. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27954-6 11

8. Celi, C.: ACVP Secure Hash Algorithm (SHA) JSON Specification. IETF Internet-
Draft (2018). https://usnistgov.github.io/ACVP/artifacts/draft-celi-acvp-sha-00.
html

9. Cisco: The libacvp library, September 2019. https://github.com/cisco/libacvp
10. Google: Project Wycheproof tests crypto libraries against known attacks, Septem-

ber 2019. https://github.com/google/wycheproof
11. Industry Working Group on Automated Cryptographic Algorithm Validation:

ACVP, September 2019. https://usnistgov.github.io/ACVP/
12. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding bugs in crypto-

graphic hash function implementations. IEEE Trans. Reliab. 67(3), 870–884
(2018). https://doi.org/10.1109/TR.2018.2847247

13. National Bureau of Standards: Validating the Correctness of Hardware Implemen-
tations of the NBS Data Encryption Standard. NBS Special Publication 500–20,
November 1977. https://doi.org/10.6028/NBS.SP.500-20e1977

14. National Institute of Standards and Technology: Advanced Encryption Standard
(AES). NIST Federal Information Processing Standards Publication 197, Novem-
ber 2001. https://doi.org/10.6028/NIST.FIPS.197

15. National Institute of Standards and Technology: Description of Known Answer
Test (KAT) and Monte Carlo Test (MCT) for SHA-3 Candidate Algorithm
Submissions, February 2008. https://csrc.nist.gov/CSRC/media/Projects/Hash-
Functions/documents/SHA3-KATMCT1.pdf

16. National Institute of Standards and Technology: Secure Hash Standard (SHS).
NIST Federal Information Processing Standards Publication 180–4, August 2015.
https://doi.org/10.6028/NIST.FIPS.180-4

https://doi.org/10.1145/3243734.3243787
https://webstore.ansi.org/standards/ascx9/ansix9632011r2017
https://webstore.ansi.org/standards/ascx9/ansix9632011r2017
https://developer.apple.com/security/
https://developer.apple.com/security/
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/SHAVS.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/SHAVS.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-642-27954-6_11
https://doi.org/10.1007/978-3-642-27954-6_11
https://usnistgov.github.io/ACVP/artifacts/draft-celi-acvp-sha-00.html
https://usnistgov.github.io/ACVP/artifacts/draft-celi-acvp-sha-00.html
https://github.com/cisco/libacvp
https://github.com/google/wycheproof
https://usnistgov.github.io/ACVP/
https://doi.org/10.1109/TR.2018.2847247
https://doi.org/10.6028/NBS.SP.500-20e1977
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://doi.org/10.6028/NIST.FIPS.180-4

Extending NIST’s CAVP Testing 145

17. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. NIST Federal Information Pro-
cessing Standards Publication 202, August 2015. https://doi.org/10.6028/NIST.
FIPS.202

18. National Institute of Standards and Technology and Canadian Centre for Cyber
Security: Implementation Guidance for FIPS 140–2 and the Cryptographic Module
Validation Program, August 2019. https://csrc.nist.gov/CSRC/media/Projects/
cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf

19. SEI CERT C Coding Standard: INT17-C. Define integer constants in an
implementation-independent manner, September 2019. https://wiki.sei.cmu.edu/
confluence/display/c/INT17-C.+Define+integer+constants+in+an+
implementation-independent+manner

20. The MITRE Corporation: CWE-835: Loop with Unreachable Exit Condition (‘Infi-
nite Loop’) (2019). https://cwe.mitre.org/data/definitions/835.html

21. Valenta, L., et al.: Measuring small subgroup attacks against Diffie-Hellman. In:
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, 26 February - 1 March, 2017. The Internet Soci-
ety (2017). https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
measuring-small-subgroup-attacks-against-diffie-hellman/

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://cwe.mitre.org/data/definitions/835.html
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/measuring-small-subgroup-attacks-against-diffie-hellman/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/measuring-small-subgroup-attacks-against-diffie-hellman/

A Fast Characterization Method
for Semi-invasive Fault Injection Attacks

Lichao Wu1 , Gerard Ribera2 , Noemie Beringuier-Boher2 ,
and Stjepan Picek1(B)

1 Delft University of Technology, Delft, The Netherlands
picek.stjepan@gmail.com

2 Amsterdam, The Netherlands

Abstract. Semi-invasive fault injection attacks are powerful techniques
well-known by attackers and secure embedded system designers. When
performing such attacks, the selection of the fault injection parameters
is of utmost importance and usually based on the experience of the
attacker. Surprisingly, there exists no formal and general approach to
characterize the target behavior under attack. In this work, we present a
novel methodology to perform a fast characterization of the fault injec-
tion impact on a target, depending on the possible attack parameters.
We experimentally show our methodology to be a successful one when
targeting different algorithms such as DES and AES encryption and then
extend to the full characterization with the help of deep learning. Finally,
we show how the characterization results are transferable between dif-
ferent targets.

Keywords: Physical attacks · Fault injection · Fast space
characterization · Deep learning · Metrics

1 Introduction

A secure microcontroller or smartcard should be designed in such a way that
no (or, as little as possible) secret information is leaked to the attacker and
its integrity is protected. Still, there is an attack type that proved to be very
powerful in the last decades and where, despite all the efforts, the attacker can
obtain or modify the secret information. Such attacks are called implementation
attacks as they do not target the algorithm’s security but the weaknesses in
its implementation. Two well-known types of implementation attacks are side-
channel attacks (SCAs) and fault injection (FI) attacks. While those attacks are
powerful, they can be also difficult to deploy due to a large number of choices
one needs to make.

Semi-invasive attacks, a type of fault injection attacks, are widely used by
attackers as well as during security evaluations in the industry due to their

G. Ribera and N. Beringuier-Boher—Independent Researcher.

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 146–170, 2020.
https://doi.org/10.1007/978-3-030-40186-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_8&domain=pdf
http://orcid.org/0000-0002-7139-732X
http://orcid.org/0000-0001-8459-6283
http://orcid.org/0000-0002-1312-3929
http://orcid.org/0000-0001-7509-4337
https://doi.org/10.1007/978-3-030-40186-3_8

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 147

affordable and easy-to-repeat characteristics [1]. While semi-invasive attacks are
powerful, they are not without limitations. First, the tuning of the parameters
that play a role in the fault definition is a time-consuming and non-deterministic
process. Using optical fault injection as an example, the required parameters to
perform evaluation are numerous: laser pulse amplitude, laser pulse width, spot
size, delays (attack time interval), and scan locations. As a complete analysis
considering all possible parameter combinations is not practical, the decisions
involved in the process of the parameter selection are usually based on intuition
and personal criteria of an attacker. Additionally, due to the differences between
FI setups, the measurement results obtained from one setup cannot be easily
reproduced by another. An attacker is consequently bound to repeatedly search
for the optimal parameters in every attack scenario, for every sample, and setup.
Finally, the existence of countermeasures on both hardware and software levels
can further increase the difficulties in defining parameters such as delays and
scan locations.

To solve these problems, a characterization of the target of evaluation (TOE)
for the optimal parameter searching is necessary as the preliminary step of evalu-
ation. Surprisingly, there is no formal approach for doing this. Manual testing on
parameter combinations based on the attacker’s experience is a common method
to get an impression of the target behavior. Still, this approach is not able to
provide good coverage of the impact analysis for all the parameter combinations
when the investigation is time-constrained. For example, the combinations of
a shorter laser pulse width and stronger laser pulse amplitude could be more
effective in manipulating some short execution of the command such as integrity
check; in contrast with the opposite parameter combinations, long execution,
such as Flash writing, would be more easily interfered. Unfortunately, these opti-
mal parameters cannot be covered by manual tests. Exhaustive search, on the
other hand, can be a solution if a full characterization is needed but will require
more time as a trade-off. Finally, techniques coming from the artificial intelli-
gence domain could work well but face issues like the uncertainty of parameter
selection. In terms of the parameter optimization, researchers explored tech-
niques such as genetic [2,3] and memetic algorithms [4] to improve the opti-
mization approach. Although such approaches work well for voltage glitching
or electromagnetic fault injection (EMFI), they are less universal for other fault
injection approaches such as optical fault injection. More precisely, if the involved
fault injection parameters are too strong, there is a high chance that the target
will be damaged. Additionally, the obtained optimal parameters are limited to a
certain fault injection setup as well as the sample under attack. Either the change
of the setup or the sample will result in the change of the optimal parameters.

To speed-up the attack parameter identification while considering the cover-
age of the parameters, the development of strong and reproducible methodologies
is of significant interest. Such methodologies should ensure a proper selection of
the tested parameters and the effectiveness of an attack for various fault injec-
tion attack methods. Unfortunately, to the best of our knowledge, previous works
only focused on optimizing the parameter selection for FI attacks. The method-

148 L. Wu et al.

ology for the TOE characterization is still missing. Therefore, in this paper, we
propose a methodology for the fast characterization of fault injection settings.
The methodology is based on the construction of a sensitivity curve, which is
then used by the attacker for a proper selection of the fault injection parameters
and their assessment. To that end, we propose two metrics, one to be used in the
measurement phase and one in the evaluation phase. Next, we use deep learning
for the full estimation of the characterization space based on a limited number of
measurements. Finally, we show that the obtained characterization results can
be transferred to different samples with the same target. Throughout the paper,
we use optical fault injection to perform the attack because of its popularity and
difficulty in terms of characterization. Nevertheless, our characterization method
is compatible with other semi-invasive fault injection approaches.

In conclusion, the methodology we propose can boost the characterization
process while keeping track of useful information. This can eventually lead to
(1) a better estimation of the target behavior, (2) a proper selection of the fault
injection settings, (3) a good reference when attacking different devices, and (4)
an informative archive for future attacks.

1.1 Related Work

Fault injection is a well-researched topic already spanning a range of more than
20 years [5,6]. Specifically, an optical fault injection attack is one of the most
powerful attacks in this domain. Skorobogatov and Anderson introduced optical
fault injection and attacked secure microcontrollers and smartcards [1]. There,
the authors presented a countermeasure against such attacks (self-timed dual-rail
circuit design technique) but concluded that such attacks are the most success-
ful smartcard perturbation attacks as it is not easy to implement countermea-
sures. Although more advanced countermeasures have been developed in the
later stage, optical FI attacks are still practical. S. Skorobogatov introduced a
new optical fault attack type called fault masking attack [7]. Such attacks are
aimed at disrupting the normal memory operation through preventing changes of
the memory contents. Van Woudenberg et al. investigated optical fault injection
on secure microcontrollers and concluded that the presence of countermeasures
makes the attack more difficult but still possible [8,9]. Note, while being very
powerful, optical fault injection attacks are usually considered very complex due
to the high costs of equipment and the preparation of the sample. More recently,
Guillen et al. presented a low-cost fault injection setup capable of producing
localized faults in modern 8-bit and 32-bit microcontrollers [10]. The authors
showed how even such a low-cost setup can be used to successfully attack the
Speck cipher.

When considering implementation attacks and artificial intelligence tech-
niques, most of the work concentrated on side-channel analysis. There, machine
learning and more recently deep learning techniques are playing an impor-
tant role in profiling attacks that can outperform template attacks but also
break implementations protected with countermeasures [11–13]. When consid-
ering fault injection, several works are investigating how to find fault injection

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 149

parameters with evolutionary algorithms, but to the best of our knowledge, none
of these works consider machine learning nor optical fault injection. Carpi et al.
considered the usage of evolutionary algorithms to find the fault injection param-
eters for supply voltage (VCC) glitching [2]. There, besides the evolutionary algo-
rithms approach, the authors used three more search techniques. Next, Picek et
al. extended this work by using a combination of an evolutionary algorithm and
a local search to characterize the search space for voltage glitching as efficient
as possible [4]. Maldini et al. used a genetic algorithm for finding fault injection
parameters when considering electromagnetic fault injection (EMFI) [14]. There,
the authors attacked the SHA-3 algorithm and reported 40 times more faulty
measurements and 20 times more distinct fault measurements than by using a
random search.

1.2 Our Contributions

In this paper, we consider semi-invasive fault injection attacks and fast character-
ization of the target behavior, which to the best of our knowledge, has not been
explored before. More precisely, we introduce a methodology for semi-invasive
fault injection that consists of:

1. New technique for searching for fault injection parameters consisting of a fast
generation of a sensitivity curve and its evaluation, which is compatible with
different FI techniques, attack scenarios, and TOEs.

2. Two metrics that enable us to properly guide the characterization and also
assess it.

3. A novel approach based on deep learning classification that enables us to
characterize the search space based on the limited number of actual measure-
ments.

Besides these, from an attacker perspective, the use of the fast characteri-
zation method will significantly reduce the time needed to identify the optimal
attack parameters. Additionally, because the characterization method increases
the attack parameters coverage, the quality of the results will be improved and
the chance of missing the optimal parameters will be reduced. To prove the
efficiency of the proposed method, we provide detailed experimental results tar-
geting the AES and DES ciphers implemented on a secured microcontroller.
Finally, we then show that the characterization results are transferable towards
different targets of the same type.

This paper is organized as follows. In Sect. 2, we discuss fault injection
attacks, supervised machine learning, and neural networks. Next, in Sect. 3, we
start by introducing our notation. Afterward, we present two new metrics we
designed to help us better assess the performance of the attack and how to
generate/evaluate the sensitivity curve. In Sect. 5, we discuss our experimen-
tal setup and results obtained after attacking samples with the AES and DES
ciphers. Finally, in Sect. 6, we conclude the paper and present possible future
research directions.

150 L. Wu et al.

2 Preliminaries

In this section, we first describe the fault injection attacks, where we divide
them into three types of attacks and discuss their major differences. We empha-
size semi-invasive attacks due to their high-efficiency and low-cost properties.
Subsequently, we briefly introduce the supervised learning paradigm, the gen-
eral architecture of a neural network, and then broaden such a structure to the
deep neural network. Finally, we discuss multilayer perceptron as the algorithm
of choice in our experiments.

2.1 Fault Injection Attacks

Fault injection attacks aim at retrieving information or injecting faults to the tar-
get. Currently, many powerful techniques have been developed, all of which can
be divided into three main categories - non-invasive, semi-invasive, and invasive
attacks [15]. The main difference between the non-invasive and invasive attacks
is in the approach of attacking the TOEs. To perform an invasive attack, it is
required to remove at least part of the passivation layer to establish the contact
between the probes and silicon [16]. Non-invasive attacks, on the other hand,
mainly focus on investigating the settings that can be controlled externally [17],
or passively measuring the running time, the cache behavior, the power consump-
tion, and/or the electromagnetic radiation of the device through the package [18].

Semi-invasive attacks, standing in the middle of the two types of attacks
discussed above, have their specific properties. Similar to the invasive attacks,
they require direct access to the chip surface by removing the package, but the
passivation layer is kept. A semi-invasive attack can be performed in a reasonably
short time with much less expensive equipment than the invasive attacks. Finally,
the skills and knowledge required to perform them also can be easily and quickly
acquired [19]. From the approach perspective, semi-invasive attacks could be
performed using a variety of tools such as IR light [20], X-rays [1] and other
sources of ionizing radiation, electromagnetic fields [21], and body biasing [22].

2.2 Supervised Machine Learning

In the supervised learning paradigm, the goal is to learn a mapping f , such that
f : X → Y, given a training set of N pairs (xi, yi). Here, for each example x,
there is a corresponding label y, where y ∈ Y. This phase is commonly known
as the training phase. The function f is an element of the space of all possible
functions F . Once the function f is obtained, the testing phase starts with the
goal to predict the labels for new, previously unseen examples. In the case that
Y takes values from a finite set (discrete labels), we conduct classification, while
if the labels are continuous, we conduct regression.

2.3 Neural Networks and Deep Learning

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is based on the biological process occurring

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 151

in the brain [23]. In general, a neural network consists of three blocks: an input
layer, one or more hidden layers, and an output layer, whose processing ability
is represented by the strength (weight) of the inter-unit connections, learning
from a set of training patterns from the input layer.

To improve computation ability, a standard approach is to add hidden lay-
ers to build a deep neural network. An example of the deep neural network is
shown in Fig. 1. With the help of multiple layers, a deep neural network can map
complicated low-level details to high-level features progressively. Thus, deep neu-
ral networks can make a proper estimation of the output, where this adaption
process is referred to as deep learning.

In this paper, we applied a commonly-used deep learning structure, multilayer
perceptron (MLP) in our methodology. MLP is a feed-forward neural network
mapping sets of inputs onto sets of appropriate outputs. It consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the next
one. Each node in one layer connects with a certain weight w to every node in
the following layer. The MLP architecture consists of at least three layers: one
input layer, one output layer, and one hidden layer. Those layers must consist
of non-linearly activating nodes [24].

Fig. 1. An example of deep neural network with 2 hidden layers and 8 neurons per
hidden layer (created with NN-SVG [25]). Note that it is enough to have more than
one hidden layer to consider a certain architecture as deep learning.

3 Fast Characterization Methodology

A reliable characterization methodology can be used to obtain a quick impres-
sion of the influence caused to the target for a different combination of attack
parameters. An attacker will use the outcome to better choose the settings to

152 L. Wu et al.

perform the attack in a later stage. However, there are several obstacles to build
such a characterization methodology:

1. How to quantify the effect of the FI settings?
2. How to obtain a characterization of the impact that can be generated in a

short amount of time?
3. How to map the behavior of the target to the characterization?
4. How to make sure that the characterization result is transferable between

different targets?

The solutions to these problems are summarized with a work-flow presented
in Fig. 2. In general, one can observe that the attacker can divide his actions
into two separate phases: (1) fast characterization of the target and (2) fault
injection procedure. Our methodology concentrates on the fast characterization
part as the fault injection procedure stems from it. To characterize the target
in a fast and correct way, we first generate the sensitivity curve (described in
Sect. 4). Next, we evaluate the measurements to further investigate the target
behavior with different FI settings.

Fig. 2. An attack work-flow with proposed fast characterization methodology.

It should be noted that the attack location and time delay to inject the
fault should be defined in advance, as they are initial conditions for the sen-
sitivity curve generation. The attack location, for instance, can be inferred by
reverse engineering techniques (i.e., IR-imaging) and a good understanding of
the targeted fault model, while the Simple Power Analysis (SPA) can be used
to define the attack time window. However, such analyses are out of the scope
of this paper. Additionally, there are many other relevant parameters, such as
the thickness of the silicon, that can influence the sensitivity of the target. How-
ever, it is a less interesting parameter in practice as it is difficult to control it
precisely. In contrast, from an attacker perspective, the simplest and the most
effective parameters to work with are the parameters that can directly influence
the strength of the injected fault, such as laser pulse width and laser pulse ampli-
tude for optical fault injection. In this paper, we focus on characterizing these
two parameters.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 153

In this section, we start by introducing the notation used in this paper when
discussing the behavior of targets. Next, we present two different metrics that
enable us to better evaluate the performance of a fault injection process. One
of the metrics (Level of Influence) measures the fault injection process and we
use it in the proposed search algorithm while the other one (Impact Score) is
used to evaluate the results of the fault injection. Note that throughout the
paper, we use interchangeably the notions target, the target of evaluation, and
its abbreviation TOE.

3.1 Notations

Fault injection attacks impact the behavior of the target, which can be noticed
when its response to a target command deviates from the expected one. Those
faulty responses can be used to categorize them into verdict classes that corre-
spond to the effectiveness of the measurement (i.e., attack attempt). The possi-
ble classes for each measurement are listed in the ascending order based on their
relevance for the attacker.

1. NORMAL: TOE behaves as expected.
2. RESET: The attack is detected and TOE resets.
3. MUTE: TOE stops communication. This type of response can be caused

either by hard failures caused by the attack (i.e., the chip doesn’t work any-
more) or can be the response when the attack is detected.

4. CHANGING: TOE fails to detect the injected faults and returns unexpected
values.

5. SUCCESS: TOE fails to detect the injected faults and returns abnormal but
exploitable values.

Note that an exploitable fault is a fault that can be used to obtain more
critical information (e.g., retrieve encryption key with Differential Fault Analysis
(DFA) [26]) or perform additional malicious activities (e.g., install unauthorized
software). In this paper we attack two popular encryption algorithms: AES and
DES, an exploitable fault is the faulty cipher output: with these outputs, the
encryption key can be retrieved with DFA. A non-exploitable fault, on the other
hand, can be any other outputs, such as status word or unrelated data stored in
other addresses. It also worth to mention that when attacking a device with fault
injection, different types of unexpected results can be outputted and are difficult
to classify. The situation becomes even worse when targeting different types of
devices as the implementations are also different. To simplify the characterization
and to abstract from the underlying fault model, we classify the faults on the
algorithmic level instead of on the hardware level.

In this paper, the optical FI technique is used for the experiments. The main
attack parameters - the laser voltage (energy) and laser pulse width are denoted
with upper-case letters X and Y, while their realizations are given in the lower-
case letters x and y. More precisely, the search boundaries for these two FI
settings are Xmin/Xmax and Ymin/Ymax. The search steps are represented by
Xstep and Ystep.

154 L. Wu et al.

3.2 Metrics Definition

Level of Influence. The Level of Influence (LOI) represents the percentage
of responses that are different from the expected (NORMAL response) in the
total number of attempts, which can be used to quantify the impact of the
attack parameter set. For instance, by decreasing the laser pulse amplitude or
the duration, the fault injection is less effective and the target tends to behave
normally, thus having a low influence. In contrast, by increasing these settings,
there is a higher possibility that the target is influenced by the attack, which
will eventually increase its influence on the target behavior. The LOI metric can
be calculated as follows:

LOI = 1 − Quantitynormal
∑class

Quantityclass
. (1)

Here, Quantitynormal represents the number of NORMAL responses while
Quantityclass represents the number of the specific class occurrences during the
whole measurement process.

Impact Score. The outputs of the TOE under fault injection are divided into
several classes (see Sect. 3.1). To further clarify the effect of each FI settings and
to optimize the parameter selection in the later attack phase, we assign weights
to each class based on its significance and eventually come up with a score based
on every measurement result. As this score directly reflects the effects of the FI
with respect to the target behavior, we denote this metric Impact Score (IS).

The Impact Score metric aims to show the relevance of the measurements
that are acquired during the generation of the sensitivity curve (see Sect. 4).
By assigning different weights to the different classes obtained, an attacker can
identify if some of the parts of the curve are more relevant and could potentially
lead to a successful manipulation.

In practice, class SUCCESS has the highest priority of all the classes and is
assigned the largest weight. Differing, the class NORMAL (indicating the target
behaves normally) is linked to a small weight. The IS metric can be calculated as:

IS =
∑class

Quantityclass · Weightclass
∑class

Quantityclass
, (2)

where Weightclass represents the assigned weight for a corresponding class. In
the experiments presented in this paper, the classes SUCCESS, CHANGING,
MUTE, RESET, and NORMAL have weights 20, 10, 2, 0.5, and 0, respectively.
The weights are adjusted based on the experience of the attacker and the ratio-
nale behind is defined after an assessment of the hypothetical fault model that
leads to such responses.

4 Sensitivity Curve

In this section, we start by introducing the concept of the sensitivity curve.
Afterward, we discuss how to generate such a curve by first finding the “golden”

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 155

point and then applying the sensitivity curve search algorithm. Finally, we dis-
cuss how to evaluate the sensitivity curve through Impact Score or deep learning
classification process.

4.1 Setting

To obtain a characterization algorithm that has a good parameter coverage,
is less time-consuming, and is universal for different scenarios, several meth-
ods from simple (e.g., exhaustive search with large scan step, binary search) to
complicated (e.g., genetic algorithm, deep learning) have been tested. The com-
parison of different architectures is not shown due to the lack of space and redun-
dancy in obtained results. We observed that simple algorithms are predictable
which is ideal for the TOE characterization but normally less time-efficient. In
contrast, complicated approaches tend to rely on the number and quality of the
obtained data. However, these algorithms work unstable as the number of data
sets we obtained is extremely limited. In the worst case, a non-converged model
can lead to the target being damaged by the undesired parameter selection.

Therefore, the ideal algorithm for the characterization should stand in the
middle of these two extremes. In other words, it should be deterministic, but
not highly data-dependent. Fortunately, the sensitivity curve, which consists of
a set of FI settings that cause a similar impact on the TOE, perfectly fulfills our
requirements.

Fig. 3. An example of the sensitivity curves with different LOIs. From here, the normal
and abnormal behaviour of the target can be estimated.

Three sensitivity curve with different LOI is given in Fig. 3; each point on
the curve has a similar impact on the TOE behavior. There, with sensitivity
curves, one can estimate that the injected fault (X and Y axes represent the
FI settings) can be ignored at the left side of the curve with 5% LOI; while the
target will behave almost always abnormally at the right side of the curve with

156 L. Wu et al.

90% LOI. Moreover, the figure presents multiple possible selections of the fault
injection settings that can lead to the same LOI. For instance, to achieve 50% of
the LOI, besides choosing the parameters in the middle of the curve, an attacker
can achieve a similar result by selecting smaller x and larger y or vice versa. It
is possible that the sensitivity curve is not decreasing monotonically as shown in
Fig. 3. Nevertheless, the sensitivity curves act as contour lines in the parametric
coordinate system, which can be used to estimate the quantity of impact with
different FI settings. Furthermore, the presence of the sensitivity curves provides
the attacker with a multiple choice in setting selection: although the LOI is the
same, appropriate selection of the FI settings based on the attack scenarios may
lead to a more powerful attack. Therefore, we use the sensitivity curve for TOE
characterization.

To conclude, if compared with other approaches, the advantages of the sen-
sitivity curve-based characterization are the followings:

1. The sensitivity curve defines the natural boundary between the “weak” and
“strong” FI settings, which present a rough overview of the target behavior.

2. The input of the sensitivity curve delimits the number of the parameter com-
binations to be examined, thus it is more time-efficient.

3. Since the LOI of a sensitivity curve is defined by an attacker, it resolves the
problem of an FI setting selection through a genetic algorithm or random
search.

4. The proposed methodology can be applied to other semi-invasive FI methods
that follow the assumption that the strength of the setting is positively cor-
related to the level of impact on the target, such as EMFI and Body Biasing
Injection (BBI).

4.2 Sensitivity Curve Generation

In general, the searching of the sensitivity curve relies on iterative performing
of measurements and calculating the statistics to decide the next setting to be
tested until the end condition is fulfilled. The statistics (LOI) that are calculated
are based on the types of output recorded in each setting combinations. To make
a clear description, the search algorithm is split into two phases: first, determine
the “golden point” and then search for the entire curve.

Finding the “Golden Point”. The golden point (Xgolden, Ygolden) represents
the first obtained FI setting that targets the LOI (Ctarget) defined by an attacker
and acts as the reference for the curve searching in the later step. To find such
a point, we use the diagonal search algorithm. The diagonal search algorithm
is performed by increasing the values of the FI parameters simultaneously with
a fixed step as shown in Fig. 4. Note how the search progresses in a number
of steps (in our example, 6) before reaching a point on the sensitivity curve.
The diagonal search algorithm ensures to start testing with weak laser settings
and then gradually going stronger. Indeed, some approaches may lead to faster
converge. However, during the experiments, we noticed that the chip sensitivity

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 157

towards the laser can vary dramatically between targets (i.e., different types of
microcontrollers). In other words, a laser setting that does not have any influence
on one product may destroy another product immediately. Consequently, the
diagonal search algorithm is selected to ensure the tested product being alive
throughout the characterization process as well as to broaden the usage of our
methodology towards different products.

It is worth to note that the diagonal search cannot always guarantee to find
the FI settings with exact Ctarget value. In many cases, the LOI can exceed the
target when performing the search. Therefore, we introduce the Ctolerance to
broaden the range search of the golden point: if the LOI of the tested FI setting
is within the range of Ctarget ±Ctolerance, the applied FI setting can be counted
as the golden point. In cases when the current LOI exceeds the maximum range
(Ctarget+Ctolerance) but no golden point is observed, a binary search is performed
to trace back to lower settings and search for the golden point within the range
of tolerance.

Fig. 4. A depiction of the diagonal search. The golden point represents the first
obtained FI setting with the target LOI.

Curve Searching. Once the golden point is obtained from the diagonal search,
the search for the sensitivity curve can be executed. As discussed in Sect. 4.2,
the golden point is obtained in a diagonal route, but there are still areas on its
left and right-hand side to be characterized. Therefore, to localize the sensitivity
curve in the whole parameter plane, the curve search is performed in both direc-
tions individually, while they start with the golden point. As the search strategies
for both directions are the same, the search algorithm to the left (Xmin) direc-
tion is given in Algorithm 1. Curve search on the right-hand side can be realized
by adjusting the while condition as well as the x increment step.

The function DoTest(x, y) performs a measurement with a combination of
the FI setting x and y. BinarySearch(a, b) represents the binary search in the
range from a to b. The main idea of Algorithm 1 is to first iteratively obtain

158 L. Wu et al.

Algorithm 1. Sensitivity curve search.
1: function searching left(Xgolden, Ygolden, Ctarget, Ctolerance)
2: data ← []
3: x ← Xgolden

4: y ← Ygolden � Initialize (x, y)
5: while x − Xstep > Xmin do � Search from the left plane
6: x ← Xprev − Xstep

7: LOI ← DoTest(x, y) � Test with setting (x, y)
8: if LOI < Ctarget + Ctolerance then
9: y ←BinarySearch(y, Ymax) � Search with stronger settings

10: else if LOI > Ctarget − Ctolerance then
11: y ←BinarySearch(y, Ymin) � Search with weaker settings

12: data ← data + [x, y, LOI]

13: return data � Return all of the tested data

the measurements and second, calculate the statistics to decide the next pairs
of settings. Specifically, by varying x while keeping the y obtained by the previ-
ous steps, the algorithm can keep track of the changing tendency of the target
sensitivity curve. Moreover, the usage of the parameters from the previous test
delimits the range for the binary search, thus accelerating the whole characteri-
zation procedure.

Instead of using a fixed value, Xstep should be adjustable for different condi-
tions. For instance, increasing Xstep to accelerate the characterization when the
slope of the sensitivity curve is close to zero while reducing its value to evaluate
more FI settings when the slope is getting higher. To realize this functionality,
a new variable Ydiff , which stands for the value difference between the current
y and the previous y (Yprev), is added to the algorithm. The pseudocode of the
step adjustment function is shown in Algorithm 2.

4.3 Sensitivity Curve Evaluation

The sensitivity curve provides the attacker with a quick impression of the target
behavior (through the LOI metric) with different FI settings. To further benefit
from the performed measurements, the attacker can use techniques to visualize
the data differently with the Impact Score metric and to obtain an overview
of the different setting relevance in FI. Additionally, he can even estimate the
non-measured parameter combinations with a deep learning algorithm.

Algorithm 2. Step adjustment
1: function adjust xstep(Xstep, Ystep, Yprev, y)
2: Ydiff ← absolute(Yprev − y)
3: if Ydiff <= Ystep then
4: return Xstep * 2
5: else
6: return Xstep / 2

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 159

Impact Score Evaluation. As described in Sect. 4.2, the generation of the sen-
sitivity curve is based on searching the FI settings with a similar LOI. Although
the target behavior can be estimated based on the curve, it is difficult to define
the optimal parameters which can lead to more significant responses. Indeed,
LOI only distinguishes between NORMAL and non-NORMAL responses. To
fully evaluate the performance of one setting, the non-NORMAL response should
be additionally classified based on its significance.

Taking advantage of its wide setting selection, the sensitivity curve is a good
candidate for evaluating the effectiveness of the FI. Therefore, the curve is regen-
erated with the IS metric to obtain the optimal setting for fault injection. Specif-
ically, by calculating IS for each parameter combination, the relevance of the
measurement can be quantified: a larger Impact Score represents the existence
of higher-priority responses, indicating that the corresponding setting is more
preferable for the later attacks.

Impact Estimation with MLP. In practice, the assessment of attacking the
non-measured area is a part of the evaluation and comes from the attacker’s
decision. Various advanced techniques can be used to help the attacker to esti-
mate the impact in the non-measured areas. Here, function regression, realized
by MLP with gradient descent, is used to build the relationship between its input
(FI parameters) and output (LOI). A converged model can provide a proper esti-
mation of the impact that can be caused in the target with different parameters.

However, the prediction accuracy highly relies on the training data. Indeed,
the sensitivity curve provides several unique data sets, but the prediction of
the untested locations is still challenging, as the number of the training sets
is extremely limited while we aim at predicting huge amounts of parameter
combinations in a wide range. We have evaluated several algorithms to find an
optimal one that can provide sufficient prediction accuracy. Eventually, it turned
out that the multilayer perceptron is the best candidate. Compared with other
machine learning structures and statistic methods, MLP dramatically reduced
the prediction error especially in the excessive area from weak to the strong
parameter (the region an attacker cares about most) with the help of the deeper
layers. Although higher precision of the prediction can be obtained by using
more data (e.g., by generating another sensitivity curve with different LOI),
MLP is the best solution to provide an overall estimation of the target behavior
without additional tests (costs). Moreover, in our case, MLP is less sensitive to
the distribution/number variation of the training sets and can always extract
features from a limited amount of data and thus can improve the robustness of
our methodology.

The cross-entropy is implemented as the loss function to classify the discrete
data from the sensitivity curve. By minimizing the loss function during iterations,
the MLP can estimate the LOI with different FI settings, whose accuracy is
further evaluated by calculating the offset between the predicted and measured
data. Note that we consider the prediction result as reasonable if the prediction
error is small when compared with the test data and the plots fit the shape of the

160 L. Wu et al.

sensitivity curve. Although the sample’s behavior under attack can vary from
the prediction due to the prediction error and many other reasons, the presented
prediction methodology can provide an attacker with a proper estimation of the
overall sample behavior, which leads to a better selection of the parameters.

5 Results

In this section, we start by introducing our experimental setup. Then, we present
the results obtained for DES and AES settings using the presented fast char-
acterization methodology. Finally, we validate the transferability of the charac-
terization result by repeating the characterization for a different sample of the
same TOE.

5.1 Experimental Setup

In all our experiments, we use a TOE based on a high-performance 32-bit micro-
controller realized in Complementary Metal Oxide Semiconductor (CMOS) tech-
nology with 4 MHz clock frequency. Due to confidentiality reasons, we are not
able to disclose the details of the targets. Still, we are confident to note that the
proposed method is compatible with various types of devices, as it was proved
to be efficient with multiple devices that are not listed in the paper due to the
page limit.

No FI specific countermeasures are implemented at the hardware level. For
the experimental purpose, we present two different attack scenarios on software
implementation of cryptographic algorithms, one targeting the beginning of the
last round of Data Encryption Standard (DES) cipher and another one target-
ing the beginning of the last round of Advanced Encryption Standard (AES)
cipher. Note that we used Single Power Analysis (SPA) to identify the encryp-
tion rounds. In both cases, we present a fast characterization that could be used
by an attacker to perform the attack in a later stage to obtain faulty ciphers
that can be used to run a DFA attack [27].

Experiments shown in this paper are performed on the Flash decoders as we
assumed they are the most vulnerable part for light manipulation. The attack
locations are uniformly distributed on the entire scan area. The FI setup used
to perform the measurements is an optical fault injection setup using an IR light
(1 024 nm) long-pulse laser which is one of the most powerful solutions for an opti-
cal fault injection attack. Since this light source is less effective when attacking the
front-side of the sample as it cannot penetrate through the metal layers, we con-
centrated on attacking the backside (silicon side). To fully demonstrate as well
to characterize the chip behavior with different laser settings, we selected a wide
range of parameters that are used during the searching algorithm. The details are
given in Table 1 while the MLP hyper-parameters for the LOI prediction are in
Table 2.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 161

Table 1. Parameters for the search algorithm.

Parameter Value

Laser pulse width [1, 50] µs in a step of 1 µs

Laser voltage (Pulse Amplitude) [0.05, 0.6]V in a step of 0.01 V

Target LOI 0.5

Searching tolerance 0.05

Table 2. MLP hyper-parameters.

Parameter Value

Architecture [2, 8, 6, 6, 5, 1]

Activation 4 ReLU + 1 Sigmoid

Learning rate (α) 0.2

Decay rate α * 0.97 per 1 000 epochs

Regularization L2

Iterations 50 000

5.2 Characterization for the DES Encryption Attack

The DES encryption process is the target execution in this attack scenario. The
attack time interval is delimited with SPA (Simple Power Analysis). The fast
characterization is launched to assess the FI settings that might potentially lead
to a successful attack (i.e., faulty ciphertexts).

Three steps are performed during the characterization procedure: first, gen-
erating the sensitivity curve, followed by the impact estimation using a deep
learning algorithm, and finally evaluating the curve with the IS metric. During
the first step, all the measurements are acquired. The second and third steps
belong to the evaluation phase. The generation of the sensitivity curve and the
impact estimation using deep learning are based on the LOI metric while the
third step is based on the IS metric.

Level of Influence for DES. The characterization result based on the
proposed algorithm is depicted in Fig. 5a. For comparison purposes, a full-
characterization was performed and the LOI graph of an exhaustive scan with
a full range of settings is shown in Fig. 5b. The color of the dots represents
the value of the LOI metric. The test run of Algorithm 1 to perform the fast
characterization (59 measurement points) was obtained within 2 h while the
full-characterization (3 080 measurement points) took more than a week of mea-
surement time.

As a remark, each training data consists of results from different attack
locations. Attacking more locations can better represent the sample’s behavior
with certain laser parameters, but will spend more time as a trade-off. Here, we

162 L. Wu et al.

performed an exhaustive scan with more than 3 000 tests for the validation pur-
pose, where due to the time constraints, we have to control the cost of the
training data in an acceptable range (around 4 min per test).

(a) LOI: characterization. (b) LOI: exhaustive scan.

Fig. 5. LOI distribution with different fault injection settings.

From the result, the outline of the sensitivity curve, which acts as the bound-
ary between “week” and “strong” parameters, can be estimated with the mea-
sured data. Based on this curve, the impact of the target on different FI settings
can be estimated. Besides that, additional information can be extracted from
the graph:

1. FI becomes effective when the laser voltage is larger than 0.2 V.
2. Similar LOI can be achieved with completely different setting combinations.
3. Laser voltage is more influential in FI than the laser pulse width.

The usage of this information depends on the attack scenario. For example,
if the attack scenario is to skip an instruction execution, short pulses might be
preferred; whereas to corrupt a memory write (long operation), longer pulses
could be more appropriate. Nevertheless, an attacker can benefit from these
inputs in the next phase of the attack.

The MLP (as described in Table 2) is used to predict the LOI with all FI
setting combinations, trained by the data obtained during the characterization
process. In this attack scenario, 59 training set pairs, with two FI settings as
features and Level of Interest values as labels, are collected from the sensitivity
curve. The plot of the loss with respect to the epoch numbers during the training
is shown in Fig. 6.

As shown in Fig. 7a, the prediction result matches the measured data with
the majority of the setting combinations. The prediction error plotted in Fig. 7b
is also close to the sensitivity curve: the maximum error is 0.14 and the aver-
age error is 0.009. The prediction results indicate the capability of deep learn-
ing in predicting LOI with a limited number of training sets, which offers a
proper estimation of the target behavior in significantly less time than a full
characterization.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 163

Fig. 6. LOI prediction for DES: loss versus epoch numbers.

(a) Prediction result using a five-layer neu-
ral network.

(b) Error plot when comparing with the
full-characterization measured data.

Fig. 7. Prediction result with a deep neural network.

Impact Score for DES. To further investigate target behavior, Impact Scores
are calculated (Fig. 8a) based on the measurements performed during the gener-
ation of the sensitivity curve. The IS results from the exhaustive scan are shown
as the reference (Fig. 8b).

From Fig. 8a, a higher IS can be obtained with shorter laser pulse width
but stronger laser voltage, indicating the high probability in obtaining more
significant output in this region. Indeed, this assumption can be proved by Fig. 8b
with IS for all setting combinations. Since the IS-based sensitivity curve only
covers a few of the setting combinations, other, untested optimal settings could
still exist. Still, this curve provides a general layout for the settings with better
relevance from the measurements performed, which can eventually lead to a
better parameter selection for a later attack stage.

164 L. Wu et al.

(a) IS: characterization. (b) IS: exhaustive scan.

Fig. 8. IS distribution with different fault injection settings.

Transferability of the DES Characterization Results. In general, two fac-
tors are influencing the characterization result: sample’s behavior under attack
and the setup used for the attack. Any variation of these two factors will make
the characterization result less usable. In terms of transferability of the char-
acterized parameters, since we use the same type of TOE and attack different
samples with the same setup, the resulting parameters should be transferable
(indeed, the impact of process variations should be negligible for optical FI). To
prove this assumption, we generated the sensitivity curve with the LOI and IS
metrics on a different sample. The results are shown in Fig. 9.

In terms of LOI, besides some small differences due to the variation of the
chip alignment and laser focus, the result is quite identical when compared with
Fig. 5a. The IS, on the other hand, also shows its consistency when comparing
with Fig. 8a, as it also indicates that the shorter laser pulse width with stronger
laser voltage can lead to higher impact scores at the same parameter range.
Therefore, since the shape of the curve, LOI, and the corresponding IS tested

(a) LOI: characterization with a different
sample.

(b) IS: characterization with a different
sample.

Fig. 9. Characterization results with a different sample targeting DES encryption.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 165

on two different samples match with each other, we conclude that the charac-
terization result from one sample is transferable to a different sample of the
same TOE.

5.3 Characterization for the AES Encryption Attack

To verify the proposed methodology in different conditions, we performed an
additional FI experiment with another laser setup of the same type. This exper-
iment aims to manipulate the encryption of AES software implementation.
Similar to the previous experiment, SPA techniques are used to delimit the
attack time interval. The building block to be targeted is kept the same (Flash
decoders).

Level of Influence for AES. As for the DES cipher, a characterization was
performed to obtain a LOI graph. The sensitivity curve is shown in Fig. 10a (47
measurements) while its full-characterization counterpart is presented in Fig. 10b
(3 800 measurements). When comparing this characterization result with the one
targeting the DES encryption (Fig. 5a), we can observe the differences in setting
selections for comparable LOIs. This difference can be due either to the use of a
different laser setup or to the different attack scenarios.

Once the LOI graph was obtained, the same MLP architecture was used
to map the LOI with all the FI setting inputs from the data measured dur-
ing the sensitivity curve generation. Again, we plot the loss with respect to the
epoch numbers during the training. The result is shown in Fig. 11. By comparing
the prediction results (Fig. 12a) with the full-characterization (Fig. 10b), we can
confirm that the LOI tendency is properly estimated. To evaluate the prediction
error, the difference between the two is plotted in Fig. 12b. Although the error
can be further delimited by tuning the hyper-parameters of the network archi-
tecture or increasing the number of measurements during the sensitivity curve
generation, the effectiveness of the MLP for LOI estimation is verified.

(a) LOI: characterization. (b) LOI: exhaustive scan.

Fig. 10. LOI distribution with different fault injection settings.

166 L. Wu et al.

Fig. 11. LOI prediction for AES: loss versus epoch numbers.

Impact Score for AES. The IS-based sensitivity curve is shown in Fig. 13a
while the full characterization reference is presented in Fig. 13b. Similar to the
IS distribution shown in Fig. 8a, the fault injection is more effective with short
laser pulse widths for AES encryption (Fig. 13a), as the points with high IS are
accumulated at the bottom-right of the graph. Taking Fig. 13b as the reference,
the IS-based sensitivity curve can cover the overall target behavior effectively
with a limited amount of data, thus proving its capability in settings optimization
in a short amount of time.

Transferability of the AES Characterization Results. Similar to the
experiment performed in Sect. 5.2, we generated the sensitivity curve with the
LOI and IS metrics on a new sample attacking the same locations and using the
same laser setup. The results are shown in Fig. 14.

(a) Prediction result.
(b) Error plot when comparing with the
full-characterization measured data.

Fig. 12. Prediction result with a deep neural network for AES encryption.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 167

(a) IS: characterization. (b) IS: exhaustive scan.

Fig. 13. IS distribution with different fault injection settings for AES encryption.

(a) LOI: characterization with a different
sample.

(b) IS: characterization with a different
sample.

Fig. 14. Characterization results with a different sample targeting AES encryption.

From the figures, the LOI and IS distribution are identical to the previ-
ous characterization results (Figs. 10a and 13a). Therefore, we again show that
the characterization result is transferable between different samples of the same
TOE. We also conclude from this test on the AES that the fast characterization
methodology presented in this paper applies to different attack scenarios.

6 Conclusions and Future Work

In this paper, we present a novel methodology for semi-invasive fault injection
attacks that improves the identification (characterization) phase of an attack.
This methodology consists of a fast generation of the sensitivity curve and a
proper evaluation of the Level of Influence and Impact Score metrics. Instead
of testing FI setting conditions randomly, we start by generating the sensitiv-
ity curve, which happens in two phases. First, we find the golden point, which
is close to the target LOI and then, we depict the rest of the curve using this

168 L. Wu et al.

point as the reference. Finally, we show how deep learning can be used in fault
injection attacks characterization phase where we estimate the full search space
by using only a limited number of measurements. In the experimental part, we
demonstrated the proposed methodology on running software implementation of
DES and AES ciphers. Besides that, we repeat the characterization procedure
on a different sample to verify its transferability. Not shown in this paper, the
proposed method had been validated for a variety of attack scenarios such as
program flow attack and data manipulations. It also showed its effectiveness on
other semi-invasive FI techniques such as EMFI and BBI. In the realistic cir-
cumstances, attackers can launch our methodology on multiple setups in parallel,
which can dramatically boost their attack procedure and performance.

In future work, we plan to further investigate the advantages and limitations
of the fast characterization with different fault injection methods, setups, targets,
and initial conditions such as temperature and supply voltage. Additionally, we
aim to further explore the usage of the neural network in estimating the FI
impact on non-measured areas.

References

1. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

2. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

3. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–
1111. IEEE (2014)

4. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 11

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

6. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, p. 2. Berkeley, CA, USA, USENIX
Association (1999)

7. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diag-
nosis and Tolerance in Cryptography, pp. 23–29. August 2010

8. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 91–99. September 2011

https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 169

9. Leveugle, R., et al.: Laser-induced fault effects in security-dedicated circuits. In:
2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 1–6. IEEE (2014)

10. Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive
optical fault injection attacks. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol.
10348, pp. 207–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64647-3 13

11. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Proceedings of International Conference on Cryptographic Hard-
ware and Embedded Systems - CHES 2017–19th, Taipei, Taiwan, 25–28 September
2017, pp. 45–68 (2017)

12. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019)

13. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148–179 (2019)

14. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 35–42. September 2018

15. Zhou, Y.B., Feng, D.G.: Side-channel attacks: ten years after its publication and the
impacts on cryptographic module security testing. IACR Cryptol. ePrint Archive
2005, 388 (2005)

16. Tria, A., Choukri, H.: Invasive attacks. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 623–629. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-5906-5

17. Kumar, R., Jovanovic, P., Polian, I.: Precise fault-injections using voltage and
temperature manipulation for differential cryptanalysis. In: 2014 IEEE 20th Inter-
national On-Line Testing Symposium (IOLTS), pp. 43–48. IEEE (2014)

18. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective.
In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–
4102. IEEE (2017)

19. Skorobogatov, S.P.: Semi-invasive attacks: a new approach to hardware security
analysis (2005)

20. Johnston, A.H.: Charge generation and collection in PN junctions excited with
pulsed infrared lasers. IEEE Trans. Nuclear Sci. 40(6), 1694–1702 (1993)

21. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FGPA
RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded
Systems Security, WESS 2011, pp. 2:1–2:9, New York, NY, USA, ACM (2011)

22. Beringuier-Boher, N., Lacruche, M., El-Baze, D., Dutertre, J.-M., Rigaud, J.-B.,
Maurine, P.: Body biasing injection attacks in practice. In: Proceedings of the
Third Workshop on Cryptography and Security in Computing Systems, pp. 49–54.
ACM (2016)

23. Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (2014)
24. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Pro-

ceedings of the Twenty-First International Conference on Machine Learning, ICML
2004, p. 23. New York, NY, USA, ACM (2004)

25. LeNail, A.: NN-SVG: publication-ready neural network architecture schematics. J.
Open Source Softw. 4(33), 747 (2019)

https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-1-4419-5906-5

170 L. Wu et al.

26. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

27. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447 4

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4

Tightly Secure Two-Pass Authenticated
Key Exchange Protocol in the CK Model

Yuting Xiao1,2, Rui Zhang1,2(B), and Hui Ma1(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{xiaoyuting,r-zhang,mahui}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Tightly secure authenticated key exchange (AKE), whose
security is independent from the number of users and sessions (tight secu-
rity), has been studied by Bader et al. [TCC 2015] and Gjøsteen-Jager
[CRYPTO 2018] in the Bellare-Rogaway (BR) model. However, how to
achieve tight security in stronger models (e.g., the Canetti-Krawczyk
(CK) model and the extended Canetti-Krawczyk (eCK) model) were
still left as an open problem by now.

In this paper, we investigate this problem in the CK model. We start
from a generic construction [ACISP 2008] based on key encapsulated
mechanisms (KEMs). We analyze the reason why it cannot achieve tight
reduction, by merely assuming the underlying KEMs are secure in the
multi-user and multi-challenge setting with corruption as Bader et al.
[TCC 2015] and Gjøsteen-Jager [CRYPTO 2018] did. Then we put for-
ward a new generic construction to overcome the potential obstacles.

In addition, we introduce a strong type of chosen ciphertext attack
in the multi-user and multi-challenge setting with corruption for tag-
based key encapsulated mechanism (TB-KEM), where adversaries are
not only allowed to adaptively corrupt secret keys of users, generate
multi-challenges with different coins, and open some challenges as well.
We further prove that the Naor-Yung transform also works in this model,
hence our generic construction can be instantiated.

Keywords: Tight security · Authenticated key exchange · The CK
model · Multi-user · Multi-challenge · Corruption

1 Introduction

Authenticated Key exchange (AKE) is a fundamental cryptographic primitive,
which enables each party to verify the identity of the other party with the help
of some pre-shared information, such that only the honest players can obtain
the final session keys after executions. Nowadays, AKE is widely and frequently
used to achieve secure communications over public channels in daily life, e.g.,
TLS handshake protocol.
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 171–198, 2020.
https://doi.org/10.1007/978-3-030-40186-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_9

172 Y. Xiao et al.

As AKE protocols are executed over an open network and vulnerable to
complicated cyber-attacks, provable security is an important design goal. Along
with the development of modern cryptography, the provable security paradigm
has become widely-accepted to analyze cryptographic schemes. The first formal
security model (i.e., the BR model) for AKE was introduced by Bellare and
Rogaway [7], which allows attackers to fully control the communication channel,
corrupt the long-term secret keys of communicating parties and reveal session
keys. After that, for capturing more practical attacks or providing more security
guarantees, several strong security models were developed, e.g., the CK [11],
eCK [23], CK+ [22] and eCK-PFS [15] models. Commonly, in a reduction, it
is necessary to prove that if there exists an attacker A who is able to break
the CK/eCK/CK+/eCK-PFS-security, there exists an another attacker B who
is able to solve a hard problem. Denotes εA and εB as the success probabilities of
the attacker A breaking the security experiment and the attacker B solving the
underlying hard problem, respectively. A successful reduction ends up with an
inequality like εA ≤ L · εB, where L is known as the reduction loss. In particular,
the reduction is called tight when L is a small constant, which means εA ≈ εB
and the difficulty for any attacker of breaking the protocol is almost equal to
solve the underlying hard problem.

In the literature, a number of protocols [9,11,15,16,23,30] were proved in
the CK, eCK, CK+ and eCK-PFS models, but almost all of them came with a
loose reduction that depends on the number of users μ and sessions � per user,
e.g., L = 1/(μ · �) or L = 1/(μ · �)2. If the selected security parameters are
kept unchanged, the concrete security of these protocols will degrade in their
application scales, hence larger parameters should be selected to compensate
their concrete security loss. Therefore, these protocols might not be suitable for
applications in a large-scale setting, e.g., a web search engine with billions of
HTTPs connections per day. Protocols with tight security that does not degrade
with the number of users or sessions, are more preferable. The reason is that to
embed its problem instance, in the beginning of the experiment the simulator
has to guess the target of the attacker among all users and all the sessions.

The first construction with tight reduction was proposed by Bader et al. [5],
in an enhanced version of the BR model. In a high-level view, their protocol
follows a well-known paradigm: a key encapsulated mechanism (KEM) is used
to transport shared keys, and a signature (SIG) scheme is used to authenticate
exchanged messages, where the SIG scheme is existentially unforgeable in the
multi-user setting with corruption (abbreviated as mu-corr setting) with tight
security reduction, where adversaries are allowed to adaptively corrupt the secret
keys of multi-users; the KEM scheme is tightly secure against chosen plaintext
attack (CPA) in the multi-user and multi-challenge setting with corruption,
where adversaries are allowed to adaptively corrupt the secret keys of multi-users
and request multi-challenge using different coins. The simulator first carefully
embeds KEM challenges into simulated sessions, then answers corruption queries
of long-term secret keys (i.e., singing secret keys) and reveal queries of session
keys (derived from encapsulated keys) using corresponding corruption oracles

Tightly Secure Two-Pass AKE Protocol in the CK Model 173

provided in the SIG and KEM security experiments, respectively. By doing so,
it is no longer necessary to guess the target user session at the beginning of
the experiment and a tight reduction is achieved. Later, Gjøsteen and Jager
[19] proposed a more efficient protocol, but still merely proved secure in the BR
model. Up to now, how to achieve tight security in other stronger models is still
left as an interesting open problem.

As pointed out by Cremers [14], the existing strong security models (in partic-
ular, the CK, CK+ and eCK models) are incomparable, thus hard to choose. In
a cloud or desktop environment, developers usually care less about the memory,
and never erase memory after usage. Since the CK model captures such session
state leakage, in this paper, we focus on tight reduction in the CK model.

1.1 Our Contributions

We give the first tightly secure generic construction of AKEs in the CK model, in
addition, we take into account key-compromise impersonation (KCI) resistance
[28] and weak perfect forward secrecy (wPFS) [22]. The construction follows the
“2×SIG+2×TB-KEM +2×OTS+wKEM” paradigm, where SIG is a determin-
istic signature that is existentially unforgeable in the multi-user setting with
corruption, OTS is an one-time signature that is strongly existential unforgeable
in the multi-user setting, TB-KEM is a tag-based key encapsulated mechanism
that is secure against chosen ciphertext attack (CCA) in the multi-user and
multi-challenge setting with corruption, and wKEM is a KEM that is CPA secure
in the multi-user and multi-challenge setting with corruption, respectively.

We note that it is the first time that CCA security in the multi-user and
mu-mc-corr setting for TB-KEM is considered. Different from [1,21], in our def-
inition, adversaries are allowed to adaptively corrupt secret keys of multi-users,
generate multi-challenge with different coins, and even open some challenges as
long as the final target has not been opened and its corresponding secret key
has not been corrupted. We prove that the classic Naor-Yung transform [26] is
valid in this scenario.

Finally, we present a concrete instantiation based on the known modules.
Compared with the existing tightly secure AKE constructions, our construction
is proved secure in a stronger model, and achieves lower round complexity but
higher communication and computation complexity.

1.2 Related Work

Tight security in the multi-user and multi-challenge setting for public key
encryption (PKE) has been studied for a long time. Bellare, Boldyreva and Micali
[6] first proved the ELGamal encryption meets tight CPA security in such set-
ting. After that, the tight CCA security was kept as an open problem for decade,
until Hofheinz and Jager [21] proposed the first tightly CCA secure scheme by
applying the typical Naor-Young transform [26], where each ciphertext consists of
two CPA secure PKE ciphertexts and one simulation-sound non-interactive zero-
knowledge (NIZK) proof. Then Blazy et al. [8] presented an improved scheme

174 Y. Xiao et al.

for it with more compact ciphertext size. In another line, Abe et al. [1] and Wei
et al. [29] proposed tightly CCA secure schemes based on simulation-extractable
NIZK proof systems, where each ciphertext merely consists of one CPA secure
PKE ciphertext and one proof.

Along the development of tight security, almost tight security was also stud-
ied, which allows reduction loss be dependent on the security parameter. For
examples, Libert et al. [24,25], Hofheinz [20] and Gay et al. [17] proposed sev-
eral almost tightly CCA secure schemes, and all these schemes have compact
ciphertext sizes. In particular, each ciphertext of Gay et al. [17] only consists
of 3 group elements, but which still suffers big public key. The work by Gay,
Hofheinz and Kohl [18] further reduced the public key size to 6 group elements.
As well known, identity based encryption (IBE) can be converted to CCA secure
PKE by applying the CHK transform [10], thus the existing almost tightly secure
IBE schemes [4,12,13] in the multi-user and multi-challenge setting also yields
almost tightly CCA secure PKE schemes in the same setting.

2 Preliminaries

Notations. Let − denote an empty string, while ∗ denotes an arbitrary but
nonempty string. The operator ⊕ denotes bit-wise “XOR”, and || denotes string
concatenation. For k ∈ N, 1k denotes the string of k ones. For an integer m,
[m] = {1, 2, . . . ,m}. For a distribution S, x ←$ S means randomly choosing
an element according to the distribution S. For an arbitrary bit string s, |s|
denotes its bit-length. For an algorithm A, y ← A(x) /y = A(x) means running
the randomized/deterministic algorithm A with x as input gets the output y. A
function μ(·) is called negligible, if for every polynomial p(·), there exists some
λ0 such that μ(λ) ≤ 1/p(λ), for every λ > λ0.

Tag-Based Key Encapsulation Mechanism in the Multi-User Setting
consists of four algorithms: Setup(1λ) → Π, on input a security parameter 1λ,
outputs a public parameter Π; Gen(Π) → (ek, dk), on input a public parameter
Π, outputs an encryption key ek and a decryption key dk; Enc(ek, τ) → (c, k), on
input an encryption key ek and a tag τ , outputs a ciphertext c and an encapsu-
lated key k ∈ K (the key space); Dec(dk, c, τ) = k/⊥, on input a decryption key
dk, a ciphertext c and a tag τ , outputs a key k or a special symbol ⊥ indicating
c is invalid. We require usual correctness properties. We will define a new type
of CCA security in the multi-user and multi-challenge setting with corruption,
which is called MU-IND-CCACorr security.

Definition 1 (MU-IND-CCACorr). A tag-based key encapsulated mechanism
TB-KEM = (Setup,Gen,Enc,Dec) is called MU-IND-CCACorr secure, If for any
PPT adversary A,

AdvMU-IND-CCACorr

TB-KEM,A (λ) = |Pr[ExpMU-IND-CCACorr

TB-KEM,A (λ) = 1] − 1
2
|

is negligible in λ, where the experiment is defined as follows:

Tightly Secure Two-Pass AKE Protocol in the CK Model 175

ExpMU-IND-CCACorr

TB-KEM,A (λ) :

Π ← Setup(1λ)
(eki, dki)i ← Gen(Π), Q := ∅
(i∗, j∗, b′) ← AOE ,OD,OC (Π, (eki)i)
return win(i∗, j∗, b′)

OC(i):
return dki

OE(i, τi,j): //the j-th query on eki

(ci,j , ki,j,0) ← Enc(eki, τi,j), ki,j,1 ←$ K
bi,j ←$ {0, 1}, Q = Q ∪ {(i, j, bi,j)}
return (ci,j , ki,j,bi,j

)
OD(i, c, τ):
return k = Dec(dki, c, τ)

where win(·, ·, ·) denotes a predicate function, for any input (i, j, b), which out-
puts 1 only when (i, j, b) ∈ Q, and A has never performed OD(i, ci,j , τi,j) and
OC(i) queries.

Key Encapsulated Mechanism in the Multi-User Setting consists of four
algorithms: Setup(1λ) → Π, on input a security parameter 1λ, outputs a pub-
lic parameter Π;Gen(Π) → (ek, dk), on input a public parameter Π, outputs
an encryption key ek and a decryption key dk; Enc(ek) → (c, k), on input an
encryption key ek, outputs a ciphertext c and an encapsulated key k ∈ K (the
key space); Dec(dk, c) = k/⊥, on input a decryption key dk and a ciphertext c,
outputs a key k or a special symbol ⊥ indicating that c is invalid. We require usual
correctness properties. We consider the CPA security notion in the multi-user and
multi-challenge setting with corruption (called MU-IND-CPACorr security) in [5].

Definition 2 (MU-IND-CPACorr). A key encapsulated mechanism KEM=
(Setup,Gen,Enc,Dec) is called MU-IND-CPACorr secure, if for any PPT adver-
sary A,

AdvMU-IND-CPACorr

KEM,A (λ) = |Pr[ExpMU-IND-CPACorr

KEM,A (λ) = 1] − 1
2
|

is negligible in λ, where the experiment is defined as follows:

ExpMU-IND-CPACorr

KEM,A (λ) :

Π ← Setup(1λ)
(eki, dki)i ← Gen(Π), Q := ∅
(i∗, j∗, b′) ← AOE ,OC (Π, (eki)i)
return win(i∗, j∗, b′)

OE(i): //the j-th query on eki

(ci,j , ki,j,0) ← Enc(eki), ki,j,1 ←$ K
bi,j ←$ {0, 1}, Q = Q ∪ {(i, j, bi,j)}
return (ci,j , ki,j,bi,j

)
OC(i):
return dki

where win(·, ·, ·) denotes a predicate function, for any input (i, j, b), which out-
puts 1 only when (i, j, b) ∈ Q, and A has never performed OC(i) queries.

Public Key Encryption in the Multi-User Setting consists of four algo-
rithms: Setup(1λ) → Π, on input a security parameter 1λ, outputs a public
parameter Π; Gen(Π) → (pk, sk), on input a public parameter Π, outputs a
public key pk and a secret key sk; Enc(pk,m) → c, on input a public key pk and
a message m, outputs a ciphertext c; Dec(sk, c) = m/⊥, on input a secret key

176 Y. Xiao et al.

sk and a ciphertext c, outputs a message m or a special symbol ⊥ indicating c is
invalid. We require usual correctness properties. Recall the CPA security defini-
tion in the multi-user setting and multi-challenge setting under single challenge
bit in [21], which is called S-MU-IND-CPA security in this paper.

Definition 3 (S-MU-IND-CPA). A public key encryption PKE = (Setup,
Gen,Enc,Dec) is called S-MU-IND-CPA secure, if for any PPT adversary A,

AdvsMU-IND-CPA
PKE,A (λ) = |Pr[ExpsMU-IND-CPA

PKE,A (λ) = 1] − 1
2
|

is negligible in λ, where the experiment is defined as follows:

ExpsMU-IND-CPA
PKE,A (λ) :

Π ← Setup(1λ), (pki, ski)i ← Gen(Π)
b ←$ {0, 1}, b′ ← AOE (Π, (pki)i)
return 1 if b′ = b

OE(i,m0,m1):
ci,0 ← Enc(pki,m0)
ci,1 ← Enc(pki,m1)
return ci,b

Signature in the Multi-User Setting consists of four algorithms:
Setup(1λ) → Π, on input a security parameter 1λ, outputs a public parameter
Π; Gen(Π) → (vk, sk), on input a public parameter Π, outputs a verification key
vk and a signing key sk; Sig(sk,m) → σ, on input a signing key sk and a message
m, outputs a signature σ; Vrfy(vk,m, σ) = 0/1, on input a verification key vk,
a message m and a signature σ, outputs a bit 0 or 1 that indicating σ is valid
or invalid. We require usual correctness properties. We consider the multi-user
existential unforgeability under adaptive chosen-message attacks with adaptive
corruptions (called MU-EUF-CMACorr security) and the multi-user strongly one-
time existential unforgeability under adaptive chosen-message attacks (called
MU-1-sEUF-CMA security) in [5].

Definition 4 (MU-EUF-CMACorr). A signature SIG = (Setup,Gen,Sig,
Vrfy) is called MU-EUF-CMACorr secure, if for any PPT forger F ,

AdvMU-EUF-CMACorr

SIG,F (λ) = |Pr[ExpMU-EUF-CMACorr

SIG,F (λ) = 1]|

is negligible in λ, where the experiment is defined as follows:

ExpMU-EUF-CMACorr

SIG,F (λ) :

Π ← Setup(1λ)
(vki, ski)i ← Gen(Π), Q := ∅
(i∗,m∗, σ∗) ← AOS ,OC (Π, (vki)i)
return win(i∗,m∗, σ∗)

OS(i,m):
σ ← Sig(ski,m)
Q = Q ∪ {(i,m)}
return σ

OC(i):
return ski

Tightly Secure Two-Pass AKE Protocol in the CK Model 177

where win(·, ·, ·) denotes a predicate function, for any input (i,m, σ), which out-
puts 1 only when (i,m) /∈ Q ∧ Vrfy(vki,m, σ) = 1, and A has never performed
OC(i) queries.

Definition 5 (MU-1-sEUF-CMA). A signature SIG = (Setup,Gen,Sig,Vrfy)
is called MU-1-sEUF-CMA secure, if for any PPT forger F ,

AdvMU-1-EUF-CMA
SIG,F (λ) = |Pr[ExpMU-1-EUF-CMA

SIG,F (λ) = 1]|

is negligible in λ, where the experiment is defined similarly to ExpMU-EUF-CMACorr

SIG,F (λ),
but where OC queries are not allowed and OS queries on each i can be asked once at
most.Besides, {(i,m, σ)} instead of {(i,m)} is inserted intoQwhenanswering each
OS query, and the predicate function win(i,m, σ) checks whether {(i,m, σ)} ∈ Q.

Quasi-Adaptive NIZK Proof is NIZK proof where the common reference
string (crs) is allowed to depend on the specific language for which proofs
have to be generated. It consists of four algorithms: K0(1λ) → Γ , on input a
security parameter 1λ, outputs a public parameter Γ ; K1(Γ, ρ) → ψ, on input
a public parameter Γ and a language-specific parameter ρ, outputs a crs ψ;
P(ψ, x,w, lbl) → π, on input a crs ψ, a statement x, a witness w and a label lbl,
outputs a proof π; V(ψ, x, π, lbl) → 0/1, on input a crs ψ, a statement x, a proof
π and a label lbl as input, outputs 1 indicating π is valid or 0 indicating invalid.
For public parameters Γ ← K0(1λ), let DΓ be a probability distribution over
a collection of relations R = {Rρ} parameterized by ρ with an associated lan-
guage Lρ = {x|∃w : Rρ(x;w) = 1}. Here we recall the definition of unbounded
simulation-sound QA-NIZK proof in the multi-crs setting in [25], which is called
M-USS-QA-NIZK in this paper. A some difference is that we do not require the
same enhanced version for unbounded simulation-soundness where A4 is also
given trapdoors that allow deciding membership in the language Lρ.

Definition 6 (M-USS-QA-NIZK). For R, we say a tuple of efficient algo-
rithms (K0,K1,P,V) is an M-USS-QA-NIZK proof, if there exists a PPT simu-
lator S = (S1,S2) such that for any PPT adversaries A1,A2,A3,A4, we have:

Quasi-Adaptive Completeness

Pr[Γ ← K0(1
λ); ρ ←$ DΓ ; ψ ← K1(Γ, ρ), (x, w, lbl) ← A1(Γ, ψ, ρ); π ← P(ψ, x, w, lbl) :

V(ψ, x, π, lbl) = 1 if Rρ(x, w) = 1] = 1.

Quasi-Adptive Soundness

Pr[Γ ← K0(1
λ); ρ ←$ DΓ ; ψ ← K1(Γ, ρ); (x, w, lbl) ← A2(Γ, ψ, ρ) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x, w) = 1] ≤ εS,

where εS is negligible in λ.

178 Y. Xiao et al.

Quasi-Adptive Zero-Knowledge

| Pr[Γ ← K0(1
λ); ρ ←$ DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,·,·,·)

3 (Γ, ψ, ρ) = 1] − Pr[Γ ← K0(1
λ);

ρ ←$ DΓ ; (ψ, τsim) ← S1(Γ, ρ) : AS2(ψ,τsim,·,·,·)
3 (Γ, ψ, ρ) = 1]| ≤ εQA-ZK,

where εS is negligible in λ and A3 is given two different oracles:

1. P(ψ, ·, ·, ·): on input (x,w) ∈ Rρ and a label lbl, outputs a proof generated by
P(ψ, x,w, lbl). Otherwise, outputs ⊥.

2. S(ψ, τsim, ·, ·, ·): on input (x,w) ∈ Rρ and a label lbl, outputs a simulated proof
generated by S2(ψ, x,w, lbl). Otherwise, outputs ⊥.

Unbounded Simulation-Soundness in the multi-crs setting

Pr[Γ ← K0(1λ); {ρi}i ←$ DΓ ; {(ψi, τsim,i)}i ← S1(Γ, {ρi});

(i∗, x, π, lbl) ← AŜ2(ψi,τsim,i,·,·,·)
4 (Γ, {ψi, ρi}i) :

V(ψi∗ , x, π, lbl) = 1 ∧ ¬(∃w : Rρi∗ (x,w) = 1) ∧ (i∗, x, π, lbl) /∈ Q] ≤ εUSS.

where εUSS is negligible in λ. A4 is given unbounded access to the oracle
Ŝ2({ψi}i, {τsim,i}i, ·, ·, ·): on input (j, x, lbl) (where x may be outside Lρj

, out-
puts a simulated proof generated by S2(ψj , x, w, lbl) and updates Q = Q ∪
{(j, x, π, lbl)}.
Definition 7 (Pseudo-Random Function). Let PRF : {PRFλ : Sλ ×
Domλ → Rngλ}λ∈N define a function family with families of key spaces
{Sλ}λ∈N, domains {Domλ}λ∈N and ranges {Rngλ}λ∈N, where λ denotes a secu-
rity parameter. We say PRF is a secure PRF family if for any PPT adver-
sary A, | Pr[1 ← APRFλ(·)] − Pr[1 ← ARFλ(·)] |≤ εPRF is negligible in λ, where
RFλ(·) : Domλ → Rngλ is a truly random function.

3 Tightly Secure AKE Protocol in the CK Model

In this section, we first review the CK model [11] and slightly change its original
definition to additionally provide KCI resistance and wPFS. We then present a
new construction and prove its security in such model with a tight reduction.

3.1 The CK Model

A protocol P is modeled as a collection of m interactive PPT machine running
at different parties, P1, · · · , Pm. Each invocation of P within a party is defined
to be a session, and each party may have multiple sessions running concurrently.
The i-th session on party Pj is denoted as a tuple (Pj , i) ∈ {P1, · · · , Pm} × N.
For each session s ∈ {P1, · · · , Pm} × N, a quintuple of variables is set. E.g., a
session owned by a party (Pi) is denoted as s = (sactor, speer, srole, ssent, srecv),
where sactor (=Pi) denotes the owner of the session, speer the intended partner
(of Pi), srole ∈ {I,R} (where I/R denotes initiator/responder), and ssent/srecv

denotes the message sent/received by the session owner (Pi). Two sessions s =
(sactor, speer, srole, ssent, srecv) and s′ = (s′

actor, s
′
peer, s

′
role, s

′
sent, s

′
recv) are called

CK-matching session if sactor = s′
peer, speer = s′

actor, srole �= s′
role, ssent = s′

recv

and srecv = s′
sent. Any PPT adversary is allowed to perform following queries:

Tightly Secure Two-Pass AKE Protocol in the CK Model 179

• active session s, which consists of two forms:
– establish-session (Pi, Pj). This query is answered by starting a new session

s on Pi and a matching session of s on Pj , and the transcript is output.
In particular, Pi is assumed be the initiator.

– incoming-message (s, Pi,m). This query denotes a type of interaction that
the adversary sends a message m to the session s in the name of Pi, and
it is answered by strictly following the protocol description.

Upon activation, the corresponding variables of each session are initialized,
and each session may either be uncompleted or completed. If a session is
completed, the party will erase all the intermediate states except for the
session key k.

• corrupt (Pi). This query reveals the long term secret of party Pi.
• session-key reveal (s). This query reveals the session key of arbitrary com-

pleted session s.
• session-state reveal (s). This query reveals all the state information of the

session s before it is completed. In particular, randomness and intermediate
values that should be stored for moments (e.g., dk, k, ki, kj) to waiting for the
computation of the final session key are included in the session-state.

• session-expiration (s). This query can only be queried for completed sessions.
It will erase the session key k of this session from memory.

• test-session (s). A random bit bs is selected, if bs = 0 then the real session key
is output; otherwise, a random key from the key space is output. This query is
only allowed to completed, unexpired and unexposed sessions. In particular,
this query is allowed to be asked for multiple times, but the answers for
matched sessions s and s′ should be kept consistent in case of trivially broken.

The security of a protocol P is defined based on an experiment played
between a challenger and an adversary A:

1. the challenger generates the system parameters and all long-term keys, and
sends all public information to A;

2. A adaptively performs establish-session(·), incoming-message(·), corrupt(·),
session-key reveal(·), session-state reveal(·), session-expiration(·) and test-
session(·) queries;

3. at the end, A outputs its guess (s∗, b′) on whether the returned value of the
test-session(s∗) was the real session key or a random value.

A wins the experiment if bs∗ = b′. Throughout the experiment, A is not
allowed to expose s∗. In particular, a session s is said to be exposed if A has
performed one of the following queries:

◦ a session-state reveal(·) query on s or its matching session s′ (if exists);
◦ a session-key reveal(·) query on s or its matching session s′ (if exists);
◦ (the matching session s′ does not exist) a corrupt(·) query on the claimed
owner of the session s.

180 Y. Xiao et al.

Remark 1. There are two special cases that do not lead to a session s exposed :
(1) if its matching session s′ exists, A performed corrupt · queries on both of
the claimed owners of s and s′; (2) if its matching session s′ does not exist,
A performed corrupt(·) query on the claimed owner of s but not s′. The first
case illustrates why our CK model provides wPFS, and the second corresponds
to KCI resistance in the implicit authentication case (that inherently refers to
the key indistinguishability under compromise of the partner’s long-term secret
key).

Remark 2. Our definition follows the original definition [5] for AKE in the multi-
challenge case where each test-session(·) query has an independent challenge bit.
There also exists a variant for it, where all test-session(·) queries have the same
global challenge bit. As many other primitives in the multi-challenge case are
defined in such single-bit challenge definition, single-bit challenge CK-security is
useful when one want to actually use key exchange protocols as sub-protocols in
other protocols, e.g., when one want to do a single game hop where the actually
session key is replaced by a random key independent of the key exchange.

Definition 8. A protocol P is said to be secure in the CK model, if and only if
for any PPT adversary A as defined above, the following properties hold,

1. when two uncorrupted parties complete CK-matching sessions, they output
the same key,

2. the advantage AdvCKP,A(λ) = |Pr[b′ = b] − 1/2| that A correctly guess the bit b
of the test-session is negligible in the security parameter.

3.2 Our Construction

In this section, we introduce our technique and construction.

Our Start Point. Review the “2×KEM+Diffie-Hellman” construction [9] with
wPFS and KCI resistance in the CK model (Fig. 1). Without loss of generality,
we substitute the “Diffie-Hellman” module by an equivalent “wKEM” module.

Pi (ldki) Pj (ldkj)

wKEM.Gen(pp) → (ek, dk)

KEM.Enc(lekB) → (ci, ki) i, j, ek||ci
wKEM.Enc(ek) → (c, k)

KEM.Enc(leki) → (cj , kj)
i, j, c||cj

wKEM.Dec(dk, c) = k

KEM.Dec(ldki, cj) = kj KEM.Dec(ldkj , ci) = ki

trans = i||j||ek||ci||c||cj

sk = PRF(ki, trans) ⊕ PRF(kj , trans) ⊕ PRF(k, trans)

Fig. 1. The “2×KEM+wKEM” construction

Tightly Secure Two-Pass AKE Protocol in the CK Model 181

Similar to Bader et al. [5], we use the underlying KEM/wKEM be CCA/CPA
secure in the multi-user and multi-challenge setting with corruption. In a reduc-
tion, a simulator can embed different challenges into different sessions, and when
corruption and session-state/session-key reveal queries arrive, the simulator just
relays these queries to the underlying KEM and wKEM oracles. But the simu-
lator may fail due to the following attack.

An adversary may impersonate Pi and send a message ek∗||c∗
i to activate

a session s∗ on Pj who sends c∗||c∗
j as reply, which will be finally selected as

its target session. In this case, the matching session of the target session does
not exist and the adversary should never corrupt Pi. Hence, only c∗

j is left for
embedding the challenge. But before the adversary claiming its final target: it
can interpose another session s′ executed between Pi and Pj , where the reply
message sent by Pj is replaced by c′||c∗

j ; then perform a session-state reveal
query on s′. This attack will cause the simulation to fail since no limitation
is posed on session-state reveal query if a session is not the target session or
its matching sessions. Thus, a simulator must answer real session-states for all
session-state reveal queries before knowing the final target of the adversary,
i.e., before the adversary performing the test query, the adversary may have
corrupted the decapsulated key of c∗

j , such that he can compute the real session
key of the target session by itself.

A Failed Attempt. One may try to limit an adversary by appending a signature
SIG to “2×KEM+wKEM” as in Fig. 2. Though an adversary cannot pretend to
be a specific party to send arbitrary messages without knowing the signing key,
but replaying messages generated by a party is still possible.

Pi (ldki, lski) Pj (ldkj , lskj)

wKEM.Gen(pp) → (ek, dk)

KEM.Enc(lekB) → (ci, ki)

SIG.Sig(lski, i||j||ek||ci) → σi
i, j, ek||ci||σi

SIG.Vrfy(lvki, i||j||ek||ci, σi) = b

if b �= 1, reject it and output ⊥
else wKEM.Enc(ek) → (c, k)

KEM.Enc(leki) → (cj , kj)

SIG.Sig(lskj , i||j||ek||ci||c||cj) → σji, j, c||cj ||σj

SIG.Vrfy(lvkj , i||j||ek||ci||c||cj , σj) = b′

if b′ �= 1, reject it and output ⊥
else wKEM.Dec(dk, c) = k

KEM.Dec(ldki, cj) = kj KEM.Dec(ldkj , ci) = ki

trans = i||j||ek||ci||σi||c||cj ||σj

sk = PRF(ki, trans) ⊕ PRF(kj , trans) ⊕ PRF(k, trans)

Fig. 2. Generic “2×SIG+2×KEM+wKEM” construction

182 Y. Xiao et al.

If we further bundle each reply message to its initiation message, so that
the adversary is limited to merely replay the initiation messages generated in
other sessions. But again, the adversary A may manipulate multiple different
execution instances between Pi and Pj according to the following strategies:

In the first instance, A passively observes the execution between Pi and
Pj ; in the second one, A replays the initiation message sent by Pi in the first
execution to Pj . In the third one, A modifies the reply message sent by Pj . We
present the execution details in the first row of Table 1. We assume that the
long-term secret key of Pj has been corrupted by A, such the last one execution
also terminates normally without outputting ⊥. Such three execution instances
should have yielded six sessions in all. But the third and the sixth sessions are
controlled by A in fact, which are regarded as “non-existent”.

Table 1. Simulation failure example (KCI attack)

Pi Pj Pi (A) Pj Pi Pj (A)

execution
instances

ek||ci||σi ek||ci||σi ek
′||c′

i||σ′
i

c||cj ||σj c
′||c′

j ||σ′
j c

′′||c′
j ||σ′′

j

session-state dk,k,ki,kj k,ki,kj k′, ki, k′
j dk′,k′′,k′

i,k
′
j

state reveal � �
challenge �

Note that the two honest sessions involved in a single execution instance are
mutually called matching session to each other. Assume the final target is the
fourth one, whose matching session does not exist actually. In such case, A is
essentially launching KCI attack. According to the definition of the CK model,
this session is allowed to be the final target if only the long-term secret key of
Pi is kept uncorrupted and A has never performed the session-state reveal and
session-key reveal queries on it. But before A clamming his real target, he can
perform session-state reveal queries on the first and the fifth sessions at will,
thus learning the value of (k′, ki, k′

j) and computing the target session key by
itself. The simulation also fails.

Our Solution. In the above attempt, what accounts for the simulation failure is
that A is able to replay the challenge ciphertexts (in particular c′

j) embedded in
the target session to activate other non-matching sessions. More straightforward,
session-state reveal queries are allowed to be performed on these sessions, which
is equivalent to giving A a free decryption oracle to open all embedded challenges.

To overcome it, we replace the “2KEM” module by “2TB-KEM+2OTS” as
in Fig. 3. The key idea is a little bit like the CHK transform [10]: to generate a
reply message, the party Pj should generate an extra OTS key-pair (vkj , skj),
and generate a TB-KEM (instead of KEM) ciphertext cj with respect to vkj

as the “tag” and sign the partial initiation/reply message ek||ci||c||cj using skj

Tightly Secure Two-Pass AKE Protocol in the CK Model 183

to obtain a signature σj,1. Only when σj,1 and σj,2 are both valid, the reply
message can be accepted by Pi. Assuming the underlying OTS be strongly exis-
tential unforgeable, A can no longer replay the challenge cj embedded in the
target session to activate other non-matching sessions since he does not know
the corresponding OTS secret key. Therefore, we achieve a tight reduction.

Concretely, our construction uses five building blocks, a wKEM = (Gen,Enc,
Dec), a TB-KEM = (Gen,Enc,Dec), a deterministic SIG = (Gen,Sig,Vrfy), an
OTS = (Gen,Sig,Vrfy) and a PRF family PRF. The construction mainly consists
of the following three parts:

System Setup. Given a security parameter λ, select public parameters required
for the underlying wKEM, TB-KEM, SIG, OTS and PRF. For ease of description,
we use the string pp to denote the all system parameters in unified.

Pi (ldki, lski) Pj (ldkj , lskj)
wKEM.Gen(pp) → (ek, dk)

OTS.Gen(pp) → (vki, ski)

TB-KEM.Enc(lekj , vki) → (ci, ki)

OTS.Sig(ski, ek||ci) → σi,1

SIG.Sig(lski, i||j||vki||σi,1) → σi,2

i, j, ek||vki||ci||σi,1||σi,2

OT-SIG.Vrfy(vki, ek||ci, σi,1) = b0

SIG.Vrfy(lvki, i||j||vki||σi,1, σi,2) = b1

if b0 �= 1 ∨ b1 �= 1, output ⊥
else wKEM.Enc(ek) → (c, k)

OTS.Gen(pp) → (vkj , skjB)

TB-KEM.Enc(leki, vkj) → (cj , kj)

OTS.Sig(skj , ek||ci||c||cj) → σj,1

SIG.Sig(lskj , i||j||vkj ||σj,1) → σj,2

i, j, c||vkj ||cj ||σj,1||σj,2

OTS.Vrfy(vkj , ek||ci||c||cj , σj,1) = b′
0

SIG.Vrfy(lvkj , i||j||vkj ||σj,1, σj,2) = b′
1

if b′
0 �= 1 ∨ b′

1 �= 1, output ⊥
else wKEM.Dec(dk, c) = k

TB-KEM.Dec(ldki, cj , vkj) = kj TB-KEM.Dec(ldkj , ci, vki) = ki

trans = i||j||ek||vki||ci||σi,1||σi,2||c||vkj ||cj ||σj,1||σj,2

sk = PRF(ki, trans) ⊕ PRF(kj , trans) ⊕ PRF(k, trans)

Fig. 3. Generic “2×SIG+2×TB-KEM+2×OTS+wKEM” construction

184 Y. Xiao et al.

Long-Term Secrets. Each party Pi is in possession of two key pairs
(leki, ldki) ← TB-KEM.Gen(pp) and (lvki, lski) ← SIG.Gen(pp). In particular,
(leki, lvki) and (ldkj , lskj) are denoted his long-term public and secret key,
respectively.

Session Execution. To negotiate a fresh session key, two parties (e.g., Pi and
Pj) should execute the steps shown in Fig. 3. We assume Pi as the initiator
without loss of generality. In concrete,

Step 1. Pi first computes (ek, dk) ← wKEM.Gen(pp), (vki, ski) ← OTS.Gen(pp),
(ki, ci) ← TB-KEM.Enc(lekj , vki), σi,1 ← OTS.Sig(ski, ek||ci) and
σi,2 ← SIG.Sig(lski, i||j||vki||σi,1) in order; then sends the initiation-
message (i, j, ek||vki||ci||σi,1||σi,2) to Pj .

Step 2. Upon receiving the initiation-message sent from Pi, Pj first checks the
validity of both σi,1 and σi,2. Outputs ⊥ if OTS.Vrfy(vki, ek||ci, σi,1) �= 1
or SIG.Vrfy(lvki, i||j||vki||σi,1, σi,2) �= 1.
Otherwise, computes (c, k) ← wKEM.Enc(ek), (vkj , skj) ← OTS.Gen
(pp), (cj , kj) ← TB-KEM.Enc(leki, vkj), σj,1 ← OTS.Sig(skj , ek||ci||c||
cj) and σj,2 ← SIG.Sig(lskj , i||j||vkj ||σj,1) in order, then sends back the
reply-message (i, j, c||vkj ||cj ||σj,1||σj,2) to Pi.

Step 3. Upon receiving the reply-message sent from Pj , Pi first checks the valid-
ity of both σj,1 and σj,2. Outputs ⊥ if OTS.Vrfy(vkj , ek||ci||c||cj , σj,1) �=
1 or SIG.Vrfy(lvkj , i||j||vkj ||σj,1, σj,2) �= 1.
Otherwise, Pi computes k = wKEM.Dec(dk, c) and kj = TB-KEM.Dec
(ldki, cj , vkj). Pj also computes ki = TB-KEM.Dec(ldkj , ci, vki).
Finally, lets trans = i||j||ek||vki||ci||σi,1||σi,2||c||vkj ||cj ||σj,1||σj,2

denote the session transcript, both Pi and Pj compute the session key
as sk = PRF(ki, trans) ⊕ PRF(kj , trans) ⊕ PRF(k, trans).

Theorem 1. If wKEM is MU-IND-CPACorr secure, TB-KEM is MU-IND-CCACorr

secure, SIG MU-EUF-CMACorr secure, OTS is MU-1-sEUF-CMA secure and PRF
is secure, the protocol P illustrated in Fig. 3 is secure in the CK model. In
particular, for any PPT adversary A:

AdvCKP,A(λ) ≤ εwKEM + εTB-KEM + εSIG + εOTS + εPRF.

Proof. It is obvious that two matching sessions executed by honest parties com-
plete with the same session key. Next, a sequence of experiments will be put
forwarded and let εδ denote the success advantage of A in Expδ. For ease of
description, we first introduce some notations, where the subscript S, E, D and
C denote signing, encapsulation, decapsulation and corruption queries, respec-
tively. In addition, S1 and S2 are two simulators will be used later.

Tightly Secure Two-Pass AKE Protocol in the CK Model 185

Notations

Challenger Experiment Queries

C ExpCKP,A all provided in the CK model

COTS ExpMU-sEUF-1-CMA
OTS,C (λ) OOTS,S(·)

CSIG ExpMU-EUF-CMACorr

SIG,C (λ) OSIG,S(·), OSIG,C(·, ·)
CwKEM ExpMU-IND-CPACorr

wKEM,S1
(λ) OwKEM,E(·), OwKEM,C(·)

CTB-KEM ExpMU-IND-CCACorr

TB-KEM,S2
(λ) OTB-KEM,E(·), OTB-KEM,D(·, ·), OTB-KEM,C(·)

Three lists Lcorr, Lvar and Lss will be used to record all corrupted par-
ties (e.g., (Pi, (leki, lvki), (ldki, lski)), sessions’ corresponding variables (i.e.,
(sactor, speer, srole, ssent, srecv)) and session states (e.g., (s, (dk, k, ki, kj)) for an
initiation session or (s, (−, k, ki, kj)) for a response session), respectively. Upon
a session is activated, two corresponding records are inserted into Lvar and Lss,
respectively. In particular, if a specific item (e.g., srecv, dk, k, ki or kj) hasn’t
been assigned or determined yet, a placeholder “-” is used to represent it and
will be automatically updated along with the experiment proceeding.

Exp0. This experiment is same as the original security experiment, such that

ε0 = AdvCKP,A(λ). ��
Exp1. This experiment is same as Exp0, except that we modify the ways of
generating signatures and answering related queries as follows:

(1) collects all verification keys output by CSIG and COTS into the sets Qlvk and
Qvk, respectively.

(2) assigns the long-term verification keys of all parties (e.g., lvki for Pi) using
the items in Qlvk without repetition.

(3) when answering corrupt(·) queries, performs corresponding OSIG,C(·) queries
for required long-term signing keys.

(4) when generating SIG signatures for uncorrupted parties (e.g., Pi /∈ Lcorr),
performs corresponding OOTS,S(·, ·) queries.

(5) when generating a fresh pair of OTS verification key and signature, selects
an unused item vk ∈ Qvk and performs a corresponding OOTS,S(vk, ·) query.

The view of A remains identical, such that

ε1 = ε0. ��
Exp2. This experiment is same as Exp1, except that we adds two rejection rules
when answering incoming-message(·, ·, ·) queries as follows:

� taking a query on (s, Pi,m) as an example

(1) s is an unused session on a party Pj but Pi /∈ Lcorr ∧ (Pi, Pj , I,m, ∗/−) /∈
Lvar. Namely, A generates a fresh initiation-message on behalf of Pi without
corrupting it.

186 Y. Xiao et al.

(2) s is an uncompleted session on a party Pj with a record (Pj , Pi, I, m̄,−) ∈
Lvar but Pi /∈ Lcorr ∧ (Pi, Pj ,R,m, m̄) /∈ Lvar. Namely, A generates a fresh
response-message on behalf of Pi without corrupting it.

No matter in which cases, only when A is able to forge a valid SIG signature
(without knowing lski), a falsely rejected event occurs and A distinguishes Exp2

from Exp1. Thus,

ε2 ≤ ε1 + εSIG. ��
Exp3. This experiment is same as Exp2, except that we adds two another rejec-
tion rules when answering incoming-message(·, ·, ·) queries as follows:

� taking a query on (s, Pi,m) as an example

(1) s is an unused session on a party Pj , m is an initiation-message that can be
phrased as ek||vki||ci||σi,1||σi,2, vki ∈ Qvk but (ek||ci, σi,1) is not an output
of performing OOTS,S(vki, ek||ci) query.

(2) s is an uncompleted session on a party Pj with a record (Pj , Pi, I, m̄ =
ek||vkj ||cj ||σj,1||σj,2,−) ∈ Lvar, m is a response-message that can be
phrased as c||vki||ci||σi,1||σi,2, vki ∈ Qvk but (ek||cj ||c||ci, σi,1) is not an
output of performing OOTS,S(vki, ek||cj ||c||ci) query.

No matter in which cases, only when A is able to forge a valid OTS signature,
a falsely rejected event occurs and A distinguishes Exp3 from Exp2. Thus,

ε3 ≤ ε2 + εOTS. ��
Putting all rejection rules together, there exist two facts:

Fact.1. If A has not corrupted a party Pi, it is unable to generate any
fresh message in the name of it. Such that A can only launch replay
attacks. Besides, as each response-message is related to its correspond-
ing initiation-message, A is unable to replay response-messages to make
other non-matching sessions accept.

Fact.2. If A has corrupted a party Pi, it is able to generate any message to make
other sessions accept. But, A has to choose OTS key pair by itself. Taking
an initiation-message ek||vki||ci||σi,1||σi,2 sent by Pi as an example, if A
hasn’t generated (vki, ski) by itself, σi,1 cannot be valid except that it
is a successful forgery. Therefore, OTS verification keys used as “tags”
in generating TB-KEM ciphertexts must be fresh every time.

Exp4. This experiment is same as Exp3, except that we modifies the way to
compute the real session keys of tested sessions that are passively-activated,
such that wKEM decapsulated keys are replaced by random keys.

Here, we introduce a simulator S1 who is simulating Exp3 or Exp4. On the
basis of Exp3, S1 modifies the way of generating wKEM ciphertexts and answer-
ing related queries:

Tightly Secure Two-Pass AKE Protocol in the CK Model 187

(1) collects all public keys output by CwKEM into the set Qek;
(2) when answering establish-message(·, ·) queries, selects unused items from

Qek and perform corresponding OwKEM,E(·) queries for required wKEM
encryption keys and ciphertexts, respectively.

(3) when answering session-state/key reveal(·) queries on passively-activated
sessions, performs corresponding OwKEM,C(·) queries to derive unknown
wKEM secret keys, and computes session states or keys accordingly.

(4) when answering test-session(·) queries on passively-activated sessions, com-
putes the real tested session keys using the corresponding challenge encap-
sulated keys output by OwKEM,E(·).

Assuming the final output of A is (s∗, b′), s∗ should never be exposed. Thus
session-key reveal(·) and session-state reveal(·) queries were never performed
on s∗ and its matching-sessions. Therefore, the underlying wKEM challenge was
never opened. Thus,

ε4 ≤ ε3 + εwKEM. ��
Exp5. This experiment is same as Exp4, except that we change the way to
compute the real session keys of tested sessions that are actively-activated, such
that TB-KEM decapsulated keys are replaced by random keys.

Here, we introduce a simulator S2 who is simulating Exp4 or Exp5. On
the basis of Exp4, S2 modifies the way of generating TB-KEM ciphertexts and
answering related queries:

(1) collects all public keys output by CTB-KEM into the set Qlek, and assigns the
long-term encryption keys of all parties (e.g., leki for Pi) using the items in
Qlek without repetition.

(2) when answering corrupt(·) queries, performs corresponding OTB-KEM,C(·)
queries for required long-term decryption keys.

(3) when decrypting TB-KEM ciphertexts for uncorrupted parties (e.g., Pi /∈
Lcorr), performs corresponding OTB-KEM,D(·, ·, ·) queries.

(4) when answering incoming-message(·, ·, ·) queries, e.g., a query on (s, Pi,m)
as an example: if s is a response-session on a party Pj , Pi /∈ Lcorr, performs
an OTB-KEM,E(leki, ·) query to derive the required TB-KEM ciphertext cj . In
this case, (Pi, Pj , I,m, ∗) ∈ Lvar must hold according to our rejection rules
in Exp3. Namely, A is actually launching replay attack.

(5) when answering session-state/key reveal(·) queries on actively-attacked ses-
sions: performs corresponding OTB-KEM,D(·, ·, ·) queries to derive unknown
TB-KEM decapsulated keys, and computes session keys accordingly.

(6) when answering test-session(·) queries on actively-activated sessions: com-
putes the real tested session keys using the corresponding challenge encap-
sulated keys output by OTB-KEM,E(·, ·).

Assuming the final output of A is (s∗, b′), s∗ should never be exposed. Thus
session-key reveal(·) and session-state reveal(·) queries were never performed on
s∗, and corrupt(·) query was also never performed on s∗

peer. In addition, according

188 Y. Xiao et al.

to Fact.1 and Fact.2, A cannot embed the underlying TB-KEM challenge into
other non-matching sessions and utilize other queries (i.e., session-key reveal(·)
and session-state reveal(·)) to open it. Thus,

ε5 ≤ ε4 + εTB-KEM. ��
Exp6. This experiment is same as Exp5, except that we modifies the way to
answer test-session(·) queries, taking a query on s∗ (whose real session state
should include three decapsulated keys (k∗,k∗

1 ,k
∗
2) and transcript is denoted as

trans∗) as an example:

(1) if s∗ is a passively-activated session, selectes k ←$ Rngλ and computes the
real target session key as sk∗ = k ⊕ PRF(k∗

1 , trans∗) ⊕ PRF(k∗
2 , trans∗).

(2) if s∗ is an actively-activated session, selectes k ←$ Rngλ and computes the
real target session key as sk∗ = PRF(k∗, trans∗) ⊕ PRF(k∗

1 , trans∗) ⊕ k.

According to the security definition of PRF, we have

ε6 ≤ ε5 + εPRF. ��
Exp7. This experiment is same as Exp6 except that we further modifies the
way to answer test-session(·) queries, such that the real session key is changed
as choosing sk∗ ←$ Rngλ. Since k is randomly chosen from Rngλ, sk∗ is also
randomly distributed in Rngλ. It means that Exp7 is actually identical to Exp6,
thus

ε7 = ε6. ��
It is obvious that each real target session key sk∗ in Exp7 is randomly chose

from FS, the advantage of A is actually equal to 0, which means ε7 = 0. Sum-
marizing all, the inequality is established. �

Remark 3. As the CK model has to answer corrupt(·) and session-key/state
reveal(·) queries, which should be answered by opening secret keys or challenges.
Thus, we have to require the underlying KEM security notions to be defined in
the multi-bit challenge case. Otherwise, decrypting one challenge would reveal
the global challenge. Which in turn to make our proof cannot be extended easily
into the single-bit challenge variant of the CK model.

4 MU-IND-CCACorr Secure TB-KEM

The typical Naor-Yung transform [26] can be proved MU-IND-CCACorr secure,
where adversaries are additionally allowed to adaptively corrupt long-term secret
keys and open some challenges. Note that each ciphertext generated from the
Naor-Yung transform consists of two CPA secure PKE ciphertexts and one NIZK
proof, each public key consists of two PKE public key but each secret key merely
consists of one of the two corresponding secret keys. In the simulation, for each
public key, the simulator is able to generate one secret key by itself and embed

Tightly Secure Two-Pass AKE Protocol in the CK Model 189

the underlying PKE challenges into another one when answering corresponding
encryption queries, and using the known secret key to answer the corruption
query and open simulated challenges. As long as the adversary is unable to
distinguish the simulated case from the real case, the security proof is established.

We first give a variant of the typical Naor-Yung transform. Let PKE =
(Setup,Gen,Enc,Dec) be a PKE scheme with message space M, and
QA-NIZK = (K0,K1,P,V) be a QA-NIZK proof system. In particular, we
consider the language Lek0,ek1 := {(c0, c1)|c0 = PKE.Enc(ek0,m) ∧ c1 =
PKE.Enc(ek1,m) for a message m ∈ M}. A TB-KEM scheme TB-KEM =
(Setup,Gen,Enc,Dec) can be constructed as in Fig. 4:

TB-KEM.Setup(1λ):
Π ← PKE.Setup(1λ)
Γ ← QA-NIZK.K0(1λ)
return Π̂ := (Π, Γ)

TB-KEM.Gen(Π̂):
phrase Π̂ := (Π, Γ), δ ←$ {0, 1}
(ek0, dk0) ← PKE.Gen(Π)
(ek1, dk1) ← PKE.Gen(Π)
ρ := (ek0, ek1)
ψ ← QA-NIZK.K1(Γ, ρ)
return

êk := (ek0, ek1, ψ), d̂k := (δ, dkδ)

TB-KEM.Enc(êk, τ):

phrase êk = (ek0, ek1, ψ)
k ←$ M, c0 ← PKE.Enc(ek0, k; r0)
c1 ← PKE.Enc(ek1, k; r1), lbl = (c0, c1, τ)
π ← QA-NIZK.P(ψ, (c0, c1), (r0, r1), lbl)
return (ĉ = (c0, c1, π), k̂ = k)

TB-KEM.Dec(d̂k, ĉ, τ):

phrase d̂k = (δ, dkδ), ĉ = (c0, c1, π)
lbl = (c0, c1, τ)
b = QA-NIZK.V(ψ, (c0, c1), π, lbl)
k ← PKE.Dec(ˆdkδ, cδ)
if b = 1 return k̂ = k, else return ⊥

Fig. 4. A variant of the Naor-Yung transform

Theorem 2. If PKE is S-MU-IND-CPA secure, and QA-NIZK is an M-USS-
QA-NIZK proof, then TB-KEM is MU-IND-CCACorr secure. In particular, for any
PPT adversary A:

AdvMU-IND-CCACorr

A,TB-KEM (λ) ≤ εPKE + εQA-ZK + 2εUSS.

Proof. The proof inherently follows the strategy of [27]. The correctness inherits
from the underlying PKE and QA-NIZK schemes. For proving the security, a
sequence of experiments will be put forwarded and εδ is used to denote the
success advantage of A wining in the Expδ.

Exp0. This experiment is the original security experiment. In particular, for
each encryption query by (i, j) (i.e., the j-th query on the public key êki), we
denote ki,j,0 as the real key while ki,j,1 as a random key. It is obvious,

ε0 = AdvMU-IND-CCACorr

TB-KEM,A (λ). ��

190 Y. Xiao et al.

Exp1. This experiment is same as Exp0 except that the way to generate QA-
NIZK proofs is changed to use the QA-NIZK simulator S = (S1, S2). Due to the
quasi adaptive zero-knowledge property of QA-NIZK,

ε1 − ε0 ≤ εQA-ZK. ��
Exp2. This experiment is same as Exp1 except that the way to generate
challenge ciphertexts is changed. For each ciphertext ci,j = (ci,j,0, ci,j,1, π)
with tag τi,j under public key êki = (eki,0, eki,1, ψi), the challenger generates
cδi

← PKE.Enc(eki,δi
, ki,j,0), c1−δi

← PKE.Enc(eki,1−δi
, ki,j,1) and a simulated

proof π as before. Due to the CPA security of PKE,

ε2 − ε1 ≤ εPKE. ��
Exp3. This experiment is same as Exp2 except that the way to answer corruption
queries and decryption queries is changed. In this experiment, the challenger
generates key pair for each user i as follows: first computes (eki,0, dki,0) ←
PKE.Gen(Π) and (eki,1, dki,1) ← PKE.Gen(Π), then chooses δi ←$ {0, 1}, finally
sets (êk, d̂k) := ((eki,0, eki,1, ψi), (δi, dki,δi

)), where ψi is generated by S1. For
answering corruption queries, corresponding (δi, dki,δi

) is returned; for answering
decryption queries:

� If the query (ci,j , τi,j) is a challenge generated by the challenger before,
returns the corresponding real encapsulated key ki,j,0.
� Else if the queried ciphertext ci,j is a challenge ciphertext generated by the
challenger before, but with a different tag τ ′

i,j , returns ⊥.
� Otherwise, for a given ciphertext c = (c0, c1, π) with tag τ under pub-
lic key êki. First checks the validity of π. If it is valid, computes k ←
PKE.Dec(dki,δi

, cδi
) and returns k̂ = k. In other case, returns ⊥.

For the second case, there exists a bad event that if (ci,j , τ
′
i,j) is a valid

ciphertext, but it is falsely rejected. As we define lbli,j = (ci,j , τi,j), the adversary
must generate a valid proof for a fresh label lbl′i,j = (ci,j , τ

′
i,j) �= lbli,j . Due to the

unbounded simulation-soundness of QA-NIZK, such bad event only occurs with
εUSS probability. Exclude this bad event: before launching corruption query on
êki, the adversary has no idea about the internal bit δi, except that he submits
a ciphertext c = (c0, c1, π) that proof π is accepted but PKE.Dec(dki,δi

, cδi
) �=

PKE.Dec(dki,1−δi
, c1−δi

). But in such case, the adversary has to provide a proof π
for a false statement. Due to the unbounded simulation-soundness of QA-NIZK,
it only occurs with εUSS probability. Thus,

ε3 − ε2 ≤ 2εUSS. ��
Assume the final target of the adversary is (i∗, j∗) (related to a challenge

ciphertext c∗ with tag τ∗), OD(i∗, c∗, τ∗) and OC(i∗) queries should never been
queried in the experiment. Therefore, both δ∗

i and bi∗,j∗ are kept hidden for
the adversary. Therefore, the advantage for the adversary in Exp3 is zero, i.e.,
ε3 = 0. Summarizing all above statements, the inequality is established. �

Tightly Secure Two-Pass AKE Protocol in the CK Model 191

5 Instantiation and Comparisons

We first instantiate our protocol using the following strategies:

• The MU-IND-CPACorr secure wKEM is instantiated using the double ELGa-
mal encryptions. Bellare, Boldyreva and Micali [6] have proved the ELGamal
encryption meets the S-MU-IND-CPA security. Thus, we can apply the generic
construction (i.e., double encryption paradigm) in Section 3.3 of [5]. In partic-
ular, we optimize it using randomness reusing technique, such that each public
key consists of 2 group elements (e.g., (gs1 , gs2) for secret key (s1, s2) ←$Zp)
and each ciphertext consists of 3 group elements (e.g., (gr, grs1k, grs2k) for
a randomness r ←$Zp and an encapsulated key k). Note that, even the ran-
domness r is reused, the security reduction strategy used in [5] will not be
affected, where simulator only needs to know a partial secret key to answer
extra corruption queries.

• the MU-EUF-CMACorr secure SIG is instantiated using the construction in
Section 3.2 of [19], which is based on the DDH and CDH problems and where
each signature consists of 6 group elements plus a λ-bit nonce.

• The MU-1-sEUF-CMA secure OTS is instantiated using the discrete-log-based
construction in Section 4.2 of [21], where each signature consists of 2 group
elements and each verification key consists of 2 group elements.

• As for the MU-IND-CCACorr secure TB-KEM, we apply the generic construc-
tion presented in Fig. 4. In particular, the underlying PKE is instantiated using
the ELGamal encryption once again, and the underlying QA-NIZK is instan-
tiated using the construction in Appendix H of [25] (whose security is based
on the DLIN assumption and a strongly unforgeable OTS). In particular, we
use a proof system in the context of asymmetric pairings e : G × Ĝ → GT ,
with G �= Ĝ. Using the OTS in Section 4.2 of [21] under the group G to
instantiate QA-NIZK, we have a proof system where each proof consists of 30
elements of G and 12 elements of Ĝ. Combining with the optimized ELGamal
double encryptions under the group G, we have that each TB-KEM ciphertext
consists of 33 elements of G and 12 elements of Ĝ.

Here, we analyze the communication overhead of our protocol when instanti-
ated with the building blocks described above. In particular, wKEM, SIG, OTS are
implemented on the group G. The messages exchanged for each run of the pro-
tocol include mi = i||j||ek||vki||ci||σi,1||σi,2 and mj = i||j||c||vkj ||cj ||σj,1||σj,2

two messages. In detail,

|mi| = |i| + |j| + |ekwKEM| + |vkOTS| + |cTB-KEM| + |σOTS| + |σSIG|
|mj | = |i| + |j| + |cwKEM| + |vkOTS| + |cTB-KEM| + |σOTS| + |σSIG|

192 Y. Xiao et al.

Thus, the message sent by Pi consists of 45 elements of G and 12 elements of
Ĝ (plus a λ-bit nonce and two identities); while the message sent by Pj consists
of 46 elements of G and 12 elements of Ĝ (plus a λ-bit nonce and two identities).
The concrete execution procedures are presented in Appendix A.

Table 2. Comparisons with exiting tightly secure constructions

Constructions Model Round Communication overhead

mi mj m′
i

Bader et al. [5] BR 3 7 × |G| 9 × |G| 2 × |G|
Gjøsteen-Jager [19] BR 3 λ 7 × |G| + λ 7 × |G| + λ

Ours CK 2 45 × |G| + 12 × |Ĝ| + λ 46 × |G| + 12 × |Ĝ| + λ ——

where λ denote the security parameter, |G| and |Ĝ| denote the least bits required to express an

element of G and Ĝ, respectively. We assume Pi playing the role of initiator while Pj playing the

role of responder. The message mi and m′
i denote the first and the second message sent by Pi,

respectively.

We further compare our construction with exiting tightly secure schemes as
in Table 2. Both Bader et al. [5] and Gjøsteen-Jager [19] achieve tight-security in
the BR model, while our construction achieves tight-security in the CK model.
Since the CK model is stronger than the BR model, such that our construction
is more secure than the former two. In addition, our construction costs lower
round complexity, which is more preferable in practical use since higher round
complexity involves higher network latency (that is a key factor weakening the
practical performance of communication protocols). An important reason for
which is that our construction merely reaches implicit authentication.

What is less satisfying is that, our scheme suffers high communication cost,
accompanying with high computation cost for generating and verifying QA-NIZK
proofs. In particular, our concrete instantiation requires 125 exponentiations to
generate a QA-NIZK proof, and 34 pairings as well as 4 exponentiations to vali-
date it. Such that, in a single protocol execution, the initiator requires 158 expo-
nentiations and 34 pairings, while the responder requires 157 exponentiations
and 34 pairings. Comparing to the most efficient AKE protocol Gjøsteen-Jager
[19], where each party requires 17 exponentiations, this instantiation is signifi-
cant inefficient and cannot be directly applied for practical use.

Remark 4. In our construction, to improve the efficiency (i.e., reducing com-
munication and computation costs), it is important to achieve more efficient
(almost) tightly unbounded simulation-sound QA-NIZK in the multi-crs setting,
which is an independent interest. As far as we know, there exist a number of
works [2,3,17] with tighter reduction or more compact proof. However, their
security proofs were merely given with respect to the single-crs setting. We
notice that [2,3] directly applied their results to obtain PKEs with tight CCA
security in the multi-user, multi-challenge setting. Actually, it requires adapt-
ing their schemes to the multi-crs setting. [3] claimed that their scheme readily
adapts to the multi-crs setting, however, we have not seen the complete proof.

Tightly Secure Two-Pass AKE Protocol in the CK Model 193

On the other hand, by assuming [2,3] achieve so, our construction can be
instantiated more efficiently. For example, applying [2], we can derive a QA-
NIZK proof where each proof consists of only 8 elements of G and 6 elements
of Ĝ, and which requires 22 exponentiations and 18 pairings to generate and
validate a proof, respectively. Hence in a single protocol execution, the initiator
requires 52 exponentiations and 18 pairings, while the responder requires 51
exponentiations and 18 pairings in total.

Acknowledgements. This work was supported in part by National Natural Sci-
ence Foundation of China (Grant Nos. 61772520, 61802392, 61972094, 61632020,
61472416), Key Research Project of Zhejiang Province (Grant No. 2017C01062), and
Beijing Municipal Science and Technology Project (Grant Nos. Z191100007119007,
Z191100007119002).

A Concrete Instantiation

We instantiate our protocol using the strategies described in Sect. 5, which
includes the following three parts.

System Setup. Invoke the algorithm K0(λ) in Appendix H of [25] to obtain
the common public parameters of NIZK = (K0,K1,P,V), denoted as Γ =
((G, Ĝ,GT), f, g, h,Σ), where (G, Ĝ,GT) are asymmetric bilinear groups of
prime order p > 2λ with f, g, h ←$G and Σ describes a strongly unforgeable
one-time signature scheme used as a subroutine. In addition, select a random
element U from G, a PRF family PRF and three hash functions H0 : {0, 1}∗ → Zp,
H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zp. Define the distribution Q := {0, 1}λ

and let (Γ,U,PRF,H0,H1,H2,Q) be the system public parameters pp.

Long-Term Secrets. Each party executes the following Long-term Key Gener-
ation procedure to generate their own key pairs and share public keys (through
PKI, but we drop the details here). We elaborate with the party Pi.

Long-term Key Generation (Pi)

1. bi ←$ {0, 1}, xi,bi ←$Zp, Xi,bi = gxi,bi , Xi,1−bi ←$G

3. ˜Hi = (Xi,0/Xi,1, g), ψi ← K1(Γ, ˜Hi)

4. leki := (Xi,0, Xi,1, ψi), ldki := (bi, xi,bi) //TB-KEM.Gen(pp) → (leki, ldki)

5. b̄i ←$ {0, 1}, yi,b̄i
←$Zp, Yi,b̄i

= g
yi,b̄i , Yi,1−b̄i

←$G

6. lvki := (Yi,0, Yi,1), lski := (b̄i, yi,b̄i
) // SIG.Gen(pp) → (lvki, lski)

where K1 is invoked to generate language-specific common reference strings.

Session Execution. If two parties (e.g., Pi and Pj) want to establish a fresh
session key, they should execute the following Key Establishment procedure in
the next page.

194 Y. Xiao et al.

Key Establishment

Pi Pj

1. b̂ ←$ {0, 1}, wb̂ ←$Zp, Wb̂ = gw
b̂

2. W1−b̂ ←$G, ek := (W0, W1), dk := (b̂, wb̂) //wKEM.Gen(pp) → (ek, dk)

3. ui, si ←$Zp, Ui = gui , Si = gsi

4. vki := (Ui, Si), ski := (ui, si) //OTS.Gen(pp) → (vki, ski)

5. ri ←$Zp, Ki ←$G, Ri = gri , Di,0 = Xj,0
riKi

6. Di,1 = Xj,1
riKi, 	i = (Ri, Di,0, Di,1, vki)

7. πi ← P(Γ, ψj , ˜Ti = (Di,0/Di,1, Ri), ri, 	i) //prove ˜Ti ∈ span(Xi,0/Xi,1, g)

8. ci := (Ri, Di,0, Di,1, πi) //TB-KEM.Enc(lekj , vki)→(ci, ki)

9. ai,0 ←$Zp, Ei = gH0(ek||ci)Uai,0

10. ai,1 = (si − H0(Ei))/ui, σi,1 := (ai,0, ai,1) //OTS.Sig(ski, ek||ci) → σi,1

11. t ←$ Q, Fi = H1(t, i||j||vki||σi,1)

12. Zi,b̄i
= Fi

yi,b̄i , Zi,1−b̄i
←$G

13. ηi ←$Zp, Ni,b̄i
= gηi , N̄i,b̄i

= Fi
ηi

14. α1−b̄i
, ρ1−b̄i

←$Zp, Ni,1−b̄i
= g

ρ1−b̄i Y1−b̄i

α1−b̄i

15. N̄i,1−b̄i
= Fi

ρ1−b̄i Zi,1−b̄i

α1−b̄i

16. αb̄i
= H2(g, Fi, Ni,0, N̄i,0, Ni,1, N̄i,1) − α1−b̄i

17. ρb̄i
= ηi − αb̄i

yi,b̄i

18. σi,2 := (t, Zi,0, Zi,1, α0, α1, ρ0, ρ1) //SIG.Sig(lski, i||j||vki||σi,1)→ σi,2

19. i, j, ek||vki||ci||σi,1||σi,2

20. Ei = gH0(ek||ci)Uai,0 , Fi = H1(t, i||j||vki||σi,1)

21. Ni,0 = gρ0Yi,0
α0 , N̄i,0 = Fi

ρ0Zi,0
α0

22. Ni,1 = gρ1Yi,1
α1 , N̄i,1 = Fi

ρ1Zi,1
α1

23. output ⊥ if Si �= gH0(Ei)Ui
ai,1

24. //check the validity of σi,1 and σi,2 or α0 + α1 �= H2(g, Fi, Ni,0, N̄i,0, Ni,1, N̄i,1)

25. else v ←$Zp, K ←$G, V = gv

26. //wKEM.Enc(ek) → (c, k) J0 = W0
vK, J1 = W1

vK, c := (V, J0, J1)

27. uj , sj ←$Zp, Uj = guj , Sj = gsj

28. //OTS.Gen(par) → (vkj , skj) vkj := (Uj , Dj), skj := (uj , sj)

29. rj ←$Zp, Kj ←$G, Rj = grj , Dj,0 = Xi,0
rj Kj

30. Dj,1 = Xi,1
rj Kj , 	j = (Rj , Dj,0, Dj,1, vkj)

31. //prove ˜Tj ∈ span(Xj,0/Xj,1, g) πj ← P(Γ, ψi, ˜Tj = (Dj,0/Dj,1, Rj), rj , 	j)

32. //TB-KEM.Enc(lekj , cki) → (cj , kj) cj := (Rj , Dj,0, Dj,1, πj)

(to be continued)

Tightly Secure Two-Pass AKE Protocol in the CK Model 195

Key Establishment - continued

Pi Pj

33. aj,0 ←$Zp, Ej = gH0(ek||ci||c||cj)Uaj,0

34. //OTS.Sig(skj , ek||ci||c||cj) → σj,1 aj,1 = (sj − H0(Ej))/uj , σj,1 := (aj,0, aj,1)

35. t̄ ←$ Q, Fj = H1(t̄, i||j||vkj ||σj,1)

36. Zj,b̄j
= Fj

yj,b̄j , Zj,1−b̄j
←$G

37. ηj ←$Zp, Nj,b̄j
= gηj , N̄j,b̄j

= Fj
ηj

38. β1−b̄j
, μ1−b̄j

←$Zp

39. Nj,1−b̄j
= g

μ1−b̄j Y1−b̄j

β1−b̄j

40. N̄j,1−b̄j
= Fj

μ1−b̄j Zj,1−b̄j

β1−b̄j

41. βb̄j
= H2(g, Fj , Nj,0, N̄j,0, Nj,1, N̄j,1) − β1−b̄j

42. μb̄j
= ηj − βb̄j

yj,b̄j

43. //SIG.Sig(lskj , i||j||vkj ||σj,1) →σj,2 σj,2 := (t̄, Zj,0, Zj,1, β0, β1, μ0, μ1)

44. i, j, c||vkj ||cj ||σj,1||σj,2

45. Ej = gH0(ek||ci||c||cj)Uai,0 , Fj = H1(t̄, i||j||vkj ||σj,1)

46. Nj,0 = gμ0Yj,0
β0 , N̄j,0 = Fj

μ0Zj,0
β0

47. Nj,1 = gμ1Yj,1
β1 , N̄j,1 = Fj

μ1Zj,1
β1

48. output ⊥ if Sj �= gH0(Ej)Uj
aj,1

49. or β0 + β1 �= H2(g, Fj , Nj,0, N̄j,0, Nj,1, N̄j,1) //check the validity of σj,1 and σj,2

50. else K = Jb̂/V w
b̂ //wKEM.Dec(dk, c) = k

51. 	j = (Rj , Dj,0, Dj,1, vkj)

52. ξj ← V(Γ, ψi, ˜Tj = (Dj,0/Dj,1, Rj), πj , 	j)

53. if ξj �= 1 and output ⊥
54. else Kj = Dj,bi/Rj

xi,bi //TB-KEM.Dec(ldki, cj , vkj) = kj

55. 	i = (Ri, Di,0, Di,1, vki)

56. ξi ← V(Γ, ψj , ˜Ti = (Di,0/Di,1, Ri), πj , 	i)

57. if ξi �= 1 output ⊥
58. //TB-KEM.Dec(ldkj , ci, vki) = ki else Ki = Di,bj /Ri

xj,bj

trans = i||j||ek||vki||ci||σi,1||σi,2||c||vkj ||cj ||σj,1||σj,2

SK = PRF(Ki, trans) ⊕ PRF(Kj , trans) ⊕ PRF(K, trans)

where P and V are invoked to generate QA-NIZK proofs and verify the validity of

QA-NIZK proofs, respectively.

196 Y. Xiao et al.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

2. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 23

3. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

4. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

8. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

9. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

10. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

12. Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master pub-
lic key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 9

13. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-54365-8_9
https://doi.org/10.1007/978-3-642-40084-1_25

Tightly Secure Two-Pass AKE Protocol in the CK Model 197

14. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: ASIACCS 2011,
pp. 80–91 (2011). https://doi.org/10.1145/1966913.1966925

15. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

16. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

17. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

18. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

20. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

21. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 33

23. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

24. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

25. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437 (1990). https://doi.org/10.1145/
100216.100273

27. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553 (1999). https://doi.org/10.1109/
SFFCS.1999.814628

https://doi.org/10.1145/1966913.1966925
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628

198 Y. Xiao et al.

28. Strangio, M.A.: On the resilience of key agreement protocols to key compromise
impersonation. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043,
pp. 233–247. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716 19

29. Wei, P., Wang, W., Zhu, B., Yiu, S.M.: Tightly-secure encryption in the multi-user,
multi-challenge setting with improved efficiency. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 3–22. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-60055-0 1

30. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via
double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11273, pp. 158–189. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 6

https://doi.org/10.1007/11774716_19
https://doi.org/10.1007/978-3-319-60055-0_1
https://doi.org/10.1007/978-3-319-60055-0_1
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-030-03329-3_6

Symmetric-Key Authenticated Key
Exchange (SAKE) with Perfect Forward

Secrecy

Gildas Avoine1,2, Sébastien Canard3, and Löıc Ferreira1,3(B)

1 Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France
gildas.avoine@irisa.fr

2 Institut Universitaire de France, Paris, France
3 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,loic.ferreira}@orange.com

Abstract. Key exchange protocols in the asymmetric-key setting are
known to provide stronger security properties than protocols in sym-
metric-key cryptography. In particular, they can provide perfect forward
secrecy, as illustrated by key exchange protocols based on the Diffie-
Hellman scheme. However public-key algorithms are too heavy for low-
resource devices, which can then not benefit from forward secrecy. In
this paper, we describe a scheme that solves this issue. Using a shrewd
resynchronisation technique, we propose an authenticated key exchange
protocol in the symmetric-key setting that guarantees perfect forward
secrecy. We prove that the protocol is sound, and provide a formal proof
of its security.

Keywords: Authenticated key agreement · Symmetric-key
cryptography · Perfect forward secrecy · Key-evolving

1 Introduction

An authenticated key exchange (AKE) protocol executed between two parties
aims at authenticating the parties, and computing a fresh shared session key.
Well-known two-party authenticated key exchange protocols make use of digital
signatures to provide authentication, and apply the Diffie-Hellman (DH) scheme
[20] to compute a shared session key. However, such protocols are too heavy
for low-resource devices. More suited protocols, solely based on symmetric-key
functions, have been proposed (e.g., [12,16,23,26,29,30,33,34] to cite a few),
including widely deployed ones (e.g., in 3G/UMTS [2] and 4G/LTE [3]). Such
symmetric-key protocols are needed in various applications, ranging from Wire-
less Sensor Networks (WSNs), Radio Frequency Identification (RFID) tags,
smart cards, Controller Area Networks (CANs) for vehicular systems, smart
home, up to industrial Internet of Things (IoT). Yet, existing symmetric-key
based protocols lack a fundamental security property usually provided by the

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 199–224, 2020.
https://doi.org/10.1007/978-3-030-40186-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_10

200 G. Avoine et al.

DH scheme: perfect forward secrecy (PFS) [21,24]. PFS is a very strong form
of long-term security which, informally, guarantees that future disclosures of
some long-term secret keys do not compromise past session keys. It is widely
accepted that PFS can only be provided by asymmetric schemes. Indeed, in pro-
tocols based on symmetric-key functions, the two parties must share a long-term
symmetric key (which the session keys are computed from). Therefore the dis-
closure of this static long-term key allows an adversary to compute all the past
(and future) session keys. In this paper, we introduce an AKE protocol in the
symmetric-key setting, and, yet, that does guarantee PFS.

1.1 Related Work

Symmetric-key based protocols do not provide the same security guarantees as
those based on asymmetric algorithms. In particular, they do not guarantee
forward secrecy. Nonetheless, (a few) attempts aim at proposing symmetric-key
protocols that incorporate forward secrecy, as illustrated by the following related
work.

Dousti and Jalili [22] describe a key exchange protocol where the shared mas-
ter key is updated based on time. Their protocol requires perfect synchronicity
between the parties otherwise this leads to two main consequences. Firstly, in
order to handle the key exchange messages, the parties may use different values
of the master key corresponding to consecutive epochs, which causes the session
to abort. Secondly, this allows an adversary to trivially break forward secrecy.
Once a party deems the protocol run is correct and the session key can be safely
used (i.e., once the party “accepts”), the adversary corrupts its partner (which
still owns the previous, not updated yet, master key), and computes the cur-
rent session key. Furthermore, achieving perfect time synchronisation may be
quite complex in any context, in particular for low-resource devices. Contrary to
Dousti et al., the protocol we propose explicitly deals with the issue of updating
the master keys at both parties without requiring any additional functionality
(such as a synchronised clock).

In the RFID field, the protocol proposed by Le, Burmester, and de Medeiros
[28] aims at authenticating a tag to a server, and at computing a session key
in order to establish a secure channel (which they do not describe). The master
key is updated throughout the protocol run. To deal with the possible desyn-
chronisation between the reader and the tag, the server keeps two consecutive
values of the key: the current and the previous one. If the tag does not update
its master key (which happens when the last message is dropped), the server is
able to catch up during the next session. This implies that, in case of desyn-
chronisation, the server computes the session key from the updated master key,
whereas the tag still stores the previous value. Hence, an adversary that corrupts
the tag can compute the previous session key with respect to the server. In fact,
since the server always keeps the previous value of the master key, together with
the current one, the scheme is intrinsically insecure in strong security models
(i.e., models that allow the adversary to corrupt any of the partners, once the
targeted party accepts). Yet, Le et al. analyse their protocol in a model where

SAKE with Perfect Forward Secrecy 201

any server corruption is forbidden, and corrupting a tag is allowed only once it
accepts. In our scheme, one of the parties also keeps in memory (a few) samples
of a master key corresponding to different epochs (including a previous one).
Yet the disclosure of all these values does not compromise past session keys.
Furthermore, the (strong) security model we use allows the adversary to corrupt
either partner as soon as the targeted party accepts.

Brier and Peyrin [17] propose a forward secret key derivation scheme in a
client-server setting, that aims at improving a previous proposal [7]. In addition
to forward secrecy, another constraint is that the amount of calculation to com-
pute the master key (directly used as encryption key) on the server side must
be low. Their solution implies the storage, on the client side, of several keys in
parallel and to use a (short) counter, which is involved in the keys update. The
keys belong to a tree whose each leaf (key) is derived from the previous one and
the counter. The client must send the counter with the encrypted message for
the server to be able to compute the corresponding key. The main drawback of
this scheme is that the number of possible encryption keys is reduced. Increasing
that limit implies increasing the counter size and the number of keys stored in
parallel on the client side. Moreover, Brier et al. (as well as [7]) focus on forward
secrecy with respect to the client only. The server is deemed as incorruptible,
and is supposed to compute an encryption key only upon reception of a client’s
message (the secure channel is unidirectional, and the server does not need to
send encrypted messages to the client). Therefore, the scheme does not need
to deal with the issue of both parties being in sync (with respect to the key
computation), and providing forward secrecy. In addition, the purpose of Brier
et al. (as well as [7]) is not to provide mutual authentication. More generally
sending additional information in order to resynchronise (such as a sufficiently
large counter) is a simple (and inefficient) way to build a forward secret proto-
col. But this yields several drawbacks. Firstly, the size of such a counter must
be large enough in order to avoid any exhaustion. Secondly, sending the counter
(at least periodically) is necessary for the two parties to resynchronise, which
consumes bandwidth. Thirdly, resynchronisation may imply multiple updates of
the master keys at once (the scheme of Brier et al. and [7] aims at limiting that
amount of calculation, but it leads to a narrowed number of possible encryption
keys). Our scheme avoids all these drawbacks.

The more general question of forward security in symmetric cryptography
has been also investigated by Bellare and Yee [14]. They propose formal defini-
tions and practical constructions of forward secure primitives (e.g., MAC, sym-
metric encryption algorithm). Their constructions protect against decryption of
past messages, or antedated forgeries of messages (i.e., previously authenticated
messages are made untrustworthy). Their algorithms are based on key-evolving
schemes [10]. Nonetheless, Bellare et al. consider only algorithms (but not pro-
tocols) and they do not deal with the issue of synchronising the evolution of the
shared key at both parties. That is, they propose out-of-context (non-interactive)
solutions with respect to our purpose.

202 G. Avoine et al.

Abdalla and Bellare [4] investigate a related question which is “re-keying”.
Their formal analysis show that appropriate re-keying techniques “increase” the
lifetime of a key. They consider re-keying in the context of symmetric encryption
(in order to thwart attacks based on the ability to get lots of encrypted messages
under the same key), and forward security (in order to protect past keys). Yet, they
confine their analysis to algorithms and not protocols. Hence, as Bellare et al. [14],
they do not treat the synchronisation issues that arise from evolving a shared sym-
metric key.

The Signal messaging protocol [1] uses a key derivation scheme called “dou-
ble ratchet algorithm” [31]. This scheme combines a DH based mechanism with
a symmetric key-evolving mechanism (based on a one-way function). The first
mechanism provides an asymmetric ratchet, whereas the second provides a sym-
metric ratchet. The asymmetric ratchet is applied when a fresh DH share is
received (included in an application message) from the peer. The symmetric
ratchet is applied when a party wants to send several successive messages with-
out new incoming message from its partner. Thanks to the DH scheme, the
asymmetric ratchet is supposed to provide forward secrecy.1 Regarding the sym-
metric ratchet, each party is compelled to store the decryption keys of the not
yet received messages. This is due to the asynchronous nature of the Signal
protocol. Therefore, the symmetric ratchet in Signal does not provide forward
secrecy, as stated in their security analysis by Cohn-Gordon, Cremers, Dowling,
Garratt, and Stebila [19]: “old but unused receiving keys are stored at the peer
for an implementation dependent length of time, trading off forward security for
transparent handling of outdated messages. This of course weakens the forward
secrecy of the keys”. Consequently, Cohn-Gordon et al. choose not to model this
weakened property. In turn, Alwen, Coretti, and Dodis [6] incorporate the latter
in the security analysis of their “generalised Signal protocol”. But the crucial
difference in their notion of forward security is that, as soon as the receiver is
compromised, no more security can be provided. On the contrary, we tackle the
synchronisation issue, and solve it in our protocol. The security model we use
captures forward secrecy and allows corrupting a party and its partner as soon
as the targeted party “accepts” (i.e., deems the session key can be safely used).
With regard to Signal, our protocol can be compared to the asymmetric ratchet
(in synchronous mode), and yet does not implement asymmetric functions.

We stress that the goals of several of the aforementioned protocols are not the
same as ours. Nonetheless, the small number of existing symmetric-key proto-
cols that provide forward secrecy, and the lukewarm security level they achieve
illustrate that combining symmetric-key cryptography and (a strong form of)
forward secrecy is a non-trivial task.

1.2 Contributions

We describe the SAKE protocol, a two-party authenticated key exchange proto-
col in the symmetric-key setting with the following characteristics.
1 In Signal, the DH exchanges can be asynchronous. This impairs the forward secrecy

property usually ensured by this scheme.

SAKE with Perfect Forward Secrecy 203

– It guarantees forward secrecy.
– It is self-synchronising. That is, after a correct and complete session (and

whatever the internal state of the parties prior to the session), the two parties
involved in the protocol run share a new session key, and their internal state
is updated and synchronised.

– It allows establishing an (virtually) unlimited number of sessions (as opposite
to symmetric-key protocols that make use of a predefined list of master keys,
each being used once only).

– The amount of calculation done by both parties in a single protocol run
is strictly bounded. In particular we avoid the need of sending additional
information in order to resynchronise, such as a (sufficiently large) counter
that keeps track of the evolution of the master keys, and the subsequent
drawbacks: periodically doing a great amount of computations at once (when
resynchronisation is necessary), and consuming bandwidth (to transmit the
additional data).

In addition,we provide a formal security proof for SAKE.Wealso present a comple-
mentary mode of SAKE (that we call SAKE-AM) which is an “aggressive mode” of
the protocol. This mode inverts the role of the initiator and the responder in terms
of calculations (in SAKE, the initiator performs – at most – two additional MAC
computations compared to the responder). Using SAKE and SAKE-AM together
results in an implementation (gathering all the aforementioned properties, starting
with the forward secrecy property) that allows any party to be either initiator or
responder of a session, and such that the smallest amount of calculation is always
done by the same party. This is particularly convenient in the context of a set of
(low-resource) end-devices communicating with a central server. In such a case, the
end-device supports the smallest amount of calculation, whereas either the server
or the end-device can initiate a session.

1.3 Our Approach

Key Concepts. The authenticated key exchange protocol we propose is solely
based on symmetric-key functions. Not only does it provide mutual authentica-
tion and key agreement, but it guarantees perfect forward secrecy. We attain this
very strong form of long-term security by using a key-evolving scheme. As soon
as two parties make a shared (symmetric) key evolve, a synchronisation prob-
lem arises. We provide a simple and efficient solution to this issue. We require
using neither a clock, nor an additional resynchronising procedure. Our solu-
tion is based on a second (independent) chain of master keys. These keys allow
tracking the evolution of the internal state, and resynchronising the parties if
necessary. The parties authenticate each other prior to updating their master
keys. Hence the possible gap is bounded (as we prove it), and each party is
always able to catch up in case of desynchronisation (of course, if the session
is correct and complete). Mutual authentication, key exchange (with forward
secrecy), and resynchronisation are done in the continuity of the protocol run.

204 G. Avoine et al.

Our protocol is based on two symmetric master keys: a derivation master key
K and an authentication master key K ′. The protocol makes use of symmetric-
key functions only. Each pair of parties (A, B) shares distinct master keys. The
main lines of the protocol are as follows. The two parties exchange pseudo-
random values rA, rB which are used to

– authenticate each other: each party sends back the value it has received in a
message that is MAC-ed with the authentication master key K ′. For instance,
if B receives rA it replies with rB‖τB where τB = Mac(K ′, B‖A‖rB‖rA).

– Compute a session key: a pseudo-random function KDF is keyed with the
derivation master key K and uses the pseudo-random values as input. That
is, sk ← KDF(K, f(rA, rB)). f(rA, rB) is deliberately left undefined, and des-
ignates an operation between rA and rB such as the concatenation or the
bitwise addition.

Providing Forward Secrecy. The shared key K is used to compute the session
keys. If this key remains unchanged throughout all protocol runs, its disclosure
allows computing all past (and future) session keys. To solve this issue we apply
a key-evolving technique. We update the master key such that a previous master
key cannot be computed from an updated one. Each of the two parties involved
in a session updates its own copy of the derivation master key K with a non-
invertible function update: K ← update(K). Hence this protects past sessions in
case the (current value of) master key K is revealed. Each party authenticates its
peer prior to updating the derivation master key. If the master key is updated
throughout the session, it may happen that one of the two involved parties
update its master key whereas the other does not. This leads to a synchronisation
problem.

K′
0 K′

1 K′
2 K′

3 · · ·

K0 K1 K2 K3 · · ·

sk0 sk1 sk2 sk3

update

update

K
D
F

Fig. 1. Master key chains in SAKE. At epoch j, the initiator stores four keys: K =
Kj , and K′

j−1, K′
j , K′

j+1. The responder stores two keys: K = Kj and K′ = K′
j .

(Illustration with j = 2)

The Synchronisation Problem. If two parties use a different key K, they are
obviously not able to compute a shared session key. Hence they must resynchro-
nise first. More fundamentally, if a party initiates a session with some derivation

SAKE with Perfect Forward Secrecy 205

master key K, and its partner stores a master key corresponding to an earlier
epoch, then an adversary that corrupts the partner can compute past session
keys with respect to the initiator, hence trivially break forward secrecy. There-
fore, it is of paramount importance that the parties know if the master key of its
partner has actually been updated. We provide a solution to both issues in the
continuity of a single session. In particular, no extra procedure is needed in order
for a desynchronised party to catch up. We avoid the need of sending additional
information in order to resynchronise, such as a (sufficiently large) counter that
keeps track of the evolution of the master keys, and the subsequent drawbacks:
periodically doing a great amount of computations at once (when resynchronisa-
tion is necessary), and consuming bandwidth (to transmit the additional data).
We base our solution on the second master key K ′ used to authenticate the
messages exchanged during a session. The solution is to update K ′ at the same
time as K (see Fig. 1). Therefore the evolution of K ′ follows that of K. The
party that receives the first authenticated message uses the MAC tag to learn
which epoch the sender belongs to. Of course, K ′ can also be desynchronised in
the same way as K. This is why, whereas one party (responder B) stores only
one sample of the key K ′, the other party (initiator A) stores several samples of
the authentication master key K ′ corresponding to several consecutive epochs.
We prove that only three keys K ′

j+1, K ′
j , K ′

j−1, corresponding respectively to
the next, the current, and the previous epochs, are sufficient in order for A and
B to resynchronise. The initiator (A) is the one able to deal with the synchroni-
sation issue, and consequently tells B how to behave. Each party “accepts” only
after it has received a confirmation (final MAC-ed messages) that its partner
has already updated its own master keys. In such a case, the party ending in
accepting state deems that the fresh session key can be safely used. Otherwise
(in particular when the parties are desynchronised), the session key is discarded.

Since two independent master keys are used (authentication and session key
derivation), one can safely maintain a copy of K ′ corresponding to an earlier
epoch (K ′

j−1) without risk of threatening forward secrecy. Only one sample of
the derivation master key K is kept: the most up-to-date.

1.4 Outline of the Paper

In Sect. 2 we detail the security model used to analyse the protocol we propose.
Our authenticated key exchange protocol in symmetric-key setting with forward
secrecy is described in Sect. 3. In Sect. 4, we investigate the feasibility of a variant
based on our protocol. Formal proofs of soundness and security for the main
protocol are presented in Sect. 5. The differences between our approach and the
DH scheme are highlighted in Sect. 6. Finally, we conclude in Sect. 7.

2 Security Model

Before describing our symmetric-key protocol in Sect. 3 (which is self-sufficient
and contains all the specifics required to understand the protocol), we present
in this section the security model that we employ to formally prove its security.

206 G. Avoine et al.

In a nutshell, we use the model for authenticated key exchange protocols
described by Brzuska, Jacobsen, and Stebila [18]. This model incorporates all
the features that are usually considered when analysing key agreement proto-
cols in the public-key setting (e.g., DH-based protocols with signature). In this
model, the adversary has full control over the communication network. It can
forward, alter, drop any message exchanged by honest parties, or insert new mes-
sages. Brzuska et al.’s model then captures adaptive corruptions but also perfect
forward secrecy. This appears in the definition of the security experiment.

2.1 Execution Environment

In this section, we present the security model for authenticated key exchange
protocols described by Brzuska et al. [18], and reuse the corresponding notation.

Parties. A two-party protocol is carried out by a set of parties P =
{P0, . . . , Pn−1}. Each party Pi has an associated long-term key ltk. Each pair of
parties shares a distinct key ltk.2

Instances. Each party can take part in multiple sequential executions of the
protocol. We prohibit parallel executions of the protocol. Indeed, since the pro-
tocol we propose is based on shared evolving symmetric keys, running multiple
instances in parallel may cause some executions to abort (we elaborate more
on this in Sect. 6). This is the only restriction we demand compared to AKE
security models used in the public-key setting.

Each run of the protocol is called a session. To each session of a party Pi,
an instance πs

i is associated which embodies this (local) session’s execution of
the protocol, and has access to the long-term key of the party. In addition, each
instance maintains the following state specific to the session.

– ρ: the role ρ ∈ {init, resp} of the session in the protocol execution, being either
the initiator or the responder.

– pid: the identity pid ∈ P of the intended communication partner of πs
i .

– α: the state α ∈ {⊥, running, accepted, rejected} of the instance.
– sk: the session key derived by πs

i .
– κ: the status κ ∈ {⊥, revealed} of the session key πs

i .sk.
– sid: the identifier of the session.
– b: a random bit b ∈ {0, 1} sampled at initialisation of πs

i .

We put the following correctness requirements on the variables α, sk, sid and
pid. For any two instances πs

i , πt
j , the following must hold:

(πs
i .α = accepted) ⇒ (πs

i .sk �=⊥ ∧πs
i .sid �=⊥) (1)

(
πs

i .α = πt
j .α = accepted ∧ πs

i .sid = πt
j .sid

) ⇒
⎧
⎨

⎩

πs
i .sk = πt

j .sk
πs

i .pid = Pj

πt
j .pid = Pi

(2)

2 Note that ltk can be a set of master keys (e.g., each one used by the party for a
different purpose).

SAKE with Perfect Forward Secrecy 207

Adversarial Queries. The adversary A is assumed to control the network, and
interacts with the instances by issuing the following queries to them.

– NewSession(Pi, ρ, pid): this query creates a new instance πs
i at party Pi, having

role ρ, and intended partner pid.
– Send(πs

i ,m): this query allows the adversary to send any message m to πs
i .

If πs
i .α �= running, it returns ⊥. Otherwise πs

i responds according to the
protocol specification.

– Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi. If Corrupt(Pi)
is the ν-th query issued by the adversary, then we say that Pi is ν-corrupted.
For a party that has not been corrupted, we define ν = +∞.

– Reveal(πs
i): this query returns the session key πs

i .sk, and πs
i .κ is set to

revealed.
– Test(πs

i): this query may be asked only once throughout the game. If
πs

i .α �= accepted, then it returns ⊥. Otherwise it samples an independent

key sk0
$←− K, and returns skb, where sk1 = πs

i .sk. The key skb is called the
Test-challenge.

Definition 1 (Partnership). Two instances πs
i and πt

j are partners if πs
i .sid =

πt
j .sid.

Definition 2 (Freshness). An instance πs
i is said to be fresh with intended

partner Pj, if

(a) πs
i .α = accepted and πs

i .pid = Pj when A issues its ν0-th query,
(b) πs

i .κ �= revealed and Pi is ν-corrupted with ν0 < ν, and
(c) for any partner instance πt

j of πs
i , we have that πt

j .κ �= revealed and Pj is
ν′-corrupted with ν0 < ν′.

Note that the notion of freshness incorporates a requirement for forward
secrecy.

An authenticated key exchange protocol (AKE) is a two-party protocol satis-
fying the correctness requirements 1 and 2, and where the security is defined in
terms of an AKE experiment played between a challenger and an adversary. This
experiment uses the execution environment described above. The adversary can
win the AKE experiment in one of two ways: (i) by making an instance accept
maliciously, or (ii) by guessing the secret bit of the Test-instance.

Definition 3 (Entity Authentication (EA)). An instance πs
i of a protocol

Π is said to have accepted maliciously in the AKE security experiment with
intended partner Pj, if

(a) πs
i .α = accepted and πs

i .pid = Pj when A issues its ν0-th query,
(b) Pi and Pj are ν- and ν′-corrupted with ν0 < ν, ν′, and
(c) there is no unique instance πt

j such that πs
i and πt

j are partners.

The adversary’s advantage is defined as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

208 G. Avoine et al.

Definition 4 (Key Indistinguishability). An adversary A against a protocol
Π, that issues its Test-query to instance πs

i during the AKE security experiment,
answers the Test-challenge correctly if it terminates with output b′, such that

(a) πs
i is fresh with some intended partner Pj, and

(b) πs
i .b = b′.

The adversary’s advantage is defined as

advkey-indΠ (A) =
∣
∣
∣
∣Pr[πs

i .b = b′] − 1
2

∣
∣
∣
∣ .

Definitions 3 and 4 allow the adversary to corrupt an instance involved in the
security experiment (once the targeted instance has accepted, in order to exclude
trivial attacks). Therefore, protocols secure with respect to Definition 5 below
provide perfect forward secrecy. Note that we do not allow the targeted instance
to be corrupted before it accepts. This security model does not capture key-
compromise impersonation attacks (KCI) [15] since that would allow trivially
breaking key exchange protocols solely based on shared symmetric keys.

Definition 5 (AKE Security). We say that a two-party protocol Π is a secure
AKE protocol if Π satisfies the correctness requirements 1 and 2, and for all
probabilistic polynomial time adversary A, advent-authΠ (A) and advkey-indΠ (A) are a
negligible function of the security parameter.

2.2 Security Definitions of SAKE’s Building Blocks

In this section, we recall the definitions of the main security notions we use in
our results. The security definition of a pseudo-random function is taken from
Bellare, Desai, Jokipii, and Rogaway [9], and that of a MAC strongly unforgeable
under chosen-message attacks from Bellare and Namprempre [11]. We recall
also the definition of matching conversations initially proposed by Bellare and
Rogaway [12], and modified by Jager, Kohlar, Schäge, and Schwenk [27].

Secure PRF. A pseudo-random function (PRF) F is a deterministic algorithm
which given a key K ∈ {0, 1}λ and a bit string x ∈ {0, 1}∗ outputs a string
y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in λ). Let Func be the set of all
functions of domain {0, 1}∗ and range {0, 1}γ . The security of a PRF is defined
with the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}λ, G

$←− Func, and b
$←− {0, 1} uniformly

at random.
2. The adversary may adaptively query values x to the challenger. The challenger

replies to each query with either y = F (K,x) if b = 1, or y = G(x) if b = 0.
3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

SAKE with Perfect Forward Secrecy 209

The adversary’s advantage is defined as

advprfF (A) =
∣
∣
∣
∣Pr[b = b′] − 1

2

∣
∣
∣
∣ .

Definition 6 (Secure PRF). A function F :{0, 1}λ ×{0, 1}∗ → {0, 1}γ is said
to be a secure pseudo-random function (PRF) if, for all probabilistic polynomial
time adversary A, advprfF (A) is a negligible function in λ.

Secure MAC. A message authentication code (MAC) consists of two algorithms
(Mac,Vrf). The tagging algorithm Mac takes as input a key K ∈ {0, 1}k and a
message m ∈ {0, 1}∗ and returns a tag τ ∈ {0, 1}γ (with γ being polynomial
in k). The verification algorithm Vrf takes as input the key K, a message m,
and a candidate tag τ for m. It outputs 1 if τ is a valid tag on message m with
respect to K. Otherwise, it returns 0. The notion of strong unforgeability under
chosen-message attacks (SUF-CMA) for a MAC G = (Mac,Vrf) is defined with
the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}k, and sets S ← ∅.

2. The adversary may adaptively query values m to the challenger. The chal-
lenger replies to each query with τ = Mac(K,m) and records (m, τ): S ←
S ∪ {(m, τ)}.
In addition, the adversary may adaptively query values (m′, τ ′) to the chal-
lenger. The challenger replies to each query with Vrf(K,m′, τ ′).

3. Finally, the adversary sends (m∗, τ∗) to the challenger.

The adversary’s advantage is defined as

advsuf-cma
G (A) = Pr[Vrf(K,m∗, τ∗) = 1 ∧ (m∗, τ∗) /∈ S].

Definition 7 (SUF-CMA). A message authentication code G = (Mac,Vrf)
with Mac:{0, 1}k × {0, 1}∗ → {0, 1}γ is said to be strongly unforgeable under
chosen-message attacks (SUF-CMA) if, for all probabilistic polynomial time
adversary A, advsuf-cma

G (A) is a negligible function in k.

Matching Conversations. Let Ti,s be the sequence of all (valid) messages sent
and received by an instance πs

i in chronological order. For two transcripts Ti,s

and Tj,t, we say that Ti,s is a prefix of Tj,t if Ti,s contains at least one message,
and the messages in Ti,s are identical to the first |Ti,s| messages of Tj,t.

Definition 8 (Matching Conversations). We say that πs
i has a matching

conversation to πt
j, if

– πs
i has sent all protocol messages and Tj,t is a prefix of Ti,s, or

– πt
j has sent all protocol messages and Ti,s = Tj,t.

210 G. Avoine et al.

3 Our Symmetric-Key AKE Protocol with Perfect
Forward Secrecy

In this section we describe our main protocol. Although all the calculations are
based on shared master keys, forward secrecy is guaranteed by using a key-
evolving scheme. More precisely, we use two types of keys: one to compute the
session keys, the other to authenticate messages and resynchronise when neces-
sary. This second type of keys allows tracking the master keys evolution, and
limit the gap (in terms of keys update) between both parties. Mutual authenti-
cation, key exchange, and synchronised update of the master keys are done in
the same session.

3.1 Description of the Protocol

The protocol is depicted by Fig. 2. The parameter δAB computed by A corre-
sponds to the gap between A and B with respect to the evolution of the master
keys. We prove that δAB ∈ {−1, 0, 1} (see Sect. 5.1). That is, A can only be either
one step behind, or in sync, or one step ahead to B. During a session, A uses the
keys K ′

j , K ′
j−1, K ′

j+1 (by order of likelihood) and the first message (mB) sent by
B to learn δAB . The message mB is computed with the current value K ′ of B.
Therefore mB indicates the current synchronisation state of B. Then A informs
B. One bit ε is enough (message mA) because B takes two behaviours only: if
δAB ∈ {−1, 0} (ε = 0), and if δAB = 1 (ε = 1). A and B behave as follows.

– If A is in sync with B (δAB = 0), A computes the new session key, and
updates its master keys. Then, upon reception of mA, B does the same.

– If A is in advance (δAB = 1), A waits for B to resynchronise (i.e., B updates
its master keys a first time), and to proceed with the regular operations (i.e.,
B computes the new session key, and updates its master keys a second time).
Then, once A receives a confirmation that B is synchronised (message τ ′

B),
A performs the regular operations as well (session key computation, master
keys update). Since A waits for B to resynchronise before proceeding, the gap
between the parties is bounded (as proved in Sect. 5.1).

– If A is late (δAB = −1), it resynchronises (i.e., it updates its master keys a first
time), and then performs the regular operations (session key computation,
master keys update). Then (upon reception of message mA), B applies the
regular operations.

Once a correct and complete session ends, three goals are achieved in the same
protocol run: (i) the two parties have updated their master keys, (ii) they are
synchronised (which stems in particular from the fact that the gap between A
and B is bounded, i.e., |δAB | ≤ 1), and (iii) they share a new session key. In
other words, the protocol is self-synchronising.

SAKE with Perfect Forward Secrecy 211

Before the first session between A and B, the master keys are initialised as
follows:

1. K and K ′ are uniformly chosen at random.
2. K ′

j−1 ←⊥
3. K ′

j ← K ′

4. K ′
j+1 ← update(K ′)

Since K ′
j+1 and K ′

j can be computed from K ′
j−1, it is possible to store only

K ′
j−1, and to compute the two other keys when necessary during the session.

Then, with respect to the security model presented in Sect. 2, the long-term key
of A and B corresponds respectively to A.ltk = (K,K ′

j−1) and B.ltk = (K,K ′).
Although this does not appear explicitly in Fig. 2, a party aborts the session

if it receives a message computed with an invalid identity. For the responder B an
invalid identity corresponds to an initiator party A it does not share master keys
with. For an initiator A, the particular case B = A, among other possibilities,
yields an error (each party must have a distinct identity).

Number of Rounds. The session can be reduced from five to four messages in
some cases. Indeed, regarding the synchronisation state, in two cases (when δAB ∈
{−1, 0}, that is ε = 0), A and B are synchronised, and share a session key once B
has received message mA and executed the subsequent operations. Therefore, in
such a case, the session can end upon reception of message τ ′

B by A. More precisely

– if δAB = 1 (ε = 1), then A accepts upon reception of τ ′
B , and B accepts upon

reception of τ ′
A;

– if δAB ∈ {−1, 0} (ε = 0), then A accepts upon reception of τ ′
B , and B accepts

upon reception of mA.

Each message of the protocol fulfills a specific task: party authentication,
detecting desynchronisation, and then catching up. This eventually results in
the forward secrecy property being ensured. Removing one message yields an
attack, as shown by any of the numerous alternative versions we have analysed.
Although we do not formally prove it, we do think that the figure of five rounds
is the least achievable in order to take into account all cases.

3.2 Notation

For the sake of clarity, we use the following notation in Fig. 2:

– kdf corresponds to: sk ← KDF(K, f(rA, rB))
– updA corresponds to

1. K ← update(K)
2. K ′

j−1 ← K ′
j

3. K ′
j ← K ′

j+1

4. K ′
j+1 ← update(K ′

j+1)
– updB corresponds to

1. K ← update(K)
2. K ′ ← update(K ′)

212 G. Avoine et al.

BA
(K, K′

j+1, K
′
j , K

′
j−1 () K, K ′)

rA
$←− {0, 1}λ A‖rA−−−−−−−−→

rB
$←− {0, 1}λ

τB ← Mac(K′, B‖A‖rB‖rA)
mB ← rB‖τB

mB←−−−−−−−−
if (Vrf(K′

j , B‖A‖rB‖rA, τB) = true)
δAB ← 0
K′ ← K′

j ; kdf; updA; ε ← 0
else if (Vrf(K′

j−1, B‖A‖rB‖rA, τB) = true)
δAB ← 1
K′ ← K′

j−1; ε ← 1
else if (Vrf(K′

j+1, B‖A‖rB‖rA, τB) = true)
δAB ← −1
K′ ← K′

j+1; updA; kdf; updA; ε ← 0
else

abort

τA ← Mac(K′, ε‖A‖B‖rA‖rB)
mA ← ε‖τA

mA−−−−−−−−→
if (Vrf(K′, ε‖A‖B‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB

τ ′
B ← Mac(K′, rB‖rA)

τ ′
B←−−−−−−−−

if (ε = 0)
K′ ← K′

j

if (Vrf(K′, rB‖rA, τ ′
B) = false)

abort
else if (ε = 1)

K′ ← K′
j+1

if (Vrf(K′, rB‖rA, τ ′
B) = false)

abort
kdf; updA

τ ′
A ← Mac(K′, rA‖rB)

τ ′
A−−−−−−−−→

if (Vrf(K′, rA‖rB , τ ′
A) = false)

abort

Fig. 2. SAKE protocol

SAKE with Perfect Forward Secrecy 213

Moreover, Vrf(k,m, τ) denotes the MAC verification function that takes as
input a secret key k, a message m, and a tag τ . It outputs true if τ is a valid
tag on message m with respect to k. Otherwise, it returns false.

3.3 SAKE-AM: A Complementary Mode of SAKE

From SAKE, we can derive an aggressive mode that allows any party to be either
initiator or responder, and such that the smallest amount of calculation is always
done by the same party.

In SAKE the initiator A owns the three keys K ′
j+1, K ′

j , K ′
j−1, and the respon-

der B does the lightest computations. In this mode B owns the three keys, and A
does the smallest amount of calculation. The main idea is to skip the first SAKE
message A‖rA. Hence the roles between the two parties are swapped. This leads
to other minor changes in message format compared to SAKE. Despite these
differences, the messages and the calculations are essentially the same as in
SAKE. This mode remains a sound and secure AKE protocol (according to Def-
inition 5).3 We call this mode SAKE in aggressive mode (SAKE-AM).

End-device [A] Back end [B]
(K, K′) (K, K′

j+1,
K′

j , K
′
j−1)

A‖rA‖τA−−−−−−−−−−→
compute δBA

ε‖rB‖τB←−−−−−−−−−−
τ ′

A−−−−−−−−−−→[
τ ′

B←−−−−−−−−−−
]

(a) End-device is initiator (SAKE-AM)

End-device [B] Back end [A]
(K, K′) (K, K′

j+1,
K′

j , K
′
j−1)

A‖rA←−−−−−−−−−−
rB‖τB−−−−−−−−−−→

compute δAB

ε‖τA←−−−−−−−−−−
τ ′

B−−−−−−−−−−→[
τ ′

A←−−−−−−−−−−
]

(b) Back end is initiator (SAKE)

Fig. 3. Symmetric-key authenticated key exchange with forward secrecy between a
low-resource end-device and a back-end server. Both parties may initiate the session.
In some cases, the last message can be skipped.

This can be applied in the context of industrial IoT when a set of end-
devices (e.g., sensors, actuators) communicate with a central server. When the
end-device wants to initiate a communication, protocol SAKE-AM is launched.
3 The proofs of soundness and security for SAKE-AM are essentially the same as for

SAKE (see Sect. 5). They are given in the full version of the paper [8].

214 G. Avoine et al.

Otherwise (the server is initiator), SAKE is used (see Fig. 3). Therefore, the
end-device always does the lightest computations.

4 A Random-Free Variant of SAKE

From SAKE, one can devise several variants. First, the three authentication
keys K ′

j−1, K ′
j , K ′

j+1 can be replaced by two local counters cA, cB (respectively
stored by A and B) that keep track of the evolution of the derivation master
key K, with one static authentication master key K ′.4 On the initiator’ side, the
MAC verifications are then done with consecutive values of the counter j − 1,
j, j + 1. Overall, the sequence of operations and the computations are similar
to that of SAKE. This means mainly replacing function x �→ Mac(K ′

j , x) with
x �→ Mac(K ′, j‖x). Yet, this alternative implies the storage of two keys and one
counter: K, K ′ and cA/cB , instead of two keys only: K and K ′

j−1/K ′ (and, one
the initiator’ side only, one or two additional calls to update in order to compute
K ′

j and, possibly, K ′
j+1).

Another, more interesting, variant is the following.5 In SAKE, the pseudo-
random values rA, rB are used to yield a fresh session key, and participate also
in the authentication of the parties. Using new values during each session con-
tributes to achieving these two tasks. Yet, these parameters are not the only
ones to evolve throughout the successive protocol runs. The master keys do
also. Therefore, one can consider removing the pseudo-random values from the
messages. Without the pseudo-random values, several messages become cryp-
tographically valid for each flow (instead of one only in SAKE). For instance,
without rA, party A may accept as second message either τB = Mac(K ′

j , B‖A),
or τB = Mac(K ′

j−1, B‖A), or τB = Mac(K ′
j+1, B‖A). Likewise, without rB , B

may accept as third message either 0‖τA or 1‖τA. Consequently, in this variant,
we prefix each MAC-ed message with its index from 1 to 4 (but not the first one
which carries only the initiator’s identity).

The removal of the pseudo-random values enables a “mismatch attack”. By
“attack” we mean the following: an adversary is able to compel B to compute a
message (message 4) which is unaltered by the adversary and expected by A, and
yet A rejects this message as invalid. Although unpleasant, this “attack” does
not break any claimed security property (in particular entity authentication).
Moreover, this scenario cannot damage the synchronisation of the two parties.
That is, if they start a new session, the latter completes successfully (if the
adversary remains passive), as in SAKE.

In this variant, the length of the messages is shortened, and this avoids also
calling the pseudo-random generation function. This is advantageous for low-
resource devices. Nonetheless, the possibility provided by the aforementioned
scenario is not what one usually expects from a security protocol. Consequently,
for the practitioners for whom this mismatch attack is unacceptable, the SAKE
protocol is more adequate.
4 This alternative has been suggested by anonymous reviewers of Crypto 2019.
5 We describe it from SAKE, but the same holds for SAKE-AM.

SAKE with Perfect Forward Secrecy 215

5 Security and Soundness for SAKE

In this section we prove that (i) SAKE is sound, and (ii) it is a secure AKE
protocol according to Definition 5 given above.

5.1 Soundness of SAKE

We want to show that SAKE is sound, which essentially means that, once a
correct session is complete, both parties have updated their respective internal
state, are synchronised, and share the same (new) session key. We call a “benign”
adversary an adversary that faithfully forwards all messages between an initiator
A and a responder B.

Lemma 1. Let A and B be respectively the initiator and the responder of a
SAKE session. Let δAB be the gap between A and B with respect to the evolution
of the master keys of both parties. The following conditions always hold:

1. δAB ∈ {−1, 0, 1}, and
2. whatever the synchronisation state of A and B (i.e., whatever A and B are

synchronised or not) when a new session starts, when that session completes
in presence of a benign adversary, then
(a) A and B have updated their master keys at least once, and
(b) A and B are synchronised (with respect to their master keys), and
(c) A and B share the same session key.

In order to prove Lemma 1, we use the following notation. The messages
exchanged during a session are numbered from 1 to 5. The notation “(iA, iB)”
means that, when the session ends, the last valid message received by A is
message of index iA, and the last valid message received by B is message of
index iB . We call a (iA, iB)-session a session where the last message received by
A is message iA, and the last message received by B is message iB . By convention
iA = 0 means that no message has been received by A.

It may happen that A send a first message which is not received by B. B
cannot know if it has missed a first message. But this is of no consequence
regarding the synchronisation between A and B (A may simply run the protocol
anew). Therefore we do not use the value iB = 0 (it is equivalent to iB = 5). At
initialisation (i.e., before the first run of the protocol), (iA, iB) is set to (4, 5).
Since A sends message i ∈ {3, 5} only upon reception of a valid message i − 1,
and B sends message j ∈ {2, 4} only upon reception of a valid message j − 1,
the only possible values for (iA, iB) are: (0, 1), (2, 1), (2, 3), (4, 3), and (4, 5).

Proof. We prove Lemma 1. We first prove item 1.
Let cA (resp. cB) be a (virtual) monotonically increasing counter initialised

to 0 that follows the evolution of the master keys held by A (resp. B). That is,
cA (resp. cB) is increased each time the master keys K, K ′

j+1, K ′
j , K ′

j−1 (resp.
K, K ′) are updated. The parameter δAB corresponds to the gap between A and
B with respect to the evolution of their master keys, hence δAB = cA − cB .

216 G. Avoine et al.

We prove item 1 by constructing iteratively Table 1b.
Before the first protocol run, A and B are synchronised. That is δAB =

cA − cB = 0, and (cA, cB) = (i, i) (with i = 0). Therefore, A can validate τB (in
message mB) with the same key K ′

j = K ′ as B. Hence A computes δAB = 0, and
ε = 0. Consequently, if one carries out the protocol run starting with δAB = 0
and ε = 0, for each possible value (iA, iB), one eventually gets the following:

– (cA, cB) = (i, i) and δAB = 0 after a (0, 1)-session,
– (cA, cB) = (i + 1, i) and δAB = 1 after a (2, 1)-session,
– (cA, cB) = (i + 1, i + 1) and δAB = 0 after a (2, 3)-session,
– (cA, cB) = (i + 1, i + 1) and δAB = 0 after a (4, 3)-session,
– (cA, cB) = (i + 1, i + 1) and δAB = 0 after a (4, 5)-session.

This corresponds to the first column of Tables 1a and b. As we can see, the only
possible values for δAB after any session are 0 and 1. δAB = 0 has already been
investigated. Hence, starting with δAB = 1 (i.e., (cA, cB) = (i + 1, i)), we look
for all the values δAB may have when the session ends, considering any possible
session.

(cA, cB) = (i + 1, i) means that A is in advance with respect to B. In such
a case, A succeeds in validating τB with K ′

j−1 (and, indeed, finds δAB = 1).
Then A uses δAB = 1 and ε = 1. If one carries out the protocol run using these
two values, one gets three possible values for δAB : 1, 0, −1. This corresponds to
the second column of Table 1b, and shows that a third value is possible for δAB ,
which is −1 (i.e., (cA, cB) = (i, i + 1)).

Then we restart the protocol with all possible sessions, assuming that
(cA, cB) = (i, i + 1) at the beginning of the run. This means that A is one step
late with respect to B. In such a case, A succeeds in validating τB with key K ′

j+1

(and, indeed, finds δAB = −1). Then A uses δAB = −1 and ε = 0. If one carries
out the protocol run using these two values, we end with three possible values for
δAB (third column of Table 1b): −1, 0 and 1, that have been explored already. This
proves that, whatever the sequences of sessions, the only possible values for δAB

are in {−1, 0, 1}.
Now we prove item 2 of Lemma 1.
We know that δAB ∈ {−1, 0, 1}. For each possible value of δAB at the begin-

ning of the session, the last line of Table 1b indicates the value of that parameter
after a correct and complete session (i.e., a (4, 5)-session). As we can see, A and
B are always synchronised (i.e., δAB = 0) in such a case whatever the value of
δAB when the session starts. Furthermore, the session key computation imme-
diately precedes the last update of the derivation master key K. Hence, when a
correct and complete session ends, A and B use the same derivation master key
K to compute the session key. Therefore, using the same values rA, rB , A and
B compute the same session key.

In addition, Table 1a shows that, whatever the synchronisation state of A and
B (i.e., cA and cB) at the beginning of the session, after a correct and complete
session, A and B have updated their internal state at least once (as the last line
of the table, corresponding to a (4, 5)-session, indicates). ��

SAKE with Perfect Forward Secrecy 217

Table 1. Possible values for δAB and (cA, cB) among all sequences of sessions in SAKE

(a) Possible values for (cA, cB)

session
(cA, cB)

(i, i) (i + 1, i) (i, i + 1)

(0, 1) (i, i) (i + 1, i) (i, i + 1)
(2, 1) (i + 1, i) (i + 1, i) (i + 2, i + 1)
(2, 3) (i + 1, i + 1) (i + 1, i + 2) (i + 2, i + 2)
(4, 3) (i + 1, i + 1) (i + 2, i + 2) (i + 2, i + 2)
(4, 5) (i + 1, i + 1) (i + 2, i + 2) (i + 2, i + 2)

(b) Possible values for δAB

session
δAB 0 1 −1

(0, 1) 0 1 −1
(2, 1) 1 1 1
(2, 3) 0 −1 0
(4, 3) 0 0 0
(4, 5) 0 0 0

5.2 Security of SAKE

In order to prove that the protocol SAKE is a secure AKE protocol, we use the
execution environment described in Sect. 2.1. We define the partnering between
two instances with the notion of matching conversations (see Definition 8). That
is, we define sid to be the transcript, in chronological order, of all the (valid)
messages sent and received by an instance during the key exchange, but, possibly,
the last one. Furthermore, we choose the function update to be a PRF, that is
update : K �→ PRF(K,x) for some (constant) value x.

Theorem 1. The protocol SAKE is a secure AKE protocol, and for any prob-
abilistic polynomial time adversary A in the AKE security experiment against
protocol SAKE, we have

advent-authSAKE (A) ≤ nq
(
(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma

Mac (C)
)

advkey-indSAKE(A) ≤ nq
(
(q − 1)advprfupdate(B) + advprfKDF(D)

)
+ advent-authSAKE (A)

where n is the number of parties, q the maximum number of instances (ses-
sions) per party, λ the size of the pseudo-random values (rA, rB), and B is an
adversary against the PRF-security of update, C an adversary against the SUF-
CMA-security of Mac, and D an adversary against the PRF-security of KDF.

Proof. In order for an initiator instance πs
i at some party Pi to accept, two

valid messages (i.e., with valid MAC tags) must be received by πs
i (mB and τ ′

B).
We reduce the security of the Mac function to the (in)ability to forge a valid
output. Therefore we use the fact that the key K ′ is random. By assumption,
the genuine value of K ′ (i.e., the value used during the first session between
two same parties) is uniformly chosen at random. Yet K ′ (and K) is updated
throughout the session with the function update. If K ′ is random, we can rely
on the pseudo-randomness of update(·) = PRF(·, ·). In turn, since PRF(K ′, ·) can
be replaced with a truly random function, its output (updated K ′) is random.
Therefore, one can rely upon the pseudo-randomness of the function update
keyed with this new value K ′, and so forth. Each transition (i.e., each update

218 G. Avoine et al.

of K ′) implies a loss equal to advprfupdate(B) corresponding to the ability of an
adversary B to distinguish update from a random function.

If Pi is synchronised with the responder (δAB = 0), Pi updates its master
keys once (upon reception of mB). If Pi is in advance (δAB = 1), it updates its
keys at most once (if a valid message τ ′

B is received). If Pi is late (δAB = −1),
it updates its keys twice. Yet, in that case, Pi did not update its keys during
the previous session. Therefore, on average, Pi updates its keys at most once per
session. Hence, when the u-th session starts, Pi has updated its keys at most
u − 1 times on average, and, upon reception of τ ′

B, Pi updates the keys at most
two times.

This is similar regarding the responder. A responder instance πt
j at some

party Pj accepts only if the two messages mA and τ ′
A are valid. Upon reception

of a valid message mA, the keys are updated once (ε = 0) or twice (ε = 1). In
the latter case, the keys have not been updated during the previous session. This
means that the keys are updated on average at most once per session. Therefore,
when the u-th session starts, Pj has updated its keys at most u − 1 times on
average, and, upon reception of mA, the keys are updated at most two times.

We can now proceed with the proof. We proceed through a sequence of
games [13,32], where each consecutive game aims at reducing the challenger’s
dependency on the functions Mac, update and KDF. We first prove the entity
authentication security. Let Ei be the event that the adversary win the entity
authentication experiment in Game i.

Game 0. This game corresponds to the entity authentication security experiment
described in Sect. 2.1. Therefore

Pr[E0] = advent-authSAKE (A)

Game 1. The challenger aborts if there exists any instance that chooses a random
value rA or rB that is not unique. There is at most n × q random values, each
uniformly drawn at random in {0, 1}λ. Therefore the probability that at least
two random values be equal is at most nq(nq−1)

2λ . Hence

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

Game 2. The challenger tries to guess which instance will be the first to accept
maliciously. If the guess is wrong, the game is aborted. The number of instances
is at most nq. Therefore

Pr[E2] = Pr[E1] × 1
nq

Game 3. Let π be the instance targeted by the adversary. In this game, we
add an abort rule. The challenger aborts the experiment if π ever receives a
valid message mB (resp. mA) if it is an initiator (resp. responder) instance,
but no instance having a matching conversation to π has output that message.
We reduce the probability of this event to the security of the functions Mac

SAKE with Perfect Forward Secrecy 219

and update. As explained above, when the u-th session starts, the master keys
have been updated at most u − 1 times already. The genuine value of K ′ is
uniformly chosen at random. In order to be able to replace, during the current
session, the key used to compute the MAC tag in mA (resp. mB) with a random
value, one must rely upon the pseudo-randomness of the function update that
outputs (the new value of) K ′. In turn, this relies upon the (previous) key K ′

being random (and on the pseudo-randomness of update). Therefore, in order to
replace K ′ with a random value one must take into account the successive losses
advprfupdate(B), each corresponding to the ability of an adversary B to distinguish
the function update (keyed with a different key K ′) from a random function.
Since there is at most q sessions, this loss is at most (q − 1)advprfupdate(B). Then
we reduce the probability of the adversary A to win this game to the ability of
an adversary C to forge a valid tag τB (resp. τA).

Therefore, we replace each function update(K ′) = PRF(K ′, x) (keyed with a
different key K ′ throughout the, at most, q − 1 successive sessions established,
prior to that current session, by the same party that owns π) with truly ran-
dom functions Fupdate

0 , . . ., Fupdate
q−2 . Moreover, if an instance uses the same key

K ′ = K ′
i, 0 ≤ i < q − 1, to key update, then we replace update with the cor-

responding random function Fupdate
i . Since, to that point, the key K ′ = K ′

q−1

used to compute the authentication tag τB (resp. τA) is random, we reduce the
ability of A to win to the security of the Mac function. Hence

Pr[E2] ≤ Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma
Mac (C)

Game 4. The challenger aborts the experiment if π ever receives a valid message
τ ′
B (resp. τ ′

A), but no instance having a matching conversation to π has output
that message. Between the message mB (resp. mA) being received by π, and
the message τ ′

B (resp. τ ′
A) being received by π, the master keys are updated at

most twice. We reduce the probability of the adversary to win this game to the
security of the Mac function used to compute the message τ ′

B (resp. τ ′
A). In turn

we must rely on the randomness of the Mac key, hence on the security of the
function update used to update the Mac key K ′ (recall that, due to Game 3, the
current key K ′ is random). Therefore

Pr[E3] ≤ Pr[E4] + 2advprfupdate(B) + advsuf-cma
Mac (C)

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′

B (resp. τ ′
A) different from all the messages sent

by all the instances. However, in such a case, the challenger aborts. Therefore
Pr[E4] = 0.

Collecting all the probabilities from Game 0 to 4, we get the indicated bound.
Now we prove the key indistinguishability security. Let E′

i be the event that
an adversary win the key indistinguishability experiment in Game i, and advi =
Pr[E′

i] − 1
2 .

220 G. Avoine et al.

Game 0. This game corresponds to the key indistinguishability experiment
described in Sect. 2.1. Therefore

Pr[E′
0] =

1
2

+ advkey-indSAKE(A) =
1
2

+ adv0

Game 1. The challenger aborts the experiment and chooses b′ ∈ {0, 1} uniformly
at random if there exists an instance that accepts maliciously. In other words,
in this game we make the same modifications as in the games performed during
the entity authentication proof. Hence

adv0 ≤ adv1 + advent-authSAKE (A)

Game 2. The challenger tries to guess which instance is targeted by the adver-
sary. If the guess is wrong, the game is aborted. The number of instances is at
most nq. Therefore

adv2 = adv1 × 1
nq

Game 3. Let π be the instance targeted by the adversary. We reduce the advan-
tage of the adversary to win this game to the security of the function KDF used
to compute the session key. That is, we rely upon the pseudo-randomness of
the KDF function. This is possible if the key K is random. The genuine value
of K is uniformly chosen at random by assumption. Then K is updated with
update at most once per session on average. Therefore, when the u-th session
starts, K has been updated at most u − 1 times already. Therefore we must
take into account the successive losses due to the key update with respect to the
pseudo-randomness of update. Since there is at most q sessions per party (i.e.,
per original key K), this loss is at most (q − 1)advprfupdate(B). Hence we replace
each function update(K) = PRF(K,x) (keyed with a different key K throughout
the, at most, q − 1 successive sessions established, prior to that current session,
by the same party that owns π) with truly random functions Gupdate

0 , . . ., Gupdate
q−2 .

Moreover, if an instance uses the same key K = Ki, 0 ≤ i < q−1, to key update,
then we replace update with the corresponding random function Gupdate

i . Since,
to that point, the key K = Kq−1 used to compute the session key is random, we
reduce the ability of A to win to the security of KDF. Therefore

adv2 ≤ adv3 + (q − 1)advprfupdate(B) + advprfKDF(D)

To that point the session key is random, therefore the adversary has no
advantage in guessing whether π.b = b′. That is

adv3 = 0

Collecting all the probabilities from Game 0 to 3, we get the indicated bound.
��

SAKE with Perfect Forward Secrecy 221

6 Comparison with the DH Paradigm

The protocol SAKE provides a strong form of forward secrecy. Despite this result,
it differs from a DH scheme in several ways beyond the intrinsic distinction
between public-key and symmetric-key cryptography.

Concurrent Executions. Our protocol does not allow parallel executions. Indeed,
since it is based on shared evolving symmetric keys, running multiple instances in
parallel may cause some sessions to abort. A way to relax this restriction is that
each party use separate master keys for concurrent executions. On the contrary,
the DH scheme allows an (virtually) unlimited number of parallel executions.

KCI Attacks. The ephemeral DH scheme is resistant against KCI attacks,
whereas our protocol is not (due to the dependency between the (updated) mas-
ter keys). Moreover if an adversary succeeds in getting the key K ′ (or K ′

j), it
can compute the subsequent key (corresponding to K ′

j+1). Hence the adversary
can forge a message mB in SAKE that brings the initiator to update its master
keys twice consecutively. Therefore, that party is desynchronised with respect to
an honest partner, with no possibility to resynchronise.

Note that KCI attacks affect also the static DH scheme (when a party uses
a fixed DH share, whereas the other generates a fresh ephemeral one [25]).

Another consequence of the dependency of the master keys in SAKE, is
that once the keys are compromised, an adversary can passively compromise all
subsequent session keys. This is not the case in general with ephemeral DH. Yet,
this is also true regarding non-DH public-key protocols (e.g., TLS-RSA), but
also ephemeral DH (in some pathological cases) when reduced size (fixed) public
parameters are used [5].

Computations. The DH scheme implies heavier computations (modular exponen-
tiations, elliptic curve point multiplication) than SAKE which is solely built on
symmetric-key functions. In practice, SAKE is likely more suitable to be imple-
mented on constrained devices which have limited computational (and commu-
nication) capabilities.

7 Conclusion

We have described SAKE, an authenticated key exchange protocol in the sym-
metric-key setting. Although this protocol is solely based on symmetric-key algo-
rithms, it provides perfect forward secrecy without requiring any additional pro-
cedure (e.g., resynchronisation phase) or functionality (e.g., shared clock). The
underlying idea is to make the shared master keys evolve. We solve the synchro-
nisation problem that stems from this evolving principle with an elegant and
efficient solution.

SAKE guarantees that, whatever the synchronisation state of the involved
parties prior to the session, both parties share a new session key, and their

222 G. Avoine et al.

internal state is updated and synchronised, once a correct session is complete:
SAKE is self-synchronising. As in the public-key setting, our protocol allows an
(virtually) unlimited number of sessions. Furthermore, we prove that SAKE is
sound, and provide a formal proof of its security in a strong model.

Finally, we describe SAKE-AM, a complementary mode of our protocol,
which, used in conjunction with SAKE, results in an implementation that gathers
all the aforementioned properties (starting with forward secrecy). This imple-
mentation allows any party to be initiator or responder of a session, such that the
smallest amount of calculation is always done by the same party. This is partic-
ularly convenient in the context of IoT where a set of (low-resource) end-devices
communicates with a back-end server.

To the best of our knowledge, this is the first protocol with perfect forward
secrecy in the symmetric-key setting that is comparable to the DH scheme, beyond
the intrinsic distinction between public-key and symmetric-key cryptography.

Acknowledgment. We thank the anonymous reviewers for their valuable comments.

References

1. Signal. https://signal.org/
2. 3rd Generation Partnership Project: Technical Specifications 33. http://www.

3gpp.org/DynaReport/33-series.htm
3. 3rd Generation Partnership Project: Technical Specifications 35. http://www.

3gpp.org/DynaReport/35-series.htm
4. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis

of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3 42

5. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5–17. ACM Press,
October 2015. https://doi.org/10.1145/2810103.2813707

6. Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol. Cryptology ePrint Archive, Report
2018/1037 (2018). https://eprint.iacr.org/2018/1037

7. American National Standards Institute: ANSI X9.24-1:2009 Retail Financial Ser-
vices Symmetric Key Management Part 1: Using Symmetric Techniques (2009)

8. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key Authenticated Key Exchange
(SAKE) with Perfect Forward Secrecy. Cryptology ePrint Archive, Report
2019/444 (2019). http://eprint.iacr.org/2019/444

9. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997. https://doi.org/10.1109/SFCS.1997.646128

10. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

11. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

https://signal.org/
http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
https://doi.org/10.1007/3-540-44448-3_42
https://doi.org/10.1007/3-540-44448-3_42
https://doi.org/10.1145/2810103.2813707
https://eprint.iacr.org/2018/1037
http://eprint.iacr.org/2019/444
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/s00145-008-9026-x

SAKE with Perfect Forward Secrecy 223

12. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

13. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

14. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

15. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

16. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Information Security and Cryptography. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-662-09527-0

17. Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 250–267. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 15

18. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
670–698. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 26

19. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal secu-
rity analysis of the signal messaging protocol. In: 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 451–466. IEEE, April 2017. https://doi.
org/10.1109/EuroSP.2017.27

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

21. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

22. Dousti, M.S., Jalili, R.: FORSAKES: a forward-secure authenticated key exchange
protocol based on symmetric key-evolving schemes. Cryptology ePrint Archive,
Report 2014/123 (2014). http://eprint.iacr.org/2014/123

23. GlobalPlatform: GlobalPlatform - Card Specification - Version 2.3.1, reference
GPC SPE 034, March 2018. https://www.globalplatform.org/specificationscard.
asp

24. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

25. Hlauschek, C., Gruber, M., Fankhauser, F., Schanes, C.: Prying open Pandora’s
box: KCI attacks against TLS. In: Proceedings of the 9th USENIX Conference on
Offensive Technologies, WOOT 2015, USENIX Association (2015)

26. International Organization for Standardization: ISO/IEC 11770–2 - Information
technology - Security techniques - Key Management - Part 2: Mechanisms using
Symmetric Techniques (2008)

27. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in
the standard model. Cryptology ePrint Archive, Report 2011/219 (2011). http://
eprint.iacr.org/2011/219

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/BFb0024447
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/978-3-662-49890-3_26
https://doi.org/10.1007/978-3-662-49890-3_26
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
http://eprint.iacr.org/2014/123
https://www.globalplatform.org/specificationscard.asp
https://www.globalplatform.org/specificationscard.asp
https://doi.org/10.1007/3-540-46885-4_5
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219

224 G. Avoine et al.

28. Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Bao, F., Miller,
S. (eds.) ASIACCS 2007, pp. 242–252. ACM Press, March 2007

29. Park, T., Shin, K.G.: LiSP: a lightweight security protocol for wireless sensor net-
works. ACM Trans. Embed. Comput. Syst. 3(3), 634–660 (2004)

30. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: SPINS: security proto-
cols for sensor networks. Wireless Netw. 8(5), 521–534 (2002)

31. Perrin, T., Marlinspike, M.: The Double Ratchet Algorithm (2016). https://signal.
org/docs/specifications/doubleratchet/. Revision 1, 20/11/2016

32. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

33. Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification, LoRa
Alliance, version 1.0, July 2016

34. ZigBee Alliance: ZigBee specification. http://www.zigbee.org/download/standards-
zigbee-specification/

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://www.zigbee.org/download/standards-zigbee-specification/
http://www.zigbee.org/download/standards-zigbee-specification/

TMPS: Ticket-Mediated Password
Strengthening

John Kelsey1,2 , Dana Dachman-Soled3(B) , Sweta Mishra1,4 ,
and Meltem Sönmez Turan1

1 National Institute of Standards and Technology, Gaithersburg, MD, USA
2 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Leuven, Belgium

3 Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, USA

danadach@umd.edu
4 Department of Computer Science and Engineering, Shiv Nadar University,

Greater Noida, India

Abstract. We introduce the notion of TMPS: Ticket-Mediated Pass-
word Strengthening, a technique for allowing users to derive keys from
passwords while imposing a strict limit on the number of guesses of their
password any attacker can make, and strongly protecting the users’ pri-
vacy. We describe the security requirements of TMPS, and then a set of
efficient and practical protocols to implement a TMPS scheme, requiring
only hash functions, CCA2-secure encryption, and blind signatures. We
provide several variant protocols, including an offline symmetric-only pro-
tocol that uses a local trusted computing environment, and online vari-
ants that use group signatures or stronger trust assumptions instead of
blind signatures. We formalize the security of our scheme by defining an
ideal functionality in the Universal Composability (UC) framework, and
by providing game-based definitions of security. We prove that our pro-
tocol realizes the ideal functionality in the random oracle model (ROM)
under adaptive corruptions with erasures, and prove that security with
respect to the ideal/real definition implies security with respect to the
game-based definitions.

Keywords: Dictionary attacks · TMPS · Key derivation

1 Introduction

Alice needs a cryptographic key on her device, but doesn’t want to store it
there directly, lest someone steal the device and access her private data. The key
might be used to decrypt a hard drive, or a file, or a cryptographic key which

This work was supported in part by NSF grants #CNS-1933033, #CNS-1840893,
#CNS-1453045 (CAREER), by a research partnership award from Cisco and by
financial assistance award 70NANB15H328 from the U.S. Department of Commerce,
National Institute of Standards and Technology.
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 225–253, 2020.
https://doi.org/10.1007/978-3-030-40186-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_11&domain=pdf
http://orcid.org/0000-0002-3427-1744
http://orcid.org/0000-0001-6797-641X
http://orcid.org/0000-0003-1240-5841
http://orcid.org/0000-0002-1950-7130
https://doi.org/10.1007/978-3-030-40186-3_11

226 J. Kelsey et al.

will in turn be used to do some other operation. If Bob were to learn this key,
he could bypass Alice’s cryptographic protections–read her files, sign arbitrary
things with her private key, spend her bitcoins, etc.

The common solution to this problem involves password-based key derivation–
Alice enters a password into her device, which is processed in some computationally
expensive way, along with a salt (stored on her device), to get a symmetric key.
Unfortunately forAlice, her device includes all the information needed to derive the
key from a password and check whether the key is correct with a trial decryption. If
Bob can steal her device, he can run an offline password search (a dictionary attack)
on a machine set up for password cracking. Alice may not be able to remember a
password strong enough to withstand such an attack.

1.1 Security Goals

To avoid this problem, we introduce TMPS: Ticket-Mediated Password Strength-
ening. Consider an attacker who has stolen the user’s device and is trying to
access her encrypted files–TMPS strictly limits the number of password guesses
possible for that attacker. TMPS combines secret information stored on the
user’s device with an online server, to help the user decrypt her locally-stored
files. However, simply incorporating an online server into the key derivation pro-
cess does not provide a satisfactory solution.

TMPS prevents offline dictionary attacks, even in the case where the server is
compromised. Note that this is impossible to achieve if the user (or user’s device)
does not hold some secret state that gets input to the protocol. Specifically, if
the user’s only input to the protocol is her password (and possibly other public
information), then the user’s only protection against a dictionary attack is rate-
limiting by the server. If the server is compromised, the user’s interaction with
the server can be fully simulated, which means the attacker can run a dictionary
attack against her password. Once the password is guessed correctly, the attacker
obtains the corresponding payload key. This motivates our use of tickets which
are locally stored on the user’s device.

In fact, TMPS prevents offline password guessing attacks on Alice unless
both Alice’s local device and the server are compromised. Note that this is the
best security possible for this kind of protocol, since if both Alice and the server
are compromised, the protocol between Alice and the server can always be fully
simulated, just by choosing password inputs for Alice. To achieve this stronger
guarantee, we must create tickets that are tied to a specific user, password and
payload key. This ensures that even if Charlie and the server are compromised,
Charlie’s tickets cannot be used to make password guesses on Alice’s password.

Since tickets must be tied to a specific user, privacy now becomes a significant
problem. We want to ensure that when the server receives a ticket, the server
cannot link it to a specific user. Full user privacy requires anonymous commu-
nications with the server, however simply eliminating the need for the server
to keep track of when each individual user accesses her files provides a privacy
benefit–information that’s never collected can never be leaked, subpoenaed, or
sold.

TMPS: Ticket-Mediated Password Strengthening 227

Since the server can’t determine which user is requesting its services, it
becomes important to allow the server to limit the service to only authorized
users. Naturally, this must be done in a way that still preserves the users’ pri-
vacy.

1.2 Overview of TMPS

In TMPS, when the user wants to produce a new password-derived key, she runs
a protocol with a server to produce a set of t tickets–bitstrings which she stores
locally. Later, when she wants to unlock the key using her password, she runs
another protocol with the server, providing (and expending) one of these tickets.
The password can only be used to unlock the user’s key with the server’s help,
and the server will not provide this help without a ticket that has never before
been used.

The critical feature of TMPS is that each ticket allows one guess of a password
to unlock a particular key. When Bob steals Alice’s device, he gets t guesses at
her password, one per ticket. Once he is out of tickets, the server will no longer
help him check password guesses. Each ticket entitles the bearer to assistance
computing one specific password-based decryption.

The result is that Alice can establish a hard limit on the number of possible
guesses of the password Bob can make–if she has only 20 tickets on her device,
then an attacker who compromises the device can never try more than 20 guesses
of her password.

Our scheme gives users a security metric that is human-meaningful–the user
can know the maximum number of guesses the attacker can ever have against
their password. Hardness parameters of password hashes, or entropy estimates
of a password, are meaningful only to security experts; the maximum number
of attacker guesses that will be allowed is much easier to understand. Even rate-
limiting parameters (e.g., no more than 10 tries per hour) are arguably less
intuitive to users than a limit on the total number of password guesses. On the
other hand, our scheme imposes the need to be online in order to unlock a key
secured by a password1.

TMPS also ensures that the server never learns anything about the user’s
password or keys or private data, or even which user is unlocking her data at
which time2. As discussed above, no offline attack is possible against our scheme
unless both the server and the user’s device are compromised. On the other hand,
this comes at a cost–our scheme works only on a specific device that has been
set up by the user.

1 In the full paper, we also provide an optional variant scheme for offline access–
allowing a very computationally expensive key derivation when the server is unavail-
able, albeit at the cost of losing the limit on maximum number of guesses.

2 Note that full user privacy requires the user to communicate with the server over an
anonymous channel.

228 J. Kelsey et al.

1.3 Related Work

Most work on password security focuses on password-based authentication sys-
tems. While there are similarities with earlier schemes, TMPS solves a different
problem, mostly using different techniques.

Password Based Key Derivation (PBKDF) involves carrying out an
expensive computation to derive a key from a password locally (e.g., [6,27]). Since
PBKDFs do not need server access for key derivation, the privacy of the user is
protected. However, although computationally- and memory-hard PBKDFs slow
down dictionary attacks, such attacks can still be mounted. Note that TMPS
uses a PBKDF as a component.

Remote Storage lets the user stores her secret information on some remote
service, and retrieve it by logging in. This is in some sense the trivial solution
to the problem of an attacker compromising the user’s device. However, note
that a server compromise in this case not only allows an offline attack on Alice’s
password, it reveals her secret data.

Password Authenticated Key Exchange (PAKE) protocols (e.g., [4,5,
16,28]) allow a user and server who share a password to securely establish a
session key. These protocols have some similarities to our scheme, but they solve
a very different problem–establishing a session key instead of rederiving a key
for decrypting locally-stored data. Also, these protocols are vulnerable to offline
dictionary attacks after server compromise, and the server inevitably knows who
the user is when it establishes a key.

In [22], Mani describes a scheme that uses a server to assist in password hash-
ing, but without any concern for user privacy–the goal in that scheme was to
harden the password file by incorporating a pseudorandom function (PRF) com-
puted on a single-purpose machine. Similarly, [2,23,24] describe a scheme with
a separately-stored secret key in a crypto server to strengthen password hashing,
an informal description of the concept of Password Hardening, later formally
defined in [13,20,25]. Current password hardening schemes involve an outward-
facing server into which the user logs in, and a rate-limiting server that assists
in hashing passwords. Our scheme is somewhat related to password hardening,
but is solving a different problem with different constraints and requirements.

A proposal by Lai et al. [19] defines a Password Hardening Encryption
(PHE) scheme, which combines password hardening with encryption of user data.
Our scheme is closely related to PHE, but there are important differences: TMPS
uses locally stored data on the user’s device, which means an offline attack can
only be done when the user’s device is compromised; for PHE, the outward-
facing server plus the rate-limiting server can run offline dictionary attacks on
the user’s password3. Additionally, in PHE, the user is logging into a service,
so there’s no sense in trying to prevent the server learning when a given user
3 Note that this is a straightforward engineering tradeoff–PHE avoids local storage,

so it is more deployable, but the cost of that decision is that the user’s data can
be compromised even without compromising her device. TMPS makes the opposite
tradeoff–the system is harder to deploy because it needs local storage, but it provides
a corresponding security advantage.

TMPS: Ticket-Mediated Password Strengthening 229

is accessing her data–in TMPS, the user is accessing her own data on her own
device, and so shouldn’t have to leave a data trail with some external service.

In Password-Protected Secret Sharing [15], the user provides shares of
a key to n servers, and requires some subset k of the servers to assist it in
reconstructing the secret, in a way that will only work if the user provides the
correct password. These schemes aren’t focused on decrypting local storage, but
could be adapted to such an application. However, because they avoid secret data
stored on the user’s device, an attacker who compromises k servers can run an
offline dictionary attack. Further, servers know which user is reconstructing her
secret data at any given time. A closely related line of work introduces the notion
of password-based threshold authentication [1] for token-based authentication in
single sign-on setting–in their scheme, any subset of � of n servers participate in
verifying the user’s password and generating a token, which can then be used to
authenticate to other devices on the network.

1.4 Our Results

– We introduce the notion of TMPS, a mechanism for allowing users to derive
keys from passwords while imposing a strict limit on the number of guesses
of their password any attacker can make, and strongly protecting the users’
privacy.

– We formalize the security requirements of our new notion of TMPS, by defin-
ing a corresponding ideal functionality in the Universal Composability (UC)
framework (See Sect. 5). In the full version of the paper [18], we also provide
game-based proofs that show that the ideal functionality provides the desired
level of security.

– We present efficient protocols realizing our new notion. Our basic protocol
requires only hash functions, CCA2-secure encryption, and blind signatures
(See Sect. 4).

– We prove that our protocol UC-realizes the aforementioned ideal functionality
in the random oracle model (ROM) under adaptive corruptions with erasures
(See Sect. 5.1) and prove that security with respect to the Ideal/Real defini-
tion implies security with respect to the game-based definitions (See the full
version [18]).

– In the full version of the paper [18], we present several variants of our protocol,
including an offline version of our protocol using a local hardware security
module (HSM) or trusted execution environment, and variants that make use
of group signatures, proofs of work, or weaker security assumptions to ensure
user privacy while still preventing overuse of server resources.

– Finally, we discuss efficient implementations and performance, in Sect. 6, and
consider some questions left open by this research in Sect. 7.

230 J. Kelsey et al.

2 Preliminaries

2.1 Notation

Let k ∈ N. The set of bitstrings of length k is denoted as {0, 1}k. The concate-
nation of two bitstrings x and y is denoted by x ‖ y. The exclusive-OR of two
bitstrings x and y of same length is denoted as x⊕y. We let bk denote the string
with k successive repetitions of bit b. If X is a set, we let x ←$ X denote sam-
pling a uniformly random element x from X . The security parameter is denoted
by n ∈ N. Unless otherwise specified, we assume all symmetric keys and hash
outputs to be n bits in length.

2.2 Underlying Primitives and Functions

We use the following primitives in our protocols:

– HASH(X): The cryptographic hash of input X.
– HMAC(K,X): The HMAC of X under key K.
– PH(S, P): Hash of the password P using salt S.
– KDF(K,D, �): �-bit key derived from the secret value K and public value D.
– ΠENC := (GEN, ENC, DEC): An encryption system where ENC(K,X) is encryp-

tion of plaintext X under the key K, and DEC(K,Y) is decryption of ciphertext
Y under the key K.

– ΠBSIG := (GEN, BLIND, UBLIND, SIGN, BVERIFY): A 2-move blind signature
scheme where

• M∗ ← BLIND(M): The user blinds the message M to obtain M∗ and
sends to the signer.

• σ∗ ← SIGNSK(M∗): The signer outputs a signature σ∗ on input of mes-
sage M∗ and private key SK and sends to the user.

• F ← UBLIND(σ∗): The user unblinds the signature σ∗ to obtain F . Note
that the user inputs additional private state to the UBLIND algorithm,
which we leave implicit.

• BVERIFYPK(M,F): Verification of signature F on message M under pub-
lic key PK as valid/invalid.

Next, we define two internal functions: VE(D,KP) provides verifiable encryp-
tion of KP with D and DV(D,Z) decrypts KP after checking the correctness of
D. Both functions assume that D, KP and hash outputs are n bits long. We
remark that we use the special-purpose verifiable encryption scheme define here,
as opposed to using a generic authenticated encryption scheme, for two reasons:
First, our UC security proof requires use of a random oracle call here to allow
for programmability; second, what is required here is not quite authenticated
encryption–we only care about whether the key is correct, not about whether
the decrypted plaintext is correct, and we only encrypt once under any key.

Formal definitions for the primitives used in our protocol appear in
Appendix A.

TMPS: Ticket-Mediated Password Strengthening 231

Algorithm 1. Verifiably encrypt KP with D.
1: function VE(D,KP)
2: Z ← HASH(0 ‖ D) ‖ (HASH(1 ‖ D) ⊕ KP)
3: return(Z)

Algorithm 2. Verifiably decrypt Z with D.
1: function DV(D,Z)
2: X ← Z0...n−1

3: Y ← Zn...2n−1

4: X∗ = HASH(0 ‖ D)
5: if X == X∗ then
6: return(HASH(1 ‖ D) ⊕ Y)
7: else
8: return(⊥)

3 Ticket-Mediated Password Strengthening

3.1 TMPS Overview

In Ticket-Mediated Password Strengthening (TMPS, for short), the user4 first
interacts with a server to get a set of tickets. Each ticket entitles the user to
assistance from the server with one attempt to unlock a master secret (called
the payload key) using a password. Later, users (or anyone else with access to
the tickets) may use the tickets to attempt to unlock the payload key using the
password.

TMPS requires a setup phase, and two protocols: Request and Unlock.
During setup, the server establishes public encryption and signing keys and
makes them available to its users.

In order to get tickets, the user’s device starts with a payload key (generated
randomly) and a password, and runs the Request protocol with the server,
requesting t tickets. If the protocol terminates successfully, the user ends up
with t tickets, each of which entitles her to one run of the Unlock protocol.
Note that each ticket is bound to Unlocking a specific key with a specific
password–Bob’s tickets will not help with guessing Alice’s password.

In order to use a password to unlock the payload key, the user must consume
a ticket–she runs the Unlock protocol with the server, passing the server some
information from the ticket and some information derived from her ticket and
her password. The server will never accept the same ticket information twice.
When the protocol runs successfully, the user recovers the payload key.

4 For convenience, we refer to “the user” generating random values and running pro-
tocols in the rest of this paper when we really mean “software on the user’s device.”
The user herself should only need to remember the password, and perhaps provide
credentials to identify herself to the server when she requests new tickets.

232 J. Kelsey et al.

The security requirements of a TMPS scheme are:

1. Request
(a) The server learns nothing about the password or payload key from the

Request protocol.
(b) There is no way to get a ticket the server will accept, except by running

the Request protocol.
(c) Each ticket is generated for a specific password and payload key; tickets

generated for one password and payload key give no help in unlocking or
learning any other password or payload key.

2. Unlock
(a) An Unlock run will be successful (it will return the correct KP) if and

only if:
i. This ticket came from a successful run of the Request protocol.
ii. This ticket has never been used in another Unlock call.
iii. The same password used to Request the ticket is used to Unlock

it.
(b) From an unsuccessful run of the Unlock protocol, the user gains no

information about the payload key.
(c) From an unsuccessful run of the Unlock protocol, the user learns (at

most) that the password used to run the protocol was incorrect.
(d) The server learns nothing about the payload key or password from the

Unlock protocol.
(e) The server learns nothing about which user ran the Unlock protocol

with it at any given time.

Note that these requirements don’t describe the generation of the payload key
or the selection of the password. If the payload key is known or easily guessed,
then TMPS can do nothing to improve the situation. In any real-world use,
the payload key should be generated using a high-quality cryptographic random
number generator.

The strength of the password matters for the security of ticket-mediated pass-
word strengthening, but in a very limited way–each run of Unlock consumes
one ticket and allows the user to check one guess of the password. An attacker
given N equally-likely passwords and t tickets thus has at most a t/N probability
of successfully learning the password.

3.2 Discussion

The usual way password-based key derivation fails is that an offline attacker tries
a huge number of candidate passwords, until he finally happens upon the user’s
password. He then derives the same key as the user derived, and may decrypt
her files. A TMPS scheme avoids this attack by requiring the involvement of the
server in each password guess, and (more importantly) by limiting the number
of guesses that will ever be allowed. If the user of a TMPS scheme requests only
100 tickets from the server, then an attacker who compromises her machine and

TMPS: Ticket-Mediated Password Strengthening 233

learns the tickets will never get more than 100 guesses of her password. If he
cannot guess the password in his first 100 guesses, then he will never learn either
the password or the payload key. Even if he is given the correct password after
he has used up all the tickets, he cannot use that password to learn anything
about the payload key.

The security of a TMPS scheme relies on the server being unwilling to allow
anyone to reuse a ticket, and the inability of anyone to unlock a payload key with
a password without running the Unlock protocol with a server, and consuming
a fresh ticket in the process.

A corrupt server can weaken the security of TMPS, but only in limited ways.
It cannot learn anything about the password or payload key. It cannot determine
which user is associated with which ticket5, or link Request and Unlock runs.
But it can enable an attacker who has already compromised a user’s tickets to
reuse those tickets as many times as he likes.

4 The Basic Protocol

In this section, we describe a set of protocols that implement Ticket-Mediated
Password Strengthening in a concrete way. Our protocols require a secure crypto-
graphic hash function, a public key encryption scheme providing CCA2 security6,
and a blind signature scheme7. Our scheme has some similarities to an online
anonymous e-cash scheme–notably in the need to reject attempts to “double-
spend.” However, each ticket in our scheme is bound to a specific password
hashing computation–it’s as though each coin in an e-cash system could only be
spent buying one particular item from one particular store.

A ticket gives a user enough information to enlist the server in helping
carry out one password-based key derivation. Each ticket contains an inside part
(which the user retains and does not share with the server) and an outside part
(which the user sends to the server). The different parts of a ticket are bound
together with each other and with the specific password and key derivation being
carried out, and can’t be used for a different key derivation.

We make two assumptions about this protocol: First, all messages in this
protocol take place over an encrypted and authenticated channel. Second, the
user somehow demonstrates that he is entitled to be given tickets by the server;
we assume the user has already done this before the Request protocol is run.
There are many plausible ways this might be done, such as: (1) The user may

5 To get a strong privacy guarantee, the user must communicate with the server over
an anonymous communications channel. However, there’s also a practical privacy
benefit to a scheme in which the server has no reason to keep track of the times each
user has unlocked a file.

6 An attacker who can alter a ciphertext to get a new valid ciphertext for the same
plaintext can attack our scheme.

7 Variants which do not require a blind signature scheme appear in the full paper.

234 J. Kelsey et al.

pay per ticket, (2) the user may demonstrate his membership in some group to
whom the server provides this service, (3) the server may simply provide this
service for all comers.

The specific method used is outside our scope. However the user demonstrates
her authorization to receive tickets, it is very likely to involve revealing her iden-
tity. In order to protect the user’s privacy from the server, the Request protocol
must thus prevent the server linking tickets with this identifying information, or
linking tickets issued together.

4.1 Server Setup

The following steps are done once by the server8: (1) The server establishes an
encryption keypair PKS , SKS for some algorithm that supports CCA2 security.
Server distributes its public key to all users. (2) The server establishes a signature
keypair PK ′

S , SK ′
S for some algorithm that supports blind signatures. (3) The

server establishes a list to store previously-seen tickets.

4.2 Request: Protocol for Requesting Tickets

To request a ticket, the user starts out with a password P and a payload key
KP , and generates t tickets with the assistance of the server. In order to create
a ticket without revealing any identifying information to the server, the user
carries out the following steps:

1. Randomly generate an n-bit salt S and an n-bit secret value B.
2. Encrypt B using the public encryption key PKS of the server, producing E.
3. Run a protocol to get a blind signature on E from the server–this is F .
4. Derive a one-time key from the password and the secret B:

D ← HMAC(B, PH(S, P))
5. Encrypt the payload key under the one-time key:

Z ← VE(D,KP)

The ticket will consist of (S,E, F, Z); the user must irretrievably delete all
the intermediate values above. The user repeats the steps t times to get t tickets.
At the end of this protocol, the user has t tickets she can use to run the Unlock
protocol. The server, on the other hand, knows only that it has issued t tickets
to the user–it knows nothing else about them!

8 Rolling over to new keys periodically can be done, but old decryption keys must
be kept active until all tickets issued for them have been used–this could plausibly
mean that old decryption keys never go away, and this does not allow for recovery
from compromise of a decryption key.

TMPS: Ticket-Mediated Password Strengthening 235

Protocol: Request(P,KP , t):

User Server

for i = 1 . . . t

S $ {0, 1}n
B $ {0, 1}n
E ENC(PKS , B)

E∗
BLIND(E)

E∗

σ∗
SIGNSK′

S
(E∗)

σ∗

F UBLIND(σ∗)

C PH(S, P)

D HMAC(B, C)

Z VE(D, KP)

Forget B, C, D, E∗, σ∗

Ti (S, E, F, Z)

endfor

return(T1,2,...,t)

4.3 Unlock: Protocol for Unlocking a Ticket

In order to use a ticket along with a password P̂ to unlock KP , the user does
the following steps:

1. Hash the password: Ĉ ← PH(S, P̂).
2. Send (E,F, Ĉ) to the server.
3. If the signature is invalid or E is being reused, then the server returns ⊥.
4. Otherwise:

(a) The server stores E,F as a used ticket.
(b) B ← DEC(SKS , E)
(c) D ← HMAC(B, Ĉ)
(d) The server sends back D.

5. The user tries to decrypt Z with D. If this succeeds, she learns KP . Otherwise,
she learns that P̂ was not the right password.

Note that in these two protocols, the server never learns anything about
KP , P, or P̂ , and has no way of linking a ticket between Request and Unlock
calls.

236 J. Kelsey et al.

We also note that the Unlock protocol could be easily modified to enable
creation of new tickets when the submitted password to Unlock is correct. This
would ensure that a user who knows the password always has at least one valid
ticket, which would improve usability of our scheme in real-world applications.

Protocol: Unlock(S, E, F, Z, P̂):

User Server

Ĉ PH(S, P̂)

E, F, Ĉ

IF

E fresh AND

VERIFYSK′
S
(E, F)

THEN

B DEC(SKS , E)

D HMAC(B, Ĉ)

ELSE

D

D

KP DV(D, Z)

return(KP)

5 Security Analysis

In this section, we provide a security analysis and some security proofs for our
basic protocol. Our approach comes in three separate parts: First, we define an
ideal functionality for the system. Second, we prove that our basic protocol is
indistinguishable from the ideal functionality in the UC framework. In the full
version of the paper, we also provide several game-based security definitions, and
prove bounds on an attacker’s probability of winning the games when they are
interacting with the ideal functionality. These game-based definitions show that
the ideal functionality we’ve defined actually provides the practical security we
need from this scheme.

The ideal functionality makes use of a table τ–a key-value database indexed
by a ticket T . T can be any n-bit string, or the special values ⊥ and *.

TMPS: Ticket-Mediated Password Strengthening 237

A user calls Request to get a new ticket9. We assume a two-sided authenti-
cated and secure channel for Request–the ideal functionality knows the user’s
identity, and the user knows she is talking with the ideal functionality. Also,
Request requires an interaction with the server, in which the server also learns
the user’s identity. At the end of the Request call, the user either has a valid
ticket, or knows she did not get a valid ticket. Note that in the case of a cor-
rupted server, we allow the server to “override” the honest behavior of the ideal
functionality by outputting a value R. If R = 1, the ideal functionality proceeds
as normal. If R = 0, it indicates that the server does not wish to cooperate.
In this case, the output to the user is ⊥. Note that in the real world, we can-
not prevent the corrupt server from issuing an invalid ticket. However, in this
case, we require that the user can detect that the ticket is invalid. The strongest
guarantees we can hope for in the real world are therefore captured by our ideal
functionality.

Algorithm 3. Ideal Functionality: Initialize and Request
Initialize the table that will store passwords,
payload keys and aliases.

1: function Initialize(sid)
2: sid.τ ← {}
3: function Request(U, sid, P,KP)

T corresponds to the “ideal” ticket.
4: T ←$ {0, 1}n

Insert (P,KP ,⊥) into table τ with key T . The ⊥
value indicates that the ticket T is fresh.

5: sid.τ [T] ← (P,KP ,⊥)
6: Send to server sid: (sid,Request, U)
7: if server sid compromised then
8: Wait for response (sid,Request, U,R).
9: else

10: R ← 1
11: if R = 1 then
12: Send to source U : (sid,Request, T)
13: else
14: Send to source U : (sid,Request,⊥)

9 The ideal functionality is defined to return one ticket per Request, but in our
protocol description above, we define Request to return t tickets at a time. This is
equivalent to just rerunning the Request ideal functionality t times.

238 J. Kelsey et al.

The user makes use of a ticket and a password to recover her payload key
with an Unlock call. We assume the Unlock call is made over a secure chan-
nel which is authenticated on one side–the user knows she is talking with the
ideal functionality, but the ideal functionality doesn’t know who is talking to
it. Unlock also requires an interaction with the server, in which the server is
not told the identity of the user. At the end of the Unlock call, the user either
learns the payload key associated with the ticket she has used, or receives an
error message (⊥) and knows the Unlock call has failed. Note that in the case
of a corrupted server, we allow the server to “override” the honest behavior of
the ideal functionality by outputting a value R. If R = 1, the ideal functionality
responds with the payload key, in the case that the password is correct, even if
the ticket is not fresh. If R = 0, it indicates that the server does not wish to
cooperate. In this case, the output to the user is ⊥. Note that in the real world,
we cannot prevent the corrupt server from responding to unlock requests with
tickets that are not fresh (this corresponds to the corrupt ideal server flipping
R from 0 to 1). Moreover, in the real world, we cannot prevent a corrupt server
from deviating from the protocol and computing the wrong payload key (this
corresponds to the corrupt ideal server flipping R from 1 to 0). However, in
this case, we require that the user can detect that the returned payload key is
invalid. The strongest guarantees we can hope for in the real world are therefore
captured by our ideal functionality.

Before stating our theorem, we note that we assume that the protocols for
Request and Unlock given in Sects. 4.2 and 4.3 are executed in a hybrid
model, where an ideal functionality for secure, two (resp. one)-sided authenti-
cated channels, Fac (resp. Fosac), (see e.g. [8]) is invoked each time a message
is sent. We require that the VE scheme used is the one given in Algorithms 1
and 2. We assume three independent random oracles: Hpw,HKD,HVE. Hpw is the
password hash. HKD is used to model the HMAC key derivation as a random
oracle10 and HVE is the random oracle for the verifiable encryption scheme given
in Algorithms 1, 2.

Theorem 1. Under the assumption that ΠENC is a CCA2-secure encryption
scheme (see Definition 5), ΠBSIG is a 2-move blind signature scheme (see Def-
inition 7) and the assumptions listed above, the protocols for Setup, Request
and Unlock given in Sects. 4.1, 4.2 and 4.3, UC-realize the ideal functionality
provided in Algorithms 3 and 4 under adaptive corruptions, with erasures.

10 We remark that Dodis et al. [12] showed that HMAC is not indifferentiable from a
random oracle. However, their attack only applies when one allows different sizes for
the HMAC key. Since we require B to always be a fixed length, this attack does not
apply to our setting–finding two values of B that give identical results from HMAC,
implies finding collisions for the underlying hash function.

TMPS: Ticket-Mediated Password Strengthening 239

Algorithm 4. Ideal Functionality: Unlock
If ticket and password good, return KP .
Otherwise, return ⊥.

1: function Unlock(sid, T, P̂)
2: if T ∈ sid.τ then
3: (P,KP , α) ← sid.τ [T]
4: else

α = ∗ signals invalid ticket.
5: (P,KP , α) ← (⊥,⊥, ∗)
6: R ← 0

α corresponds to the alias for ticket T .
α = ⊥ indicates the ticket is fresh. α �= ⊥ indicates
ticket T was previously assigned an alias so not fresh.

7: if α = ⊥ then
Fresh ticket

8: α ←$ {0, 1}n

9: R ← 1
10: else

Reused or invalid ticket
11: R ← 0

Server can see whether it’s getting invalid,
repeated, or fresh ticket.

12: Send to server sid: (sid,Unlock, α)
If server is NOT compromised, we know R.
If server IS compromised, we must ask it
how to respond.

13: if Server sid compromised then
14: Wait for (sid,Unlock, R)

R ∈ {0, 1}
Send back the right response to the user.

15: if R = 0 then
Server returns ⊥, no decryption possible.

16: Respond to caller: (sid,Unlock,⊥)
17: else if R = 1 then

Server plays straight.
18: if P̂ = P then
19: Respond to caller: (sid,Unlock,KP)
20: else

Server returns value, decryption fails.
21: Respond to caller: (sid,Unlock,⊥)

240 J. Kelsey et al.

5.1 Proof of Theorem 1

We also note that the only random oracle that gets programmed11 in the proof
is HVE. We also assume that honest users securely erase their tickets after an
unlock attempt with that ticket has been made (as well as any other part of
their state which no longer needs to be stored).

To prove the Theorem 1, we provide a simulator Sim and prove that the result-
ing Ideal and Real distributions are computationally indistinguishable. Through-
out, we assume that the same ticket (resp. alias) is never issued twice during
a Request (resp. Unlock) procedure in an Ideal execution with a single sid.
Since each of these events occurs with at most λ′2/2n probability, where λ′ is the
total number of tickets issued, this assumption can only reduce the adversarial
distinguishing probability by at most 2 · λ′2/2n, which is negligible.

5.2 Description of Simulator Sim

Simulator Sim Under Adaptive Corruptions of Parties. Note that since
we assume secure channels, Sim only needs to begin simulating the view at the
moment that some party is corrupted.

Fix an environment Env, Server Server, users U1, . . . ,Um and adversary A.
Recall that we allow the environment Env to choose the inputs of all parties.
Simulator Sim does the following:

1. Initialization: Initialize tables B, E ,S,Z, Tgen, Tused to empty and counters
counti for i ∈ [m] to 0.

2. Preprocessing: Let λ′
i be the maximum number of tickets for each party Ui.

For i ∈ [m], j ∈ [λ′
i]: Generate Bi

j ← {0, 1}n, Si
j ← {0, 1}n, Zi

j ← {0, 1}2n.
Add all generated Bi

j (resp. Si
j , Z

i
j) values to B (resp. S,Z). Let λ′ be the

total number of (Bi
j , S

i
j , Z

i
j) tuples generated.

3. Responding to corruption requests:
Corruption of a party Ui: Sim corrupts the corresponding ideal party

and obtains its internal state, consisting of unused tickets ti1, . . . , t
i
λi

.
For j ∈ [counti], modify entry (U i, Si

j , B
i
j , E

i
j , F

i
j , Z

i
j ,⊥) ∈ Tgen to

(U i, Si
j , B

i
j , E

i
j , F

i
j , Z

i
j , t

i
j). For j ∈ {counti + 1, . . . , λi}:

11 We note that for UC composition to hold in the programmable random oracle model,
one must, in general, assume that an independent random oracle is used for each
sid instance. In our case, we essentially use the programmability of the random
oracle to implement a non-committing encryption scheme (see [11]), by adjusting
the outcome of HVE to ensure that the string Zi decrypts to the correct KP value.
Camenisch et al. [7] showed that some natural non-committing encryption schemes
in the programmable random oracle model can be proven secure in the UC setting,
since the simulator only needs to program the random oracle at random inputs,
which have negligible chance of being already queried or programmed. We anticipate
that a similar argument would work for our scheme, since Di

j is unpredictable and
with very high probability will not be queried in any other session before being
programmed in the target session. However, our formal proof is only for the case
where an independent random oracle is assumed for each session.

TMPS: Ticket-Mediated Password Strengthening 241

(a) Generate Ei
j = ENCPKS

(Bi
j) and F i

j as a blind signature of Ei
j using

SKS (note that since λi − counti > 0, Sim must have already gener-
ated (PKS , SKS , PK ′

S , SK ′
S)).

(b) Add (U i, Si
j , E

i
j , F

i
j , Z

i
j , t

i
j) to Tgen and Ei

j to set E .
Sim releases tickets (Si

j , E
i
j , F

i
j , Z

i
j).

Corruption of Server: Sim corrupts the corresponding ideal party and obtains
its ideal internal state If an Initialize query has not yet been submitted
to the ideal functionality, Sim returns ⊥. Otherwise, if the server’s keys
have not yet been sampled, Sim samples (PKS , SKS , PK ′

S , SK ′
S). Let

α1, . . . , αλ be the aliases in the ideal internal state (if any). Associate
each row in Tused with a random alias so each entry in Tused contains a
value from {α1, . . . , αλ} in its final column. For i ∈ [λ− |Tused|], Generate
Bi ← {0, 1}n, Ei = ENCPKS

(Bi) and Fi as a blind signature of Ei. Add
all tuples (Bi, Ei, Fi, ∗, αi) to Tused. For each row of Tused, release (Ei, Fi).

4. Responding to random oracle queries to Hpw,HKD: Sim forwards the query
to the oracle and forwards the response back.

5. Responding to random oracle queries to HVE: Sim maintains a table THVE
.

The table is initialized as empty. Each time A queries HVE on input x, Sim
checks the table to see if an entry of the form (x, y) appears in the table
for some y. If yes, Sim returns y. Otherwise, Sim chooses a random y, adds
entry (x, y) to THVE

and returns y to A.
6. When responding to oracle queries, Sim also does the following:

– Bad Event 1: If Server is corrupted and A makes a query to Hpw with
input of the form Si

j ||P̂ i
j , where Si

j ∈ S and (·, Si
j , ·, ·, ·, ·, tij) /∈ Tgen (for

tij �= ⊥) then Sim aborts.
– Bad Event 2: If Server is not corrupted and A makes a query to HKD

with input of the form (Bi
j ||Ĉi

j), where Bi
j ∈ B, then Sim aborts.

– If Server is corrupted and A makes a query to Hpw with input of
the form Si

j ||P̂ i
j where Si

j ∈ S, Sim finds the tuple of the form
(·, Si

j , ·, ·, ·, ·, tij) ∈ Tgen and submits Unlock(sid, tij , P̂
i
j) to the ideal

functionality. Sim receives (Unlock, sid, α) from the ideal functional-
ity, and returns (sid,Unlock, 1). If the ideal functionality returns ⊥,
Sim forwards Ĉi

j = Hpw(Si
j ||P̂ i

j) to A. If the ideal functionality returns
KP , Sim computes Ĉi

j = Hpw(Si
j ||P̂ i

j), Di
j = HKD(Bi

j ||Ĉi
j) and entries

for (0||Di
j , y1), (1||Di

j , y2) such that y1||y2 = Zi
j ⊕ (0n,KP)) to THVE

. Sim
returns Ĉi

j to A. Bad Event 3: If at this point 0||Di
j or 1||Di

j have
already been queried to HVE, Sim aborts.

7. Responding to messages from the Request protocol issued by a corrupted
Ui when Server is not corrupted. Sim does the following:
(a) Generate (PKS , SKS , PK ′

S , SK ′
S) if not yet generated.

(b) Submit Request(Ui, sid, 0, 0) to the ideal functionality and receive back
ticket t.

(c) Place (Ui, ∗, ∗, ∗, ∗, ∗, t) ∈ Tgen.
(d) Play the part of an honest signer with secret key SK ′

S in the blind
signature protocol with the corrupted user.

242 J. Kelsey et al.

8. Responding to (sid,Request, Ui) messages from Ideal Functionality. Sim
does the following:
(a) Set counti := counti + 1 and j := counti.
(b) Generate Ei

j := ENCPKS
(Bi

j).
(c) Participate in a blind signature protocol on message Ei

j with the cor-
rupted Server to obtain signature F i

j .
(d) Store (Ui, S

i
j , B

i
j , E

i
j , F

i
j , Z

i
j ,⊥) ∈ Tgen.

9. Responding to messages from the Unlock protocol issued by adversary A
when Server is not corrupted. A sends (Ê, F̂ , Ĉ) to the server.

– If a tuple of the form (·, Ê, ·, t̂, ∗) ∈ Tused, then send Unlock(sid, t̂,⊥)
to the ideal functionality.

– Otherwise, if the signature does not verify submit Unlock(sid,⊥,⊥) to
the ideal functionality.

– Otherwise, if Ê = Ei
j ∈ E :

(a) Find an entry of the form (·, ·, ·, Ê, ·, ·, t̂) ∈ Tgen. Add (B̂, Ê, F̂ , t̂, ∗)
to Tused.

(b) Bad Event 4: If there is more than one oracle query that returned
Ĉ, Sim aborts.

(c) If the unique query exists, extract the password guess P̂ (with
bit length at most n′). If it does not exist, set P̂ to ⊥. Send
Unlock(sid, t̂, P̂) to the ideal functionality. Bad Event 5: If
Ĉ = Hpw(Si

j , ·), for some Si
j ∈ S, but A did not make an oracle

query returning Ĉ, Sim aborts.
(d) If the ideal functionality returns a value KP , then set Di

j =
HKD(Bi

j ||Ĉ). Add (0||Di
j , y1), (1||Di

j , y2) to THVE
such that y1||y2 =

Zi
j ⊕ (0n,KP)) Return Dj to A. Bad Event 6: If A has already

queried HVE on 0||Di
j or 1||Di

j , Sim aborts.
(e) Otherwise, return Di

j = HKD(Bi
j ||Ĉi

j).
– Otherwise if Ê /∈ E , Sim does the following:

(a) Bad Event 7: If there is no entry of the form (·, ∗, ∗, ∗, ∗, ∗, t̂) ∈ Tgen,
Sim aborts.

(b) Find an entry of the form (·, ∗, ∗, ∗, ∗, ∗, t̂) ∈ Tgen and remove it.
(c) Decrypt Ê using SKS to obtain B̂. Bad Event 8: If B̂ ∈ B, Sim

aborts.
(d) Make anUnlock request to the ideal functionalityUnlock(sid, t̂,⊥)
(e) Continue the execution honestly to recover D̂ = HKD(B̂||Ĉ). Return

D̂ to A.
10. Responding to (Unlock, sid, α) messages from Ideal Functionality. If Sim

receives a message (sid,Unlock, α) (which does not stem from an Unlock
request submitted by Sim) then Sim does the following:
(a) If there is some (B̂, Ê, F̂ , ∗, α) ∈ Tused. Then Sim forwards (Ê, F̂) to

Server, along with a random value for Ĉ.
(b) If not, update the next tuple of the form (B̂, Ê, F̂ , ∗,⊥) ∈ Tused, to

(B̂, Ê, F̂ , ∗, α). Forward (Ê, F̂) to Server, along with a random value
for Ĉ.

TMPS: Ticket-Mediated Password Strengthening 243

(c) If Server returns ⊥, then return 0 to the ideal functionality.
(d) Otherwise, Sim receives back a D value from Server and checks

whether D was computed correctly with respect to B̂ and Ĉ. If yes,
Sim sends (sid,Unlock, 1) to the ideal functionality. Otherwise, Sim
sends (sid,Unlock, 0) to the ideal functionality. If tuples of the form
(0||D, y1), (1||D, y2) are not in THVE

, Sim chooses random y1, y2 and adds
(0||D, y1), (1||D, y2) to THVE

. Bad Event 9: If (y1||y2)⊕Zi
j = 0n||·, where

Zi
j ∈ Z and (·, ·, ·, Zi

j , t
i
j) /∈ Tgen (for tij �= ⊥), Sim aborts.

In Fig. 1, we list each of the Bad Events, its definition, an upperbound on its
probability of occurrence, the underlying primitive that is relied upon (if any),
and the corresponding lemma (if applicable). Recall that q is the total number
of oracle queries made by the adversary A and Sim. λ′ is the total number of
tickets issued, � is the total number of Unlock queries, n is the length of Si

j , B
i
j

as well as the output length of the random oracles, and n′ is the bit-length of
the password.

We begin by bounding the probability that the Bad Events occur. It is clear
by inspection that Bad Event 1 occurs with probability at most q·λ′/2n, and that
Bad Event 4 occurs with probability at most q2/2n, where q is the total number
of oracle queries made by the adversary and Sim. Moreover, it is clear that if
Bad Event 2 does not occur, then Bad Events 3 and 6 occur with probability
at most q2/2n each. Bad Event 9 occurs with probability at most λ′ · q/2n. We
proceed to bound the remaining events (Events 2, 5, 7, 8).

Lemma 1. Bad Event 5 occurs with at most negligible probability in the Ideal
experiment.

We upper bound the probability of Bad Event 5 by analyzing the probability
that Ĉ = Hpw(Si

j , x), for some value of x ∈ {0, 1}n′
. This probability can be

upper bounded by 2n
′

2n , since there are 2n′
possible strings of the form Si

j ||x and
each of these gets mapped to a particular string Ĉ with probability 1

2n . Since
there are at most � number of unlock queries, the total probability is at most
�·2n′

2n Setting parameters appropriately, we have that �·2n′

2n is negligible.

Lemma 2. Assuming the CCA2 security of encryption scheme ENC (see Defi-
nition 7), the probability that Bad Event 2 or Bad Event 8 occurs is at most
negligible in the Ideal experiment.

The proof proceeds by showing that if Bad Event 2 or Bad Event 8 occurs
with non-negligible probability, then there must be some i ∈ [m], j ∈ [λ′

i] and
efficient Env, A (who did not corrupt Server) such that A queries HKD on the
value, Bi

j , or, in an Unlock request, sends an encryption Ê /∈ E that decrypts
to Bi

j , with non-negligible probability. We will use Env, A to obtain another
efficient adversary A′ who breaks the security of the CCA2 encryption scheme
ENC.

The adversary A′ breaking the CCA2 security of the encryption scheme ENC
proceeds as follows: A′ plays the part of Sim in the Ideal experiment, with the

244 J. Kelsey et al.

Event Definition Probability Primitive Lemma
Bad Event 1 Server is corrupted and A

queries Hpw with an input
of the form Si

j ||P̂ i
j , where

Si
j ∈ S and there is no en-

try (Si
j , ·, ·, ·, tij) ∈ T , with

tij �= ⊥.

q · λ′/2n statistical

Bad Event 2 Server is not corrupted
and A makes a query to
HKD with input of the form
(Bi

j ||Ĉi
j), where Bi

j ∈ B.

negligible CCA2 Enc
Scheme

Lem 2

Bad Event 3 Server is corrupted and
(0||Di

j) or (0||Di
j) have al-

ready been queried to HVE

at the point when Sim tries
to program them.

q2/2n statistical

Bad Event 4 Two distinct oracle queries
to Hpw returned the same
value.

q2/2n statistical

Bad Event 5 Unlock query with Ĉ =
Hpw(Si

j , ·) for some Si
j ∈ S,

but A did not make an ora-
cle query returning Ĉ.

� · 2n′
/2n statistical Lem 1

Bad Event 6 Server is not corrupted and
(0||Di

j) or (0||Di
j) have al-

ready been queried to HVE

at the point when Sim tries
to program them.

q2/2n statistical

Bad Event 7 Server is not corrupted, A
sends (Ê, F̂ , Ĉ) to Server,
the signature verifies, Ê /∈ E
and there is no unused entry
in gen.

negligible Unforg. of
Blind Sig-
nature

Lem 3

Bad Event 8 Server is not corrupted, A
sends (Ê, F̂ , Ĉ) to Server,
the signature verifies, Ê /∈ E
and B̂ = DECSKS

(Ê) ∈ B.

negligible CCA2 Enc
Scheme

Lem 2

Bad Event 9 For some y1, y2 such that
(0||D, y1), (1||D, y2) are in
HVE

, (y1||y2) ⊕ Zi
j = 0n||·,

where Zi
j ∈ Z and there

is no entry (·, ·, ·, Zi
j , t

i
j) ∈

gen, with tij �= ⊥.

λ′ · q/2n statistical

Fig. 1. Table of Bad Events occurring in the simulation.

TMPS: Ticket-Mediated Password Strengthening 245

exception that (1) It knows all the honest users passwords and keys (since it
controls Env); (2) It receives PKS externally from its CCA2 challenger (and
does not know the corresponding SKS), (3) It aborts and outputs 0, 1 with
probability 1/2 if A requests a Server corruption. Sim chooses random strings
Bi

j , B
′i
jB. Upon corruption of party Ui, A′ Sim sends Bi

j , B
′i
j back to its CCA2

challenger. The CCA2 challenger chooses b̃ ← {0, 1} and returns an encryption
of Bi

j if b̃ = 0 and an encryption of B′i
j if b̃ = 1. Let E∗ denote the challenge

ciphertext that A′ receives in return. A′ continues to play the part of Sim, but
includes challenge ciphertext E∗ in the information returned for the corruption
request for party Ui, instead of a newly generated ciphertext. When responding
to Unlock queries (Ê, F̂), Sim must decrypt using SKS if Ê /∈ E . But in this
case, either (1) A′ has not yet requested/received its challenge ciphertext from
the CCA2 challenger or (2) Ê �= E∗, since E∗ ∈ E . So A′ forwards the decryption
query Ê to its CCA2 oracle. Recall that throughout the experiment, A′ (playing
the part of Sim) monitors all queries made to the random oracles. If an Unlock
request is made with a valid ticket that includes E∗ and a Ĉi

j value corresponding
to the correct password, A′ chooses a value for Di

j at random (without querying
oracle HKD). If, at any point, Case 1: a query to HKD of the form (Bi

j , ∗) is
made or some CCA2 decryption oracle query yields value Bi

j , then A′ aborts the
experiment and returns 0 to its challenger. If, at any point, Case 2: a query to
HKD of the form (B′i

j , ∗) is made or some CCA2 decryption oracle query yields
value B′i

j , then A′ aborts the experiment and returns 1 to its challenger. If the
experiment completes without the above cases occurring, A′ flips a coin and
returns the outcome to its challenger.

Now, note that if Bad Event 2 or 8 occur with non-negligible probability
ρ = ρ(n), then we must have that Pr[b̃ = 0 ∧ Case 1 occurs] = Pr[b̃ = 1 ∧
Case 2 occurs] = ρ/2.

On the other hand, it is always the case that Pr[b̃ = 0 ∧ Case 2 occurs] =
Pr[b̃ = 1 ∧ Case 1 occurs] = q/2n+1 + λ′/2n+1, where q is the total number
of distinct oracle queries made during the experiment. This is because when
b̃ = 0, there is no information at all about B′i

j contained in adversary A’s view
(unless B′i

j = Bi′
j′ for some (i′, j′) �= (i, j), which occurs with probability at most

λ′/2n+1) and so A can only happen to query the oracle on B′i
j at random. The

case for b̃ = 1 follows by identical reasoning.
Thus, the distinguishing advantage of CCA2 adversary A′ is ρ/2− q/2n+1 −

λ′/2n+1, which is non-negligible, since ρ is non-negligible. This implies a contra-
diction to the CCA2 security of the underlying encryption scheme.

Lemma 3. Assuming the unforgeability of the blind signature scheme (see Def-
inition 7), Bad Event 7 occurs with at most negligible probability in the Ideal
experiment.

The proof proceeds by showing that if Bad Event 7 occurs with non-negligible
probability for some efficient adversary A, then, by definition, we obtain an effi-
cient adversary A′ who submits a larger number of valid Unlock requests than

246 J. Kelsey et al.

there are valid tickets obtained from the ideal functionality. But note that each
valid Unlock request is accompanied by a fresh blind signature F̂ . Moreover,
the number of valid signatures obtained from the signer corresponds to the num-
ber of valid tickets obtained. Thus, adversary A can be used to obtain adversary
A′ such that, according to Definition 7, breaks the security of the blind signature
scheme.

Conditioned on the Bad Events not occurring, the only difference between a
Real and Ideal execution, is that in the Ideal execution in Step (10b) the simu-
lator submits the next available (Ê, F̂) pair, whereas in the Real execution the
order of submitted (Ê, F̂) pairs depends on which party is making the Unlock
request. However, the blindness property of the blind signature scheme ensures
that given a set of interactions and message signature pairs, the signer cannot
tell in which order the message signature pairs were generated. Indeed, this is
the case even when (PK ′

S , SK ′
S) are adversarially generated. Thus, the view of

the adversary is indistinguishable in the two cases. We therefore conclude with
the following lemma.

Lemma 4. Assuming the blindness of the blind signature scheme (see Defini-
tion 7), the Ideal and Real output distributions are computationally indistinguish-
able.

6 Performance and Implementation

The TMPS protocol requires several primitives: (1) password hashing (e.g.,
PBKDF2 or Argon2), (2) public key encryption (e.g. RSA or El Gamal), (3)
blind signatures (e.g. RSA or ElGamal), and (4) hash functions and HMAC
(e.g., using SHA256 or Blake2).

The protocol permits a great deal of flexibility in choice of underlying cryp-
tographic primitives. Notably, there are proposed post-quantum algorithms that
meet these requirements.

We implemented our protocol in Python12, using the Cryptography mod-
ule, which provides a Python frontend for OpenSSL calls. The protocol allows
a choice of underlying primitives; we used RSA with 3072-bit moduli for (blind)
signatures and public key encryption, along with SHA256 for hashing, and
PBKDF2_HMAC_SHA2 for password-hashing.

All measurements were performed on a Macbook Pro (3.5 GHz Intel Core i7)13.
While this is not an optimized implementation, it allows us to obtain concrete per-
formance numbers, and it demonstrates the practicality of the scheme.

6.1 Requesting a Ticket

On the user device, each ticket Request requires the following operations:
(1) one password hash computation, (2) generating 2n random bits, (3) one
12 We will make source code available on a public-facing git repository.
13 Any mention of commercial products within the paper is for information only; it does

not imply recommendation or endorsement by NIST.

TMPS: Ticket-Mediated Password Strengthening 247

public key encryption, (4) blinding and unblinding one signature request, (5)
one HMAC computation, and (6) two hash operations.

With RSA, this is comparable to the work needed to set up a TLS connection.
Thus, devices that can set up a TLS connection can Request tickets. The
slowest part of this process on the user device is likely to be the password hash
computation, which can be tuned by choosing its hardness parameters. In our
implementation, each Request required about 0.008 seconds on the user side.
On the server, each Request requires only a blind signature. With RSA, this
is approximately the same cost as a normal RSA signature14. In our implemen-
tation, each Request required about 0.076 seconds on the server side.

6.2 Unlocking a Ticket

On the user device, each Unlock requires (1) one password hash, one HMAC
and two hash computations. Again, the password hash is almost certain to be
the slowest part of this process. In our implementation, each Unlock required
about 0.0049ṡ on the user side.
On the server, an Unlock call requires looking up a value in a list of
previously-used tickets, a signature verification, a public key decryption and
an HMAC computation. The cryptography used here is comparable to setting
up a TLS connection, and so should be no problem for any server. In our imple-
mentation, each Unlock required about 0.002 seconds on the server side.

6.3 Storage

Keeping track of the previously-used tickets requires some storage, but not a huge
amount. We can hash the value of E from the ticket (the public-key encrypted
value) into 128 bits15 (16 bytes), e.g., by truncating SHA256 outputs at 128 bits.

A user who makes ten Unlock calls per day will go through fewer than 4096
tickets in one year. The server needs 64 KiB to store one 16 byte hash for each
of those tickets. If the server supports 1000 users, it will need about 64 MiB for
a year’s worth of tickets–a hash table with these values in it will fit into RAM.

Using 3072-bit RSA, each ticket requires less than 1 KiB on the user device.
Thus, even low-end devices like tablets and smartphones can easily store a year’s
supply of tickets.

7 Conclusion and Open Questions

In this paper, we have introduced TMPS (Ticket-Mediated Password Strength-
ening), a new mechanism for strengthening password-based key derivation. We
14 The extra work for getting a blind RSA signature is done by the person requesting

the blind signature–they must blind the signature request, and unblind the value
they get back from the signer.

15 We can use a relatively short hash because we don’t care about collisions–an attacker
who forces two tickets to collide simply deprives himself of the use of one of his tickets.

248 J. Kelsey et al.

have also proposed a set of protocols that implements a TMPS scheme, and
proven its security in the UC model. In the full paper, we additionally provide a
number of variant schemes which allow for different implementation constraints
and tradeoffs.

There are several questions left open by this research.

– Are there other settings where one can use tickets bound to a computation to
obtain a novel functionality? For example, could we use this kind of mech-
anism to limit accesses to a local encrypted database, or computations of a
key derivation function?

– Are there are more elaborate restrictions that can be imposed on these tickets,
without losing the users’ privacy? For example, is it possible to rate-limit
Unlock requests from a given user without revealing which user was using
the scheme?

– A number of additional features would be useful in implementing this scheme
on a large scale. Specifically:

• Our TMPS protocol doesn’t support key rollover well. The server can
trivially switch to new encryption/signing keys for new tickets, but in
practice, must keep the old decryption key active indefinitely. This means
that rolling over the key in response to a suspected breach at the server
isn’t workable. An improved scheme for rolling over keys would be a valu-
able addition.

• Our protocol doesn’t have a nice way to resynchronize with the server
when the user’s device is restored from backup. Developing such a mech-
anism would make TMPS more practically useful.

Acknowledgements. The authors gratefully acknowledge Bart Preneel, Vincent Rij-
men, Frank Piessens, Peihan Miao, Ray Perlner, Kristen Greene, and the many atten-
dees of the Fall 2018 DC Area Crypto Day and NIST Crypto Reading Group for useful
feedback and suggestions on this paper.

Appendix

A Definitions

In this section, we mention the key definitions used in the security analysis of
our protocol to facilitate better understanding. Our exposition closely follows [3,
14,17,26].

Definition 1 [Encryption System]. An encryption system can be defined as
a tuple of probabilistic polynomial-time algorithms ΠENC(GEN, ENC, DEC) such that:

1. The key-generation algorithm GEN takes as input the security parameter 1n

and outputs a key K.
2. The encryption algorithm ENC takes as input a key K and a plaintext message

M ∈ {0, 1}∗, and outputs a ciphertext C where C ← ENCK(M).

TMPS: Ticket-Mediated Password Strengthening 249

3. The decryption algorithm DEC takes as input a key and a ciphertext, and
outputs a message. We assume without loss of generality that the decryption
algorithm corresponding ENCK is DECK such that M = DECK(C) and for every
n, every key K output by GEN(1n), and every M ∈ {0, 1}∗, it holds that
DECK(ENCK(M)) = M.

The Chosen-Ciphertext Attack (CCA) Security Experiment
PrivKcca

A,ΠENC
(n): Consider the following experiment for an encryption system

ΠENC = (GEN, ENC, DEC), adversary A, and value n for the security parameter.

1. A random key K is generated by running GEN(1n).
2. The adversary A is given input 1n and oracle access to ENCK(·) and DECK(·).

It outputs a pair of messages M0, M1 of the same length.
3. A random bit b ← {0, 1} is chosen, and then a ciphertext C ← ENCK(Mb) is

computed and given to A. We call C the challenge ciphertext.
4. The adversary A continues to have oracle access to ENCK(·) and DECK(·), but

is not allowed to query the latter on the challenge ciphertext itself. Eventually,
A outputs a bit b′

5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition 2 [CCA Security]. An encryption system ΠENC has indistinguish-
able encryptions under a chosen-ciphertext attack (or is CCA-secure) if for all
probabilistic polynomial-time adversaries A there exists a negligible function negl
such that:

Pr[PrivKcca
A,ΠENC

(n) = 1] ≤ 1
2
+ negl(n),

where the probability is taken over all random coins used in the experiment.

Other variants of the CCA Security definition are defined below.

Definition 3 [Chosen Plaintext Attack (CPA) Security]. Similar to the
security experiment of CCA except that the Adversary A is not given access to
decryption oracle at step 2 and step 4.

Definition 4 [Non-adaptive CCA or CCA1 Security]. Similar to the secu-
rity experiment of CCA except that the Adversary A is not given access to decryp-
tion oracle at step 4.

Definition 5 [Adaptive CCA or CCA2 Security]. Similar to the security
experiment of CCA where the Adversary A is allowed to perform a polynomially
bounded number of encryptions, decryptions or other calculations over inputs of
its choice except on the challenge ciphertext.

Definition 6 [Signature Scheme]. A signature scheme is a tuple of proba-
bilistic polynomial-time algorithms ΠSIG(GEN, SIGN, VERIFY) such that:

1. The key-generation algorithm GEN takes as input a security parameter 1n and
outputs a pair of keys (PK,SK). These are called the public key and the
private key, respectively.

250 J. Kelsey et al.

2. The signing algorithm SIGN takes as input a private key SK and a message
M from some underlying message space. It outputs a signature F represented
as F ← SIGNSK(M).

3. The deterministic verification algorithm VERIFY takes as input a public key
PK, a message M , and a signature F . It outputs a bit b represented as b =
VERIFYPK(M,F) where b = 1 means valid and b = 0 means invalid.

We require that for every n, every (PK,SK) output by GEN(1n), and every mes-
sage M in the appropriate underlying plaintext space, it holds that

VERIFYPK(M, SIGNSK(M)) = 1.

We say F is a valid signature on a message M if VERIFYPK(M,F) = 1.

Definition 7 [Blind Signature]. A 2-move blind signature scheme is
an interactive signature scheme with signer S and user U and can be
defined as a tuple of probabilistic polynomial-time algorithms ΠBSIG =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1n

and outputs a pair of keys (PK,SK). These are called the public key and the
private key, respectively.

2. Signature Issuing. The parties execute the following protocol, denoted
〈U(PK,M),S(SK)〉:
(a) M∗ ← BLIND(M): The user blinds the message M to obtain M∗ and

sends to the signer.
(b) F ∗ ← SIGNSK(M∗): The signer outputs a signature F ∗ on input of mes-

sage M∗ and private key SK and sends to the user.
(c) F ← UBLIND(F ∗): The user unblinds the signature F ∗ to obtain F . Note

that the user inputs additional private state to the UBLIND algorithm,
which we leave implicit.

3. The deterministic verification algorithm BVERIFY takes as input a public key
PK, a message M , and a signature F . It outputs a bit b where b = 1 means
valid and b = 0 means invalid.

We require that for every n, every (PK,SK) output by GEN(1n), and every
message M ∈ {0, 1}n and any F output by U in the joint execution of
〈U(PK,M),S(SK)〉, it holds that

BVERIFYPK(M,F) = 1.

The security of blind signature schemes requires two properties, namely unforge-
ability and blindness.

Definition 8 [Unforgeability]. A 2-move blind signature scheme ΠBSIG =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) is called unforgeable if for any efficient algo-
rithm A the probability that experiment UnforgeΠBSIG

A (n) evaluates to 1 is neg-
ligible (as a function of n) where

TMPS: Ticket-Mediated Password Strengthening 251

Experiment ForgeA
ΠBSIG

1. (SK,PK) ← GEN(1n)
2. ((M1, F1), · · · , (Mk+1, Fk+1)) ← A〈·,S(SK)〉∞

(PK) Return 1 iff
(a) Mi �= Mj for 1 ≤ i < j ≤ k + 1 and
(b) BVERIFYPK(Mi, Fi) = 1 for all i = 1, 2, · · · , k + 1, and
(c) at most k interactions with 〈·,S(SK)〉∞ were completed.

Definition 9 [Blindness]. A 2-move blind signature scheme ΠBSIG =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) is called blind if for any efficient algorithm
A the probability that experiment BlindΠBSIG

BSIGN∗ (n) evaluates to 1 is negligibly close
to 1

2 where

Experiment BlindΠBSIG
BSIGN∗

1. (PK,M0,M1, stfind) ← A(find, 1n)
2. b ← {0, 1}
3. stissue ← A〈U(PK,Mb),·〉1,〈U(PK,M1−b),·〉1(issue, stfind) and let Fb, F1−b denote

the (possibly undefined) local outputs of U(PK,Mb) resp. U(PK,M1−b)
4. set (F0, F1) = (⊥,⊥) if F0 = ⊥ or F1 = ⊥
5. b∗ = A(guess, F0, F1, stissue)
6. return 1 iff b = b∗.

Definition 10 [Group Signature]. A group signature scheme ΠGSIG =
(GKg, GSIGN, GVERIFY, OPEN) consists of four polynomial-time algorithms:

1. The randomized group key generation algorithm GKg takes input a security
parameter 1n and 1m where m ∈ N is the group size and outputs a tuple
(gPK, gmSK, gSK), where gPK is the group public key, gmSK is the group
manager’s secret key, and gSK is an n-vector of keys with gSK[i] being a
secret signing key for player i ∈ [m].

2. The randomized group signing algorithm GSIGN takes as input a secret signing
key gSK[i] and a message M to return a signature of M under gSK[i] i ∈ [m].

3. The deterministic group signature verification algorithm GVERIFY takes as
input the group public key gPK, a message M , and a candidate signature F
for M to return either 1 or 0.

4. The deterministic opening algorithm OPEN takes as input the group manager
secret key gmSK, a message M , and a signature F of M to return an identity
i or the symbol ⊥ to indicate failure.

Correctness: The scheme must satisfy the following correctness requirement. For
all n,m ∈ N, all (gPK, gmSK, gSK) ∈ [GKg(1n, 1m)], all i ∈ [n] and all M ∈
{0, 1}∗

GVERIFY(gPK,M, GSIGN(gSK[i],M)) = 1 and

OPEN(gmSK,M, GSIGN(gSK[i],M)) = i

Definitions of security in the Universal Composability (UC) framework. We
refer to previous work [9,10,21] for definitions of UC secure computation in
the adaptive-corruption setting.

252 J. Kelsey et al.

References

1. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: password-based thresh-
old authentication. In: ACM Conference on Computer and Communications Secu-
rity, pp. 2042–2059. ACM (2018)

2. Akhawe, D.: How dropbox securely stores your passwords (2016). https://
blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/.
Accessed 4 January 2019

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11. http://dl.acm.org/citation.cfm?id=1756169.1756185

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Research in Security
and Privacy, pp. 72–84 (1992)

6. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-
hard functions for password hashing and other applications. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–
24 March 2016, pp. 292–302. IEEE (2016). https://doi.org/10.1109/EuroSP.2016.
31, http://dx.doi.org/10.1109/EuroSP.2016.31

7. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9_11

8. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-authenticated
secret sharing UC-secure against transient corruptions. Cryptology ePrint Archive,
Report 2015/006 (2015). http://eprint.iacr.org/2015/006

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

10. Canetti, R., Damgård, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6_17

11. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996. https://
doi.org/10.1145/237814.238015

12. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(In)Differentiability results for H 2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_21

13. Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia
PRF service. In: 24th USENIX Security Symposium (USENIX Security 15), pp.
547–562. USENIX Association, Washington, D.C. (2015). https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/everspaugh

14. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. Cryptology ePrint Archive, Report 2012/006
(2012). http://eprint.iacr.org/2012/006

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
http://dl.acm.org/citation.cfm?id=1756169.1756185
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1109/EuroSP.2016.31
http://dx.doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
http://eprint.iacr.org/2015/006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/978-3-642-32009-5_21
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
http://eprint.iacr.org/2012/006

TMPS: Ticket-Mediated Password Strengthening 253

15. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji, A.,
Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61204-1_3

16. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_15

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

18. Kelsey, J., Dachman-Soled, D., Mishra, S., Turan, M.S.: TMPS: ticket-mediated
password strengthening. IACR Cryptology ePrint Archive 2019, 543 (2019).
https://eprint.iacr.org/2019/543

19. Lai, R.W.F., Egger, C., Reinert, M., Chow, S.S.M., Maffei, M., Schröder, D.:
Simple password-hardened encryption services. In: 27th USENIX Security Sympo-
sium (USENIX Security 18), pp. 1405–1421. USENIX Association, Baltimore, MD
(2018). https://www.usenix.org/conference/usenixsecurity18/presentation/lai

20. Lai, R.W.F., Egger, C., Schröder, D., Chow, S.S.M.: Phoenix: rebirth of
a cryptographic password-hardening service. In: 26th USENIX Security Sym-
posium (USENIX Security 17), pp. 899–916. USENIX Association, Vancou-
ver, BC (2017). https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/lai

21. Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00862-7_8

22. Mani, A.: Life of a password. In: Real World Crypto 2015 (2015). https://rwc.iacr.
org/2015/Slides/RWC-2015-Amani.pdf

23. Muffett, A.: Facebook: password hashing & authentication. Presentation at
Passwords 2014 Conference, NTNU (2014). https://video.adm.ntnu.no/pres/
54b660049af94

24. Muffett, A.: Life of a password. Presentation at Real World Crypto 2015 (2015)
25. Schneider, J., Fleischhacker, N., Schröder, D., Backes, M.: Efficient cryptographic

password hardening services from partially oblivious commitments. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016, pp. 1192–1203. ACM (2016). http://dl.acm.
org/citation.cfm?id=2976749

26. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_39

27. Sönmez Turan, M., Barker, E.B., Burr, W.E., Chen, L.: SP 800–132. recommen-
dation for password-based key derivation: Part 1: Storage applications. Technical
report, National Institute of Standards & Technology, Gaithersburg, MD, United
States (2010)

28. Wu, T.: The SRP authentication and key exchange system. RFC 2945, pp. 1–8
(2000). https://doi.org/10.17487/RFC2945

https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://eprint.iacr.org/2019/543
https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://doi.org/10.1007/978-3-642-00862-7_8
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://video.adm.ntnu.no/pres/54b660049af94
https://video.adm.ntnu.no/pres/54b660049af94
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.17487/RFC2945

Overdrive2k: Efficient Secure MPC
over Z2k from Somewhat

Homomorphic Encryption

Emmanuela Orsini1 , Nigel P. Smart1,2(B) , and Frederik Vercauteren1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{emmanuela.orsini,nigel.smart,frederik.vercauteren}@kuleuven.be

2 University of Bristol, Bristol, UK

Abstract. Recently, Cramer et al. (CRYPTO 2018) presented a pro-
tocol, SPDZ2k, for actively secure multiparty computation for dishon-
est majority in the pre-processing model over the ring Z2k , instead of
over a prime field Fp. Their technique used oblivious transfer for the
pre-processing phase, more specifically the MASCOT protocol (Keller et
al. CCS 2016). In this paper we describe a more efficient technique for
secure multiparty computation over Z2k based on somewhat homomor-
phic encryption. In particular we adapt the Overdrive approach (Keller
et al. EUROCRYPT 2018) to obtain a protocol which is more like the
original SPDZ protocol (Damg̊ard et al. CRYPTO 2012). To accomplish
this we introduce a special packing technique for the BGV encryption
scheme operating on the plaintext space defined by the SPDZ2k proto-
col, extending the ciphertext packing method used in SPDZ to the case
of Z2k . We also present a more complete pre-processing phase for secure
computation modulo 2k by adding a new technique to produce shared
random bits.

1 Introduction

The last ten years have seen a remarkable advance in practical protocols and
systems to perform secure Multi-Party Computation (MPC). A major pillar of
this advance has been in the case of a dishonest majority, in which one can obtain
so-called active-security-with-abort. In this situation one is interested in MPC
protocols for n parties, where n ≥ 2, which are practical even for values of n in
the tens (or potentially hundreds). Following the initial work of Bendlin et al. [4],
the main breakthrough came with the SPDZ protocol by Damg̊ard et al. [13]
and its improvements, e.g. [12]. This protocol works in an offline/online manner
over finite fields. In the offline phase, function-independent pre-processing is
performed, typically to generate Beaver triples [3]. In the online phase, this
pre-processing is consumed as the desired function is securely evaluated. Active
security is obtained by parties not only sharing data, but also sharing a linear
MAC on this data together with a share of the MAC key. Validation of correct
behavior is done via a MAC check protocol which verifies that all opened data
shares and all privately held MAC and key shares are consistent.
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 254–283, 2020.
https://doi.org/10.1007/978-3-030-40186-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_12&domain=pdf
http://orcid.org/0000-0002-1917-1833
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7208-9599
https://doi.org/10.1007/978-3-030-40186-3_12

Overdrive2k: Efficient Secure MPC over Z2k 255

Over the previous decade there has been a multitude of methods to pro-
duce the offline data needed for the SPDZ protocol. The initial protocol, [4], in
this family used a linearly homomorphic encryption scheme, and pairwise zero-
knowledge proofs to correctly generate the offline data. This approach works
well for a small number of parties, but does not scale for larger values of n. The
linearly homomorphic encryption method was replaced in the SPDZ paper [13]
by a level-one Somewhat Homomorphic Encryption (SHE) scheme. The main
efficiency improvement came from using the BGV [5] SHE scheme, and mak-
ing extensive use of the packing technique of Smart and Vercauteren [21]. On
the other hand, the main inefficiency was that, to obtain active security, one
needed to prove knowledge of plaintexts and correctness of ciphertexts. These
zero-knowledge proofs can (currently) only be done in a non-tight manner, and
with a relatively large soundness error. This inefficiency in soundness error is
usually overcome using standard amortization techniques. In [12], a different
zero-knowledge proof was utilized which, whilst asymptotically better than that
of [13], turned out to be impractical.

Attention then switched to Oblivious Transfer (OT) based pre-processing,
such as the Tiny-OT [20] and MASCOT [18] protocols. Finally, in the last two
years attention switched back to homomorphic encryption based protocols with
the Overdrive paper by Keller et al. [19]. Overdrive gives two variants of the
SPDZ protocol: Low-Gear and High-Gear. The Low-Gear variant uses the origi-
nal linearly homomorphic encryption based methodology of [4], but implements
it using a level-zero LWE-based SHE scheme (in this instance, BGV). The result-
ing method is very efficient for a small number of parties due to the inherent
packing one can use. For two parties the authors of [19] suggest it is six to four-
teen times faster than MASCOT [18, Tables 2 and 4] (with the precise figure
depending on the network latency).

In the High-Gear variant of Overdrive the authors return to the original
zero-knowledge proofs of [13], and make improvements by both reducing the
lack of tightness (although not totally eliminating it), and enabling batching of
the zero-knowledge proofs across all n parties on top of the usual amortization
techniques. This last optimization results in an immediate improvement by a
factor of n. Thus, for larger values of n, High-Gear is currently the best method
for SPDZ-family style pre-processing over finite fields. In [19, Tables 2 and 4] the
High-Gear protocol for two parties is shown to be up to six times faster than
MASCOT (again depending on the network latency); whilst for 100 parties, [19,
Table 7] implies a 13 fold improvement over MASCOT.

Very recently a new protocol was introduced to the SPDZ family in the work
of Cramer et al. [10], referred to there, and here, by the shorthand SPDZ2k.
Instead of defining MPC protocols over a finite field, SPDZ2k defines MPC pro-
tocols over a ring Z2k . Designing MPC protocols over rings Z2k is potentially
useful in many applications, and could significantly simplify implementations,
such as in the case of evaluations of functions containing comparisons and bit-
wise operations. To enable computation over such rings, SPDZ2k makes changes
to the way MACs are held, and verified, and more generally to how the pre-

256 E. Orsini et al.

processing works. The paper [10] bases its pre-processing on a MASCOT-style
methodology, hence the two protocols are inherently very similar. Indeed, recent
work by D̊amgard et al. [11] implemented the SPDZ2k protocol showing that its
performance is comparable to the MASCOT one.

Establishing whether an efficient pre-processing for MPC over Z2k can be
provided via homomorphic encryption was left as an open problem by the authors
of SPDZ2k. A quick naive investigation seems to imply that this is a non-starter.
The main reason the SHE-based approach (either Low-Gear or High-Gear) is
efficient is in the possibility of packing data into ciphertexts and performing
many operations in parallel. For SPDZ over finite prime fields one selects the
underlying ring in BGV (of degree N) to completely split over the finite field, thus
one obtains N -fold parallelism. When extending the SHE schemes to work with
a plaintext modulus of 2k, instead of a prime p, the packing capacity decreases
dramatically and one cannot approach anything like N -fold parallelism.

Our Contribution. In this paper we revisit the idea of using a SHE-based
pre-processing, i.e. Overdrive-based, for the SPDZ2k family. We show that the
above naive analysis, which would discount its applicability, is actually wrong.

Our first contribution is a new packing methodology which is particularly
tailored to the pre-processing phase of SPDZ2k. In particular, we obtain (roughly
speaking) a N/5 fold parallelism for High-Gear when mapped to working modulo
2k. Since the High-Gear protocol is the state-of-the-art for the SPDZ family
protocols in terms of efficiency for large numbers of parties, we focus our work
on the High-Gear of Overdrive1.

Using our new packing technique comes with difficulties. The main issue is
that the packing for level-zero ciphertexts of a plaintext message is different from
the packing used at level one. Thus there is a need to modify the distributed
decryption procedure in one important case, namely when one needs to obtain
a fresh encryption of the underlying plaintext rather than an additive secret
sharing of it. This in turn raises another problem: the distributed decryption
protocol requires pairs of ciphertexts with special properties associated to the
packing. A party needs to generate two ciphertexts, one at level zero and one at
level one, which encrypt the same value, but with different packings. Since parties
could be adversarial, this means that we also need to adapt the zero-knowledge
proofs associated with the High-Gear protocol to enable such pairs of ciphertexts
to be produced correctly. Some of our amortized zero-knowledge proofs need to
prove a more complex statement associated to our packing techniques, with an
overall estimated factor 2/3 loss in performance compared to HighGear.

Given that Overdrive is up to fourteen times faster that MASCOT, depend-
ing on the number of parties, and that MASCOT and SPDZ2k perform very

1 Whilst writing this paper the TopGear [2] variant of High-Gear was published on
e-print. This essentially allows the High-Gear protocol to be run at higher security
levels for roughly the same performance. The TopGear improvements cannot be
applied directly to our work, since the zero-knowledge proofs here require challenge
spaces to be in Fq to ensure correctness.

Overdrive2k: Efficient Secure MPC over Z2k 257

similarly, we expect that our protocol is up to two times more efficient than the
OT-based protocols in the two party setting. As the number of parties grows
this gap will increase. Whilst these only indicate rough expected performance
figures, we give a more concrete estimation of the communication complexity of
our protocol in Sect. 7.

Our second contribution is in the construction of a more complete prepro-
cessing phase for SPDZ-like protocols modulo 2k, with active security in the
dishonest majority setting. Other than a protocol for producing multiplication
triples, we show how to efficiently produce random shared bits in the SPDZ2k
framework using a trick similar to the one used in the SPDZ protocol over Fp.
Protocols over fields make use of the squaring operation over finite fields of odd
characteristic which is a 2-to-1 map, whereas, modulo 2k, this operation is a
4-to-1 map. We show a simple trick that permits to use essentially the same
technique used mod p in the modulo 2k setting.2

2 Preliminaries

In this section we introduce some important notation, describe the security
model, recap on the SPDZ2k paper’s requirements for the offline phase [10],
plus the necessary background on the BGV Somewhat Homomorphic Encryp-
tion (SHE) scheme [5]. By way of notation we let a ← A denote randomly
assigning a value a from a set A, where we assume a uniform distribution on A.
If A is an algorithm, we let a ← A denote assignment of the output, where the
probability distribution is over the random coins of A; we also let a ← b be a
shorthand for a ← {b}, i.e. to denote normal variable assignment. We denote by
[d] the set of integers {1, . . . , d}.

Security Model. We prove security of our protocols in the universal com-
position (UC) framework of Canetti [7], and assume familiarity with this. Our
protocols work with n parties, P1, . . . , Pn, and we consider security against mali-
cious, static adversaries, i.e. corruption may only take place before the protocols
start, corrupting up to n − 1 parties. Informally, when we say that a protocol
Π securely implements a functionality F with computational (resp. statistical)
security parameter κ (resp. s), our theorems guarantee that the advantage of
any environment Z in distinguishing the ideal and real executions is in O(2−κ)
(resp. O(2−s)).

In some of our protocols we will need a coin-tossing functionality FRand, which
given a set D, outputs a uniformly random element r from D. This functionality
can be efficiently implemented in the random oracle model as described in [10].

2 A similar trick for random shared bit generation is described in a concurrent and
independent work [11].

258 E. Orsini et al.

2.1 The SPDZ2k Protocol

The SPDZ2k protocol [10] is parametrized by two integers k and s, where k
defines the modulus 2k over which the MPC protocol will run, and s is a statis-
tical security parameter, for simplicity of exposition we will set t = k + s. For
the reader who is new to the SPDZ2k protocol think of k = s = 64. As we are
mainly focusing on the offline phase our complexity does not depend on whether
k < s or k ≥ s, it only depends on the value of t = k + s.

The protocol performs MPC over the underlying ring Z2k , however each value
x ∈ Z2k is secret shared amongst the n parties via values [x]i ∈ Z2t , such that
x =

∑n
i=1[x]i (mod 2k). By abusing notation we also think of x as the sum∑n

i=1[x]i (mod 2t), since in the main SPDZ2k online protocol the upper s bits
of x will be ignored.

Sometimes we will use [x]i to denote additive sharings of values x ∈ Z2t ,
and sometimes with domains different from Z2t . We will explicitly point this out
when we do such alterations to the basic sharing.

Each of the n parties also holds a share [α]i ∈ Z2s of a global MAC key
α =

∑n
i=1[α]i (mod 2t). The global MAC key is used to authenticate the shares

held by a party, in particular each party holds a value [γx]i = [α · x]i ∈ Z2t such
that

γx =
n∑

i=1

[α · x]i = α · x (mod 2t).

A secret value x ∈ Z2t shared in this way is represented by 〈x〉 = {[x]i, [γx]i}i∈[n],
and we let 〈x〉i denote the pair of values ([x]i, [α · x]i) held by party Pi in this
sharing.

Using this secret sharing scheme any linear function can be computed locally
by the parties, i.e. without any interaction. This is done using the method in
Fig. 1. We denote the process of executing this operation for a specific linear
function as

〈y〉 ← c0 +
k∑

i=1

ci · 〈xi〉.

To perform non-linear operations the SPDZ2k protocol makes use of the
offline-online paradigm. In the offline phase various generic pre-processed data
items are produced which allow the online phase to proceed as a sequence of
linear functions and opening operations. Each opening operation in the online
phase needs to be checked for consistency, which can be done via the method
introduced in [10] (which we recap on in the full version of the paper). The
overall protocol achieves actively secure MPC with abort, with a statistical error
probability of roughly 2−s+log2 s (see [10, Lemma 1] for more details).

2.2 The BGV SHE Scheme and Associated Number Theory

In this section we outline the details of what we require of the BGV encryption
scheme. Most of the details can be found in [5,14–16], although we will only
require a variant, which supports circuits of multiplicative depth one.

Overdrive2k: Efficient Secure MPC over Z2k 259

Procedure LinearFuncShares

This procedure allows the computation of an arbitrary linear function y = c0 +∑k
j=1 cj ·xj mod 2t given public inputs c0, c1, . . . , ck and the parties shares 〈xj〉i =

{[xj]i, [γxj]i}k
j=1, i ∈ [n]. The output are the shares of 〈y〉.

1. Each Pi, i �= 1, sets [y]i =
∑k

j=1 cj · [xj]i (mod 2t)
2. Party P1 sets [y]1 = c0 +

∑k
j=1 cj · [xj]1 (mod 2t)

3. Each party Pi sets [α · y]i = [α]i · c0 +
∑k

j=1 cj · [α · xj]i (mod 2t)
4. Each party Pi sets 〈y〉i = {[y]i, [α · y]i}

Fig. 1. Procedure to locally compute linear functions on shares

The Rings: The BGV encryption scheme, as we will use it, is built around the
arithmetic of the cyclotomic ring R = Z[X]/(Φm(X)), where Φm(X) is the m-th
cyclotomic polynomial. For an integer q > 0, we denote by Rq the ring obtained
as reduction of R modulo q. In this work we will be taking m to be a prime p, and
not the usual power of two as in most other papers. This is because we require
that R factors modulo 2t into a number r of distinct irreducible polynomials of
degree d. To ensure better underlying geometry of the ring, i.e. the ring constant
cm is small (see [13]), we then select m to be prime.

Our main optimization to enable an efficient offline phase for SPDZ2k will
rely on us looking at the plaintext space in different ways. The main plaintext
space P we will use is equivalent to the 2-adic local ring, approximated to the
t-th coefficient, namely

P = Z2t [X]/(Φp(X)).

As can be found in [8], and used extensively in [14], the ring P decomposes into
r irreducible factors each of degree d, as

P ∼= (Z2t [X]/F1(X)) × . . . × (Z2t [X]/Fr(X)) = P,

where deg(Fi(X)) = d is the order of the element 2 in F
∗
p, and each Fi(X)

is the Hensel lift of the associated factor fi(X) of the factorization Φp(X) ≡
f1(X) · · · fr(X) (mod 2). We write N = deg(Φp(X)) = φ(p) = p − 1 and so
N = r · d. We will denote by Γ : P −→ P the map which takes elements in P
and maps them to the slot representation P, and by Ψ2t the map from the global
polynomial ring R representation to the slot P representation, i.e.

Ψ2t : R −→ P.

Note that this map takes a polynomial f in R, maps it to P, via reduction
modulo 2t, and then turns the resulting polynomial into its slot representation,
thus Ψ2t(f) = Γ (f (mod 2t)). We also let Γ−1 denote the inverse map of Γ ,
which maps an element in P to its equivalent element in P. See Fig. 2 for a
summary of these, and other maps, we will be using3.
3 We will define the maps ΘI, ΘJ and χI, χJ in Fig. 2 in the next section.

260 E. Orsini et al.

PM M

P

R

mod 2t

Ψ2t

Γ

χI χJ

ΘI

ΘJ

Fig. 2. Summary of the maps we use between different rings and representations

It is well known that the number of monic irreducible polynomials of degree
d over a finite field Fq is equal to

1
d

∑

i|d
μ(d/i) · qi,

where μ(·) is the Möbius function. This means that the number of SIMD “slots”
r, using the packing technique of Smart and Vercauteren [21], is bounded by this
value. In particular r < 2d, and hence as N gets bigger we get progressively less
efficient if we perform packing in a naive manner.

The problem occurs because we are interested in the plaintext space Z2t ,
but the packing technique of [21] will only use the degree zero coefficient of
each slot. Thus as d becomes larger for large N , the density of useful packing
becomes smaller, and the ratio of data to plaintext space from this naive packing
is r/N = 1/d.

The Distributions: Following [16, Full version, Appendix A.5] and [1, Docu-
mentation] we need different distributions in our protocol.

– HWT(h,N): This generates a vector of length N with elements chosen at
random from {−1, 0, 1} subject to the condition that the number of non-zero
elements is equal to h.

– ZO(0.5, N): This generates a vector of length N with elements chosen from
{−1, 0, 1} such that the probability of each coefficient is p−1 = 1/4, p0 = 1/2
and p1 = 1/4.

– dN(σ2, N): This generates a vector of length N with elements chosen accord-
ing to an approximation to the discrete Gaussian distribution with variance
σ2.

– RC(0.5, σ2, N): This generates a triple of elements (v, e0, e1) where v is sam-
pled from ZOs(0.5, N) and e0 and e1 are sampled from dNs(σ2, N).

– U(q,N): This generates a vector of length N with elements generated uni-
formly modulo q.

Overdrive2k: Efficient Secure MPC over Z2k 261

In the full version of the paper we present the traditional noise analysis for the
BGV scheme adapted to our specific application; this is adapted from [16], using
the above distributions.

The Two Level BGV Scheme: We consider a two-leveled homomorphic
scheme, given by three algorithms/protocols EBGV = {BGV.KeyGen, BGV.Enc,
BGV.Dec}, which is parametrized by a security parameter κ, and defined as
follows. First we fix two moduli q0 and q1 such that q1 = p0 · p1 and q0 = p0,
where p0, p1 are prime numbers. Encryption generates level one ciphertexts, i.e.
with respect to the largest modulo q1, and level one ciphertexts can be moved
to level zero ciphertexts via the modulus switching operation. We require

p1 ≡ 1 (mod 2t) and p0 − 1 ≡ p1 − 1 ≡ 0 (mod p).

The first condition is to enable modulus switching to be performed efficiently,
whereas the second is to enable fast arithmetic using Number Theoretic Fourier
Transforms.

– BGV.KeyGen(1κ): It outputs a secret key sk which is randomly selected from
a distribution with Hamming weight h, i.e. HWT(h,N), much as in other
systems, e.g. HELib [17] and SCALE [1] etc. The public key, pk, is of the
form (a, b), such that

a ← U(q1, N) and b = a · sk + 2t · ε (mod q1),

where ε ← dN(σ2, N). This algorithm also outputs the relinearisation data
(ask,sk2 , bsk,sk2) [6], where

ask,sk2 ← U(q1, N) and bsk,sk2 = ask,sk2 ·sk+2t ·esk,sk2 −p1 ·sk2 (mod q1),

with esk,sk2 ← dN(σ2, N). We fix σ = 3.16 in what follows.
– BGV.Enc(m, r; pk): Given a plaintext m ∈ P, the encryption algorithm sam-

ples r = (v, e0, e1) ← RC(0.5, σ2, n), i.e.

v ← ZO(0.5, N) and e0, e1 ← dN(σ2, N),

and then sets

c0 = b · v + 2t · e0 + m (mod q1), c1 = a · v + 2t · e1 (mod q1).

Hence the initial ciphertext is ct = (1, c0, c1), where the first index denotes
the level (initially set to be equal to one). We define a modulus switching
operation which allows us to move from a level one to a level zero ciphertext,
without altering the plaintext polynomial, that is

(0, c′
0, c

′
1) ← SwitchMod((1, c0, c1)), c′

0, c
′
1 ∈ Rq0 .

262 E. Orsini et al.

– BGV.Dec((c0, c1); sk): Decryption is obtained by switching the ciphertext to
level zero (if it is not already at level zero) and then decrypting (0, c0, c1) via
the equation

(c0 − sk · c1 (cmod q0)) (mod 2t),

which results in an element of P. The notation cmod refers to centered
modular reduction, i.e. the resulting coefficients are taken in the interval
(−q/2, q/2]. In the next sections, we will extend the decryption algorithm to
enable distributed decryption.

– Homomorphic Operations: Ciphertexts at the same level � can be added,

(�, c0, c1) � (�, c′
0, c

′
1) = (�, (c0 + c′

0 (mod q�)), (c1 + c′
1 (mod q�)),

with the result being a ciphertext, which encodes a plaintext that is the sum
of the two plaintexts of the initial ciphertexts.
Ciphertexts at level one can be multiplied together to obtain a ciphertext
at level zero, where the output ciphertext encodes a plaintext which is the
product of the plaintexts encoded by the input plaintexts. We do not present
the method here, although it is pretty standard consisting of a modulus-
switch, tensor-operation, then relinearization. We write the operation as

(1, c0, c1)
 (1, c′
0, c

′
1) = (0, c′′

0 , c′′
1), with c′′

0 , c′′
1 ∈ Rq0 .

3 Modified SHE Scheme

In this section we present a modified form of the previously presented “standard”
BGV scheme. The main difference is that we introduce a new form of packing,
where at each ciphertext level we interpret the naive BGV plaintext space P in
a different manner. This modification enables us to obtain a final pre-processing
phase for our MPC protocol which is less inefficient than one would naively
expect.

3.1 Our New Packing Technique

The standard packing method of using only the degree zero coefficient in each
slot will result in a very inefficient use of resources, as we have already mentioned.
Thus we introduce a new packing technique which uses more coefficients in each
slot. To do so, we first define two sets I = {i1, . . . , i|I|} and J = {j1, . . . , j|I|},
such that |I| = |J|, and j� = 2 · i�, for all � = 1, . . . , |I|. The idea is to encode (in
each slot) |I| messages as coefficients of the powers Xi, with i ∈ I, as follows.
We define a map ωI for the set I, as

ωI :
{

(Z2t)|I| −→ Z2t [X]
(m1, . . . ,m|I|) �−→ m1 · Xi1 + . . . + m|I| · Xi|I| ,

and a similar one ωJ for the set J. The reason why we require j� = 2 · i�, for all
� = 1, . . . , |I|, is that the J-encoding will typically be used to hold the result of

Overdrive2k: Efficient Secure MPC over Z2k 263

a product of two I-encodings. As such we are only interested in the product of
two terms of the same degree (giving rise to the 2 · i�) and will ignore all other
cross-products that appear in the product of two I-encodings (all terms of degree
ij + ik for j �= k ∈ [|I|]). For level one ciphertexts (namely fresh ciphertexts),
we will pack a message value from M = (Z2t)r×|I| into the plaintext space P as
follows

χI :
{ M −→ P

(m1, . . . ,mr) �−→ (ωI(m1), . . . , ωI(mr)),

with a similar map being defined for the set J. It is straightforward to see that
this is a valid packing, and will be consistent for all ciphertexts at level one,
since linear operations on elements in Im(χI) also lie in Im(χI).

For ease of convenience, we also define an “inverse” map, χ−1
I

, of the map
above, which is defined on P and simply selects the correct coefficients, producing
a final output in M. We also define Supp(I), to be the set of (potentially) non-
zero coefficients in each slot in the image of ωI, in particular elements in Supp(I)
are the only values which affect the value of χ−1

I
. Thus we have

Supp(I) = {(1, i1), . . . , (1, i|I|), (2, i1), . . . , (r, i|I|)},

where the first element of each pair refers to which slot we are considering and
the second element to the power of X in that particular slot. Given an element
u in the global polynomial ring R we can define an element in M by reducing
the polynomial u modulo 2t then taking its image under one of the inverse maps
above. Thus we have the map

ΘI :
{

R −→ M
u �−→ χ−1

I
(Ψ2t(u))

Given an element m ∈ M, there are infinitely many preimages under the map
ΘI. At various points we will need to select one subject to a given bound B on
the coefficients of the polynomial in R. We therefore define, in Fig. 3, a procedure
which outputs an element in R, uniformly at random, subject to the constraint
that its image under ΘI is equal to a given element m ∈ M and its coefficients
are bounded by B. Clearly, all of the above considerations apply also to the set
J.

3.2 The BGV Encryption Scheme with Double Packing Set

We are now ready to define our modified BGV scheme, EmBGV = {mBGV.KeyGen,
mBGV.Enc, mBGV.Dec}, which uses plaintext space M = (Z2t)r×|I|. The key
generation algorithm mBGV.KeyGen is the same as in the original BGV scheme
presented earlier, i.e. given a security parameter κ, it outputs a public/private
key pair (pk, sk) and the relinearisation data.

The encryption algorithm differs as it now encrypts using one of the two sets
I or J. To make the dependence clear on which set we are encrypting a message
under, we write either

ctI = (1, c0, c1)I = mBGV.Enc(m, r; I, pk) = BGV.Enc(Γ−1(χI(m)), r; pk)

264 E. Orsini et al.

The Function Θ−1
I

(m, B)

1. Compute mP ∈ P, the image of m under the map χI.
2. For all entries not in Supp(I), replace the zero coefficient in each slot by a

uniformly random element selected from [0, . . . , 2t], resulting in a uniformly
random element m′

P ∈ P whose image under χ−1
I

is also m.
3. Pull back m′

P to R by computing the element m′
R Ψ−1

2t
(m′

P) subject to all
coefficients lying in [0, . . . , 2t].

4. Select a uniformly random polynomial u ∈ R whose coefficient infinity norm is
bounded by B/2t.

5. Output mR m′
R + 2t · u.

Fig. 3. The procedure Θ−1
I

(m, B) from R to M

or

ctJ = (1, c0, c1)J = mBGV.Enc(m, r; J, pk) = BGV.Enc(Γ−1(χJ(m)), r; pk),

where m ∈ M. Similarly, the decryption algorithm is defined as

m = mBGV.Dec(ctI; sk) = χ−1
I

(Γ (BGV.Dec(ctI; sk)))

and
m = mBGV.Dec(ctJ; sk) = χ−1

J
(Γ (BGV.Dec(ctJ; sk))).

Addition and multiplication of ciphertexts are accomplished as in the “standard”
BGV scheme, but with some notable differences. Notice we can now only add
ciphertexts at the same level when they are with respect to the same encoding.
Thus we have (say)

(1, c0, c1)I � (1, c′
0, c

′
1)

I = (1, c′′
0 , c′′

1)I.

The idea is that the I encoding is used for messages at level one, and the J

encoding is used for messages at level zero, typically obtained as the result of
multiplying two level one ciphertexts.

In the following sections we will use the bracked exponent ct(�) on a ciphertext
to denote the “level” which the ciphertext is at, with fresh ciphertext always
being at level one. Hence, following the discussion above we will usually have:

ct(1) = (1, c0, c1)I = ctI and ct(0) = (0, c0, c1)J = ctJ.

However we might need to encrypt some messages using index set J, for exam-
ple if we wish to encrypt a fresh message and then move it directly to level
zero using a SwitchMod operation, as in (0, c′

0, c
′
1)

J ← SwitchMod((1, c0, c1)J),
where (1, c0, c1)J = Enc.mBGV(m, r; J, pk). The reason we switch encodings as
we transfer between level one and level zero is that when two ciphertexts are
multiplied at level one to produce a level zero ciphertext, the I packing will no

Overdrive2k: Efficient Secure MPC over Z2k 265

longer be valid. So we switch to index set J at this point. Our multiplication is
now an operation of the form

(1, c0, c1)I
 (1, c′
0, c

′
1)

I = (0, c′′
0 , c′′

1)J.

We will clarify the dependence on I or J and the encryption level � when it is
not clear from the context. More formally, in our MPC protocol, we will denote
addition and multiplication of ciphertexts as follows:

ct
(�, ·)
m1+m2

← ct(�, ·)
m1

� ct(�, ·)
m2

,

ct
(�, ·)
a·m ← a
 ct(�, ·)

m , for a ∈ M,

ct
(0,J)
m1·m2 ← ct(1,I)

m1

 ct(1,I)

m2
.

Correctness. To have correctness we need to ensure that multiplication of two
elements in Im(χI) results in something correct when we restrict P to the image
of the χJ map, i.e. by ignoring coefficients which are not in the image of χJ.
This is because a product of two elements in Im(χI) is not an element of Im(χJ).
Looking ahead, when we use this packing technique in our MPC protocol we
need to ensure that ignoring coefficients that are not in Im(χI) does not leak
information. We shall deal with this security issue in the next sections, so for
now we consider only the correctness concern.

To select I we have two conditions: The first obvious correctness guarantee is
that the product term does not wrap around modulo each factor Fi(X), so that
we require

∀i ∈ I, 2 · i < d.

Secondly, we need that any cross-product terms do not interfere with any of the
desired slot terms. This is implied by the equation

∀i1, i2, j ∈ I, i1 + i2 �= 2 · j, with i1 �= j, i2 �= j.

In Fig. 4 we plot the growth of the maximum size of |I| versus the size of d. As
one can see, it grows in a step wise manner, looking like about d0.6 in the range
under consideration here.

This analysis gives the amount of packing we can produce in a given standard
slot. To see what is the total packing ratio we can achieve, we need to look at the
number theoretic properties of the polynomials Φp(X) for p prime. As remarked
earlier these factor modulo 2 into r factors of degree d, where d is equal to the
order of the element 2 in F

∗
p. We can then take the maximum value of |I| from the

above calculations and compute the ratio of “useful” slots, in our application, as

πp =
r · |I|
p − 1

.

For security reasons in our MPC applications we will be taking p in the range
8192 < p < 65536, so in Table 1 we present the prime values in this range which

266 E. Orsini et al.

0 200 400 600 800 1,000
0

20

40

60

d

|I|

Fig. 4. Growth of |I| with d

Table 1. Primes with a packing density ratio greater than 0.15 in the range 8192 <
p < 65536

p r d |I| r · |I| πp

9719 226 43 8 1808 .186

11119 218 51 8 1744 .156

11447 118 97 16 1888 .164

13367 326 41 8 2608 .195

14449 172 84 16 2752 .190

20857 316 66 12 3792 .181

23311 518 45 8 4144 .177

26317 387 68 12 4644 .176

29191 278 105 16 4448 .152

30269 329 92 16 5264 .173

32377 568 57 10 5680 .175

38737 538 72 13 6994 .180

43691 1285 34 8 10280 .235

61681 1542 40 8 12336 .200

give us a ratio greater than 0.15. We see that it is possible to select p so that the
packing ratio πp approaches 0.2. Thus we can obtain an efficiency of packing of
around φ(p)/5, as mentioned in the introduction. All that remains is to adapt
the MPC protocols to deal with this new packing methodology.

4 OverDrive Global ZKPoKs

Given a SHE scheme (in our case either EmBGV or EBGV), we denote by C the
set of admissible circuits for the SHE scheme, the exact choice of C will depend

Overdrive2k: Efficient Secure MPC over Z2k 267

on the underlying construction. In our protocol the decryption function will be
always correct assuming the input ciphertext is the evaluation of an admissible
circuit from C applied to ciphertexts which are marked “correct enough”. We
shall call a ciphertext valid if it is either “correct enough”, or is the output of a
circuit in C applied to “correct enough” ciphertexts.

Looking ahead, in Sect. 5 we will extend the scheme EmBGV, introduced in
the previous section, to allow distributed decryption. The reason for using the
term “correct enough” is that our distributed decryption protocol will be proved
correct even if some ciphertexts are not completely valid, namely they are not
generated using the standard encryption algorithm.

In describing our protocol, we assume a key generation functionality FKeyGen.
It runs BGV.KeyGen and outputs for each party Pi the public key pk and an
additive share [sk]i of sk for performing distributed decryption. This means that
given a public ciphertext, parties can use their shares of the sk and collaborate
to decrypt it. Just as in Overdrive, SPDZ and SCALE [1,13,19], we will assume
a trusted dealer that implements the distributed key generation, possibly in
practice via HSMs. Our goal here is to focus on the main part of the protocol
and not on set-up assumptions, thus we do not discuss how to securely realise
the ideal functionality FKeyGen, as was done in the aforementioned works.

4.1 Bounded Linearly Homomorphic Predicates

Here we show how to ensure that all the ciphertexts used in our protocol are
valid. Compared to similar protocols in previous works, other than prove that our
ciphertexts decrypt correctly, we also need to show that the underlying plaintexts
satisfy a given predicate P which we call bounded linearly homomorphic.

Definition 4.1. We say that a given predicate P is bounded linearly homomor-
phic if, given a bound B and values x1, . . . ,xν , where

x1 = (x1,1, . . . , xu,1) ∈ Ru, . . . ,xν = (x1,ν , . . . , xu,ν) ∈ Ru,

such that

1. ∀j ∈ [u], P(xj,1, . . . , xj,ν) = true, and
2. the coefficient norm of each xj,k is bounded by B,

then, for all a ∈ {0, 1}u, P(a · x1, . . . ,a · xv) = true.

We will give two different instantiations of this definition. The first one is
with the diagonal predicate P = Diag also used in [13]. This takes as input a
single element x1 ∈ Ru, i.e. ν = 1, and checks whether each of the slot entries
in x1 (when mapped to P via the map Ψ2b for b = �log2(u · B)�), are identical
to each other. Clearly if the predicate holds for input ciphertexts with plaintext
coefficient norms bounded by B, then it also holds for a sum of u ciphertexts
with plaintext coefficient norms bounded by u · B.

The second instantiation works with ν = 2. We recall from Sect. 3 that the
maps ΘI and ΘJ map an element x ∈ R to an element in M according to χI and
χJ, respectively. The predicate P = Pack is then defined as follows:

268 E. Orsini et al.

– Let mI = ΘI(x1, B) and mJ = ΘJ(x2, B). The elements in Supp2b(mI), for
b = �log2(u · B)�, are indexed by Supp(I).

– If Supp2b(mI) = {ci,ij}, for i ∈ [r] and ij ∈ I, then the coefficients in Ψ2b(mJ)
indexed by (i, 2 · ij) are equal to ci,ij , and are uniformly random elsewhere.
Being uniformly random in locations not indexed by J will be important for
security of our distributed decryption protocol later.

Again it is straightforward to prove that this predicate is bounded linearly homo-
morphic.

4.2 Amortized Zero Knowledge Proof

Given the definition of a bounded linearly homomorphic predicate on the plain-
texts, we are now ready to define what we mean by a valid ciphertext which
encrypts such a plaintext. We recall that a ciphertext ct = BGV.Enc(x, r; pk)
encrypts a plaintext value x ∈ P under randomness r = (v, e0, e1) ∈ R3. In our
protocol we assume that x = Θ−1

I
(m), for some m ∈ M. In a legitimate cipher-

text, the plaintext x lies in P and the randomness values come from specific
distributions (see Sect. 3). An adversarially chosen ciphertext may not be gener-
ated in this way, however, as long as the adversarial plaintexts and random coins
are selected from some restricted set, the ciphertexts will correctly decrypt. A
ciphertext which comes from this restricted set (no matter how it is generated)
is said to be valid.

Suppose we have u · ν BGV ciphertexts ctj ← BGV.Enc(xj , rj , pk), j ∈ [u · ν],
such that

ctj =
∑

i∈[n]

ctij , xj =
∑

i∈[n]

xi
j , rj =

∑

i∈[n]

ri
j , ∀j ∈ [u · ν],

i.e. ctij ← BGV.Enc(xi
j , r

i
j , pk), x

i
j and ri

j are respectively the ciphertext, the plain-
text and the randomness held by party Pi. The protocol Πν,flag

gZKPoK (Figs. 5 and 6)
guarantees that each ciphertext ctj is both valid and satisfies the bounded lin-
early homomorphic predicate P. Our zero-knowledge proof is very similar to the
one given in [19], with some modifications due to our new packing technique, and
it is a generalization to the multiparty setting of the amortized proof described
in [13] and [9]. Note that as done in Overdrive, our protocol does not check the
correctness of every single share ctij , but just of their sum since it is sufficient
for our purpose.

To understand the proof Πν,flag
gZKPoK, first, let us assume ν = 1 and flag = Diag.

Following Cramer et al. [9]’s blueprint, the protocol Π1,Diag
gZKPoK simultaneously tries

to prove that u ciphertexts ctj are generated such that:

‖vj‖∞ ≤ n · ρ1, ‖e0,j‖∞, ‖e1,j‖∞ ≤ n · ρ2, ‖xj‖∞ ≤ n · τ, ∀j ∈ [u], (2)

for τ = 2t−1, ρ1 = 1 and ρ2 = 20. This is done using an amortized Σ protocol
that samples commitments c̄tj ← BGV.Enc(yj , r̄j , pk), j ∈ [u], r̄j = (v̄j , ē0,j , ē1,j),

Overdrive2k: Efficient Secure MPC over Z2k 269

Protocol Πν,flag
gZKPoK - Part I

Parameters: an integer ν, u = ZK sec, V = 2 ·ZK sec−1, a flag ∈ {Diag,Pack, ⊥}
such that if flag = Diag then P = Diag; if flag = Pack then P = Pack and if flag =⊥
then P = ∅.
Input: Each Pi inputs u · ν BGV ciphertexts ctij,k, j ∈ [u], k ∈ [ν], such that

‖vi
j,k‖∞ ≤ ρ1, ‖ei

0,j,k‖∞, ‖ei
1,j,k‖∞ ≤ ρ2, ‖xi

j,k‖∞ ≤ τ,

where xi
j,k ∈ R is the plaintext corresponding to ctij,k, satisfying P(xi

j,1, . . . , x
i
j,ν) =

true, and for each k ∈ [ν], set:

ri
k = (vi

1,k, . . . , vi
u,k, ei

0,1,k, . . . , ei
0,u,k, ei

1,1,k, . . . , ei
1,u,k) ∈ Ru×3,

xi
k = (xi

1,k, . . . , xi
u,k) ∈ Ru

ci
k = ctik = (cti1,k, . . . , ctiu,k) ∈ Ru×2.

gZKPoK: If flag ∈ {Diag, ⊥} parties execute the following steps.
- For each k ∈ [ν] execute:
Commit:

- Each Pi broadcasts ci
k = BGV.Enc(xi

k, ri
k; pk)

- Each party Pi samples a new set of “plaintexts” yi
k ∈ RV and “randomness

vectors” r̄i
k ∈ RV ×3, such that, for j ∈ [u] and P(yj,1, . . . , yj,ν) = true,

‖yi
j,k‖∞ ≤ 2ZK sec · τ, ‖v̄i

j,k‖∞ ≤ 2ZK sec · ρ1,

‖ēi
0,j,k‖∞, ‖ē1,j,k‖∞ ≤ 2ZK sec · ρ2.

- Each Pi computes and broadcasts ai
k BGV.Enc(yi

k, r̄i
k; pk), for k ∈ [ν].

Challenge: Parties call FRand to get a random êk = (êk,1, . . . , êk,u) ∈ {0, 1}u.
Prove:

- Parties define Mêk ∈ {0, 1}V ×u to be the matrix such that (Mêk)r,c =
êk,r−c+1, for 1 ≤ r − c + 1 ≤ u, and 0 in all other entries.

- Each Pi computes and broadcasts the values (zi
k, T i

k), where zi
k

ᵀ = yi
k

ᵀ +
Mêk · xi

k
ᵀ and T i

k = r̄k + Mêk · ri
k.

Verify:
- Each party Pi computes di

k = BGV.Enc(zi
k, T i

k; pk) and then stores the sum
dk =

∑n
i=1 d

i
k.

- The parties compute the values

ck =
∑

i∈[n]

ci
k, ak =

∑

i∈[n]

ai
k, zk =

∑

i

zi
k, Tk =

∑

i∈[n]

T i
k,

and conduct the following checks, where ti,j,k is the (i, j)-th element of Tk,

dᵀ
k = aᵀ

k + (Mêk · ck), ‖zk‖∞ ≤ 2 · n · 2ZK sec · τ (1)

‖ti,1,k‖∞ ≤ 2 · n · 2ZK sec · ρ1, ‖ti,2,k‖∞, ‖ti,3,k‖∞ ≤ 2 · n · 2ZK sec · ρ2.

- If P = Diag the proof is rejected if P(zi
j,1) �= true for any j ∈ [u].

If the check passes, the parties output i [n] c
i
1, . . . , i [n] c

i
ν .

Fig. 5. Protocol for global proof of knowledge of a ciphertext - Part I

270 E. Orsini et al.

such that

‖v̄j‖∞ ≤ n · 2ZK sec · ρ1,

‖ē0,j‖∞, ‖ē1,j‖∞ ≤ n · 2ZK sec · ρ2,

‖yj‖∞ ≤ n · 2ZK sec · τ, ∀j ∈ [u],

for some large enough 2ZK sec. In this way we can form the responses z and T
such that the terms y and r̄ statistically hide Me · x and Me · r respectively, for
some challenge matrix Me. The bounds on z and T imply bounds on x and r.
This implies that, instead of obtaining a proof that the input ciphertexts satisfy
Eq. 2, we get a proof that those values satisfy the following relationships:

‖vj‖∞ ≤ n · S · ρ1, ‖ej,0‖∞, ‖ej,1‖∞ ≤ n · S · ρ2, ‖xj‖∞ ≤ n · S · τ, ∀j ∈ [u],
(3)

where S = 2 · 23·ZK sec/2+1. These bounds are clearly not tight and the value S
is called the soundness slack .

When ν = 2 and P = Pack, we need to repeat the above proof twice, or equiv-
alently sample the challenge in {0, 1}2·ZK sec, and add the proof for the predicate
P. Line 2 of Fig. 6 is checked by a verifier only that required equality between
coefficients in the predicate holds. That the other coefficients are uniformly dis-
tributed is not checked, indeed this is impossible to do. However, if the other
coefficients are not uniformly distributed then the prover will loose the desired
zero-knowledge property, thus it is not in the provers interest to produce values
which are not uniformly distributed. In the case of our application an honest
verifier is actually one of the n provers, and this is enough to ensure the desired
uniform property holds on the required subset of coefficients.

Thus in both cases the protocol Πν,flag
gZKPoK is an honest-verifier zero-knowledge

proof of knowledge for the relation

RgZKPoK =
{
(x,w) |x = (c, pk), w = ((x1, r1) . . . , (xν·u, rν·u))
: {u = ZK sec, ‖xj‖∞ ≤ n · S · τ,mj = ΘI(xj) ∈ M,

c = (ct1, . . . , ctu), ‖vj‖∞ ≤ n · S · ρ1, ‖e0,j‖∞, ‖e1,j‖∞ ≤ n · S · ρ2}
∧ {P(xj,1, . . . , xj,ν) = true,∀j ∈ [u]}}

Theorem 4.1. The protocol Πν,flag
gZKPoK is an honest-verifier zero-knowledge proof

of knowledge for the relation RgZKPoK with error probability 2−ZK sec and sound-
ness slack S = 2 · 23·ZK sec/2+1.

We do not follow the Overdrive proof approach in our MPC protocol, i.e. we
do not give an ideal functionality for Πν,flag

gZKPoK. The reason is that a security proof
for Πν,flag

gZKPoK would require rewinding the adversary to extract corrupt parties’
inputs in the simulation, breaking the UC security of the protocol. Instead, we
will use Πν,flag

gZKPoK inside our MPC protocol, as done in [13], and prove UC security
for this latter protocol. The complete proof of the theorem above is however still
similar to the one in [19]. It is given in in the full version of this paper.

Overdrive2k: Efficient Secure MPC over Z2k 271

Protocol Πν,flag
gZKPoK - Part II

If flag = Pack then apply the proof for flag =⊥ above, making sure the sampling in
Step 4.1 follows the predicate P for Pack. Then, perform the following steps (using
the values obtained whilst executing the above proof).

1. Each Pi computes and broadcasts the values

zi
2

ᵀ = yi
2

ᵀ + Mê2 · xi
2

ᵀ ∈ RV .

2. The proof is rejected if P(zi
j,1, z

i
j,2) �= true for any j ∈ [u]. If the check passes,

the parties output i [n] c
i
1, . . . , i [n] c

i
ν .

Fig. 6. Protocol for global proof of knowledge of a ciphertext - Part II

5 Distributed Somewhat Homomorphic Encryption

We are now ready to describe and implement the functionality FDistrDec (Fig. 7)
that extends the scheme EmBGV introduced in the previous sections to allow
distributed decryption. It will be the main building block of our MPC protocol
in the next section.

As mentioned before, our protocol ensures that all the ciphertexts that are
input of FDistrDec correctly decrypt. For this purpose we use the ideal functionality
Fν,flag

GenValidCiph (see Fig. 11). Given the procedures Γ I and Γ J described in Fig. 8,

and on inputs [m]i ∈ M from each Pi, where M = Z
r×|I|
2t is the plaintext

space of our encryption scheme, and r ×|I| is the number of supported slots, the
functionality Fν,flag

GenValidCiph returns:

– If ν = 1 and flag =⊥, a valid ciphertext ctIm ← BGV.Enc(Γ
−1

I
(χI(m)), r; pk),

such that m =
∑

i∈[n][m]i; If ν = 1 and flag = Diag a valid ciphertext
computed as before and satisfying the predicate P = Diag;

– If ν = 2 and flag = Pack, two ciphertexts ctIm ← BGV.Enc(Γ
−1

I
(χI(m)), r; pk)

and ctJm ← BGV.Enc(Γ
−1

J
(χJ(m)), r; pk) satisfying the predicate P = Pack.

The ideal functionality Fν,flag
GenValidCiph is implemented by Πν,flag

GenValidCiph (see the full
version).

5.1 Distributed Decryption Protocols

Here we give two distributed decryption protocols, ΠDistrDec1 and ΠDistrDec2, in
Figs. 9 and 10, respectively. The protocols ΠDistrDec1 and ΠDistrDec2 implement
the functionality FDistrDec (Fig. 7) on commands D1 and D2, respectively. Notice
that we do not perform a proper full distributed decryption, because the way we
pack entries into a ciphertext would result in information leakage if we allowed all
the parties to recover the plaintext corresponding to the public input ciphertext

272 E. Orsini et al.

Functionality DistrDec

Let A be the set of corrupt parties.
Parameters: BDDec, a bound on the coefficients of the mask values, and Bnoise a
bound on the noise of ciphertexts before decryption.
Common input: A single valid level-zero ciphertext ct(0,J)

m = (0, c0, c1)J from all the
parties.

Initialize: On receiving (Init) from all parties the functionality, run (pk, sk)
mBGV.KeyGen(1κ), sending the value pk to the adversary and all the parties.

D1: On receiving the public input (D1, ct(0,J)
m) from all the parties, where ct

(0,J)
m

is valid level-zero ciphertext, the functionality performs the following steps.
- Execute m Dec(ct(0,J)

m ; sk) and handle this value to the adversary.
- If P1 is honest : Wait for the adversary to input either abort or δ. If
abort, then forward abort to the honest parties and halt. Otherwise sam-
ple the honest shares [m]i M, i �∈ A, i �= 1, at random and set
[m]1 = − ∑

i�∈A,i�=1[m]i + m + δ. Send [m]i to Pi, ∀i �∈ A.
- If P1 is corrupt : Send m to the adversary. Wait for an input from the

adversary. If this input is abort, then forward abort to the honest parties
and halt. Otherwise receive b. Sample the honest shares [m]i M, i �∈ A,
at random but subject to the condition

∑
i�∈A[m]i = b. Send these values

mi, i �∈ A to the honest parties.
D2: On receiving (D2, ct(0,J)

m) from all parties, the functionality performs the
following steps.

- Execute m Dec(ct(0,J)
m ; sk) and send m to the adversary.

- Wait for an input from the adversary: if abort is received, then abort.
- Otherwise receive m′ and {[m′]i}i∈A. Sample random shares {[m′]i}i�∈A

such that
∑

i∈[n]{[m′]i} = m′.

- Output {[m′]i}i�∈A to honest parties and ĉt
(1,I)

m′ to all parties.

Fig. 7. The functionality for distributed decryption

The Procedures Γ
−1
I (m) (resp. Γ

−1
J (m))

1. If computing Γ
−1
I (m) set all entries in m not in Supp(I) to zero.

2. If computing Γ
−1
J (m) set all entries in m not in Supp(J) to a uniformly random

element selected from [0, . . . , 2t].
3. Output Γ −1(m).

Fig. 8. The procedure Γ
−1
I (m) (resp. Γ

−1
J (m)) from P to P

ct
(0,J)
m , but both our protocols output to each party Pi an additive share [m]i

of m. Both protocols depend on a constant Bnoise which represents a bound on
the ciphertext noise before a decryption occurs. For example, in case of fresh
ciphertexts we have that Bnoise = Bdishonest

clean (see the full version of the paper).

Overdrive2k: Efficient Secure MPC over Z2k 273

There are two main differences between the two protocols. The first one
is in the way the shares [m]i are computed. The protocol ΠDistrDec2 is essen-
tially the same as the Reshare protocol of [12,13], where a masking ciphertext
is used before the distributed decryption is performed. More precisely, parties
call the functionality F2,Pack

GenValidCiph which produces two ciphertexts (ct(1,I)
f , ct

(1,J)
f),

with f =
∑

i∈[n][f]i; then they decrypt ct
(0,J)
m+f = ct

(0,J)
m ⊕ ct

(0,J)
f , where ct

(0,J)
f =

SwitchMod(ct(1,J)
f), so that each Pi can compute a share [m + f]i − [f]i of m.

On the other hand, the protocol ΠDistrDec1 uses random masks fi, i ∈ [n],
inside the actual decryption to mask the decryption shares, so it does not require
to perform any expensive zero-knowledge proof. Note that this approach cannot
be used if the parties need to generate a new fresh ciphertext of m after the
decryption, as happens in ΠDistrDec2, where this fresh encryption is computed
using the first ciphertext ct

(1,I)
f given by F2,Pack

GenValidCiph.

Protocol ΠDistrDec1

Parameters: The protocol is parametrized by two bounds: BDDec, a bound on the
coefficients of the mask values, and Bnoise a bound on the noise of ciphertexts before
decryption.
Common input: A single valid level-zero ciphertext ct

(0,J)
m = (0, c0, c1)J.

Initialize: Each party Pi calls KeyGen receiving (pk, [sk]i).
D1: On input (D1, ct(0,J)

m), where ct
(0,J)
m = (0, c0, c1)J is a (single) ciphertext,

parties do as follows.
1. Each Pi samples fi [0, BDDec]N (i.e. a polynomial in R with bounded

coefficients).
2. P1 computes v1 (c0 − [sk]1 · c1)+f1 (cmod q0)

)
= w1 +f1 (cmod q0).

Each Pi, i �= 1 computes vi −[sk]i · c1 + fi (cmod q0)
)

= wi +
fi (cmod q0). All parties broadcast these values.

3. Parties check that (
∑

i vi (cmod q0)) is bounded by Bnoise + n · BDDec, if
not abort.

4. P1 computes u1 (
∑n

i=1 vi (cmod q0)) − f1 (mod 2t).
Each Pi, i �= 1 computes ui −fi mod 2t.

5. Each Pi, i ∈ [n], sets [m]i χ−1
J

(Γ (ui)).

Fig. 9. Protocol implementing the command D1 on FDistrDec

Protocol ΠDistrDec1. Given a public input ciphertext ct(0,J)
m , each party Pi sam-

ples a random polynomial fi in R, with coefficients bounded by some fixed, large
enough value BDDec to avoid any leakage of information in the secret key, which
is used to mask the decryption share.

Note that the correctness holds only if the values fi introduced by the parties
during the protocol are sampled from the right set, i.e. ‖fi‖∞ < BDDec, and

274 E. Orsini et al.

‖∑
i∈[n] vi (cmod q0)‖∞ < Bnoise + n · BDDec < q0/2. We will derive the precise

value BDDec in the security proof.
In terms of protocol security, the intuition is that the polynomial fi masks

not only the values in Supp(J) which contain information, but also values not
in Supp(J) which could contain residual information from prior homomorphic
operations. So, the fact that the honest party effectively “forgets” the values
corresponding to slot terms not in Im(ωJ) results in the protocol not leaking
information on these terms. A complete proof of this intuition can be found in
the full version.

Theorem 5.1. The protocol ΠDistrDec1 (Fig. 9) implements the functionality
FDistrDec.D1 (Fig. 7) against any static, active adversary corrupting up to n − 1
parties in the FKeyGen-hybrid model with statistical security 2−DDec if

(
Bnoise +

2DDec · n · (Bnoise + 2t)
)

< q0/2.

Protocol ΠDistrDec2

Parameters: The protocol is parametrized by BDDec.
Common input: A single valid level-zero ciphertext ct

(0,J)
m = (0, c0, c1)J.

Initialize: Each party Pi calls KeyGen receiving (pk, [sk]i)
D2: On input (D2, ct(0,J)

m) from all parties, where ct
(0)
m = (0, c0, c1)J is a (single)

ciphertext.
1. Parties call the functionality F2,Pack

GenValidCiph on input [f]i, ∀i ∈ [n], which re-

turns the ciphertexts (ct(1,I)
f , ct

(1,J)
f) to all parties.

2. All the parties locally compute ct
(0,J)
f = SwitchMod(ct(1,J)

f).
3. The parties homomorphically compute ct

(0,J)
m+f = ct

(0)
m ⊕ ct

(0,J)
f , and let ct(0,J)

m+f
be (0, c0, c1).

4. P1 computes v1 (c0 − sk1 · c1) (mod q0) ∈ Rq0 .
5. Pi, i �= 1 computes vi −ski · c1 (mod q0) ∈ Rq0 .
6. All parties compute and broadcast ti = vi +2t ·ri for some random element

ri ∈ Rq0 with infinity norm bound BDDec.
7. The parties compute (m + f) = χ−1

J
(Ψ2t(

∑
ti (cmod q0))) ∈ M.

8. Party P1 sets [m]1 (m + f) − [f]1, party Pi, i �= 1 sets [m]i −[f]i.
9. All parties compute, using some default value 0 for the randomness,

ĉt
(1,I)
m BGV.Enc(Ψ−1

2t (χI(m + f)),0, pk) � ct
(1,I)
f .

Fig. 10. Protocol implementing the command D2 on FDistrDec

Protocol ΠDistrDec2. Given a public ciphertext ct
(0,J)
m , the protocol ΠDistrDec2

outputs a share [m]i of the plaintext m and a fresh ciphertext ct
(1,I)
m to each

party Pi. The protocol makes use of the command Gen-2 of the functionality
F2,Pack

GenValidCiph (Fig. 11), for which an implementation is given in the full version of

Overdrive2k: Efficient Secure MPC over Z2k 275

the paper. This command outputs two level-1 ciphertexts ct(1,I)
f and ct

(1,J)
f of the

same plaintext f corresponding to the set I and J, respectively.
The ciphertext ct

(1,J)
f , corresponding to the set J, is used as a mask in the

distributed decryption, and ct
(1,I)
f , corresponding to the set I, is used to create

a fresh encryption ĉt
(1,I)

m of m.
The proof of security for this protocol is similar to the corresponding protocol

in SPDZ [13]. The major changes from SPDZ are that we need to produce two
auxiliary ciphertexts per party (ct(1,I)

fi
, ct

(1,J)
fi

), since we have different encodings
at level zero and level one of the underlying message space. Intuitively, the
protocol reveals no more information about the BGV plaintext inside ct

(0,J)
m

because the honest parties are masking the coefficients not in Supp(J) using
the coefficients from the plaintext inside ct

(1,J)
fi

, which have been chosen to be

uniformly random for coefficients not in Supp(J), using the procedure Γ
−1

J
. A

proof for this result is given in the full version.

Theorem 5.2. The protocol ΠDistrDec2 implements the functionality FDistrDec.D2
(Fig. 7) against any static, active adversary corrupting up to n−1 parties in the
(FKeyGen,F2,Pack

GenValidCiph)-hybrid model with statistical security 2−DDec if (Bnoise +
2DDec · n · (Bnoise + 2t)) < q0/2.

Functionality ν,flag
GenValidCiph

Let A be the set of corrupt parties.
Parameters: an integer ν, a security parameter ZK sec, a flag ∈ {Diag,Pack, ⊥}
such that: If flag = Diag, then P = Diag; If flag = Pack, then P = Pack and if
flag =⊥, then P = ∅.

Initialize: On receiving (Init) from all parties run (pk, sk) BGV.KeyGen(1κ),
sending the value pk to the adversary and all the parties.

Gen-1: On input (Gen-1, flag, [m]i) from all parties Pi, i ∈ [n], do the following:
- If the adversary sends abort, return abort
- Otherwise receive ct

(1,I)
m and send this value to the parties

Gen-2: On input (Gen-2, flag, [m]i) from all parties, proceed as follows:
- If the adversary sends abort, return abort
- Otherwise receive ct

(1,I)
m and ct

(1,J)

m′ and send these values to all parties

Fig. 11. The functionality Fν,flag
GenValidCiph to generate valid ciphertexts

5.2 Generating Valid Ciphertexts

Here we implement the ideal functionality Fν,flag
GenValidCiph to create valid ciphertexts,

see Fig. 12. To prove the security of Πν,flag
GenValidCiph we proceed like in [13], that is

276 E. Orsini et al.

Protocol Πν,flag
GenValidCiph

Parameters: an integer ν, a security parameter ZK sec, a flag ∈ {Diag,Pack, ⊥}
such that: If flag = Diag, then P = Diag; If flag = Pack, then P = Pack and if
flag =⊥, then P = ∅.

Initialize: Each party Pi calls KeyGen receiving (pk, [sk]i).
Gen-1: Each Pi inputs (Gen-1, flag, [m]i), where flag ∈ {Diag, ⊥} and [m]i are

private inputs and if flag = Diag then all slots of [m]i are equal.
1. Each Pi sets [mI]i χI([m]i) ∈ P and computes ctImi

BGV.Enc(Γ
−1
I ([mI]i), ri; pk).

2. Parties run the protocol Π1,flag
gZKPoK receiving either ctIm or abort.

Gen-2: Each Pi inputs (Gen-2, flag, [m]i), where flag = Pack and [m]i are private
inputs :
1. Each Pi sets [mI]i χI([m]i) ∈ P and [mJ]i χJ([m]i) ∈ P,

then they compute ctImi
Enc.BGV(Γ

−1
I ([mI]i), ri; pk) and ct

′
J

mi

Enc.BGV(Γ
−1
J ([mJ]i), r′

i; pk).
2. Parties run the protocol Π1,flag

gZKPoK receiving either (ctIm, ct
′
J

m) to all the parties
or abort.

Fig. 12. Protocol for generating valid encryption on random shared values

we assume that the encryption scheme EmBGV has an additional key generation
algorithm K̃eyGen() that outputs a meaningless public key p̃k such that

– Enc(m, p̃k))
s≈ Enc(0, p̃k), i.e. an encryption of any message m is statistically

indistinguishable from an encryption of 0;
– If p̃k ← K̃eyGen() and (pk, sk) ← KeyGen(), then pk

c≈ p̃k, namely the two
public keys are computationally indistinguishable.

In EBGV the algorithm K̃eyGen() just samples p̃k = (ã, b̃) uniformly at random
mod q1.

The high level idea of the proof is then the following. We describe a simulator
S and show that if an environment Z can distinguish the simulation from the
real protocol execution, then we can construct a distinguisher that by rewinding
the environment together with the adversary can distinguish between a public
key pk generated by KeyGen and a meaningless p̃k with non negligible probability.
To this purpose we need to generalise the proof in [13] to our multiparty global
zero knowledge of plaintext knowledge.

Theorem 5.3. The protocol Πν,flag
GenValidCiph securely implements the functionality

Fν,flag
GenValidCiph (Fig. 7) against any static, active adversary corrupting up to n − 1

parties in the (FKeyGen,FRand)-hybrid model.

Overdrive2k: Efficient Secure MPC over Z2k 277

6 SPDZ2k from Somewhat Homomorphic Encryption -
Pre-processing Phase

We now present our offline protocol based on the homomorphic scheme EmBGV

described in Sect. 3. Even if the online computation is assumed to be performed
over Z2k , we produce random authenticated data over Z2k+s . We use the same
MAC scheme (and MACCheck procedure) used in SPDZ2k, with the difference
that in our protocol also the shares [α]i, i ∈ [n], of the secret global key α are
in Z2k+s . We set k + s = t and M = (Z2t)ρ, where ρ is the number of packing
slots.

The main task of the pre-processing protocol, which implements the ideal
functionality FPrep, given in the full version of the paper, is to produce the
following type of random authenticated values:

Input masks: (〈r〉, Pi), with the authenticated shared valued r known by Pi.
Triples: (〈a〉, 〈b〉, 〈c〉), where a, b, c ∈ Z2t are random shared values and c = a ·b.
Squares: (〈a〉, 〈b〉), where a ∈ Z2t is a random secret shared value and b = a2.
Bits: 〈b〉, where b is a random secret shared bit.

We first implement a weaker form of pre-processing functionality FwPrep (in
the full version of the paper), that might output incorrect values. After that, in
protocol ΠPrep (see the full version of the paper), we will bootstrap outputs from
FwPrep to implement the desired functionality preprocessing functionality FPrep

which returns different types of correct random authenticated values to be used
in the online evaluation.

6.1 Weak Offline Protocol

We only describe our new protocol for producing random authenticated bits, the
remaining commands are implemented similarly to the SPDZ2k paper and are
given in the full version. In all steps we produce ρ = r · |I| random pre-processed
values at a time, since values are produced in the set M. As before, given m ∈ M
we write [m]i to denote an additive share of m and [α ·m]i to denote an additive
share of the scalar multiplication of m by the scalar α, and reserve the notation
〈x〉 for authenticated sharings of values x ∈ Z2t .

Authenticated Bits. The standard trick in the modulo p setting, see [12], is
to use the 2-to-1 map induced by squaring modulo p, inverting it, and taking an
element in the kernel by dividing the initial value by the obtained square root,
i.e. x/

√
x2 ∈ {−1, 1}. When working modulo 2t this is no longer possible, as the

squaring map is 4-to-1. However, by temporarily working modulo 2t+1 and then
reducing the roots modulo 2t we can again obtain a 2-to-1 map. Furthermore,
since we need to be able to divide by the

√
x2, we will limit ourselves to invertible

x’s, i.e. such that x = 1 (mod 2). The protocol to generate a random element in
{−1, 1} is therefore as follows:

1. Given a ← Z2t , compute b ← 1 + 2a (mod 2t+1) (b is determined mod 2t+1)

278 E. Orsini et al.

Protocol ΠwPrep - Part 1

Parameters: Let ρ = r × |I| be the number of random authenticated data we
produce for each call of the following commands.

Initialize: On command (Init) the parties do as follows.
1. Call DistrDec.Init to obtain pk

2. Parties sample random [α]i Z2t , i ∈ [n]. Let [α]i M denote a plaintext
with all the slots set to [α]i. Set α =

∑
i∈[n][α]i.

3. The parties call the functionality 1,Diag
GenValidCiph on private inputs [α]i so that

each party Pi receives ctα.
Input: On input (Input, Pi) from all other parties, this commands produces ρ

random masks for Pi.
1. Pi samples a random r ∈ M, creates random additive shares [r]j of r and

sends them to the designated party Pj

2. Parties call the functionality ,⊥
GenValidCiph on input (Gen-1, ⊥, [r]i), ∀i ∈ [n],

receiving ct
(1,I)
r

3. Parties call the subprotocol ΠAuth on input ct
(1,I)
r , so to obtain 〈γr〉.

wTriple: On input (wTriple), this command produces ρ triples in one execution.
1. The parties call 1,⊥

GenValidCiph on random inputs [a]i, [b]i, so that each party
receives cta and ctb.

2. Parties locally compute ctc cta ctb
3. The parties call DistrDec.D2 on input ctc, so that each Pi receives [c]i and

a fresh ciphertext ct′c
4. Parties run ΠAuth on inputs cta, ctb, ct′c to obtain 〈γa〉, 〈γb〉, 〈γc〉.

wSquare: On input (wSquare), this command produces ρ random authenticated
squares.
1. This is exactly the same as wTriple above, except that we only sample the

messages/ciphertexts for a and then set b = a2.

1

Fig. 13. Weak offline protocol ΠwPrep - Part 1

2. v ← b2 (mod 2t+2) (note that v is determined modulo 2t+2 since b+2t+1 has
the same square as b).

3. b̂ ← √
v (mod 2t+1) (A fixed square root is taken. Notice since v is a square,

square roots exist, and there are four such square roots modulo 2t+2, namely:
b, −b, b + 2t+1 and −b + 2t+1. However, when reduced modulo 2t+1 there are
only two possibilities, namely b and −b.

4. d ← b/b̂ (mod 2t+1) ∈ {−1, 1}.

Since we are interested in sharing bits in {0, 1}, not in {−1, 1}, we have to convert
d. To perform the conversion in the large prime case of “standard” SPDZ, one
can simply add one and then divide by two, but in our case division by two is
impossible. However, we have a well defined division-by-2 map from Z2t+1 to
Z2t that maps x ∈ Z2t+1 with x = 0 (mod 2) to x/2 ∈ Z2t , losing one bit of
precision in the process. As such we can replace step 5 by:

5. d ← (b/b̂ + 1)/2 (mod 2t) = (a/b̂ + (1 + b̂)/2b̂) (mod 2t) ∈ {0, 1}.

Overdrive2k: Efficient Secure MPC over Z2k 279

Note that since b̂ is odd, the expression (1 + b̂)/2 is well defined modulo 2t.
We are now ready to give the wBit procedure of ΠwPrep, where we map these
operations to the ciphertext space and the shares of a so as to produce shared
bits in {0, 1}. In particular, given a sharing [a]i of a, it is easy to compute a
sharing of d by defining [d]1 = [a]1/b̂ + (1 + b̂)/(2b̂) (mod 2t) and [d]i = [a]i/b̂
(mod 2t) for i > 1.

Protocol ΠwPrep - Part 2

Parameters: Let ρ = r × |I| be the number of random authenticated data we
produce for each call of the following commands.

wBit: This command produces ρ random authenticated bits in one execution.
1. Parties call 1,⊥

GenValidCiph on command (Gen-1, ⊥) with random inputs [a]i ∈
M, i ∈ [n], so that each Pi receives cta. Parties locally compute ctb =
cta � cta � ct1, where ct1 a trivial encryption of the all one vector.

2. Parties set ctv ctb ctb.
3. The parties call FDistrDec.D1 on input ctv and so each party Pi obtains

[v]i ∈ M′. Note M′ is mod 2t+2.
4. The parties broadcast [v]i and set v [v]1 + . . . + [v]n (mod 2t+2).
5. Parties set b̂

√
v (mod 2t+1), where a fixed square root value is taken

in each slot position modulo 2t+1. If a square root does not exists, abort.
6. Parties locally set

ctd cta/b̂ � ct(b̂+1)/2b̂,

[d]1 [a]1/b̂ + (b̂ + 1)/2b̂ (mod 2t),

[d]i [a]i/b̂ (mod 2t), for i > 1,

where ct(b̂+1)/2b̂ is a deterministic encryption of the public value (b̂+1)/2b̂.

7. Parties run ΠAuth on input ct(1,I)
d , so to obtain [γd]i, ∀i ∈ [n], i.e. each party

Pi obtains [α · d]i.
8. For each slot in the plaintext space M each party Pi can obtain a value of

〈dj〉i , j ∈ [ρ], (a sharing modulo 2t) from the plaintexts ([d]i, [α · d]i).
9. Each party Pi’s output is 〈dj〉i, j ∈ [ρ].

Fig. 14. Weak offline protocol ΠwPrep - wBit

Note that since we do not expose a direct distributed decryption operation
on the FDistrDec functionality we need to obtain the clear value of v via sharing
and opening, unlike in [12]. Also note again unlike [12], we produce exactly the
given number of slots in each call to Bit, as we do not need to cope with the case
of square roots of zero in this method. The following theorem then follows, with
the proof given in the full version of the paper.

Theorem 6.1. The Protocol ΠwPrep (Figs. 13 and 14) securely realises the ideal
functionality FwPrep in the (FGenValidCiph, FDistrDec)-hybrid model.

280 E. Orsini et al.

Table 2. Amortized communication cost (in kbit) of producing triples of our protocol
and SPDZ2k

Protocol N log2 q k s sec Triple cost

This paper 14449 270 32 32 26 72.8

SPDZ2k – – 32 32 26 79.87

This paper 32377 520 64 64 57 153.3

SPDZ2k – – 64 64 57 319.488

This paper 32377 720 128 64 57 212.2

SPDZ2k – – 128 64 57 557.06

6.2 From FwPrep to FPrep - Sacrificing

We can now show how to turn the ΠwPrep protocol into a protocol which realises
the FPrep functionality. As said before, the authenticated shared data generated
by FwPrep are incorrect if corrupt parties cheated in the distributed decryption,
i.e. the output of FwPrep is a set of sharings {〈a〉, 〈b〉, 〈c〉} (resp. {〈a〉, 〈b〉} or
{〈a〉}) where we have c = a · b + δc (resp. b = a2 + δb or a ∈ {a, a + δa}) for
some adversarially chosen error value δ ∈ Z2t and shared values a, b, c ∈ Z2t . In
a nutshell, the protocol of ΠPrep takes the output of ΠwPrep and ensures that the
adversarially chosen values δ’s are all equal to zero using the standard technique
of sacrificing.

However, also the MACs on these values might be incorrect, i.e. we might
have γa =

∑
i[α · a]i + δγa

for each authenticated value a. We can check the
MAC on all the opened values at the end of the offline phase, and also check
that the input masks are correctly MAC’d, by performing a MACCheck on a
random linear combination of them. We add these checks in our preprocessing
protocol, but in practice we do no worry about the errors δγ ’s on the MAC
equations, since they can be dealt with later during the online phase, when
all the values opened during the circuit evaluation are checked. We obtain the
following theorem, whose proof is again given in the full version.

Theorem 6.2. The protocol ΠPrep securely implements the ideal functionality
FPrep against any static, active adversary corrupting up to n − 1 parties in the
(FwPrep,FRand)-hybrid model.

7 Communication Efficiency Analysis

Here we analyse the communication efficiency of our preprocessing protocol,
when compared to the method of [10]. To simplify matters we focus just on the
cost of our triple generation procedure as it is the most expensive step of the
preprocessing phase. The entire protocol we want to maintain the same level of
statistical security, which is equal to sec = s − log2 s.

Overdrive2k: Efficient Secure MPC over Z2k 281

The most expensive step in our protocol is the zero-knowledge proof that
proves that ZK sec ciphertexts are valid with ZK sec bits of statistical security.
Once this parameter is fixed, to sec, the protocol Π1,flag

gZKPoK requires 2 × ZK sec

broadcasts of ciphertexts in R2 and the broadcast of zi and Ti, which gives a
total cost of 4 · ZK sec · N · log(q) + 8 · ZK sec · N − 4 · N · ZK sec bits.

To generate ZK sec ·ρ triples 〈a〉, 〈b〉, 〈c〉 we need two calls to F1,⊥
GenValidCiph, to

create ZK sec ciphertexts cta, ctb, after that one call to FDistrDec.D2, to produce
shares of ctc and ZK sec fresh ciphertexts ct′c. These are used later to produce
the MAC shares [γa]i, [γb]i, [γc]i, obtained by running 3×ZK sec times the sub-
protocol ΠAuth. Notice that, as done in [10], we are ignoring here the cost of the
MACCheck, as it can be done in the online phase and, in any case, it is indepen-
dent of the number of generated triples, and the cost of FRand and sacrificing,
as it is negligible compared to the cost of the rest of the protocol. This gives a
total cost (amortized) of roughly 4 · (12 · log(q) · N/ρ + N/ρ · q) bits per triple,
where ρ is the amount of packing in a single ciphertext.

We then estimate for various values of (k, s) the values of N and q and which
give the best values for packing from Table 1. We select parameters which give us
roughly 128 bits of computational security according to the tool obtained from
https://bitbucket.org/malb/lwe-estimator. This allows us to give an estimation
of the communication complexity of our protocol and SPDZ2k in the case of
two parties creating one triple, see Table 2. In the important cases of statistical
security of 64 bits in SPDZ2k over 64 and 128-bit data types we have a reduction
in communication of over a half. In addition our protocol will get progressively
more efficient than the OT-based pre-processing of SPDZ2k as the number of
parties increases.

Acknowledgments. We thank Cyprien Delpech de Saint Guilhem for many helpful
discussions. This work has been supported in part by ERC Advanced Grant ERC-
2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

References

1. Aly, A., et al.: SCALE-MAMBA v1.6: Documentation (2019). https://homes.esat.
kuleuven.be/∼nsmart/SCALE/Documentation.pdf

2. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in Overdrive: a more efficient
ZKPoK for SPDZ. Cryptology ePrint Archive, Report 2019/035 (2019). http://
eprint.iacr.org/2019/035

3. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 31

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

https://bitbucket.org/malb/lwe-estimator
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
http://eprint.iacr.org/2019/035
http://eprint.iacr.org/2019/035
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11

282 E. Orsini et al.

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, New York (2012)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Cassels, J.W.: Local Fields. Cambridge University Press, Cambridge (1986)
9. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-

cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 11

10. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0 26

11. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 1102–
1120. IEEE Computer Society Press, May 2019

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

15. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

17. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

18. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, New
York (2016)

19. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-78372-7_6

Overdrive2k: Efficient Secure MPC over Z2k 283

20. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

21. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-642-32009-5_40

SoK: A Consensus Taxonomy
in the Blockchain Era

Juan Garay1(B) and Aggelos Kiayias2

1 Texas A&M University, College Station, TX, USA
garay@cse.tamu.edu

2 University of Edinburgh and IOHK, Edinburgh, UK
akiayias@inf.ed.ac.uk

Abstract. Consensus is arguably one of the most fundamental problems
in distributed computing, playing also an important role in the area of
cryptographic protocols as the enabler of a secure broadcast functional-
ity. While the problem has a long and rich history and has been analyzed
from many different perspectives, recently, with the advent of blockchain
protocols like Bitcoin, it has experienced renewed interest from a much
wider community of researchers and has seen its application expand to
various novel settings.

One of the main issues in consensus research is the many different vari-
ants of the problem that exist as well as the various ways the problem
behaves when different setup, computational assumptions and network
models are considered. In this work we perform a systematization of
knowledge in the landscape of consensus research in the Byzantine fail-
ure model starting with the original formulation in the early 1980s up to
the present blockchain-based new class of consensus protocols. Our work
is a roadmap for studying the consensus problem under its many guises,
classifying the way it operates in the various settings and highlighting
the exciting new applications that have emerged in the blockchain era.

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of
faults—has been extensively studied in the literature starting with the seminal
work of Shostak, Pease and Lamport [88,108]. The traditional setting of the
problem involves parties connected by point-to-point channels, possibly using
digital signatures in order to ensure the integrity of the information that is
exchanged in the course of the protocol. For a relatively recent overview of the
many variants of consensus that are considered in the distributed systems liter-
ature see Cachin et al. [25]. Tolerating “Byzantine” behavior, i.e., the presence
of parties that may behave arbitrarily, possibly in malicious ways, has been one
of the hallmark features in the study of the problem.

Bitcoin was introduced by Nakamoto in 2008–2009 [95,97], with the objec-
tive of providing a payment system that is decentralized in the sense of not

The full version of this paper can be found in the Cryptology ePrint Archive [65].

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 284–318, 2020.
https://doi.org/10.1007/978-3-030-40186-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_13

SoK: A Consensus Taxonomy in the Blockchain Era 285

relying on a central authority that should be trusted for transactions to be con-
sidered as final. Expectedly, the fundamental enabling component of the Bitcoin
system is a consensus mechanism that facilitates agreement on the history of
transactions. Given the conflicting interests of the Bitcoin protocol participants,
such a system should be resilient to Byzantine behavior, which brings us to the
main contribution of Bitcoin in the context of the consensus problem, namely. a
non-traditional and novel approach from the perspective of distributed comput-
ing to solve the problem in a setting that until then had not received sufficient
attention.

In light of these developments, it is important to rethink the consensus prob-
lem in the blockchain era and organize the landscape that is currently being
formed, acknowledging all the new directions and novel tools that have become
available in the context of consensus protocol design.

One main aspect of our work is to look into the consensus problem from a
modeling perspective providing the definitions needed to understand the problem
and the solutions that have been developed over the years both in the traditional
and the newer blockchain settings. In the course of this, we provide a taxonomy
of protocols and impossibility results that comprehensively outline what is cur-
rently known about consensus and which questions continue to remain open. Also
important is to “extract” the relevant consensus question that is particular to
Bitcoin, which we term “ledger consensus” (sometimes referred to as “Nakamoto
consensus”), and which is an instance of the state machine replication problem
that has been long-studied in distributed systems [111].

Consequently, in this paper we provide precise definitions of the relevant
versions of consensus that have been investigated and systematize the existing
knowledge about the problem with respect to (i) the network model, (ii) trusted
setup assumptions, and (iii) computational assumptions under which, and at
what cost in terms of running time and communication overhead, the problem
can be solved.

We emphasize that our approach is problem-centric and the results being
overviewed conceptual and fundamental in nature, with a feasibility focus with
respect to the “resources” mentioned above, which means that in the case of
classical consensus, a very active area of research in the distributed systems
community, we might only mention in passing (if at all) the more recent results
on practical Byzantine fault tolerance, for example. As such, our systematization
complements the various other enumerative surveys of results and publications
on the subject (e.g., [10,25,112]).

Organization of the Paper. We start in Sect. 2 by specifying a model of
multi-party protocol execution and how protocols’ properties will be deemed
satisfied, as well as presenting the definition of (variants of) the consensus
problem. We then specify the available resources and assumptions mentioned
above under which the problem has been studied: Network assumptions (com-
munication primitives, synchrony) in Sect. 3; trusted setup assumptions (no
setup, public-state setup, private-state setup) in Sect. 4; and computational
assumptions (none, one-way functions, proofs-of-work, random oracle) in Sect. 5.

286 J. Garay and A. Kiayias

We then overview possibility (i.e., constructions) and impossibility results for
consensus with respect to number of parties as a function of misbehaving par-
ties (resp., honest vs malicious computational power), trusted setup, running
time and communication costs in the traditional (point-to-point communication)
setting (Sect. 6), and in the Bitcoin (peer-to-peer) setting (Sect. 7).

We present ledger consensus in Sect. 8. After defining the problem, we pro-
ceed to the evaluation of existing results through a similar lens as in the case of
(standard) consensus, including an adaptation to ledger consensus of the impos-
sibility of standard consensus for dishonest majorities.

Due to space limitations, supplementary material including the ideal specifi-
cation of some of the resources available to the protocol can be found in the full
version of the paper [65].

2 Model and Definitions

2.1 Protocol Execution

In order to provide a description of protocols and their executions it is use-
ful to consider a formal model of computation. We choose the Interactive Tur-
ing Machine (ITM)-based model put forth by [30,76]. An ITM is like a Turing
Machine but with the addition of an incoming and an outgoing communication
tape as well as an identity tape and a “subroutine” tape. When an instance of
an ITM is generated (we will henceforth call this an ITI, for interactive Turing
machine instance), the identity tape is initialized to a specific value that remains
constant throughout the instance’s execution. The ITI may communicate with
other ITI’s by writing to its outgoing communication tape.

Let us consider a protocol Π that is modeled as an ITM. Ideally, we would
like to consider the execution of this protocol in an arbitrary setting, i.e., with
an arbitrary set of parties and arbitrary configuration. A common way to model
this in distributed cryptographic protocols is to consider that a certain pro-
gram, thought of as an adversary, produces this configuration and therefore the
properties of the protocol should hold for any possible choice of that program,
potentially with some explicitly defined restrictions. The advantage of this par-
ticular modeling approach is that it obviates the need to quantify over all the
details that concern the protocol (and substitutes them with a single universal
quantification over all such “environments”).

Suppose now that we have a protocol Π that is specified as an ITM and we
would like to consider all possible executions of this protocol in the presence of
an adversary A, that is also modeled as an ITM. We capture this by specifying
a pair of ITMs (Z, C), called the environment and the control program, respec-
tively. The environment Z is given some input which may be trivial (such as a
security parameter 1κ) and is allowed to “spawn” new ITIs using the programs
of Π and A. By convention, only a single instance of A will be allowed. Spawn-
ing such new instances is achieved by writing a single message to its outgoing
tape which is read by C. The control program is responsible for approving such
spawning requests by Z. Subsequently, all communication of the instances that

SoK: A Consensus Taxonomy in the Blockchain Era 287

are created will be routed via C, i.e., C will be receiving the instances’ outgoing
messages and will be approving whether they can be forwarded to the receiving
parties’ incoming tape. Note that this may be used to simulate the existence
of point-to-point channels; nevertheless, we will take a more general approach.
Specifically, the control function C, will by definition only permit outgoing mes-
sages of running ITIs to be sent to the adversary A (with instructions for further
delivery). This captures the fact that the network cannot be assumed to be de
facto safe for the instances that are communicating during the protocol execution
(see below where we explain how the adversarial influence in the network may be
constrained). Beyond writing messages that are routed though A, ITIs can also
spawn additional ITIs as prescribed by the rules hardcoded in C. This enables
instances of a protocol Π to invoke subroutines that can assist in its execution.
These subroutines can be sub-protocols or instances of “ideal functionalities”
that may be accessible by more than a single running instance.

Given those features, the above approach provides a comprehensive frame-
work for reasoning about protocol executions. In case a polynomial-time bound
is required, in the setting where a computational assumption is employed that
holds only for polynomial-time bounded programs, for example, some care needs
to be applied to ensure that the total execution run time of the (Z, C) system
remains polynomial-time. This is because even if all ITIs are assumed to be
polynomially bounded, the total execution run time may not be. We refer to
Proposition 3 in [30] for more details regarding enforcing an overall polynomial-
time bound.

Functionalities. We will next need to specify the “resources” that may be avail-
able to the instances running protocol Π. For example, access to reliable point-
to-point channels or a “diffuse” channel (see below). To allow for the most general
way to specify such resources we will follow the approach of describing them as
“ideal functionalities” in the terminology of [30]. In simple terms, an ideal func-
tionality is another ITM that may interact with instances running concurrently
in the protocol execution. A critical feature of ideal functionalities is that they
can be spawned by ITIs running protocol Π. In such case, the protocol Π is
defined with respect to the functionality F . The ideal functionality may inter-
act with the adversary A as well as other ITIs running the protocol. One main
advantage of using the concept of an ideal functionality in our setting, is that we
can capture various different communication resources that may be available to
the participants running the protocol. For instance, a secure channel function-
ality may be spawned to transmit a message between two instances of Π that
will only leak the length of the message to the adversary. As another example,
a message-passing functionality may ensure that all parties are activated prior
to advancing to the next communication round (see below in synchronous vs.
asynchronous executions).

Execution of Multiparty Protocols. When protocol instances are spawned by
Z they will be initialized with an identity which is available to the program’s
code, as well as, possibly, with the identities of other instances that may run

288 J. Garay and A. Kiayias

concurrently (this is at the discretion of the environment program Z). The iden-
tities themselves may be useful to the program instance, as they may be used
by the instance to address them. We will use the notation VIEWΠ,A,Z to denote
an execution of the protocol Π with an adversary A and an environment Z. The
execution is a string that is formed by the concatenation of all messages and
all ITI states at each step of the execution of the system (Z, C). The parties’
inputs are provided by the environment Z which also receives the parties’ out-
puts. Parties that receive no input from the environment remain inactive. We
denote by Input() the input tape of each party.

We note that by adopting the computational modeling of systems of ITMs
by [30] we obviate the need of imposing a strict upper bound on the number of
messages that may be transmitted by the adversary in each activation. In our
setting, honest parties, at the discretion of the environment, are given sufficient
time to process all messages delivered by any communication functionality avail-
able to them as a resource. It follows that denial of service attacks cannot be
used to the adversary’s advantage in the analysis – i.e., they are out of scope
from our perspective of studying the consensus problem.

Properties of Protocols. In our statements we will be concerned with properties
of protocols Π. Such properties will be defined as predicates over the random
variable VIEWΠ,A,Z by quantifying over all adversaries A and environments Z.

Definition 1. Given a predicate Q we say that the protocol Π satisfies property
Q provided that for all A and Z, Q(VIEWΠ,A,Z) holds.

Note that in some cases, protocols may only satisfy properties with a small
probability of error over all possible executions. The probability space is deter-
mined by the private coins of all participants and the functionalities they employ.
In such cases, we may indicate that the protocol satisfies the property with some
(small, typically negligigle in a security parameter) error probability. We will
only consider properties that are polynomial-time computable predicates. Our
notion of execution will capture the single-session, stand-alone execution setting
for protocols, hence properties will be single-session properties.

Asynchronous vs. Synchronous Execution. The model above is able to capture
various flavors of synchrony. This is achieved by abstracting the network com-
munication as a functionality and specifying how the adversary may interfere
with message delivery. The functionality may keep track of parties’ activations
and depending on the case ensure that parties will be given a chance to act as
the protocol execution advances.

Static vs. Dynamic Environments. In terms of protocol participants, the model
we present captures both static and dynamic environments. Specifically, it is
suitable for protocols that run with a fixed number of parties that should be
known to all participants in advance, but it also allows protocols for which
the number of participants is not known beforehand and, in fact, it may not

SoK: A Consensus Taxonomy in the Blockchain Era 289

even be known during the course of the execution. Note that in order to allow
for proper ITI intercommunication we will always assume that the total set of
parties is known, but, nevertheless, only a small subset of them may be active
in a particular moment during the protocol execution.

Setup Assumptions. In a number of protocols, there is a need to have some
pre-existing configuration (such as the knowledge of a common reference string
[CRS], or a public-key infrastructure [PKI]). Such setup assumptions can be also
captured as separate functionalities F that are available to the protocol ITIs.

Permissioned vs. Permissionless Networks. In the context of the consensus prob-
lem, this terminology became popular with the advent of blockchain protocols.
The Bitcoin blockchain protocol is the prototypical “permissionless” protocol
where read access to the ledger is unrestricted and write access (in the form
of posting transactions) can be obtained by anyone that possesses BTC (which
may be acquired, in principle, by anyone that is running the Bitcoin client and
invests computational power solving proofs of work). On the other hand, a per-
missioned protocol imposes more stringent access control on the read and write
operations that are available as well as with respect to who can participate in the
protocol. Extrapolating from the terminology as applied in the ledger setting,
a permissionless consensus protocol would enable any party to participate and
contribute input for consideration of the other parties. With this in mind, the
traditional setting of consensus is permissioned, since only specific parties are
allowed to participate; on the other hand, consensus in the blockchain setting
can be either permissioned or permissionless.

Cryptographic Primitives. We now overview some standard cryptographic prim-
itives, as they are employed by some of the consensus protocols. A digital sig-
nature scheme consists of three PPT algorithms (Gen, Sign, Verify) such that
(vk, sk) ← Gen(1κ) generates a public-key/secret-key pair; σ ← Sign(sk,m)
signs a message m; and Verify(vk,m, σ) returns 1 if and only if σ is a valid sig-
nature for m given vk. A digital signature scheme is existentially unforgeable, if
for any PPT adversary A that has access to a Sign(sk, ·) oracle, the event that
A returns some (m,σ) such that Verify(vk,m, σ) = 1 has measure negl(κ), where
the probability is taken over the coin tosses of the algorithms, negl() denotes a
negligible function, and κ is the security parameter. A collision resistant (keyed)
hash function family {Hk}k∈K has the property that Hk : {0, 1}∗ → {0, 1}κ, it is
efficiently computable and the probability to produce x �= y with Hk(x) = Hk(y)
given k is negl(κ). Another, less standard primitive that has been widely deployed
in consensus protocol design with the advent of the Bitcoin blockchain is proof
of work (PoW); see Sect. 5 for more information on the primitive.

2.2 The Consensus Problem

As mentioned earlier, consensus (aka Byzantine agreement), formulated by
Shostak, Pease and Lamport [88,108], is one of the fundamental problems in

290 J. Garay and A. Kiayias

the areas of fault-tolerant distributing computing and cryptographic protocols, in
particular secure multi-party computation [18,36,77,115]. In the consensus prob-
lem, n parties attempt to reach agreement on a value from some fixed domain
V , despite the malicious behavior of up to t of them. More specifically, every
party Pi starts the consensus protocol with an initial value v ∈ V , and every
run of the protocol must satisfy (except possibly for some negligible probability)
the following conditions (we note that all properties below are expressible as Q
predicates according to Definition 1).

– Termination: All honest parties decide on a value.
– Agreement: If two honest parties decide on v and w, respectively, then v = w.
– Validity: If all honest parties have the same initial value v, then all honest

parties decide on v.

The domain V can be arbitrary, but frequently the case V = {0, 1} is considered
given the efficient transformation of binary agreement protocols to the multi-
valued case cf. [113].1

There exist various measures of quality of a consensus protocol: its resiliency,
expressed as the fraction (t

n) of misbehaving parties a protocol can tolerate; its
running time—worst number of rounds by which honest parties terminate; and
its communication complexity—worst total number of bits/messages communi-
cated during a protocol run.

In the consensus problem, all the parties start with an initial value. A closely
related variant is the single-source version of the problem (aka the Byzantine
Generals problem [88], or simply (reliable or secure) “broadcast”), where only a
distinguished party—the sender—has an input. In this variant, both the Termi-
nation and Agreement conditions remain the same, and Validity becomes:

– Validity: If the sender is honest and has initial value v, then all honest parties
decide on v.

A stronger, albeit natural, version of the consensus problem requires that
the output value be one of the honest parties’ inputs, a distinction that is only
important in the case of non-binary inputs. In this version, called strong consen-
sus [99], the Validity condition becomes:

– Strong Validity: If the honest parties decide on v, then v is the input of some
honest party.

Note that the distinction with the standard version of the problem is only rel-
evant in the case of non-binary inputs. Further, the resiliency bounds for this
version also depend on |V | (see Sect. 6).

Another way to enhance validity is to require that the output of an honest
party conforms to an external predicate Q [26]. In this setting, each input v is

1 Refer to Sect. 6 for more efficient transformations, where in particular the longer
message is only transmitted O(n) times, as opposed to O(n2).

SoK: A Consensus Taxonomy in the Blockchain Era 291

accompanied by a proof π and is supposed to satisfy Q(v, π) = 1 (for instance,
π can be a digital signature on v and Q would be verifying its validity). Note
that the resulting guarantee is weaker than strong validity (since it could be the
case that the decision is made on an input suggested by a corrupted party), but
nevertheless it can be suitable in a multi-valued setting where only externally
validated inputs are admissible as outputs.

Finally, we point out that, traditionally, consensus problems have been spec-
ified as above, in a property-based manner. Protocols for the problem are then
proven secure/correct by showing how the properties (e.g., the Agreement,
Validity and Termination conditions) are met. Nowadays, however, it is widely
accepted to formulate the security of a protocol via the “trusted-party paradigm”
(cf. [76,77]), where the protocol execution is compared with an ideal process
where the outputs are computed by a trusted party that sees all the inputs. A
protocol is then said to securely carry out the task if running the protocol with a
realistic adversary amounts to “emulating” the ideal process with the appropri-
ate trusted party. One advantage of such a simulation-based approach is that it
simultaneously captures all the properties that are guaranteed by the ideal world,
without having to enumerate some list of desired properties. Simulation-based
definitions are also useful for applying composition theorems (e.g., [29,30]) that
enable proving the security of protocols that use other protocols as sub-routines,
which typically would be the case for consensus and/or broadcast protocols.

The above captures the classical definition of the consensus problem. A
related and recently extensively studied version of the problem is state-machine
replication or “ledger” consensus that we will treat in Sect. 8.

On the Necessity of an Honest Majority. Regardless of the resources avail-
able to the parties in the protocol execution, an upper bound of (less than) n/2
can be shown for resiliency (see, for example, [59]). Specifically, consider a set
n of parties that are equally divided with respect to their initial values between
inputs 0 and 1, and an adversary that with 1/3 probability corrupts no one (case
1), with 1/3 probability corrupts the parties that have input 0 (case 2) and with
1/3 probability corrupts the parties that have input 1 (case 3). In any case, the
adversarial parties follow the protocol. Observe that case 1 requires from the
honest parties to converge to a common output (due to Agreement), while in
the other two cases the honest parties should output 0 (case 2) and 1 (case 3).
However, all three cases are perfectly indistinguishable in the view of the honest
parties and as a result a logical contradiction ensues.

3 Network Assumptions

Communication Primitives. Consensus protocols are described with respect
to a network layer that enables parties to send messages to each other. An
important distinction we will make is between point-to-point connectivity vs.
message “diffusion” as it manifests in a peer-to-peer communication setting.

292 J. Garay and A. Kiayias

Point-to-Point Channels. In this setting parties are connected with pairwise
reliable and authentic channels. We call that resource RMT, for reliable message
transmission. When a party sends a message it specifies its recipient as well
as the message contents and it is guaranteed that the recipient will receive it.
The recipient can identify the sender as the source of the message. In such
fixed connectivity setting, all parties are aware of the set of parties running
the protocol. Full connectivity has been the standard communication setting
for consensus protocols, see [88], although sparse connectivity has also been
considered (cf. [53,114]). We present the functionality for RMT in the full version
of the paper [65].

In terms of measuring communication costs in this model, it will be simpler
for us to use the (maximum) total number of messages in a protocol run, rather
than the total number of communicated bits, assuming a suitable message size.
See, e.g., [59] (Chap. 3) for a detailed account of the communication complexity
of consensus (and broadcast) protocols.

Peer-to-Peer Diffusion. This setting is motivated by peer-to peer message trans-
mission that happens via “gossiping,” i.e., messages received by a party are
passed along on to the party’s peers. We refer to this basic message passing oper-
ation as “Diffuse.” Message transmission is not authenticated and it does not
preserve the order of messages in the views of different parties. When a message
is diffused by an honest party, there is no specific recipient and it is guaranteed
that all activated honest parties will receive the same message. Nonetheless, the
source of the message may be “spoofed” and thus the recipient may not reliably
identify the source of the message,2 and when the sender is malicious not every-
one is guaranteed to receive the same message. Contrary to the point-to-point
channels setting, parties may neither be aware of the identities of the parties
running the protocol nor their precise number. The ideal functionality capturing
the diffuse operation is also presented in the full version of the paper.

In order to measure the total communication costs of peer-to-peer diffusion,
one needs to take into account the underlying network graph. The typical deploy-
ment setting will be a sparse constant-degree graph for which it holds that the
number of edges equals O(n). In such setting, each invocation of the primitive
requires O(n) messages to be transmitted in the network.

Relation Between the Communication Primitives. It is easy to see that given
RMT, there is a straightforward, albeit inefficient, protocol that simulates
Diffuse; given a message to be diffused, the protocol using RMT will send the
message to each party in the set of parties running the protocol. On the other
hand, it is not hard to establish that no protocol can simulate RMT given Diffuse.
The argument is as follows, and it works no matter how the protocol using Diffuse
may operate. When a party A transmits a message M to party B, it is possible
for the adversary in the Diffuse setting to simulate a “fake” party A that sends a

2 Note that in contrast to a sender-anonymous channel (cf. [35]), a diffuse channel will
leak the identity of the sender to the adversary.

SoK: A Consensus Taxonomy in the Blockchain Era 293

message M ′ �= M to B concurrently. Invariably, this will result to a setting where
B has to decide which is the correct message to output and will have to produce
the wrong message with non-negligible probability. It follows that Diffuse is a
weaker communication primitive: one would not be able to substitute Diffuse for
RMT in a protocol setting.

Other Models. The above models may be extended in a number of ways to
capture various real world considerations in message passing. For instance, in
point-to-point channels, the communication graph may change over the course of
protocol execution with edges being added or removed adversarially, something
that may also result in temporary network partitions. Another intermediate
model between point-to-point channels and diffusion, formulated by Okun [101],
is to have a diffusion channel with “port awareness,” i.e., the setting where
messages from the same source are linkable, or without port awareness, but
where each party is restricted to sending one message per round (see Sect. 3 for
the notion of round) and their total number is known. Yet another intermediate
model in terms of partial knowledge of parties and authentication has been
treated, e.g., in [4,13] and follow-up works.

Synchrony. The ability of the parties to synchronize in protocol execution is
an important aspect in the design of consensus protocols. Synchrony in message
passing can be captured by dividing the protocol execution in rounds where
parties are activated in some sequence and each one of them has the opportunity
to send messages which are received by the recipients at the onset of the next
round. This reflects the fact that in real world networks messages are delivered
most of the time in a timely fashion and thus parties can synchronize the protocol
execution in discrete rounds.

A first important relaxation to the synchronous model is to allow the adver-
sary to control the activation of parties so that it acts last in each round having
access to all messages sent by honest participants before it decides on the actions
of the adversarial participants and the ordering of message delivery for the hon-
est parties in the next round. This concept is standard in the secure mult-iparty
computation literature [18,37,78] and is commonly referred to as the “rushing
adversary” [30]. This is captured by the corresponding communication function-
alities. A second relaxation is to impose a time bound on message delivery that
is not known to the protocol participants. We shall refer to this as the “partially
synchronous setting” [50]. The partial synchronous setting is easy to capture by
the communication functionalities as follows: a parameter Δ ∈ N is introduced
in each functionality that determines the maximum time a message can remain
“in limbo.” For each message that is sent, a counter is introduced that is initially
0 and counts the number of rounds that have passed since its transmission (note
that this concept of round is not any more a “message passing” round). When
this counter reaches Δ the message is copied to the inbox(·) strings for the active
participants.

An even weaker setting than partial synchrony is that of message transmission
with eventual message delivery, where all messages between honest parties are

294 J. Garay and A. Kiayias

guaranteed to be delivered but there is no specific time bound that mandates
their delivery in the course of the protocol execution. This is the classical model
in fault tolerant distributed computing that is referred to as asynchronous [58,
90]. Again, it is easy to adapt the communication functionalities to accomodate
eventual delivery, following the recent formalization of this model in [44]. Note
that it is proven that no deterministic consensus protocol exists in this setting
[58], and the impossibility can be overcome by randomization [15,39,55,110].

Finally, in the “fully asynchronous setting” (cf. [30]), where messages may
be arbitrarily delayed or dropped consensus is trivially impossible.

4 Setup Assumptions

In the context of protocol design, a setup assumption refers to information that
can be available at the onset of the protocol to each protocol participant. Con-
sensus protocols are designed with respect to a number of different setup assump-
tions that we outline below.

No Setup. In this setting we consider protocols that parties do not utilize any
setup functionality beyond the existence of the communication functionality.
Note that the communication functionality may already provide some informa-
tion to the participants about the environment of the protocol; nevertheless,
this setting is distinguished from other more thorough setup assumptions that
are described below. We note that in this setting it may be of interest to con-
sider protocol executions wherein the adversary is allowed a certain amount of
precomputation prior to the onset of execution that involves the honest parties.

Public-State Setup. A public-state setup is parameterized by a probability
ensemble D. For each input size κ, the ensemble D specifies a probability dis-
tribution that is sampled a single time at the onset of the protocol execution
to produce a string denoted by s that is of length polynomial in κ. All proto-
col parties, including adversarial ones, are assumed to have access to s. In this
setting, the consensus protocol will be designed for a specific ensemble D.

The concept of a public-state setup can be further relaxed in a model that
has been called “sun-spots” [32], where the ensemble is further parameterized by
an index a. The definition is the same as above but now the protocol execution
will be taken for some arbitrary choice of a. Intuitively, the parameter a can be
thought as an adversarial influence in the choice of the public string s. In this
setting, the consensus protocol will be designed with respect to the ensemble
class {Da}a.

Private-State Setup. As in the public state case, a private state setup is
parameterized by an ensemble D. For each input size κ and number of parties n,
D specifies a probability distribution that is sampled a single time to produce a
sequence of values (s1, . . . , sn). The length of each value si is polynomial in κ. At
the onset of the protocol execution, the ensemble is sampled once and each pro-
tocol participant will receive one of the values si following some predetermined
order. The critical feature of this setting is that each party will have private

SoK: A Consensus Taxonomy in the Blockchain Era 295

access to si. Observe that, trivially, the setting of private-state setup subsumes
the setting of public-state setup.

As in the case of a public-state setup, it is important to consider the relax-
ation where the ensemble D is parameterized by string a. As before sampling
from Da will be performed from some arbitrary choice of a. It is in this sense
where private-state setup has been most useful. In particular, we can use it
to express the concept of a public-key infrastructure (PKI). In this setting the
ensemble D employs a digital signature algorithm (Gen,Sign,Verify) and samples
a value (vki, ski) ← Gen(1κ) independently for each honest participant. For each
participant which is assumed to be adversarial at the onset of the execution,
its public and secret key pair is set to a predetermined value that is extracted
from a. The private input si for the i-th protocol participant will be equal to
(vk1, . . . , vkn, ski), thus giving access to all parties’ public (verification) keys and
its own private key. Other types of private setup include “correlated random-
ness” [12], where parties get correlated random strings (r1, r2, ..., rn) drawn from
some predetermined distribution, which has been used to implement a random
beacon [110].

One may consider more complicated interactive setups, such as for example
the adversary choosing a somehow based on public information available about
(s1, . . . , sn), but we will refrain from considering those here. An alternative (and
subsumed by the above) formulation of a private setup includes the availability of
a broadcast channel prior to the protocol execution, which enables participants
to exchange shared keys [109].

5 Computational Assumptions

The assumptions used to prove the properties of consensus protocols can be
divided into two broad categories. In the information-theoretic (aka “uncon-
ditional”) setting, the adversary is assumed to be unbounded in terms of its
computational resources. In the computational setting, on the other hand, a
polynomial-time bound is assumed.

Information-Theoretic Security. In the information-theoretic setting the
adversarial running time is unbounded. It follows that the adversary may take
arbitrary time to operate in each invocation. Note that the protocol execution
may continue to proceed in synchronous rounds, nevertheless the running time
of the adversary within each round will dilate sufficiently to accomodate its com-
plete operation. When proving the consensus properties in this setting we can
further consider two variations: perfect and statistical. When a property, Agree-
ment for example, is perfectly satisfied this means that in all possible executions
the honest parties never disagree on their outputs. On the other hand, in the
statistical variant, there will be certain executions where the honest parties are
allowed to disagree. Nevertheless, these executions will have negligible density
in a security parameter (in this case, n) among all executions. We observe that
the statistical setting is only meaningful for a probabilistic consensus protocol,
where the honest parties may be “unlucky” in their choices of coins.

296 J. Garay and A. Kiayias

Computational Security. In the computational setting the adversarial run-
ning time, and/or the computational model within which the adversary (and the
parties running the protocol) are expressed becomes restricted. We distinguish
the following variants.

One-Way functions. A standard computational assumption is the existence of
one-way functions. A one-way function is a function f : X → Y for which it
holds that f is polynomial-time computable, but the probability A(1|x|, f(x)) ∈
f−1(f(x)) for a randomly sampled x, is negligible in |x| for any polynomial time
bounded program A. One-way functions, albeit quite basic, are a powerful prim-
itive that enables the construction of more complex cryptographic algorithms
that include symmetric-key encryption, target collision-resistant hash functions
and digital signatures [98]; the latter in particular play an important role when
categorizing consensus protocols as we see below.

Proof of Work. A proof of work (PoW) [52] is a cryptographic primitive that
enables a verifier to be convinced that certain amount of computational effort
has been invested with respect to a certain context, e.g., a plaintext message or a
nonce that the verifier has provided. A number of properties have been identified
as important for the application of the primitive specifically to blockchain proto-
cols, including amortization resistance, sampleability, fast verification, hardness
against tampering and message attacks, and almost k-wise independence [71].
Some variants of PoWs have been shown to imply one-way functions [22].

The Random Oracle Model. In the previous subsections the level of security
described was captured in the standard computational model where all parties
are assumed to be Interactive Turing machines. In many cases, including con-
sensus protocol design, it is proven useful to describe properties in the random
oracle model, [14]. The random oracle model can be captured as an ideal func-
tionality FRO (see the full version of the paper). In a relevant adaptation of the
FRO model for the consensus setting, the access to the oracle is restricted by
a quota of q ≥ 1 queries per party per round of protocol execution [67]. This
bound is also imposed on the adversary who is assumed to control t parties. In
case t < n/2, the execution will be said to impose honest majority in terms of
“computational power.”

6 Consensus in the Point-to-Point Setting

In the traditional network model of point-to-point reliable channels between
every pair of parties, the problem was formulated in [88] in the two settings
described in Sect. 5: the information-theoretic setting and the computational
(also called cryptographic, or authenticated) setting. As mentioned above, in the
former no assumptions are made about the adversary’s computational power,
while the latter relies on the hardness of computational problems (such as fac-
toring large integers or computing discrete logs), and requires a trusted setup
in the form of a PKI. Depending on the setting, some of the bounds on the

SoK: A Consensus Taxonomy in the Blockchain Era 297

Fig. 1. The taxonomy of consensus protocols and impossibility results in the syn-
chronous setting. The dotted arrows leading to [23] mean that even though those cases
were not explicitly considered, a similar reasoning would lead to that impossibility
result. nmax/nmin refers to participation tolerance (cf. Sect. 7).

problems’ quality measures differ. Refer to Fig. 1 (specifically, the left subtree)
as we go through the classification below.

Number of Parties. For the information-theoretic setting, n > 3t is both nec-
essary and sufficient for the problem to have a solution. The necessary condition
is presented in [88] for the broadcast problem (see [57] for the consensus version
of the impossibility result), as the special case of 3 parties (“generals”), having
to agree on two values (‘attack’, ‘retreat’), with one of them being dishonest.
As in the information-theoretic setting (with no additional setup) the parties
are not able to forward messages in an authenticated manner, it is easily shown
that an honest receiver cannot distinguish between a run where the sender is dis-
honest and sends conflicting messages, and a run where a receiver is dishonest
and claims to have received the opposite message, which leads to the violation
of the problem’s conditions (Agreement and Validity, respectively). The general
case (arbitrary values of n) reduces to the 3-party case. The (broadcast) pro-
tocol presented in [88] matches this bound (n > 3t), and essentially consists in
recursively echoeing messages received in a round while excluding the messages’
senders. (In the first round, only the sender sends messages.) This is done for
t + 1 rounds, at which point the parties take majority of the values received for

298 J. Garay and A. Kiayias

that instance, returning that value as they exit that recursive step. The party’s
output is the value returned for the first recursive call. t + 1 rounds were later
shown to be optimal (see below), but the protocol requires exponential (in n)
computation and communication.

Lamport et al. [88] also formulated the problem in the computational setting,
where, specifically, there is a trusted private-state setup (of a PKI), and the
parties have access to a digital signature scheme. This version of the problem
has been referred to as authenticated Byzantine agreement. In contrast to the
information-theoretic setting, in the computational setting with a trusted setup
the bounds for broadcast and consensus differ: n > t [88] and n > 2t (e.g., [59]),
respectively. The protocol presented in [88] runs in t + 1 rounds but, as in the
information-theoretic setting, is also exponential-time; an efficient (polynomial-
time) protocol was presented early on by Dolev and Strong [49], which we now
briefly describe. In this protocol in the first round the sender digitally signs and
sends his message to all the other parties, while in subsequent rounds parties
append their signatures and forward the result. If any party ever observes valid
signatures of the sender on two different messages, then that party forwards both
signatures to all other parties and disqualifies the sender (and all parties output
some default message). This simple protocol is a popular building block in the
area of cryptographic protocols.

The original formulation of the problem in the computational setting assumes
a PKI. In [23], Borcherding considered the situation where no PKI is available,
which he refers to as “local authentication,” meaning that no agreement on
the parties’ keys is provided, as each party distributes its verification key by
itself. Borcherding shows that in this case, as in the information-theoretic setting
above, broadcast and consensus are not possible if n ≤ 3t, even though this
setting is strictly stronger, as a dishonest party cannot forge messages sent by
honest parties. The gist of the impossibility is that the adversary can always
confuse honest parties about the correct protocol outcome and digital signatures
cannot help if they are not pre-associated with the parties running the protocol
in advance (something only ensured given a private setup).

Regarding the “strong” version of the problem (the decision value must be
one of the honest parties’ input values), Fitzi and Garay [60] showed that the
problem has a solution if and only if n > max(3, |V |)t in the unconditional set-
ting3, where V is the domain of input/output values, and n > |V |t in the compu-
tational setting with a trusted setup, giving resiliency-optimal and polynomial-
time protocols that run in t + 1 rounds.

Running Time. Regarding the running time of consensus protocols, a lower
bound of t + 1 rounds for deterministic protocols was established by Fischer
and Lynch [56] for the case of benign (“crash”) failures, and extended to the
setting with malicious failures where messages are authenticated by Dolev and
Strong [49]. As mentioned above, the original protocols by Lamport et al. already
achieved this bound, but required exponential computation and communication.
3 The lower bound was in fact shown by Neiger, who formulated this version of the

problem [99].

SoK: A Consensus Taxonomy in the Blockchain Era 299

In contrast to the computational setting, where a polynomial-time resiliency-
and round-optimal protocol was found relatively soon [49], in the information-
theoretic setting this took quite a bit longer, and was achieved by Garay and
Moses [72]. In a nutshell, the [72] result builds on the “unraveled” version of the
original protocol, presented and called Exponential Information Gathering by
Bar-Noy et al. [11], applying a suite of “early-stopping” (see more on this below)
and fault-detection techniques to prune the tree data structure to polynomial
size. Regarding strong consensus, the t + 1-round lower bound also applies to
this version of the problem, which the protocols by Fitzi and Garay [60] achieve
(as well as being polynomial-time and resiliency-optimal).

In the t+1-round lower bound for deterministic protocols, t is the maximum
number of corruptions that can be tolerated in order to achieve consensus in
a given model. Dolev, Reischuk and Strong [48] asked what would the running
time be when the actual number of corruptions, say, f is smaller than t, and
showed a lower bound of min{t+1, f +2} for any consensus protocol, even when
only crash failures occur, which is important when f is very small. They called
a consensus protocol satisfying this property early-stopping. Faster termination,
however, comes at a price of non-simultaneous termination, as they also showed
that if simultaneous termination is required, then t + 1 rounds are necessary.
(See also [51].)

Optimal early stopping for the optimal number of parties (i.e., n > 3t) was
achieved in the information-theoretic setting by Berman and Garay [21]; the
protocol, however, is inefficient, as it requires exponential communication and
computation. Relatively recently, an efficient (polynomial-time) optimal early-
stopping consensus protocol was presented by Abraham and Dolev [2].

The above t + 1-round lower bound applies to deterministic protocols. A
major breakthrough in fault-tolerant distributed algorithms was the introduc-
tion of randomization to the field by Ben-Or [15] and Rabin [110], which, effec-
tively, showed how to circumvent the above limitation by using randomization.
Rabin [110], in particular, showed that linearly resilient consensus protocols in
expected constant rounds were possible, provided that all parties have access to
a “common coin” (i.e., a common source of randomness). Essentially, the value
of the coin can be adopted by the honest parties in case disagreement at any
given round is detected, a process that is repeated multiple times. This line
of research culminated with the work of Feldman and Micali [55], who showed
how to obtain a shared random coin with constant probability from “scratch,”
yielding a probabilistic consensus protocol tolerating the maximum number of
misbehaving parties (t < n/3) that runs in expected constant number of rounds.

The [55] protocol works in the information-theoretic setting; these results
were later extended to the computational setting by Katz and Koo [82], who
showed that assuming a PKI and digital signatures there exists an (expected-
)constant-round consensus protocol tolerating t < n/2 corruptions. Recall that
broadcast protocols in the computational setting with setup tolerate an arbitrary
number (i.e., n > t) of dishonest parties; in contrast, the protocol in [82] assumes
n > 2t (as it is based on VSS—verifiable secret sharing [40]). In [63], Garay et al.

300 J. Garay and A. Kiayias

consider the case of a dishonest majority (i.e., n ≤ 2t), presenting an expected-
constant-round protocol for t = n

2 + O(1) dishonest parties (more generally,
expected O(k2) running time when t = n

2 + k), and showing the impossibility of
expected-constant-round broadcast protocols when n − t = o(n).

The speed-up on the running time of probabilistic consensus protocols comes
at the cost of uncertainty, as a party that terminates can never be sure that
other parties have also terminated—i.e., there cannot be simultaneous termina-
tion [48], which is an issue when these protocols are invoked from a higher-level
protocol, as a party cannot be sure how long after he receives his output from
a call to such a probabilistic termination (PT) consensus protocol (cf. [42]) he
can safely carry out with the execution of the calling protocol. The sequential
composition of PT consensus protocols was addressed by Lindell et al. [89] while
the parallel composition of such protocols by Ben-Or and El-Yaniv [17]. (The
issue in the case of parallel invocations of expected-constant-round PT proto-
cols is that the overall running time of the parallel executions is not necessarily
expected constant.) The above results on sequential and parallel composition,
however, do not use simulation-based security, and it was therefore unclear how
(or if) one would be able to use them to instantiate consensus (and/or broadcast)
from a higher-level protocol. Such formal simulation-based (and therefore com-
posable) definition and constructions of consensus protocols with probabilistic
termination has been recently presented in [42].

Trusted Setup. We already covered this aspect above while describing the
protocols achieving the different bounds on the number of parties; here we briefly
summarize it. There is no trusted setup in the unconditional setting, although in
the case of randomized protocols there is the additional requirement of the point-
to-point channels being private in addition to reliable, while the “authenticated”
consensus protocols assume a PKI. Related to a trusted setup assumption, we
remark that if a pre-computation phase is allowed in the information-theoretic
setting where reliable broadcast is guaranteed, then Pfitzmann and Waidner
showed that broadcast and consensus are achievable with the same bounds on
the number of parties as in the computational setting, using a tool known as a
“pseudo-signatures” [109].

Communication Cost. A lower bound of Ω(n2) on the number of mes-
sages (in fact, Ω(nt)) was shown by Dolev and Reischuk for consensus for
both information-theoretic and computational security [47]; for the latter, what
they showed was that the number of signatures that are required by any pro-
tocol is Ω(nt), resulting in an Ω(nt|σ|) bit complexity (for a constant-size
domain), where |σ| represents the maximum signature size. The first information-
theoretically secure protocols to match this bound were given by Berman et al.
[20] and independently by Coan and Welch [41]; regarding computational secu-
rity, the protocol presented by Dolev and Strong [49] requires that many mes-
sages. By relaxing the model and allowing for a small probability of error, King
and Saia [85], presented a protocol that circumvents the impossibility result
(with message complexity Õ(n1.5)).

SoK: A Consensus Taxonomy in the Blockchain Era 301

The above bounds (except for [85]) reflect the fact that in typical protocols
messages are communicated at least Ω(n2) times, resulting in an overall commu-
nication complexity of at least Ω(�n2) for �-bit messages. In [61,80], Fitzi and
Hirt and Hirt and Raykov show protocols for consensus and broadcast, respec-
tively, where the long message is communicated O(n) times, which is optimal as
no protocol can achieve consensus or broadcast of an �-bit message with com-
munication complexity o(�n). See also [62,106] for further improvements.

Beyond Synchrony. The case of partial synchrony, introduced in [50], considers
the existence of an unknown bound Δ that determines the maximum delay of
a message that is unknown to the protocol participants.4 As shown in [50],
the resiliency bounds presented in the point-to-point subtree of Fig. 1 remain
unaltered in the no setup and public setup cases, but it degrades to n/3 in the
private setup case.

In the eventual delivery setting, as mentioned above, deterministic consensus
is impossible but it is still feasible to obtain protocols with probabilistic guar-
antees. Furthermore, note that in this setting it is not possible to account for
all of the honest parties’ inputs since parties cannot afford to wait for all the
parties to engage (since corrupt parties may never transmit their messages and
it is impossible to set a correct time-out). In more detail, without a setup in
the information-theoretic setting, it is possible to adapt the protocol in [55] and
achieve n/4 resilience [54] (see Fig. 1). By allowing the protocol not to termi-
nate with negligible probability, Canetti and Rabin showed how to bring the
resiliency to n/3 [33], which was later on improved to guarantee termination
with probability 1 by Abraham et al. [3]. Efficiency improvements to the above
two results (specifically, communication of the first one, and running time of the
second one) were more recently presented in [9,107], respectively.

In the private-setup setting, assuming one-way functions, it is possible to
obtain an always-terminating protocol with n/3 resiliency (cf. [54]). We note
that it is infeasible to go beyond n/3 resiliency, as shown in [16,28], where this
bound is argued for fail-stop failures, and thus the above results are optimal in
this sense.

Most protocols mentioned above demonstrate the feasibility of the respective
bounds. Much effort has also been dedicated to achieving practical Byzantine
fault tolerance (BFT) in the eventual message delivery model. For completeness,
here we mention some relevant results, with the work by Castro and Liskov [34]
as a notable instance, where they focus on a fault-tolerant replicated transactions
service in the cryptographic setting with the corresponding Safety and Liveness
properties (see Sect. 8), achieving n/3 resiliency. Cachin et al. [27] study con-
sensus in the same model, showing an efficient coin tossing protocol assuming a
random oracle. Other related works focusing on practical efficiency include the
work by Kursawe and Shoup on “asynchronous” atomic broadcast [87] (atomicity
means that broadcast executions are ordered in such a way that two broadcast

4 In [50] partial synchrony between the clocks of the processors is also considered as a
separate relaxation to the model. In the present treatment we only focus on partial
synchrony with respect to message passing.

302 J. Garay and A. Kiayias

requests are received in the same order by any two honest parties), following the
“optimistic” approach presented in [34] where first only a “Bracha broadcast”
protocol [24] is first attempted, reverting to the use of cryptography if things
go wrong. Finally, Miller et al. [93] improve on the communication complexity
of the protocol in [26], and guarantee Liveness without any timing assumptions,
which was the case in [34].

Property-Based vs. Simulation-Based Proofs. As mentioned in Sect. 2.2,
consensus and broadcast protocols have been typically proven secure/correct
following a property-based approach. It turns out, as pointed out by Hirt and
Zikas [81] (see also [64]), that in the case of adaptive adversaries who can choose
which parties to corrupt dynamically, during the course of the protocol execu-
tion (cf. [31]), most existing broadcast and consensus protocols cannot be proven
secure in a simulation-based manner. The reason, at a high level, is that when
the adversary (having corrupted a party) receives a message from an honest
party, can corrupt that party and make him change his message to other parties.
This creates an inconsistency with the ideal process, where the party has already
provided his input to the trusted party/ideal functionality that abstracts con-
sensus. To be amenable to a simulation-based proof, instead of sending its initial
message “in the clear,” the sender in a broadcast protocol sends a commitment
to the message, allowing the simulator in the ideal process to “equivocate” when
the committed value becomes known in case the party has been corrupted and
the initial value changed [64,81].

7 Consensus in the Peer-to-Peer Setting

Consensus in the peer-to-peer setting is the consensus problem when the avail-
able communication resource is peer-to-peer diffusion (cf. Sect. 3), a weaker com-
munication primitive compared to point-to-point channels. (For this section,
refer to the right subtree of Fig. 1.) This setting arose with the advent of the
Bitcoin blockchain protocol, and was formally studied for the first time in [67].
In a nutshell, it constitutes an unauthenticated model of communication where
no correlation of message sources across rounds can be established and the exact
number of parties that participate may be unknown to the protocol partici-
pants. Moreover, since the adversary may inject messages in the network, an
honest party cannot infer the number of participants from a message count.

We note that in a precursor model, where there is no correlation of message
sources, but the point-to-point structure is still in place albeit without authen-
tication, Okun showed that deterministic consensus algorithms are impossible
for even a single failure [101,102], but that probabilistic consensus is still feasi-
ble by suitably adapting the protocols of [15,55]5; the protocol, however, takes
exponentially many rounds.

The consensus problem in the peer-to-peer setting has mostly been considered
in the computational setting utilizing one-way functions and the proof-of-work
5 Hence, consensus in this setting shares a similar profile with consensus in the asyn-

chronous network model [58].

SoK: A Consensus Taxonomy in the Blockchain Era 303

(PoW) primitive (Sect. 5). The first suggestion for a solution was informally
described in [6], where it was suggested that PoWs can be used as an “identity
assignment” tool, which subsequently can be used to bootstrap a standard con-
sensus protocol like [49]. Nevertheless, the viability of this plan was never fully
analyzed until an alternative approach to the problem was informally described
by Nakamoto in an email exchange [96], where he argued that the “Byzantine
Generals” problem can be solved by a blockchain/PoW approach tolerating a
number of misbehaving parties strictly below n/2. As independently observed
in [66,92], however, with overwhelming probability the Validity property is not
satisfied by Nakamoto’s informal suggestion.

The blockchain approach suggests to string PoWs together in a hash chain
and achieve agreement using a rule that favors higher concentrations of computa-
tional effort as reflected in the resulting hash chains. The inputs to the consensus
problem are “entangled” within the PoWs themselves and the final output results
from a processing of the hash chain. The approach was first formalized in [67]
where also two constructions were provided that satisfy all properties assuming
a public setup.

Without access to a public setup, it is also possible to obtain a construc-
tion based on the results of [5], who were the first to formalize the [6] informal
approach of using PoWs for identity assignment. Moreover, a blockchain-based
approach is also possible as shown in [70]. Using a private setup, it becomes fea-
sible to use primitives such as digital signatures and verifiable random functions
(by storing the public key information as part of the public part of the setup,
while the secret key information is the private part of the setup) and obtain even
more efficient constructions such as the consensus sub-protocol of [38].

Number of Parties. One of the most important characteristics of consensus
in the peer-to-peer setting is that the actual number of parties that are run-
ning the protocol is not assumed to be known in advance. Instead, the actual
number of parties becomes a run-time execution parameter and the protocol is
supposed to be able to tolerate a range of different of possible choices for the
number of parties. We capture this by posing a range of possible operational
values [nmin, nmax], and posit that if the actual number of parties falls within
the range then the properties will be guaranteed. We call the ratio nmax/nmin

for a given protocol a protocol’s participation tolerance. We note that this notion
is somewhat related to models that have been considered in fault-tolerant dis-
tributed computing and secure multiparty computation (see, e.g., [73] and [79],
respectively). In such scenarios the parties are subject to two types of faults,
Byzantine and benign, such as “going to sleep,” but adversarially scheduled. In
the latter type, the parties will cease participating in the protocol execution.

In the convention introduced in [67], each party has a fixed quota of hashing
queries that is allowed per round. As a result, the number of parties is directly
proportional to the “computational power” that is present in the system and the
total number of PoWs produced by the honest parties collectively would exceed
that of the adversary assuming honest majority with very high probability. Given
this it is tempting to imagine a direct translation of computational power to a

304 J. Garay and A. Kiayias

set of identities [6]. The main problem is that the set of identities as perceived by
the honest participants in the protocol execution might be inconsistent. This was
resolved with the protocol of [5] where PoWs are used to build a “graded” PKI,
where keys have ranks. The graded PKI is an instance of the graded agreement
problem [55], or partial consistency problem [43], where honest parties do not
disagree by much, according to some metric. Subsequently, it is possible to morph
this graded consistency to global consistency by running multiple instances of
[49]. This can be used to provide a consensus protocol with resiliency n/2 without
a trusted setup.

It is unnecessary though for the parties to reach consensus by establishing
identities. In the first consensus protocol presented in [67], the parties build a
blockchain where each block contains a value that matches the input of the party
that produced the block. The protocol continues for a certain number of rounds
that ensures that the blockchain has grown to a certain length. In the final round,
the parties remove a k-block suffix from their local blockchain, and output the
majority bit from the remaining prefix. Based on the property called “common
prefix” in [67], it is shown that with overwhelming probability in the security
parameter, the parties terminate with the same output, while using the “chain
quality” property, it is shown that if all the honest parties start with the same
input, the corrupt parties cannot overturn the majority bit, which corresponds
to the honest parties’ input. The number of tolerated misbehaving parties in
this protocol is strictly below n/3, a sub-optimal resiliency due to the low chain
quality of the underlying blockhain protocol. The maximum resiliency that can
be expected is n/2, something that can be shown by easily adapting the standard
argument for the necessity of honest majority shown in Sect. 2.

Optimal resiliency can be reached by the second consensus protocol of [67] as
follows: The protocol substitutes Bitcoin transactions with a type of transactions
that are themselves based on PoWs, and hence uses PoWs in two distinct ways:
for the maintenance of the ledger and for the generation of the transactions
themselves. The protocol requires special care in the way it employs PoWs since
the adversary should be incapable of “shifting” work between the two PoW tasks
that it faces in each round. To solve this problem, a special strategy for PoW-
based protocol composition is introduced in [67] called “2-for-1 PoWs.” In the
second solution presented in [67] the number of tolerated misbehaving parties is
strictly below n/2.

We note that all these protocols come with a hard-coded difficulty level for
PoWs which is assumed to be correlated with the number of parties n. If f is
the probability that at least one honest party will produce a PoW in a round of
protocol execution, it holds that f approaches 0 for small n while it approaches
1 for large n. It follows that the choice of PoW difficulty results in an operational
range of values [nmin, nmax] and it is possible to set the difficulty for any constant
ratio nmax/nmin, so the participation tolerance of the protocol can be set to
any arbitrary constant. We note that the lower bound nmin can be arbitrarily
small as long as we are able to assume that even a single party has sufficient
computational power to ensure that finding PoWs is not very rare. In case this

SoK: A Consensus Taxonomy in the Blockchain Era 305

is not true and n < nmin, the protocol cannot be guaranteed to satisfy Validity
with high probability, while on the other hand, if n > nmax, the protocol cannot
be guaranteed to achieve agreement with high probability.

Using digital signatures and verifiable random functions (VRFs) (or just dig-
ital signatures and a hash function modeled as a random oracle), it is possible to
implement the second consensus protocol in [67] over an underlying blockchain
protocol that uses a public-key infrastructure as opposed to PoWs, and allows
for arbitrary participation tolerance such as [104] for optimal resiliency of n/2.
The idea is as follows: one can use VRFs for each participant to enable a random
subset of elected transaction issuers in each round. The ledger will then incor-
porate such transactions within a window of time following the same technique
and counting argument as in the second consensus protocol of [67]. In Fig. 1 this
is the protocol referred to in the second leaf from the right.

Running Time. In order to measure the running time that the protocols require
in the peer-to-peer setting assuming PoW, one will have to also take into account
that periods of silence, i.e., rounds without any message passing, may also be
required for ensuring the required properties with high probability in κ, a security
parameter. In the consensus protocol derived from the protocol of [5], O(n)
rounds are required where n is the number of parties. This can be improved
to O(κ) by, e.g., using a blockchain-based approach [70]. In the public-setup
setting, assuming that the number of parties fall within the operational range,
the protocols of [67] run also in time O(κ).

It is worth noting the contrast to the approach used in randomized solutions
to the problem in the standard setting (cf. Sect. 6), where achieving consensus
is reduced to (the construction of) a shared random coin, and comparable guar-
antees are obtained after a poly-logarithmic number of rounds in the number of
parties. The probabilistic aspect in the blockchain setting stems from the parties’
likelihood of being able to provide proofs of work.

In the private setup setting it is possible to improve the running time to
expected constant, e.g., by deploying the consensus sub-protocol of Algorand
[38] for 1/3 resiliency.

Trusted Setup. The relevant trusted setup assumption in the above protocols
include a fresh random string, that can be incorporated as part of a “genesis
block” in the blockchain protocol setting, or in general as part of the PoWs6.
The objective of this public setup is to prevent a pre-computation attack by the
adversary that will violate the relative superiority of honest parties which would
be derived by the honest majority assumption. Note that protocols that require
no trusted setup such as [5,70] take advantage of a special randomness exchange
phase prior to PoW calculation that guarantees freshness without the need of a
common random string.

It is worth to emphasize the fundamental advantage of the PoW setting com-
pared to other computational assumptions that have been used for consensus.

6 Alternatively, the protocols would consider as valid any chain that extends the empty
chain, and where the adversary is not allowed any pre-computation.

306 J. Garay and A. Kiayias

Specifically, it is known that without a private setup, consensus is not possi-
ble with more than n/3 corruptions [23] even assuming digital signatures. The
n/3 impossibility result does not apply here since, essentially, proofs of work
can make it infeasible for the adversary to present diverging protocol transcripts
without investing effort for distinct PoW calculations.

Another observation is that assuming a private setup in the peer-to-peer
setting, one can simulate point-to-point connectivity, and thus run any consensus
protocol from the previous section; nevertheless, this reduction is not efficient
and in the peer-to-peer setting with private-setup one can still obtain protocols
that are more efficient (e.g., with subquadratic communication complexity).

Communication Cost. The total number of transmitted messages in the con-
sensus protocols described above is, in expectation, O(n2κ) for the case of [5,70]
counting each invocation of the diffuse channel as costing O(n) messages. For
the two protocols of [67] the number of messages is O(nκ) in the public setup
setting. In the private setup setting it can be possible to reduce this further using
techniques from [38].

We recall that an important difference with randomized consensus protocols
in the standard setting is that parties send messages in every round, while in
the PoW setting (honest) parties only communicate whenever they are able
to produce a proof of work; otherwise, they remain silent. This also suggests
that there may be honest parties that never diffuse a message7 and thus it is
feasible to drop communication costs to below n2 (with a probabilistic guarantee;
cf. Sect. 6).

Beyond Synchrony. The consensus protocols of [67] in Fig. 1 can be analyzed
in the partial synchronous setting as well (refer to the full version of [66] as a
starting point). Recall that the way the protocols operate in this setting is that
a parameterisation of difficulty is hardcoded that provides a reasonable PoW
production rate over message passing time. The security of the protocols will
then be at the theoretical maximum in terms of resiliency as long as the original
estimate is close to being safe (network delay is low) and will degrade if the
estimate is worse, dissipating entirely when the delay gets larger (for the full
argument, see [103], where it is shown how the blockchain protocol’s consistency
collapses when delay is arbitrarily large).

Property-Based vs. Simulation-Based Proofs. To our knowledge, there is
no simulation-based treatment of consensus in the peer-to-peer setting, however
it is easy to infer a functionality abstracting the problem. The only essential
difference is that the actual number of parties involved in the execution are to
be decided on the fly and will be unknown to the protocol participants.

7 Note the similarity with standard consensus in the eventual-delivery setting (Sect. 6),
where not all honest parties’ inputs may be accounted for.

SoK: A Consensus Taxonomy in the Blockchain Era 307

8 Ledger Consensus

Ledger consensus (aka “Nakamoto consensus”) is the problem where a set of
servers (or nodes) operate continuously accepting inputs (“transactions”) that
belong to a set T and incorporate them in a public data structure called the
ledger. We assume that the language of all valid ledgers L has an efficient mem-
bership test and moreover for all tx there is an L ∈ L such that tx ∈ L. We call a
language L trivial if it holds that for all tx1, tx2 ∈ T there exists L ∈ L that con-
tains both tx1, tx2. The purpose of ledger consensus is to provide a unique view
of the ledger to anyone asking to see it. The ledger view of a party P is denoted
by ˜LP while the “settled” portion of the ledger in the view of P is denoted by
LP . Note that it always holds LP � ˜LP , where � denotes the standard prefix
operation. The properties that a ledger consensus protocol must satisfy are as
follows:

– Consistency (or Persistence): This property mandates that if a client queries
an honest node’s ledger at round r1 and receives the response ˜L1, then a client
querying an honest node’s ledger at round r2 ≥ r1 will receive a response ˜L2

that satisfies L1 � ˜L2.
– Liveness: If a transaction tx is given as input to all honest nodes at a round

r and it holds that tx is valid w.r.t. ˜LP for every honest party P , then at
round r + u it holds that LP includes tx for any honest party P .

In classical distributed systems literature, such problem is often referred to as
state machine replication [111]. Consistency ensures that parties have the same
view of the log of transactions, while Liveness ensures the quick incorporation of
transactions. Furthermore, a third property, called “order” in [111], is introduced
which, in our notation, can be expressed as follows.

– Serializability: For transactions tx, tx′, if tx is given as input to all honest
nodes at a round r and it holds that tx is valid w.r.t. ˜LP and tx′ �∈ ˜LP for
every honest party P , then it holds that for any r′ > r, the ledger LP of any
honest party cannot include tx′, tx in this order.

Given a consensus protocol it is tempting to apply it in sequential compo-
sition in order to solve ledger consensus. The reduction indeed holds but some
special care is needed. First, let us consider the case where no setup is available.
The construction in the synchronous network model is as follows. First, sup-
pose that we have at our disposal a consensus protocol that satisfies Agreement,
(Strong) Validity, and Termination after u rounds. The protocol has all nodes
collect transactions and then run the consensus protocol with the set of trans-
actions as their input. When the protocol terminates after u rounds, the nodes
assign an index to the output (call it the i-th entry to the ledger) and move
on to the next consensus instance. It is easy to see that Consistency is satisfied
because of Agreement, while Liveness is satisfied with parameter u because of
Strong Validity and Termination. It is worth noting that “plain” Validity by
itself is not enough, since a ledger protocol is supposed to run for any given set

308 J. Garay and A. Kiayias

of transactions and as a result it is possible that no two honest nodes would ever
agree on a set of inputs. In this case, Validity might just provide that honest
parties’ agree on an adversarial value, which might be the empty string. As a
result the ledger would be empty and Liveness would be violated. However it is
possible to deal with this problem without resorting to the full power of Strong
Validity. For instance, it is sufficient to consider a variant of consensus where
each party has an input set Xi and the joint output set S satisfies that Xi ⊆ S.
We note that such a “union” consensus protocol can be implied by Interactive
Consistency, as defined in [108], and it has also recently been considered explic-
itly as a consensus variant [46]. Other intermediate notions of Validity such as
a predicate-based notion [26] can be useful here as well.

Let us now comment how the reduction can be performed under different
setup and network assumptions. First, if a setup assumption is used, observe
that the above reduction will require the availability of the setup every u rounds.
Given this might be impractical, one may consider how to emulate the sequence
of setups using a single initial setup. This approach is non-black-box on the
underlying protocol and may not be straightforward. For instance, when sequen-
tially composing a PoW-based consensus protocol that relies on a public setup,
the security of the protocol may non-trivially rely on the unpredictability of the i-
th setup. Techniques related to sequential composition of a basic building block
protocol have appeared in a number of ledger protocols, including [19,38,84].
Regarding network aspects, we observe that the reduction can proceed in essen-
tially the same way in the peer-to-peer setting as in the point-to-point setting.
Finally, note that when simultaneous termination is not available in the underly-
ing consensus protocol, special care is needed in applying composition (cf. [42]).

Ledger consensus was brought forth as an objective of the Bitcoin blockchain
protocol. For this reason, in the remaining of the paper, we only consider the
problem in the peer-to-peer setting, although we note that in the point-to-point
setting it is possible to adapt standard BFT methods to solve the problem. We
refer to, e.g., [75,93] for some recent examples. We remark also that combining
private setup and the peer-to-peer setting, it is straightforward to simulate the
point-to-point setting by relying on the authentication information that can be
made available by the setup. A pictorial overview of our protocol classification
is presented in Fig. 2.

Number of Parties. We start with an adaptation of the impossibility result for
dishonest majority as shown in [59]. The result shows that in all the relevant cases
for practice, specifically, ledger consensus with non-trivial ledgers, or providing
serializability as defined above, honest majority is a necessary requirement.

Theorem 1. Suppose that the transaction set T satisfies |T| ≥ 2. Ledger con-
sensus is impossible in case the adversary controls n/2 nodes, assuming either
(i) the language L is non-trivial or (ii) Serializability holds.

Proof. For simplicity we describe the impossibility result in a setting where the
properties are perfectly satisfied. The same argument can be easily extended
to the setting where the properties are satisfied with overwhelming probability.

SoK: A Consensus Taxonomy in the Blockchain Era 309

Fig. 2. The taxonomy of ledger consensus protocols (peer-to-peer setting).

Suppose all parties are split in two sets A1, A2 of size exactly n/2. We describe
an environment and an adversary. The environment prepares two transactions
tx1, tx2 ∈ T that are in conflict, i.e., it holds that no valid L exists for which
it holds that both tx, tx′ ∈ L but they can be both validly added to some
ledger since they are members of T. The environment provides at round 1 the
appropriate sequence of transactions so that parties in Ab receive transaction
txb respectively and advances the execution for at least u rounds, the Liveness
parameter. We consider three adversaries A0,A1,A2. The A0 adversary corrupts
no party and allows the execution to advance normally. On the other hand, the
adversary Ab with b ∈ {1, 2} corrupts the set of parties Ab and simulates honest
operation. Consider a party P1 ∈ A1 and a party P2 ∈ A2. In case b ∈ {1, 2}, by
Liveness, at the end of the execution it should be the case that txb ∈ Lb. In case
b = 0, by Consistency, it should be that L1 � ˜L2. Given that in the three cases
the executions are perfectly indistinguishable, this means that tx1 ∈ ˜L2 which
is a contradiction since tx2 ∈ L2 � ˜L2.

The argument for the case of Serializability is similar to the above. In this
case, we just assume that transactions tx1, tx2 ∈ T are just distinct (they do not
have to be in conflict). Observe that by Liveness in the experiments above we
will have that txb ∈ Lb for party Pb. Moreover, due to Serializability, for Pb it
must be the case that transactions cannot be in the order tx3−b, txb. This leads
to a contradiction due to Consistency. �

As in the case of peer-to-peer consensus (Sect. 7), the actual number of par-
ties n is not known in advance and may be assumed to fall within a range of
operational parameters n ∈ [nmin, nmax]. This is also related to the concept
of “sporadic participation” that was considered in [104], where certain honest
parties may “go to sleep” for arbitrary amounts of time.

310 J. Garay and A. Kiayias

In the PoW setting, recall that each party has a fixed quota of queries that it
can perform to a hash function per unit of time and thus the number of parties
is directly proportional to the total computational or hashing power that is
available. In this setting, first [67] showed that ledger consensus can be achieved
when the number of corrupted parties is strictly below n/2. This bound was also
preserved in the partially synchronous setting, as shown by Pass et al. [103].

The above results refer to a static setting where there are no large deviations
in the number of parties throughout the execution. The setting where the pop-
ulation of parties running the protocol can dynamically (and quite drastically)
change over time with the environment introducing new parties and deactivating
parties that have participated was considered for ledger consensus for the first
time in [68]. Their main result is that ledger consensus can be achieved in the
PoW setting, assuming an honest majority appropriately restated by consider-
ing the number of parties as they change over time: Assuming ni are the active
parties at time unit i, it holds that the number of adversarial parties is bounded
away from ni/2.

Assuming a private setup and a setting where the adversary gets t Byzantine
corruptions and s asleep parties, in [104] it is shown that ledger consensus can
be achieved as long as t is strictly bounded by a/2 where a = n−s is the number
of “alert” parties, i.e., the number of asleep parties may be larger than n/2 and
hence an arbitrary participation ratio can also be achieved in this setting without
resorting to PoWs. With respect to lower bounds, in the case of sleep corruptions
the bound can be generalized to a/2; see [104]. A dynamic setting of parties was
also considered in [19,45,84], providing a similar type of results assuming a PKI
with honest “stake” majority. An important deficiency shared by these works
is that new parties have to be chaperoned into the system by receiving advice
consistent with the views of the honest parties. This was highlighted as the
“bootstrapping from genesis” problem in [7] which resolved it via a suitable chain
selection rule; in the same work, a more refined model of dynamic participation
was put forth, called dynamic availability. This model allows finer control from
the environment’s perspective in terms of disconnecting parties, or having parties
lose access to resources such as the clock or the hash function.

Finally, in terms of participation tolerance, we observe that an arbitrary
nmax/nmin can be achieved by protocols such as [7,104] while Algorand [38,91]
requires nmax/nmin to be (approximately) 1 since the expected participation is a
hardcoded value in the protocol (it is worth noting that despite this limitation,
Algorand still qualifies as a peer-to-peer protocol, since the identities of the
parties engaging in the protocol need not be known in advance).

Transaction Processing Time. Contrary to a consensus protocol, a ledger
consensus protocol is a protocol that is supposed to be running over an arbitrary,
potentially long, period of time. Thus, the relevant measure in this context is the
amount of time that it takes for the system to insert a transaction in the log that
is maintained by the participants. This relates to the parameter u introduced as
part of the Liveness property, which determines the number of rounds needed
in the execution model for a transaction to be included in the log. Observe that

SoK: A Consensus Taxonomy in the Blockchain Era 311

Liveness is only provided for transactions that are produced by honest partic-
ipants or are otherwise unambiguously provided to the honest parties running
the protocol.

In this setting we observe that [67] achieves ledger consensus with processing
time O(κ) rounds of interaction, where κ is the security parameter. This result
is replicated in the partially synchronous setting, where processing time takes
O(κΔ) rounds, and where Δ is the maximum delay that is imposed on message
transmission. The above results assume the adversarial bounds consistent with
honest majority which are tight (cf. [105]). Considering a weaker adversarial
setting it is possible to improve Liveness; for instance, Algorand [38] achieves
expected-constant number of rounds while, Thunderella [105], shows that the
processing time can be dropped to O(1) rounds worst-case, assuming an honest
super-majority (i.e., adversarially controlled number of parties strictly below
n/4) and the existence a specific party called the accelerator to be honest.

Trusted Setup. Ledger consensus can be achieved in the public- or private-state
setup setting. Protocols falling in the former category are [67,68,103], whereas
protocols consistent with the latter are [19,38,74,84,104]. In the absence of a
trusted setup, it has been shown that it is possible to “bootstrap” a ledger con-
sensus protocol from “scratch,” either directly [70] or via setting up a public-key
directory using proofs of work [5]. An important further consideration between
public and private setup is that in the peer-to-peer setting, the former represents
what typically is consistent with the so-called persmissionless setting, while the
latter is consistent with the permissioned setting. This follows from the fact that
anyone that has access to the peer-to-peer channel is free to participate in the
protocol, if no setup or a public setup is assumed. On the other hand, in the pri-
vate setup setting, a higher level of permissioning is implied: The parties that are
eligible to run the protocol need to get authorized either by the setup function-
aliy so that they receive the private information that is related to the protocol
execution, or, alternatively, interact with the parties that are already part of the
protocol execution so they can be inducted. Note that the point-to-point setting
is—by definition—permissioned via access to the RMT functionality.

Communication Cost. Given that ledger consensus is an ongoing protocol that
processes incoming transactions, defining communication costs requires some
care. To our knowledge, no formal definitions of communication costs for ledger
consensus have been proposed. A first approach to the problem is to consider a
type of “communication overhead” on top of the transactions that are transmit-
ted in the system. It follows that the minimum communication necessary for each
bit of transaction transmitted is the diffusion of this bit. Given the above, the
communication costs of ledger consensus protocols based on blockchain protocols
can be seen to be constant in the sense that parties transmit, up to constant
factors, more data.

Beyond Synchrony. Initial work in ledger consensus protocols in the public
setup [67,68] and the no setup setting [69,70] assumed a rushing adversary and
synchronous operation. This can be extended to the partial synchrony setting

312 J. Garay and A. Kiayias

as shown in [103] as well as in the full version of [66] with the same limitations
explained in Sect. 7.

Property-Based vs. Simulation-Based Proofs. The first simulation-based
definition of ledger consensus was presented by Badertscher et al. [8]. A refine-
ment of this definition was presented in [7], where it was also shown how to
adapt it in a setting where a private setup is available. In terms of composabil-
ity, an (expected) disadvantage for PoW-based protocols highlighted in the work
of [8] is that access to the random oracle should be specific to the current ledger
protocol session.

References

1. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), Providence, RI, USA, 20–23 October 2007. IEEE Computer
Society (2007)

2. Abraham, I., Dolev, D.: Byzantine agreement with optimal early stopping, opti-
mal resilience and polynomial complexity. In: Servedio, R.A., Rubinfeld, R. (eds.)
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 605–614. ACM
(2015)

3. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polyno-
mial protocol for asynchronous byzantine agreement with optimal resilience. In:
Bazzi, R.A., Patt-Shamir, B. (eds.) Proceedings of the Twenty-Seventh Annual
ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto,
Canada, 18–21 August 2008, pp. 405–414. ACM (2008)

4. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92221-6 4

5. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 19

6. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science, July 2005

7. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros gene-
sis: composable proof-of-stake blockchains with dynamic availability. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 913–930. ACM (2018)

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction
ledger: a composable treatment. In: Katz and Shacham [83], pp. 324–356

9. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous
byzantine agreement revisited. In: Newport, C., Keidar, I. (eds.) Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018,
Egham, United Kingdom, 23–27 July 2018, pp. 295–304. ACM (2018)

https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

SoK: A Consensus Taxonomy in the Blockchain Era 313

10. Bano, S., et al.: Consensus in the age of blockchains. CoRR, abs/1711.03936
(2017)

11. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting gears: changing algo-
rithms on the fly to expedite byzantine agreement. Inf. Comput. 97(2), 205–233
(1992)

12. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Miller [94], pp. 479–488

13. Beimel, A., Franklin, M.K.: Reliable communication over partially authenticated
networks. Theor. Comput. Sci. 220(1), 185–210 (1999)

14. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, 3–5 November
1993, pp. 62–73 (1993)

15. Ben-Or, M.: Another advantage of free choice: completely asynchronous agree-
ment protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N.
(eds.) PODC, pp. 27–30. ACM (1983)

16. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In
Kosaraju et al. [86], pp. 52–61

17. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distrib. Comput. 16(4), 249–262 (2003)

18. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), pp. 1–
10 (1988)

19. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR
Cryptology ePrint Archive, 2016:919 (2016)

20. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Baeza-
Yates, R., Manber, U. (eds.) Computer Science, pp. 313–321. Springer, Boston
(1992). https://doi.org/10.1007/978-1-4615-3422-8 27

21. Berman, P., Garay, J.A., Perry, K.J.: Optimal early stopping in distributed con-
sensus. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 221–237.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9 15

22. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 14–16 January 2016, pp. 345–356. ACM (2016)

23. Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoğlu,
Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40–55. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61769-8 4

24. Bracha, G.: An asynchronou [(n-1)/3]-resilient consensus protocol. In: Kameda,
T., Misra, J., Peters, J.G., Santoro, N. (eds.) Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, Vancouver, B. C.,
Canada, 27–29 August 1984, pp. 154–162. ACM (1984)

25. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-15260-3

26. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

27. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–
246 (2005)

https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/3-540-56188-9_15
https://doi.org/10.1007/3-540-61769-8_4
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/3-540-44647-8_31

314 J. Garay and A. Kiayias

28. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Weizmann Institute of Science (1996)

29. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

30. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE
Computer Society (2001)

31. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller [94], pp. 639–648

32. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), Providence, RI, USA, 20–23 October 2007,
Proceedings [1], pp. 249–259

33. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: Kosaraju et al. [86], pp. 42–51

34. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

35. Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–88 (1981)

36. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols (abstract) (informal contribution), p. 462 (1987)

37. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp.
11–19. ACM (1988)

38. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

39. Chor, B., Dwork, C.: Randomization in byzantine agreement. Adv. Comput. Res.
5, 443–497 (1989)

40. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21–23 October 1985, pp. 383–395. IEEE Computer Society (1985)

41. Coan, B.A., Welch, J.L.: Modular construction of nearly optimal byzantine agree-
ment protocols. In: Rudnicki, P. (ed.) Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada,
14–16 August 1989, pp. 295–305. ACM (1989)

42. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 240–269. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 9

43. Considine, J., Fitzi, M., Franklin, M., Levin, L.A., Maurer, U., Metcalf, D.: Byzan-
tine agreement given partial broadcast. J. Cryptol. 18(3), 191–217 (2005)

44. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 33

45. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen and Rijmen [100],
pp. 66–98

https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53890-6_33

SoK: A Consensus Taxonomy in the Blockchain Era 315

46. Dold, F., Grothoff, C.: Byzantine set-union consensus using efficient set reconcil-
iation. EURASIP J. Inf. Secur. 2017(1), 14 (2017)

47. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agree-
ment. J. ACM 32(1), 191–204 (1985)

48. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720–741 (1990)

49. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement.
SIAM J. Comput. 12(4), 656–666 (1983)

50. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

51. Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine envi-
ronment: crash failures. Inf. Comput. 88(2), 156–186 (1990)

52. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

53. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

54. Feldman, P.: Optimal algorithms for Byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

55. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

56. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive
consistency. Inf. Process. Lett. 14(4), 183–186 (1982)

57. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26–39 (1986)

58. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

59. Fitzi, M.: Generalized communication and security models in Byzantine agree-
ment. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2003)

60. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: PODC, pp. 211–220 (2003)

61. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In:
Ruppert, E., Malkhi, D. (eds.) Proceedings of the Twenty-Fifth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO,
USA, 23–26 July 2006, pp. 163–168. ACM (2006)

62. Ganesh, C., Patra, A.: Broadcast extensions with optimal communication and
round complexity. In: Giakkoupis, G. (ed.) Proceedings of the 2016 ACM Sym-
posium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
25–28 July 2016, pp. 371–380. ACM (2016)

63. Garay, J.A., Katz, J., Koo, C., Ostrovsky, R.: Round complexity of authenticated
broadcast with a dishonest majority. In: 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2007), Providence, RI, USA, 20–23 October
2007, Proceedings [1], pp. 658–668

64. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast,
revisited. In: Gavoille, C., Fraigniaud, P. (eds.) Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, 6–8 June 2011, pp. 179–186. ACM (2011)

65. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR
Cryptology ePrint Archive, 2018:754 (2018)

66. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. IACR Cryptology ePrint Archive, 2014:765 (2014)

https://doi.org/10.1007/3-540-48071-4_10

316 J. Garay and A. Kiayias

67. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

68. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with
chains of variable difficulty. In: Katz and Shacham [83], pp. 291–323

69. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain - directly. IACR Cryptology ePrint Archive, 2016:991 (2016)

70. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465–495. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 16

71. Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain proto-
cols. IACR Cryptology ePrint Archive, 2017:775 (2017)

72. Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement for n ¿ 3t processors
in t + 1 rounds. SIAM J. Comput. 27(1), 247–290 (1998)

73. Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing.
In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153–165. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9 11

74. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, Shanghai, China, 28–31 October 2017, pp.
51–68. ACM (2017)

75. Golan-Gueta, G., et al.: SBFT: a scalable decentralized trust infrastructure for
blockchains. CoRR, abs/1804.01626 (2018)

76. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, Cambridge (2001)

77. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract),
pp. 174–187 (1986)

78. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.)
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, USA, pp. 218–229. ACM (1987)

79. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

80. Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: the t < n case. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 24

81. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 24

82. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

83. Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part I. LNCS, vol. 10401. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7

84. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz and Shacham [83], pp. 357–388

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-319-63688-7

SoK: A Consensus Taxonomy in the Blockchain Era 317

85. King, V., Saia, J.: Byzantine agreement in expected polynomial time. J. ACM
63(2), 13:1–13:21 (2016)

86. Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.): Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA,
16–18 May 1993. ACM (1993)

87. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 204–215. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468 17

88. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

89. Lindell, Y., Lysyanskaya, A., Rabin, T.: On the composition of authenticated
byzantine agreement. J. ACM 53(6), 881–917 (2006)

90. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

91. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR,
abs/1607.01341 (2016)

92. Miller, A., LaViola, J.J.: Anonymous Byzantine consensus from moderately-hard
puzzles: a model for bitcoin. University of Central Florida. Tech report, CS-TR-
14-01, April 2014

93. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016, pp. 31–42. ACM
(2016)

94. Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996.
ACM (1996)

95. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://
bitcoin.org/bitcoin.pdf

96. Nakamoto, S.: The proof-of-work chain is a solution to the Byzantine Generals’
problem. The Cryptography Mailing List, November 2008. https://www.mail-
archive.com/cryptography@metzdowd.com/msg09997.html

97. Nakamoto, S.: Bitcoin open source implementation of p2p currency, February
2009. http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source

98. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, Seattle, Washigton, USA, 14–17 May 1989, pp.
33–43. ACM (1989)

99. Neiger, G.: Distributed consensus revisited. Inf. Process. Lett. 49(4), 195–201
(1994)

100. Nielsen, J.B., Rijmen, V. (eds.): EUROCRYPT 2018, Part II. LNCS, vol. 10821.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8

101. Okun, M.: Agreement among unacquainted byzantine generals. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499–500. Springer, Heidelberg (2005).
https://doi.org/10.1007/11561927 40

102. Okun, M.: Distributed computing among unacquainted processors in the presence
of Byzantine failures. Ph.D. thesis, Hebrew University of Jerusalem (2005)

https://doi.org/10.1007/11523468_17
https://doi.org/10.1007/11523468_17
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source
https://doi.org/10.1007/978-3-319-78375-8
https://doi.org/10.1007/11561927_40

318 J. Garay and A. Kiayias

103. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56614-6 22

104. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 380–409. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9 14

105. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.
In: Nielsen and Rijmen [100], pp. 3–33

106. Patra, A.: Error-free multi-valued broadcast and byzantine agreement with opti-
mal communication complexity. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 34–49. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25873-2 4

107. Patra, A., Choudhury, A., Rangan, C.P.: Asynchronous byzantine agreement with
optimal resilience. Distrib. Comput. 27(2), 111–146 (2014)

108. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

109. Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number
of faulty processors. In: STACS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

110. Rabin, M.O.: Randomized byzantine generals. In: FOCS, pp. 403–409. IEEE Com-
puter Society (1983)

111. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

112. Stifter, N., Judmayer, A., Schindler, P., Zamyatin, A., Weippl, E.R.: Agreement
with satoshi - on the formalization of nakamoto consensus. IACR Cryptology
ePrint Archive, 2018:400 (2018)

113. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett. 18(2), 73–76 (1984)

114. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
Hutchinson, N.C. (ed.) Proceedings of the Eleventh Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, British Columbia, Canada,
10–12 August 1992, pp. 83–89. ACM (1992)

115. Yao, A.C.-C.: Protocols for secure computations (extended abstract), pp. 160–164
(1982)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-642-25873-2_4
https://doi.org/10.1007/978-3-642-25873-2_4

Consensus from Signatures of Work

Juan A. Garay1, Aggelos Kiayias2,3, and Giorgos Panagiotakos2(B)

1 Department of Computer Science and Engineering, Texas A&M University,
College Station, USA
garay@cse.tamu.edu

2 School of Informatics, University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk, giorgos.pan@ed.ac.uk

3 IOHK, Edinburgh, UK

Abstract. Assuming the existence of a public-key infrastructure (PKI),
digital signatures are a fundamental building block in the design of
secure consensus protocols with optimal resilience. More recently, with
the advent of blockchain protocols like Bitcoin, consensus has been con-
sidered in the “permissionless” setting where no authentication or even
point-to-point communication is available. Yet, despite some positive
preliminary results, all attempts to formalize a building block that is
sufficient for designing consensus protocols in this setting, rely on a very
strong independence assumption about adversarial accesses to the under-
lying computational resource.

In this work, we relax this assumption by putting forth a primi-
tive, which we call signatures of work (SoW). Distinctive features of our
new notion are a lower bound on the number of steps required to pro-
duce a signature; fast verification; moderate unforgeability—producing
a sequence of SoWs, for chosen messages, does not provide an advan-
tage to an adversary in terms of running time; and honest signing time
independence—most relevant in concurrent multi-party applications, as
we show.

Armed with SoW, we then present a new permissionless consensus
protocol which is secure assuming an honest majority of computational
power, thus in a sense providing a blockchain counterpart to the classi-
cal Dolev-Strong consensus protocol. The protocol is built on top of a
SoW-based blockchain and standard properties of the underlying hash
function, thus improving on the known provably secure consensus pro-
tocols in this setting, which rely on the strong independence property
mentioned above in a fundamental way.

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of
faults—has been extensively studied in the literature starting with the seminal
work of Shostak, Pease and Lamport [38,44]. The problem formulation has a

A. Kiayias—Research partly supported by Horizon 2020 project PANORAMIX, No.
653497.

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 319–344, 2020.
https://doi.org/10.1007/978-3-030-40186-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_14

320 J. A. Garay et al.

number of servers (parties) starting with an individual input which should agree
at the end to a joint output that has to match the input in the case where all
non-faulty servers happened to have the same input value. One of the critical
measures of effectiveness for consensus protocols is maximizing their resilience
to Byzantine faults, typically denoted by t. It is known that t < n/2 is necessary
to achieve consensus, where n is the total number of parties, while protocols
have been designed that reach that level of resilience assuming synchrony and
a way to authenticate messages using digital signatures [20]1 (or “pseudosig-
natures” [45]). This result is known to be tight since lack of synchrony would
imply t < n/3 [22] (as well as randomization [25]), while lack of a message
authentication mechanism has a similar effect [17].

Recently, with the advent of blockchain protocols like Bitcoin, the problem
has experienced renewed interest from a much wider community of researchers
and has seen its application expand to various novel settings, such as the so-
called “permissionless” setting, where participation in the protocol is both unre-
stricted and unauthenticated. In fact, this setting was initially studied in [41,42],
where it was shown that deterministic consensus algorithms are impossible for
even a single failure but that probabilistic consensus is still feasible by suitably
adapting the protocols of [12,24]. Nevertheless, the resulting protocol required
exponentially many rounds in n.

The first efficient solutions for the consensus problem in the permissionless
setting were formally shown to be possible utilizing an abstraction of the Bit-
coin blockchain protocol in [29], against adversaries controlling less than half
of the computational power which, in a uniform configuration (meaning parties
are endowed with the same computational power), corresponds to a number of
Byzantine faults t < n/2 in the original setting. At a high level, these protocols
(as well as the Bitcoin blockchain protocol itself) rely on a concept known as
proofs of work (PoW), which, intuitively, enables one party to convince others
that he has invested some computational effort for solving a given task. While
being formulated a while back [23] and used for a variety of purposes—e,g, spam
mitigation [23], sybil attacks [21], and denial of service protection [4,35]—their
role in the design of permissionless blockchain protocols [40], is arguably their
most impactful application.

In the context of permissionless blockchain protocols, the way a PoW-like
primitive helps is by slowing down message generation for all parties indiscrimi-
nately, thus generating opportunities for honest parties to converge to a unique
view under the assumption that the aggregate computational power of hon-
est parties sufficiently exceeds that of the adversary. Now, while this intuition
matches the more rigorous analyses of the Bitcoin protocol that have been car-
ried out so far [6,29,30,43], these works have refrained from formally defin-
ing such enabling functionality as a stand-alone cryptographic primitive, and

1 Recall that the protocol in [20] tolerates an arbitrary number of Byzantine faults
(n > t), but in the version of the problem of a single sender (a.k.a. “Byzantine
Generals,” or just broadcast); in the case of consensus, t < n/2 is necessary regardless
of the resources available to the parties in the protocol execution (see, e.g., [26,27]).

Consensus from Signatures of Work 321

relied instead on the random oracle (RO) model [10] or similar idealized assump-
tions (cf. the Ftree functionality in [43]) to prove directly the properties of the
blockchain protocol. The same is true for other provably secure PoW-based dis-
tributed protocols [3,31,36].

The core of the hardness (or even impossibility [19]) of implementing the
assumed idealized resources is that they satisfy a strong independence property:
Each bit output on a new query to the resource is independently sampled, even if
the adversary is the one who is accessing the resource. This is indeed a very strong
property, as it directly implies that the best way to compute a PoW for both an
honest party and the adversary is brute force. Moreover, the same property is
explicitly used to argue the security of the proposed consensus protocols in the
PoW setting [3,29], as we explain in detail later.

In this work we make progress in relaxing this assumption, by putting forth
a formalization of a PoW-like primitive, which we call signatures of work (SoW).
An SoW can be implemented in the RO model or by using Ftree, but the adver-
sarial SoW computation process does not necessarily satisfy such strong guar-
antees as the ones mentioned above. Indeed, in contrast to previous approaches,
only an upper bound on the rate at which the adversary generates SoWs needs
to be assumed. We then present a new permissionless consensus protocol based
on SoWs that can be proven secure without relying on such strong independence
guarantees. The protocol utilizes a SoW-based blockchain and standard proper-
ties of the underlying hash function, and is secure assuming an honest majority
of computational power. As a result, this protocol can be seen as an exemplar of
how a permissionless signature-like primitive enables honest majority consensus
in the same way that classical digital signatures imply honest-majority consensus
protocols in the traditional setting.

Why Signatures of Work? We first provide some intuition behind the rele-
vance of SoW as a useful primitive for the design of permissionless distributed
protocols. Recall the main property of a digital signature in the design of classical
consensus protocols: It enables parties to communicate to each other their pro-
tocol view and inputs at a certain stage of the protocol execution in a way that is
transferable and non-repudiable. Indeed, Bob, upon receiving Alice’s signed mes-
sage, can show it to Charlie in a way that the latter is unequivocally convinced of
the message’s origin. It follows that Bob cannot modify Alice’s messages, play-
ing man-in-the-middle between Alice and Charlie, and thus Alice can be held
accountable in case she provides conflicting views to the two parties. A SoW
scheme provides a similar capability: Using a SoW, a party like Alice can invest
effort into a specific protocol view and inputs, so that when Bob is presented
with a SoW produced by Alice it will be infeasible for Alice to provide a con-
flicting view and inputs to Charlie, unless she invests twice the effort. Moreover,
the above argument holds without establishing any set of identities among the
parties, so for example Bob does not need to know he talks to Alice per se but
rather to an arbitrary party that invested some effort with respect to a specific
protocol view. Furthermore, exactly like digital signatures, SoWs can be chained
recursively, enabling the parties to build on each other’s protocol view.

322 J. A. Garay et al.

While the above functionalities hint to the usefulness of SoWs in the dis-
tributed permissionless setting, formalizing and applying them properly is no
simple task. Firstly, in contrast with classical signatures, there is no secret key
involved in this primitive. This make sense, since in a permisionless setting sign-
ing messages using some kind of secret information is meaningless, as parties do
no have any secret setup to begin with. Hence, if they are to sign any message,
they should use some other kind of resource that only they have access to, such
as their computational power. Secondly, in classical signatures, the exact time
when the verification key becomes available to different parties is irrelevant; The
key is only useful for verification, up to polynomial-time differences. In the con-
text of SoWs, however, this time is of great importance. For example, allowing
a party to learn the verification key, say, two days earlier than other parties,
means that this party will be able to compute two days worth of signatures
more than them. Hence, in contexts where counting the number of generated
signatures matters, as is the case in blockchain protocols, great care should be
taken on guaranteeing that the verification key is “fresh” enough for the relevant
application.

Our Results. Our contributions are as follows:

(1) Formalization of an SoW scheme. The syntax of an SoW scheme entails
four algorithms: Public parameter generation, key generation, signing and
verification—PPub,KeyGen, Sign and Verify, respectively. PPub is invoked on
input 1λ, where λ is the security parameter, and outputs public security param-
eters pp. KeyGen is invoked on input pp, and outputs a random verification
key vk. Sign is invoked on input (pp, vk,msg , h), where msg is the message to
be signed, and h is the hardness level of the signature generation. Expectedly,
Verify is invoked on input (pp, vk,msg , h, σ), where σ is (possibly) an output of
Sign. We require a SoW scheme to be:

– Correct: As in the case of classical signatures, we require that signatures
produced by Sign should be accepted by the Verify algorithm.

– (t, α)-Successful: This property lower-bounds the probability that an honest
signer will successfully produce a SoW in a certain number of steps t; α is a
function of the hardness level h.

– t-Verifiable: The verifier should be able to verify a SoW in t steps. (Typically,
t is a lot smaller than the time need to produce a signature.)

– Moderately Unforgeable against Tampering and Chosen-Message
Attacks ((β, ε)-MU-TCMA): This property is akin to the property of exis-
tential unforgeability under chosen-message attacks of digital signatures (EU-
CMA). It captures the fact that producing a sequence of SoWs, for chosen
messages, does not provide an advantage to an adversary in terms of running
time. Specifically, the chances to produce more than β · t SoWs in t steps

Consensus from Signatures of Work 323

(for any t) are less than ε.2 Further, this should hold against an adversary
able to tamper with the keys, and even in the presence of a Sign oracle.

– Run-time independent: This final property captures the setting where
honest signers are potentially invoked on adversarial inputs and ensures that
their running time enjoys some degree of independence. Specifically, the ran-
dom variables defined as the running time of each Sign invocation is a set of
almost independent random variables (cf. [1]). We stress that the adversarial
signing algorithm may not satisfy this property.

As a “sanity check,” we show in the full version of the paper that a SoW scheme
can be easily designed and proven secure in the random oracle model (or by
using Ftree), and hence in practice can be instantiated by a cryptographic hash
function such as SHA-256.

(2) Consensus from SoW. Next, we design a consensus protocol for an honest
majority of computational power that can be reduced to the SoW primitive
above. The core idea behind our new protocol is as follows. First, the parties
build a blockchain using SoWs in a way reminiscent of the Bitcoin blockchain.
Using SoWs we show how to emulate the Bitcoin backbone protocol [29] by
having parties compute a SoW in parallel, “on top” of the current view that
incorporates the largest number of SoWs, i.e., the longest chain. However, in
contrast with the consensus protocol of [29], to generate a block, the parties
include not only their input to the consensus protocol, but also the headers of
“orphan” blocks that exist in forks stemming off their main chain and which
have not been included so far, where the header of a block contains the hash
of the previous block in the chain, the signature, the input to the consensus
protocol, and a hash of the block’s contents.

Using this mechanism, as shown in Fig. 1, we prove that it is possible to
reconstruct the whole tree of block headers from the blockchain contents, and
thus in this way preserve all block headers produced by the honest parties. This
ensures that the resulting ledger will reflect the number of parties and hence a
consensus protocol may now be easily reduced to this blockchain protocol.

Our new consensus protocol relying on the SoW primitive in the setting
where no PKI is available, exemplifies the contrast with consensus in the classical
setting, relying on standard signatures and a PKI setup [20] (cf. [27]). It is worth
noting that the only known blockchain-based provably secure and optimally
resilient consensus protocol is given in [29], using a technique called “2-for-1
PoW” where two PoW-based protocols can be run concurrently and create a
blockchain where the number of honest-party contributions is proportional to
their actual number, but which relies on the strong independence property of
the RO model, discussed earlier, in a fundamental way. Indeed, in the RO model,

2 Note that, unlike previous unforgeability definitions (e.g, [11]), this definition is
parameterized by the rate β at which the adversary can produce signatures, instead
of the number of steps it needs to compute one. We feel that this formulation is
more appropriate for the moderate unforgeability game where the adversary tries to
produce multiple signatures. For further details, see Definition 7.

324 J. A. Garay et al.

BGen

A[0] B[1]

C[1] D[1]

? ?

E[0]

G[0]

F[1]

he
ad
er

Fig. 1. The data structure maintained by the consensus protocol. Block F has con-
sensus input 1, and includes the headers of blocks D and G, with input 1 and 0,
respectively. Block D includes the headers of invalid blocks. This is not a problem,
since any chain that contains D will be invalid and not selected by any party, while
D’s consensus input is correctly counted as a valid block header.

each witness for a PoW can be rearranged in a certain way so as to obtain a
test for a witness for another PoW in a way that is independent from the first
solution. Our new protocol gets rid of this need. The only other (non-blockchain)
PoW-based consensus protocol [3] also relies on the RO model.

As intermediate steps in our analysis, we first introduce an appropriate adap-
tation of the model of [29] that allows for a standard model analysis and which
may be of independent interest. We then recall the three basic properties of
the blockchain data structure presented in [29]: (strong) common prefix, chain
quality and chain growth, and show how our SoW-based blockchain protocol sat-
isfies them assuming, beyond the security of SoW, standard collision resistance
from the underlying hash function that is used to “glue” the blocks together.
This is achieved as follows: We first prove that using the MU-TCMA property
and assuming the adversarial hashing power is suitably bounded, it is unlikely
in any sufficiently long time window for the adversary to exceed the number
of SoWs of the honest parties. Then, using the (t, α)-Successful and (β, ε)-MU-
TCMA properties in conjunction with run-time independence, we establish that
summations of running times of successive Sign invocations have the variance
needed to ensure that “uniquely successful rounds” (i.e., rounds where exactly
one of the honest parties produces a SoW) happen with high density in any suf-
ficiently long time window. Using these last two core results, and under suitable
constraints for the basic SoW parameters α, β, ε, h and number of parties n, we
prove that the security of the Bitcoin backbone protocol implements a robust
transaction ledger [29]. Further, and as a sanity check, in the full version of the
paper, we argue that the results we get from our black-box analysis (and the
RO-based SoW construction mentioned earlier), are similar to those from the
random-oracle analysis of [29].

Consensus from Signatures of Work 325

Our analysis is carried out in the synchronous setting. It is relatively straight-
forward to extend our results to the Δ-synchronous setting of [43], by using the
same techniques as in [[28] (Section 7)]. We leave as an open question extending
our results to the variable difficulty setting of [30].

(3) Other applications. In addition to the blockchain and consensus applica-
tions of SoW, we note that the security properties we put forth are suitable for
the more traditional DDOS setting, with considerable advantages over existing
approaches (cf. [50]). The problem is as follows: A server wants to protect itself
from malicious actors in the network which send network packets to eat up its
resources. The canonical defense for this attack is for the server to run a PoW
challenge-response protocol with the sender, in order to make sending a message
costly. The MU-TCMA property, we have defined, directly implies exactly this
property in the strongest sense: For any, adaptively selected, set of messages
sent, the adversary must consume computational resources proportional to the
number of messages, even if it can also see SoWs sent by other parties. Moreover,
this process can be made non-interactive by delegating the generation of the ver-
ification key to some public randomness service, e.g., the NIST beacon, and only
accept messages that include a SoW with respect to this key. Finally, note that
the same security guarantees can be easily extended to multiple servers who
use the same beacon, by requiring that the sent messages contain some unique
identification string.

Prior and Related Work. We have already mentioned above relevant related
work regarding classical and blockchain-based consensus protocols. For a more
exhaustive recent survey, refer to [27]. We also note that the focus of the paper
is the original consensus problem [38,44], and not so-called “ledger consensus”
(sometimes referred to as “Nakamoto consensus”), which is an instance of the
state machine replication problem [47]; see also [27] for an overview of such
protocols. The idea of referencing off-chain blocks has been considered early on
in the ledger consensus literature (see, e.g., [13,39,48,49]) as a way to obtain
fairness, better throughput and faster confirmation times. Our novelty is that
we leverage this technique along with the new SoW notion to build a provably
secure consensus protocol, which, unlike prior results, is not based on the “2-for-1
PoW” technique described earlier.

There have been a number of attempts to formalize a proof of work (PoW)
primitive that it is also sufficient to imply the security of a blockchain protocol.
Nevertheless, such works were either informal [5,46], or they did not produce
a correctness proof for a blockchain or consensus protocol, focusing instead on
other applications [2,7,15,16,33]. More specifically, in [33], Garay et al. study
the necessary hardness condition that the underlying computational problem
should satisfy in order for Bitcoin to implement a public ledger. In contrast to
our work, an enhanced version of that security notion is shown to be sufficient to
implement a public ledger against an adversary controlling only 1/3 (as opposed
to 1/2) of the computational power. Further, it is unclear whether such notion
can be used to solve the original consensus problem.

326 J. A. Garay et al.

Another effort to formalize an intermediate PoW-like building block for the
Bitcoin protocol was made in [43]. The proposed ideal functionality, Fp

tree, keeps
track of a tree of messages, which both the honest parties and the adversary can
extend with probability p. The outcome of each such trial is independent of the
others, even if it is made by the adversary. Fp

tree satisfies the strong independence
property mentioned before, and hence it is not suitable for the goals of this
paper. Moreover, we note that any protocol instantiating this functionality must
necessarily be interactive, as two parties can use Fp

tree to communicate at least
one bit. Finally, in [43], it was shown how to implement a transaction ledger,
but not how to achieve consensus; the techniques introduced in this paper can
be adapted to implement a consensus protocol using Ftree. Additional related
work is mentioned in the full version of the paper.

Organization of the Paper. The basic computational model, definitions and
cryptographic building blocks used by our constructions are presented in Sect. 2.
Formal definition of the SoW primitive and its security properties are presented
in Sect. 3. Section 4 is dedicated to applications of SoW: First, we introduce an
appropriate model for our applications (Sect. 4.1). We then analyze the Bitcoin
backbone protocol based on (and reducing its security to) SoW (Sect. 4.2), fol-
lowed by the new blockchain-based consensus protocol (Sect. 4.3). Due to space
limitations, some of the proofs and other supplementary material are presented
in the full version of the paper [32].

2 Preliminaries

In this section we introduce basic notation and definitions that are used in the
rest of the paper. For k ∈ N

+, [k] denotes the set {1, . . . , k}. For strings x, z,
x||z is the concatenation of x and z, and |x| denotes the length of x. We denote
sequences by (ai)i∈I , where I is the index set. For a set X, x ← X denotes
sampling a uniform element from X. For a distribution U over a set X, x ← U
denotes sampling an element of X according to U . By Uλ we denote the uniform
distribution over {0, 1}λ. We denote the statistical distance between two random
variables X,Z with range U by Δ[X,Y], i.e., Δ[X,Z] = 1

2

∑
v∈U |Pr[X = v] −

Pr[Z = v]|. For ε > 0, we say that X,Y are ε-close when Δ(X,Y) ≤ ε.
We let λ denote the security parameter. In this paper we will follow a more

concrete (“exact”) approach [8,11,14,34] to security evaluation rather than an
asymptotic one. We will use functions t, ε, whose ranges are N,R, respectively,
and have possibly many different arguments, to denote concrete bounds on the
running time (number of steps) and probability of adversarial success of an algo-
rithm in some fixed computational model, respectively. When we speak about
running time this will include the execution time plus the length of the code
(cf. [14]; note also that we will be considering uniform machines). We will always
assume that t is a polynomial in the security parameter λ, although we will some-
times omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model
of distributed computation, we will use (interactive) RAMs. The reason is that

Consensus from Signatures of Work 327

we need a model where subroutine access and simulation do not incur a sig-
nificant overhead. ITMs are not suitable for this purpose, since one needs to
account for the additional steps to go back-and-forth all the way to the place
where the subroutine is stored. A similar choice was made by Garay et al. [34];
refer to [34] for details on using interactive RAMs in a UC-like framework, as
well as to Sect. 4.1. Given a RAM M , we will denote by StepsM (1λ, x) the ran-
dom variable that corresponds to the number of steps of M given as input the
security parameter 1λ and x. We will say that M is t-bounded if it holds that
Pr[StepsM (1λ, x) ≤ t(λ)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of
the form negl(λ) and concrete terms; throughout the paper, we will assume that
λ is large enough to render the asymptotic terms insignificant compared to the
concrete terms.

Cryptographic Hash Functions. We will make use of the following notion of
security for cryptographic hash functions:

Definition 1. Let H = {{Hk : M(λ) → Y (λ)}k∈K(λ)}λ∈N be a hash-function
family, and A be a PPT adversary. Then H is collision resistant if and only if
for any λ ∈ N and corresponding {Hk}k∈K in H,

Pr[k ← K; (m,m′) ← A(1λ, k); (m �= m′) ∧ (Hk(m) = Hk(m′))] ≤ negl(λ).

Robust Public Transaction Ledgers. The notion of a public transaction
ledger was introduced in [29] to describe the functionality implemented by the
Bitcoin protocol. It is defined with respect to a set of valid ledgers L and a
set of valid transactions T , each one possessing an efficient membership test.
A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Ledgers corre-
spond to chains in the Bitcoin protocol. It is possible for the adversary to create
two transactions that are conflicting; valid ledgers must not contain conflicting
transaction. Moreover, it is assumed that in the protocol execution there also
exists an oracle Txgen that generates valid transactions, and is unambiguous,
i.e., the adversary cannot create transactions that come in ‘conflict’ with the
transactions generated by the oracle. A transaction is called neutral if there does
not exist any transactions that comes in conflict with it.

Definition 2. A protocol Π implements a robust public transaction ledger if it
organizes the ledger as a chain of blocks of transactions and satisfies the following
two properties:

– Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain
round an honest player reports a ledger that contains a transaction tx in a
block more than k blocks away from the end of the ledger, then tx will always
be reported in the same position in the ledger by any honest player from this
round on.

– Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parame-
ters, resp.), provided that a transaction either (i) issued by Txgen, or (ii) is

328 J. A. Garay et al.

neutral, is given as input to all honest players continuously for u consecutive
rounds, then all honest parties will report this transaction at a block more
than k blocks from the end of the ledger.

The Consensus Problem. Next, we give the definition of the well-known
consensus problem (a.k.a. Byzantine agreement) [38,44]. There are n parties,
t < n of which might be corrupted, taking an initial input x ∈ V (without loss
of generality, we can assume V = {0, 1}).

Definition 3. A protocol Π solves the consensus problem provided it satisfies
the following properties:

– Agreement. All honest parties will output the same value eventually.
– Validity. If all the honest parties have the same input, then they all output

this value.

3 Signatures of Work

The main goal of this paper is to implement consensus in the permissionless
setting without relying on the strong independence property of the underlying
computational resource. Towards that goal, in this section we introduce the
signature of work (SoW) primitive. At a high level, a SoW enables one party to
convince others that she has invested some computational power during some
specific time interval and with respect to a “message.” Next, we formalize this
notion and present its desired security properties.

SoW Syntax. Given a security parameter λ, let PP be the public parameter
space, HP ⊆ N the hardness parameter space, K the key space, M the message
space, and S the signature space. With foresight, the role of the key is to provide
“freshness” for the signature computation, thus certifying that the signature was
computed in the given time interval.

Definition 4. A SoW scheme consists of four algorithms SoW = (PPub,
KeyGen,Sign,Verify), where:

– PPub(1λ) is a randomized algorithm that takes as input the security parameter
λ, and returns a set of public parameters pp ∈ PP .

– KeyGen(pp) is a randomized algorithm that takes as input the public parame-
ters pp, and returns a key vk ∈ K. (See Remark 1 below on the role of keys
in SoW schemes.)

– Sign(pp, vk,msg , h) is a randomized algorithm that takes as input public
parameters pp ∈ PP , a key vk ∈ K, a message msg ∈ M and hardness
parameter h ∈ HP , and returns a signature (of work) σ ∈ S.

– Verify(pp, vk,msg , h, σ) is a deterministic algorithm that takes as input public
parameters pp ∈ PP , a key vk ∈ K, message msg ∈ M , hardness parameter
h ∈ HP and a signature σ ∈ S, and returns true or false to indicate the
validity of the signature.

Consensus from Signatures of Work 329

Remark 1. SoW schemes only have a public verification key. The role of this key
is to guarantee that the computational work spent in order to create a signature
of work is “fresh,” i.e., executed during a specific time interval (say, from the
time the key became known to the signer). In contrast, classical digital signatures
also have a secret key that serves as a trapdoor to compute signatures. In the
applications we consider, the existence of trapdoor information is not meaningful,
and in fact may hurt the security of the respective constructions.

Security Properties. Next, we present a number of security properties that
we will require SoW schemes to satisfy. We start with the correctness property.

Definition 5. We say that a SoW scheme is correct if for every λ ∈ N, pp ∈
PP, vk ∈ K,h ∈ HP , and msg ∈ M :

Pr
[
Verify(pp, vk,msg , h,Sign(pp, vk,msg , h)) = true

]
≥ 1 − negl(λ).

Next, we require that the time to verify a signature be upper bounded.

Definition 6. We say that a SoW scheme is t-verifiable, if Verify takes time at
most t (on all inputs).

Next, we capture the case of a malicious signer (resp., verifier) in the context
of SoWs. In the first case, the adversary’s objective is to compute a number of
signatures a lot faster than an honest signer would, while in the second case it
is to make the honest signer take too much time to generate a signature.

We deal with malicious signers first. We put forth an attack that we will
use to express a class of adversaries that attempt to forge signatures faster than
expected. Intuitively, this constitutes an attack against an honest verifier that
may be trying to gauge a certain measure using the number of signatures. The
game defining the attack is shown in Fig. 2; we call the corresponding security
property Moderate Unforgeability against Tampering and Chosen Message Attack
(MU-TCMA). As in the security definitions of standard signatures (e.g., EU-
CMA), we allow the adversary to have access to a signing oracle S. Every time
the oracle is queried, we assume that it runs the Sign procedure with uniformly
sampled randomness. A subtle point in the modeling of security in the presence
of such oracle is that S should also “leak” the number of steps it took for a
query to be processed. In an actual execution while interacting with honest
parties that are producing signatures, time is a side channel that may influence
the adversarial strategy; in order to preserve the dependency on this side channel
we will require from S to leak this information. We note that in the classical
signatures literature, timing attacks have also been a serious consideration [37].

In addition, we require that the key used by the adversary to construct
signatures be fresh, i.e., we want to avoid situations where the adversary outputs
signatures that he has precomputed a long time ago. We model this by providing
the fresh key after the adversary has finished running his precomputation phase.

330 J. A. Garay et al.

ExpA,F (1λ, h, �)
Σ Uλ pp PPub(1λ)
st 1(1λ, Σ, pp)
vk KeyGen(pp)

(fi,msgi, σi)i∈[�]

A

AS(·,·)
2 (1λ, vk, st)

�
i=1

(
Verify(pp, fi(Σ, vk),msgi, σi) ∧ ¬Asked(fi(Σ, vk),msgi, σi)

∧ (fi ∈ Fλ) ∧ (∀j ∈ [�] : fi(Σ, vk) = fj(Σ, vk) ⇒ i = j)

)

Fig. 2. The Moderate Unforgeability against Tampering and Chosen-Message Attack
(MU-TCMA) experiment for a SoW scheme.

Further, we allow the adversary to tamper with the key by manipulating it via
tampering functions belonging to a family of functions F .

Looking ahead, the tampering function in our applications will be related to
a keyed hash function, where the key of the hash is part of a common random
string (CRS). Hence, we choose to model functions in F to have two inputs: Σ
(the CRS) and vk. Moreover, the output of the adversary is deemed invalid if
he tampers vk with functions f1, f2 in such a way that f1(Σ, vk) = f2(Σ, vk).
Otherwise, the adversary could launch a generic attack that is unrelated to
the SoW scheme, and produce signatures at twice the rate of an honest signer,
as follows. The adversary first finds f1, f2 that have this property, and then
computes signatures using the tampered key f1(Σ, vk). The trick is that each of
them will also correspond to a signature with key f2(Σ, vk). Hence, he effectively
can double the rate at which he produces signatures.

Formally, the adversary will have access to S(·, ·), an SoW oracle that on
input (vk′,msg), where vk′ ∈ K and msg ∈ M , returns the pair (σ, t) where σ
is the output of Sign(pp, vk′,msg , h) and t is the number of steps taken by the
Sign algorithm on these parameters. Function Asked(vk′,msg , σ) is true if σ was
the response of S to some query (vk′,msg).

We are now ready to formulate the security property of Moderate Unforge-
ability against Tampering and Chosen Message Attacks (MU-TCMA). It has two
parameters, β and ε, and, informally, it states that no adversary A exists in the
experiment of Fig. 2 that takes at most t steps after receiving key vk and pro-
duces 	 ≥ β · t signatures with probability better than ε. Note that in total we
allow A to take any polynomial number of steps, i.e., the adversary is allowed to
execute a precomputation stage that permits it to obtain an arbitrary number of
signatures before learning vk. In the definition below, we allow β to depend on
the hardness level h, and ε on h, t and qS , the number of queries the adversary
makes to the signing oracle.

Consensus from Signatures of Work 331

Definition 7. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0, 1}λ ×
K → K.3 A SoW scheme is (β, ε)-Moderately Unforgeable against Tamper-
ing and Chosen-Message Attacks (MU-TCMA) with respect to tampering func-
tion class F , if for any polynomially large t1, t2, any adversary A = (A1,A2),
where A1 is t1-bounded and A2 is t2-bounded and makes at most qS queries to
oracle S, for any λ ∈ N, and any h ∈ HP , the probability of A winning in
ExpMU-TCMA

A,F (1λ, h,
β(h) · t2�) (Fig. 2) is less than ε(h, t2, qS).

Remark 2. As mentioned in Sect. 1, unlike previous unforgeability definitions
(e.g, [11]), Definition 7 is parameterized by the rate at which the adversary can
produce signatures, instead of the number of steps it needs to compute one, which
is more appropriate for the moderate unforgeability game where the adversary
tries to produce multiple signatures.

In the MU-TCMA definition we are going to consider tampering functions
classes that at the very least preserve the unpredictability of vk. Otherwise, the
adversary can generically attack any SoW scheme by predicting the tampered
key and precomputing signatures. Formally, we will say that F is computationally
unpredictable if the adversary, given the CRS Σ, cannot guess a value y that he
will be able to “hit” when he gains access to vk through some f ∈ F .

Definition 8. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0, 1}λ ×
K → K. We say that F is computationally unpredictable with respect to a SoW
scheme SoW, if for any PPT RAM A = (A1,A2), and for any λ ∈ N, it holds
that:

Pr
pp←PPub(1λ);

vk←KeyGen(pp);
Σ←Uλ

[
(st, y) ← A1(1λ, Σ, pp); f ← A2(1λ, st, vk) :
f ∈ Fλ ∧ f(Σ, vk) = y

]

≤ negl(λ).

Next, we consider the case of attacking an honest signer. Attacking an honest
signer amounts to finding a certain set of keys over which the honest signer
algorithm fails to produce SoWs sufficiently fast and regularly. We say that a
SoW scheme is (t, α)-successful when the probability that the signer computes a
signature in t steps is at least α.

Definition 9. We say that SoW scheme is (t, α)-successful if for any λ ∈ N

and any h ∈ HP , it holds that:

Pr
pp←PPub(1λ);

vk←KeyGen(pp);
msg←M

[
StepsSign(pp, vk,msg , h) ≤ t

]
≥ α(h).

Finally, in the same corrupt-verifier setting, we will require the signing time
of honest signers to have some (limited) independence, which will be important
for the applications we have in mind. This property, in combination with the
3 K is the key space of the SoW scheme.

332 J. A. Garay et al.

efficiency and MU-TCMA properties, will prove crucial in ensuring that when
multiple signers work together, the distribution of the number of them who
succeed in producing a signature has some “good” variance and concentration
properties.

Definition 10. We say that a SoW scheme has almost-independent runtime
iff for any polynomial p(·), any λ ∈ N, any h ∈ HP , there exists a set
of mutually independent random variables {Yi}i∈[p(λ)] such that for any pp ∈
PP ,((vki,mi))i∈[p(λ)] ∈ (K × M)p(λ) it holds that Δ[(StepsSign(pp, vki,mi, h))i,
(Yi)i] ≤ negl(λ).

Independence Assumptions. As mentioned earlier, MU-TCMA does not
enforce any independence assumption, and only bounds the probability that the
rate at which the adversary computes SoWs is high. In contrast, the independent-
runtime property does so, but only for honest signers. We remark that achieving
such property is considerably easier for the honest case, as we can be sure that
signers will use independently sampled coins if instructed; a guarantee that we
cannot have for the adversary.

Parameters’ Range. Let SoW be a scheme that is (tsign, α)-Successful. SoW
trivially satisfies the MU-TCMA property for β(h) > 1, since the adversary does
not have enough time to output the signatures it has computed. On the other
hand, assuming ε(h, t, qS) is a negligible function of t, α(h) must be smaller than
β(h) · tsign, otherwise the expected number of SoWs computed by the Sign func-
tion would exceed that allowed by the MU-TCMA property. Hence, for optimal
security, it should hold that α(h) is close to β(h) · tsign.

Next, we turn to applications of our SoW primitive.

4 Applications

In this section we showcase applications of SoWs, the first one being implement-
ing robust transaction ledgers: Using our primitive and standard properties of
the underlying hash function, we establish the security of the Bitcoin backbone
protocol [29]. The second application is realizing consensus in the permisionless
setting: We construct a new blockchain-based consensus protocol for an honest
majority provably secure under the same assumptions as above, thus providing
a blockchain counterpart to the classical result in the cryptographic setting with
a trusted (PKI) setup [20].

In both applications we assume the existence of a SoW scheme with the
security properties defined below.

Assumption 1. (SoW Assumption). For parameters β, ε, t′H, α and tver we
assume that SoW = (PPub,KeyGen,Sign,Verify) is:

– Correct;
– (β, ε)-MU-TCMA with respect to any computationally unpredictable tamper-

ing function class (cf. Definition 8);

Consensus from Signatures of Work 333

– (t′H, α)-successful;4

– almost run-time independent; and
– tver-verifiable,

where ε(h, t, qS) ∈ negl(β(h) · t). Moreover, we assume that the parameter spaces
K,M,S of the scheme are equal to {0, 1}log |K|, {0, 1}∗, {0, 1}log |S|, respectively.

For a SoW scheme to be used in the context of the Bitcoin protocol, choosing
K,M,S as above is important due to the underlying hash-chain structure of the
blockchain: The hash of each block acts as a key of the SoW scheme, thus the
output of the hash function should match the key space of the SoW.

We start with some pertinent details about the model that the two applica-
tions mentioned above will be analyzed under.

4.1 The Permissionless Model, Revisited

All the security models proposed for the analysis of PoW-based blockchain proto-
cols [29,43] rely on bounding the number of queries to an idealized functionality
to model limited computational resources. In contrast, we do not wish to restrict
the way the adversary accesses the computational resource, and thus we model
limited computational resources in a more general manner, i.e., by limiting the
exact number of steps parties take. Next, we present a revised version of the
model of [29] that captures our considerations.

For the reasons explained in Sect. 2, we substitute IRAMs for ITMs. The
execution of a protocol Π is driven by an “environment” program Z that may
spawn multiple instances running the protocol Π. The programs in question can
be thought of as “interactive RAMs” communicating through registers in a well-
defined manner, with instances and their spawning at the discretion of a control
program which is also an IRAM and is denoted by C. In particular, the con-
trol program C forces the environment to perform a “round-robin” participant
execution sequence for a fixed set of parties.

Specifically, the execution driven by Z is defined with respect to a protocol
Π, an adversary A (also an IRAM) and a set of parties P1, ..., Pn; these are
hardcoded in the control program C. The protocol Π is defined in a “hybrid”
setting and has access to one “ideal functionality,” called the diffusion channel
(see below). It is used as subroutine by the programs involved in the execution
(the IRAMs of Π and A) and is accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each
time the adversary is activated, it may communicate with C via messages of the
form (Corrupt, Pi). The control program C will register party Pi as corrupted,
only provided that the environment has previously given an input of the form
(Corrupt, Pi) to A and that the number of corrupted parties is less or equal
t, a bound that is also hardcoded in C. The first party to be spawned running
protocol Π is restricted by C to be party P1. After a party Pi is activated, the
4 Parameter t′

H corresponds to a lower bound on the running time of honest parties
that we introduce in detail later.

334 J. A. Garay et al.

environment is restricted to activate party Pi+1, except when Pn is activated in
which case the next party to be activated is always the adversary A. Note that
when a corrupted party Pi is activated the adversary A is activated instead.

Next, we describe how different parties communicate. Initially, the diffusion
functionality sets the variable round to be 1. It also maintains a Receive() string
defined for each party Pi. A party is allowed at any moment to fetch the mes-
sages sent to it at the previous round that are contained in its personal Receive()
string. Moreover, when the functionality receives an instruction to diffuse a mes-
sage m from party Pi it marks the party as complete for the current round and
forwards the message to the adversary; note that m is allowed to be empty. At
any moment, the adversary A is allowed to specify the contents of the Receive()
string for each party Pi. The adversary has to specify when it is complete for the
current round. When all parties are complete for the current round, the func-
tionality inspects the contents of all Receive() strings and includes any messages
that were diffused by the parties in the current round but not contributed by
the adversary to the Receive() tapes. The variable round is then incremented.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random vari-

able ensemble that corresponds to the view of party P at the end of an execution
where Z takes z as input. We will consider stand-alone executions, hence z will
always be of the form 1λ, for λ ∈ N. For simplicity, to denote this random variable
ensemble we will use viewP,t,n

Π,A,Z . By viewt,n
Π,A,Z we denote the concatenation of

the views of all parties. The probability space where these variables are defined
depends on the coins of all honest parties, A and Z.

Next, we consider the complications in the modeling due to the analysis of
Bitcoin in the concrete security setting. Both in [29] and [43] a modified version
of the standard simulation-based paradigm of [18] is followed, where there exist
both a malicious environment and a malicious adversary. In addition, the SoW
scheme (called PoW in [29,43]) is modeled in a non black-box way using a random
oracle (RO), and the computational power of the adversary is then bounded by
limiting the number of queries it can make to the RO per round. Since in this
work the SoW scheme is modeled in a black-box way, an alternative approach
to bound the adversary’s power is needed.

A näıve first approach is to only bound the computational power of A. Unfor-
tunately this will not work for several reasons. Firstly, nothing stops the envi-
ronment from aiding the adversary, i.e., computing signatures, and then commu-
nicating with it through their communication channel or some other subliminal
channel. Secondly, even if we bound the total number of steps of A, it is not
clear how to bound the steps it is taking per round in the model of [18], which
we build on. Lastly, another issue arising is that if the adversary is able to send,
say, θ messages in each round, it can force each honest party to take θ · tver extra
steps per round. If we don’t bound θ, then the adversary will be able to launch
a DOS attack and spend all the resources the honest parties have5.

5 This problem is extensively discussed in [3], Section 3.4.

Consensus from Signatures of Work 335

In order to capture these considerations we are going to define a predicate
on executions and prove our properties in disjunction with this predicate, i.e.,
either the property holds or the execution is not good.

Definition 11. Let (tA, θ)-good be a predicate defined on executions in the
hybrid setting described above. Then E is (tA, θ)-good, where E is one such exe-
cution, if

– the total number of steps taken by A and Z per round is no more than tA;6

– the adversary sends at most θ messages per round.

Finally, we assume the existence of a common reference string (CRS), that
becomes available to all parties at the start of the execution. This is also implic-
itly assumed in previous models, where either parties have access to a special
“genesis” block at the beginning of the execution [43], or they do not have access
to the RO before the beginning of the execution [29].

Definition 12. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we
say that protocol Π satisfies property Q for n parties assuming the number of
corruptions is bounded by t, provided that for all PPT Z,A, the probability that
Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good is negligible in λ.

4.2 Public Transaction Ledger from Signatures of Work

Next, we take a reduction approach to the underlying cryptographic primitive—
SoW, as defined in Sect. 3—to prove the security of the Bitcoin backbone pro-
tocol [29]. We start with a description of the protocol based on SoW, and then
continue with the security proof.

The Bitcoin Backbone Protocol. The Bitcoin backbone protocol [29],
parameterized by functions V(·),R(·), I(·), is an abstraction of the Bitcoin pro-
tocol. First, we introduce some notation needed to understand the description
of the algorithms, and then cast the protocol making use of our SoW primitive.

We will use the terms block and chain to refer to tuples of the form
〈s, x, σ〉 and sequences of such tuples, respectively. The rightmost (resp. left-
most) block of chain C is denoted by head(C) (resp. tail(C)). Each block con-
tains a seed, data, and a signature denoted by s, x, σ, respectively. As men-
tioned, all parties have access to a CRS at the beginning of the execution
that contains: the public parameter pp of the SoW scheme, a verification key
vk generated by KeyGen(pp), and the key k of the hash functions H,G used
later. We will refer to 〈0λ, pp||vk||k, 0λ〉 as the genesis block BGen. A chain
C = B1 . . . Bm is valid with respect to the CRS if and only if (i) B1 is the

6 The adversary cannot use the running time of honest parties that it has corrupted;
it is activated instead of them during their turn. Also, note that it is possible to
compute this number by counting the number of configurations that A or Z are
activated per round.

336 J. A. Garay et al.

genesis block, (ii) for any two consecutive blocks 〈si, xi, σi〉, 〈si+1, xi+1, σi+1〉 it
holds that Hk(si, Gk(xi), σi) = si+1, (iii) each block, besides BGen, contains a
valid SoW, i.e., Verify(pp, si, xi, σi) = true, and (iv) the content validation pred-
icate V(〈x1, . . . , xm〉) outputs true. We call Hk(si, Gk(xi), σi) the hash of block
Bi and denote it by Hk(Bi). Moreover, we define H(C) to be equal to the hash
of the head of chain C.

At each round, each party chooses the longest valid chain amongst the ones
it has received and tries to extend it by computing (mining) another valid block.
If it succeeds, it diffuses the new block to the network. In more detail, each party
will run the Sign procedure, with the message parameter being determined by
the input contribution function I(·), and the key parameter being the hash of the
last block. We assume that the hardness parameter h is fixed for all executions.
Finally, if the party is queried by the environment, it outputs R(C) where C
is the chain selected by the party; the chain reading function R(·) interprets
C differently depending on the higher-level application running on top of the
backbone protocol. Each honest party runs for at most tH steps per round. For
a full description of the protocol refer to the full version of the paper

In order to turn the backbone protocol into a protocol realizing a public
transaction ledger suitable definitions were given for functions V(·),R(·), I(·)
in [29]. We change these definitions slightly as shown in Table 1, to ensure two
things: Firstly, that the data contained in the hash chain is encoded with a
suffix-free code; this is important to ensure that no collisions occur [9] as we
show later. And, secondly, to ensure that any block created by an honest party
contains sufficient entropy, thus the adversary will not be able to use blocks that
it has precomputed to extend this block. We call the resulting protocol ΠSoW

PL .

Table 1. The instantiation of functions I(·), V(·), R(·) for protocol ΠSoW
PL .

Content validation predicate
V(·)

V(·) is true if its input 〈x1, . . . , xm〉 is a
valid ledger, i.e., it is in L, and each xi

starts with a neutral transaction of the form
r||i, where r is a string of length log |K| and
i is the “height” of the respective block

Chain reading function R(·) R(·) returns the contents of the chain if they
constitute a valid ledger, otherwise it is
undefined

Input contribution function
I(·)

I(·) returns the largest subsequence of
transactions in the input and receive
registers that constitute a valid ledger, with
respect to the contents of the chain |C| the
party already has, preceded by a neutral
transaction of the form KeyGen(pp)|||C|

Consensus from Signatures of Work 337

Security Proof. We now prove that ΠSoW
PL implements a robust public trans-

action ledger (Definition 2), assuming the underlying SoW scheme satisfies
Assumption 1 for appropriate parameters, related to the running time of honest
parties and the adversary. First, we formalize this relation.

Let tbb (bb for backbone) be an upper bound on the number of steps needed
to run the code of an honest party in one round, besides the Sign and Verify calls.
By carefully analyzing the backbone protocol one can extract an upper bound
on this value.7 To aid our presentation, we will use t′A and t′H to denote: (i) the
time needed by a RAM machine to simulate one round in the execution of the
Bitcoin protocol, without taking into account calls made to the Sign routine by
the honest parties, and (ii) the minimum number of steps that an honest party
takes running the Sign routine per round, respectively.

t′A = tA + n · tbb + θtver and t′H = tH − tbb − θtver

It holds that at least n − t (non-corrupted) parties will run the Sign routine for
at least t′H steps at every round.

In previous works [29,31,43], the security assumptions regarding the com-
putational power of the parties participating in the protocol were twofold: (1)
The total running time of honest parties per round should exceed that of the
adversary, and (2) the rate at which parties produce blocks at each round should
be bounded. More realistically, in our approach the running time of the adver-
sary and the running time of honest parties do not have the same quality, as the
adversary may use a superior signing algorithm. To take this into account, we
additionally need to assume that the efficiency of the adversarial signing algo-
rithm, i.e., β, is close to that of the honest parties. Finally, note that if SoW
is close to optimal, i.e., α(h) ≈ βt′H, and the block generation rate is a lot less
than 1, our assumption holds as long as the honest parties control the majority
of the computational power.

We now state the computational power assumption formally. The second
and the third conditions are similar to the ones already found in previous works,
while the first one is the new condition we introduce regarding the underlying
computational primitive.

Assumption 2 (Computational Power Assumption). There exist
δSoW, δSteps, δ ∈ (0, 1), such that for sufficiently large λ ∈ N, there exists an
h ∈ HP , such that:

– α(h) ≥ (1 − δSoW)βt′H > negl(λ) (signatures generation rate gap)
– (n − t)t′H(1 − δSteps) ≥ t′A (steps gap)
– δSteps−δSoW

2 ≥ δ > β(h)(t′A + ntH) (bounded block generation rate)

7 Note that tbb depends on the running time of three external functions: V(·), I(·)
and R(·). For example, in Bitcoin these functions include the verification of digital
signatures, which would require doing modular exponentiations. In any case tbb is at
least linear in λ.

338 J. A. Garay et al.

From now on, we will assume that the hardness parameter used in our pro-
tocols, is one satisfying the above conditions.

Remark 3. The better the adversarial signing algorithm may be compared to the
honest one, the closer δSoW is to 0, while the closer the number of adversarial steps
t′A are to that of the honest parties, the closer δSteps is to 0. Assumption 2 implies,
in a quantitative manner, that the better the adversarial signing algorithm, the
smaller the computational power of the adversary we can tolerate.

Based now on Assumptions 1 and 2, we can prove that ΠSoW
PL implements a

transaction ledger. Our main technical contribution is showing that an adversary
that computes blocks fast in an execution of ΠSoW

PL , can be used to construct
another adversary that breaks the moderate unforgeability property of the SoW
scheme. Hence, the rate at which the adversary computes blocks is bounded by
the parameters of the MU-TCMA property. After that step, we follow the proving
strategy of [29], to prove three blockchain level properties: common prefix, chain
quality and chain growth. In order to do that we take advantage of the Successful
and Runtime Independence properties of the SoW scheme, to establish a lower
bound on the rate of uniquely successful rounds, i.e., rounds that only a single
honest party computes a block, which then show to be larger than the rate at
which the adversary computes blocks. Our analysis also crucially depends on the
collision resistance property of the underlying hash function, to ensure that each
chain corresponds to a single history of transactions that cannot be altered in
the future. Due to lack of space, we point to the full version of the paper for the
detailed analysis.

Theorem 1. Assuming the existence of a collision-resistant hash function and a
SoW scheme that complies with Assumptions 1 and 2, there exists a protocol that
implements a robust public transaction ledger except with negligible probability
in λ.

As a “sanity check,” we show in the full version of the paper that the Bitcoin
SoW scheme we outline there, is secure both in the random oracle and the
Ftree model [43] according to our definitions; moreover, according to the security
parameters we obtain for the scheme, the security guarantees we get from our
black-box analysis of the Bitcoin backbone are similar to those proved in [29,43].

4.3 Consensus from Signatures of Work

In this section we show how to achieve consensus (a.k.a. Byzantine agreement
[38,44]) under exactly the same assumptions used for proving the security of the
Bitcoin backbone protocol in Sect. 4.2.

As mentioned earlier, in [29] consensus is achieved under the Honest Major-
ity Assumption by using a proof-of-work construction in a non-black-box way,
through a mining technique called “2-for-1 PoWs.” In more detail, the technique

Consensus from Signatures of Work 339

shows how miners can compute proofs of work for two different PoW schemes
at the cost of one, while at the same time ensuring that their resources cannot
be used in favor of one of the two schemes. However, the security proof for the
resulting protocol crucially relies on the fact that each of the bits of the strings
output by the random oracle are independently sampled, and thus goes again
our stated goal of designing a SoW scheme that does not make such a strong
independence assumption.

Here we get rid of this requirement, by showing how blockchain-based con-
sensus can be achieved by only using the security properties we have defined,
directly, and without the extra non-black-box machinery used in [29]. This yields
the first consensus protocol for honest majority reducible to a SoW primitive in
the permissionless setting. The protocol is based on the Bitcoin backbone pro-
tocol, and formally specified by providing adequate definitions for the V,R, I
functions presented in Sect. 4.2.

First, we define some additional notation and terminology that will be used
in the remainder of the section. We will use the terms “input” and “vote”
interchangeably, referring to the parties’ input to the consensus problem. We
will use header(〈s, x||vote, σ〉) to denote the “compressed” version of block
〈s, x||vote, σ〉8, equal to 〈s,G(x)||vote, σ〉. Note that, as defined, the header of
any block is of a fixed size. We also extend the definition of our hash function
H as applied to headers of blocks. The hash of the header of some block B will
be equal to the hash of B, i.e., H((header(B)) = H(B) = H(s,G(x)||vote, σ)
(note that the header of B provides all the information needed to calculate the
hash of B).

We now present a high-level description of the protocol. The basic idea is
that during block mining, parties are going to include in their blocks not only
their own votes, but also headers of other blocks that they have seen and that
are not part of their chain. Then, after a predetermined number of rounds, the
parties will count the votes “referenced” in a prefix of their chain, including the
votes found in the headers of the blocks referenced. In this way, they can take
advantage of the robust transaction ledger built in Sect. 4.2. The Persistence
property implies that the honest parties will all agree on which votes should be
counted, while the Liveness property guarantees that the majority of the counted
votes come from honest parties.

The reader may wonder about the reason behind honest parties including
in their blocks also headers of other blocks that they have seen but that are
not part of their chain. It’s because, as shown in [29], the adversary is able to
add more blocks in the main chain than his ratio of mining power (e.g., using a
selfish-mining attack). This does not hold if the honest parties are able to also
count off-chain blocks as our protocol does.

8 We augment the block content x with a vote bit. This does not change the results
of the analysis of the previous section.

340 J. A. Garay et al.

Algorithm 1. The content validation predicate. The input is the contents of the
blocks of some chain.

1: function V(〈x1, . . . , xm〉)
2: D ← new AVL() � Create a new (empty) AVL tree.
3: D.add(H(BGen)) � Add the hash of the genesis block on the tree.
4: for i = 1, ..., m do
5: queue ← references(xi) � Add all block references in a queue.
6: 〈r||height〉 ← queue.top()
7: if height �= i then
8: return False � Check for the correct block “height”.
9: end if

10: while queue �= ∅ do
11: 〈s, G(x)||vote, w〉 ← queue.top()
12: if ((D.exists(s)) ∧ Verify(s, G(x)||vote, h, w)) then
13: D.add(H(〈s, G(x)||vote, w〉)) � Add new entry on the tree.
14: queue.pop()
15: else
16: return False � If not, the chain is invalid.
17: end if
18: end while
19: end for
20: return True
21: end function

A main technical challenge is to be able to add the block references with-
out making the honest parties’ chains grow too large, and at the same time to
ensure that the number of honest votes exceeds the adversarial ones. To overcome
this challenge, we modify the Sign algorithm so that it is run on the header of
the block, i.e., Sign(pp, s,G(x)||vote, h) and Verify(pp, s,G(x)||vote, h, σ), respec-
tively. This way we are able to verify the validity of a block as a SoW and
determine the block’s vote by only knowing its header. These are exactly the
properties we need for the consensus application.

Moreover, we should be able to tell whether the referenced blocks are “fresh”;
that is, the adversary should not be able to reference blocks that it has precom-
puted and are not related to the genesis block. We achieve this by requiring
blockchain contents to have a special structure in order to be considered valid
by the content validation predicate V(·) (Algorithm 1). A chain will be valid
when the referenced blocks on every prefix of the chain form a tree that has the
genesis block at its root. In order to check this efficiently, we require that the
block headers listed in each block are ordered, so that each entry extends some
block header found in previous entries of the same or parent blocks.

In more detail, to efficiently check for membership in the hash tree, in line 2
of Algorithm 1 we use an AVL tree. (Any other data structure supporting efficient
updates and search would also work.) In line 5 the referenced blocks are extracted
and pushed into a queue. We note that during this process it is checked that:

Consensus from Signatures of Work 341

Table 2. The instantiation of functions I(·), V(·), R(·) for protocol ΠSoW
BA .

Content validation predicate
V(·)

As defined in Algorithm 1

Chain reading function R(·) R(·) outputs the majority of the votes found
in the block headers of the first M blocks of
the selected chain

Input contribution function
I(·)

The input function I(·) maintains state of
which blocks have been received, and
outputs an input value x that contains (i)
the headers of all valid blocks that extend
the genesis and are not mentioned in the
chain C that the party is currently
extending, (ii) a neutral transaction of the
form KeyGen(pp)|||C|, and (iii) the party’s
input (i.e., 0 or 1)

(i) the contents of the block have a correct format, i.e., a vote field and list of
block headers, (ii) each header in the list is a valid SoW and extends a chain
starting from the genesis block, and (iii) that the first reference includes a string
r and the height of the block as required in the security analysis of Sect. 4.2 and
described in Table 1.

The algorithm runs for L rounds, after which it outputs the majority of the
votes found in a prefix of the selected chain, of a predetermined length M . We
call the resulting protocol ΠSoW

BA (“BA” for Byzantine agreement). A description of
the consensus protocol (specifically, the V,R, I functions) is presented in Table 2,
and also recall the example in Fig. 1. Note that all parties terminate the protocol
simultaneously. For the full proof of the theorem refer to the full version of the
paper.

Theorem 2. Assuming the existence of a collision-resistant hash function and
a SoW scheme that complies with Assumptions 1 and 2. Protocol ΠSoW

BA solves
consensus with overwhelming probability in λ.

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations,
and applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
493–526. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 17

3. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

https://doi.org/10.1007/978-3-319-70500-2_17
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

342 J. A. Garay et al.

4. Back, A.: Hashcash-a denial of service counter-measure (2002)
5. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

6. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

7. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 26

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 394–403
(1997)

9. Bellare, M., Jaeger, J., Len, J.: Better than advertised: improved collision-
resistance guarantees for MD-based hash functions. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
pp. 891–906. ACM, New York (2017)

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, Fairfax, Virginia, USA, 3–5 November 1993,
pp. 62–73 (1993)

11. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

12. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement
protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.)
Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, Montreal, Quebec, Canada, 17–19 August 1983,
pp. 27–30. ACM (1983)

13. Bentov, I., Hub’avcek, P., Moran, T., Nadler, A.: Tortoise and hares consensus:
the meshcash framework for incentive-compatible, scalable cryptocurrencies. IACR
Cryptology ePrint Archive 2017:300 (2017)

14. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 17

15. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, 14–16 January 2016, pp. 345–356. ACM (2016)

16. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

17. Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoğlu,
Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40–55. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61769-8 4

18. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-61769-8_4

Consensus from Signatures of Work 343

19. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

20. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

21. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

22. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

23. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

24. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

25. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

26. Fitzi, M.: Generalized communication and security models in Byzantine agreement.
Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2003)

27. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR
Cryptology ePrint Archive 2018:754 (2018)

28. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. IACR Cryptology ePrint Archive 2014:765 (2014)

29. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

30. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

31. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 465–495. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5 16

32. Garay, J.A., Kiayias, A., Panagiotakos, G.: Consensus from signatures of work.
Cryptology ePrint Archive, Report 2017/775 (2017). https://eprint.iacr.org/2017/
775

33. Garay, J.A., Kiayias, A., Panagiotakos, G.: Iterated search problems and
blockchain security under falsifiable assumptions. Cryptology ePrint Archive,
Report 2019/315 (2019). https://eprint.iacr.org/2019/315

34. Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. J. Cryptol. 24(4), 615–658 (2011)

35. Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 1999, San Diego, California, USA. The Internet
Society (1999)

36. Katz, J., Miller, A., Shi, E.: Pseudonymous secure computation from time-lock
puzzles. IACR Cryptology ePrint Archive 2014:857 (2014)

37. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2019/315
https://doi.org/10.1007/3-540-68697-5_9

344 J. A. Garay et al.

38. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

39. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 33

40. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

41. Okun, M.: Agreement among unacquainted Byzantine generals. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499–500. Springer, Heidelberg (2005).
https://doi.org/10.1007/11561927 40

42. Okun, M.: Distributed computing among unacquainted processors in the presence
of Byzantine distributed computing among unacquainted processors in the presence
of Byzantine failures. Ph.D. thesis, Hebrew University of Jerusalem (2005)

43. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

44. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

45. Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 337–350. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-
3 195

46. Poelstra, A.: On stake and consensus (2015). https://download.wpsoftware.net/
bitcoin/pos.pdf

47. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

48. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive 2016:1159 (2016)

49. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

50. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2 19

https://doi.org/10.1007/978-3-662-47854-7_33
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/11561927_40
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195
https://download.wpsoftware.net/bitcoin/pos.pdf
https://download.wpsoftware.net/bitcoin/pos.pdf
https://doi.org/10.1007/978-3-662-47854-7_32
https://doi.org/10.1007/978-3-642-19074-2_19

Faster Homomorphic Encryption is not
Enough: Improved Heuristic

for Multiplicative Depth Minimization
of Boolean Circuits

Pascal Aubry2(B), Sergiu Carpov1, and Renaud Sirdey1

1 CEA, LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France
2 CEA, LIST, 38054 Grenoble Cedex, France

p.aubry@cea.fr

Abstract. In somewhat homomorphic encryption schemes (e.g. B/FV,
BGV) the size of ciphertexts and the execution performance of homo-
morphic operations depends heavily on the multiplicative depth. The
multiplicative depth is the maximal number of consecutive multiplica-
tions for which the homomorphic encryption scheme was parameterized.

In this work we improve a heuristic for multiplicative depth mini-
mization of Boolean circuits found in the literature. In particular, a new
circuit rewriting operator is introduced, the so called cone rewrite opera-
tor. The results we obtain using the new method are relevant in terms of
accuracy and performance. The multiplicative depths for a benchmark
of Boolean circuits is highly improved and the execution time of the
new heuristic is significantly lower. The proposed rewrite operator and
heuristic are not limited to Boolean circuits, but can also be used for
arithmetic circuits.

Keywords: Somewhat homomorphic encryption · Multiplicative
depth · Boolean functions · Heuristic

1 Introduction and Related Works

We denote by encryption scheme the way to encrypt plaintext messages and to
decrypt ciphertexts such that discovering the plaintext message from encrypted
data is either computationally very hard or even impossible without a secret.
An homomorphic encryption scheme (HE) allows some operations to be per-
formed directly in the ciphertext space, i.e. without decrypting ciphertexts. An
homomorphic encryption is said to be functionally complete when both addition
and multiplication operations are supported. Since the seminal work of Gentry
[16], many other simpler and more efficient homomorphic encryption schemes
have been proposed [5,6]. A HE scheme with a binary plaintext space allows to
execute any Boolean circuit directly over encrypted data.

This work was funded in part under French FUI project ANBLIC.

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 345–363, 2020.
https://doi.org/10.1007/978-3-030-40186-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_15

346 P. Aubry et al.

A common characteristic of HE schemes ciphertexts is the noise component,
which is added to the ciphertexts during the encryption for security reasons. Each
homomorphic operation applied on ciphertexts increases this noise component.
After a predefined number of homomorphic operations, decryption correctness
cannot be ensured as the noise component becomes too large to guarantee exact
decryption. Usually, the noise growth induced by the multiplication operation is
greater than the noise growth induced by addition. This is why in most cases the
multiplicative depth of Boolean circuits to be evaluated is considered when HE
schemes are parametrized. The multiplicative depth is the maximal number of
sequential homomorphic multiplications which can be performed on fresh cipher-
texts such that once decrypted we retrieve the result of these multiplications. For
an equivalent security level, the increase of circuit multiplicative depth implies
larger size ciphertexts and by consequence the cost of homomorphic operations
increases also.

Several solutions to ciphertext size increase exist. One of them is the cipher-
text bootstrapping procedure introduced in [17]. The bootstrapping procedure
consists in executing homomorphically the HE scheme decryption algorithm with
a noisy ciphertext as input. The noise of the resulting “bootstrapped” ciphertext
is lower and independent of the input ciphertext noise. The bootstrapping, being
a heavy procedure, is typically applied on many plaintext messages at once after
executing as many homomorphic operations as possible. Several works [2,20,22]
study the problem of minimizing the number bootstrappings in Boolean circuits.

Further improvements to the bootstrapping were proposed in [11,14] where
the bootstrapping procedure is applied after each operation. This procedure
is fast (compared to first constructions) but it allows bootstrapping only one
message at a time. An optimization problem for fast-bootstrapping schemes is
circuit size minimization, a well know problem in the hardware synthesis field. In
batched homomorphic applications (i.e. applications executing the same circuit
over multiple input data) a trade-off between executing a multiplicative depth-
optimized circuit once (on all input data) or executing a size-optimized circuit
for each input data element is to be made.

Reducing the multiplicative depth of Boolean circuits is a major impediment
in the practical use of somewhat homomorphic encryption. HE scheme parame-
ters increase in size with every multiplicative level. The execution time for the
whole Boolean circuit increases accordingly. Many works in the literature treat
problems of Boolean circuit optimization for hardware targets or more generally
the problem of hardware synthesis. We refer to the open-source software system
used for hardware synthesis ABC [3]. It is an open-source environment providing
implementations of state-of-the-art circuit optimization algorithms. These algo-
rithms are mainly designed for minimizing circuit area or latency but, currently,
none of them is designed for multiplicative depth minimization.

Several works in the cryptographic literature [4] and more specifically the
secure multi-party computation (MPC) literature [19,23] focus on the study of
Boolean circuits with minimal number of AND gates. The authors of [7] deal
with the minimization of the depth of Boolean circuits. This paper presents depth

Improved Heuristic for Multiplicative Depth Minimization 347

minimization techniques in the context of MPC, with no differentiation between
AND and XOR gates. We shall note that several MPC protocols (e.g. GMW
[18], SPDZ [13]) would benefit from circuit multiplicative depth minimization
when used in high-latency settings.

The authors of the Cingulata toolchain [10] proposed a multi-start prior-
ity based heuristic [9] based on multiplicative depth-2 path rewriting operators.
These operators decrease locally the multiplicative depth of the circuit. In aver-
age, their algorithm managed to lower by more than 3 times the multiplicative
depth. Nonetheless, the computational cost of the overall algorithm is very large
as the base heuristic is executed several times with different priority functions.
None of the proposed priority functions ensures smallest multiplicative depth for
all benchmark circuits. Sometimes better results were obtained with a random
priority function than with a non-random one.

The heuristic and local circuit rewrite operator described in [9] is the starting
point of the current study. We start by recalling the multiplicative depth-2 path
rewrite operator from [9] and then we generalize it to cone rewriting operator.
Afterwards, we propose an improved heuristic using the cone rewrite operator.
Experimental studies show that smaller multiplicative depth circuits and better
computational performances are obtained by the new heuristic. We finalize the
paper with concluding remarks and give some perspectives for future works.

2 Rewrite Operators

2.1 Preliminary Definitions

We represent a Boolean circuit as a directed acyclic graph C = (V,E) with a
set of nodes V and a set of edges E. Circuit nodes represent Boolean functions
(gates) and circuit edges are connections between nodes. The set of nodes can
be split into 3 independent sub-sets:

– Nodes without a predecessor define circuit inputs. An input can be either
a Boolean input variable or a Boolean constant (i.e. logic “0” or logic “1”
inputs ci).

– Nodes without successors (and necessarily with 1 predecessor) define circuit
outputs co.

– Nodes representing a gate applying a basic Boolean function to the value of
its predecessors. The input degree of gates is 2 and the output degree is at
least 1. In this work, we suppose that the Boolean circuit is built of AND and
XOR operators only. The set {AND,XOR} together with the constant “1” is
functionally complete [25]. Any Boolean function can be expressed by these
operators.

Let pred : V → 2V and succ : V → 2V be the functions giving the set of
predecessors, respectively successors, of a node v ∈ V in a Boolean circuit C.
We denote anc : V → 2V (resp. desc → 2V) the functions giving the set of
ancestors (resp. descendants) of a node v ∈ V .

348 P. Aubry et al.

The multiplicative depth is defined as the number of successively executed
AND gates. It influences the parameters of HE schemes which heavily influences
their performance. The minimization of the multiplicative depth allows not only
to obtain smaller ciphertext sizes but also to minimize the overall execution time
of the Boolean circuit. Let us define the function d : V → {0, 1} which return 1
for AND nodes and zero otherwise. The multiplicative depth is influenced only
by nodes v ∈ V such that d (v) = 1.

The multiplicative depth of nodes is given by l : V → N
+. The multiplicative

depth of a node is the maximum number of AND gates on any path beginning
at an input node and ending at node v. The function l is defined by:

l (v) =

{
0 if |pred (v)| = 0,

maxu∈pred(v) l (u) + d (v) otherwise.

The reverse multiplicative depth of nodes is given by r : V → N. The reverse
multiplicative depth is the maximum number of AND gates on any path begin-
ning at a successor of v and ending at an output node. The function r is defined
by:

r (v) =

{
0 if |succ (v)| = 0,

maxu∈succ(v) (r (u) + d (u)) otherwise.

Both l and r can be computed recursively. The overall multiplicative depth
of a circuit C is the maximal multiplicative depth of its nodes:

lmax = max
v∈V

l (v) = max
v∈V

r (v) .

A node is said to be critical if relation (1) is verified.

l (v) + r (v) = lmax, v ∈ V (1)

We define the critical circuit C∗ as the sub-circuit containing all the critical
nodes of circuit C. A critical path is a path in this circuit and a critical cone is
a subset of connected critical nodes with a common descendant.

The overall multiplicative depth of circuit C is equal to the multiplicative
depth of the critical circuit C∗. Decreasing the multiplicative depth of the critical
circuit is expected to decrease the overall multiplicative depth (and never to
increase it).

2.2 Multiplicative Depth-2 Path Rewriting

In this section, we recall the local circuit rewrite operators given in [9] and
improve their method by combining these two operators into a single one. The
application of these operators allows to reorder circuit gates such that the mul-
tiplicative depth is locally reduced. We start by introducing the combined multi-
plicative depth-2 path rewriting operator and afterwards describe its limitations
when applied to arbitrary depth-2 paths.

Improved Heuristic for Multiplicative Depth Minimization 349

Let p = (v1, Uy, vt) be a path starting and ending with AND gates v1 and vt.
Between these two gates there is a multi-input XOR1 gate Uy having inputs v1
and y1, . . . , ym. We denote a1, a2 the inputs of node v1 with l (a1) ≥ l (a2) and
at is the input of vt other than Uy. Refer to the left-hand side of Fig. 1 for an
illustration. The Boolean formula of path p is ((a1 · a2) ⊕ ⊕

i yi) · at.

+

+&

& &

&

&

+

Fig. 1. Rewriting operator for multiplicative depth-2 paths. Bold lines denote critical
paths.

The multiplicative depth-2 path rewrite operator we propose rewrites this
path as ((a2 · at) · a1)⊕(at · ⊕

i yi). Figure 1 illustrates this transformation. Once
applied the multiplicative depth locally decreases by one (on the path from a1

to r) if relation (2) is verified.

min
u∈pred(v)

l (u) < l (v1) − 1, v ∈ {v1, vt} . (2)

Entries yi can be rearranged in a tree structure of 2-input XOR gates after
the rewriting in order to obtain again a 2-input gate circuit. Their order does
not matter. Nonetheless, it would be more interesting to reuse existing XORs
for lowering the number of newly created gates. Some special cases need more
explanation. If path p does not have any XOR node, then the final path refor-
mulation will be (a2 · a3) ·a1. If Uy is a 2-input XOR gate, then it will disappear
in the transformed circuit and the AND gate uy will have y1 and a3 as inputs.

1 For the sake of simplicity and without loss of generality, we have grouped inter-
mediary 2-input XOR gates from the initial circuit into a single multi-input XOR
gate.

350 P. Aubry et al.

In the initial path the multiplicative depth of output r is l (a1) + 2. When
relation (2) is verified we have l (a1) > l (a2) and l (a1) > l (a3). After the depth-2
path transformation the multiplicative depth of r becomes:

max (l (a1) , l (y1) , . . . , l (ym)) + 1.

Suppose that a node yi, i = 1, . . . , m, is on the critical path before the
transformation, i.e. its multiplicative level is l (yi) + 1. After the transformation
the multiplicative level of yi will stay the same, thus the multiplicative level of
r does not decrease. At least another depth-2 path rewriting on a path ending
in uy is needed in order to decrease the multiplicative depth of r from l (a1) + 2
to l (a1)+1. For example in the left-hand side of Fig. 1 if node y1 is on a critical
path then the multiplicative depth of r remains unchanged. We used “at least”
previously because a path rewriting will be needed for each input of Uy which
belongs to the critical circuit.

The authors of [9] studied only the particular case of multiplicative depth-2
paths where intermediary nodes y1, . . . , ym do not belong to the critical circuit.
This limits the applicability of their operator and the number of necessary path
rewritings in order to decrease the multiplicative depth.

2.3 Multiplicative Depth-2 Cone Rewriting

We have seen previously that in some cases the overall multiplicative depth
does not decrease after a single application of the multiplicative depth-2 path
operator. In order to address this issue we generalize the multiplicative depth-2
path operator to cones of multiplicative depth 2. We traverse upwards the circuit
starting from the sub-set of nodes of y1, . . . , ym which are critical and stop at the
first found AND gate. In this way, a cone of multiplicative depth-2 is obtained.
In what follows, we introduce a method to rewrite these types of cones such that
the overall multiplicative depth decreases.

The cone rewriting operator is equivalent (in terms of multiplicative depth
decrease) with the application of the depth-2 path rewriting operator for each
critical input of XOR gate Uy (refer to Fig. 1) as it has been stated earlier. A
unified rewrite operator allows to perform a single transformation reducing the
multiplicative depth and not several rewrite operators for each critical input
of Uy. Also, we seek to reduce the number of newly created nodes after the
transformation. The new heuristic we propose is based on that cone rewriting
operator. We firstly present the transformation for multiplicative depth-2 critical
cones and we further generalize it to cones of arbitrary depth.

A multiplicative depth-2 critical cone δ2 is a Boolean structure ending by an
AND gate vt and beginning with AND gates v1, . . . , vn, such that vi ∈ anc (vt)
and l (vi) = l (vt)−1, for any i = 1, . . . , n. The left-hand side of Fig. 2 illustrates
such a cone. The outputs of v1, . . . , vn are combined by a XOR gate Uy (as
previously we merged intermediary 2-input XOR gates into one multi-input gate)
and connected to one input of node vt. Let at be the input of vt other than Uy.

We denote a
(i)
1 and a

(i)
2 the 2 inputs of vi such that l

(
a
(i)
1

)
≥ l

(
a
(i)
2

)
and by

Improved Heuristic for Multiplicative Depth Minimization 351

y1, . . . , ym the inputs of XOR gate Uy which are not critical. By construction we
have l (yi) < l (vt) for any yi.

+

+&

& &

&

&

+

& &

&

Fig. 2. Rewriting operation for multiplicative depth-2 cone. Bold lines denote critical
paths.

Figure 2 illustrates the transformation to be performed in order to decrease
the multiplicative depth of cone δ2. It follows the same idea as the depth-2
path rewriting operator presented earlier. The Boolean formula of the illustrated
multiplicative depth-2 cone is:(

n⊕
i=1

(
a
(i)
1 · a

(i)
2

)
⊕

m⊕
i=1

yi

)
· at.

After the rewrite operation the formulation becomes:(
n⊕

i=1

(
at · a

(i)
2

)
· a

(i)
1

)
⊕

(
at ·

m⊕
i=1

yi

)
.

Thus each AND gate vi from the input cone is rewritten as u(i) =
(
a
(i)
2 · at

)
·a(i)

1

using 2 AND gates and has a smaller multiplicative depth. A new XOR gate U
′
y

is added for non critical inputs yi. The output of this gate and at are the inputs
of a new AND gate uy. The outputs of gates u(1), . . . , u(n) and uy are finally
combined together using a multi-input XOR gate. The multiplicative depth of r
is reduced by 1 because the following relations are verified (as a consequence of
the cone construction procedure):

min
u∈pred(vk)

l (u) < l (vt) − 2, ∀vk, k ∈ {1, .., n, t} (3)

The main benefit of multiplicative depth-2 cone rewriting is that the mul-
tiplicative depth of r is reduced if relations 3 are verified. A single cone trans-
formation is needed instead of n depth-2 path transformations and only n new
AND gates are created (a new gate for each vi).

352 P. Aubry et al.

2.4 Cone Rewriting

Multiplicative depth-2 cone rewrite operators require that condition (3) is satis-
fied for all of the cone input nodes, i.e. at least one input of the vi node must be
non-critical. In the case when both inputs of vi are critical we can explore the
cones starting with a

(i)
1 and a

(i)
2 and build a multiplicative depth-3 cone. If all

inputs of only one of these input cones satisfy the reducibility conditions, then
the multiplicative depth can be reduced. We can easily extend this operator to
multiplicative depths larger than 3.

Algorithm 1. Recursive algorithm for cone construction.
Require: minDepth – explore up to this multiplicative depth
1: function ConeRec(v) � v – start node
2: if l (v) = minDepth then
3: return ∅
4: end if
5: P ← {p ∈ pred (v) | l (p) = l (v) − d (v)}
6: if |P | < 2 and v is an AND node then
7: return {v}
8: else
9: Δr ← {ConeRec(p) | p ∈ P}

10: Δr ← {δr ∈ Δr | δr �= ∅} � reducible input cones
11: if v is an AND node then
12: if |Δr| = 0 then � no cone is reducible
13: return ∅
14: else
15: δ ← choose randomly from Δr

16: end if
17: else � v is a XOR node
18: if |Δr| = |P | then � critical cones are reducible
19: δ ← ⋃

δr∈Δr
δr

20: else
21: return ∅
22: end if
23: end if
24: return δ ∪ {v}
25: end if
26: end function

Our cone construction procedure ConeRec is given in Algorithm 1. It recur-
sively explores the set of critical predecessor nodes starting from node v and
incrementally constructs a reducible cone (as the procedure output). If the min-
imal multiplicative depth to explore is reached (line 2) or at least one predecessor
of an AND node v is not critical (line 6) then the exploration stops. Otherwise
there are two possibilities as a function of node v type:

Improved Heuristic for Multiplicative Depth Minimization 353

AND node If at least one predecessor is reducible then the cone corresponding
to this predecessor (or a random one if both are reducible) is added to the
result, otherwise the exploration is complete.

XOR node If both predecessors are reducible then the respective cones are
added to the result, otherwise exploration is also complete.

To summarize, an AND node is reducible if at least one of its ancestor is reducible
and a XOR node is reducible if both its ancestors are reducible.

The ConeRec procedure is called on a circuit node v. If the procedure
returns an empty set then the cone ending at v cannot be reduced. Otherwise
the procedure output represents the cone to be rewritten and it ensures that
the multiplicative depth of this cone can be reduced. We use a minDepth value
equal to l (p) + 1, where p is the non-critical input of node v.

Observe that the ConeRec procedure when applied to the ending node of
a reducible multiplicative depth-2 cone will find exactly that cone. In the case
when no reducible multiplicative depth-2 cone ending at v exists the ConeRec

procedure will return a cone with a multiplicative depth larger than 2. Rewriting
such a cone is very similar to the depth-2 cone rewriting method presented
previously. Multiplicative depth cone rewriting is a powerful tool for minimizing
the multiplicative depth of Boolean circuits.

3 Improved Heuristic

3.1 Overview

In the this section, we introduce the heuristic we have developed to minimize the
multiplicative depth of Boolean circuits. In [9] the authors propose a multi-start
heuristic based on multiplicative depth-2 path rewriting operator. This operator
is the simplest way to locally reduce the multiplicative depth of a Boolean circuit.
Their heuristic uses a priority function in order to select the multiplicative depth-
2 path to be reduced. None of the priority functions seems to give better results
than the others in general as the structure of the Boolean circuit appears to play
an important role in which of the priority functions is the most appropriate.
Therefore, the authors execute the heuristic with all the priority functions and
output the minimal multiplicative depth circuit they obtain. The computational
cost of all these executions is therefore high and can be prohibitive for large size
Boolean circuits.

The heuristic presented in Algorithm 2 aims at minimizing the multiplica-
tive depth of a given Boolean circuit in a single pass. Indeed, the number of
times critical circuits have to be computed is reduced thanks to the proposed
cone rewriting operator. At each iteration a set Δmin of cones to minimize is
computed. More details about how this set is constructed are given in the next
section. If the set Δmin is not empty then the cones from this set are trans-
formed. Afterwards, the multiplicative depths of circuit nodes are updated. If
the multiplicative depth of the new circuit becomes smaller then the output cir-
cuit Cout is updated. Otherwise, a new set Δmin of cones is computed and the
process starts over.

354 P. Aubry et al.

Indeed transforming cones from Δmin does not guarantee that the multiplica-
tive depth is globally reduced as some of the performed reductions may affect
the inputs of critical AND gates. Thus, additional cone transformations may be
applicable after this step. The algorithm terminates when the set Δmin is empty.
Other termination criteria (e.g. run time, iteration count, multiplicative depth
to achieve) can also be considered.

Algorithm 2. Multiplicative depth minimization heuristic based on cone rewrit-
ing.
Require: C – input Boolean circuit
Ensure: Cout – multiplicative depth optimized
1: Cout ← C
2: Δmin ← compute reducible cones set
3: while Δmin is not empty do
4: Rewrite cones from Δmin

5: Update multiplicative depth of C
6: if lmax (Cout) > lmax (C) then
7: Cout ← C
8: end if
9: Δmin ← compute reducible cones set

10: end while

3.2 Cone Selection Method

The goal of the cone selection method is to find a minimal set of cones which
rewriting is likely to lead to a decrease in the overall multiplicative depth of the
circuit at hand, C. Yet, as we have seen earlier any cone rewriting operator adds
new nodes to the circuit. So minimizing the cardinality of the set of cones is also
beneficial in order to limit the number of newly created nodes.

Thus, we need to find a minimal size set Δmin of cones such that each critical
path in C contains the ending node of at least one cone from this set. Hence,
under this condition, we are guaranteed that the overall multiplicative depth
decreases after the cones from Δmin are rewritten. This problem is known as
the DVD (DAG Vertex Deletion) problem [21] in the combinatorial optimization
community. The DVD problem is UG-hard [24], thus efficiently finding an optimal
Δmin in the general case is not possible and we therefore propose a heuristic for
finding an approximate solution to this problem.

Our cone selection heuristic starts by finding the set Δ of all reducible cones
(under the ConeRec procedure). Then, a graph CAND containing the critical
AND nodes is built. Two AND nodes are connected in CAND if there is a depth-
2 critical path between them in the initial circuit. An AND node is said to be
reducible if it is the (topological) last node of a reducible cone (note that for
each cone δ ∈ Δ, there is a unique terminal AND node in CAND).

Improved Heuristic for Multiplicative Depth Minimization 355

We then use the following network-flow inspired Algorithm 3 to find a set of
cones Δmin of small cardinality. The algorithm visits all the nodes v of CAND

in topological order. Then, for each node v, node flow f+ (v) is computed by
setting f+ (v) to the sum of the flows on the input edges of v or to 1 for input
nodes. For each output edge of v, we define the edge flow g+ (v, u), u ∈ succ (v),
as the node flow f+ (v) split equally between node v outputs.

We then perform the same computations on graph CAND where the edge
directions have been reversed (i.e. in the initial circuit this corresponds to start-
ing from outputs and traversing CAND in reverse topological order) and compute
the ascending node flows f− (v) for each node v. Afterwards, we compute the
node weight f (v) defined as the product between its descending and ascending
node flows. The node u with the highest weight is selected and deleted from
graph CAND. The critical cone terminating in u is added to Δmin. This process
(ascending, descending flow computation, etc.) is repeated until CAND is empty.

Finally, the critical cones from Δmin are then rewritten by means of
Algorithm 2.

Algorithm 3. Cone selection algorithm.
Require: CAND – input circuit
Ensure: Δmin – minimal set of cones
1: function CompFlow(C) � C – input circuit
2: for v ∈ C in topological order do
3: if v is input then
4: f (v) = 1
5: else
6: f (v) =

∑
u∈pred(v) g (u, v)

7: end if
8: g (v, u) = f(v)

|succ(v)| for all u ∈ succ (v)
9: end for

10: return f
11: end function
12: Δmin ← ∅
13: while CAND is not empty do
14: f+ ← CompFlow(CAND)
15: Reverse circuit CAND edge directions
16: f− ← CompFlow(CAND)
17: f (v) = f− (v) · f+ (v) for all v ∈ CAND

18: u = arg maxv∈CAND f (v)
19: Remove node u from CAND

20: Add critical cone ending at node u to Δmin

21: end while

3.3 Reductions on Non-critical Circuits

In some cases, no more reducible cones are available in the critical circuit
CAND. Yet, this does not mean that the multiplicative depth of C cannot be

356 P. Aubry et al.

further reduced as we could further rewrite non-critical parts of circuit C. This
may decrease the multiplicative depth of certain nodes and, as a consequence,
some cones which did not fulfill the reducibility conditions before may become
reducible.

For this purpose, we construct a sub-circuit Cv which contains all the ances-
tors of a node v. Observe that by computing the critical circuit of Cv and apply-
ing Algorithm 2 on this circuit we can reduce the multiplicative depth of v.
Afterwards, we verify if there are new reducible cones in C and transform them
if this is the case.

In this work, we only reduce sub-circuits Cv such that v is a non-critical
input of a critical AND node. We could imagine to extend these reductions to
other nodes of C. Still, as we wanted to limit the number of created nodes, we
did not explore this idea. Nevertheless, we think it is an interesting perspective
for further decreasing the multiplicative depth.

4 Experimental Results

We used for our experimentations the Boolean circuits from the EPFL Combi-
national Benchmark Suite. Three types of combinational circuits are provided:
arithmetic, random/control and very large (multi-million gate designs). One can
refer to [1] for more details about these benchmarks. In our experiments, only
two types of benchmarks are used: 10 arithmetic and 10 random/control cir-
cuits. Benchmark circuits have been beforehand optimized and mapped with
ABC commands resyn2 and map. map command is used to obtain circuit rep-
resentations with only AND and XOR gates. Table 1 shows the characteristics
of the obtained benchmarks after these commands were performed. The same
benchmarks were used in [9].

We firstly present results on the minimization of multiplicative depth and
afterwards we try to estimate the induced acceleration factor for an homomorphic
execution of these circuits.

4.1 Multiplicative Depth Minimization

The heuristic described in previous section was implemented in C. The binary
uses ABC as a helper library. We have executed the new heuristic on a single
core of an Intel CoreTM i7-7600U CPU @ 2.80 GHz. The obtained solutions by
the new heuristic and the results from work [9] are shown in Table 2.

The initial characteristics of circuits are also recalled (column “initial”). The
notations we use are the multiplicative depth (“×depth”), the number of AND
gates (“#AND”), the ratio between the multiplicative depth of the input circuit
and the optimized one (“ratio”) and the execution time in seconds (“time(s)”).

The new heuristic presented in this paper gives better results for almost every
circuits in the benchmark. The multiplicative depth is reduced when compared
to solutions from [9] for all the arithmetic circuits and lower or equal for all
random/control circuits. When the multiplicative depths are equal the number

Improved Heuristic for Multiplicative Depth Minimization 357

Table 1. EPFL Combinational Benchmark Suite characteristics after initial optimiza-
tion with ABC.

Circuit name #input #output ×depth #AND

adder 256 129 255 509

bar 135 128 12 3141

div 128 128 4253 25219

hyp 256 128 24770 120203

log2 32 32 341 20299

max 512 130 204 2832

multiplier 128 128 254 14389

sin 24 25 161 3699

sqrt 128 64 4968 15571

square 64 128 247 9147

arbiter 256 129 87 11839

ctrl 7 26 8 108

cavlc 10 11 16 658

dec 8 256 3 304

i2c 147 142 15 1161

int2float 11 7 15 213

mem ctrl 1204 1231 110 44795

priority 128 8 203 676

router 60 30 21 167

voter 1001 1 36 4229

of AND nodes is lower for cavlc, priority and router benchmarks. The voter and ctrl
circuit are the only case where the multi-start heuristic [9] gives a better result
in terms of AND gate count, although the differences are only 27 gates and 1
gate respectively. On the other side, the output circuits found by our heuristic
for sin and arbiter contain less AND gates and have a lower multiplicative depth.

In term of computational performance the new heuristic is clearly faster than
the multi-start heuristic and this for example allows to minimize the multiplica-
tive depth of complex circuits such as arbiter, div or sqrt in a reasonable time.
For the hyp circuit, the minimal multiplicative depth for the circuits has not
been found after 48 h of execution. Nonetheless, the multiplicative depth has
been significantly reduced compared to the multi-start heuristic.

4.2 Homomorphic Execution Acceleration

In this subsection we study the influence of multiplicative depth minimization
on an homomorphic execution of the benchmark circuits. The homomorphic
multiplication operation (i.e. the AND gate) is the heaviest one in the somewhat

358 P. Aubry et al.

Table 2. Solutions obtained by the heuristic proposed in this work (column “this
work”) and best obtained solutions for the multi-start heuristic [9] (combined priority
functions, random and non-random ones). Bold font is used to emphasize the best
solutions in terms of multiplicative depth as well as number of AND gates. The ratio
between multiplicative depths of the input circuit and the optimized one is shown in
columns “ratio”. The “time” columns represents the execution time for both methods.

Circuit Initial This work Multi-start [9]

× depth #AND × depth #AND ratio time(s) × depth #AND ratio time(s)

adder 255 509 9 16378 28.3 125 11 1125 23.2 40.0

bar 12 3141 10 4193 1.2 0.7 12 3141 1.0 10.4

div 4253 25219 532 190855 8 3731 1463 31645 2.9 72000

hyp 24770 120203 15230 135433 1.6 172000 24562 120307 1.0 72000

log2 341 20299 129 31573 2.6 94 141 27362 2.4 14690

max 204 2832 26 7666 7.8 14.5 27 4660 7.6 1712

multiplier 254 14389 57 23059 4.5 30.7 59 17942 4.3 14810

sin 161 3699 74 5507 2.2 4.5 76 5922 2.1 652.8

sqrt 4968 15571 2084 321555 2.4 107814 4225 18435 1.2 72000

square 247 9147 26 11306 9.3 12.5 28 10478 8.8 9840

arbiter 87 11839 10 5183 8.7 43 42 8582 2.1 72000

ctrl 8 108 5 110 1.6 0.0 5 109 1.6 0.0

cavlc 16 658 9 667 1.8 0.0 9 669 1.8 3.8

dec 3 304 3 304 1.0 0.0 3 304 1.0 0.0

i2c 15 1161 7 1213 2.1 0.1 8 1185 1.9 7.3

int2float 15 213 7 216 2.1 0.0 8 216 1.9 0.2

mem ctrl 110 44795 40 54816 2.4 85.0 45 49175 2.4 66222

priority 203 676 102 876 2.0 0.5 102 1106 2.0 22.2

router 21 167 11 198 1.9 0.0 11 204 1.9 0.5

voter 36 4229 30 4315 1.2 1.6 30 4288 1.2 112.4

homomorphic encryption schemes described in the introduction. We start by
explaining how we estimate the complexity of a multiplication operation.

An in-depth study of parameters for homomorphic encryption schemes ha
been performed in [12]. The authors provide in the appendices several samples
of HE scheme parameters for different multiplicative depths, plaintext spaces,
etc. Table 3 shows a sample of parameters for the FV scheme [15] and a Boolean
plaintext space2. A power regression model is fitted onto this data and used
afterwards to extrapolate ciphertext size as a function of multiplicative depth.
The power regression model we obtain is y = 1.2215 · x2.0179 where x is the
multiplicative depth and y is the ciphertext size in kBytes. The obtained model
is highly accurate (coefficient of determination > 0.9999 and root mean squared

2 We have performed the same estimations for other HE schemes (Yashe and BGV)
and similar results, as the ones described in what follows, were obtained.

Improved Heuristic for Multiplicative Depth Minimization 359

Table 3. Multiplicative depth and ciphertext size (kBytes) for FV scheme instances
from [12].

× depth 2 5 10 20 30

Size 5 31 127 513 1180

Estimated size 4.95 31.4 127.3 515.5 1168.2

relative error < 1%). Estimated ciphertext sizes are given in the third row of
Table 3.

Using this model we are able to estimate the size of ciphertext for a given
multiplicative depth. The asymptotic complexity of ciphertext multiplication in
HE schemes is comparable to the complexity of multiplying arbitrary-precision
numbers. One of the best known algorithms for multiplying arbitrary-precision
numbers is the Schönhage–Strassen algorithm. It has an asymptotic run-time bit
complexity of O (n · log (n) · log (log (n))). So, to find the run-time complexity of
multiplying 2 HE ciphertexts we use the ciphertext bit-size as n in the above
complexity formula. We consider that the run-time complexity of a Boolean
circuit HE execution is equal to the number of AND gates in the circuit scaled
by the complexity of ciphertext multiplication at the multiplicative depth of
this circuit. For example the run-time complexity of the adder circuit is equal
to 509 (number of AND gates) multiplied by α · log (α) · log (log (α)), where
α = 8192 · 1.2215 · x2.0179. Here, the 8192 factor corresponds to the number of
bits in 1 kByte (i.e. power regression model units).

We have computed run-time complexities for input circuits, circuits from [9]
and circuits generated by the heuristic proposed in this paper. Table 4 shows the
ratios between the run-time complexity of optimized circuits and the initial ones.
These ratios give an estimation of the acceleration factor between the homo-
morphic execution of an optimized circuit when compared to the homomorphic
execution of the input one. We note that these estimates of the acceleration fac-
tor only provide orders of magnitude since other factors (ciphertext key-switch,
memory complexity, circuit XOR gates, etc.) which influence the execution time
were not considered. Moreover, not considering the size (by consequence memory
access times on a real machine) of ciphertexts is advantageous for large cipher-
texts (i.e. high multiplicative depth circuits). The third column (“best”) provides
the best expected run-time acceleration ratio obtained during the execution of
the heuristic proposed in this paper. For this purpose, our heuristic returns the
circuit with the best run-time complexity instead of the circuit with the lowest
depth.

Homomorphic execution times of Boolean circuits depend not only on the
multiplicative depth but also on the number of AND gates to be executed. The
results presented in Table 4 suggests that circuit optimization heuristics for HE
execution should consider other objectives complementary to solely the multi-
plicative depth. For example, even if the multiplicative depth, 9, of the adder
circuit found by our heuristic is smaller compared to the multiplicative depth,

360 P. Aubry et al.

Table 4. Run-time complexity of optimized circuits compared to initial ones, i.e. how
many times faster the execution of an optimized circuit will be.

Circuit Acceleration factor

This work Multi-start [9]

Lowest depth Best

adder 44.92 408.29 419.52

bar 1.17 1.17 1.00

div 10.98 40.26 7.66

hyp 2.47 2.47 1.02

log2 5.19 5.45 4.95

max 32.04 61.03 48.53

multiplier 15.68 17.46 18.70

sin 3.60 3.80 3.16

sqrt 0.31 2.05 1.19

square 105.81 109.34 97.10

arbiter 257.93 257.93 6.69

ctrl 2.80 2.80 2.82

cavlc 3.51 3.51 3.50

dec 1.00 1.00 1.00

i2c 5.16 5.16 3.93

int2float 3.93 3.93 3.95

mem ctrl 7.43 7.43 6.32

priority 3.40 3.40 2.69

router 3.50 3.50 3.40

voter 1.47 1.47 1.47

11, of the same circuit from [9] the acceleration factor of our circuit HE execu-
tion is 10 times smaller (44.92 vs 419.52). The homomorphic execution of the
optimized circuit will be slower than a circuit with a larger multiplicative depth.
The best run-time complexity is obtained by our algorithm for a multiplicative
depth of 12. Thus, the ratio is below but close the acceleration factor obtained
by [9] (408.29 vs 419.52). For several other examples such as sqrt, div or max,
the acceleration factor is much higher when choosing the Boolean circuit with
the best acceleration ratio.

5 Conclusion and Perspectives

In this work, we proposed an improved method for minimizing the multiplica-
tive depth of Boolean circuits. In order to do so, we introduced new advanced
operators for rewriting critical paths and cones. The presented heuristic is based

Improved Heuristic for Multiplicative Depth Minimization 361

on these rewriting operators. The multiplicative depth of Boolean circuits is
reduced by searching for a set of reducible cones and then rewriting them. This
heuristic gives better results compared to the method from [9] in terms of mul-
tiplicative depth and execution time. For a majority of benchmarks we have
obtained smaller multiplicative depth circuits within a much smaller computa-
tional budget. We have also asymptotically demonstrated that, in the context of
an homomorphic execution of Boolean circuits, the minimization of multiplica-
tive depth is beneficial only if the number of newly created AND gates is below
a threshold.

We recall that Boolean circuit execution is a particular case of ring-based
somewhat homomorphic encryption schemes where a binary plaintext space is
employed. More generally, somewhat HE schemes allow to execute arbitrary
arithmetic circuits (with a predefined multiplicative depth) over a finite field
Fpk . The heuristic proposed in this work, as well as the one from [9], can be
easily adapted to minimize the multiplicative depth of arithmetic circuits. Many
more applications of somewhat HE which use other than binary plaintext space
exist and will benefit from these optimization heuristics.

Some further improvements of the heuristic are envisaged as perspectives. For
example, the trade-off between reduction of multiplicative depth and the number
of newly created AND gates must be made more precise in the context of HE
execution. An interesting approach would be to determine a budget of AND
gates to be created at each iteration of our algorithm. Indeed, we can compute
the cost, in terms of number of newly added AND gates, of a cone transformation
before performing it. Another approach would be to try to minimize the number
of AND gates between two iteration of our heuristic.

In the literature, some HE implementations of algorithms with a low multi-
plicative depth and small number of AND gates can be found but with a huge
amount of XOR gates [8]. In such circuits, the computational time and the
influence on ciphertext noise of XOR gates must be taken into account too. An
interesting perspective would be to measure the noise increase incurred by the
homomorphic execution of a Boolean circuit, and, to propose heuristics which
try to optimize this noise instead of the multiplicative depth (or an estimation
of the acceleration factor).

References

1. Amarú, L., Gaillardon, P.E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS) (2015)

2. Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of bootstrap-
ping in circuits. In: SODA, pp. 2423–2433. SIAM (2017)

3. Berkeley Logic Synthesis and Verification Group: ABC: A System for Sequential
Synthesis and Verification. Release 30308. http://www.eecs.berkeley.edu/∼alanmi/
abc/, http://www.eecs.berkeley.edu

4. Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189.
Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 16

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu
https://doi.org/10.1007/11821069_16

362 P. Aubry et al.

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS 2012, pp. 309–325 (2012)

7. Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth cir-
cuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 5

8. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

9. Carpov, S., Aubry, P., Sirdey, R.: A multi-start heuristic for multiplicative depth
minimization of boolean circuits. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.)
IWOCA 2017. LNCS, vol. 10765, pp. 275–286. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78825-8 23

10. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: A compilation chain for privacy pre-
serving applications. In: Proceedings of the 3rd International Workshop on Security
in Cloud Computing, SCC 2015, pp. 13–19 (2015)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

12. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing STOC 2009, pp.
169–178 (2009)

17. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

19. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-45741-3_5
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-10433-6_1

Improved Heuristic for Multiplicative Depth Minimization 363

20. Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic
circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol.
7862, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41320-9 13

21. Paik, D., Reddy, S., Sahni, S.: Deleting vertices to bound path length. IEEE Trans.
Comput. 9, 1091–1096 (1994)

22. Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in fully
homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS,
vol. 9566, pp. 25–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31301-6 2

23. Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-
1 23

24. Svensson, O.: Hardness of vertex deletion and project scheduling. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol.
7408, pp. 301–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32512-0 26

25. Wernick, W.: Complete sets of logical functions. Trans. Am. Math. Soc. 51(1),
117–132 (1942)

https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-642-32512-0_26
https://doi.org/10.1007/978-3-642-32512-0_26

Better Bootstrapping for Approximate
Homomorphic Encryption

Kyoohyung Han1(B) and Dohyeong Ki2

1 Coinplug Inc., Seongnam-si, Republic of Korea
kyoohyunghan@coinplug.com

https://kyoohyunghan.github.io
2 Seoul National University, Seoul, Republic of Korea

wooki7098@snu.ac.kr

Abstract. After Cheon et al. (Asiacrypt’ 17) proposed an approxi-
mate homomorphic encryption scheme, HEAAN, for operations between
encrypted real (or complex) numbers, the scheme is widely used in a
variety of fields with needs on privacy-preserving in data analysis. After
that, a bootstrapping method for HEAAN is proposed by Cheon et al.
(Eurocrypt’ 18) with modulus reduction being replaced by a sine func-
tion. In this paper, we generalize the Full-RNS variant of HEAAN proposed
by Cheon et al. (SAC, 19) to reduce the number of temporary moduli
used in key-switching. As a result, our scheme can support more depth
computations without bootstrapping while ensuring the same level of
security.

We also propose a new polynomial approximation method to evaluate
a sine function in an encrypted state, which is specialized for the boot-
strapping for HEAAN. Our method considers a ratio between the size of a
plaintext and the size of a ciphertext modulus. Consequently, it requires
a smaller number of non-scalar multiplications, which is about half of
the Chebyshev method.

With our variant of the Full-RNS scheme and a new sine evalua-
tion method, we firstly implement bootstrapping for a Full-RNS variant
of approximate homomorphic encryption scheme. Our method enables
bootstrapping for a plaintext in the space C

16384 to be completed in 52 s
while preserving 11 bit precision of each slot.

Keywords: Homomorphic encryption · Bootstrapping

1 Introduction

After the Gentry’s first blueprint for a fully homomorphic encryption scheme
[9], homomorphic encryption is regarded as one of the most important tools for
privacy-preserving. In various applications that need privacy-protection, homo-
morphic operations between encrypted real number data are necessary. In 2017,

K. Han—This work was done when the first author was in Seoul National University
(SNU).

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 364–390, 2020.
https://doi.org/10.1007/978-3-030-40186-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_16&domain=pdf
http://orcid.org/0000-0002-8410-3386
http://orcid.org/0000-0003-4776-5783
https://doi.org/10.1007/978-3-030-40186-3_16

Better Bootstrapping for HEAAN 365

Cheon et al. proposed a new homomorphic encryption scheme for efficient opera-
tions between real number data, which is called HEAAN [8]. Through homomorphic
operations on encrypted real numbers, a lot of methodologies, such as logistic
regression and Genome-side association study (GWAS), can be done in encrypted
states [4,11,13,14,16–18].

Recently, a lot of data analysis tools and methods come out into the world,
and they become more and more complicated. For examples, machine-learning
algorithms such as convolutional neural network (CNN) and deep neural network
(DNN) are extremely complicated. Therefore, modern data analysis algorithms
require faster homomorphic operations and huge depth, which makes them hard
to display their all ability in encrypted states without bootstrapping, since only
a limited number of levels is provided by homomorphic encryption schemes. For
example, since nGraph-HE [3], a deep-learning prediction on encrypted data,
does not use bootstrapping, it only supports a limited number of layers. Also, in
the case of logistic regression, solutions without bootstrapping [16,18] support
only a small number of iterations. For these reasons, importance of efficient
homomorphic operations and bootstrapping become greater nowadays.

To solve these problems, a full-RNS variant of HEAAN (HEAAN-RNS) is proposed
by Cheon et al. [6]. The key idea of their work comes from the fast base conversion
in the full-RNS variant of the FV scheme [2]. By using the conversion, they can
expand and reduce basis without going through Chinese Remainder Theorem
(CRT) composition process. Since it does not need to use big integer arithmetic,
overall speed of its homomorphic operations becomes 4 to 10 times faster than
that of the original HEAAN scheme. After that, SEAL includes an implementation of
this scheme in version 3.0. To avoid using temporary moduli, they combined the
bit-decomposition technique and the RNS-decomposition technique1. Recently,
an improved method for the fast base conversion is introduced in [11], which
requires floating point operations to predict quotient parts.

In the case of the bootstrapping for HEAAN, the first method is proposed by
Cheon et al. [7] with modulus reduction being replaced by a sine function. More
precisely, they approximate the modulo q operation by the function q

2π sin(2πx
q).

Since HEAAN is an approximate homomorphic encryption scheme, additive noise
in bootstrapping, which is not that big, is acceptable. To evaluate the function
q
2π sin(2πx

q) efficiently, they apply the Taylor approximation method to the func-
tion in a small range and use double-angle formula. This method requires a small
number of homomorphic multiplications, but it needs the degree of an approx-
imate polynomial to be large (= O(log Kq)), when x/q ∈ (−K,K). After that,
improved methods for linear transformation in the bootstrapping are suggested
in [5,12], and another method for sine evaluation via the Chebyshev polynomial
approximation is proposed in [5]. By using the Chebyshev polynomial approx-
imation, they reduce the degree of an approximate polynomial a lot without
increasing the number of homomorphic multiplications much.

1 After version 3.2, they use one temporary modulus instead of bit-decomposition as
in [17].

366 K. Han and D. Ki

In this paper, to make the bootstrapping more practical, we generalize the
Full-RNS variant of HEAAN and improve a sine evaluation method for the boot-
strapping. Moreover, we implement our generalized HEAAN-RNS scheme and it’s
bootstrapping using a newly computed approximate polynomial which is opti-
mized for the bootstrapping.

1.1 Our Contribution

• We suggest a generalized key-switching method for the Full-RNS variant of
HEAAN. We combine the RNS-decomposition method in [2] and the tempo-
rary modulus technique in [10]. Compared to the HEAAN-RNS scheme, we use
a smaller number of temporary moduli while consuming lower complexity. As
a result, our scheme requires about half complexity for homomorphic multi-
plication even with a larger security parameter.

• We propose a method which considers the size of a message in sine evaluation.
More precisely, we evaluate a sine function by considering a ratio between
the size of a message and the size of a ciphertext modulus. As a result, our
method only requires Max(log K + 3 + 1

K (log ε − 1), log log q) levels, where ε
is a ratio between the size of a message and the size of a ciphertext modulus.
Furthermore, by using cosine instead of sine, we combine double-angle formula
for cosine with our approximation method. As a result, the number of non-
scalar multiplications is almost reduced by half compared to the previous
work [5].

• We put every technique together and implement the bootstrapping for our
Full-RNS variant of HEAAN. As a result, our bootstrapping only takes 52 s for
a plaintext in the space C

16384 while preserving 11 bit precision of each slot.

1.2 Road Map

In Sect. 2, we briefly introduce the Chebyshev approximation, the HEAAN-RNS
scheme with its fast base conversion, and the bootstrapping for HEAAN. In Sect. 3,
we discuss a generalized key-switching method for the Full-RNS variant of HEAAN.
In Sect. 4, we propose a better way of approximating a sine function for the
bootstrapping. In Sect. 5, we implement our Full-RNS variant of HEAAN and its
bootstrapping, and analyze results of our experiments. We complete the paper
with a suggestion of future works for improving the bootstrapping.

2 Preliminary

2.1 Chebyshev Approximation

For the range [a, b] and n > 0, choose n + 1 Chebyshev points {ti}1≤i≤n+1 as

ti =
b + a

2
+

b − a

2
· cos

(
2i − 1
2n + 2

π

)
.

Better Bootstrapping for HEAAN 367

For these points, the goal of the Chebyshev approximation of f(x) is to find the
degree n polynomial pn(t) satisfying pn(ti) = f(ti) for all 1 ≤ i ≤ n + 1. Due to
the property of the Chebyshev points, there exists some ψt ∈ [a, b] which makes
the following inequality hold for t ∈ [a, b].

||f(t) − pn(t)|| ≤ |f (n+1)(ψt)|
(n + 1)!

· 1
2n

·
(

b − a

2

)n+1

(1)

Note that the additional term 1
2n is the reason why the Chebyshev method is

much better than the Taylor approximation method when the degree n is large.

2.2 Full-RNS HEAAN

In this section, we introduce the fast base conversion in [2] and the HEAAN-RNS
scheme in [6]. By using the fast base conversion which does not require CRT
decomposition, we can keep ciphertexts of the HEAAN-RNS scheme in residue num-
ber systems (RNS) throughout homomorphic operations.

Fast Base Conversion. In the HEAAN-RNS scheme, a RNS representation

[a]C = (a(0), . . . , a(�−1)) ∈ Zq0 × · · · × Zq�−1

of an integer a with respect to ZQ can be easily converted into its RNS repre-
sentation with respect to ZP by the equation

ConvC→B([a]C) =

⎛
⎝�−1∑

j=0

[a(j) · q̂−1
j]qj

· q̂j (mod pi)

⎞
⎠

0≤i<k

,

where q̂j =
∏

j′ �=j qj′ ∈ Z, P =
∏k

i=0 pi and Q =
∏l−1

j=0 qj . Since a+Qe ∈ ZP for
some small e is given as a result of this conversion, it includes the noise which
can be ignored in the case of the HEAAN-RNS scheme. Even though the effect of
this noise is negligible, we can reduce its size further by adapting the algorithms
introduced in [11].

In [6], authors introduce two algorithms called ModUp and ModDown to expand
and to reduce a modulus space, respectively (Algorithm 1 and 2 in [6]):

ModUpC→D(·) :
�−1∏
j=0

Rqj
→

k−1∏
i=0

Rpi
×

�−1∏
j=0

Rqj

:[a]C → (ConvC→B([a]C), [a]C),

ModDownD→C(·) :
k−1∏
i=0

Rpi
×

�−1∏
j=0

Rqj
→

�−1∏
j=0

Rqj

:([a]B, [b]C) → ([b]C − ConvB→C([a]B)) · [P−1]C ,

368 K. Han and D. Ki

where D = {p0, . . . , pk−1, q0, . . . , q�−1}, B = {p0, . . . , pk−1}, C = {q0, . . . , q�−1},
and P =

∏k−1
i=0 pi. Note that ModUp expands the modulus space of a from C to D,

and ModDown reverts the modulus space of a to the original and divide its value
further by P =

∏
pi. These algorithms are used for modulus switching before

and after key-switching, respectively.

Scheme Description. In this section, K is a (2N)-th cyclotomic field
Q[X]/(XN +1) and R is its ring of integers (= Z[X]/(XN +1)) for a power-of-two
integer N . The residue ring modulo an integer q is denoted by Rq = R/qR.

Setup(q, L, η; 1λ). As a base integer q, a number of levels L, a bit precision η, and
a security parameter λ are given as inputs, we choose the followings according
to them.

• A power-of-two integer N .
• A secret key distribution χkey, an encryption key distribution χenc, and an

error distribution χerr over R.
• A basis D = {p0, . . . , pk−1, q0, q1, . . . , qL} for which qj/q ∈ (1 − 2−η, 1 + 2−η)

for 1 ≤ j ≤ L.

Next, we let B = {p0, . . . , pk−1}, C� = {q0, . . . , q�}, and D� = B∪C� for 0 ≤ � ≤ L.
Also, we let P =

∏k−1
i=0 pi, Q =

∏L
j=0 qj , p̂i =

∏
0≤i′<k,i′ �=i pi′ for 0 ≤ i < k, and

q̂�,j =
∏

0≤j′≤�,j′ �=j qj′ for 0 ≤ j ≤ � ≤ L. As the last step of Setup, we compute
the followings.

• [p̂i]qj
and [p̂−1

i]pi
for 0 ≤ i < k, 0 ≤ j ≤ L.

• [P−1]qj
=
(∏k−1

i=0 pi

)−1

(mod qj) for 0 ≤ j ≤ L.

• [q̂�,j]pi
and [q̂−1

�,j]qj
for 0 ≤ i < k, 0 ≤ j ≤ � ≤ L.

KSGen(s1, s2). Sample (a′(0), . . . , a′(k+L)) ← U
(∏k−1

i=0 Rpi
×∏L

j=0 Rqj

)
and an

error e′ ← χerr first. With secret polynomials s1, s2 ∈ R given as inputs, compute
the switching key swk by

(
swk(0) = (b′(0), a′(0)), . . . , swk(k+L) = (b′(k+L), a′(k+L))

)
∈

k−1∏
i=0

R2
pi

×
L∏

j=0

R2
qj

,

where b′(i) ← −a′(i) · s2 + e′ (mod pi) for 0 ≤ i < k and b′(k+j) ← −a′(k+j) · s2 +
[P]qj

· s1 + e′ (mod qj) for 0 ≤ j ≤ L.

KeyGen. First, sample s ← χkey and set the secret key as sk ← (1, s) and the eval-

uation key as evk ← KSGen(s2, s). Next, sample (a(0), . . . , a(L)) ← U
(∏L

j=0 Rqj

)
and e ← χerr and set the public key as

pk ←
(
pk(j) = (b(j), a(j)) ∈ R2

qj

)
0≤j≤L

,

Better Bootstrapping for HEAAN 369

where b(j) ← −a(j) · s + e (mod qj) for 0 ≤ j ≤ L.

Encpk(m). First, sample v ← χenc and e0, e1 ← χerr. With a plaintext m ∈ R

given as a input, obtain the ciphertext ct =
(
ct(j)

)
0≤j≤L

∈ ∏L
j=0 R2

qj
, where

ct(j) ← v · pk(j) + (m + e0, e1) (mod qj) for 0 ≤ j ≤ L.

Decsk(ct). Given a ciphertext ct =
(
ct(j)

)
0≤j≤�

∈ ∏l
j=0 R2

qj
, compute 〈ct(0), sk〉

(mod q0).

Add(ct, ct′). Given two ciphertexts ct =
(
ct(0), . . . , ct(�)

)
, ct′ =

(
ct′(0),

. . . , ct′(�)
) ∈ ∏�

j=0 R2
qj

, obtain the ciphertext ctadd =
(
ct

(j)
add

)
0≤j≤�

, where

ct
(j)
add ← ct(j) + ct′(j) (mod qj) for 0 ≤ j ≤ �.

Multevk(ct, ct′). Given two ciphertexts ct =
(
ct(j) = (c(j)0 , c

(j)
1)

)
0≤j≤�

and ct′ =(
ct′(j) = (c′(j)

0 , c
′(j)
1)

)
0≤j≤�

, perform the following computations in turn and

obtain the ciphertext ctmult ∈ ∏�
j=0 R2

qj
.

• d
(j)
0 ← c

(j)
0 c

′(j)
0 (mod qj), d

(j)
1 ← c

(j)
0 c

′(j)
1 + c

(j)
1 c

′(j)
0 (mod qj), and

d
(j)
2 ← c

(j)
1 c

′(j)
1 (mod qj) for 0 ≤ j ≤ �.

• ModUpC�→D�
(d(0)2 , . . . , d

(�)
2) = (d̃(0)2 , . . . , d̃

(k−1)
2 , d

(0)
2 , . . . , d

(�)
2).

• c̃t = (c̃t(0) = (c̃(0)0 , c̃
(0)
1), . . . , c̃t(k+�) = (c̃(k+�)

0 , c̃
(k+�)
1)) ∈ ∏k−1

i=0 R2
pi

×∏�
j=0 R2

qj
, where c̃t

(i) = d̃
(i)
2 · evk(i) (mod pi) and c̃t

(k+j) = d
(j)
2 · evk(k+j)

(mod qj) for 0 ≤ i < k, 0 ≤ j ≤ �.
•
(
ĉ
(0)
0 , . . . , ĉ

(�)
0

)
← ModDownD�→C�

(
c̃
(0)
0 , . . . , c̃

(k+�)
0

)
and

(
ĉ
(0)
1 , . . . , ĉ

(�)
1

)
←

ModDownD�→C�

(
c̃
(0)
1 , . . . , c̃

(k+�)
1

)
.

• ctmult = (ct(j)mult)0≤j≤�, where ct
(j)
mult ← (ĉ(j)0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1) (mod qj) for

0 ≤ j ≤ �.

RS(ct). Given a ciphertext ct =
(
ct(j) = (c(j)0 , c

(j)
1)

)
0≤j≤�

∈ ∏�
j=0 R2

qj
, compute

the ciphertext ct′ ←
(
ct′(j) = (c′(j)

0 , c
′(j)
1)

)
0≤j≤�−1

∈ ∏�−1
j=0 R2

qj
, where c

′(j)
i ←

q−1
� ·

(
c
(j)
i − c

(�)
i

)
(mod qj) for i = 0, 1 and 0 ≤ j < �.

2.3 Bootstrapping for HEAAN

In this section, we briefly describe the overall process of the bootstrapping for
HEAAN suggested in [7], and the improvements introduced in [5,12]. As in the
previous section, we let R = Z[X]/(XN + 1) for a power-of-two integer N and
Rq = R/qR. For a ∈ Zq, assign a the unique integer, which is equivalent to a
(mod q) and is contained in Z ∩ (−q/2, q/2], and denote it by [a]q. Extend this
definition to Rq by applying it component-wisely.

370 K. Han and D. Ki

Let ct be a ciphertext of m(X) relative to the secret key sk and the ciphertext
modulus q. Note that m(X) = [〈ct, sk〉]q. The goal of the bootstrapping is to find
an encryption of m(X) with a bigger ciphertext modulus. In other words, we
hope to find ct′ and a modulus Q > q satisfying m(X) = [〈ct′, sk〉]Q. The overall
process can be divided into four steps; Modulus Raising, Coefficients to Slots, Sine
Evaluation and Slots to Coefficients.

Modulus Raising. Consider a polynomial t(X) = 〈ct, sk〉 of deg < N . Under
the assumption that the message m is much smaller than the ciphertext modulus
q, t(X) can be represented as t(X) = qI(X) + m(X), where I(X) ∈ R and all
the coefficients of I are bounded by a constant K which is determined by the
secret key distribution of the scheme. If we choose Q0
 q, then it follows that
t(X) = [〈ct, sk〉]Q0 . Therefore, ct can be regarded as an encryption of t(X) with
respect to the modulus Q0.

Coefficients to Slots. Before introducing about this step, we need to recall
encoding and decoding procedures of HEAAN. Let ξ be a primitive 2N -th root of
unity and ξi = ξ5i for 0 ≤ i < N/2. Since 5 has the order N/2 modulo 2N and
spans Z

∗
2N with −1, {ξi, ξ̄i : 0 ≤ i < N/2} is the set of all primitive 2N -th roots

of unity. Now, we can define a decoding map τ : R[X]/(XN + 1) → C
N/2 by

τ(m(X)) = (m(ξj))0≤j<N/2. We say m(X) has values m(ξ0), · · · ,m(ξN
2 −1) in its

slots or m(X) is the plaintext of (m(ξj))0≤j<N/2 in this case. If we identifying
each element m(X) = m0 + m1X + · · · + mN−1X

N−1 of R[X]/(XN + 1) with
m = (m0, · · · ,mN−1) ∈ R

N , the decoding map can be considered as a linear
transformation from R

N to C
N/2, which is characterized by the matrix

U =

⎛
⎜⎜⎜⎜⎝

1 ξ0 ξ20 · · · ξN−1
0

1 ξ1 ξ21 · · · ξN−1
1

...
...

...
. . .

...
1 ξN

2 −1 ξ2N
2 −1

· · · ξN−1
N
2 −1

⎞
⎟⎟⎟⎟⎠ .

With this identification, the decoding process can be simply written as m �→
U · m for m ∈ R

N . Moreover, an encoding map is just an inverse map of the
decoding map, and it can be checked that the encoding process can be written
as z �→ 1

N (ŪT z + UT z̄) for z ∈ C
N/2.

Given a polynomial t(X) = t0+t1X+· · ·+tN−1X
N−1 from the previous step,

this step aims to get the ciphertext whose corresponding plaintext has values
t0, · · · , tN−1 in its slots. Since each plaintext can have at most N/2 values, it
is impossible that just one plaintext has those values. Thus, we will find two
ciphertexts that correspond to plaintexts of the vectors z1 = (t0, · · · , tN

2 −1) and
z2 = (tN

2
, · · · , tN−1), respectively.

Better Bootstrapping for HEAAN 371

Let z = τ(t) ∈ C
N/2 be the vector that corresponds to the ciphertext ct. If

we divide the matrix U into following two square matrices

V =

⎛
⎜⎜⎜⎜⎜⎝

1 ξ0 · · · ξ
N
2 −1
0

1 ξ1 · · · ξ
N
2 −1
1

...
...

. . .
...

1 ξN
2 −1 · · · ξ

N
2 −1

N
2 −1

⎞
⎟⎟⎟⎟⎟⎠

and W =

⎛
⎜⎜⎜⎜⎜⎝

ξ
N
2
0 ξ

N
2 +1
0 · · · ξN−1

0

ξ
N
2
1 ξ

N
2 +1
1 · · · ξN−1

1
...

...
. . .

...

ξ
N
2

N
2 −1

ξ
N
2 +1

N
2 −1

· · · ξN−1
N
2 −1

⎞
⎟⎟⎟⎟⎟⎠

,

it follows that z1 = 1
N (V̄T z+VT z̄) and z2 = 1

N (W̄T z+WT z̄). These equations
mean that z1 and z2 can be obtained by applying linear transformations to z,
and thus we can also get corresponding ciphertexts by applying the same linear
transformations homomorphically to ct.

Sine Evaluation. This step is the hardest part of the bootstrapping for
HEAAN. This step aims to perform the function f(t) = [t]q homomorphically.
More precisely, given two ciphertexts ct1 and ct2 corresponding to z1 and z2,
respectively, we hope to obtain ciphertexts corresponding to the plaintexts of
z′
1 = (m0, · · · ,mN

2 −1) and z′
2 = (mN

2
, · · · ,mN−1), where tj = qIj + mj for

0 ≤ j < N , by applying the function f to ct1 and ct2. However, the problem
is that the function f is hard to approximate by a polynomial. Therefore, the
function g(t) = q

2π sin(2πt
q) is used as an approximation of f . Since t can be

represented as t = qI + m, where |I| < K and m � q, the difference between
f(t) and g(t) is given as

|f(t) − g(t)| =
q

2π

∣∣∣∣2πm

q
− sin(

2πm

q
)
∣∣∣∣ ≤ q

2π
· 1
6

∣∣∣∣2πm

q

∣∣∣∣
3

,

which is small enough due to m � q. Also, since g is a smooth function, it is
easier to approximate it by a polynomial. For these reasons, the sine function
g is a good approximation of the modulus reduction function f , and the main
interest of this step becomes how to approximate g by a polynomial.

The ways to approximate g by a polynomial differ in previous works [5,7]. In
[7], to evaluate sin(t), they first scale down t by a power of two to make it locate
close enough to the origin, and they use the Taylor polynomial approximation
for the evaluation of sine in a small interval around the origin. After that, they
compute the original sine value at t by using double angle formula. On the other
hand, in [5], they use the Chebyshev polynomial approximation instead of the
Taylor approximation.

Slots to Coefficients. This is the final step, and it is just a reverse process
of Coefficients to Slots. Given two ciphertexts ct′1 and ct′2 corresponding to z′

1 =
(m0, · · · ,mN

2 −1) and z′
2 = (mN

2
, · · · ,mN−1), respectively, the goal of this step is

to find the ciphertext whose plaintext is m(X) = m0+m1X + · · ·+mN−1X
N−1.

372 K. Han and D. Ki

If we let z′ = τ(m), it follows that z′ = Um = Vz′
1 + Wz′

2. Therefore, we
can get the ciphertext that we want by taking the same linear combination
homomorphically to ct′1 and ct′2. As a result, through the bootstrapping process,
we can get a ciphertext ct′ which is an encryption of m(X) relative to a ciphertext
modulus Q, which is smaller than Q0, but much bigger enough than q.

Remark 1. Improved linear transformation. Applying linear transformation to a
ciphertext with n slots originally requires O(n) homomorphic operations, and
it can be improved a lot by using special structure of the matrix U [5,12]. In
[5,12], they decompose the linear transformation part (including “Coefficients
to Slots” and “Slots to Coefficients”) and reduce the complexity to O(r logr n)
while consuming O(logr n) depth.

3 Full-RNS Variant of HEAAN

Before starting this section, we note that we use the same notation as in Sect. 2.
In the HEAAN-RNS scheme, since the decomposition methods are not used for
key-switching, it only requires one evaluation key for key-switching. Also, since
P =

∏k
i=0 pi should be much bigger than Q =

∏L−1
j=0 qj to effectively reduce

the size of noise added through key-switching, k, which indicates the number
of temporary moduli, should be L2. On the other hand, SEAL (v 3.3) uses
one temporary modulus and the RNS-decomposition technique, which will be
introduced later, to perform key-switching. In other words, they set the number
of temporary moduli k to 1.

Using large k (k L) and small k (k = 1) has pros and cons, respectively. By
using large k L, we only need one evaluation key for key-switching, and thus
smaller complexity for key-switching is required. However, since the security of
the scheme depends on the largest ciphertext modulus

∏k−1
i=0 pi ·∏L

i=0 qi, the bit
size of

∏k−1
i=0 pi ·

∏L
i=0 qi should be fixed when we assume the same security level.

Therefore, using large k L forces us to use a smaller number of qj ’s, and it
follows that the less depth computations are supported by the scheme.

As noted above, there is a trade-off between the complexity of key-switching
and the number of levels supported by the scheme. Therefore, in many cases,
it is better to choose an appropriate value of k between 1 and L rather than
using extremely large k (k L) and extremely small k (k = 1). However,
the HEAAN-RNS scheme and SEAL (v 3.3) only support k L and k = 1 case,
respectively. Hence, the main goal of our scheme is to propose a generalized
HEAAN-RNS scheme, which also includes the scheme of SEAL (v.3.3), to make it
possible to use optimal k for each situation.

2 In practice, pi’s are chosen to have maximum sizes within the word size (<64 bits).
On the other hand, sizes of qj ’s are depend on the precision of applications, and
usually they are 40–45 bits.

Better Bootstrapping for HEAAN 373

Full-RNS Decomposition. First, we will introduce the RNS-decomposition
technique in [2]. The RNS-decomposition method can be represented by the
following equations:

RNS-DecompC(a(x)) = ([a(x) · q̂0
−1]q0 , . . . , [a(x) · q̂L

−1]qL
) ∈ RL+1

RNS-PowerC(b(x)) = (b(x) · q̂0, b(x) · q̂1, . . . , b(x) · q̂L) ∈ RL+1,

where C = {q0, q1, . . . , qL}, q̂i =
∏

j �=i qj and a(x), b(x) ∈ R. Here, f(x) · c
indicates the multiplication between each coefficient of polynomial f(x) and
c. Those functions work similarly as the bit-decomposition and power of two
technique:

a(x) · b(x) = 〈RNS-DecompC(a(x)),RNS-PowerC(b(x))〉 ∈ RQ,

where Q =
∏L

i=0 qi. Since the sizes of coefficients of RNS-DecompC(a(x)) are
less than max0≤i≤L(qi) � Q, the functions can be used for key-switching. More
precisely, we can replace the multiplication of a(x) and s(x)2 in key-switching
with

〈RNS-DecompC(a(x)),RNS-PowerC(s(x)2) + Encs(x)(0)〉 mod Q.

Here, we add the term Encs(x)(0) not to reveal information on s(x)2. In this
method, since both vectors have length L+1, the complexity of the inner product
is quadratic to L, which is not favorable. Furthermore, the noise growth through
key-switching is about ||efresh|| · max(||qi||), which is quite large compared to the
size of a plaintext.

Overview of Idea. To solve those problems stated above, we will reduce the
length of the vectors and control the noise growth using temporary moduli3.
First, we use the partial products {Qj}0≤j<dnum = {∏(j+1)α−1

i=jα qi}0≤j<dnum, where
α = (L + 1)/dnum for a pre-fixed parameter dnum, instead of using {qi}0≤i≤L

in the RNS-decomposition. Then, it follows that P =
∏k−1

i=0 pi only needs to be
bigger than max0≤j<dnum Qj to effectively reduce the size of noise added through
key-switching. Therefore, we can set the number of temporary moduli k to α.
In addition, we apply the fast base conversion to avoid CRT composition in
re-linearization (key-switching in multiplication). The brief sketch about our re-
linearization method can be represented as follows:

0. For k = (L + 1)/dnum, set an evaluation key as evk = RNS-PowerC′(s(x)2) +
Encs(x)(0) mod PQ, where P =

∏k−1
i=0 pi, Q =

∏L
i=0 qi and C′ =

{Qj}0≤j<dnum.

3 In the case of SEAL v3.2, they use the bit-decomposition technique with the RNS-
decomposition to reduce the noise growth. But, this method also has a drawback.
It increases the length of the public key vector for key-switching further, which is
directly related to the complexity of the process.

374 K. Han and D. Ki

1. For a given ciphertext (c(x), b(x), a(x)) such that c(x) + b(x) · s(x) + a(x) ·
s(x)2 = m + e mod Q, we compute

(b′(x), a′(x)) = 〈RNS-DecompC′(a(x)), evk〉 mod PQ.

In RNS-DecompC′(a(x)) mod PQ computation, we avoid CRT composition
using the fast base conversion.

2. We apply modulus-switching using ModDown to reduce the size of noise:

(b′′(x), a′′(x)) = �(b′(x), a′(x))/P � mod Q

3. Return (c(x) + b′′(x), b(x) + a′′(x)).

Since we just make differences in key-switching, we only need to revise
KSGen(s1, s2), KeyGen, and Multevk(ct, ct′) in Sect. 2. We remark that the case
of dnum = 1 is same as the HEAAN-RNS scheme. Using larger dnum increases the
number of evaluation keys, but it reduces the dimension of ring or increases the
parameter L when we assume the same level of security. Detailed comparisons
with HEAAN-RNS and SEAL (v.3.3) are contained in Sect. 3.2.

3.1 Scheme Description

We will focus on differences between the HEAAN-RNS scheme and ours. The other
parts which are not mentioned in this section are same as the scheme in Sect. 2.
In this section, let

C′ = {Qj}0≤j<dnum =

⎡
⎣(j+1)α−1∏

i=jα

qi

⎤
⎦
0≤j<dnum

for a given integer dnum > 0 and α = (L + 1)/dnum. Also, let Q̂j =
∏

i�=j Qi and

P =
∏k−1

i=0 pi, and assume |P | ≥ max0≤j<dnum(Qj).

KSGen(s1, s2, dnum). For given secret polynomials s1, s2 ∈ R, sample (a′(0), . . . ,

a′(k+L)) ← U
(∏k−1

i=0 Rpi
×∏L

j=0 Rqj

)
and sample an error e′ ← χerr. Output

switching keys {swkj}0≤j<dnum as

(
swk

(0)
j = (b′(0)

j , a′(0)
j), . . . , swk

(k+L)
j = (b′(k+L)

j , a′(k+L)
j)

)
∈

k−1∏
i=0

R2
pi

×
L∏

i=0

R2
qi

,

where b′(i)
j ← −a′(i)

j · s2 + e′ (mod pi) for 0 ≤ i < k and b′(k+i)
j ← −a′(k+i)

j · s2 +
[P]qi

· [Q̂j]qi
· s1 + e′ (mod qi) for 0 ≤ i ≤ L.

KeyGen. First, sample s ← χkey and set a secret key as sk ← (1, s) and evaluation
keys as {evki}0≤j<dnum ← KSGen(s2, s).

For convenience, let Ci = {q0, . . . , qi}, C′
i = {qiα, . . . , q((i+1)α−1} and let Di =

(∪0≤j<iC′
j) ∪ {p0, . . . , pk−1}.

Better Bootstrapping for HEAAN 375

Multevk(ct, ct′). Given two ciphertexts ct =
(
ct(j) = (c(j)0 , c

(j)
1)

)
0≤j≤�

and ct′ =(
ct′(j) = (c′(j)

0 , c
′(j)
1)

)
0≤j≤�

, perform the followings and return the ciphertext

ctmult ∈ ∏�
j=0 R2

qj
.

1. For 0 ≤ j ≤ �, compute

d
(j)
0 ← c

(j)
0 c

′(j)
0 (mod qj),

d
(j)
1 ← c

(j)
0 c

′(j)
1 + c

(j)
1 c

′(j)
0 (mod qj),

d
(j)
2 ← c

(j)
1 c

′(j)
1 (mod qj).

2. RNS-Decompose:
2-1. Zero-padding and Split: Let β = �(� + 1)/α�,

d′(i)
2,j =

{
d
(jα+i)
2 · [Q′]qjα+i

if jα + i ≤ �

0 otherwise

for 0 ≤ i < α, 0 ≤ j < β and Q′ =
∏αβ−1

i=�+1 qi.
2-2. RNS-Decompose:

d′(i)
2,j ← d′(i)

2,j · [Q̂−1
j]qjα+i

for 0 ≤ i < α and 0 ≤ j < β with jα + i ≤ �.
3. Modulus-Raise: compute d̃2,j = ModUpC′

j→Dβ
(d′

2,j).
4. Inner Product: compute

c̃t = (c̃t(0) = (c̃(0)0 , c̃
(0)
1), . . . , c̃t(k+�) = (c̃(k+�)

0 , c̃
(k+�)
1)) ∈

k−1∏
i=0

R2
pi

×
�∏

j=0

R2
qj

,

where c̃t
(i) =

∑β−1
j=0 d̃

(i)
2,j · evk

(i)
j (mod pi) for 0 ≤ i < k and c̃t

(k+i) =∑β−1
j=0 d̃

(k+i)
2,j · evk

(k+i)
j (mod qi) for 0 ≤ i < αβ.

5. Modulus-Down: compute(
ĉ
(0)
0 , . . . , ĉ

(�)
0

)
← ModDownDβ→C�

(
c̃
(0)
0 , . . . , c̃

(k+αβ−1)
0

)
,(

ĉ
(0)
1 , . . . , ĉ

(�)
1

)
← ModDownDβ→C�

(
c̃
(0)
1 , . . . , c̃

(k+αβ−1)
1

)
.

6. Output the ciphertext ctmult = (ct(j)mult)0≤j≤�, where ct
(j)
mult ← (ĉ(j)0 +d

(j)
0 , ĉ

(j)
1 +

d
(j)
1) (mod qj) for 0 ≤ j ≤ �.

Figure 1 shows the overall process of our multiplication algorithm from Step
2 to Step 4, which are the key parts of our algorithm. The gray area in Fig. 1
indicates temporary moduli {p0, p1, . . . , pk−1}.

Remark 2 (Correctness). The correctness of our scheme is directly followed from
the correctness of ModUp, ModDown, RNS-Decomp, RNS-Power. Detailed proof for
the correctness and noise growth is contained in Appendix.

376 K. Han and D. Ki

Fig. 1. Overview of our algorithm from Step 2 to Step 5.

Remark 3 (Security). In our scheme, we change the key generation and the mul-
tiplication algorithm. A way of generating evaluation key is changed, but our
evaluation key is also an addition of information about secret key and encryp-
tion of zero. Therefore, the security of our scheme is also based on the Ring-LWE
problem (same as HEAAN-RNS).

Remark 4 (Quantization and Batching). The homomorphic encryption scheme
in Sect. 2 is described for a plaintext m(x) ∈ R = Z[X]/(XN + 1). To
encrypt a vector of complex numbers, we use an isomorphism between C

N/2

and R[X]/(XN + 1). Choose an isomorphism ρ : CN/2 → R[X]/(XN + 1) and
define Encode(m,Δ) = �Δ · ρ−1(m)� = m(x) ∈ R. The HEAAN-RNS scheme uses
the same scaling factor Δ for all levels by letting qi Δ for all i. However, this
method yields additional noise in Rescale process. Therefore, as in SEAL, we use
different scaling factors for each level, which means that we just regard Rescale
process as dividing scaling factor by qi.

3.2 Comparison

In this section, we compare our scheme with HEAAN-RNS and SEAL v3.3. We note
that the HEAAN-RNS scheme and SEAL v3.3 can be regarded as (dnum = 1)-case
and (dnum = L+1)-case of our scheme, respectively. Before comparison, we check
the complexity of the homomorphic multiplication of our scheme.

Complexity of Homomorphic Multiplication. We assume that cipher-
texts and evaluation keys are NTT (Number-theoretic transform) transformed in
advance. Also, we only count the number of multiplications in Zpi

or Zqi
for com-

plexity. The followings are complexity for each step of the multiplication. Here,
we ignore the last step which only needs some additions (no multiplication).

Step 1. This step computes tensor product of two vectors (with length 2). By per-
forming in the sense of Karatsuba multiplication, it only requires 3 polynomial
multiplications. Therefore, this step requires 3 Hadamard multiplications and 3
inverse NTT transformations for each ring Rqi

4: 3(� + 1)N + 3(� + 1)N log N .
4 In Step 1, inverse NTT transform is needed for the next step (modulus raising).

Better Bootstrapping for HEAAN 377

Step 2-2. Step 2-1 just rearranges the vector and zero-padding, which requires
no complexity, and the multiplications in Step 2-1 can be merged into the mul-
tiplications in Step 2-2. Hence, we can ignore this part. In Step 2-2, � modulus
multiplications are needed: � · N .
Step 3. ModUp requires n(m − n) multiplications for input vector size n and
output vector size m. Hence, the complexity for ModUpCj→Dβ

is α(αβ + k − α).
Since we have to perform it β times for each coefficient, the total complexity is
αβ(αβ + k − α)N .
Step 4. This step can be divided into the following 4 sub-steps:

1. NTT transform: we need to apply the NTT algorithm for each
{d̃(i)2,j}0≤i<k+αβ :

β(k + αβ)N log N

2. Hadamard Mult.: 2β(k + αβ)N .
3. Summation: there is no multiplication.
4. Inverse NTT transform: (k + αβ)N log N .

Step 5. ModDown requires m(n − m) multiplications for input vector size n and
output vector size m. Hence, the complexity for ModDownDβ→C�

is �(k +αβ − �).
Since we have to perform it for each coefficient, the total complexity of this step
is � · (k + αβ − �) · N .

If we set k to α and regard all parameters except k as constants, the total
complexity of the multiplication is approximately

N
{
(l + log N) · k + (2 + log N)l2 · (1/k)

}
+ (constant)

since α · β l. Hence, the total complexity is minimized when k =
√

2+log N
l+log N · l.

As a result, from the point of view of complexity, it is better to use proper k
between 1 and l.

Comparison. Now, we compare various parameter sets for our scheme, which
have different k values. First, Table 1 shows parameter sets with various k for
fixed �, and corresponding complexity of homomorphic multiplication. Note that
the first and the last row correspond to SEAL v3.3 and HEAAN-RNS scheme5,
respectively. Suppose that we need an optimal parameter set which has �+1 = 24
and ensures λ > 128. Then, it is better to set k to 8, which requires the lowest
complexity among the values that ensure enough security.

Table 2 shows parameter sets with various � and k for fixed log2 PQ, and cor-
responding complexity of homomorphic multiplication. As seen from the table,
HEAAN-RNS can only support depth 14 computation without bootstrapping. On
the other hand, SEAL v3.3 supports depth 28 computation, but it requires the
largest complexity and public key size for re-linearization. Since there is a trade-
off between supported depth computation and complexity, it is important to
choose proper k depending on the situation that we are in.
5 Here, SEAL v.3.3 and HEAAN-RNS indicate the scheme corresponding to each paper

and library.

378 K. Han and D. Ki

Table 1. Complexity of homomorphic multiplication for fixed �.

N � + 1 k log2 PQ λ log2(Total Complexity)

65536 24 1 1136 147.6 29.67 SEAL v3.3

2 1181 144.2 28.94

3 1227 141.3 28.60

4 1272 138.3 28.39

6 1363 132.4 28.16

8 1454 128.3 28.05 λ > 128

12 1635 118.2 27.96

24 2180 94.3 27.97 HEAAN-RNS

Table 2. Complexity of homomorphic multiplication for fixed log2 PQ and λ.

N log2 PQ λ � + 1 k log2(Total Complexity)

65536 1450 133.7 15 15 27.13 HEAAN-RNS

20 10 27.64

24 6 28.16

27 3 28.88

29 1 30.17 SEAL v3.3

4 Better Homomorphic Sine Evaluation

As mentioned in Sect. 2.3, the key part of the bootstrapping for HEAAN is a homo-
morphic evaluation of a sine function. In other words, the way to approximate a
sine function by a polynomial is important in the bootstrapping for HEAAN. Also,
all the previous works [5,7] can be simply represented by

[t]q q

2π
sin(2π

q t) p(t)

for some suitable polynomial p(t) ∈ R[X], and the difference between those
works [5,7] occurs in the step of approximating a sine function by a polynomial.

Recall that an input value t can be represented as t = qI+m for some |I| < K
and m � q. Hence, t

q locates close enough to some integer, and it is the reason
why the first approximation of the modulus operation with the sine function
is reasonable. However, all the previous works [5,7] do not use this property
in the second approximation. In other words, they just find a polynomial that
approximates a sine function well in a global sense. Therefore, there is a room
for finding a better approximate polynomial p(t) based on the property.

From now on, by scaling and shifting t, we approximate cos(2πt) instead of
sin(2πt

q). This enables us to use the hybrid method that combines polynomial
approximation and double angle formula. Now, the condition for an input t
changes to t ∈ ∪K−1

i=−K+1Ii, where Ii = [i − 1
4 − ε, i − 1

4 + ε].

Better Bootstrapping for HEAAN 379

4.1 Our Method

When a sufficiently smooth function is estimated by an interpolation polynomial,
an error, difference between a real value and an estimated value, can be simply
represented due to the following theorem.

Theorem 1 (polynomial interpolation). Let f be a function in Cn+1[a, b]
and pn be a polynomial of degree ≤n that interpolates the function f at n + 1
distinct points t0, t1, · · · , tn ∈ [a, b], i.e. pn(ti) = f(ti) for all 0 ≤ i ≤ n. Then,
for each t ∈ [a, b], there exists a point ψt ∈ [a, b] such that

f(t) − pn(t) =
f (n+1)(ψt)
(n + 1)!

·
n∏

i=0

(t − ti). (2)

Let pn(t) be the interpolation polynomial of degree ≤n that interpolates
cos(2πt) at n + 1 distinct points. Then, the error bound between cos(2πt) and
pn(t) can be computed through Eq. 2. Even though the term f(n+1)(ψt)

(n+1)! in Eq. 2
is hard to be estimated exactly, it is bounded by the constant when f is cos(2πt).
Thus, the error bound of polynomial approximation mainly depends on the other
term

w(t) =
n∏

i=0

(t − ti)

for pre-determined t0, t1, . . . , tn ∈ [a, b] which are called nodes. Therefore, we
need to choose {ti}1≤i≤n appropriately to minimize the maximum value of w(t)
in a specified domain of t. In the case of the Chebyshev method, the nodes are
chosen by ti = b+a

2 + b−a
2 · cos(2i−1

2n+2π) for 1 ≤ i ≤ n + 1 in the range [a, b], and
these nodes make the upper bound of w(t) in the whole interval 1

2n · (b−a
2)n+1

(which is (b−a
2)n+1 in the case of the Taylor approximation).

Although the Chebyshev method gives fairly good error bound in a global
sense, it is not appropriate for our purpose because it does not consider the
condition that t is near one of the points. Therefore, we focus on the bound of
w(t) for t ∈ ∪K−1

i=−K+1Ii, where Ii = [i − 1
4 − ε, i − 1

4 + ε], and propose a better
method for this setting.

Our Optimized Nodes. We choose nodes as the Chebyshev method in each
interval Ii = [i − 1

4 − ε, i − 1
4 + ε] for all −K < i < K. More precisely, in the

interval Ii, we choose di nodes ti,j = i − 1
4 + ε · cos

(
2j−1
2di

π
)

for 1 ≤ j ≤ di.
Let n =

∑
di − 1 and pn be the polynomial of degree ≤n that interpolates the

function cos(2πt) at n+1 distinct points ti,j (−K < i < K, 1 ≤ j ≤ di). In other
words, pn satisfies the following equation:

pn(ti,j) = cos(2πti,j) for − K < i < K, 1 ≤ j ≤ di

380 K. Han and D. Ki

Then, as in Eq. 1, we can deduce the following upper bound of ||w(t)||:

||w(t)|| ≤ 1
2di−1

· εdi ·
K−1−i∏

j=1

(j + ε)di+j ·
K−1+i∏

j=1

(j + ε)di−j ,

when t ∈ Ii = [i − 1
4 − ε, i − 1

4 + ε]. Therefore, || cos(2πt) − pn(t)|| = O(εdi)
on Ii, which means that the error bound decreases as ε, representing the ratio
between the size of a message and the size of a ciphertext modulus, gets smaller.
In contrast, the error between cos(2πt) and pn(t) obtained from the Chebyshev
method is bounded by (2π)n+1

(n+1)! · Kn+1

2n , which is not affected by ε. In sum, let
Mi = Maxt∈Ii

||w(t)||, then we obtain

|| cos(2πt) − pn(t)|| ≤ (2π)n+1

(n + 1)!
· Max{M−K+1,M−K+2, . . . ,MK−1} (3)

for t ∈ ∪K−1
i=−K+1Ii, where Ii = [i − 1

4 − ε, i − 1
4 + ε].

How to Choose d−K+1,...,dK−1
. For each integer i, we have to decide di, the

number of nodes in the interval Ii = [i − 1
4 − ε, i − 1

4 + ε], and it is done by the
following algorithmical way. We first initialize di = 1 for all i. With these di’s,
we compute each Mi and find the index that has a maximum Mi value. Then,
if i0 = argmaxMi, we increase di0 by 1. We repeat this process until the total
degree (=

∑
di − 1) becomes target degree.

Comparison. We conduct an experiment to compare our method and the
Chebyshev method. We compare the experimental error bound of our method
with that of the other method. Figure 2 shows experimental error bounds
between the function cos(2πt) and its approximate polynomials obtained from
each method. Figure 2(a) is obtained by fixing n = 76 and varying ε and Fig. 2(b)

2 4 6 8 10 12 14 16

−40

−30

−20

−10

0

− log2

lo
g 2

(||
f
−

p
n
||)

Chebyshev
Ours

(a) Fix n = 76 and vary

50 60 70 80 90

−50

−40

−30

−20

−10

0

n

lo
g 2

(||
f
−

p
n
||)

Chebyshev
Ours

(b) Fix log2 = −10 and vary n

Fig. 2. Error bounds log2(||f − pn||) for our optimized interpolation (K = 12).

Better Bootstrapping for HEAAN 381

is obtained by fixing log2 ε = −10 and varying n. Since we bound the term
f(n+1)(ψt)

(n+1)! in Eq. 2 by a constant, an exact error bound is smaller than the theo-
retical error bound explained above.

As seen in Fig. 2, our method far outperforms the Chebyshev method. For
fixed n = 76, for example, log2 value of the experimental error bound of ours
is about −25.6 when log2 ε = −10, but that of the Chebyshev method is about
−1.1 independent of ε. Also, for fixed log2 ε = −10, the degree of an interpolation
polynomial of the Chebyshev method needs to be greater than 103 to yield the
same level of the experimental error bound as the interpolation polynomial of
degree 76 of ours.

4.2 Homomorphic Evaluation of pn(t)

After we get an approximate polynomial of degree ≤n using our optimized
method, we need to evaluate a value of the function at t in a homomorphic
way. Naive approach is to compute ti for all i ∈ {0, 1, . . . , n} first and then eval-
uate pn(t) =

∑n
i=0 pi ·ti. Unfortunately, due to the un-stability of the coefficients,

this way of computation not only can yield a lot of numerical errors but also
make homomorphic evaluation difficult. Especially, extremely small pi values
make homomorphic evaluation inept since we need to multiply a huge modulus
to encrypt these values. To avoid this problem, we represent the polynomial with
the Chebyshev basis instead of ti’s.

The Chebyshev polynomials Ti’s on [−1, 1] are defined recursively by

T0(t) = 1, T1(t) = t,

Ti(t) = 2tTi−1(t) − Ti−2(t) for i ≥ 2

Then, Ti satisfies the equation Ti(cos θ) = cos(iθ) for all θ, thus |Ti(t)| ≤ 1 for
all |t| ≤ 1. Since the domain of our approximate polynomial is [−K,K], we use
T̃i(t) = Ti(t

K) instead of Ti for each i. Note that |T̃i(t)| ≤ 1 for all |t| ≤ K.
Since each T̃i is a polynomial of degree i, {T̃i}n

i=0 forms a basis for the
vector space of polynomials of degree ≤n. Hence, pn(t) can be represented by a
linear combination of {T̃i}n

i=1 as pn(t) =
∑n

i=0 ci · T̃i(t) for some c0, · · · , cn ∈ R.
Well, these ci values also can be un-stable as in the case of the original ti basis
representation. However, since |T̃i(t)| ≤ 1 for all |t| ≤ K, the term ci · T̃i(t)
with extremely small ci has little effect on the value of pn(t). Therefore, we
can simply ignore the term having extremely small ci, which not only causes
numerical errors but also makes the homomorphic evaluation inefficient.

382 K. Han and D. Ki

Algorithm 1. Baby-step Giant-step algorithm
1: Input : A polynomial of degree n, p =

∑n
i=0 ciTi.

2: Let m be the smallest integer satisfying 2m > n and l ≈ m/2.
3: Evaluate T2(t), T3(t) · · · , T2l(t) inductively.
4: Evaluate T2l+1(t) · · · , T2m−1(t) using the equation T2i(t) = 2Ti(t)

2 − 1.
5: Find polynomials q and r of degree < 2m−1 which satisfy p = q ·T2m−1 +r in forms

of a linear combination of Chebyshev basis.
6: Evaluate q(t) and r(t) recursively. (Repeat 5 with p being replaced by q and r until

the degree of a quotient and a remainder become smaller than 2l)
7: Evaluate p(t) with q(t), r(t) and T2m−1(t).
8: Output : p(t)

Next, we can use the Baby-step Giant-step algorithm (Algorithm 1) to
evaluate the polynomial pn(t). This algorithm enables us to evaluate pn(t) in
2
√

2n + 1
2 log2 n + O(1) non-scalar multiplications and �log2 n� depth consump-

tion. More precisely, with m the smallest integer satisfying 2m > n and l ≈ m/2,
we can evaluate pn(x) with 2l +2m−l +m− l−3 non-scalar multiplications while
consuming m depth.

Also, we can use the Paterson-Stockmeyer algorithm for Chebyshev polyno-
mials suggested in [5]. In [5], authors modify the original Paterson-Stockmeyer
algorithm [19] to evaluate polynomials represented in the Chebyshev basis. They
propose an algorithm that enables evaluating a polynomial of degree n repre-
sented in the Chebyshev basis with

√
2n + log2 n + O(1) non-scalar multiplica-

tions, see [5] for more details. By using this algorithm, we can evaluate pn(t)
with

√
2n + log2 n + O(1) non-scalar multiplications while consuming �log2 n�

depth. More precisely, with k ≈ √
n/2 and the smallest integer m satisfying

(2m − 1)k > n, we can evaluate pn(t) with 2m−1 + 2m + k − 4 non-scalar multi-
plications while consuming �log2 k� + m depth.

Even though the Paterson-Stockmeyer algorithm is asymptotically better
than the Baby-step Giant-step algorithm, it does not mean that the Paterson-
Stockmeyer algorithm outperforms the Baby-step Giant-step algorithm in a prac-
tical sense. The degree of an approximate polynomial that we use is not so big in
practical, and we can reduce it further by using the hybrid method which will be
introduced in the next section. Moreover, when the degree n is small, the effect
of the term log2 n becomes greater, especially in the Paterson-Stockmeyer algo-
rithm. In fact, the Baby-step Giant-step algorithm shows the better performance
based on our experiment when degree n is small. For these reasons, we use the
Baby-step Giant-step algorithm instead of the Paterson-Stockmeyer algorithm.

4.3 Hybrid Method

Recall that, in [7], authors scale down an input t by a power of two and use
double-angle formula to make it locate close enough to the origin before they

Better Bootstrapping for HEAAN 383

use the Taylor approximation. We can also apply this idea to our method simply
by using double angle formula of cosine6.

Suppose we scale down t by 2r before using our method and let t′ = t/2r.
We say the number of scaling is r in this case. Then, we need to approximate
cos(2πt′) based on the fact that t′ is contained in one of the intervals Ĩi =
[1
2r (i − 1

4 − ε), 1
2r (i − 1

4 + ε)]. Naturally, we choose di nodes in each interval Ĩi

by t̃i,j = 1
2r

(
i − 1

4 + ε · cos
(

2j−1
2di

π
))

for 1 ≤ j ≤ di and |i| < K to apply our

method. Then, we can see from Eq. 2 that all the terms in w(t) =
∏n

i=0(t − ti)
decrease by a factor of 2r compared to before, and thus degree n can be smaller
while ensuring the same level of error bounds as before. However, since the other
term 1/(n + 1)! is difficult to predict how it changes as n varies, it is hard to
predict an exact value of degree that yields the same level of error bounds as the
method without scaling.

We conduct an experiment to find the degree that gives the same level of
error bound as the original method (the method without scaling) for each num-
ber of scaling. The result of the experiment is given in Table 3. The first column
indicates the degree of approximate polynomials from the original method and
the other columns represents the minimum degree of approximate polynomials
that ensure the same level of error bounds for each number of scaling and cor-
responding depth consumption. Note that we need to consume �log2 n� depth
to evaluate pn(t) in a homomorphic way and require r more depth for double
angle formula for a cosine function when the number of scaling is r. As our
expectation, the degree of an approximate polynomial gradually decreases as
the number of scaling increases. However, even the coefficients of the Cheby-

Table 3. Minimum degree of an approximate polynomials to ensure the same level of
error bound for each number of scaling and corresponding depth consumption. (K = 12
and log2 ε = −10)

Degree Depth # of scaling

1 2 3

Degree Depth Degree Depth Degree Depth

76 7 49 6+1 31 5+2 24 5 + 3

86 7 57 6+1 40 6 + 2 28 5 + 3

96 7 65 7+1 45 6 + 2 34 6 + 3

106 7 72 7+1 51 6 + 2 38 6 + 3

116 7 80 7+1 57 6 + 2 43 6 + 3

126 7 88 7+1 63 6 + 2 49 6 + 3

136 8 94 7+1 70 7 + 2 55 6 + 3

6 Previous method uses a sine function and double angle formula for a sine function
needs both cos(t) and sin(t) to compute sin(2t).

384 K. Han and D. Ki

shev basis representation become more stabilized and the number of non-scalar
multiplications decreases, it does not necessarily mean that the scaling is always
favorable because depth consumption can increase.

In the case of degree 76, if we scale by a factor of 4, we can compute the
approximate polynomial with depth consumption 7 as the original while the
number of non-scalar multiplications based on Algorithm 1 decreases from 24
to 13. Therefore, the scaling is unconditionally favorable in this case. However,
in the case of degree 116, if we scale by a factor of 2, even the number of non-
scalar multiplications decreases, we need to consume one more depth compared
to the original method. Therefore, in this case, we need to consider the trade-off
between the number of non-scalar multiplications and the depth consumption.
In conclusion, we need to conduct an experiment to decide whether we use the
hybrid method or not, and decision will depend on the trade-off between the
number of non-scalar multiplications and the depth consumption7.

4.4 Overall Comparison

In this section, we compare our method with the previous work [5]. In [5], authors
use the approximate polynomial of degree 119 obtained from the Chebyshev
method.8 In our case, we choose degree 74 because the approximate polynomial
of degree 74 obtained from our method gives the same level of error as the
inevitable error occurs between t and 1

2π sin(2πt) under the parameter sets that
used by the previous work [5]. The comparison between our method and the
previous work [5] is given in Table 4. As seen from the table, by using the hybrid
method with the number of scaling 2 and evaluating the obtained approximate
polynomial of degree 30 with Algorithm 1, we can decrease the number of non-
scalar multiplications almost by half while consuming the same depth.

Table 4. Comparison between our method and the previous work. [5] (K = 12 and
log2 ε = −10)

Method Degree # of Scaling Degree (after scaling) Non-scalar multiplication Depth

Ours 74 0 74 24 (Algorithm1) 7

1 49 16 + 1 (Algorithm1) 6 + 1

2 30 11 + 2 (Algorithm 1) 5 + 2

[5] 119 – – 20 (PS alg) 7

7 The code for finding an approximate polynomial for the cosine function can be found
at [15].

8 In fact, they use the nodes ti = K cos (iπ/n) for 0 ≤ i ≤ n instead of nodes ti =
K cos ((2i − 1)π/(2n + 2)) for 1 ≤ i ≤ n + 1. But, there is no big difference.

Better Bootstrapping for HEAAN 385

4.5 Put Everything Together

Using the scheme in Sect. 3 and the above sine evaluation method, we can do a
better bootstrapping for Full-RNS variant of HEAAN. Recall that the bootstrap-
ping can be divided into four steps: modular raising, linear transformation, sine
evaluation, and inverse linear transformation. For linear transformation and the
inverse part, we used the techniques proposed in [5,12].

Sine Evaluation. To approximate a sine function, we use the polynomial inter-
polation method with our optimized nodes, which performs better than the other
methods because an input for a sine function is restricted to some small inter-
vals. Also, we further improve it by using the hybrid method, which combines
our method with double angle formula of cosine, and it can decrease the number
of non-scalar multiplications a lot while consuming the same depth.

With the approximate polynomial obtained from our method, we evaluate it
with the Baby-step Giant-step algorithm, which shows better performance when
the degree of an approximate polynomial is small. In our implementation, we fix
log2 ε = −10 and use the approximate polynomial of degree 30 obtained from
the hybrid method with the number of scaling 2.

Scaling Factor Control. After each homomorphic multiplication and rescal-
ing, the scaling factor changes. Therefore, the bootstrapping process can also
change the scaling factor, and this can be a problem when we want to do some
operations with an output of the bootstrapping and fresh ciphertexts. Even
though they are in the same level, their scaling factor can be different, and thus,
for example, homomorphic addition between these two ciphertexts can yield an
un-expected result.

To solve this problem, at the last step of the bootstrapping, evaluation, we
multiply Δ′ and perform RS(·) with a constant Δ′ for which (Δ′·Δ)/qL′ = ΔL′−1,
where ΔL′−1 is the scaling factor at level L′ − 1 and Δ is the current scaling
factor. This requires one level consumption, but we can optimize it by merging
this process with the last step of linear transformation in the bootstrapping.

5 Implementation

We implement our full-RNS variant of HEAAN in Sect. 3 and its bootstrapping.
The experiments are conducted in PC with Intel(R) Core(TM) i9-9820X CPU
@ 3.30 GHz using single-thread.

5.1 Performance of Basic Homomorphic Operations.

First, the performance of the basic homomorphic operations is given in Table 5.
The results again show why it is better to use a proper dnum. By using 1 <
dnum < L+1, we can reduce the complexity of the homomorphic multiplication.

386 K. Han and D. Ki

For example, in Table 5, the best timing result is almost two times faster than
the dnum = 24 case which is used in the SEAL library. In addition, the first
row (dnum = 1), which corresponds to the HEAAN-RNS scheme, not only does not
satisfy the 128-bit security condition based on the Martin’s LWE estimator [1],
but also gives a 1.8 times slower result compared to the second row9.

Table 5. Performance of our Full-RNS variant of HEAAN with 215 slots.

log qi L dnum Enc Dec Mult Rescale

N = 216 45 23 1 103ms 5ms 773 ms 60ms HEAAN-RNS

4 436ms

6 487 ms

12 660 ms

24 958 ms SEAL v3.3

5.2 Bootstrapping Performance

For an experiment on the bootstrapping, we set two parameter sets as in Table 6
using the Martin’s LWE estimator. The bit size of each prime in modulus chain
is set to 40 for Param 1 and 45 for Param 2, and log q0 is 50 and 55, respectively.
In the case of Param 1, we used large dnum = 10 to make the security parameter
>100. This enables us to use log2 N = 15 which should be 16 if we use dnum = 1.
In our experiment, we use the approximate polynomial of degree 30 with 2 times
of scaling for sine evaluation (See 3rd parameters of our method in Table 4).

Table 6. Parameter sets

L dnum N log Q log Q + log P Security

Param 1 19 10 32768 810 910 110.4

Param 2 27 7 65536 1270 1452 127.2

Using those two parameter sets, we ran our bootstrapping with various num-
ber of slots ns. Here, Amortized Time indicates bootstrapping time per each
slot. Because of computational errors generated in the linear transformation
part, large ns implies lower precision. Here, the precision means − log2 e, where
e is average noise generated through the bootstrapping. For example, precision
15.5 in the first row in Table 7 means that noise with average size 2−15.5 is added
through the bootstrapping.
9 Here, SEAL v.3.3 and HEAAN-RNS indicate the schemes corresponding to each library

and paper.

Better Bootstrapping for HEAAN 387

Table 7. Performance of the bootstrapping in our scheme

ns Boot Time Precision After Level Amortized Time

Param 1 20 6.8 s 15.5 5 7.1 s

21 7.0 s 16.8 3 3.5 s

22 7.5 s 15.0 3 1.87 s

Param 2 25 28 s 18.5 9 0.87 s

210 37.6 s 15.3 7 0.036 s

214 52.8 s 10.8 7 0.0032 s

In our experiment, we used fixed ε = 2−10. Because of the difference between
t and sin t10, the maximum precision for the bootstrapping is limited to ε2 =
2−20. From the ns = 25 case with Param 2, which ensures 18.5 precision, we can
see that sine evaluation with our method yields an accurate enough result.

Comparison. The last row of Table 4 in [5] and Table 2 in [12] use similar param-
eter sets to the last row of Table 7. Timing results were 158 s in [5] and 127 s in
[12], which is just 52.8 s in our experiment. In other words, using the Full-RNS
variant with proper dnum and the improved method for sine approximation gives
a 3 and 2.5 times faster result than the previous works, respectively.

6 Conclusion

In this work, we suggest the generalized key-switching method for Full-RNS
variant of HEAAN and propose a better method for approximating a sine function.
With these improvements, we increase the efficiency of the bootstrapping for
Full-RNS variant of HEAAN. Our method of approximating a sine function is
specialized in the setting when inputs for a function are restricted to union
of small intervals. Hence, we can also apply our method effectively to another
functions which has a restricted domain as in the case of the bootstrapping for
HEAAN.

So far, the research on approximating a modulus function is based on a
sine function. Therefore, it has the limitation because of the inevitable error
generated from the approximation of [t]q with 1

2π sin(2πt). We expect that we
can overcome this limitation by finding another approximation of [·]q operation.
We think it can be a new breakthrough of improving the bootstrapping.

A Correctness and Noise Growth of Homomorphic
Multiplication

Before proving the correctness of the homomorphic multiplication, first remind
the properties of ModUp and ModDown with the following three equations:

‖CRTC∪B(ModUp([a(x)]q0 , [a(x)]q1 , . . . , [a(x)]q�))‖∞ ≤ (� + 1) · Q, (A.1)
10 |t − sin t| < O(t3) for t near the origin.

388 K. Han and D. Ki

CRTC∪B(ModUp([a(x)]q0 , [a(x)]q1 , . . . , [a(x)]q�)) ≡ a(x) mod Q, (A.2)

∥
∥
∥
∥CRTC(ModDown([a(x)]q0 , . . . , [a(x)]q� , [a(x)]p0 , . . . , [a(x)]pk−1)) −

⌊
a(x)

P

⌉∥
∥
∥
∥

∞
< k,

(A.3)

where B = {p0, . . . , pk−1} and C = {q0, . . . , q�}. With the above three equations and
properties of RNS-Decompose and RNS-Power, we can prove the correctness of
the homomorphic multiplication in our scheme.

Theorem 2. The algorithm Multevk(ct0, ct1) returns (b3(x), a3(x)) such that

b3(x) + a3(x) · s(x) = M1(x) · M2(x) + M0(x) · e1(x) + M1(x) · e0(x) + ε(x),

where ‖ε(x)‖∞ < ‖s(x)‖1, when P > 2βNefresh · (max0≤i<β Qi). Here, cti =
(bi(x), ai(x)) ∈ R2

Q, and bi(x) + ai(x) · s(x) = Mi(x) + ei(x) for i = 0, 1.

Proof. For simplicity, we assume that � = L and (�+1) is a multiple of α. First,
a vector (d0(x), d1(x), d2(x)) which satisfies

d0(x) + d1(x) · s(x) + d2(x) · s(x)2 = (M0(x) + e0(x)) · (M1(x) + e0(x))
= M0(x) · M1(x) + M0(x) · e1(x) + M1(x) · e0(x) + e0(x) · e1(x)
= M0(x) · M1(x) + e2(x) ∈ RQ.

is obtained after Step 1.
In Step 2, since � = L and (L + 1) is a multiple of α, β equals to dnum and

the zero-padding part can be omitted. Then,

([d2(x) · Q̂−1
0]Q0 , . . . , [d2(x) · Q̂−1

dnum−1]Qdnum−1) = RNS-DecompC′(d2(x))

is returned after RNS-Decompose step.
Also, Modulus-Raise step returns vectors of length k + � + 1,

([d̃(i)2 (x)]q0 , . . . , [d̃
(i)
2 (x)]q�

, [d̃(i)2 (x)]p0 , . . . , [d̃
(i)
2 (x)]pk−1)

= ModUpCi→C∪B([d2(x) · Q̂−1
i]qiα

, . . . , [d2(x) · Q̂−1
i]q(i+1)α−1),

where d̃
(i)
2 (x) ∈ RPQ, for 0 ≤ i < dnum. From Eqs.A.1–A.2, we can check that

d̃2(x) satisfies the following equations:

d̃
(i)
2 (x) ≡ d2(x) · Q̂−1

i mod Qi and
∥∥∥d̃(i)2 (x)

∥∥∥
∞

≤ (α + 1) · Qi. (A.4)

Note that the norm of d̃2
(i)

(x) is still much smaller than PQ, and for this reason,
ModUp does not harm the functionality of RNS-Decompose and RNS-Power.

Next, we suppose that evaluation keys evki = (Bi(x), Ai(x)) ∈ R2
PQ which

satisfy Bi(x) + Ai(x) · s(x) = P · Q̂i · s2(x) + Ei(x) ∈ RPQ, where ‖Ei(x)‖∞ <
efresh, are generated in the key generation step. Then, the inner product step

Better Bootstrapping for HEAAN 389

returns (B′(x), A′(x)) =
∑β−1

i=0

[
d̃2

(i)
(x) · (Bi(x), Ai(x))

]
and it satisfies the fol-

lowing equation:

B′(x) + A′(x) · s(x) = P

β−1∑
i=0

(
d̃2

(i)
(x) · Q̂i · s2(x)

)
+

β−1∑
i=0

(
d̃2

(i)
(x) · Ei(x)

)

= P · d2(x) · s2(x) + E′(x) ∈ RPQ,

where ‖E′(x)‖∞ < N
∑

0≤i<β Qi · efresh ≤ N · β · efresh · (max0≤i<β Qi) and N is
the dimension of the ring.

After that, we apply modulus-down process to revert the modulus space from
RPQ to RQ and to reduce the size of E′(x). Let (B̃(x), Ã(x)) be the return
of modulus-down step with CRT decomposed representation. From the modulus
switching technique and Equation A.3, we can see that (B̃(x), Ã(x)) has the
following property:

B̃(x) + Ã(x) · s(x) = d2(x) · s2(x) +
⌊

E′(x)
P

⌉
+ ε(x) ∈ RQ,

where ‖ε(x)‖∞ < ‖s(x)‖1. Since P > 2 · N · β · efresh · (max0≤i<β Qi),
each coefficient of E′(x)/P is in the range (−0.5, 0.5), and thus rounding of the
polynomial becomes a zero polynomial. Therefore, it follows that B̃(x) + Ã(x) ·
s(x) = d2(x) · s(x)2 + ε(x) ∈ RQ.

At the last step, we compute and return (b3(x), a3(x)) = (d0(x) +
B̃(x), d1(x) + Ã(x)). Then, from the equation

b3(x) + a3(x) · s(x) = d0(x) + d1(x) · s(x) + d2(x) · s(x)2 + ε(x)
= M0(x) · M1(x) + e2(x) + ε(x),

the correctness of homomorphic multiplication is followed. Furthermore, the size
of the noise after multiplication is given by M0(x) ·e1(x)+M1(x) ·e0(x)+e0(x) ·
e1(x) + ε(x), where ‖ε(x)‖∞ < ‖s(x)‖1. ��

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

2. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

3. Boemer, F., Lao, Y., Wierzynski, C.: nGraph-HE: a graph compiler for deep learn-
ing on homomorphically encrypted data. arXiv preprint arXiv:1810.10121 (2018)

4. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving
semi-parallel logistic regression training with Fully Homomorphic Encryption.
Cryptology ePrint Archive, Report 2019/101 (2019). https://eprint.iacr.org/2019/
101

https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
http://arxiv.org/abs/1810.10121
https://eprint.iacr.org/2019/101
https://eprint.iacr.org/2019/101

390 K. Han and D. Ki

5. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 2

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 347–368. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 16

7. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9,
pp. 169–178 (2009)

10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

11. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

12. Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete Fourier trans-
forms and FHE bootstrapping. IEEE Access 7, 57361–57370 (2019)

13. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018)

14. Jiang, Y., Wang, C., Wu, Z., Du, X., Wang, S.: Privacy-preserving biomedical data
dissemination via a hybrid approach. In: AMIA Annual Symposium Proceedings,
vol. 2018, p. 1176. American Medical Informatics Association (2018)

15. Ki, D.: (2019). https://github.com/DohyeongKi/better-homomorphic-sine-
evaluation

16. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4) (2018). Article number: 83

17. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for
GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294 (2019).
https://eprint.iacr.org/2019/294

18. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Med. Inform. 6(2), e19
(2018)

19. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://github.com/DohyeongKi/better-homomorphic-sine-evaluation
https://github.com/DohyeongKi/better-homomorphic-sine-evaluation
https://eprint.iacr.org/2019/294

Improved Secure Integer Comparison
via Homomorphic Encryption

Florian Bourse1, Olivier Sanders1(B), and Jacques Traoré2

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. Secure integer comparison has been one of the first problems
introduced in cryptography, both for its simplicity to describe and for
its applications. The first formulation of the problem was to enable two
parties to compare their inputs without revealing the exact value of those
inputs, also called the Millionaires’ problem [45]. The recent rise of fully
homomorphic encryption has given a new formulation to this problem.
In this new setting, one party blindly computes an encryption of the
boolean (a < b) given only ciphertexts encrypting a and b.

In this paper, we present new solutions for the problem of secure
integer comparison in both of these settings. The underlying idea for
both schemes is to avoid decomposing the integers in binary in order
to improve the performances. On the one hand, our fully homomorphic
based solution is inspired by [9], and makes use of the fast bootstrapping
techniques developed by [12,14,23] to obtain scalability for large integers
while preserving high efficiency. On the other hand, our solution to the
original Millionaires’ problem is inspired by the protocol of [10], based
on partially homomorphic encryption. We tweak their protocol in order
to minimize the number of interactions required, while preserving the
advantage of comparing non-binary integers.

Both our techniques provide efficient solutions to the problem of secure
integer comparison for large (even a-priori unbounded in our first sce-
nario) integers with minimum interactions.

1 Introduction

Evaluation of algorithms over encrypted data is a major topic in cryptography
which has known very important results over the past decade (e.g. [27]). Generic
solutions supporting any operation exist but they usually require to represent
the algorithm as a boolean circuit and incur very large complexity. Conversely,
solutions specifically designed for a particular algorithm are more efficient, but
require a large amount of work that must be started over each time the algorithm
is updated.

In this context, an interesting middle-way is the one consisting in designing
efficient protocols for simple tasks (but still more complex than basic operations)
that are frequently used as subroutines by other algorithms. Indeed, in this case,
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 391–416, 2020.
https://doi.org/10.1007/978-3-030-40186-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_17

392 F. Bourse et al.

the resulting protocol will be more efficient than the one generated by applying
generic solutions and, at the same time, the widespread use of this subroutine
will ensure that the efforts invested in the design of this protocol will benefit to
a very large number of algorithms.

Perhaps the most prominent example of this approach (for both historical
and practical reasons) is the one of secure integer comparison, where two parties
knowing respectively secret integers m1 and m2 want to compare them without
leaking any information beyond the result (m1 ≤ m2).

Introduced in 1982 by Yao [45] who presented it as the problem encountered
by two millionaires wanting to secretly compare their respective wealth (hence
its name of Millionaires’ problem), this problem is of utter importance in many
areas, especially since the rise of machine learning. Indeed, several classifiers
require to sort (and therefore to compare) elements and thus need appropriate
protocols when the latter are encrypted, as illustrated in [8]. More generally, the
fact that most algorithms run integers comparison as subroutines emphasizes
the need for counterparts handling encrypted data.

In his seminal paper [45], Yao proposed a first protocol for secure compar-
ison based on garbled circuits, a by-now standard tool in cryptography which
has become a subject on its own. However, this kind of techniques, despite sev-
eral improvements (e.g. [5,6,16,32]), implies rather important communication
complexity, which can be problematic in contexts where communications are
slow.

In [2,24], the authors follow a different strategy, based on the Legendre sym-
bol, which leads to very elegant protocols. Unfortunately, the latter can only
handle integers of limited size, and it does not seem possible to extend them to
support large inputs.

Another approach for secure comparison is the one based on homomorphic
encryption, starting from Fischlin’s work [25]. The ability to perform oper-
ations on encrypted data can remove some interactions but at the cost of
greater computational complexity. Here again, several improvements followed
[7,20,21,26,30,34,42] but they involve bitwise encryption of the integers, lead-
ing to a complexity of at least log2(M) operations where M is a bound on the
integers to compare.

Comparing the solutions based on garbled circuits with the ones based on
homomorphic encryption is not always relevant as they are very different con-
structions. Garbled circuits mostly rely on symmetric primitives and thus usually
offer good performance. Homomorphic encryption is a more complex tool but
seems to be a promising solution to go beyond the log2(M) barrier. Indeed, two
homomorphic-based constructions [9,10] overcoming this limation have recently
been introduced for different settings.

The first one (CEK), proposed by Carlton, Essex and Kapulkin [10], corre-
sponds exactly to the Millionaires’ problem scenario where two parties want to
compare their respective secret values m1 and m2. It is based on an homomorphic
threshold encryption system allowing to directly compare small integers, leading
to less computations, but at the cost of more interactions compared to the DGK

Improved Secure Integer Comparison via Homomorphic Encryption 393

protocol [20]. Indeed, in their protocol, the party A knowing the decryption keys
received either an encryption of 0 (if m1 ≥ m2) or of some value related to m1

and m2 (if m1 < m2). This forces the other party B to blind the plaintext with
some random value s leading to the following problem: in any case A decrypts
randomness. To bypass this problem, both parties run a plaintext equality test
(PET) at the end of the protocol to decide whether the randomness is s (in
which case m1 ≥ m2) or not. This PET implies at least one additional pass
and the use of another homomorphic encryption scheme. In some way, the result
of Carlton et al. can thus be seen as a new tradeoff between computation and
communication complexity.

In the second setting, one party is given two ciphertexts for values m1 and
m2 and has to produce a ciphertext for the boolean (m1 > m2), whereas the
other party is the only one having the secret key that allows decryption of these
ciphertexts. One way to solve this problem has been to reduce it to the Mil-
lionaires’ problem, as done in [41,42]. More interestingly, this problem can even
be solved non-interactively, by using fully homomorphic encryption. However,
the current state-of-the-art in FHE doesn’t provide a fully satisfactory solution
to the homomorphic evaluation of the comparison. The two main techniques
are either based on somewhat homomorphic encryption, which is not suitable
because the comparison cannot a priori be represented by a low degree poly-
nomial, so the noise growth would be unmanageable, or have to deal with the
bit decomposition of the messages (e.g. [11,19]). In [44], the authors proposed
a solution based on Wilson’s theorem to avoid binary decomposition. However,
it requires to perform (2M)2 homomorphic multiplications to compare integers
smaller than M , which rapidly becomes prohibitive as M increases.

At Crypto 18, Bourse et al. [9] proposed a modified FHE system enabling to
efficiently evaluate the sign function. This can be used to compare two encrypted
values by subtracting and evaluating the sign. However, this scheme only sup-
ports a bounded message space, and the sizes of the bootstrapping key and
ciphertexts grow exponentially in the size of the messages (or superlinear in the
value of bound on the messages). This result is enough to work on very small
sized input, or on computation that are inherently fault-tolerant, as they show
with neural network evaluations, but is hardly usable in practice for less specific
applications. Moreover, this requires the bound on the messages to be chosen at
setup time, because the parameters of the scheme depend on it.

1.1 Our Contribution

In this work we propose two protocols that respectively improve [9] and [10] and
thus the state-of-the-art of secure integer comparison.

In a first part, we describe a new FHE-based solution in the setting where
B wants to blindly compare two encrypted integers. Starting from [9], we show
how (1) to modify it in order to output 0 whenever the two inputs are equal,
and (2) to scale the output by any chosen factor. The first part requires a careful
modification of the testVector from [9] because the function to be computed
must verify some anticyclic properties, and ternary sign doesn’t satisfy those.

394 F. Bourse et al.

Hence, we had to add a slot never used into the message space. The second part
might seem trivial for FHE because scaling can be performed by multiplying
the output ciphertext by the chosen factor. However, this would yield too much
noise. We then here again need to modify the testVector to take into account
the scaling factor before returning the output ciphertext.

Then, relying on those two properties, we construct recursively an algorithm
to compare unbounded integers, by decomposing them in some basis that can be
handled by our modified scheme for bounded integers. The resulting scheme com-
bines the generality of bitwise encryption comparisons, because we can compare
unbounded integers using a fixed bootstrapping key that can be generated with-
out knowledge of the integers to compare, together with the improved efficiency,
both in computation time and in ciphertext expansion factor, of the schemes
that support non-binary message spaces.

In a second part, we propose a new protocol to address the Millionaires’
problem that combines (almost) all the best features of the DGK and CEK
protocols. Starting from the latter, we introduce several modifications to avoid
the costly PET that constitutes the last step of CEK. More specifically, we
manage to replace the whole PET by a simple hash value sent by the party B
in the second pass. This digest will indeed be enough for A to decide whether
the decrypted plaintext is the blind factor or not. However, this idea cannot
be directly applied to the CEK protocol because a simple exhaustive search
on the message space enables A to recover B’s value whenever m2 > m1. We
therefore consider different RSA parameters to introduce new random elements
in the protocol to thwart (with overwhelming probability) exhaustive searches.
The point is that all these modifications do not significantly hamper the main
feature of CEK, namely the ability to compare several bits at once, which means
that our protocol still compares favourably to DGK (and its predecessors).

Concretely, compared to DGK, our protocol also requires two passes but
divides both the computation and the communication cost by a factor up to
4. Compared to CEK, the speedup factor is harder to assess because it heavily
depends on the security parameter (see Sect. 4.2) but we manage anyway to
divide by up to two the number of passes. This comes at the cost of a security
proof in the random oracle model (ROM) but this model is widely used in
cryptography, especially to design practical constructions.

We stress that these improvements must not be measured just for one run
of our protocols but must rather be put in perspective with the massive use of
comparisons in algorithms. For example, the classifiers considered in [8] require
to find the greater value of a list a1, . . . , ak of encrypted elements and so to run
k secure comparison protocols. In such a case, the impact of our protocols will
be multiplied by at least k.

1.2 Organization

Our paper addresses two different versions of the Millionaires’ problem and is
thus divided in two parts that can be read independently. In Sect. 2, we describe
a solution based on fully homomorphic encryption that outputs an encrypted

Improved Secure Integer Comparison via Homomorphic Encryption 395

boolean (m1 > m2) given two ciphertexts encrypting respectively m1 and m2.
In Sect. 3, we consider the original scenario of the Millionaires’ problem and
provide a solution that enables two parties to secretly compare their respective
entries.

2 Homomorphic Comparison of Integers

In this section, we build a new technique to homomorphically compare two
integers. We first start by recalling all necessaries preliminaries about lattice-
based cryptography and fully homomorphic encryption that we will use. Then,
we start our construction by extending the work of [9] to allow ternary sign
computation, and add as an input a scaling factor that will multiply the output.
Finally, we show how to compare two unbounded integers by calling recursively
our comparison procedure for small integers.

2.1 Preliminaries

As in [14], we present the learning with errors problem and assumptions using
the torus T = R/Z (i.e., the real modulo 1), and binary vectors as the secret
keys. The same results hold for the formulation over Zq for any q instead of T.
However, to the best of our knowledge, binary secret keys are required for the
techniques allowing a fast bootstrapping.

Learning With Errors (LWE). This problem was introduced by Regev [38] as
a candidate problem that is hard to solve, even for quantum computers. Let n
be a positive integer, and χ a probability distribution over R. For any vector1

s ∈ {0, 1}n, we define the LWE distribution LWEn,s,χ as (a, b), where a $← T
n,

e
$← χ, and b = 〈s,a〉 + e.
The LWE assumption states that for s $← {0, 1}n, it is hard to distinguish

between LWEn,s,χ and the uniform distribution over T
n.

Ring Learning With Errors (RLWE). We also extend the ring variant [35]
of LWE to the special case where RN = RN [X]/ZN [X], with RN [X] =
R[X]/(XN +1) (respectively, ZN [X] = Z[X]/(XN +1)), i.e., the ZN [X] module
of polynomials of degree up to N − 1 with coefficients in T, with the operations
done modulo XN + 1 and modulo 1. Let N be a power of two, and χ be a dis-
tribution over RN [X] for the noise. For any polynomial s of degree up to N − 1
with binary coefficients, we define the RLWE distribution RLWEN,s,χ as (a, b),
where a

$← RN , e
$← χ, and b = s · a + e.

The RLWE assumption states that for a uniformly random polynomial s of
degree up to N − 1 with binary coefficients, it is hard to distinguish between
RLWEN,s,χ and the uniform distribution over R2

N .
1 This is not exactly the original LWE definition since we here consider binary coeffi-

cients for the secret key, as in [9,12,13]. Nevertheless, we will still refer to it as LWE
for sake of simplicity.

396 F. Bourse et al.

LWE Encryption Scheme. As in [9] and in some previous works [1,3,31,37], we
use a variant of Regev’s secret key encryption scheme which supports a non-
binary message space. It can easily be transformed into a public key encryption
scheme using standard techniques. Let B be an integer. The message space will
be {−B + 1, . . . , B − 1}. We define the encryption scheme as follows:

Setup(1λ): on input a security parameter λ, fix n = n(λ), samples and returns
s $← {0, 1}n;

Encrypt(s,m): on input secret key s and message m, samples (a, b) $←
LWEn,s,χ, and returns ct = (ct0, ct1) = (a, b + m

2B);
Decrypt(s, ct): computes x the representative of ct1−〈ct0, s〉 mod 1 in [− 1

2 , 1
2 [,

and returns �2B · x	.
We note that using 2B − 1 as denominator would be enough to support the

message space {−B + 1, . . . , B − 1}. However, we require one extra unused slot
in the message space for technical reasons during the sign computation.

Some of our protocols involve LWE encryption schemes of different dimen-
sions. In such a case, we will refer to some ciphertexts as n-LWE ciphertexts,
where n is the dimension, to avoid confusion with the other ciphertexts.

This encryption scheme generalizes to RLWE in a straightforward manner.

Bootstrapping Procedure. Our construction relies on three functions BlindRo-
tate, Extract and KeySwitch that are defined in [9,12]. A proper definition of
these functions requires to introduce many technical details along with the ring
variant of the GSW encryption scheme [28]. However, such a definition is not
necessary for the understanding of our work. For sake of clarity, we then only
provide an informal definition that is sufficient for our paper.

BlindRotate: on input an LWE encryption ct encrypted with key s, and a
bootstrapping key bk, returns an RLWE encryption of X b̄−〈ā,s〉, where b̄ =
�2N · ct1	 and ā = �2N · ct0	;

Extract: on input an RLWE encryption of a polynomial p(X), returns an LWE
encryption of p(0);

KeySwitch: on input an LWE encryption c of m under a certain key s and a
keyswitching key ksk (which consists of LWE encryptions of the bits si of s
under secret key s′), returns an LWE encryption of m under secret key s′.

The key switching algorithm is not required for the construction to work,
but it brings a lot of improvement in efficiency by reducing the dimension of the
LWE ciphertext.

2.2 Strategy Overview

Before presenting our construction in more details, we give a high level overview
of the underlying idea.

Let us assume that we are given an algorithm to compute the sign of integers
in {−B + 1, . . . , B − 1}. It can be used to compare two numbers x and y in
[0, B − 1] as follows:

Improved Secure Integer Comparison via Homomorphic Encryption 397

z0,0 z0,1 . . . z0,γ−1 z1,0 z1,1 . . . z1,γ−1 zδ−1,0 zδ−1,1 . . . zδ−1,γ−1. . .

∑
i sign(z0,i)2i ∑

i sign(z1,i)2i ∑
i sign(zδ−1,i)2i. . .

∑
j sign(

∑
i sign(zj,i)2i)2j

sign(
∑

i,j zj,iB
γj+i)

1
2

2γ−1 1
2

2γ−1 1
2

2γ−1

1
2

2δ−1

Fig. 1. Strategy to compare unbounded integers x and y given a procedure to compute
the sign of integers in {−B + 1, . . . , B − 1}. Here, zi,j = xi,j − yi,j are the differences
of the digits of x and y in base B and δ = �k/γ�. Arrows indicate computation of the
ternary sign, scaled by the factor labelling it, and nodes consist of the sums of their
incoming arrows.

1. take the difference z = x − y;
2. compute the sign of z.

If z is positive, it means x was greater than y, and vice versa.
Now let us say we are given bigger integers x and y such that we cannot use

our sign function directly. What we can do is to decompose x and y in basis B,
in order to obtain numbers in [0, B−1]. Let (xi)i∈[0,k] and (yi)i∈[0,k] be the digits
of x and y in base B, for some integer k. For each i in [0, k], we can compute the
sign of zi = xi − yi. However, we need a trick to combine those results to obtain
the comparison of x and y, which is the sign of z =

∑
i∈[0,k] ziB

i.
In order to continue, our main observation is that the sign of z is the same

as the sign of
∑

i∈[0,k] sign(zi)2i. Thus, we can pack the values zi by groups of
γ = �log2(B)
 values, scale each of them by a factor 2i, depending on their
position, and carry on computing the signs in a tree-like fashion as illustrated
on Fig. 1.

Intuitively, the sign of each node will be the same as the sign of the rightmost
non-zero node pointing to it, assuming the digits are ordered from the least
significant on the left to the most significant on the right. Hence, by induction,
the final value will be the sign of the rightmost non-zero zi, i.e., −1 if x < y, 0
if x = y, and 1 if x > y.2

This construction requires two new features that are not present in [9]:

– it requires the sign to be ternary, i.e. sign(0) = 0;
– the output has to be scaled by a factor 2i given as input.

2 The binary sign can be obtained by applying the techniques of [9] instead of our
ternary sign in the last step.

398 F. Bourse et al.

zk−1 zk−2 zk−3 . . . z0

B
2
s0 + zk−2

B
2
s1 + zk−3 . . . B

2
sk−2 + z0 sk−1

B/2 B/2 B/2 B/2

Fig. 2. Alternative strategy to compare unbounded integers x and y given a procedure
to compute the sign of integers in {−B + 1, . . . , B − 1}. Here, zi = xi − yi are the
differences of the digits of x and y in base B

2
and k = �log B

2
(x)�. The element si

denotes the ternary sign of
∑

j∈{0,...,i} zk−1−j

(
B
2

)k−1−j
, the (i + 1) most significant

digits of z. Horizontal arrows indicate computation of the ternary sign, scaled by the
factor labelling it, and nodes consist of the sums of their incoming arrows.

The former is required in order to propagate the comparison of least signifi-
cant digits whenever the most significant digits are equal. The latter cannot
be accomplished by scaling the output ciphertext, because this would yield too
much noise, thus preventing correct decryption of the resulting ciphertext. We
will then explain how to take this scaling factor into account before returning
the ciphertext, which leads to better noise management.

We also suggest another way to bootstrap such a technique to unbounded
integers that has better noise management, at the cost of slightly larger cipher-
texts, and sequential computations. We give an illustration of this on Fig. 2.

The idea is now to only have one addition in order to minimize the noise
growth and optimize the parameters. We thus decompose the integers in basis
B
2 and start from the most significant digits. At each step, we compute the
ternary sign, and scale it by B

2 before adding it to the next digits. That way, the
sign of our accumulator is always the sign of the difference, up to that point.

In the following, we first build an algorithm to compute the sign with the
two additional features required, and then we present a recursive algorithm for
each of our strategies.

Remark 1. At first sight, a simpler solution to compare x and y could be to
select a bound B greater than these two integers, to generate keys compati-
ble with this message space and then to directly run the protocol from [9] on
z = x − y. However, there are two problems with this solution. First, the com-
plexity of [9] is exponential in the size of the messages so selecting large B is
not a good strategy (see Sect. 2.5 for more details). Second, this solution leads
to the following dilemma. Either we select a bound B large enough to handle
any integers x and y or we select, for each comparison, the smallest possible
value for B. The former option makes the previous complexity issue even worse.
The second option makes key management quite cumbersome because it implies
several keys, one for each possible range of values of x and y.

Improved Secure Integer Comparison via Homomorphic Encryption 399

Algorithm 1. HomomorphicCompareB,0

Input: two LWE ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, B − 1], a
bootstrapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: P (X) := −k · ∑
i∈{� N

2B
�,...,�N− N

2B
�} Xi

2: c := c1 − c2 (the task is now to find the sign of the plaintext in c)
3: c̃ := BlindRotate(c, bk)
4: x := Extract (P (X) · c̃)
5: return x

2.3 Homomorphic Comparison of Small Integers

In this subsection, we show how to compare small integers, which will be the
base case for our induction. While the techniques from [9] could be used directly
to compare small integers, they do not fit our strategies for larger integers. We
therefore modify their scheme in order to output 0 whenever the plaintexts are
equal. This will be required in order to compare unbounded integers using this
simple construction as a building block.

Our homomorphic comparison for small values HomomorphicCompareB,0 is
defined in Algorithm 1. For simplicity, we chose to define it without keyswitch-
ing to reduce the number of parameters, but it can easily be introduced as an
optimization before returning the result. The scaling factor for the output is not
important for the comparison of small integers, but will be needed to efficiently
compute the comparison of larger integers in the next section. Correctness of
this protocol is proved below.

Correctness. If c1 encrypted m1 and c2 encrypted m2, x encrypts k if m1 > m2,
−k if m1 < m2, and 0 if m1 = m2 with overwhelming probability, for well chosen
parameters. Indeed, c encrypts m1−m2, c̃ encrypts Xm̄1−m̄2+e, where m̄i = mi ·
N
B , and e is the error resulting from c1, c2, and the scalings and roundings during
BlindRotate. Then, P (X) · c̃ encrypts −k · ∑i∈{� N

2B �,...,	N− N
2B
} Xi · Xm̄1−m̄2+e,

the constant term of which is

k if � N

2B
	 ≤ m̄1 − m̄2 + e ≤ �N − N

2B

−k if − �N − N

2B

 ≤ m̄1 − m̄2 + e ≤ −� N

2B
	

0 otherwise

Now let us assume that m1 > m2 and that the parameters are chosen such
that |e| < N

2B , we have:

1 ≤ m1 − m2 ≤ B − 1

⇔ N

B
≤ N(m1 − m2)

B
≤ N · (B − 1)

B

400 F. Bourse et al.

⇔ N

B
+ e ≤ m̄1 − m̄2 + e ≤ N · (B − 1)

B
+ e

⇒ � N

2B
	 ≤ m̄1 − m̄2 + e <

N · (B − 1)
B

+
N

2B

where the first inequality comes from the fact that |e| < N
2B and that m̄1−m̄2+e

is an integer. Now, if we write:

N · (B − 1)
B

+
N

2B
= N − N

2B

we get

� N

2B
	 ≤ m̄1 − m̄2 + e ≤ �N − N

2B

which ensures that x encrypts k if m1 − m2 ≥ 1.
Conversely, if m1 < m2, we get

−N

B
+ e ≥ m̄1 − m̄2 + e ≥ −N · (B − 1)

B
+ e

which implies that

−� N

2B
	 ≥ m̄1 − m̄2 + e ≥ −�N − N

2B

and so that x encrypts −k.

2.4 Homomorphic Comparison of Unbounded Integers

In Sect. 2.2, we have described two strategies for comparing unbounded integers.
The first one will be referred to as tree-based, whereas the latter one will be
referred to as sequential. Informally, the tree-based approach is suitable for par-
allel computing whereas the sequential one offers better parameters but requires
sequential computations (hence its name).

Tree-Based Strategy. Let us denote γ = �log2(B)
. Assuming that B ≥ 4 (i.e.,
γ ≥ 2), we can define a family of algorithms that can homomorphically compute
the comparison of unbounded integers (that is, for any size of messages, there
exists an algorithm in the family that can handle it) by decomposing the number
in basis B, and do the comparison recursively in a bottom-up tree fashion, where
each node has up to γ children. For each of them, we use the small integer
homomorphic comparison with scaling factor 2i, with i the position of the child,
starting from 0 for the least significant. By adding the resulting values and then
running again the small integer comparison protocol, we get the sign of the most
significant non-zero child, as illustrated in Fig. 1.

Improved Secure Integer Comparison via Homomorphic Encryption 401

Algorithm 2. HomomorphicCompareB,�+1 for message space [0, Bγ�+1 − 1]

Input: two ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, Bγ�+1 − 1], a boot-
strapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: for i = 0 . . . γ − 1 do
2: ci := HomomorphicCompareB,�(c1,i, c2,i, bk, 2i)
3: end for
4: P (X) := −k · ∑

i∈{� N
2B

�,...,�N− N
2B

�} Xi

5: c :=
∑

i∈[0,γ−1] ci (the task is now to find the sign of the plaintext in c)

6: c̃ := BlindRotate(c, bk)
7: x := Extract (P (X) · c̃)
8: return x

Before defining our algorithm to compare larger integers homomorphically,
we need to specify how we encrypt those. Our encryption scheme is also defined
by induction:

EncB: we use LWE.Encrypt as defined in Sect. 2.1;
EncBγ�+1 : on input m =

∑
i∈[0,γ−1] mi(Bγ�

)i, returns (EncBγ� (mi))i∈[0,γ−1].

A ciphertext c encrypting a message m ∈ [0, Bγ�+1
] thus contains γ cipher-

texts ci encrypting messages mi ∈ [0, Bγ�

]. We are now ready to describe our
family of algorithms to homomorphically compare large integers in Algorithm 2.
By induction, this defines algorithms for homomorphic comparison with message
spaces [0, Bγ� − 1], for any positive integer �.

Correctness. By induction hypothesis, ci encrypts 2i · sign(m1,i − m2,i). Then
c encrypts

∑
i∈[0,γ−1] 2

i · sign(m1,i − m2,i), the sign of which is the sign of the
last non-zero m1,i −m2,i, which is the sign of m1−m2. Then, assuming the error
does not grow too much, we can use the same analysis as previously to conclude
that we correctly evaluate to k · sign(m1 − m2). The noise now comes from the
sum of γ ciphertexts instead of 2.

Sequential Strategy. In order to minimize the noise growth during the com-
putation, we apply the technique described in Sect. 2.2. First, we encrypt the
messages by decomposing them in basis B

2 as follows:

Enc(B
2)� : on input m =

∑
i∈[0,�−1] mi(B

2)i, returns (LWE.Encrypt(mi))i∈[0,�−1].

As previously, we describe our alternative technique as a family of algo-
rithms HomomorphicCompareB,� in Algorithm 3, for homomorphic comparison
with message spaces [0, (B

2)� − 1], for any positive integer �.

402 F. Bourse et al.

Algorithm 3. HomomorphicCompareB,� for message space [0, (B
2)� − 1]

Input: two ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, (B
2
)� − 1], a boot-

strapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: acc = 0
2: for i = � − 1, . . . , 1 do
3: acc := HomomorphicCompareB,0(acc + c1,i, c2,i, bk, B

2
)

4: end for
5: return HomomorphicCompareB,0(acc + c1,0, c2,0, bk, k)

Correctness. After the i-th iteration of the loop, the accumulator acc contains
the sign of m

(i)
1 −m

(i)
2 scaled by B

2 , where m
(i)
b =

∑
j∈{0,...,i} mb,�−1−j

(
B
2

)�−1−j

for b ∈ {0, 1}. Indeed, observe that for all i ∈ {1, . . . , � − 1},
(
m

(i)
1 − m

(i)
2

)
has

the same sign as

B

2
· sign

(
m

(i−1)
1 − m

(i−1)
2

)
+ m1,�−1−i − m2,�−1−i,

because |m1,�−1−i − m2,�−1−i| < B
2 . The correctness then follows from the one

of HomomorphicCompareB,0.

2.5 Efficiency

In order to test the efficiency of our technique, we implemented our protocol and
ran it on a Core i7-3630QM laptop, on which a bootstrapping from the TFHE
library takes about 33 ms. For such a processor supporting parallel computations,
the tree-based approach significantly outperforms the sequential one. We will
then only consider this strategy in the following. We nevertheless note that our
sequential strategy offers better noise management and thus better parameters,
making it more efficient if evaluated on a single core.

The fact that our protocol allows to process log2(B) bits at once might lead
to select large B. Unfortunately, the size of B impacts the parameters of our
system and thus its efficiency. A careful noise analysis is therefore necessary to
select optimal values for B.

Let σ2
bs be the variance of the noise at the end of the bootstrapping, as defined

in [15], theorem 6.3:

σ2
bs = n(k + 1)�Nβ2σ2

bk + n(1 + kN)ε2 + n2−2(t+1) + tnσ2
ks

We use the same notation as in [15]. σ2
bk (resp. σ2

ks) is the variance of the
error of the bootstrapping key (resp. the key-switching key). k, �, N , β and ε
are parameters of the encryption schemes involved in BlindRotate whereas t
and n are parameters of KeySwitch.

We have to correctly handle a message space of 2B slots even after adding
γ = �log2(B)
 ciphertexts. We also have to take into account the noise resulting
from rounding to multiples of 1

2N .

Improved Secure Integer Comparison via Homomorphic Encryption 403

Table 1. Timings obtained with three different sets of parameters for comparing 32
bits integers. For all of them, we have k = 1.

B N n σks σbk β t Bootstr. 32bits comp.

1 core 8f cores Max parall.

Set 1 4 2048 500 2−20 2−50 2048 17 72 ms 2232 ms 648 ms 360ms

Set 2 4 4096 400 2−14 2−70 4096 13 126 ms 3902 ms 1137 ms 620ms

Set 3 6 4096 750 2−18 2−70 4096 17 240 ms 3840 ms 1200 ms 960ms

We thus get the following probability of correctness

erf

((
1

4B
− n + 1

4N

)
1

σbs

√
2 log2(B)

)

,

where erf is the Gauss error function.
This probability shows that increasing B requires to increase N , which is

not a good strategy since the complexity of the bootstrapping is superlinear in
N . For a given set of parameters (selected to ensure some level of security), one
then simply has to choose the largest possible value for B. Interestingly, this
means that, compared to binary decomposition, the efficiency of our protocol
will increase with the security level.

We note that the flexibility in the choice of B (we can choose any value
B ≥ 4) allows a better noise management than in [9]. This means that our
technique can probably be adapted to improve parameters of [9] for evaluation
of neural networks where the message space is large.

We have tested our implementation for different sets of parameters. The
results are presented in Table 1.

These three sets of parameters respectively yield a security [4] of 90/109/
211 bits for the key switching key, and 230/378/378 bits for the bootstrap-
ping key. The probability of error for a bootstrapping is respectively less than
2−50/2−47/2−89. Table 1 shows that our first set of parameters, with B = 4 and
N = 2048, provides the best performances.

We note that the improvements from [9,46] halve the rounding cost by slightly
unfolding the loop in BlindRotate. This allows us to basically double the message
space at a very small cost. With the same noise analysis technique, we suggest
to modify our first set of parameters as follows:

(N,n, σks, σbk, β, t, k, ε) = (1024, 500, 2−20, 2−38, 2048, 17, 1, 2−25)

This set of parameters yields a security of ≈90 bits for the key switching key, and
≈107 bits for the bootstrapping key. The probability of error for a bootstrapping
is less than 2−50. The running time for these parameters should be roughly 33 ms,
given the experiments conducted in [9,46], which yields comparison of 32 bits
integers in 1023 ms on a single core, 297 ms on 8 cores, and 165 ms with maximum
parallelization.

404 F. Bourse et al.

For elements of comparison, using a binary decomposition requires 128 gates
[32] for greater than comparison of 32 bits integers (what we are achieving is
stronger, because we test equality as well), which would yield 4224 ms on the
same laptop.

3 A Protocol for the Millionaires’ Problem

In this section, we improve on the CEK protocol by avoiding one round induced
by the plaintext equality test. This allows us to reduce the interaction to the
minimum, while preserving efficiency. We first describe the more efficient pro-
tocol for small integers, before showing how it can easily be extended to larger
integers by following the techniques in [10]. Even the protocol for larger messages
only deals with bounded messages, however that bound grows really fast with
the size of the RSA modulus chosen.

3.1 Preliminaries

The security of our protocol will rely on the Small RSA Subgroup Decision
Assumption, defined in [10], inspired by [29]. Informally, it states that it is hard
to distinguish a random element in a subgroup of Z∗

N from a random element.
Let us introduce the following notation for our RSA quintuples (u, p0, d,N, g):

– u is an integer such that the Discrete Logarithm Problem is infeasible in a
subgroup of Z∗

N whose order is a prime of bit-length u;
– p0 is a prime;
– d is an integer greater than 1;
– N is an integer of the form N = pq, whose factorisation is infeasible, where

p = 2 · pd
0 · ps · pt + 1 and q = 2 · pd

0 · qs · qt + 1, with ps and qs primes of
bit-length u, and pt and qt primes whose bit-length is not u;

– g is an element of order pd
0 in Z

∗
N ;

– QRN is the set of quadratic residues mod N .

Definition 2. We say that the small RSA subgroup decision assumption holds
if given an RSA quintuple (u, p0, d,N, g), the distributions x and xpd

0 ·pt·qt are
computationally indistinguishable, for x

$← QRN a uniformly random quadratic
residue mod N .

In other words, the small RSA subgroup assumption states that it is hard to
distinguish an element of order ps · qs from a random quadratic residue in Z

∗
N .

Since pinpointing the optimal parameters for security and efficiency is not trivial
in this setting, we discuss in more details our choices of parameters in Sect. 4.1.

3.2 Protocol for Small Integers

We describe in this section our protocol for secure integer comparison but first
start by providing the intuition behind it.

Improved Secure Integer Comparison via Homomorphic Encryption 405

Intuition. As in [10], our protocol makes use of the threshold properties of
prime power subgroups of Z∗

N . We will then assume that there exist a prime p0
and an integer d > 0 such that pd

0 divides φ(N). Let g be an element of order pd
0

in Z
∗
N and G be the cyclic subgroup generated by g.

In [10], the core idea is that the element C = gp
d+m1−m2
0 can be used to

compare the integers m1 and m2. Indeed, this element is equal to 1 if and only
if m1 ≥ m2. However, to prevent any leakage of information on its secret integer
m2, the second party B has to blind C using a random element gs ∈ G leading
to the following problem for the first party A : in all cases (namely m1 ≥ m2 or
m1 < m2) it receives a random element gs′

. To compare m1 and m2, Carlton
et al. therefore propose (1) to recover s′ from gs′

(i.e. to compute a discrete
logarithm) and (2) to run a plaintext equality test (PET) between A and B
to compare s′ and s. It implies at least another pass and involves additional
primitives (e.g. homomorphic encryption in [10]).

The goal of our protocol is to remove these last steps and so to reduce the
number of passes while avoiding the computational overhead of PET protocols.

Let 0 < a ≤ d be a public integer such that pa
0 ≥ 2λ where λ is the security

parameter3. Of course, this requirement implies larger subgroups G but, as we
will explain, this is not a significant problem for us since we will no longer need
to compute discrete logarithms in G. Let H be a subgroup of order coprime with
p0, generated by some element h.

To compare m1,m2 ≤ d/a, the party A computes C = gp
a·m1
0 · hr1 , for some

random scalars r1, and sends it to B. The latter then selects three random
scalars: u ∈ [0, pa

0 − 1], v ∈ [0, pd
0 − 1] and r2 ∈ [0, b − 1] where b is some bound

on the order of H. It then computes and sends to A two elements:

D ← Cu·pd−a·m2
0 · gv · hr2 and D′ ← H(gv)

where H is some hash function. One can note that D = gu·pd+a(m1−m2)
0 +v · h∗ for

some random element h∗ ∈ H. By using its knowledge of the factorization of N ,
A can easily remove h∗ and recover C ′ = gu·pd+a(m1−m2)

0 +v. There are then two
different cases:

1. If m1 ≥ m2, then C ′ = gv which can easily be detected by A since H(C ′) = D′

in such a case.
2. Else, H(C ′) differs from D′ with overwhelming probability, leading A to con-

clude that m1 < m2.

From the security point of view, one can note that B always received values
masked by a random element h of H. It is thus unable to learn information on m1

unless it can solve the small RSA subgroup problem. In the case where m1 ≥ m2

the pair (D,D′) received by A is independent of m2 so this entity cannot learn
any information on this value. In the case where m1 < m2, the element C ′ is
a random element of G (since v is random) but A has an information on the

3 We will provide more details on the parameters in Sect. 4.1.

406 F. Bourse et al.

Party A (pp, sp, m1 ∈ [0, d/a]) Party B (pp, m2 ∈ [0, d/a])
r1

$ [1, b − 1]

C = gp
a·m1
0 hr1 C

u
$ [1, pa

0 − 1], v
$ [1, pd

0 − 1],
r2

$ [1, b − 1]

D Cu·pd−a·m2
0 · gv · hr2

(D, D′)
D′ H(gv)

C′ Dc

If D′ = H(C′), return (m1 ≥ m2)
Else, return (m1 < m2).

Fig. 3. A two-pass protocol for secure comparison of small integers.

blinding factor gv since it knows D′ = H(gv). Since a hash function is assumed
to be one-way, A cannot recover gv directly from D but can try to guess it
either directly (with probability 1/pd

0) or by guessing the cofactor gu·pd+a(m1−m2)
0 .

However, the latter element is of order a least pa
0 > 2λ which makes a correct

guess very unlikely when u is random.

Our Construction. Our protocol is described in Fig. 3 and makes use of the
following parameters:

– N = p · q is a product of two primes p and q
– p0, ps and qs are prime numbers such that ps|p − 1, qs|q − 1 and pd

0 divides
both p − 1 and q − 1 for some integer d > 0

– 0 < a ≤ d is an integer smaller than d
– g ∈ Z

∗
N is an element of order pd

0 in both Z
∗
p and Z

∗
q while h ∈ Z

∗
N is an

element of order ps · qs.
– b is an upper bound on ps · qs

– c is an integer such that c = ps · qs · [(ps · qs)−1]pd
0
, where [x]pd

0
denotes x mod

pd
0.

– H : Z∗
N → {0, 1}∗ is a cryptographic hash function.

The public parameters pp are defined as {N, a, p0, d, g, h, b} whereas the secret
parameters sp, only known to A, are {p, q, c}.

Correctness. As explained above, the element C ′ computed by A is exactly
gu·pd+a(m1−m2)

0 +v. If m1 ≥ m2, then C ′ = gv and D′ = H(C ′). Else, m1 −m2 < 0
and pa

0 divides the order of gp
d+a(m1−m2)
0 . Since u ∈ [1, pa

0 −1], gu·pd+a(m1−m2)
0 �= 1

and C ′ �= gv. Therefore, D = H(C ′) would imply a collision of the hash function
H, which is very unlikely.

3.3 Security of the Protocol for Small Integers

We prove the security for both A and B against honest-but-curious adversaries
in the random oracle model. This means that A (respectively B) will not learn

Improved Secure Integer Comparison via Homomorphic Encryption 407

any information about m2 (resp. m1), except whether it is bigger or smaller than
m1 (resp. m2).

Privacy of A. We first show that B learns nothing about m1 in this protocol.
More formally, we have the following security theorem.

Theorem 3. Under the Small RSA Subgroup Decision Assumption, B’s view
is computationally indistinguishable from a uniformly random element in QRN

for any message m1.

Proof. We show that we can use an adversary that has probability ε of distin-
guishing B’s view from a uniformly random element in Z

∗
N to break the Small

RSA Subgroup Decision Assumption with the same probability.
Let us define a first game where the reduction R publishes a valid set of

parameters {N, a, p0, d, g, h, b} (here valid means in particular that h is of order
ps · qs) and plays the role of A as defined in Fig. 3.

In a second game, R proceeds as in the previous game except that it generates
a random element z

$← Z
∗
N and sets h = z2. In such a case, the element C received

by B is a uniformly random element in QRN for any message m1.
Now let us assume that an adversary A is able to distinguish these two games

with probability ε. On input an RSA quintuple (u, p0, d,N, g) and an instance x
to the small RSA subgroup decision problem, R defines the public parameters as
{N, a, p0, d, g, h, b}, where a and b are selected as usual, but where h = x. If x is
of order ps · qs, then this is exactly our first game. Else, x is a uniformly random
quadratic residue and A is playing our second game. Therefore, A will succeed
in breaking the Small RSA Subgroup Decision Assumption with probability ε,
which implies that ε is negligible.

Privacy of B . We now show that A only learns the output of the protocol
(m1 ≥ m2) and nothing else about m2.

Theorem 4. There exists an efficient simulator S, such that S(1λ, (m1 ≥ m2))
is statistically indistinguishable from A’s view for any messages m1 and m2 in
the random oracle model.

Proof. The simulator S works as follows:

– If m1 < m2 pick random elements v, v′ $← [1, pd
0 − 1], r $← [1, b − 1] and return(

gv · hr,H(gv′
)
)
.

– Else pick random elements v
$← [1, pd

0 − 1], r
$← [1, b − 1] and return (gv · hr,

H(gv)).

In the first case, we show that the statistical distance between the view of A and
the output of S is negligible: The two distribution only differ when the adver-
sary queries the random oracle with input gv−u·pd+a(m1−m2)

0 and realizes that
it’s different from H(gv′

). However, this can never happen with non-negligible

408 F. Bourse et al.

Party A (pp, sp, m1 =
∑�

i=0 m1,i · bi) Party B (pp, m2 =
∑�

i=0 m2,i · bi)
For i ∈ [0, �]: r1,i

$ [1, b − 1]

Ci = g−m
(i)
1 gp

a(m1,i)
0 hr1,i

{Ci}�
i=0

For i ∈ [0, �]:
ui

$ [1, pa
0 − 1], vi

$ [1, pd
0 − 1],

r2,i
$ [1, b − 1], D′

i H(gvi)

Di (Ci · gm
(i)
2)ui·pd−a(m2,i+1)

0 · gvi · hr2,i

π({(Di, D
′
i)}�

i=0)

For i ∈ [0, �]:
C′

i Dc
i

If ∃i s.t. D′
i = H(C′

i),
return (m1 > m2)

Else, return (m1 ≤ m2).

Fig. 4. A two-pass protocol for secure integer comparison. π is a random permutation
of the symmetric group S�+1.

probability because gu·pd+a(m1+m2)
0 is uniform in a subgroup of order at least pa

0 ,
which is exponential in the security parameter for the parameters we suggest in
Sect. 4.1.

In the second case, the distribution is exactly the same as in the protocol.

3.4 A Protocol for Large Integers

As we explain in Sect. 4.1, the constraints that apply on the different parameters
imply that the protocol of Fig. 3 can only be used to compare small messages.
However, our protocol can be extended to compare larger integers by adapting
a technique used in previous works (e.g. [10,20]). Let m1 =

∑�
i=0 m1,i · bi and

m2 =
∑�

i=0 m2,i ·bi be the rewriting of the messages m1 and m2 in base b = �d/a

(i.e. mj,i ∈ [0, b − 1] for i ∈ [0, �] and � = �logb(M)	, where M < pa

0 is a bound
on the messages m1 and m2). For i ∈ [0, �], we define m

(i)
j =

∑�
k=i+1 mj,kbk.

Our protocol is described in Fig. 4 and uses the same parameters as in Sect. 3.2.

Remark 5. The bound M < pa
0 is not a strong constraint for most applications

since pa
0 > 2λ (see Sect. 4.1 below). This protocol is therefore sufficient to com-

pare integers of reasonable size but, if need be, it can easily be extended for even
larger integers. Indeed, instead of including gm

(i)
1 in Ci, the party A can encrypt

it separately as Ei = g−m
(1)
i hr′

1,i and sends it along with Ci. The party B will
now compute Di as (Cp

d−a(m2+1)
0 Ei · gm

(i)
2)ui · gvi · hr2,i leading to a much larger

bound of B < pd
0 ∼ N1/4.

Correctness. We prove that m1 > m2 ⇔ ∃i ∈ [0, �] such that D′
i = H(C ′

i).

Improved Secure Integer Comparison via Homomorphic Encryption 409

First note that if m1 > m2, then ∃i ∈ [0, �] such that (1) m
(i)
1 = m

(i)
2 and (2)

m1,i > m2,i, or equivalently (m1,i − m2,i) ≥ 1. For such an index i, we have:

C ′
i = gui[(m

(i)
2 −m

(i)
1)p

d−a(m2,i+1)
0 +p

d+a(m1,i−m2,i−1)
0]+vi = gvi

which means that D′
i = H(C ′

i). Now, let us assume that ∃i ∈ [0, �] such that
D′

i = H(C ′
i). Due to the collision resistance of H, this means (with overwhelming

probability) that gvi = C ′
i and so that:

ui[(m
(i)
2 − m

(i)
1)pd−a(m2,i+1)

0 + p
d+a(m1,i−m2,i−1)
0] = 0 mod pd

0

One can note that the powers of p0 between the square brackets are either
multiples of pd

0 or of the form pt
0 with t ≤ d − a. Since 0 < ui < pa

0 , this implies
that:

[(m(i)
2 − m

(i)
1)pd−a(m2,i+1)

0 + p
d+a(m1,i−m2,i−1)
0] = 0 mod pd

0

⇔ p
d−a(m2,i+1)
0 [(m(i)

2 − m
(i)
1) + p

a·m1,i

0] = 0 mod pd
0

⇔ (m(i)
2 − m

(i)
1) + p

a·m1,i

0 = 0 mod p
a(m2,i+1)
0 (I)

For all i ∈ [0, �], we have m
(i)
2 − m

(i)
1 ≤ M − (b − 1) ≤ M − 1 < pa

0 − 1. We
can therefore distinguish two cases.

– Case 1: m2,i ≥ m1,i. From (m(i)
2 − m

(i)
1) + p

a·m1,i

0 < pa
0 − 1 + p

a·m2,i

0 ≤
p

a·m2,i +1
0 and the Equation (I), we can deduce that (m(i)

2 −m
(i)
1) + p

a·m1,i

0 ≤ 0
and in particular that m

(i)
1 > m

(i)
2 . The latter inequality means that m1 > m2,

which concludes our proof.
– Case 2: m2,i < m1,i. The Equation (I) then becomes:

(m(i)
2 − m

(i)
1) = 0 mod p

a(m2,i +1)
0 .

However, we know that −pa
0 < m

(i)
2 −m

(i)
1 < pa

0 , so the previous equation can
only hold if m

(i)
2 = m

(i)
1 . Here again, this means that m1 > m2.

Therefore, m1 > m2 ⇔ ∃i ∈ [0, �] such that D′
i = H(C ′

i), which proves the
correctness of our protocol.

4 Security of the Protocol for Large Integers

The proof of security for this protocol is very similar to the previous one, and
the claims are similar: A’s data will be computationally secure, while B’s data
will be statistically secure. One key observation is that each pair (Di,D

′
i) proves

or disproves the statement m
(i)
1 = m

(i)
2 ∧ m1,i > m2,i. At most one of them can

be satisfied, and one is satisfied if and only if m1 > m2.

Privacy of A. We first show that B learns nothing about m1 in this protocol.
More formally, we have the following security theorem.

410 F. Bourse et al.

Theorem 6. Under the Small RSA Subgroup Decision Assumption, B’s view is
computationally indistinguishable from a uniformly random element in QRN

�+1

for any message m1.

Proof. As in the previous case, we can show this indistinguishability by replacing
the element h by a small RSA subgroup decision challenge. If the element has
order ps · qs, then the view of B is identical to the real protocol. Otherwise,
B only receives a uniformly random element in QRN

�+1. Thus, any adversary
breaking the privacy of A can be used to solve the Small RSA Subgroup Decision
problem.

Privacy of B . We now show that A only learns the output of the protocol
(m1 > m2) and nothing else about m2.

Theorem 7. There exists an efficient simulator S, such that S(1λ, (m1 > m2))
is statistically indistinguishable from A’s view for any messages m1 and m2 in
the random oracle model.

Proof. The simulator S works as follows:

– If m1 ≤ m2, for each i ∈ [0, �] pick random elements vi, v
′
i

$← [1, pd
0 −

1], ri
$← [1, b − 1] and sets

(
Di = gvi · hri ,D′

i = H(gv′
i)

)
. Then it returns

{(Di,D
′
i)}�

i=0;
– Else pick a random index j ∈ [0, �], random elements vj

$← [1, pd
0 − 1], rj

$←
[1, b − 1] and sets

(
Dj = gvj · hrj ,D′

j = H(gvj)
)
. Then, for each i ∈ [0, �],

i �= j, pick random elements vi, v
′
i

$← [1, pd
0 − 1], ri

$← [1, b − 1] and sets(
Di = gvi · hri ,D′

i = H(gv′
i)

)
. Finally, returns {(Di,D

′
i)}�

i=0

As previously, in the first case, we show that the statistical distance between the
view of B and the output of S is negligible: The two distribution can only differ
when the adversary queries the random oracle with input gṽk,i for some indices
i, k ∈ [0, �], where

ṽk,i = vk − ui · (m(i)
2 − m

(i)
1) · p

d−a(m2,i+1)
0 + ui · p

d−a(m1,i−m2,i+1)
0 .

However, as we have shown for correctness,

(m(i)
2 − m

(i)
1) · p

d−a(m2,i+1)
0 + p

d−a(m1,i−m2,i+1)
0 �= 0 mod pd

0,

unless m
(i)
2 = m

(i)
1 and mi,1 > mi,2. Thus, the ṽk,i are uniformly random in

an exponentially big subgroup for parameters suggested in Sect. 4.1 (of order at
least pa

0). Since the adversary runs in polynomial time, the probability that he
queries the random oracle on one of these input is negligible.

In the second case, the distribution is exactly the same as in the protocol for
the index j that satisfies m

(j)
2 = m

(j)
1 and mj,1 > mj,2. For all the other indices,

we use the same argument as in the first case: the two distributions can only
differ when the adversary queries the random oracle with input gṽk,i for some
indices i, k ∈ [0, �], k �= j.

Improved Secure Integer Comparison via Homomorphic Encryption 411

4.1 Parameters

One must be careful when using RSA modulus whose prime factors have unusual
decomposition, as shown in [17,18,36,39]. We discuss in this section the bounds
on the different parameters to ensure the security of our protocols and their
impact on efficiency.

There are several attacks that we must take into account due to the special
form of our RSA modulus. One of them is the Coron et al. attack [18] that gives
us a bound on the order of h: log2(ps) = log2(qs) ≥ 2λ.

The condition pd
0|p − 1 and pd

0|q − 1 makes our protocol vulnerable to the
McKee’s and Pinch’s attack [36] and thus imposes the upper bound N1/4/2λ on
the value of pd

0, where λ is the security parameter. We must therefore have:

d · log(p0) ≤ 1
4
log(N) − λlog(2).

This gives us a bound on the messages m that can be compared in a single
execution of our protocol:

m ≤ d/a ≤ log(N)/4 − λlog(2)
log(p0) · a

Ideally, we would like to choose p0 = 2 and a = 1 to get the largest bound.
However, we must additionally ensure that the random scalar u cannot be
guessed with non-negligible probability. This means that:

a · log(p0) ≥ λlog(2)

Combining these two constraints leads to the following bound on the mes-
sages:

m ≤ log(N)/4 − λlog(2)
log(p0) · a

≤ log(N)/4 − λlog(2)
λlog(2)

One can note that this bound on m is independent of p0 and a. This means
that there is a great flexibility in the choice of these parameters provided that
the requirement a · log(p0) ≥ λlog(2) is fulfilled.

Interestingly, the fact that N grows more quickly than the security parameter
λ [33,40] implies that this bound depends on the security parameter. In partic-
ular, compared to previous protocols (e.g. [20,42,43]) that work with bit-wise
encrypted values, the speedup factor will be larger for λ = 256 than for λ = 128.

4.2 Efficiency

As we mention in the introduction, there is a wide range of solutions to the
Millionaire’s problem from garbled circuits to homomorphic encryption. And
even among solutions based on homomorphic encryption, one can find different
tradeoffs such as the two-passes protocol proposed by Damg̊ard et al. [20] and
the protocol proposed by Carlton et al. [10] that allows to process several bits

412 F. Bourse et al.

Table 2. Efficiency comparison between related works and our protocol. Et refers
to the cost of an exponentiation whose exponent is smaller than t. dlog

G
refers to

the cost of computing a discrete logarithm in the group G. Enc⊕, Dec⊕ and Rand⊕
respectively refer to the cost of encrypting, decrypting and re-randomizing with the
additively homomorphic encryption scheme Π used for the PET. Finally, C⊕ refers to
a ciphertext generated using Π and H to a digest generated by H.

Schemes DGK [20] CEK [10] Our work

Computational
Cost (A)

log2(M)[1 Eb + 1 Ebpd
0
] logb′(M)[1 Eb +

1 Ebpd
0
+1 dlog

G
+

1 Rand⊕]

logb(M)[1 Eb + 1 Ebpd
0
]

Computational
Cost (B)

log2(M)[1 Eb] logb′(M)[1 Eb +
2 Epd

0
+ 1 Enc⊕ +

1 Dec⊕]

logb(M)[1 Eb + 2 Epd
0
]

Communication
Cost

log2(M)[2 Z
∗
N] logb′(M)[2 Z

∗
N +

2 C⊕]
logb(M)[2 Z

∗
N + 1 H]

Passes 2 3−4a

a Carlton et al. explain how to combine the last pass of their protocol with the first
one of the PET, leading to a protocol with 3 passes instead of 4. However, in such
a case, the entity (A) that initiated the protocol does not know the result of the
comparison (only B knows it), contrarily to our protocol or to the DGK one.

at once but at the cost of an extra plaintext equality check (PET) involving
additional passes. We therefore choose to compare our protocol with both solu-
tions by providing in Table 2 an assessment of the different respective costs. In
particular, we stress that the cost of additional passes, and more generally the
communication cost, should not be underestimated. It can indeed be very high
for some devices such as smartcards, and even exceeds computational cost in
some cases (see e.g. [22]).

For the sake of clarity, we do not consider additions, multiplications and hash
evaluations whose costs are negligible compared to the other operations. We also
assume, for all protocols, that the elements only depending on the messages m1

or m2 and on the system parameters (e.g. gp
a·m1,i
0) have been pre-computed.

For proper comparison, we need to specify the values of the factors logb′(M)
and logb(M) respectively used in the evaluation of the complexity of the CEK
protocol and ours. This is not a trivial task as the constraints placed on our
parameters prevent us from using conventional RSA moduli. This is done in
Sect. 4.1 where we show that:

b = � log(N)/4 − λlog(2)
λlog(2)

A similar analysis for the CEK protocol shows that:

b′ = � log(N)/4 − λlog(2)
log(p0)

Improved Secure Integer Comparison via Homomorphic Encryption 413

Our protocol can easily be compared to the DGK one since they both involve
2 passes and do not need PET. Actually, one can note that our protocol is roughly
log(b)
log(2) more efficient than the DGK one. For a security parameter λ of respectively
128, 192 and 256, we have b = 5, b = 9 and b = 14 (see [40]), which means that
the speedup factor is always greater than 2 and will increase with the security
level.

Conversely, comparing our solution with the CEK one is more complex, as
they are very different protocols. Ours only requires 2 passes and does not require
a PET, thus avoiding additional interactions and the costs associated with an
homomorphic encryption system. Regarding computational costs, a single exe-
cution of our comparison protocol is more efficient than the CEK one, but this
is offset by the fact that CEK requires to run less individual comparison tests
because logb′(M) < logb(M). However, we note that the ratio logb(M)

logb′ (M) decreases
towards 1 as λ increases due to the existence of subexponential factorization
algorithms (see [33,40] and references therein), meaning that the number of
comparison tests for both solutions will tend to be similar in the future.

5 Conclusion

More than three decades after its introduction by Yao, the Millionaires’ problem
has proved very important in cryptography, and more generally in most use-
cases involving secure computation (e.g. machine learning on private data). It
has drawn attention from many researchers that have provided a wide range
of solutions, based on different primitives or addressing different versions of
the original problem. However, despite all this work, secure integer comparison
remains a complex issue, all the existing solutions entailing either a large amount
of computations or a large amount of communication.

In this work, we have introduced new solutions to the Millionaires’ prob-
lem in two different settings. Our first one extends the recent FHE construction
of Bourse et al. [9] to enable efficient computation of the encrypted boolean
(m1 ≤ m2) given only the encryption of (a-priori unbounded) integers m1 and
m2. Our second solution leverages the threshold homomorphic encryption scheme
of Carlton et al. [10] to construct a two-passes integer comparison protocol that
improves over the state-of-the art. Although these constructions are very dif-
ferent, they both share the same guiding principles, namely reducing as much
as possible the number of interactions and avoiding bitwise decomposition of
the integers. Regarding the latter point, this concretely means that our pro-
tocols achieve a log2(b) speedup factor compared to most homomorphic-based
solutions, where b > 4 is some integer depending on the parameters of our con-
structions.

Acknowledgements. This work is supported by the European Union
PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701) and PAPAYA project (Horizon 2020 Innovation Program, grant 786767). The
authors are also grateful for the support of the ANR through project ANR-16-CE39-
0014 PERSOCLOUD.

414 F. Bourse et al.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abspoel, M., Bouman, N.J., Schoenmakers, B., de Vreede, N.: Fast secure compar-
ison for medium-sized integers and its application in binarized neural networks. In:
Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 453–472. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12612-4 23

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE SSP, pp. 478–492 (2013)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS 2012, pp. 784–796 (2012)

7. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing
encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 206–220. Springer, Heidelberg (2006). https://doi.org/10.1007/
11889663 18

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

9. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 17

10. Carlton, R., Essex, A., Kapulkin, K.: Threshold properties of prime power sub-
groups with application to secure integer comparisons. In: Smart, N.P. (ed.) CT-
RSA 2018. LNCS, vol. 10808, pp. 137–156. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76953-0 8

11. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
142–159. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 11

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 s. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 14

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421
(2018). https://eprint.iacr.org/2018/421

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-12612-4_23
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/11889663_18
https://doi.org/10.1007/11889663_18
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-76953-0_8
https://doi.org/10.1007/978-3-319-76953-0_8
https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-70694-8_14
https://eprint.iacr.org/2018/421

Improved Secure Integer Comparison via Homomorphic Encryption 415

16. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

17. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

18. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis
of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8 9

19. Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work
with FHE: the case of logistic regression. In: WAHC@CCS 2018, pp. 1–12 (2018)

20. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

21. Damg̊ard, I., Geisler, M., Krøigaard, M.: A correction to ‘efficient and secure com-
parison for on-line auctions’. IJACT 1(4), 323–324 (2009)

22. Desmoulins, N., Lescuyer, R., Sanders, O., Traoré, J.: Direct anonymous attesta-
tions with dependent basename opening. In: Gritzalis, D., Kiayias, A., Askoxy-
lakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 206–221. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12280-9 14

23. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 24

24. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th ACM STOC, pp. 554–563 (1994)

25. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 33

26. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-
8 22

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM
STOC, pp. 169–178 (2009)

28. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

29. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30576-7 4

30. Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum,
F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243–259. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95729-6 16

31. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-642-19379-8_9
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-319-12280-9_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/3-540-45353-9_33
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-540-30576-7_4
https://doi.org/10.1007/978-3-540-30576-7_4
https://doi.org/10.1007/978-3-319-95729-6_16
https://doi.org/10.1007/978-3-540-89255-7_23

416 F. Bourse et al.

32. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

33. Lenstra, A.K.: Key lengths. In: The Handbook of Information Security (2004)
34. Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based

on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005). https://
doi.org/10.1007/11496137 31

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

36. McKee, J., Pinch, R.: Further attacks on server-aided RSA cryptosystems (1998)
37. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th

ACM STOC, pp. 187–196 (2008)
38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: 37th ACM STOC, pp. 84–93
39. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-

ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-39805-8 3

40. Smart, N.P.: Algorithms, key size and protocols report, ECRYPT - CSA (2018).
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

41. Veugen, T.: Encrypted integer division. In: 2010 IEEE International Workshop on
Information Forensics and Security, pp. 1–6 (2010)

42. Veugen, T.: Improving the DGK comparison protocol. In: WIFS 2012, pp. 49–54
(2012)

43. Veugen, T.: Encrypted integer division and secure comparison. IJACT 3(2), 166–
180 (2014)

44. Wang, S., et al.: HEALER: homomorphic computation of exact logistic regression
for secure rare disease variants analysis in GWAS. Bioinformatics 32(2), 211–218
(2016)

45. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

46. Zhou, T., Yang, X., Liu, L., Zhang, W., Ding, Y.: Faster bootstrapping with mul-
tiple addends. Cryptology ePrint Archive, report 2017/735 (2017). http://eprint.
iacr.org/2017/735

https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/11496137_31
https://doi.org/10.1007/11496137_31
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/3-540-39805-8_3
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
http://eprint.iacr.org/2017/735
http://eprint.iacr.org/2017/735

Efficient FPGA Implementations
of LowMC and Picnic

Daniel Kales1, Sebastian Ramacher2, Christian Rechberger1,
Roman Walch1,3(B), and Mario Werner1

1 Graz University of Technology, Graz, Austria
{daniel.kales,christian.rechberger,roman.walch,

mario.werner}@iaik.tugraz.at
2 AIT Austrian Institute of Technology, Vienna, Austria

sebastian.ramacher@ait.ac.at
3 Know-Center GmbH, Graz, Austria

Abstract. Post-quantum cryptography has received increased attention
in recent years, in particular, due to the standardization effort by NIST.
One of the second-round candidates in the NIST post-quantum stan-
dardization project is Picnic, a post-quantum secure signature scheme
based on efficient zero-knowledge proofs of knowledge. In this work, we
present the first FPGA implementation of Picnic. We show how to effi-
ciently calculate LowMC, the block cipher used as a one-way function in
Picnic, in hardware despite the large number of constants needed dur-
ing computation. We then combine our LowMC implementation and
efficient instantiations of Keccak to build the full Picnic algorithm.
Additionally, we conform to recently proposed hardware interfaces for
post-quantum schemes to enable easier comparisons with other designs.
We provide evaluations of our Picnic implementation for both, the stan-
dalone design and a version wrapped with a PCIe interface, and compare
them to the state-of-the-art software implementations of Picnic and sim-
ilar hardware designs. Concretely, signing messages on our FPGA takes
0.25 ms for the L1 security level and 1.24 ms for the L5 security level,
beating existing optimized software implementations by a factor of 4.

Keywords: LowMC · FPGA · Digital signatures · NIST PQC · Picnic

1 Introduction

Cryptographic primitives with low multiplicative complexity have many inter-
esting applications in higher-level protocols.1 Recently, the post-quantum secure
digital signature scheme Picnic [19,20] used zero-knowledge proof of knowledge

1 For example, they find use as pseudo-random functions (PRF) in secure multiparty
computation (MPC) [5,31,45] to handle encrypted data, as oblivious PRFs in private
set intersection (PSI) [28,37], but also enable the elimination of ciphertext expansion
in homomorphic encryption schemes [5,42].

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 417–441, 2020.
https://doi.org/10.1007/978-3-030-40186-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_18

418 D. Kales et al.

schemes to build a signature based on the knowledge of a pre-image of a one-way
function (OWF). Since the size of the proof of knowledge is directly related to the
number of AND gates in the OWF, Picnic employed block ciphers with low mul-
tiplicative complexity. In particular, the designers of Picnic chose LowMC [5],
a very parameterizable block cipher design, to build the OWF. Picnic is cur-
rently a round 2 candidate in the NIST post-quantum cryptography project [1]
and, since the construction lends itself to design more complex statements, it
has also been extended to other signature variants including ring and EPID sig-
natures [14,22,38] as well as double-authentication preventing signatures [21].
All of those signatures only rely on symmetric-key primitives for their security
guarantees.

LowMC allows its users to select parameters suitable for the intended appli-
cation. For the use in Picnic, this means that one can select instances with a
reduced data complexity and thereby reducing the number of required rounds.
More importantly, it can also be parametrized in such a way that the number of
multiplication gates – in this case AND gates – is minimized. For classical secu-
rity of 128 bits, LowMC only requires 861 AND gates for full security and 546
AND gates in the reduced data complexity case. In comparison to that, other
candidates for lightweight cipher designs require significantly more AND gates
to achieve full data security: Simon requires 4352 AND gates [10], Kreyvium
requires 1537 AND gates [17], and Fantomas requires 2112 AND gates [32] (cf.
[20, Section 6.1] and [3, Table 1]). None of them come close to the numbers of
LowMC. Only recently, GMiMC [2] was proposed, which can be reduced to 783
AND gates and can compete in the low data complexity scenario. For reference,
AES-128 implemented over GF(2) requires more than 5000 AND gates [16] and
a round reduced version for the low data complexity case would amount to 3200
AND gates (including key schedule) [15].

While the choice of LowMC with small multiplicative complexity signifi-
cantly reduces the signature size of Picnic, the number of LowMC rounds has
to be increased for security. Conversely, with higher multiplicative complexity,
fewer rounds are required to achieve a secure design. Since each round consists of
a matrix multiplication involving the full state, the number of rounds essentially
define the runtime characteristics of Picnic. Additionally, one matrix is sampled
uniformly at random for each round during instance generation. In practice, this
means that the size of the constants stored in implementations also grows lin-
early in the number of rounds. For the instances selected for NIST’s L5 security
level of 128-bit post-quantum security, the constants sum up to 621 KB. Recent
optimizations of the linear layer by Dinur et al. [23] reduced the storage require-
ments for the constants down to 129 KB. Even with these optimizations, the
sheer size of involved matrices seems to prohibit an implementation on resource-
constrained devices, like microcontrollers or FPGAs. While the size of constants
is less of a problem for software implementations running on desktops, servers
or mobile phones, the size of these constants has a direct impact on the area of
a hardware design or the hardware utilization of FPGA designs, respectively.

Efficient FPGA Implementations of LowMC and Picnic 419

As the NIST post-quantum project progressed into the second round, the
performance of the candidates is becoming a more important criterion. Conse-
quently, NIST published targets for optimized implementations. Since optimized
software implementations of LowMC and Picnic already exist, we focus on the
implementation of several variants on FPGA platforms, including the Xilinx
Kintex-7 as well as the Xilinx Artix-7. The latter is one of the optimization
platforms recommended by NIST.

1.1 Contribution

Our contribution can be summarized as follows. We provide the first FPGA
implementation of LowMC using a state machine design. Due to the structure
of LowMC, the evaluation of the encryption algorithm requires a large number
of constants in the form of uniformly random matrices and vectors. We adapt the
recent result of Dinur et al. [23] to our FPGA implementation and are thereby
able to significantly reduce the hardware utilization of our design compared to
a näıve implementation.

We combine the LowMC implementation and custom Keccak modules
to instantiate the complete Picnic design on a Xilinx Kintex-7 board. This
implementation conforms to the round 2 submission of the Picnic signature
scheme [19] and supports the L1 and L5 parameter sets. Additionally, we port
our implementation of Picnic-L1 to the Xilinx Artix-7 board. The implemen-
tation is flexible enough to support signing only and verification only versions
besides the full version without significant overhead. However, our implemen-
tation focuses on the Fiat-Shamir transformed version of Picnic due to recent
results [18,24] improving the confidence in its post-quantum security. Further-
more, the implementation also conforms to the proposed guidelines for hardware
designs [26] of post-quantum schemes in the NIST standardization project to
facilitate easier comparisons with other designs.

We evaluate the performance of our FPGA design and provide comparisons
to optimized software implementations of Picnic. Our design performs up to a
factor 4 faster for signing and up to a factor 3 faster for verification than SIMD
optimized software implementations. We also compare our design to other hard-
ware designs of signature schemes including SPHINCS [11]. While the Picnic
design has a higher hardware utilization, it performs significantly better in run
time than the SPHINCS design.

We discuss potential modifications to the LowMC cipher design that would
benefit the FPGA implementation of Picnic. In particular, the suggested
changes improve the hardware utilization by up to 30% and makes it possi-
ble to fit a Picnic implementation for the 128-bit post-quantum security level
on the NIST recommended Artix-7 evaluation board.

Finally, we also provide a pipeline design of LowMC for high throughput
scenarios. This design may also be of interest in other contexts such as PSI
protocols [37], or fast database joins on secret shared data [40].

420 D. Kales et al.

1.2 Related Work

Efficient hardware implementations are a very active point of research, and the
NIST post-quantum standardization project only amplifies this [1]. In the fol-
lowing, we discuss other works in this area, with a focus on hardware imple-
mentations of post-quantum algorithms. We still want to mention that for a
wide variety of primitives and schemes, hardware implementations have been
proposed over the years [6,41,47,48], among others.

Basu et al. [9] provide an evaluation of 11 of the second-round candidates
of the NIST post-quantum standardization project. Their approach is based
on an automated synthesis of post-quantum accelerators based on the C code
provided by the submissions to NIST. They analyze the designs for both FPGA
and ASIC targets and compare their runtime and hardware utilization. But since
Picnic is a fairly complex design with a large number of individual primitives
and constants, an FPGA implementation is not straightforward and can not be
synthesized easily from the software implementation. Therefore, Basu et al. do
not include Picnic in their evaluation.

Besides this generic approach, Amiet et al. [7] presented an FPGA accelerator
for SPHINCS-256 [11], a predecessor of SPHINCS+ [12], another candidate in
the NIST post-quantum standardization project. Their implementation provides
a highly optimized ChaCha12 pipeline, which is the core of the SPHINCS
design. They report signing times of 1.53 ms on the same FPGA we target in
our work.

Wang et al. [50] presented FPGA implementations of the Niederreiter cryp-
tosystem using binary Goppa codes. For key encapsulation mechanisms and key
exchange, Howe et al. [34] presented implementations of FrodoKEM, a post-
quantum key encapsulation mechanism, for FPGAs and microcontrollers. Roy
et al. [46] give an optimized implementation of SIKE, a post-quantum key
exchange algorithm based on supersingular isogenies, for FPGA platforms. In
a different approach, Albrecht et al. [4] repurpose existing RSA coprocessors to
speed up computations of RLWE-based schemes, concretely for KEM Kyber.

2 Preliminaries

We will give an overview of LowMC, Picnic and its main building blocks.

2.1 LowMC

LowMC [5] is a block cipher designed to reduce the number of AND gates needed
for symmetric encryption. The design of the cipher is based on the substitution-
permutation network (SPN) design strategy, with the choice to move to a partial
substitution layer instead of applying the Sbox on the full state. The parameters
block size (n), key size (k), number of Sboxes per round (m), allowed data
complexity (d) and the number of rounds (r) are parameterizable according to
the LowMC v3 round formula [44]. This formula calculates the lowest number

Efficient FPGA Implementations of LowMC and Picnic 421

of rounds necessary to provide secure encryption for the given parameter set.
The script for determining the number of rounds for a given set of LowMC
parameters can be found in the official GitHub repository [39].

. . .S S S . . . S

Linear Layer

ki Ci

Fig. 1. One round of encryption with LowMC (modified from [5]).

A LowMC encryption starts with an initial whitening by XORing the first
round key to the plaintext, followed by r rounds. As depicted in Fig. 1, one round
consists of four steps: (i) SboxLayer, (ii) LinearLayer, (iii) ConstantAd-
dition and (iv) KeyAddition. In the SboxLayer, m 3-bit Sboxes are applied
to the first s = 3 · m bits of the state. The remaining bits of the state are not
affected by the SboxLayer. The Sbox is defined as

S(a, b, c) = (a ⊕ b · c, a ⊕ b ⊕ a · c, a ⊕ b ⊕ c ⊕ a · b) ,

with three GF(2) inputs and outputs. From this definition, it is obvious that
only 3 AND gates are required per Sbox. In the LinearLayer, the state is
multiplied with a pseudorandomly generated matrix Lr ∈ GF(2)n×n, where r is
the current round. The matrices are chosen pseudorandomly from the set of all
invertible binary n×n matrices during the instantiation of LowMC. During the
ConstantAddition the vector Cr ∈ GF(2)n is XORed to the state, where r
describes the current round. The vectors are chosen pseudorandomly during the
instantiation of LowMC. During KeyAddition, the round key of the current
round is XORed to the state. All round keys are generated as a result of the
multiplication of the master key with the matrix Kr ∈ GF(2)n×k, where r is
the current round. The matrices are chosen pseudorandomly from the set of all
full-rank binary n × k matrices during the instantiation of LowMC.

2.2 Picnic and ZKB++

The Picnic signature scheme is based on zero-knowledge proofs of knowledge
of pre-images of one-way functions. Currently, Picnic supports two proof sys-
tems: ZKB++ [20] and KKW [38]. They both improve on the “MPC-in-the-head”
paradigm [36], which describes a generic way to turn MPC protocols into zero-
knowledge proofs. In this work we focus on the parameter set using ZKB++,
since it is more efficient in runtime.

422 D. Kales et al.

ZKB++ builds the zero-knowledge proof system from (2, 3)-circuit decom-
position, which we describe in more detail. Let φ be some circuit and y = φ(x),
where x is some secret input and y is the publicy-known output. Within (2, 3)-
circuit decomposition, the computation is decomposed in the following way [29]:

– Share splits the input into three input shares.
– Update advances the computation one gate at a time, computes the wire

values for the next gate and returns the updated view.
– Output produces the output shares based on the final view.
– Reconstruct recomputes the output from the three output shares.

The decomposition of the circuit has to satisfy correctness and 2-privacy [29]:

Correctness: The reconstruction of the output shares yi must always be the
result of the original relation y = φ(x).

2-Privacy: It should not be possible to reveal information about the private
key x by publishing any information on any two players.

In ZKB++, (2, 3)-circuit decomposition is constructed as follows: Let R be an
arbitrary finite ring and φ a function such that φ : Rm → R� can be expressed
by an n-gate arithmetic circuit over the ring using addition (respectively mul-
tiplications) by constants, and binary addition and binary multiplication gates.
A (2, 3)-decomposition of φ is then given by:

Share(x, k1, k2, k3) : Samples random x1, x2 ∈ Rm from k1 and k2 and computes
x3 such that x1 + x2 + x3 = x. Returns views containing x1, x2, x3.

Update
(j)
i (view(j)

i , view
(j)
i+1, ki, ki+1) : Computes player Pi’s view of the output

wire of gate gj and appends it to the view. For the k-th wire wk where w
(i)
k

denotes Pi’s view, the update operation is defined as follows:
Addition by constant (wb = wa+c): w

(i)
b = w

(i)
a +c if i = 1 and w

(i)
b = w

(i)
a

otherwise.
Multiplication by constant (wb = c · wa): w

(i)
b = c · w

(i)
a

Binary addition (wc = wa + wb): w
(i)
c = w

(i)
a + w

(i)
b

Binary multiplication (wc = wa · wb): w
(i)
c = w

(i)
a · w

(i)
b + w

(i+1)
a · w

(i)
b +

w
(i)
a ·w(i+1)

b +Ri(c)−Ri+1(c) where Ri(c) is the c-th output of a pseudo-
random generator seeded with ki.

Outputi(view
(n)
i) : Return the � output wires stored in the view view

(n)
i .

Reconstruct(y1, y2, y3) : Computes y = y1 + y2 + y3 and returns y.

Note that the player Pi can compute all gate types except for binary multipli-
cation gates locally as the latter requires inputs from Pi+1. In other words, only
outputs of binary multiplication gates need to be serialized as part of the com-
munication transcript, and thus the view size and consequentially the signature
size of Picnic depend on the size of the ring R and the number of these gates.

To create a proof the prover repeats the (2, 3)-circuit decomposition protocol
T times. For each run, the prover commits to the view of each player Pi consisting
of the input share, a communication transcript, and the output share. After all

Efficient FPGA Implementations of LowMC and Picnic 423

T runs, the prover sends all the output shares and commitments for each run
and player to the verifier, who responds with a challenge vector c. The challenge
tells the prover which two of the three players should be corrupted per run
and therefore which views should be published as part of the proof. Since the
decomposition satisfies the 2-privacy property, no information is leaked on the
secret key by publishing the views of two players. The verifier then recalculates
the two opened views and checks, (1) whether the opened views were calculated
correctly, (2) and if the three output shares can be reconstructed to y.

Each run gives some assurance that the prover knows the secret key x, there-
fore increasing the number of runs T decreases the probability that the prover
can cheat without the verifier catching him at least once. Due to the nature of
the circuit decomposition, the prover could potentially cheat in 2 of the 3 pos-
sible challenges per run; therefore we calculate the probability for him to cheat
without getting caught as (2/3)T .

ZKB++ is a Σ-protocol, i.e., an interactive proof, that can be made non-
interactive by applying standard techniques such as the Fiat-Shamir (FS) trans-
formation [27]. FS transformed Σ-protocols compute the challenge c as the out-
put of a random oracle on the first message from the prover to the verifier, which
contains the commitments to the shares of the circuit evaluation. This results
in a non-interactive zero-knowledge proof protocol secure in the random oracle
model. To obtain a signature scheme the message is included in the call to the
random oracle as well.

In Picnic, the circuit used for the circuit decomposition is C = LowMCk(p),
where k is a LowMC secret key and (p,C), a corresponding plain-/ciphertext
pair, which is known publicly and constitutes the public key. A signature is then
a proof of knowledge of a k satisfying this relation.

2.3 Picnic Instances and Parameters

For each of the three security levels S ∈ {128, 192, 256}, there exist two variants
of the Picnic algorithms differing in the choice of transformations turning the
Σ-protocol into a signature scheme: one variant is based on the Fiat-Shamir (FS)
transformation, and the other is based on the Unruh (UR) transformation [49].
In contrary to the FS transformation, which makes the resulting non-interactive
Σ-protocol secure in the random oracle model, the UR transformation is prov-
ably secure in the quantum random oracle model (QROM) [13], where an adver-
sary can query the random oracle in quantum superposition. However, recent
results by Don et al. [24] and Chailloux [18] show that the specific use of the FS
transformation in Picnic is also secure in the quantum random oracle model.
Therefore, we focus our implementations on the variants of Picnic using the FS
transformation and ignore the more costly variants based on the Unruh trans-
formation, that would require additional Keccak instances to be fitted into the
FPGA design.

Picnic uses LowMC to reduce the size of the overall proof and thus the
signature. The proof contains a transcript of a party, i.e., the view of the party
for each AND gate in the circuit. Due to the additive secret-sharing used, XOR

424 D. Kales et al.

gates can be computed locally and do not influence the signature size. There-
fore, LowMC is used instead of other lightweight ciphers, since, as discussed in
Sect. 1, alternatives to LowMC require significantly more AND gates. Table 1
shows the LowMC instances that are used in Picnic and their AND gate counts.
We note that those instances are selected to provide a trade-off between signa-
ture size and runtime [20]. We want to note though, that even when the instances
are selected based on this trade-off, they can still be represented with a lower
number of AND gates than alternative cipher designs.

Table 1. Picnic parameters with LowMC instances (block size n, key size k, # of
Sboxes m, rounds r), sizes of public key pk, secret key sk and signatures σ.

Parameter set S T LowMC Hash/KDF Sizes

n k m r Algorithm � pk sk σ

Picnic-L1-FS 128 219 128 128 10 20 SHAKE128 256 32 16 ≤ 34032

Picnic-L3-FS 192 329 192 192 10 30 SHAKE256 384 48 24 ≤ 76772

Picnic-L5-FS 256 438 256 256 10 38 SHAKE256 512 64 32 ≤ 132856

Table 1 shows the parameters of the different Picnic versions based on the
Fiat-Shamir transformation. The expected security of the various instances cor-
responds to S bits against classical attacks and S/2 bits against quantum attacks.
The parameter T describes the number of repetitions of ZKB++ required to
reduce the soundness error to the desired security level [19]. Additionally, Table 1
shows the different key and signature sizes for the Picnic instances. One par-
ticular optimization of ZKB++ [20] has the result that the signature size is
dependent on the challenge, because for one of the players in the MPC proto-
col we need to include some auxiliary information in the proof. Therefore, the
expected signature size will be smaller than values specified in the table.

In the remainder of this work, we focus our implementation on the Picnic
instances with security levels S ∈ {128, 256} based on the FS transformation,
namely Picnic-L1-FS and Picnic-L5-FS. Similarly, for LowMC the focus lies
on instances with 128 and 256-bit block and key sizes.

Picnic2 Instances. In the second round of the NIST post-quantum standard-
ization project, the Picnic team introduced an additional new parameter set,
called Picnic2. The main difference in the new parameter set is the choice
of the underlying proof system. In Picnic2, ZKB++ was complemented with
KKW [38], which is also based on the “MPC-in-the-head” paradigm, but uses
a different MPC protocol with precomputation. The nature of the new proof
system allows for shorter signatures, but it has an increased number of players
in the simulated MPC protocol resulting in longer signing and verification times
when compared to Picnic. An evaluation of these additional parameter sets on
FPGA platforms is an interesting topic for future work.

Efficient FPGA Implementations of LowMC and Picnic 425

3 Implementation

We will now describe our implementations2 of LowMC and the Picnic signa-
ture algorithm on an FPGA platform. We first give insight into the design of
the main module of Picnic, the computation of LowMC. Following that, we
show how to combine this module with several SHAKE modules to instantiate
the full Picnic signature scheme for the L1 and L5 security levels. In our imple-
mentation, we use the dual-port RAM module available as in the open-source
framework MEMSEC [51,52].

Target Platform. For our design, we target a Xilinx Kintex-7 board – concretely
we use a Xilinx Kintex-7 FPGA KC705 Evaluation Kit. Our target FPGA has
203800 lookup-tables (LUTs), 407600 flip-flops (FF) and 445 BRAMs avail-
able. In an announcement on the official mailing list of the NIST post-quantum
standardization project, it was specified that implementors should target the
Artix-7 platform due to its widespread use. Since the toolchain we use, Xilinx
Vivado, also supports Artix-7 platforms as a target, adaptation to this platform
is straightforward, and we discuss the resulting Artix-7 resource utilization in
Sect. 4.1.

3.1 Optimized VHDL Implementation of LowMC

One of the major modules in our Picnic design is the evaluation of the LowMC
block cipher. During Picnic’s signing process, a proof of knowledge is generated
by evaluating the LowMC encryption function in an MPC protocol. As dis-
cussed in Sect. 2.2, this is done by applying the (2, 3)-circuit decomposition as
defined by ZKB++ to the LowMC circuit. In terms of the matrix multiplications,
the sharing of the circuit requires the 3-fold evaluation for signing.

In this section, we discuss our design choices and the difficulty of a LowMC
VDHL implementation and compare a straightforward standalone implemen-
tation of LowMC with a standalone implementation using the optimizations
by Dinur et al. [23]. We shortly give an intuition of these optimizations in the
following Sections and refer the reader to [23] for a more detailed explanation.

Design Choices. The difficulty in implementing LowMC (and consequently
Picnic) in VHDL arises from the high number of constants involved in the
matrix multiplications in LowMC’s linear layer and round key schedule. For
the LowMC instance in Picnic-L5, 621 kB of constants are required which
can be reduced to 129 kB by using the optimizations in [23]. Usually, we con-
sider using block RAM (BRAM), RAM cells directly located on FPGAs, for
storing a large amount of constants. The Kintex-7 FPGA comes with dual-port
BRAM cells with a capacity of 36 kB each, which are capable of providing at
most 72 bits during one clock cycle at each port. During one round we multiply
the inner state of LowMC to an S × S bit (256 × 256 for Picnic-L5) matrix.

2 All implementations are available at https://github.com/IAIK/Picnic-FPGA.

https://github.com/IAIK/Picnic-FPGA

426 D. Kales et al.

Considering a high-performance implementation, where we want to perform the
matrix multiplication in one clock cycle, we would have to use ≈455 BRAM
cells in parallel, which exceeds the number of available cells. The alternative
multi-cycle approach would, therefore, necessarily lower the performance of the
implementation. Furthermore, in the case of high BRAM cell usage, additional
clock frequency penalties have to be expected due to increasing routing delays.

In our implementation, we decided to encode the constants for the matrices
in lookup-tables (LUTs). This decision implies a high hardware utilization of
our design, but comes with the advantage of fast matrix multiplications (1 clock
cycle each) and therefore with the best performance. A low area implementation
of LowMC (and consequently Picnic) using BRAMs instead of LUTs for con-
stants could be an interesting topic for future work.

LowMC Optimizations. The main idea behind the optimizations proposed
in [23] is that all operations except the Sbox layer are linear. Furthermore, only
part of the state is affected by the Sbox layer. For example, consider the key
addition: we can swap the order of the linear layer and the key addition by
multiplying the round key with the inverse of the linear layer. Subsequently, we
can move part of the key addition through the identity part of the Sbox layer
and combine this part of the key addition with the key addition of the previ-
ous round. This process can be repeated recursively until we have combined a
large part of the key additions in the initial key addition before the first round.
The same process can be repeated for the round constants. Using some more
advanced linear algebra properties, we can also move parts of the linear layer
matrix multiplication to the next or previous round, again repeating this process
to combine parts of the linear layer in the last or first round.

Figure 2a shows the VHDL design of LowMC without the optimizations.
In Fig. 2b, we present the design with the optimizations applied. Without the
optimizations, there is only one implementation for all the rounds, and the matrix
multiplications affect the entire state. In the optimized implementation, there
are 5 different matrix multiplication modules, each for a matrix with different
dimensions. The Sbox layer, round key, and constants of the new implementation
only affect the first s bits of the state, and the linear layer matrix multiplication
follows the algorithm in [23].

Optimized Hardware Utilization. The impact of the optimizations depends on
the concrete LowMC instance. It especially depends on the number of Sboxes
m and the resulting size of the non-linear layer. The fewer Sboxes per round,
the more significant is the effect of the optimizations. The concrete effect of the
optimizations can be seen in Table 2, where the required lookup-tables (LUTs)
of the LowMC VHDL implementation are shown for the two different LowMC
instances used in Picnic-L1-FS and Picnic-L5-FS. The instance for security
level L1 only requires about a third of the LUTs required before, and the instance
for security level L5 only requires about a fifth of the LUTs of the straightforward
version. Without the optimizations, it would not even be possible to synthesize
one LowMC instance for security level L5 on our FPGA board, whereas we

Efficient FPGA Implementations of LowMC and Picnic 427

require several instances for the Picnic implementation. The improvement for
LowMC instances with larger non-linear layers is smaller, though.

3.2 Pipeline versus State Machine

Besides the implementation of LowMC using a simple state machine, we also
provide an alternative implementation using a pipelined design. While both
designs have a latency of r cycles to get a specific ciphertext, the pipelined design
has a much higher throughput with 1 ciphertext per cycle. The state machine
design, on the other hand, has to wait for an encryption to be finished before it
can process another plaintext and therefore has a throughput of 1 ciphertext per

D

Q

clk Reg

Sbox
Cipher

Li

iRound

Ki

Key

iRound

State

Const(Round)

Plain

n

n

k

n

n n n

n

(a) LowMC implementation without opti-
mizations of the round key and linear layer
computations.

State

D

Q

clk Reg

Sbox

Round

Li

L̂i

Lr

i i

i

Const(Round)

PN,i

iRound

Key
Cipher

Plain

PL

Key

Const(0)

Perm.

n n n n

k

k

s

s

n - s

n

n

s

n

n - s

n

n

n

(b) LowMC implementation with opti-
mized round key computation and linear
layer evaluation.

Fig. 2. State diagrams of different LowMC implementations.

Table 2. LUTs of one LowMC with/without optimizations (203800 available).

LowMC instance LowMC Without opt. With opt. Improv. %

n k m r LUTs % LUTs LUTs % LUTs

Picnic-L1-FS 128 128 10 20 42395 20.80% 13558 6.65% 68.02%

Picnic-L5-FS 256 256 10 38 209348 102.72% 44431 21.8% 78.78%

428 D. Kales et al.

r rounds. However, the state machine design requires fewer lookup tables on an
FPGA, because the LowMC round only needs to be instantiated once. For the
Picnic coprocessor, we use the state machine design due to smaller hardware
utilization. When interested in higher throughput, for example, when it is used
as an oblivious pseudo-random function in a PSI protocol, the pipeline design is
the better choice.

3.3 Optimized VHDL Implementation of Picnic

We now use the LowMC implementation as a building block for our Picnic
coprocessors. In the following, we shortly describe the other different submodules
and finally, the high-level design of the Picnic coprocessors.

LowMC-MPC. In Picnic, three copies of the LowMC encryption circuit are
evaluated with three random additive shares of the secret key. Since the secret-
sharing used is additive, XOR gates can be computed locally for each part,
while some communication between the parties and randomness is required for
computing an AND gate. While a straightforward implementation of this uses
three copies of the LowMC circuit, we present a further optimization. The
nature of the secret-sharing and circuit decomposition used in ZKB++ ensures
that for each wire w in the circuit, the equality w = w1 ⊕ w2 ⊕ w3, holds, where
wi is the share of party i. If we evaluate the circuit once in plain and store all
intermediate values w, we can use only two instances of LowMC for signing and
compute the shares of the third party w3 = w ⊕ w1 ⊕ w2 whenever needed. This
optimization allows us to implement the LowMC-MPC module using resources
equivalent to only two LowMC circuit evaluations, while still being able to
evaluate all players simultaneously. Additionally, we can precompute the plain
evaluation of the LowMC circuit in parallel to the Seeds calculation at the
beginning of the Picnic signing process and, therefore, do not slow down signing
while using this optimization.

During signature verification, only two players perform the LowMC-MPC
circuit evaluation; therefore, we naturally only require resources of about two
LowMC circuit evaluations to perform all players in parallel.

SHAKE. In Picnic, instances of SHAKE are used for different purposes, both
as a hash function with fixed output or as an extensible output function to
generate pseudorandom tapes of arbitrary size. Therefore, we implemented a
custom, flexible Keccak design, supporting many different configurations while
maintaining efficiency and small hardware utilization.

Seeds, Tapes, and Commitments. In the beginning, one master seed is pseudo-
randomly generated and expanded into seeds for each of the T runs. We use
three instances of SHAKE to expand the seeds for each player’s current run
into its random tape and three more instances to commit to the transcript of
the current run for each player. We are capable of calculating the randomness

Efficient FPGA Implementations of LowMC and Picnic 429

required for run t+1 of Picnic’s circuit decomposition in parallel to calculating
the commitments of run t, reducing the overall number of clock cycles for signing
and verification. However, due to limited routing freedom due to high resource
utilization of our synthesized Picnic-L5 design, this optimization would signif-
icantly increase the critical path of the design and, therefore, this optimization
is only used for Picnic-L1.

Challenge Generation (H3). Based on the Fiat-Shamir transformation, we
instantiate the random oracle for the challenge generation using SHAKE. All
commitments for all T runs are hashed together with some additional parameters
to produce the challenge vector. Since the challenge vector consists of entries in
{0, 1, 2} to denote the player that is not revealed for this run, the H3 module
takes care to filter the output bits of the SHAKE call according to the Picnic
specification.

Serialization and Deserialization. We also implemented small submodules to
assemble the final signature as a byte array conforming to the Picnic specifica-
tion. For verification, we parse incoming signatures and store all the intermediate
values of the opened views in the block RAM cells of the FPGA. These modules

Seeds

Tapes[0]

MPC[t]

Commit[t] Tapes[t+ 1]

t < T
yes

Challenge

no

Serialize

Message

Signature

Deserialize

Tapes[0]

Message, Signature

MPC[t]

Commit[t] Tapes[t+ 1]

Challenge

t < T

ok? yesno

yes

no

Invalid Valid

Fig. 3. High-level design of Picnic signing (left) and verification (right).

430 D. Kales et al.

are implemented to be able to handle the variable signature length of Picnic
internally.

High-Level Design. We developed several different VHDL designs for Picnic-
L1-FS and Picnic-L5-FS. We implemented a standalone version for message
signing or signature verification only, as well as a version which is capable of
doing both.

The overall design of the implementations is a nested state machine, where
the high-level design connects the inputs and outputs of all the described sub-
modules. Figure 3 shows a diagram of the high-level design, with the signing
process shown on the left side and the verification process on the right. In the
designs which are capable of doing both signing and verification, both processes
are implemented. Most of the submodules can be reused for both signing and
verification, only the MPC module has to implement two different Sbox calcula-
tions, and the combined design has to include both the Serialize and Deserialize
submodules. Therefore, the difference in hardware utilization between a sign-only
design and a sign/verify design is quite low.

4 Evaluation

In the following, we evaluate and discuss the performance and hardware utiliza-
tion of our design. We not only give cycle counts for signing and verification but
also show the real-world performance of our designs by additionally synthesizing
a PCIe wrapper around our Picnic cores and using them from a C library.

4.1 Hardware Utilization

First, we give an overview of the required hardware utilization of the different
Picnic submodules, and then show the utilization of the developed coprocessors.
The used FPGA, a Xilinx Kintex-7 board, has 203800 lookup-tables (LUTs),
407600 flip-flops (FF) and 445 BRAMs available.

Picnic Submodules. To give an overview of the costs of the individual submod-
ules, we present their hardware utilization for Picnic-L1-FS and Picnic-L5-FS
in Table 3. This table shows that the LowMC-MPC modules require by far the
most hardware utilization. However, observe that the combined submodule which
is able to do the LowMC-MPC encryption for both signing and verification only
requires less than one percent more LUTs than the submodule which can only
be used for signing. This is because we can reuse large parts of the circuit for
both signing and verification, the only difference is in the Sbox layer, where the
AND gates are evaluated.

Picnic Coprocessors. Table 4 compares the hardware utilization of the different
submodules of the final coprocessors, including our 6 different Picnic cores
synthesized for the Kintex-7. Our Picnic cores require a lot of LUTs on the

Efficient FPGA Implementations of LowMC and Picnic 431

Table 3. Hardware utilization for different parts of the L1 and L5 designs on Kintex-7.

Design Part L1 L5

LUTs % FF % LUTs % FF %

Keccak 3726 1.83% 1606 0.39% 3726 1.83% 1606 0.39%

Tapes (3× Keccak) 9574 4.70% 5589 1.37% 9420 4.62% 9621 2.36%

Commits (3× Keccak) 12221 6.00% 5589 1.37% 14160 6.95% 6357 1.56%

Seeds (1× Keccak) 5867 2.88% 1846 0.45% 8974 4.40% 2640 0.65%

H3 (1× Keccak) 7236 3.55% 3641 0.89% 8815 4.33% 4085 1.00%

Serialize 1962 0.96% 125 0.03% 1608 0.79% 172 0.79%

Deserialize 2025 0.99% 125 0.03% 2317 1.14% 155 0.04%

LowMC-MPC Sign 31837 15.62% 3060 0.75% 97066 47.63% 5940 1.46%

LowMC-MPC Verify 29756 14.60% 1126 0.28% 93959 46.10% 2246 0.55%

LowMC-MPC 32224 15.81% 3061 0.75% 98319 48.24% 5958 1.46%

Table 4. Hardware utilization for different parts of the coprocessor for Kintex-7.

Design Part LUTs % FF % BRAM %

PCIe/DMA 22216 10.90% 22692 5.57% 42.5 9.55%

Picnic-L1 90037 44.18% 23105 5.67% 52.5 11.80%

Picnic-L1-sign 76472 37.52% 21061 5.17% 52.5 11.80%

Picnic-L1-verify 68614 33.67% 16821 4.13% 33.5 7.53%

Picnic-L5 167530 82.20% 33164 8.14% 98.5 22.13%

Picnic-L5-sign 149456 73.33% 30441 7.47% 98.5 22.13%

Picnic-L5-verify 138547 67.98% 24278 5.96% 62.5 14.04%

Table 5. Hardware utilization on Artix-7.

Design Part LUTs % FF % BRAM %

Picnic-L1 90037 67.29% 23105 8.63% 52.5 14.38%

Picnic-L1-sign 76472 57.15% 21061 7.87% 52.5 14.38%

Picnic-L1-verify 68614 51.28% 16821 6.29% 33.5 9.18%

used FPGA, especially the Picnic-L5-FS implementations. The PCIe/DMA
Subsystem which connects the Picnic cores to the PCIe port of the used FPGA
board adds about 22 000 additional LUTs to the design.

On the Artix-7, the picture is quite different, as we only have 133 800 LUTs,
267 600 flip-flops and 365 BRAMs available. Consequently, neither Picnic-L5
Picnic-L5-sign, nor Picnic-L5-verify fit on this board. The hardware uti-
lization of the Artix implementations of L1 are depicted in Table 5.

432 D. Kales et al.

Table 6. Clock Cycles per Submodule.

Design Part Picnic-L1-FS Picnic-L5-FS

LowMC-MPC 40 76

Tapes 51 75

Commits 51 100

Seeds 1 732 7 904

H3 (absorb) 6 490 26 220

Deserialize 1 per 128 bit 1 per 128 bit

Serialize 1 per 128 bit 1 per 128 bit

T× LowMC-MPC 8 760 31 844

T× Tapes 11 169 31 425

T× Commits 11 169 41 900

Critical Path. The critical path of the synthesized design is across the matrix
multiplications in LowMC’s linear layer and round key schedule, due to the
high number of constants involved. But we also observed, that since the Picnic-
L5 design has a considerable hardware utilization, the synthesizer has much
less freedom in routing the design and, therefore, naturally produces long paths
between registers. These long paths make it very difficult to optimize the design
for high frequencies.

4.2 Clock Cycles

Table 6 lists the number of clock cycles each submodule of our Picnic imple-
mentation requires. The LowMC-MPC module performs the evaluation of a
round in two clock cycles and, therefore, requires 2 · r cycles in total. Evaluating
a round in one cycle would have drastically increased the critical path of the
design since two matrix multiplications (linear layer and round key schedule)
would have been performed sequentially in this case.

Our Keccak implementation performs one round of the state transforma-
tion function during one clock cycle, which leads to 24 cycles for one absorb-
ing/squeezing phase. The number of absorbing/squeezing phases, therefore,
determines the number of clock cycles required for the Tapes, Commits, Seeds,
and the first part of the H3 submodules. The duration of the second part of
the H3 submodule depends on the generated challenge and differs for every
signature.

In Picnic we have T runs of the FS transformed ZKB++ proof system, in
contrary to the Seeds, H3, Serialize and Deserialize modules which are only
required once. In Table 6 we, therefore, also show the overall runtime of each
submodule involved in the proof creation and it can be seen, that the proof
system dominates the overall runtime of the signature creation and verification
process.

Efficient FPGA Implementations of LowMC and Picnic 433

Table 7. Runtime comparison of the coprocessors on benchmark platform A.

Coprocessor Clock frequency (MHz) Clock cycles FPGA C-Access

Runtime (ms)

Picnic-L1-sign 125 ≈ 31300 0.250 0.349

Picnic-L1-verify 125 ≈ 29600 0.237 0.395

Picnic-L5-sign 125 ≈ 154500 1.236 1.383

Picnic-L5-verify 125 ≈ 146600 1.173 2.128

4.3 Benchmarks

To verify the performance characteristics of our implementation, we compared
the runtime of the coprocessors running on a Kintex-7 board to the state-of-the-
art optimized software implementations of Picnic. The platforms used for the
benchmarks are as follows:

Platform A Intel i7-960, 3.2 GHz with 16 GB RAM, Debian 9
Platform B Intel i7-4790, 3.6 GHz with 16 GB RAM, Ubuntu 18.04.1
Platform C Intel E31230, 3.2 GHz with 8 GB RAM, Ubuntu 18.04.2

We used platform A to test our coprocessors, platforms B and C were used in the
Picnic design document [19] to test their optimized software implementations.

Table 7 shows the average runtime of the developed coprocessors for signing
and verification. The column FPGA runtime is the calculated time resulting
from the clock frequency and the number of clock cycles (including 1 cycle per
128 bit of data transmission) and therefore is the actual runtime of the FPGA.
The column C-Access runtime is the measured runtime using our developed C
library on platform A.

As Table 7 shows, the C library developed to interface with the coprocessor
adds some overhead to the signing and verification process. For signing, the
overhead is about 0.1 ms in runtime, but for verification, the overhead is a bit
larger. Especially for Picnic-L5-FS the measured runtime is much bigger than
the raw verification runtime of the coprocessor. We suspect that this is due to
the driver for the PCIe/DMA Subsystem being slower for writing large amounts
of data, like the Picnic-L5-FS signature, from the PC to the FPGA board and
that this overhead could be optimized further.

For comparison, Table 8 shows the runtime of the optimized implementation
of Picnic in C and an optimized version which uses processor-specific compiler
intrinsics on two different benchmark platforms as described in the official Pic-
nic design document [19]. This table shows, that the runtime of Picnic highly
depends on the underlying hardware and if the CPU supports single instruc-
tion, multiple data (SIMD) instruction sets, like SSE2 and AVX2, which further
improve execution time. However, in any case, our developed coprocessors are
faster than the corresponding software counterparts and do not rely on specific
CPU instructions. For Picnic-L1-FS signing is ≈4 times faster than the fastest

434 D. Kales et al.

Table 8. Runtime comparison of optimized software implementations [19].

Platform Parameters Using SIMD Sign Verify

B Picnic-L1-FS � 1.44 ms 1.15 ms

B Picnic-L5-FS � 5.87 ms 4.92 ms

B Picnic-L1-FS ✗ 2.82 ms 2.34 ms

B Picnic-L5-FS ✗ 12.37 ms 10.59 ms

C Picnic-L1-FS � 4.20 ms 3.40 ms

C Picnic-L5-FS � 17.67 ms 14.67 ms

C Picnic-L1-FS ✗ 4.41 ms 3.56 ms

C Picnic-L5-FS ✗ 19.52 ms 16.81 ms

Table 9. Comparison of FPGA implementations (modified from [7]).

Scheme Security Area f t

Classic PQ FPGA LUT/FF/BRAM MHz ms

SPHINCS-256 [7] 256 128 K7 19067/38132/36 525 1.53

SPHINCS+-128 [9] 128 64 V7 11438/3335/? 100 9.38

BLISS-IV [43] 192 ? S6 6438/6198/7 135 0.35

ECDSA-256 [6] 128 ✗ V7 6816/4442/0 225 1.49

ECDSA-256 [33] 128 ✗ V4 34869/32430/176 375 0.04

ECDSA-521 [6] 256 ✗ V7 8273/7689/0 161 5.02

RSA-2048 [47] 112 ✗ V7 3558 slices/0 399 5.68

Picnic-L1-FS 128 64 K7 90037/23105/52.5 125 0.25

Picnic-L5-FS 256 128 K7 167530/33164/98.5 125 1.24

software implementation, verification is ≈3 times faster. For Picnic-L5-FS our
implementations are ≈4 times faster for signing and ≈2.3 times faster for ver-
ification. For CPUs which do not support AVX2 instructions and for portable
C-only implementations the speedup of our coprocessors is even more significant.

4.4 Comparison to FPGA Implementations of Other Signature
Schemes

To put our FPGA implementation in context of other signature schemes, we
compare our Picnic coprocessors to implementations of ECDSA [6] and RSA
coprocessors [47] as well as implementations of SPHINCS-256 [7] and BLISS-
IV [43]. Table 9 compares several different FPGA implementations of various
signature schemes, the runtime for signing t is calculated from the clock fre-
quency and the number of clock cycles and therefore does not take the overhead
of any transmission of data via a C-program into account. Thus this value com-
pares to the column FPGA runtime of Table 7.

Efficient FPGA Implementations of LowMC and Picnic 435

As Table 9 shows, our Picnic-L5-FS coprocessors, which have the same secu-
rity level as a SPHINCS-256 [7] coprocessor, have a slightly better runtime
for signing on the Kintex-7 (K7) FPGA. Similar, for the SPHINCS+ design
obtained from the high-level synthesis design flow [9], our coprocessor has a
significant better runtime at the cost of higher hardware utilization. The imple-
mentations of the traditional signature schemes RSA [47] and ECDSA [6] on a
Virtex-7 (V7) FPGA are also slower than our coprocessors. The ECDSA imple-
mentation in [33] occupies more area but uses high parallelism to drastically
increase their throughput. The implementation of BLISS-IV [43], another post-
quantum signature scheme based on lattices, on a Spartan-6 (S6) FPGA is very
efficient regarding area and runtime for signing. However, it has a lower security
level, and its security against a quantum adversary is not as well understood as
for schemes based on symmetric primitives like SPHINCS and Picnic.

However, even though our coprocessors are very competitive with regards to
signing times, the hardware utilization is significantly higher in comparison to
implementations of other signature schemes. This is due to the nature of Picnic
relying on a high number of different Keccak and LowMC primitives, where
especially the LowMC instances have a high hardware utilization on their own.
In comparison, the coprocessor of SPHINCS-256, a hash-based post-quantum
signature scheme, can be built efficiently using only one pipelined ChaCha12
instance and one instance of BLAKE-256 [8] and as a result, requires less hard-
ware utilization [7].

4.5 Evaluation of the LowMC Pipeline Design

Finally, we evaluate our pipelined design. After r cycles, the design is capable
of producing one ciphertext per cycle (cf. Section 3.2), a feature which is of
particular interest for high throughput use cases. We compare our coprocessor
(f = 125 MHz) for a LowMC instance with 128 bit block size and full data
complexity to AES-128 accelerated with the AES-NI instruction set [35]. For
this comparison we choose a LowMC instance with n = 128, k = 128, m = 25,
r = 11. This instance provides a trade-off between costs in the linear layer and
the number of AND gates. The comparison of the coprocessor, including C-
access times, the raw FPGA runtime, the SIMD-optimized LowMC software
implementation and AES-NI is depicted in Table 10. These benchmarks were
recorded on a PC running Ubuntu 16.05 with an Intel i7-4790 CPU, 3.6 GHz.
As the table shows, the coprocessor speeds up encryption by a factor of ≈84
compared to the LowMC software implementation, and when considering the
C-access time, the improvement is still up to a factor of ≈14. Compared to AES-
NI, the raw performance on the FPGA is better by a factor of ≈2.75, but the
access time adds significant overhead. Therefore, we expect this design to render
LowMC an alternative for PSI protocols [37] or database joins on secret shared
data [40].

This speed up direct translates to the same performance gain in the setup
phase of the PSI protocol as proposed in [37]. Thus, the excellent performance of
our coprocessor makes it feasible to use LowMC in the PSI protocol. Thereby,

436 D. Kales et al.

Table 10. Performance of LowMC (n = 128, k = 128, m = 25, r = 11) implemented
in software and in our pipeline coprocessor, as well as AES-NI.

Encryptions Size LowMC AES
FPGA-Raw FPGA-C Software AES-NI

220 16MB 0.008 s 0.046 s 0.677 s 0.022 s

224 256MB 0.134 s 0.771 s 10.78 s 0.359 s

226 1024MB 0.537 s 3.11 s 43.31 s 1.436 s

228 4096MB 2.15 s 12.57 s 182.65 s 5.743 s

the PSI protocol can profit from reduced communication overhead during the
online phase due to the reduced multiplicative complexity of LowMC without
requiring the tradeoff of having a slower setup phase.

5 Reducing the Hardware Utilizations

The large size of the constants needed for LowMC is one of the limiting fac-
tors to implement Picnic on FPGAs. Even after applying the optimizations to
the round key and linear layer computations, the constants are still too large to
fit an implementation on an Artix-7 board. To fit an implementation of Pic-
nic suitable for the 128-bit post-quantum security level on this board, differ-
ent LowMC instances with fewer rounds could be selected. Conversely, as this
change requires the number of Sboxes to be increased to retain the security guar-
antees, the signature size will increase. In addition to fitting Picnic on smaller
FPGA boards, the performance of the optimized implementations would also
improve, since fewer rounds are required to achieve the same level of security
when more Sboxes are used. Alternatively, further improvements are required
to reduce the size of LowMC constants. We envision multiple alternatives that
could make this possible.

The current design of Picnic was chosen to have an acceptable trade-off
between area and runtime and, therefore, evaluates the LowMC-MPC simu-
lation concurrently for all three players by using two instances of the LowMC
matrices. By doing the MPC simulation consecutively, we would be able to reduce
the instances used to only one and reduce the hardware utilization. However, this
optimization would result in more clock cycles per LowMC-MPC rounds and
longer critical paths after synthesis reducing the clock frequency, and, therefore,
would produce a very high performance penalty of at least a factor 2 if not more.

Another possibility to reduce the hardware utilization by modifying our
design would be to reuse Keccak instances for different purposes in the design.
However, this would again result in longer critical paths after synthesis, and
since our Keccak design is very small in comparison to the LowMC design,
the resulting performance penalty is too big in comparison to the actual reduc-
tion of the hardware utilization.

Efficient FPGA Implementations of LowMC and Picnic 437

Table 11. Hardware utilization (LUTs) with reduced LowMC.

Design Part LUTs Improvement Utilization

Kintex-7 Artix-7

LowMC MPC-L1 17751 44.91% 8.71% 13.27%

LowMC MPC-L5 47615 51.57% 23.36% 35.59%

Picnic-L1 75662 15.97% 37.13% 56.55%

Picnic-L1-sign 62272 18.57% 30.56% 46.54%

Picnic-L1-verify 55321 19.37% 27.14% 41.35%

Picnic-L5 121299 27.60% 59.52% 90.66%

Picnic-L5-sign 103688 30.62% 50.88% 77.49%

Picnic-L5-verify 92910 32.94% 45.59% 69.44%

The use of LowMC in Picnic is relatively unique in the sense that it uses
LowMC instances with low data complexity. Only recently, LowMC in this
setting has seen more security analysis [44], leading to LowMC version 3 with a
higher number of rounds. While the higher number of rounds on its own is not a
problem for the FPGA implementation, the size of the constants also increases as
more and more unique matrices are required. However, new designs [30] that are
also optimized for a low multiplicative complexity make use of a single matrix
for the linear layer. We propose to apply this idea also to LowMC, that is, the
same uniformly random matrix is re-used for all linear layers.3 Thereby we can
significantly reduce the hardware utilization as can be seen in Table 11. With
this change, the Picnic-L5 design fits on the Artix-7.

Furthermore, with this change in place, one could go a step further and
remove the constants from the implementation altogether. The matrices and
round constants could then be derived from the LFSR as specified in the
LowMC instance generation algorithm. It would be necessary to store the inter-
mediate states of the LFSR where it is known to produce invertible matrices,
though, but then no invertible checks would need to be implemented. While
deriving the matrices during runtime would come with a performance penalty,
we expect it the reduce the hardware utilization significantly.

Alternatively, LowMC could be replaced by recently proposed cipher designs
such as GMiMC [2]. Similarly to LowMC, GMiMC – and in particular its ERF
variant – can be parameterized for the low data complexity scenario. It can be
parameterized in a way leading to roughly similar sized signatures with better
performance (in software). However, for an FPGA implementation, we expect it
to use a lot less area since the size of the constants is significantly smaller. For
the GMiMC instance over GF(217) with 63 rounds, the constants would consist

3 The LowMC designers confirmed in private communication that they do not expect
this change to enable a new attack vector. However, more security analysis on this
case would be required before this can be integrated into Picnic itself.

438 D. Kales et al.

of only 63 field elements in total. The additional multipliers required for GF(217)
are cheap [25] when compared to the size of LowMC matrices.

6 Conclusion

In this work, we presented two LowMC designs for FPGAs. The first design
relying on a simple state machine shows the feasibility of implementing the post-
quantum signature scheme Picnic on FPGA platforms. The resulting FPGA
design can sign messages for the L1 security level in ≈31300 cycles and verify
signatures in ≈29600 cycles. Using our concrete FPGA board, a Xilinx Kintex-7
FPGA KC705 evaluation kit, this allows signing of a message using a C library
communicating with our board connected via PCIe in 0.35 ms.

Acknowledgements. This work was partially supported by the EU’s Horizon 2020
ECSEL Joint Undertaking project SECREDAS under grant agreement n◦783119, by
the European Research Council (ERC) under Horizon 2020 grant agreement n◦681402,
by EU’s Horizon 2020 project Safe-DEED under grant agreement n◦825225, and by the
IoT4CPS project which is partially funded by the “ICT of the Future” Program of the
FFG and the BMVIT. D. Kales was supported by iov42 Ltd.

References

1. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process (2019). https://doi.org/10.6028/NIST.IR.8240

2. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 8

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

4. Albrecht, M.R., Hanser, C., Höller, A., Pöppelmann, T., Virdia, F., Wallner, A.:
Implementing RLWE-based schemes using an RSA co-processor. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(1), 169–208 (2019)

5. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

6. Amiet, D., Curiger, A., Zbinden, P.: Flexible FPGA-based architectures for curve
point multiplication over GF(p). In: DSD, pp. 107–114. IEEE Computer Society
(2016)

7. Amiet, D., Curiger, A., Zbinden, P.: FPGA-based accelerator for post-quantum
signature scheme SPHINCS-256. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 18–39 (2018)

8. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 8

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-642-38980-1_8

Efficient FPGA Implementations of LowMC and Picnic 439

9. Basu, K., Soni, D., Nabeel, M., Karri, R.: NIST post-quantum cryptography-a
hardware evaluation study. ePrint 2019, 47 (2019)

10. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. ePrint 2013, 404
(2013)

11. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

12. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: CCS, pp. 2129–2146. ACM (2019)

13. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

14. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from sym-
metric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–
271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 13

15. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-
reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 169–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 10

16. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

17. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–
333. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 16

18. Chailloux, A.: Quantum security of the Fiat-Shamir transform of commit and open
protocols. ePrint 2019, 699 (2019)

19. Chase, M., et al.: The picnic signature scheme design document (version 2) (2019).
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf

20. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS, pp. 1825–1842. ACM (2017)

21. Derler, D., Ramacher, S., Slamanig, D.: Generic double-authentication preventing
signatures and a post-quantum instantiation. In: Baek, J., Susilo, W., Kim, J. (eds.)
ProvSec 2018. LNCS, vol. 11192, pp. 258–276. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01446-9 15

22. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

23. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-
alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 12

24. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

25. El-Razouk, H., Reyhani-Masoleh, A.: New bit-level serial GF (2m) multiplication
using polynomial basis. In: ARITH, pp. 129–136. IEEE (2015)

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-12612-4_13
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-662-52993-5_16
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-030-26951-7_13

440 D. Kales et al.

26. Ferozpuri, A., Farahmand, F., Dang, V., Sharif, M.U., Kaps, J.P., Gaj, K.:
Hardware API for Post-Quantum Public Key Cryptosystems (2018). https://
cryptography.gmu.edu/athena/PQC/PQC HW API.pdf

27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

28. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

29. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security Symposium, pp. 1069–1083. USENIX Association
(2016)

30. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and poseidon: new hash functions for zero knowledge proof systems. ePrint
2019, 458 (2019)

31. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: ACM CCS, pp. 430–443. ACM (2016)

32. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-Designs: bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46706-0 2

33. Güneysu, T.: Utilizing hard cores of modern FPGA devices for high-performance
cryptography. J. Cryptogr. Eng. 1(1), 37–55 (2011)

34. Howe, J., Oder, T., Krausz, M., Güneysu, T.: Standard lattice-based key encapsula-
tion on embedded devices. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3),
372–393 (2018)

35. Intel Corporation: Securing the enterprise with intel R© AES-NI (2010). https://
www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-
paper.pdf

36. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30. ACM (2007)

37. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile pri-
vate contact discovery at scale. In: USENIX Security Symposium, pp. 1447–1464.
USENIX Association (2019)

38. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS, pp. 525–537. ACM (2018)

39. LowMC: Official LowMC Github Repository. https://github.com/LowMC/lowmc
40. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins for secret shared data.

ePrint 2019, 518 (2019)
41. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a

very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

42. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: CCSW, pp. 113–124. ACM (2011)

43. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

44. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of
full LowMCv2. IACR Trans. Symmetric Cryptol. 2018(3), 163–181 (2018)

https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf
https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-662-46706-0_2
https://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
https://github.com/LowMC/lowmc
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20

Efficient FPGA Implementations of LowMC and Picnic 441

45. Rotaru, D., Smart, N.P., Stam, M.: Modes of operation suitable for computing on
encrypted data. IACR Trans. Symmetric Cryptol. 2017(3), 294–324 (2017)

46. Roy, D.B., Mukhopadhyay, D.: Post quantum ECC on FPGA platform. ePrint
2019, 568 (2019)

47. San, I., At, N.: Improving the computational efficiency of modular operations for
embedded systems. J. Syst. Archit. Embed. Syst. Des. 60(5), 440–451 (2014)

48. Sasdrich, P., Güneysu, T.: Implementing curve25519 for side-channel-protected
elliptic curve cryptography. TRETS 9(1), 3:1–3:15 (2015)

49. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

50. Wang, W., Szefer, J., Niederhagen, R.: FPGA-based niederreiter cryptosystem
using binary goppa codes. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 77–98. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-79063-3 4

51. Werner, M., Unterluggauer, T.: Transparent memory encryption and authentica-
tion. https://github.com/IAIK/memsec

52. Werner, M., Unterluggauer, T., Schilling, R., Schaffenrath, D., Mangard, S.: Trans-
parent memory encryption and authentication. In: FPL, pp. 1–6. IEEE (2017)

https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-79063-3_4
https://doi.org/10.1007/978-3-319-79063-3_4
https://github.com/IAIK/memsec

Traceable Ring Signatures
with Post-quantum Security

Hanwen Feng1,2, Jianwei Liu1, Qianhong Wu1(B), and Ya-Nan Li3

1 Key Laboratory of Aerospace Network Security,
Ministry of Industry and Information Technology,

School of Cyber Science and Technology,
Beihang University, Beijing, China

{feng hanwen,liujianwei,qianhong.wu}@buaa.edu.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China
3 New Jersey Institute of Technology, Newark, USA

ly252@njit.edu

Abstract. Traceable ring signature (TRS), a variant of ring signature,
allows a signer to sign a message anonymously labeled with a tag on
behalf of a group of users, but may reveal the signer’s identity if he creates
two signatures with the same tag. TRS provides accountable anonymity
for users, and serves as an important role in e-voting systems and e-
coupon services. However, current TRS schemes are built on hard prob-
lems in number theory that cannot resist quantum attackers. To address
this issue, first, we propose a general framework of TRS, by using a non-
interactive zero-knowledge proof of knowledge, a collision-resistant hash
function, and a pseudorandom function with some additional properties.
Then, we construct an efficient TRS scheme in the quantum random ora-
cle model, by instantiating the framework with appropriate lattice-based
building blocks. Moreover, the signature size of the lattice-based TRS is
logarithmic in the ring size.

1 Introduction

Traceable ring signature (TRS) [20] is a cryptographic primitive for achieving
accountable anonymity. TRS is essentially a tag-based ring signature [33]. Here,
the tag consists of a ring, that is a signer-chosen group of users, and an issue,
that is a string referring to a social problem or a vote in practice. A signer
can anonymously sign a message on behalf of the ring, but his identity may
be revealed if he produces two signatures with the same tag. More precisely,
with the same tag, if the two signatures are generated for different messages,
everyone can extract the signer’s identity from the signatures; if they are for
the same message, everyone knows they are created by the same signer. In many
information systems like e-voting [13] and anonymous off-line coupon service [19],
the signature represents the signer’s use of his rights, e.g., voting for someone and
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 442–468, 2020.
https://doi.org/10.1007/978-3-030-40186-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_19

Traceable Ring Signatures with Post-quantum Security 443

spending a coupon. In such cases, signing twice with the same tag often refers
to some unexpected behavior such as multiple voting and double spending. TRS
can protect an honest user’s privacy and keep users away from these dishonest
behaviors, and thus it becomes an important tool in these scenarios.

Since Fujisaki et al. [20] proposed the first TRS scheme in 2007, several
works have been proposed for improving security or performance. Fujisaki [19]
presented a TRS scheme with sub-linear size in the standard model. Au et al. [3]
adapted TRS to the identity-based setting. However, all these schemes are based
on computational problems in number theory that can be efficiently solved by
quantum computers [34]. As TRS serves as an essential building block in many
applications, there is a strong interest to build a post-quantum secure TRS
scheme.

Post-quantum Security. Since Shor’s seminal work [34] on efficient quantum
algorithms for factoring and discrete logarithm problems, post-quantum cryp-
tography has become a hot topic in cryptography community.

The early efforts are mainly about building cryptographic schemes on alterna-
tive hard problems that are conjectured to be quantum-resistant. Among them,
lattice-based cryptography is emerging as a substantial branch of post-quantum
cryptography, and has received intensive interests, since it has better asymptotic
efficiency, and supports many advanced functionalities such as fully homomor-
phic encryption [22].

In the last decade, it is also realized that some classical security proof tech-
niques are not available in the quantum world [8]. The most notable example is
the random oracle model (ROM), in which hash functions are treated as truly
random functions and can only be evaluated through querying random oracles.
Since hash functions are executed off-line in the real world, a quantum attacker
can evaluate a hash function on some quantum superposition states. To adapt
to this ability, the ROM should be adjusted to the quantum random oracle
model (QROM), where superposition queries are allowed. However, this sim-
ple adjustment makes the traditional simulation technique for ROM does not
work, as discussed in [8]. Moreover, Ambainis et al. [2] have pointed out that the
Fiat-Shamir construction [17], which produces secure signatures in the ROM, is
insecure in the QROM under assumptions that are sufficient in classical security.
Therefore, it is essential to provide a reasonable security proof for a cryptography
scheme in the quantum world.

1.1 Our Results

In this paper, we are interested in building a lattice-based TRS scheme with a
reasonable security proof against quantum adversaries.

General Construction of TRS. First, we propose a general construction of
TRS schemes, and show that its security can be built upon the existence of some
basic primitives such as general non-interactive zero-knowledge (computational)

444 H. Feng et al.

proof of knowledge (NIZKPoK) [15,30] and collision-resistant hash functions.
Since these basic primitives have post-quantum secure implementations [12,30],
the general construction also implies a TRS scheme can be secure against quan-
tum attackers.

There exists a general framework for a related primitive called unique ring
signatures [18]. The primitive is a variant of ring signatures, where every two
signatures under the same tag created by the same signer will share a common
component, and then everyone can link them. This general construction utilizes
the “PRF made public” paradigm [6], and is built upon a pseudorandom func-
tion (PRF) family and a non-interactive zero-knowledge (NIZK) proof system.
However, it does not support tracing the identity of a dishonest user, and thus
cannot subsume the notion of TRS.

The main obstacle to present a general construction for TRS is that how to
ensure the correctness and security of the tracing function from the properties of
the basic primitives. We address this challenge by making it clear what properties
of the underlying PRF are necessary in Fujisaki et al.’s TRS scheme [20], and
integrating their design principle with the framework of unique ring signatures
[18]. Then, we obtain a general construction of TRS that takes building blocks
as an NIZKPoK, a collision-resistant hash function and a PRF with certain
properties. More concretely, we show that a unique PRF with an intersection-
free range is sufficient for Fujisaki et al.’s paradigm. We state the requirements
on PRF in the following.

– Uniqueness. It says that given the same input, evaluating the PRF with
different keys can output identical values with only negligible probability.

– Intersection-free Range. We call a range is intersection-free, if (i) it is
a vector space of the rational number field Q; (ii) for every two distinct
elements y1, y2, every two uniformly randomly chosen elements δ1, δ2, and
any polynomial N(·), the probability, that there exists an integer i ≤ N(λ) s.t.
y1+ iδ1 = y2+ iδ2, is negligible. This property guarantees that two signatures
generated by different signers will not be wrongly traced.

To base our general construction on quantum-resistant assumptions, we ana-
lyze how to build a unique PRF with an intersection-free range. We consider
Goldreich et al.’s PRF construction [23], which takes the building block as a
pseudorandom generator (PRG) with expansion factor 2n. We show this PRF is
unique if the underlying PRG is two-layer collision-resistant, i.e., for this PRG,
no PPT algorithm can find two different seeds s.t. their outputs have either
the same first n bits or the same last n bits. Further, we show that Z

n
q is an

intersection-free set, where q is prime and n is an integer. Since a binary string
can be combined into a vector in Z

n
q , it is then straightforward to construct a

PRF with an intersection-free range from a PRF that outputs binary strings. In
addition, previous works [30,31] have shown that an NIZKPoK exists if the learn-
ing with errors (LWE) problem [32] is hard. Therefore, the general construction
of TRS also implies that the existence of TRS can be reduced to the existence of
collision-resistant hash functions and two-layer collision-resistant PRG, as well
as the hardness assumption of the LWE problem.

Traceable Ring Signatures with Post-quantum Security 445

An Efficient Lattice-Based TRS Scheme. Then, given the general frame-
work, we construct an efficient lattice-based TRS scheme in the QROM, which
is also the first TRS scheme that is conjectured to be post-quantum secure.

The first challenge is to find or construct a post-quantum secure PRF that has
an efficient proof system to show the correct evaluation while preserving pseu-
dorandomness. We address this challenge by proving the post-quantum pseu-
dorandomness of a lattice-based PRF FH(T, s) = �H(T) · s�p, that is initially
presented in [4]. To demonstrate the correct evaluation of this function, Libert
et al. [26] developed an efficient lattice-based proof system that belongs to Stern
protocols, a widely-used class of sigma protocols in lattice-based cryptography.
The pseudorandomness of this function can be reduced to the hardness of LWE
problems in the ROM [9]. Although not stated in detail, the random oracle in
this proof is simulated by generating Rx ← {−1, 1}m×m for each query x and
answering H(x) := Rx · A with a prefixed matrix A ∈ Z

m×n
q . However, as dis-

cussed in [8], this simulation technique is not reasonable in the QROM, since it
has to know the value of a query before responding and will disturb a quantum
superposition query. We adapt this proof to the one in the QROM by provid-
ing an alternative simulation for H(·) through Zhandry’s technique [41], which
can answer to quantum superposition inputs. Concretely, H(·) is simulated as
K(·) · A, where K(·) is a uniformly chosen 2q-wise independent function that is
identical to a uniform random function for any algorithm performing at most q
queries.

The second obstacle is to construct an NIZKPoK for a specific relation
RTRS = {A,B, (yi, ti)[L]; s ∈ Z

n
q : ∃i ∈ [L]s.t.yi = �A · s�p and ti = �B · s�p}.

Observe that a post-quantum secure NIZKPoK can be obtained by applying
a general transform such as the Unruh transform [37] to post-quantum secure
sigma protocols. Building such a sigma protocol for RTRS is sufficient. Utiliz-
ing the general Stern protocol and LWR transforming techniques introduced
in [26], we first build a Stern protocol for the relation R0 = {(pki, ti); si :
pki = �H(g) · si�p ∧ ti = �H(T) · si�p}. Clearly, RTRS is an OR composi-
tion of R0. The most well-known method to build sigma protocols for an OR
composition is Cramer et al.’s technique [14], but it requires the standard spe-
cial soundness of the underlying sigma protocol, while Stern protocols do not
have this property. To address this challenge, we use an alternative method to
build sigma protocol for an OR relation, that is completed with an accumula-
tor scheme [25]. We first hash the pair (pki, ti) to an element di for all i ∈ [L]
via a collision-resistant hash function h, and take R = (d1, · · · , dL) as the set
to be accumulated. We then compute the accumulator value u. Assuming the
security of the accumulator scheme, it is sufficient to prove the relation R′

TRS

that there are an skj and dj s.t. (i) dj ∈ R, and (ii) dj = h(pkj , tj), and (iii)
pkj = �H(g) · sj�p and tj = �H(T) · sj�p. In our TRS scheme, we implement
the accumulator scheme with the Merkle-tree-based accumulator scheme in [25],
and implement the hash function with the one used to build the accumulator.
Since there already exists a Stern protocol for the accumulator scheme, a Stern
protocol for the relation R′

TRS can be constructed through a combinatorial way.

446 H. Feng et al.

Benefiting from the logarithmic size of the proof for this accumulator scheme
[25], the signature size in our scheme is also logarithmic in the ring size.

1.2 Related Work

Linkable Ring Signatures. Linkable ring signature (LRS) is a closely-related
primitive, which is proposed by Liu et al. [28] in 2004. The definition of LRS
is only slightly different from the previously mentioned unique ring signatures
[18], and people tend to use the notion of LRS. In an LRS scheme, every two
signatures produced by the same signer with the same tag should be just linked,
but the identity of the signer will not be revealed. Thus, it is not applicable
to some scenarios such as off-line e-cash systems [11], where we wish to find
dishonest users. Recently, several lattice-based LRS schemes [5,29,36,39,42] are
proposed, while all of them only achieve a weaker property called one-time link-
ability, namely every two signatures generated by the same signer will be linked
regardless of whether they are with the same tag. Baum et al.’s construction [5]
and Torres et al.’s construction [36] are very similar, and both can be regarded
as the lattice-based counterparts of Liu et al.’s LRS scheme [28]. The signature
size of the two constructions is a few KB when the ring has fewer than ten mem-
bers, but grows linearly with the ring size. Zhang et al.’s LRS scheme [42] is
a lattice-based analogue of Groth and Kohlweiss’s one-out-of-many proofs [24],
and the signature size is logarithmic in the ring size. All the three constructions
cannot be simply extended to standard LRS schemes, since the component used
for linking in a signature is generated by using one-way functions instead of
PRFs, and then extra information of the secret key may be leaked when gen-
erating the components with different tags. Yang et al. [39] almost follows the
framework in [18] to construct a lattice-based LRS scheme. Their construction
relies on a lattice-based weak Pseudorandom Random Function (wPRF) and a
Merkle-tree-based accumulator [25] that is also used in our TRS scheme, and
thus achieves logarithmic signature size. Recently, Lu et al. [29] developed a new
paradigm to achieve one-time linkability in RS schemes, which was subsequently
formalized in [38]. Their construction takes a one-time signature scheme as a
building block, and uses the public key of the one-time signature as the linking
component. This construction has a better practical performance than previous
constructions since it does not need a zero-knowledge proof to guarantee the
validity of linking components. The signature size of this scheme is linear in the
ring size, and it is still unknown how to achieve standard linkability, rather than
one-time linkability, under this paradigm. All these lattice-based LRS schemes
only provide a security proof in the ROM, instead of in the QROM.

Previous Attempt on Post-quantum Secure TRS. Very recently, we note
that [10] (accepted by PQCrypto 2019) attempts to build a post-quantum secure
TRS scheme based on coding theory. However, this construction suffers from
some security flaws. In detail, this work leverages the Stern protocols to prove
the knowledge on a binary vector e with a fixed hamming weight s.t. GeT = sT

Traceable Ring Signatures with Post-quantum Security 447

and HeT = rT , where G, H, s, r are public binary matrices or vectors. Then,
it applies Cramer et al.’s OR-composition method [14] to this Stern protocol.
However, Cramer et al.’s OR-composition method is only applicable to sigma
protocols with standard special soundness [21], but the Stern protocols do not
have this property. Moreover, the misuse of Cramer et al.’s technique cannot
give a sound proof (or argument) system. We analyze it in the full version of
this paper.

2 Preliminaries

2.1 Notations

For arrow using, x ←↩ X denotes sampling x from the uniform distribution over
X or sampling x from distribution X, which is determined by the case X is
either a set or a distribution; X ↼ Y or Y ⇀ X denotes that Y is the range
of some map with the domain X ; a ← T (b) or T (b) → a denotes that a is an
output of the algorithm T (b); A ⇔ B denotes that the two events A and B are
equivalent.

For matrices and vectors, [A|B] ∈ Z
n×(m1+m2) denotes the concatenation of

matrices A ∈ Z
n×m1 and B ∈ Z

n×m2 ; a[i] denotes the i-th component of the
vector a; ‖x‖ and ‖x‖∞ denote the Euclidean norm and infinity norm, respec-
tively. For sets, we use [i, n] to denote the set {i, i+1, · · · , n} and abbreviate it as
[n] if i = 1. We use (ai)[n] to denote (ai)i∈[n], that is, the sequence (a1, · · · , an).

We say a function f(n) is negligible in n if limn→∞ ncf(n) = 0 for any
c > 0, denoting by f(n) ∈ negl(n). A function f(n) is non-negligible in n if
f(n) /∈ negl(n). We use λ ∈ N to denote the security parameter, and say that
two distributions φ and ϕ are statistically close, also denoted by φ ≈ ϕ, if their
statistical distance belongs to negl(λ). We say two distributions φ and ϕ are
computational indistinguishable, denoted by φ ≈c ϕ, if there is no PPT algo-
rithm can distinguish them with non-negligible advantage. We say a distribution
χ is B-bounded for some positive integer B, if Pr[‖x‖ > B : x ← χ] ∈ negl(λ).
For any x ∈ Z

m
q , we define �x�p = �(p/q) · x� mod q.

Throughout the whole paper, we define matrices Gn,q = In⊗[1| · · · |2�log q�−1]
∈ Z

n×n�log q�
q , and a map bin : Zn

q → {0, 1}n�log q�, which is obtained by replacing
each entry of a vector by its binary expansion. For every v ∈ Z

n
q , we have that

Gn,q · bin(v) = v.
The learning with errors (LWE) [32] assumption and the short integer solu-

tion (SIS) [1] assumption are basic assumptions of our construction. They are
recalled in the full version of this paper.

2.2 Stern Protocols

Stern protocols [35] are a special class of sigma protocols. In each execution of
a Stern protocol, the transcript between the prover and verifier consists of three
messages (com, ch, resp). The first message com called commitment and the third

448 H. Feng et al.

message resp called response are sent by the prover, and the second message ch
called challenge is uniformly sampled from a fixed domain by the verifier. The
Stern protocols were originally proposed for demonstrating the possession of a
short vector w.r.t. a syndrome matrix [35], and recently were used to prove many
relations appearing in the lattice-based cryptography [27]. More precisely, Stern
protocols can prove relations that can be transformed to the following relation
which we call the Stern relation.

Definition 1 (Stern Relation). Let V ⊂ {−1, 0, 1}d, ni, di, qi be positive
integers for i ∈ [N], where

∑N
i=1 di = d, the Stern relation is defined as

RS = {{(Mi ∈ Z
ni×di
qi

,vi ∈ Z
ni
qi

)}[N];Υi ∈ {−1, 0, 1}di :

Mi · Υi = vi mod qi,∀i ∈ [N], (ΥT
1 | · · · |ΥT

N) ∈ V}.

Permutations are the main techniques used in Stern protocols. To handle
a Stern relation, we need an eligible set of permutations (ESP) for the set V,
defined as follows.

Definition 2 (Eligible Set of Permutations (ESP)). Let S be a finite set
s.t. each element ϕ ∈ S can be associated with a permutation Φϕ over d elements.
We call ES = {Φϕ|ϕ ∈ S} is an eligible set of permutations for V, if

{
Υ ∈ V ⇐⇒ Φϕ(Υ) ∈ V;
if Υ ∈ V and ϕ is uniform in S, then Φϕ(Υ) is uniform in V.

For a Stern relation RS with an ESP ES , Libert et al. [26] presented a Stern pro-
tocol, to demonstrate the knowledge of {Υi}[N] for the public tuple {(Mi,vi)}[N].
Their results can be summarized in the following lemma.

Lemma 1 ([26]). Assuming an ESP ES = {Φϕ|ϕ ∈ S} for the set V of the
Stern relation RS, there is a Stern protocol for RS with transcript size of
Õ(

∑
i di · log qi). In particular, the Stern protocol is perfectly complete, and has

the following properties.

1. Statistical Honest-Verifier Zero-knowledge. There exists a PPT algo-
rithm called simulator, that takes as inputs {Mi,vi}[N], and outputs an
accepted transcript statistically close to that produced by the real prover and
the real verifier.

2. 3-Special Soundness. There exists a PPT algorithm called extractor, that
takes as inputs a commitment com and valid responses (resp1, resp2, resp3)
to three distinct challenges (ch1, ch2, ch3), and outputs a witness W =
(ΥT

1 | · · · |ΥT
N) ∈ V s.t. Mi · Υi = vi, ∀i ∈ [N].

2.3 Merkle-Tree-Based Accumulator

An accumulator is a one-way membership function that takes as input a set
R, and outputs a constant-size value u. Meanwhile, a value d ∈ R has a short

Traceable Ring Signatures with Post-quantum Security 449

witness w to convince verifiers that d was accumulated to u. In this section, we
introduce a lattice-based accumulator scheme [25] which is a building block of
our TRS scheme.

This accumulator scheme is Merkle-tree-based, built upon a carefully
designed hash function H = (Gen, h). In detail,

Gen(λ) := A = [A0|A1] ←↩ Zn×(m+m)
q , hA(u0,u1) := bin(A0u0 + A1u1),

(1)
where n, q,m ∈ N, u0,u1 ∈ {0, 1}m, and the map bin : Zn

q → {0, 1}n�log q� is
obtained by replacing each entry of a vector by its binary expansion. In partic-
ular, we set m = n�log q� when H is used in the accumulator.

Lemma 2 ([25]). The function family H is collision-resistant, if the SISn,2m,q,1

problem is hard.

This accumulator scheme consists of four algorithms (A-Setup, A-Acc,
A-Witness, A-Verify). A-Setup(λ) generates a key for the hash function, as
the public parameter pp. A-Acc(pp,R) accumulates all elements in R, by tak-
ing each element as a leaf node of a Merkle tree and outputting the root node
u as the accumulator value. A-Witness(pp,R, u, d) outputs the hash path of d
in the Merkle tree as the witness w. A-Verify(pp, u, d, w) just checks whether
w is the hash path for d or not.

Roughly speaking, the correctness of an accumulator scheme means that

1 ← A-Verify(pp,A-Acc(pp,R),d,A-Witness(pp,R, d)), for all d ∈ R

holds for all pp ← A-Setup(λ). We call an accumulator scheme secure if there is
no PPT adversary can forge a witness w∗ for some d∗ /∈ R s.t. A-Verify(pp, u, d∗,
w∗) = 1. Formal definitions refer to [25].

Lemma 3 ([25]). The accumulator scheme is correct and secure, assuming the
hardness of SISn,2m,q,1 problem.

Libert et al. [25] also presented a Stern protocol ΨA with proof size Õ(n log L·
log q) to demonstrate that there is secret element d ∈ Z

n
q that was accumulated

to a public accumulator value u which is computed from a set R with L elements.

2.4 Traceable Ring Signatures

A TRS scheme consists of five polynomial time algorithms, defined as follows.

– pp ← Setup(1λ): take the security parameter λ ∈ N as input, and output
public parameter pp.

– (pk, sk) ← KeyGen(pp): take the public parameter pp as input, and output
a public/secret key pair (pk, sk).

– σ ← Sign(pp, skπ, T,M): take as inputs the public parameter pp, a secret
key skπ of user Uπ, a tag T = ((pki)[L], issue) and a message M ∈ {0, 1}∗. It
outputs a signature σ on the message M with the tag T . Here, L is the ring
size, and (pki)[L] is required to contain pkπ.

450 H. Feng et al.

– ok ← Verify(pp, T, σ,M): take as inputs the public parameter pp, a tag T ,
a signature σ, and a message M . This algorithm outputs ok = 1 if accepting
this signature or ok = 0 if not accepting it.

– ξ ← Trace(pp, T,M, σ,M ′, σ′): take as inputs the public parameter pp, a
tag T , and two message/signature pairs (M,σ) and (M ′, σ′), and output
ξ ∈ {accept, reject, linked, pk}.

A TRS scheme is correct if it satisfies completeness and public traceability.
The completeness property is the generic requirement of any signature scheme,
capturing that a signature produced by an honest signer can always be accepted
by an honest verifier. The public traceability property mandates the correctness
of the tracing function.

Definition 3 (Completeness). A TRS scheme is complete, if for all pp ←
Setup(λ), all (pki, ski) ← KeyGen(pp) for i ∈ [L], all T = ((pki)[L], issue)
for some issue, all M and all σ ← Sign(pp, skπ, T,M), it always holds that
Verify(pp, T, σ,M) = 1.

Definition 4 (Public Traceability). A TRS scheme is public traceable, if
for all pp ← Setup(λ), all (pki, ski) ← KeyGen(pp) for i ∈ [L], all T =
((pki)[L], issue) for some issue, all M,M ′, all σ ← Sign(pp, skπ, T,M) and
σ′ ← Sign(pp, skπ′ , T,M ′), it holds that

Trace(pp, T,M, σ,M ′, σ′) =

⎧
⎪⎨

⎪⎩

accept, if π �= π′,
linked, else if M = M ′,

pkπ, otherwise (M �= M ′),

with overwhelming probability.

We use the security definitions of [19], which formalize security requirements
called tag-linkability, anonymity and exculpability.

Informally, tag-linkability is to defend the system, requiring that the total
number of unlinked signatures with one tag cannot exceed the total number of
ring members. Anonymity mandates that, when a signature is signed by either
of two signers, an attacker (even with access to the two signing oracles) cannot
infer anything as to by whom this signature is signed. Exculpability captures
that an honest signer cannot be accused of being dishonest by breaking the rule,
even if every ring member except him is corrupted. The formal definitions of
these properties are recalled in the full version of this paper.

3 General Construction

In this section, we give a general construction of TRS schemes, mainly by inte-
grating Fujisaki et al.’s design principle [20] into the framework of unique ring
signatures [18].

Traceable Ring Signatures with Post-quantum Security 451

Recall the framework of unique ring signatures. With a tag T =
((pki)[L], issue), a signature σ consists of an element t, along with a non-
interactive proof ϑ which guarantees that t is an evaluation of Fski

on T , where
ski is the secret key of pki for some i ∈ [L]. Since t is determined by ski and
the tag T , with the same tag T , two signatures generated by ski have the same
t, and then everyone knows that they are signed by the same user. Consider a
straightforward way to achieve the tracing function. A signature is required to
contain a sequence (ti)[N], as well as a non-interactive proof ensuring that some
ti is an evaluation of Fski

on T , where ski is the secret key of the i-th public key
pki in the tag T . Then, two signatures generated by the same ski both have ti,
and the identity of signer can be publicly traced to pki.

However, this straightforward construction cannot provide a reliable tracing
function, due to no restriction on other components tj , j �= i. Assume an honest
user Uj (w.r.t. pkj) generates a signature σj (with the tag T) which contains a
component tj . A dishonest user Ui (w.r.t. pki) can use his secret key to create
a valid signature σ∗ which also takes tj as its j-th component. From previous
argument, σ∗ and σj will be judged to be generated by Uj . To defend against
this attack, Fujisaki et al. [20] requires that all components tj are determined by
the used secret key ski, along with the tag T and message M . In their scheme,
the range of the PRF is a cyclic group G. Let the signature σ be signed by ski,
and ti be an evaluation of Fski

on T . Let t0 ∈ G is a hash value of (T,M). The
remaining components are generated as tj = t0(ti

t0
)j/i. In this section, we will

show how to employ their techniques to a generic PRF.

3.1 Building Blocks

Our construction has three main building blocks: a PRF, an NIZKPoK and a
collision-resistant hash function.

Pseudorandom Function Family. A PRF family F : K × X ⇀ Y can be
described by the following two algorithms.

– k ← Gen(1λ). Take as input the security parameter 1λ, and output a key
k ∈ K.

– y ← Fk(x). Evaluate the input x on the PRF with key k.

In our TRS construction, we require Y = {0, 1}∗. The standard security defini-
tion of a PRF is pseudorandomness.

Definition 5 (Pseudorandomness, [40]). A function F : K×X ⇀ Y is pseu-
dorandom, if no PPT adversary making polynomial-bounded queries can distin-
guish between a truly random function in F [X : Y] and the function Fk for a
random k, where F [X : Y] is the set of all functions with the domain X and
range Y. Formally, for any PPT A, we have

Pr[AFk(1λ) = 1, k ← Gen(1λ)] − Pr[AO(1λ) = 1, O ← F [X : Y]] ∈ negl(λ).

452 H. Feng et al.

In addition, we require that the PRF F satisfies the following conditions.

1. Uniqueness. For a uniformly chosen message x ←↩ X , we have that

Pr[∃k1, k2 ∈ K, k1 �= k2 ∧ Fk1(x) = Fk2(x)] ∈ negl(λ).

2. Intersection-Free Range. The range Y is a vector space of the rational number
field Q. For every two different elements y1, y2 ∈ Y and any polynomial N(·),
we have that Pr[∃i ≤ N(λ), y1 + iδ1 = y2 + iδ2 : δ1, δ2 ←↩ Y] ∈ negl(λ).

In the definition of the intersection-free range, δ1 and δ2 are required to be
uniformly chosen. However, as we are considering the range of a PRF, it will be
more desirable to consider the scenario where δ1 and δ2 are only pseudorandomly
generated. Fortunately, we have the following result.

Lemma 4. Let Y be an intersection-free range for some PRF F1. Let F2 :
K × X ⇀ Y be a PRF, and let k ← Gen2(1λ), where Gen2 is the key generation
of F2. Then, for any efficient algorithm A, and any polynomial N(·), we have

Pr[∃i ≤ N(λ), y1 + i · F2k(a) = y2 + i · F2k(b) : (y1, y2, a, b) ← AF2k(·)(1λ)] ∈ negl(λ),

where the probability space is over the random flips of the algorithms A and
Gen2.

Proof (sketch). If there exists an efficient algorithm A which outputs (y1, y2, a, b)
s.t. y1+i·F2k(a) = y2+i·F2k(b) for some i ≤ N(λ) with non-negligible probabil-
ity, we can construct an efficient distinguisher D to break the pseudorandomness
of F2. D’s strategies are (1) forwards all queries of A to O, and (2) given A’s
outputs (y1, y2, a, b), it checks all i ≤ N(λ), and guesses that O is F2k(·) if there
exists i s.t y1 + i · O(a) = y2 + i · O(b); otherwise, it guesses that O is a random
oracle.

Non-interactive Zero-Knowledge Proof of Knowledge. An NIZKPoK
Ψ = (P,V) for a relation R allows users to prove the knowledge of the witness
W for a statement X s.t. R(X,W) = 1. More precisely, it consists of the following
three algorithms.

– pp ← SetupΨ (1λ). Only take as input the security parameter 1λ, and output
the public parameter pp.

– ϑ ← P(pp,X,W). Take as inputs pp, a public statement X and its associated
witness W . It outputs a proof ϑ.

– ν ← V(pp,X, ϑ). Take as inputs the public parameter pp, a statement x and
a proof ϑ. It outputs ν = 1 if the ϑ is a valid proof. Otherwise, it outputs
ν = 0.

The correctness of an NIZKPoK means that the verifier V always outputs
1 for an honestly generated proof when R(X,W) = 1. We consider the zero-
knowledge property and simulation-extractability of the NIZKPoK.

Zero-knowledge property says that a malicious verifier cannot infer anything
except validity of the statement through interacting with the prover.

Traceable Ring Signatures with Post-quantum Security 453

Definition 6 (Zero-knowledge). A non-interactive protocol Ψ = (P,V) for
a relation R is zero-knowledge, if there exists a pair of PPT algorithms called
simulator (SO, SP) s.t. for every PPT adversary A, we have that

|Pr[b = 1 : pp ← SetupΨ (1λ), b ← AO1(pp,·,·)(pp)]−
Pr[b = 1 : (pp, τ) ← SO(1λ), b ← AO2(pp,τ,·)(pp)]| ∈ negl(λ).

where O1 and O2 first check that the input (X,W) ∈ R, else return ⊥; otherwise
O1 returns π ← P(pp,X,W), and O2 returns π ← SP (pp, τ,X).

Simulation-extractability captures that if a prover with access to simulation
oracle can produce a valid proof, then there is an extractor that can extract a
witness by interacting with the prover.

Definition 7 (Simulation-extractability). A non-interactive protocol Ψ =
(P,V) is simulation-extractable w.r.t a simulator (SO, SP), if there exists a PPT
algorithm (called extractor) E s.t. for every PPT adversary A, we have that

Pr[R(X,W) �= 1 ∧ ϑ∗ /∈ S ∧ ν = 1 : (pp, τ, e) ← SO(1λ),

(X,ϑ∗) ← AO(pp,τ,·)(pp), ν ← V(pp,X, ϑ∗),W ← EA(X,ϑ∗, e)] ∈ negl(λ),

where S denotes all proofs output by the simulator SP , and O(pp, τ, ·) on the
input X returns SP (pp, τ,X).

Specifically, we will use an NIZKPoK Ψ for a relation RL
OR. Let F : K × X ⇀ Y

be a PRF discussed above. The relation RL
OR can be defined as follows:

RL
OR := {(a, b) ∈ X 2, {(yi, ti) ∈ Y2}[L];∃j ∈ [L]

and k ∈ K : Fk(a) = yj ∧ Fk(b) = tj}.

Collision-Resistant Hash Function. A hash function H : {0, 1}∗ ⇀ Y is
collision-resistant, if it is hard to find x1 �= x2 s.t. H(x1) = H(x2). We require
H has the same range as the PRF F .

3.2 Our Construction

We now describe our construction. Let F , Ψ = (P,V) and H be the PRF, the
NIZKPoK and the hash function defined as above, respectively. We construct a
secure TRS scheme Π = (Setup,KeyGen,Sign, Verify,Trace) as follows.

Setup(1λ). The setup algorithm invokes ppΨ ← SetupΨ (1λ), and uniformly sam-
ples a ← X at random. It outputs the public parameter as pp = (ppΨ , a).

KeyGen(pp). The key generation algorithm calls k ← Gen(1λ), and evaluates
the PRF y ← Fk(a). It outputs sk := k and pk := y.

Sign(pp, skπ, T,M). It parses the tag T as ((pki)[L], issue), pp = (ppΨ , a), and
executes the following procedures.

454 H. Feng et al.

– Compute t0 = H(T,M) and tπ = Fskπ
(T).

– Compute δ = tπ−t0
π and ti = t0 + δ · i for all i �= π.

– Set X = (a, T, (pki, ti)[L]) and W = (π, skπ), and invoke ϑ ← P(pp,X,W).
– Output the signature σ = (δ, ϑ).

Verify(pp, T, σ,M). It first parses T = ((pki)[L], issue), pp = (ppΨ , a), and
σ = (δ, ϑ). Then, it computes t0 = H(T,M) and ti = t0 + i · δ. It sets
X = (a, T, (pki, ti)[L]) and invokes V(ppΨ ,X, ϑ) to check the validity of ϑ. It
returns 1 if ϑ is valid; otherwise it returns 0.

Trace(pp, T,M, σ,M ′, σ′). It first parses T = ((pki)[L], issue), pp = (ppΨ , a),
σ = (δ, ϑ) and σ′ = (δ′, ϑ′). Then, it invokes the verification algorithm Verify
to check the validity of both σ and σ′. If either is invalid, it returns reject.
Otherwise, it compares the two tuples (ti)[L] (w.r.t. σ) and (t′i)[L] (w.r.t. σ′)
that are generated when invoking Verify. If tj = t′j for all j ∈ [L], it returns
linked. If there is only one index i ∈ [L] s.t. ti = t′i, it returns the associated
pki. Otherwise, it returns accept.

3.3 Correctness Analysis

A TRS scheme is correct if it is complete and public traceable.

Completeness. The completeness of our construction is easy to verify. Since
the range Y of the PRF F is a vector space of rational number filed Q, and 1/π
is a rational number, the operation tπ−t0

π is a scalar multiplication on (tπ −t0) by
the scalar 1/π, which will give an element in Y. Therefore, the signer can always
generate δ and (ti)[L] as in the signing algorithm, and the verifier can recon-
struct all (ti)[L] using (t0, δ). Then, from the completeness of the NIZKPoK Ψ ,
the verification algorithm Verify(pp, T, σ,M) always output 1, for the honestly
generated σ.

Public Traceability. Now, we analyze the public traceability in all possible
cases.

For the first case that M = M ′ and π = π′, we have t0 = H(T,M) =
H(T,M ′) = t′0 and tπ = Fskπ

(T) = t′π′ . Thus, it holds that tj = t′j for all
j ∈ [L]. In this case, Trace algorithm always returns linked.

For the second case that M �= M ′ and π = π′, we have tπ = tπ′ . H(T,M) =
H(T,M ′) means (T,M) and (T,M ′) are a collision for H, and thus it happens
with negligible probability. In other words, we have t0 �= t′0 with overwhelming
probability. Then, the two sequences (ti)[L] and (t′i)[L] have only one common
component tπ. Therefore, the algorithm Trace returns pkπ with overwhelming
probability.

For the last case that π′ �= π, the inequality Fskπ
(T) �= Fskπ′ (T) holds with

overwhelming probability, from uniqueness of the PRF. If M = M ′, we have
t0 = t′0, thus it holds that tj �= t′j with overwhelming probability for all j ∈ [L].

Traceable Ring Signatures with Post-quantum Security 455

If M �= M ′, we have t0 �= t′0. Consider the δ = tπ−t0
π and δt′ = t′

π′ −t′
0

π′ . We
show δ and δt′ are pseudorandom variables, where the probability space is over
the random flips in Gen(1λ). Let k ← Gen(1λ), r ← Y and let T and a be an
arbitrary element in X . Then, from a simple argument, if F is pseudorandom,
we have

(Fk(T), T, Fk(a), a) ≈c (r, T, Fk(a), a).

Then, since δ can be computed from the (Fk(T), T, Fk(a), a) (more specifically,
t0 = H(T,m) and π is the index of Fk(a) in the ring), we have δ ≈c

r−H1(T)
π .

Thus, δ is a pseudorandom variable. This result also applies to δt′ . From the
intersection-free assumption on the vector space Y and Lemma 4, it is infeasible
to find t0 and t′0 s.t. ∃i ≤ N(λ), t0 + iδ = t′0 + iδt′ . Therefore, in this case, with
overwhelming probability, there exists no i ∈ [L] s.t. ti = t′i, and the algorithm
Trace will return accept.

As a conclusion, we have the following lemma.

Lemma 5. If general construction is correct, interms of completeness and public
traceability, if the non-interactive protocol Ψ is complete, the hash function H is
collision-resistant, and the function F is unique and pseudorandom.

3.4 Security Analysis

The security of our general construction relies on the security of the underlying
building blocks. Formally, we have the following results.

Theorem 1. The general construction is secure, in terms of tag-linkability,
anonymity, and exculpability, if the non-interactive protocol Ψ is zero-knowledge
and simulation-extractable, and the function F is unique and pseudorandom.

Proof for the Tag-Linkability. The main idea behind this proof is to show the
contradiction between the uniqueness of F and a successful attack. Assume the
adversary A outputs L + 1 valid signatures {σ(j) = (δ(j), ϑ(j))}[L+1] with the
tag T = ((pki)[L], issue), and either pair of them can be accepted by the Trace

algorithm. Let (t(j)i)i∈[L] be the sequence associated with σ(j). Then, from the
description of the Trace algorithm, we have t

(j0)
i �= t

(j1)
i holds for all i ∈ [L] and

every j0 �= j1.
Since the underlying non-interactive protocol Ψ is simulation-extractable,

given any valid signature (δ(j), ϑ(j)) we can extract a secret key sk and an index
τ ∈ [L] s.t. Fsk(a) = pkτ ∧ Fsk(T) = t

(j)
τ . From the uniqueness of the PRF,

we know that the value of t
(j)
τ is uniquely determined by pkτ . Since the tag T

only contains L public keys, there must exist j1 �= j2 s.t. t
(j1)
τ = t

(j2)
τ , which

contradicts the above conclusion that t
(j0)
i �= t

(j1)
i holds for all i ∈ [L] and every

j0 �= j1.

456 H. Feng et al.

Proof for the Anonymity. The anonymity of the TRS scheme follows the zero-
knowledge property of Ψ and the pseudorandomness of F . Consider a signature
σ = (δ, ϑ) that was created by using sk0 or sk1. We build a simulator S as
follows. It randomly samples δ′ ← Y, and computes t′i = H(T,M) + iδ′ for all
i ∈ [L] where T is the tag and M is the message. Then, S runs the simulator SP

of Ψ to generate a simulated proof ϑ′. From the zero-knowledge property of Ψ
and pseudorandomness of F , it is infeasible to distinguish between the simulated
signature σ′ = (δ′, ϑ′) and the signature σ = (δ, ϑ), whether σ is generated by
using sk0 or sk1. Therefore, it is also infeasible to guess the real signer of the
signature σ.

Proof for the Exculpability. First, we build a simulator that (1) generates the
public key pk by uniformly picking an element from Y; and (2) answers the Signsk

oracle by randomly choose tπ from uniform distribution on Y and generating
a simulated proof ϑ. From definitions, if (T,M, σ) and (T,M ′, σ′) lead to a
successful attack, there is at least one tuple not linked to any one contained in
the querying history list. We can extract a secret key sk s.t. Fsk(a) = pk with
overwhelming probability. It means that we can construct a algorithm that can
inverse the PRF F , which contracts its pseudorandomness.

A detailed proof is presented in the full version of this paper.

3.5 Constructions of Unique PRF with Intersection-Free Range

In our general framework of TRS, we require that the underlying PRF is unique
and has an intersection-free range. Although these requirements seem to be
somewhat restrictive, they are not hard to be fulfilled. In the following, we show
that the PRF in Fujisaki et al.’s construction [20] satisfies the two requirements,
and a PRF with these properties can also be constructed from basic primitives.

PRF in Fujisaki et al.’s Scheme. Let G be a multiplicative group of prime
order q, where q = q(λ) is an exponential function, and let H : {0, 1}∗ ⇀ G be a
random oracle. The PRF F ′ : Zq ×{0, 1}∗ ⇀ G, used in Fujisaki et al.’s scheme,
can be described as:

k ← Zq and F ′
k(x) := H(x)k.

It is easy to verify that this F ′ is pseudorandom under the Decisional Diffie-
Hellman assumption in the random oracle model. The uniqueness of F ′ comes
from the fact that G is a group with prime order. In detail, assuming there are
two distinct numbers k1, k2 ∈ Zq s.t. H(m)k1 = H(m)k2 for some message m, we
have H(m)k1−k2 = e where e is the identity element of G, which means either
H(m) = e or k1 − k2 = 0 mod q. Since k1 �= k2 and H is a random oracle,
H(m)k1 = H(m)k2 only happens with negligible probability.

Now, we turn to show G is an intersection-free range. Define the vector
addition and scalar multiplication as follows.

1. Vector Addition. Let g, h ∈ G be two group elements, the result of vector
addition is f = g · h, where · denotes the multiplication in the group G.

Traceable Ring Signatures with Post-quantum Security 457

2. Scalar Multiplication. Let g ∈ G be a group element, and r = t/s be a
rational number where t and s are integers. The result of scalar multiplication
is c = gt·r−1

, where r−1 is the inverse of r in Zq and · is the multiplication in
Zq.

It can be easily checked that the two operations satisfies all axioms of the vector
space, and thus G is a vector space of Q. Let y1, y2 be two distinct elements in
G, then we have

Pr[∃i ≤ N(λ), y1 · δi
1 = y2 · δi

2 : δ1, δ2 ←↩ G]

≤ Pr[∃i ≤ N(λ), y1/y2 = δi : δ ←↩ G] ≤ N(λ)
q(λ)

∈ negl(λ).

Therefore, G is an intersection-free range.

Construction from Basic Primitives. Unique PRF. Our starting point is
the Goldreich et al’s construction [23] that builds a PRF from a PRG. More
precisely, let G : {0, 1}n ⇀ {0, 1}2n be a PRG, and denote G(s) = G1(s)|G2(s)
where G1(s),G2(s) ∈ {0, 1}n. Goldreich et al.’s PRF F is constructed as Fk(x) :=
Gx�

(. . . (Gx2(Gx1(k)))), where k ∈ {0, 1}n is the key and x = x0 · · · x� ∈ {0, 1}� is
the input. We observe that the PRF F is unique if both G0 and G1 are collision-
resistant. If there exists k �= k′ s.t. Fk(x) = Fk′(x) for some input x, then there is
an index j ∈ [�−1] s.t. Gxj

(. . . Gx1(k)) �= Gxj
(. . . Gx1(k

′)) but Gxj+1(. . . Gx1(k)) =
Gxj+1(. . . Gx1(k

′)), which implies a collision of Gxj+1 . Formally, we define such a
property as two-layer collision-resistant.

Definition 8 (Two-layer collision-resistant PRG). A PRG G := G0|G1

with expansion factor 2n is two-layer collision-resistant, if G0 and G1 are both
collision-resistant.

We remark that a collision-resistant PRG can be constructed from any one-way
permutation as shown by Blum and Micali [7]. More precisely, the first n-bit
output of Blum and Micali’s PRG is always a permutation of the seed, i.e., G0

is a permutation and thus it is collision-resistant. Intuitively, G1 should be also
collision-resistant, since both G0 and G1 are parts of a PRG, and the outputs
of them cannot be distinguished by a PPT adversary, but it still lacks a formal
proof.

Intersection-Free Range. Another requirement is that the PRF should has an
intersection-free range. We address it by showing the range Z

n
q is intersection-

free if q is a prime and n is an integer. First, define the vector addition and
scalar multiplication operations as follows.

1. Vector Addition. Let a,b ∈ Z
n
q be two vectors, the sum of them is c ∈ Z

n
q

where c[i] = a[i] + b[i](modq) for all i ∈ [n].
2. Scalar Multiplication. Let a ∈ Z

n
q be a vector, and let r = t/s be a

rational number where t, s are integers. The result of the scalar multiplication
is d ∈ Z

n
q , where d[i] = t · s−1 · a[i](modq) and s−1 is the inverse of s mod q.

458 H. Feng et al.

It is easy to verify the two operations satisfy all axioms of the vector space, and
thus Z

n
q (with operations defined above) is a vector space of Q. In addition, in

Z
n
q , the case y1 + iδ1 = y2 + iδ2 means that the four points y1, y2, δ1, δ2 lay in

one plane, which happens with probability at most q2−n that is negligible for
n = O(λ). Therefore, Zn

q is intersection free.
For an arbitrary PRF F̄ with range {0, 1}ι where ι = n · �log q� for some

n ∈ Z and some prime p, we can always convert F̄ to F , one with range Z
n
q ,

through the following public transformation.

Fk(x) := Gn,q · [F̄k(x)],

where Gn,q := In ⊗ [1| · · · |2�log q�−1] ∈ Z
n×n�log q�
q . Since this transformation

is public and a bijection, F is still a PRF. Thus, the requirement on the
intersection-free range of a PRF can be trivially satisfied.

Basing TRS on Quantum-Resistant Assumptions. We review all materi-
als used in the our general construction. Following results are known in previous
work.

– Assuming the hardness of the LWE problem, there exists an NIZK proof
system for any NP language, in the common reference string model [30].
As discussed in [31], an NIZKPoK can be obtained from an NIZK proof
system and a semantically secure dense public key encryption (PKE) scheme.
Therefore, from the existence of LWE-based PKE schemes [32], we know a
general NIZKPoK can also be based on the LWE assumptions.

Since a unique PRF with intersection-free range can be constructed from basic
primitives, our general construction also indicate

Theorem 2. There is a secure TRS scheme, assuming the existence of a two-
layer collision-resistant PRG and a collision-resistant hash function, as well as
the hardness of the LWE problem.

4 Traceable Ring Signature Schemes from Lattices

We have shown the security of our general construction can be deduced from
the existence of some basic primitives, as discussed in Theorem 2, instead of
concrete cryptographic hard problems. Thus, a TRS can be secure against quan-
tum attackers. However, instantiating a TRS scheme with the basic primitives
requires expensive NP-reduction, and thus it will lead to a very inefficient con-
struction. In this section, we present an efficient post-quantum secure TRS
scheme from lattices, by instantiating the framework with a lattice-based PRF
along with an associated lattice-based NIZKPoK.

Firstly, we prove the security of a lattice-based PRF F , which is compat-
ible with an efficient zero-knowledge proof system, in the QROM. Then, we
construct a proof system to demonstrate the knowledge on the secret key k

Traceable Ring Signatures with Post-quantum Security 459

s.t. Fk(x1) = y1 ∧ Fk(x2) = y2 for public (x1, y1, x2, y2). After that, we use the
Merkle-tree-based accumulator [25] to construct an OR-composition of the above
proof system, and then get the desired NIZKPoK through the Unruh transfor-
mation [37]. Due to the use of Merkle tree, the signature size of our TRS scheme
is logarithmic in the corresponding ring size.

4.1 Efficient PRF in QROM

We are interested in post-quantum secure PRFs with efficient proof systems, to
avoid the computational burden of using general NIZK proof systems. The LWE-
based PRF [4] is the only known one with an efficient proof system. However,
given a message of length n, this PRF [4] will perform n times of large dimension
matrix multiplication, which makes it far away from the practical use.

In this section, we consider the following function,

FH : Zn
q × {0, 1}∗ → Z

m
p with FH(T, s) = �H(T) · s�p, (2)

where H : {0, 1}∗ ⇀ Z
m×n
q is a random oracle. Its running time is almost

independent from the input length, and it only requires one matrix multiplication
and one rounding. A Stern protocol has also been proposed in [26] to prove the
correct evaluation of this PRF, which makes it easy to construct an efficient
TRS scheme upon this PRF. In addition, this function is also unique with proper
parameter, as discussed in [39]. However, although its security can be deduced
from the LWE assumption in the ROM [9], its security in the QROM has not
been rigorously examined.

We note that there are two definitions of security for a PRF against a quan-
tum adversary, as discussed in [40]. The difference between the two definitions
is whether the adversary can query the PRF on a quantum superposition input.
Recall our general framework for TRS schemes. The evaluation of a PRF is an
inner step of the signing algorithm, and thus in the security proof the PRF is only
evaluated on the classical queries to signing oracles. Therefore, throughout this
paper, we only need to consider the security of PRF, so called standard security
in [40], where a quantum adversary makes classical queries to the PRF. How-
ever, it does not mean that we can restrict an adversary only to make classical
queries to a random oracle, since in the real world hash functions can always
be executed off-line. Therefore, providing a security proof in the QROM for the
PRF is also necessary even if we only need the standard security.

We will prove the security of this function Eq. 2 in the QROM. Before that,
we present the definition of PRF in the QROM.

Definition 9 (PRF in the QROM). Let FH : K × X → Y be an efficient
keyed function, and H be a quantum random oracle. We say FH is pseudorandom
in the QROM, if for all quantum-polynomial-time adversary A, we have

Pr[AF H(k,·),H(·)(1λ) = 1 : k ← K]−
Pr[AO(·),H(·)(1λ) = 1 : O ← F [X : Y]] ∈ negl(λ),

where F [X ,Y] denotes all functions from K to Y.

460 H. Feng et al.

Theorem 3. Let n,m, q, p be positive integers, χ be a B-bounded error dis-
tribution s.t. m > (n + 1) log q, q ≥ p · √

m · B · nω(1). The function FH is
a pseudorandom function in the QROM, assuming the hardness of LWEn,q,χ

problem.

Proof (sketch). To prove this result, we build a sequence of games. In each game,
the adversary A interacts with a simulator that answers the queries of A to H(·)
and FH(k, ·). The simulator S0 in the first game forwards all queries to H(·)
and answers queries to FH(k, ·) by evaluating it using k. Thus, Pr[AS0(1λ) =
1] = Pr[AF H(k,·),H(·)(1λ) = 1 : k ← K]. We show that (i) every two games
in this sequence are indistinguishable for any quantum-polynomial-time A; and
(ii) the probability of A outputting 1 in the last game is statistically close to
Pr[AO(·),H(·)(1λ) = 1 : O ← F [X : Y]]. We list all games in the following, and
give a detailed proof in the full version of this paper.

Game 0: The simulator SH
0 has quantum access to H(·). It first uniformly

picks a secret key k := s ∈ Z
n
q at random, answers all queries of A to H(·) by

forwarding them, and answers all queries to FH(k, ·) by running this function
with k.

Game 1: The simulator SK
1 works as the SH

0 except that it only has access
to another random oracle K : X → {−1, 1}m×m, instead of that to H, and
simulates H by responding H ′(x) := K(x) · A mod q for each query x. Here A
is randomly picked from the uniform distribution by SK

1 .

Game 2: The simulator S2 works as the SK
1 , except that it does not has access

to any random oracle, and simulates K by responding K ′(x) for each query x:
(1) pK′ ← GF(2�∗

)[X] with ∂pK′ ≤ 2qH1 − 1; and (2) K̄(x) := pK′(ι(x))1···mm;
and (3) K ′(x) := S2M(K(x)). Here, ι : {0, 1}� → {0, 1}�∗

is an injection, and
S2M : {0, 1}mm → {−1, 1}m×m is a function s.t. ri,j = (−1)x[i(m−1)+j]+1, where
x[i] denotes the i-th bit of the input x, and R = (ri,j)i,j is the output of S2M.
We denote K ′(x)A by H ′′(x), which is a simulation for H ′.

Game 3: The simulator S3 works as S2, except that

1. S3 is given a pair (A,b = A ·s+e), where A is from the uniform distribution
over Z

m×n
q , s ← Z

n
q and e ← χm.

2. It uses the given matrix A to simulate H trough the method in Game 2.
3. It dose not generate a secret key k, but answers a query x to FH(·, k) by

returning �R · b�p, where R = K ′(x).

Game 4: The simulator S4 is sampled from S3, except that the given pair (A,b)
is drawn from the uniform distribution over Z

m×n
q × Z

m
q .

4.2 Stern Protocol for PRF

A Stern protocol to demonstrate the knowledge of k s.t. FH(k, x) = y has
been proposed in [26]. In this section, we extend this protocol to prove the

Traceable Ring Signatures with Post-quantum Security 461

knowledge of k s.t. FH(k, x1) = y1∧FH(k, x2) = y2 for public inputs and outputs
(x1, y1, x2, y2). More exactly, we construct a Stern protocol for the relation R0

defined as follows.

Definition 10 (Relation R0). Let A,B ∈ Z
m×n
q , and y ∈ Z

m
p , t ∈ Z

m
p . The

R0 is defined as

R0 = {(A,y,B, t) ∈ (Zm×n
q × Z

m
p)2; s ∈ Z

n
q : y = �A · s�p and t = �B · s�p}.

Our strategy is to transform R0 to the standard form that the general Stern
protocol can handle.

First, recall that the LWR rounding function �·�p : Zm
q → Z

m
p is defined as

�x�p := �(p/q) · x� mod p. As discussed in [26], one knows x ∈ [0, q − 1]m s.t.
�x�p = y, iff one knows x ∈ [0, q − 1]m and z ∈ [−B′, B′] where B′ = � q−1

2 � s.t.
p ·x = q ·y+z mod pq. Therefore, to prove a tuple (A,y,B, t) ∈ R0 is equivalent
to prove that the tuple satisfies the condition that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A · s = x1 mod q

p · x1 = q · y + z1 mod pq

B · s = x2 mod q

p · x2 = q · t + z2 mod pq

,
for some s,x1,x2 ∈ [0, q − 1]m

and, z1, z2 ∈ [−B′, B′]m.
(3)

Let

M1 =
[
A −Im

B −Im

]

∈ Z
2m×(n+2m)
q , M2 =

[
pIm −Im

pIm −Im

]

∈ Z
2m×4m
pq .

Let v1 = 0 ∈ Z
2m
q and v2 = (y, t)T ∈ Z

2m
pq . Define the set V as

{(sT ,xT
1 ,xT

2 ,xT
1 , zT

1 ,xT
2 , zT

2)T : s,x1,x2 ∈ [0, q − 1]m, z1, z2 ∈ [−B′, B′]m}.

The Eq. 3 can also be expressed as

M1 · Υ1 = v1 mod q, and M2 · Υ2 = v2 mod pq, for some (ΥT
1 |ΥT

2) ∈ V. (4)

Clearly, it is equivalent to prove that there is Υ = (ΥT
1 |ΥT

2) s.t. the Eq. 4 holds
and to prove that there is a vector s s.t. (A,y,B,y; s) ∈ R0. Through standard
techniques used in Stern protocols, such as permutations, decompositions and
extensions, we show that

Lemma 6. There is a public transformation Γ , which can transform the tuple
(M1,v1,M2,v2,V) to (M̄1,v1, M̄2,v2,V

∗) with an ESP ES for V∗ ∈ {−1, 0, 1}d

s.t. one knows (ΥT
1 |ΥT

2) ∈ V satisfying Eq. 4, if an only if he knows (ῩT
1 |ῩT

2) ∈ V
∗

satisfying
M̄1 · ῩT

1 = v1 mod q, M̄2 · ῩT
2 = v2 mod pq

Proof. The main idea is to transform the secret vector Υ to a vector Ῡ ∈ V
∗ =

{x ∈ {−1, 0, 1}d : x has the same number of − 1, 0, 1}. Clearly, the set V
∗ has

462 H. Feng et al.

an ESP. To achieve this goal, first we decompose each positive component into
a binary vector over {0, 1} and each negative component into {0,−1}, and con-
catenate all of them to a vector in {−1, 0, 1}d′

. Let d = 3d′. Then, we pad many
−1,0,1 bits to the this vector and get the desired vector Ῡ . After that, we need
to modify the matrix M to M̄ s.t. MΥ = M̄Ῡ . The basic idea is multiplying M
by a matrix G, where G satisfies G · bin(v) = v for arbitrary v.

We give a detailed description for this transformation in the full version of
this paper.

Instantiating the general Stern protocol with the (M̄1,v1, M̄2,v2,V
∗) with

an ESP ES , we can get a concrete Stern protocol for R0. Implied by Lemma 1,
we have the following corollary.

Corollary 1. Let (n,m, p, q) be parameters specified in R0. Based on the hard-
ness of SIVP

˜O(n), there is a Stern protocol Ψ0 for the relation R0, with proof

size Õ(m · log2 q).

4.3 OR-Composition from Accumulators

When we instantiate our general construction with the PRF FH given in Eq. 2,
the underlying NIZKPoK is used to prove the following relation RTRS .

RTRS = {A,B, (yi, ti)[L]; s ∈ Z
n
q : y1 = �A · s�p and t1 = �B · s�p ∨ · · ·

∨yL = �A · s�p and tL = �B · s�p}
Obviously, the relation RTRS is the OR composition of L instances of R0.

One may think that a desirable proof system for RTRS can be easily constructed
by applying Cramer et al.’s OR-composition techniques [14] to the protocol Ψ0.
However, Ψ0 does not satisfy the standard special soundness property that is
required by the techniques.

We build a Stern protocol ΨTRS for RTRS via finding a proper combina-
tion of the accumulator scheme (see Sect. 2.3) and the protocol Ψ0. Recall the
notion of accumulators. Every element in the accumulated set has a witness that
can validate its membership, while any element outside the set does not have
such a witness. A typical application of accumulators is ring signatures, where
every element in the accumulated set is a public key. Set the accumulated set as
{pki}i∈[n] and the accumulator value as u. If someone can prove the knowledge
of the secret key for some pki and the corresponding witness wi w.r.t. u in a
zero-knowledge manner, the prover actually convinces the verifier that he knows
a secret key for pk1, or pk2, . . . , or pkn.

The main obstacle to applying accumulators to our construction is that each
instance in the OR-composition is a pair of vectors instead of one element.
We solve this challenge by hashing each pair (yi, ti) through an algebraic hash
function to a single vector before applying the accumulator scheme. Concretely,
we utilize the underlying hash function of the accumulator scheme, and thus it
is easy to prove the correct evaluation of it. Let m′ = 2m · �log p� and m′′ =

Traceable Ring Signatures with Post-quantum Security 463

2n · �log q1� for some q1 ∈ N. Assume L = 2� for some � ∈ N, without loss of
generality. We define a relation R′

TRS as follows.

R′
TRS = {A,B,D′,D,u}; (s,yi, ti,di, wA) : A-Verify((D,u,di, ti), wA) = 1

∧di = bin(D′
1bin(yi) + D′

2bin(ti)) ∧ yi = �A · s�p ∧ ti = �B · s�p}.

where D′ = [D′
1|D′

2] and D are sampled from the uniform distributions over
Z

n×2m′
q1 and Z

n×2m′′
q1 at random respectively, di = bin(D′

1bin(yi) + D′
2bin(ti)),

u = A-Acc(D, R = (di)[L]), and wA = A-Witness(D, R,di). Ensured by
the correctness and security of the accumulator scheme, it is easy to see the
equivalence of RTRS and R′

TRS .
A Stern protocol for the language R′

TRS can be obtained from the pro-
tocol denoted by ΨA for the accumulator scheme [25], by adding one more
layer: apart from proving that there is a secret di which was accumulated to
the root u, the prover also convinces the verifier that there are two vector
yi = �A · s�p, ti = �B · s�p for a secret s, s.t. di = bin(D′

1bin(yi) + D′
2bin(ti)).

Yang et al. [39] show that if there are two relations with the Stern protocols,
then the Stern protocol for any linear combination of the two relations can
be easily constructed. Notice that R′

TRS is a linear combination of R0 and
RA := {(pp, u, d);w : A-Verify(pp, u, d, w) = 1}, then there is a Stern pro-
tocol for Rabstract. Recall the proof size of ΨA is Õ(n · log q1 · log L), we have the
following corollary.

Corollary 2. Let (n,m, p, q, q1, �) be parameters specified in R′
TRS. Based on

the hardness of SIVP
˜O(n), there is a Stern protocol ΨTRS for the language RTRS,

with communication cost Õ(m · log2 q + n · log q1 · log L).

From Stern Protocols to NIZKPoK. The Fiat-Shamir [17] is the most
well-known method to transform a sigma protocol to an NIZKPoK. However,
the post-quantum security of this transform in general is not clear so far [2].
In this paper, we use an alternative transform, the Unruh transform [37]. As
discussed in [16], the Unruh transform can give an NIZKPoK in the QROM
from a Stern protocol.

A detailed description of the Unruh transform is beyond the scope of this
paper. Roughly speaking, the Unruh transform runs the underlying sigma proto-
col for many times to generate t different commitments and m challenge-response
pair for every commitment. For each commitment, the proof only reveals a spe-
cific response, the position of which is determined by a random oracle. It is
required that (i) t · m = ω(log λ), and (ii) m is not smaller than the number of
transcripts that are needed to extract the witness. For example, 3 transcripts
are needed to extract the witness for a Stern protocol, see Lemma 1. So, when
applying the Unruh transform to the Stern protocol Ψ ′

TRS , we can set m = 3
and t = ω(log λ). Formally, we have the following result.

Corollary 3. If there is a Stern protocol for R′
TRS with proof size v, then there

is an NIZKPoK for R′
TRS with proof size 3t · v.

464 H. Feng et al.

4.4 Description of the Scheme

We take the NIZKPoK Φ = (P,V) for the relation R′
TRS and the PRF FH() as

ingredients. We build our TRS scheme as follows.

Setup(λ): Choose a lattice parameter n = O(λ); a B-bounded distribution χ;
a prime number q and an integer p s.t. q ≥ p · B · nω(1) and LWEn,q,χ problem
is hard; q1 = Õ(λ); m > (n + 1) · (log q); m′ = m · �log p�; m′′ = n · �log q1�;
t = ω(log λ). Set params = (n,m,m′,m′′, p, q, q1, t). Let H1 : {0, 1}∗ → Z

m×n
q ,

H2 : {0, 1}∗ → Z
m
p and H3 : {0, 1}∗ → {1, 2, 3}t be three distinct hash functions,

and let H1 and H3 be modeled as random oracles. Choose random matrices
A ← Z

m×n
q , D′ = [D′

1|D′
2] ← Z

n×2m′
q1 , D ← Z

n×2m′′
q1 , and output the public

parameters: pp = (params,H1,H2,H3,A,D′,D).

KeyGen(pp): Parse pp = (params,H1,H2,H3,A,D′,D), and randomly choose
an vector s from the uniform distribution over Z

n
q . Then, compute a vector

y = �A · s�p. Output sk := s and pk := y.
Let the tag T = {(pki)[L], issue}, and M ∈ {0, 1}∗. Without loss of generality,

we assume that L = 2� for some � ∈ N. Let the index number π belong to [L].
The algorithms Sign, Verify, and Trace proceed as follows.

Sign(pp, skπ, T,M): Parse pp = (params,H1,H2,H3,A,D′,D), T =
{(pki)[L], issue}, and skπ = sπ. Then, do the following procedures.

– Compute BT = H1(T) ∈ Z
m×n
q .

– Compute tπ = �BT · sπ�p, and t0 = H2(T,M).
– Compute δ = tπ−t0

π , and tj = t0 + δ · j for all j �= i.
– Compute di = bin(D′

1 · bin(yi) + D′
2 · bin(ti)) for all i ∈ [L], and define

R = (di)[L].
– Compute u = A-Acc(D, R) and wA = A-Witness(D, R,u,dπ).
– Take X := (A,BT ,D′,D,u) as public inputs of the protocol Φ, and take

W := (dπ, wA,yπ, tπ, sπ) as the private inputs. Run PH3(X,W) to generate
a non-interactive proof ϑ.

– Output the signature σ = (δ, ϑ).

Verify(pp, T, σ,M): Parse pp = (params,H1,H2,H3,A,D′,D), σ = (δ, ϑ), and
T = {(pki)[L], issue}. Then, do the following procedures.

– Compute BT = H1(T) and t0 = H2(T,M).
– Compute tj = t0 + δ · j, for all j ∈ [L].
– Compute dj = bin(D′

1 · bin(yj) + D′
2 · bin(tj)), and let R = (di)[L].

– Compute u = A-Acc(D, R).
– Take X := (A,BT ,D′,D,u) as the public input of the protocol Φ. Then run

ν ← VH3(X,ϑ).
– Output 1 if ν = 1. Otherwise, output 0.

Trace(pp, T,M, σ,M ′, σ′): Parse pp = (params,H1,H2,H3,A,D′,D), T =
{(pki)[L], issue}, σ = (δ, ϑ) and σ′ = (δ′

t, ϑ
′). Then proceed as follows.

Traceable Ring Signatures with Post-quantum Security 465

– Run d ← Verify(pp, T, σ,M) and d′ ← Verify(pp, T, σ′,M ′). Return reject
if d = 0 or d′ = 0. Otherwise, continue.

– Compare two tuples (ti)[L] and (t′
i)[L], which are generated in the inner step

Verify algorithm, by using (δ, t0) and (δ′, t′
0) respectively.

– If tj = t′
j for all j ∈ [L], return linked;

– Else if there is only one index i ∈ [L] s.t. ti = t′
i, return pki = yi, which is

the public key located at the i-th position in T .
– Otherwise, return accept.

Efficiency. We evaluate the efficiency of our scheme in terms of the sizes of
public keys, secret keys and signatures.

– The public key of a user is a vector y ∈ Z
m
p , the bit length of which is

m · �log p�. Under the parameters specified in our scheme, we have that m ·
�log p� = Õ(λ).

– The secret key of a user is a vector s ∈ Z
n
q , the bit length of which is n·�log q�.

Thus, the size of secret key of our scheme is also Õ(λ).
– The size of a signature σ = (δ,Π) in our scheme is dominated by the proof Π.

As mentioned in Corollary 3, the size of π is 3t · v, where v is the transcript
size of the Stern protocol ΨTRS for RTRS . From Corollary 2, we have v =
O(m · log2 pq + �n · log q1). Under the parameters in our scheme, the size of
Π is Õ(λ · log L), which is also the asymptotic upper bound for the size of σ.

Security. Regarding the security of our scheme, we have the following result.

Theorem 4. The proposed TRS scheme is secure in the QROM, in terms of
tag-linkability, anonymity, and exculpability, under the hardness assumption of
the SIS problem and the LWE problem.

Proof (sketch). The hardness of the SIS and LWE problems (under some param-
eters) implies that (i) the underlying accumulator scheme is secure; (ii) the hash
function hD is collision-resistant; and (iii) the underlying non-interactive proto-
col Φ is an NIZKPoK, while adversaries are allowed to issue quantum queries to
H3(·); and (iv) the function �H1(·) · k�p is pseudorandom in the QROM, while
adversaries are allowed to issue quantum queries to H1(·). Then, the proposed
TRS scheme is secure, from the results on the security of our general construc-
tion.

Acknowledgement. This paper is supported by the National Key R&D Program of
China through project 2017YFB0802502, by the National Cryptography Development
Fund through project MMJJ20170106, by the foundation of Science and Technology
on Information Assurance Laboratory through project 1421120305162112006, the Nat-
ural Science Foundation of China through projects 61972019, 61932011, 61772538,
61672083, 61532021, 61472429, 91646203 and 61402029. We thank all the anonymous
reviewers whose comments have greatly improved this paper.

466 H. Feng et al.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108. ACM (1996)

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: FOCS 2014, pp. 474–483. IEEE
Computer Society (2014)

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure ID-based linkable and
revocable-iff-linked ring signature with constant-size construction. Theor. Com-
put. Sci. 469, 1–14 (2013)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

5. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp.
303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

6. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 19

7. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

8. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

9. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

10. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory.
In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 387–403.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 21

11. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

12. Canetti, R., et al.: Fiat-shamir: from practice to theory. In: STOC 2019, pp. 1082–
1090. ACM (2019)

13. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with
ballot secrecy and verifiability. In: NDSS 2008. The Internet Society (2008)

14. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

15. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS 1990, pp. 308–317.
IEEE Computer Society (1990)

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-25510-7_21
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19

Traceable Ring Signatures with Post-quantum Security 467

16. Feng, H., Liu, J., Wu, Q.: Secure Stern signatures in quantum random oracle
model. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds.) ISC 2019. LNCS,
vol. 11723, pp. 425–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30215-3 21

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Franklin, M.K., Zhang, H.: A framework for unique ring signatures. IACR Cryp-
tology ePrint Archive 2012, 577 (2012)

19. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2 25

20. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

21. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 11

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM (2009)

23. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS 1984, pp. 464–479. IEEE Computer Society (1984)

24. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

25. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

26. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 11

27. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

28. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

29. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

30. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

https://doi.org/10.1007/978-3-030-30215-3_21
https://doi.org/10.1007/978-3-030-30215-3_21
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-19074-2_25
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

468 H. Feng et al.

31. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

33. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)

35. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

36. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (Lattice RingCT v1.0).
In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

37. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

38. Wang, X., Chen, Y., Ma, X.: Adding linkability to ring signatures with one-time
signatures. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds.) ISC 2019. LNCS,
vol. 11723, pp. 445–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30215-3 22

39. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Lattice-based techniques for account-
able anonymity: composition of abstract Stern’s protocols and weak PRF with
efficient protocols from LWR. IACR Cryptology ePrint Archive 2017, 781 (2017)

40. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp.
679–687. IEEE Computer Society (2012)

41. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

42. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash.
IACR Cryptology ePrint Archive 2017, 716 (2017)

https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-93638-3_32
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-030-30215-3_22
https://doi.org/10.1007/978-3-030-30215-3_22
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Post-quantum Provably-Secure
Authentication and MAC
from Mersenne Primes

Houda Ferradi1 and Keita Xagawa2(B)

1 The Hong Kong Polytechnic University, Hung Hom, Hong Kong
houda.ferradi@ens.fr

2 NTT Secure Platform Laboratories, Tokyo, Japan
keita.xagawa.zv@hco.ntt.co.jp

Abstract. This paper presents a novel, yet efficient secret-key authen-
tication and MAC, which provide post-quantum security promise, whose
security is reduced to the quantum-safe conjectured hardness of Mersenne
Low Hamming Combination (MERS) assumption recently introduced by
Aggarwal, Joux, Prakash, and Santha (CRYPTO 2018). Our protocols
are very suitable to weak devices like smart card and RFID tags.

Keywords: Secret-key authentication · MAC · MERS assumption ·
Man-in-the-middle security

1 Introduction

1.1 Motivation

Secret-Key Authentication and HB Family. Secret-key unilateral authen-
tication protocol is a process by which a prover authenticates itself to a verifier,
where they share a secret. The current best way to construct such a proto-
col is a challenge-response protocol by a strong pseudo-random function, e.g.,
AES. A verifier sends a random challenge m and a prover answers its ciphertext
c = AESK(m).

In recent years such protocols have become an important mechanism for
low-cost device authentication with small computational power such as smart
cards or radio-frequency identification (RFID) tags. Unfortunately, it is hard
to implement the blockcipher-based authentication protocol in such constrained
devices. Hopper and Blum [24] introduced a two-round secret-key authentication
protocol, denoted by HB. The advantages of HB are that implementation requires
only bit-wise operations and that the security is based on the hardness of the
Learning Parity with Noise (LPN) problem [8]. Therefore, HB is attractive for

Houda Ferradi—This work was done while the first author was at NTT Secure Platform
Laboratories – Tokyo

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 469–495, 2020.
https://doi.org/10.1007/978-3-030-40186-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_20&domain=pdf
http://orcid.org/0000-0002-6832-9940
https://doi.org/10.1007/978-3-030-40186-3_20

470 H. Ferradi and K. Xagawa

low-cost devices. Juels and Weis [25] pointed out that HB is insecure against
active adversary and proposed HB+ built upon the HB protocol, a three-round
secret-key authentication protocol.1 Soon after, HB+ was shown vulnerable to a
man-in-the-middle (MIM) attack proposed by Gilbert, Robshaw, and Silbert [22].
The line of researches [12,13,16,21,23,28] proposed variants of HB/HB+ and
some of them are secure against MIM attacks.

Their underlying problems are the LPN problem and its variants. Several
attacks on the LPN problem have been proposed over the last years [17,29]. Most
of them are variants of the BKW algorithm [9] whose running time is 2O(k

log k).
In addition, [17] introduced an algorithm solving the LPN problem running in
the quantum setting. They make the HB family very inefficient in practice either
in classical or quantum setting. Moreover, Bernstein and Lange [6] discussed
the comparison of Lapin [23] and (light-weight) block-ciphers on RFID tags and
smart cards. Armknecht, Hamann, and Mikhalev [4] also discussed the hardware
limits of low-cost RFID tags in the range of $0.05–$0.10. They concluded that
all LPN-based authentication protocols cannot be implemented in the low-cost
RFID tags in this range.

Hence, it is desirable to come up with a new proposal for secret-key authenti-
cation and MAC that provides provable security with better efficiency in terms
of key-size, communication, and rounds, while providing post-quantum security
promise.

The Mersenne Low-Hamming Combination (MERS) Problem and Its

Application. In 2017, Aggarwal, Joux, Prakash, and Santha proposed the
Mersenne Low Hamming Combination (MERS) problem [1,2]: Given a Mersenne
prime in the form p = 2n − 1 (where n is prime), samples of the MERSn,h distri-
bution are constructed as (a, b = as + e), where a ∈ Zp is chosen uniformly at
random, the secret s and the error e are chosen uniformly at random from the
elements in Zp of the Hamming weight h. The decisional version of the MERS
assumption states that any efficient adversary cannot distinguish the MERSn,h

distribution from the uniform distribution over Z
2
p. Aggarwal et al. proposed a

public-key encryption scheme based on the MERSn,h problem [1,2].
Regarding the practical aspect, MERS assumption provides efficiency due to

its reliance on Mersenne primes [11]. The potential benefit of MERS-based scheme
is a subject of several ongoing research [1,2,18,36]. Unfortunately, because of
their constraint that n = Θ(h2) from the correctness of the key-encapsulation
mechanisms, the mechanisms in [1,2,18,36] set n = 216091 or 756839. This
impacts the sizes of public key and ciphertext, which are approximately n bits,
26.41 KiB – 100.39 KiB. Thus, the main motivation behind MERS-based authen-
tication scheme and MAC is their potential suitability for lightweight devices
such as Radio Frequency Identification (RFID) tags and smart card.

1.2 Our Contribution

There are three main contributions in this paper:
1 Later, Katz, Shin, and Smith gave simplified security proofs of them [26].

Post-quantum Provably-Secure Authentication and MAC 471

Table 1. Authentication Protocols based on Weak-PRFs, the LPN-related assump-
tions, and the MERS assumption. A family of weak PRFs is denoted by F :=
{F : K × D → F}. A family of pairwise independent hash functions is denoted by
H := {H : H × D → F}. � and γ defines the dimension and the error rate of the LPN
problem. η = O(�) defines the number of parallel repetitions. n and h are parameters
for MERSn,h.

Protocol # of rounds Assumption Security Key size Comm

Authwprf [15] 3 Weak PRF Active |K| + |H| 2|D| + |F|
Authwprf [30, Fig. 2] 3 Weak PRF S-MIM |K| + |H| |D| + 2|F|
Authwprf [13] 2 Weak PRF S-MIM 2�|K| + |H| |D| + |F|
Auth [28] 2 LPN�,γ Active 2� 2� + (� + 1)η

Lapin [23] 2 Ring-LPN�,γ Active 2� 3�

AuthLPN [13] 2 LPN�,γ S-MIM 5� (η + 2)�

AuthTLPN [13] 2 LPN�,γ S-MIM (2η + 2)� 2� + η

AuthField-LPN [13] 2 Field-LPN�,γ S-MIM 4� 3�

Auths-mim [Sect. 6] 2 MERSn,h S-MIM 4n 3n

New version ofMERS problem: The first contribution of this work is MERS-U,
which is the MERS problem assuming that the secret is uniform. We formally
prove that the MERS-U problem is as hard as the MERS problem is hard as
in the case of the LWE problem [3].

Two-round authentication with S-MIM security: The second contribution
is a two-round authentication protocol secure against sequential man-in-the-
middle (S-MIM) attacks with tight reductions to the MERS problem. Our
construction need not require n = Θ(h2) as in KEMs/PKEs in [1,2,18,36]
and we can set n = Θ(h), say, n = 4h. Thus, we can set n = 521 and h = 128,
and this makes our protocol efficient and compact, say, the communication
complexity is at most 3n = 1563 bits (Tables 1 and 2).

Message Authentication Code (MAC): The third contribution is to con-
struct a MAC scheme that is existentially unforgeable under chosen mes-
sage attacks (UF-CMA) assuming that the MERS problem is hard. Our MAC
improves upon the key size, communication and computation complexity with
respect to prior works [15,28]. Again, we can set n = Θ(h) as in the authen-
tication.

1.3 Related Works

Security Notions. Bellare and Rogaway [5] gave the formal security defi-
nition of mutual authentication schemes. Their security model captures MIM
attack and more. Vaudeney [38] gave the formal security and privacy definitions
of RFID authentications. In this paper, we only consider unilateral authenti-
cation scheme and do not consider any corruption. Mol and Tessaro [31] gave

472 H. Ferradi and K. Xagawa

Table 2. MACs based on the LPN-related assumptions and the MERS assumption. �
and γ defines the dimension and the error rate of the LPN problem. η = O(�) defines
the number of parallel repetitions. n and h are parameters for MERSn,h. A family of
pairwise independent hash functions is denoted by H := {H : M×{0, 1}ν → {0, 1}μ}. A
family of pairwise independent permutations is denoted by P := {π : {0, 1}z → {0, 1}z},
where z = �η + η + ν for LPN case and z = 2n + ν for MERS case.

Protocol Assumption Security Key size Comm

MAC1 [28] LPN�,γ UF-CMA 2� + |H| + |π| �η + η + ν

MAC2 [28] LPN�,γ UF-CMA (μ + 1)� + η + |H| + |π| �η + η + ν

MACMERS [Sect. 7] MERSn,h UF-CMA (μ + 2)n + |H| + |π| 2n + ν

the security definitions for unilateral authentication scheme that captures from
passive attacks to MIM attacks. Lyubashevky and Masny [30] introduced an
interesting notion of security against Man-In-the-Middle (MIM) attacks, which
slightly weakens MIM to only allow the attacker to interfere with non-overlapping
sequential sessions. This seems sufficient for real-world application in which the
keys do not allow parallel sessions. Cash, Kiltz, and Tessaro [13] also defined
Sequential MIM (S-MIM) security. We adopt the following definition of S-MIM
security.

Authentication from LPN/LWE. Hopper and Blum [24] introduced a secret-
key authentication protocol that is proven secure against passive adversaries from
the hardness of the LPN problem. Since then, a family of LPN-based authenti-
cation protocols has been developed. Juels and Weis [25] proposed an efficient
three-round variant of HB, called HB+, which they proved to be secure against
active attacks. Later, Gilbert et al. [22] show that HB+ is not secure against a
MIM attack, resulting in several variants [16,32]. However, most of these vari-
ants lack security proofs [20]. Recent proposals [13,21,23,28,30] have proofs for
active security or variants of MIM security.

LPN-based protocols have gained some popularity since they require only
small number of primitive bit-wise operations (e.g., “XOR” and “AND”) for their
implementation. However, all LPN-based protocols require huge security param-
eters. Esser, Kübler, and May [17] estimates the hardness of LPN�,τ . According
to their estimation, for τ = 1/8, � = 670, 1060, 1410 corresponds to 128, 192, and
256 bit security assuming that the memory is constrained to 280 bits. If we set
τ = 1/20 as in [28], then � should be larger than 1280 for 128-bit security.

Authentication from Number-Theoretic Problems. Concurrently to
above, there is another type of protocols based on number-theoretic assumptions,
which are DDH-based protocols introduced in [13,15,30]. Unfortunately, same
for RSA, the DDH implementation is not suitable for low-cost device. Besides
that, factoring and the DDH assumption are known to be threatened by Shor’s
algorithm that runs by quantum computer [35].

Authentication from Weak PRFs. Dodis et al. [15] show how to construct
a three-round authentication from any weak PRFs, which is secure against active

Post-quantum Provably-Secure Authentication and MAC 473

attacks. Later, Lyubashevaky and Masny [30] constructs a three-round authen-
tication from any weak PRFs with MIM security in sequential sessions.

MAC. Message Authentication Code (MAC) is one of the most fundamen-
tal primitive in cryptography, used to authenticate a message. Similarly to
secret-key authentication, most of MAC schemes have been based on PRFs.
This is achieved either by using secure block ciphers [33] or number-theoretic
constructions as shown in [15,28]; the latter provides provably (weakly) MIM-
secure2 authentication scheme and MAC based on LPN/LWE and their ring/field
variants.

1.4 Organization of the Paper

In Sect. 2, we review the basic notion and notations, secret-key authentication,
and MAC. In Sect. 3, we review the MERS problem and assumption. In Sect. 4,
we construct a two-round secret-key authentication scheme that is secure against
passive adversaries. Next, we build an efficient two-round authentication protocol
that has special properties (ROR-CMA security) in Sect. 5. We then build an
efficient two-round authentication protocol secure against S-MIM attacks upon
it in Sect. 6, by applying the transformation of [13]. Finally, we obtain a MAC
scheme from the MERS problem in Sect. 7.

2 Preliminaries

2.1 Notation

We denote by ‖x‖ the Hamming weight of an n-bit string x, which is the total
number of 1’s in x. Let Hn,h be the set of all n-bit strings of Hamming weight h.

Let n be a positive integer and let p = 2n − 1. We call p a Mersenne number
if n is prime. If p is itself a prime number then p is called a Mersenne prime.3

Let Zp be the integer ring modulo p, where p is a Mersenne prime. We have
the following properties [1]: For any x, y ∈ Zp, we have

Lemma 2.1. Let x, y ∈ Zp, then the following properties hold:

– Property 1: ‖x + y (mod p)‖ ≤ ‖x‖ + ‖y‖
– Property 2: ‖x · y (mod p)‖ ≤ ‖x‖ · ‖y‖
– Property 3: If x �= 0, then ‖ − x (mod p)‖ = n − ‖x‖

The proof of this lemma is in [1].
2 “MIM security” in [15] is defined by two-phase games. This is ({P, V }, {V })-auth

security, while the MIM security is ({}, {P, V })-auth security using [31]’s terminol-
ogy.

3 For example, n can be 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,
132049, 216091, 756839, 859433, and so on. Mersenne-756839 employed n = 756839
and Ramstake employed n = 216091 and 756839.

474 H. Ferradi and K. Xagawa

2.2 Secret-Key Authentication Syntax

Secret-key authentication protocol Auth = (KeyGen,P,V) is an interactive proto-
col in which P and V share the same secret key SK (in the context of RFID, we
consider P as a tag and V as a reader). More formally, a secret-key authentication
protocol proceeds in two phases:

– Key-generation algorithm: The key-generation algorithm KeyGen(1κ) is
executed on the security parameter κ and outputs a secret key SK.

– Authentication Protocol: The interactive algorithm between P and V takes
as input the shared secret key SK and is executed r rounds. And finally, V
outputs either Accept or Reject.

In this paper, we only consider two-round random-challenge secret-key authen-
tication protocols, in which the protocol is run as follows; the verifier chooses
a challenge c from the challenge space C uniformly at random and sends it as
the first message; the prover receives c, computes a response τ ← PSK(c), and
sends it as the second message; the verifier receives τ and outputs its decision
d ← VSK(c, τ).

We say that the authentication protocol has completeness error α if for
all secret keys SK generated by KeyGen(1κ) the honestly executed protocol
returns reject with probability at most α. More formally, for all 1κ ∈ N,SK ←
KeyGen(1κ):

Pr[c ←$ C; τ ← PSK(c); d ← VSK(c, τ) : d = Reject] ≤ α.

2.3 Security Models

As for public-key authentication [19], several security notions have been intro-
duced for secret-key authentication. There are three main security models against
impersonation attacks that are: passive, active, and man-in-the-middle. All three
models proceed in two steps: In the first step, the adversary interacts with P and
V and then in the second step, it starts interacting only with V in order to get
accepted. The weakest notion, which is the passive security, is when the adver-
sary should not be able to interact with V after eavesdropping several sessions
in the authentication protocol between P and V. A stronger notion, which is the
active security, is when the adversary should not be able to interact with V after
interacting arbitrarily with P and eavesdropping passively several sessions in the
authentication protocol between P and V.

Finally, the strongest and most realistic security model of adversary is a
man-in-the-middle attack (MIM), where the adversary, in the first phase, can
arbitrarily interact with P and V before making verification queries to the reader.

Passive Security. As the basic security notion, we review the definition of
passive security for two-round random-challenge secret-key authentication pro-
tocols.

Post-quantum Provably-Secure Authentication and MAC 475

Definition 2.1 (Passive security). Let Auth = (KeyGen,P,V) be a two-round
random-challenge secret-key authentication protocol. Define the security game
ExppaAuth,A(κ) between a challenger and an adversary A as in Fig. 1. For any
adversary A, we define its advantage against Auth as the quantity

AdvpaAuth,A(κ) := Pr[ExppaAuth,A(κ) ⇒ True].

We say Auth is (t,Q, ε)-passively-secure if for all t-time adversary A querying
to T at most Q times, we have AdvpaAuth,A(κ) ≤ ε.

ExppaAuth,A(κ)

SK $ KeyGen(1κ)

st AT (·)(1κ)

c∗
$ C

τ∗ A(st , c∗)

return (VSK(c∗, τ∗) = Accept)

Oracle T ()

c $ C
τ PSK(c)

return (c, τ)

Fig. 1. Definition of ExppaAuth,A(κ)

2.4 Tag Sparsity Definition and Security

In this section we define an important tool that our construction relies on, which
is tag sparsity [13].

This is the property of an authentication protocol Auth = (KeyGen,P,V) for
which the tag τ is composed into two distinct components, which are τ1 ∈ T1

and τ2 ∈ T2.
Informally speaking, this notion says that for any challenge c, a secret SK,

and a left tag τ1, the number of right tags τ2 that makes τ = (τ1, τ2) accepted
is negligible.

Definition 2.2 (Right Tag-Sparsity [13, Definition 4]). Let Auth =
(KeyGen,P,V) be a two-round random-challenge secret-key authentication pro-
tocol with tags in T1 ×T2 and challenge space C. For ε = ε(1κ), we say that Auth
has ε-sparse right tags (or Auth has ε-right tag sparsity) if

Pr[τ2 ←$ T2; d ← VSK(c, (τ1, τ2)) : d = Accept] ≤ ε

for all c ∈ C,SK, and τ1 ∈ T1.

ROR-CMA Security. In our construction we are also considering a new prop-
erty introduced in [13], called real-or-random right-tag chosen-message security
(ROR-CMA) suitable to tag-sparsity notion. Roughly speaking, the scheme is

476 H. Ferradi and K. Xagawa

ROR-CMA-secure if, given a random challenge c∗, any efficient adversary cannot
distinguish a real prover from the fake prover that returns the random right tag
τ2 on all challenge except c∗ even if it can finally access to the verification oracle
on the challenge c∗ and τ∗ of its choice. The formal statement follows:

Definition 2.3 (ROR-CMA security). Let Auth = (KeyGen,P,V) be a two-
round random-challenge secret-key authentication protocol. For b ∈ {0, 1}, we
define the security game Expror-cma,b

Auth,A (κ) between a challenger and an adversary
A as in Fig. 2. For any adversary A, we define its ROR-CMA advantage against
Auth as the quantity

Advror-cma
Auth,A(κ) :=

∣
∣
∣Pr[Expror-cma,0

Auth,A (κ) ⇒ 1] − Pr[Expror-cma,1
Auth,A (κ) ⇒ 1]

∣
∣
∣ .

We say Auth is (t,Q, ε)-ROR-CMA-secure if for all t-time adversary A issuing
at most Q queries to the oracle Tb(·), we have Advror-cma

Auth,A(κ) ≤ ε.

Expror-cma,b
Auth,A (κ)

SK $ KeyGen(1κ)

c∗
$ C

(τ∗, state) $ ATb(·)(1κ, c∗)

d $ VSK(c∗, τ∗)

return A(state, d)

Oracle Tb(c)

(τ1, τ1
2) $ PSK(c); τ0

2 $ T2

if c = c∗ then

return τ := (τ1, τ1
2)

else

return τ := (τ1, τ b
2)

Fig. 2. Definition of Expror-cma,b
Auth,A (κ)

2.5 Security Against Sequential Man-in-the-Middle Adversary

In this paper, we target a weaker notion of the man-in-the-middle security, which
is Sequential MIM (S-MIM) security, of [13,30]; in which the adversary can first
interact sequentially with P and V in independent sessions and then makes veri-
fication queries to V in order to make the latter accept.

Cash, Kiltz, and Tessaro [13] defined S-MIM security notion for two-round
random-challenge secret-key authentication protocols. We invoke the adversary
A who access to three oracles: C, P , and V . To synchronize the sessions, each of
these oracles use a variable sid associated to a given session. For every session,
A invokes C() to get a new random challenge c, and then invokes the oracle P ()
on input c′ that runs PSK(c′) and returns a response τ . Finally, given τ ′ from
A, V () checks whether τ ′ is a valid response on a session challenge c[sid] or not,
and then increases the session number sid. A wins if it makes V accepts in some
session and has changed at least one of messages in the session sent by P and V.

Post-quantum Provably-Secure Authentication and MAC 477

Definition 2.4 (S-MIM security [13, Section 2]). Let Auth = (KeyGen,P,
V) be a two-round random-challenge secret-key authentication protocol. Define
the security game Exps-mim

Auth,A(κ) between a challenger and an adversary A as in
Fig. 3. For any adversary A, we define its S-MIM advantage against Auth as the
quantity

Advs-mim
Auth,A(κ) := Pr[Exps-mim

Auth,A(κ) ⇒ True].

We say Auth is (t,Q, ε)-S-MIM-secure if for all t-time adversary A invoking at
most Q sessions, we have Advs-mim

Auth,A(κ) ≤ ε.

Exps-mim
Auth,A(κ)

sid 0

SK $ KeyGen(1κ)

run AC(·),P (·),V (·)(1κ)

return

(
∃i : (c[i], τ [i]) �= (c′[i], τ ′[i])

∧d[i] = Accept

)

Oracle C()

if c[sid] = ⊥ then

c[sid] $ C
return c[sid]

Oracle P (c′)

if c′[sid] = ⊥ then

c′[sid] c′

τ [sid] $ PSK(c′)

return τ [sid]

Oracle V (τ ′)

τ ′[sid] τ ′, c $ C()

d[sid] $ VSK(c, τ ′[sid])

sid sid+ 1

return d[sid]

Fig. 3. Definition of Exps-mim
Auth,A(κ)

Let Auth′ = (KeyGen′,P′,V′) be two-round random-challenge authentica-
tion protocol with challenge space C and split tag space T = T1 × T2. We
assume that T2 = F is a finite field with addition + and multiplication ◦. Let
H := {HKH

: T1 → F} be a family of pairwise independent hash func-
tions. Cash et al. [13] turn Auth′ satisfying ROR-CMA security into Auth =
(KeyGen,P,V) as follows:

– Public parameters: The same as Auth′.
– Key generation: The key-generation algorithm KeyGen picks KH ←$ KH ,

KF ←$ F \ {0}, and K ′ ←$ KeyGen′(1κ). The key is K := (KH ,KF ,K ′).
– Challenge: The challenge is c ←$ C.
– Response: The response is σ = (σ1, σ2); the prover first computes τ =

(τ1, τ2) ←$ P′
K′(c) and

σ = (σ1, σ2) :=
(

τ1, τ2 ◦ KF + HKH
(τ1)

)

∈ T1 × F.

478 H. Ferradi and K. Xagawa

– Verification: Given a challenge c and response σ = (σ1, σ2), the verifier first
computes

τ = (τ1, τ2) :=
(

σ1, (σ2 − HKH
(σ1)) ◦ K−1

F

)

and returns the decision d ←$ V′
K′(c, τ).

Theorem 2.1 ([13, Theorem 5]). Suppose that H is δ-almost universal and
that Auth′ is (t,Q, ε)-ROR-CMA-secure, satisfies β-right tag sparsity, and has
completeness error α. then Auth is

(

t′, Q,Q · (ε+Q/|C|+βδ|F|/(|F|−1)+Qα
)

-
S-MIM-secure, where t′ ≈ t.

2.6 Message Authentication Codes

A MAC scheme is a tuple of three probabilistic polynomial-time algorithms
MAC = (KeyGen,Tag,Verify) over (K,M, T) where K, M, and T are key space,
message space, and tag space, respectively:

– Key-generation algorithm: The probabilistic key-generation algorithm
KeyGen gives secret key SK on input a security parameter κ.

– Tag-generation algorithm: The probabilistic authentication algorithm Tag
takes as inputs the secret key SK, the message m and then outputs a tag σ.

– Verification algorithm: The deterministic verification algorithm Verify
takes as inputs a secret key SK, a message m and a tag σ and outputs either
Accept or Reject.

Completeness. We say that MAC has a completeness error α, if for all m ∈ M
and 1κ ∈ N:

Pr[SK ←$ KeyGen(1κ); σ ←$ Tag(SK, m); d ← Verify(SK, m, σ) : d = Reject] ≤ α.

We often say that MAC is perfectly correct if α = 0.

UF-CMA Security. The standard security notion for MAC scheme is unforge-
ability under chosen-message attacks (UF-CMA), captured by the experiment
described in Fig. 4.

Definition 2.5. Let MAC = (KeyGen,Tag,Verify) be a MAC scheme. We define
the security game Expuf-cma

MAC,A(κ) between a challenger and an adversary A as in
Fig. 4. For any adversary A, we define UF-CMA advantage against MAC as the
quantity

Advuf-cma
MAC,A(κ) := Pr[Expuf-cma

MAC,A(κ) ⇒ True].

We say that a MAC is (t,Q, ε)-UF-CMA-secure if for all t-time adversary
Advuf-cma

MAC,A(κ) issuing at most Q queries to the oracles T (·) and V (·, ·), we have
Advuf-cma

MAC,A(κ) ≤ ε.

Post-quantum Provably-Secure Authentication and MAC 479

2.7 Hash Functions

Our construction relies on pairwise-independent hash functions and is defined
as following:

Definition 2.6 (Pairwise-independent hash functions). A function h : K×
N → M is called pairwise-independent hash function if for x1 �= x2 ∈ N ,
y1, y2 ∈ M,

Pr
SK←K

[hSK(x1) = y1 ∧ hSK(x2) = y2] ≤ 1
|M|2 .

Expuf-cma,b
MAC,A (κ)

QT , QV ∅
SK $ KeyGen(1κ)

run AT (·),V (·,·)(1κ)

return

(
∃(m, σ) ∈ QV s.t. m Q∈� T

∧Verify(SK, m, σ) = Accept

)

Oracle T (m)

QT QT ∪ {m}
σ $ Tag(SK, m)

return σ

Oracle V (m, σ)

QV QV ∪ {(m, σ)}
return Verify(SK, m, σ)

Fig. 4. Definition of Expuf-cma
MAC,A(κ)

Concrete Construction. We now consider the following construction of pairwise
independent function based on ring of integers modulo prime (Zp):

Lemma 2.2. For every n ∈ N, define: h : Z2
p × Zp → Zp by ha,b(x) = a · x + b.

Then the function h is pairwise-independent. That is, for all x1 �= x2 and y1, y2 ∈
Zp,

Pr
(a,b)←Z2

p

[ha,b(x1) = y1 ∧ ha,b(x2) = y2] ≤ 1/p2.

The proof can be found in [34].

3 The MERS Problem

Aggarwal et al. introduced new assumptions [1] mimicking NTRU/Ring-LWE
with short secret over integers, relying on the properties of Mersenne primes in
the ring Zp instead of polynomial ring Zq[x]/(xn − 1). We here employ their
latter assumption mimicking Ring-LWE with short secret and extend it to that
mimicking Ring-LWE with uniform secret.

480 H. Ferradi and K. Xagawa

For two integers n > h and for n-bit Mersenne prime p = 2n − 1, and for
integer s ∈ Zp, we define an oracle Os,n,h as follows: choose a ←$ Zp and
e ←$ Hn,h and return (a, a · s + e mod p). We also define a uniform oracle U as
follows: choose (a, b) ←$ Z

2
p and return it.4

Let us define the Mersenne Low-Hamming Combination Assumption (the
MERS assumption).

Definition 3.1 (MERS problem). For two positive integers n > h and for
an adversary A, we introduce the MERSn,h advantage as the quantity:

Adv
MERSn,h

A (κ) :=
∣
∣
∣Pr[AOs,n,h()(1κ) ⇒ True] − Pr[AU()(1κ) ⇒ True]

∣
∣
∣ ,

where s ←$ Hn,h. We say that the MERSn,h problem is (t,Q, ε)-hard if all t-
time attacker A with time complexity t, making at most Q queries, we have
Adv

MERSn,h

A (κ) ≤ ε.

The original definition [1, Definition 5] allows an adversary to query at most
twice. We generalize the assumption by allowing polynomially-many queries.

3.1 MERS Problem with Uniform Secret

We next define the MERS-Un,h problem with n > h

Definition 3.2 (MERS problem with uniform secret). For two positive
integers n > h and for an adversary A, we define the MERS-Un,h advantage as
the quantity:

Adv
MERS-Un,h

A (κ) :=
∣
∣
∣Pr[AOs,n,h()(1κ) ⇒ True] − Pr[AU()(1κ) ⇒ True]

∣
∣
∣ , (1)

where s ←$ Zp. We say that the MERS-Un,h problem is (t,Q, ε)-hard if
all attacker A with time complexity t, making at most Q queries, we have
Adv

MERS-Un,h

A (κ) ≤ ε.

It is easy to show that if MERSn,h is (t′, Q, ε′)-hard, then MERS-Un,h is also
(t,Q, ε)-hard with t′ ≈ t and ε′ ≈ ε (by a simple randomization of the secret s).
We note that the converse is also true.

Proposition 3.1. If the MERS-Un,h problem is (t′, Q + 1, ε′)-hard, then the
MERSn,h problem is (t,Q, ε′)-hard, where t′ ≈ t and ε′ ≈ ε.

We omit the proof because this is very similar to that in [3, Lemma 2]. See the
full version of this paper for the details.

4 In the original definition, a is chosen from {0, 1}n. This change introduces only
negligible distance.

Post-quantum Provably-Secure Authentication and MAC 481

3.2 Hardness and Concrete Parameters

Meet-in-the-Middle Attack. de Boer et al. [10] presented a meet-in-the-
middle attack for solving the MERS problem.Their classical attack runs in the
time Õ

((
n−1
h−1

)1/2
)

. The quantum version runs in the time Õ
((

n−1
h−1

)1/3
)

. They

correspond to roughly 1
4h lg n and 1

6h lg n bits security, respectively.

LLL-Attack. The authors of [7,10] presented an LLL-based algorithm for solv-
ing the ratio version of MERS assumption5 and the MERS problem used in the
present paper. For small h = O(

√
n), the running time of the LLL attack is

O(22h) on Turing machine and O(2h) on quantum machine.

Authpa : SK = S $ Zp

Prover Verifier

A $ Zp

A

E $ n,h

B AS + E

B

if ‖B − AS‖ = h, then Accept

Fig. 5. Passively-secure authentication protocol Authpa

Coron and Gini [14] also gave an LLL-based attack to solve the MERS prob-
lem. The (expected) running time of their attack is O(21.75h).

Tiepelt and Szepieniec [37] analyzed an quantum-LLL algorithm and applied
it to the MERS problem.

Thus, it is reasonable to assume that attacks against MERS cannot exceed the
complexity of the order 2h where h is the hamming weight parameter, as claimed
in [1]. When considering the security and implementation of our protocols, one
should choose the parameter h at least half of the desired security level κ.

Primality of n in Mersenne Primes. Aggarwal et al. discussed that p =
2n −1 and n should be primes to avoid an attack on composite n. For the details,
see Aggarwal et al. [1].

Parameters. Assuming the attacks and constraints above, we choose param-
eter values as (κ, h, n) = (256, 128, 521). It will serve classical 256-bit sec. and
quantum 192-bit sec.
5 The Mersenne Low Hamming Ratio Assumption states that, given an n-bit Mersenne

prime p = 2n − 1 and an integer h, any PPT adversary cannot distinguish between
F/G mod p with F, G ←$ Hn,h, and R ← Zp with non-negligible advantage.

482 H. Ferradi and K. Xagawa

4 Passively-Secure Authentication Based on MERS

In this section we introduce our new two-round authentication protocol based
on MERSn,h problem with passive security. Our Authpa is defined as follows:

– Public parameters: The authentication protocol has the following public
parameters that depend on the security parameter κ.

• n ∈ N: the length of A, S, and E
• h ∈ N: the Hamming weight of E

– Key generation: The key-generation algorithm KeyGen(1κ) outputs SK =
S ←$ Zp.

– Authentication protocol: To be authenticated by a verifier, a prover follows
the two-round authentication protocol shown in Fig. 5.

Theorem 4.1. If the MERS-Un,h problem is (t,Q, ε)-hard and 1
p

∑2h
i=0

(
n
i

)

is
negligible in κ, then Authpa is passively-secure authentication.

The security proof is obtained by following the proof of [26, Theorem 2]. See the
full version for the details.

Authror : SK = (S1, S2) $ Z
2
p

Prover Verifier

A $ Zp

A

R $ Zp, E $ n,h

B R(S1A + S2) + E

R, B

if R �= 0 and ‖B − R(S1A + S2)‖ = h,

then Accept

Fig. 6. ROR-CMA-secure authentication protocol Authror

Active Attack Against Authpa. The active attack against Authpa based on
MERSn,h is quite similar to the active attack against HB+ [22]. It consists for an
arbitrary fixed A, the adversarial verifier can send fixed A ,e.g., A = 1, repeatedly
and obtain

B1 ≡ AS + E1 (mod p), . . . , Bk ≡ AS + Ek (mod p),

where each Ei’s Hamming weight is at most h. If h < n/2 and k is sufficiently
large, then the adversary can determine AS’s bits from LSB to MSB as follows:

Post-quantum Provably-Secure Authentication and MAC 483

(1) taking the majority of LSB of Bi, which is AS’s LSB, (2) taking the majority
of 2nd bits of Bi− LSB of AS, which is AS’s 2nd bit, and so on. It then learns
AS mod p and obtains S by computing A−1.

5 ROR-CMA-Secure Authentication Based on MERS

Our Authror is defined as follows:

– Public parameters: n and h as in Sect. 4.
– Key generation: The key-generation algorithm KeyGenror(1κ) outputs SK =

(S1, S2) ←$ Z
2
p.

– Authentication protocol: To be authenticated by V, P follows the 2-round
authentication protocol shown on Fig. 6.

Theorem 5.1. Authror has
(
n
h

)

/p-sparse right tags.

Proof. For any secret (S1, S2), challenge A, and left tag R �= 0, we have
Pr[V(S1,S2)(A, (R,B)) ⇒ Accept : B ←$ Zp] = |Hn,h|/p =

(
n
h

)

/p. ��

Theorem 5.2. If the MERS-Un,h problem is (t,Q, ε)-hard, then Authror is
(t′, Q, ε)-ROR-CMA-secure, where t′ ≈ t.

Proof (Proof of Theorem 5.2). We follow the proof of the ROR-CMA security
of the LPN-based authentication scheme in Cash, Kiltz, and Tessaro [13, Theo-
rem 7].

The security of the MERS-based Authror essentially builds on the ROR-
CMA notion. Let us consider an adversary A who plays the security game
Expror-cma,b

Authror,A(κ). We build an adversary B who solves the MERS-Un,h problem,
where n and h are known, by using A as in Fig. 7.

Boracle()

S′
2 $ Zp

A∗
$ Zp

(τ∗, state) AT̄ (·)(1κ, A∗)

Parse τ∗ = (R∗, B∗)

d (‖B∗ − R∗ · S′
2‖? = h)

return A(state, d)

Procedure T̄ (A)

if A = A∗ then

R $ Zp

B̃ $ n,h

else

(R̃, B̃) oracle

R R̃ · (A − A∗)−1

B B̃ + R · S′
2

return τ = (R, B)

Fig. 7. Definition of B

484 H. Ferradi and K. Xagawa

Assume that S1 is the secret of the MERS-Un,h problem. B chooses S′
2 ←$ Zp

and A∗ ←$ Zp. It implicitly defines S2 := −A∗·S1+S′
2 mod p. Since S′

2 is uniform
over Zp, S2 is also. In addition, we have

B∗ − R∗ · (S1 · A∗ + S2) ≡ B∗ − R∗ · S′
2 (mod p).

Thus, the decision by B is always correct.
We assume that oracle returns (R̃, B̃ = R̃S1 + E), where E ←$ Hn,h or Zp.
Let us consider T̄ (·), the simulation of T (·). If A = A∗, then the simulation

is perfect, since S′
2 = S1A

∗ + S2 mod p and B = R · S′
2 + B̃ where B̃ ←$ Hn,h.

Otherwise, that is, if A �= A∗, we have

B = B̃ + R · S′
2 = R̃S1 + E + R · S′

2 = R · (A − A∗)S1 + E + R · S′
2

= R · (AS1 − A∗S1 + S′
2) + E = R · (AS1 + S2) + E,

where E is chosen from Hn,h or Zp uniformly at random.
If E is chosen from Hn,h, then (R,B) is distributed as a response computed

by the honest prover with secret key (S1, S2). On the other hand, if E is chosen
from Zp, then (R,B) is uniformly distributed over Z2

p. Therefore, B’s simulations
are perfect in both cases. This completes the proof. ��

S-MIM Attack Against Authror. Flip B’s two bits. With probability ≈ 1/h(n−
h), it will modify E while keeping its Hamming weight.

6 S-MIM-Secure Authentication Based on MERS

Now we turn our ROR-CMA-secure protocol into a S-MIM-secure protocol by
using the transformation described in Sect. 2.5 by using the pairwise independent
hash function in Sect. 2.7.

We set F := Zp and employ the family of pairwise independent hash functions
{HK1,K2 : Zp → Zp | K1,K2 ∈ Zp}, where HK1,K2(R) = K1 · R + K2. Applying
the transformation, the key consists of K = (S1, S2,KF ,K1,K2). The response
to a challenge c is computed as σ = (σ1, σ2), where

σ1 = R and σ2 = (R · (S1 · A + S2) + E)
︸ ︷︷ ︸

=τ2

·KF + K1 · R + K2
︸ ︷︷ ︸

=HKH
(τ1)

.

We can apply the compression technique in [13]. Prover sends σ = (R,Z),
where

Z = (R · (S1 · A + S2) + E) · KF + (K1 · R + K2)
= R(S1KF · A + S2KF + K1) + KF · E + K2

= R(X1 · A + X2) + X3 · E + X4,

by substituting X1 = S1KF , X2 = S2KF + K1, X3 = KF , and X4 = K2. The
verifier also checks if

R �= 0 ∧ ‖(Z − R(X1A + X2) − X4) · X−1
3 ‖ = h

Post-quantum Provably-Secure Authentication and MAC 485

or not. (We can choose them as X1 ←$ Z
∗
p, X2 ← Zp, X3 ← Z

∗
p, and X4 ← Zp.)

The compressed authentication systems, denoted by Auths-mim, is summarized
as follows:

– Public parameters: n and h as in Sect. 4.
– Key generation: The key-generation algorithm KeyGenror(1κ) outputs SK =

(X1,X2,X3,X4) ←$ Z
∗
p × Zp × Z

∗
p × Zp.

– Authentication protocol: To be authenticated by V, P follows the 2-round
authentication protocol shown in Fig. 8.

Combining Theorems 5.1, 5.2, and 2.1, we get the following corollary.

Corollary 6.1. If MERS-Un,h is (t,Q, ε)-hard, then Auths-mim is (t′, Q, ε′)-
S-MIM-secure, where t′ ≈ t and ε′ = Q ·

(

ε + Q/p +
(
n
h

)

/(p − 1)
)

.

Auths-mim : SK = (X1, X2, X3, X4) $ Z
∗
p × Zp × Z

∗
p × Zp

Prover Verifier

A $ Zp

A

R $ Zp, E $ n,h

Z R(X1A + X2)

+ X3E + X4

R, Z

if R �= 0

and
∥∥X−1

3 · (Z − R(X1A + X2) − X4)
∥∥ = h

then Accept

Fig. 8. S-MIM-secure authentication protocol Auths-mim

7 MAC from MERS

In this section, we introduce MAC based on MERS-U. Our construction is an
analogue to that in [28]. The scheme MAC = (KeyGen,Tag,Verify) is summarized
as follows:

– Public parameters: The public parameters p(1κ) on the security parameter
κ, outputs the public parameters n and h as in Sect. 4. We introduce new
parameters μ = ν = Θ(κ).

486 H. Ferradi and K. Xagawa

– Key generation: The algorithm KeyGen, given public parameters p, samples
s′
0, s0, s1, . . . , sμ ←$ Zp, h : {0, 1}∗ × {0, 1}ν → {0, 1}μ, and pairwise-

independent permutation π over Zp × Zp × {0, 1}ν , and outputs SK :=
(s′

0, s0, s1, . . . , sμ, h, π).
– Tagging: The algorithm Tag is given a secret key SK and a message m ∈ M.

This probabilistic authentication algorithm proceeds as follows:
1. Sample R ←$ Zp, E ←$ Hn,h and β ←$ {0, 1}ν .
2. Compute A := h(m,β).
3. Compute SA = s0 +

∑μ
i=1 A[i] · si.

4. Compute B := R · SA + E + s′
0.

5. Output σ = π(R,B, β).
– Verification: The algorithm Verify is given a secret key SK, a message m,

and a tag σ. It proceeds as follows:
1. Parse π−1(σ) as (R,B, β). If R = 0, then Reject.
2. Compute A := h(m,β) and SA := s0 +

∑μ
i=1 A[i] · si.

3. If ‖B − (R · SA + s′
0)‖ = h then return Accept; otherwise, return Reject.

Our scheme is perfectly correct.

RealB(κ),RandB(κ)

L := ∅
s′
0, s0, s1, . . . , sμ $ Zp

d Eval(·),Chal(·,·)(1κ)

return d ∧ (A∗ �∈ L)

Oracle Chal(R∗, A∗) // one query

SA∗ := s0 +
∑μ

j=1 A∗[j] · sj

B∗ := s′
0 + R∗ · SA∗

return B∗

Oracle Eval(A)

if A ∈ L then

return ⊥
L L ∪ {A}
SA := s0 +

∑μ
j=1 A[j] · sj

R $ Zp;E $ Hn,h

if Real then

B := s′
0 + R · SA + E

if Rand then

B $ Zp

return τ = (R, B)

Fig. 9. Definition of Real and Rand

Theorem 7.1. If the MERS-Un,h problem is (t,Q, ε)-hard, then MAC is
(t′, Q, ε′)-UF-CMA-secure, where t ≈ t′ and

ε = min
{

ε′/2 − Q2/2μ, ε′/(8μQVerify) − QVerify

(
n

h

)

/p

}

,

where QVerify ≤ Q is the number of verification queries.

Post-quantum Provably-Secure Authentication and MAC 487

7.1 Proof of Theorem 7.1

Let αn,h :=
(
n
h

)

/p. In what follows, we say a forgery (m,σ) is fresh if the A
contained in (m,σ) is different from all A’s contained in all the previous queries
to V and T . For our proof, we are distinguishing two cases: the case where
the probability that A is fresh is sufficiently low as Pr[Fresh] ≤ ε′/2, or the
complement case where Pr[Fresh] > ε′/2.

Before proving our main theorem, we review a useful lemma for fresh case,
whose proof is in Appendix A.

Lemma 7.1. Consider the two games Real and Rand between a challenger and
an adversary B defined in Fig. 9. Assume that the MERS-Un,h problem is (t,Q, ε)-
hard. Then, for all (t′, Q)-adversary B with t′ ≈ t, we have

|Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]| ≤ 2με.

Fresh Case

Lemma 7.2. Suppose that there exists an adversary A that breaks (t′, Q, ε′)-
UF-CMA-security of MAC. If the probability that the first forgery found by the
adversary is more likely to be fresh: Pr[Fresh] > ε′/2, then we have another
(t,Q, ε)-adversary B that breaks MERS-Un,h with

t ≈ t′ and ε ≥ ε′/(4μQVerify) − QVerifyαn,h,

where QVerify ≤ Q is the number of verification queries.

Proof. (Proof of Lemma 7.2). We define the following games:

– Let G0 be the original security game Expuf-cma.
– Let Gj for j = 1, . . . , QVerify denote the games where the adversary is allowed

to ask only j verification queries.
– We also define G′

j as same as the game Gj except that the tag oracle will use
random R,B, β to compute σ instead of the real computation.

As [28], we have

ε′/2 < Pr[Fresh] = Pr[G0 = 1] ≤
QVerify∑

j

Pr[Gj = 1].

Thus, what we should do is bounding Pr[Gj = 1].

Claim. Assume that A is a (t,Q)-adversary for all j, there exists a (t′, Q)-
adversary B such that t′ ≈ t and

|Pr[Gj = 1] − Pr[G′
j = 1]| ≤ |Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]| .

Proof (Proof of Claim). We construct B as follows:

488 H. Ferradi and K. Xagawa

1. B samples h and π.
2. B runs A on input 1κ and simulates the oracles as follows:

– T (m):
(a) sample a random β ←$ {0, 1}ν and compute A = h(m,β).
(b) query A to oracle Eval and obtain a pair (R,B).
(c) return σ := π(R,B, β).

– V (m,σ):
(a) if (m,σ) is previously returned to A, then B returns Accept.
(b) if (m,σ) is not j-th verification query, then B returns Reject.
(c) if (m,σ) is the j-th verification query; we call it (m∗, σ∗). let

(R∗, B∗, β∗) := π−1(σ∗); compute A∗ := h(m∗, β∗); send (R∗, A∗)
to oracle Chal and obtain B′. If ‖B∗ − B′‖ = h, then return Accept.
otherwise, return Reject.

The j-th verification query is fresh by the definition. In addition, since the oracle
Chal returns B′ := s′

0 + R∗ · SA∗ , this simulated verification procedure correctly
checks the Hamming weight of ‖B∗ − (s′

0 + R∗ · SA∗)‖ as the correct verification.
Therefore, the simulation is perfect if A∗ is fresh as we wanted. ��
Claim. For all j, Pr[G′

j = 1] ≤ αn,h.

Proof (Proof of Claim). Fix a value j ∈ {1, . . . , QVerify}. In game G′
j , the

adversary obtains no information on (s′
0, s0, s1, . . . , sμ) from the tagging ora-

cle T (·) because the oracle returns random values (R,B). Therefore, the value
X := B∗ − B′ = B∗ − (R∗ · SA∗ + s′

0) should be uniformly at random over Zp,
since s′

0 is kept secret. Thus, the probability that the verification ‖B∗ −B′‖ = h
passes is at most Pr[X ← Zp : ‖X‖ = h] =

(
n
h

)

/p = αn,h. ��
Combining those two claims, we obtain the following result: If A is (t,Q)-

adversary, then there is a (t′, Q)-adversary B such that t′ ≈ t and

Pr[Gj = 1] ≤ Pr[G′
j = 1] + |Pr[Gj = 1] − Pr[G′

j = 1]|
≤ αn,h + |Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]|

as we wanted. Applying Lemma 7.1, we have Pr[Gj = 1] ≤ αn,h + 2με under the
assumption that the MERS-Un,h problem is (t,Q, ε)-hard. Therefore, we have

ε′/2 ≤
QVerify∑

j

Pr[Gj = 1] ≤ QVerifyαn,h + 2QVerifyμε.

This yields ε ≥ ε′/(4QVerifyμ) − QVerifyαn,h as we wanted. ��

Non-Fresh Case

Lemma 7.3. Let μ = ν. Suppose that there exists an adversary A that breaks
(t′, Q, ε′)-UF-CMA-security of MAC. If the probability that the first forgery found
by the adversary is more likely to be non-fresh, that is, Pr[Fresh] ≤ ε′/2, then
we have B that breaks the (t,Q, ε)-hardness of the MERS-Un,h problem, where

t ≈ t′ and ε ≥ ε′/2 − Q2/2μ.

Post-quantum Provably-Secure Authentication and MAC 489

Proof. This proof is similar to the proof of the ROR-CMA security in Sect. 5.
Let us construct an adversary Boracle who will distinguish between two oracles

O and U .
B samples π, h, s′

0, s1, . . . , sμ except s0 as defined in KeyGen. It then runs A
and simulates the oracles as follows:

– T (m): On a query m,
1. Sample β and compute A := h(m,β)
2. Call the oracle and obtain (R̃, B̃)
3. Compute B := B̃ + R̃ · (

∑μ
i=1 A[i] · si) + s′

0

4. Return σ := π(R̃, B, β)
– V (m,σ): On a query (m,σ), B always answers Reject.

Finally, Boracle outputs 1 if any query to T or V contains β that has appeared in
a previous query to T or V . It outputs 0 otherwise.

We note that if oracle = Os,n,h, then B̃ = R̃ · s+ e, where e ←$ Hn,h and the
simulation of T is perfect by letting s0 := s.

Claim. If oracle = Os,n,h, then the probability that Boracle outputs 1 is ≥ ε′/2.

Proof (Proof of Claim). The proof is the same as that in [28, Proof of Claim 4.5].
The simulation of T is perfect. In addition, until A makes a valid forgery, the
simulation of V is also perfect. The probability that A output his first forgery
which is not fresh is simply lower bounded by ε′ − ε′/2 = ε′/2. Thus, we obtain
the lower bound in the claim. ��

Claim If oracle = U , then the probability that Boracle outputs 1 is at most Q2/2μ.

Proof (Proof of Claim). The proof is the same as that in [28, Proof of Claim 4.6].
We have Ai = Aj if and only if h(mi, βi) = h(mj , βj). Now we will upper

bound the probability that an adversary find such collision which imply the same
probability that Boracle outputs 1, assuming that an adversary makes at most q
queries and fixing that up to the (i − 1)-th query by which we assume that all
the A’s were distinct. Then we obtain two cases of collision:

– The probability of collision that the i-th query in which βi will collide with
a previous βj is at most (i − 1)/2ν .

– If the first collision does not happen then the probability of collision in
h(mi, βi) = h(mj , βj) will be (i − 1)/2μ.

Then similarly to the proof in [27] we obtain
∑q

n=1((i − 1)/2ν + (i − 1)/2μ) ≤
Q2/2μ where μ = ν. ��

Combining two claims, we have ε ≥ ε′/2 − Q2/2μ as we wanted. ��

Acknowledgment. The first author would like thank to Krzysztof Pietrzak for fruit-
ful discussions during the first stage of this project.

490 H. Ferradi and K. Xagawa

A Proof of Lemma7.1

Lemma A.1 (Lemma 7.1, restated). Consider the two games Real and Rand
between a challenger and an adversary B defined in Fig. 9. Assume that the
MERS-Un,h problem is (t,Q, ε)-hard. Then, for all (t′, Q)-adversary B with t′ ≈ t,
we have

|Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]| ≤ 2με.

The proof is almost same as that in [28].
For i = 0, . . . , μ and A ∈ {0, 1}μ, we define A[1..i] as the i-bit string

A1 . . . Ai ∈ {0, 1}i. (We let A[1..0] = ⊥.) For i = 0, . . . , μ, RFi,RF
′
i : {0, 1}i → Zp

be two random functions. (If i = 0, then RF0(⊥) = b′ for some random b′ ←$ Zp.)
We define the line of games as follows:

– G0: this game is the same as Real except that
• in the beginning, we sample 2μ elements s1,0, . . . , sμ,0, s1,1, . . . , sμ,1 from

Zp instead of μ + 1 elements s0, s1, . . . , sμ from Zp.
• in the computation of SA, we compute SA :=

∑μ
j=1 sj,A[j] instead of

SA := s0 +
∑μ

j=1 A[j] · sj . (We also replace the computation of SA∗ .)
– G1,i for i = 0, . . . , μ: this game is the same as G0 except that

• in the oracle Chal, we let s′
0 := RFi(A∗[1..i])

• in the oracle Eval, we compute B := RFi(A[1..i]) + RSA + E instead of
B := s′

0 + RSA + E.
– G2: this game is the same as G1,μ except that

• in the oracle Chal, we sample B∗ ←$ Zp instead of B∗ := s′
0 + R∗ · SA∗

• in the oracle Eval, we compute B := RFμ(A) instead of B := RFμ(A) +
RSA + E.

Lemma A.2. Pr[G0 = 1] = Pr[Real ⇒ 1].

Proof. In G0, we replace the computation of SA. We note that if we set s0 :=
∑μ

j=1 sj,0 and sj := sj,1 − sj,0, we have SA = s0 +
∑μ

j=1 A[j] · sj =
∑μ

j sj,A[j].
In addition, if we choose sj,k uniformly at random, then s0, s1, . . . , sμ are also
distributed according to the uniform distribution over Zp. Hence, the two games
are equivalent. ��

Lemma A.3. We have Pr[G0 = 1] = Pr[G1,0 = 1].

Proof. G0 is the same as G1,0, since s′
0 can be interpreted as RF0(⊥) [28]. ��

Lemma A.4. Let B be a (t,Q)-adversary in Fig. 9. For all i ∈ {0, . . . , μ − 1},
there exists a (t′, Q)-adversary D such that

t′ ≈ t and |Pr[G1,i = 1] − Pr[G1,i+1 = 1]| ≤ 2 · AdvMERS-Un,h

D (κ).

Post-quantum Provably-Secure Authentication and MAC 491

Proof. Notice that for arbitrarily fixed b ∈ {0, 1} and two random functions RFi

and RF′
i, we can define a new random function RFi+1 by

RFi+1(A[1..i + 1]) :=

{

RFi(A[1..i]) if A[i + 1] = b

RFi(A[1..i]) + RF′
i(A[1..i]) o.w.

Our adversary D guesses b ←$ {0, 1} as the prediction of A∗[i + 1] and sim-
ulates the oracles by using the above observation. We construct a distinguisher
D as follows:

1. Given 1κ, D prepares parameter values as follows:
– Sample b ← {0, 1} and initialize L := ∅ and Li := ∅.
– Choose sj,β ← Zp for all j ∈ [1, μ] and β ∈ {0, 1} except for si+1,1−b.
– Query to its oracle for Q times and obtain the answers (Rj , B

′
j) for j ∈

{1, 2, . . . , Q}.
2. D runs B and simulates Eval and Chal as follows:

– Simulation of Eval on input A ∈ {0, 1}μ:
(a) Update L := L ∪ {A}
(b) If A[i+1] = b, then R ←$ Zp, E ←$ Hn,h, compute B := RFi(A[1..i])+

R · (
∑μ

j=1 sj,A[j]) + E and return (R,B).
(c) Else, that is, if A[i + 1] = 1 − b, then

i. If Li contains (A[1..i], (Rj , B
′
j)) for some j, then let (R,B′) :=

(Rj , B
′
j).

ii. Else, use a next fresh pair, that is, (R,B′) := (Rj , B
′
j) for the first

j. Add (A[1..i], (Rj , B
′
j)) to the list Li.

iii. Compute B := RFi(A[1..i]) + R · (
∑μ

j=1,j �=i+1 sj,A[j]) + B′ and
return (R,B).

– Simulation of Chal on input R∗ and A∗:
(a) If A∗[i + 1] �= b, abort.
(b) Else, define SA∗ :=

∑μ
j sj,A∗[j].

(c) Return B∗ := R∗ · SA∗ + RFi(A∗[1..i]).
3. Finally, B will outputs its decision d and stops. D outputs d ∧ (A∗ �∈ L).

Suppose that the guess b is correct. This happens with probability 1/2. If
so, D perfectly simulates Chal, since RFi+1(A∗[1..(i + 1)]) = RFi(A∗[1..i]) if
A∗[i + 1] = b. We next analyze the simulation of Eval: If A[i + 1] = b, then we
have RFi+1(A[1..(i + 1)]) = RFi(A[1..i]). Thus, the distributions of E are the
same in both games. Otherwise, that is, if A[i+1] = 1− b, then we consider two
cases: If the oracle outputs B′ := Rs + E with E ←$ Hn,h, then we have

B := RFi(A[1..i]) + R ·

⎛

⎝

μ
∑

j=1,j �=i+1

sj,A[j]

⎞

⎠ + R · s + E

= RFi(A[1..i]) + R ·

⎛

⎝

μ
∑

j=1

sj,A[j]

⎞

⎠ + E

492 H. Ferradi and K. Xagawa

by letting si+1,1−b := s. Therefore, if the oracle is Os,n,h, then D perfectly
simulates Gi. On the other hand, if the oracle is U , that is, B′ = Rs + E + U
with E ←$ Hn,h and U ←$ Zp, then we have

B := RFi(A[1..i]) + R ·

⎛

⎝

μ
∑

j=1,j �=i+1

sj,A[j]

⎞

⎠ + R · s + E + U

= RFi(A[1..i]) + U + R ·

⎛

⎝

μ
∑

j=1

sj,A[j]

⎞

⎠ + E.

By letting U := RF′
i(A[1..i]), we observe that D perfectly simulates Gi+1.

Therefore, we have

t′ ≈ t and |Pr[G1,i = 1] − Pr[G1,i+1 = 1]| = 2 · AdvMERS-Un,h

D (κ)

as we wanted. ��

Lemma A.5. We have Pr[G1,μ = 1] = Pr[G2 = 1].

Proof. This is almost obvious. Notice that every query A to Eval and Chal should
be fresh. Thus, in both cases, RFμ(A) makes B (and B∗) random. ��

Lemma A.6. We have Pr[G2 = 1] = Pr[Rand ⇒ 1].

Proof. In G2, all returned values (R,B) from Eval and B∗ from Chal are fresh
and random if A∗ �∈ L. We also know that in Rand, all values are fresh and
random if A∗ �∈ L, because s′

0 is random and kept secret. Therefore, there are
no difference between G2 and Rand if A∗ �∈ L. This completes the proof. ��

References

1. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosys-
tem via Mersenne numbers. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 459–482. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 16

2. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: Mersenne-756839. Technical
report, National Institute of Standards and Technology (2017). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

4. Armknecht, F., Hamann, M., Mikhalev, V.: Lightweight authentication protocols
on ultra-constrained RFIDs - myths and facts. In: Saxena, N., Sadeghi, A.-R. (eds.)
RFIDSec 2014. LNCS, vol. 8651, pp. 1–18. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-13066-8 1

https://doi.org/10.1007/978-3-319-96878-0_16
https://doi.org/10.1007/978-3-319-96878-0_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-319-13066-8_1
https://doi.org/10.1007/978-3-319-13066-8_1

Post-quantum Provably-Secure Authentication and MAC 493

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

6. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36140-1 10

7. Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hardness of the
Mersenne low hamming ratio assumption. In: Lange, T., Dunkelman, O. (eds.)
LATINCRYPT 2017. LNCS, vol. 11368, pp. 166–174. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25283-0 9

8. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003). https://doi.org/
10.1145/792538.792543

10. de Boer, K., Ducas, L., Jeffery, S., de Wolf, R.: Attacks on the AJPS Mersenne-
based cryptosystem. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 101–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-79063-3 5

11. Bos, J.W., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Efficient SIMD arith-
metic modulo a Mersenne number. In: Proceedings of the 2011 IEEE 20th Sympo-
sium on Computer Arithmetic, ARITH 2011, pp. 213–221. IEEE Computer Society,
Washington, DC (2011). https://doi.org/10.1109/ARITH.2011.37

12. Bringer, J., Chabanne, H., Dottax, E.: HB+: a lightweight authentication protocol
secure against some attacks. In: Proceedings of the Second International Workshop
on Security, Privacy and Trust in Pervasive and Ubiquitous Computing, SECPERU
2006, pp. 28–33. IEEE Computer Society, Washington, DC (2006). https://doi.org/
10.1109/SECPERU.2006.10

13. Cash, D., Kiltz, E., Tessaro, S.: Two-round man-in-the-middle security from LPN.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 225–248.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 10

14. Coron, J.S., Gini, A.: Improved cryptanalysis of the AJPS Mersenne based cryp-
tosystem. In: Number-Theoretic Methods in Cryptology 2019 - NutMiC 2019
(2019). https://eprint.iacr.org/2019/610

15. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 22

16. Duc, D.N., Kim, K.: Securing HB+ against GRS man-in-the-middle attack. In:
SCIS 2007, The 2007 Symposium on Cryptography and Information Security, pp.
2B3-4. IEICE, Sasebo, 23–26 January 2007

17. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

18. Ferradi, H., Naccache, D.: Integer reconstruction public-key encryption. Cryptology
ePrint Archive, Report 2017/1231 (2017). https://eprint.iacr.org/2017/1231

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-642-36140-1_10
https://doi.org/10.1007/978-3-030-25283-0_9
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1145/792538.792543
https://doi.org/10.1145/792538.792543
https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1109/ARITH.2011.37
https://doi.org/10.1109/SECPERU.2006.10
https://doi.org/10.1109/SECPERU.2006.10
https://doi.org/10.1007/978-3-662-49096-9_10
https://eprint.iacr.org/2019/610
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://eprint.iacr.org/2017/1231
https://doi.org/10.1007/3-540-47721-7_12

494 H. Ferradi and K. Xagawa

20. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good variants of HB+ are hard to find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85230-8 12

21. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: increasing the security and effi-
ciency of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–
378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 21

22. Gilbert, H., Robshaw, M.J.B., Sibert, H.: Active attack against HB+: a prov-
ably secure lightweight authentication protocol. Electron. Lett. 41(21), 1169–1170
(2005). https://doi.org/10.1049/el:20052622. https://eprint.iacr.org/2005/237

23. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34047-5 20

24. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

25. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 18

26. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and HB+
protocols. J. Cryptol. 23(3), 402–421 (2010). https://doi.org/10.1007/s00145-010-
9061-2

27. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4 3

28. Kiltz, E., Pietrzak, K., Venturi, D., Cash, D., Jain, A.: Efficient authentication
from hard learning problems. J. Cryptol. 30(4), 1238–1275 (2017). https://doi.
org/10.1007/s00145-016-9247-3

29. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 24

30. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 18

31. Mol, P., Tessaro, S.: Secret-key authentication beyond the challenge-response
paradigm: definitional issues and new protocols. unpublished manuscripts (2012).
https://homes.cs.washington.edu/∼tessaro/

32. Munilla, J., Peinado, A.: HB-MP: a further step in the HB-family of lightweight
authentication protocols. Comput. Netw. 51(9), 2262–2267 (2007). https://doi.org/
10.1016/j.comnet.2007.01.011

33. Preneel, B.: Hash functions and MAC algorithms based on block ciphers. In: Dar-
nell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 270–282.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024473

34. Rubinfeld, R.: Randomness and computation. Course, MIT (2012). https://people.
csail.mit.edu/ronitt/COURSE/S12/handouts/lec5.pdf

35. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

https://doi.org/10.1007/978-3-540-85230-8_12
https://doi.org/10.1007/978-3-540-78967-3_21
https://doi.org/10.1049/el:20052622
https://eprint.iacr.org/2005/237
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/3-540-45682-1_4
https://doi.org/10.1007/11535218_18
https://doi.org/10.1007/s00145-010-9061-2
https://doi.org/10.1007/s00145-010-9061-2
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/s00145-016-9247-3
https://doi.org/10.1007/s00145-016-9247-3
https://doi.org/10.1007/11832072_24
https://doi.org/10.1007/978-3-642-40084-1_18
https://doi.org/10.1007/978-3-642-40084-1_18
https://homes.cs.washington.edu/~tessaro/
https://doi.org/10.1016/j.comnet.2007.01.011
https://doi.org/10.1016/j.comnet.2007.01.011
https://doi.org/10.1007/BFb0024473
https://people.csail.mit.edu/ronitt/COURSE/S12/handouts/lec5.pdf
https://people.csail.mit.edu/ronitt/COURSE/S12/handouts/lec5.pdf
https://doi.org/10.1137/S0097539795293172

Post-quantum Provably-Secure Authentication and MAC 495

36. Szepieniec, A.: Ramstake. Technical report. National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

37. Tiepelt, M., Szepieniec, A.: Quantum LLL with an application to Mersenne number
cryptosystems. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS,
vol. 11774, pp. 3–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 1

38. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2 5

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1007/978-3-540-76900-2_5
https://doi.org/10.1007/978-3-540-76900-2_5

Another Look at Some Isogeny Hardness
Assumptions

Simon-Philipp Merz1(B), Romy Minko2, and Christophe Petit3

1 Royal Holloway, University of London, Egham, England
Simon-philipp.merz.2018@rhul.ac.uk
2 University of Oxford, Oxford, England

3 University of Birmingham, Birmingham, England

Abstract. The security proofs for isogeny-based undeniable signature
schemes have been based primarily on the assumptions that the One-
Sided Modified SSCDH problem and the One-More SSCDH problem are
intractable. We challenge the validity of these assumptions, showing that
both the decisional and computational variants of these problems can be
solved in polynomial time. We further demonstrate an attack, applica-
ble to two undeniable signature schemes, one of which was proposed at
PQCrypto 2014. The attack allows to forge signatures in 24λ/5 steps on
a classical computer. This is an improvement over the expected classical
security of 2λ, where λ denotes the chosen security parameter.

Keywords: Elliptic curves · Isogenies · Undeniable signatures

1 Introduction

Most currently deployed cryptographic schemes are based on mathematical prob-
lems that are assumed to be hard on classical computers, but can be solved in
polynomial time using quantum algorithms. Continuous progress in quantum
computing therefore requires the development of “post-quantum secure” cryp-
tography relying on problems that will (at least to the best of our knowledge)
remain hard for quantum algorithms. To achieve quantum resistance some direc-
tions currently being explored include lattice-based, multivariate, code-based,
and hash-based cryptography and, most recently, cryptography based on isogeny
problems. While the latter is appealing for relatively small key sizes compared
to other candidates, it requires further optimization and scrutiny.

Isogeny-based cryptography was first proposed by Couveignes in 1997 in a
seminar at the ENS [7], but he did not publish his ideas at the time. Almost a
decade later Rostovtsev and Stolbunov rediscovered and further developed the
same idea independently [20]. While these cryptosystems were based on “ordi-
nary curves”, “supersingular curves” were first put to use in the construction
of a hash function by Charles, Goren and Lauter [4]. Jao and De Feo intro-
duced another cryptosystem in the supersingular case, the so called Supersingu-
lar Isogeny Diffie-Hellman (SIDH) [11]. Instead of using the action of the class
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 496–511, 2020.
https://doi.org/10.1007/978-3-030-40186-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_21

Another Look at Some Isogeny Hardness Assumptions 497

group on certain isomorphism classes of ordinary elliptic curves like Couveignes,
Rostovtsev and Stolbunov, SIDH relies on the simple observation that it does not
matter in which order we divide out two non-intersecting subgroups of an ellip-
tic curve. One promising submissions to NIST’s post-quantum standardization
project [18] is the SIDH-based key exchange protocol called SIKE [1].

For a nice introduction to different computational problems in supersingu-
lar isogeny-based cryptography we refer to Galbraith and Vercauteren [10]. The
template for isogeny-based cryptography is the general isogeny problem. That
is, to find an isogeny φ : E1 → E2, for two randomly chosen isogenous curves
E1 and E2. A variant of this problem includes the additional information of the
degree of φ. This reduces the problem space from an infinite to a finite number
of isogenies while simultaneously reducing the search space. Hence, it is not clear
whether it makes the problem harder or easier. Another related problem is the
computation of endomorphism rings of supersingular elliptic curves. Assume you
know the endomorphism ring of a supersingular curve E1 and you want to com-
pute the endomorphism ring of E2. This is computationally broadly equivalent
to computing an isogeny φ : E1 → E2 [15,16].

However, more practical supersingular isogeny constructions give more infor-
mation to a potential attacker. For example, the SIDH protocol, which we will
describe in Sect. 3 in more detail, reveals the image of certain torsion points
under some secret isogenies in addition to the origin and image curves. It was
observed that this additional information might make the problem a priori eas-
ier and a framework for a potential attack under additional assumptions was
given by Petit [19].

Various other versions of isogeny problems have been suggested and conjec-
tured to be hard by other authors to provide security proofs for their crypto-
graphic constructions.

Our Contribution: In this work, we will review some of the isogeny problems
that have been suggested in the construction of isogeny-based undeniable signa-
tures [12] published at PQCrypto 2014. While this construction has been used
and extended by other authors [22], we show that the assumptions used to make
the security proofs work are not valid and the proposed isogeny problems lack
the conjectured hardness. This does not immediately lead to an attack on the
signature scheme itself. However, we propose an attack on the cryptographic
construction as well.

Outline: In Sect. 2 we recall some mathematical background on isogeny-based
cryptography. In Sect. 3 we give the definitions of some isogeny problems that
have been used in the literature and we give an attack on two of them. The
following Sect. 4 describes how the problems have been used in the construction
of isogeny-based undeniable signatures of [12]. We provide an attack on the
signature scheme combining a near-collision search in the hash function and
the attack on the underlying isogeny problem. Before concluding the paper, we
mention other constructions that are affected by our attacks in Sect. 5.

498 S.-P. Merz et al.

2 Mathematical Background

For a full treatment of background information on elliptic curves and a detailed
introduction to isogeny-based cryptography we refer to Silverman [21] and De
Feo [9], respectively.

Let Fq be a finite field of characteristic p. In the following we assume p ≥ 3
and therefore an elliptic curve E over Fq can be defined by its short Weierstrass
form

E(Fq) = {(x, y) ∈ F
2
q | y2 = x3 + Ax + B} ∪ {OE}

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the projective
curve Y 2Z = X3 + AXZ2 + BZ3. The set of points on an elliptic curve is an
abelian group under the “chord and tangent rule” with OE being the identity
element. The number of points on an elliptic curve is #E(Fq) = q+1−t for some
integer t ≤ 2

√
q. A curve E is called supersingular if p|t and ordinary otherwise.

The j-invariant of an elliptic curve is

j(E) = 1728
4A3

4A3 + 27B2

and there is an isomorphism f : E → E′ if and only if j(E) = j(E′).
Given two elliptic curves E1 and E2 over a finite field Fq, an isogeny is a

morphism φ : E1 → E2 such that φ(OE1) = OE2 . One can show that isogenies
are morphisms both in the sense of algebraic geometry and group theory. If there
exists a non-constant isogeny between them, two curves are called isogenous. The
degree of an isogeny φ is its degree when treated as an algebraic map. This is
equal to the size of the kernel of φ if the isogeny is separable (which is always
the case in this work).

Since an isogeny defines a group homomorphism E1 → E2, its kernel is a
subgroup of E1. Conversely, any subgroup S ⊂ E1 determines a (separable)
isogeny φ : E1 → E2 with ker(φ) = S and E2 = E1/S. Since all isogenies in
the following will have cyclic groups as kernels, knowledge of the isogeny and
knowledge of the kernel of the isogeny are equivalent.

A basic example of an isogeny is the multiplication by n map on an elliptic
curve [n] : E → E. The kernel of the multiplication by n map over the algebraic
closure Fq of Fq is the n-torsion subgroup

E[n] = {P ∈ E(Fq) : [n]P = OE}.

Whenever n and q are relatively prime, the group E[n] is isomorphic to (Z/nZ)2.
Given any isogeny φ : E1 → E2, there exists another isogeny φ̂, called the

dual isogeny, satisfying φ ◦ φ̂ = φ̂ ◦ φ = [deg(φ)].

3 The One-More Isogeny Problem

We begin this section by recalling the SIDH protocol and a problem underlying
its security. Then, we define and illustrate the somewhat more artificial isogeny

Another Look at Some Isogeny Hardness Assumptions 499

problems that were conjectured to be hard and that are used in the security
proofs of [12,22]. However, at the end of this section we present our polynomial
time attack against these more artificial problems and show that no confidence
in them is justified.

3.1 Problem Statements

Even though we do not attack SIDH, it is useful to recall this fundamental key
exchange protocol as it contains some ideas upon which the undeniable signature
schemes we cryptanalyze are based.

Let p be a prime of the form �eA

A �eB

B ·f ±1 where �A and �B are small distinct
primes, eA and eB are positive integers and f is some (usually small) cofactor.
Moreover, we fix a supersingular elliptic curve E defined over Fp2 together with
bases {PA, QA}, {PB , QB} of the �eA

A and �eB

B torsion of E, E[�eA

A] and E[�eB

B],
respectively.

Suppose Alice and Bob wish to establish a shared secret. Alice’s secret is
an integer a ∈ {0, . . . , �eA

A − 1}, defining the subgroup A := 〈PA + [a]QA〉
of E[�eA

A]. Her public key is the curve EA := E/A together with the images
φA(PB), φA(QB) of Bob’s public basis under her secret isogeny φA : E → E/A.
Analogously, Bob chooses his secret key b ∈ {0, . . . , �eB

B − 1} defining the
cyclic subgroup B := 〈PB + [b]QB〉 ⊂ E[�eB

B], and his public key is the tuple
(EB , φB(PA), φB(QA)).

The key exchange proceeds as follows: Upon receipt of Bob’s public key, Alice
uses the points to push her secret A ⊂ E[�eA

A] to E/B, i.e. Alice computes an
isogeny φ′

A : EB → EAB with kernel 〈φB(PA) + [a]φB(QA)〉 ⊂ E/B[�eA

A]. Bob
proceeds mutatis mutandis. We have

EAB = φ′
A(φB(E)) = φ′

B(φA(E)) = E/〈PA + [a]QA, PB + [b]QB〉,

where the equality holds up to isomorphism. Since the j-invariant is the same
for all curves in one isomorphism class, both Alice and Bob can compute the
shared secret j(EAB) (Fig. 1).

EA

EE AB

EB

φBφA

φB φA

Fig. 1. The commutative diagram of the SIDH key exchange

The hardness of the following problem underlies the security of the SIDH protocol.

500 S.-P. Merz et al.

Definition 1 (Supersingular Computational Diffie-Hellman (SSCDH)
Problem). Let mA, nA be chosen at random from {0, . . . , �eA

A − 1} not both
divisible by �A. Analogously, let mB , nB be randomly chosen from {0, . . . , �eB

B −1}
not both divisible by �B. Furthermore, let φA : E → EA and φB : E → EB denote
the isogenies with kernel 〈[mA]PA+[nA]QA〉 and 〈[mB]PB+[nB]QB〉 respectively.

Given the curves EA, EB and the points φA(PB), φA(QB), φB(PA) and
φB(QA), find the j-invariant of

EAB = E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.

For the following, we fix the notation of Definition 1.

Definition 2 (Modified SSCDH (MSSCDH) Problem). [12] Given EA,
EB and ker(φB), determine EAB up to isomorphism, i.e. j(EAB).

Note that knowledge of ker(φB) is equivalent to knowledge of φB, but the lack of
information on the auxiliary points in the image of φA in the MSSCDH problem
prevents to shift ker(φB) into EA.

Definition 3 (One-sided Modified SSCDH (OMSSCDH) Problem).
[12] For fixed EA, EB, given an oracle to solve MSSCDH for any EA, EB′ ,
ker(φB′) with EB′ not isomorphic to EB and �eB

B -isogenous to E, solve MSSCDH
for EA, EB and ker(φB).

E

EA EB EB

EAB

EAB

φB

φBφA

φB

φ
B

φA

φA

Fig. 2. The oracle provides EAB′ for any E′
B and φB′ , while EAB needs to be found

in OMSSCDH

While the OMSSCDH assumption seems somewhat more artificial, it arises natu-
rally in the security analysis of undeniable signatures proposed in [12]. Moreover,
the authors proposing the problem conjectured it to be computationally infeasi-
ble, in the sense that for any polynomial-time solver algorithm, the advantage of
the algorithm is a negligible function in the security parameter log p. However,
we will see in the next subsection that a polynomial time attacker will have a
non-negligible advantage to solve the OMSSCDH problem (Fig. 2).

Another Look at Some Isogeny Hardness Assumptions 501

A decisional variant of this problem is also defined in [12]; our attack will
apply to it in the obvious way as well.

Our results furthermore break other strongly related problems, such as the
following slightly weaker problem used in the construction of undeniable blind
signatures [22].

Definition 4 (One-More SSCDH (1MSSCDH) Problem). Let E be some
base curve of the form as in the SIDH protocol and let mA, nA be secret integers
in {0, . . . , �eA

A − 1}.
Let a signing oracle respond EAB

∼= EB/〈[mA]PB + [nA]QB〉 upon receipt of
a curve EB isogenous to E and points PB, QB spanning EB [�eB

B].
The 1MSSCDH problem is to produce at least q + 1 distinct pairs of curves

(EBi
, EABi

), where EBi
are �eB

B -isogenous to E, PBi
and QBi

span EBi
[�eB

B]
and EABi

is isomorphic to EBi
/〈[mA]PBi

+ [nA]QBi
〉 for 1 ≤ i ≤ q + 1, after q

queries to the signing oracle.

Compared to the OMSSCDH problem it leaves the choice of the additional
MSSCDH instance which needs to be solved to the attacker. Both problems are
somewhat natural variants of the SSCDH problem underlying the security of
SIDH. However, variants of computational problems used in cryptography are
not always as hard as the original problems themselves [13,14].

3.2 Basic Attack

Now, we describe our attacks on the OMSSCDH and 1MSSCDH problems.

Theorem 1. A solution to the OMSSCDH problem (Definition 3) can be
guessed with probability 1

(�B+1)�B
after a single query to the signing oracle.

Proof. Assume an attacker wants to solve OMSSCDH given EA, EB and ker(φB).
Let EB′ be another curve �2B-isogenous to EB and �eB

B -isogenous to E. That is,
one gets from EB to EB′ via backtracking the last �B-isogeny step of φB. One
could guess such an EB′ with probability �B−1

(�B+1)�B
even without knowing φB .

Then, the attacker can query the oracle on EB′ to receive EAB′ . Now, any
curve in the isomorphism class of EAB is �2B-isogenous to EAB′ as depicted in
Fig. 3. Therefore an attacker can guess the isomorphism class of EAB correctly
with probability ((�B + 1)�B)−1 finishing the proof.

In practice the prime �B is chosen to be small (usually 2 or 3) and thus Theorem 1
breaks the OMSSCDH problem completely.

Remark 1. Without the condition on the degree of the isogeny between the
curves submitted to the OMSSCDH oracle and the base curve, the attack can
be made even more efficient. Namely, an attacker can always solve this modified
version of the OMSSCDH problem after two queries to the oracle as follows.

The attacker computes two curves EB1 , EB2 of different isomorphism classes
that are �B-isogenous to EB . Knowing ker(φB) the attacker can compute

502 S.-P. Merz et al.

E ◦ ◦ EB

EB

EA ◦ ◦ EAB

EAB

Fig. 3. Query of OMSSCDH oracle on �2B-isogenous curve via backtracking one step
yields elliptic curve close to target curve

ker(φBi
) and they can query the oracle to solve MSSCDH for EA, EBi

and
ker(φBi

) for i = 1, 2. The oracle sends back EABi
which are �B-isogenous to the

unknown EAB as shown in Fig. 4. Listing all �B + 1 isomorphism classes which
are �B-isogenous to EAB1 and EAB2 respectively, we find the isomorphism class
of EAB as it is the only one appearing in both lists.

E ◦ ◦ EB ◦

EA ◦ ◦ EAB ◦

Fig. 4. Diagonal maps are the signing oracle sending �B-isogenous curves of EB to
�B-isogenous curves of target curve EAB

Clearly, the attack described in Theorem 1 can be generalised to OMSSDDH,
the decisional variant of OMSSCDH. Furthermore, a solution to the OMSSCDH
problem implies a solution to the 1MSSCDH problem which yields the following
theorem.

Theorem 2. A solution to the 1MSSCDH problem (Definition 4) can be guessed
with probability 1

(�B+1)�B
after a single query to the signing oracle.

4 Application to Jao-Soukharev’s Construction

We now describe the application of our attack against Jao-Soukharev’s undeni-
able signature scheme [12]. For background knowledge on undeniable signature
schemes we refer the reader to [5,8,17].

Another Look at Some Isogeny Hardness Assumptions 503

4.1 Jao-Soukharev Undeniable Signatures

An undeniable signature scheme is a scheme in which signatures can only be ver-
ified with cooperation from the signer [5]. Upon receipt of a signature σ from a
verifier, the signer engages in a zero-knowledge confirmation (or disavowal) pro-
tocol to prove the validity (or invalidity) of σ. The security properties required
by an undeniable signature scheme are undeniability, unforgeability and invis-
ibility. Undeniability ensures that a signer cannot repudiate a valid signature.
Unforgeability is the notion that an adversary cannot compute a valid message-
signature pair without knowledge of the signer’s secret key. Invisibility requires
that an adversary cannot distinguish between a valid signature and a signature
produced by a simulator with non-negligible probability. We refer to Appendix A
for a full definition of all security games for undeniable signature schemes.

The Jao-Soukharev protocol takes p as a prime of the form �eA

A �eB

B �eC

C · f ± 1.
We fix a supersingular curve E over Fp2 and bases {PA, QA}, {PB , QB} and
{PC , QC} of the �eA

A , �eB

B and �eC

C torsion of E, E[�eA

A], E[�eB

B] and E[�eC

C], respec-
tively. The public parameters of the scheme are p, E and the three torsion
bases, together with a hash function H. The signer generates random integers
mA, nA ∈ Z/�eA

A Z and computes the isogeny φA : E → EA, as defined in Def-
inition 1. The public key consists of the curve EA together with the points
{φA(PC), φA(QC)} and the integers mA, nA constitute the private key. Note
that this is equivalent to taking φA as the private key.

To sign a message M, the signer computes the hash h = H(M) of the message
and the isogenies

φB : E → EB = E/〈PB + [h]QB〉
φAB : EA → EAB = EA/〈φA(PB + [h]QB)〉
φBA : EB → EAB = EB/〈φB([mA]PA + [nA]QA)〉.

The signer then outputs EAB in addition to the set of two auxiliary points
{φBA(φB(PC)), φBA(φB(QC))} as the signature.

Given a signature σ = (Eσ, P,Q), the first step in the confirmation and
disavowal protocols is for the signer to select mC , nC ∈ Z/�eC

C Z and compute
the curves EC = E/〈[mC]PC + [nC]QC〉, EBC = EB/〈φB([mC]PC + [nC]QC)〉,
EAC = EA/〈φA([mC]PC+[nC]QC)〉 and EABC = EBC/〈φB([mA]PA+[nA]QA)〉.
The signer outputs these curves and ker(φCB) as the commitment, where φCB is
the isogeny from EC to EBC . In addition to the auxiliary points of the signature,
this commitment gives the verifier enough information to compute EABC and
EσC = Eσ/〈[mC]P + [nC]Q〉, to check whether EσC = EABC . Further details of
the confirmation and disavowal protocols can be found in [12].

In the Jao-Soukharev construction, the adversary knows EA and can compute
EBi

and ker(φBi
), corresponding to message Mi, from H. The signing oracle then

essentially solves MSSCDH for any of the adversary’s input messages Mi. The
paper claims that under the assumption that the confirmation and disavowal
protocols of the signature scheme are zero-knowledge, the unforgeability game
describes the OMSSCDH problem. We will show that this claim is incorrect.

504 S.-P. Merz et al.

4.2 Another Look at the Security Proof of [12]

In [12] the claim is made that forging a signature for this construction is equiv-
alent to solving OMSSCDH, so one would expect our attack to directly break
unforgeability. However, equivalence would only be true if an attacker had the
freedom to submit arbitrary curves to the signing oracle. In the protocol, an
adversary wishing to forge a signature can only query the signing oracle with mes-
sages, Mi. In the Jao-Soukharev signing protocol the curves EBi

are computed
from message hashes, rather than the messages themselves. Thus, an adversary
would need to find a message mapping to some specific curve first for the scheme
to be equivalent to OMSSCDH and thus an adversary would need to break the
hash function. Forging messages seems therefore actually harder than breaking
OMSSCDH.

As a consequence the attack of Sect. 3 applies to the hardness assumption
but not the actual protocol in [12]. However, in this section we will demonstrate
how a hybrid version of our attack on OMSSCDH and finding “near-collisions”
in the hash function allows to reduce the security of the construction for the
given parameters.

In accounting for the scheme’s loss of malleability due to the hash function
we make use of the following Lemma.

Lemma 1. Let E be a supersingular elliptic curve, let � be a prime, let e be an
integer, and let {P,Q} be a basis for E[�e]. Let n,m < �e be positive integers
congruent modulo �k for some integer k < e. Then the �-isogeny paths from E
to EA = E/〈P + [n]Q〉 and EB = E/〈P + [m]Q〉 are equal up to the k-th step.

Proof. Let m = n+α�k, for some α > 0. Let φA : E → EA be a separable, cyclic
isogeny of deg(φA) = �e and ker(φA) = 〈P + [n]Q〉. We can express φA as the
composition of e �-isogenies such that φA = φA

1 ◦ . . . φA
e . Likewise, φB : E → EB

can be expressed as φB = φB
1 ◦ . . . φB

e . The single �-isogenies correspond to the
single steps in the �-isogeny graph. We will show that φA

i = φB
i for 1 ≤ i ≤ k.

For i = 1, . . . , e, let φA
i : Ei−1 → Ei be an isogeny with kernel 〈�e−iSA

i−1〉,
where E0 = E, SA

0 = P + [n]Q and SA
i−1 = φA

i−1(S
A
i−2). Define the φB

i similarly,
with B substituted for A and m for n. A proof can be found in [6] that these are
�-isogenies and that φA

1 ◦· · ·◦φA
e = φA up to composition with an automorphism

on EA (similarly for φB). We also have the recursion

�e−iSA
i−1 = �e−iφA

i−1(S
A
i−2) = φA

i−1 ◦ · · · ◦ φA
1 (�e−iSA

0)

with the analogous result for �e−iSB
i−1. For 1 ≤ i ≤ k, we have e− i+ k ≥ e and so

�e−iSB
0 = �e−i(P + [m]Q)

= �e−i(P + [n]Q) + �e−i+k[α]Q

= �e−i(P + [n]Q)

= �e−iSA
0

using that isogenies are group homomorphisms and Q ∈ E[�e]. It follows that
φA

i = φB
i for 1 ≤ i ≤ k.

Another Look at Some Isogeny Hardness Assumptions 505

Let M be the message upon which the adversary wishes to forge a signature. Let
H : {0, 1}∗ → Z be the public hash function used in the signature scheme. The
hash function determines a coefficient of a point in the E[�ei

i] torsion group and
can therefore be treated as a function to a group of size 22λ for classical security
levels and 23λ for quantum security levels. Let 2L denote the size of this group
in the image.

EA EAB

EAB

φ1 φ2

ψB , deg(ψB) = k
B

ψB , deg(ψB) = k
B

φeB

φeB

Fig. 5. Isogeny paths between EA, EAB and EAB′ . In our attack we use ψ = ψB ◦ ψ̂B′

and have φAB′ = φeB′ ◦ φeB′ −1 ◦ · · · ◦ φ1.

The attack proceeds as follows:

1. Build a near-collision on H with respect to the �B-adic metric. More precisely,
find two messages M and M ′ such that the difference between H(M) and
H(M ′) is divisible by a large power of �B , say a power of size roughly 2L1 .

2. Submit M ′ to the signing oracle to obtain the signature

σ′ =
(
EAB′ , P1 := φB′A(φB′(PC)), P2 := φB′A(φB′(QC))

)
.

3. Guess the �2k
B -isogeny ψ : EAB′ → EAB , where EAB is the unknown curve

corresponding to M . Let ψ = ψB ◦ ψ̂B′ , the composition of two degree �k
B ≈

2L2 isogenies with L2 = L−L1, where ψ̂B′ corresponds to k backwards steps
on the isogeny path from EAB′ and ψB corresponds to k forward steps to
EAB . This is illustrated in Fig. 5. The probability of correctly identifying ψ
in a single guess is 1

(�B+1)�2k−1
B

.

4. Find s such that s�k
B ≡ 1 mod �eC

C . Compute the auxilary points of the sig-
nature as {[s] · ψ(P1), [s] · ψ(P2)}.

5. Output σ = (EAB , [s] · ψ(P1), [s] · ψ(P2)).

Theorem 3. Let s, ψ, P1 and P2 be defined as in our attack. Moreover, let σ be
the signature (EAB , [s] ·ψ(P1), [s] ·ψ(P2)) computed in the attack. Assuming that
EAB is guessed correctly, σ is a valid signature.

506 S.-P. Merz et al.

Proof. Since ψ takes points on EAB′ to points on EAB , we have that ψ(P1), ψ(P2)
both lie on the target curve. Moreover, as ψ(P1) = ψ(φB′A(φB′(PC))), the point
lies in the �eC

C torsion of EAB , EAB [�eC

C]. The same holds for ψ(P2). Although
these points would already pass the validation for the signature scheme, they can
be easily distinguished from the honestly generated points. The factor [s] in our
signature ensures that forged and honest signatures are identically distributed
as described in the following.

Recall that ψ = ψB ◦ ψ̂B′ and P1 = φB′A(φB′(PC)). Since the order of PC is
coprime to deg(φB′A) and deg(φB′), and the isogeny diagram is commutative,
we can write P1 = φAB′(φA(PC)).
By expanding φAB′ we obtain

ψ̂B′ ◦ φAB′ = φ̂eB′−k ◦ · · · ◦ φ̂eB′ ◦ φeB′ ◦ · · · ◦ φeB′−k ◦ . . . φeB−k ◦ · · · ◦ φ1

= [�k
B] ◦ φeB′−k−1 ◦ · · · ◦ φ1.

Since s is the multiplicative inverse of �k
B modulo �eC

C , we have

[s] · ψ(P1) = φAB(φA(PC)) ∈ EAB [�eC

C].

Analogously, we have [s] · ψ(P2) = φAB(φA(QC)) ∈ EAB [�eC

C].

Let P = φBA(φB(PC)) ∈ EAB [�eC

C] and Q = φBA(φB(QC)) ∈ EAB [�eC

C].
These are the points we expect in an honest signature. In both the confirma-
tion and disavowal protocols of the Jao-Soukharev scheme, the verifier uses the
auxiliary points to compute an isogeny from EAB to a curve Eσ defined as
EAB/〈[mC · s]ψ(P1) + [nC · s]ψ(P2)〉, where mC , nC ∈ Z/�eC

C Z are integers cho-
sen by the signer. This curve is checked against EABC = EAB/〈[mC]P + [nC]Q〉
to determine the validity of σ. The two points obtained in our attack span the
subgroup EAB [�eC

C], and we have EAB as the correct signature curve, so it fol-
lows that Eσ = EABC up to isomorphism and thus the signature is accepted as
valid.

Finding a near-collision of L1 bits on H classically has cost 2L1/2. In Step 3 we
can then guess the correct isogeny and curve EAB with probability approximately
2−2L2 = 2−2(L−L1). Taking L1 = 4L/5 the attack then has a total classical cost
of 22L/5, as opposed to the expected 2L/2.

Assuming that we can find (near)-collisions of the hash function with lower
quantum complexity [3], the first step of our attack costs 2L1/3 on a quantum
computer. Taking L1 = 6L/7, this could lower the complexity on a quantum com-
puter to 22L/7, as opposed to the expected 2L/3. However, it has been argued that
quantum collision search might be inferior to classical collision search because
of the expensive memory access and quantum memory. For a general discussion
on the impracticality of known quantum algorithms for collision search we refer
to Bernstein [2].

Another Look at Some Isogeny Hardness Assumptions 507

Clearly, our attack breaks the unforgeability property of the scheme. More-
over, we are also able to break invisibility, since any adversary with the ability to
forge signatures with higher probability can simply check whether the challenge
signature obtained in the invisibility game (see Appendix A) matches a potential
forgery.

5 Srinath and Chandrasekaran Undeniable Blind
Signatures

Srinath and Chandrasekaran [22] extend the Jao-Soukharev construction to an
undeniable blind signature scheme, introducing a third actor, the requestor, to the
scheme. It is a four-prime variant of the original scheme, taking the prime p to be
of the form �eA

A �eB

B �eC

C �eD

D ·f±1 and adding the public parameter {PD, QD}, a basis
for E[�eD

D]. The requestor computes the message curve EB = E/〈PB+[H(m)]QB〉
using the public hash function, as before. They then blind the curve by taking a
random integer 0 < d < �eD

D to compute EBD = EB/〈φB(PD) + [d]φB(QD)〉.
The blinded curve is then sent to the signer. The Sign algorithm of the scheme
functions in the same way as for the Jao-Soukharev construction. Upon receipt
of the blinded signature curve EBDA, the requestor uses an unblinding algorithm
to obtain the unblinded signature EBA. The resulting signature is the same as
the Jao-Soukharev signature. Thus, signatures as in Srinath and Chandrasekaran
are just Jao-Soukharev signatures shifted through another coprime isogeny graph
and the scheme is vulnerable to our attack. As before, both unforgeability and
invisibility can be broken.

6 Conclusion

In this paper, we investigate the hardness of some isogeny problems used in cryp-
tography. In particular, we show that the OMSSCDH and 1MSSCDH problems
can be solved with non-negligible probability by a polynomial time attacker.
This contribution is particularly relevant to isogeny-based undeniable signature
schemes, as the security proofs for unforgeability and invisibility of currently
known schemes assume the hardness of these problems. We give basic attacks
against both OMSSCDH and 1MSSCDH, which are also applicable to their deci-
sional variants.

Jao and Soukharev [12] proposed the first quantum-resistant undeniable
isogeny-based signature scheme, which was extended to include blindness by
Srinath and Chandrasekaran [22]. We present an attack against the unforgeabil-
ity and invisibility properties of the Jao-Soukharev protocol, showing that an
adversary with access to a signing oracle is able to forge arbitrary signatures
at lower cost than expected for a given security parameter, λ. To summarise,
this is achieved by computing a near-collision on the public hash function H
and guessing an �2k

B -isogeny between an honest signature produced by the oracle
for one message to the target forgery curve. The classical cost for this attack is

508 S.-P. Merz et al.

24λ/5, with the hash function length equal to 2λ. We postulate that the quan-
tum cost for this attack is 26λ/7. These attacks imply that parameters should
now be increased by 25% to achieve the same classical security level (17% for
quantum security). Furthermore, we argue that the equivalence drawn in [12]
between unforgeability and the OMSSCDH problem is incorrect, and hence the
security proofs in the paper are incorrect. We note that the inclusion of a hash
function increases the difficulty of forgery, assuming the hash function is ‘cryp-
tographically secure’, as the adversary is forced to search for a message that will
result in a specific curve, rather than querying the oracle indiscriminately.

Finally, we review the Srinath-Chandrasekaran signature scheme and show
that our attack is applicable against it. We also note the same problem with the
security proofs.

Acknowledgements. We thank David Jao for his comments on a preliminary version
of this paper. Moreover, we thank Neal Koblitz and Alfred Menezes for their inspiring
work [13,14]. The work of all three authors was supported by the EPSRC and the UK
government as part of the grants EP/P009301/1, EP/P00881X/1 and EP/S01361X/1
for the first, second and third author respectively.

A Undeniable (Blind) Signature Schemes

Undeniable signature schemes were introduced by Chaum and van Antwerpen
[5], differing from traditional signature schemes in that verification of a signature
cannot be completed without cooperation from the signer. Following the notation
of [17] we denote an undeniable signature scheme Σ by

Σ = {KeyGen, Sign, Check, Sim, πcon, πdis}.

KeyGen is the PPT (probabalistic polynomial time) key generation algorithm,
which outputs (vk, sk) - a verification and signing key, respectively. Sign is
the PPT signing algorithm, taking a message m and sk as input to generate
a signature σ. Check is a deterministic validity checking algorithm, such that
Check((vk,m,σ),sk) returns 1 if (m,σ) is a valid message-pair and 0 if not. Sim
is a PPT algorithm outputting a simulated signature σ′ on input of vk and m.
Finally, πcon and πdis are confirmation and disavowal protocols, respectively,
with which the signer can prove the validity (or invalidity) of a signature to the
verifier. These are zero-knowledge interactive protocols.

An undeniable signature scheme must satisfy undeniability, unforgeability
and invisibility. We use the definitions as stated in [5,8,17]. An undeniable blind
signature scheme must also satisfy blindness, as defined in [22].

Undeniability requires that a signer cannot use the disavowal protocol to
deny a valid signature. A signer is also unable to convince the verifier that an
invalid signature is valid.

Unforgeability is the notion that an adversary cannot compute a valid
message-signature pair with non-negligible probability. It is defined using the
following security game:

Another Look at Some Isogeny Hardness Assumptions 509

1. The challenger generates a key pair, giving the verification key to the adver-
sary.

2. The adversary is given access to a signing oracle and makes queries adaptively
with messages mi, for i = 1, 2, . . . , k, for some k, receiving corresponding
signatures σi.
(a) The adversary additionally has access to a confirmation/disavowal oracle

for the protocol, which they can query adaptively with message-signature
pairs throughout step 2.

3. The adversary outputs a pair (m,σ).

The adversary wins the game (i.e. successfully forges a signature) if (m,σ)
is a valid message-signature pair and m �= mi for any i = 1, 2, . . . k. A signature
scheme is unforgeable if any PPT adversary wins with only negligible probability.

Invisibility requires that an adversary cannot distinguish between a valid
signature and a simulated signature with non-negligible probability. It is defined
by the following security game:

1. The challenger generates a a key pair, giving the verification key to the adver-
sary.

2. The adversary is given access to a signing oracle and makes queries adaptively
with messages mi, for i = 1, 2, . . . , k, for some k, receiving corresponding
signatures σi.
(a) The adversary additionally has access to a confirmation/disavowal oracle

for the protocol, which they can query adaptively with message-signature
pairs throughout step 2.

3. The adversary sends a new message mj to the challenger.
4. The challenger computes a random bit b. If b = 1, the challenger computes

σ = Sign(mj , sk). If b = 0 the challenger computes σ = Sim(mj , vk). The
challenger sends σ to the adversary.

5. The adversary is able to query the signing oracle again, with access to the
confirmation/disavowal oracles. They cannot submit (mj , σ) to either oracle.

6. The adversary outputs a bit b∗.

The adversary wins the game if b∗ = b. An undeniable signature scheme is
invisible if |Pr(b = b∗)−1/2 | is negligible.

Blindness requires that an adversary cannot relate message-signature pairs
with their associated blind versions with non-negligible probability. It is defined
by the following security game:

1. The adversary generates a key pair (sk, vk).
2. The adversary chooses two messages, m0 and m1, and sends them to the

challenger.
3. The challenger computes a random bit b and reorders the messages as

(mb,mb−1).
4. The challenger blinds the messages and sends them to the adversary.

510 S.-P. Merz et al.

5. The adversary signs the blinded messages, generating the signatures σblind
b

and σblind
b−1 , which are returned to the challenger.

6. The challenger applies an unblinding algorithm to σblind
b and σblind

b−1 and
reveals the unblinded signatures, σb and σb−1, to the adversary.

7. The adversary outputs a bit b′.

The adversary wins if b′ = b. A signatures scheme is blind if |Pr(b = b∗)−1/2 |
is negligible.

References

1. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization Project (2017)

2. Bernstein, D.J.: Cost analysis of hash collisions: will quantum computers make
sharcs obsolete. In: SHARCS, vol. 9, p. 105 (2009)

3. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997)

4. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

5. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 20

6. Costache, A., Feigon, B., Lauter, K., Massierer, M., Puskás, A.: Ramanujan graphs
in cryptography. arXiv preprint arXiv:1806.05709 (2018)

7. Couveignes, J.M., Jean Marc Couveignes: Hard homogeneous spaces. IACR Cryp-
tol. ePrint Arch. 2006, 291 (2006)

8. Damg̊ard, I., Pedersen, T.: New convertible undeniable signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68339-9 32

9. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062 (2017)

10. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

11. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

12. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

13. Koblitz, N., Menezes, A.: Another look at “provable security”. IACR Cryptol.
ePrint Arch. 2004, 152 (2004)

14. Koblitz, N., Menezes, A.: Critical perspectives on provable security: fifteen years
of “another look” papers. Adv. Math. Commun. 13(4), 517–558 (2019)

15. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California, Berkeley (1996)

16. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �- isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
http://arxiv.org/abs/1806.05709
https://doi.org/10.1007/3-540-68339-9_32
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-11659-4_10

Another Look at Some Isogeny Hardness Assumptions 511

17. Kurosawa, K., Furukawa, J.: Universally composable undeniable signature. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 524–535. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 43

18. National Institute for Standards and Technology (NIST). Post-quantum
crypto standardization (2016). https://csrc.nist.gov/projects/post-quantum-
cryptography

19. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

20. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptol. ePrint Arch. 2006, 145 (2006)

21. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, Heidelberg
(2009)

22. Seshadri Srinath, M., Chandrasekaran, V.: Isogeny-based quantum-resistant unde-
niable blind signature scheme. Int. J. Netw. Secur. 20(1), 9–18 (2018)

https://doi.org/10.1007/978-3-540-70583-3_43
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-319-70697-9_12

How to Construct CSIDH on Edwards
Curves

Tomoki Moriya(B), Hiroshi Onuki, and Tsuyoshi Takagi

Department of Mathematical Informatics, The University of Tokyo, Bunkyō, Japan
{tomoki moriya,onuki,takagi}@mist.i.u-tokyo.ac.jp

Abstract. CSIDH is an isogeny-based key exchange protocol proposed
by Castryck, Lange, Martindale, Panny, and Renes in 2018. CSIDH is
based on the ideal class group action on Fp-isomorphism classes of Mont-
gomery curves. In order to calculate the class group action, we need to
take points defined over Fp2 . The original CSIDH algorithm requires a
calculation over Fp by representing points as x-coordinate over Mont-
gomery curves. Meyer and Reith proposed a faster CSIDH algorithm in
2018 which calculates isogenies on Edwards curves by using a birational
map between a Montgomery curve and an Edwards curve. There is a spe-
cial coordinate on Edwards curves (the w-coordinate) to calculate group
operations and isogenies. If we try to calculate the class group action
on Edwards curves by using the w-coordinate in a similar way on Mont-
gomery curves, we have to consider points defined over Fp4 . Therefore,
it is not a trivial task to calculate the class group action on Edwards
curves with w-coordinates over only Fp.

In this paper, we prove a number of theorems on the properties of
Edwards curves. By using these theorems, we extend the CSIDH algo-
rithm to that on Edwards curves with w-coordinates over Fp. This algo-
rithm is as fast as (or a little bit faster than) the algorithm proposed by
Meyer and Reith.

Keywords: Isogeny-based cryptography · Montgomery curves ·
Edwards curves · CSIDH · Post-quantum cryptography

1 Introduction

Currently, there are two popular public-key cryptosystems: RSA [23], whose
security is based on the computational complexity of the Prime Factorization
Problem, and Elliptic Curve Cryptography [14,17], whose security is based on
the computational complexity of the Discrete Logarithm Problem. However, Shor
pointed out in 1994 that both the Prime Factorization Problem and the Discrete
Logarithm Problem can be solved in polynomial time by using a quantum com-
puter [24,25]. This means we should develop new cryptosystems which cannot
be broken by quantum computers. We call such cryptosystems post quantum
cryptography (PQC).

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 512–537, 2020.
https://doi.org/10.1007/978-3-030-40186-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_22

How to Construct CSIDH on Edwards Curves 513

Isogeny-based cryptography is a branch of public-key cryptography based on
the computational complexity of the Isogeny Problem, which is a problem arising
when we calculate isogenies between two given elliptic curves. It is considered as a
candidate of PQC. Jao and De Feo proposed a Diffie-Hellman type isogeny-based
key exchange protocol, called SIDH (Supersingular Isogeny Diffie-Hellman), in
2011 [12]. SIKE (Supersingular Isogeny Key Encapsulation) [1], which is derived
from SIDH, is a round 2 candidate in the NIST PQC standardization competition
[21]. The SIDH calculation uses supersingular elliptic curves over Fp2 . Castryck,
Lange, Martindale, Panny, and Renes proposed another Diffie-Hellman type of
isogeny-based key exchange protocol, called CSIDH (Commutative Supersingu-
lar Isogeny Diffie-Hellman), in 2018 [4]. Its calculation uses supersingular elliptic
curves over Fp.

CSIDH is based on a commutative group action on Fp-isomorphism classes
of supersingular Montgomery curves defined over Fp. In order to calculate this
group action, we need to generate a point in ker (πp − 1) or in ker (πp + 1) and
determine which set the point belongs to, where πp is the p-Frobenius map.
Castryck, Lange, Martindale, Panny, and Renes showed that if we take a random
element from Fp as an x-coordinate of a point in a Montgomery curve and
determine whether y-coordinate of the point belongs to Fp or not [4], then we
can get a point in ker (πp − 1) or in ker (πp + 1) and determine which set the
point belongs to. They also showed that a Montgomery coefficient is unique up to
Fp-isomorphism [4]. Since it is known that a group operation of a Montgomery
curve can be calculated using only the x-coordinates of the points [18] and that
isogenies between Montgomery curves can be also calculated by using only the
x-coordinates of the points of the kernel [6,16], we can compute a CSIDH group
action using only Fp-arithmetic.

Table 1. Comparing CSIDH algorithms on Montgomery curves and Edwards curves

Group operations Calculation of isogenies Kernel points

Montgomery � � �
Edwards (y-coordinate) � � �
Edwards (w-coordinate) � � Not trivial

Meyer and Reith proposed a faster CSIDH algorithm in 2018 [16]. This algo-
rithm calculates isogenies over Edwards curves instead of Montgomery curves, by
using a birational map between a Montgomery curve and an Edwards curve. In
this algorithm, a method for generating a point in ker (πp − 1) or in ker (πp + 1)
and determining which set the point belongs to is the same as in the original
CSIDH algorithm [4]. Hence, a question arises: How do we calculate the CSIDH
algorithm on purely Edwards curves over Fp?

There are two special coordinates (the y-coordinate and the w-coordinate)
on Edwards curves for efficiently calculating the group operation [5,10] and
isogenies [5,13,19] respectively. For a point P in an Edwards curve, if the y-
coordinate of P is in Fp, then P always belongs to ker (πp − 1) or ker (πp + 1).

514 T. Moriya et al.

Therefore, it is not difficult to construct the CSIDH algorithm on Edwards curves
with y-coordinates. We detail this algorithm in the full paper of this paper [20,
Appendix C]. However, if we take a random element from Fp as the w-coordinate
of a point on an Edwards curve, the point is sometimes defined outside of Fp2

(defined over Fp4). Since the points in ker (πp − 1) and those in ker (πp + 1) are
defined over Fp2 , it is not a trivial task to run the CSIDH algorithm using only
Edwards curves over Fp with w-coordinates.

We summarize the above discussion in Table 1.

1.1 Our Results

In this paper, we prove four important theorems about the w-coordinate on
Edwards curves and use them to construct a new implementation of the CSIDH
key exchange. First, we show that if we take a random element from the set of
square elements in Fp as the w-coordinate of a point P and determine whether
the w-coordinate of 2P is square in Fp or not, then we can generate a point
in ker (πp − 1) or in ker (πp + 1) and determine which set the point belongs to.
Specifically, if the w-coordinate of 2P is square, then this coordinate repre-
sents a point in ker (πp + 1), and if the w-coordinate of 2P is not square, then
the reciprocal of this coordinate represents a point in ker (πp − 1). Second, we
show that there is no difference between the probability of generating a point
in ker (πp − 1) and the probability of generating a point in ker (πp + 1) in the
previous way. Third, we prove the probability that we get a point of order �i is
1 − 1/�i, like Montgomery curves. Finally, we show that an Edwards coefficient
is unique up to an Fp-isomorphism, like a Montgomery coefficient.

By using these theorems, we construct a non-trivial new implementation
of the CSIDH key exchange that uses w-coordinates on Edwards curves non-
trivially (Algorithm 2). We show that our algorithm is as fast as (or a little bit
faster than) the algorithm proposed by Meyer and Reith [16], which as far as we
know, is the state of the art. This fact can be also confirmed from data obtained
by the implementation (Table 2).

2 Preliminaries

2.1 Basic Mathematical Concepts

Here, we explain basic mathematical concepts behind isogeny-based cryptography.
Let L be a field, and L

′ be an algebraic extension field of L. An elliptic
curve E defined over L is a non-singular algebraic curve defined over L of genus
one. Denote by E(L′) the L

′-rational points of the elliptic curve E. E(L′) is
an abelian group [26, III. 2]. A supersingular elliptic curve E over a finite field
L of characteristic p is defined as an elliptic curve which satisfies #E(L) ≡ 1
(mod p), where #E(L) is the cardinality of E(L).

Let E,E′ be elliptic curves defined over L. Define an isogeny φ : E → E′

over L
′ to be a morphism over L

′ which is a non-zero group homomorphism

How to Construct CSIDH on Edwards Curves 515

from E(L) to E′(L), where L is the algebraic closure of L. A separable isogeny
with #ker φ = � is called an �-isogeny. Denote by EndL′(E) the endomorphism
ring of E over L

′. It is represented as Endp(E) when L
′ is a prime field Fp. An

isogeny φ : E → E′ defined over L
′ is called an isomorphism over L

′ if φ has an
inverse isogeny over L

′.
If G is a finite subgroup of E(L), then there exists an isogeny φ : E → E′

whose kernel is G, and E′ is unique up to an L-isomorphism [26, Proposition I
II.4.12]. This isogeny can be efficiently calculated by using Vélu formulas [27].
We denote a representative of E′ by E/G.

E[k] (k ∈ Z>0) is defined as the k-torsion subgroup of E(L). For an endo-
morphism φ of E, we sometimes denote ker φ by E[φ].

Let L be a number field, and O be an order in L. A fractional ideal a of
O is a finitely generated O-submodule of L which satisfies αa ⊂ O for some
α ∈ O \ {0}. An invertible fractional ideal a of O is defined as a fractional ideal
of O which satisfies ab = O for some fractional ideal b of O. The fractional ideal
b is represented as a−1. If a fractional ideal a is contained in O, then a is called
an integral ideal of O.

Let I(O) be a set of invertible fractional ideals of O. I(O) is an abelian
group derived from multiplication of ideals with the identity O. Let P (O) be a
subgroup of I(O) defined by P (O) = {a | a = αO (for some α ∈ L

×)}. We call
the abelian group cl(O) defined by I(O)/P (O) the ideal class group of O.

The Fp-endomorphism ring Endp(E) of a supersingular elliptic curve E
defined over Fp is isomorphic to an order in an imaginary quadratic field [8].
Denote by E��p(O) the set of Fp-isomorphism classes of elliptic curves E whose
Fp-endomorphism ring Endp(E) is isomorphic to O.

2.2 Montgomery Curves

Let L be a field whose characteristic is odd. An elliptic curve E defined by the
following equation is called a Montgomery curve:

E : bY 2Z = X3 + aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0).

In this paper, we denote the Montgomery curve Y 2Z = X3 + aX2Z + XZ2

by EM,a. The identity of E is (0 : 1 : 0), and the inverse of (X : Y : Z) is
(X : −Y : Z).

Montgomery showed that the group operations on Montgomery curves can
be efficiently computed by using x-coordinates [18]. Define a function x as

x(X : Y : Z) =
X

Z
.

The function x is not defined at the point (0 : 1 : 0). If P and Q satisfy x(P) =
x(Q), then P = Q or P = −Q. Next define a function x as x(X : Y : Z) = (X :
Z). We call x(P) the projective x-coordinates of P .

Let P be a point on E. Let A/C = a and B/C = b. Let (X : Z) = x(P).
The projective x-coordinates (X ′ : Z ′) of 2P are calculated as follows [18]:

X ′ = 4C(X + Z)2(X − Z)2, Z ′ = 4XZ(4C(X − Z)2 + (A + 2C)4XZ). (1)

516 T. Moriya et al.

The computational cost is 4M + 2S + 4a. If Z = 1, the computational cost is
4M+ 1S+ 5a. (We denote field multiplications by M, field squarings by S, and
field additions or subtractions or doublings by a.)

Let P1 and P2 be points on E, and (X1 : Z1) = x(P1), (X2 : Z2) = x(P2).
Let (X0 : Z0) = x(P1 − P2). The projective x-coordinates (X3 : Z3) of P1 + P2

are calculated as follows [18]:

X3 = Z0(X1X2 − Z1Z2)2, Z3 = X0(X1Z2 − X2Z1)2. (2)

The computational cost is 4M + 2S + 6a. If Z0 = 1, the computational cost is
3M + 2S + 6a.

Costello and Hisil proposed efficient calculations for odd-degree isogenies by
using x-coordinates [6], and Meyer and Reith improved them [16]. Let � be an odd
integer and s be the integer which satisfies that � = 2s + 1. Let P be a point on
E, and (X : Z) = x(P). Let Q be an �-order point on E, and (X1 : Z1) = x(Q).
Let (Xk : Zk) = x(kQ). Let E′ = E/〈Q〉 and φ be an isogeny φ : E → E′ with
ker φ = 〈Q〉. The projective x-coordinates (X ′ : Z ′) of φ(P) are calculated as
follows [6]:

X ′ = X ·
s∏

i=1

(XXi − ZZi)2, Z ′ = Z ·
s∏

i=1

(XZi − ZXi)2. (3)

The computational cost is (4s)M + 2S + (4s + 2)a. Let A/C = a. The curve
coefficient a′ = A′/C ′ of E′ is calculated as follows [16]:

ã = A + 2C, d̃ = A − 2C, ã′ = ã� ·
s∏

i=1

(Xi + Zi)8,

d̃′ = d̃� ·
s∏

i=1

(Xi − Zi)8, A′ = 2(ã′ + d̃′), C ′ = ã′ − d̃′.

(4)

The computational cost is (2s + 2)M + 6S + (2s + 6)a and that of the two s-
th powers. Since Xi + Zi and Xi − Zi are also used for calculating φ(P), the
computational cost of calculating φ(P) and E′ is (6s + 2)M + 8S + (4s + 8)a
and that of the two s-th powers.

Appendix A.1 describes why the computational costs are as above.

2.3 Edwards Curves

In 2007, Edwards introduced a new form of an elliptic curve [9]. Bernstein and
Lange extended these curves to another form in 2007, called Edwards curves [3].
For representing points at infinity, Hisil, Wong, Carter, and Dawson proposed
projective closures of Edwards curves in P

3 in 2008 [11].
Let L be a field. If an elliptic curve E is defined by the following equations,

E is called an Edwards curve [11]:

E : X2 + Y 2 = Z2 + dT 2, XY = ZT (d ∈ L and d �= 0, 1).

How to Construct CSIDH on Edwards Curves 517

In this paper, we denote the Edwards curve X2 +Y 2 = Z2 +dT 2, XY = ZT by
Ed. The identity of Ed is (0 : 1 : 1 : 0), which we will denote by 0d for simplicity,
while the inverse of (X : Y : Z : T) is (−X : Y : Z : −T). We obtain the group
addition formulas as follows [11]:

(X1 : Y1 : Z1 : T1) + (X2 : Y2 : Z2 : T2)
= ((X1Y2 + Y1X2)(Z1Z2 − dT1T2) : (Y1Y2 − X1X2)(Z1Z2 + dT1T2)
: (Z1Z2 − dT1T2)(Z1Z2 + dT1T2) : (Y1Y2 − X1X2)(X1Y2 + Y1X2)).

(5)

For simplicity, we will sometimes consider an Edwards curve to be an affine curve
defined by the following equation:

E : x2 + y2 = 1 + dx2y2 (d ∈ L and d �= 0, 1),

where x = X/Z and y = Y/Z. In this equation, only (±√
d : 0 : 0 : 1) and

(0 : ±√
d : 0 : 1) are points at infinity. (±√

d : 0 : 0 : 1) are points of order 2,
and (0 : ±√

d : 0 : 1) are points of order 4. Hence, if the order of a point P on
Ed is neither 2 nor 4, P can be represented in affine coordinates (x, y).

In [5,19] it was showed that the group calculations of Edwards curves can be
efficiently performed by using the y-coordinate. Define a function y as

y(X : Y : Z : T) =

{
Y
Z (if Z �= 0)
∞ (if Z = 0 (points at infinity))

.

We call y(P) the y-coordinate of P . If P and Q satisfy that y(P) = y(Q), then
P = Q or P = −Q. Define a function y as y(X : Y : Z : T) = (Y : Z). We call
y(P) the projective y-coordinates of P .

Let P be a point on Ed, and (Y : Z) = y(P). Let D/C = d. The projective
y-coordinates (Y ′ : Z ′) of 2P are calculated as follows [5]:

Y ′ = (C − D)Y 2Z2 − (Z2 − Y 2) · ((C − D)Y 2 + C(Z2 − Y 2)),

Z ′ = (C − D)Y 2Z2 + (Z2 − Y 2) · ((C − D)Y 2 + C(Z2 − Y 2)).
(6)

The computational cost is 4M + 2S + 5a. If Z = 1, the computational cost is
3M + 1S + 5a.

Let P1 and P2 be points on Ed, and (Y1 : Z1) = y(P1), (Y2 : Z2) = y(P2).
Let (Y0 : Z0) = y(P1 − P2). The projective y-coordinates (Y3 : Z3) of P1 + P2

are calculated as follows [5]:

Y3 = (Z0 − Y0)(Y1Z2 + Y2Z1)2 − (Z0 + Y0)(Y1Z2 − Y2Z1)2,

Z3 = (Z0 − Y0)(Y1Z2 + Y2Z1)2 + (Z0 + Y0)(Y1Z2 − Y2Z1)2.
(7)

The computational cost is 4M + 2S + 6a. In the case that Z0 = 1, the compu-
tational cost is also 4M + 2S + 6a.

In [5] efficient calculations were proposed for odd-degree isogenies by using
projective y-coordinates. Let � be an odd integer and s be the integer which

518 T. Moriya et al.

satisfies � = 2s + 1. Let P be a point on Ed, and (Y : Z) = y(P). Let Q
be an �-order point on Ed, and (Y1 : Z1) = y(Q). Let (Yk : Zk) = y(kQ).
Let Ed′ = Ed/〈Q〉, and φ be an isogeny φ : Ed → Ed′ with ker φ = 〈Q〉. The
projective y-coordinates (Y ′ : Z ′) of φ(P) are calculated as follows [5]:

Y ′ =(Z + Y) ·
s∏

i=1

(ZYi + ZiY)2 − (Z − Y) ·
s∏

i=1

(ZYi − ZiY)2,

Z ′ =(Z + Y) ·
s∏

i=1

(ZYi + ZiY)2 + (Z − Y) ·
s∏

i=1

(ZYi − ZiY)2.

(8)

The computational cost is (4s)M+2S+(2s+4)a. The projective curve coefficient
d′ = D′/C ′ is calculated as follows [19]:

D′ = D� ·
s∏

i=1

(Yi)8, C ′ = C� ·
s∏

i=1

(Zi)8. (9)

The computational cost is (2s + 2)M+ 6S and that of the two s-th powers. The
computational cost of calculating φ(P) and Ed′ is (6s + 2)M + 8S + (2s + 4)a
and that of the two s-th powers.

Farashahi and Hosseini showed that the group calculations of Edwards curves
can be efficiently performed by using the w-coordinate [10]. Define a function w as

w(X : Y : Z : T) =

{
dT 2

Z2 (if Z �= 0)
∞ (if Z = 0 (points at infinity))

.

In affine coordinates, w(x, y) = dx2y2. We call w(P) the w-coordinate of P . If
P and Q satisfy that w(P) = w(Q), then P + Q or P − Q is an element of

{0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)}.

In this paper, we will denote {0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)} by
G4 for simplicity. Note that G4 is a cyclic group of order 4. Define a function w as
w(X : Y : Z : T) = (dT 2 : Z2). We call w(P) the projective w-coordinates of P .

Let P be a point on Ed, and (W : Z) = w(P). Let D/C = d. The projective
w-coordinates (W ′ : Z ′) of 2P are calculated as follows [10]:

W ′ = 4WZ(D(W + Z)2 − 4CWZ), Z ′ = D(W + Z)2(W − Z)2. (10)

The computational cost is 4M + 2S + 4a. If Z = 1, the computational cost is
4M + 1S + 5a.

Let P1 and P2 be points on Ed, and (W1 : Z1) = w(P1), (W2 : Z2) = w(P2).
Let (W0 : Z0) = w(P1 − P2). The projective w-coordinates (W3 : Z3) of P1 + P2

are calculated as follows [10]:

W3 = Z0(W1Z2 − W2Z1)2, Z3 = W0(W1W2 − Z1Z2)2. (11)

How to Construct CSIDH on Edwards Curves 519

The computational cost is 4M + 2S + 6a. If Z0 = 1, the computational cost is
3M + 2S + 6a.

Kim, Yoon, Park, and Hong proposed efficient calculations for odd-degree
isogenies by using projective w-coordinates [13]. Let � be an odd integer and s
be the integer which satisfies � = 2s + 1. Let P be a point on Ed, and (W :
Z) = w(P). Let Q be an �-order point on Ed, and (W1 : Z1) = w(Q). Let
(Wk : Zk) = w(kQ). Let Ed′ = Ed/〈Q〉, and φ be an isogeny φ : Ed → Ed′ with
ker φ = 〈Q〉. The projective w-coordinates (W ′ : Z ′) of φ(P) are calculated as
follows [13]:

W ′ = W ·
s∏

i=1

(ZWi − ZiW)2, Z ′ = Z ·
s∏

i=1

(WWi − ZZi)2. (12)

The computational cost is (4s)M+2S+(4s+2)a. The projective curve coefficient
d′ = D′/C ′ is calculated as follows [13]:

D′ = D� ·
s∏

i=1

(Wi + Zi)8, C ′ = C� ·
s∏

i=1

(2Zi)8. (13)

The computational cost is (2s + 2)M + 6S + (s + 4)a and that of the two s-th
powers. Since Wi + Zi is also used for calculating φ(P), the computational cost
of calculating φ(P) and Ed′ is (6s + 2)M + 8S + (4s + 6)a and that of the two
s-th powers.

Appendix A.2 describes why the computational costs are as above.
An Edwards curve has a following property.

Theorem 1. Let p be a prime and p ≥ 3. The Edwards curve Ed defined over
Fp is Fp-isomorphic to the Montgomery curve,

EM :
4

1 − d
Y 2Z = X3 +

2(1 + d)
1 − d

X2Z + XZ2.

Proof. Bernstein, Birkner, Joye, Lange, and Peters show that there is a birational
map between Ed and EM [2]. This birational map becomes an isomorphism.

The precise proof of this theorem is given in the full paper of this paper [20,
Appendix B]. �

It is known that there is a birational map between a Montgomery curve and
an Edwards curve [2]. However, we need an isomorphism for constructing the
CSIDH algorithm using only Edwards curves.

Corollary 1. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 4). An Edwards curve
Ed defined over Fp is Fp-isomorphic to the Montgomery curve,

EM : Y 2Z = X3 +
(

1 − d

p

)
· 2(1 + d)

1 − d
X2Z + XZ2,

where
(

1−d
p

)
is the Legendre symbol.

520 T. Moriya et al.

Corollary 1 is easily proven from Theorem 1.

Corollary 2. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 8). Let EM,a be a
supersingular Montgomery curve Y 2Z = X3 + aX2Z + XZ2 defined over Fp. If
a − 2 is square, then EM,a is Fp-isomorphic to the Edwards curve,

E a+2
a−2

: X2 + Y 2 = Z2 +
a + 2
a − 2

T 2, XY = ZT,

and if a − 2 is not square, then EM,a is Fp-isomorphic to the Edwards curve,

E a−2
a+2

: X2 + Y 2 = Z2 +
a − 2
a + 2

T 2, XY = ZT.

Proof. As EM,a is supersingular, #EM,a(Fp) = #ẼM,a(Fp) = p + 1 ≡ 4
(mod 8), where ẼM,a is a quadratic twist of EM. From Table 1 of [7], (a − 2)
(a + 2) is not square.

If a − 2 is square, the Edwards curve E a+2
a−2

is Fp-isomorphic to EM,a by
Corollary 1. If a−2 is not square, since a+2 is square, the Edwards curve E a−2

a+2

is Fp-isomorphic to EM,a by Corollary 1.
This completes the proof of Corollary 2. �
By using Corollarys 1 and 2, it is easy to convert an Edwards curve into a

Montgomery curve and convert a Montgomery curve into an Edwards curve.

3 CSIDH [4]

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) was proposed by
Castryck, Lange, Martindale, Panny, and Renes in 2018 [4].

CSIDH is based on the action of cl(Z[πp]) on E��p(Z[πp]). Let the prime p
be 4 · �1 · · · �n − 1, where the �1, . . . , �n are small distinct odd primes, for Alice
and Bob to calculate the action efficiently. Alice and Bob let random elements of
cl(Z[πp]) be secret keys and calculate the actions on EM,0 : Y 2Z = X3 + XZ2.
They publish the obtained elliptic curves as public keys. Finally, they calculate
the actions on the public keys, respectively. The obtained elliptic curves are
identical up to Fp-isomorphism by the commutativity of cl(Z[πp]); therefore, the
values of the Montgomery coefficients are the same from Theorem 3. Let their
values be SKshared.

3.1 CSIDH Protocol

Before explaining the protocol of CSIDH, we should state the following important
theorems.

How to Construct CSIDH on Edwards Curves 521

Theorem 2 ([28, Theorem 4.5]). Let O be an order of an imaginary quadratic
field and E be an elliptic curve defined over Fp. If E��p(O) contains the Fp-
isomorphism class of supersingular elliptic curves, then the action of the ideal
class group cl(O) on E��p(O),

cl(O) × E��p(O) −→ E��p(O)
([a], E) �−→ E/E[a]

is free and transitive, where a is an integral ideal of O, and E[a] is the intersec-
tion of the kernels of elements in the ideal a.

Denote a representative of E/E[a] by [a]E.

Theorem 3 ([4, Proposition 8]). Let p be a prime satisfying p ≡ 3 (mod 8).
Let E be a supersingular elliptic curve defined over Fp. Then, Endp(E) = Z[πp]
holds if and only if there uniquely exists a ∈ Fp such that E is Fp-isomorphic to
a Montgomery curve EM,a, where πp is the p-Frobenius map.

The exact protocol is as follows. Suppose that Alice and Bob want to share
a secret key denoted by SKshared.

Setup. Let p be a prime which satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let the public parameters be p and EM,0.

Key generation. One randomly chooses a integer vector (e1, . . . , en) from
{−m, . . . ,m}n. Define [a] = [le1

1 · · · len
n] ∈ cl(Z[πp]), where li = (�i, πp − 1),

l−1
i = (�i, πp + 1), and m is the smallest integer which satisfies 2m + 1 ≥
n
√

#cl(Z[πp]) ≈ p1/2n. One calculates the action of [a] on EM,0 and the
Montgomery coefficient a ∈ Fp of [a]EM,0 : Y 2Z = X3 + aX2Z + XZ2.
Let the integer vector (e1, . . . , en) be the secret key, and a ∈ Fp be the public
key.

Key exchange. Alice and Bob have pairs of keys, ([a], a) and ([b], b), respec-
tively. Alice calculates the action [a]EM,b = [a][b]EM,0. Bob calculates
the action [b]EM,a = [b][a]EM,0. Denote the Montgomery coefficient of
[a][b]EM,0 by SKAlice and the Montgomery coefficient of [b][a]EM,0 by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 3, SKAlice = SKBob holds.
Let these values be the shared key SKshared.

3.2 Evaluating the Class Group Action on Montgomery Curves [4]

In this subsection, we explain how to evaluate the class group action on Mont-
gomery curves. Algorithm 1 is the algorithm for evaluating the class group action.

The inputs of the algorithm are a Montgomery coefficient a ∈ Fp and a list
of integers (e1, . . . , en). The output is a Montgomery coefficient a′ ∈ Fp that
satisfies EM,a′ = [le1

1 · · · len
n]EM,a. Let p be a prime satisfying p = 4 ·�1 · · · �n −1,

where �1, . . . , �n are small distinct odd primes.
We calculate a′ by repeating the calculations of the actions of [li] or [li]−1

(i.e., repeating the calculations of �i-isogenies).

522 T. Moriya et al.

Sampling Points (Line 2–8 in Algorithm 1). For calculating the class group
action, we first sample a point which belongs to ker (πp − 1) or ker (πp + 1). We
take a uniformly random element of Fp. Let the element be x, and P be a point
in EM,a such that x(P) = x. We calculate x3 + ax2 + x, which is a square of
y(P), where y(P) is the y-coordinate of P . If x3 + ax2 + x is square in Fp, then
P ∈ ker (πp − 1), and if x3 + ax2 + x is not square in Fp, then P ∈ ker (πp + 1).
If x3 + ax2 + x is square, we define S to be a set of i such that the sign of ei is
+1, and if x3 + ax2 + x is not square, we define S to be a set of i such that the
sign of ei is −1. If S = ∅, we repeat this procedure with another sample point.

Scalar Multiplication (Line 9 in Algorithm 1). Next, we calculate P1 =
p+1

k (P), where k =
∏

i∈S �i. The calculation uses the Montgomery ladder algo-
rithm [18].

Calculation of Isogenies (Line 10–16 in Algorithm 1). We calculate P2 =
k
�i

P1. The order of P2 is 1 or �i. The probability that P2 is not the identity is
1 − 1

�i
[4]. Therefore, with high probability, we get a point of order �i. Then, we

calculate an �i-isogeny,

φ : EM,a −→ EM,a/〈P2〉,

by using the formulas in [6,16]. Denote the Montgomery coefficient of EM,a/〈P2〉
by a′ ∈ Fp. From Theorem 3, a′ is unique. We redefine ei as ei − 1 (if ei > 0) or
ei + 1 (if ei < 0), k as k/�i, P1 as φ(P1), and a as a′.

We repeat this calculation for all i ∈ S. After that, if the list of integers
(e1, . . . , en) is not the zero vector, we return to the Sampling points part.

Output (Line 18 in Algorithm 1). If the list of integers (e1, . . . , en) is the
zero vector, we output the Montgomery coefficient a′ ∈ Fp.

4 Main Theorems Used for Our Algorithm

Here, we state and prove four theorems needed to construct the algorithm for
evaluating the class group action based on Edwards curves.

First, we state important lemmas in order to prove four main theorems. Refer
to the full paper of this paper [20] for proofs of lemmas without proofs.

Let Ed be a supersingular Edwards curve defined over Fp, and p be a prime.

Lemma 1. Let p ≡ 3 (mod 8). If Ed satisfies Endp(Ed) ∼= Z[πp], then d is not
square.

Proof. There exists a Montgomery curve EM which is Fp-isomorphic to Ed, by
Corollary 1. If EM[2] ⊂ EM(Fp), Table 1 of [7] shows that the order of EM or its
quadratic twist can be divided by 8; however, both orders are p+1 ≡ 4 (mod 8).

How to Construct CSIDH on Edwards Curves 523

Algorithm 1. Evaluating the class group action on Montgomery curves [4]
Input: a ∈ Fp such that EM,a is supersingular and a list of integers (e1, . . . , en)
Output: a′ such that [le11 · · · len

n]EM,a = EM,a′

1: while some ei �= 0 do
2: Sample a random x ∈ Fp

3: x(P) ← (x : 1)
4: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ← ∏

i∈S �i, x(P) ← x(((p + 1)/k)P)
10: for all i ∈ S do
11: x(Q) ← x((k/�i)P)
12: if Q �= (0 : 1 : 0) then
13: Compute an �i-isogeny φ : EM,a → EM,a′ with ker φ = 〈Q〉
14: a ← a′, x(P) ← x(φ(P)), k ← k/�i, ei ← ei − s
15: end if
16: end for
17: end while
18: return a

EM has the only one point of order 2 over Fp. Therefore, Ed also has only one
point of order 2 over Fp.

Points of order 2 in Ed are (0 : −1 : 1 : 0) and (±√
d : 0 : 0 : 1). Since

(0 : −1 : 1 : 0) is a Fp-rational point, d is not square. �
Lemma 2. Let p ≡ 3 (mod 8). If Ed satisfies Endp(Ed) ∼= Z[πp], then 1 − d is
not square.

Proof. As p ≡ 3 (mod 8), #Ed(Fp) = p + 1 ≡ 4 (mod 8).
By Lemma 1, there are no points at infinity on Ed(Fp). Hence, in this proof,

we consider Ed to be an affine curve.
If a point (x, y) belongs to Ed(Fp), the points,

(−x, y), (x,−y), (−x,−y), (y, x), (−y, x), (y,−x), (−y,−x),

also belong to Ed(Fp). If x �= 0, y �= 0, x �= y, and x �= −y hold, these eight
points are different. If x = 0 or y = 0, the four points,

(0, 1), (0,−1), (1, 0), (−1, 0),

are different. If x = y or x = −y, x is a root of the equation, 2x2 = 1 + dx4.
Therefore,

x2 =
1 ± √

1 − d

d
.

Assume that 1 − d is square. Note that

1 +
√

1 − d

d
· 1 − √

1 − d

d
=

1 − (1 − d)
d2

=
1
d
.

524 T. Moriya et al.

By Lemma 1, d is not square. Hence, one of 1+
√
1−d

d or 1−√
1−d

d is square, and
the other one is not square. Therefore, if x = y or x = −y, the four points,

(x, x), (x,−x), (−x, x), (−x,−x),

are different, where x is
√

1+
√
1−d

d or
√

1−√
1−d

d .
From the above, #Ed(Fp) ≡ 4+4 ≡ 0 (mod 8) holds. This is a contradiction.

Therefore, 1 − d is not square. �
Lemma 3. If P is a point of Ed such that w(P) ∈ Fp, then (πp + 1)(P) ∈ G4

or (πp − 1)(P) ∈ G4.

Proof. Since πp(w(P)) = w(πp(P)), w(πp(P)) = w(P). Therefore, (πp +1)(P) ∈
G4 or (πp − 1)(P) ∈ G4. �
Lemma 4. Let p ≡ 3 (mod 8). Let P be a point of Ed, not a point at infinity,
and w(P) �= 0. Let Ed satisfy Endp(Ed) ∼= Z[πp]. If P ∈ Ed[πp + 1], then
w(P) ∈ Fp and is square in Fp, and if P ∈ Ed[πp − 1], then w(P) ∈ Fp and is
not square in Fp.

Lemma 5. Let p ≡ 3 (mod 8). Let P ∈ Ed[πp − 1] or Ed[πp +1], not a point at
infinity, and w(P) �= 0. Let Ed satisfy Endp(Ed) ∼= Z[πp]. If w(P) is square in
Fp, then P ∈ Ed[πp + 1], and if w(P) is not square in Fp, then P ∈ Ed[πp − 1].

Lemma 6. Let P be a point of Ed. Then, points Podd and P2power uniquely exist
such that P = Podd + P2power, the order of Podd is odd, and the order of P2power

is a power of 2.

Lemma 7. Let P be a point of Ed such that w(P) ∈ Fp. Let Podd and P2power

be points of Ed such that P = Podd + P2power, the order of Podd is odd, and the
order of P2power is a power of 2. Then, one of the following holds.

– Podd ∈ Ed[πp − 1] and (πp − 1)(P2power) ∈ G4.
– Podd ∈ Ed[πp + 1] and (πp + 1)(P2power) ∈ G4.

Proof. By Lemma 3, (πp ± 1)(P) ∈ G4. In the case that (πp − 1)(P) ∈ G4,
(πp − 1)(Podd) = 0d, since the order of Podd is odd and G4 is a cyclic group of
order 4. Then, (πp − 1)(P2power) = (πp − 1)(P) ∈ G4.

Similarly, in the case that (πp + 1)(P) ∈ G4, Podd ∈ Ed[πp + 1] and (πp +
1)(P2power) ∈ G4 hold. �
Lemma 8. Let P be a point in Ed whose order is not a power of 2. Then, the
number of points Q which satisfies w(Q) = w(P) is 8.

Lemma 9. Let p ≡ 3 (mod 8). There exists a bijection,

f : Ed[πp + 1] ∩ Ed[(p + 1)/4] −→ Ed[πp − 1] ∩ Ed[(p + 1)/4],

such that f(0d) = 0d.

How to Construct CSIDH on Edwards Curves 525

We now prove four main theorems.

Theorem 4. Let p ≡ 3 (mod 8). Let P be a point on an Edwards curve Ed

such that the w-coordinate w(P) ∈ Fp, the order of P is not a power of 2, and
w(P) is square. If w(2P) is square, there exists P ′ such that P ′ ∈ Ed[πp + 1],
w(2P) = w(P ′), and p+1

4 P ′ = 0d. If w(2P) is not square, there exists P ′ such
that P ′ ∈ Ed[πp − 1], 1/w(2P) = w(P ′), and p+1

4 P ′ = 0d.

Proof. Let (x, y) be the coordinates of P . Let Podd and P2power be points of Ed

such that P = Podd +P2power, the order of Podd is odd, and the order of P2power

is a power of 2. The existence of Podd and P2power are guaranteed by Lemma 6.
By Lemma 7, one of the following holds.

– (πp − 1)(P2power) ∈ G4 and Podd ∈ E[πp − 1].
– (πp + 1)(P2power) ∈ G4 and Podd ∈ E[πp + 1].

It is easy to check that (πp + 1)G4 = {0d, (0,−1)} and (πp − 1)G4 = {0d}.
Therefore,

(π2
p − 1)(P2power) =

{
0d (if Podd ∈ E[πp + 1]),
0d or (−1, 0) (if Podd ∈ E[πp − 1]).

As π2
p + p = 0, π2

p − 1 = −p − 1. Since P2power is a point whose order is a power
of 2,

4P2power =

{
0d (if Podd ∈ E[πp + 1]),
0d or (−1, 0) (if Podd ∈ E[πp − 1]).

Hence, if Podd ∈ E[πp + 1], then

2P2power = 0d, (0,−1), (±
√

d : 0 : 0 : 1),

and if Podd ∈ E[πp − 1], then

2P2power = 0d, (0,−1), (±
√

d : 0 : 0 : 1), (1, 0), (−1, 0), (0 : ±
√

d : 0 : 1).

It is easy to check that if w(2P2power) = 0, then w(2P) = w(2Podd), and if
w(2P2power) = ∞, then w(2P) = 1/w(2Podd). Therefore, if w(2P) is square,
then w(2Podd) is square, and if w(2P) is not square, then w(2Podd) is not square.
By Lemma 5, if w(2P) is square, then 2Podd ∈ Ed[πp + 1], and if w(2P) is not
square, then 2Podd ∈ Ed[πp − 1].

Denote w(P) by w. By the Edwards addition formula (5), we have

w(2P) =
4dx2y2(y2 − x2)2

(1 − dx2y2)2(1 + dx2y2)2
=

4w(y2 − x2)2

(1 − w)2(1 + w)2
.

Since w is square, if w(2P) is square, then y2 − x2 ∈ Fp, and if w(2P) is not
square, then y2 − x2 �∈ Fp. As

2P =
(

2xy

1 + dx2y2
,

y2 − x2

1 − dx2y2

)
,

526 T. Moriya et al.

if w(2P) is square, then the y-coordinate of 2P is an element of Fp, and if w(2P)
is not square, then the y-coordinate of 2P is not an element of Fp.

In the case that w(2P) is square, y(2P) ∈ Fp and 2Podd ∈ Ed[πp + 1].
Therefore, y(2Podd) ∈ Fp. Assume that 2P2power = (

√
d : 0 : 0 : 1) or (−√

d : 0 :
0 : 1). It is easy to check that

y(2P) = ± 1√
d · y(2Podd)

.

As y(2Podd) ∈ Fp, y(2P) �∈ Fp by Lemma 1. This is a contradiction. We
conclude that 2P2power is 0d or (0,−1). Therefore, w(2P) = w(2Podd). As
(π2

p − 1)(2Podd) = 0d,
p + 1

4
(2Podd) = 0d.

In the case that w(2P) is not square, y(2P) �∈ Fp and 2Podd ∈ Ed[πp − 1].
Therefore, y(2Podd) ∈ Fp. Assume that

2P2power = 0d, (0,−1), (1, 0), (−1, 0).

It is easy to check that y(2P) = ±y(2Podd). As y(2Podd) ∈ Fp, y(2P) ∈ Fp.
This is a contradiction. We conclude that 2P2power is (±√

d : 0 : 0 : 1) or
(0 : ±√

d : 0 : 1). Therefore, it is easy to check that w(2P) = 1/w(2Podd). As
(π2

p − 1)(2Podd) = 0d,
p + 1

4
(2Podd) = 0d.

Let P ′ be 2Podd. This completes the proof of Theorem 4. �
Theorem 5. Let p ≡ 3 (mod 8). Let P be a point on an Edwards curve Ed

such that the w-coordinate w(P) ∈ Fp, the order of P is not a power of 2, and
w(P) is square. The number of w(P) such that w(2P) is square is the same as
the number of w(P) such that w(2P) is not square.

Proof. Let the coordinates of P be (x, y). Let Podd and P2power be points of Ed

such that P = Podd +P2power, the order of Podd is odd, and the order of P2power

is a power of 2. The existence of Podd and P2power are guaranteed by Lemma 6.
As shown in the proof of Theorem 4, we have

2P2power = 0d, (0,−1), (±
√

d : 0 : 0 : 1), (0 : ±
√

d : 0 : 1).

If 2P2power is 0d or (0,−1), w(P2power) is 0 or ∞, since it is easy to check that

P2power = 0d, (0,−1), (±1, 0), (±
√

d : 0 : 0 : 1), (0 : ±
√

d : 0 : 1).

If 2P2power is (±√
d : 0 : 0 : 1) or (0 : ±√

d : 0 : 1), w(P2power) is ±1 since

w(2P2power) =
4w(P2power)((1 + w(P2power))2 − 4w(P2power)/d)

(1 − w(P2power))2(1 + w(P2power))2
.

How to Construct CSIDH on Edwards Curves 527

Assume that w(P2power) is −1. w(2P2power) = ∞. As shown in the proof of
Theorem 4, (πp − 1)(Podd) = 0d. Let the coordinates of Podd be (xo, yo). It is
easy to check that

P2power =

⎛

⎝

√√
1
d
,

√

−
√

1
d

⎞

⎠ + Q′,

where Q′ is a point of Ed such that w(Q′) = 0 or w(Q′) = ∞. From the addition
formula of Edward curves,

P = Podd + P2power =

⎛

⎜⎜⎝
xo

√
−

√
1
d + yo

√√
1
d

1 + dxoyo

√
−1
d

,
yo

√
−

√
1
d − xo

√√
1
d

1 − dxoyo

√
−1
d

⎞

⎟⎟⎠ + Q′.

Therefore,

w(P) =
(2xoyo + (y2

o − x2
o)

√−1)2

(1 + dx2
oy

2
o)2

or
(1 + dx2

oy
2
o)2

(2xoyo + (y2
o − x2

o)
√−1)2

.

As p ≡ 4 (mod 3), −1 is not square. Since Podd is not 0d, xo �= 0 and yo �= 0. If
we assume that x2

o = y2
o , then it is easy to check that 2x2

o = 1 + dx4
o, and

x2
o =

1 ± √
1 − d

d
�∈ Fp (by Lemma 2).

Since x2
o ∈ Fp, x2

o �= y2
o . Therefore, (2xoyo + (y2

o − x2
o)

√−1)2 does not belong to
Fp. Hence, w(P) �∈ Fp. This is a contradiction. We conclude w(P2power) is 0 or
∞ or 1.

If w(2P) is square, as shown in the proof of Theorem 4, w(Podd) is square
and 2P2power = 0d or (0,−1). Therefore, w(P2power) is 0 or ∞. If w(2P) is
not square, as shown in the proof of Theorem 4, w(Podd) is not square and
2P2power = (±√

d : 0 : 0 : 1) or (0 : ±√
d : 0 : 1). Therefore, w(P2power) is 1.

We prove that if Podd ∈ Ed[πp − 1], then w(Podd + Q) is square for all points
Q at which w(Q) is 1. It is easy to check that

Q =
(√

1 +
√−1r,

√
1 − √−1r

)
+ Q′,

where r =
√

1−d
d , and Q′ is a point such that w(Q′) = 0 or w(Q′) = ∞.

By Lemmas 1 and 2, r ∈ Fp. Let the coordinates of Podd be (xo, yo). Denote(√
1 +

√−1r,
√

1 − √−1r
)

by R. Note that

Podd + R =

(
xo

√
1 − √−1r + yo

√
1 +

√−1r

1 +
√

dxoyo

,
yo

√
1 − √−1r − xo

√
1 +

√−1r

1 − √
dxoyo

)

.

528 T. Moriya et al.

Therefore,

w (Podd + R) =
d(−2xoyo

√−1r + (y2
o − x2

o)
√

1 + r2)2

(1 − dx2
oy2

o)2
=

(−2xoyo

√−dr + (y2
o − x2

o))
2

(1 − dx2
oy2

o)2
.

By Lemma 1,
√−d ∈ Fp. As Podd ∈ Ed[πp − 1], xo, yo ∈ Fp. Therefore,

w (Podd + R) belongs to Fp and is square. Since w(Podd + Q) = w(Podd + R)
or 1/w(Podd + R), w(Podd + Q) belongs to Fp and is square.

Let S+ be the set of points P of Ed such that both w(P) and w(2P) are
square and the order of P is not a power of 2, and let S− be the set of points
P of Ed such that w(P) is square, w(2P) is not square, and the order of P is
not a power of 2. From Lemma 8, it suffices to prove that there is a bijection
φ : S+ → S−. Define φ : S+ → S− as follows.

φ(P) := f(Podd) + P2power + R,

where Podd and P2power are points of Ed such that P = Podd + P2power, the
order of Podd is odd, the order of P2power is a power of 2, R is defined as above,
and f is the bijection in Lemma 9. As has already been shown, if P ∈ S+, then
w(P2power) is 0 or ∞. As f(Podd) ∈ Ed[πp −1] and w(P2power +R) = 1, w(φ(P))
is square. Since w(2φ(P)) = 1/w(2f(Podd)) and 2f(Podd) ∈ Ed[πp−1], w(2φ(P))
is not square. As f(Podd) is not 0d, the order of φ(P) is not a power of 2. From
Lemma 6 and the above, φ is well-defined. Define ψ : S− → S+ as follows.

ψ(P) := f−1(Podd) + P2power − R,

where Podd and P2power are points of Ed such that P = Podd + P2power, the
order of Podd is odd, and the order of P2power is a power of 2. As has already
been shown, if P ∈ S−, then w(P2power) = 1. As w(P2power − R) is 0 or ∞,
w(ψ(P)) = w(f−1(Podd)) or 1/w(f−1(Podd)). Since f−1(Podd) ∈ Ed[πp + 1],
w(f−1(Podd)) is square by Lemma 4. Hence, w(ψ(P)) and w(2ψ(P)) are square.
As f−1(Podd) is not 0d, the order of ψ(P) is not a power of 2. From Lemma 6
and the above, ψ is well-defined. It is easy to check that ψ = φ−1.

This completes the proof of Theorem 5. �
Theorem 6. Let p be 4 · �1 · · · �n −1, where the �1, . . . , �n are small distinct odd
primes. Let P be a point on an Edwards curve Ed such that the w-coordinate
w(P) ∈ Fp, the order of P is not a power of 2, and w(P) is square. The proba-

bility that p+1
4�i

P ′ is a point of order �i is
(�i−1) N

�i

N−1 ≈ 1 − 1
�i
, where P ′ is a point

in Theorem 4, and N = �1 · �2 · · · �n.

Proof. Let Podd and P2power be points of Ed such that P = Podd + P2power, the
order of Podd is odd, and the order of P2power is a power of 2. As shown in the
proof of Theorem 4, P ′ = 2Podd. As shown in the proof of Theorem 5, for each
point Q �= 0d in Ed[πp + 1] ∩ Ed[(p + 1)/4] or Ed[πp − 1] ∩ Ed[(p + 1)/4], there is
a point Q̃ that satisfies w(Q̃) ∈ Fp, w(Q̃) is square, and 2Q̃odd = Q. It is easy to
check that if Q1 �= Q2, then w(Q̃1) �= w(Q̃2). Therefore, if we uniform randomly

How to Construct CSIDH on Edwards Curves 529

take P that satisfies w(P) is square, then P ′ is a uniformly random point of
Ed[πp + 1] ∩ Ed[(p + 1)/4] \ {0d} or Ed[πp − 1] ∩ Ed[(p + 1)/4] \ {0d}. Since

Ed[πp + 1] ∩ Ed[(p + 1)/4] ∼= Z/((p + 1)/4)Z ∼= Z/�1Z × · · · × Z/�nZ,

Ed[πp − 1] ∩ Ed[(p + 1)/4] ∼= Z/((p + 1)/4)Z ∼= Z/�1Z × · · · × Z/�nZ,

Theorem 6 holds. �
Theorem 7. Let p ≡ 3 (mod 8) and E be a supersingular elliptic curve defined
over Fp. Then Endp(E) ∼= Z[πp] holds if and only if there exists d ∈ Fp such that
E is Fp-isomorphic to an Edwards curve Ed. Moreover, if such a d exists, then
it is unique.

Proof. The first half of this theorem follows from Corollarys 1, 2, and Theorem 3.
Let us prove the uniqueness of d. Let d1, d2 ∈ Fp such that Ed1 and Ed2

are supersingular Edwards curves, Endp(Ed1) ∼= Z[πp], Endp(Ed2) ∼= Z[πp], and
Ed1

∼= Ed2 over Fp. As 1 − d1 and 1 − d2 are not square by Lemma 2,

Edi
∼= Y 2Z = X3 − 2(1 + di)

1 − di
X2Z + XZ2 (i = 1, 2)

holds by Corollary 1. Therefore,

2(1 + d1)
1 − d1

=
2(1 + d2)
1 − d2

holds by the uniqueness of coefficients in Theorem 3. This equation reduces to
d1 = d2.

This completes the proof of Theorem 7. �
Now we proved all main theorems. Though the following lemma is not impor-

tant essentially, we use it to reject points whose order is a power of 2 in the
Sampling points calculation of Algorithm 2.

Lemma 10. Let p ≡ 3 (mod 8). Let P be a point on Ed such that w(P) ∈ Fp

and the order of P is a power of 2. Then, w(P) is 0 or ±1.

Proof. Refer to the full paper of this paper [20]. �

5 Evaluating the Class Group Action on Edwards Curves

In this section, we propose a method for evaluating the class group action based
on Edwards curves. The theorems proved in the previous section will be used
to construct the method. The algorithm is described in Algorithm 2. All of its
calculations are done over Fp.

The inputs of the algorithm are an Edwards coefficient d ∈ Fp and a list
of integers (e1, . . . , en). The output of this algorithm is an Edwards coefficient
d′ ∈ Fp such that Ed′ = [le1

1 · · · len
n]Ed. Let p be a prime which satisfies p =

4 · �1 · · · �n − 1, where the �1, . . . , �n are small distinct odd primes.

530 T. Moriya et al.

Algorithm 2. Evaluating the class group action on Edwards curves
Input: d ∈ Fp such that Edwards curve Ed is supersingular and a list of integers

(e1, . . . , en)
Output: d′ such that [le11 · · · len

n]Ed = Ed′

1: while some ei �= 0 do
2: w ← 0
3: while w = 0 or w = 1 or w = −1 do
4: Sample a random w ∈ Fp

5: end while
6: w ← w2 (Theorem 4, 5)
7: w(P) ← (w : 1)
8: Compute w(2P) (Theorem 4)
9: (W : Z) ← w(2P)

10: Set s ← +1 if W is a square in Fp, else s ← −1
11: Let S = {i | sign(ei) = s}
12: if S = ∅ then
13: Go to line 2
14: end if
15: w(P) ← (W : Z), k ← ∏

i∈S �i

16: w(P) = (W : Z) ← w(((p + 1)/4k)P) (Theorem 4, 6)
17: if s = 1 then
18: w(P) ← (Z : W) (Theorem 4)
19: end if
20: for all i ∈ S do
21: w(Q) ← w((k/�i)P)
22: if Q �= 0d then
23: Compute an �i-isogeny φ : Ed → Ed′ with ker φ = 〈Q〉
24: d ← d′, w(P) ← w(φ(P)), k ← k/�i, ei ← ei − s
25: end if
26: end for
27: end while
28: return d (Theorem 7)

Sampling Points (Line 2–14 in Algorithm 2). To sample a point that
belongs to Ed[πp − 1] or Ed[πp + 1], we take a uniformly random element of Fp.
Denote this element by w. If w is 0 or ±1, we take a random element again.
(We reject any point whose order is a power of 2 by Lemma 10). Then, we
calculate w2. Let P be a point in Ed such that w(P) = w2. By Theorem 4, if
w(2P) is square in Fp, then there exists a point P ′ such that w(P ′) = w(2P),
p+1
4 P ′ = 0d, and P ′ ∈ Ed[πp + 1]. If w(2P) is not square in Fp, then there

exists a point P ′ such that w(P ′) = 1/w(2P), p+1
4 P ′ = 0d, and P ′ ∈ Ed[πp − 1].

Thus, we calculate w(2P) by using the doubling formulas on Edwards curves
and determine whether w(2P) is square or not. If w(2P) is square, we can use
w(2P) as an element of Ed[πp + 1]. If w(2P) is not square, we can use 1/w(2P)
as an element of Ed[πp −1]. If w(2P) is square, we define S as a set of i such that
the sign of ei is −1. If w(2P) is not square, we define S as a set of i such that
the sign of ei is +1. If S = ∅, we go back to the Sampling points calculation.

How to Construct CSIDH on Edwards Curves 531

From Theorem 5, the probability of getting points in Ed[πp − 1] is equal to
the probability of getting points in Ed[πp + 1].

Scalar Multiplication (Line 15–19 in Algorithm 2). From Theorem 4, it
suffices to calculate w(p+1

4k (P ′)) instead of w(p+1
k (P)), where k =

∏
i∈S �i. To

calculate w(p+1
4k (P ′)) efficiently, we use Algorithm 3.

Algorithm 3. The Edwards ladder using P and 2P
Input: Ed, k =

∑�−1
i=0 ki2

i with k�−1 = 1, (W0 : 1) = w(P), and (W : Z) = w(2P)
s.t. P ∈ Ed

Output: (W ′ : Z′) = w(kP)
1: (W1 : Z1) ← (W0 : 1) and (W2 : Z2) ← (W : Z)
2: for i = � − 2 down to 0 do
3: if ki = 0 then
4: (W1 : Z1) ← 2(W1 : Z1) (doubling on Ed)
5: (W2 : Z2) ← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
6: else
7: (W2 : Z2) ← 2(W1 : Z1) (doubling on Ed)
8: (W1 : Z1) ← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
9: end if

10: end for
11: return (W1 : Z1)

If w(2P) is not square, the proof of Theorem 4 indicates that P ′ = 2P + Q,
where Q is a point at infinity. Since p+1

4k is odd and an odd multiple of Q is also
a point at infinity, w(p+1

4k (P ′)) = 1/w(p+1
4k (2P)).

Calculation of Isogenies (Line 20–26 inAlgorithm2). By Theorem 6 and 7,
we can calculate isogenies by using the same strategy as the original CSIDH algo-
rithm. To do so, we can use the formulas on Edwards curves [13].

Output (Line 28 in Algorithm 2). If the list of integers (e1, . . . , en) is the
zero vector, we output the Edwards coefficient d′ ∈ Fp.

Remark 1. To determine whether w(2P) is square or not, we only need to con-
sider W , where (W : Z) = w(2P).

Recall the isogenies formulas on Edwards curves:

D′ = D� ·
s∏

i=1

(Wi + Zi)8, C ′ = C� ·
s∏

i=1

(2Zi)8.

As � is odd, if D is not square, then D′ is also not square. At the beginning
of the algorithm, we let (D : C) = (d : 1). Hence, we can assume that D is

532 T. Moriya et al.

not square. Let the projective w-coordinates of P be (W ′ : Z ′), the projective
w-coordinates of 2P be (W : Z), and the projective coordinates of d be (D : C).
Z is not square, since

w(2P) = (4W ′Z ′(D(W ′ + Z ′)2 − 4CW ′Z ′) : D(W ′ + Z ′)2(W ′ − Z ′)2).

Therefore, if W is square, then w(2P) is not square. Moreover, if W is not square,
then w(2P) is square.

6 Computational Costs

In this section, we compare computational costs of our proposed CSIDH algo-
rithm and that of the algorithm proposed by Meyer and Reith [16], theoretically.
Moreover, we show our result of implementation on three different CSIDH algo-
rithms: the algorithm on Montgomery curves proposed by Meyer and Reith [16]
(Algorithm 1), that on Edwards curves with y-coordinates (Algorithm 4 in the
full paper of this paper [20, Appendix C]), and that on Edwards curves with
w-coordinates (Algorithm 2). The results are summarized in Table 2.

6.1 Comparing Computational Costs Theoretically

Our proposed CSIDH algorithm using only w-coordinates on Edwards curves
is as fast as (or a little bit faster than) the algorithm proposed by Meyer and
Reith [16]. In this subsection, we explain computational savings of our algorithm
relative to the algorithm of Meyer and Reith.

On Edwards curves, the Sampling points calculation costs 1S for taking
a uniformly random element of (Fp)2 and requires one doubling on Edwards
curves with Z = 1 (the cost of 4M+ 1S+ 5a) for determining the set which the
point belongs to. On the other hand, on Montgomery curves, Sampling points
calculation entails calculating Cx3 + Ax2 + Cx (the cost of 3M + 1S + 2a) for
determining the set which the point belongs to, where (A : C) is a projective
coordinates of a. Therefore, our algorithm saves a cost of −M − S − 3a per
Sampling points calculation.

The Scalar multiplication part entails multiplication by p+1
4k on Edwards

curves and multiplication by p+1
k on Montgomery curves. Therefore, per Scalar

multiplication, the proposed algorithm saves the cost of a doubling on Edwards
curves with Z = 1 and the cost of doubling on Edwards curves with Z �= 1 (i.e.,
8M + 3S + 9a).

The probability that S = ∅ after performing the Sampling points calcula-
tion is at most 1

2 , by Theorem 5. Hence, we expect the proposed algorithm to
save at least

1
2
(−M − S − 3a) +

1
2
(8M + 3S + 9a − M − S − 3a) = 3M +

1
2
S +

3
2
a,

per Sampling points and Scalar multiplication calculation.

How to Construct CSIDH on Edwards Curves 533

Table 2. Computational costs on each CSIDH algorithm

Montgomery [16] Edwards (y-coordinate) Edwards (w-coordinate)

M 328195 332707 328055

S 116915 116893 116857

a 332822 355533 331844

M + 0.8 × S + 0.05 × a 438368 443999 438133

The difference between Calculation of isogenies on Edwards curves and
on Montgomery curves is only in calculating the isogenies. The computational
cost of calculating (2s + 1)-degree isogenies on Edwards curves is (6s + 2)M +
8S + (4s + 6)a and that of the two s-th powers, while the computational cost
on Montgomery curves is (6s + 2)M + 8S + (4s + 8)a and that of the two s-th
powers. Therefore, the proposed algorithm saves 2a per isogeny calculation.

From the above, we conclude that our proposed CSIDH algorithm using only
Edwards curves is as fast as or a little bit faster than the algorithm proposed by
Meyer and Reith.

6.2 Implementations

We measured average of computational costs of 50000 times, respectively. The
results are summarized in Table 2. Here, p was chosen as 4 · �1 · · · �74 − 1, where
�1 through �73 were the smallest 73 odd primes and �74 = 587, and m was chosen
as 5. These are parameters proposed in [4]. Secret keys were randomly taken for
50000 times.

As shown in Table 2, there is no big difference of computational costs
among the three different algorithms. The algorithm on Edwards curves with
w-coordinates is slightly faster than the other one in our implementation.

Remark 2. Our implementation of the algorithm on Montgomery curves is based
on the algorithm proposed by Meyer and Reith [16]. There are some techniques to
make the CSIDH algorithm faster [5,15]. We did not implement these techniques.
However, as far as we know, these techniques affect only a little or can be also
adapted to the our proposed algorithms. Therefore, even if we consider these
techniques, we can conclude that there is no big difference of computational
costs among the above three different algorithms.

7 Conclusion and Future Work

7.1 Conclusion

We proved four important theorems (Theorems 4, 5, 6 and 7) on Edwards curves
and used them to construct a CSIDH algorithm on Edwards curves with w-
coordinates. Theorem 4 shows that if w(P) and w(2P) are square, then w(2P)
can be treated as a point in Ed[πp + 1], and if w(P) is square and w(2P) is not

534 T. Moriya et al.

square, then 1/w(2P) can be treated as a point in Ed[πp − 1]. Theorem 5 claims
that the number of w(P) such that w(P) and w(2P) are square is equal to the
number of w(P) such that w(P) is square and w(2P) is not square. Theorem 6
shows the probability that w

(
p+1
4�i

2P
)

represents a point of order �i is almost

1 − 1
�i

. Theorem 7 proves that an Edwards coefficient d is unique up to Fp-
isomorphism. From these four theorems, we extended the CSIDH algorithm to
that on Edwards curves with w-coordinates over Fp.

We compared complexities of the our proposed algorithm and the sate of the
art one of Meyer and Reith. We showed that our proposed algorithm is as fast
as (or a little bit faster than) the one of Meyer and Reith. Moreover, we imple-
mented three different CSIDH algorithms (the algorithm on Montgomery curves
[16], that on Edwards curves with y-coordinates, and that on Edwards curves
with w-coordinates), and compared computational costs of them. There was no
big difference of computational costs among the three different algorithms. The
algorithm on Edwards curves with w-coordinates was slightly faster than the
other one in our implementation.

7.2 Future Work

In this paper, we succeeded in extending the simple CSIDH algorithm to that on
Edwards curves with w-coordinates. On the other hand, it is important to con-
sider a constant time CSIDH algorithm. There are some proposals for constant
CSIDH time algorithms [5,15,22]. It is a future work to extend these constant
CSIDH algorithms to that on Edwards curves with w-coordinates.

Acknowlegements. This work was supported by JST CREST Grant Number JPM
JCR14D6, Japan.

A Compute group operations and isogenies

Here, we explain how to compute group operations and isogenies on Montgomery
curves and Edwards curves.

A.1 Montgomery curves

The doublings formula (1) can be computed as

t1 ← X + Z, t2 ← X − Z, t1 ← t21, t2 ← t22, s ← t1 − t2, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A + 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

If Z = 1, the doublings formula (1) can be computed as

t1 ← X + 1, t1 ← t21, s ← 2 · X, s ← 2 · s, t2 ← t1 − s, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A + 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

How to Construct CSIDH on Edwards Curves 535

The addition formula (2) can be computed as

t1 ← X1 + Z1, s1 ← X2 + Z2, t2 ← X1 − Z1, s2 ← X2 − Z2, t ← t1 · s2,

s ← t2 · s1, X3 ← t + s, Z3 ← t − s, X3 ← X2
3 · Z0, Z3 ← Z2

3 · X0.

The formula for calculating φ(P) (3) can be computed as

ti ← Xi + Zi, si ← Xi − Zi, ti ← ti · (X − Z), si ← si · (X + Z),

X ′ ←
s∏

i=1

(ti − si), Z ′ ←
s∏

i=1

(ti + si), X ′ ← X · (X ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (4) can be computed as

c ← 2 · C, a ← A + c, d ← A − c, a′ ←
s∏

i=1

(Xi + Zi),

d′ ←
s∏

i=1

(Xi − Zi), a′ ← (a′)4, d′ ← (d′)4, a′ ← as · a′, d′ ← ds · d′,

a′ ← a · (a′)2, d′ ← d · (d′)2, A′ ← 2 · (a′ + d′), C ′ ← a′ − d′.

A.2 Edwards curves

The doublings formula (6) can be computed as

t1 ← Y 2, t2 ← Z2, t3 ← C − D, t4 ← t2 − t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, t1 ← t1 · t2, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

If Z = 1, the doublings formula (6) can be computed as

t1 ← Y 2, t3 ← C − D, t4 ← 1 − t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

The addition formula (7) can be computed as

t1 ← Y1 ·Z2, t2 ← Y2 ·Z1, s1 ← t1 + t2, s2 ← t1 − t2, s1 ← s21, s2 ← s22,

s1 ← (Z0 − Y0) · s1, s2 ← (Z0 + Y0) · s2, Y3 ← s1 − s2, Z3 ← s1 + s2.

The formula for calculating φ(P) (8) can be computed as

ti ← Z · Yi, t′i ← Zi · Y, s1 ←
s∏

i=1

(ti + t′i), s2 ←
s∏

i=1

(ti − t′i), s1 ← s21,

s2 ← s22, s1 ← (Z +Y) ·s1, s2 ← (Z −Y) ·s2, Y ′ ← s1−s2, Z ′ ← s1+s2.

536 T. Moriya et al.

The formula for calculating E′ (9) can be computed as

D′ ←
s∏

i=1

Yi, C ′ ←
s∏

i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds · D′, C ′ ← Cs · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

The formulas (10, 11, 12) can be computed similarly as the formulas on Mont-
gomery curves. The formula for calculating E′ (13) can be computed as

D′ ←
s∏

i=1

(Wi + Zi), C ′ ←
s∏

i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds · D′, C ′ ← (2 · 2 · 2 · 2 · C)s · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

References

1. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization Project (2017)

2. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

3. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 3

4. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

5. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 9

6. Costello, C., Hisil, H.: A simple and compact algorithm for sidh with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

7. Costello, C., Smith, B.: Montgomery curves and their arithmetic: the case of large
characteristic fields. IACR Cryptology ePrint Archive, 2017:212 (2017). https://
ia.cr/2017/212

8. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs Codes Cryptogr. 78, 425–440 (2016)

9. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–422
(2007)

10. Farashahi, R.R., Hosseini, S.G.: Differential addition on twisted edwards curves.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 366–378.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 21

https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://ia.cr/2017/212
https://ia.cr/2017/212
https://doi.org/10.1007/978-3-319-59870-3_21

How to Construct CSIDH on Edwards Curves 537

11. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

13. Kim, S., Yoon, K., Park, Y.-H., Hong, S.: Optimized method for computing odd-
degree isogenies on Edwards curves. IACR Cryptology ePrint Archive, 2019:110
(2019). https://ia.cr/2019/110. (to appear at ASIACRYPT 2019)

14. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
15. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-

time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17

16. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

18. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

19. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate
models of elliptic curves. Math. Comput. 85, 1929–1951 (2016)

20. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on Edwards curves.
IACR Cryptology ePrint Archive, 2019:843 (2019). https://ia.cr/2019/843

21. National Institute of Standards and Technology. Post-quantum cryptography
standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

22. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 2

23. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)

26. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-0-387-09494-6

27. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. A 305–347
(1971)

28. Waterhouse, W.C.: Abelian varieties over finite fields. In: Annales scientifiques de
l’École Normale Supérieure, pp. 521–560 (1969)

https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-642-25405-5_2
https://ia.cr/2019/110
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://ia.cr/2019/843
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-0-387-09494-6

Policy-Based Sanitizable Signatures

Kai Samelin1(B) and Daniel Slamanig2

1 TÜV Rheinland i-sec GmbH, Hallbergmoos, Germany
kaispapers@gmail.com

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Sanitizable signatures are a variant of signatures which allow
a single, and signer-defined, sanitizer to modify signed messages in a con-
trolled way without invalidating the respective signature. They turned
out to be a versatile primitive, proven by different variants and exten-
sions, e.g., allowing multiple sanitizers or adding new sanitizers one-
by-one. However, existing constructions are very restricted regarding
their flexibility in specifying potential sanitizers. We propose a differ-
ent and more powerful approach: Instead of using sanitizers’ public keys
directly, we assign attributes to them. Sanitizing is then based on poli-
cies, i.e., access structures defined over attributes. A sanitizer can sani-
tize, if, and only if, it holds a secret key to attributes satisfying the policy
associated to a signature, while offering full-scale accountability.

1 Introduction

Unforgeability of a digital signature scheme prevents deriving signatures for a
message not explicitly endorsed by the signer. This is a desired property in
many use cases of signatures. However, it turned out that certain controlled
modifications of signed messages are beneficial in many scenarios [ABC+15,
BPS17,DDH+15,GGOT16]. Over the years, different types of signature schemes
supporting such modifications have been proposed, including homomorphic sig-
natures [ABC+15,BFKW09], redactable signatures [DPSS15,JMSW02,SBZ01],
and sanitizable signatures [ACdMT05,BFF+09,BFLS10]. In this paper, we
focus on sanitizable signatures (3S henceforth). In a nutshell, a standard
3S [ACdMT05] allows for altering signer-chosen (so called admissible) blocks
of signed messages by a single semi-trusted entity, called the sanitizer, which
is specified by the signer when generating the signature. The sanitizer holds its
own key pair. By using the secret key, the sanitizer can derive modified messages
with modifiable parts (called admissible blocks) arbitrarily updated, along with
corresponding valid signatures. Moreover, given a sanitizable signature, there is
a (virtual) entity, dubbed the judge, who can determine whether a signature

The project leading to this work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 783119
secredas.
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 538–563, 2020.
https://doi.org/10.1007/978-3-030-40186-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_23

Policy-Based Sanitizable Signatures 539

comes from the original signer or has been sanitized, providing accountability.
Even though allowing arbitrary modification of signer-specified blocks seems to
give too much power to the sanitizer, 3Ss have proven to be useful in numerous
use-cases, as exhaustively discussed by Bilzhause et al. [BPS17].

After 3Ss were introduced by Ateniese et al. [ACdMT05], they received a lot
of attention in the recent past. The first thorough security model was given by
Brzuska et al. [BFF+09] (later slightly modified by Gong et al. [GQZ10]). Their
work was later extended for multiple signers/sanitizers [BFLS09,CJL12], unlink-
ability (meaning derived signatures cannot be linked to its origin) [BFLS10,
BPS13,BL17,BLL+19,FKM+16], non-interactive public-accountability (every
party can determine which party is accountable for a given valid mes-
sage/signature pair) [BPS12], limiting the sanitizer to signer-chosen val-
ues [CJ10,DS15], invisibility (meaning that an outsider cannot determine which
blocks of a message are sanitizable) [BCD+17,BLL+19,CDK+17,FH18], the
case of strongly unforgeable signatures [KSS15], and generalizations such as
merging the functionality from sanitizable and redactable signatures [KPSS18b,
KPSS19]. All these extensions make 3Ss suitable for an even broader field of
use-cases of (cf. [BPS17] for a discussion), and are directly applicable to our
contribution.

In all of the aforementioned work on sanitizable signatures, the sanitizer(s)
need(s) to be known in advance at signature generation, and there is no possibil-
ity to control sanitizing capabilities in a fine-grained way. We note that there is
the concept of trapdoor 3Ss [CLM08,LDW13,YSL10]. Although here the signer
can grant the possibility to sanitize to different entities even after generating the
initial signature, existing constructions do either not provide accountability, a
central feature of 3S, or require obtaining the trapdoor from the original signer
before sanitizing [LDW13]. This drastically restricts the applicability of 3Ss,
their flexibility, and may lead to severe problems when the specified sanitizer is
not available.

Motivation and Applications. To illustrate the problem, let us consider an
enterprise scenario where policies are associated to different types of documents
and documents of some type can be sanitized if the person performing the saniti-
zation fullfills the respective policy. For simplicity, assume that sanitizing should
be possible if the sanitizer satisfies the policy P = (IT department ∧ admin) ∨
(team leader). Now, let’s say that the head of IT department has previously
signed a document, e.g., an order, which urgently needs to be sent to reseller
but some information needs to be sanitized before, e.g., fixing the number of
new PCs ordered. Unfortunately, the original signer is not available, e.g., due
to vacation. Now, everyone satisfying P should be able to sanitize. Since this
covers a potentially large set of persons, there is no availability issue, and the
document can be sent in time. Still, the department head (the “group manager”)
can control via P who is trusted to sanitize the document if required, and there
must be means to determine who performed the sanitization in case of a dispute.
Realizing this scenario with the state-of-the-art 3S, such as using a sanitizer key

540 K. Samelin and D. Slamanig

per policy and giving the key to everyone satisfying it clearly destroys account-
ability, i.e., there is no means identifying the accountable party later on, and
thus no satisfying solution can be achieved. To tackle this situation, we intro-
duce a primitive denoted policy-based sanitizable signatures (P3S), that allows
to sanitize if, and only if, the attributes associated to a sanitizer satisfy the pol-
icy associated to the signature, while at the same time providing accountability.
We also want to discuss one application of P3S extending the scope of the one
discussed in [DSSS19]. In particular, [DSSS19] discusses an application to updat-
ing/rewriting transactions (or more generally speaking objects) in blockchains
by selectively replacing the hash function used to aggregate transactions (e.g.,
within a Merkle-tree) by a novel chameleon hash. This adds flexibility to the ini-
tial proposal of a redactable blockchain (where entire blocks can be rewritten)
due to Ateniese et al. in [AMVA17]. In [DSSS19], everyone who wants a trans-
action that can be updated/rewritten can distribute attribute-keys to users who
can potentially update the transactions of this entity. Using P3S instead of this
novel chameleon hash allows to not only hash transactions/objects but combine
it with a signature (as usual for transactions and typically also for other objects
in blockchains), we can thus achieve stronger guarantees than in [DSSS19]. In
addition to transparency, meaning that no outsider sees whether updates hap-
pened (as also achieved in [DSSS19]), using P3S provides accountability, i.e., it
can be determined who conducted the update.

Contribution and Our Techniques. We introduce the notion of policy-based
sanitizable signatures (P3S). The main idea is the following: At signing, the
signer assigns some access-policy P with each generated signature. A sanitizer
can sanitize such signatures, if, and only if, that sanitizer has a secret key sat-
isfying the associated policy P . Sanitizers can obtain new secret keys for some
attributes in a dynamic fashion by a special entity named the “group man-
ager”, essentially playing the same role as the “issuer” in dynamic group signa-
tures [BSZ05].1 The reason for this design choice stems from practical consider-
ations: Generated sanitizing keys must only be valid for a single group; In our
example mentioned above, the sanitization rights must not work for signatures
for another company. However, we also allow that signers and sanitizers can re-
use their keys across different groups, e.g., in an enterprise every employee can
hold a single key-pair and can participate in multiple groups without generating
fresh keys for every group. In our running example, this also means that, e.g.,
a supplier for our company could sanitize certain signatures using its long-term
key (if it received the corresponding secret keys).

We provide a natural formal framework for such P3S by extending the one
for 3S. We note that in the case of P3S, with a potentially large sets of sanitizers
and different sanitization keys (depending on attributes), make the formal defi-
nition much trickier and somewhat involved. Still, we believe that our proposed
definitions are clean and easy to comprehend. We also consider a notion analo-
1 If wanted, a signer can also be a group manager simultaneously, without sacrificing

accountability.

Policy-Based Sanitizable Signatures 541

gous to opening-soundness [SSE+12]. Moreover, we propose very strict privacy
notions, where even (most of) the keys are generated by the adversary, further
strengthening already existing definitions [dMPPS14,FF15,KSS15].

Finally, we provide a construction of P3S which we rigorously analyze in the
proposed framework. Technically, the heart of our construction is a recent prim-
itive called policy-based chameleon hash (PCH) [DSSS19], which is a trapdoor
collision-resistant hash-function, where the hash computation in addition to the
message takes a description of a policy as input. Loosely speaking, there are
many different trapdoors and collisions can be found if, and only if, a trapdoor
satisfying the policy used for the computation of the hash is known. Look-
ing ahead, the PCH proposed in [DSSS19] combines chameleon-hashes with
ephemeral trapdoors (CHET) [CDK+17] and CCA2-secure ciphertext-policy
attribute-based encryption (CP-ABE) scheme. In contrast to the original PCH
definition in [DSSS19], however, we have to make some minor, yet important,
alterations and show that a modified construction from [DSSS19] satisfies our
stronger notions. In this regard, we also strengthen the CH and CHET definitions
by Camenisch et al. [CDK+17] to also cover keys generated by the adversary. We
believe that this strengthened definitions are also useful in many other scenarios.
The concrete PCH construction then requires some additional tools and tricks;
In order to achieve accountability, we use an “OR-trick”, and attach a non-
interactive zero-knowledge proof of knowledge, demonstrating that either the
signer or a sanitizer performed the signing, or the sanitization, respectively. The
expressiveness of the policies supported by the P3S are determined by that of the
PCH and in particular by that of the underlying CP-ABE scheme. We chose to
build upon the existing PCH framework which covers (monotone) access struc-
tures as policies as this seems to be the most interesting setting for practical
applications.2 For a detailed intuition on the construction, see Sect. 4.

2 Preliminaries

Notation. With κ ∈ N we denote our security parameter. All algorithms implic-
itly take 1κ as an additional input. We write a←A(x) if a is assigned to the output
of algorithm A with input x. An algorithm is efficient, if it runs in probabilistic
polynomial time (PPT) in the length of its input. All algorithms are PPT, if not
explicitly mentioned otherwise. If we make the random coins r explicit, we use
the notation a←A(x; r). Otherwise, we assume that the random coins are drawn
internally. For m = (m1,m2, . . . ,ml), we call mi ∈ M, where M = {0, 1}∗, a
block. Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting
an exception. Returning output ends execution of an algorithm or an oracle.
If S is a set, we write a←r S to denote that a is chosen uniformly at random
from S. For a list we require that there is an injective, and efficiently reversible,
encoding, mapping the list to {0, 1}∗. A function ν : N → R≥0 is negligible, if it
vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that
ν(n) ≤ n−k, ∀n > n0.
2 PCHs and P3S could be defined for richer policies, e.g., polynomial sized circuits.

542 K. Samelin and D. Slamanig

Assumptions and Primitives. For our construction to work, we need a
one-way function (OWF) f , an unforgeable digital signature scheme Σ =
{PPGenΣ ,KGenΣ ,SignΣ ,VerfΣ}, and an IND-CCA2 secure, as well as key-
verifiable, encryption scheme Π = {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ ,KVrfΠ}. Key-
verifiability means that for each public key exactly only one matching secret key
can be found (e.g., Cramer-Shoup (CS) encryption [CS98] in a setting with com-
mon group parameters suffices), while KVrfΠ checks whether a given secret key sk
belongs to a pk. Moreover, we require a (labeled) simulation-sound extractable
non-interactive zero-knowledge proof system Ω = {PPGenΩ ,ProveΩ ,VerifyΩ},
and a recent primitive dubbed policy-based chameleon-hash (PCH), recently
introduced by Derler et al. [DSSS19].

For the sake of readability, a somewhat informal Camenisch and Stadler
notation [CS97] is used. For example, the notation

π←r ProveΩ{(g1) : C = EncΠ(g1)}(�)

denotes the computation of a simulation-sound extractable non-interactive zero-
knowledge proof (NIZK for short) of the plaintext g1 contained in C (which is
assumed to be public), with a non-malleable attached label � ∈ {0, 1}∗. Some-
times only “verify π” is used for verification of a proof π. It is assumed that the
public parameters, and the statement to be proven, are also input to the proof
system as the label, and are public (all those values are assumed to be part of π
as well). This is not made explicit to increase readability.

All primitives, but PCHs, are rather standard and well-known; We give the
full formal definitions of the standard building blocks in the full version of
this paper, and only fully restate PCHs. In a nutshell, a PCH = (PPGenPCH,
MKeyGenPCH,KGenPCH,HashPCH,VerifyPCH,AdaptPCH) is a trapdoor collision-
resistant hash-function, where the hash computation in addition to the message
takes a description of a policy as input. Loosely speaking there can be many dif-
ferent trapdoors and collisions can be found if, and only if, a trapdoor satisfying
the policy used for the computation of the hash is known.

Before we recall PCHs, we need to define what an access structure is.

Definition 1 (Access Structure). Let U denote the universe of attributes. A
collection A ∈ 2U\{∅} of non-empty sets is an access structure on U. The sets in
A are called the authorized sets, and the sets not in A are called the unauthorized
sets. A collection A ∈ 2U \ {∅} is called monotone if ∀ B,C ∈ A : if B ∈ A and
B ⊆ C, then C ∈ A.

Definition 2 (Policy-Based Chameleon-Hashes). A policy-based chamel-
eon-hash PCH consists of the following six algorithms (PPGenPCH,MKeyGenPCH,
KGenPCH,HashPCH,VerifyPCH,AdaptPCH), which are defined as follows [DSSS19].

PPGenPCH. On input a security parameter κ, PPGenPCH outputs the public
parameters:

ppPCH←r PPGenPCH(1κ)

We assume that ppPCH contains 1κ and is implicit input to all other algorithms.

Policy-Based Sanitizable Signatures 543

MKeyGenPCH. On input of some global parameters ppPCH, MKeyGenPCH outputs
the master private and public key (skPCH, pkPCH) of the scheme:

(skPCH, pkPCH)←r MKeyGenPCH(ppPCH)

KGenPCH. On input a secret key skPCH and a set of attributes S ⊆ U (U is the
universe), the key generation algorithm outputs a secret key skS:

skS←r KGenPCH(skPCH,S)

HashPCH. On input a public key pkPCH, access structure A ⊆ 2U and a message
m, this algorithm outputs a hash h and some randomness (sometimes referred
to as “check value”) r:

(h, r)←r HashPCH(pkPCH,m,A)

VerifyPCH. On input a public key pk, a message m, a hash h, and a randomness
r, it outputs a bit b ∈ {1, 0}.

b←VerifyPCH(pkPCH,m, h, r)

AdaptPCH. On input a secret key skS, messages m and m′, a hash h, and ran-
domness value r, the adaptation algorithm outputs a new randomness r′:

r′←r AdaptPCH(pkPCH, skS,m,m′, h, r)

We assume that the KGenPCH outputs ⊥, if S is not contained in U.
Note, we have added an additional algorithm PPGenPCH which outputs some

additional global parameters, which was not part of the original description
in [DSSS19], as we work in a slightly different setting. Correctness is straight-
forward and given in the full version of this paper.

Furthermore, we require the following security properties, where our notion
of indistinguishability below is stronger than the one introduced in [DSSS19].
We also restate the black-box construction from [DSSS19] (with some minor
rephrasing and slightly stronger primitives) in the full version of this paper. The
security proof in our stronger model is given in the full version of this paper.

Full Indistinguishability. Informally, indistinguishability requires that it be
intractable to decide whether for a chameleon-hash its randomness is fresh or
was created using the adaption algorithm. Full indistinguishability even lets the
adversary choose the secret key used in the HashOrAdapt oracle. The security
experiment grants the adversary access to a left-or-right style HashOrAdapt ora-
cle and requires that the randomnesses r does not reveal whether it was obtained
through HashPCH or AdaptPCH. The messages and secret keys are adaptively cho-
sen by the adversary.

Definition 3 (PCH Full Indistinguishability). We say a PCH scheme is fully
indistinguishable, if for every PPT adversary A, there exists a negligible function
ν such that:

Pr
î

ExpFIndistinguishability
A,PCH (κ) = 1

ó

− 1
2 ≤ ν(κ).

The corresponding experiment is depicted in Fig. 1.

544 K. Samelin and D. Slamanig

ExpFIndistinguishability
A,PCH (κ)

ppPCH r PPGenPCH(1κ)
b r {0, 1}
b∗

r AHashOrAdapt(·,·,·,·,·,b)(ppPCH)
where HashOrAdapt on input pkPCH, m, m′, skS,A, b:

(h0, r0) r HashPCH(pkPCH, m′,A)
(h1, r1) r HashPCH(pkPCH, m,A)
r1 r AdaptPCH(pkPCH, skS, m, m′, h1, r1)
return ⊥, if r0 = ⊥ ∨ r1 = ⊥
return (hb, rb)

return 1, if b = b∗

return 0

Fig. 1. PCH Full Indistinguishability

Insider Collision-Resistance. Insider collision-resistance addresses the require-
ment that not even insiders who possess secret keys with respect to some
attributes can find collisions for hashes which were computed with respect to
policies which are not satisfied by their keys (oracle KGen′

PCH). Intuitively, this
notion enforces the attribute-based access-control policies, even if the adversary
sees collisions for arbitrary attributes (oracles KGen′′

PCH and Adapt′PCH).

Definition 4 (PCH Insider Collision-Resistance). We say a PCH scheme is
insider collision-resistant, if for every PPT adversary A, there exists a negligible
function ν such that:

Pr
î

ExpCRIns
A,PCH(κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 2.

Uniqueness. We also introduce the new notion of uniqueness for PCHs, which
basically requires that it is hard to find different randomness yielding the same
hash for an adversarial chosen message and public key.

Definition 5 (PCH Uniqueness). We say a PCH scheme is unique, if for every
PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpUniqueness
A,PCH (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 3.

Note, we do not require the outsider collision-resistance notion from [DSSS19].

3 Our Framework for P3Ss

Additional Notation. We need to introduce some additional notation, to make
our representation more compact. Our notation is taken from existing work,
making reading more accessible [BCD+17,BFF+09,CDK+17]. The variable A

Policy-Based Sanitizable Signatures 545

ExpCRIns
A,PCH(κ)

ppPCH r PPGenPCH(1κ)
(skPCH, pkPCH) r MKeyGenPCH(ppPCH)
S = H = Q ∅
i 0
(m∗, r∗, m′∗, r′∗, h∗) r AKGen′

PCH(skPCH,·),KGen′′
PCH(skPCH,·),Hash′

PCH(pkPCH,·,·),Adapt′PCH(pkPCH,·,·,·,·)(pkPCH)
where KGen′

PCH on input skPCH, S:
skS r KGenPCH(sk, S)

S}
return skS

and KGen′′
PCH on input skPCH, S:

skS r KGenPCH(sk, S)
Q ∪ {(i, skS)}
i i + 1
return ⊥

and Hash′
PCH on input pkPCH, m,A:

(h, r) r HashPCH(pkPCH, m,A)
if r �= ⊥, H H ∪ {(h,A, m)}
return (h, r)

and Adapt′PCH on input pkPCH, m, m′, h, r, j:
return ⊥, if (j, skS) /∈ Q for some skS
r′

r AdaptPCH(pkPCH, skS, m, m′, h, r)
if r′ �= ⊥ ∧ (h,A, m) ∈ H for some A, H H ∪ {(h,A, m′)}
return r′

return 1, if
VerifyPCH(pk, m

∗, h∗, r∗) = VerifyPCH(pk, m
′∗, h∗, r′∗) = 1 ∧

(h∗,A, ·) ∈ H, for some A ∧ m∗ �= m′∗ ∧ A ∩ S = ∅ ∧ (h∗, ·, m∗) /∈ H
return 0

S S ∪ {

Fig. 2. PCH Insider Collision-Resistance

ExpUniqueness
A,PCH (κ)

ppPCH r PPGenPCH(1κ)
(pk∗, m∗, r∗, r′∗, h∗) r A(ppPCH)
return 1, if VerifyPCH(pk

∗, m∗, h∗, r∗) = VerifyPCH(pk
∗, m∗, h∗, r′∗) = 1 ∧ r∗ �= r′∗

return 0

Fig. 3. PCH Uniqueness

contains the set of indices of the modifiable blocks, as well as l denoting the
total number of blocks in the message m. We write A(m) = 1, if A is valid w.r.t.
m, i.e., A contains a fitting l, i.e., the correct length of m, and the indices of
the admissible blocks are actually part of m. For example, let A = ({1, 2, 3, 5},
5). Then, m must contain five blocks, and all but the fourth can be modified. If
we write mi ∈ A, we mean that mi is admissible. We also use mA for the list of
blocks in m which are admissible w.r.t. A. Likewise, we use m!A for the list of
blocks of m which are not admissible w.r.t. to A. Moreover, M is a set containing
pairs (i,m′i) for those blocks that are modified, meaning that mi is replaced
with m′i. We write M(A) = 1, if M is valid w.r.t. A, meaning that the indices to
be modified are contained in A, i.e., admissible.

546 K. Samelin and D. Slamanig

Definitional Framework. We now introduce our definitional framework. It is
based on existing work [BCD+17,BFF+09,CDK+17]. The main idea is following
the line of reasoning of group signatures. Namely, a designated entity, which we
name “the group manager” generates a key pair for its group. The group manager
can use its secret key to assign secret keys to sanitizers which are identified by
their own key pair. In contrast, signers can create signatures for a signer-chosen
group, identified by a public key. Moreover, signers do not require any prior
interaction, i.e., knowledge of the group public-key is sufficient, which is a major
difference to group signatures, and any sanitizer “authorized” by the manager
of that group can then sanitize the generated signatures. Moreover, in contrast
to group signatures, only the signer can decide which party has generated a
signature, essentially it is also the “opener” in group signatures, but the group
manager has no opening capabilities. These proofs, however, can be verified by
anyone. We keep the wording of the algorithms mostly consistent with existing
work to ease readability [BFF+09].

Definition 6 (P3S). A sanitizable signature with attribute-based sanitizing
P3S consists of the algorithms {ParGenP3S,SetupP3S,KGenSigP3S,KGenSanP3S,
SignP3S,AddSanP3S,SanitizeP3S,VerifyP3S,ProofP3S, JudgeP3S} such that:

ParGenP3S. The algorithm ParGenP3S generates the public parameters:

ppP3S←r ParGenP3S(1κ)

We assume that ppP3S contains 1κ and is implicit input to all other algo-
rithms.

SetupP3S. The algorithm SetupP3S outputs the global public key pkP3S of a P3S,
and some master secret key skP3S, i.e., it generates the group manager’s key
pair:

(skP3S, pkP3S)←r SetupP3S(ppP3S)

KGenSigP3S. The algorithm KGenSigP3S generates a key-pair for a signer:

(skSigP3S, pk
Sig
P3S)←r KGenSigP3S(ppP3S)

KGenSanP3S. The algorithm KGenSanP3S generates a key-pair for a sanitizer:

(skSanP3S, pk
San
P3S)←r KGenSanP3S(ppP3S)

SignP3S. The algorithm SignP3S generates a signature σ, on input of a master
public key pkP3S, a secret key skSigP3S, a message m, A, and some access struc-
ture A:

σ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

AddSanP3S. The algorithm AddSanP3S allows to the group manager to generate a
secret sanitizing key skS for a particular sanitizer, on input of skP3S, a public
key pkSanP3S, and some set of attributes S ⊆ U:

skS←r AddSanP3S(skP3S, pkSanP3S,S)

Policy-Based Sanitizable Signatures 547

VerifyP3S. The deterministic algorithm VerifyP3S allows to verify a signature σ on
input of a master public key pkP3S, a signer public key pkSigP3S, and a message
m. It outputs a decision b ∈ {0, 1}:

b←VerifyP3S(pkP3S, pk
Sig
P3S, σ,m)

SanitizeP3S. The algorithm SanitizeP3S allows to derive a new signature on input
of a master public key pkP3S, a signer’s public key pkSigP3S, a sanitizer’s secret
key skSanP3S, a token skS, some modification instruction M, a message m, and a
signature σ:

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

ProofP3S. The algorithm ProofP3S allows to generate a proof πP3S and some public
pk, used by the next algorithm, to find the accountable party, on input of a
master public key pkP3S, a signer’s secret key skSigP3S, a signature σ, and a
message m:

(πP3S, pk)←r ProofP3S(pkP3S, sk
Sig
P3S, σ,m)

JudgeP3S. The algorithm JudgeP3S allows to verify whether a proof πP3S is valid.
The inputs are a master public key pkP3S, a signer’s public key pkSigP3S, some
other public key pk, a proof πP3S, a signature σ, and a message m. It outputs
a decision b ∈ {0, 1}, stating whether πP3S is a valid proof that the holder of
pk is accountable for σ:

b←r JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ,m)

For each P3S it is required that the correctness properties hold. In partic-
ular, it is required that for all κ ∈ N, for all ppP3S←r ParGenP3S(1κ), for all
(pkP3S, skP3S)←r SetupP3S(ppP3S), for all (skSigP3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S), for

all l ∈ N, for all m ∈ Ml, for all A ∈ 2U, for all A ∈ {Ai | Ai(m) = 1}, for all
σ←r SignP3S(pkP3S, sk

Sig
P3S,m,A,A), we have that VerifyP3S(pkP3S, pk

Sig
P3S, σ,m) = 1

and for all (πP3S, pk)←r ProofP3S(pkP3S, sk
Sig
P3S, σ,m) we have that JudgeP3S(pkP3S,

pkSigP3S, pk
Sig
P3S, πP3S, σ,m) = 1 and pk = pkSigP3S. We also require that for all (skSanP3S,

pkSanP3S)←rKGenSanP3S(ppP3S), for all S ∈ A, for all skS←r AddSanP3S(skP3S, pkSanP3S,

S), for all M ∈ {Mi | Mi(A) = 1}, for all (σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S,

skSanP3S, skS,m, σ,M) we have that VerifyP3S(pkP3S, pk
Sig
P3S, σ

′,m′) = 1 and that
for all (π′

P3S, pk
′)←r ProofP3S(pkP3S, sk

Sig
P3S, σ

′,m′), we have that JudgeP3S(pkP3S,
pkSigP3S, pk

San
P3S, π

′
P3S, σ

′,m′) = 1 and pk′ = pkSanP3S.

Security Definitions. We now introduce our security definitions. To increase
readability, we keep the naming close to the already existing definitions for stan-
dard 3Ss [BFF+09]. However, due to the increased expressiveness of our new
primitive, this is not always possible. Namely, we require new unforgeability
and privacy definitions not considered before. This also has the effect that the
implications and separations by Brzuska et al. [BFF+09] have to be revisited.

548 K. Samelin and D. Slamanig

Overview. We first briefly introduce each security notion to ease understanding
of the formal definitions given afterwards.

– Unforgeability. Unforgeability requires that an adversary cannot (except
with negligible probability) generate any valid signature, if it does not hold
enough attributes to do so. We explicitly include the case that the adversary
can be group manager of other groups, but the challenge one.

– Immutability. Immutability requires that an adverserial group manager
cannot (except with negligible probability) create signatures with altered
immutable parts. This also includes appending or removing blocks.

– Privacy. Privacy requires that an adversary does not learn (except with
negligible probability) anything about sanitized parts, even if it can generate
all keys.

– Transparency. Transparency requires that an adversary cannot decide
(except with negligible probability) whether it sees a freshly signed signa-
ture or a sanitized one, even if it can generate all keys, but the signer’s one.

– Pseudonymity. Pseudonymity requires that an adversary does not learn
(except with negligible probability) which party is accountable for a given
sanitized signatures, even if it can generate all keys, but the signer’s one.

– Signer-Accountability. Signer-Accountability requires that an adversary
cannot (except with negligible probability) blame an honest sanitizer for a
signature it did not create, even if it can generate all keys but the sanitizer’s
one.

– Sanitizer-Accountability. Sanitzer-Accountability requires that an adver-
sary cannot (except with negligible probability) blame an honest signer for a
signature it did not create, even if it can generate all keys but the signer’s
one.

– Proof-Soundness. Proof-Soundness requires that an adversary cannot
(except with negligible probability) generate a proof for an adverserially cho-
sen signature/message pair that points to different entities, even if it can
generate all keys.

– Traceability. Traceability requires that an adversary cannot (except with
negligible probability) generate a verifying signature such that an honest
signer cannot identify the accountable party, even if it can generate all keys,
but the signer’s one.

Unforgeability. The property of unforgeability prohibits that an adversary, which
is not a signer, or the entity holding skP3S, i.e., the group manager, can gener-
ate any validating signature which verifies for honestly generated keys. This
also includes messages for which the adversary does not hold enough attributes
for, even if it sees sanitizations of such signatures. We define it in such a way
that (pkP3S, skP3S), and (skSigP3S, pk

Sig
P3S), are generated honestly. The adversary

gets access to the following oracles: (1) Sign′
P3S (where it can even use different

pkP3Ss, which models the case that secret signing keys can be re-used across
multiple “groups”), (2) GetSan which generates a new sanitizer (tracked by S),
(3) AddSan′

P3S which allows to decide which attributes a given sanitizer holds

Policy-Based Sanitizable Signatures 549

(tracked by R), (4) Sanitize′
P3S which allows sanitizing signatures for an honest

sanitizer (generated by GetSan) for the challenge group, and (5) Sanitize′′
P3S which

allows sanitizing for signatures from any other group (i.e., where the adversary is
the group manager). The adversary wins, if it can generate a valid signature for
the defined group which has never been output by either Sign′

P3S or Sanitize′
P3S

(tracked by the set M; Note, this set may be exponential in size, but member-
ship is trivial to decide by checking whether the element could have been derived
using A and A), and the adversary A does not hold enough attributes itself.

Definition 7 (P3S Unforgeability). We say a P3S scheme is unforgeable, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpUnforgeability
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 4.

Immutability. The above unforgeability definition assumes that the holder of
skP3S (the group manager) is honest. If this is not the case, however, the adver-
sary can generate its own key pair for a sanitizer and can generate skS for any
attribute-set it likes. Still, in such a case, we want to prohibit that an adver-
sary generates any signatures which are outside the span the honest signer has
endorsed for any combination of attributes. This is captured by the immutability
definition — if a block is marked as non-admissible by a signer, no one must be
able to change this block. This also includes that an adversary must not be able
to redact or append a block. Clearly, we cannot limit the adversary to change
admissible blocks, as it can grant sanitizing rights to itself.

This is modeled in such a way that the challenger draws ppP3S honestly, along
with a key-pair for the signer. The adversary only receives ppP3S and pkSigP3S. Then,
the adversary gains adaptive access to signing-oracle (where the adversary can
choose pkP3S, m, A, A, but not skSigP3S), and access to a proof-oracle. We keep a
set M which contains all possible messages which can “legally” be derived by
the adversary (bound to pkP3S, also chosen by the adversary, and tracked by M;
Again, this set may be exponential in size, but membership is trivial to decide).
If, and only if, the adversary finds a valid signature σ∗ w.r.t. pkSigP3S and pk∗,
which could never been derived from any input, it wins.

Definition 8 (P3S Immutability). We say a P3S scheme is immutable, if for
every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpImmutability
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 5.

Privacy. Privacy prohibits that an adversary can derive any useful information
from a sanitized signature. We define a very strong version, where all values can
be generated by the adversary, making our definition even stronger than existing
ones [dMPPS14,FF15].

550 K. Samelin and D. Slamanig

ExpUnforgeability
A,P3S (κ)

ppP3S r ParGenP3S(1κ)
(skP3S, pkP3S) r SetupP3S(ppP3S)
(skSigP3S, pk

Sig
P3S) r KGenSigP3S(ppP3S)

Q = S = R = M = Z ∅
i 0

(m∗, σ∗) r ASign′
P3S(·,skSigP3S

,·,·,·),GetSan(),AddSan′
P3S(skP3S,·,·),Sanitize′

P3S(pkP3S,·,·,·,·,·,·)
,Sanitize′′

P3S
(·,·,·,·,·,·,·),ProofP3S(·,skSigP3S

,·,·) (pkP3S, pk
Sig
P3S)

where Sign′
P3S on input pk′

P3S, sk
Sig
P3S, m, A, A:

σ r SignP3S(pk
′
P3S, sk

Sig
P3S, m,A,A)

if pk′
P3S = pkP3S ∧ σ �= ⊥:

Q Q ∪ {(σ, m,A,A)}
if A ∈ R, M M ∪ {M(m) | M(A) = 1}

return σ
and GetSan:

(skSanP3S, pk
San
P3S) r KGenSanP3S(ppP3S)

S S ∪ {(skSanP3S, pk
San
P3S)}

return pkSanP3S

and AddSan′
P3S on input skP3S, pkSanP3S, S

if ¬∃(·, pkSanP3S) ∈ S:
skS r AddSanP3S(skP3S, pkSanP3S, S)
return ⊥, if skS = ⊥
R R ∪ {S}
for all (σi, mi,Ai,Ai) ∈ Q, where S ∈ Ai, M ∪ {M(mi) | M(Ai) = 1}
return skS

skS r AddSanP3S(skP3S, pkSanP3S, S)
Z Z ∪ {(i, skS)}
i i + 1

and Sanitize′
P3S on input pkP3S, pk

Sig
P3S, pk

San
P3S, j, m, σ, M:

return ⊥, if ¬∃(skSanP3S, pk
San
P3S) ∈ S for some skSanP3S

(σ′, m′) r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ,M), where skS is taken from (j, skS) ∈ Z

if σ′ �= ⊥:
Q Q ∪ {(σ′, m′, ⊥, ⊥)}

return σ′

and Sanitize′′
P3S on input pk′

P3S, pk
Sig
P3S, pk

San
P3S, skS, m, σ, M:

return ⊥, if ¬∃(skSanP3S, pk
San
P3S) ∈ S ∨ pk′

P3S = pkP3S
(σ′, m′) r SanitizeP3S(pk′

P3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ,M)

return σ′

return 0, if VerifyP3S(pkP3S, pk
Sig
P3S, σ

∗, m∗) = 0 ∨ m∗ ∈ M
return 1, if (σ∗, m∗, ·, ·) /∈ Q

return 0

Fig. 4. P3S Unforgeability

In more detail, the challenger draws a bit b←r {0, 1}, while the parameters
ppP3S are generated honestly. The adversary gains access to a LoRSanit-oracle,
where it can input pkP3S, sk

Sig
P3S, sk

San
P3S, A, m0, m1, M0, M1, A, and skS (b is input

by the challenger). The oracle then signs mb with A and A. Then, the resulting
signature is sanitized to Mb(mb), while M0(m0) = M1(m1) must hold to prevent
trivial attacks. The goal of the adversary is to guess the bit b.

We stress that this definition seems to be overly strong. However, it also
preserves privacy in case of bad randomness at key generation, completely leaked
keys, and even corrupt group managers.

Policy-Based Sanitizable Signatures 551

ExpImmutability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSigP3S, pk

Sig
P3S) ←r KGenSigP3S(ppP3S)

M ← ∅
(pk∗, σ∗, m∗) ←r ASign′

P3S(·,skSigP3S
,·,·,·),ProofP3S(·,skSigP3S

,·,·)(pkSigP3S)
where Sign′

P3S on input pkP3S, sk
Sig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S, m,A,A)

return ⊥, if σ = ⊥
M ∪ {(pkP3S,M(m)) | M(A) = 1}
return σ

return 1, if:
VerifyP3S(pk

∗, pkSigP3S, σ
∗, m∗) = 1 ∧ (pk∗, m∗) /∈ M

return 0

Fig. 5. P3S Immutability

ExpPrivacy
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
b ←r {0, 1}
b∗ ←r ALoRSanit(·,·,·,·,·,·,·,·,·,·,b)(ppP3S)

where LoRSanit on input of pkP3S, sk
Sig
P3S, sk

San
P3S, A, m0, m1, M0, M1, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S, mb,A,A)

for b′ ∈ {0, 1}, (σ′
b′ , ·) ←r SanitizeP3S(pkP3S, pk

Sig
P3S, sk

San
P3S, skS, mb′ , σ,Mb′)

return ⊥, if σ′
0 = ⊥ ∨ σ′

1 = ⊥ ∨ A(m0) = 0 ∨ A(m1) = 0 ∨ M0(m0) �= M1(m1)
return σ′

b

return 1, if b = b∗

return 0

Fig. 6. P3S Privacy

Definition 9 (P3S Privacy). We say a P3S scheme is private, if for every
PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpPrivacy
A,P3S (κ) = 1

ó

− 1
2 ≤ ν(κ).

The corresponding experiment is depicted in Fig. 6.

Transparency. Transparency prohibits that an adversary can decide whether a
signature is fresh or the result of a sanitization. As for privacy, we define a very
strong version, where all values, but the signer’s key pair (skSigP3S, pk

Sig
P3S), can be

generated by the adversary, making our definition even stronger than existing
ones [dMPPS14,FF15,KSS15]. The reason why the signer’s key pair must be
generated honestly is that the signer can always pinpoint the accountable party
due to correctness.

In more detail, the challenger draws a bit b←r {0, 1}, while the parame-
ters ppP3S and the signer’s key pair (skSigP3S, pk

Sig
P3S) are generated honestly. The

adversary gains access to three oracles: SignP3S, SignOrSanit, and Proof ′P3S. The
SignP3S-oracle allows the adversary to generate new signatures; the only fixed

552 K. Samelin and D. Slamanig

input is skSigP3S. The SignOrSanit-oracle is the challenge oracle. It allows the adver-
sary A to input pkP3S, sk

San
P3S, A, m, M, A, and skS (b and skSigP3S are input by the

challenger). The oracle then signs m with A and A. Then, the resulting sig-
nature is sanitized to M(m). If b = 1, however, a fresh signature on M(m) is
generated. The resulting signature is returned to the adversary. However, we
also log the signatures generated by this oracle in a list Q. The list Q is required
to prohibit that the adversary A can generate a proof using the Proof′P3S-oracle
with signatures generated by the SignOrSanit-oracle, which directly returns the
accountable party. Thus, the adversary can only input pkP3S, skSigP3S, σ, m for
which (pkP3S, σ,m) was never input/output to the SignOrSanit-oracle. The goal
of the adversary is to guess the bit b.

We stress that this definition also seems to be overly strong. However, it also
preserves transparency in case of bad randomness at key generation, leaked keys,
and even corrupt group managers.

Definition 10 (P3S Transparency). We say a P3S scheme is transparent, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpTransparency
A,P3S (κ) = 1

ó

− 1
2 ≤ ν(κ).

The corresponding experiment is depicted in Fig. 7.

Pseudonymity. Pseudonymity prohibits that an adversary can decide which san-
itizer actually is responsible for a given signature, if it does not have access to
skSigP3S. This is related to the anonymity of group signatures [CvH91]. We formalize
it in the following way. The challenger draws a bit b←r {0, 1}, generates the public
parameters ppP3S and the signer’s key pair (skSigP3S, pk

Sig
P3S) honestly. The adversary

ExpTransparency
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSigP3S, pk

Sig
P3S) ←r KGenSigP3S(ppP3S)

b ←r {0, 1}
Q ← ∅
b∗ ←r ASignP3S(·,skSigP3S

,·,·,·),SignOrSanit(·,skSig
P3S

,·,·,·,·,·,·,b),Proof′P3S(·,skSigP3S
,·,·)(pkSigP3S)

where SignOrSanit on input of pkP3S, sk
Sig
P3S, sk

San
P3S, A, m, M, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S, m,A,A)

(σ′, m′) ←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ,M)

if b = 1:
σ′ ←r SignP3S(pkP3S, sk

Sig
P3S, m

′,A,A)
Q ← Q ∪ {(pkP3S, σ′, m′)}
return σ′

and Proof′P3S on input of pkP3S, sk
Sig
P3S, σ, m:

return ⊥, if (pkP3S, σ, m) ∈ Q
return ProofP3S(pkP3S, sk

Sig
P3S, σ, m)

return 1, if b = b∗

return 0

Fig. 7. P3S Transparency

Policy-Based Sanitizable Signatures 553

gains access to three oracles: SignP3S, LoRSanit, and Proof ′P3S. The SignP3S-oracle
allows the adversary to generate new signatures; the only fixed input is skSigP3S. The
LoRSanit-oracle is the challenge oracle. It allows the adversary A to input pkP3S,
pkSigP3S, sk

San
P3S,0, skSanP3S,1, skS0, skS1, m, and σ (b and skSigP3S are input by the chal-

lenger). The oracle then signs m with A and A. Then, the resulting signature is
sanitized to M(m), using keys skSanP3S,b and skS,b. The resulting signature is given
to the adversary. As done for transparency, we also log the signatures generated
by this oracle in a list Q. The list Q is required to prohibit that the adversary A
wants to generate a proof using the Proof ′P3S-oracle with signatures generated by
the LoRSanit-oracle, which clearly contradicts pseudonymity. Thus, the adversary
can only input pkP3S, sk

Sig
P3S, σ, m for which (pkP3S, σ,m) was never input/output

to the LoRSanit-oracle. The goal of the adversary is to guess the bit b.
Again, we stress that this definition also seems to be overly strong. However,

as also done for group signatures, secrets keys may leak over time. This definition
protects even against bad randomness at key generation.

Definition 11 (P3S Pseudonymity). We say a P3S scheme is pseudonymous,
if for every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpPseudonymity
A,P3S (κ) = 1

ó

− 1
2 ≤ ν(κ).

The corresponding experiment is depicted in Fig. 8.

Signer-Accountability. Signer-accountability prohibits that an adversary can
generate a bogus proof that makes JudgeP3S decide that a sanitizer is respon-
sible for a given signature/message pair (m∗, σ∗), but that sanitizer has never
generated this pair. This is even true, if the adversary can generate the signer’s
key pair, the global group key pair, while receiving full adaptive access to a
sanitization-oracle.

ExpPseudonymity
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSigP3S, pk

Sig
P3S) ←r KGenSigP3S(ppP3S)

Q ← ∅
b ←r {0, 1}
b∗ ←r ASignP3S(·,skSigP3S

,·,·,·),Proof′P3S(·,skSigP3S
,·,·),LoRSanit(·,pkSig

P3S
,·,·,·,·,·,·,·,b)(pkSigP3S)

where Proof′P3S on input of pkP3S, sk
Sig
P3S, σ, m:

return ⊥, if (pkP3S, σ, m) ∈ Q
return ProofP3S(pkP3S, sk

Sig
P3S, σ, m)

and LoRSanit on input of pkP3S, pk
Sig
P3S, sk

San
P3S,0, skSanP3S,1, skS0, skS1, m, σ, M, b:

for b′ ∈ {0, 1}, (σ′
b′ , m′

b′) ←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S,b′ , skS,b′ , m, σ,M)

return ⊥, if σ′
0 = ⊥ ∨ σ′

1 = ⊥
Q ← Q ∪ {(pkP3S, σ′

b, m
′
b)}

return σ′
b

return 1, if b = b∗

return 0

Fig. 8. P3S Pseudonymity

554 K. Samelin and D. Slamanig

ExpSigner-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSanP3S, pk

San
P3S) ←r KGenSanP3S(ppP3S)

b ←r {0, 1}
Q ← ∅
(pk∗

0, pk
∗
1, σ

∗, m∗, π∗) ←r ASanitize′
P3S(·,·,skSanP3S,·,·,·,·)(pkSanP3S)

where Sanitize′
P3S on input of pkP3S, pk

Sig
P3S, sk

San
P3S, skS, m, σ, M:

(σ′, m′) ←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ,M)

if σ �= ⊥, Q ← Q ∪ {(pkP3S, pkSigP3S, σ
′, m′)}

return σ′

return 1, if JudgeP3S(pk
∗
0, pk

∗
1, pk

San
P3S, π

∗, σ∗, m∗) = 1 ∧ (pk∗
0, pk

∗
1, σ

∗, m∗) /∈ Q
return 0

Fig. 9. P3S Signer-Accountability

Definition 12 (P3S Signer-Accountability). We say a P3S scheme is
signer-accountable, if for every PPT adversary A, there exists a negligible func-
tion ν such that:

Pr
î

ExpSigner-Accountability
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 9.

Sanitizer-Accountability. Sanitizer-accountability prohibits that an adversary
can generate a bogus signature/message pair (m∗, σ∗) that makes ProofP3S out-
puts a (honestly generated) generated proof πP3S which points to the signer, but
(m∗, σ∗) has never been generated by the signer. This is even true, if the adver-
sary can generate all sanitizers key pairs, while receiving full adaptive access to
a signing-oracle and a proof-oracle.

ExpSanitizer-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSigP3S, pk

Sig
P3S) ←r KGenSigP3S(ppP3S)

b ←r {0, 1}
Q ← ∅
(pk∗, σ∗, m∗, π∗) ←r ASign′

P3S(·,skSigP3S
,·,·,·),ProofP3S(·,skSigP3S

,·,·)(pkSigP3S)
where Sign′

P3S on input of pkP3S, sk
Sig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S, m,A,A)

if σ �= ⊥, Q ← Q ∪ {(pkP3S, σ′, m′)}
return σ′

(πP3S, pk) ←r ProofP3S(pk∗, skSigP3S, σ
∗, m∗)

return 1, if JudgeP3S(pk
∗, pkSigP3S, pk

Sig
P3S, πP3S, σ

∗, m∗) = 1 ∧ (pk∗, σ∗, m∗) /∈ Q
return 0

Fig. 10. P3S Sanitizer-Accountability

Policy-Based Sanitizable Signatures 555

Definition 13 (P3S Sanitizer-Accountability). We say a P3S scheme is
sanitizer-accountable, if for every PPT adversary A, there exists a negligible
function ν such that:

Pr
î

ExpSanitizer-Accountability
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 10.

Proof-Soundness. Proof-soundness essentially only handles the case that a sig-
nature σ can only be opened in an unambiguous way. Thus, the adversary’s goal
is to output two proofs which “prove” different statements for the same signa-
ture/message pair. It is related to the property of opening-soundness introduced
by Sakai et al. [SSE+12] for group signatures.

Definition 14 (P3S Proof-Soundness). We say a P3S scheme is proof-sound,
if for every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpProof-Soundness
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 11.

ExpProof-Soundness
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
((pk∗

i)0≤i≤5, σ
∗, m∗, π∗

0 , π∗
1) ←r A(ppP3S)

return 1, if JudgeP3S(pk
∗
0, pk

∗
1, pk

∗
2, π

∗
0 , σ∗, m∗) = JudgeP3S(pk

∗
3, pk

∗
4, pk

∗
5, π

∗
1 , σ∗, m∗) = 1 ∧

(pk∗
0, pk

∗
1, pk

∗
2) �= (pk∗

3, pk
∗
4, pk

∗
5)

return 0

Fig. 11. P3S Proof-Soundness

Traceability. Traceability requires that an adversary cannot generate a signature
which cannot be opened, i.e., it can be seen as the “dual” to proof-soundness. In
more detail, the adversary’s goal is to generate a verifying signature for which
an honest signer cannot generate (πP3S, pk) for which JudgeP3S outputs correct.

ExpTraceability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skSigP3S, pk

Sig
P3S) ←r KGenSigP3S(ppP3S)

(pk∗, σ∗, m∗) ←r ASignP3S(·,skSigP3S
,·,·,·),ProofP3S(·,skSigP3S

,·,·)(pkSigP3S)
return 0, if VerifyP3S(pk

∗, pkSigP3S, σ
∗, m∗) = 0

(πP3S, pk) ←r ProofP3S(pk∗, skSigP3S, σ
∗, m∗)

return 1, if JudgeP3S(pk
∗, pkSigP3S, pk, πP3S, σ

∗, m∗) = 0
return 0

Fig. 12. P3S Traceability

556 K. Samelin and D. Slamanig

Definition 15 (P3S Traceability). We say a P3S scheme is traceable, if for
every PPT adversary A, there exists a negligible function ν such that:

Pr
î

ExpTraceability
A,P3S (κ) = 1

ó

≤ ν(κ).

The corresponding experiment is depicted in Fig. 12.

Relationship of Properties. In the full version of this paper, we show that
all defined properties are independent of each other.

4 Construction

In this section we present our P3S construction. The key ingredients are
our strengthened version of a policy-based chameleon-hash PCH, a labeled
simulation-sound extractable non-interactive zero-knowledge proof system Ω
(NIZK for short), a one-way function f as well as a key-verifiable IND-CCA2
secure public key encryption scheme3 Π and an eUNF-CMA-secure signature
scheme Σ. The intuition behind our construction, given in Construction 1, is as
follows.

The global parameters of the scheme are a one-way function f , the CRS of
the NIZK, and the parameters for the encryption scheme, the signature scheme
and the policy-based chameleon hash. The group setup generates the keys of
the policy-based chameleon-hash, and a key pair of the signature scheme. The
signer generates a signature key pair and publishes the public key together with
an image y1 of a random pre-image x1 of the OWF f . The sanitizer chooses a
random pre-image x2 of the OWF as secret key and as public key y2 = f(x2). If
a sanitizers joins a group, i.e., obtains secret keys for a set of attributes S, the
group manager signs the sanitizer’s public key and additionally issues a secret
key for the PCH for attributes S.

For signing, the signer hashes the message using the PCH and signs the hash
(along with some additional information). Moreover, it computes a NIZK for
the relation R (using as label � some additional information like the admissible
changes).

((y1, c, y2,pkΠ , pkΣ), (x, r, σskS)) ∈ R ⇐⇒ (y1 = f(x) ∧ c = EncΠ(pkΠ , y1; r))
∨ (y2 = f(x) ∧ c = EncΠ(pkΠ , y2; r) ∧ VerfΣ(pkΣ , y2, σskS) = 1).

Sanitizing amounts to computing a collision for the PCH hash, updating the
respective message blocks, and again attaching a NIZK for relation R. Verifi-
cation is straightforward. Relation R is used within signing and sanitizing to
force the signer or the sanitizer to commit to having performed the action. Intu-
itively, when determining whether a signer or sanitizer has performed the action,

3 Although key-verifiability is no property often explicitly used within IND-CCA2
encryption schemes, most encryption schemes are key-verifiable.

Policy-Based Sanitizable Signatures 557

the ProofP3S algorithm (having access to the signer’s secret key) can simply
decrypt c and prove correct decryption.

It may be tempting to think that the weaker notion of witness indis-
tinguishability is sufficient for our construction, but it turns out that one
requires zero-knowledge. Moreover, we stress that due to the underlying con-
struction paradigm, we do not consider the strong privacy notion of unlinka-
bility [BFLS10], i.e., that sanitized signatures cannot be linked to its origin,
which seems to be very hard to achieve with the current construction paradigm.
However, finding such a construction may have its merits. Formally, for our
construction, we can show the following:

Theorem 1. If f is a one-way function, Π is IND-CCA2 secure and key-
verifiable, Σ is eUNF-CMA secure, Ω is zero-knowledge and simulation-sound
extractable, while PCH is fully indistinguishable, insider collision-resistant, and
unique, the construction of a P3S given in Construction 1 is unforgeable,
immutable, private, transparent, pseudonymous, signer-accountable, sanitizer-
accountable, proof-sound, and traceable. Likewise, the construction is correct, if
the underlying primitives are correct (and sound, resp.).

The proof of the theorem is given in the full version of this paper. We give a
sketch below.

Proof (Sketch). Unforgeability follows from the zero-knowledge and extractabil-
ity property of the used proof system, the insider collision-resistance of the used
PCH, as well as the one-wayness of f , and unforgeability of the used signature
scheme. Immutability directly follows from the unforgeability of the used sig-
nature scheme. Privacy follows from the zero-knowledge property of the used
proof system, the full indistinguishability of the used PCH, and somewhat sur-
prisingly, the uniqueness of PCH. Likewise, transparency follows from the zero-
knowledge property of the used proof system, and the IND-CCA2 security of
the used encryption scheme. The same is true for pseudonymity, but we also
require, again somewhat surprising, the uniqueness of the used PCH. Both signer-
accountability, and sanitizer-accountability, follow from the extractability of the
used proof system, and the one-wayness of f . Proof-soundness follows from key-
verifiability of the used encryption scheme, and the extractability of the used
proof system. Finally, traceability follows from the extractability of the used
proof system.

Instantiation. The description of Construction 1 is as compact as reasonable.
For a concrete instantiation, there are some aspects which can be optimized. Cur-
rently, it seems to be advisable to stick to elliptic curves and in particular to
the type-3 bilinear group setting (a setting where we assume the SXDH assump-
tion to hold), due to the efficiency of the CP-ABE schemes in this setting (used
by the PCH). Consequently, we consider the OWF f to be simply the function
f(x) = gx for x ∈ Zq and g being a generator of a group G of prime order q (and
in particular one of the base groups of a bilinear group). Then, as an encryption

558 K. Samelin and D. Slamanig

ParGenP3S(1
κ) : On input a security parameter κ, let ppΠ←r PPGenΠ(1κ),

crsΩ←r PPGenΩ(1κ).a Finally, choose a one-way function f ,
let ppΣ←r PPGenΣ(1κ), and ppPCH←r PPGenPCH(1κ). Return
ppP3S←(crsΩ , ppΠ , ppΣ , ppPCH, f).

SetupP3S(ppP3S) : Let (skPCH, pkPCH)←r MKeyGenPCH(ppPCH) and
(skΣ , pkΣ)←r KGenΣ(ppΣ). Return (skP3S, pkP3S)←((skPCH, skΣ), (pkPCH,
pkΣ)).

KGenSigP3S(ppP3S) : Draw x1←r Df , (skΠ , pkΠ)←r KGenΠ(ppΠ), let y1←f(x1)

and (sk′
Σ , pk′

Σ)←rKGenΣ(ppΣ).
Return (skSigP3S, pk

Sig
P3S)←((x1, sk

′
Σ , skΠ), (y1, pk

′
Σ , pkΠ)).

KGenSanP3S(ppP3S) : Draw x2←r Df . Let y2←f(x2). Return (x2, y2).

SignP3S(pkP3S, sk
Sig
P3S, m,A,A) : If A = ∅, return ⊥. Let (h, r)←r HashPCH(pkPCH, m,

A), σm←r SignΣ(sk′
Σ , (pkP3S, pk

Sig
P3S,A, m!A, h,A)), and c←r EncΠ(pkΠ , y1). Let

π←r ProveΩ{(x1, x2, σskS) : (y1 = f(x1) ∧ c = EncΠ(pkΠ , y1)) ∨ (y2 =
f(x2) ∧ c = EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σskS) = 1)}(�), where
� = (ppP3S, pkP3S, pk

Sig
P3S, h, r, m,A,A, mA, m!A, σm, c). Return σ←(h, r,A, σm,A,

π, c).
AddSanP3S(skP3S, pk

San
P3S, S) : If S /∈ 2U, return ⊥. Let

σskS←r SignΣ(skΣ , (pkSanP3S, pkP3S)) and sk′
S←r KGenPCH(skPCH, S). Return

skS←(σskS , sk
′
S).

VerifyP3S(pkP3S, pk
Sig
P3S, σ, m) : If π or σm is not valid, return ⊥. Check that m!A is

contained in m in the correct sequence at the right positions (derivable from
A). If VerifyPCH(pkPCH, m, r, h) = 1, return 1. Otherwise, return 0.

SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ,M) : If σskS or σ is not valid, return

⊥. Let r′←r AdaptPCH(pkPCH, sk′
S, m,M(m), h, r), c′←rEncΠ(pkΠ , y2), and

π′←r ProveΩ{(x1, x2, σskS) : (y1 = f(x1) ∧ c′ = EncΠ(pkΠ , y1)) ∨ (y2 =
f(x2) ∧ c′ = EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σskS) = 1)}(�), where
� = (ppP3S, pkP3S, pk

Sig
P3S, h, r′,M(m),A,A, mA, m!A, σm, c′). Let (σ′, m′)←((h, r′,

A, σm,A, π′, c′),M(m)). If (σ′, m′) is not valid, return ⊥. Return (σ′, m′).
ProofP3S(pkP3S, sk

Sig
P3S, σ, m) : If σ is not valid, return ⊥. Let pk←DecΠ(skΠ , c). Let

πP3S←rProveΩ{(skΠ) : pk = DecΠ(skΠ , c) ∧ KVrfΠ(skΠ , pkΠ) = 1}(�), where
� = (ppP3S, pkP3S, pk

Sig
P3S, σ, pk, m). Return (πP3S, pk).

JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ, m) : If σ or πP3S is not valid, return 0. Return 1.

a Note, we need a different CRS for each language L involved. However, we keep the description

short, and thus do not make this explicit.

Construction 1. Our P3S

scheme to encrypt images under f and that is key-verifiable, we can use Cramer-
Shoup encryption in either of the two base groups. For completeness, we show
key-verifiability of CS-encryption where keys are generated with respect to a com-
mon group description (including both generators) in the full version of this paper.
Now, the signature keys (sk′

Σ , pk′
Σ) used by signer to produce signatures can be

any arbitrary eUNF-CMA-secure scheme. In contrast, the signature scheme asso-
ciated to keys (skΣ , pkΣ) used by the group manager inAddSanP3S to certify the y2

Policy-Based Sanitizable Signatures 559

values of sanitizers need to be chosen with care: we need a signature scheme with
message space being one of the base groups of the bilinear group and thus the
natural choice is a structure preserving signature scheme [AFG+10]. Moreover,
the SPS (e.g., Groth [Gro15]) needs to be compatible with efficient labeled NIZK;
the latter can be instantiated from standard Σ-protocols using the compiler by
Faust et al. [FKMV12] and supporting labels is straightforward (cf. [ABM15]).
As PCH instantiation we can use a strengthened version of the PCH by Derler et
al. [DSSS19]. See the full version of this paper.

Efficiency. Our scheme is reasonably efficient. The group manager only needs to
create a key-pair for a PCH, while the sanitizer only needs to evaluate a one-way
functions (the signer additionally needs to draw a key-pair for an encryption
scheme Π). For signing, the signer needs to generate a hash, a signature, an
encryption, and a simple NIZK. For sanitizing, the sanitizer has to create an
encryption, adapt a hash, and attaches a simple NIZK. Granting sanitizing rights
boils down to creating a signature and creating a key for the PCH. Verification
is also straightforward: A verifier checks a signature and the NIZK. Likewise,
proof-generation is a simple decryption and a NIZK proving that decryption
was done honestly. Checking a proof is verifying a proof and a signature. Thus,
ignoring the NIZK and the encryptions, our scheme is comparable to existing,
way less expressive, constructions.

5 Conclusion

We have introduced the notion of policy-based sanitizable signatures, which are
an extension to standard sanitizable signature schemes, along with a provably
secure construction. Our construction features, for the first time, full account-
ability. In our new primitive, a sanitizer is no longer appointed by the signer at
signature generation, but rather can sanitize based on a set attributes it has.

References

[ABC+15] Ahn, J.H., et al.: Computing on authenticated data. J. Cryptol. 28, 2
(2015). https://doi.org/10.1007/s00145-014-9182-0

[ABM15] Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE
password-authenticated key exchange protocol. In: 2015 IEEE Symposium
on Security and Privacy (SP 2015), pp. 571–587 (2015)

[ACdMT05] Ateniese, G., et al.: Sanitizable signatures. ESORICS 2005. LNCS, vol.
3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

[ADK+13] Abe, M., et al.: Tagged one-time signatures: tight security and optimal
tag size. PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 20

[AdM04] Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon
hashes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 165–179. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30598-9 12

https://doi.org/10.1007/s00145-014-9182-0
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-540-30598-9_12
https://doi.org/10.1007/978-3-540-30598-9_12

560 K. Samelin and D. Slamanig

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-preserving signatures and commitments to group elements. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 12

[AMVA17] Ateniese, G., Magri, B., Venturi, D., Andrade, E.R..: Redactable
blockchain - or - rewriting history in bitcoin and friends. In: EuroS&P,
pp. 111–126 (2017)

[BCD+17] Beck, M.T., et al.: Practical strongly invisible and strongly account-
able sanitizable signatures. ACISP 2017. LNCS, vol. 10342, pp. 437–452.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 23

[BFF+09] Brzuska, C., et al.: Security of sanitizable signatures revisited. PKC 2009.
LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00468-1 18

[BFKW09] Boneh, D., et al.: Signing a linear subspace: signature schemes for net-
work coding. PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 5

[BFLS09] Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D..: Santizable sig-
natures: how to partially delegate control for authenticated data. In:
BIOSIG, pp. 117–128 (2009)

[BFLS10] Brzuska, C., et al.: Unlinkability of sanitizable signatures. PKC 2010.
LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13013-7 26

[BL17] Bultel, X., Lafourcade, P.: Unlinkable and strongly accountable saniti-
zable signatures from verifiable ring signatures. In: Capkun, S., Chow,
S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 203–226. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02641-7 10

[BLL+19] Bultel, X., et al.: Efficient invisible and unlinkable sanitizable signatures.
PKC 2019, Part 1. LNCS, vol. 11442, pp. 159–189. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 6

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signa-
ture scheme. J. Cryptol. 16(3), 185–215 (2003). https://doi.org/10.1007/
s00145-002-0120-1

[BPS12] Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountabil-
ity for sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C.
(eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40012-4 12

[BPS13] Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable
sanitizable signatures without group signatures. In: Katsikas, S., Agudo,
I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-53997-8 2

[BPS17] Bilzhause, A., Pöhls, H.C., Samelin, K.: Position paper: the past, present,
and future of sanitizable and redactable signatures. In: Ares, pp. 87:1–87:9
(2017)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS, 62–73 (1993)

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: 2007 IEEE Symposium on Security and Privacy (SP 2007),
pp. 321–334 (2007)

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-319-60055-0_23
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-030-02641-7_10
https://doi.org/10.1007/978-3-030-17253-4_6
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-53997-8_2

Policy-Based Sanitizable Signatures 561

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30574-3 11

[CDK+17] Camenisch, J., et al.: Chameleon-hashes with ephemeral trapdoors - and
applications to invisible sanitizable signatures. In: PKC, Part II (2017).
https://doi.org/10.1007/978-3-662-54388-7 6

[CJ10] Canard, S., Jambert, A.: On extended sanitizable signature schemes. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 13

[CJL12] Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with sev-
eral signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31410-0 3

[CLM08] Canard, S., et al.: Trapdoor sanitizable signatures and their application to
content protection. ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 16

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–
424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 22

[DDH+15] Demirel, D., et al.: PRISMACLOUD D4.4: overview of functional and
malleable signature schemes. Technical report, H2020 Prismacloud (2015).
www.prismacloud.eu

[DHLW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 35

[dMPPS14] De Meer, H., et al.: On the relation between redactable and sanitizable
signature schemes. ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-04897-0 8

[DPSS15] Derler, D., et al.: A general framework for redactable signatures and new
constructions. ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30840-1 1

[DS15] Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable sig-
natures and a black-box construction of strongly private schemes. In: Au,
M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 25

[DS19] Derler, D., Slamanig, D.: Key-homomorphic signatures: definitions and
applications to multiparty signatures and non-interactive zero-knowledge.
Des. Codes Cryptogr. 87(6), 1373–1413 (2019). https://doi.org/10.1007/
s10623-018-0535-9

[DSSS19] Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and con-
trolled rewriting in blockchains: chameleon-hashing gone attribute-based.
In: NDSS (2019)

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-642-11925-5_13
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-540-68914-0_16
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46416-6_22
www.prismacloud.eu
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-319-04897-0_8
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-26059-4_25
https://doi.org/10.1007/s10623-018-0535-9
https://doi.org/10.1007/s10623-018-0535-9

562 K. Samelin and D. Slamanig

[FF15] Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over
encrypted data (full version) (2015, ePrint)

[FH18] Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key
encryption are equivalent. In: Preneel, B., Vercauteren, F. (eds.) ACNS
2018. LNCS, vol. 10892, pp. 202–220. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 11

[FKM+16] Fleischhacker, N., et al.: Efficient unlinkable sanitizable signatures from
signatures with re-randomizable keys. PKC 2016. LNCS, vol. 9614,
pp. 301–330. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49384-7 12

[FKMV12] Faust, S., et al.: On the non-malleability of the Fiat-Shamir transform.
INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34931-7 5

[GGOT16] Ghosh, E., et al.: Verifiable zero-knowledge order queries and updates for
fully dynamic lists and trees. SCN 2016. LNCS, vol. 9841, pp. 216–236.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 12

[GQZ10] gong, J., et al.: Fully-secure and practical sanitizable signatures. Inscrypt
2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21518-6 21

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://
doi.org/10.1007/11935230 29

[Gro15] Groth, J.: Efficient fully structure-preserving signatures for large mes-
sages. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 239–259. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48797-6 11

[JMSW02] Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature
schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–
262. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-
7 17

[KPSS18a] Krenn, S., et al.: Chameleon-hashes with dual long-term trapdoors and
their applications. AFRICACRYPT 2018. LNCS, vol. 10831, pp. 11–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 2

[KPSS18b] Krenn, S., et al.: Protean signature schemes. CANS 2018. LNCS, vol.
11124, pp. 256–276. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-00434-7 13

[KPSS19] Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Fully invisible protean
signatures schemes (2019, ePrint)

[KR00] Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS, pp. 143–154
(2000)

[KSS15] Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable sig-
natures. In: DPM/QASA, pp. 100–117 (2015). https://doi.org/10.1007/
978-3-319-29883-2 7

[LDW13] Lai, J., Ding, X., Wu, Y.: Accountable trapdoor sanitizable signatures. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 117–131.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-
4 9

https://doi.org/10.1007/978-3-319-93387-0_11
https://doi.org/10.1007/978-3-319-93387-0_11
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-319-44618-9_12
https://doi.org/10.1007/978-3-642-21518-6_21
https://doi.org/10.1007/978-3-642-21518-6_21
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-319-89339-6_2
https://doi.org/10.1007/978-3-030-00434-7_13
https://doi.org/10.1007/978-3-030-00434-7_13
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-642-38033-4_9
https://doi.org/10.1007/978-3-642-38033-4_9

Policy-Based Sanitizable Signatures 563

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
secure functional encryption: attribute-based encryption and (hierarchi-
cal) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 4

[SBZ01] Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim,
K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45861-1 22

[SSE+12] Sakai, Y., et al.: On the security of dynamic group signatures: preventing
signature hijacking. PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 42

[YAHK11] Yamada, S., et al.: Generic constructions for chosen-ciphertext secure
attribute based encryption. PKC 2011. LNCS, vol. 6571, pp. 71–89.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-
8 5

[YSL10] Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made
easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
53–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13708-2 4

https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/3-540-45861-1_22
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/978-3-642-19379-8_5
https://doi.org/10.1007/978-3-642-19379-8_5
https://doi.org/10.1007/978-3-642-13708-2_4
https://doi.org/10.1007/978-3-642-13708-2_4

Traceable Inner Product Functional
Encryption

Xuan Thanh Do1,2(B), Duong Hieu Phan2, and David Pointcheval3,4

1 Department of Mathematics, Vietnam National University, Hanoi, Vietnam
{xuan-thanh.do,duong-hieu.phan}@unilim.fr

2 XLIM, University of Limoges, CNRS, Limoges, France
3 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

4 Inria, Paris, France
david.pointcheval@ens.fr

Abstract. Functional Encryption (FE) has been widely studied in the
last decade, as it provides a very useful tool for restricted access to sen-
sitive data: from a ciphertext, it allows specific users to learn a function
of the underlying plaintext. In practice, many users may be interested
in the same function on the data, say the mean value of the inputs, for
example. The conventional definition of FE associates each function to
a secret decryption functional key and therefore all the users get the
same secret key for the same function. This induces an important prob-
lem: if one of these users (called a traitor) leaks or sells the decryption
functional key to be included in a pirate decryption tool, then there is
no way to trace back its identity. Our objective is to solve this issue by
introducing a new primitive, called Traceable Functional Encryption: the
functional decryption key will not only be specific to a function, but to
a user too, in such a way that if some users collude to produce a pirate
decoder that successfully evaluates a function on the plaintext, from the
ciphertext only, one can trace back at least one of them.

We propose a concrete solution for Inner Product Functional Encryp-
tion (IPFE). We first remark that the ElGamal-based IPFE from Abdalla
et al. in PKC ’15 shares many similarities with the Boneh-Franklin traitor
tracing from CRYPTO ’99. Then, we can combine these two schemes in
a very efficient way, with the help of pairings, to obtain a Traceable IPFE
with black-box confirmation.

Keywords: Functional Encryption · IPFE · Traceability

1 Introduction

Public Key Encryption (PKE) enables people to securely communicate and share
sensitive data to others over public channels. Functional Encryption (FE) [9,25],
proposed by Boneh, Sahai and Waters, overcomes some limitations of PKE.
It allows recipients to recover encrypted data in a more fine grained manner.
Instead of revealing all-or-nothing of the original encrypted data as in PKE,
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 564–585, 2020.
https://doi.org/10.1007/978-3-030-40186-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_24

Traceable Inner Product Functional Encryption 565

recipients can get the evaluation of (statistical) functions on the data. As the
function can contain an access control that checks some relation between the
identity in the functional decryption key and the authorized identity in the plain-
text, this primitive generalizes Identity Based Encryption (IBE) and Attribute
Based Encryption (ABE), and actually received a large interest from the com-
munity. However, there is still no efficient construction of functional encryption
for general functions. Currently, there are only simple and effective constructions
for linear and quadratic functions [1,4,6].

In many practical applications, it is common that people only care about
several specific functions on the data, for example the mean value of the data.
Allowing many people to get access to the same function, with possible mali-
cious users, has not been really covered by the previous works: the functional
decryption key is derived from the function and the master secret key, but inde-
pendently of the user. Therefore, all the users are given the same key, and if this
key is leaked, no one can identify the origin of the leakage. The tracing problem
becomes critical for this situation. We define a new primitive, called Traceable
Functional Encryption (TFE).

Traitor tracing is a mechanism enabling an authority or an arbitrary party
(who is a delegated party in the system to perform tracing tasks) can identify
malicious users (traitors) who possibly colluded to produce a pirate decoder that
behaves the same as a normal decryption. The very first traitor tracing scheme
has been introduced by Chor, Fiat and Naor [13] and made use of combinatorial
tools. The first algebraic traitor tracing scheme has been introduced by Boneh
and Franklin [7], and is the basis for many subsequent schemes. A large num-
ber of schemes, in pairing-based setting or in lattice-based setting, have been
introduced, we list a few of them [3,8,10–12,14,15,17,18,23]. A taxonomy of
the traitor tracing schemes can be found in [3,15]. The classical tracing notion
requires that the pirate decoder is able to decrypt random messages for being
traced. In [15], it is shown that there is a flaw in some tracing systems with
this notion and a fix is proposed with a stronger notion which only requires the
decoder to distinguish two messages of its choice. This is a very strong notion
and we will consider it in this work.

Concerning advanced primitives, traceability in IBE [2,5,16,24] and in ABE
[19–22] have been considered. Achieving traceability is usually very expensive.
Adding traitor tracing to public-key encryption indeed requires a very high extra
cost: even in the bounded model, the cost grows proportionally with the number
of traitors. Interestingly, in the case of inner-product functional encryption, we
can hope for a better deal. Indeed, in IPFE, as the number of corrupted keys
is anyway bounded by the dimension of the plaintext vector and the ciphertext
size is linear in this dimension, we can hope that adding traceability does not
need such a huge extra cost. This is also what we achieve in this paper: adding
certain level of traceability for inner-product functional encryption does not
cost much. We achieve this in the discrete logarithm setting where we can note
a clear similarity in the design of the first inner-product functional encryption
scheme [1] and the Boneh-Franklin traitor tracing [7] and thus can combine them

566 X. T. Do et al.

into a traceable inner-product functional encryption. It leaves as an open prob-
lem to get any level of traceability in other settings of inner-product functional
encryption.

We eventually provide a construction for traceable inner-product functional
encryption with black-box confirmation. Our construction is semantically secure
in a more general setting than in IPFE as the adversary can choose both iden-
tity and function to query the corresponding functional secret key. Concerning
traceability, it achieves one-target tracing : an adversary A is allowed to ask secret
keys for one target function only, but many identities, and then produces a pirate
decoder for this function. This is a basic step to be able to achieve higher level
of traceability. Note that this is the security level we manage to prove, but this
is still an open problem to prove it secure when the adversary can ask keys for
several functions. At least, we did not find any attack in this stronger setting
either.

This notion captures already useful real-life applications: suppose a group
of users possesses decryption keys for the average functionality and leaks them
to the pirate, if the pirate can produce a new decoder for this average function
then one can trace one of the traitors. One might worry that a pirate decoder
outputting an altered function (say 2F (x) instead of F (x)) might not be traced.
However, as far as the target function can be computed (from public information)
from the outputted function of the pirate decoder, then the traitors can still be
traced. In fact, if the target function is F � and if the pirate can output a decoder
D that computes F = 2F � then the tracer can still consider as if the decoder
would output F � because anyone can compute F � from F . More formally, one
can define a new decoder D� for F � (computable from F) from D for F and do
tracing on D� instead of D. We also notice that one-target tracing defeats cloned
pirate decoders. In fact, the most popular way in practice to produce a pirate
decoder is to clone a legitimate one with its secret key. By using the existing
IPFE, one cannot trace a cloned decoder as the functional secret key does not
depend on the identities of users. With one-target tracing, one can trace back
the identity of the users who participated for the cloned decoder. This is indeed
covered by the case that the adversary makes many queries but for one target
function only, as the same function is implemented in the various decoders but
for different identities. Eventually, in the theoretical sense, one-target tracing
for IPFE is a stronger model than a bounded traitor tracing. Indeed if we fix
a function (1, x2, . . . , xk), give secret keys for this function to the users, and
then send the message (m, 0, 0, ..., 0), then legitimates users can decrypt to the
message m and the one-target tracing corresponds to a classical traitor tracing.

Our Technique. We exploit the similarities between the Boneh and Franklin’s
traitor tracing scheme [7] and the Abdalla et al.’s IPFE scheme [1] to integrate
the Boneh-Franklin tracing technique into the IPFE scheme of Abdalla et al.
[1] which allows in particular to personalize functional decryption keys. Interest-
ingly, our method of personalizing keys and adding traceability does not need a
huge extra cost as it is usually required for others primitives such as broadcast
encryption.

Traceable Inner Product Functional Encryption 567

We first informally recall the main ingredients of the IPFE of Abdalla et al.
[1], that encrypts a plaintext vector y = (y1, . . . , yk) as follows: the master
secret key MSK = s = (s1, . . . , sk) and the public key PK =

(
G,

(
hi = gsi

)
i∈[k]

)

respectively allow to generate functional decryption keys and ciphertexts:

skx = 〈s,x〉 =
∑
i∈[k]

si · xi, CTy =
(
gr,

(
hr

i · gyi
)
i∈[k]

)
.

Here, we are working in a cyclic G of prime order q, with a generator g. The
master secret key MSK is a vector s with components si are taken from Zq. The
public key PK consists of k group elements hi. The vector x = (x1, . . . , xk) with
components xi is taken from Zq is used to extract a functional decryption key
skx . A ciphertext, which is generated for a plaintext y, denoted by CTy . The
Decrypt algorithm computes

∏
i∈[k]

(
hr

i · gyi

)xi

×
(
gr

)−skx

=
g〈s,x〉r · g〈x,y〉

g〈s,x〉r = g〈x,y〉

and gets 〈x,y〉, which is supposed to be relatively small, to allow the computa-
tion of the discrete logarithm.

For the mean value, the vector x is (1, . . . , 1). If many users are interested
in the mean value then they all get the same functional decryption key skx and
there will be no way to trace the source of the leakage if this secret key is used
somewhere. In order to personalize functional decryption keys for each vector x,
we have got inspired from the seminal technique of Boneh-Franklin: we associate
to each user a representation of g〈s,x〉 in the basis of

(
bi = gti

)
i∈[k]

, with ti is
taken from Zq. Therefore, by adding br

i in the ciphertext, each user can compute
g〈s,x〉r as above and the decryption works in the same manner. Concretely, each
user ID is associated to a public codeword θID = (θ1, . . . , θk) and then, the
personal secret key will be simply set to: tkx,ID = 〈s,x〉/〈t,θID〉. The master
secret key MSK consists of two vectors s = (s1, . . . , sk) and t = (t1, . . . , tk). The
public key PK =

(
G,

(
bi = gti

)
i∈[k]

,
(
hi = gsi

)
i∈[k]

)
. For each plaintext y, the

ciphertext is
CTy =

((
br
i

)
i∈[k]

,
(
hr

i · gyi
)
i∈[k]

)
.

The Decrypt algorithm then outputs

∏
i∈[k]

(
hr

i · gyi

)xi

×
∏
i∈[k]

(
br
i

)−tkx ,IDθi

=
g〈s,x〉r · g〈x,y〉

g〈s,x〉r = g〈x,y〉.

The Use of Pairings. The above technique of personalizing secret keys seems
to work well as in the Boneh-Franklin traitor tracing. However, there exists an
issue specific to the setting of the functional encryption, that goes beyond the
framework of Boneh-Franklin traitor tracing. Suppose that we are considering
a scheme for two users with identities ID1 and ID2. The first user queries the

568 X. T. Do et al.

secret keys corresponding to vectors x1 and x2 and gets tkx1,ID1 = 〈s,x1〉
〈t,θ ID1 〉 and

tkx2,ID1 = 〈s,x2〉
〈t,θ ID1 〉 . The second user only queries secret key to vector x1 and gets

tkx1,ID2 = 〈s,x1〉
〈t,θ ID2 〉 . From these three secret keys tkx1,ID1 , tkx2,ID1 and tkx1,ID2 , it is

possible to compute the secret key tkx2,ID2 = tkx 2,ID1 ·tkx 1,ID2
tkx 1,ID1

for the vector x2 and
identity ID2. To avoid this attack, we will put the scalar tx,ID in the exponent
skx,ID = gtkx ,ID and the decryption will then be performed in the target group
of the pairing. The goal of the rest of the paper is to prove this modification
actually leads to a secure scheme.

Enhancing the Security of IPFE. It is worth noticing that, by putting the secret
key in the exponent, we may enhance the security of the functional encryption.
In the Abdalla et al.’s scheme [1], whenever the adversary queries more than k
secret keys, it can get the whole MSK by solving a system of linear equations.
In our scheme, there is no way, unless breaking discrete logarithm, to get this
master key as it is only put in the exponent. We will though not exploit further
this advantage in this work, as we will focus on traceability.

Tracing Algorithm. We rely on the classical linear tracing technique but we
will adapt this technique into the functional encryption setting and with the
strongest notion of pirate, namely pirate distinguisher introduced in [15].

Organization. In Sect. 2, we will recall some classical assumptions (DDH and
BDDH), required for the security of our constructions. In Sect. 3, we introduce
a new concept: Traceable functional encryption (TFE). We then define security
game of TFE against adaptively-chosen plaintext attacks and security game of
the Tracing algorithm. A concrete TFE construction for inner product will be
presented in Sect. 4. We will prove that our construction achieves selective secu-
rity. Section 5 will be intended to present a tracing algorithm which achieves
one-target security as stated in Theorem 13. The black-box confirmation prop-
erty of the Tracing algorithm will be proven in the Lemmas 11 and 12.

2 Preliminaries

We denote [k] the set of integers between 1 and k. Given two vectors x =
(x1, . . . , xk) and y = (y1, . . . , yk), where xi, yi ∈ Zq for all i ∈ [k], we define
〈x,y〉 =

∑k
i=1 xiyi. Next we recall classical assumptions as follows.

Definition 1 (Decisional Diffie-Hellman Assumption). Given a cyclic
group G = 〈g〉 of prime order q, the Decision Diffie Hellman (DDH) problem
consists in distinguishing the following distributions

D0 = {(ga, gb, gab) | a, b
$← Zq} D1 = {(ga, gb, gc) | a, b, c

$← Zq}.

The distribution D0 consists of Diffie-Hellman tuples whereas D1 consists of
random tuples. Roughly speaking, the DDH problem consists in distinguishing

Traceable Inner Product Functional Encryption 569

DH tuples from random tuples. The DDH assumption states that the two above
distributions D0 and D1 are indistinguishable.

Let G1,G2,GT be multiplicatively written groups of prime order q, and let g1, g2
be generators of G1,G2, respectively. We write 1T to denote the unit element
of GT . Let e : G1 × G2 → GT be a function sending two elements from G1 and
G2 into the group GT . We say that the tuple (G1,G2,GT , q, e) is an asymmetric
bilinear group if the following properties hold:

– Bilinearity: for all h1 ∈ G1, h2 ∈ G2 and a, b ∈ Z
∗
q , we have e(ha

1 , h
b
2) =

e(h1, h2)ab.
– Non-degeneracy: e(g1, g2) �= 1T .
– The function e can be efficiently computed.

Definition 2 (Bilinear Decisional Diffie-Hellman Assumption). Given
an asymmetric bilinear group (G1,G2,GT , q, e), the Bilinear Decisional Diffie-
Hellman (BDDH) problem consists in distinguishing the following distributions,
for generators g1 and g2

D0 =
{(

ga
1 , gb

1, g
a
2 , gc

2, e (g1, g2)
abc

)
|a, b, c

$← Zq

}

D1 =
{(

ga
1 , gb

1, g
a
2 , gc

2, e (g1, g2)
z) |a, b, c, z

$← Zq

}
.

The BDDH assumption states that no PPT adversary can distinguish D0 and
D1 with non negligible advantage.

Lemma 3 (Two-tailed Chernoff Bound). Let X1,X2, . . . , Xn be indepen-
dent Poisson trials (yes/no experiments) with success probabilities p1, p2, . . . , pn.
Let X =

∑n
i=1 Xi and μ =

∑n
i=1 pi. For 0 < δ < 1, we have

Pr[|X − μ| ≥ δμ] ≤ 2e−μδ2/3.

3 Traceable Functional Encryption

We begin by describing the syntactic definition of traceable functional encryption
(TFE) for circuits. A functionality (circuit) F ∈ Fλ describes the function of a
plaintext that can be derived from the ciphertext. More precisely, a functionality
is defined as follows.

Definition 4. Let Y = {Yλ}λ∈N and S = {Sλ}λ∈N denote ensembles where each
Yλ and Sλ is a finite set. Let F = {Fλ}λ∈N denotes an ensemble where each Fλ

is a finite collection of circuits, and each circuit F ∈ Fλ takes as input a message
y ∈ Yλ and outputs F (y) ∈ Sλ.

Definition 5. A traceable functional encryption scheme T − FE for an ensem-
ble F consists of five algorithms (Setup,Extract,Encrypt,Decrypt,Tracing) defined
as follows:

570 X. T. Do et al.

Setup(1λ): Takes as input a security parameter λ and outputs a master key pair
(PK,MSK).

Extract(ID,MSK, F): Given an identity ID of a user, a circuit F ∈ Fλ and the
master secret key MSK, this algorithm outputs an individual functional secret
key skF,ID.

Encrypt(PK, y): Takes as input the public key PK and a message y ∈ Yλ, this
randomized algorithm outputs a ciphertext CT.

Decrypt(PK, skF,ID,CT): Given the public key PK, a secret key skF,ID and a
ciphertext CT, this algorithm outputs F (y) ∈ Sλ, if CT encrypts y, or an
invalid symbol ⊥.

TracingDF (MSK, F, μ(.), y0, y1): The tracing algorithm takes as input the mas-
ter secret key MSK, a circuit F ∈ Fλ, two messages y0, y1 ∈ Yλ which are
obtained from DF and a function μ(.) representing the probability that the
decoder can distinguish between the ciphertexts of y0 and of y1. The algorithm
interacts with a confiscated pirate decoder DF , as a black-box, and outputs an
identity or an invalid symbol ⊥.

For correctness, we require that for all (PK,MSK) ← Setup(1λ), all y ∈ Yλ,
each F ∈ Fλ and all identities ID, skF,ID ← Extract(ID,MSK, F), if CT ←
Encrypt(PK, y), then one should get Decrypt(PK, skF,ID,CT) = F (y), with over-
whelming probability.

Requirement on the Pirate Decoder

– The classical requirement is that the pirate decoder DF is a device that is able
to decrypt successfully any normal ciphertext generated by the Encrypt algo-
rithm with high probability. Yet, in another approach, the tracer is only able
to interact with DF through an oracle OD

F by sending a message-ciphertext
pair (tracing signal) to OD

F and gets a response that is a bit indicating whether
DF can successfully decrypt the ciphertext into the provided message (eval-
uated with the function F). We say that the tracing algorithm is executing
in minimal access black-box mode.

OD
F (CT, y) =

{
1 if DF (CT) = F (y)
0 otherwise.

– We consider the same setting for the pirate as in [15]: of course, this is not
required the pirate decoder DF to output entire message (or an indicator
bit as in minimal access model) nor to decrypt with high probability every
ciphertexts which are taken from random messages. Instead, it is enough that
the pirate decoder can distinguish the encryption of two messages y0, y1 which
are chosen by itself (see [15]): Adapted from [15], we define a μ-useful Pirate
Distinguisher DF associated to a unique function F as below

Traceable Inner Product Functional Encryption 571

∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

(MSK,PK) ← Setup(·)
{skF,i ← Extract(i,MSK, F)}i∈[n]

DF (CTb) = b :
(
DF , y0, y1

)
← A(PK, {skF,i}i∈[t])

st.F (y0) �= F (y1)

b
$← {0, 1},CTb ← Encrypt(PK, yb)

⎤
⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣
≥ μ(λ),

where the function μ(·) is a non-negligible function in λ.
This very strong notion of Pirate Distinguisher has been introduced in [15].
It requires the pirate distinguisher to be able to distinguish the encryption of
two different messages y0, y1. To adapt to the functional encryption, as the
goal of the pirate is to compute the function on the message, we require that
the pirate distinguisher be able to distinguish the encryption of y0, y1 such
that F (y0) �= F (y1).
As shown in [15], this notion is stronger than the classical Pirate Decoder
which is able to correctly decrypt random messages with non-negligible prob-
ability. When considering the case of functional encryption, a pirate decoder
for a function F is useful if it can compute F (y) from the encryption of y, for
a random message y. Clearly, pirate distinguisher is also stronger than pirate
decoder in this case. Indeed, one can build a distinguisher DF from a decoder
DecF : randomly choose y0, y1 such that F (y0) �= F (y1), then when receiv-
ing the challenge ciphertext CT, call DecF and check whether this is F (y0)
or F (y1) to output the correct guess, if this is none of them, output a ran-
dom guess. In this work, we will deal with this notion of pirate distinguisher
which is actually the strongest notion (i.e., minimal requirement) about the
usefulness of pirate decoders.

Security: Indistinguishability. We consider the IND security game between an
adversary A and a challenger B as follows:

Definition 6. A traceable functional encryption scheme T − FE for an ensem-
ble F , T − FE = (Setup,Extract,Encrypt,Decrypt,Tracing) is semantically
secure under chosen-plaintext attacks (or IND−CPA security) if no PPT adver-
sary has non-negligible advantage in the following game:

– The challenger B runs (PK,MSK) ← Setup(1λ) and the public key PK is given
to the adversary A.

– The adversary adaptively makes secret key queries to the challenger. That is,
the adversary A chooses some pairs of identities ID and functions F ∈ Fλ.
A sends them to B and then obtains skF,ID ← Extract(ID,MSK, F) from B.

– The adversary A chooses distinct messages y0, y1 ∈ Yλ such that F (y0) =
F (y1) for all F already asked. This restriction is required in all functional
encryption to avoid trivial attacks. Whenever B receives the messages, it
randomly picks β

$← {0, 1} and then transfers to A a ciphertext CTβ =
Encrypt(PK, yβ).

– Adversary A continues making further decryption key queries for other pairs
of identities ID and functions F , and receives skF,ID from B. Again, it is also
required that F (y0) = F (y1) to avoid trivial attacks.

572 X. T. Do et al.

– Adversary A eventually returns a guess β
′
for a bit β and wins if β

′
= β.

A weaker version has been defined, when the messages y0, y1 for the challenge
ciphertext are chosen before the Setup algorithm started, then the T − FE
scheme is said selectively-security against chosen-plaintext attacks, which is
denoted by sel−IND−CPA.

Traceability. The security game between the attacker A and the challenger B
takes place as follows:

1. The challenger B runs (PK,MSK) ← Setup(1λ) and the public key PK sent to
the adversary A. B also creates a table T to store pairs of identities of users
who queried keys and functions F , for all F ∈ Fλ. It means that the table T
stores (ID, F). Initially T is set empty.

2. The adversary adaptively makes secret key queries to the challenger. Con-
cretely, the adversary A chooses some pairs of identities ID and functions
F ∈ Fλ to query functional secret keys. The challenger B stores all these
pairs in the table T and replies with the secret keys skF,ID for those pairs.

3. The adversary A outputs (F ∗,DF ∗) and two messages y0, y1, where DF ∗ is a
pirate distinguisher for the function F ∗.

4. After receiving the messages y0, y1 from A, the challenger B runs the algo-
rithm TracingDF ∗ (MSK, F ∗, 1μ, y0, y1) and outputs an identity ID∗.

We say that the adversary A wins the game if the output of Tracing is either an
invalid symbol ID∗ = ⊥ or the identity ID∗ did not ask for F ∗: (ID∗, F ∗) �∈ T .

When the adversary A is allowed to ask secret keys for the only target func-
tion F ∗ (but for any ID), and so for (ID, F ∗), the security of Tracing algorithm
will then be called one-target security.

As explained in the introduction, this one-target security also covers the case
where the adversary outputs any function F such that the target function F ∗

is computable from F with public information. In such a case, when the pirate
outputs the function F and the decoder DF (together with two messages), one
can define a decoder DF ∗ that calls DF and then applies the computation of F ∗

from F on the output, then do tracing on this DF ∗ , applying also the public
transformation to the messages.

4 Our Inner-Product Functional Encryption

We will describe concretely a traceable functional encryption for inner product
scheme (T − FE) for n users. Let G be a bilinear group of large prime of order
q. Additionally, let e : G1 × G2 → GT denote a bilinear map, where G1,G2 and
GT are cyclic groups of order q, written multiplicatively.

Setup(1λ, 1k): This algorithm generates a bilinear setting G = (G1,G2,GT , q, e)
for sufficiently large prime order q and g1, g2 respectively are generators of
the groups G1 and G2. The bilinear map e over G1, G2 can be calculated
efficiently.

Traceable Inner Product Functional Encryption 573

– Randomly choose t1, . . . , tk
$← Zq, set t = (t1, . . . , tk) and b1 = gt1

1 , . . . ,
bk = gtk

1 .
– For each i ∈ {1, . . . , k}, randomly choose si

$← Zq. We set s = (s1, . . . , sk)
and set G = e(g1, g2) ∈ GT and Hi = Gsi ∈ GT for all i = 1, . . . , k.

– We consider a linear code Γ over the alphabet Zq with n codewords
Γ = {θ1, . . . ,θn}, corresponding to n users in our system. Each codeword
has the length k.

– The public key is PK =
(
G,Γ, g1, g2, G,H1, . . . , Hk, b1, . . . , bk

)
.

– The master secret key is MSK = {s, t}.
Extract(ID,MSK,x): Takes as input an identity ID, the master secret key MSK

and a characteristic vector x = (x1, . . . , xk) ∈ Z
k
q . Choose a (new) vector

(codeword) θID = (θ1, . . . , θk) ∈ Γ. A secret key is an element g
tkx ,ID

2 ∈ G2 such
that tkx,ID ·θID is a representation of g

〈s,x〉
1 in the basis of (b1, b2, . . . , bk). That

is g
〈s,x〉
1 =

∏k
i=1 b

tkx ,IDθi

i = b
tkx ,IDθ1
1 · · · btkx ,IDθk

k . Concretely, set tkx,ID =
〈s,x〉
〈t,θID〉

and define skx,ID = g
tkx ,ID

2 for θID.
Encrypt(PK,y): Takes as input the public key PK and a message y =

(y1, . . . , yk) ∈ Z
k
q . To encrypt y, sample r

$← Zq and compute

CT = (Hr
1Gy1 , . . . , Hr

kGyk , br
1, . . . , b

r
k).

Decrypt(PK, skx,ID,CT): Takes as input the public key PK, the secret key skx,ID =
g
tkx ,ID

2 for θID = (θ1, . . . , θk) and a ciphertext CT, the algorithm computes

E =

(
Hr

1Gy1
)x1 · · ·

(
Hr

kGyk
)xk

e
((

br
1

)θ1 · · ·
(
br
k

)θk , g
tkx ,ID

2

) .

Finally, it returns the discrete logarithm of E in basis G = e(g1, g2).

Correctness: For all (PK,MSK) ← Setup(1λ, 1k), all y ∈ Z
k
q and x ∈ Z

k
p, for

skx,ID = (gtkx ,ID

2 ,θID) ← Extract(ID,MSK,x) and CT ← Encrypt(PK,y), we have
that

(
Hr

1Gy1
)x1 · · ·

(
Hr

kGyk
)xk

e
((

br
1

)θ1 · · ·
(
br
k

)θk , g
tkx ,ID

2

) =
G〈x,y〉 ·

(
Gx1s1+···+xksk

)r

e
(
gt1rθ1
1 · · · gtkrθk

1 , g
〈s ,x 〉

〈t ,θ ID〉
2

)

=
G〈x,y〉 · ����

Gr〈s,x〉

������
e(g1, g2)r〈s,x〉 G〈x,y〉 = e(g1, g2)〈x,y〉.

Theorem 7. The above T − FE achieves the selective security (sel−IND−CPA)
under the BDDH assumption

Proof. We assume that there exists an adversary A can distinguish distributions
of ciphertexts in the real game with non-negligible advantage. We build a simu-
lator B that solves the BDDH problem. It means that B takes as input a tuple

574 X. T. Do et al.

(
ga
1 , gb

1, g
a
2 , gc

2, T
)

∈ G
2
1 × G

2
2 × GT , it must decide whether the input is BDDH

tuple where T = e (g1, g2)
abc or random tuple where T = e (g1, g2)

z. We set

D0 =
{(

ga
1 , gb

1, g
a
2 , gc

2, e (g1, g2)
abc

)
|a, b, c

$← Zq

}

D1 =
{(

ga
1 , gb

1, g
a
2 , gc

2, e (g1, g2)
z) |a, b, c, z

$← Zq

}
.

The algorithm B progresses as follows:

– Firstly, B is provided two distinct messages y0 and y1.
– B chooses Γ = {θ1, . . . ,θn} is a linear code of size n and length k, as well as

t1, . . . , tk
$← Zq. Set t = (t1, . . . , tk) and bi = gti

1 , for i = 1 to k.
– B finds a (k − 1)-basis of subspace (y0 − y1)⊥ because the adversary A can

only ask secret keys for vectors x in (y0 − y1)⊥. We denote this basis by
(z1, . . . ,zk−1). For i = 1, . . . , k − 1, B randomly chooses ui

$← Zq.
– We consider the canonical basis (e1, . . . ,ek) of Z

k
q . A linear transforma-

tion from basis (z1, . . . ,zk−1, (y0 − y1)) to (e1, . . . ,ek) is given by: ei =
αi (y0 − y1) +

∑k−1
j=1 λi,jzj , where the coefficients αi, λi,j can be found effi-

ciently by B. Note that 〈ei,y0 −y1〉 = αi ×||y0 −y1||2. Then α =
∑

i αiei =
1/||y0 − y1||2 ×

∑
i〈ei,y0 − y1〉ei = 1/||y0 − y1||2 × (y0 − y1).

– From the challenge tuple, and random scalars u1, . . . , uk−1
$← Zq, set G =

e(g1, gc
2) and

Hi = e
(
(ga

1)
αi · g

∑k−1
j=1 ujλi,j

1 , gc
2

)

= e(g1, gc
2)

aαi+
∑k−1

j=1 ujλi,j = Gaαi+
∑k−1

j=1 ujλi,j

for i = 1, . . . , k, which implicitly defines si = aαi +
∑k−1

j=1 ujλi,j . The public

key is set to PK =
(
G,Γ, g1, g2,H1, . . . , Hk, b1, . . . , bk

)
.

– For any vector x = (x1, . . . , xk) ∈ (y0 − y1)⊥, B computes κx = 〈s,x〉 =∑k−1
j=1

∑k
i=1 xiujλi,j and, for identities ID, skx,ID = g

tkx ,ID

2 , where tkx,ID =
κx

〈t,θID〉 . It sends the value g
tkx ,ID

2 to A. Vector θID is a codeword in Γ.

– The challenger randomly picks β
$← {0, 1} and, from the challenge tuple where

T is the last element in GT , gives A a ciphertext CT = (ct1, . . . , ct2k), where

ctj = Tαj · e
((

gb
1

)∑k−i
i=1 uiλj,i

, gc
2

)
· Gyβ,j and ctj+k =

(
gb
1

)tj , for j = 1, . . . , k.
– At the end, the adversary outputs his guess β′ for β. If β′ = β then B returns

1 for “BDDH tuple”. Otherwise returns 0 for “random tuple”. We will show
that B can break BDDH assumption. To do so, we need to prove that the
difference below is negligible

∣∣∣Pr[B(D0) = 1] − Pr[B(D1) = 1]
∣∣∣

=
∣∣∣Pr[β = β′ | T = e (g1, g2)

abc] − Pr[β = β′ | T = e (g1, g2)
z]

∣∣∣.

Traceable Inner Product Functional Encryption 575

We find that:

1. When T = e (g1, g2)
abc then we have ctj = Tαj · e

((
gb
1

)∑k−1
i=1 uiλj,i

, gc
2

)
·

Gyβ,j = Hb
j Gyβ,j , for j = 1, . . . , k. Therefore

CT =
(
Hb

1G
yβ,1 , . . . , Hb

kGyβ,k , bb
1, . . . , b

b
k

)
.

It implies that B perfectly simulates the real game. Since A can break the
semantic security with non-negligible probability, we have Pr[β = β′ | T =
e (g1, g2)

abc] = Adv(A) + 1/2.
2. When T = e(g1, g2)z = Gv is random element, the challenger will send A the

ciphertext of message yβ + vα = yβ + v/||y0 − y1||2 × (y0 − y1) = μy0 +
(1 − μ)y1, for some random μ ∈ Zq. This makes β perfectly unpredictable:
Pr[β = β′ | T = e (g1, g2)

z] = 1/2.

We conclude the advantage is non-negligible as
∣∣∣Pr[β = β′ | T = e (g1, g2)

abc] − Pr[β = β′ | T = e (g1, g2)
z]

∣∣∣

=
∣∣∣Adv(A) +

1
2

− 1
2

∣∣∣ = Adv(A).

5 Black-Box Confirmation Traitor-Tracing

This section will be devoted to present a black-box confirmation traitor-tracing
algorithm. The purpose of this algorithm is to verify sets of secret keys which are
suspected by a Tracer. The tracing algorithm takes as input the master secret
key MSK and it can access the table T (see the Tracing security game) to take
a set of secret keys for which it wants to check its suspicion. We will use the
scalar form tkx,ID of the secret keys instead of the group element form skx,ID.
But as we only consider possible legitimate secrete keys in this form, the scalars
are known to the authority.

5.1 Notations

Suppose that Tracer is provided a set of t secret keys (for the suspected
traitors), say Ksuspect = {tk1, . . . , tkt} which are derived from a fixed vector
x = (x1, . . . , xk). Here, we have slightly abused the notation, as we are in the one-
target security. When the vector x is explicit, we use the notation {tk1, . . . , tkt}
instead of {tkx,1, . . . , tkx,t}, the pirate decoder Dx is replaced by D and we use
integers to represent identities of users. A codeword will be θi which is attached
to a user with identity i. The goal of the Tracer is to verify whether there is any
traitor in Ksuspect. Before go further we need to define some notations.

– Set Ki = {tk1, . . . , tki} ⊆ Ksuspect, for all i ∈ [t] and K0 = ∅.

576 X. T. Do et al.

– We define spaces of tracing signals (ciphertexts) Tr0,Tr1, . . . ,Trt such that
each signal from Tri can be decrypted successfully by any secret key in Ki.
More concretely, for each i from 0 to t, the tracing signal for a message
y = (y1, . . . , yk) is taken from the distribution Trxi (y) (or Tri(y) for simplicity,
when x is explicit) that is defined as follows

{(
Ha

1Gy1 , . . . , Ha
k Gyk , gz1

1 , . . . , gzk
1

) ∣∣∣∣∣
a

$← Zq,z
$← Z

k
q ,

〈z, tkjθj〉 = a〈s,x〉,∀j ∈ [i]

}
,

where z = (z1, . . . , zk). G,H1, . . . , Hk are group elements of GT and belong
to the public key PK. Set Q(a) = e(g1, g2)a〈s,x〉, as s and x are fixed.

– Every user j with secret key in Ki can output the same

(Ha
1Gy1)x1 · · · (Ha

kGyk)xk

e(g〈z ,θj〉
1 , g

tkj

2)
=

P(y, a)
Q(a)

,

where P(y, a) = (Ha
1Gy1)x1 · · · (Ha

kGyk)xk = Q(a) × G〈y ,x〉.
– Define distribution of normal ciphertext for a message y = (y1, . . . , yk),

denoted Norm(y): randomly draw r
$← Zq and output ciphertext (Hr

1Gy1 , . . . ,
Hr

kGyk , br
1, . . . , b

r
k).

– For i = 0, . . . , t, we set pi = Pr[D(CT) = b | b $← {0, 1},CT ← Tri(yb)],
where y0,y1 are chosen by D. When i = 0, in Tri(yb), a and z are perfectly
independent, and so under the DDH assumption, the Ha

i hides the yb,i. So
we have p0 = 1/2 + negl(λ).

Definition 8. A tracing traitor algorithm is black-box confirmation if it satis-
fies:

1. Confirmation: If suspected set of users actually contains the entire set of
traitors then output of Tracing algorithm always returns at least an identity i
such that tki ∈ Ksuspect is guilty. Formally, with the condition KD ⊆ Ksuspect,
the Tracing algorithm returns at least an identity i such that the secret key
tki ∈ Ksuspect as guilty. We denote by KD a set of secret keys used to build the
pirate decoder D.

2. Soundness: The honest users will never be accused if the Tracing algorithm
outputs an identity as guilty; it is impossible for traitors to deceive Tracing
algorithm to blame innocent users. Said differently if Tracing algorithm out-
puts an identity i such that tki is guilty then tki ∈ KD.

5.2 Tracing Algorithm

Tracing algorithm needs to use following lemmas.

Lemma 9. Under the DDH assumption in G1, no adversary corrupting t users
1, . . . , t can distinguish the distribution of tracing signals Trt(y) with the distri-
bution of normal ciphertexts Norm(y), for any adversarially chosen y.

Traceable Inner Product Functional Encryption 577

Proof. Suppose that an adversary A can distinguish the distribution of tracing
signals Trt(y) with the distribution of normal ciphertexts Norm. We will build
a simulator B breaks the DDH assumption in G1. The simulator has inputs: 4-
tuples (g1, g2, u1, u2) ∈ G

4
1, where g2 = gc

1 and c is unknown. It decides whether
this is a DDH tuple or a random tuple:

1. Take randomly t codewords θ1, . . . ,θt from the code Γ.
2. Take randomly A from Zq such that gA

1 g2 �= 1.
3. Take randomly a = (a1, . . . , ak),e = (e1, . . . , ek)

$← Z
k
q such that 〈θi,a −

Ae〉 = 0, for all i = 1, . . . , t.
4. Set bi = gai

1 gei
2 , for all i = 1, . . . , k.

5. Take randomly α = (α1, . . . , αk)
$← Z

k
q such that 〈α,a − Ae〉 = 0. Take

randomly g2
$← G2 and it sets g1 = gA

1 g2, G = e(g1, g2). We set Hi =
e(uA

1 u2, g2)αi for all i ∈ [k]. The public key is PK = (G,Γ, g1, g2, G,H1, . . . ,
Hk, b1, . . . , bk), where G is a bilinear group.

6. The simulator B calculates secret key for queries (x, i), tkx,i =
〈α,x〉
〈θi ,e〉 , for

i ∈ [t] and functions x then gives all g
tkx ,i

2 to the adversary A. It is clear that
tkx,iθi is a representation of (gA

1 g2)
〈α ,x〉 in the base (b1, . . . , bk).

7. Take randomly a
$← Zq. The simulator constructs the ciphertext for a message

y as below

CT = (Ha
1Gy1 , . . . , Ha

kGyk , (ua1
1 ue1

2)a, . . . , (uak
1 uek

2)a),

where y = (y1, . . . , yk).
8. Send the ciphertext CT to the adversary A. If A decides the ciphertext comes

from normal distribution (i.e. A returns 1) then B returns “DDH tuple”, else
returns “random tuple”.

We first show that the public key PK which is generated by the simulator B is
indistinguishable from the corresponding public key in the real algorithm.

– We will prove that distribution of tuples (b1, . . . , bk) ∈ G
k
1 is uniform. Indeed,

write bi = gti
1 then, for each (t+ k)-tuple (0, t1, . . . , tk) where t1, . . . , tk

$← Zq

and 0 = (0, . . . , 0) ∈ Z
t
q the below system of equations has a solution

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . θ1 −Aθ1 . . .
...

...
...

...
...

...
. . . θt −Aθt . . .
1 . . . 0 c . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
(

a
e

)
=

⎛
⎜⎜⎜⎝

0
t1
...
tk

⎞
⎟⎟⎟⎠ .

We denote by Γ0 a matrix with its rows are vectors θ1, . . . ,θt. The rank of
this matrix is t.

578 X. T. Do et al.

Indeed, it is equivalent that
(

Γ0 −AΓ0

Ik cIk

)
×

(
a
e

)
=

(
0
t

)

has solutions. Here Ik is the (k × k)-unit matrix. We set

Ω =
(

Γ0 −AΓ0

Ik cIk

)
.

Since A is chosen such that 1 �= gA
1 g2 = gA+c

1 , ((t + k) × 2k)-matrix Ω has
rank k + t. Therefore, dim ImΩ = rank Ω and the dimension of KerΩ =
2k − (k + t) = k − t. Therefore, the above system of linear equations with
unknowns (a,e) exists a solution. It implies that (b1, . . . , bk) is uniform over
G

k
1 .

– Concerning Hi, in the real game Hi = e(g1, g2)αi for randomly chosen but
known g1, g2 while in the simulation game, Hi = e(uA

1 u2, g2)αi for randomly
chosen A and (αi)i in a span of dimension k − 1. Under the DDH in the G1,
uA
1 u2 is indistinguishable from random, and thus Hi follows from a correct

distribution in the computational sense.

We now show that, for any adversarially chosen y, if (g1, g2, u1, u2) ∈ G
4
1 is a

DDH tuplee then the ciphertext is a normal ciphertext of y and when it is a
random tuple then the ciphertext comes from Trt(y). Therefore, if the adversary
can distinguish these two distributions then B can break the DDH assumption
in G1: |Pr[B(D0) = 1] − Pr[B(D1) = 1]| is non-negligible. By definition, it is
equivalent to
∣∣∣∣Pr[A(CT) = 1 | (g1, g2, u1, u2)

$← D0] − Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D1]

∣∣∣∣

is non-negligible. Here, CT is a ciphertext generated as in Step 7. We find that:

1. When (g1, g2, u1, u2)
$← D0, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D0] = Pr[A(CT) = 1 | CT $← Norm].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, gz
1, g

z
2), where z is unknown.

The ciphertexts in Step 7 is then:

CT =
(
Ha

1Gy1 , . . . , Ha
k Gyk , (ua1

1 ue1
2)a, . . . , (uak

1 uek
2)a

)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , (gza1

1 gze1
2)a, . . . , (gzak

1 gzek
2)a

)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , (ga1

1 ge1
2)z·a, . . . , (gak

1 gek
2)z·a

)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , bz·a

1 , . . . , bz·a
k

)
,

Traceable Inner Product Functional Encryption 579

which is in the space of normal ciphertext. It is sufficient thus to show that,
with the decryption with the secret key tkx,i, the decryption will gives G〈x,y〉.
Indeed,

E =

(
Ha

1Gy1
)x1 · · ·

(
Ha

kGyk
)xk

e
((

ua1
1 ue1

2

)aθ1 · · ·
(
uak
1 uek

2

)aθk , g
tkx ,i

2

)

=
G〈x,y〉 · e(uA

1 u2, g2)ax1α1 · · · e(uA
1 u2, g2)axkαk

e
((

gA
1 g2

)za〈e,θ〉
, g

〈x ,α 〉
〈θ ,e 〉
2

)

=
G〈x,y〉 · e(gA

1 g2, g2)
azx1α1 · · · e(gA

1 g2, g2)
azxkαk

e
((

gA
1 g2

)za〈e,θ〉
, g

〈x ,α 〉
〈θ ,e 〉
2

)

=
G〈x,y〉 · e(gA

1 g2, g2)
az〈x,α〉

e
((

gA
1 g2

)za〈e,θ〉
, g

〈x ,α 〉
〈θ ,e 〉
2

) = G〈x,y〉.

2. When (g1, g2, u1, u2)
$← D1, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D1] = Pr[A(CT) = 1 | CT $← Trt].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, g
γ1
1 , gγ2

2), where γ1 �= γ2 and
g2 = gc

1. The ciphertexts in Step 7 is then:

CT =
(
Ha

1Gy1 , . . . , Ha
k Gyk , (ua1

1 ue1
2)a, . . . , (uak

1 uek
2)a

)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , (gγ1a1

1 gγ2e1
2)a, . . . , (gγ1ak

1 gγ2ek

2)a
)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , g

a(γ1a1+cγ2e1)
1 , . . . , g

a(γ1ak+cγ2ek)
1

)

=
(
Ha

1Gy1 , . . . , Ha
k Gyk , gz1

1 , . . . , gzk
1

)
,

where zi = a(γ1ak + cγ2ek) for all i ∈ [k].
We show that for any traitor with the key tkx,i, i = 1 to t, it decrypts to the
same message. Indeed:

E =

(
Ha

1Gy1
)x1 · · ·

(
Ha

kGyk
)xk

e
((

gγ1a1
1 gγ2e1

2

)aθ1 · · ·
(
gγ1ak

1 gγ2ek

2

)aθk , g
tkx ,i

2

)

=
G〈x,y〉 · e(uA

1 u2, g2)ax1α1 · · · e(uA
1 u2, g2)axkαk

e
(
g

〈a,θ〉aγ1
1 g

〈e,θ〉aγ2
2 , g

〈x ,α 〉
〈θ ,e 〉
2

)

=
G〈x,y〉 · e(gAγ1

1 gγ2
2 , g2)ax1α1 · · · e(gAγ1

1 gγ2
2 , g2)axkαk

e
(
g

〈e,θ〉aAγ1
1 g

〈e,θ〉aγ2
2 , g

〈x ,α 〉
〈θ ,e 〉
2

)

=
G〈x,y〉 · e(gAγ1

1 gγ2
2 , g2)a〈x,α〉

e
((

gAγ1
1 gγ2

2

)a〈e,θ〉
, g

〈x ,α 〉
〈θ ,e 〉
2

) =
G〈x,y〉 · e(gAγ1

1 gγ2
2 , g2)a〈x,α〉

e
(
gAγ1
1 gγ2

2 , g2

)a〈x,α〉 = G〈x,y〉.

580 X. T. Do et al.

Here θi = (θ1, . . . , θk).
Finally, we will prove that the distribution of ciphertext CT is uniform over
the space of signals Trt. It requires that the system of equations

⎛
⎝

Γ0 −AΓ0

Ik cIk

aγ1Ik acγ2Ik

⎞
⎠ ×

(
a
e

)
= γ

is consistent, where γ is a fixed vector in Z
t+2k
q . It is equivalent that the below

(t + 2k, 2k)-matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . θ1 −Aθ1 . . .
...

...
...

...
...

...
. . . θt −Aθt . . .
1 . . . 0 c . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . c

aγ1 . . . 0 acγ2 . . . 0
...

. . .
...

...
. . .

...
0 . . . aγ1 0 . . . acγ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has full rank (i.e. rank = 2k). Indeed, this is straightforward because the last
2k rows of the above matrix are linear independent due to γ1 �= γ2.

We conclude that
∣∣ Pr[B(D0) = 1] − Pr[B(D1) = 1]

∣∣
= |Pr[A(CT) = 1 | CT $← Normal] − Pr[A(CT) = 1 | CT $← Trt]| = Adv(A),

which is non-negligible. ��

Lemma 10 (Hybrid Lemma). Considering the one-target security for an
adversarially chosen target function x. Under the DDH assumption over group
G1, for all 1 ≤ i0 ≤ t, no adversary can distinguish the distribution of tracing
signals Tri0(y) with the distribution of Tri0−1(y) unless it owns the secret key
ski0 .

Proof. Suppose that an adversary A can distinguish the distribution of tracing
signals Tri0 with Tri0−1. We build a simulator B that breaks DDH assumption.
The simulator has input a 4-tuple (g1, g2, u1, u2) ∈ G

4
1, where g2 = gc

1 and c is
unknown. It must output “DDH tuple” or “random tuple”.

1. Take randomly t codewords θ1, . . . ,θt from the code Γ corresponding to t

traitors and also take t codewords θ
(s)
1 , . . . ,θ

(s)
t from the code Γ corresponding

to t suspected users. We are considering the adversary A does not know the
secret key ski0 or the pirate decoder does not contain skx,i0 in itself.

Traceable Inner Product Functional Encryption 581

2. Take randomly A from Zq such that gA
1 g2 �= 1.

3. Take randomly a = (a1, . . . , ak),e = (e1, . . . , ek)
$← Z

k
q such that 〈θi,a −

Ae〉 = 0, for all i = 1, . . . , t, 〈θ(s)
i ,a − Ae〉 = 0, for all i = 1, . . . , t, i �= i0 and

〈θ(s)
i0

,a − Ae〉 �= 0.

4. Set bi = gai
1 gei

2 , for all i = 1, . . . , k. Take randomly v = (v1, . . . , vk)
$← Z

k
q

such that 〈θ(s)
i ,v〉 = 0, for all i = 1, . . . , i0.

5. Take randomly α = (α1, . . . , αk)
$← Z

k
q such that 〈α,a − Ae〉 = 0 and

〈α,v〉 = 0.

6. When B receives a target function x from A. It calculates τi =
〈α,x〉
〈θi ,e〉 , for

i = 1, . . . , t and then give all gτi
2 to the adversary A to create a Pirate Decoder

Dx . Moreover, τ
(s)
i =

〈α,x〉
〈θ(s)

i ,e〉
, for i = 1, . . . , i0 − 1. It is clear that τiθi and

τ
(s)
i θ

(s)
i are representations of (gA

1 g2)
〈α ,x〉 in the base (b1, . . . , bk).

7. Take randomly G,H1, . . . , Hk
$← GT , a

$← Zq. When the simulator receives a
message y, it constructs the ciphertext

CT = (Ha
1Gy1 , . . . , Ha

kGyk , gv1
1 ua1

1 ue1
2 , . . . , gvk

1 uak
1 uek

2),

where y = (y1, . . . , yk). It then sends the ciphertext to the adversary A. If A
returns the ciphertext comes from Tri0(y) distribution then B returns DDH
tuple, else returns random tuple.

By the similar argument as in Lemma 9, the ciphertext CT in Step 7 of the
algorithm B comes from the distribution Tri0(y) if the input of B is actually
DDH tuples and from the distribution Tri0−1(y) otherwise. ��

Based on the Lemmas 9 and 10, we can design a tracing algorithm that relies on
the linear technique tracing:

– Initial step: Tracer constructs distributions of tracing signal Trt, . . . ,Tr0.
– Do experiments on the pirate distinguisher D finitely many times. We start

testing D by taking tracing signals CT from the distribution Trt. We measure
the rate that D outputs correctly his guess, denoted by p̃t. Experiments can
be done because we can prove that the pirate distinguisher cannot distinguish
distributions Trt and Norm (see Lemma 9).

– At step i, for i = t−1, . . . , 0. We do experiment on the pirate distinguisher D
with tracing signals taken from Tri. From Lemma 10, the pirate distinguisher
cannot see any change from previous step i+1 to this step i unless it holds the
secret key tki+1. More formally, we also measure the rate p̃i that D outputs
correctly his guess and show that if D does not contain tki+1 then there is no
significant difference between p̃i+1 and p̃i.

– At the final step, D will be tested with tracing signals taken from Tr0. D
answers correctly only negligibly close to 1/2.

582 X. T. Do et al.

– We output the traitor i such that the gap between p̃i and p̃i−1 is the largest
value among all indices i.

Below, we present the tracing algorithm in more details. We note that y0,y1 are
vectors which are chosen by the pirate distinguisher D.

For i = t downto 0, do the following:
1. Let cnt ← 0.
2. For j = 1 to N = 8λt2/μ, do the following:

i. b
$← {0, 1}.

ii. CT
$← Tri(yb).

iii. Send CT to D. If D(CT) = b then cnt ← cnt+ 1.
3. End for.
4. Let p̃i be the fraction of times that D did the correct guess. We have

p̃i = cnt/N .
End for.
Output identities i such that |p̃i − p̃i−1| ≥ μ(λ)

4t
.

Below, we state and prove confirmation and soundness property of our Trac-
ing algorithm.

Lemma 11 (Confirmation property). The Tracing algorithm has the confir-
mation property under the DDH assumption in G1.

Proof. We want to prove that in the case of that all the traitors are in the set
of suspected users, i.e. KD ⊆ Ksuspect, the Tracing algorithm always returns the
identity of a guilty. It means that the output of Tracing algorithm is not empty
with high probability. We denote A an adversary who used the secret keys in
KD to output the pirate distinguisher D. Since the adversary A can create a
μ-useful pirate distinguisher D, it implies that

∣∣pNorm − 1
2

∣∣ ≥ μ(λ), where

pNorm = Pr

⎡
⎢⎢⎢⎢⎣

(MSK,PK) ← Setup(·)
{ski ← Extract(i,MSK,x)}i∈[n]

D (CTb) = b :
(
D,y0,y1

)
← A(PK, {ski}i∈[t])

st. 〈x,y0〉 �= 〈x,y1〉
b

$← {0, 1},CTb ← Norm(PK,yb)

⎤
⎥⎥⎥⎥⎦

.

We denote S the set of indices i ∈ [t] such that |pi − pi−1| > μ(λ)/4t. The set S
is well defined in the sense that S �= ∅. Indeed, as we know that p0 is negligibly
close to 1/2, and Lemma 9 showed that no adversary A can distinguish the
distribution Norm from Trt, then |pt − p0| ≥ μ(λ) − negl(λ) > μ(λ)/2. Then,
there exists an index i such that |pi − pi−1| > μ(λ)/2t. Thus S is a non empty
set. Applying Chernoff bound for all i ∈ S, we have on experimental probabilities

Pr
[
|p̃i − p̃i−1| <

μ(λ)
4t

]
≤ negl(λ),

Traceable Inner Product Functional Encryption 583

Therefore, with overwhelming probability, there exists an index i such that

|p̃i − p̃i−1| ≥ μ(λ)
4t

.

The latter is thus returned with overwhelming probability. ��

Lemma 12. (Soundness property). The Tracing algorithm has the soundness
property under the DDH assumption in G1.

Proof. We now prove the soundness property of Tracing algorithm. Suppose that
the Tracing algorithm outputs an identity j, where tkj ∈ Ksuspect, we will prove
that tkj ∈ KD.

According to Chernoff bound, thanks to N = 8λt2/μ(λ) to calculate p̃i, for
all i, we have

Pr
[
|p̃i − pi| >

μ(λ)
16t

]
< 2 · e−λ/64.

Therefore, with high probability we have |p̃i −pi| ≤ μ(λ)/16t, for all i = 0, . . . , t.
By definition, whenever the Tracing algorithm outputs j as a guilty, we have

|p̃j − p̃j−1| ≥ μ(λ)/4t, and thus |pj − pj−1| ≥ μ(λ)/8t. In other words, the pirate
distinguisher can distinguish the two tracing signals Trj and Trj−1 with advan-
tage at least μ(λ)/8t. It implies that D contains the secret key tkj , tkj ∈ D.
This follows from the fact that if D does not know the secret key tkj , tkj �∈ D,
the two tracing signals Trj and Trj−1 are indistinguishable. More concretely,
under the hardness of the DDH problem in group G1, it is impossible for the
pirate to distinguish Trj and Trj−1 without tkj . This is stated and proved in
Lemma 10. ��

Theorem 13. Under the DDH assumption, our tracing scheme is one-target
security in black-box confirmation model.

Proof. We recall that in the black-box confirmation model we will verify a set
suspected secret keys Ksuspect = {tk1, . . . , tkt} which are also derived from the
vector x. We will prove that Tracing algorithm always outputs an identity of a
traitor whenever KD ∩Ksuspect �= ∅. It means that Tracer always wins in the game
with the pirate distinguisher D. Indeed, we consider the following two cases:

– In the first case KD ⊆ Ksuspect. It means that all traitors are in suspicious set
Ksuspect. Tracing algorithm will output a guilty identity i by the confirmation
property. According to soundness property, the identity is a traitor (tki ∈
KD).

– In case KD �⊆ Ksuspect and KD ∩ Ksuspect �= ∅. Because KD ∩ Ksuspect �= ∅,
tracing algorithm will output an identity i so that ski ∈ Ksuspect. It implies i
is a traitor (tki ∈ KD) by the soundness property. ��

Acknowledgments. This work was supported in part by the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Cryp-
toCloud) and the ANR ALAMBIC (ANR16-CE39-0006).

584 X. T. Do et al.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

2. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71677-8_24

3. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
trace and revoke from standard assumptions: extended abstract. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2277–2293.
ACM Press, October/November 2017

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3_12

5. Au, M.H., Huang, Q., Liu, J.K., Susilo, W., Wong, D.S., Yang, G.: Traceable and
retrievable identity-based encryption. In: Bellovin, S.M., Gennaro, R., Keromytis,
A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 94–110. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68914-0_6

6. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

7. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1_22

8. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679_34

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_27

11. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_32

12. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing from
LWE made simple and attribute-based. In: Beimel, A., Dziembowski, S. (eds.) TCC
2018, Part II. LNCS, vol. 11240, pp. 341–369. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6_13

13. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5_25

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-540-68914-0_6
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/3-540-48405-1_22
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/11426639_32
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25

Traceable Inner Product Functional Encryption 585

14. Fazio, N., Nicolosi, A., Phan, D.H.: Traitor tracing with optimal transmission rate.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 71–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75496-1_5

15. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC,
pp. 660–670. ACM Press, June 2018

16. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5_24

17. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-46035-7_30

18. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2_18

19. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on eBay. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 475–486. ACM Press, November 2013

20. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_7

21. Liu, Z., Wong, D.S.: Traceable CP-ABE on prime order groups: fully secure and
fully collusion-resistant blackbox traceable. In: Qing, S., Okamoto, E., Kim, K.,
Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 109–124. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29814-6_10

22. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kutyłowski, M., Vaidya,
J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11212-1_4

23. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_14

24. Phan, D.H., Trinh, V.C.: Identity-based trace and revoke schemes. In: Boyen, X.,
Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 204–221. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24316-5_15

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-540-74143-5_24
https://doi.org/10.1007/3-540-46035-7_30
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-319-28166-7_7
https://doi.org/10.1007/978-3-319-29814-6_10
https://doi.org/10.1007/978-3-319-11212-1_4
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-642-24316-5_15
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

One-More Assumptions Do Not Help
Fiat-Shamir-type Signature Schemes

in NPROM

Masayuki Fukumitsu1(B) and Shingo Hasegawa2

1 Faculty of Information Media, Hokkaido Information University,
Nishi-Nopporo 59-2 Ebetsu, Hokkaido 069-8585, Japan

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan
shingo.hasegawa.b7@tohoku.ac.jp

Abstract. On the Fiat-Shamir-type signature schemes, there are
several impossibility results concerning their provable security. Most of
these impossibility results employ the non-programmable random oracle
model (NPROM), and to the best of our knowledge, all impossibilities
deal with the security reductions from the non-interactive cryptographic
assumptions except for the result on the security of Schnorr signature
scheme from the One-More DL (OM-DL) assumption in ProvSec2017.

In this paper, we extend the impossibility result above concerning
Schnorr signature scheme and the OM-DL assumption to a wider class
of the Fiat-Shamir-type signature schemes, and aim to find out the con-
ditions so that such impossibility results hold. We show that a specific
class of the Fiat-Shamir-type signature schemes, including Schnorr signa-
ture scheme, cannot be proven to be euf-cma secure in NPROM from the
generalized One-More cryptographic assumptions. This is just a general-
ization of the impossibility concerning Schnorr signature scheme and the
OM-DL assumption. Our result also suggests that for some Fiat-Shamir-
type signature schemes, which is not covered by our impossibility (e.g.
the RSA-based schemes), there may exist a successful security proof in
NPROM from the interactive cryptographic assumption.

Keywords: Fiat-Shamir-type signature schemes · Non-programmable
random oracle model · Impossibility result · Provable security ·
One-more cryptographic assumptions

1 Introduction

Background. Fiat-Shamir-type signature schemes are the ones that are yielded
by applying the generic transformation introduced by Fiat and Shamir [13]
to ID schemes. Many Fiat-Shamir-type signature schemes were proposed such
as Schnorr signature scheme [37], Guillou and Quisquater (GQ) signature

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 586–609, 2020.
https://doi.org/10.1007/978-3-030-40186-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_25

OM Assumptions Do Not Help FS Signatures in NPROM 587

scheme [21], Okamoto signature scheme [32] and Lyubashevsky signature
scheme [28]. These are known as simple and efficient constructions. For this
reason, Fiat-Shamir-type signature schemes are employed in many applica-
tions, while these are also used e.g. in [27,31,35] as a building block to con-
struct signature schemes which have special functions such as blind signature
schemes, aggregate/multi-signature schemes and group/ring signature schemes.
The ed25519 signature scheme [8], which is a variant of Schnorr signature scheme,
is recruited in some network protocols such as the Transport Layer Security
Protocol [12], the Secure Shell [40], and Tor [39]. Moreover, Schnorr signature
scheme is recently considered to be applied to Bitcoin [30].

There are many discussions on the security of Fiat-Shamir-type signa-
ture schemes. Pointcheval and Stern [36] first proved the security of specific
Fiat-Shamir-type signature schemes. They showed that a Fiat-Shamir-type sig-
nature scheme is secure if the underlying ID scheme has the honest-verifier
zero-knowledge property and the special soundness property. Subsequently, their
result was refined by Abdalla, An, Bellare, and Namprempre [1] in a sense
that their security proof covers a wider class of signature schemes than [36].
These two results commonly rely on the proof techniques known as the “forking
lemma [4,5]” and the random oracle model [6]. In particular, the random oracle
model is one of “ideal” security model. This is often used to discuss the security
of cryptographic schemes in a theoretical manner. The security of cryptographic
schemes such as [6,7,10] besides Fiat-Shamir-type ones was indeed proven in
this model.

Since the random oracle model is known as a stronger security model than
the standard model, the security without the random oracle was also discussed.
Paillier and Vergnaud [33] showed that the security of Schnorr signature scheme
may not be proven in the standard model from the discrete logarithm (DL)
assumption unless the One-More DL (OM-DL) assumption is broken. More pre-
cisely, they showed that there exists no security reduction R which solves the
DL problem by black-box accessing a forger F which breaks Schnorr signature
scheme as long as the OM-DL assumption holds. They also mentioned that sim-
ilar impossibility results on other Fiat-Shamir-type signature schemes can be
obtained. Note that their result only considers the case where a security reduc-
tion R is some specific type, called the algebraic reduction. Nevertheless, this
is circumstantial negative evidence on the provable security of Fiat-Shamir-type
signature schemes in the standard model.

Although the security of Fiat-Shamir-type signature scheme may not be
proven in the standard model, it is expected that the security of these signature
schemes is proven in a security model which is more realistic than the random
oracle model. In the random oracle model, a security reduction R is allowed to
simulate the random oracle. In particular, R in the random oracle model can
utilize the observing property and the programming property as compared to the
standard model. The observing property means that R can observe all queries
and these responses by a forger F in the security proof. On the other hand, the
programming property means that R can arbitrarily set a hash value of a string

588 M. Fukumitsu and S. Hasegawa

which is queried by F . Observe that the programming property is one of the
reasons why the random oracle model is considered to be strong.

In order to discuss security proofs without the programming property, the
non-programmable random oracle model (NPROM) was introduced [15]. In this
model, R also obtains all hash values from an external random oracle as well as
the other parties such as F instead of simulating it. Namely, the programming
property is prohibited in this environment. Fischlin and Fleischhacker [14] gave
an impossibility result on the provable security of Schnorr signature scheme in
NPROM. They showed that the security of Schnorr signature scheme cannot be
proven in NPROM from the DL assumption via a single-instance reduction as
long as the OM-DL assumption is remained to hold. Here, the single-instance
reduction intuitively means that a security reduction R is allowed to invoke
a forger F only once, but to rewind it any time. Several impossibility results
on other Fiat-Shamir-type signature schemes were also discussed in [17,19].
However, all of these impossibility results only exclude the possibility that the
security of Fiat-Shamir-type signature schemes is proven in NPROM from non-
interactive cryptographic assumptions, such as the DL assumption, the compu-
tational Diffie-Hellman (CDH) assumption, the decisional Diffie-Hellman (DDH)
assumption, RSA assumption, and the short integer solution assumption. Since
interactive cryptographic assumptions are stronger than non-interactive ones in
general, there is a possibility that the security can be proven from interactive
cryptographic assumptions.

The impossibility results from interactive cryptographic assumptions were
also given. Fukumitsu and Hasegawa [18] showed that the security of Schnorr sig-
nature scheme cannot be proven in NPROM from the OM-DL assumption as long
as the OM-DL assumption holds. However, it remains open whether or not the
security of other Fiat-Shamir-type signature schemes can be proven in NPROM
from interactive cryptographic assumptions, and whether or not the security
of Schnorr signature scheme can be proven in NPROM from some interactive
cryptographic assumptions other than the OM-DL assumption. Fleischhacker,
Jager, and Schröder [16] gave an impossibility result on the tight security of
Schnorr signature scheme from specific interactive cryptographic assumptions.
Their result is proven even in the ordinary random oracle model. Recall that
the ordinary random oracle model is a stronger model than NPROM in the
sense that the ordinary random oracle model allows the programming property.
Their result means that the tight security of Schnorr signature scheme cannot be
proven even by employing the programming property. However, since their result
only considers the tight security reduction, there is the possibility that non-tight
reductions circumvent their impossibility result. Moreover, theirs forces a secu-
rity reduction R to be generic. It is known that generic reductions seem not
to be reasonable in the sense that group operations are somewhat restricted in
these reductions.

Eventually, it has not been elucidated clearly whether or not the secu-
rity of Fiat-Shamir-type signature schemes is proven from interactive crypto-
graphic assumptions in NPROM via a reasonable reduction. In other words,

OM Assumptions Do Not Help FS Signatures in NPROM 589

there is a room that the security of some Fiat-Shamir-type signature schemes
can be proven from interactive cryptographic assumptions without programming
property.

1.1 Our Result

Overview. In this paper, we give an impossibility result on the provable security
of some Fiat-Shamir-type signature schemes in NPROM from some interactive
cryptographic assumptions. Our result is stated by the following theorem.

Theorem 1 (Informal). Some Fiat-Shamir-type signature schemes cannot be
proven to be existentially unforgeable against the chosen-message attack (euf-
cma) in NPROM from the generalized One-More cryptographic assumptions as
long as the same underlying cryptographic assumptions hold. The restrictions of
this result are more specifically described just below.

The generalized One-More cryptographic assumption is a generalized vari-
ant of One-More cryptographic assumptions which are introduced in [41]. This
is defined by two non-interactive cryptographic problems P1 and P2 which are
assumed to be hard to solve. This assumption informally states that any prob-
abilistic polynomial-time algorithm A solves T + 1 instances on P1 with only
negligible probability even if A can access the oracle which solves P2 at most
T times for some polynomial T . Hereafter, we denote the assumption above
by T -(P1,P2). For instance, if the DL problem is set to both P1 and P2, this
coincides with the OM-DL assumption. We note that since the T -(P1,P2) prob-
lem naturally reduces to the problem P1 via a Turing reduction, the T -(P1,P2)
assumption is stronger than the hardness assumption on P1. Thus Theorem 1
can be regarded as the impossibility result from the hardness assumption on P1.

In our result, we consider Fiat-Shamir-type signature schemes which are
obtained from some specific type of ID schemes. Namely, an ID scheme has not
only representative properties such as the special soundness property and the
unique key property but also a certified key property which is proposed in this
paper. There are many ID schemes have the special soundness property and the
unique key property such as [21,24,37,38]. The certified key property is inspired
by the certified property of trapdoor permutations [25]. This supposes that any-
one can verify that a given public key indeed has the corresponding secret key
in polynomial-time. For example, DL-based ID schemes such as [24,37] satisfies
the certified property by considering an underlying group G as a group of prime
order p with a generator g, On the other hand, RSA-based ID schemes such as
GQ signature scheme seem not to be certified. This is because the order of an
underlying group in RSA-based ones is assumed to be hidden.

For ease of explanation,we force a security reductionR considered inTheorem 1
to a vanilla one.A vanilla reductionR is allowed tomerely invoke a forgerF against
the signature scheme once. Namely, it is prohibited to invoke R more than once and
to rewind it. However, we consider that one can extend Theorem1 to the impossi-
bility result for the single-instance reduction. This is because we give our result by
incorporating the proof techniques introduced by Fischlin and Fleischhacker [14]

590 M. Fukumitsu and S. Hasegawa

and Pass [34] which gave impossibility results that can cover single-instance reduc-
tions. The formal proof for the extended version of Theorem1 will be given in the
full paper.

On the reduction R, we put some restriction. R is restricted to solve the
T -(P1,P2) problem in the case where it is given a forged signature σ∗ =
(cmt∗, res∗) by an euf-cma forger F such that a cmt∗ part of σ∗ differs from
all cmt which appear in the signing oracle phase. This restriction is required to
rule out some type of security proofs in which security reductions are constructed
by separating the forged signature by F into several types such as the security
proof of Cramer-Shoup signature [11]. Cramer and Shoup [11] indeed separated
forged signatures into three types and then constructed three security reduction
algorithms which correspond to each of types, respectively. We will explain why
these restrictions affect the proof of Theorem 1.

Discussion. Theorem 1 states that Fiat-Shamir-type signature schemes which
are derived from ID schemes which have the special soundness property, the
unique key property, and the certified key property cannot be proven in NPROM
from the T -(P1,P2) assumption via the vanilla reductions which can handle the
specific type of forged signatures. As an example of ID schemes which have
these three properties, Schnorr ID scheme can be given. On the other hand, the
OM-DL assumption belongs to the class of T -(P1,P2) assumptions as mentioned
above. These reinforce the impossibility result of the provable security of Schnorr
signature scheme in NPROM given by Fukumitsu and Hasegawa [18].

If an ID scheme does not satisfy one of three properties above, it can circum-
vent the impossibility by Theorem1. For example, Okamoto ID scheme seems
not to have the unique key property. Moreover, the RSA-based ID schemes such
as GQ ID scheme do not have the certified property as discussed above. Lossy ID
schemes [2,22,23,26] also do not have the certified property since the lossy key
property seems to be incompatible with the certified property. Therefore, there
is a room that the Fiat-Shamir-type signature schemes yielded from these ID
schemes can be proven to be secure in NPROM from the T -(P1,P2) assumption.

In Theorem 1, we restrict the reduction algorithms R to handle a forged
signature σ∗ = (cmt∗, res∗) such that the cmt∗ part does not coincide with
those of all signatures which are given in the security proof. This suggests that
avoiding these restrictions may derive the successful security proof. It remains
open whether or not such possibilities can be indeed realized.

Proof Technique of Theorem 1. Theorem 1 is proved by employing the meta-
reduction technique which was introduced in [9]. The proof idea is as follows.
Assume that there exists a black-box security reduction R which solves a desig-
nated T -(P1,P2) problem by invoking an euf-cma forger F to a designated Fiat-
Shamir-type signature scheme. Here, R would simulate the signing oracle for F ,
since F is an euf-cma forger and hence F would make queries to the signing ora-
cle. Then, we aim to construct a probabilistic polynomial-time “meta-reduction”
algorithm M which solves the T -(P1,P2) problem. By assuming the hardness
on T -(P1,P2), such M denies the existence of R, and hence Theorem 1 follows.

OM Assumptions Do Not Help FS Signatures in NPROM 591

Our meta-reduction algorithm M is constructed by combining the invok-
ing twin reductions technique [14] and the forking reduction technique [34]. The
invoking twin reductions technique is introduced by Fischlin and Fleischhacker
to prove the impossibility result mentioned above. The invoking twin reductions
technique intuitively means that M invokes twin clones of the assumed reduc-
tion R to utilize the abilities of solving the T -(P1,P2) problem and simulating
the signing oracle. Subsequently, this technique is also employed in the impossi-
bility results by [19,42]. In particular, Fukumitsu and Hasegawa [19, Theorem 2]
gave an impossibility result on the provable security of some Fiat-Shamir-type
signature schemes in NPROM from non-interactive cryptographic assumptions
by using this technique. Our result generalizes their result in the sense that our
result also covers interactive cryptographic assumptions.

The results by [14,19,42] only covers non-interactive cryptographic assump-
tions. Unfortunately, the invoking twin reduction technique seems not to be
applied to interactive cryptographic assumptions immediately. This is because the
total number of accesses to the oracle on P2 grows to 2T , since R is invoked twice.
However, the definition of the T -(P1,P2) problem requires to bound the number
of oracle queries by T . In order to overcome this problem, we combine the forking
reduction technique. Pass [34] gave an impossibility result on Schnorr ID scheme,
commitment schemes and the OM-DL assumption from interactive cryptographic
assumptions by this technique, respectively. Moreover, there are several impossi-
bility results [18,29,41] in which this technique is employed. Most recently, Mor-
gan and Pass [29] discussed the tight security of unique signature schemes from
general interactive cryptographic assumptions by using this technique.

In Theorem 1, we construct the meta-reduction M. The main point is how
to emulate an euf-cma forger F for the assumed reduction R. Namely, F is
required to reply a forged signature σ∗. According to these two techniques,
M aims to find σ∗ by invoking a copy of R to utilize the ability of the sim-
ulation of the signing oracle by R. One should carefully observe the behavior of
the assumed reduction R. More specifically, R may successfully run only for a
specific type of forgery output by F and simulate a signing oracle which replies
another type as mentioned in the restrictions of Theorem1. In this case, F can-
not win the euf-cma game only by returning such a forgery. For this matter,
we find a type of forgery such a concern can be avoided. Namely, F returns a
forged signature σ∗ = (cmt∗, res∗) of some message m∗ such that the cmt∗ part
does not coincide with those of any signatures which are given in the security
proof as mentioned above. Even when F finds a signature σ∗ of m∗ which does
not face this desirable type, it can reveal the secret key of the public key, which
is given from the challenger, by the special soundness of the Fiat-Shamir-type
signature scheme. Hence, F can recompute a signature of m∗ by the regular
signing algorithm. However, there is another problem that R would give F an
irregular public key in the sense that the public key has no corresponding secret
key. By using the certified property, F can verify the existence of a secret key,
and hence such a problem can be avoided. On the other hand, the emulation of
F should be deterministic as mentioned in [29]. This is because F is accessed by

592 M. Fukumitsu and S. Hasegawa

R as a black-box oracle. Since F runs the algorithm for the special soundness,
the secret key output by this algorithm should be unique. This is guaranteed by
the unique property.

Table 1. The impossibility results on the provable security of general Fiat-Shamir-type
signature schemes.

Considering Security Reductions

Model Security Tight Assumption Type

Thm. 8 [33] ROM uuf-cma only non-interactive algebraic

[14] NPROM euf-cma non-interactive single-instance

[17] NPROM suf-sma imp-pa of ID SMI

Thm. 1 [19] NPROM euf-koa imp-pa of ID key-preserving

Thm. 2 [19] NPROM euf-cma non-interactive single-instance key-preserving

Thm. 2 [33] Standard uuf-cma non-interactive algebraic

[ours] NPROM euf-cma generalized OM vanilla

Assumptions on Impossibility

Thm. 8 [33] the corresponding OM assumption to the Assumption column

[14] • the corresponding OM assumption to the Assumption column

• unique key

[17] imp-pa of ID

Thm. 1 [19] imp-aa of ID

Thm. 2 [19] • the same assumption to the Assumption column

• pk is an instance on the assumption

Thm. 2 [33] the corresponding OM assumption to the Assumption column

[ours] • the same assumption to the Assumption column

• special soundness & unique key & certified key

• specific forged signature

Comparison. We summarize the comparison among the impossibility results on
the provable security of general Fiat-Shamir-type signature schemes in Table 1.
The four columns of Considering Security Reductions indicate the type of secu-
rity reduction algorithms that are targeted for the corresponding impossibility
results. The column of Assumptions on Impossibility denotes the cryptographic
assumptions which are broken by meta-reduction algorithms and the require-
ments for constructing meta-reduction algorithms. The word Theorem is abbre-
viated to Thm. For example, the “corresponding OM assumption” is the OM-DL
assumption when the DL assumption is selected as the assumption which is bro-
ken by considering security reductions.

The impossibility results in [17,19,33] consider weak securities such as uuf-
cma [33], suf-sma [3] and euf-koa [33], where uuf and koa stand for the universal
unforgeability and the key-only attack, respectively. The word suf-sma is abbre-
viated from the selective unforgeability against the static message attack, which
is defined in [3].

OM Assumptions Do Not Help FS Signatures in NPROM 593

Although the impossibility result in [33] is considered in the ordinary random
oracle model, their results only exclude the tight security. On the other hand, the
other results including ours exclude any reductions irrespective of the tightness.

Our target reductions are the vanilla ones. The vanilla reductions have no
restriction on group operations and a public key querying to a forger F . Alge-
braic reductions are forced to use group operations only, and key-preserving
reductions R are allowed only to query the same public key which is given to R.
However, the restriction of vanilla reductions is stronger than that of single-
instance reductions and SMI reductions. In fact, SMI reductions, which are
considered in [3], can sequentially invoke F polynomially many times, whereas
single-instance reductions can invoke F only once. Moreover, these are allowed
to rewind it, but the vanilla ones cannot do these.

The main advantage of our results is to cover interactive cryptographic
assumptions. The results by [14,19,33] only consider non-interactive assump-
tions. Moreover, the results by [17,19] employ the security of underlying ID
schemes, namely the security against impersonation under the passive attack
(imp-pa) and that under the active attack (imp-aa). The security of underly-
ing ID schemes is in general proven by some specific cryptographic assump-
tion [21,37]. These impossibility results, therefore, do not cover cryptographic
assumptions other than the one which does not correspond to the underlying ID
scheme.

However, our result requires a specific type of underlying ID schemes as pre-
sented in the column of Assumptions on Impossibility. Whether or not Theorem1
holds for the Fiat-Shamir-type signature schemes derived from other types of ID
schemes is an important open question.

2 Preliminaries

For a deterministic algorithm A, y ← A(x) denotes that A outputs y on a
given input x. By y ← A(x;ω), we express that a probabilistic algorithm A
outputs y on input x with random coins ω. When A is probabilistic, A(x) is a
random variable where random coins ω are internally chosen. Abbreviated words
DPT and PPT stand for “deterministic polynomial-time” and “probabilistic
polynomial-time”, respectively. We denote by x ∈U X that an element x is
chosen uniformly at random from a finite set X. A positive function ε in λ
is said to be negligible if for any positive polynomial p, there exists a natural
number λ0 such that for any λ ≥ λ0, we have ε(λ) < 1/p(λ).

2.1 Digital Signature Schemes

We now recall the notion of digital signature schemes [20]. A signature scheme
SIG is defined by a tuple (SIG.KGen,SIG.Sign,SIG.Ver) of three algorithms.
SIG.KGen and SIG.Sign are PPT, while SIG.Ver is DPT. On a given security
parameter 1λ, SIG.KGen generates a pair (sk, pk) of a secret key and a public
key corresponding to sk. On a given tuple (sk, pk,m), SIG.Sign issues a signature

594 M. Fukumitsu and S. Hasegawa

σ under the pair (pk,m) of the public key and the message. Here, the message
space is denoted by M. On a given tuple (pk,m, σ), SIG.Ver returns 1 if σ is a valid
signature under a pair (pk,m). We now fix SIG = (SIG.KGen,SIG.Sign,SIG.Ver)
during the definitions of the correctness and the security.

Init CSIG generates (sk, pk) ← SIG.KGen(1λ), then gives pk to F .
Signing Oracle When F hands a message mi as an i-th query for each 1 ≤ i ≤ βs,

CSIG replies a valid signature σi under (pk, mi).
Challenge When F finally returns (m∗, σ∗), CSIG outputs 1 if the following conditions

hold:
(1) m∗ is not queried in Signing Oracle phase, i.e. m∗ �= mi for each 1 ≤ i ≤ βs.
(2) SIG.Ver(pk, m∗, σ∗) = 1.

Fig. 1. The description of the βs-euf-cma game

Correctness. SIG should satisfy the correctness in a sense that for any security
parameter λ, any pair (sk, pk) ← SIG.KGen(1λ), any message m ∈ M, and any
σ ← SIG.Sign(sk, pk,m), it holds that SIG.Ver(pk,m, σ) = 1.

Security. We introduce the existential unforgeability against a chosen-message
attack (euf-cma) [20]. Let βs be some polynomial in a security parameter λ.
The βs-euf-cma game is depicted in Fig. 1. The βs-euf-cma game is played by
two algorithms CSIG and F , which are referred to as a challenger and a forger,
respectively. Then, F wins the βs-euf-cma game if CSIG outputs 1 in the βs-euf-
cma game. We say that SIG is βs -euf-cma if for any PPT forger F , F wins the
βs-euf-cma game only with negligible probability.

2.2 Generalized One-More Cryptographic Assumptions

We explain the notion of generalized One-More cryptographic assumptions in
this subsection. We first recall the definition of non-interactive cryptographic
problems [41].

Non-interactive Cryptographic Problems. A non-interactive cryptographic prob-
lem P is defined by a tuple (P.PGen,P.IGen,P.IVer) of three algorithms. P.PGen
and P.IGen are PPT, while P.IVer is DPT. On a given security parameter 1λ,
P.PGen generates a public parameter pp of P. On a given public parameter pp,
P.IGen generates an instance Y on P. On a given tuple (pp, Y, x), P.IVer outputs
1 if x is in fact a solution of Y on P. For any adversary A, the security game of
the problem P between a challenger C and the adversary A is defined as follows:
C outputs P.IVer(pp, Y, x∗), where C runs pp ← P.PGen(1λ) and Y ← P.IGen(pp),
and then A(pp, Y) computes x∗. Then, we say that A wins the problem P if C
outputs 1 in this game. For a threshold function τ , the advantage AdvP,τ

A (λ) of
A on the problem P is defined by the difference between the winning probability

OM Assumptions Do Not Help FS Signatures in NPROM 595

of A on the above game and the threshold τ . The probability is taken over the
internal coin flips on P.PGen, P.IGen and A. In general, such a threshold τ is
set to 0 for computational problems such as the DL problem, the CDH problem,
and the RSA problem, while it is set to 1/2 for decisional problems such as the
DDH problem and the decisional linear problem. The P assumption on τ states
that for any PPT adversary A, AdvP,τ

A is negligible.

OM Init COM generates pp ← PGen(1λ) and Y = (Y0, . . . , YT) ← IGen(pp), and then
gives (pp,Y) to A.

OM Oracle When A makes an instance Qj as a j-th query for each 1 ≤ j ≤ T , COM

returns rj ← Orcl(pp, Qj).
OM Challenge When A finally returns x = (x0, . . . , xT), COM outputs 1 if the fol-

lowing two conditions hold:
(1) A accesses OM oracle at most T times.
(2) IVer(pp,Y ,x) = 1.

Fig. 2. The definition of the T -(P1,P2) game

Generalized One-More Problems. Consider two non-interactive problems P1 =
(PGen,P1.IGen,P1.IVer) and P2 = (PGen,P2.IGen,P2.IVer) such that these share
a common public parameter generator PGen. and let T be a polynomial in a
security parameter λ. The generalized “One-More” problem T -(P1,P2) is defined
by (PGen, IGen,Orcl, IVer) in the following way: Let pp ← PGen(1λ), then

IGen(pp) generates (T + 1)-instances Y = (Y0, Y1, . . . , YT) of P1, namely for each
0 ≤ j ≤ T , Yj ← P1.IGen(pp).

Orcl(pp,Q) returns a solution r of an instance Q on the problem P2 if there is a
solution of Q on P2, or ⊥ otherwise.

IVer(pp, (Y0, . . . , YT), (x0, . . . , xT)) outputs 1 if P1.IVer(pp, Yj , xj) = 1 for each
0 ≤ j ≤ T .

The hardness assumption of the T -(P1,P2) problem is defined by the T -(P1,P2)
game described as in Fig. 2. This game is played by a challenger COM and an
adversary A. Note that we do not exclude the case where the running time of
Orcl is unbounded, whereas IGen and IVer are required to be in polynomial-time.
This does not affect the game, because Orcl is run by COM. In a similar manner to
the ordinary cryptographic problem, we say that A wins the T -(P1,P2) game if
COM finally outputs 1 in this game. Then, for a function τ in a security parameter
λ, the T -(P1,P2) assumption with respect to a threshold function τ states that for
any PPT adversary A, AdvT -(P1,P2),τ

A is at most negligible, where AdvT -(P1,P2),τ
A is

defined in a similar manner to that on non-interactive cryptographic problems.

2.3 Fiat-Shamir-type Signature Schemes

Fiat-Shamir-type signature schemes are constructed by the generic transforma-
tion proposed by Fiat and Shamir [13] from canonical identification (ID) schemes.

596 M. Fukumitsu and S. Hasegawa

A canonical ID scheme ID is defined by a tuple (ID.KGen, P1, CH, P2, V) of five
components which are used in a protocol executed by a prover P and a verifier
V. Following the protocol, P can convince V of possession of a secret key. The
protocol proceeds as follows. Let (sk, pk) ← ID.KGen(1λ) be a pair of a secret
key and a public key of P. Then V is given only pk.

1. P computes a pair (st, cmt) by executing the PPT algorithm P1(sk, pk), and
then sends cmt to V.

2. V chooses a string cha uniformly at random from the set CH of strings, and
then replies cha to P.

3. P computes res by executing the DPT algorithm P2(sk, pk, st, cmt, cha), and
then finally returns res to V.

4. V ensures that P in fact has a secret key corresponding to the public key pk
by checking whether or not V (pk, cmt, cha, res) = 1.

In this paper, we consider the specific types of ID as mentioned in Sect. 1.
Namely, ID is assumed to have the special soundness property, unique key prop-
erty, and certified key property. The special soundness property is that one can
recover a secret key sk of pk by using DPT algorithm SS on a given tuple(
pk, cmt, cha, res, cha′, res′) such that cha �= cha′ and V (pk, cmt, cha, res) =

V (pk, cmt, cha′, res′) = 1. The unique key property is that any public key pk
on ID has only one secret key sk. The certified key property is that one can
verify that pk has a corresponding secret key sk by checking whether or not a
DPT algorithm KEval returns 1 on a given pk.

The Fiat-Shamir-type signature scheme FSSIG from ID = (KGen, P1, CH, P2,
V) is defined in the following way, where FSSIG = (KGen,FSSIG.Sign,FSSIG.Ver):
Let (sk, pk) ← KGen(1λ).

FSSIG.Sign(sk, pk,m) issues a signature σ = (cmt, res) of a message m ∈ M as
follows:
1. (st, cmt) ← P1(sk, pk).
2. cha = H(cmt,m), where H : {0, 1}∗ → CH is a hash function.
3. res ← P2(sk, pk, st, cmt, cha).

FSSIG.Ver(pk,m, σ) outputs 1 if V (pk, cmt, c, res) = 1 for σ = (cmt, res) and
c = H(cmt,m).

3 Security of Fiat-Shamir-type Signature Schemes
Cannot Be Proven from Generalized One-More
Assumptions in NPROM

In this section, we give our main result. We discuss the impossibility of the prov-
able security on Fiat-Shamir-type signature schemes from generalized One-More
assumptions. We start by describing the meaning that a Fiat-Shamir-type sig-
nature scheme is provable to be secure from generalized One-More assumptions.

Black-box Reductions R with Black-box Access. Let βs and T be polynomials in
a security parameter λ. We now consider that the provable security of a Fiat-
Shamir-type signature scheme FSSIG = (KGen,FSSIG.Sign,FSSIG.Ver) which

OM Assumptions Do Not Help FS Signatures in NPROM 597

is derived from a canonical ID scheme ID = (KGen, P1, CH, P2, V) under the
T -(P1,P2) assumption with a problem P1, a problem P2 and a threshold func-
tion τ , where T -(P1,P2) = (PGen, IGen,Orcl, IVer). The provability is defined by
the existence of a PPT black-box reduction algorithm R [29]. R can break the
T -(P1,P2) assumption, namely it wins the T -(P1,P2) game so that AdvT -(P1,P2),τ

R
is non-negligible, by accessing a forger F which wins the βs-euf-cma game of
FSSIG in a black-box manner. The main goal of R is to win the T -(P1,P2) game
by playing the game with the challenger COM in the adversary’s position. Here, R
can access OM oracle at most T times. During the T -(P1,P2) game, R would
also play the βs-euf-cma game of FSSIG with F in the challenger’s position.
F would hand at most βs messages to obtain corresponding valid signatures
adaptively concerning the given public key pk, and R should reply valid signa-
tures of such queries. If R fails to reply at least one of them, F can reply any
string such as ⊥. Otherwise, F finally outputs a forgery pair (m∗, σ∗) with non-
negligible probability. Note that we focus on Fiat-Shamir-type signature schemes
derived from certified ID schemes. Thus, anyone can verify that pk has a secret
key on FSSIG by using KEval. Therefore, we consider forgers which return ⊥ if
KEval(pk) �= 1.

Fig. 3. Behavior of R

Since R is only allowed to access F in a black-box manner, R must follow
the description of the game in the access to F . Moreover, in the definition of
the black-box reduction, F can be regarded as a deterministic algorithm or a
probabilistic algorithm with fixed random coins as in [29,34].

In the non-programmable random oracle model (NPROM) [15], R and F
obtain all hash values from the random oracle, whereas such values are obtained
from the one simulated by R in the ordinary random oracle model. This means
that R can observe interactions between F and the random oracle, but it cannot
control them.

Eventually, the behavior of R can be described as in Fig. 3.

Assumptions on the Impossibility. On our impossibility, we employ the following
assumptions:

598 M. Fukumitsu and S. Hasegawa

(Ass-1) P2 is a deterministic problem. Namely, for any instance Q on P2, there
is only one solution r, and hence Orcl is deterministic.

(Ass-2) T < βs.
(Ass-3) R is constructed in NPROM.
(Ass-4) A forger F returns a forgery pair (m∗, (cmt∗, res∗)) such that cmt∗ does

not coincide with cmti of a signature σi which is obtained in Signing
Oracle phase for each i-th query.

(Ass-5) The minimum entropy of cmt output by P1 of ID is super-logarithmic [1]
and the message spaceM has exponentially many messages. The minimum
entropy is considered over all possible secret keys and random coins to P1.

(Ass-6) ID is specially sound, unique key and certified.

Main Theorem. We now give the impossibility of the provable security of Fiat-
Shamir-type signature schemes in NPROM. As mentioned in Sect. 1, we only
consider the case where R invokes a βs-euf-cma forger only once and does not
rewind the invocation.

Theorem 1. Let βs and T be polynomials in a security parameter λ, and let
τ and ε be functions in λ, especially ε is non-negligible. Assume the conditions
(Ass-1)–(Ass-6) and that there exists a PPT black-box reduction algorithm R
so that AdvT -(P1,P2),τ

R ≥ ε by black-box accessing a forger F which wins the βs-
euf-cma game of FSSIG with non-negligible probability in NPROM. Then, there
exists a PPT algorithm M such that AdvT -(P1,P2),τ

M is non-negligible.

Proof. Assume that there exists a PPT black-box reduction algorithm R so that
Adv

T -(P1,P2),τ
R ≥ ε by accessing a forger F in a black-box manner, which wins the

βs-euf-cma game with non-negligible probability in NPROM. This means that
the reduction algorithm R can win the T -(P1,P2) game so that AdvT -(P1,P2),τ

R ≥ ε
for sufficiently large λ if it is provided a forger F which wins the βs-euf-cma game
of FSSIG with non-negligible probability. We aim to construct a meta-reduction
algorithm M so that Adv

T -(P1,P2),τ
R is non-negligible by internally running R.

Namely, M will be constructed to make R solve the T -(P1,P2) problem by
emulating such a forger. In the emulation of F , it is required to return a forgery
(m∗, σ∗) to R. In order to find (m∗, σ∗), an ability of R to reply a signature
σ of a queried message m in Signing Oracle phase is also utilized. Note that
(m,σ) cannot be merely used as a forgery pair. This is because in the meta-
reduction M, the challenger R and the emulation of F play the βs-euf-cma game,
and hence such a pair (m,σ) does not satisfy the condition (1) on Challenge
phase. However, the forking reduction techniques proposed by [34] allow F to
use it. Hereafter, we adopt their technique to construct M. We first present a
family of “ideal” forgers F̃ in a sense that it finds a forgery pair by identically
implementing this idea. Since F̃ will be constructed to win βs-euf-cma game of
FSSIG with non-negligible probability, R also can win the T -(P1,P2) game so
that AdvT -(P1,P2),τ

R ≥ ε for sufficiently large λ if such an ideal forger F̃ is provided.
By utilizing this property, we will construct a PPT meta-reduction algorithm M
such that Adv

T -(P1,P2),τ
M is non-negligible. Observe that the running time of F̃

OM Assumptions Do Not Help FS Signatures in NPROM 599

in the family is unbounded and F̃ is required to satisfy some conditions on the
winning of the βs-euf-cma game. However, we will show that F̃ can be emulated
in PPT by M with non-negligible probability.

Fig. 4. Ideal forger ˜Fpp,Y ,R∗,ω,ωS

Family of Ideal Forgers F̃pp,Y ,R∗,ω,ωS
. We describe a family of ideal forgers

F̃pp,Y ,R∗,ω,ωS
. This family is indexed by a public parameter pp of the T -(P1,P2)

problem, an instance Y on the T -(P1,P2) problem, a clone instance R∗ of the
assumed reduction R and random coins ω and ωS which are used in R∗ and
FSSIG.Sign. Fix such an index (pp,Y ,R∗, ω, ωS). F̃pp,Y ,R∗,ω,ωS

aims to find a
forgery pair (m∗, σ∗) by utilizing the ability of the simulation of Signing Oracle
phase by R. In F̃pp,Y ,R∗,ω,ωS

, we employ a virtual oracle O which chooses a
string m uniformly at random from the message space M of FSSIG on a given
tuple

(
pk, i, b

)
of a public key pk of FSSIG, an index 1 ≤ i ≤ βs and a bit

b ∈ {0, 1}. The role of O will be explained after the description of the procedure
of F̃pp,Y ,R∗,ω,ωS

. The procedure of F̃pp,Y ,R∗,ω,ωS
is depicted as in Fig. 4. The

formal description of F̃pp,Y ,R∗,ω,ωS
is as follows: On a given public key pk,

(A) Run R∗(pp,Y ;ω) until it invokes a βs-euf-cma forger with a public key pk.
During the running of R∗, it replies r ← Orcl(pp,Q) on a queried instance
Q on P2 in OM oracle phase of the T -(P1,P2) game. Moreover, it forwards
all of inputs and outputs for the external random oracle.

(B) Abort if pk �= pk.
(C) Return ⊥ if KEval(pk) �= 1.
(D) For each 1 ≤ i ≤ βs, execute (I-D1)–(I-D7):

600 M. Fukumitsu and S. Hasegawa

(I-D1) Obtain a message mi from the virtual oracle O on
(
pk, i, 0

)
.

(I-D2) Hand mi to R∗ in order to obtain its signature σi = (cmti, resi).
(I-D3) Query (cmti,mi) to the external random oracle in order to obtain its

hash value chai, if R∗ has never queried (cmti,mi).
(I-D4) If R∗ does not access OM oracle during (I-D2) and (I-D3), and

FSSIG.Ver(pk,mi, σi) = 1:
– Set i∗ = i.
– Obtain a message mi from O by querying

(
pk, i, 1

)
.

– Halt R∗. Hereafter, set mi = mi and skip (I-D2), (I-D3) and (I-D4).
Otherwise, set mi = mi.

(I-D5) Hand mi to the challenger CSIG to obtain the signature σi =
(
cmti, resi

)
.

(I-D6) Query
(
cmti,mi

)
to the external random oracle in order to obtain

its hash value chai, if
(
cmti,mi

)
has never been queried by R∗ or

F̃pp,Y ,R∗,ω,ωS
.

(I-D7) Return ⊥ if FSSIG.Ver(pk,mi, σi) �= 1.
(E) Abort if i∗ has never been set in (I-D4).
(F) If there exists an index 1 ≤ i0 ≤ βs such that cmti∗ = cmti0 for the

signature σi0 =
(
cmti0 , resi0

)
under

(
pk,mi0

)
:

– sk ← SS(pk, cmti∗ , chai∗ , resi∗ , chai0 , resi0).
– Reset σi∗ ← FSSIG.Sign(sk, pk,mi∗ ;ωS).

(G) Return (mi∗ , σi∗).

F̃pp,Y ,R∗,ω,ωS
runs R∗ by giving the hardwired pair (pp,Y) with the random

coins ω. In the utilization of R∗, we should consider the following three matters.
The first one is that R∗ would access OM oracle with some query Q. This

is because R∗ plays a role of the T -(P1,P2) adversary. For such an oracle access,
F̃pp,Y ,R∗,ω,ωS

replies its solution r by executing Orcl(pp,Q) in a similar manner
to OM oracle phase. It should be noted that the running time of Orcl may be
unbounded as mentioned in the definition of Generalized One-More Problems.
However, we will construct our meta-reduction algorithm M which emulates the
behavior of F̃pp,Y ,R∗,ω,ωS

in polynomial-time.
The second one is that there are two abort cases. The first one is that the

public key pk which is output by R∗ is not identical to the one pk given by
CSIG. Although R∗ is allowed to invoke a forger with any of pk, one does not
need to consider this case. This is because F̃pp,Y ,R∗,ω,ωS

is presented to play the
βs-euf-cma game with the “specific” challenger R. In this sense, it suffices that
F̃pp,Y ,R∗,ω,ωS

wins this game only when it plays the game with R. Moreover,
R cannot distinguish that F̃pp,Y ,R∗,ω,ωS

is given. This is because R is allowed
only to access F in a “black-box” manner. More specifically, M is constructed
in a way that R∗ is given a same tuple (pp,Y , ω) to that for R as input. Since
the random coins ω are the same, one can estimate that the behavior of R∗

is identical to that of R until R∗ has output pk at (A), if these receive the
same replies such as hash values from the random oracle and solutions from
OM oracle. We will show that these behaviors are indeed identical, and then
that R∗ outputs pk which coincides with pk with which R invokes a forger.

OM Assumptions Do Not Help FS Signatures in NPROM 601

The second one is that the “challenge” index i∗ is not set, namely for each
1 ≤ i ≤ βs, in the loop for the index i, R∗ always accesses OM oracle during
(I-D2) and (I-D3), or Ver(pk,mi, σi) �= 1. We will also show that in the emulation
of F̃pp,Y ,R∗,ω,ωS

by M, these abort cases do not occur or a non-valid signature is
received from a challenger simulated by R. In the latter event, F̃pp,Y ,R∗,ω,ωS

can
finish own execution with outputting ⊥ as mentioned in Black-box Reductions
R with Black-box access. Hereafter, we only consider the winning probability of
F̃pp,Y ,R∗,ω,ωS

under the assumption that the two abort cases do not occur as
in [19].

The third one is that randomly chosen messages are obtained from the virtual
oracle O as in (I-D1) and (I-D4). As defined above, O chooses a string m uni-
formly at random from the message space M of FSSIG on a given tuple

(
pk, i, b

)
.

This setting is required in order to construct an ideal forger F̃pp,Y ,R∗,ω,ωS
to

be deterministic as in [29,34]. By this setting, the fixed random coins of R∗

and FSSIG.Sign and the assumption (Ass-1) imply that F̃pp,Y ,R∗,ω,ωS
is also

deterministic.
We evaluate the winning probability of F̃pp,Y ,R∗,ω,ωS

under the assumption
that F̃pp,Y ,R∗,ω,ωS

does not abort.

Lemma 2. Assume that F̃pp,Y ,R∗,ω,ωS
does not abort. F̃pp,Y ,R∗,ω,ωS

wins the
βs-euf-cma game of FSSIG with negligible error probability. In particular, when
F̃pp,Y ,R∗,ω,ωS

finally returns a signature σi∗ = (cmti∗ , resi∗), it holds that
cmti∗ �= cmti for each 1 ≤ i ≤ βs with negligible error probability.

Proof (Lemma 2). Assume that F̃pp,Y ,R∗,ω,ωS
does not abort. Namely, R∗

invokes a forger with pk = pk and the challenge index i∗ is set.
In this case, F̃pp,Y ,R∗,ω,ωS

determines (mi∗ , σi∗) in (I-D4) such that
FSSIG.Ver(pk,mi∗ , σi∗) = 1. It suffices that the message mi∗ differs from mi

for each 1 ≤ i ≤ βs. This is required since mi has been queried to CSIG in Sign-
ing Oracle phase. As described in (I-D4), mi is identical to mi which is chosen
in (I-D1) if i �= i∗, or is newly obtained from O otherwise. Since O chooses a
message uniformly at random from the message space M of FSSIG, the proba-
bility that mi∗ coincides with mi for some 1 ≤ i ≤ βs is βs/|M|. It follows from
the assumption (Ass-5) concerning |M| that F̃pp,Y ,R∗,ω,ωS

wins the βs-euf-cma
game with negligible error probability.

If F̃pp,Y ,R∗,ω,ωS
finds that cmti∗ of σi∗ = (cmti∗ , resi∗) yielded in (I-D4)

coincides with cmti0 for some 1 ≤ i0 ≤ βs, then it recomputes σi∗ by deriv-
ing the secret key sk of pk. Note that one can suppose that sk exists because
the possibility that there is no secret key of pk has been excluded by checking
KEval(pk) �= 1. It follows from the condition cmti∗ = cmti0 that sk can be com-
puted in polynomial-time by using the special soundness property assumed in
(Ass-6). The super-logarithmic min-entropy property assumed in (Ass-5) implies
that the reset commitment cmti∗ coincides with cmti0 for some 1 ≤ i0 ≤ βs with
negligible probability. 	

602 M. Fukumitsu and S. Hasegawa

Note that F̃pp,Y ,R∗,ω,ωS
queries all of the random oracle queries by R∗,(

cmti,mi

)
for each 1 ≤ i ≤ βs and (cmti∗ ,mi∗). This is required to run R∗

and verify whether or not all of the signatures σi for each 1 ≤ i ≤ βs and the
challenge signature σi∗ are valid. Moreover, all hash values should be computed
via the external random oracle model in NPROM.

Fig. 5. Meta-reduction algorithm M

Meta-reduction Algorithm M. We present our meta-reduction algorithm M such
that Adv

T -(P1,P2),τ
M is non-negligible. The overview is depicted as in Fig. 5. Intu-

itively, M internally runs R with emulating an ideal forger F̃pp,Y ,R∗,ω,ωS
. On

a pair (pp,Y) of a public parameter and an instance, M proceeds as follows:
M sets List ← ∅, chooses random coins ω and ωS , and then runs R(pp,Y ;ω) to
obtain its solution x. During the running of R, M behaves in the following way
according to R’s output:

Access OM Oracle with a query Qj . If there is rj such that (Qj , rj) ∈ List,
then return rj . Otherwise, forward Qj to COM as an OM oracle query to
obtain its solution rj on P2, set List ← List∪{(Qj , rj)}, and then return rj .

Query (cmt,m) to the external random oracle. Forward (cmt,m) to the
external random oracle, and then return cha which is obtained from the ran-
dom oracle.

Invoke a forger with pk proceeds as follows:
(A) run a clone reduction R∗(pp,Y ;ω) of R until it outputs pk. During the

running of R∗, it replies OM oracle queries in the same way described
above. Namely, if there is rj such that (Qj , rj) ∈ List, then it returns rj ,
or otherwise, forwards Qj to COM to obtain its solution rj on P2, sets
List ← List∪{(Qj , rj)}, and then returns rj . Moreover, M forwards all
inputs and outputs for the external random oracle.

OM Assumptions Do Not Help FS Signatures in NPROM 603

(B) Abort if pk �= pk.
(C) Return ⊥ if KEval(pk) �= 1.
(D) For each 1 ≤ i ≤ βs, execute (R-D1)–(R-D7):

(R-D1) Choose a message mi ∈U M.
(R-D2) Hand mi to R∗ in order to obtain its signature σi = (cmti, resi).
(R-D3) Query (cmti,mi) to the external random oracle in order to obtain

its hash value chai, if R∗ has never queried (cmti,mi).
(R-D4) If R∗ does not access OM oracle during (R-D2) and (R-D3),

and FSSIG.Ver(pk,mi, σi) = 1:
– Set i∗ = i.
– Choose a message mi ∈U M.
– Halt R∗. Hereafter, set mi = mi and skip (R-D2), (R-D3) and

(R-D4).
Otherwise, set mi = mi.

(R-D5) Hand mi to R to obtain the signature σi =
(
cmti, resi

)
.

(R-D6) Query
(
cmti,mi

)
to the external random oracle in order to obtain

its hash value chai, if
(
cmti,mi

)
has never been queried by R∗ or M.

(R-D7) Return ⊥ if FSSIG.Ver(pk,mi, σi) �= 1.
(E) Abort if i∗ has never been set in (R-D4).
(F) If there exists an index i0 such that cmti∗ = cmti0 for the signature

σi0 =
(
cmti0 , resi0

)
under

(
pk,mi0

)
:

– sk ← SS(pk, cmti∗ , chai∗ , resi∗ , chai0 , resi0).
– Reset σi∗ ← FSSIG.Sign(sk, pk,mi∗ ;ωS).

(G) Return (mi∗ , σi∗).
Finally output x return x.

We show that M correctly emulates F̃pp,Y ,R∗,ω,ωS
, where (pp,Y) is the given

pair at the start of the running of M, R∗ is a clone reduction of R, and ω and
ωS are the random coins chosen at first by M. Concretely, we show that the
distribution of interactions between R and the emulated forger denoted by FM
is identical to the one between R and F̃pp,Y ,R∗,ω,ωS

. We describe the behavior of
R. During the running of M, R and R∗ receive the tuple (pp, Y, ω), solutions rj

of queried instances Qj on P2 from OM oracle, hash values from the external
random oracle and messages from a βs-euf-cma forger. Since the random coins
given to R and R∗ are fixed to ω, R and R∗ always return the same outputs for
OM oracle queries, random oracle queries, a public key pk to invoke a forger
and signatures to reply signing oracle queries, as long as R and R∗ are given the
same inputs. In particular, we will confirm that for both forgers F̃pp,Y ,R∗,ω,ωS

and FM, inputs and outputs of R are identical to those of R∗ just before these
forgers set the challenge index i∗ in (I-D4) and (R-D4). We now prove that the
distribution of the interaction between R and FM is identical to the one between
R and F̃pp,Y ,R∗,ω,ωS

by the following lemmas.

Lemma 3. The distribution of interactions between R and FM is identical to
the one between R and F̃pp,Y ,R∗,ω,ωS

before the internal clone reduction R∗

invokes a forger with a public key pk. Moreover, it holds that pk = pk.

604 M. Fukumitsu and S. Hasegawa

Lemma 4. Assume that FM does not abort. The distribution of interactions
between R and FM is identical to the one between R and F̃pp,Y ,R∗,ω,ωS

after
the internal clone reduction R∗ invokes a forger with pk.

It should be noted that both F̃pp,Y ,R∗,ω,ωS
and FM internally run the clone

reduction R∗ of R. We show that both forgers identically response all of the
queries by R∗ in the above lemmas. In the proof of Lemma 3, we first observe that
R∗ run by each of F̃pp,Y ,R∗,ω,ωS

and FM behaves in the same way until it invokes
a forger. This is intuitively guaranteed by the fixed input tuple (pp,Y , ω), fixed
hash values obtained from the external random oracle and (Ass-1). Moreover,
the condition pk = pk is also implied by the identical behaviors of R and R∗

due to the given same inputs such as the tuple (pp,Y , ω), the responses of the
random oracle queries and OM oracle queries.

Proof (Lemma 3). Before R∗ invokes a forger with pk, both F̃pp,Y ,R∗,ω,ωS
and

FM merely run R∗ on the pair (pp,Y) and the random coins ω with mediating
the interactions to the random oracle, and replying a solution of Qj queried by
R∗. Since the fixed random coin ω induces that the running of R∗ is determinis-
tic, all outputs by R∗ are always the same if R∗ is given the same inputs such as
the responses of OM oracle queries and the random oracle queries. Note that
in NPROM, all hash values are obtained from the external random oracle, and
hence R∗ obtains the same hash values for all same random oracle queries. For
OM oracle queries Qj , Orcl always returns the same solution xi ← Orcl(pp,Qj)
on P2 when it is given any same instance Yj , since (Ass-1) guarantees that there
is only one solution for any instance of P2. On the other hand, FM replies the
solution of Qj by using either List or OM oracle, whereas F̃pp,Y ,R∗,ω,ωS

does
it by executing Orcl itself. Since List contains all pairs of a query and the corre-
sponding response which have been obtained from OM oracle, FM eventually
returns the responses given by Orcl. There imply that R∗ run by each of the both
forgers proceed in the same way before it outputs pk. Moreover, since R and R∗

are given the same inputs from each of the both forgers, R∗ always outputs pk
which is identical to pk. 	

In the proof of Lemma 4, we show that both forgers give the same inputs to
R and R∗ during the loop for the index i, and hence the outputs of R and R∗

are the same for the both forgers. The distributions of σi∗ output by the both
forgers can be proven to be identical due to the identical behavior of R∗ and the
unique key property assumed in (Ass-6).

Proof (Lemma 4). Assume that all inputs and outputs of R∗ and R are the same
for both F̃pp,Y ,R∗,ω,ωS

and FM before starting the loop for an index i. We show
that all inputs and outputs of R∗ and R are the same for both F̃pp,Y ,R∗,ω,ωS

and FM during the loop for an index i. Since the virtual oracle O used in
F̃pp,Y ,R∗,ω,ωS

returns m ∈U M, both forgers give a uniformly chosen message
mi ∈U M in (I-D1) and (R-D1) in order to obtain its signature σi. The assump-
tion above and the fixed input (pp,Y , ω) to R∗ imply that the behaviors in

OM Assumptions Do Not Help FS Signatures in NPROM 605

(I-D2)–(I-D3) and in (R-D2)–(R-D3) of R∗ are identical until it outputs the sig-
nature σi. Therefore, each of the conditions in (I-D4) holds if and only if each of
those in (R-D4) holds. Subsequently, both forgers hand the same message mi to
R and receive its signature σi =

(
cmti, resi

)
. Since

(
mi, cmti

)
is identical, the

hash value of it from the external random oracle is also the same. The signa-
tures σi given during the interaction between R and F̃pp,Y ,R∗,ω,ωS

and the ones
between R and FM are the same. This is because the behavior of R and R∗

for F̃pp,Y ,R∗,ω,ωS
is identical to the one for FM until this point, and the input

(pp,Y , ω) is also fixed. Therefore, the behavior of FM in (R-D7) is identical to
that of F̃pp,Y ,R∗,ω,ωS

.
It follows from Lemma 3 that all inputs and outputs of R∗ and R are the

same for the both forgers before starting the loop. Therefore, all inputs and
outputs of R∗ and R run by both forgers are the same during the loop.

Since we now assume that both forgers do not abort, the behaviors of the
both forgers are identical. We finally ensure that the distribution of σi∗ returned
by F̃pp,Y ,R∗,ω,ωS

is identical to the one by FM. If there exists an index i0 such
that cmti∗ which is given by R∗ coincides with cmti0 given by R, both forgers
reset σi∗ by using FSSIG.Sign with the fixed random coins ωS after recovering
the secret key sk of pk. The unique key property assumed in (Ass-6) implies
that F̃pp,Y ,R∗,ω,ωS

and FM obtain the same sk in this case, and then the dis-
tributions of the reset signature σi∗ generated by F̃pp,Y ,R∗,ω,ωS

and FM with
the fixed random coins ωS are identical. Otherwise if such an index i0 does not
exist, σ∗ is generated by R∗ whose behaviors run in F̃pp,Y ,R∗,ω,ωS

and FM are
identical as mentioned above. Therefore, the distributions, in this case, are also
identical. 	

We next show that F̃pp,Y ,R∗,ω,ωS
and FM always do not abort since there

must exist the challenge index i∗ by the following lemma. This lemma can be
shown by (Ass-2) and the identical behaviors of R and R∗ which have been
proven in Lemma 4.

Lemma 5. Assume (Ass-2). It holds that F̃pp,Y ,R∗,ω,ωS
and FM can either find

the challenge index i∗ or obtain a non-valid signature from R.

Proof. In order to prove this lemma, we show that R∗ run by each of both
forgers replies a signature σi0 under

(
pk,mi0

)
without OM oracle query for

some 1 ≤ i0 ≤ βs. Assume that for each 1 ≤ i ≤ βs, R∗ accesses OM oracle
during (I-D2) and (I-D3) ((R-D2) and (R-D3), resp.). This implies that R∗

accesses OM oracle at least βs times. Since the number of such oracle accesses
is bounded by T , it follows that βs ≤ T . Because it contradicts (Ass-2), R∗

replies σi0 without OM oracle query for some 1 ≤ i0 ≤ βs.
Hereafter, we consider that R∗ replies a signature σi0 under

(
pk,mi0

)
without

OM oracle for some 1 ≤ i0 ≤ βs, but σi0 is not valid. Then, each of both forgers
queries mi0 = mi0 to R as in (I-D4) and (R-D4). As shown in Lemma 4, R runs
in the same way to R∗ at this point. Therefore, R also replies the same signature
σi0 which is non-valid. In this case, the both forgers are allowed to return ⊥. 	

606 M. Fukumitsu and S. Hasegawa

We finally show that M accesses OM oracle with at most T times. Although
M runs internally the T -(P1,P2) adversaries R and R∗ and forwards their
queries to OM oracle, the total number of accesses to OM oracle is bounded
by T by using List appropriately.

Lemma 6. M accesses OM oracle at most T times.

Proof. We evaluate the number of the accesses to OM oracle by M by separat-
ing the point into before and after the one where FM starts (R-D2) for the loop
on the challenge index i∗. As shown in Lemma 4, the inputs and the outputs of
R and R∗ are identical until this point. Moreover, M replies OM oracle queries
by R and R∗, which have been already queried, by using List. Namely, it replies
these without querying to COM. These imply that the number of the accesses to
OM oracle by M until this point is the same as the single running of R until
this point.

After this point, R continues the running hereafter, whereas R∗ is aborted
after it has output a valid signature σi∗ under

(
pk,mi

)
on the loop for the index

i∗ as in (R-D4). Since R∗ does not access OM oracle during (R-D2) and (R-D3)
for the loop on the challenge index i∗, R only accesses OM oracle after this
point. The total number of the accesses to OM oracle by M can be regarded
as the single running of the reduction. Hence the number is bounded by T . 	

Observe that the running time of M is almost twice that of R. There-
fore, the T -(P1,P2) assumption does not hold by the existence of the PPT
adversary M. 	

Acknowledgements. We would like to thank anonymous reviewers for their valuable
comments and suggestions. A part of this work is supported by JSPS KAKENHI Grant
Numbers 18K11288 and 19K20272.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signa-
tures via the Fiat-Shamir transform: necessary and sufficient conditions for security
and forward-security. IEEE Trans. Inf. Theory 54(8), 3631–3646 (2008). https://
doi.org/10.1109/TIT.2008.926303

2. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signa-
tures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016). https://
doi.org/10.1007/s00145-015-9203-7

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, pp. 390–399. ACM, New York (2006).
https://doi.org/10.1145/1180405.1180453

https://doi.org/10.1109/TIT.2008.926303
https://doi.org/10.1109/TIT.2008.926303
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1145/1180405.1180453

OM Assumptions Do Not Help FS Signatures in NPROM 607

5. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993). https://
doi.org/10.1145/168588.168596

7. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

10. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

11. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assump-
tion. ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000). https://doi.org/10.1145/
357830.357847

12. Dierks, T., Allen, C.: The TLS protocol version 1.0 (1999). https://tools.ietf.org/
html/rfc2246

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 27

15. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

16. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019). https://doi.org/10.1007/s00145-019-
09311-5

17. Fukumitsu, M., Hasegawa, S.: Impossibility on the provable security of the Fiat-
Shamir-type signatures in the non-programmable random oracle model. In: Bishop,
M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 389–407. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45871-7 23

18. Fukumitsu, M., Hasegawa, S.: Impossibility of the provable security of the Schnorr
signature from the one-more DL assumption in the non-programmable random
oracle model. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017.
LNCS, vol. 10592, pp. 201–218. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68637-0 12

https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1145/357830.357847
https://doi.org/10.1145/357830.357847
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/978-3-319-45871-7_23
https://doi.org/10.1007/978-3-319-68637-0_12
https://doi.org/10.1007/978-3-319-68637-0_12

608 M. Fukumitsu and S. Hasegawa

19. Fukumitsu, M., Hasegawa, S.: Black-box separations on Fiat-Shamir-type signa-
tures in the non-programmable random oracle model. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. E101.A(1), 77–87 (2018). https://doi.org/10.1587/
transfun.E101.A.77

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017

21. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

22. Hasegawa, S., Isobe, S.: A lossy identification scheme using the subgroup decision
assumption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E97.A(6),
1296–1306 (2014). https://doi.org/10.1587/transfun.E97.A.1296

23. Hasegawa, S., Isobe, S.: Lossy identification schemes from decisional RSA. Inter-
disc. Inf. Sci. (2019). https://doi.org/10.4036/iis.2019.R.01

24. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36492-7 20

25. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

26. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight
security reductions. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS 2003, pp. 155–164. ACM, New York (2003).
https://doi.org/10.1145/948109.948132

27. Lv, X., Xu, F., Ping, P., Liu, X., Su, H.: Schnorr ring signature scheme with des-
ignated verifiability. In: 2015 14th International Symposium on Distributed Com-
puting and Applications for Business Engineering and Science (DCABES), pp.
163–166, August 2015. https://doi.org/10.1109/DCABES.2015.48

28. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

29. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 19

30. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

31. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57332-1 11

32. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

33. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

https://doi.org/10.1587/transfun.E101.A.77
https://doi.org/10.1587/transfun.E101.A.77
https://doi.org/10.1137/0217017
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1587/transfun.E97.A.1296
https://doi.org/10.4036/iis.2019.R.01
https://doi.org/10.1007/3-540-36492-7_20
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1145/948109.948132
https://doi.org/10.1109/DCABES.2015.48
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-030-03807-6_19
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11593447_1

OM Assumptions Do Not Help FS Signatures in NPROM 609

34. Pass, R.: Limits of provable security from standard assumptions. In: Proceedings
of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011,
pp. 109–118. ACM, New York (2011). https://doi.org/10.1145/1993636.1993652

35. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034852

36. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

37. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

38. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

39. Tor: Tor. https://www.torproject.org/
40. Ylonen, T.: The secure shell (SSH) transport layer protocol (2006). https://tools.

ietf.org/html/rfc4253
41. Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z.: Black-box separations for

one-more (static) CDH and its generalization. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 366–385. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 20

42. Zhang, Z., Chen, Y., Chow, S.S.M., Hanaoka, G., Cao, Z., Zhao, Y.: Black-box
separations of hash-and-sign signatures in the non-programmable random oracle
model. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 435–
454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 24

https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-39568-7_5
https://www.torproject.org/
https://tools.ietf.org/html/rfc4253
https://tools.ietf.org/html/rfc4253
https://doi.org/10.1007/978-3-662-45608-8_20
https://doi.org/10.1007/978-3-319-26059-4_24

Cut-and-Choose for Garbled RAM

Peihan Miao(B)

Visa Research, Palo Alto, USA
pemiao@visa.com

Abstract. Garbled RAM, introduced by Lu and Ostrovsky in 2013, pro-
vides a novel method for secure computation on RAM (Random Access
Machine) programs directly. It can be seen as a RAM analogue of Yao’s
garbled circuits such that the computational complexity and communica-
tion complexity only grow with the running time of the RAM program,
avoiding the inefficient process of first converting it into a circuit. It
allows for executing multiple RAM programs on a persistent database,
but is secure only against semi-honest adversaries.

In this work we provide a cut-and-choose technique for garbled RAM.
This gives the first constant-round two-party RAM computation proto-
col secure against malicious adversaries which allows for multiple RAM
programs being executed on a persistent database. Our protocol makes
black-box use of the one-way functions, and security of our construction
is argued in the random oracle model.

1 Introduction

Alice owns a large private database D and wants to store it on the cloud (Bob)
in an encrypted form. Subsequently Alice and Bob want to compute and learn
the output of arbitrary dynamically chosen programs P1, P2, · · · on their private
inputs x1 = (xA

1 , xB
1), x2 = (xA

2 , xB
2), · · · and the previously stored database,

which gets updated as these programs are executed. During the computation
the two parties do not want to leak their private inputs to each other. Can we
achieve this?

Starting with seminal works of Yao [Yao82] and Goldreich, Micali and
Wigderson [GMW87], in the past few decades, both theoretical and prac-
tical improvements have been pushing the limits of the overall efficiency
of such schemes. However most of these constructions are devised only for
Boolean/arithmetic circuits and securely computing a RAM program involves
the inefficient process of first converting it into a circuit.

Secure Computation for RAM Programs. Motivated by the above con-
sideration, various secure computation techniques that work directly for RAM

P. Miao—Work done while the author is a student at the University of California,
Berkeley. Research supported in part from a DARPA/ARL SAFEWARE Award,
AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397 and a research grant
from the Okawa Foundation. The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.

c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 610–637, 2020.
https://doi.org/10.1007/978-3-030-40186-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_26

Cut-and-Choose for Garbled RAM 611

programs have been developed. Ostrovsky and Shoup [OS97] show how general
secure RAM computation can be done using oblivious RAM (ORAM) [Gol87,
Ost90,GO96]. Subsequently, Gordon et al. [GKK+12] demonstrated an efficient
realization based on ORAM techniques. In follow up works [GKK+12,LO13a,
WHC+14,AHMR15], significant asymptotic and practical efficiency improve-
ments have been obtained. However, all these works require round complexity on
the order of the running time of the program.

In a recent line of work [LO13b,GHL+14,GLOS15,GLO15,HY16,GGMP16],
positive results on round efficient secure computation for RAM programs have
been achieved. These improvements are obtained by realizing the notion of gar-
bled random-access machines (garbled RAMs) [LO13b] as a method to garble
RAM programs directly, a RAM analogue of Yao’s garbled circuits [Yao82].

Persistent vs. Non-persistent Database. In the setting of RAM programs,
the ability to store a persistent private database that can be computed on mul-
tiple times can be very powerful. Traditionally, secure computation on RAM
programs is thus studied in two settings. In the non-persistent database setting,
one considers only a single program execution. While in the persistent database
setting, one considers execution of many programs on the same database; the
database can be modified by these programs during the execution and these
changes persist for future program executions. This feature is very important as
it allows to execute a sequence of programs without requiring to initialize the
data for every execution, implying that the database can be huge and the execu-
tion time of each program does not need to depend on the size of the database.
Previous garbled RAM schemes [GHL+14,GLOS15,GLO15] allow to garble any
sequence of programs on a persistent database, and we seek for secure RAM
computation protocols that preserve this property.

Black-Box vs. Non-black-Box. Starting with Impagliazzo-Rudich [IR90,
IR89], researchers have been very interested in realizing cryptographic goals
making only black-box use of underlying primitives. It has been the topic of
many important recent works in cryptography [IKLP06,PW09,Wee10,GLOV12,
GOSV14,GLO15]. On the other hand, the problem of realizing black-box
construction for various primitive is still open, e.g. multi-statement non-
interactive zero-knowledge [BFM88,FLS99,GOS06] and oblivious transfer exten-
sion [Bea96].1 From a complexity perspective, black-box constructions are very
appealing as they often lead to conceptually simpler and qualitatively more effi-
cient constructions.2

Semi-honest vs. Malicious Adversaries. All the aforementioned secure
RAM computation protocols that allow for a persistent database are secure
only against semi-honest adversaries. Hence, an important question is how to

1 Interestingly for oblivious transfer extension we do know black-box construction
based on stronger assumptions [IKNP03].

2 Additionally, black-box constructions enable implementations agnostic to the imple-
mentation of the underlying primitives. This offers greater flexibility allowing for
many optimizations, scalability, and choice of implementation.

612 P. Miao

“convert” the protocol into one that is secure in the presence of malicious adver-
saries, while preserving the efficiency, round complexity, database persistence,
and black-box use of underlying cryptographic primitives of the original protocol
to the greatest extent possible.

Motivated by stronger security guarantee and black-box constructions in the
persistent database setting, in this work, we ask the following question:

Can we securely compute RAM programs on a persistent database against
malicious adversaries making only black-box use of cryptographic

primitives?

1.1 Our Results

In this paper, we provide the first constant round two-party secure RAM compu-
tation protocol making only black-box use of underlying cryptographic primitives
with security guarantee against malicious adversaries.

Main Theorem (Informal). There exists a black-box secure RAM computa-
tion protocol with constant round complexity which is secure against malicious
adversaries, where the size of the database stored by one of the parties is Õ (|D|),
and the communication and computational complexity of one protocol execution
is Õ (t) where t is the running time of program P executed in one protocol execu-
tion. Here Õ (·) ignores poly (log t, log |D|, κ, s) factors where κ, s are the secu-
rity parameters.The protocol allows for maintaining a persistent garbled database
across execution of multiple programs. Our construction is proved secure in the
random oracle model.

1.2 Related Work

Independent with our work, Hazay and Yanai [HY16] also consider the ques-
tions of secure 2-party RAM computation against malicious adversaries. They
present a constant-round protocol building on the the semi-honest proto-
cols [GHL+14,GLOS15] and cut-and-choose techniques [LP07], but make a non-
black-box use of one-way functions. Moreover, they allow for a weaker notion of
persistent database, which we refer to as weak-persistent setting in Table 1, where
all the programs as well as the inputs are known beforehand to the parties.3

In another work, Garg et al. [GGMP16] study this question in the multiparty
setting. They demonstrate a constant-round multi-party computation protocol
that makes black-box use of one-way functions. Their work is based on the
black-box garbled RAM construction [GLOS15] (as we do) and the constant-
round MPC construction of [BMR90]. Their semi-honest secure protocol allows
for a persistent database, whereas their maliciously secure protocol achieves the
weak persistent notion. See Table 1 for a comparison of our work with prior and
concurrent work.
3 In this paper we focus on the standard persistent notion where later programs and

inputs can be chosen adaptively.

Cut-and-Choose for Garbled RAM 613

Table 1. Comparison of this work with prior and concurrent work

Security Model Assumption Persistence Rounds

[GHL+14] semi-honest OT-hybrid IBE persistent O (1)

[GLOS15] semi-honest OT-hybrid non-black-box OWF persistent O (1)

[GLO15] semi-honest OT-hybrid black-box OWF persistent O (1)

[GGMP16] semi-honest OT-hybrid black-box OWF persistent O (1)

[AHMR15] malicious OT-hybrid black-box OWF non-persistent O (t)

[HY16] malicious OT-hybrid non-black-box OWF weak-persistent O (1)

[GGMP16] malicious OT-hybrid black-box OWF weak-persistent O (1)

[This work] malicious OT-hybrid, ROM black-box OWF persistent O (1)

2 Our Techniques

We build our protocol based on the previous semi-honest secure black-box gar-
bled RAM construction [GLO15]. This serves as a good starting point in explain-
ing the technical challenges that come up in realizing maliciously secure black-
box garbled RAM.

Abstract of [GLO15]. The construction of [GLO15] is complex in that it
involves details of the RAM computation model, structure of the tree-like garbled
database consisting of garbled circuits as well as the way to properly concate-
nate these circuits, statistical ORAMs [DMN11,SCSL11,SvDS+13], etc. We first
summarize this construction in an abstracted garbled RAM scheme, and then
make it maliciously secure. More generally, if there are other constructions that
can also be transformed into this abstracted form, it can be automatically made
maliciously secure by our method. In the following we will use Yao’s garbled
circuits [Yao86] as a building block. To avoid ambiguity, the term input keys
refers to both labels per input wire of a garbled circuit while labels refers to one
label per wire.

At a high level the garbled RAM scheme can be described as follows. The
garbled database and garbled programs consist of a collection of garbled cir-
cuits, which are concatenated in a certain way. In particular, one garbled circuit
may hard-code inside it certain public constants and (partial) input keys to
other garbled circuits. The garbler generates all the garbled circuits concate-
nated properly and sends to the evaluator the garbled circuits along with partial
input labels. The evaluator evaluates the garbled circuits one by one in a certain
order, during which one garbled circuit may output (partial) input labels for
other garbled circuits, enabling the evaluation of the next garbled circuit. This
process proceeds until the evaluator obtains the output of the program. We refer
the readers to Sect. 4 for more details.

Technical Challenges. Starting from the construction of [GLO15], one possi-
ble method to make it maliciously secure is to compile it into a new protocol

614 P. Miao

against malicious adversaries using standard techniques [GMW87]. However, it
will compromise the black-box use of cryptographic primitives.

Recall that in [GLO15], the garbler (Alice) generates the garbled database
D̃ and garbled programs P̃ consisting of a collection of garbled circuits that are
concatenated properly, and sends to the evaluator (Bob). If Alice is malicious,
she may generate incorrect circuits or circuits concatenated in a wrong way. To
avoid Alice cheating, one possibility is to treat the garbled database and garbled
program (D̃, P̃) as one large garbled circuit, and apply cut-and-choose techniques
to it in a similar way to doing cut-and-choose on a single garbled circuit [LP07].
But cut-and-choose can only be done once for the database, meaning that we can
only apply cut-and-choose for the first (D̃, P̃) pair, and cannot achieve execution
of multiple programs on a persistent database. Therefore we turn to apply cut-
and-choose on every single circuit, or even on every gate.

The key question that we are trying to answer is: How to enforce Alice to
generate all the garbled circuits concatenated in a correct way? In particular,
how to ensure that all the hard-coded parameters are correct? In order to check
the correctness, we first pull out the hard-coded parameters in the circuit to be
part of the input, and then define a public function specifying the correlation
among all these circuits, in particular which input wires should take as input an
input key to another garbled circuit, and which should take a public value as
input, etc. The barrier becomes how to enforce the garbled circuits as well as
the correlation between them to be correct.

Consistency Check by Commitments. A natural idea is to let Alice and
Bob generate each garbled circuit correctly by cut-and-choose techniques [LP07,
NO09,FJN+13,FJNT15]. Then we require Alice to help Bob “concatenate” these
circuits satisfying the correlation requirements. Recall that in a Yao’s garbled
circuit, there are two labels per input wires, which together form the input-
garbling-keys (which we also refer to as input keys in this paper) to a garbled
circuit. When Bob evaluates the garbled circuit, he obtains one label per input
wire. To ensure correct concatenation, the major task is to guarantee the con-
sistency between input labels of one garbled circuit and input keys to another
garbled circuit. For instance, the i-th input wire of circuit X should be taking
as input the j-th bit of circuit Y ’s input keys. Let (label0, label1) be the two
labels of the i-th input wire of X, and b be the j-th bit of Y ’s input keys. In
order to concatenate the two circuits, Alice must provide Bob with labelb without
revealing b.

Our first attempt is requiring Alice to give bit-wise commitments of all
the input keys. If Alice commits honestly, then Bob holds a commitment of
b (denoted by [b]). In addition, we require Alice to commit to each label together
with its corresponding bit, namely

[
label0

] || [0] and
[
label1

] || [1], in a randomly

permuted order. When revealing label labelb to Bob, Alice picks
[
labelb

′] || [b′],

opens
[
labelb

′]
, and proves to Bob that b′ = b. An additive/XOR-homomorphic

commitment scheme suffices: Bob can compute [b′] ⊕ [b] → [b ⊕ b′], and Alice
opens the commitment to show that b ⊕ b′ = 0. If every bit-wise commitment

Cut-and-Choose for Garbled RAM 615

is correct, then the above procedure ensures that Bob obtains labelb. Now the
question boils down to: How to enforce Alice to commit to every bit of the input
keys honestly?

Cut-and-Choose on Circuits. Our next attempt is applying cut-and-choose
on each single circuit [LP07] to ensure that every garbled circuit is generated
correctly. The high level idea of [LP07] is to generate a correct garbled circuit as
follows. Alice first generates a number of garbled circuits, and then Bob does cut-
and-choose over these circuits, namely Bob randomly picks half of the circuits,
asks Alice to reveal all the randomness of generating the picked ones, and checks
if they are correctly generated. If all these circuits pass Bob’s checking, then with
high probability most of the remaining unchecked circuits are also correct. Bob
then evaluates all the remaining circuits and takes a majority of the outputs.

As we discussed earlier, we require Alice to give bit-wise commitments of all
the input keys, but currently we have no guarantee that Alice will do so honestly.
In fact, even if she only committed to a single bit incorrectly, it will easily violate
our consistency requirement. For the above example, Alice may commit to

[
b
]

and later open
[
labelb

]
(b denotes the negation of bit b). To resolve this problem

we might need another level of cut-and-choose.
Yet a more severe issue is that since Bob evaluates a number of replicate

circuits and takes the majority of the outputs, the input length of the resulting
garbled circuit is increased by a factor of the security parameter. This is fine
for a single circuit, but if we apply [LP07] for each circuit in D̃ and P̃ , where
one circuit may take as input (partial) input keys to another circuit, the input
length may grow exponentially in the number of circuits.

Cut-and-Choose on Gates. Now we consider cut-and-choose at a gate level,
which has been known as LEGO [NO09]. The main idea of LEGO is as follows.
Alice first produces a number of components and sends to Bob. Bob randomly
picks a subset of the components to be checked, Alice sends the randomness
used to generate them, and Bob checks the components. If Bob passes all the
checking, then with high probability most of the remaining components are also
correct. Bob then permutes the remaining components and use them to build a
garbled circuit where each gate will be computed multiple times and Bob takes
a majority vote on the output. To connect the remaining components we require
Alice to open some commitments to Bob.

LEGO is a better fit for our setting than [LP07] in that the input length of
a LEGO garbled circuit is the same as the original circuit, hence it would not
grow drastically throughout the circuits. Moreover, since each wire is replicated
multiple times, we are able to do more consistency checking among the com-
mitments of replicated wires, and if Bob accepts all the checking, then we can
achieve the guarantee that every bit-wise commitment is correct, as we elaborate
in more detail below.

XOR-Homomorphic Commitment Scheme. Next we describe in more
detail how to guarantee the correctness of the bit-wise commitments. We start
from the LEGO protocol of [NO09] and tailer the construction to our needs.

616 P. Miao

There are two major modifications. First, an additive homomorphic commit-
ment scheme is applied in LEGO, and we replace it with an XOR-homomorphic
commitment scheme. The use of an XOR-homomorphic commitment scheme
was proposed in [FJN+13,FJNT15] to improve efficiency, and was also utilized
in [AHMR15]. We will see the advantage of this modification in our construction.
Second, if Bob accepts all the checking in the LEGO protocol, by cut-and-choose
it only guarantees that most of the remaining components are correct with high
probability. We add more consistency checking among the commitments of input
wires to ensure that all the commitments of input wires are correct with high
probability.

We now discuss the intuition of the additional consistency checking via
an example. Assume that an input wire w has �n + 1 replicate wires, with
input keys (label0w,0, label

1
w,0), (label

0
w,1, label

1
w,1), · · · , (label0w,�n , label

1
w,�n). Alice

has provided a bit-wise commitment of all the input keys. Denote the first bit of
label0w,i by bi. As a demonstration, we explain how to ensure that Alice has com-
mitted to [bi] correctly. In the LEGO protocol, when concatenating components
to build a garbled circuit, Bob obtains the difference between certain labels,
in particular δw,i = label0w,i ⊕ label0w,0. The additional consistency checking is
as follows. Note that bi ⊕ b0 should be the first bit of δw,i. Bob can compute
[bi ⊕ b0] ← [bi] ⊕ [b0]. We require Alice to open the resulting commitment and
Bob to check if it is equal to the first bit of δw,i. Since cut-and-choose is done at
a gate level, with high probability at least one of the replicate wires has correct
bit-wise commitments. If Bob passes all the additional consistency checking, the
correctness of a single wire will spread out to all the replicate wires. The above
is merely one example of additional consistency checking, and in the protocol we
need more consistency checking to ensure correctness of all the commitments.

Adaptive Security. Since we execute our protocol on a sequence of programs
which run on a persistent database, the inputs of the adversary could be adap-
tively decided after the two parties have generated the garbled database and
garbled programs which consist of garbled circuits. Thus we need to argue adap-
tive security of the garbled RAM. More precisely, security should hold even
when the input on which the stored garbled RAM is computed can depend on
the garbled RAM itself. Towards this goal, we first modify the LEGO garbled
circuit to be adaptively secure in the random oracle model. Then we instantiate
the garbled RAM with the adaptive secure LEGO garbled circuits to achieve an
adaptive secure garbled RAM.

Construction at a High Level. We first abstract the static secure black-box
garbled RAM construction of [GLO15], where the garbler (Alice) generates a
collection of garbled circuits which are concatenated properly, and the evaluator
(Bob) evaluates the garbled circuits one by one in a certain order. At a high
level, in our construction Alice will generate all the garbled circuits, and the
LEGO techniques along with consistency checking ensure that all the garbled
circuits are concatenated in a correct way. Then Bob can evaluates the garbled
circuits to compute the output.

Cut-and-Choose for Garbled RAM 617

A key observation is that we can instantiate the black-box garbled RAM
of [GLO15] with the LEGO garbling scheme as the underlying circuit garbling
scheme. Then we modify the static secure LEGO garbling scheme to be adaptive
secure in the random oracle model, which gives us an adaptive secure garbled
RAM scheme. In order to generate an adaptive LEGO garbled circuit, we modify
the original LEGO protocol in [NO09] in that we add more commitments and
consistency checking in the protocol. After the additional consistency checking,
all the commitments of input wires are guaranteed to be correct. Finally, we can
ensure that all the garbled circuits are concatenated properly by opening certain
commitments.

Concrete Efficiency. We illustrate our idea of additional consistency check-
ing on the original LEGO framework [NO09] and not on the more efficient
LEGO protocols [FJN+13,FJNT15], because [NO09] is simpler and helps high-
light our ideas better. We note that the focus of this work is the theoret-
ical feasibility of achieving maliciously secure RAM computation protocols
using cut-and-choose techniques, rather than concrete efficiency. Neverthe-
less, it is worth pointing out that the LEGO protocols of [FJN+13,FJNT15]
are compatible with all known optimizations for Yao’s garbled circuits, e.g.,
point-and-permute [BMR90,MNP+04], free-XORs [KS08], garbled row reduc-
tion [NPS99,PSSW09,KMR14,ZRE15], etc.). We have left the goal of obtaining
concrete efficiency improvements over our construction for future work. However,
we believe that these improvements should be obtainable.

Storage Costs. Finally, we mention that the client (Alice) can store the whole
database on the cloud (Bob), and it is not necessary for her to store all the input
keys, randomness, etc. on her disk. She may store all these things on the cloud
signed and in an encrypted form (by private key encryption), and request for
them when needed. Therefore, the client storage remains small after the garbled
database has been created.

2.1 Roadmap

We now lay out a roadmap for the remainder of the paper. In Sect. 3 we give
definitions for semi-honest secure and maliciously secure garbled RAM. In Sect. 4
we abstract the static secure black-box garbled RAM construction of [GLO15].
We review the LEGO garbling scheme and describe our modified construction
which is adaptive secure in Sect. 5, and present our new LEGO protocol in Sect. 6.
Finally we give our secure RAM computation protocol in Sect. 7. We defer most
proofs to the full version of the paper [Mia16].

3 Preliminaries

In this section, we formally define the security of garbled RAM against semi-
honest and malicious adversaries. For a brief description of the RAM model,
circuit garbling schemes, and some building blocks needed in the construction,

618 P. Miao

refer to the full version of the paper [Mia16]. In the following, let κ be the com-
putational security parameter for the commitment schemes, oblivious transfers,
encryption schemes and hash functions used, and s be the statistical security
parameter.

3.1 Garbled RAM Scheme

In this section, we consider an extension of garbled circuits to the setting of RAM
programs, as defined in [LO13b,GHL+14,GLOS15,GLO15]. In this setting the
database D is garbled once and then many different garbled programs can be
executed sequentially with the database changes persisting from one execution to
the next. Note that all the previous work only defines static security for garbled
RAM, and we also define adaptive security here.

Syntax. A garbled RAM scheme consists of four procedures (GData,GProg,
GInput,GEval) with the following syntax:

– Database Garbling: (D̃, s) ← GData(1κ,D) takes as input the security param-
eter κ and database content D ∈ {0, 1}M , and outputs a garbled database D̃
and a key s.

– Program Garbling: (P̃ , sin) ← GProg(s, P,M, t, T) takes as input a key s and a
RAM program P with database-size M and run-time consisting t CPU steps.
We also provide T indicating the cumulative number of CPU steps executed
by all of the previous programs. It then outputs the garbled program P̃ and
input-garbling-key sin.

– Input Garbling: x̃ ← GInput(x, sin) takes as input x ∈ {0, 1}u and input keys
sin, and outputs the garbled input x̃.

– Garbled Evaluation: y ← GEvalD̃(P̃ , x̃) takes as input a garbled program P̃ ,
garbled input x̃ and garbled database D̃, and outputs a value y. We model
GEval itself as a RAM program that can read and write to arbitrary locations
of its database initially containing D̃.

Efficiency. We require the run-time of GProg and GEval to be t ·
poly (log M, log t, κ), which also serves as the bound on the size of the gar-
bled program P̃ . Moreover, we require that the run-time of GData should be
M ·poly (log M,κ), which also serves as an upper bound on the size of D̃. Finally
the running time of GInput is required to be u · poly (κ).

Correctness. For correctness, we require that for any sequence of pro-
grams P1, · · · , P� with run-time t1, · · · , t�, let D ∈ {0, 1}M be any initial
database, let x1, · · · , x� be the inputs of the programs and (y1, · · · , y�) =
(P1(x1), · · · , P�(x�))D be the outputs given by the sequential execution of the
programs. We have that:

Pr
[(

GEval(P̃1, x̃1), · · · ,GEval(P̃�, x̃�)
)D̃

= (y1, · · · , y�)
]

= 1

Cut-and-Choose for Garbled RAM 619

where (D̃, s) ← GData(1κ,D), (P̃i, s
in
i) ← GProg(s, Pi,M, ti, Ti), x̃i ←

GInput(xi, s
in
i), where Ti =

∑i−1
j=1 tj denotes the run-time of all programs prior

to Pi.

Static Security. For static security, we require that there exists a PPT simula-
tor StatRamSim such that for any PPT adversary A, any initial database content
D ∈ {0, 1}M , and any polynomially bounded �, the output of the following two
experiments are computational indistinguishable:

Real experiment

– (D̃, s)←GData(1κ, D)
– For i = 1, 2, · · · , �

(Pi, xi)←A(1κ, i)

(P̃i, sin
i)←GProg(s, Pi, M, ti, Ti)

x̃i←GInput(xi, sin
i)

– Output

(
D̃,

{(
P̃i, x̃i

)}�

i=1

)

Simulated experiment

–
(

D̃sim, state0
)

← StatRamSim
(
1κ, 1M

)
– For i = 1, 2, · · · , �

(Pi, xi) ← A(1κ, i)

(P̃ sim
i , x̃sim

i , statei)←StatRamSim(statei−1, Pi, 1
ti , yi)

(where (y1, · · · , y�) = (P1(x1), · · · , P�(x�))
D)

– Output

(
D̃sim,

{(
P̃ sim

i , x̃sim
i

)}�

i=1

)

Adaptive Security. For adaptive security, we require that there exists a PPT
simulator AdaptRamSim such that for any PPT adversary A, any initial database
content D ∈ {0, 1}M , and any polynomially bounded �, the output of the fol-
lowing two experiments are computational indistinguishable:

Real experiment

– (D̃, s)←GData(1κ, D)
– For i = 1, 2, · · · , �

Pi←A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1

j=1

)

(P̃i, sin
i)←GProg(s, Pi, M, ti, Ti)

xi←A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1

j=1
, P̃i

)

x̃i←GInput(xi, sin
i)

– Output

(
D̃,

{(
P̃i, x̃i

)}�

i=1

)

Simulated experiment

– (D̃sim, state0)←AdaptRamSim
(
1κ, 1M

)
– For i = 1, 2, · · · , �

Pi←A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1

j=1

)

(P̃ sim
i , state′

i)←AdaptRamSim(statei−1, Pi, 1
ti , yi)

xi←A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1

j=1
, P̃i

)

(x̃sim
i , statei)←AdaptRamSim(state′

i, yi)

where (y1, · · · , y�) = (P1(x1), · · · , P�(x�))
D

– Output

(
D̃sim,

{(
P̃ sim

i , x̃sim
i

)}�

i=1

)

3.2 Garbled RAM Against Malicious Adversaries

We define security of a secure RAM computation protocol against malicious
adversaries in the ideal/real world paradigm. The definition compares the output
of a real execution to the output of an ideal computation involving a trusted
third party, which we call ideal functionality. The ideal functionality receives
the parties’ inputs, computes the functionality on these inputs and returns their
respective outputs. Loosely speaking, the protocol is secure if any real-world
adversary can be converted into an ideal-world adversary such that the output
distributions are computationally indistinguishable.

Execution in the Ideal World. We describe the ideal functionality F in Fig. 1.
Note that it is “insecure” similarly as [NO09] in the sense that it allows Alice
to guess Bob’s input bits, but if her guess is wrong then Bob is told that Alice
is cheating. This models a standard problem in Yao’s garbled circuits known as
“selective failure attack”, which can be solved by modifying the circuit being

620 P. Miao

Database: Alice inputs (InitialData, D). The ideal functionality parses it as D ∈
{0, 1}M .

Program and input: Alice inputs (NewProgram,A, P A, xA), Bob inputs
(NewProgram,B, P B, xB). If P A �= P B, then the ideal functionality outputs
disagreement! to both parties and terminates. Otherwise, let P = P A and parse P
as a program with input x = (xA, xB).

Evaluation and output: The ideal functionality computes y = P D(x), outputs y to
Bob, and updates D for the execution of the next program.

Corrupted party: The corrupted party may deviate from its input, may abort the
procedure by sending abort! to the ideal functionality, and can decide the time of
message delivery. In addition, if Alice is corrupted, she can specify to the ideal
functionality a set {i, βi}i∈I where I ⊆ {1, · · · , |xB|} and βi ∈ {0, 1}, where |xB|
is the length of Bob’s input. If βi = xB

i for every i ∈ I, then the ideal function-
ality outputs correct! to Alice. Otherwise, it outputs wrong! to Alice and outputs
Alice cheat! to Bob.

Fig. 1. The ideal functionality

evaluated to first compute a function of a randomized encoding of Bob’s input,
where any s bits are uniformly random and independent. This allows us to only
argue that Alice can guess s or more bits with probability at most 2−s, where
s is the statistical security parameter, since guessing fewer bits does not leak
information. One method for this is given in [LP07]. The extra number of gates
used is O (|xB| + s

)
. From now on we focus on implementing the slightly insecure

ideal functionality above.

Execution in the Real World. We next consider the real world where the pro-
tocol Π is executed. Π consists of four protocols (ΠGData,ΠGProg,ΠGInput,ΠGEval)
with the following functionality:

– Database Garbling ΠGData. With Alice’s input D, the protocol outputs a key
s to Alice and the garbled database D̃ to Bob.

– Program Garbling ΠGProg. The program P is known to both parties. With
Alice’s input s, the protocol outputs an input-garbling-key sin to Alice and
the garbled program P̃ to Bob.

– Input Garbling ΠGInput. With Alice’s input (sin, xA) and Bob’s input xB, the
protocol outputs the garbled input x̃ to Bob, where the input to the program
is x = (xA, xB).

– Garbled Evaluation ΠGEval. It is a procedure executed by Bob himself to com-
pute y = PD(x) from D̃, P̃ , x̃. The garbled database is updated during the
evaluation for the execution of the next program.

Efficiency. Considering the communication and computation complexity, we
require that the complexity of ΠGData be bounded by M · poly (log M,κ, s), and
that of ΠGProg,ΠGEval be bounded by t · poly (log M, log t, κ, s). Besides, the com-
plexity of ΠGInput is required to be u ·poly (κ, s). Moreover, the round complexity
of ΠGData,ΠGProg,ΠGInput are required to be constant.

Cut-and-Choose for Garbled RAM 621

Security Against Malicious Adversaries. We say that the protocol Π is
secure against malicious adversaries if for every pair of PPT adversary A in the
real world, there exists a pair of PPT adversary S in the ideal world, such that
with probability greater than 1 − 2−s, we have

{
Ideal

F
S

(
D, {Pi, xi}�

i=1

)}
D,�,{Pi,xi}�

i=1

c≈
{
Real

Π
A

(
D, {Pi, xi}�

i=1

)}
D,�,{Pi,xi}�

i=1

(1)

where Ideal
F
S (D, {Pi, xi}�

i=1) denotes the output of S in the ideal world, and
Real

Π
A(D, {Pi, xi}�

i=1) denotes the output of A in the real world. Here � is
polynomially bounded, D is the initial database content, and the programs are
Pi with input xi = (xA

i , xB
i).

4 Black-Box Garbled RAM

In this section we abstract the construction of the black-box garbled RAM
(GRAM) scheme [GLO15]. This abstraction captures the key aspects of the
GRAM construction relevant to us. Additionally it avoids the details irrelevant
for understanding our work.

At a high level the GRAM scheme can be described as follows. The garbled
database and garbled programs consist of a collection of garbled circuits (GCs)
concatenated in a certain way, which we will elaborate in more detail later. The
garbler generates all the GCs concatenated properly and sends to the evaluator
the GCs with partial labels. The evaluator evaluates the GCs one by one in a
certain order, during which one GC may output (partial) labels for other GCs,
enabling the evaluation of the next GC. This process proceeds until the evaluator
obtains the output of the program.

To formalize and generalize the above scheme, we first define a uniform circuit
needed in the construction, and then describe the scheme built on the uniform
circuits.

4.1 Uniform Circuits

In the scheme, garbled database and garbled programs consist of a collection
of GCs. We consider these circuits as uniform circuits, which all have the same
topology. Now we give a brief description of these uniform circuits. The input
of a uniform circuit consists of several parts, const, keys,mem, inp, dyn, as shown
in Fig. 2. Note that it is not necessary to delve into the functionality of each
circuit to understand the abstracted construction, so we omit the functionality
and only give the interface.4

4 For the readers who are familiar with [GLO15]: Each GC originally had two parame-
ters const and keys hard-coded inside it, and had mem, inp or dyn as input. Now const
and keys are pulled out to be part of the input, and every circuit takes mem, inp, dyn
as part of the input, so that all the circuits have the same topology.

622 P. Miao

4.2 Garbled RAM Scheme

In this section we describe the black-box GRAM scheme built on uniform cir-
cuits. At a high level, garbled database and garbled programs consist of a collec-
tion of garbled uniform circuits which are concatenated properly. We will specify
in the following how the generated GCs are concatenated, in particular what is
value of every input wire of every circuit.

Cunif(const, keys,mem, inp, dyn):

– const: A public constant, specifying the functionality of the circuit.
– keys: A collection of (partial) input keys of certain other GCs. The information of

which (partial) input keys it corresponds to is public.
– mem: Partial content of the database.
– inp: Partial content of the program input.
– dyn: Dynamic input. Its value is unknown at the time of garbling, and its label will

be outputted by other circuits at runtime.

Fig. 2. The interface of a uniform circuit

Table 2. The concatenation of the circuits

Category of X[i] f(X, i) Value of X[i]

const b ∈ {0, 1} b

keys (Y, j) j-th bit of input keys to Y

mem j ∈ [M] D[j]

inp j ∈ [u] x[j]

dyn null unknown

Recall that the database D has size M , program P has running time t. The
input x of program P has length u. Let M̃ be the number of GCs needed for the
garbled database and t̃ be the number of GCs needed for the garbled program.5

First we number all the GCs, including those for the garbled database as well
as the garbled programs. Denote the i-th input wire of circuit X by X[i]. Then
we define a public function f specifying the value of every input wire of every
circuit, as in Table 2. Given the output of f , the scheme is described in Fig. 3.

The above garbled RAM constructed in [GLO15] is a static secure garbled
RAM scheme that only makes a black-box use of one-way functions. In particular,
it proves the following theorem.

Theorem 1 (Static security of the garbled RAM scheme [GLO15]). The
garbled RAM scheme (GData,GProg,GInput,GEval) achieves efficiency, correct-
ness, and static security as defined in Sect. 3.1. Moreover, the construction only
makes a black-box use of one-way functions.

5 M̃ is proportional to M with poly-logarithmic factors, and t̃ is proportional to t with
poly-logarithmic factors. For our purpose we do not need to specify the concrete
numbers, but one may refer to [GLO15] for details.

Cut-and-Choose for Garbled RAM 623

5 Adaptive Secure Garbling Schemes

The circuit garbling protocol of [NO09] implies a special circuit garbling scheme,
which we refer to in the following as LEGO garbling scheme, denoted by
(LegoGCircuit, LegoGInput, LegoEval, LegoEvalCorrupt). In this section, we present

Database Garbling: (D̃, s) ← GData(1κ, D).

1. Generating input keys: Pick a PRF seed s uniformly at random and generate all
the input keys needed for the garbled circuits.

2. Generating garbled circuits: Generate all garbled uniform circuits {C̃i}M̃
i=1 by a

circuit garbling scheme.
3. Generating partial labels: Let L be the set of input labels consistent with f . In

particular, for each wire X[i] with category const/keys/mem, pick the correct label
for X[i] according to f(X, i) and D.

4. Output: D̃ =
(
{C̃i}M̃

i=1, L
)

, s.

Program Garbling/Replenishing: (P̃ , sin) ← GProg(s, P, M, t, T).

1. Generating input keys: Use s to generates all the input keys needed for the new
garbled circuits.

2. Generating garbled circuits: Let N be the total number of previously generated
GCs. Generate all new garbled uniform circuits {C̃i}N+t̃

i=N+1 by a circuit garbling
scheme.

3. Generating partial labels: Let L be the set of labels consistent with f for all wires
X[i] with category const/keys.

4. Generating input-garbling-key: Let sin be the set of input keys to all wires X[i]
with category inp.

5. Output: P̃ =
(
{C̃i}N+t̃

i=N+1, L
)

, sin.

Input Garbling: x̃ ← GInput(x, sin).

1. Parsing input-garbling-key: Parse sin as partial input keys to currently generated
GCs.

2. Generating garbled input: Let x̃ be the set of labels consistent with f and x. In
particular, for each wire X[i] with category inp and f(X, i) = j, pick a label from
sin according to x[j].

3. Output: x̃.

Garbled Evaluation: y ← GEvalD̃(P̃ , x̃).

1. With all input labels of C̃N+1, start the evaluation from C̃N+1.
2. Evaluate the GCs one by one until no more GC can be evaluated.

– One GC will output (partial) labels for other GCs.
– Once obtaining all labels for a GC, evaluate that GC, and repeat.

3. The output of the last evaluated GC is y.

Fig. 3. Garbled RAM scheme abstraction

624 P. Miao

our modifications on the scheme to make it adaptively secure in the random ora-
cle model in Sect. 5.1. Next, we instantiate the garbled RAM scheme in Sect. 4
with the adaptive LEGO garbling scheme to obtain an adaptive secure garbled
RAM scheme in Sect. 5.2. We defer a detailed review of the static LEGO garbling
scheme to the full version of the paper [Mia16].

5.1 Adaptive Secure LEGO Garbling Scheme

In this section we modify the static secure LEGO garbling scheme to be adaptive
secure in the random oracle model. First of all, to extend our definitions of
garbling scheme privacy to adaptive security in the random oracle model [BR93],
we follow the treatment of [BHR12b,BHR12a]. A ROM garbling scheme is a
garbling scheme whose algorithms have access to an oracle Hash called the
random oracle. The model is obtained by adding the following procedure Hash

to the real/simulated experiments.
procedure Hash(γ,w)

if hash[γ,w] = ⊥ then
if in the real experiment then

hash[γ,w] $← {0, 1}γ

else
hash[γ,w] ← AdaptCircSim(RO, γ, w)

return hash[γ,w]

New Components.

(a) A Repeated NAND (RN) Gate (b) A Key Check (KC) Gate

Fig. 4. Garbling components for adaptive LEGO garbling scheme

First we modify the garbled RN and KC gates by adding random oracles,
as shown in Fig. 4. As before, given the garbled gate table of an RN gate and
two input labels La, Rb (a, b ∈ {0, 1}), one can obtain the corresponding output
label Oa⊗b. Give the garbled table of a KC gate and one label K, one can check
if K is valid (i.e., K ∈ {K0,K1}).

Cut-and-Choose for Garbled RAM 625

New Scheme.
Now we modify the static secure LEGO garbling scheme to be

an adaptive secure one (AdaptLegoGCircuit,AdaptLegoGInput,AdaptLegoEval,
AdaptLegoEvalCorrupt) with the following syntax:

(
C̃a, s

in
a

)
← AdaptLegoGCircuit (1κ,C)

x̃a ← AdaptLegoGInput(sin
a , x)

y ← AdaptLegoEval(C̃a, x̃a)

There are two modifications compared to (LegoGCircuit, LegoGInput, LegoEval,
LegoEvalCorrupt):

1. When generating garbled gate tables in AdaptLegoGCircuit, now generate the
new garbled RN and KC gate tables as in Fig. 4.

2. When evaluating garbled gates in AdaptLegoEval and AdaptLegoEvalCorrupt,
now evaluate the new garbled RN and KC gates.

Correctness and Security.
Correct garbled gates remain correct for evaluation in the adaptive LEGO

garbling scheme, hence the robust correctness still holds.

Theorem 2 (Robust correctness of adaptive LEGO garbling scheme).
For any circuit C and input x, let C̃cor

a be a corrupted LEGO garbled circuit in
the adaptive LEGO garbling scheme and let x̃a be the garbled input of x. If each
garbled gate g̃cora ∈ C̃cor

a consists of at least 1 correct garbled RN gate and at least
� �k

2 � correct garbled KC gates, then

C(x) = AdaptLegoEvalCorrupt
(
C̃cor
a , x̃a

)
.

We prove the adaptive security for the new scheme. At a high level, the
simulator AdaptLegoSim will first generate the garbled circuit honestly when
seeing the circuit. After seeing the output of the circuit, AdaptLegoSim generates
a new simulated garbled circuit by StatLegoSim, and uses the random oracles
to transform the previously generated garbled circuit into the newly simulated
one. See the full version of the paper [Mia16] for a detailed proof.

Theorem 3 (Adaptive security of adaptive LEGO garbling scheme).
There exists a PPT simulator AdaptLegoSim such that for any PPT adversary
A and any circuit C, the output of the following two experiments are computa-
tional indistinguishable:

Real experiment

–
(
C̃a, sin

a

)
← AdaptLegoGCircuit (1κ,C)

– x ← A(1κ,C, C̃a)

– x̃a ← AdaptLegoGInput(sin
a , x)

– Output (C̃a, x̃a)

Simulated experiment

–
(
C̃sim
a , state

)
← AdaptLegoSim (1κ,C)

– x ← A(1κ,C, C̃a)

– x̃sim
a ← AdaptLegoSim(state,C(x))

– Output (C̃sim
a , x̃sim

a)

626 P. Miao

5.2 Adaptive Secure Garbled RAM

ThegarbledRAMschemewas instantiatedwithYao’s garbling scheme in [GLO15].
In this section we will instantiate it with the aforementioned static/adaptive secure
LEGO garbling schemes. Out key observation is that [GLO15] makes a black-box
use of a secure circuit garbling scheme (GCircuit,GInput,Eval), which can be instan-
tiated using the LEGO schemes.

First we instantiate the garbled RAM with the static LEGO garbling
scheme (LegoGCircuit, LegoGInput, LegoEval). Note that the static LEGO gar-
bling scheme has the same syntax as the circuit garbling scheme and is static
secure. Moreover, the scheme only makes black-box use of one-way functions.
Therefore, instantiating the garbled RAM with the static LEGO garbling scheme
would give us a static secure garbled RAM scheme.

Our next step is instantiating the garbled RAM with the adaptive LEGO gar-
bling scheme (AdaptLegoGCircuit,AdaptLegoGInput,AdaptLegoEval) in Sect. 5.1.
It is an adaptive secure circuit garbling scheme as proved in Theorem3, and it
also makes black-box use of one-way functions. We observe that in the security
proof of [GLO15] if we replace the static secure circuit garbling scheme with
an adaptive secure one, the resulting garbled RAM is also adaptive secure. The
following theorem summarizes the above observation.

Theorem 4 (Adaptive secure garbled RAM). Instantiating the garbled
RAM of [GLO15] with the adaptive LEGO garbling scheme gives a gar-
bled RAM scheme (GDataLego,GProgLego,GInputLego,GEvalLego) with a simulator
AdaptRamSimLego that achieves efficiency, correctness, and adaptive security as
defined in Sect. 3.1.

6 Generating an Adaptive LEGO Garbled Circuit

In this section, we provide a protocol between two parties to generate an adap-
tive LEGO garbled circuit. The protocol is based on the original LEGO protocol
in [NO09], and it differs from the LEGO protocol in that we add more commit-
ments and consistency checking in the protocol. After the additional consistency
checking, all the commitments of input wires are guaranteed to be correct. This
will be shown in the proof of Theorem6. Looking ahead, this property is cru-
cial for our construction of secure RAM computation protocol to ensure that
the garbler generates the garbled memory and garbled programs concatenated
properly. In the following we first present the protocol in Sect. 6.1, and then give
some useful analysis in Sect. 6.2.

6.1 The New LEGO Protocol

In this section, we present the protocol ΠNewLEGO between Alice and Bob where
Alice plays the role of a garbler, and Bob obtains an adaptive LEGO garbled cir-
cuit at the end of the protocol. For notations, we use [·] to denote a commitment,
and b to denote a negation of bit b.

Cut-and-Choose for Garbled RAM 627

Global Difference. Alice samples a global difference Δ and a randomizer rΔ,
generates the commitment [Δ; rΔ], sends [Δ] to Bob, and gives a zero-knowledge
UC-secure proof of knowledge of Δ (see the full version of the paper [Mia16] for
details).

Component Production. Let C be a circuit with n NAND gates. Let Nn =
(�n + 1)n,Nk = (�k + 1)n.

Generating Garbled RN Gates. Alice generates φnNn garbled RN gates (as

described in Sect. 5.1). For each garbled RN gate, Alice sample πL, πR, πO
$←

{0, 1} and sends the following to Bob. Note that the commitments in steps 3
and 4 are additional compared to the original LEGO protocol.

1. Commitment of the zero labels and permutation:
[
L0

]
,
[
R0

]
,
[
O0

]
, [π] . (Note

that Bob can compute the one labels by himself:
[
L1

] ← [
L0

] ⊕ [Δ],
[
R1

] ←[
R0

] ⊕ [Δ],
[
O1

] ← [
O0

] ⊕ [Δ].)
2. The garbled gate table.

hπ(0) = EncL0,R0(O1) ⊕ Hash

(∣∣EncL0,R0(O1)
∣
∣ , L0||R0

)
;

hπ(1) = EncL0,R1(O1) ⊕ Hash

(∣∣EncL0,R1(O1)
∣
∣ , L0||R1

)
;

hπ(2) = EncL1,R0(O1) ⊕ Hash

(∣∣EncL1,R0(O1)
∣
∣ , L1||R0

)
;

hπ(3) = EncL1,R1(O0) ⊕ Hash

(∣∣EncL1,R1(O0)
∣
∣ , L1||R1

)
.

3. Commitment of (L0, L1), (R0, R1), and (O0, O1) in permuted orders:

[LπL] || [πL] ,
[
LπL

] || [πL] ;

[RπR] || [πR] ,
[
RπR

] || [πR] ;

[OπO] || [πO] ,
[
OπO

] || [πO] .

4. Write the labels bit by bit as follows (where z is the length of a label):

L0||L1 = �0,1�0,2 · · · �0,z||�1,1�1,2 · · · �1,z;

R0||R1 = r0,1r0,2 · · · r0,z||r1,1r1,2 · · · r1,z;

O0||O1 = o0,1o0,2 · · · o0,z||o1,1o1,2 · · · o1,z.

Bit-wise commitment of all labels:
{[

�b,u
]
,
[
rb,u

]
,
[
ob,u

]}
b∈{0,1},1≤u≤z

.

Generating Garbled KC Gates. Alice generates φkNk KC gates (as described in
Sect. 5.1). For each garbled KC gate, Alice sends the following to Bob:

1. Commitment of the zero key and permutation
[
K0

]
, [π]. (Note that Bob can

compute the one key by himself:
[
K1

] ← [
K0

] ⊕ [Δ].)

628 P. Miao

2. The garbled gate table.

hπ(0) = H(K0) ⊕ Hash

(∣∣H(K0)
∣
∣ ,K0

)
;

hπ(1) = H(K1) ⊕ Hash

(∣∣H(K1)
∣
∣ ,K1

)
.

Component Checking. Bob randomly picks (φn − 1)Nn RN gates and (φk −
1)Nk KC gates to be checked, and sends to Alice. Note that Alice cannot simply
send to Bob all the randomness used to generate the garbled gates being checked,
because revealing both the zero label and one label of a wire will leak Δ to Bob,
which compromises the security of LEGO garbled circuits completely. Hence Bob
randomly picks one label per wire to check.

Checking RN Gates. For each RN gate to be checked, Bob randomly picks

bL, bR
$← {0, 1}, computes bO = bL ⊗ bR, and sends bL, bR, bO to Alice.

1. Checking the commitment of labels and permutation: Alice opens the com-
mitment

[
LbL

]
,
[
RbR

]
,
[
ObO

]
, [π].

2. Checking the garbled gate table: Bob computes b = 2 · bL + bR, and checks

hπ(b) = EncLbL ,RbR (ObO) ⊕ Hash

(∣∣EncLbL ,RbR (ObO)
∣
∣ , LbL ||RbR

)
.

3. Checking the commitment of (L0, L1), (R0, R1), and (O0, O1) in permuted
orders:
Alice opens the commitment

[πL] ,
[
LbL

] || [bL] ; (If πL = bL, then open [LπL] || [πL]; otherwise
[
LπL

] || [πL])

[πR] ,
[
RbR

] || [bR] ; (If πR = bR, then open [LπR] || [πR]; otherwise
[
LπR

] || [πR])

[πO] ,
[
ObO

] || [bO] . (If πO = bO, then open [LπO] || [πO]; otherwise
[
LπO

] || [πO])

Bob checks consistency of
[
LbL

] || [bL] with previously revealed LbL ;
[
RbR

] || [bR] with previously revealed RbR ;
[
ObO

] || [bO] with previously revealed ObO .

4. Checking the commitment of every bit of labels: Alice opens the following
commitment

{[
�bL,u

]
,
[
rbR,u

]
,
[
obO,u

]}z

u=1
.

Bob checks the consistency with previously revealed LbL , RbR , ObO .

Checking KC Gates. For each KC gate to be checked, Bob randomly picks bK
$←

{0, 1}, sends to Alice.

1. Checking the commitment of labels and permutation: Alice opens the com-
mitment

[
KbK

]
, [π].

Cut-and-Choose for Garbled RAM 629

2. Checking the garbled gate table: Bob checks

hπ(bK) = H(KbK) ⊕ Hash

(|H(KbK)|,KbK
)
.

Soldering. Bob randomly permutes the remaining Nn RN gates and Nk KC

gates, constructs the garbled circuit such that each garbled gate consists of
(�n + 1) RN gates and (�k + 1) KC gates. Alice helps Bob solder the gates.

1. Soldering RN gates and KC gates of one garbled gate: For each gate g ∈ C,
recall that the solders consist of the following:

Soldering of RN gates: δL
g,i, δ

R
g,i, δ

O
g,i,∀i ∈ {1, · · · , �n};

Soldering of KC gates: δK
g,i,∀i ∈ {1, · · · , �k};

Soldering of KC gates with RN gates: δO,K
g .

Bob can compute by himself the commitment of all the above solders:
[
δL
g,i

] ← [
L0

g,i

] ⊕ [
R0

g,0

]
;

[
δR
g,i

] ← [
R0

g,i

] ⊕ [
R0

g,0

]
;

[
δO
g,i

] ← [
O0

g,i

] ⊕ [
O0

g,0

]
;

[
δK
g,i

] ← [
K0

g,i

] ⊕ [
K0

g,0

]
;

[
δO,K
g

] ← [
O0

g,0

] ⊕ [
K0

g,0

]
.

Alice opens all the commitment.
2. Soldering garbled gates together: Recall that the gate solders consist of the

following: {
δL
g1,g2

}
g1,g2∈C,g1↗g2

,
{
δR
g1,g2

}
g1,g2∈C,g2↖g1

.

Bob can compute by himself the commitment of these solders:

∀g1 ↗ g2 :
[
δL
g1,g2

] ← [
O0

g1,0

] ⊕ [
L0

g2,0

]
;

∀g2 ↖ g1 :
[
δR
g1,g2

] ← [
O0

g1,0

] ⊕ [
R0

g2,0

]
.

Alice opens the commitment.

Output Table. For each output wire w ∈ Wout, suppose it is the output wire

of gate g. Bob has the following commitment:
[
L

πL,0
g,0

] || [πL,0] ,
[
L

πL,0
g,0

]
|| [πL,0] ;

[
L

πL,1
g,1

] || [πL,1] ,
[
L

πL,1
g,1

]
|| [πL,1] ;

...
[
L

πL,�n

g,�n

]
|| [πL,�n] ,

[
L

πL,�n

g,�n

]
|| [πL,�n] .

630 P. Miao

RN RN RN

Without loss of generality assume

Fig. 5. Consistency checking of an input wire

Input Consistency Checking. For each input wire w ∈ Win, without loss

of generality assume it is the left input wire of gate g. Bob has the following
commitments, as shown in Fig. 5.

[
L

πL,0
g,0

] || [πL,0] ;
[
L

πL,0
g,0

]
|| [πL,0] ;

[
L

πL,1
g,1

] || [πL,1] ;
[
L

πL,1
g,1

]
|| [πL,1] ;

...
[
L

πL,�n

g,�n

]
|| [πL,�n] ;

[
L

πL,�n

g,�n

]
|| [πL,�n] .

[
�0,1
g,0

]
,
[
�0,2
g,0

]
, · · · ,

[
�0,z
g,0

]
;
[
�1,1
g,0

]
,
[
�1,2
g,0

]
, · · · ,

[
�1,z
g,0

]
;

[
�0,1
g,1

]
,
[
�0,2
g,1

]
, · · · ,

[
�0,z
g,1

]
;
[
�1,1
g,1

]
,
[
�1,2
g,1

]
, · · · ,

[
�1,z
g,1

]
;

...
[
�0,1
g,�n

]
,
[
�0,2
g,�n

]
, · · · ,

[
�0,z
g,�n

]
;
[
�1,1
g,�n

]
,
[
�1,2
g,�n

]
, · · · ,

[
�1,z
g,�n

]
.

Alice and Bob execute the following consistency checking. This step is a
crucial change compared to the original LEGO protocol. Looking ahead, in
Theorem 6 we will see that if Bob passes all the input consistency checking,
then all the commitments of input wires are correct with high probability.

Cut-and-Choose for Garbled RAM 631

1. Revealing the relation between {πL,i}�n
i=0: For every 1 ≤ i ≤ �n, Bob can

compute [πL,0 ⊕ πL,i] ← [πL,0] ⊕ [πL,i]. Alice opens the commitment. Bob
checks if πL,0 ⊕ πL,i = 0 or 1, and obtains the relation between {πL,i}�n

i=0,
namely πL,i = πL,0 or πL,0. Without loss of generality assume that πL,0 =
πL,1 = · · · = πL,�n .

2. Checking the difference between labels is consistent with previously revealed{
δL
g,i

}�n

i=1
: For every 1 ≤ i ≤ �n, Bob can compute [δg,i] ← [

L
πL,0
g,0

] ⊕ [
L

πL,i

g,i

]
.

Alice opens the commitment, and Bob checks if δg,i = δL
g,i.

3. Checking each pair of labels has a difference Δ in between: For every 0 ≤ i ≤
�n, Bob can compute

[0] || [0] ← ([
L

πL,i

g,i

] || [πL,i]
) ⊕

([
L

πL,i

g,i

]
|| [πL,i]

)
⊕ [Δ] || [1] .

Alice opens the commitment, and Bob checks.
4. Checking the difference between bit-wise commitment is consistent with pre-

viously revealed
{
δL
g,i

}�n

i=1
: For every 1 ≤ i ≤ �n, b ∈ {0, 1}, 1 ≤ u ≤ z, Bob

can compute
[
δu
g,i

] ←
[
�b,u
g,0

]
⊕

[
�b,u
g,i

]
. Alice opens the commitment, and Bob

checks if δu
g,i is equal to the u-th bit of previously revealed δL

g,i.

Parameters. We pick the parameters �k, �n, φn, φk, z such that the proofs of
Theorems 5, 6 can go through. One may refer to [NO09] for a detailed discussion
of parameters choice.

6.2 Analysis

The main idea in the above cut-and-choose protocol is that if Bob accepts all
the checking, then with high probability there are not too many incorrect gates
in total. With these small amount of incorrect gates, there will be at least one
RN gates and � �k

2 � KC gates per gate with probability exponentially close to 1.

Theorem 5. Assume that Alice is corrupted and Bob is honest. In the protocol
ΠNewLEGO if Bob accepts all the checking with probability greater than 2−s, then
with probability greater than 1 − 2−s there are at least 1 correct garbled RN gate
and � �k

2 � correct garbled KC gates per garbled gate in C̃.

The above theorem states that if Bob accepts all the component checking
and consistency checking, then most of the garbled gates in the garbled circuit
are correct with high probability. In the following theorem, we further show that
all the commitments of input wires are correct with high probability.

Theorem 6. Assume that Alice is corrupted and Bob is honest. In the protocol
ΠNewLEGO if Bob accepts all the checking with probability greater than 2−s, then
with probability greater than 1 − 2−s all the commitments of all the input wires
of C̃ are correct.

632 P. Miao

7 Our Construction

In this section we give our construction of the secure RAM computation proto-
col. The high level intuition of the protocol is as follows. It is built on the garbled
RAM scheme we abstracted in Sect. 4 and instantiated in Sect. 5.2. Recall that
in the garbled RAM scheme, we defined uniform circuits in Sect. 4.1 as building
units. In the procedure of database garbling and program garbling, the garbler
generates a collection of garbled uniform circuits with partial labels consistent
with a public function f , which indicates the concatenation of the uniform cir-
cuits. The evaluator evaluates the garbled circuits (GCs) one by one in a certain
order, during which one GC may output (partial) labels for other GCs, enabling
the evaluation of the next GC. This process proceeds until the evaluator obtains
the output of the program.

In the protocol Alice will play the role of a garbler and Bob will play the
role of an evaluator. They apply the protocol in Sect. 6 to generate the garbled
uniform circuits in parallel. After Bob obtains all the GCs, Alice provides him
with partial labels consistent with the public function f . We will elaborate in
more detail how Alice gives the partial labels in Sect. 7.1. Given that Alice is
providing the correct labels, Bob, as an evaluator, can evaluate the garbled RAM
as in the garbled RAM scheme.

7.1 Generating Partial Labels

Fig. 6. Concatenation of two garbled circuits

Cut-and-Choose for Garbled RAM 633

Suppose that Alice and Bob runs the protocol in Sect. 6 to generate a collection
of garbled uniform circuits in parallel. In this section we describe how Alice
provides Bob with partial labels to these garbled circuits consistent with the
public function f . For each input wire X[i] (the i-th input wire of circuit X),
without loss of generality assume it is the left input wire of gate of g. Recall that
Bob has the following commitment of its input keys, as shown in Fig. 6.

[
L0

g

]
;
[
L1

g

]
;

[
LπL

g

] || [πL] ;
[
LπL

g

] || [πL] ;
[
�0,1
g

]
,
[
�0,2
g

]
, · · · ,

[
�0,z
g

]
;
[
�1,1
g

]
,
[
�1,2
g

]
, · · · ,

[
�1,z
g

]
.

Recall that inTable 2we defined five categories of inputs: const, keys,mem, inp, dyn.
We explain in the following how Bob obtains the labels for each category of inputs:

– const: Let b = f(X, i) be value of X[i]. Alice simply opens the following
commitment:

[
�b,1
g

]
,
[
�b,2
g

]
, · · · ,

[
�b,z
g

]
.

– keys: Let (Y, j) := f(X, i), then the value of X[i] is the j-th bit of input keys
to circuit Y . As illustrated in Fig. 6, Bob holds a commitment of that bit,
denoted by [b]. Without loss of generality assume πL = b. Alice points out the
fact that πL = b to Bob, and Bob can compute [πL ⊕ b] ← [πL] ⊕ [b] . Alice
opens the above commitment and Bob checks if πL ⊕ b = 0. If Bob accepts
the checking, then Alice opens

[
LπL

g

]
and Bob obtains Lb

g.
– mem: Let j := f(X, i) be the location of the database and let b := D[j] be

the value of X[i]. Alice first gives a zero-knowledge proof of knowledge of L0
g

and L1
g (see the full version of the paper [Mia16] for more details). Then Alice

sends the label Lb
g to Bob.

– inp: Let j := f(X, i) and b := x[j] be the value of X[i].
• If x[j] is an input bit from Alice, then Alice first gives a zero-knowledge

proof of knowledge of L0
g and L1

g, and then sends the label Lb
g to Bob.

• Otherwise the two parties run an OT where Alice inputs the openings of[
L0

g

]
and

[
L1

g

]
and Bob inputs b, allowing Bob to obtain Lb

g.
– dyn: The label will be produced by another garbled circuit during runtime.

There is no need for Bob to obtain a label for it before evaluation.

7.2 Our Protocol

Our secure RAM computation protocol Π = (ΠGData,ΠGProg,ΠGInput,ΠGEval) is
described in Fig. 7. Security proof of the protocol is postponed to the full version
of the paper [Mia16].

634 P. Miao

Database Garbling ΠGData.

1. Generating garbled circuits: The two parties run ΠNewLEGO in parallel to generate
{C̃i}M̃

i=1.
2. Generating partial labels: For each wire X[i] with category const/keys/mem, Alice

provides Bob with partial labels as described in Section 7.1.

Program Garbling ΠGProg.

1. Generating garbled circuits: The two parties run ΠNewLEGO in parallel to generate
{C̃i}N+t̃

i=N+1, where N is the number of previously generated GCs.
2. Generating partial labels: For each wire X[i] with category const/keys, Alice pro-

vides Bob with partial labels as described in Section 7.1.
3. Generating input-garbling-key: Let sin be the set of input keys to all wires X[i]

with category inp, and Alice keeps it.

Input Garbling ΠGInput.

1. Parsing input-garbling-key: Alice parses sin as partial input keys to currently gen-
erated GCs.

2. Generating garbled input: For each wire X[i] with category inp, Alice provides Bob
with partial labels as described in Section 7.1.

Garbled Evaluation ΠGEval.

– Bob uses D̃, P̃ , x̃ to compute y ← GEvalLego
D̃(P̃ , x̃).

Fig. 7. Secure RAM computation protocol Π

Acknowledgements. The author would like to thank Sanjam Garg for many insight-
ful discussions and helpful comments on the write-up.

References

[AHMR15] Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evalu-
ate RAM programs with malicious security. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 702–729. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 27

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: 28th ACM STOC (1996)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC, pp. 103–112 (1988)

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 10

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
ACM CCS (2012)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd ACM STOC (1990)

https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-642-34961-4_10

Cut-and-Choose for Garbled RAM 635

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: ACM CCS 1993 (1993)

[DMN11] Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 144–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19571-6 10

[FJN+13] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi,
C.: MiniLEGO: efficient secure two-party computation from general
assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38348-9 32

[FJNT15] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., and Trifiletti, R.:
TinyLEGO: an interactive garbling scheme for maliciously secure two-party
computation. Cryptology ePrint Archive, Report 2015/309 (2015). http://
eprint.iacr.org/2015/309

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[GGMP16] Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM com-
putation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part
I. LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 19

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GKK+12] Gordon, S.D., et al.: Secure two-party computation in sublinear (amor-
tized) time. In: CCS (2012)

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 56th FOCS
(2015)

[GLOS15] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: 47th ACM STOC (2015)

[GLOV12] Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-
malleable commitments: a black-box approach. In: 53rd FOCS (2012)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: 19th ACM
STOC (1987)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431–473 (1996)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation by
oblivious RAMs. In: 19th ACM STOC (1987)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GOSV14] Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box
zero knowledge. In: 46th ACM STOC (2014)

[HY16] Hazay, C., Yanai, A.: Constant-round maliciously secure two-party compu-
tation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part
I. LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 20

https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-642-38348-9_32
http://eprint.iacr.org/2015/309
http://eprint.iacr.org/2015/309
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20

636 P. Miao

[IKLP06] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions
for secure computation. In: 38th ACM STOC (2006)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: 21st ACM STOC (1989)

[IR90] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 2

[KMR14] Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for
XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 25

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70583-3 40

[LO13a] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
377–396. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36594-2 22

[LO13b] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72540-4 4

[Mia16] Miao, P.: Cut-and-choose for garbled ram. IACR Cryptology ePrint
Archive 2016:907 (2016)

[MNP+04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay–secure two-
party computation system. In: USENIX Security Symposium, vol. 4. San
Diego (2004)

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 22

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM conference on Electronic
commerce, pp. 129–139. ACM (1999)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th ACM STOC (1997)

[Ost90] Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM
STOC (1990)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-00457-5_22

Cut-and-Choose for Garbled RAM 637

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 15

[PW09] Pass, R., Wee, H.: Black-box constructions of two-party protocols from
one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 24

[SCSL11] Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with
O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 11

[SvDS+13] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: ACM CCS 13 (2013)

[Wee10] Wee, W.: Black-box, round-efficient secure computation via non-
malleability amplification. In: 51st FOCS (2010)

[WHC+14] Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM:
Oblivious RAM for secure computation. In: ACM CCS (2014)

[Yao82] Yao,A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS (1982)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS (1986)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two Halves Make a Whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 8

https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

Universally Composable Accumulators

Foteini Badimtsi1 , Ran Canetti2 , and Sophia Yakoubov2(B)

1 George Mason University, Fairfax, VA, USA
foteini@gmu.edu

2 Boston University, Boston, MA, USA
{canetti,sonka}@bu.edu

Abstract. Accumulators, first introduced by Benaloh and de Mare
(Eurocrypt 1993), are compact representations of arbitrarily large sets
and can be used to prove claims of membership or non-membership about
the underlying set. They are almost exclusively used as building blocks
in real-world complex systems, including anonymous credentials, group
signatures and, more recently, anonymous cryptocurrencies. Having rig-
orous security analysis for such systems is crucial for their adoption and
safe use in the real world, but it can turn out to be extremely challenging
given their complexity.

In this work, we provide the first universally composable (UC) treat-
ment of cryptographic accumulators. There are many different types of
accumulators: some support additions, some support deletions and some
support both; and, orthogonally, some support proofs of membership,
some support proofs of non-membership, and some support both. Addi-
tionally, some accumulators support public verifiability of set operations,
and some do not. Our UC definition covers all of these types of accu-
mulators concisely in a single functionality, and captures the two basic
security properties of accumulators: correctness and soundness. We then
prove the equivalence of our UC definition to standard accumulator def-
initions. This implies that existing popular accumulator schemes, such
as the RSA accumulator, already meet our UC definition, and that the
security proofs of existing systems that leverage such accumulators can
be significantly simplified.

Finally, we use our UC definition to get simple proofs of security. We
build an accumulator in a modular way out of two weaker accumulators
(in the style of Baldimtsi et al. (Euro S&P 2017), and we give a sim-
ple proof of its UC security. We also show how to simplify the proofs
of security of complex systems such as anonymous credentials. Specifi-
cally, we show how to extend an anonymous credential system to support
revocation by utilizing our results on UC accumulators.

1 Introduction

Accumulators, first introduced by Benaloh and de Mare [5], are compact rep-
resentations of arbitrarily large sets. Despite being small—ideally constant-size
relative to the size of the set they represent!—they enable verification of state-
ments about the set. Given a membership witness for some object x together
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 638–666, 2020.
https://doi.org/10.1007/978-3-030-40186-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_27&domain=pdf
http://orcid.org/0000-0003-3296-5336
http://orcid.org/0000-0002-5479-7540
http://orcid.org/0000-0001-7958-8537
https://doi.org/10.1007/978-3-030-40186-3_27

Universally Composable Accumulators 639

with the accumulator, anyone can verify that x is in the accumulated set. If the
accumulator is a universal accumulator [17], it also supports non-membership
witnesses that can be used to verify that elements are not in the accumulated set.
Typically, an accumulator is owned by an entity called an accumulator manager
who can add elements to (and, if the accumulator is dynamic [11], remove ele-
ments from) the set. If the accumulator is strong [6], even a corrupt accumulator
manager cannot forge a proof of (non-)membership.

Many crucial primitives are actually special cases of accumulators. For
instance, digital signatures are accumulator schemes, where the signature ver-
ification key is the accumulator representing the set of signed messages, and
the signatures are membership witnesses. The owner of the signing key is the
accumulator manager, and she can add elements to the set by signing them. Of
course, she cannot un-sign elements (without publishing a revocation list, which
is not constant in size), and she cannot produce a proof that a given element has
not been signed, so this accumulator is neither dynamic nor universal. She can
also always prove the membership of arbitrary elements, so this accumulator is
not strong.

Another example of an accumulator is a Merkle hash tree. The tree root
is the accumulator representing the set of leaf nodes, and the authenticating
paths through the tree are membership witnesses. This accumulator supports
both element addition and deletion, but when either of those events occur, all
existing witnesses must be updated, requiring total work that is linear in the
number of member elements. In many situations, this is prohibitively inefficient.
The Merkle hash tree accumulator is strong, because all additions and deletions
are publicly verifiable (by means of re-execution). Though the intuitive Merkle
hash tree accumulator does not support proofs of non-membership, it can be
modified to be universal [6].

One construction of a universal, dynamic (but not strong) accumulator with
efficient update algorithms is the RSA accumulator. It is the original accumu-
lator introduced by Benaloh and de Mare [5], augmented with dynamism by
Camenisch and Lysyanskaya [11], and with universality by Li, Li and Xue [17].
It is one of the most popular accumulator constructions because of its compact-
ness and efficiency.

Although accumulators are frequently analyzed as stand-alone primitives,
they are almost exclusively used as building blocks in real-world complex systems,
including anonymous credentials [2,9,11,20], group signatures [11] and, more
recently, anonymous cryptocurrencies [19]. Having rigorous security analysis for
such systems is crucial for their adoption and safe use in the real world, but it
can turn out to be extremely challenging given their complexity. When a system
consists of multiple building blocks, even if each one of them is proven secure
independently, the security analysis of the whole needs to be done from scratch.

Universal Composability. Universally Composable (UC) security [13],
addresses this problem. Any protocol that has been shown to be UC-secure will
maintain its security properties even when it is used concurrently with other
arbitrary protocols as part of a larger system. This allows one to formally argue

640 F. Badimtsi et al.

about the security of a complex scheme in a much simpler and cleaner way, as
long as all the protocols used within it have already been proven to be UC-secure.

Showing that a protocol is UC-secure consists of two steps. First, we write
out a set of instructions called the ideal functionality, which define how we would
instantiate the primitive if we had an incorruptible third party to delegate its
operation to. Second, we show that any attack an adversary carries out against
the protocol, it can also carry out against the ideal functionality. This is done by
arguing that for any efficient adversary and environment (which sets all parties’
inputs, receives all parties’ outputs and additionally receives information from
the adversary), there exists a simulator such that the environment cannot tell the
difference between interacting with the protocol and adversary, and interacting
with the ideal functionality and simulator. This proves that any time it suffices
to use our ideal functionality within a larger system, we can replace it with our
protocol and the system will remain secure.

The modularity and the strong security guarantees provided by UC sug-
gest that protocols should always be designed and proven secure in the UC
framework. However, this is only the case for a small fraction of proposed cryp-
tographic schemes. One roadblock to using the UC framework is that not all
commonly used sub-protocols have UC definitions and proofs. Some such sub-
protocols have already been defined and analyzed in the UC framework (e.g.
digital signatures [13,14], zero-knowledge proofs [10], etc.), but others have not.
Cryptographic accumulators are one example of a very common primitive that
has never been considered in the context of UC security.

Our Results. In this work, we make the following contributions:

1. We provide the first UC definition (ideal functionality) for cryptographic accu-
mulators. There are many functionality flavors of accumulators: accumulators
might support only additions, only deletions or both, and they might support
proofs of membership, proofs of non-membership, or both. Our UC definition
covers all of these possibilities in a modular way.

2. We then prove the equivalence of our UC definition to standard accu-
mulator security definitions. This implies that existing secure accumulator
constructions—such as the RSA accumulator [5,11,17]—are UC secure.

3. Finally, we discuss how our UC definition simplifies the proofs of security
for schemes that use accumulators as a building block. First, we build an
accumulator out of two weaker accumulators (as in [2], but with stronger
privacy properties), and give a simple UC proof of security for that composite
accumulator, which we call Braavos’. Then, we consider how UC simplifies
proofs of security in more complex systems such as anonymous credentials.

Note that when defining a new ideal functionality, there are two possible
scenarios: either existing constructions can be proven to securely realize the
new functionality (as with digital signatures [14]), or new constructions must be
developed (as with commitment schemes [15]). Our second contribution shows
that our accumulator functionality is in the first scenario; popular, existing

Universally Composable Accumulators 641

accumulator constructions already satisfy it. This greatly simplifies the secu-
rity analysis of existing and future systems that use cryptographic accumulators
as a building block.

Informally, two classical properties are considered for cryptographic accumu-
lators. The first is correctness: for every element inside (or outside, for negative
accumulators) the accumulated set, an honest witness holder can always prove
membership (or non-membership, for negative accumulators) in the set. The sec-
ond is soundness: for every element outside (or inside, for negative accumulators)
the accumulated set, it is infeasible to prove membership (or non-membership,
for negative accumulators).

Our ideal functionality is different than most ideal functionalities in that
it requires as input from the simulator all of the accumulator algorithms (as
previously done in the context of digital signatures [14]). This is actually a very
intuitive way to build an ideal functionality, since it only deviates from the
algorithm outputs when necessary for correctness or soundness. We explain this
in more detail in Sect. 3.

We chose not to incorporate secrecy or privacy requirements into our ideal
functionality since they depend on specific applications and vary considerably;
thus, they are best made separately, as an additional “layer” on top of the
basic correctness guarantees captured in this work. Additionally, privacy-aware
constructions often use accumulators and privacy-enhancing mechanisms (such
as zero-knowledge proofs) as two separate modules, making the formalization
here more conducive to modular analysis. We exemplify this point by sketching a
modular analysis of the Baldimtsi et al. [2] construction of revocable anonymous
credentials from zero knowledge proofs and accumulators.

Outline. We start by setting notation and presenting classical accumulator def-
initions (but with a twist) in Sect. 2. Then, in Sect. 3, we give an ideal UC func-
tionality for accumulators that encompasses both of the properties listed above.
In Sect. 4, we argue that any accumulator that has these properties meets our
UC definition, and vice versa. Finally, in Sect. 5 we discuss how our UC defini-
tion of accumulators would simplify the security proof of an existing complex
system like anonymous credentials.

1.1 Accumulator Applications

To showcase the importance of a UC analysis for cryptographic accumulators we
briefly discuss a few of the most interesting systems that use accumulators as a
main building block. The security analysis of all the following systems would be
much simpler when the underlying accumulator is UC-secure.

Access Control. Authentication of users is vital to most of the electronic sys-
tems we use today. It is usually achieved by giving the user a token, or credential,
that the user must present to prove that she has permission to access a service.
A naive construction for an access control system is to maintain a whitelist of
authorized users (i.e., by storing their credentials). Whenever a user wants to
access the system she just needs to present her credential, and as long as it is

642 F. Badimtsi et al.

on the whitelist, the user will be given access. When a user needs to be revoked,
her credential is just removed from the whitelist. Despite its simplicity, such a
solution is not practical, since the size of the whitelist will have to grow linearly
with the number of participating users.

Cryptographic accumulators enable more efficient access control systems.
Instead of keeping a whitelist, an accumulator can be used to maintain the
set of authorized users. Whenever a user is given access to the resource, she
is given a credential that can be seen as an accumulator membership witness.
One possible construction uses the digital signature accumulator together with a
blacklist of revoked users, which grows linearly with the number of revocations.
This construction is the one most commonly used in public key infrastructures
(PKIs), where a certificate revocation list (CRL) that contains the revoked cer-
tificates is published periodically. This solution is more efficient, since usually
the number of revoked users is much smaller than the number of total users in
the system. However, it is still not ideal, since the blacklist can grow to signifi-
cant size. A dynamic accumulator—which supports both element additions and
deletions while remaining small—is a much better solution.

Anonymous Credentials. The inefficiency of the naive whitelist and blacklist
solutions for access control becomes even more problematic when anonymity is
considered as a goal of the system: if a user wishes to anonymously show that her
credential is on a whitelist (or not on a blacklist), then she would have to per-
form a zero-knowledge proof of membership (or non-membership) which would
require cost linear to the size of the corresponding list. Given how expensive
zero knowledge proofs usually are, it is important to avoid doing work linear in
the number of valid or revoked members in a system. To avoid this inefficiency,
anonymous credentials schemes (the most prominent solution for anonymous
user authentication) make use of dynamic cryptographic accumulators as an
essential building block to allow for efficient proofs of membership (and prac-
tical user revocation) [9,11,20]. Idemix [12], the leading anonymous credential
system by IBM, is such an example of an anonymous credential scheme that
employs cryptographic accumulators for user membership management [2].

Cryptocurrencies. As discussed above, when a proof of membership (or non-
membership) needs to be done in zero-knowledge, the naive whitelist and black-
list solutions are not realistic. Anonymous cryptocurrencies, like anonymous cre-
dentials, require such zero-knowledge proofs. In order to prove that a payment
is valid (and is not a double-spend), when a user wishes to spend a coin that
she owns, she must first prove that her coin does not belong in a list of pre-
viously spent coins. To ensure anonymity, such a proof must be done in zero-
knowledge. Universal cryptographic accumulators are used in Zerocoin [19] to
maintain the set of spent coins while enabling efficient zero-knowledge proofs of
non-membership.

Group Signatures. Accumulators have been suggested for building other cryp-
tographic primitives such as group signatures. In a group signature scheme, the
group manager maintains a list of valid group members, and periodically grants

Universally Composable Accumulators 643

(or revokes) membership. There has been much research on the topic of group
signatures, and a number of efficient schemes have been proposed. One of the
first practical solutions supporting revocation uses cryptographic accumulators
for user revocation (Camenisch and Lysyanskaya [11], building on the ACJT
group signature scheme [1]).

2 Revisiting Classical Accumulator Definitions

We first discuss accumulator terminology and notation and review accumulator
algorithms. Then, in Sect. 2.2, we revise the classical accumulator definitions
of security to be more modular, and to support a wider range of accumulator
functionalities. These changes make the transition to the UC model more clear
and natural.

2.1 Notation and Algorithms

An accumulator is a compact representation of a set S = {x1, . . . xn}, which
can be used to prove statements about the underlying set. Different accumula-
tor types and properties have been considered in the literature. Here, we use
the terminology and definitions of Baldimtsi et al. [2], who provide a modular
view of accumulator functionalities. Like them, we consider four basic types of
accumulators:

– Static accumulator : represents a fixed set.
– Additive accumulator : supports only addition of elements to the set.
– Subtractive accumulator : supports only deletion of elements from the set.
– Dynamic accumulator [11]: supports both additions and deletions.

Note that a trivial way to achieve deletions and additions is by re-
instantiating the accumulator with the updated set. Although simple, this takes
a polynomial amount of time in the number of element additions or deletions
which have been performed up until that point. For practical applications a
dynamic accumulator should support both additions and deletions in time which
is either independent of the number of operations performed altogether, or at
least sublinear in this number.

In addition to considering the types of modifications we can make to accu-
mulated sets, we also consider the types of proofs (membership proofs, non-
membership proofs, or both) accumulators support.

– Positive accumulator : supports membership proofs.
– Negative accumulator : supports non-membership proofs.
– Universal accumulator [17]: supports both types of proofs.

We consider three types of parties in the accumulator setting. The accumu-
lator manager is a special party who is the “owner” of the accumulated set: she
creates the accumulator, adds and deletes elements, and creates membership and

644 F. Badimtsi et al.

non-membership witnesses. A witness holder, or user, is responsible for an accu-
mulated element (i.e. she owns a credential in a system for which an accumulator
is used). She is interested in being able to prove the (non-)membership of that
element to others, so she maintains the witness for that element, by updating it
when/if necessary. Finally, a verifier is any third party who is only interested in
checking the proofs of (non-)membership (e.g. a gatekeeper checking credentials).

We now describe the algorithms performed by each party, and summarize
them in Fig. 1. In Fig. 2 we summarize the notation used to describe the different
accumulator algorithm input and output parameters.

Accumulator Manager Algorithms. The following are algorithms performed
by the accumulator manager who creates the accumulator and maintains it as
required. If the accumulator is additive, she can add elements to it by calling
the Update algorithm with Op = Add. If the accumulator is subtractive, she
can delete elements by calling Update with Op = Del. If it is dynamic, she
can do both. If the accumulator is positive, the accumulator manager can create
membership witnesses by calling WitCreate with stts = in (where stts is a variable
representing the status of an element, which can be in or out of the set); if it
is negative she can create non-membership witnesses by calling WitCreate with
stts = out. If it is universal, she can do both.

– Gen(1λ, S0) → (sk, a0,m0) outputs the accumulator manager’s secret key sk,
the accumulator a0 (representing the initial set S0 ⊆ D of elements in the
accumulator, where D is the domain of the accumulator1), and an auxiliary
value m0 necessary for the maintenance of the accumulator (i.e. one could
think of mt being the accumulator manager’s memory or storage at step t).

– Update(Op, sk, at,mt, x) → (at+1,mt+1, w
x
t+1, upmsgt+1) updates the accu-

mulator by either adding or deleting an element. If Op = Add it adds the
element x ∈ D to the accumulator and outputs the updated accumulator
value at+1 and auxiliary value mt+1, as well as the membership witness wx

t+1

for x and an update message upmsgt+1, which enables witness holders to bring
their witnesses up to date. If Op = Del then it deletes the element x from
the accumulator and outputs at+1, mt+1 and upmsgt+1 as before, as well as
a non-membership witness wx

t+1.
– WitCreate(stts, sk, at,mt, x, (upmsg1, . . . , upmsgt)) → wx

t creates a (non-)
membership witness. If stts = in it generates a membership witness wx

t for
x, and if stts = out it generates a non-membership witness. (Of course, this
algorithm should only succeed in generating a valid membership witness if x
is actually in the set, and in generating a non-membership witness if x is not
in the set.)

Remark 1. The parameters sk, m and upmsg are optional for some accumulator
constructions. For instance, in a Merkle hash tree accumulator there is no secret

1 The allowable S0 sets vary from accumulator to accumulator. There are accumulators
that support only S0 = ∅; others support any polynomial-size S0, and yet others
support any S0 that can be expressed as a polynomial number of ranges.

Universally Composable Accumulators 645

key sk, and in a digital signature accumulator there is no auxiliary value m or
update messages upmsg. Notice that the WitCreate algorithm takes in both the
auxiliary value m and the update messages, which seems redundant; after all,
the update messages can always be kept as part of m. The reason we provide
the algorithm with both arguments is to account for scenarios which do not use
any auxiliary storage.

Remark 2. The notion of a public key is absent on the above definition. One can
consider the accumulator value a to be the “public key” of the scheme, since it is
used for verification. In fact, in the digital signature accumulator construction,
the public verification key is equal to the accumulator value. However, unlike a
typical public key, the accumulator value can evolve over time.

Witness Holder Algorithms. Witness holders are interested in proving the
(non-)membership of certain elements, and thus maintain witnesses for those
elements. They use a witness update algorithm WitUp to sync their witnesses
with the accumulator when additions or deletions occur.

– WitUp(stts, x, wx
t , upmsgt+1) → wx

t+1 updates the membership witness for
element x (if stts = in) or the non-membership witness if stts = out. The
updates use the update messages upmsg, which contain information about
changes to the accumulator value (e.g. that a given element was added, what
the new accumulator value is, etc.).

Verifier/Third Party Algorithms. The last category of accumulator users
are the verifiers (or third parties) who are only interested in checking proofs of
(non-)membership. They do so by calling the VerStatus algorithm.

– VerStatus(stts, at, x, wx
t) → φ checks whether the membership witness (if

stts = in) or the non-membership witness (if stts = out) for element x is
valid; it returns φ = 1 if it is, and φ = 0 if it is not.

If the accumulator is strong (Definition 4), the accumulator should be secure
even against a cheating accumulator manager. That is, all modifications that an
accumulator manager makes to the accumulator should be publicly verifiable.
The differences in the algorithms are as follows: (a) Gen and Update also output
a value v, which essentially is a proof that an accumulator was created/updated
correctly. (b) Additional verification algorithms VerGen and VerUpdate can be
used to check these proofs.

2.2 Security Definitions

A cryptographic accumulator should satisfy two basic security properties: cor-
rectness and soundness. In this section, we review the classical correctness and
soundness properties of accumulators (stated, for instance, by Ghosh et al. [16]).
We revise these classical definitions in several ways.

646 F. Badimtsi et al.

Algorithm Inputs Outputs

Accumulator Manager Algorithms
Gen 1λ, S0 sk, a0, m0, v
Update Opt, sk, at, mt, x at+1, mt+1, wx

t+1, upmsgt+1, vt+1

WitCreate stts, sk, at, mt, (upmsg1, . . . , upmsgt), x wx
t

Witness Holder Algorithms
WitUp stts, x, wx

t , upmsgt+1 wx
t+1

Verifier or Third Party Algorithms
VerStatus stts, at, x, wx

t φ ∈ {0, 1}
Additional Third Party Algorithms in Strong Accumulators

VerGen 1λ, S0, a0, v φ ∈ {0, 1}
VerUpdate Opt, at, at+1, x, vt+1 φ ∈ {0, 1}

Fig. 1. Accumulator Algorithms. In static accumulators, the Update, WitUp and
VerUpdate algorithms do not exist. In additive accumulators, Op is required to be equal
to Add everywhere. In subtractive accumulators, Op is required to be equal to Del. In
dynamic accumulators, Op can be either. In positive accumulators, stts is required to
be equal to in everywhere. In negative accumulators, stts is required to be equal to out.
In universal accumulators, stts can be either.

λ: The security parameter.
D: The domain of the accumulator (the set of elements that the accumulator can accumulate).

Often, D includes all elements (e.g., {0, 1}∗). Sometimes, D is more limited (e.g., primes of
a certain size).

sk: The accumulator manager’s secret key or trapdoor. (The corresponding public key, if one
exists, is not modeled here as it can be considered to be a part of the accumulator itself.)

t: A discrete time / operation counter.
at: The accumulator at time t.

mt: Any auxiliary values which might be necessary for the maintenance of the accumulator.
These are typically held by the accumulator manager. Note that while the accumulator itself
should be constant (or at least sub-linear) in size, m may be larger.

St: The set of elements in the accumulated set at time t. Note that S0 can be instantiated
to be different, based on the initial sets supported by the accumulator in question. Most
accumulators assume S0 = ∅.

x, y: Elements which might be added to or removed from the accumulator.
wx

t : A witness that element x is (or is not) in the accumulated set at time t.
stts ∈ {in, out}: A flag indicating of whether a given element is in the accumulated set or not.

Op ∈ {Add,Del}: A flag indicating of whether a given element is being added or deleted.
upmsgt: A broadcast message sent (by the accumulator manager, if one exists) at time t to all witness

holders immediately after the accumulator has been updated. This message is meant to
enable all witness holders to update the witnesses they hold for consistency with the new
accumulator. It will often contain the new accumulator at, and the nature of the update
itself (e.g., “x has been added and witness wx

t has been produced”). It may also contain
other information.

v: A witness that the accumulator a0 was generated correctly. (Only present in strong accu-
mulators.)

vt: A witness that the accumulator at was updated correctly. (Only present in strong accumu-
lators.)

Fig. 2. Accumulator algorithm input and output parameters (from Baldimtsi et al. [2]).

1. We explicitly consider the correctness of the witness update algorithm,
which [16] consider only as an efficiency shortcut, and thus exclude from
their definitions. Since the update algorithm is used in practice, we believe it
is important to include in the formal definitions.

2. We allow the generation of membership witnesses during addition (or non-
membership witnesses during deletion) as is commonly done in practice, while
[16] only considers the generation of witnesses from a fixed accumulator state.

Universally Composable Accumulators 647

Because of this, we have two separate notions of correctness—correctness and
creation-correctness.

Correctness Definitions. Definitions 1 and 2 give the correctness requirements
for the more general case of a universal dynamic accumulator. Informally, an
accumulator is correct or creation-correct if an up-to-date version of a wit-
ness produced by Update or WitCreate, respectively, can be used to verify the
(non-)membership of the corresponding element. It is easy to adapt our defini-
tion for cases of additive/subtractive or positive/negative. To get a definition
for an additive accumulator, restrict all instances of Op to be equal to Add; to
get a definition for a subtractive accumulator, restrict all instances of Op to be
equal to Del. Similarly, to get a definition for a positive accumulator, restrict all
instances of stts to be equal to in; to get a definition for a negative accumulator,
restrict all instances of stts to be equal to out.

Definition 1 (Correctness). A universal dynamic accumulator is correct for
a given domain D of elements if an up-to-date witness wx corresponding to
value x can always be used to verify the (non-)membership of x in an up-to-date
accumulator a. More formally, there exists a negligible function ν in the security
parameter λ such that for all:

– security parameters λ,
– initial sets S0 ⊆ D,
– values x ∈ D,
– positive integers t polynomial in λ,
– positive integers tx such that 1 ≤ tx ≤ t,
– operations Op ∈ {Add,Del} (with stts = in if Op = Add and stts = out if

Op = Del),
– lists of tuples [(y1,Op1), . . . , (ytx−1,Optx−1)], [(ytx+1,Optx+1), . . . , (yt,Opt)],

where
• yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];
• If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1),

. . . , (yt,Opt)]; and
• If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1),

. . . , (yt,Opt)],

The following holds:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(a0, sk) ← Gen(1λ, S0);
(ai, mi, w

yi
i , upmsgi) ← Update(Opi, sk, ai−1, mi−1, yi) for i ∈ [1, . . . , tx − 1];

(atx , mtx , wx
tx , upmsgtx

) ← Update(Op, sk, atx−1, mtx−1, x);
(ai, mi, w

yi
i , upmsgi) ← Update(Opi, sk, ai−1, mi−1, yi) for i ∈ [tx + 1, . . . , t];

wx
i ← WitUp(stts, x, wx

i−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, wx

t) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 1 − ν(λ)

648 F. Badimtsi et al.

Definition 2 (Creation-Correctness). A universal dynamic accumulator
is creation-correct for a given domain D of elements if an up-to-date wit-
ness wx created by the WitCreate algorithm—not by the Update algorithm!—
corresponding to value x can always be used to verify the (non-)membership of
x in an up-to-date accumulator a.

More formally, there exists a negligible function ν in the security parameter
λ such that for all

– security parameters λ,
– initial sets S0 ⊆ D,
– values x ∈ D,
– positive integers t polynomial in λ,
– positive integers tx such that 1 ≤ tx ≤ t,
– statuses stts ∈ {in, out}, and
– lists of values [(y1,Op1), . . . , (yt,Opt)], where

• yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , t];
• If stts = in

∗ either (a) x ∈ S0, or (b) (x,Add) appears in [(y1,Op1), . . . ,
(ytx−1,Optx)] and was not followed by (x,Del), and
∗ (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

• If stts = out
∗ either (a) x �∈ S0, or (b) (x,Del) appears in [(y1,Op1), . . . ,
(ytx−1,Optx)] and was not followed by (x,Add), and
∗ (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

The following holds:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(a0, sk) ← Gen(1λ, S0);
(ai, mi, w

yi
i , upmsgi) ← Update(Opi, sk, ai−1, mi−1, yi) for i ∈ [1, . . . , tx];

wx
tx ← WitCreate(stts, sk, at, mt, x);

(ai, mi, w
yi
i , upmsgi) ← Update(Opi, sk, ai−1, mi−1, yi) for i ∈ [tx + 1, . . . , t];

wx
i ← WitUp(stts, x, wx

i−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, wx

t) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 1 − ν(λ)

Soundness Definitions. Classically, collision-freeness [4] is the soundness def-
inition for accumulators. Collision-freeness informally requires that for any ele-
ment not in the accumulated set it should be hard to find a membership witness.
For negative and universal accumulators, collision-freeness can be extended to
require that for any element in the accumulated set it should be hard to find
a non-membership witness. Another formalization of accumulator soundness for
universal accumulators is undeniability [18], which requires that for any element
(regardless of its presence in the accumulated set) it be hard to find both a
membership witness and a non-membership witness.

In this paper, we choose to use collision-freeness, since undeniability is not
meaningful for positive or negative accumulators, which only support proofs of

Universally Composable Accumulators 649

membership or proofs of non-membership but not both. Definition 3 gives the
collision-freeness definition for a universal dynamic accumulator. This definition
can be converted to work for positive, negative, additive or subtractive accumu-
lators in the usual way (by limiting the possible values of Op or stts).

Definition 3 (Collision-Freeness). A universal dynamic accumulator is
collision-free for a given domain D of elements if it is hard to fabricate a (non-
)membership witness w for a value x that is not (or, respectively, is) in the
accumulated set. More formally, consider the collision-freeness game described
in Fig. 3. An accumulator is collision-free if for any sufficiently large security
parameter λ, for any probabilistic polynomial-time adversary AColFree, there exists
a negligible function ν in the security parameter λ such that the probability that
AColFree wins the game is less than ν(λ).

Non-adaptive Soundness. In the collision-freeness game of Fig. 3, the adver-
sary is able to choose elements to add and delete adaptively. However, this notion
of collision-freeness (or soundness) is quite strong. In a non-adaptive2 version of
the game, the adversary would be required to commit to all elements it intends
to add before seeing a0. Certain accumulators can only be shown to meet non-
adaptive soundness. One example of such an accumulator is the CLRSAB accu-
mulator, which was informally introduced as a brief remark by Camenisch and
Lysyanskaya [11] and formally described by Baldimtsi et al. [2]. Note that, in par-
ticular, a non-adaptively sound accumulator can always be used to accumulate
random values, since it makes no difference whether random values are chosen
beforehand or on-the-fly.

Challenger AColFree

S = S0 if S0 provided, ∅ otherwise S0←−−−−−−−−−−−−−−−−−−
t = 0

(sk, a0, m0) ← Gen(1λ, S0) a0−−−−−−−−−−−−−−−−−−→
x ∈ D,Op ∈ {Add,Del}←−−−−−−−−−−−−−−−−−− ⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

p(λ) times

t = t + 1
If Op = Add: S = S ∪ {x}

If Op = Del: S = S\{x}
(at+1, mt+1, wx

t+1, upmsgt+1) ← Update(Op, sk, at, mt, x)
at+1, mt+1, wx

t+1, upmsgt+1−−−−−−−−−−−−−−−−−−→
x∗ ∈ D, w∗

←−−−−−−−−−−−−−−−−−−

Fig. 3. The collision-freeness game. AColFree wins if (VerStatus(in, at+1, x
∗, w∗) = 1 and

x∗ �∈ S), or (VerStatus(out, at+1, x
∗, w∗) = 1 and x∗ ∈ S).

Strength. Typically, accumulators are not required to be secure against cheat-
ing accumulator managers, since in many scenarios the entity that manages
2 Note that this does not refer to non-adaptive corruptions, as in the context of MPC;

it is not corruptions that are non-adaptive, but the choice of accumulated elements.

650 F. Badimtsi et al.

the set (and thus the accumulator) is trusted. When that is not the case (e.g.
in many blockchain applications), a strong accumulator can be used. A strong
accumulator provides guarantees even against a cheating accumulator manager.
Informally, an accumulator is strong if all of the modifications an accumulator
manager makes to the accumulator are verifiable.

Definition 4 (Strength). An accumulator is strong for a given domain D
of elements if an adversary cannot win the game described in Fig. 3 with non-
negligible probability even if it is modified as follows: instead of asking the chal-
lenger to run Gen and Update, the adversary runs them locally and sends the
challenger the updated accumulator values together with witnesses v. The chal-
lenger aborts if VerGen or VerUpdate return 0.

We must also ensure the correctness of the VerGen and VerUpdate algorithms.

Definition 5 (Strength Correctness). Informally, an accumulator has
strength correctness if VerGen and VerUpdate run on honestly generated inputs
and outputs of Gen and Update always return 1.

3 Ideal Functionality for Accumulators

Universally Composable (UC) security, proposed by Canetti [13] and described
briefly in Sect. 1, requires a different flavor of definitions than those described
in Sect. 2. A UC definition of security for some primitive consists of a set of
instructions called an ideal functionality which achieves the goals of the primitive
when carried out by an incorruptible third party. Informally, to show that a
candidate protocol securely realizes the ideal functionality, it must be shown
that any adversary in a real execution of the protocol can be simulated by a
corresponding ideal world adversary in an interaction with the incorruptible
third party running the ideal functionality.

Definition 6 ([13, Page 12]). Let execΠ,A,Z denote the random variable (over
the local random choices of all the involved machines) describing the output of
environment Z when interacting with adversary A and parties running protocol
Π. Protocol Π UC-emulates ideal functionality F if for any adversary A there
exists a simulator SIM such that, for any environment Z the distributions of
execΠ,A,Z and execF,SIM,Z are indistinguishable. That is, on any input, the
probability that Z outputs 1 after interacting with A and parties running Π
differs by at most a negligible amount from the probability that Z outputs 1 after
interacting with SIM and F .

In this section we present our ideal functionality FACC for an accumulator.
Like [14], we discuss several candidate ideal functionalities in order to build

up the intuition for how we arrived at the ideal functionality described in Figs. 4
and 5.

First Attempt. A naive first attempt at an accumulator functionality might
ignore the accumulator and witness objects altogether, instead functioning as

Universally Composable Accumulators 651

a simple set manager. It would allow the accumulator manager to add and
remove elements from the set, and answer ‘yes’ or ‘no’ to membership (or non-
membership) queries. These queries could optionally be parametrized by times-
tamps, so as to allow queries about all states of the set, past and present. How-
ever, this simple ideal functionality definition fails to support one of the basic
modular operations of accumulators. Recall that an accumulator is an object
that evolves by time, i.e. at time t it might represent a different set from what
it used to represent at time t′. Thus, if we do not consider explicit accumula-
tor objects, then it is impossible to talk about committing to a given set by
committing to an accumulator value at a specific time.

Second Attempt - Explicitly Modeling Accumulator Values. A second
attempt might be to add explicit accumulator values, without modeling wit-
nesses. So, a membership query would now have the form, ‘is this element a
(non-)member under this accumulator value?’. However, the absence of explicit
witness objects also limits the modular use of accumulators significantly. Specif-
ically, not having explicit witness objects would not work when the ability to
verify the (non)membership of certain elements should be secret-shared or other-
wise restricted. (For instance, perhaps I should be able to demonstrate my mem-
bership in some organization - such as the gym - but any third party shouldn’t
be able to test my membership without my help, because that would be a vio-
lation of my privacy.) Adding these privacy features to an accumulator system
would require re-designing and re-proving the accumulator system from scratch
if witness objects were not part of the ideal functionality. If witness and accumu-
lator objects are modeled explicitly, however, existing accumulator systems can
simply be combined with existing off-the-shelf primitives such as secret sharing,
encryption, or commitment. In other words, having the functionality give binary
answers to membership queries is over-idealization; it is a good way to model
accumulators on their own, but it does not lend itself to use by other protocols
that need actual accumulator and witness values to operate.

Final Attempt. Our ideal functionality for accumulators FACC is described in
Figs. 4 and 5 and provides interfaces for all of the algorithms in Fig. 1. (Note
that in the functionality the accumulator manager interfaces ignore all queries
for which the querier’s identity is not encoded in the functionality session id
sid.)

We loosely base FACC on the ideal functionality for digital signatures
described by Canetti [14]. Canetti actually gave two different functionalities
for digital signatures, which we recall for completeness in AppendixA. The first
one (Fig. 7) asks the ideal world adversary for a verification key ; while the sec-
ond (Fig. 8) asks the ideal world adversary for a verification algorithm. Simi-
larly, Camenisch et al. [7] give functionalities for signatures, non-interactive zero
knowledge proofs and for commitments that are explicitly parameterized by the
protocol algorithms. Using a given deterministic signature verification algorithm,
rather than allowing the ideal world adversary to make each verification decision,
achieves two goals:
– It forces verification decisions to be consistent.

652 F. Badimtsi et al.

– It makes combining UC signatures and zero knowledge proofs of signature
knowledge in a black box way simpler.

For these reasons, we chose to define our FACC to receive explicit algorithms
from the ideal world adversary. Thus, instead of asking the ideal world adversary
to provide updated accumulator states, witnesses and verification decisions, our
ideal world adversary provides all accumulator algorithms to the functionality
(Step 1e in Fig. 4).3 This is a very intuitive way to define an ideal functionality: it
explicitly uses the accumulator algorithms except where it needs to modify their
behavior to match what is demanded by correctness or soundness. If an ideal exe-
cution (that uses the ideal functionality) is indistinguishable from a real execution,
that means that the algorithms’ behavior did not need any modification.

Just like in the context of digital signatures, if the algorithms are modeled
explicitly, usage within multi-party computation (MPC) protocols or in larger
zero-knowledge-based systems such as Zcash can be done in a modular way,
using existing components.

In addition to the benefits listed above, this also allows us more flexibility to
add privacy features to the ideal functionality, as discussed in Sect. 3.3.

Remark 3. Note that inputs belonging to anyone but the accumulator manager
(AM) can be misinformed (just like parties are frequently misinformed about
verification keys in signature schemes, in the absence of a PKI). In order to
capture such cases, we require parties to provide all inputs to witness holder and
third party algorithms, instead of having some inputs, such as the accumulator
value, implicitly stored by the ideal functionality.

The ideal functionality described in Figs. 4 and 5 is really an entire “menu” of
functionalities covering all different types of accumulators: additive, subtractive,
dynamic, positive, negative and universal and finally strong accumulators. More
explicitly, by default, if all of the text (except for the text colored by pink) is
considered, the ideal functionality describes a dynamic, universal accumulator.
By restricting Op to be only Add or only Del we could make it additive or
subtractive instead of dynamic; by restricting stts to be only in or only out we
could make it positive or negative instead of universal. Figure 4 describes the
ideal functionality interfaces for the accumulator manager and witness holders;
Fig. 5 describes the interfaces for third parties.

We use color coding to describe different types of accumulators within the
same functionality. If the ideal functionality is limited to the black text, it
describes a positive additive accumulator. Actions that are present only in sub-
tractive accumulators are colored green. Actions that are present only in negative
accumulators are colored blue. Finally, actions that are present only in strong
accumulators are colored pink; actions not present in strong accumulators are
colored orange.

3 These algorithms will, among other things, check that elements being added are in
the domain D of the accumulator in question.

Universally Composable Accumulators 653

1. GEN: Upon getting (GEN, sid, S0) as first activation from AM . . .
(a) Initialize an operation counter t = 0.
(b) Initialize an empty list A. This list will be used to keep track of all accumulator states.
(c) Initialize an empty map S, and set S[0] = S0. (If S0 was not provided, use ∅.) This map will be used

to map operation counters to current accumulated sets.
(d) Send (GEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate)) from Adversary

AIdeal. This includes all of the accumulator algorithms; their expected input output behavior is de-
scribed in Figure 1. All of them should be polynomial-time; we restrict the verification algorithms
VerStatus,VerGen,VerUpdate to be deterministic.

(f) Run (sk, a0, m0, v) ← Gen(1λ, S0).
(g) Verify that VerGen(S0, a0, v) = 1. If not, output ⊥ to AM and halt. (This ensures strength.) Other-

wise, continue.
(h) Store sk, m0; add a0 to A.
(i) Output (ALGORITHMS, sid, S0, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate) to AM.

2. UPDATE: Upon getting (UPDATE, sid,Op, x) from AM . . .
(a) Increment the operation counter: t = t + 1.
(b) Set S[t] = S[t − 1].
(c) Run (at, mt, wx

t , upmsgt, vt) ← Update(Op, sk, at−1, mt−1, x).
(d) If Op = Add:

i. Verify that VerStatus(in, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures correct-
ness.) Otherwise, continue.

ii. If x �∈ S[t], add x to S[t].
(e) If Op = Del:

i. Verify that VerStatus(out, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures negative
correctness.) Otherwise, continue.

ii. If x ∈ S[t], remove x from S[t].
(f) Verify that VerUpdate(Op, at−1, at, x, vt) = 1. If not, output ⊥ to AM and halt. (This ensures

strength.) Otherwise, continue.
(g) Store mt, upmsgt; add at to A.
(h) Output (UPDATE, sid,Op, at, x, wt, upmsgt) to AM.

3. WITCREATE: Upon getting (WITCREATE, sid, stts, x) from AM . . .
(a) Run w ← WitCreate(stts, sk, at, mt, x, (upmsg1, . . . , upmsgt))
(b) If stts = in:

If x ∈ S[t], verify that VerStatus(in, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
creation-correctness.) Otherwise, continue.

(c) If stts = out:
If x �∈ S[t], verify that VerStatus(out, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
negative-creation-correctness.) Otherwise, continue.

(d) Output (WITNESS, sid, stts, x, w) to AM.
4. WITUP: Upon getting (WITUP, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew)) from any party

H . . .
(a) Run wnew ← WitUp(stts, x, wold, (upmsgold+1, . . . , upmsgnew))
(b) If aold ∈ A, anew ∈ A and old < new:

i. If stts = in, VerStatus(in, aold, x, wold) = 1, x ∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(in, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures correctness.) Otherwise, continue.

ii. If stts = out, VerStatus(out, aold, x, wold) = 1, x �∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(out, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures negative correctness.) Otherwise, continue.

(c) Output (UPDATEDWITNESS, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew), wnew) to H.

Fig. 4. Ideal functionality FACC for accumulators with explicit verification algorithm
(Color figure online)

We use FACC to refer to the universal dynamic accumulator functionality.
We add Add,Del, in and out to the subscript to denote additive, subtractive,
positive and negative accumulators, respectively. We add other parameters to
the subscript (e.g. ‘STRONG’) to denote other properties.

3.1 Modeling Decentralized Management

If the accumulator is strong, it may make sense to allow anyone to perform an
accumulator update, instead of restricting the ability to perform such updates
to the accumulator manager. We model this by making a few changes to the
functionality. First, the GEN, UPDATE and WITCREATE interfaces of the ideal

654 F. Badimtsi et al.

1. VERSTATUS: Upon getting (VERSTATUS, sid, stts, a,VerStatus′, x, w) from any party P . . .
(a) If VerStatus′ = VerStatus and there exists a t such that a = at ∈ A:

i. Let t be the largest such number.
ii. If stts = in:

A. If AM not corrupted, x �∈ S[t] and VerStatus(in, at, x, w) = 1, output ⊥ to P and halt.
(This ensures collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(in, at, x, w).
iii. If stts = out:

A. If AM not corrupted, x ∈ S[t] and VerStatus(out, at, x, w) = 1, output ⊥ to P and
halt. (This ensures negative collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(out, at, x, w).
(b) Otherwise, set φ = VerStatus′(stts, a, x, w).
(c) Output (VERIFIED, sid, stts, a,VerStatus′, x, w, φ) to P.

2. VERGEN: Upon getting (VERGEN, sid, S, a, v,VerGen′) from any party P . . .
(a) Set φ = VerGen′(S, a, v).
(b) Output (VERIFIED, sid, S, a, v,VerGen′, φ) to P.

3. VERUPDATE: Upon getting (VERUPDATE, sid,Op, a, a′, x, vt,VerUpdate
′) from any party P . . .

(a) Set φ = VerUpdate′(Op, a, a′, x, vt).
(b) Output (VERIFIED, sid,Op, a, a′, x, vt,VerUpdate

′, φ) to P.

Fig. 5. Ideal functionality FACC interfaces for third parties (Color figure online)

functionality no longer only accept invocations by AM. Additionally, instead of
having a strict ordering of update operations, we might allow parties to perform
an update on any accumulator state, resulting in a tree of states. The function-
ality will be modified to perform the appropriate checks and record-keeping.

3.2 Modeling Non-adaptive Soundness

We model non-adaptive soundness (Sect. 2.2) by making two simple changes
to the ideal functionality. First, when sending the GEN command to the ideal
functionality (in Step 1 of Fig. 4), the accumulator manager AM is expected to
provide a set of all elements that will ever be added or deleted. (This can be
done e.g. by providing a PRF seed.) Second, if even one element outside of that
set is added or deleted, nothing is guaranteed; the functionality simply runs the
algorithms it was given, without performing any checks.

3.3 Adding Privacy Properties

Our ideal functionality as stated in Figs. 4 and 5 does not make any attempt
to hide anything about the accumulated set from any accumulator user. In this
section, we discuss how we add such privacy properties to the ideal functionality.

Add-Delete Unlinkability. In certain scenarios it is desirable that an adver-
sary should not be able to link an addition of an element to a deletion of the
same element later on. Such a property is relevant when accumulators are used as
an anonymous revocation mechanism where the revocation information should
not allow anyone to determine that the user revoked just now was the user who
joined two hours ago, and not the user who joined four hours ago [2]. We do not
formally model add-delete unlinkability; instead, we define a stronger property
which we call hiding update-message (HUM).

Universally Composable Accumulators 655

Hiding Update-Message (HUM). Informally, an accumulator is hiding
update-message, or HUM, if given all of the update messages produced in the
course of an execution, it is impossible to tell whether one specific update
message corresponds to the addition/deletion of element x0 or element x1 for
x0, x1 ∈ D.

We can incorporate HUM into our ideal functionality by placing limitations
on the algorithm Update provided by the ideal world adversary. We require
Update to consist of two sub-algorithms: one sub-algorithm—Update1—which
receives no input at all except for randomness, and produces the update message;
and a second sub-algorithm—Update2—which can receive state from Update1 as
well as all of the other inputs typically provided to Update, and produces all the
other outputs of Update. This forces update messages to reveal nothing about
the added/deleted element.

Note that this modification is very strong, since it forces the update messages
to statistically hide the elements; constructions where the elements are only com-
putationally hidden would not meet this definition. This modification trivially
implies the add-delete unlinkability property described above, since update mes-
sages now contain no information at all about the elements.

Remark 4. We clearly need to withhold x from Update1, in order to guarantee
that the update message does not reveal x. However, we could consider allowing
Update1 to see the other inputs to Update. This would not work because if we
give Update1 access to the accumulator a or the auxiliary value m, then the
update message it produces might contain arbitrary information about the set
of elements accumulated prior to the current operation. In particular, the update
message might reveal which elements were added/deleted previously, breaking
the HUM property.

Zero-Knowledge. Ghosh et al. [16] define the notion of a zero-knowledge accu-
mulator, which requires that accumulator and witness values reveal nothing
about the accumulated set (other than the element to which the witness cor-
responds). We can incorporate ZK by placing limitations on the Update and
WitCreate algorithms provided by the ideal world adversary, just like we did
for the HUM property. We can require each algorithm to consist of two sub-
algorithms: one which does not require any set-dependent inputs and produces
the accumulator and witness values (as necessary), and a second sub-algorithm
(which can receive state from the first) which produces all other values.

3.4 Discussion: Incorrect Accumulator and Witness Values

If an incorrect accumulator value (or verification algorithm VerStatus′) is pro-
vided to the verification interface, we allow the party making the query to control
the verification verdict, via VerStatus′. This models the fact that any party can
issue verification queries for accumulator values of their choice—for instance, for
accumulator values which they may have generated themselves, and for which
they control the accumulated set.

656 F. Badimtsi et al.

If an incorrect witness for a member element is provided to the verification
interface, we allow the ideal world adversary to control the verification verdict
(via the algorithm VerStatus it provides during the generation phase). This mod-
els the fact that we only require the ideal world adversary to be unable to come
up with a witness for a non-member (or a non-membership witness for a mem-
ber); we do not require that an adversary be unable to come up with a witness
for a member (or a non-membership witness for a non-member). For instance,
it may be possible to modify valid witnesses to obtain other witnesses for the
same element. Note also that multiple witnesses can be generated for the same
element by means of the WitCreate interface.

4 Equivalence Argument

Like Canetti [14], we prove that satisfying our UC definition for dynamic uni-
versal accumulators is the same as satisfying the classical definition.4

Theorem 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus) be a uni-
versal dynamic accumulator scheme, and let VerStatus be deterministic. Then
ΠACC securely realizes FACC if and only if ΠACC satisfies Definitions 1, 2 and 3.

Proof. Our proof follows the structure of the proof of Canetti [14] (pages 12–14).

1. We start by assuming that ΠACC does not satisfy Definitions 1, 2 and 3. We
then show that ΠACC also does not securely realize FACC. To do this, we build
an environment Z and an adversary AReal such that for any simulator SIM,
Z can distinguish between interacting with AReal and ΠACC, and interacting
with SIM and FACC. Like the environment of Canetti [14], our environment
does not corrupt any parties, and does not send any messages to the adversary.
Because all accumulator operations are non-interactive, meaning that they are
run locally by individual parties, no messages are exchanged in the real world.
So, the adversary AReal is never activated.
(a) Assume ΠACC is not correct (i.e. does not satisfy Definition 1). That

is, there exists a security parameter λ, an initial set S0 ⊆ D, a value
x ∈ D, an operation Op ∈ {Add,Del} (with stts = in if Op = Add and
stts = out if Op = Del) and a list of values [(y1,Op1), . . . , (ytx−1,Optx−1)],
[(ytx+1,Optx+1), . . . , (yt,Opt)], where

– yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];
– If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1), . . . ,

(yt,Opt)]; and
– If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1), . . . ,

(yt,Opt)],

4 This proof also implies that satisfying our UC definition for additive or subtractive,
positive or negative accumulators is the same as satisfying the classical definition;
however, it does not imply anything for strong accumulators. We leave that up to
future work.

Universally Composable Accumulators 657

such that with non-negligible probability, the honestly-produced witness
for x against accumulator at will not verify.
Our environment Z will send the following commands to some party AM,
where sid encodes the identity of AM:

– (GEN, sid, S0),
– (UPDATE, sid,Op1, y1), . . . , (UPDATE, sid,Optx−1, ytx−1),
– (UPDATE, sid,Op, x), and
– (UPDATE, sid,Optx+1, ytx+1), . . . , (UPDATE, sid,Opt, yt).

As a result of the third step, Z will learn atx and wx
tx . As a result of the

fourth step, Z will learn at and t − tx update messages (upmsgtx+1, . . . ,
upmsgt). It then sends (WITUP, stts, sid, atx , at, x, wx

tx , (upmsgtx+1, . . . ,
upmsgt)) to some party H (where possibly H = AM), and receives wx

t

back. Finally, it sends (VERSTATUS, sid, stts, at,VerStatus
′ = VerStatus(·,

·, ·, ·), x, wx
t) to some party P (which may be the same party or not). Z

outputs the returned verdict φ.
In the real world, φ will be 0 with non-negligible probability according to
our assumption.
In the ideal world, if no error messages are returned, φ will always be 1,
since in WitUp, we will always hit Item 4(b)i or 4(b)ii of Fig. 4, and there
the first three listed conditions will be satisfied.

(b) Assume ΠACC is not creation-correct (i.e. does not satisfy Definition 2).
Z can distinguish between the real and ideal worlds in a way very similar
to that described above.

(c) Assume ΠACC is not collision-free (i.e. does not satisfy Definition 3).
That is, there exists an adversary AColFree that can forge a (non-)
membership witness for a non-member (or member, respectively) x
with non-negligible probability. Our Z will use AColFree to generate
inputs for AM. Having received x∗, w∗ from AColFree, Z will com-
pute φin by calling (VERSTATUS, sid, in, at, x

∗, w∗), and φout by calling
(VERSTATUS, sid, out, at, x

∗, w∗). Z will then output 1 if x∗ was in the
accumulated set and φout = 1 or if x∗ was not in the accumulated set and
φin = 1, and will output 0 otherwise.
In the real world, if AColFree met the collision-freeness win conditions, Z
will output 1 with non-negligible probability according to our assumption.
In the ideal world, both φin and φout will always be 0 or ⊥, since we
will satisfy the first two conditions in Item 1(a)iiA (or Item 1(a)iiiA, if
stts = out) of VERSTATUS in Fig. 5. If the third condition is satisfied
too, ⊥ will be returned. If it is not, 0 will be returned, as a result of
Item 1(a)iiB (or Item 1(a)iiiB, if stts = out) in Fig. 5.

2. We now prove the other direction. Assume that ΠACC does not securely realize
FACC. That is, there exists an adversary AReal such that for any simulator
SIM, there exists an environment Z that can distinguish between interacting
with AReal and ΠACC, and interacting with SIM and FACC. We show that
if that is the case, ΠACC must also violate Definitions 1, 2 or 3. We pick a
simulator SIM that proceeds as follows, running an internal copy of AReal:

658 F. Badimtsi et al.

– Inputs from Z is forwarded to AReal. Outputs from AReal is forwarded to
Z.

– SIM handles corruptions according to the standard corruption model
[13].

– Upon receiving (GEN, sid) from FACC, SIM sends the actual
accumulator algorithms back as (GEN, sid, (Gen,Update,WitCreate,
WitUp,VerStatus)).

This simulator guarantees that the real and ideal worlds will be distributed
identically, unless one of the following causes FACC to return ⊥:

– In Update, FACC hits Item 2(d)i or 2(e)i of Fig. 4. If this happens, correctness
(Definition 1) is violated.

– In WitCreate, FACC hits Item 3b or 3c of Fig. 4. If this happens, creation-
correctness (Definition 2) is violated.

– In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Fig. 5. If this happens,
collision-freeness (Definition 3) is violated.

– In WitUp, FACC hits Item 4(b)i or 4(b)ii of Fig. 4. If this happens, either
correctness or creation-correctness is violated.

In order for Z to distinguish between the real and ideal worlds, one of the
above must happen with non-negligible probability, and thus either Definitions 1,
2 or 3 must be violated with non-negligible probability.

We can modify the theorem and proof to also prove equivalence between
classical and UC definitions for strong accumulators.

Corollary 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,
VerUpdate) be a strong universal dynamic accumulator scheme, and let
VerStatus, VerGen and VerUpdate be deterministic. Then ΠACC securely realizes
FACC,STRONG if and only if ΠACC satisfies Definitions 1, 2 and 4.

Proof. The proof is very similar to that of Theorem1 above, with a few changes.
The changes are in Steps 1c and 2 of the proof.

In Step 1c of the proof above, instead of calling AColFree, we call AStrength which
runs Gen and Update itself. The environment Z computes its output exactly as
before. In the ideal world, both φin and φout will always be 0 or ⊥, since we
will satisfy the first condition in Item 1(a)iiA (or Item 1(a)iiiA, if stts = out) of
VERSTATUS (ignoring the condition that AM is not corrupted, which does not
apply for a strong accumulator). If the third condition is satisfied too, ⊥ will be
returned. If it is not, 0 will be returned, as a result of Item 1(a)iiB (or 1(a)iiiB,
if stts = out) of Fig. 5.

In Step 2 of the proof above, SIM includes VerGen and VerUpdate in the
list of algorithms it sends to the ideal functionality. Then, in the list of things
that might cause FACC,STRONG to return ⊥, we replace the third bullet with the
following:

– In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Fig. 5. If this happens,
strength (Definition 4) is violated.

Universally Composable Accumulators 659

We also add the following:

– In Gen, FACC,STRONG returns ⊥ at Item 1g of Fig. 4. If this happens, strength
correctness (Definition 5) is violated.

– In Update, FACC,STRONG returns ⊥ at Item 2f of Fig. 4. If this happens,
strength correctness (Definition 5) is violated.

5 Demonstrations of Composition

We now present two examples of accumulator composition to showcase the con-
venience of having UC secure accumulators.

5.1 Accumulator Composition: Braavos

Baldimtsi et al. [2] show how one can build accumulators with certain properties
by composing other types of (potentially weaker) accumulators. Among other
examples, Baldimtsi et al. build the Braavos accumulator. We present a modified
version of Braavos, which we call Braavos’. Braavos’ is a hiding update-message
(HUM) dynamic accumulator as described in Sect. 3.3. We describe Braavos’ in
Fig. 6.

Just like Braavos, Braavos’ leverages the following two weaker accumulators:

1. SIG: A positive (but not dynamic) additive accumulator, in the form of a dig-
ital signature scheme. Note that this accumulator does not have any update
messages (and we thus omit update messages from its inputs and outputs).

2. CLRSAB: A non-adaptively-sound negative additive accumulator. One exam-
ple of such an accumulator is the CLRSAB construction5, informally intro-
duced as a brief remark by Camenisch and Lysyanskaya [11] and formally
described by Baldimtsi et al. [2].

Informally, Braavos’ works as follows. When a new element x is added, a ran-
dom value rx is chosen to correspond to it, and the pair (x, rx) is accumulated in
SIG. Since we use a digital signature scheme, no update message is sent. A proof
of membership for x consists of the value rx, a proof of membership of (x, rx)
in SIG (which is simply a digital signature), and a proof of non-membership of
rx in CLRSAB. Then, when the element x is deleted, rx is added to CLRSAB (so
a proof of non-membership of rx in CLRSAB can no longer be produced). Next
time x is added, a fresh random value is chosen, and so forth.

Unlike Braavos’, Braavos [2] uses the same random value every time a given
element is re-added, instead of choosing fresh random values. This has the advan-
tage of saving on accumulator manager storage requirements. However, it has
the disadvantage that deletions of the same element can all be linked to one
another, since the same random value is present in all of the associated update

5 The CLRSAB accumulator is actually universal and dynamic, but we only require it
to be negative and additive.

660 F. Badimtsi et al.

messages. This violates the HUM property6 (but not the add-delete unlinkability
property, which is the one Baldimtsi et al. require).

Braavos’ is obviously HUM, since it (a) has empty update messages for addi-
tions, and (b) has update messages for deletions that are completely independent
of the element being deleted. Intuitively, it is secure because if an element was
never added then no signature on it exists, and every time an element x is
removed, all random values rx that have been signed with x are in the CLRSAB
accumulator, so no proof of non-membership for any such rx can be produced.

More formally, let FACC,in,HUM be our accumulator functionality FACC for a
dynamic, positive, HUM accumulator. That is, FACC,in,HUM is FACC restricted to
stts = in, and requiring the simulator to provide Update in two parts, as necessary
for HUM (described in Sect. 3.3). Similarly, let FACC,in,Add be our accumulator
functionality FACC for a positive additive accumulator, and let FACC,out,Add,NA

be our accumulator functionality FACC for a negative additive accumulator that
is non-adaptively sound (Sect. 3.2).

Theorem 2. The Braavos’ accumulator described in Fig. 6 securely realizes
FACC,in,HUM as long as SIG securely realizes FACC,in,Add with no update messages,
and CLRSAB securely realizes FACC,out,Add,NA.

We can prove Theorem 2 very simply using the fact that both SIG and
CLRSAB are UC-secure (that is, by operating in the double-FACC-hybrid model).
Before our UC definitions, a proof of security would involve a multi-step security
reduction of the new accumulator to one of the old ones.

Proof. The simulator for the new accumulator uses its two inner simulators to
obtain algorithms for the inner accumulators, composes them as in Fig. 6, and
submits those to the ideal functionality. (Since the CLRSAB accumulator is only
non-adaptively sound, the simulator also pre-selects the random values that are
to be accumulated in the CLRSAB accumulator.)7

In Sect. 3.3, we described how in order to modify the UC functionality FACC

to be HUM, we require that the simulator provide the algorithm Update in
two parts: one sub-algorithm (let’s call it Update1) which only receives random-
ness and produces the update message; and a second sub-algorithm (let’s call
it Update2) which produces all the other outputs of Update, and is additionally
allowed to depend on the state of Update1. If the update being performed is an
addition, we do not need Update1 at all, since no update message is necessary; we
simply set Update2(Add, sk, at,mt, x) = Update(Add, sk, at,mt, x). If the update
being performed is a deletion, Update1(Del, sk, at,mt) gets a random pre-selected
value and performs a CLRSAB addition on it; it then passes the random value

6 Adding zero knowledge proofs would not resolve this issue—that random value can-
not be hidden within a zero knowledge proof in any straightforward way, since it
must be used to update CLRSAB witnesses.

7 Notice that this works regardless of how the simpler accumulators are implemented
(simply software vs. hardward vs. distributed protocols), since they satisfy the UC
definition.

Universally Composable Accumulators 661

Gen(1λ, S):
1. (SIG.sk, SIG.a0) ← SIG.Gen(1λ, ∅)
2. (CLRSAB.sk,CLRSAB.a0,CLRSAB.upmsg0) ← CLRSAB.Gen(1λ, ∅)
3. Set

(a) sk ← (SIG.sk,CLRSAB.sk),
(b) a0 ← (SIG.a0,CLRSAB.a0),
(c) upmsg0 ← CLRSAB.a0
(d) Instantiate m0 as an empty map.

4. Return (sk, a0, upmsg0, m0)
Update(Opt, sk, at, mt, x):

1. If Opt = Add and x �∈ mt:
(a) Pick rx at random from the domain DCLRSAB of the CLRSAB accumulator. (We require

the domain to be large enough that the probability of picking the same element twice is
negligible.)

(b) Set mt+1 = mt

(c) Set mt+1[x] = rx

(d) CLRSAB.wrx
t+1 ← CLRSAB.WitCreate(out,CLRSAB.sk,CLRSAB.at, rx)

(e) SIG.w
(x,rx)
t+1 ← SIG.Update(Add, SIG.sk, SIG.a0, (x, rx))

(f) Set CLRSAB.at+1 = CLRSAB.at.
(g) Set at+1 = (SIG.a0,CLRSAB.at+1)
(h) Set wx

t+1 = (rx,CLRSAB.wrx
t+1, SIG.w

(x,rx)
t+1)

(i) Set upmsgt+1 = ⊥
(j) Return (at+1, mt+1, wx

t+1, upmsgt+1)
2. If Opt = Del and x ∈ mt:

(a) Set rx = mt[x]
(b) Set mt+1 = mt

(c) Delete x from mt+1
(d) (CLRSAB.at+1,CLRSAB.upmsgt+1) ← CLRSAB.Update(Add,CLRSAB.sk,CLRSAB.at, rx)
(e) Set at+1 = (SIG.a0,CLRSAB.at+1)
(f) Set upmsgt+1 = CLRSAB.upmsgt+1
(g) Return (at+1, mt+1, upmsgt+1)

WitCreate(stts, sk, at, mt, x):
1. If stts = in and x ∈ mt:

(a) Set rx = mt[x]
(b) SIG.w

(x,rx)
t ← SIG.WitCreate(in, SIG.sk, SIG.at, (x, rx))

(c) CLRSAB.wrx
t ← CLRSAB.WitCreate(out,CLRSAB.sk,CLRSAB.at, rx)

(d) Set wx
t = (rx,CLRSAB.wrx

t , SIG.w
(x,rx)
t)

(e) Return wx
t

WitUp(stts, x, wx
t = (rx,CLRSAB.wrx

t , SIG.w
(x,rx)
t), upmsgt+1):

1. If upmsgt+1 �= ⊥: (This update message corresponds to a deletion)
(a) CLRSAB.wrx

t+1 = CLRSAB.WitUp(out, rx,CLRSAB.wrx
t , upmsgt+1)

2. Else: wx
t+1 = wx

t

3. Return wx
t+1

VerStatus(in, at = (SIG.at,CLRSAB.at), x, wx
t = (rx,CLRSAB.wrx

t , SIG.w
(x,rx)
t)):

1. Return 1 if both of the following are 1, and 0 otherwise:
– SIG.VerStatus(in, SIG.at, (x, rx), SIG.w

(x,rx)
t)

– CLRSAB.VerStatus(out,CLRSAB.at, rx,CLRSAB.wrx
t)

Fig. 6. Braavos’ algorithms. We omit parameters unnecessary for the SIG and CLRSAB
accumulator algorithms.

it added as stateUpdate1 to Update2(Del, sk, at,mt, x, stateUpdate1) which does the
rest of the work.

The views of the environment Z in the real and ideal worlds will be identical
in the so-called double-FACC-hybrid model, since the sub-accumulator functional-
ities guarantee that if an element was never added then no signature on it exists,
and every time an element x is removed, all random values rx that have been
signed with x are in set accumulated in CLRSAB, so no proof of non-membership
for any such rx can be produced.

662 F. Badimtsi et al.

5.2 Accumulators for Anonymous Credentials

We now informally discuss how our UC definition of accumulators would sim-
plify the security proof of a complex system like anonymous credentials. An ideal
functionality that provides all the properties of anonymous credentials including
pseudonyms, selective attribute disclosure, predicates over attributes, revoca-
tion, inspection, etc. is described by Camenisch et al. [8]. (Baldimtsi et al. [2]
augment this functionality with revocation.) In this section, to demonstrate the
benefits of modularity we concentrate on a simplified version of an anonymous
credential ideal functionality with three types of parties: the credential manager
or issuer, credential holders, and credential verifiers. Our ideal functionality has
the following interfaces for the credential manager:

1. KeyGen, to set up the scheme parameters.
2. IssueCred(token, property), to issue a credential certifying property to a cre-

dential holder who knows the secret corresponding to token, and
3. RevokeCred(token, property), to revoke an issued credential.

Our simplified functionality sends the simulator all information about issued
and revoked credentials (including token and property information); so, unlike
the full-fledged functionality of Camenisch et al., it does not restrict access to
information about who is certified for what property.

Credential holders only have a single interface—ProveCred, which they use to
demonstrate to a credential verifier that they hold a credential certifying some
property. Credential holders should be able to use their credentials anonymously.
The credential verifiers have the corresponding interface VerifyCredProof, which
allows them to check the proof provided by the credential holder.

Now, imagine that we instantiate our simplified anonymous credential func-
tionality with a combination of the following building blocks: (a) digital signa-
tures, (b) accumulators and (c) (non-interactive) zero knowledge (ZK) proofs, as
described by Baldimtsi et al. [2]. A simple instantiation would work as follows:

The signatures are used simply to guarantee the authenticity of updates
made by the credential manager. KeyGen sets up the parameters for all three
primitives. IssueCred adds (token, property) to the accumulator, where token is
a value linked to a long-term secret belonging to the user (e.g. token might be a
public key), and property is the property the credential certifies (e.g. “citizen”,
“member”, “age = 30”, etc.). Similarly, RevokeCred deletes the appropriate ele-
ment from the accumulator. Whenever an update happens to the accumulator
value, the most recent value (and a corresponding update message) is signed by
the credential manager and sent to all system users, who can then bring their
accumulator witnesses up to date.

ProveCred would then provide a ZK proof of knowledge of long-term user
secret s, token token and accumulator witness w such that, for the most recent
credential-manager-signed accumulator, the conjunction of the following state-
ments is true:

1. s is appropriately linked to token (through some relationship, e.g. s is the
secret key corresponding to token which is the public key), and

Universally Composable Accumulators 663

2. the accumulator verification algorithm returns true when given the accumu-
lator witness w and (token, property).

Given that no UC accumulator existed before our work, in order for someone
to prove security even of such a simple scheme, a reduction would be required
that would reduce the security of the overall scheme to the underlying building
blocks. However, we can prove the security of this simplified credential scheme in
the UC model using UC secure versions of the underlying building blocks. Such
a UC proof would be information theoretic and unconditional, and will hold
for any implementation of the underlying primitives, whether they be simple
software, distributed computation, hardware, etc.

In order to prove the security of this credential scheme we need to build a
simulator that, when run with the ideal functionality, produces an environment
view indistinguishable from that of a real run of the anonymous credentials pro-
tocol. The two difficulties in doing so is (1) playing the roles of honest parties
without knowing their long-term secrets, and (2) arguing that real adversaries
can no more convince verifiers to accept forged credentials than ideal function-
ality adversaries can. UC zero knowledge proofs address the first concern. Since
the use of UC zero knowledge proofs allows the simulator to control the zero
knowledge proof ideal functionality (which we review in Appendix B of the full
version [3]), it can control the verification outcome without actually knowing the
values in question, sidestepping this issue. UC accumulators address the second
concern.

Acknowledgements. This research was supported, in part, by US NSF grant
1717067.

A Universally Composable Signatures

In this appendix (specifically, in Figs. 7 and 8), we describe the two digital signa-
ture ideal functionalities described by Canetti [13,14]. The first does not require
the simulator to provide the signing and verification algorithms explicitly at key
generation time; the second does. Both ideal functionalities require the verifier
to provide the verification key (or verification algorithm) when using the veri-
fication interface. This models the fact that the verifier might be misinformed
about the verification key if a PKI is not available.

664 F. Badimtsi et al.

1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty map W.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (VERKEY, sid, vk) from Adversary AIdeal.
(f) Record vk.
(g) Send (VERKEY, sid, vk) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Send (SIGN, sid, x) to Adversary AIdeal.
(c) Get (SIGNATURE, sid, x, σ) from Adversary AIdeal.
(d) Verify that (x, σ) �∈ W or W[(x, σ)] = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(e) If (x, σ) �∈ W, record W[(x, σ)] = 1.
(f) Output (SIGNATURE, sid, x, σ) to Signer.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ, vk) from a party Verifier . . .
(a) Send (VERIFY, sid, x, σ, vk) to Adversary AIdeal.
(b) Get (VERIFIED, sid, x, σ, vk, φ) from Adversary AIdeal.
(c) If (x, σ) ∈ W: let φ′ = W[(x, σ)].
(d) Else:

i. If the signer is not corrupted, vk is the recorded public key, and (x, σ) �∈ W, set φ′ = 0.
ii. Else, let φ′ = φ.
iii. Record W[(x, σ)] = φ′.

(e) Output (VERIFIED, sid, x, σ, vk, φ′) to Verifier.

Fig. 7. Ideal functionality for digital signatures [14]

1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty list W of signed messages.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, Sign,Ver) from Adversary AIdeal, where Sign is a polynomial-time algo-

rithm and Ver is a polynomial-time deterministic algorithm.
(f) Send (ALGORITHMS, sid,Ver) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Let σ = Sign(x).
(c) Verify that Ver(x, σ) = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(d) Output (SIGNATURE, sid, x, σ) to Signer.
(e) Record x in W.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ,Ver′) from a party Verifier . . .
(a) If Ver′ = Ver, the signer is not corrupted, Ver(x, σ) = 1 and x �∈ W, send ⊥ to signer and halt.

(This violates soundness.) Otherwise, continue.
(b) φ = Ver′(x, σ).
(c) Output (VERIFIED, sid, x, σ,Ver′, φ) to Verifier.

Fig. 8. Ideal functionality for digital signatures with explicit verification algorithm [13]
(2005 version)

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

2. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 301–315. IEEE (2017)

3. Baldimtsi, F., Canetti, R., Yakoubov, S.: Universally composable accumulators.
Cryptology ePrint Archive, Report 2018/1241 (2018). https://eprint.iacr.org/
2018/1241

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://eprint.iacr.org/2018/1241
https://eprint.iacr.org/2018/1241

Universally Composable Accumulators 665

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

5. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

6. Camacho, P., Hevia, A., Kiwi, M., Opazo, R.: Strong accumulators from collision-
resistant hashing. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC
2008. LNCS, vol. 5222, pp. 471–486. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85886-7 32

7. Camenisch, J., Drijvers, M., Tackmann, B.: Multi-protocol UC and its use for
building modular and efficient protocols. IACR Cryptology ePrint Archive 2019:65
(2019)

8. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 11

9. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

10. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 24

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

12. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Atluri, V. (ed.) ACM CCS 2002, pp. 21–30.
ACM Press, November 2002

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

14. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations,
CSFW 2004, pp. 219–233, Washington, DC, USA, 2004. IEEE Computer Society
(2004)

15. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

16. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 3

17. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-540-85886-7_32
https://doi.org/10.1007/978-3-540-85886-7_32
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-540-72738-5_17

666 F. Badimtsi et al.

18. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7 14

19. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–
411. IEEE Computer Society Press, May 2013

20. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-540-30574-3_19

A Non-interactive Shuffle Argument
with Low Trust Assumptions

Antonis Aggelakis1, Prastudy Fauzi2, Georgios Korfiatis1, Panos Louridas1,
Foteinos Mergoupis-Anagnou1, Janno Siim3(B), and Micha�l Zaj ↪ac4

1 Greek Research and Technology Network, Athens, Greece
2 Simula UiB, Bergen, Norway

3 University of Tartu, Tartu, Estonia
jannosiim@gmail.com

4 Clearmatics, London, UK

Abstract. A shuffle argument is a cryptographic primitive for proving
correct behaviour of mix-networks without leaking any private informa-
tion. Several recent constructions of non-interactive shuffle arguments
avoid the random oracle model but require the public key to be trusted.

We augment the most efficient argument by Fauzi et al. [Asiacrypt
2017] with a distributed key generation protocol that assures sound-
ness of the argument if at least one party in the protocol is honest and
additionally provide a key verification algorithm which guarantees zero-
knowledge even if all the parties are malicious. Furthermore, we simplify
their construction and improve security by using weaker assumptions
while retaining roughly the same level of efficiency. We also provide an
implementation to the distributed key generation protocol and the shuffle
argument.

Keywords: Subversion security · Non-interactive zero-knowledge ·
Shuffle · Secure multi-party computation

1 Introduction

Due to convenience for voters and lower election costs, internet voting (i-voting)
is becoming an increasingly popular alternative to paper-based voting. In fact,
some countries have already provided i-voting solutions in regional (e.g., Aus-
tralia, Switzerland) or even national (e.g., Estonia) elections. While i-voting has
many benefits, the opposing requirements of election transparency and voter’s
privacy are not easy to guarantee in the digital setting.

One common tool to improve voter’s privacy is the mix-network [Cha81].
Essentially, a mix-network can be seen as a digital analogue to ballot-box shaking
in paper-based voting. During the voting phase, encrypted votes are sent to
a bulletin board, a secure append-only storage system. After the voting phase
ends, the ciphertexts are processed sequentially by a mix-network consisting of
multiple independent servers, called mixers. Each mixer receives the ciphertexts
c© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 667–692, 2020.
https://doi.org/10.1007/978-3-030-40186-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_28

668 A. Aggelakis et al.

from the previous mixer (or, in the case of the first mixer, from the bulletin
board) and sends shuffled (permuted and rerandomized) ciphertext to the next
mixer. Finally, only the output of the last mixer is decrypted. Assuming that at
least one mixer is honest, it will be impossible to associate the decrypted votes
to the voters that gave the original ciphertexts.

However, observe that a malicious mixer could easily switch out the cipher-
texts and thus break the integrity of the election outcome. We can avoid such
behaviour by requiring each mixer to provide a proof that the shuffling was done
correctly. Additionally, to still maintain voters’ privacy, this proof should not
reveal any1 information about the permutation or ciphertext randomizers used
in the shuffle. This can be achieved with a zero-knowledge (ZK) shuffle argument.

Many efficient interactive arguments [FS01,TW10,Gro10,BG12] are known
for shuffling, but interaction is not preferable in practice. For instance, we might
want to audit elections months after it occurred, but mixers storing the private
information might not be available anymore. Hence a better solution would be
a non-interactive zero-knowledge (NIZK) argument, where the prover outputs
a single message which can be later verified by anyone. Most interactive shuffle
arguments can be made non-interactive using the Fiat-Shamir heuristic [FS87],
but this only guarantees security in the random oracle model (ROM), where there
are known cases in which the resulting argument is insecure [GK03,BDG+13,
BBH+19].

As an alternative, the Common Reference String (CRS) model assumes a
trusted party that samples a public string from some predefined distribution
and provides it to both the prover and the verifier. In recent years several NIZK
shuffle arguments have been proposed in this model [GL07,LZ13,GR16,FL16,
FLZ16,FLSZ17a,FFHR19] that do not need ROM2. Arguably, the most practical
proposal among these is the construction of Fauzi et al. [FLSZ17a]3, which we
refer to as FLSZ throughout the text – it has comparable efficiency to interactive
arguments and uses a standard ElGamal cryptosystem. However, a drawback of
the CRS model is that it is unclear who should produce the CRS in practice.
Sampling the CRS incorrectly, or even just leaking some side information (e.g.,
the simulation trapdoor), typically breaks the security of the argument. Several
works have tried to alleviate this issue.

The Bare Public Key (BPK) model [CGGM00] requires significantly less
trust than the CRS model. It removes the CRS and only requires the verifier to
register a public key in a publicly accessible file before the protocol has started.
A malicious verifier may choose the public key in any way she likes. However,
BPK model NIZK with a standard auxiliary input ZK property can be cast as a
two-round ZK protocol, which is known to be impossible [GO94]. On the positive

1 Actually since the argument presented in this paper is statistically but not perfectly
zero-knowledge, then it can leak information, but only with negligible probability.

2 Even most of the interactive shuffle arguments require a CRS, but typically they
have a less complicated structure and a uniformly random string usually suffices.

3 The full version [FLSZ17a] mentions a security flaw in the conference ver-
sion [FLSZ17b]. We follow the full version.

A Non-interactive Shuffle Argument with Low Trust Assumptions 669

side, Wee [Wee07] has shown that BPK model NIZK is possible for a weaker non-
uniform ZK. More recently, [ALSZ18] shows that NIZK with a related notion
called no-auxiliary-string non-black-box ZK is also possible.

From a different perspective, Ben-Sasson et al. [BCG+15] proposed a secure
multi-party computation (MPC) protocol for CRS generation to distribute
trust requirements. Essentially it is a distributed key generation (DKG) pro-
tocol that is secure if at least one party is honest. However, that protocol
requires the ROM and only works for CRS-s with a very specific structure.
Hence, it cannot be used as a black box, say, for the FLSZ argument. Subse-
quently, Abdolmaleki et al. [ABL+19b], proposed a UC-secure variant of the
Ben-Sasson et al.’s protocol which avoids the ROM by using a DL-extractable
UC-commitment [ABL+19a].

A series of results [BFS16,ABLZ17,Fuc18] have shown that CRS-based NIZK
arguments can satisfy subversion-ZK (Sub-ZK), i.e., the argument’s ZK prop-
erty holds even if the CRS is generated by an untrusted party. In particular,
it has been shown [ABLZ17,Fuc18] that many existing succinct non-interactive
arguments of knowledge (SNARKs) can be enhanced with a CRS verification
algorithm CV, such that if CV(crs) accepts, then the proof will not leak any (non-
negligible) information. So far, there is no general transformation which would
give Sub-ZK property to any NIZK argument, and each new argument needs to
be studied separately. Finally, recent work by Abdolmaleki et al. [ALSZ18] estab-
lishes a straightforward connection between Sub-ZK NIZK in the CRS model and
BPK NIZK. Namely, a Sub-ZK NIZK can be transformed into a BPK NIZK
(with non-auxiliary-input non-black-box ZK) where the verifier uses the CRS as
her public key. This is also the direction we take in this paper as the BPK model
is a more established and better-understood notion.

Our Contribution. We propose a new shuffle argument that we call a transparent
FLSZ (denoted tFLSZ) which builds upon the result of [FLSZ17a] by significantly
reducing the trust requirements, using weaker security assumptions, and also
having a somewhat less complex structure.

FLSZ contains four subarguments: (i) a unit vector argument for showing
that a committed message is a unit vector, i.e., a binary vector with exactly one
1, (ii) a permutation matrix argument for showing that n committed vectors
form a permutation matrix, (iii) a same-message argument for showing that two
committed vectors are equal, and (iv) a consistency argument for showing that
the ciphertexts are shuffled according to the committed permutation matrix.
However, in their case (i) the unit vector argument is not sound unless one also
provides a related same-message argument and (ii) the consistency argument is
only culpably sound, that is, soundness only holds against adversaries that can
provide a witness of their cheating.

In tFLSZ, we combine the unit vector argument and the same-message argu-
ment into a new unit vector argument and prove its knowledge-soundness in the
algebraic group model (AGM) [FKL18] which is a weaker model compared to the
generic bilinear group model (GBGM) used in [FLSZ17a]. Roughly speaking, in
the GBGM an adversary is only allowed to perform group operations using an

670 A. Aggelakis et al.

oracle which hides the actual structure of the group elements. On the other hand,
the AGM allows the adversary to freely use the actual representation of elements
in the group. Therefore security proofs in the AGM are usually reductions to
some known assumption rather than unconditional proofs as in the GBGM. We
show that knowledge-soundness of our new unit vector argument can be reduced
to a quite standard q-type assumption in the algebraic group model.

The permutation argument is proven knowledge-sound assuming that the
commitment scheme is binding and the unit vector argument is knowledge-
sound. This again is a much weaker assumption compared to [FLSZ17a], where
the authors prove a similar result but in the GBGM. Finally, we skip the consis-
tency argument altogether, and directly prove that the shuffle argument is sound
given that the permutation argument is knowledge-sound and that a variant of
the Kernel Matrix Diffie-Hellman (KerMDH) assumption holds. We call this
variant GapKerMDH and prove that in the AGM, it also reduces to the pre-
viously mentioned q-type assumption. The GapKerMDH assumption is weaker
compared to the auxiliary-input KerMDH assumption used in [FLSZ17a] for
their consistency argument. Interestingly, after simplifying the structure, the
unit vector argument is the only subargument which depends on the AGM; the
rest of the protocol is based on falsifiable assumptions [Nao03], i.e., assumptions
where a challenger can efficiently verify that an adversary breaks the assumption
(e.g., in the discrete logarithm assumption the challenger sends gx, the adversary
responds with x′, and the challenger checks if x = x′). Falsifiable assumptions are
much better understood and thus usually preferred over non-falsifiable assump-
tions such as knowledge assumptions [Dam92].

Secondly (and perhaps more importantly), we apply the efficient DKG proto-
col of Abdolmaleki et al. [ABL+19b] which takes us from a setting of completely
trusting the setup generator to a setting where we need to trust only one out of k
parties in DKG. The modification, however, turns out to be non-trivial. We start
by observing that the CRS of FLSZ is outside of the class of verification-friendly
CRS-s that the DKG protocol can generate. Hence, in addition to simplifying
the structure of FLSZ we also modify the CRS and make it verification-friendly,
which mostly involves adding some well-chosen elements to the CRS. These addi-
tional elements are not needed for the honest prover or verifier but are available
to dishonest parties. Therefore, after the DKG protocol finishes, these new CRS
elements can be stored somewhere (in case someone wants to verify them in the
future) and the effective CRS size (i.e., the size of the CRS used in the actual
computation) does not change at all. If there is no need for transcript verifica-
tion in the future, these additional elements can be safely disregarded after the
computations are done. Hence, the CRS size in practice stays the same, but the
security proofs must now consider a more powerful adversary.

As mentioned, the DKG protocol guarantees security (soundness and zero-
knowledge) if at least one honest party participated. We take it one step further
and prove that the protocol is also secure in the BPK model, following the
ideas of [ALSZ18]. Namely, we construct a public key verification algorithm Vpk

that the prover runs before outputting an argument. If Vpk is satisfied, then

A Non-interactive Shuffle Argument with Low Trust Assumptions 671

zero-knowledge holds even if the public key was generated by a single malicious
party, or equivalently, if all of the parties in the DKG protocol colluded. However,
if Vpk rejects the key, then the prover simply declines to output anything.

In Table 1 we compare efficiency and assumptions of the state-of-the-art non-
interactive shuffle arguments. The argument by Groth [Gro10] has the best effi-
ciency, but requires ROM and a trusted random string4. It is also worth to
mention the argument by Bayer and Groth [BG12] which has sublinear com-
munication but otherwise has the same drawbacks as [Gro10]. The argument of
González and Rálfols [GR16] (and the slight improvement in [DGP+19]) is based
solely on falsifiable assumptions, but requires a quadratic size CRS which is not
efficient enough for many applications. Similarly, Faonio et al. [FFHR19] use
falsifiable assumptions but require pairings for all operations, making it inef-
ficient. The Fauzi et al. [FLSZ17a] construction can be seen as a compromise
between [Gro10] and [GR16]: efficiency is only slightly worse than [Gro10], does
not require ROM, but some subarguments are proven in the GBGM. Our work
retains almost the same efficiency as [FLSZ17a] by only adding n group elements
to the CRS (we do not count elements solely needed by the DKG), but we make
a significant reduction in the trust requirements for the setup phase and also
prove security under weaker assumptions.

In summary, our new NIZK shuffle argument has the following properties:

1. Soundness holds assuming at least one honest party participated in the dis-
tributed key generation protocol and zero-knowledge holds even if all the
parties were malicious.

2. Compared to the most-efficient shuffle argument without ROM [FLSZ17a]:
(a) We simplify the structure of the argument.
(b) We improve the security assumptions and isolate the unit vector argument

as the only subargument which requires AGM.
(c) The efficiency of the argument remains essentially the same.

In Additionally, we implement our solution in Python 3.5+. See Sect. 7 for
details.

2 Preliminaries

Let λ denote the security parameter. We write f(λ) ≈λ 0, if a function f is
negligible in λ. PPT stands for probabilistic polynomial time. We write (a, b) ←
(A‖Ext)(x) if algorithms A and Ext on the same input x and random tape r
output a ← A(x; r) and b ← Ext(x; r). By RND(A) we denote the random tape
of A and by Range(A(x)) the set of all possible outputs of A given input x.

We write x ←$ A if x is sampled uniformly randomly from the set A. By
default x = (xi)n

i=1 ∈ An is a column vector and 1n := (1)n
i=1, 0n := (0)n

i=1. A
set of permutations on n elements is denoted by Sn. A matrix A ∈ {0, 1}n×n is

4 Namely, [Gro10] requires a commitment key for the extended Pedersen commitment
which could be obtained from a uniformly random string.

672 A. Aggelakis et al.

Table 1. Comparison of state-of-the-art shuffles. Exp. stands for exponentiations, pair.
for pairings, n is the number of input ciphertexts and m is the number of mixers.
Constant terms are neglected, shuffling is included to prover’s efficiency, and shuffled
ciphertexts are included to proof size.

Prover

efficiency

Verifier

efficiency

Decryption

efficiency

Proof

size

CRS size Reference

string

Assumptions

[Gro10] 8n exp. 6n exp. n exp. 3n × Zp,

2n × G

n × G Uniform ROM, DDH

[GR16] 13n exp. 13n pair. n exp. 4n × G1,

2n × G2

(n2 + 24n)

×G1, 23n

× G2

Structured Falsifiable

[FLSZ17a] 11n exp. 7n exp.,

3n pair.

n exp. 4n × G1,

3n × G2

4n × G1,

n × G2

Structured GBGM

[FFHR19] 72n exp.,

5n pair.

22n pair. 2n exp.,

46n pair.

12n × G1,

11n × G2,

4n × GT

2m × G1,

2m × G2

Uniform Falsifiable

This work 11n exp. 7n exp.,

3n pair.

n exp. 4n × G1,

3n × G2

5n × G1,

n × G2

Verifiable AGM

a permutation matrix of the permutation σ ∈ Sn when Ai,j = 1 iff σ(i) = j. We
call a a unit vector if it contains exactly one 1 and all other positions are 0. Let
Fp be a finite field of prime order p and F

∗
p := Fp\{1}. For vectors x,y ∈ F

n
p , x◦y

denotes the entry-wise product. We use the bracket notation where [x] denotes
the group element with discrete logarithm x. We consider additive groups, thus
[a] + [b] = [a + b]. For integers a < b we denote [a .. b] := {a, a + 1, . . . , b}.

Bilinear Pairing. A bilinear group generator BGen(1λ) outputs a tuple (p,G1,
G2,GT ,P1,P2, •) such that (i) p is a prime of length Θ(λ), (ii) for k ∈ {1, 2},
Gk is an additive group of order p with a generator Pk, and (iii) • is a map
G1 × G2 → GT . We set PT := P1 • P2 and use the bracket notation by defining
[a]k := a · Pk, for k ∈ {1, 2, T}. We require that

– [a]1 • [b]2 = [ab]T for all a, b ∈ Fp (bilinearity),
– PT �= [0]T (non-degeneracy), and
– • is efficiently computable.

In the following we use asymmetric bilinear groups where there is no efficiently
computable isomorphism between G1 and G2. For the state of the art in pairing
constructions see [BD17].

Bracket notation extends naturally to matrices and vectors, e.g., we may
write [A]1 • [B]2 = [I]1 • (A[B]2) = [I]1 • [AB]2 for A ∈ F

n×m
p , B ∈ F

m×k
p ,

and identity matrix I ∈ F
n×n
p . Occasionally we write [a]z for z ∈ {1, 2} and use

z̄ := 3 − z to denote the number of the other non-target group. Then [a]z • [b]z̄
would mean [a]1 • [b]2 for z = 1 and [b]1 • [a]2 for z = 2.

Lagrange Basis. Let ω1, . . . , ωn+1 be distinct points in Fp. For i ∈ [1 .. n+1], the
i-th Lagrange basis polynomial is defined as �i(X) :=

∏
j �=i

X−ωj

ωi−ωj
. Hence, it is

the unique degree n polynomial such that �i(ωi) = 1 and �i(ωj) = 0 for all j �= i.
As the name suggests, {�i(X)}n+1

i=1 is a basis for {f ∈ Fp[X] : deg(f) ≤ n}.

A Non-interactive Shuffle Argument with Low Trust Assumptions 673

Encryption Scheme. A public key encryption scheme is a triple of PPT algo-
rithms (KGen,Enc,Dec) such that

– KGen(1λ) outputs a public key and a secret key pair (pke, ske).
– Encpke(m; r) outputs a ciphertext c encrypting the message m with random-

ness r under the public key pke.
– Decske(c) outputs the decryption of the ciphertext c using the secret key ske.

We require that Decske(Encpke(m; r)) = m for every message m and randomizer
r. Intuitively, an encryption scheme is IND-CPA-secure if no PPT adversary A
can distinguish between the ciphertext distributions of any two messages.

We use the ElGamal encryption scheme over a group G2 defined as follows.
The algorithm KGen(1λ) samples ske ←$Fp and outputs (pke := [1, ske]2, ske). An
encryption of a message [m]2 is Encpke([m]2; r) := [0,m]2 + r · pke where r ←$Fp.
A ciphertext [c]2 = [c1, c2]2 is decrypted by computing Decske([c]2) := [c2]2 −
ske · [c1]2. ElGamal is IND-CPA-secure if the DDH assumption holds in group
G2. ElGamal is also blindable, meaning that Encpke([m] ; r) + Encpke([0] , r′) =
Encpke([m] , r+r′) and, assuming that r′ ←$Fp, no PPT adversary can distinguish
if Encpke([m] ; r) and Encpke([m] ; r + r′) encrypt the same message or not.

Non-interactive Zero-Knowledge. Let R = {(x,w)} be a relation such that
LR = {x : ∃w (x,w) ∈ R} is an NP language where w is a witness for x. Fol-
lowing [ALSZ18], we define a NIZK argument in the BPK model as follows.

A NIZK argument Ψ in the BPK model for relation R is a tuple efficient algo-
rithms (Pgen,Ktd,Kpk,Vpk,P,V,Sim), where

– Pgen(1λ) is a deterministic algorithm that outputs a setup parameter gk.
– Ktd(gk) is a PPT algorithm that on input gk outputs a trapdoor td.
– Kpk(gk, td) is a deterministic algorithm that on input gk and td ∈

Range(Ktd(gk)) outputs a public key pk.
– Vpk(gk, pk) is a PPT algorithm that on input gk and a public key pk outputs

0 (if the key is malformed) or 1 (if the key is well-formed).
– P(gk, pk, x,w) is a PPT algorithm that given a setup parameter gk, public

key pk, and (x,w) ∈ R, outputs an argument π.
– V(gk, pk, x, π) is a PPT algorithm that on input a setup parameter gk, public

key pk, statement x, and argument π, outputs 0 (reject) or 1 (accept).
– Sim(gk, pk, td, x) is a PPT algorithm that on input a setup parameter gk,

public key pk, trapdoor td, and x ∈ LR outputs a simulated argument π.

For the sake of brevity, we sometimes use the algorithm K(gk) :=
Kpk(gk,Ktd(gk)). By a NIZK argument in the CRS model we mean a tuple
(Pgen,Ktd,Kpk,P,V,Sim) of the above algorithms (i.e., all except Vpk).

Completeness simply requires that an honestly generated key and argument
are respectively accepted by Vpk and V. We give the definition for the BPK
model. The definition for the CRS model neglects the condition Vpk(gk, pk) = 1.

674 A. Aggelakis et al.

Definition 1. The argument Ψ in BPK model is perfectly complete if for all
λ, and (x,w) ∈ R, the following probability is 1,

Pr
[
gk ← Pgen(1λ), pk ← K(gk) : Vpk(gk, pk) = 1 ∧ V(gk, pk, x,P(gk, pk, x,w)) = 1

]
.

Soundness guarantees that a malicious prover cannot create a valid argument for
a false statement. The definitions match in the BPK model and the CRS model.

Definition 2. The argument Ψ is sound if for any PPT adversary A,

Pr

[
gk ← Pgen(1λ), (pk, td) ← K(gk), (x, π) ← A(gk, pk) :
x �∈ LR ∧ V(gk, pk, x, π) = 1

]

≈λ 0.

Knowledge-soundness strengthens the previous definition by requiring that the
prover “knows” the witness, i.e., there exists an extractor that outputs the wit-
ness given the code and random coins of the adversary.

Definition 3. The argument Ψ is knowledge-sound if for any PPT adversary
A, there exists a PPT extractor Ext, such that

Pr

[
gk ← Pgen(1λ), (pk, td) ← K(gk), ((x, π),w) ← (A‖Ext)(gk, pk) :
(x,w) �∈ R ∧ V(gk, pk, x, π) = 1

]

≈λ 0.

Lastly, zero-knowledge guarantees that the argument leaks no information
besides that x ∈ LR by giving an algorithm Sim which, given a trapdoor, can
create a valid argument for any x ∈ LR without knowing the corresponding
witness.

Definition 4. An argument Ψ in the CRS model is statistically zero-knowledge,
if for any adversary A, and any (x,w) ∈ R, ε0 ≈λ ε1, where

εb := Pr

[
gk ← Pgen(1λ), (crs, td) ← K(gk), if b = 0 then π ← P(gk, crs, x,w)
else π ← Sim(gk, crs, td, x) fi : A(gk, crs, π) = 1

]

.

We say that Ψ is perfectly zero-knowledge if ε0 = ε1.

In the BPK model, we use the no-auxiliary-string non-black-box zero-
knowledge definition of [ALSZ18] (as mentioned, NIZK is impossible with the
standard BPK ZK definition). Essentially the prover first runs a public key ver-
ification algorithm Vpk to check well-formedness of the key pk and only then
outputs a proof. Compared to the previous definition, we require that there
exists an extractor that extracts a trapdoor for any well-formed pk given access
to adversary’s random coins. Intuitively this guarantees that the key genera-
tor knows the trapdoor and thus could generate the proof himself using the
simulator.

A Non-interactive Shuffle Argument with Low Trust Assumptions 675

Definition 5 ([ALSZ18]). The argument Ψ in the BPK model is statistically
no-auxiliary-string non-black-box zero-knowledge (nn-ZK), if for any PPT sub-
verter X there exists a PPT extractor ExtX, s.t., for any (stateful) adversary A,
ε0 ≈λ ε1, where

εb := Pr

⎡

⎢
⎣

gk ← Pgen(1λ), (pk, auxX‖td) ← (X‖ExtX)(gk), (x,w) ← A(auxX),
if b = 0 thenπ ← P(gk, pk, x,w) else π ← Sim(gk, pk, td, x) fi :
(x,w) ∈ R ∧ Vpk(gk, pk) = 1 ∧ A(π) = 1

⎤

⎥
⎦ .

Here auxX is whatever information X wishes to send to A.

Assumptions. In AGM reductions we use q-PDL, a q-type version of discrete
logarithm assumption. We also require the KerMDH computational assumption,
and the BDH-KE knowledge assumption. The definitions are as follows.

Definition 6 (q-PDL [Lip12]). The q-Power Discrete Logarithm assumption
holds for BGen if for any PPT A,

Pr[gk ← BGen(1λ), z ←$Zp, z
′ ← A(gk, [(zi)q

i=1]1, [(z
i)q

i=1]2) : z = z′] ≈λ 0.

Definition 7 (KerMDH [MRV16]). Let D�,k be a distribution over F
�×k
p . The

D�,k-KerMDH assumption holds for BGen and z ∈ {1, 2} if for any PPT A,

Pr[gk ← BGen(1λ),M ←$ D�,k, [c]z̄ ← A(gk, [M]z) : c �= 0 ∧ c�M = 0] ≈λ 0.

Definition 8 (BDH-KE [ABLZ17]). We say that BGen is BDH-KE secure if
for any PPT adversary A there exists a PPT extractor ExtA, such that

Pr
[
gk ← BGen(1λ), ([α]1 , [α′]2 ‖β) ← (A‖ExtA)(gk) : α = α′ ∧ β �= α

] ≈λ 0.

Commitment Scheme. A commitment scheme is a tuple of efficient algorithms
(KGen,Com) such that

– KGen(1λ) outputs a commitment key ck.
– Comck(m; r) outputs a commitment c given a message m and randomness r.

Typically a commitment scheme should satisfy at least the following properties.
(i) (perfectly) hiding : the distribution Comck(m; r) (over r ←$Fp) is the same for
any message m; (ii) (computationally) binding : it is infeasible for an adversary
to find (m1, r1) and (m2, r2) s.t. Comck(m1; r1) = Comck(m2; r2) and m1 �= m2.

Polynomial Commitment Scheme. For polynomials {Ti(X1, . . . , Xk)}n+1
i=1 ∈

Fp[X1, . . . , Xk] we define a (Ti)n+1
i=1 -commitment scheme as follows:

– KGen(1λ) picks χ ←$F
k
p and returns a commitment key ck ← [

(Ti(χ))n+1
i=1

]
z
.

– Comck((a1, . . . , an); r) returns a commitment
∑n

i=1 ai[Ti(χ)]1 + r[Tn+1(χ)]1.

Clearly, this commitment is perfectly hiding when r ←$Fp and Tn+1(χ) �= 0. If
{Ti}n+1

i=1 is a linearly independent set, it is also computationally binding under
a suitably chosen KerMDH assumption, cf. [FLSZ17a, Theorem 1].

676 A. Aggelakis et al.

DL-Extractable Commitment Scheme. The DKG protocol of [ABL+19b] requires
a UC-secure Discrete Logarithm Extractable (DL-extractable) commitment
scheme as defined in [ABL+19a]. In DL-extractable commitments the messages
are field elements x, but commitments can be opened to [x]z thus still leaving x
itself private. However, since in the UC-model committing to x is equivalent to
giving it to an ideal functionality, then the committer knows x, i.e., the discrete
logarithm x can be extracted from the commitment given a secret key. For a
formal definition and a construction, see [ABL+19a].

Algebraic Group Model. Recently Fuchsbauer et al. [FKL18] introduced the alge-
braic group model (AGM) that lies between the standard and the generic group
model. In the AGM, an adversary A that returns a group element [x]z is required
to provide a linear representation of [x]z relative to all previously received group
elements. That is, if A received as input group elements [y]z then she must
submit along with [x]k a representation z such that [x]z = z� [y]z. Using tech-
niques similar to [FKL18, Theorem 7.2] we prove knowledge-soundness of the
unit vector argument under the PDL assumption in the AGM.

2.1 FLSZ Shuffle Argument

We give a brief overview of the FLSZ shuffle argument for the shuffle relation

Rsh
n :=

{ (
(gk, pke, [(c

′
i)

n
i=1]2, [(ci)

n
i=1]2), (σ, t)

) | σ ∈ Sn ∧ t ∈ F
n
p∧

(∀i ∈ [1 .. n] : [c′
i]2 = [cσ(i)]2 + Encpke([0]2; ti)

)

}

.

They use a ((Pi(X))n
i=1,X�)-commitment scheme to commit to columns of a

permutation matrix, where Pi(X) := 2�i(X) + �n+1(X) for i ∈ [1 .. n].

Lemma 1. Let P0(X) := �n+1(X) − 1 and Qi(X) := (Pi(X) + P0(X))2 − 1 for
i ∈ [1 .. n]. If (

∑n
i=1 aiPi(X) + P0(X))2 − 1 ∈ Span{Qi(X)}n

i=1 and n < p − 1,
then (a1, . . . , an) is a unit vector.

Proof. Denote T (X) := (
∑n

i=1 aiPi(X) + P0(X))2 − 1. Firstly, observe that
for j ∈ [0 .. n], T (wj) = (

∑n
i=1 aiPi(ωj) + P0(ωj))2 − 1 = (

∑n
i=1 ai(2�i(ωj) +

�n+1(ωj)) + �n+1(ωj) − 1)2 − 1 = (2aj − 1)2 − 1 = 4aj(aj − 1). On the other
hand, Qi(ωj) = (Pi(ωj) + P0(ωj))2 − 1 = 0 for j ∈ [1 .. n]. Therefore, T (X) ∈
Span{Qi(X)}n

i=1 implies that T (ωj) = 0. Hence aj ∈ {0, 1} for j ∈ [1 .. n].
Finally, T (ωn+1) = (

∑n
i=1 ai(2 · 0 + 1) + 1 − 1))2 − 1 = (

∑n
i=1 ai)2 − 1.

Similarly as before, Qi(ωn+1) = 0 so T (wn+1) = 0. Therefore, (
∑n

i=1 ai)2 − 1 =
(
∑n

i=1 ai − 1)(
∑n

i=1 ai + 1) = 0. Since
∑n

i=1 ai = n < p − 1 we must have∑n
i=1 ai = 1, so exactly one aj is 1 and all others are 0. Hence (a1, . . . , an) is a

unit vector. �
Given the above property, they propose a unit vector argument to show that

the prover could open each commitment to a unit vector. They then enhance it to
a permutation matrix argument by observing that n unit vectors form a permuta-
tion matrix exactly when their sum is 1n. Next, they would like to show that the

A Non-interactive Shuffle Argument with Low Trust Assumptions 677

committed permutation matrix was used to shuffle the ciphertexts. However, due
to some technical challenges, they are unable to use the same commitment key.
Instead, they commit once more to the columns of the permutation matrix, but
this time with a ((P̂i(X))n

i=1,X�̂)-commitment where P̂i(X) := X(i+1)(n+1) for
i ∈ [1 .. n]. They propose a same-message argument to show that both types of
commitments can be opened to the same matrix. Finally, a consistency argument
proves that the committed permutation was used to shuffle the ciphertexts.

The unit vector argument, the permutation matrix argument, and the same-
message argument are proven to be knowledge-sound in the GBGM. However,
the soundness of the unit vector argument depends on the soundness of the
same-message argument. The consistency argument is culpably sound5 under an
application specific variation of the KerMDH assumption. The shuffle argument
itself is sound assuming that other arguments are secure and assuming that
commitments are binding. The shuffle argument has perfect zero-knowledge.

3 Distributed Key Generation Protocol

We apply the UC-secure DKG protocol of Abdolmaleki et al. [ABL+19b] in the
public key generation of our shuffle argument. This protocol avoids the random
oracle model (unlike, e.g., [BCG+15]) and due to UC-security it will not affect
the soundness or zero-knowledge properties of the argument. Of course, any
general MPC protocol can be used as a DKG, but since we potentially require
a large number of parties (e.g., mixers in the mix-network) and since evaluated
circuits can have a large multiplicative depth, specialized protocols will perform
much better. See [BCG+15] for further discussion on efficiency difference.

3.1 Verification-Friendly Public Key

Although the DKG protocols of [BCG+15] and [ABL+19b] are efficient, they are
not general MPC protocols and can only generate certain kinds of keys. Namely,
they require key computation to be represented as a circuit that comes from a
special class (CS, described below) and is evaluated on uniformly random field
inputs. Fortunately, the protocols are still sufficient for generating public keys for
many pairing-based arguments or, as we will later show, slightly modified ver-
sions. Compared to [ABL+19b] we give a more direct, but equivalent, description
of such keys which we call verification-friendly. Intuitively, a verification-friendly
public key means that even if one doesn’t trust the parties generating the public
key, one can at least ensure that it is of the correct structure.

We say that an argument Ψ has a verification-friendly public key if (i) output
td = (χi)n

i=1 of Ktd(gk) is distributed uniformly randomly over (F∗
p)

n, and (ii)
Kpk(gk, td) = C(td) where C is a circuit from a class CS

gk,n. Any circuit C ∈ CS
gk,n

takes as input td = (χi)n
i=1 ∈ (F∗

p)
n and contains two types of gates:

5 Culpable soundness is a weaker form of soundness where an adversary additionally
provides a witness of his cheating.

678 A. Aggelakis et al.

– multiplication-division (multdiv) gate MDχi,χj
([x]z) outputs [(χi/χj)x]z,

where z ∈ {1, 2} and [x]z is a gate input.

– linear combination (lincomb) gate LCc([y]z) outputs
[∑t

i=1 ciyi

]

z
, where z ∈

{1, 2}, c ∈ F
t
p is a constant, and [y]z ∈ G

t
z is a gate input.

Gates in the circuit C are partitioned into interleaved layers C1, L1, . . . , Cd, Ld

where each Ci contains only multdiv gates and Li contains only lincomb gates.
Furthermore, C satisfies the following conditions:

1. Inputs of gates in Ci or Li can be either constants or outputs of the gates on
the current or lower layers of the circuit.

2. The output of each gate is part of the output of the circuit C.
3. Layer C1 always contains gates MDχi,1([1]z) for all i ∈ [1 .. n], z ∈ {1, 2}.

Therefore, [(χi)n
i=1]1 and [(χi)n

i=1]2 are always outputs of the circuit.

3.2 DKG Protocol for Verification-Friendly Keys

We describe the DKG protocol of [ABL+19b] where the parties collectively eval-
uate a CS

gk,n-circuit to generate a verification-friendly public key. The protocol
retains soundness and zero-knowledge of the argument given that at least one
party in the protocol is honest and malicious parties are non-halting. We note
that with a suitable key verification algorithm it is possible to achieve zero-
knowledge even if all the parties are malicious.

Let P1, . . . ,Pk be the parties running the DKG protocol. Each party Pr

samples shares (χj,r)n
j=1 ←$ (F∗

p)
n which allows us to define trapdoor elements

as χj :=
∏k

r=1 χj,r for j ∈ [1 .. n]. Note that if at least one value χj,r ∈ F
∗
p is

picked independently and uniformly at random, then χj is uniformly random in
F

∗
p. For ease of description, we set χ0 := 1 and similarly χ0,r := 1 for r ∈ [1 .. k].

The protocol starts with a commitment round where all the parties commit to
their shares χi,r with a UC-secure DL-extractable commitment scheme. This is
followed by an opening round where each Pi reveals [χi,r]1, [χi,r]2. Since the com-
mitment scheme is UC-secure, then it is also non-malleable and thus guarantees
that the adversary chooses her shares independently of the shares of the honest
parties. Next, the parties start to evaluate the circuit layer-by-layer. For evaluat-
ing a single multdiv gate MDχi,χj

([x]z) = [(χi/χj)x]z where i, j ∈ [0 .. n], parties
run the mpcMDχi,χj

([x]z) protocol given in Fig. 1. Assuming that [x]z is public,
P1 broadcasts (χi,1/χj,1) [a]z and each subsequent party Pr multiplies χi,r/χj,r

to the output of her predecessor Pr−1. If all the parties follow the protocol, then
the output of Pk is certk = (χi,1 · . . . · χi,k)/(χj,1 · . . . · χj,k) [a]z = (χi/χj) [a]z.
Computation of each party can be verified with pairings by using the algorithm
VmpcMDχi,χj

in Fig. 1. Any linear combination gate LCc([x]z) can be computed
locally by each party by simply evaluating the expression

∑t
i=1 ci [ai]z.

Let us make a slight restriction for now that multdiv gates on the same layer
do not depend on each other. Then each multi-division layer Ci can be evaluated
by running multiple instances of the mpcMD protocol in parallel. More precisely,

A Non-interactive Shuffle Argument with Low Trust Assumptions 679

mpcMDχi,χj
([x]z):

1. Set cert0 ← [x]z.
2. For r = 1, . . . , k: Party Pr broadcasts certr ← (χi,r/χj,r) · certr−1.
3. Output certk.

VmpcMDχi,χj
([x]z , (certr)k

r=1,
[
(χj,r)k

r=1, (χi,r)k
r=1

]
z̄
):

1. Set cert0 ← [x]z.
2. For r = 1, . . . , k: check that certr • [χj,r]z̄ = certr−1 • [χi,r]z̄.
3. If all checks pass output 1 and otherwise output 0.

Fig. 1. Multi-party protocol mpcMDχi,χj
and its transcript verifier VmpcMDχi,χj

Commitment: Each party Pr picks χ1,r, . . . , χn,r ←$F
∗
p and broadcasts DL-

extractable commitments of the values.
Opening: Once all the commitments are received, Pr broadcasts openings together
with [(χi,r)n

i=1]1 and [(χi,r)n
i=1]2. Each party verifies the openings and aborts if the

verification failed.
Layer computation: For a multi-division layer Ci containing a gate MDχi,χj ([a]z), par-
ties run the protocol mpcMDχi,χj

([a]z) and verify the computation with the algorithm
VmpcMDχi,χj

. All the gates in Ci can be evaluated in parallel. Linear combination
layers Li are locally evaluated by each party.
Output: Output of the protocol is the output of all the evaluated gates.

Fig. 2. Distributed key generation protocol for a circuit C = (C1, L1, . . . , Cd, Ld)

the computation begins with the party P1 doing its part of computation in
mpcMD for each multdiv gate in Ci. Then, given the output produced by P1,
the party P2 does her part of the computation for each gate in the layer Ci

and so on. Hence, a single multdiv layer can be evaluated in k rounds since
every party needs to contribute to the output of the previous party just once.
After each multi-division layer, the parties verify the computation by running
the algorithm VmpcMDχi,χj

for each gate. If the checks pass, the parties locally
evaluate gates on layer Li and proceed to compute the next layer Ci+1. Full
details are given in Fig. 2.

We refer the reader to [ABL+19b] for the more general protocol where k
rounds can be achieved even if the gates on the same layer depend on each
other. That version of the DKG is also used for our shuffle argument, but for
this we provide an explicit description in the full version of our paper. It is
important to note that Abdolmaleki et al. showed that if at least one party
in the DKG is honest, then it UC-realises the CRS ideal functionality (which
essentially samples a public key in the beginning and returns it to anyone that
queries).

680 A. Aggelakis et al.

4 Transparent Shuffle Argument

The DKG protocol requires the public key to be verification-friendly. In partic-
ular, we need to guarantee the following properties:

– Each trapdoor ι ∈ td has to be sampled uniformly at random from F
∗
p and

the public key has to contain both [ι]1 and [ι]2.
– The public key has to be computable by interleaved multi-division and linear

combination circuit layers and the output of each gate has to be part of the
public key. For example, given that [a]1, [b]1, [c]1, [d]1 are part of the public
key, it is not possible to have [ab+cd]1 in the public key without also revealing
some intermediate gate outputs like [ab]1 and [cd]1.

In this section, we modify the FLSZ argument and construct a new transpar-
ent shuffle argument tFLSZ which has a verification-friendly public key. Besides
making the argument verification-friendly, we also simplify the construction: (i)
we combine the unit vector argument and the same-message argument of tFLSZ
into a single argument, (ii) we skip the consistency argument and directly con-
struct a shuffle argument from the permutation argument, and (iii) we observe
that one of the trapdoors, �̂, can be set to 1 without affecting security. The new
argument is given in Fig. 3; we introduce the construction step-by-step in the
following.

Let us take the public key of FLSZ in Fig. 4 as a starting point and observe
which modifications need to be introduced to make it verification-friendly.

– Firstly, we need to add all the trapdoor elements to both groups which means
adding [χ, β, β̂]1 and [χ]2 to the public key.

– To evaluate polynomials Pi(X) at point χ we add powers of χ in both groups
to the public key. Since Pi is at most degree n, it suffices to include elements
[(χi)n

i=1]1 and [(χi)n
i=1]2. However, since (Pi(X) + P0(X))2 − 1 has at most

degree 2n, we additionally add [(χi)2n
i=n+1]1.

– Polynomials P̂i have a degree (i + 1)(n + 1), requiring, for the sake of ver-
ification friendliness, to include elements [(χi)(n+1)2

i=1]1 which would cause
quadratic overhead. We avoid this by redefining the polynomials P̂i and
evaluating them at a new random point θ. The first idea would be to set
P̂i(Xθ) = Xi

θ for i = 1, . . . , n and add [(θi)n
i=1]1 and [θ]2 to the public key.

However, the ((P̂i(Xθ))n
i=1, 1)-commitment scheme would not be binding since

the KerMDH assumption does not hold for [M]1 = [P̂1(Xθ), . . . , P̂n(Xθ), 1]1,
as the adversary can output [c]2 = [θ,−1, 0, . . . , 0]2 such that Mc� = 0 and
c �= 0. Instead we set P̂i(Xθ) = X2i

θ for i ∈ [1 .. n] and include [(θi)2n
i=1]1 and

[θ]2 to the public key. Now the commitment scheme is binding under a slight
variation of the standard KerMDH assumption, which we prove in Sect. 5 to
reduce to PDL assumption in the algebraic group model.

Another challenge is computing crssm since it contains elements [βPi + β̂P̂i]1. It
is not possible to reveal [βPi]1 and [β̂P̂i]1 since this breaks knowledge-soundness
of the same-message argument. We propose a new argument to overcome this.

A Non-interactive Shuffle Argument with Low Trust Assumptions 681

Ktd(gk) Return td = (χ, θ, β, β̂, �) ←r (F∗
p)5.

Kpk(gk, n, td) Let P = (Pi(χ))n
i=1, P̂ = (P̂i(θ))n

i=1, Q = ((Pi(χ) + P0(χ))2 − 1)n
i=1.

pkuv ←
(

[1, P0(χ), P, �, Q/�,
∑n

i=1 P̂i, β2�, ββ̂, β2P + ββ̂P̂]1,
[1, P0(χ), P, �, β2, ββ̂]2, [1]T

)
,

pkpkv ←
(

[β, β̂, (θ2i−1)n
i=1]1,

[χ, θ, β, β̂]2

)
, pkvf ←

(
[(χi)2n

i=1, (βχi, β̂θ2i)n
i=1, β�]1,

[(χi)n
i=2]2

)
.

Return pk ← ([P̂]1, pkuv, pkpkv, pkvf).

K(gk, n) Run td ← Ktd(gk), pk ← Kpk(gk, n, td), return (pk, td).

P(gk, (pke, pk), [C]2 = [(ci)n
i=1]2 ∈ G

n×2
2 , (σ ∈ Sn, t ∈ F

n
p))

1. For i = 1 to n − 1: r̂i ←$Fp; [âi]1 ← [P̂σ−1(i)]1 + r̂i[1]1.
2. πper ← Pper(gk, pk, [(âi)n−1

i=1]1, (σ, (r̂i)n−1
i=1)). // Permutation argument

3. r̂n ← − ∑n−1
i=1 r̂i; r̂ ←r Fp; [s]1 ← t�[P̂]1 + r̂[1]1.

4. For i = 1 to n: [t′
i]2 ← ti · pke.

5. [N]2 ← r̂�[C]2 + r̂ · pke. // Online
6. [C′]2 ← ([cσ(i)]2 + [t′

i]2)
n
i=1. // Shuffling, online

7. Return [C′]2, πsh ← ([(âj)n−1
j=1 , s]1, [N]2, πper)

)
.

V(gk, (pke, pk), ([C]2, [C′]2), πsh)

1. Parse πsh = ([(âj)n−1
j=1 , s]1, [N]2, πper); set [ân]1 ← [

∑n
i=1 P̂i]1 − ∑n−1

i=1 [âi]1.
2. Check Vper(gk, pk, [(âi)n−1

i=1]1, πper) = 1.
3. Check [P̂]�1 • [C′]2 − [â]�1 • [C]2 = [s]1 • pke − [1]1 • [N]2.

Fig. 3. tFLSZ argument

K(gk, n) Generate random td = (χ, β, β̂, �, �̂, ske) ←r (F∗
p)6. Denote P = (Pi(χ))n

i=1,
P0 = P0(χ), and P̂ = (P̂i(χ))n

i=1, Q = ((Pi + P0)2 − 1)n
i=1. Let

crssm ←
(
[βP + β̂P̂, β�, β̂�̂]1, [β, β̂]2

)
, crscon ← [P̂�̂]1 , pke = [1, ske]2

crspm ← [1, P0,Q/�,
∑n

i=1 Pi,
∑n

i=1 P̂i]1, [P0,
∑n

i=1 Pi]2, [1]T
)

.

Set crs ← pke, [
P
�]1, [P�]2, crssm, crspm, crscon

)
. Return (crs, td).

Fig. 4. CRS generation algorithm of FLSZ

New Unit Vector Argument. We combine the same-message argument and unit
vector argument from FLSZ to a new unit vector argument which is a proof
of knowledge for the relation Ruv

n := {(
[â]1, (I ∈ [1 .. n], r̂)

) | â = P̂I + r̂}.
The new argument in Fig. 5 has two advantages: (i) it has a verification-friendly
public key, and (ii) the unit vector argument of FLSZ is sound only if we give a

682 A. Aggelakis et al.

Kuv(gk, n) Return (pk, td) ← K(gk, n) from Fig. 3.
Puv(gk, pk, [â]1), (I, r̂))

1. r ←$Fp, [r′]1 ← r[�]1, [d]1 ← [β2PI + ββ̂P̂I]1 + r[β2�]1 + r̂[ββ̂]1.
2. [a]1 ← [PI]1 + [r′]1, [b]2 ← [PI]2 + r[�]2.
3. [e]1 ← r · (2([a]1 + [P0]1) − [r′]1) + [(PI + P0)2 − 1

)
/�]1.

4. Return πuv ← ([d]1, [a]1, [b]2, [e]1).
Vuv(gk, pk, [â]1, πuv)

1. Parse πuv = ([d]1, [a]1, [b]2, [e]1) and pick α ←$Fp.
2. Check [d]1 • [1]2 = [a, â]1 • [β2, ββ̂]�2 .
3. Check ([a]1 + α[1]1 + [P0]1) • ([b]2 − α[1]2 + [P0]2) = [e]1 • [�]2 + (1 − α2)[1]T .

Fig. 5. New unit vector argument

corresponding proof for the same-message argument; the new argument avoids
this dependency. On a high level, the verification equation in Step 2 of Vuv and
the proof element [d]1 in Fig. 5 correspond to a variation of the same-message
argument in FLSZ and shows that [â]1 and [a]1 commit to the same message
m respectively with the ((P̂i(X))n

i=1, 1)-commitment and the ((Pi(X))n
i=1,X�)-

commitment. The verification equation in Step 3 of Vuv and elements [b]2 and
[e]1 in Fig. 5 use the result of Lemma 1 to show that [a]1 commits to a unit
vector. This part is identical to the unit vector argument in FLSZ.

The main differences in the new argument are the public key elements for
showing that [â]1 and [a]1 commit to the same message. Simply revealing ele-
ments [βPi, β̂P̂i]1 would be sufficient for verification-friendliness, but breaks the
knowledge-soundness property: the same-message argument of FLSZ relies on
[βPi(χ) + β̂P̂i(θ)]1 being the only G1 elements in the span of {[βχi + β̂θj]1}i,j

that are available to the adversary. Instead, we essentially substitute [βPi+β̂P̂i]1
with [β2Pi + ββ̂P̂i]1 (and other related elements accordingly), and equivalently
use the fact that those are the only G1 elements in the span of {[β2χi+ββ̂θj]1}i,j

available to the adversary. This change is significant since the latter elements can
be computed with the DKG protocol without revealing [β2Pi]1 and [ββ̂P̂i]1:

(i) compute [βχi]1 and [β̂θ2i]1 = [β̂P̂i]1 to obtain [βPi + β̂P̂i]1;
(ii) compute [β2Pi + ββ̂P̂i]1 = MDβ,1([βPi + β̂P̂i]1);
(iii) similarly, from elements [β, β�, β̂]1 compute [β2�]1 and [ββ̂]1.

Additionally, in G2 we reveal [β2]2 and [ββ̂]2. We prove in the full version of our
paper that these changes retain security.

Permutation Argument. The permutation argument is a proof of knowledge for
the relation

Rper =
{
([â]1, (σ, r̂)) | σ ∈ Sn ∧ ∑n

i=1 r̂i = 0 ∧ (∀i ∈ [1 .. n] : âi = P̂σ−1(i) + r̂i)
}
.

We show that this relation is fulfilled the same way as previous NIZK shuffle
arguments. Firstly, the prover gives a unit vector argument for each of the com-
mitments [âi]1 for i ∈ [1 .. n − 1]. Next, observe that only if those commitments

A Non-interactive Shuffle Argument with Low Trust Assumptions 683

Kper(gk, n) Return (pk, td) ← K(gk, n) from Fig. 3.
Pper(gk, pk, [(âi)n−1

i=1]1, (σ ∈ Sn, (r̂i)n−1
i=1))

1. r̂n ← − ∑n−1
i=1 r̂i, [ân]1 ← [

∑n
i=1 P̂i]1 − ∑n−1

i=1 [âi]1.
2. For i ∈ [1 .. n] πuv:i ← Puv(gk, pk, [âi]1, (σ−1(i), r̂i)).
3. Return πper ← (πuv:i)n

i=1.
Vper(gk, pk, [(âi)n−1

i=1]1, πper)
1. Parse πper = (πuv:i)n

i=1 and set [ân]1 ← [
∑n

i=1 P̂i]1 − ∑n−1
i=1 [âi]1.

2. For i ∈ [1 .. n] check Vuv(gk, pk, [âi]1, πuv:i) = 1.

Fig. 6. Permutation argument

are to distinct values P̂i, is [ân]1 := [
∑n

i=1 P̂i]1−∑n−1
i=1 [âi]1 a unit vector. Hence,

by giving a unit vector argument also for [ân]1, where [ân]1 is explicitly com-
puted by the verifier, we have proven the relation. Condition

∑n
i=1 r̂i = 0 in

Rper comes from the way that [ân]1 is computed. The protocol is given in Fig. 6.

Shuffle Argument. Finally, we prove that ciphertexts were shuffled according
to the permutation σ committed in [â]1. This is essentially equivalent to the
consistency argument in FLSZ. Intuitively, we check that

∑n
i=1[P̂i]1 • [m′

i]2 =
∑n

i=1[P̂σ−1(i)]1 • [mi]2 (see Step 3 for the actual equation) which guarantees
that

∑n
i=1[P̂i]1 • ([m′

i]2 − [mσ(i)]2) = [0]T . If [m′
i]2 �= [mσ(i)]2 for some i, then

the adversary can find a non-zero element in the kernel of [P̂]1 and thus break
the KerMDH assumption. Of course, the actual messages mi are encrypted and
the verifier knows only a commitment to σ. We balance this in the equation
by allowing the prover to produce elements [s]1 and [N]2, which cancels the
randomness in the ciphertexts and the commitments.

Verification-Friendliness of tFLSZ. After making all of the above modifications
we end up with a public key as presented in Fig. 3. There are two new sub-keys:
pkpkv which contains some elements later required by the Vpk algorithm (used by
prover to guarantee nn-ZK), and pkvf which is a by-product of making the public
key verification-friendly. After the public key generation protocol has finished the
elements in pkvf can be disregarded. It is now simple to verify that the public
key is verification-friendly. We present it as a series of multiplication-division and
linear combination layers in Fig. 7. Hence, the DKG protocol described in Sect. 3
can be applied. For the sake of completeness, we provide an explicit description
of the DKG protocol in the full version of the paper.

For better modularity, we treat the encryption key pke separately from the
argument’s public key. However, we assume it to be correctly generated by some
secure DKG protocol, such as the one by Gennaro et al. [GJKR99].

Theorem 1 ([ABL+19b]). If tFLSZ is complete, sound, and computational
zero-knowledge in the CRS model, then it is complete, sound, and computational
zero-knowledge if the adversary corrupts all but one party in the DKG protocol.

684 A. Aggelakis et al.

Input: (χ, θ, β, β̂, �) ∈ (F∗
p)5.

Layer C1

1. For ι ∈ {β, β̂, �}, z ∈ {1, 2}: [ι]z ← ι [1]z.
2. For i = 1 to 2n: [χi]1 ← χ[χi−1]1 , [θi]1 ← θ[θi−1]1.
3. Set [θ]2 ← θ[1]2 and denote [P̂i]1 = [θ2i]1 for i = 1 to n.
4. For i = 1 to n: [χi]2 ← χ[χi−1]2, [βχi]1 ← β[χi]1 , [β̂P̂i]1 ← β̂[P̂i]1.
5. [β2]2 ← β[β]2, [β�]1 ← β[�]1, [β2�]1 ← β[β�]1, [ββ̂]1 ← β[β̂]1, [ββ̂]2 ← β[β̂]2.

Layer L1

1. Compute [(
i(χ), β
i(χ),
i(χ)2)n+1
i=1]1, [(
i(χ))n+1

i=1]2, [(
i(χ) ·
n+1(χ))n
i=1]1 from

[(χi)2n
i=0]1, [(βχi)n

i=0]1, and [(χi)n
i=0]2 (see the full version of our paper for details).

2. [P0]1 ← [
n+1(χ)]1 − [1]1 , [P0]2 ← [
n+1(χ)]2 − [1]2.
3. For i = 1 to n:

(a) [Pi]1 ← 2[
i(χ)]1 + [
n+1(χ)]1, [Pi]2 ← 2[
i(χ)]2 + [
n+1(χ)]2
(b) [Qi]1 ← 4[
i(χ)2]1+4[
n+1(χ)2]1+8[
i(χ)·
n+1(χ)]1−4[
i(χ)]1−4[
n+1(χ)]1.
(c) [βPi + β̂P̂i]1 ← 2[β
i(χ)]1 + [β
n+1(χ)]1 + [β̂θ2i]1.

4. [
∑n

i=1 P̂i]1 ← ∑
i=1[P̂i]1.

Layer C2 For i = 1 to n: [Qi/�]1 ← [Qi]1/� , [β2Pi + ββ̂P̂i]1 ← β[βPi + β̂P̂i]1.

Fig. 7. Public key computation as a circuit

5 Security in the CRS Model

In this section, we establish that tFLSZ is secure in the CRS model, where the
CRS is the public key generated by a trusted party. We first claim security of
the unit vector and permutation arguments, as stated in Theorems 2 and 3.

Theorem 2 (Security of unit vector argument). The unit vector argu-
ment in the CRS model (see Fig. 5) has perfect completeness and perfect zero-
knowledge. If the (3n − 1)-PDL assumption holds, then it has computational
knowledge-soundness in the AGM.

Theorem 3 (Security of permutation argument). The permutation argu-
ment in the CRS model (see Fig. 6) is perfectly complete and perfectly zero-
knowledge. If the unit vector argument is knowledge-sound and ((P̂i(X))n

i=1, 1)-
commitment is binding, then the permutation argument is also knowledge-sound.

The proofs are given in the full version of our paper. Soundness of the unit-vector
argument uses a common trick of AGM proofs that first defines an idealised ver-
ification, where the verification equation holds true for polynomials V (X) (with
trapdoor elements as variables) rather than for polynomial evaluations V (χ)
only (real verification, for concrete trapdoor elements χ). We then show that
no element outside the unit vector language can pass the idealised verification.
Moreover, if an adversary manages to pass the real verification but not the ideal
one, then she can be used to break the (3n − 1)-PDL assumption. The proof of
the other properties are quite standard.

We prove soundness of the shuffle argument under a weaker assumption com-
pared to [FLSZ17a]. The assumption, called the GapKerMDH assumption, is

A Non-interactive Shuffle Argument with Low Trust Assumptions 685

novel, but we show that it reduces to the PDL assumption in the AGM. More pre-
cisely, since the KerMDH assumption is insecure for M = (1, θ, . . . , θn) ∈ Z

n×1
p

if the adversary is given both [M]1 and [θ]2, then a slightly modified assumption
is required. We still give the same information to the adversary, but require that
the output is in the kernel of a certain M ′ ⊂ M that contains periodic gaps.

Definition 9. The n-GapKerMDH assumption holds for BGen if for any PPT
A,

Pr

[
gk ← BGen(1λ), θ ←$F

∗
p, [v]2 ← A(gk, [(θi)2n

i=1]1, [θ]2) :

v� · (θ2i)n
i=0 = 0 ∧ v �= 0n+1

]

≈λ 0.

Theorem 4. If the (2n)-PDL assumption holds, then the n-GapKerMDH
assumption holds in the AGM.

Proof. Let A be an algebraic PPT adversary that breaks n-GapKerMDH
assumption with probability εgap. More precisely, A gets as an input
(gk, [(θi)2n

i=1]1, [θ]2) for θ ←$Zp, and outputs a non-zero [v]2 ∈ G
n+1
2 and its

linear representation U ∈ Z
(n+1)×2
p (that is [v]2 = U · [1, θ]�2) such that∑n

i=0 θ2i · vi+1 = 0.
We construct a PPT adversary B that breaks (2n)-PDL assumption using A.

First, B gets as an input (gk, [(θi)2n
i=1]1, [(θ

i)2n
i=1]2) and runs A(gk, [(θi)2n

i=1]1, [θ]2)
to get the output [v]2 and U. Let us define polynomials Vi(Xθ) := Ui,1+Ui,2 ·Xθ

for i ∈ [1 .. n + 1] which in particular satisfies Vi(θ) = vi. Similarly for the
expression

∑n
i=0 θ2i ·vi+1 we define a polynomial V (Xθ) :=

∑n
i=0 X2i

θ ·Vi+1(Xθ)
such that if A wins then V (θ) = 0. Adversary B will abort if A either outputs an
incorrect representation U or loses the n-GapKerMDH game. Otherwise B finds
roots of V (Xθ) (can be done efficiently), and returns the one which matches [θ]1.

Finding roots of V (Xθ) is only possible if V (Xθ) is a non-zero polynomial,
but it is easy to see that this is always the case if A wins. We may express

V (Xθ) =
n∑

i=0

X2i
θ · (Ui+1,1 + Ui+1,2 · Xθ) =

n∑

i=0

Ui+1,1X
2i
θ +

n∑

i=0

Ui+1,2 · X2i+1
θ .

So if V (Xθ) = 0 then U = 0 and therefore v = 0 which contradicts A winning.
It follows that B can break the (2n)-PDL assumption with probability εgap. �
Theorem 5 (Security of shuffle argument). tFLSZ is perfectly complete
and perfectly zero-knowledge in the CRS model. If the permutation argument
is knowledge-sound and the n-GapKerMDH assumption holds, then tFLSZ is
sound.

Proof. Perfect Completeness. Can be straightforwardly verified by substituting
an honest proof to the verification equations.

Perfect Zero-Knowledge. We show that the simulator Sim in Fig. 8 outputs an
argument that has the same distribution as an argument output by an honest

686 A. Aggelakis et al.

prover. In both cases [(ai)n
i=1]1, [(âi)n−1

i=1]1, and [s]1 are uniformly randomly and
independently distributed group elements. Moreover, both honest and simulated
arguments have bi = ai for i ∈ [1 .. n] and [ân]1 =

∑n
i=1[P̂i]1 − ∑n−1

i=1 [âi]1.
Elements [d]1, [e]1, [N]2 are now uniquely fixed by the verification equation and
the elements mentioned before. It is straightforward to check that the simulated
argument satisfies the verification equations. Thus the distributions are equal.

Soundness. Let Ash be a PPT adversary that breaks soundness of the shuffle
argument with probability εsh. Let Aper be the adversary Ash restricted only to
output ([(âi)n−1

i=1]1, πper) and ExtAper
be an arbitrary extractor such that Aper

breaks knowledge-soundness of the permutation argument with probability εper.
We construct an adversary Agap against the n-GapKerMDH assumption that

on input (gk, [(θi)2n
i=1]1, [θ]2) proceeds as follows:

1. Sample χ, β, β̂, � ← (F∗
p)

4 and ske ←$Fp. Set pke ← [1, ske].
2. Compute pk using [(θi)2n

i=1]1, [θ]2, and χ, β, β̂, �. In particular, notice that
[βPi(χ) + β̂P̂i(θ)]1 = (βPi(χ)) · [1]1 + β̂ · [θ2i]1 and [β̂θ2i]1 = β̂ · [θ2i]1.

3. Sample rsh ←$RND(Ash) and run ([C,C′]2, πsh) ← Ash(gk, (pke, pk); rsh).
4. If V(gk, (pke, pk), ([C]2, [C′]2), πsh) �= 1, then abort.
5. Parse πsh = ([(âj)n−1

j=1]1, πper, πcon)
)

and set [ân]1 ← [
∑n

i=1 P̂i]1−
∑n−1

i=1 [âi]1.
6. Run (σ, r̂) ← ExtAper

(gk, pk; rsh).
7. If ([â]1, (σ, r̂)) �∈ Rper, then abort.
8. Set A ∈ {0, 1}n×n such that Ai,j = 1 iff σ−1(i) = j.
9. Set [m]2 ← Decske([C]2), [m′]2 ← Decske([C

′]2), and [z]2 ← Decske([N]2).
10. Return [v]2 ←

(
[m′]2−A[m]2
[z]2−r̂�[m]2

)
.

Let us analyse the success probability of Agap. Let X be the event that Ash wins,
i.e., there is no abort on Step 4, and for any permutation matrix P, we have
[m′]2 �= P[m]2. Let Y be the event that Aper wins, i.e., ([â]1, (σ, r̂)) �∈ Rper.
Firstly, consider the case that X happens and Y does not happen. Then in
particular: (i) Ash does not abort, (ii) A is a permutation matrix that satisfies
[â]1 =

(
A
r̂�

)�
[P̂
1

]1, (iii) [m′]2 �= A[m]2, and (iv) the verification equation [P̂]�1 •
[C′]2−[â]�1 •[C]2 = [s]1•pke−[1]1•[N]2 is satisfied. By decrypting the ciphertexts
in the last equation, we get

[0]T = [P̂]�1 • [m′]2 − [â]�1 • [m]2 + [1]1 • [z]2

= [P̂]�1 • [m′]2 − [P̂
1

]�1
(

A
r̂�

) • [m]2 + [1]1 • [z]2

= [P̂]�1 • [m′ − Am]2 + [1]1 • [z − r̂�m]2

= [P̂
1

]�1 •
(

[m′]2−A[m]2
[z]2−r̂�[m]2

)
= [P̂

1
]�1 • [v]2.

Since [m′]2 �= A[m]2, then [v]2 �= [0n+1]2 is a solution to the n-GapKerMDH
problem. Finally, we can express the success probability of Ash as follows:

εsh = Pr[X] = Pr[X ∧ Y] + Pr[X ∧ ¬Y] ≤ Pr[Y] + Pr[X ∧ ¬Y] ≤ εper + εgap.

Since there exists an extractor ExtAper
such that εper ≈λ 0, it follows that

εsh ≤ εper + εgap ≈λ 0. �

A Non-interactive Shuffle Argument with Low Trust Assumptions 687

6 Zero-Knowledge in the BPK Model

We augment the prover in the BPK model with a key verification algorithm Vpk

in Fig. 9 such that she outputs a proof only if the verification passes. Then we
prove that tFLSZ is nn-ZK in the BPK model with respect to the Vpk algorithm.
Firstly, we show that each subverter that creates a valid public key (one that is
accepted by Vpk) will know the trapdoors. Let [td′]1 denote the vector in pk that
is supposedly [χ, θ, β, β̂, �]1.

Sim(gk, (pke, pk), td, ([C]2, [C′]2)):
1. For i = 1 to n − 1 // commits to the identity permutation

(a) ri, r̂i ←$Fp;
(b) [ai]1 ← [Pi]1 + ri[�]1; [bi]2 ← [Pi]2 + ri[�]2; [âi]1 ← [P̂i]1 + r̂i[1]1;

2. rn ←$Fp; r̂n ← − ∑n−1
i=1 r̂i;

3. [an]1 ← [Pn]1 + rn[�]1; [bn]2 ← [Pn]2 + rn[�]2; [ân]1 ← ∑n
i=1[P̂i]1 − ∑n−1

i=1 [âi]1;
4. For i = 1 to n

(a) [di]1 ← [β2Pi + ββ̂P̂i]1 + ri[β2�]1 + r̂i[ββ̂]1;
(b) [ei]1 ← ri · (2([ai]1 + [P0]1) − ri[�]1) + [Qi/�]1;

5. r̂ ←$Fp; [s]1 ← 0�[P̂]1 + r̂[1]1; [N]2 ← (P̂ + r̂)[C]2 − P̂[C′]2 + r̂ · pke;
6. πper ← ([d]1, [a]1, [b]2, [e]1);
7. Return πsh ← ([(âi)n−1

i=1 , s]1, [N]2, πper).

Fig. 8. Simulator of tFLSZ

Vpk(gk, pk) :
1. Check that pk can be parsed as in Fig. 3 and that each element belongs to the

correct group.
2. Check that [�]1 �= [0]1.
3. Check that [ι]1 • [1]2 = [1]1 • [ι]2 for ι ∈ {χ, θ, β, β̂, �}.
4. Check that [1]T = [1]1 • [1]2.
5. For i = 2 to 2n check that [θi]1 • [1]2 = [θi−1]1 • [θ]2. // Note that P̂i = θ2i

6. Check that [1]1 • [β2]2 = [β]1 • [β]2.
7. Check that [β2�]1 • [1]2 = [�]1 • [β2]2.
8. Check that [ββ̂]1 • [1]2 = [β]1 • [β̂]2.
9. Check that [1]1 • [ββ̂]2 = [ββ̂]1 • [1]2.

10. Check that [1]1 • [P0]2 = [P0]1 • [1]2.
11. For i = 1 to n check that

(a) [1]1 • [Pi]2 = [Pi]1 • [1]2,
(b) [β2Pi + ββ̂P̂i]1 • [1]2 = [Pi]1 • [β2]2 + [P̂i]1 • [ββ̂]2,
(c) [((Pi + P0)2 − 1)/�]1 • [�]2 = ([Pi + P0]1 • [Pi + P0]2) − [1]T .

Fig. 9. The Vpk algorithm of tFLSZ. For ease of presentation, the algorithm is described
as if the public key was already well-formed.

688 A. Aggelakis et al.

Lemma 2. Consider Vpk in Fig. 9 and suppose the BDH-KE assumption holds.
Then, for any PPT subverter X, there exist a PPT extractor ExtX such that,

Pr
[
(pk, auxX‖td) ← (X‖ExtX)(gk) : Vpk(gk, pk) = 1 ∧ [td]1 �= [td′]1 ⊂ pk

] ≈λ 0.

Proof. The proof is similar to Theorem 4 in [ABLZ17]. If Vpk(gk, pk) = 1, then:
(i) Since Step 1 in Vpk is satisfied, there exist elements [td′]1 = [χ′, θ′, β′, β̂′, �′]1
and [td′′]2 = [χ′′, θ′′, β′′, β̂′′, �′′]2 in pk that supposedly correspond to trapdoor
elements. (ii) By Step 3 [ι′]1 • [1]2 = [1]1 • [ι′′]2 and therefore ι′ = ι′′, for ι ∈
{χ, θ, β, β̂, �}. According to BDH-KE, there exists an extractor Extι that outputs
ι′ with overwhelming probability on the same random coins as X. Therefore, we
can construct ExtX(r) by simply returning (Extι(r))ι∈td. �
Theorem 6. If BDH-KE assumption holds, then tFLSZ has statistical nn-ZK.

Proof. From Lemma 2, we know that for any PPT X, there exists an extractor
ExtX that with overwhelming probability outputs the trapdoor td given that
Vpk(gk, pk) = 1. Let us show that if Vpk(gk, pk) = 1 and the extractor outputs
the correct td, then Sim(gk, pke, pk, θ, x) and P(gk, pke, pk, x;w) have the same
distribution for any x = ([C]2, [C′]2), w = (σ, t) in Rsh

n .
We analyse each element of the proof independently.

1. For i ∈ [1 .. n − 1], âi is chosen independently and uniformly at random in
both distributions since r̂i is picked uniformly at random. Moreover, in both
distributions ân = tsum − ∑n−1

i=1 âi where tsum equals
∑n

i=1 P̂i in the honest
case. Hence, ân also has the same distribution.

2. Since Step 2 in Vpk is satisfied, then � is non-zero. By similar reasoning as
in the previous step, ai is chosen independently and uniformly at random for
i ∈ [1 .. n] in both distributions.

3. Given that Step 3 and Step 11a are satisfied in Vpk, then ai = bi for i ∈ [1 .. n]
in both distributions.

4. Given that Steps 6, 7, 8, 9, 11b are satisfied, then the elements [β2�]1, [ββ̂]1,
and [β2Pi + ββ̂P̂i]1, for i ∈ [1 .. n], are well-formed (with respect to possibly
malformed values Pi and P̂i). This is sufficient to show that di = β2ai +ββ̂âi

for i ∈ [1 .. n] in both distributions. Hence, di is uniquely determined by β,
β̂, ai and âi.

5. Given that Steps 4, 10, and 11c are satisfied, then [((Pi + P0)2 − 1)/�]1 is
well-formed (again, with respect to a possibly malformed Pi and P0). Given
this, we can verify that ei = ((ai + P0)2 − 1)/� in both distributions.

6. In both distributions, s is chosen independently and uniformly at random
since r̂ is picked uniformly at random.

7. Step 5 in Vpk guarantees that P̂i = θ2i for i ∈ [1 .. n]. In that case, an honestly
generated proof will always satisfy the verification equation on Step 3 in Fig. 3.
Given that â, s and pk are fixed, then there is a unique value of N which
satisfies that equation, and the simulator picks that exact value N.

Hence the simulator’s output and the prover’s output have the same distribution.
Thus tFLSZ is nn-ZK. �

A Non-interactive Shuffle Argument with Low Trust Assumptions 689

7 Implementation

We have created a reference implementation6 to validate the protocol. The imple-
mentation uses Python 3.5+ and covers: (i) the computation of the public key
(K in Fig. 3) together with the distributed key generation protocol (Fig. 2), (ii)
the key verification algorithm Vpk (Fig. 9), and (iii) proof generation and verifi-
cation (Fig. 3), along with the accompanying new unit vector argument (Fig. 5)
and the permutation argument (Fig. 6). It follows our exposition closely, except
for some of the local computations in the DKG protocol.

In particular, the complexity of computing polynomials [�i(χ)]k (and other
related elements) from

[
χi

]
k

can be reduced from Θ(n2) to Θ(n log n) scalar
multiplications using recursive procedures borrowed from FFT. This however
imposes the extra conditions that (n+1) | (p−1) and n+1 is a power of 2. The
current implementation uses a BN-256 curve7, where the only value of n > 1 such
that the conditions hold is n = 3. Work is in progress for moving to a different
curve where p−1 is divisible by a large power of two. Note, nevertheless, that the
correctness of the implementation, protocol testing, and verification of proofs is
independent of this, as the output of local computations are not affected, only
their efficiency.

The multi-party computation of the public key is performed among k peers
(bulletin board members) communicating via sockets (peers run the application
from different terminals). Roughly speaking, each peer computes and shares their
own part of the key with the rest, the final public key being the output of the
distributed procedure explained in Sect. 3.2. For simulation purposes, the initial
values for each peer, as well as their respective listening sockets, are derived from
a configuration file. The total number of exchanged messages is independent of
the number voters n and is equal to 9k(k − 1).

Acknowledgements. This work was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 653497 (project
PANORAMIX). Janno Siim was additionally supported by the Estonian Research
Council grant PRG49. Part of this work was done while Prastudy Fauzi was work-
ing at Aarhus University and was supported by: the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC); the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731583 (SODA).

References

[ABL+19a] Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zaj ↪ac, M.: DL-
extractable UC-commitment schemes. In: Deng, R.H., Gauthier-Umaña,
V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 385–
405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-
2 19

6 The code is open source and available at https://github.com/grnet/lta shuffle.
7 As provided by OpenPairing, https://github.com/dfaranha/OpenPairing.

https://doi.org/10.1007/978-3-030-21568-2_19
https://doi.org/10.1007/978-3-030-21568-2_19
https://github.com/grnet/lta_shuffle
https://github.com/dfaranha/OpenPairing

690 A. Aggelakis et al.

[ABL+19b] Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zaj ↪ac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 6

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

[ALSZ18] Abdolmaleki, B., Lipmaa, H., Siim, J., Zaj ↪ac, M.: On QA-NIZK in
the BPK model. Cryptology ePrint Archive, Report 2018/877 (2018).
https://eprint.iacr.org/2018/877

[BBH+19] Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On
the (in)security of Kilian-based SNARGs. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019. LNCS, vol. 11892, pp. 522–551. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 20

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure
sampling of public parameters for succinct zero knowledge proofs. In:
2015 IEEE Symposium on Security and Privacy, pp. 287–304. IEEE Com-
puter Society Press, May 2015

[BD17] Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings.
Cryptology ePrint Archive, Report 2017/334 (2017). http://eprint.iacr.
org/2017/334

[BDG+13] Bitansky, N., et al.: Why “Fiat-Shamir for proofs” lacks a proof. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 182–201. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2 11

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BG12] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of
a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 17

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: 32nd ACM STOC, pp. 235–244. ACM
Press, May 2000

[Cha81] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–88 (1981)

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 36

[DGP+19] Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter
quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11442, pp. 314–343. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17253-4 11

[FFHR19] Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11923, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34618-8 6

https://doi.org/10.1007/978-3-030-23696-0_6
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://eprint.iacr.org/2018/877
https://doi.org/10.1007/978-3-030-36033-7_20
http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2017/334
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-34618-8_6
https://doi.org/10.1007/978-3-030-34618-8_6

A Non-interactive Shuffle Argument with Low Trust Assumptions 691

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and
its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96881-0 2

[FL16] Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument
without random oracles. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol.
9610, pp. 200–216. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29485-8 12

[FLSZ17a] Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based
shuffle argument. Cryptology ePrint Archive, Report 2017/894 (2017).
http://eprint.iacr.org/2017/894

[FLSZ17b] Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based
shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10625, pp. 97–127. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70697-9 4

[FLZ16] Fauzi, P., Lipmaa, H., Zaj ↪ac, M.: A shuffle argument secure in the generic
model. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 841–872. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 28

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[FS01] Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 22

[Fuc18] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 11

[GJKR99] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed
key generation for discrete-log based cryptosystems. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48910-X 21

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press,
October 2003

[GL07] Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 4

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptol. 7(1), 1–32 (1994)

[GR16] González, A., Ráfols, C.: New techniques for non-interactive shuffle and
range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 427–444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39555-5 23

[Gro10] Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J.
Cryptol. 23(4), 546–579 (2010)

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-29485-8_12
https://doi.org/10.1007/978-3-319-29485-8_12
http://eprint.iacr.org/2017/894
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-319-39555-5_23

692 A. Aggelakis et al.

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9 10

[LZ13] Lipmaa, H., Zhang, B.: A more efficient computationally sound non-
interactive zero-knowledge shuffle argument. J. Comput. Secur. 21(5),
685–719 (2013)

[MRV16] Morillo, P., Ràfols, C., Villar, J.L.: The Kernel matrix Diffie-Hellman
assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 27

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[TW10] Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein,
D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
100–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12678-9 7

[Wee07] Wee, H.: Lower bounds for non-interactive zero-knowledge. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 103–117. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 6

https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-540-70936-7_6

Author Index

Aggelakis, Antonis 667
Aubry, Pascal 345
Avoine, Gildas 199

Badimtsi, Foteini 638
Beringuier-Boher, Noemie 146
Bourse, Florian 391

Canard, Sébastien 199
Canetti, Ran 638
Carpov, Sergiu 345
Celi, Christopher 129
Cid, Carlos 85

Dachman-Soled, Dana 225
Dhooghe, Siemen 35
Do, Xuan Thanh 564

Fauzi, Prastudy 667
Felke, Patrick 85
Feng, Hanwen 442
Ferradi, Houda 469
Ferreira, Loïc 199
Fischlin, Marc 56
Fukumitsu, Masayuki 586

Garay, Juan 284
Garay, Juan A. 319
Günther, Felix 56

Han, Kyoohyung 364
Hasegawa, Shingo 586

Kales, Daniel 417
Kelsey, John 225
Ki, Dohyeong 364
Kiayias, Aggelos 284, 319
Korfiatis, Georgios 667
Kwon, Jihoon 106

Lee, Byeonghak 106
Lee, Jooyoung 106
Leurent, Gaëtan 15

Li, Ya-Nan 442
Li, Yanbin 15
Liu, Jianwei 442
Liu, Yu 15
Louridas, Panos 667

Ma, Hui 171
Mergoupis-Anagnou, Foteinos 667
Merz, Simon-Philipp 496
Miao, Peihan 610
Minko, Romy 496
Mishra, Sweta 225
Moon, Dukjae 106
Moriya, Tomoki 512
Mouha, Nicky 129

Nikova, Svetla 35

Onuki, Hiroshi 512
Orsini, Emmanuela 254
Øygarden, Morten 85

Panagiotakos, Giorgos 319
Petit, Christophe 496
Phan, Duong Hieu 564
Picek, Stjepan 146
Pointcheval, David 564

Raddum, Håvard 85
Ramacher, Sebastian 417
Rechberger, Christian 417
Ribera, Gerard 146

Samelin, Kai 538
Sanders, Olivier 391
Sibleyras, Ferdinand 1
Siim, Janno 667
Sirdey, Renaud 345
Slamanig, Daniel 538
Smart, Nigel P. 254

Takagi, Tsuyoshi 512
Traoré, Jacques 391
Turan, Meltem Sönmez 225

Vercauteren, Frederik 254

Walch, Roman 417
Wang, Meiqin 15
Wang, Wei 15
Werner, Mario 417
Wu, Lichao 146
Wu, Qianhong 442

Xagawa, Keita 469
Xiao, Yuting 171

Yakoubov, Sophia 638

Zając, Michał 667
Zhang, Guoyan 15
Zhang, Rui 171

694 Author Index

	Preface
	Organization
	Contents
	Generic Attack on Iterated Tweakable FX Constructions
	1 Introduction
	1.1 Notations
	1.2 Previous Works
	1.3 Results

	2 Cryptanalysis of 2-Round Tweakable FX
	2.1 The Algorithm
	2.2 Deriving the Constants
	2.3 Constraints

	3 Cryptanalysis of r-Round Tweakable FX
	3.1 Constants and Complexity
	3.2 Discussion

	References

	Universal Forgery Attack Against GCM-RUP
	1 Introduction
	1.1 Contributions
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 Notations and Operations
	2.2 AE, Separated AE and TBC

	3 Brief Description of GCM-RUP ch2gcmspsrup
	3.1 Generic Construction with RUP Security ch2gcmspsrup
	3.2 GCM-RUP ch2gcmspsrup

	4 Partial Authentication Key Recovery for GCM-RUP
	4.1 Properties of GHASH
	4.2 Recovering K2 from Inner Collisions
	4.3 Experimental Verification with Mini-GCM-RUP

	5 Universal Forgery Attack of GCM-RUP
	5.1 Almost Universal Forgery Attack
	5.2 Universal Forgery Attack

	6 Variant of GCM-RUP
	7 Conclusion
	References

	My Gadget Just Cares for Me - How NINA Can Prove Security Against Combined Attacks
	1 Introduction
	1.1 Contributions

	2 The Circuit Model and Secret Sharing
	3 Security Definitions
	3.1 Orders of Security
	3.2 Composable Notions of Security

	4 Combined Secure Duplicated Boolean Masking
	4.1 Duplicated Boolean Masking
	4.2 Duplicated Boolean Methodology
	4.3 A Cascading Gadget

	5 A Correcting Multiplication
	6 Conclusion
	References

	Modeling Memory Faults in Signature and Authenticated Encryption Schemes
	1 Introduction
	2 Modeling Fault Resilience
	2.1 Fault Types
	2.2 Relations

	3 Fault-Resilient Signatures
	3.1 Fault-Resilient Signature Unforgeability
	3.2 De-randomized Signatures Are Not Fault-Resilient
	3.3 Combining Randomization and De-randomization

	4 Fault-Resilient Authenticated Encryption
	4.1 Fault-Resilient Security of Authenticated Encryption
	4.2 SIV Is Not Fault-Resilient
	4.3 SIV$: Randomness-Augmented SIV

	5 Conclusion
	References

	Cryptanalysis of the Multivariate Encryption Scheme EFLASH
	1 Introduction
	1.1 Our Contribution
	1.2 Organisation

	2 Preliminaries
	2.1 Description of EFLASH
	2.2 Gröbner Basis Algorithms
	2.3 Univariate and Multivariate Representation of Polynomials

	3 Suggested First Fall Degree Bound
	4 The First Fall Degree of EFLASH
	4.1 The Effect of Removing Polynomials
	4.2 First Fall Polynomials at D = 3
	4.3 First Fall Polynomials at D = 4

	5 Experimental Results
	6 Security Estimation for EFLASH
	7 Further Work
	8 Conclusions
	References

	 FPL : White-Box Secure Block Cipher Using Parallel Table Look-Ups
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Table-Based Block Cipher
	2.2 Security Notions

	3 FPL : Block Cipher Using Parallel Table Look-Ups
	4 Probabilistic Construction of Secure Probe Functions
	5 White-Box Security of FPL
	5.1 Key Extraction Hardness of FPL
	5.2 Space Hardness of FPL
	5.3 Numerical Interpretation

	6 FPLAES : Concrete Instantiation
	6.1 Specification
	6.2 Black-Box Security of FPLAES
	6.3 Performance

	References

	Extending NIST's CAVP Testing of Cryptographic Hash Function Implementations
	1 Introduction
	2 Testing Within NIST's CAVP
	2.1 Algorithm Functional Test (AFT)
	2.2 Monte Carlo Test (MCT)

	3 Common Hashing Interfaces
	4 Vulnerability in Apple's CoreCrypto Library
	4.1 Experimental Verification

	5 Proposing the Large Data Test (LDT)
	6 Discussion
	7 Conclusion
	A The ccdigest_update() function of Apple's CoreCrypto
	References

	A Fast Characterization Method for Semi-invasive Fault Injection Attacks
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Fault Injection Attacks
	2.2 Supervised Machine Learning
	2.3 Neural Networks and Deep Learning

	3 Fast Characterization Methodology
	3.1 Notations
	3.2 Metrics Definition

	4 Sensitivity Curve
	4.1 Setting
	4.2 Sensitivity Curve Generation
	4.3 Sensitivity Curve Evaluation

	5 Results
	5.1 Experimental Setup
	5.2 Characterization for the DES Encryption Attack
	5.3 Characterization for the AES Encryption Attack

	6 Conclusions and Future Work
	References

	Tightly Secure Two-Pass Authenticated Key Exchange Protocol in the CK Model
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Tightly Secure AKE Protocol in the CK Model
	3.1 The CK Model
	3.2 Our Construction

	4 MU-IND-CCACorr Secure TB-KEM
	5 Instantiation and Comparisons
	A Concrete Instantiation
	References

	Symmetric-Key Authenticated Key Exchange (SAKE) with Perfect Forward Secrecy
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Our Approach
	1.4 Outline of the Paper

	2 Security Model
	2.1 Execution Environment
	2.2 Security Definitions of SAKE's Building Blocks

	3 Our Symmetric-Key AKE Protocol with Perfect Forward Secrecy
	3.1 Description of the Protocol
	3.2 Notation
	3.3 SAKE-AM: A Complementary Mode of SAKE

	4 A Random-Free Variant of SAKE
	5 Security and Soundness for SAKE
	5.1 Soundness of SAKE
	5.2 Security of SAKE

	6 Comparison with the DH Paradigm
	7 Conclusion
	References

	TMPS: Ticket-Mediated Password Strengthening
	1 Introduction
	1.1 Security Goals
	1.2 Overview of TMPS
	1.3 Related Work
	1.4 Our Results

	2 Preliminaries
	2.1 Notation
	2.2 Underlying Primitives and Functions

	3 Ticket-Mediated Password Strengthening
	3.1 TMPS Overview
	3.2 Discussion

	4 The Basic Protocol
	4.1 Server Setup
	4.2 Request: Protocol for Requesting Tickets
	4.3 Unlock: Protocol for Unlocking a Ticket

	5 Security Analysis
	5.1 Proof of Theorem 1
	5.2 Description of Simulator Sim

	6 Performance and Implementation
	6.1 Requesting a Ticket
	6.2 Unlocking a Ticket
	6.3 Storage

	7 Conclusion and Open Questions
	A Definitions
	References

	Overdrive2k: Efficient Secure MPC over Z2k from Somewhat Homomorphic Encryption
	1 Introduction
	2 Preliminaries
	2.1 The SPDZ2k Protocol
	2.2 The BGV SHE Scheme and Associated Number Theory

	3 Modified SHE Scheme
	3.1 Our New Packing Technique
	3.2 The BGV Encryption Scheme with Double Packing Set

	4 OverDrive Global ZKPoKs
	4.1 Bounded Linearly Homomorphic Predicates
	4.2 Amortized Zero Knowledge Proof

	5 Distributed Somewhat Homomorphic Encryption
	5.1 Distributed Decryption Protocols
	5.2 Generating Valid Ciphertexts

	6 SPDZ2k from Somewhat Homomorphic Encryption - Pre-processing Phase
	6.1 Weak Offline Protocol
	6.2 From FwPrep to FPrep - Sacrificing

	7 Communication Efficiency Analysis
	References

	SoK: A Consensus Taxonomy in the Blockchain Era
	1 Introduction
	2 Model and Definitions
	2.1 Protocol Execution
	2.2 The Consensus Problem

	3 Network Assumptions
	4 Setup Assumptions
	5 Computational Assumptions
	6 Consensus in the Point-to-Point Setting
	7 Consensus in the Peer-to-Peer Setting
	8 Ledger Consensus
	References

	Consensus from Signatures of Work
	1 Introduction
	2 Preliminaries
	3 Signatures of Work
	4 Applications
	4.1 The Permissionless Model, Revisited
	4.2 Public Transaction Ledger from Signatures of Work
	4.3 Consensus from Signatures of Work

	References

	Faster Homomorphic Encryption is not Enough: Improved Heuristic for Multiplicative Depth Minimization of Boolean Circuits
	1 Introduction and Related Works
	2 Rewrite Operators
	2.1 Preliminary Definitions
	2.2 Multiplicative Depth-2 Path Rewriting
	2.3 Multiplicative Depth-2 Cone Rewriting
	2.4 Cone Rewriting

	3 Improved Heuristic
	3.1 Overview
	3.2 Cone Selection Method
	3.3 Reductions on Non-critical Circuits

	4 Experimental Results
	4.1 Multiplicative Depth Minimization
	4.2 Homomorphic Execution Acceleration

	5 Conclusion and Perspectives
	References

	Better Bootstrapping for Approximate Homomorphic Encryption
	1 Introduction
	1.1 Our Contribution
	1.2 Road Map

	2 Preliminary
	2.1 Chebyshev Approximation
	2.2 Full-RNS HEAAN
	2.3 Bootstrapping for HEAAN

	3 Full-RNS Variant of HEAAN
	3.1 Scheme Description
	3.2 Comparison

	4 Better Homomorphic Sine Evaluation
	4.1 Our Method
	4.2 Homomorphic Evaluation of pn(t)
	4.3 Hybrid Method
	4.4 Overall Comparison
	4.5 Put Everything Together

	5 Implementation
	5.1 Performance of Basic Homomorphic Operations.
	5.2 Bootstrapping Performance

	6 Conclusion
	A Correctness and Noise Growth of Homomorphic Multiplication
	References

	Improved Secure Integer Comparison via Homomorphic Encryption
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Homomorphic Comparison of Integers
	2.1 Preliminaries
	2.2 Strategy Overview
	2.3 Homomorphic Comparison of Small Integers
	2.4 Homomorphic Comparison of Unbounded Integers
	2.5 Efficiency

	3 A Protocol for the Millionaires' Problem
	3.1 Preliminaries
	3.2 Protocol for Small Integers
	3.3 Security of the Protocol for Small Integers
	3.4 A Protocol for Large Integers

	4 Security of the Protocol for Large Integers
	4.1 Parameters
	4.2 Efficiency

	5 Conclusion
	References

	Efficient FPGA Implementations of LowMC and Picnic
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 LowMC
	2.2 Picnic and ZKB++
	2.3 Picnic Instances and Parameters

	3 Implementation
	3.1 Optimized VHDL Implementation of LowMC
	3.2 Pipeline versus State Machine
	3.3 Optimized VHDL Implementation of Picnic

	4 Evaluation
	4.1 Hardware Utilization
	4.2 Clock Cycles
	4.3 Benchmarks
	4.4 Comparison to FPGA Implementations of Other Signature Schemes
	4.5 Evaluation of the LowMC Pipeline Design

	5 Reducing the Hardware Utilizations
	6 Conclusion
	References

	Traceable Ring Signatures with Post-quantum Security
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Stern Protocols
	2.3 Merkle-Tree-Based Accumulator
	2.4 Traceable Ring Signatures

	3 General Construction
	3.1 Building Blocks
	3.2 Our Construction
	3.3 Correctness Analysis
	3.4 Security Analysis
	3.5 Constructions of Unique PRF with Intersection-Free Range

	4 Traceable Ring Signature Schemes from Lattices
	4.1 Efficient PRF in QROM
	4.2 Stern Protocol for PRF
	4.3 OR-Composition from Accumulators
	4.4 Description of the Scheme

	References

	Post-quantum Provably-Secure Authentication and MAC from Mersenne Primes
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Related Works
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Secret-Key Authentication Syntax
	2.3 Security Models
	2.4 Tag Sparsity Definition and Security
	2.5 Security Against Sequential Man-in-the-Middle Adversary
	2.6 Message Authentication Codes
	2.7 Hash Functions

	3 The MERS Problem
	3.1 MERS Problem with Uniform Secret
	3.2 Hardness and Concrete Parameters

	4 Passively-Secure Authentication Based on MERS
	5 ROR-CMA-Secure Authentication Based on MERS
	6 S`-MIM-Secure Authentication Based on MERS
	7 MAC from MERS
	7.1 Proof of Theorem 7.1

	A Proof of Lemma7.1
	References

	Another Look at Some Isogeny Hardness Assumptions
	1 Introduction
	2 Mathematical Background
	3 The One-More Isogeny Problem
	3.1 Problem Statements
	3.2 Basic Attack

	4 Application to Jao-Soukharev's Construction
	4.1 Jao-Soukharev Undeniable Signatures
	4.2 Another Look at the Security Proof of ch21jao2014isogeny

	5 Srinath and Chandrasekaran Undeniable Blind Signatures
	6 Conclusion
	A Undeniable (Blind) Signature Schemes
	References

	How to Construct CSIDH on Edwards Curves
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Basic Mathematical Concepts
	2.2 Montgomery Curves
	2.3 Edwards Curves

	3 CSIDH ch22CAS18
	3.1 CSIDH Protocol
	3.2 Evaluating the Class Group Action on Montgomery Curves ch22CAS18

	4 Main Theorems Used for Our Algorithm
	5 Evaluating the Class Group Action on Edwards Curves
	6 Computational Costs
	6.1 Comparing Computational Costs Theoretically
	6.2 Implementations

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Compute group operations and isogenies
	A.1 Montgomery curves
	A.2 Edwards curves

	References

	Policy-Based Sanitizable Signatures
	1 Introduction
	2 Preliminaries
	3 Our Framework for P3Ss
	4 Construction
	5 Conclusion
	References

	Traceable Inner Product Functional Encryption
	1 Introduction
	2 Preliminaries
	3 Traceable Functional Encryption
	4 Our Inner-Product Functional Encryption
	5 Black-Box Confirmation Traitor-Tracing
	5.1 Notations
	5.2 Tracing Algorithm

	References

	One-More Assumptions Do Not Help Fiat-Shamir-type Signature Schemes in NPROM
	1 Introduction
	1.1 Our Result

	2 Preliminaries
	2.1 Digital Signature Schemes
	2.2 Generalized One-More Cryptographic Assumptions
	2.3 Fiat-Shamir-type Signature Schemes

	3 Security of Fiat-Shamir-type Signature Schemes Cannot Be Proven from Generalized One-More Assumptions in NPROM
	References

	Cut-and-Choose for Garbled RAM
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Our Techniques
	2.1 Roadmap

	3 Preliminaries
	3.1 Garbled RAM Scheme
	3.2 Garbled RAM Against Malicious Adversaries

	4 Black-Box Garbled RAM
	4.1 Uniform Circuits
	4.2 Garbled RAM Scheme

	5 Adaptive Secure Garbling Schemes
	5.1 Adaptive Secure LEGO Garbling Scheme
	5.2 Adaptive Secure Garbled RAM

	6 Generating an Adaptive LEGO Garbled Circuit
	6.1 The New LEGO Protocol
	6.2 Analysis

	7 Our Construction
	7.1 Generating Partial Labels
	7.2 Our Protocol

	References

	Universally Composable Accumulators
	1 Introduction
	1.1 Accumulator Applications

	2 Revisiting Classical Accumulator Definitions
	2.1 Notation and Algorithms
	2.2 Security Definitions

	3 Ideal Functionality for Accumulators
	3.1 Modeling Decentralized Management
	3.2 Modeling Non-adaptive Soundness
	3.3 Adding Privacy Properties
	3.4 Discussion: Incorrect Accumulator and Witness Values

	4 Equivalence Argument
	5 Demonstrations of Composition
	5.1 Accumulator Composition: Braavos
	5.2 Accumulators for Anonymous Credentials

	A Universally Composable Signatures
	References

	A Non-interactive Shuffle Argument with Low Trust Assumptions
	1 Introduction
	2 Preliminaries
	2.1 FLSZ Shuffle Argument

	3 Distributed Key Generation Protocol
	3.1 Verification-Friendly Public Key
	3.2 DKG Protocol for Verification-Friendly Keys

	4 Transparent Shuffle Argument
	5 Security in the CRS Model
	6 Zero-Knowledge in the BPK Model
	7 Implementation
	References

	Author Index

