Stanislaw Jarecki (Ed.)

Topics in Cryptology -
CT-RSA 2020

The Cryptographers’ Track at the RSA Conference 2020
San Francisco, CA, USA, February 24-28, 2020
Proceedings

LNCS 12006

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12006

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Stanislaw Jarecki (Ed.)

Topics 1n Cryptology —
CT-RSA 2020

The Cryptographers’ Track at the RSA Conference 2020
San Francisco, CA, USA, February 24-28, 2020
Proceedings

@ Springer

Editor
Stanislaw Jarecki

University of California
Irvine, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-40185-6 ISBN 978-3-030-40186-3 (eBook)

https://doi.org/10.1007/978-3-030-40186-3
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40186-3

Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts several hundred
vendors and over 40,000 participants from industry, government, and academia. Since
2001, the RSA conference has included the Cryptographer’s Track (CT-RSA), which
provides a forum for current research in cryptography.

This volume represents the proceedings of the 2020 convening of the RSA
Conference Cryptographer’s Track, which was held at Moscone Center, San Francisco,
California, during February 24-28, 2020.

As chair of the Program Committee, I would like to thank all the authors who
contributed the results of their innovative research. My appreciation also goes to all the
members of the Program Committee and their designated external reviewers, who
carefully read and reviewed all of the submissions.

A total of 95 submissions were received for review, of which 28 papers were
selected for presentation and publication. The selection process was a difficult task
since there were many more high quality submissions than we could accept. The
submissions were anonymous, and each submission was assigned to at least three
reviewers (four if the paper included a Program Committee member as an author). The
review and selection process was carried out with great care and transparency, and I am
thankful to all Program Committee members for participating in discussions and giving
valuable feedback to the authors of the submitted papers. I am also grateful to the
Program Committee members who put in their time to shepherd some of the
submissions.

The submission and review process, as well as the editing of the final proceedings,
were greatly simplified by the webreview software written by Shai Halevi, which we
used by the permission of the International Association for Cryptologic Research
(IACR). Shai assisted us whenever we had any question about this software, and I
would like to thank him for his generous support throughout the entire process. My
sincere thanks go also to Ms. Christine Reiss from Springer Verlag and everyone on
her team for their assistance in preparing and producing these proceedings.

Last but not least, on behalf of all CT-RSA participants I would like to thank
Ms. Ashley Sutton who served as an RSA Conference liaison to the Cryptographer’s
Track. In this capacity, Ashley essentially played the role of a General Chair for the
CT-RSA conference, and we are very grateful to her for all the work she did in
organizing this conference and making it run smoothly.

February 2020 Stanislaw Jarecki

Program Chair

Stanistaw Jarecki

Program Commitee

Masayuki Abe

Shi Bai

Paulo Barreto
Josh Benaloh
Olivier Blazy
Jeremiah Blocki
Chris Brzuska
David Cash

Dario Catalano
Jung Hee Cheon
Céline Chevalier
Sherman S. M. Chow
Pooya Farshim
Rosario Gennaro
Goichiro Hanaoka
Helena Handschuh
Marc Joye

Vlad Kolesnikov
Tancréde Lepoint
Anna Lysyanskaya
Mitsuru Matsui
David Naccache
Svetla Nikova
Jiaxin Pan

Kenneth Paterson
Ludovic Perret
Bertram Poettering
David Pointcheval
Bart Preneel
Alexander Russell
Rei Safavi-Naini
Victor Shoup
Nigel Smart
Martijn Stam

Organization

University of California, Irvine, USA

NTT Secure Platform Laboratories, Japan

Florida Atlantic University, USA

University of Washington, USA

Microsoft Research, USA

Université de Limoges, France

Purdue University, USA

Aalto University, Finland

University of Chicago, USA

University of Catania, Italy

Seoul National University, South Korea

Université Panthéon-Assas Paris 2, France

Chinese University of Hong Kong, Hong Kong, China

University of York, UK

The City University of New York, USA

AIST, Japan

Rambus Cryptography Research, USA

OneSpan, Belgium

Georgia Tech, USA

Google, USA

Brown University, USA

Mitsubishi Electric, Japan

ENS/PSL, France

KU Leuven, Belgium

Norwegian University of Science and Technology
(NTNU), Norway

ETH Zurich, Switzerland

CryptoNext Security, France

IBM Research, Switzerland

CNRS and ENS/PSL, France

KU Leuven, Belgium

University of Connecticut, USA

University of Calgary, Canada

New York University, USA

KU Leuven, Belgium

Simula UiB, Norway

viii Organization

Michael Walter IST Austria, Austria
Hong-Sheng Zhou Virginia Commonwealth University, USA

External Reviewers

Thomas Agrikola
Yusuke Aikawa
Younes Talibi Alaoui
Tomer Ashur
Matilda Backendal
Josep Balasch
Carsten Baum
Arthur Beckers
Olivier Blazy
Estuardo Alpirez Bock
Carl Bootland
Cecilia Boschini
Hervé Chabanne
Yilei Chen

Wonhee Cho
Jérémy Chotard
Jean Paul Degabriele
Siemen Dhooghe
Jesus Diaz
Benjamin Dowling
Francois Dupressoir
Sabyasachi Dutta
Keita Emura

Mia Filic

Georg Fuchsbauer
Irene Giacomelli
Kristian Gjosteen
Lorenzo Grassi
Vincent Grosso
Johann Grof3schadl
Aurore Guillevic
Thomas Haines
Mike Hamburg

Ben Harsha
Kenichiro Hayasama
Annelie Heuser
Seungwan Hong
Chloé Hébant

Ilia Iliashenko

Yanxue Jia
Dongwoo Kim
Jaeyoon Kim
Jaeyun Kim
Jiseung Kim
Sumin Kim

Lisa Kohl
Jooyoung Lee
Keewoo Lee
Seungbeom Lee
Seunghoon Lee
Shuai Li

Lin Lyu

Jack P. K. Ma
Varun Maram
Giorgia Azzurra Marson
Mark Marson
Takahiro Matsuda
Bart Mennink
Nele Mentens
Lauren De Meyer
Michael Meyer
Brice Minaud
Hiraku Morita
Elke De Mulder
Yusuke Naito
Tran Ngo

Ngoc Khanh Nguyen
Miyako Ohkubo
Michele Orru
Rafail Ostrovsky
Clara Paglialonga
Duong Hieu Phan
Thomas Prest
Emmanuel Prouff
Chen Qian

Yuan Quan
Mario Di Raimondo
Adrian Ranea

Meélissa Rossi

Paul Rosler

Yusuke Sakai
Simona Samardjiska
Paolo Santini

Jacob C. N. Schuldt
Gregor Seiler

Jae Hong Seo
Setareh Sharifian
Kyung-Ah Shim
Tjerand Silde

Azam Soleimanian
Yongha Son
Daisuke Suzuki
Katsuyuki Takashima
Phuc Thai

Elmar Tischhauser

Organization

Mike Tunstall
Furkan Turan

Muni Venkateswarlu
Fre Vercauteren
Benedikt Wagner
Xiuhua Wang

Yuyu Wang
Lennert Wouters
Yanhong Xu

Shota Yamada
Kyosuke Yamashita
Michal Zajac
Wuwei Zhang
Yongjun Zhao

Ko Stoffelen

Khoa Nguyen

ix

Contents

Generic Attack on Iterated Tweakable FX Constructions 1
Ferdinand Sibleyras

Universal Forgery Attack Against GCM-RUP. 15
Yanbin Li, Gaétan Leurent, Meigin Wang, Wei Wang, Guoyan Zhang,
and Yu Liu

My Gadget Just Cares for Me - How NINA Can Prove Security Against
Combined Attacks. 35
Siemen Dhooghe and Svetla Nikova

Modeling Memory Faults in Signature and Authenticated
Encryption Schemes 56
Marc Fischlin and Felix Giinther

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 85
Morten Oygarden, Patrick Felke, Havard Raddum, and Carlos Cid

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 106
Jihoon Kwon, Byeonghak Lee, Jooyoung Lee, and Dukjae Moon

Extending NIST’s CAVP Testing of Cryptographic Hash
Function Implementations 129
Nicky Mouha and Christopher Celi

A Fast Characterization Method for Semi-invasive Fault Injection Attacks ... 146
Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher,
and Stjepan Picek

Tightly Secure Two-Pass Authenticated Key Exchange Protocol
inthe CKModel. 171
Yuting Xiao, Rui Zhang, and Hui Ma

Symmetric-Key Authenticated Key Exchange (SAKE) with Perfect
Forward Secrecy 199
Gildas Avoine, Sébastien Canard, and Loic Ferreira

TMPS: Ticket-Mediated Password Strengthening. 225
John Kelsey, Dana Dachman-Soled, Sweta Mishra,
and Meltem Sonmez Turan

Xii Contents

Overdrive2k: Efficient Secure MPC over Zy from Somewhat
Homomorphic Encryption 254
Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren

SoK: A Consensus Taxonomy in the Blockchain Era. 284
Juan Garay and Aggelos Kiayias

Consensus from Signatures of Work o L. 319
Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos

Faster Homomorphic Encryption is not Enough: Improved Heuristic
for Multiplicative Depth Minimization of Boolean Circuits. 345
Pascal Aubry, Sergiu Carpov, and Renaud Sirdey

Better Bootstrapping for Approximate Homomorphic Encryption 364
Kyoohyung Han and Dohyeong Ki

Improved Secure Integer Comparison via Homomorphic Encryption 391
Florian Bourse, Olivier Sanders, and Jacques Traoré

Efficient FPGA Implementations of LowMC and Picnic 417
Daniel Kales, Sebastian Ramacher, Christian Rechberger,
Roman Walch, and Mario Werner

Traceable Ring Signatures with Post-quantum Security 442
Hanwen Feng, Jianwei Liu, Qianhong Wu, and Ya-Nan Li

Post-quantum Provably-Secure Authentication and MAC
from Mersenne Primes. 469
Houda Ferradi and Keita Xagawa

Another Look at Some Isogeny Hardness Assumptions 496
Simon-Philipp Merz, Romy Minko, and Christophe Petit

How to Construct CSIDH on Edwards Curves 512
Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi

Kai Samelin and Daniel Slamanig

Traceable Inner Product Functional Encryption. 564
Xuan Thanh Do, Duong Hieu Phan, and David Pointcheval

One-More Assumptions Do Not Help Fiat-Shamir-type Signature
Schemes in NPROM 586
Masayuki Fukumitsu and Shingo Hasegawa

Cut-and-Choose for Garbled RAM 610
Peihan Miao

Contents Xiii

Universally Composable Accumulators 638
Foteini Badimtsi, Ran Canetti, and Sophia Yakoubov

A Non-interactive Shuffle Argument with Low Trust Assumptions 667
Antonis Aggelakis, Prastudy Fauzi, Georgios Korfiatis, Panos Louridas,
Foteinos Mergoupis-Anagnou, Janno Siim, and Michal Zajgc

Author Index e 693

®

Check for
updates

Generic Attack on Iterated Tweakable
FX Constructions

Ferdinand Sibleyras®)

Inria, Paris, France
ferdinand.sibleyras@inria.fr

Abstract. Tweakable block ciphers are increasingly becoming a com-
mon primitive to build new resilient modes as well as a concept for mul-
tiple dedicated designs. While regular block ciphers define a family of
permutations indexed by a secret key, tweakable ones define a family of
permutations indexed by both a secret key and a public tweak. In this
work we formalize and study a generic framework for building such a
tweakable block cipher based on regular block ciphers, the iterated tweak-
able FX construction, which includes many such previous constructions
of tweakable block ciphers. Then we describe a cryptanalysis from which
we can derive a provable security upper-bound for all constructions fol-
lowing this tweakable iterated FX strategy. Concretely, the cryptanalysis
of r rounds of our generic construction based on n-bit block ciphers with
k-bit keys requires O(2$("+”)) online and offline queries. For r = 2
rounds this interestingly matches the proof of the particular case of XHX2
by Lee and Lee (ASIACRYPT 2018) thus proving for the first time its
tightness. In turn, the XHX and XHX2 proofs show that our generic crypt-
analysis is information theoretically optimal for 1 and 2 rounds.

Keywords: Tweakable - Block cipher - Provable security - FX -
Cryptanalysis + Optimality - XHX2

1 Introduction

Tweakable block ciphers have been the focus of many recent works in the field of
symmetric cryptography as it provides a very interesting flexibility compared to
regular block ciphers. Formally, a block cipher is defined as a family of permu-
tations indexed by a secret key, thus an n-bit block cipher F indexed by a x-bit
key is an application E : {0,1}" x {0,1}"™ — {0, 1}". Whereas a tweakable block
cipher is a family of permutations indexed by both a secret key and a public
tweak, thus an n-bit tweakable block cipher E indexed by a #-bit secret key and
a 7-bit public tweak is an application E : {0,1}% x {0,1}7 x {0,1}" — {0,1}".
They have been formalized by Liskov, Rivest and Wagner [LRW11].

On the other hand, regular block ciphers benefit from a longer history of
research which gave birth to many designs and implementations notably includ-
ing the DES [DES77] and the AES [AESO1]. Therefore a natural question is:
© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 1-14, 2020.
https://doi.org/10.1007/978-3-030-40186-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_1

2 F. Sibleyras

how can we build a tweakable block cipher out of regular block ciphers? In
fact this line of study inspired new modes of operations like OCB [RBBKO1]
and PMAC [BRO02| that benefits from a relatively easy two-step proof: first we
show that the main construction is secure when used along with a tweakable
block cipher then we construct such tweakable block cipher with a regular block
cipher to fully describe the mode. A first approach can be to append a tweak
with the secret key such that the concatenation becomes the effective key to the
regular block cipher. Given security under related key attacks this can work but
at the cost of security: the size of the secret key will have to be reduced to make
space for the tweak.

To go around this limitation Liskov et al. described two constructions LRW1
and LRW2 [LRW11]. In particular LRW2 is somehow remindful of the FX con-
struction that adds an n-bit key before the input and another after the output
of the underlying block cipher. The FX construction has been proposed by Kil-
lian and Rogaway [KR96] in a different context: they investigated DESX, an
easy solution to protect DES against an exhaustive key search. FX consists in
adding one n-bit subkey before and another one after the block cipher. With such
strategy they proved that the time complexity of the best generic cryptanalysis
goes from O(2%) to O(251™ /D) where D is the data or online query complexity.
The FX construction has since been notably used in PRINCE [BCG+12] and
PRIDE [ADK+14]. We can naturally iterate r rounds of the FX construction
which requires to have r k-bit subkeys along with (r 4+ 1) n-bit subkeys. Then
the idea to build a tweakable block cipher is to blend the tweak and the master
key together in a predefined key schedule to obtain all the required subkeys for
the computation.

1.1 Notations

First we formally describe the r-round tweakable iterated FX construction
(Fig.2) on which our results apply. Let Eq 2 . ,(u,-) be r block ciphers with
k-bit key uw and n-bit input and output. Let k& be the k-bit master key of the
tweakable block cipher construction. Let ¢ be a tweak of arbitrary length. Let
7;(k,t) be the subkey for the i** block cipher of length x-bit for 1 < i < r and
Ai(k,t) the n-bit subkeys to XOR in the state for 0 < i < r. For example the
r = 2-round tweakable FX construction (Fig.1) Ej(t,m) is described as:

Ey(t,m) = By (72(k, 1), E1 (1 (k,t),m @ Xo(k, 1)) ® A1 (k,t)) @ Na(k, 1)

We will focus on generic key recovery attacks. The goal of the cryptanalysis of
E}, (t,m) is to recover k by doing offline queries to E1 2 . (-, -) and online queries
to E~’k(7 -). We don’t count the number of calls to the v and A functions generating
the subkeys as queries because we don’t assume any security property for them.
In fact it is common for the subkeys to assume some almost uniformity, almost
universality or almost XOR-universality property with respect to the tweak (See
Definition 1). This makes the analysis proper for most of the constructions we cite

Generic Attack on Iterated Tweakable FX Constructions 3

except for F[2] by Mennink [Men15] which can be seen as a 1-round tweakable
FX where the subkey functions reuse the block cipher itself.

Definition 1. Let 6 > 0 and a function A : K x T — Y for non-empty sets
K, T,).

— Mk, t) is said to be d-almost uniform if for anyt € T and any y € Y,
Pr(k—gK:Ak,t)=y) <6.
- Ak, t) is said to be §-almost universal (AU) if for any distinct t and t' € T,
Pr(k s K : Xk, t) = A(k,) <6 .

— Ak, t) is said to be 0-almost XOR-universal (AXU) if for any distinct t and
VeT and anyy €Y,

Pr(k —gK: Ak, t)® Ak, t') =y) <6 .

While our results do not depend on the repartition of the tweak space, having
arbitrary long tweaks is justified by the XTX transformation of Minematsu and
Iwata [MI15]. Indeed XTX transforms a tweakable block cipher with a tweak of
limited length to one with a tweak of arbitrary length without, in our case,
affecting the general iterated tweakable FX structure as it simply affects the
subkey functions.

o (k,t) (.8) Ai(k, t) (k) A2 (k,t)
| J J ~
m D £y D B KD— E(t,m)

Fig. 1. 2-Round tweakable FX.

1.2 Previous Works

In the same paper where they formalize the concept of tweakable block ciphers,
Liskov, Rivest and Wagner proposed two constructions often known as LRW1
and LRW2 [LRW11]. LRW1 consists in adding the tweak between two calls of
the block cipher while LRW2 evaluates a keyed universal hash function on the
tweak and adds it twice: before the input and after the output of the block
cipher. These modes are described as Ej(t,m) = Ey(t® Ex(m)) and Ey(t,m) =
Er(m@h(t)) @ h(t) respectively with the requirement that h be an almost XOR-~
universal function. They also provide security proofs roughly up to 2"/2 for both

4 F. Sibleyras

schemes. Matching attacks on LRW1 and LRW2 are trivial as they both allow
for an easy distinguisher after the first collision at the birthday bound. Other
constructions of tweakable block cipher related to LRW2 include XE and XEX by
Rogaway [Rog04] and used in the OCB mode of operation.

In the quest for optimal security Mennink proposed the constructions F [1]
and F[2] [Menl15]. The latter reaches a provable security of 2 queries which
is the optimal security in the standard model for regular block ciphers. Other
works tried to build a tweakable block cipher based solely on public permutations
in the style of Even-Mansour [EM93]. Such tweakable block ciphers includes
TEM [CLS15] and XPX [Menl6] that are also subject to a tight birthday bound
security of O(2"/2). Then Jha, List, Minematsu, Mishra and Nandi described
a framework called XHX [JLM+17] and proved its security up to 2("*%)/2. They
also describe generalised XHX, GXHX. In particular this means that a provable
security beyond 2™ is reachable but in the ideal cipher model where rekeying is
possible. This framework uses a single-round FX framework where all 3 subkeys
are derived from a universal hash function on the secret master key and an
arbitrarily long tweak.

So far, with the exception of GXHX, the proofs of all schemes cited can be
shown to be tight. However, things become more involved when trying to iterate
those constructions. Landecker et al. [LST12| proposed to iterate two indepen-
dent evaluations of LRW2 and proved a security up to 22*/3 queries. An attack
on cascaded LRW2 (or CLRW2) has been later proposed by Mennink [Menl8] in
query complexity O(23"/4) not completely closing the gap. Then, recently, Lee
and Lee proposed XHX2 [LL18] by iterating two independent rounds of XHX. They
managed to prove a query security lower bound of min{23 ("+%) 2n+#/2} and left
the tightness of this bound as an open question which we will be able to answer
positively in this work.

On the other hand, a generic cryptanalysis of the r-round iterated FX con-
struction has already been made with the original attack by Gazi [Gazl3] in
query complexity (9(2r;1”+“). Obviously this attack can be used against our
tweakable version when we fix the tweak to a single value. As it is written, the
attack starts by querying all the code books of the secret cipher that makes
the maximum possible 2™ calls. However this natural limitation of regular block
ciphers has no ground in the presence of tweaks. Much like one can have security
proofs beyond 2" calls, one could attack a tweakable cipher using more than 2"
tweak /plaintext /ciphertext triples.

1.3 Results

Our generic iterated tweakable FX framework is pertinent to all cited construc-
tions as shown in Table 1. Using a single-round FX to blend in the tweak is the
most common approach and may be considered as well understood. However
there seem to be additional security to be gained in iterating those construc-
tions. Some works [LST12,LL18] tend to do and prove just that. The focus on 2
rounds is justified by the fact that we don’t know of any constructions based on

Generic Attack on Iterated Tweakable FX Constructions 5

Table 1. Some previously proposed schemes and description of how it fits in our
iterated tweakable FX generic framework. Multiplications (x) are over the finite field
GF(2™).

Ref. Scheme | r | Subkey functions
[LRW11] | LRW2 1| Xo(k,t) = A1(k,t) a uniform and AXU function.
m(k,t) =k
[Men15] | F[1] 1 Xo(k,t) = Mi(k,t) =t x k m(k,t) =t @k
[Menl15] | F[2] 1 ok, t) = Mk, t) = E1(2 x k,t) m(k,t) =t Dk
[Men16] | XPX 1|k =0so0 Ei(-,m) = P(m) t=t11 || tiz || tor || to2
Xo(k,t) =tk @ ti2P(k) A (k,t) = tork @ taa P(k)
[JLM~+17] | XHX 1|71 (k,t) a uniform and AU function.
Xo(k,t) = Ai(k,t) a uniform and AXU function.
[LRW11] |LRWL | 2| Xo(k,) = Aa(k,t) = 0 Ak t) =t
(k) =yo(k,t) =k
[LST12] |CLRW2 |2 Xo(k,t) and A2(k,t) two uniform and AXU functions.
A1k, t) = Xo(k,t) @ X2 (K, t) 71 (k,t) = y2(k,t) = k
[LL18] XHX2 2 | y1(k,t) and y2(k,t) two uniform and AU functions.
Xo(k,t) and A2(k,t) two uniform and AXU functions.
A (k,t) = Xo(k,t) @ Aa(k, t)

block ciphers using more than 2 rounds and the single-round ones mostly have
already well understood matching attacks (Table 2). However we believe it is also
interesting to know what kind of security bounds we might hope to achieve by
iterating even further.

So in this paper we ask ourselves what is the best security bound attain-
able when using the iterated FX paradigm for building tweakable block ciphers
from regular block ciphers. To do this we improve on the attack described by
Gazi [Gaz13| to apply it in the tweakable block cipher setting.

First we show an information theoretic attack for » = 2 rounds when x < 2n
with offline and online query complexity of:

Q=003+ {//n) .

Note that Q = O(23 (")) under the reasonable assumption that the size of the
master secret key is linear with respect to the state size, that is, & = O(n).

The recent construction XHX2 by Lee and Lee [LL18] is a particular case of
our setting where \j(k,t) = Ag(k,t) @ A2(k,t). Their provable security bound
is 25 (+5) whenever & < 2n and therefore matches our attack. Thus our results
prove the tightness of their bound and their bound proves the optimality of the
attack.

6 F. Sibleyras

We then extend the attack to multiple rounds of the same construction. This
gives an attack on r rounds when k < rn with query complexity:

Q= 0@ TR R n)

Again note that Q = O(271 (%)) under the assumption that & = O(n).

Table 2. Some previously proposed schemes with their known asymptotic bounds.

Ref. Scheme | r | Proof | Known attack | Our generic attack
[LRW11] |LRW2 | 1|2"/2 on/2 23 (n+n)

[Men15] | F[1] 123" 2" 2" (as Kk =n)
[Men16] | XPX 1) 2n/2 on/2 27/2 (as k = 0)
[JLM+17] | XHX 1| 23(Hr) |93 (n+n) 9% (n+r)
[JLM+17] | GXHX 1 2%("+”) none 2%("+“)

[Menl15] | F[2] 12" 2" N.A.

[LRW11] |LRwi |2 2"/2 2n/2 23 (n+r)

[LST12] |CLRwW2 |2 2%V/3 | 23w/t 25 (n+r)

[LL18] | xHX2 |2 23" none 93 (ntr)

2 Cryptanalysis of 2-Round Tweakable FX

In this section we give an algorithm to extract the master key of a 2-round
tweakable FX construction, Algorithm 1, then we show how it works by deriving
the constants used and thus deriving the total query complexity.

2.1 The Algorithm

This cryptanalysis of Algorithm 1 is a key recovery attack and follows the idea
of the original cryptanalysis by Gazi [GaZz13]: we want just enough data to con-
struct contradictory paths for each wrong key. First we do all the required offline
computations under all possible x-bit key. Input values are the sets S; and S
which can be chosen randomly and the input/output pairs under the key j are
stored in £;1 and L; o for Ey and Es respectively. Then we store all observable
tweak /plaintext /ciphertext triples in Ly. We don’t need to choose the set Sy of
inputs to the tweakable block cipher as the attack works in the known plaintext
setting. At last we can test all the x-bit keys; potential master keys &k only using
the stored values by reconstructing the paths round by round.

Indeed sets A and B reconstruct the paths under the current key guess and
the condition V(t,m,b) € B : (t,m,b® v5(k,t)) € Lo is checking whether there
is a contradictory path (if not satisfied) or not (if satisfied). The additional
condition |B| > v is simply here to ensure a good reduction.

Generic Attack on Iterated Tweakable FX Constructions 7

For completeness we provide Algorithm 2 to show how to construct the sets A
and B. To construct A is to apply Algorithm 2 with inputs So, £, (x,¢),1, Ao (K, t).
It is basically looking over all elements of the first set and checking if a shifted
version of a value exists somewhere in the second set then, if found, it records
the starting and ending values.

The constants v and) are derived in Sect.2.2 and the algorithm already
ensures that the total query complexity is of magnitude Q. Indeed once we
construct the sets £;; and £y we will have all the necessary queries to perform
the attack. Since |£; ;| = |S;| = Q/2" and there are 2" different possible subkeys
then the total number of queries to E; and Fs is Q. Then we also construct Ly
so the number of online queries will also be |Lo| = |So| = Q.

Algorithm 1. Cryptanalysis of 2-round tweakable FX construction.

Input: l-€, n, kK S 27"L, E, El, EQ, ’Y1~, Y2,)\0,)\17)\2
Output: £ : the master key of E

v—R/n
Q — 93 (ntr) | v > Constants derived in Section 2.2
Randomly sample S; C {0,1}" with |S1| = Q/2" =275 /v .
Randomly sample Sy C {0,1}" with |Sz| = Q/2" = 275" v .
for all j € {0,1}" do
Ljy = {(m,E1(j,m)) Tme 51}
Lj2 {(m, Es (5, m)) m € SQ} > Offline Queries Sets

end for

Let So C {0,1}" x {0,1}" with |So| = @ be an observable tweak/message set.
Lo — {(t,m, E(t, m)) 2 (t,m) € So} > Online Queries Set

for all k € {0,1}* do

A—{(t,m,a) : (t,m) € So, (m@ Ao(k,t),a) € Lo, (k)1 }
B« {(t,m,b) : (t, m,a) € A, (a® A1 (k,t),b) € Loyk,t)2} > by Algorithm 2
if |B| > v and V(t,m,b) € B : (t,m,b® A2(k,t)) € Lo then
return k
end if
end for
return () > No proper key in the set

2.2 Deriving the Constants

The Query Complezity. To derive the constant @ used in Algorithm 1 we first
focus on what happens when we guess the correct master key k. In that case
we want to make sure that |B| > v happens with good probability as the other
constraint is always true by construction of the scheme.

First let’s look at the set A:

A — {(t,m,a) : (t,m) € So, (m @ \o(k,t),a) € Eﬁﬂ(k’t)’l}

8 F. Sibleyras

By construction there are @ values (t,m) € Sy and, as S; is chosen randomly
and independently, there is a |S1|/2" probability that (m @ X\o(k,t)) € Sy for
each (t, m) observed and thus that there exists an a such that (m® Ag(k,t),a) €
L., (k.t),1- Therefore in expectation we have |A| = Q2 /27",

We do the same reasoning for B:

B — {(t,m,b) 2 (t,mya) € A, (a® A (k,t),b) € L:%(k,t)g}

to find that in expectation |B| = Q3 /2272,

Algorithm 2. Set construction.
Input: S1,82,¢
Output: Ss — {(e,s3) : (e,51) € S1,(s1 B L, s3) € Sa}
53 — @
for all (e,s1) € S1 do
if Js3: (s1 @ ¥, s3) € Sz then
S3 — SsU{(e,s3)}
end if
end for
return S3

With some regularity assumptions, if |B] = v in expectation then |B| > v
with constant probability. Therefore we put:

Q3/22n+2n S yp— Q _ 2%(n+n) . g/;

The Number of Paths. The constant () was derived so that we don’t have false
negatives, that is, we succeed with good probability when we guess the good key
k. Now we derive the constant v so that we don’t have any false positive that
means the test fails with good probability for all the wrong guesses of k.

First notice that the fact that |B| = v in expectation is true for all guesses of
k, good or wrong. If | B| < v then the test fails as it should. If |B| > v then we need
to look at the second condition that is V(¢,m,b) € B : (t,m,b® A3(k,t)) € L. If
the guess is wrong then for a given (t,m,b) € B we have (b® \3(k,t)) = E(t,m)
with a 27" probability. Since |B| > v then the second condition is satisfied with
probability (277)” = 277", The test must fail for all the wrong guesses and
there are 2° — 1 such wrong guesses so all the tests should fail at least with
constant probability when:

2827 <l = k—v-n<0 = v>F&/n

thus we take v = R /n.

Generic Attack on Iterated Tweakable FX Constructions 9

2.3 Constraints

For all of this to work there are some constraints that need to be spelled out.
First we require that:

1 <|S;]

e 1<28nEr . Yy
<~ k < 2n+log(v)

which limits to possible size of k to a multiple of the state size n. Very few block
ciphers admit a key larger than 2n so this is not a strong limitation in practice.

We also need to have diverse tweakable subkeys. Indeed so far we did not
require that the functions 7;(k, t) depends on ¢ which means that the tweak can
be put, or not, at any stage of the construction but we still require that the
tweak changes something. Therefore we can deduce such requirement:

VEk € {0,1}% V(t,m) € Sy V(t',m') € Sy :
t#£t = Ji:y(k,t) # ik, t') OR N(k,t) # Ni(k,t)

which means that for every pairs of two different observed tweaks at least one of
the respective implied subkeys must be different. This condition mostly ensure
that this is a reasonable tweakable block cipher construction. Indeed in the case
where two tweaks imply the exact same subkeys then one can quickly realise
that it gets the same permutation for two different tweaks which is a near zero
probability event for a perfect tweakable block cipher and hence it’s a distin-
guisher.

3 Cryptanalysis of r-Round Tweakable FX

Starting from the attack of Sect.2 we show how to generalise it to attack r > 1
rounds of the same construction in Q = Q271 ™% . **U/E/n) query com-
plexity. The strategy is the same, we begin by doing all the necessary queries
before reconstructing paths round by round to finally check whether there is a
contradictory path or not. This is Algorithm 3.

Xo(k, t) (kt) A1 (K, t) (k) Ao (k, t) k) Ar (K, t)
%f l |
m Ei Es e B, Ek(t,m)

Fig. 2. r-Round tweakable FX.

10 F. Sibleyras

3.1 Constants and Complexity

The Query Complezity. We derive the constant @ used in Algorithm 3 in the
same way as we did for the 2-round version. First we focus on what happens
when we guess the correct master key k. In that case we want to make sure
that |B| > v happens with good probability as contradictory paths cannot exist
under the correct key.

Let’s look at the set Aj:

A — {(t,m,a) 2 (t,m) € So, (m @ No(k,t),a) € E'yl(k,t),l}

Algorithm 3. Cryptanalysis of r-round tweakable FX construction.

Input: /%,n, K< TTZ,E, El,EQ, ...,Er,’)/l,’yg, ceey Vs Ao,)\1,>\2, ...,)\7«
Output: k : the master key of F

1: ve—F&k/n

2. Q — 2$(n+ﬁ) . 7‘+\1/;

3: for allie {1,...,r} do

4: Randomly sample S; C {0,1}" with |S;| = Q/2" = 27 TRy

5: end for

6: for all j € {0,1}" do

T: for alli e {1,...,r} do

8: L;i— {(m,Ei(j,m)) : m € S} > Offline Queries Sets
9: end for

10: end for

11: Let So C {0,1}" x {0,1}" with |So| = Q be an observable tweak/message set.
12: Lo «— {(t,m,E(t, m)) :(t,m) € So} > Online Queries Set

13: for all k € {0,1}* do

14: Ar — {(t,m,a) : (t,m) € So,(m ® Ao(k,t),a) € Loy (k,0),1}

15: for alli e {2,...,r} do

16: Ai — {(i’7 m, a) ((t,m,a) € Ai—1, (@D Ni—1(k,t),a) € [m,i(k’t)ﬂ-}

17: end for > by Algorithm 2
18: if |A-| > v and VY(t,m,a) € A, : (t,m,a ® \-(k,t)) € Lo then

19: return k

20: end if

21: end for

22: return > No proper key in the set

By construction there are) values (t,m) € Sg and, as S} is chosen randomly
and independently, there is a |S1]/2™ probability that Ja : (m @ Ao(k,t),a) €
L., (k1)1 for all observed tweak/message pairs (¢,m). Therefore, in expectation,
we have |A;| = Q?/2"".

Then we can easily prove by induction that |A;| = Q*F!/2/("+%) as it is true
for |A;] and [A;y1| = | A - |Sip1]/2". Thus we get |A,| = Q"1 /2r(n+r),

Generic Attack on Iterated Tweakable FX Constructions 11

With some regularity assumptions, if in expectation |A,| = v then |A.| > v
with constant probability. Therefore we put:

Qr+1/2r(n+x) -y = Q — 2#@—&-5) . 7»+\1/17

The Number of Paths. The constant @ was derived so that we avoid false negative
when we guess the good key k. Now we derive the constant v to avoid false
positives.

If |A,] < v then the test fails as it should. If |4, > v then the second
condition is satisfied with probability (27™)” = 27¥™. The test must fail for
all the 2* — 1 wrong guesses so all the tests should fail at least with constant
probability when:

2F. 27" <l = k—v-n<0 = v>F&/n

thus we take v = K /n.
For all of this to work there are again some constraints. First we require that:

1 <[]
<— k <rn+log(v)

which limits to possible size of k to a multiple of the state size n.
Then we have the condition that the tweak changes something:

Vi € {0,1}F V(t,m) € Sy V(t',m') € Sy :
3 # t = Ji: ’Yz(k7t) ?é Vl(kvt,) OR)‘z(k7t) #)‘z(k7t/)

Notice that this condition prevents the known matching attack on XHX. Indeed,
as for XHX » = 1 and A\g = A1, a collision on the full subkeys is expected after
trying 0(2(’””‘”")/ 2) different tweaks. Our attack has the same complexity and
also work on the generalised setting GXHX that doesn’t enforce \g = A;. This
shows that the security cannot improve even if a collision on the full subkeys
is made hard by, for example, choosing many different subkey functions or by
using a mode of operation that limits the amount of different observable tweaks.

3.2 Discussion

Using Tweakable Block Ciphers. If instead of regular block ciphers we use tweak-
able block ciphers then it is not trivial to adapt this attack. Indeed we use the
fact that the master key and the tweak must be blended before computation
and not separately plugged in a tweakable block cipher. Such construction of a
tweakable block cipher based on another tweakable block cipher could be used
to increase security and/or the size of the tweak in a way that the original FX
construction builds a stronger block cipher from another block cipher. However
on the cryptanalysis side what can always be done is to fix a single tweak and
apply the original attack by Gazi [Gazl3] in query complexity (9(2T:1"+’"") or
0271 (")) when k < .

12 F. Sibleyras

Weaker Constructions. This attack is generic given any reasonable key schedule
represented by the A and ~ functions. However they are particular cases where
better attacks are possible. In particular the cascaded LRW2 construction is a
2-round tweakable FX construction where the key in the block cipher does not
vary with the tweaks (77 and 72 don’t depend on t). This construction permits
an attack in O(2%") by Mennink [Men18] using only two different tweaks which
beats our generic attack as soon as k > %.

Tweak-Rekeying. In fact our generic attack being a key recovery attack it will
require at least 2* calls to the underlying block cipher. As soon as k > n this
implies a complexity above 2. Mennink [Men17] showed that provable 2™ secu-
rity is unattainable in the standard block cipher model used for the proofs of
schemes without tweak-rekeying. Therefore our generic attack can only hope to
be tight for schemes that use tweak-rekeying and thus that are proved in the
ideal block cipher model.

Key Recovery and Distinguisher. The fact that the complexity of this crypt-
analysis depends on the size of the master key, even if a little, makes it hardly
comparable to distinguishers that are independent of the master key size. Instead
of waiting for some bad event to occur we collect just enough information to com-
pletely determine the master key. In the case of XHX the known distinguisher has
the same asymptotic complexity but the widely different approaches make them
hard to combine: a bad event for the known distinguisher gives no information
on the master key. However for XHX2, and generally for » > 2 rounds of the
tweakable FX construction proved in the ideal cipher model, it may well be the
case that a key recovery approach is more relevant than looking for a suitable
bad event for a distinguisher.

Towards Simplicity. The attack on generic 2-round tweakable FX is also tight
since Lee and Lee could prove with XHX2 [LL18] that we can reach this level of
security even when Aj(k,t) = Ao(k,t) ® Aa(k, t) with some conditions on those
functions. Moreover the previously known matching attack on XHX [JLM+17]
exploited the fact that A\g(k,t) = A (k,t) but our generic attack shows that it
cannot be made more secure without this simplification. Another way to say it
is that enforcing Mg (k,t) = A1 (k,t) does not affect the provable security bound.

Using this iterated tweakable FX paradigm, one can therefore wonder how
much it is possible to simplify the subkey functions while maintaining an optimal
provable security with respect to the generic security upper bound shown in this
work.

Acknowledgement. The author would like to thank the 2018 Asian Symmetric Key
Workshop and Gaétan Leurent for useful discussions. This work was partially supported
by the French DGA.

Generic Attack on Iterated Tweakable FX Constructions 13

References

[ADK+14] Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalgin,

[AESO1]

[BCG+12]

[BRO2J

[CLS15]

[DEST7]

[EMO3)|

[Gaz13]

[JLM+17]

[KR96]

[LL18]

[LRW11]

[LST12]

[Men15]

T.: Block ciphers — focus on the linear layer (feat. PRIDE). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57-76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 4
Advanced Encryption Standard (AES). National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
November 2001

Borghoff, J., et al.. PRINCE - a low-latency block cipher for pervasive
computing applications. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012.
LNCS, vol. 7658, pp. 208-225. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34961-4 14

Black, J., Rogaway, P.: A block-cipher mode of operation for paralleliz-
able message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 384-397. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-46035-7 25

Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
189-208. Springer, Heidelberg (2015). https://doi.org/10.1007,/978-3-662-
47989-6_9

Data encryption standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce, January 1977

Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASI-
ACRYPT 1991. LNCS, vol. 739, pp. 210-224. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57332-1 17

Gazi, P.: Plain versus randomized cascading-based key-length extension for
block ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 551-570. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 30

Jha, A., List, E., Mi_nematsu, K., Mishra, S., Nandi, M.: XHX - a framework
for optimally secure tweakable block ciphers from classical block ciphers and
universal hashing. Cryptology ePrint Archive, Report 2017/1075 (2017).
https://eprint.iacr.org/2017/1075

Kilian, J., Rogaway, P.: How to protect DES against exhaustive key
search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252-267.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 20
Lee, B.H., Lee, J.: Tweakable block ciphers secure beyond the birthday
bound in the ideal cipher model. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 305-335. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 11

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol.
24(3), 588-613 (2011)

Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers
with beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 14-30. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 2

Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 428—-448. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 21

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-662-47989-6_9
https://doi.org/10.1007/978-3-662-47989-6_9
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-642-40041-4_30
https://doi.org/10.1007/978-3-642-40041-4_30
https://eprint.iacr.org/2017/1075
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/978-3-030-03326-2_11
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-662-48116-5_21

14 F. Sibleyras

[Men16]

[Men17]

[Men18]

[MI15]

[RBBKO1]

[Rog04]

Mennink, B.: XPX: generalized tweakable even-mansour with improved
security guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 64-94. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4 3

Mennink, B.: Insuperability of the standard versus ideal model gap for
tweakable blockcipher security. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 708-732. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 24

Mennink, B.: Towards tight security of cascaded LRW2. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 192-222. Springer,
Cham (2018). https://doi.org/10.1007,/978-3-030-03810-6 8

Minematsu, K., Iwata, T.: Tweak-length extension for tweakable block-
ciphers. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77-93.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9 5
Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode
of operation for efficient authenticated encryption. In: Reiter, M.K., Sama-
rati, P. (eds.) ACM CCS 2001, pp. 196-205. ACM Press, November 2001
Rogaway, P.: Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 16-31. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30539-2 2

https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-030-03810-6_8
https://doi.org/10.1007/978-3-319-27239-9_5
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2

®

Check for
updates

Universal Forgery Attack Against
GCM-RUP

Yanbin Li'"?, Gaétan Leurent?®, Meiqin Wang'2®) Wei Wang!2,
Guoyan Zhang!2, and Yu Liu'»?

1 School of Cyber Science and Technology, Shandong University, Jinan, China
mqwang@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security
(Shandong University), Ministry of Education, Jinan, China
3 Inria, Paris, France

Abstract. Authenticated encryption (AE) schemes are widely used to
secure communications because they can guarantee both confidentiality
and authenticity of a message. In addition to the standard AE security
notion, some recent schemes offer extra robustness, i.e. they maintain
security in some misuse scenarios. In particular, Ashur, Dunkelman and
Luykx proposed a generic AE construction at CRYPTO’17 that is secure
even when releasing unverified plaintext (the RUP setting), and a con-
crete instantiation, GCM-RUP. The designers proved that GCM-RUP is
secure up to the birthday bound in the nonce-respecting model.

In this paper, we perform a birthday-bound universal forgery attack
against GCM-RUP, matching the bound of the proof. While there are
simple distinguishing attacks with birthday complexity on GCM-RUP,
our attack is much stronger: we have a partial key recovery leading to
universal forgeries. For reference, the best known universal forgery attack
against GCM requires 22n/3 operations, and many schemes do not have
any known universal forgery attacks faster than 2™. This suggests that
GCM-RUP offers a different security trade-off than GCM: stronger pro-
tection in the RUP setting, but more fragile when the data complexity
reaches the birthday bound. In order to avoid this attack, we suggest a
minor modification of GCM-RUP that seems to offer better robustness
at the birthday bound.

Keywords: GCM-RUP - Partial key recovery - Universal forgery -
Birthday bound

1 Introduction

Authenticated encryption (AE) schemes aim to achieve both confidentiality and
authentication of the encapsulated data. The first AE schemes were designed
by combining a symmetric encryption scheme with a message authentication
code (MAC). The encryption scheme provides confidentiality while the message
authentication code ensures authenticity. Several generic composition schemes

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 15-34, 2020.
https://doi.org/10.1007/978-3-030-40186-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_2

16 Y. Liet al.

have been formalized and analyzed by Bellare and Namprempre [3]: Encrypt-
and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. Their analysis consid-
ers black-box composition, without specific details of the underlying symmetric
encryption scheme and MAC, in order to only focus on the security of the generic
composition at a high level. Their analysis shows that only the Encrypt-then-
MAC composition is generically secure.

Later, new AE modes have been proposed [11,18,30] to provide confiden-
tiality and authentication in a single scheme, which is more efficient than the
generic composition of conventional mechanisms. AE schemes are now widely
used in Internet protocols, and there is an ongoing effort to design and stan-
dardize new AE schemes with the recent CAESAR competition [35], and the
NIST lightweight standardisation effort [38] currently running. The design and
cryptanalysis of AE schemes is a very active topic in the cryptographic commu-
nity today.

One of the most widely used AE schemes today is the Galois/Counter mode
(GCM) [8,23], an AE scheme following the Encrypt-then-MAC paradigm. GCM
has been widely deployed thanks to its excellent software performance and hard-
ware support, and because there are no intellectual property restrictions to its
use. It has been standardized in TLS [7], ISO/IEC [37], NSA Suite B [39] and
IEEE 802.1 [36]. GCM encrypts data using a variation of the counter mode of
operation (CTR) which requires a single block cipher encryption per message
block, and does not need to perform block cipher decryption, even when decrypt-
ing the message. The ciphertext and associated data are authenticated with a
Wegman-Carter-Shoup authenticator, where the keyed universal hash function is
a polynomial evaluation over a binary Galois field. However, GCM is not robust
against implementation errors or misuse. In particular, if a nonce is used just
two times, the confidentiality and authentication for GCM are compromised with
Joux’s “forbidden attack” [17]. GCM also loses its security if a device releases
the plaintext corresponding to invalid ciphertext before verifying the tag. There-
fore, variants of GCM have been proposed to achieve some more robust security
notions.

In 2015, Gueron et al. presented GCM-SIV [12] combining GCM’s underlying
components with the SIV paradigm designed by Rogaway and Shrimpton [31], to
provide nonce-misuse resistance. Later, at CRYPTO’17, Ashur et al. introduced
a generic construction of AE scheme using a tweakable block cipher (TBC),
which resists attacks in the RUP setting [2] (with Release of Unverified Plain-
text). Based on the generic AE scheme, an instantiation GCM-RUP with high-
efficiency is put forward using AES-GCM'’s components. The designers proved
that GCM-RUP is secure up to the birthday bound in the nonce-respecting
model and RUP setting. On the other hand, no attacks are known so far against
the authentication part of GCM-RUP. Therefore we do not know whether the
proof is tight, and we do not know what kind of security degradation to expect
after the birthday bound.

Universal Forgery Attack Against GCM-RUP 17

1.1 Contributions

In this paper we describe a universal forgery attack against GCM-RUP with
time and data complexity close to 2%/2, where n denotes the block size of the
underlying block cipher. This attack matches the security proof given in [2],
showing that it is tight. However, our main result is not only about tightness
of the (birthday) security bound, but rather about how badly the construction
of GCM-RUP breaks when the bound is reached: a universal forgery attack is
much stronger than a distinguishing attack.

This is significant because no similar attack is known against GCM: on the
one hand there are attacks with roughly \/n x2"/2 queries and time 2" [20,22,26],
and on the other hand attacks with \/n x 22™/3 queries and time n x 22"/3 [20].
Our results show that universal forgery attacks against GCM-RUP are easier
than against GCM, even though the security bounds from the proofs are similar,
and both proofs are known to be tight (with simple distinguishing attacks).

Our attack is based on the following techniques:

— We show that inner collisions in the authentication part of GCM-RUP can be
detected efficiently, and give out the output difference of the universal hash
function GHASH,;

— Due to the structure of GHASH, we build a polynomial equation in K5, which
can be solved efficiently;

— Finally, when K5 is known, we can sign arbitrary messages. This defines a
universal forgery attack with complexity 2*/2 (time and data).

Since our attack points out a weakness in the structure of GCM-RUP, we also
suggest a minor modification to GCM-RUP to prevent the leakage of the output
of GHASHg, by using an extra block cipher call Fx, to encrypt the output of
GHASHg,. The objective of our variant is to achieve better security in the RUP
setting and in the classical setting.

Many designs use GHASH because of its high performances. However, the
output of GHASH may leak information about the key, as exploited in our
attack. Therefore, the stronger GHASH variant we proposed could be applied to
not only GCM like scheme but also future GHASH-based designs.

1.2 Related Works

Modes of operation are usually studied with security proofs, but there is a grow-
ing interest in generic attacks, showing how the security degrades when the proof
doesn’t hold. In particular, many attacks focus on (partial) key-recovery: most
modes of operations have distinguishing attacks with birthday complexity 2"/2,
but key-recovery and universal forgery attacks with the same complexity show
that some schemes are more fragile than others when approaching the birthday
bound.

For instance, in 1996, Preneel and Van Oorshot gave a full key recovery attack
against the Envelope MAC with complexity 27/2 [29]. In 2003, Mitchell studied
several variants of CBC-MAC and compared their security against key-recovery

18 Y. Liet al.

attacks [25]; for some schemes the best attack reported requires an exhaustive
search over an n-bit key, but attacks with birthday complexity can recover a
partial key for TMAC and OMAC [33], leading to stronger forgery attacks. More
recently, a series of works has shown birthday attacks against HMAC, with full
key recovery when the hash function uses an internal checksum [19] and universal
forgeries [27] in general. During the CAESAR competition, it was pointed out
that the security of AEZ [14] collapses at the birthday bound, with a full key
recovery [10]. The scheme was modified to avoid the attack, but a variant is still
applicable [6].

Besides MAC algorithms, there has also been work on message-recovery
attacks on encryption modes, with a stronger impact than distinguishers. The
well-known collision attack against CBC has been shown to be usable in practice
with 64-bit block ciphers [4], and message-recovery attacks have also been shown
against the CTR mode [20], even though the well-known distinguisher is much
weaker.

All these results clearly show the importance of cryptanalysis work against
modes of operation, even when the attacks do not contradict the proofs. In
addition, this type of work sometimes detects mistakes in the proofs, as shown
with GCM [16] and OCB2 [15].

1.3 Organization

The remainder of this paper is organized as follows. Section 2 gives the prelim-
inaries. Section 3 briefly describes the generic construction and its instantiation
GCM-RUP. We recover the authentication key in Sect. 4, and a universal forgery
is provided in Sect. 5. Section 6 recommends a minor modification to GCM-RUP
to resist our forgery attack. Finally, Sect.7 concludes this paper.

2 Preliminaries

This section will show notations, operations, some cryptographic schemes and
security definitions used in this paper.

2.1 Notations and Operations

— n: The block size of the block cipher (for GCM-RUP, n = 128).
— {0,1}=%: The set of strings with length no greater than x bits.
{0,1}*: The set of strings with arbitrary length.

~ |X|: Length of X, if X € {0, 1}*.

— X @Y Bit-wise exclusive OR of X and Y, if X,Y € {0,1}*.

— X - Y: Galois field multiplication of X and Y, if X, Y € {0,1}"™.
— X||Y or XY Concatenation of X and Y, if X, Y € {0,1}*.

— e: The empty string.

— 0™: n-bit string consisting of only zeros.

— len,(X): Length of X modulo 2" as an n-bit string.

Universal Forgery Attack Against GCM-RUP 19

— X0*": X padded on the right with 0-bits to get a string of length a multiple
of n.

— | X|n: X’s length in n-bit blocks | X|,, = [|X|/n].

~ X[1]X[2]... X[z] <& X: Split X into substrings such that |X[i]| = n for i =

1,...,2—1,0 < |X[z]] <n,and X[1]]|... || X[z] = X. _
— int(Y): Map the j bits string Y = a;_1 ...a1a0 to the integer i = a;_12771 +
R a12 + agp.

— strj(i): Map the integer i = a;_129 "1+ -+ +a12+ag < 27 to the j-bit string
aj—1...0a100.

— incy(X): The function which adds one modulo 2™ to X when viewed as an
integer: incy, (X) := stry, (int(X) + 1 mod 2™).

— msb;(X): j most significant bits of X: msb;(a;—1...a1a0) == Gij—1...Gq—j.

— 1Isb;(X): j least significant bits of X: Isb;(a;—1...a1a0) := aj_1...ao.

— F — E(C||-): Define F(X) = E(C||X) where C is fixed as constant.

~ o< b: Evaluate to T if a equals b, and L otherwise.

2.2 AE, Separated AE and TBC

An authenticated encryption scheme is a symmetric key algorithm that provides
both confidentiality and authenticity. Bellare and Namprempre [3] defined the
formal notion of authenticated encryption as follows:

Definition 1 (AE [3]). An AE scheme consists of a pair of functions, the
encryption function Enc and the decryption function Dec,

Enc: Kx N xAx M —C,
Dec: K x N xAxC— MU{L},

with K the key space, N the nonce space, A the associated data space, M the
message space, C the ciphertext space, and L an error symbol not contained in
M, which represents verification failure. It must be the case that for all K € IC,
NeN,Ac Aand M € M,

Deck (A, Ency (A, M)) = M.

The decryption process typically has two phases: plaintext computation and
verification; the plaintext obtained from decryption is only given out after suc-
cessful verification. However, keeping the full plaintext in memory can be an issue
for constrained devices, and side-channel attacks can potentially recover infor-
mation about the plaintext while it is decrypted. Therefore, new models have
been introduced to take into account the effect of releasing unverified plaintext.
In particular, Andreeva et al. [1] defined separated AE schemes where the plain-
text computation is disconnected from verification; in this model the decryption
function always releases the plaintext, without verifying it. Formally, a separated
AE scheme is defined as:

20 Y. Liet al.

Definition 2 (separated AE [1]). A separated AE scheme consists of a triplet
of functions, the encryption function SEnc, the decryption function SDec, and
the verification function SVer, where

SEnc: KX N xAx M —C,
SDec: K x N x AxC— M,
SVer : KX N x AxC—{T, L},

with K the key space, N the nonce space, A the associated data space, M the
message space, C the ciphertext space. The special symbols T and L indicate the
success and failure of the verification, respectively. It must be the case that for
Al KeK, NeN,Ac Aand M € M,

SDecy (A, SEncy (A, M)) = M and SVerk (A,SEnck (A, M))=T.

Finally, we need to introduce the notion of tweakable block cipher (TBC),
which is used in GCM-RUP. A tweakable block cipher is a generalization of a
block cipher with an additional tweak input, generating a family of independent
block ciphers [21]:

Definition 3 (TBC [21]). A TBC could be regarded as a pair of functions
(E,D), with
E:XxTxX— X,

D:KxTxX— X,

where K is the key space, T is the tweak space, and X is the domain. For all
KeK, TeT and X € X, Ei is a permutation of X with D}; as inverse and

Dk (Ek (X)) = X.

3 Brief Description of GCM-RUP |[2]

Ashur, Dunkelman and Luykx proposed a generic construction of an efficient
separated AE scheme at CRYPTO’17 [2]. Their construction uses an encryption
scheme and a TBC, and achieves security in the RUP setting, assuming that the
encryption scheme is strongly indistinguishable-from-random-bits (SRND) [13,
32], and the TBC is a strong pseudorandom permutation (SPRP) [32]. Based
on the generic construction, a dedicated instantiation GCM-RUP is built using
AES-GCM’s primitives. This section will describe this construction and GCM-
RUP.

3.1 Generic Construction with RUP Security [2]

Let (Enc,Dec) be an encryption scheme (without authentication), with /C the key
space, N the nonce space, M the message space, and C the ciphertext space. Let

Universal Forgery Attack Against GCM-RUP 21

(E,D) denote a TBC with key space L, tweak space 7 = C, and domain X = N.
Then define the separated AE scheme (SEnc,SDec,SVer) as follows,

SEncy (A, M) := (S = E}"“(N),C = Ency (o M)),

A,C

SDeck 1.(4, S, C) := lIsbc_ (Decot” (),
DA () ?

SVerk 1.(4, S, C) := msb, (Dec* (@) = «,

where (K, L) € K x L is the key, N is the nonce space, A is the associated data
space, M is the message space, N x C is the ciphertext space, and o € {0,1}7 is
some pre-defined constant. The construction is depicted in Fig. 1. The procedures
of encryption, decryption and verification are illustrated in Fig. 1(a), (b) and (c),
respectively.

The novelty of the generic construction is that the nonce is encrypted using
the ciphertext as a tweak. This provides security in the RUP setting, because
if an attacker modifies the ciphertext or the encrypted nonce, the decryption
oracle will output a random plaintext. The authentication security comes from
the redundancy in the plaintext, with the pre-defined constant a (known by
both sides); the length of a determines the security level. In order to maintain
security up to the birthday bound on the block size, the size of a and the nonce
size are fixed to be the same as the block size n.

3.2 GCM-RUP [2]

GCM-RUP is an instantiation of the generic construction using the counter mode
(CTR) for encryption and the XTX construction [24] with GHASH for the tweak-
able block cipher. It reuses the component of GCM in order to benefit from the
efficient implementations available, while offering more robustness with security
in the RUP setting. Before describing GCM-RUP itself, we first define the prim-
itives borrowed from GCM. Let n denote the block length of the available block
cipher, in this case n = 128.

The first one is the universal hash function GHASH, which takes a key H and
two strings M and M’ as input (in GCM, GHASH is used in the Wegman-Carter
construction to build a MAC [34]). The core of GHASH is defined with a single
string M constituted of full blocks, and evaluates a polynomial defined from M
at H as follows,

|M |7 —1
GHASHcorey (M) = € M[i]- HMI~". (1)
i=0
The symbol “” represents multiplication in the Galois field GF(2"). All the
computations are performed by the rule of operations defined in finite field.
GHASH is defined from GHASHcore; it takes two strings M and M’ as input,

zero-pads and concatenates them, and adds the binary representation of the
lengths of M and M’ before processing the result through GHASHcore,

GHASH (M, M") = GHASHcore s (MO™™ || M'0*™ | str,, o (|M]) | sty 2 (|M'])),

22 Y. Liet al.

))
{

Enck

(s c)

(a) Encryption (b) Decryption (c) Verification

Fig. 1. Generic construction with RUP security

| :linc32I :linc32I ;Iinc32}"—l !
A

| LA VY vv A

' Ex, Ex, Ex, Ex, :
[:
| ! ! | I
! msb .4 |

Fig.2. GCM-RUP (Figure from [2])

Universal Forgery Attack Against GCM-RUP 23

where the function str]() maps the integer i = a;_12 "1+ +a12+ag < 27 to
the j-bit string a;_1 ... a1ag. Algorithm 1 describes the procedure of the function.

Algorithm 1. GHASHy (M, M")

Input: H € {0,1}", M € {0,1}="@"*=D_pp/ € {0,1}=n@"*-D
Output: Y € {0,1}"
1 X — MO™|| M0 ||stry, o (| M])||stry 2 (|M'])

2: [1]XH...X[]<—X
3:Y 0"

4: for 1 <j <z do

5 Y < H-(Y&X[j]
6: end for

7: return Y

The second important auxiliary function is the CTR mode. Given a counter
value X, a positive integer m and a predefined keyed function F' as input, this
function CTR[F](X,m) outputs a string S with m blocks. Each block of S is
computed by S[i] = F(inci (X)), where inc, represents counter incrementation,
adding one modulo 2% to X, with the convention that inc’, represents i successive
implementations. The CTR mode is defined in Algorithm 2.

Algorithm 2. CTR[F](X,m)
Input: F:{0,1}* — {0,1}", X € {0,1}*, m €N
Output: S € {0,1}™"
1: 1 — X
for 1 <j<mdo
Slil < F(D)
I —incy(I)
end for
S «— S[1]S]2]...S[m]
return S

Finally, GCM-RUP uses three keys: K is used for the CTR encryption, and
K5 and K3 are used for the TBC following the XTX construction (K5 is used
for GHASH, and K3 is used for the underlying block cipher call). GCM-RUP
encrypts a message M together with its associated data A and a nonce IV, into
a ciphertext C' and an encrypted nonce S. The associated data, the message and
the ciphertext are all seen as sequences of blocks of length n. GCM-RUP follows
the generic construction given above, and is described in Fig. 2, with pseudocode
in Algorithm 3 (with € an empty string). In the figure, Encg, corresponds to CTR
mode encryption, and Fg, k, to the TBC.

24 Y. Liet al.

Algorithm 3. GCM-RUPg, k, k (N, A, M)

Input: KiK,Ks € {0,1}*", A € {0,1}"*”, M € {0,1}">"
Output (8,C) € {0,1}" x {0,1}7+IMI
M 07| M

L — Ei, (0")

I « GHASHL (e, N)

m «— |M|n

F — Ex, (msbos (D]

S «— CTR[F](incs2(Isbs2(I)), m)

C «— M@msb‘M‘()

G «— GHASHk, (A, C)
SHEKg(NGBG)@G

: return (S,C)

—_

As an instantiation of the generic construction with RUP security, GCM-RUP
is secure under RUP setting. More precisely, GCM-RUP can provide security
up to the birthday bound on the block size (because this is the security of the
underlying AE scheme and TBC).

4 Partial Authentication Key Recovery for GCM-RUP

Our analysis focuses on the GHASH g, function, which can be written as a poly-
nomial in K. In this section, we analyze properties of GHASHg, which are then
used to recover Ks. After recovering Ko, it is possible to perform a forgery attack
for GCM-RUP.

The main property used in our attacks is that G, the output of GHASHg, as
defined in Fig. 2, is linearly dependent on the input (A, C) for fixed K5. There-
fore, the output difference AG of values G emerging in encryption operations
of two input tuples (N1, A, M) and (N2, A, M) is independent of the value of
(A, M), and is only a function of Ny and Na.

Based on this property, we retrieve K5 with the following two steps.

— For a fixed associated data and message, we search for a pair of nonces
(N1, N3) which produce a collision for the input of Ek, using a birthday
attack. For such pair of nonces (N1, N2), AG = N1 & No = 51 @ Ss.

— With a known AG, a polynomial equation in K is derived from the GHASH,
definition. Then K5 can be retrieved by solving this equation.

In this section, we will give the detailed description of the recovery of Ks.

4.1 Properties of GHASH

Let IT = (SEnc,SDec,SVer) denote the scheme GCM-RUP. We focus on the
component GHASHg, with inputs the associated data A and the ciphertext C.
In order to clearly describe the attack, we rewrite GHASH, as

G = GHASHK, (A, C) = GHASHcoref, (A[|C||str,, /2 (| A])[|stry /2 (|C]))-

Universal Forgery Attack Against GCM-RUP 25

According to the definition of GHASHcore given by Eq. (1), G is linear in the
GHASHcore input (A|C|[stry2(|A])||strn/2(|C|)) for a fixed K. Therefore, we
consider the difference AG in the output of GHASHg, for a pair of inputs.

Property 1. When processing a fized associated data A and message M under
two distinct nonces (N1, Na) with GCM-RUP, the output difference AG of
GHASH g, is only dependent on Ny and Na, but independent on A and M. This
also holds for the input difference of Ek, .

Proof. For two tuples (N1, A, M) and (Na, A, M), query SEnc and get
(S1,C1) <« GCM-RUP(Ny, A, M),
(SQ, 02) — GCM-RUP(NQ, A, M)

Let G1 and G represent the corresponding outputs of the function GHASH,
in the encryptions under nonces N; and Ny, respectively,

G1 = GHASHg, (4, C1),
G2 = GHASHK, (4, Cy),

where
C, = (OTHM) @ Encg, (Nl),

Coy = (OTHM) D EnCKl (NQ)a
the function Encg, is defined in the upper dotted box in Fig. 2. Hence,

AG =G 8 Gy

= GHASHK, (A, C1) @ GHASHg, (A, C?). @
From the definition of GHASH, we have
AG = GHASHcoreg, (A ® A||Cy & Ca|
(stro2(|ADIstry 2 (1C1))) @ (stry 2 (|A])Istra2(1C21))) 3)

= GHASHcore, (0141 AC||0™)
= GHASHcore ., (0141||Enc, (N1) ® Encg, (N2)[0™),

which shows that the output difference of the function GHASHE, depend only
on N7 and Ny for two tuples (N1, A, M) and (N3, A, M). The input difference
of Ek, can be computed as

= N1 @ Ny ® GHASHcoreg, (0141 AC||0™),

so it is also independent of A and M. O

In particular, if we can recover a value AG, we can then extract Ky by
solving a polynomial equation, given the ciphertext difference AC' and the output
difference AG:

AG = GHASHcoreg, (04| AC||0™).

26 Y. Liet al.

For simplicity, we assume that |M| = n and 7 = n, this implies |C1| = |Ca| = 2n:
AG = AC|0]- K3 @ AC[1] - K3.

This a polynomial equation in K5 in the Galois field with 2128 elements. Luckily,
there are efficient algorithm to factor polynomials over finite fields. For instance,
the Cantor-Zassenhaus algorithm [5] requires O(n?(log(r) log(q) +n)) field oper-
ations to factor a degree-n polynomial with r irreducible factors over a field with
q elements. In practice, with the parameters used here, this takes negligible time
using the implementation of SageMath [40].

4.2 Recovering K3 from Inner Collisions

As explained earlier, the first step of the attack is to identify collisions in the
input of Ek,, defined as In = N @ G. Following the analysis above, we start
with a fixed associated data A and message M, and query SEnc for ¢ different
nonces, to receive the corresponding encrypted nonces S and ciphertexts C.

In order to simplify the description, we focus on the value In, and we consider
the function mapping N, A, M to In, denoted as PEnc, and represented by Fig. 3.
The output values of PEnc can not be accessed by the attacker, but collisions in
PEnc can be detected. As for In and the output Out of Fg,,

In=NoG,
Out =S & G.

When the collisions happen, AlIn = AOut = 0, which means

N1 ® N, d G DGy =0,
S1@ 5 &G &Gy =0.

Thus, N1 ® Ny = S1 & Sy = AG. If the collisions AN = AS can be detected,
the collisions in PEnc can be detected. Meanwhile, this type of collisions give out
the value of AG, which can be used to recover Ks. Moreover, the corresponding
pairs can be identified efficiently. We just build a list of all nonces indexed by
N; @ S;, sort the list and look for collisions: each collision corresponds to a pair
with N1 ® 51 = Ny @ Sy i.e. N1 & Ny = 51 ® S5. We now consider the converse,
and evaluate the probability of a collision in PEnc when N7 @ Ny = 57 & Ss.
We formally define the two events as X and Y:

-~ X (N1 ® Ny = 51 & Ss): the event identifying pairs of nonces (N1, Np) with
the input difference equal to the output difference of E,, which is called
outer collision (equivalently, it can be defined as AIn = AOut).

— Y (AIn = 0): the event identifying pairs of nonces with collision in PEnc, i.e.
zero input difference for E,, which is called inner collision.

First, we observe that Y C X, because if AIn = 0, then AOut = 0 and
Ny ® Ny = 51 ® Sy = AG. Therefore, we have

Pr[Y|X] =

Universal Forgery Attack Against GCM-RUP 27

€D

PEnc

Fig. 3. Representation of the function PEnc

Moreover, we have Pr[Y] = 27" because the output of PEnc with a fresh
nonce is random, assuming that F is a PRF. In order to compute Pr[X], we
consider two cases, depending on event Y:

1. AIn = 0. Then we have necessarily AOut = 0, i.e. Pr[X|AIn=0] = 1.
2. AIn # 0. A pair with non-zero input difference must produce a non-zero
output difference. Assuming that E is a PRF, we have Pr[X|AIn # 0] =
1

P
Therefore,
Pr(X) = Pr[AIn = AOut|
= Pr[AIn = AOut|AIn = 0] x Pr[AIn = 0]
+ Pr[AIn = AOut|AIn # 0] x Pr[AIn # 0]

OV SRS B S (5)
I L | 2n
1
= on—1 '
Finally, we can conclude
2—n 1

Attack Procedure. We can now give the detailed procedure to recover Ky:

1. Choose an arbitrary associated data A and a single-block message M, then
query SEnc for ¢ different nonces N and receive the corresponding encrypted

28 Y. Liet al.

nonces S and ciphertexts C; save them in a table indexed by N & S. With
a suitable value of ¢ (in the order of 2"/2), there are two pairs of nonces
(N1, No) satisfying N1 @ No = S1 @ S, one of which is expected to further
satisfy AIn = 0.

2. For each pair with N1 & Ny = S @ So, assuming that Aln = 0, we have
AG = AS and we obtain a cubic polynomial equation with unknown variable
K5, which can be solved with factoring tools:

AS = GHASHcoreg, (041 AC|0™) = AC[0] - K3 @ AC[1] - K2.
3. Identify the correct candidate for Ky with forgery attempts.

Using two pairs of nonces, this attack suggests a small set of six key candi-
dates. The correct key can be identified with forgery attempts, or by using more
pairs and looking for a repeated key candidate.

More precisely, we will describe how to construct a forgery with known can-
didate of K5 for GCM-RUP in Sect. 5 for a given message, which can be used to
filter the correct K5. There would be two cases:

— If the forgery is constructed under the correct candidate for Ko, it can pass
the verification algorithm of GCM-RUP.

— If the forgery is constructed under the wrong candidate for Ky, it will receive
a failure of the verification of GCM-RUP.

We only need to query the verification oracle SVer six times to identify the
correct Ko. The cost for this step is negligible.

Complexity Estimation. As already mentioned, the probability of two ran-
dom nonces N; and N, satisfying AIn = 0 is 27128, Starting from a set of ¢
queries, we can evaluate the probability p of finding an inner collision following
the analysis of the birthday paradox:

p ~ 1 . e_q2/(2><2128).

1
g~ /2x2128]n .
L—-p

Table1 shows number of nonces needed to achieve the given probability of
success.

Thus,

4.3 Experimental Verification with Mini-GCM-RUP

In order to verify our attack theory, we use a mini version of GCM-RUP con-
structed with the 16-bit block cipher 4-round Mini-AES [28] to experimentally
recover K. This experiment identifies pairs of nonces in event X and Y from
29 random nonces, and recover Ky with SageMath. We execute this experiment
several times to give some results to show the validity of probabilities of event
X and Y in our paper, the detail is listed in Table 2.

In this table, we see that probabilities of event X and Y conform to Eqgs.5
and 6, respectively. The complexity of this experiment is dominated by 2°.

Table 1. Number of nonces needed to achieve the given success probability

Universal Forgery Attack Against GCM-RUP

29

Number of nonces to identify inner collision | Probability of finding inner collision
2% 11%

264 39%

26° 86%

266 99.9%

Table 2. Experimental verification with Mini-GCM-RUP

(K1, K2, K3) Pair of nonces in X | AIn | Pr(X) | Pr(Y|X)
(0x3d0e,0x2afc,0x2e91) | (0x2704,0x0889) 0 5% 1
(0x7649,0x7b0d) | 0
(0x4ef3,0x454b,0x1e9a) | (0x2323,0x602d) 0 o 3
(0x11b7,0x2b2e) 0x0af7
(0x7bab,0x3a72) |0
(0x1215,0x1e05) 0xa3bb
(0x6593,0x093d) 0xbce8
(0x09bd,0x2db2) | 0x03cf
(0x7d35,0x5€97) 0
(0x5388,0x2641,0x7a4f) | (0x0ba9,0x46f5) 0x5393 | =& 1
(0x684d,0x5786) | 0
(0x334c,0x22e1) 0x0636
(0x4487,0x13f0) 0
(0x5413,0x03d8) | 0
(0x5a91,0x179f) 0x0c06
(0x5691,0x2ee9,0x5a68) | (0x3874,0x7546) 0x3fcb | 55 1
(0x44b0,0x4323) | 0

5 Universal Forgery Attack of GCM-RUP

In this section, we will construct forgeries for GCM-RUP given a candidate for
K5. We consider a challenge message M* (and possibly a challenge associated

data A*), and our goal is to construct a valid ciphertext for M*.

5.1 Almost Universal Forgery Attack

The first forgery attack makes only one query to the encryption oracle SEnc and

then constructs a forgery by solving an equation over G F(2!28).

For an arbitrary nonce N, associated data A and message M (with |M| =
|M*|), query (N, A, M), and receive the corresponding ciphertext (S,C). Let
G = GHASHk, (A, C), and the keystream used to XOR message is computed by

30 Y. Liet al.

) (o X A|4)

96
&
321 yl i yl i y i
INC32 I rI INC32 I VI INC32 I rI INC32 |‘1
Y VN YY YY Y
Ex, Ex, Ex, Ex,
msb T+M|
Y
M
P
M
A
- |
A4 | |
| | A
EK3 T EK4 | 3
|
| |
______ J
MNe
N\
A4 Y
(s) e

Fig. 4. A variant for GCM-RUP

Enck, (N) = C @ (07||M).

We create a valid encryption of M* by reusing the same nonce N and the values
G and S.

First, we compute C* corresponding to M™*:

C* = 07||M* & Enck, (N) -
= 07||M* @ (C @07 || M).

Then we construct A’ such that
GHASH, (A’,C*) = GHASH, (A, C),

where A, C, C* and K> are known. This gives a linear equation over G F(21%)
which can easily be solved assuming that |A’| > 128 and Kj # 0.

To summarize, for any chosen message M*, we can give a successful forgery
(A", M*,S’,C") satisfying (S’ = §,C" = 07| M*&(C&®07||M)). This is an almost
universal forgery, because we can choose M* freely but not A’.

Universal Forgery Attack Against GCM-RUP 31

5.2 Universal Forgery Attack

Alternatively, we can design an attack where we choose both A* and M*, using
2"/2 queries. First, we make 2"/2 queries (N;, A, M), for fixed A and M with
|M| = |M*|, and receive the corresponding (S;, C;). Since K5 is known, we can
compute G; = GHASH(A, C;), and recover the corresponding inputs and outputs
to EK3: EKB(Ni D Gl) =5, 9 G;.

Then, we can use the same nonces N; to build a forgery. For each N;, we
build the corresponding C from M* and C; as above, and we check whether
N; ®GHASH(A*, CY) is in the set of known inputs to Ex,. With high probability,
one of the nonces will result in a match N; & GHASH(A*,C}) = N; & G;, and
we deduce a forgery using S’ = 5; & G; & GHASH(A*, C)).

6 Variant of GCM-RUP

Our forgery attack against GCM-RUP highlights a potential weakness on the
structure of GCM-RUP: the output difference of the function GHASHg, can
be recovered with birthday complexity and this leads to a recovery of Ks. In
order to prevent this attack, we suggest to add a block cipher call in the TBC
construction used in GCM-RUP, as shown in Fig.4, to avoid leakage of the
output difference of the function GHASHk,.

This modified TBC still follows the XTX construction of Iwata and Mine-
matsu [24], using universal hash function Fr,(GHASHg, (A, C)) instead of the
original GHASHg, (A, C). The new universal hash function has the same security
bounds, but does not leak the key from an output difference. Thus, the security
proof of GCM-RUP is still applicable to this variant. But we do not provide a
formal security proof. The extra block cipher has a limited impact on efficiency,
and might offer better security by avoiding our attack.

More generally, the modified GHASH could replace GHASH in other designs.
In particular, the corresponding modification of GCM would prevent the uni-
versal forgery attack with complexity 22*/% given in [20]. We believe that this
construction is worth further study. Further work will be needed to determine
whether this modification actually provides extra security and how much.

7 Conclusion

This paper shows a birthday-bound attack against GCM-RUP [2] using inner
collisions to recover the output difference of the function GHASHg,. Hence, Ko
can be retrieved by solving a polynomial equation, and this directly leads to
a universal forgery attack against GCM-RUP. This forgery attack shows that
the construction of GCM-RUP breaks drastically when the security bound is
reached. This is surprising because no such attack is known on GCM: the best
known universal forgery attack requires 22/3 operations.

Finally, a minor modification of GCM-RUP is suggested to prevent this kind
of attack, using an additional block cipher to protect the output of GHASH.

32 Y. Liet al.

With little performance loss, this design focusing on GHASH can be applied to
all GHASH-based designs.

In a more general setting, our attack technique can be applied to the LRW
construction [21] with a polynomial universal hash function, as used in OCB, for
instance. Actually, the corresponding attack on OCB would match the previous
attack by Ferguson [9].

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 61572293 and 61602276, National Cryptography
Development Foundation of China under Grant No. MMJJ20170102, Major Scien-
tific and Technological Innovation Projects of Shandong Province, China under Grant
No. 2017CXGC0704, Natural Science Foundation of Shandong Province, China under
Grant No. ZR2016FM22.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol. 8873, pp. 105-125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6

2. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3-33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9_1

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531-545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_41

4. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 456-467.
ACM Press, October 2016

5. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Math. Comput. 36, 587-592 (1981)

6. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-
recovery attacks? TACR Trans. Symm. Cryptol. 2016(1), 114-133 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view /538

7. Dierks, T., Allen, C.: RFC 2246 - The TLS Protocol Version 1.0. Internet Activities
Board, January 1999

8. Dworkin, M.: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. National Institute of Standards and
Technology. SP 800-38D, November 2007

9. Ferguson, N.: Collision attacks on OCB. Comment to NIST, February 2002

10. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates -
forgery and key-recovery against AEZ and marble. In: Iwata, T., Cheon, J.H. (eds.)
ASTACRYPT 2015. LNCS, vol. 9453, pp. 510-532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3_21

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/3-540-44448-3_41
http://tosc.iacr.org/index.php/ToSC/article/view/538
https://doi.org/10.1007/978-3-662-48800-3_21

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Universal Forgery Attack Against GCM-RUP 33

Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92-108. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_8
Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.) Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12-16 October 2015, pp. 109-119. ACM (2015)
Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292-304. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2_23

Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15-44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5_2

Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 3-31. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_1

Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp- 31-49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5.3

Joux, A.: Comments on the Draft GCM Specification - Authentication Failures in
NIST Version of GCM. http://csre.nist.gov/groups/ST /toolkit/BCM /documents/
comments/800-38Series-Drafts/GCM/Jouxcomments.pdf

Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529-544. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6_32

Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8270, pp. 1-20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_1
Leurent, G., Sibleyras, F.: The missing difference problem, and its applications to
counter mode encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 745-770. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8_24

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31-46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_3

Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs and
GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 445-467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9.17

McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343-355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9_27

Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77-93. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27239-9_5

https://doi.org/10.1007/3-540-45473-X_8
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-32009-5_3
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38Series-Drafts/GCM/Jouxcomments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38Series-Drafts/GCM/Jouxcomments.pdf
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-27239-9_5

34

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Y. Liet al.

Mitchell, C.J.: On the security of XCBC, TMAC and OMAC. Technical
Report RHUL-MA-2003-4, 19 August 2003. http://www.rhul.ac.uk/mathematics/
techreports. Also available from NIST’s web page at http://csrc.nist.gov/
CryptoToolkit/modes/comments/

Nandi, M.: Bernstein bound on WCS is tight - repairing Luykx-Preneel optimal. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 213-238.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_8

Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 147-164. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_9

Phan, R.C.W.: Mini advanced encryption standard (mini-AES): a testbed
for cryptanalysis students. Cryptologia XXVI(4), 283-306 (2002).
https://staf.guilan.ac.ir/staff/users/rebrahimi/fckeditorrepo/file /mini-aes-spec.pdf
Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19-32. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9_3

Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. Trans. Inf. Syst. Secur. 6(3), 365-403 (2003)
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373-390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS,
vol. 8269, pp. 405-423. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42033-7_21

Sung, J., Hong, D., Lee, S.: Key Recovery attacks on the RMAC, TMAC, and
TACBC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
265-273. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X_23
Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22, 265-279 (1981)

The CAESAR committee: CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html
IEEE Standard for Local and Metropolitan Area Networks Media Access Control
(MAC) Security. IEEE Std 802.1AE-2006 (2006)

Information Technology - Security Techniques - Authenticated Encryption,
ISO/IEC 19772:2009. International Standard ISO/IEC 19772 (2009)

NIST: Lightweight Cryptography. https://csrc.nist.gov/Projects/Lightweight-
Cryptography

National Security Agency, Internet Protocol Security (IPsec) Minimum Essential
Interoperability Requirements, IPMEIR Version 1.0.0 Core (2010). http://www.
nsa.gov/ia/programs/suitebcryptography/index.shtml

Sage Documentation. SageMath Help. http://www.sagemath.org/

http://www.rhul.ac.uk/mathematics/techreports
http://www.rhul.ac.uk/mathematics/techreports
http://csrc.nist.gov/CryptoToolkit/modes/comments/
http://csrc.nist.gov/CryptoToolkit/modes/comments/
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://staff.guilan.ac.ir/staff/users/rebrahimi/fckeditorrepo/file/mini-aes-spec.pdf
https://doi.org/10.1007/3-540-68339-9_3
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/3-540-45067-X_23
http://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
http://www.nsa.gov/ia/programs/suitebcryptography/index.shtml
http://www.nsa.gov/ia/programs/suitebcryptography/index.shtml
http://www.sagemath.org/

®

Check for
updates

My Gadget Just Cares for Me - How
NINA Can Prove Security Against
Combined Attacks

Siemen Dhooghe®) and Svetla Nikova(®)

imec-COSIC, KU Leuven, Leuven, Belgium
{siemen.dhooghe,svetla.nikova}@esat.kuleuven.be

Abstract. Differential Power Analysis and Differential Fault Analysis
threaten the security of even the most trustworthy cryptographic primi-
tives. It is important we protect their implementation such that no sensi-
tive information is leaked using side channels and it withstands injected
faults or combined physical attacks.

In this work, we propose security notions tailored against advanced
physical attacks consisting of both faults and probes on circuit wires. We
then transform the security notions to composable security notions. The
motivation for this research includes the ease of verification time; the
creation of secure components; and the isolation of primitives in larger
protocols such as modes of operations. We dub our notion NINA, which
forms the link between the established Non-Interference (NI) property
and our composable active security property, Non-Accumulation (NA).

To illustrate the NINA property, we use it to prove the security of
two multiplication gadgets: an error checking duplication gadget and an
error correcting duplication gadget. The NINA proofs for error detect-
ing gadgets capture the effect of Statistical Ineffective Fault Analysis
(SIFA), an attack vector which threatens most current masked imple-
mentations. Additionally, we study error correcting techniques. We show
that error correcting gadgets can attain the Independent NINA property.
A stronger property which captures a clear separation between the effect
of faults and probes. Thus, we show that clever error correcting gadgets
improve on error detecting ones by achieving significant higher levels of
combined security along with guaranteed output delivery.

Keywords: Combined security - DFA - DPA - Masking - SIFA

1 Introduction

Differential Fault Analysis (DFA), proposed by Biham and Shamir in 1997 [8], is
an attack on a physical device which effectively reveals the secret key of a cipher
using well-placed faults in the encryption procedure. Differential Power Analy-
sis (DPA) is an attack which uses a cryptographic device’s power consumption
to launch a divide-and-conquer attack on the private key as first described by
© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 35-55, 2020.
https://doi.org/10.1007/978-3-030-40186-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_3

36 S. Dhooghe and S. Nikova

Kocher et al. in 1999 [26]. To facilitate key-extraction, several physical attacks
can be used against the implementation, we differentiate passive, active, and
combined attacks. Passive attacks observe the behaviour of a device during its
process, such as observing the process time or the device’s power consumption.
Active attacks tamper with the device’s functioning, such as inducing computa-
tional errors by fault injections. Using passive and/or active attacks for either
enhanced tampering or observation of the device’s reaction to tampering are
called combined attacks.

In order to defend against physical attacks without using expensive custom
hardware such as shields and detectors it is the algorithm that needs to coun-
teract passive, active, and combined attacks by securing it in a formal security
model. Passive adversary models and their corresponding security notions have
improved significantly over the last fifteen years, largely due to the introduction
of the probing adversary by Ishai et al. [25]. This adversary is capable of reading
the exact values on a number of circuit wires. The minimal number of wires the
adversary observes to learn a sensitive variable is defined as the order of probing
security. Duc et al. showed that the noisy leakage model [10,30] reduces to the
probing model assuming the presence of sufficient noise and independent wire
leakage, and more specifically that an implementation’s signal to noise ratio is
exponentially related to its probing security order [18]. While the probing model
helps to verify implementations, the time complexity is exponential in the secu-
rity order which is therefore not cost effective for larger implementations such as
symmetric ciphers. To streamline this verification procedure, Barthe et al. pro-
posed a composable security definition called Strong Non-Interference (SNI) [3].
This approach views circuits as the composition of several components and forms
a sufficient security condition, such that when multiple components are linked
together the total circuit is probing secure. Composable security definitions
allow designers to verify and optimise separate circuit components which are
small enough for a brute force verification technique. This technique has been
adopted in several tools to quickly verify implementations based on modular
designs [4,7,13]. The importance of a formal security notion, such as the probing
model, includes the need of assurance in high-end secure devices. To guarantee
such assurance, the Common Criteria was proposed as an international stan-
dard. These criteria specify the security and assurance users can have in their
sensitive devices where the strongest criterion requires a target of evaluation to
have a verified design which is only possible with formal security notions [20].

Apart from security models, the current literature provides countermeasures
against passive attacks. One example is the methodology of Ishai, Sahai and
Wagner (ISW) which guarantees protection of arbitrary circuits against passive
attacks using the previous discussed probing model [25]. This countermeasure
led to further study to increase its security and efficiency [5-7,9,12,19,22,34].
Another methodology to secure implementations is described in Threshold
Implementations by Nikova et al. [28]. By extensively using the masking scheme’s
and the cipher’s properties, they minimise the countermeasure’s latency and

My Gadget Just Cares for Me - How NINA Can Prove Security 37

randomness costs and, as a result, the method has been used to defend various
symmetric primitives [2,15,23,27,29].

Despite having formal security notions and countermeasures against passive
attacks, there are only few works which consider active and combined attacks.
The first is Private Circuits IT [24] which provides a countermeasure where the
active adversary is modelled as one who faults a bounded number of wires per
clock cycle. By viewing faults as probes, the work naturally offers protection
against a combined adversary. However, the implementation of the countermea-
sure and its efficiency is currently still a challenge [14]. Later on, the work of
ParTT [33] proposes to encode intermediate variables with error correcting codes
to detect errors. To protect against passive attacks, they apply threshold imple-
mentations on top of the encoding. The results are promising as they succeed in
protecting the LED cipher on FPGA. However, they only provide argumentation
for active security leaving out combined security and a formal adversary model.
As efficiency is a major concern for practical applications, the work of Impeccable
Circuits [1] only focuses on active attacks to find very efficient countermeasures.
They consider an adversary who faults up to a given number of gates and con-
sider compositional security, i.e., they look at the propagation of faults in their
components. Previous works looked at adversaries faulting and reading separate
wires, the work of CAPA [31] considers stronger adversaries. They use multiparty
computation to provide provable security against combined attacks by proposing
a new adversary model, the tile probe-and-fault model. This model considers an
adversary who is capable of reading and faulting whole areas in the implementa-
tion thus ensuring hardware protection against combined attacks. However, due
to their security model the countermeasures are heavy.

The adversaries considered in Private Circuits II and Impeccable Circuits
are a good start towards formalising active and combined security but they do
not yet allow for composable combined security definitions which are needed
by designers. In this work, we combine the wire faulting adversary with the
usual probing adversary to consider an attacker who can read and fault a given
number of wires in a circuit. Similar to the proposition of Non-Interference by
Barthe et al. [3], we build further on our adversary model by considering a
modularised circuit and proposing sufficient security conditions (Strong Non-
Accumulation and Strong NINA) such that modular compositions remain secure.

1.1 Contributions

The focus of our work is to propose compositional security notions which capture
active and combined attacks. We propose the following three security models
which provide either composable active or combined security.

— Non-Accumulation. With the Non-Accumulation (NA) model, we require
that an injected fault only affects one output share of the gadget. Thus, an
injected fault does not spread (accumulate) to more shares allowing the use
of error detection mechanisms to identify whether faults have occurred in the
design. As a result, the NA model effectively moves the verification process
from large circuits to smaller subcomponents.

38 S. Dhooghe and S. Nikova

— NINA. The models of Non-Interference (NI) and Non-Accumulation (NA)
are combined to form the NINA model capturing combined security. The
model requires that a probed and faulted gadget returns an output where
only a few output shares are faulted and where the adversary learns only a
subset of the input shares. Due to NINA simulating the correctness of the
unmasked output, it captures attackers using ineffective faults [11].

— Independent NINA. As the NINA notion requires the provision of shares
to the simulator for every fault or probe injected in the gadget, its provided
combined security is limited. We propose a stronger notion, dubbed Inde-
pendent NINA, which separates the effect of faults and probes, and relaxes
the requirement of giving shares to the simulator for each injected fault. The
ININA notion can be attained by a gadget using error correction techniques
and clever use of injected randomness.

To show our security notions in action, we propose two Strong NINA
(SNINA) secure multiplication gadgets.

— Error Detection: We propose a multiplication gadget using duplicated
Boolean shares with an error detecting mechanism. We show that the gadget
is vulnerable to a Statistical Ineffective Fault Attack (see [17]) but the prob-
ability for the attack to succeed can be made arbitrarily small by increasing
the number of shares. Thus, we prove that the gadget still attains SNINA
security. Last, we provide an abort mechanism to show the gadget does not
rely on an ideal abort command.

— Error Correction: For the second construction, we adapt the error detect-
ing gadget and add error correction methods. The result is a gadget which is
impervious to ineffective faults and, moreover, we show the gadget achieves
the stronger notion of Strong ININA. This notion proves that the level of
combined security is higher than the error detection variant, i.e., the adver-
sary does not gain any advantage by using faults in addition to probes. This
shows that, although error correction techniques are more expensive, they
give a significant increase in protection against combined attacks as well as
guaranteed output delivery.

For the proofs of the composability of the NINA notion and the security of
our proposed gadgets, we refer to the full version of the work [16].

2 The Circuit Model and Secret Sharing

We introduce gadgets, private circuits, and the notion of simulatability. Similar
to [25], we represent computations in arithmetic circuit form, a directed acyclic
graph whose nodes are operations over a finite field F and whose edges are wires.
Additionally, we consider probabilistic arithmetic circuits, meaning circuits with
nodes having no input and uniform random elements over F as output; this
randomness is independent and identically distributed, and the correctness of
the circuit is not dependent on it. In order to resist fault attacks, we consider

My Gadget Just Cares for Me - How NINA Can Prove Security 39

nodes with no output and which can abort the computation. This abort signal
works as a broadcast making all wires in the circuit read L when the signal is
sent out.! The adversary also receives this abort signal as it can view from the
state of the output whether the circuit aborted or not.

In order to defend algorithms against side-channel attacks a sound and widely
deployed approach is the masking countermeasure which was introduced at the
same time by Chari et al. [10] and by Goubin and Patarin [21]. The technique
splits each key-dependent variable x in the algorithm into shares x; such that
x =Y . x; over a finite field F. In case this field is binary, this masking method
is referred to as Boolean masking. If no d shares give information on the secret
we say that the masking scheme has a passive threshold d. We also work with
independent share vectors x and y as those where the shares of = are independent
from the shares of y.

To defend an algorithm against fault attacks the core idea is to utilise redun-
dancy to enable detection of the injected faults. This redundancy is found in
encoding intermediate variables using error detecting codes. A popular encoding
method is to duplicate intermediate variables, such that, by checking whether
all duplicates are equal, an algorithm can detect injected faults. If all sets of k
faulty shares in a share vector are detectable, we say that the encoding scheme
has an active threshold k.

Using masking and encoding of variables as the core idea to protect secrets
against passive and active attacks, we introduce terminology to protect algo-
rithms. A probabilistic circuit with shared inputs/outputs and, if needed, the
capability to abort the computation is dubbed a gadget.

Definition 1 (Gadget). A gadget G is a probabilistic circuit with input in
F™ (m inputs where each input is divided into n shares), uniform randomness
r € F*, and a shared output in F™™ or abort L.

Concerning symmetric primitives, the secrets are each potential intermediate
variable of the primitive. In other words, to protect the primitive against passive
or active attacks, it works solely over shared variables.

Additionally, we define private circuits as probabilistic circuits consisting of
a gadget, where its inputs are first shared and the shared outputs are recon-
structed.

Definition 2 (Private Circuit [25]). A private circuit implementing the func-
tion f:F™ — F™ s defined by a triple (Z,C,O), where

— I :F™ — F™ is a probabilistic circuit with uniform randomness, called input
encoder;

~ C:Fvm S Fm g g gadget with uniform randomness and the ability to abort;

~ O :F"™ S F™ s a circuit with the ability to abort, called output decoder.

Since we will be working with composable security definitions, we typically
consider that private circuits are composed of several gadgets, i.e., the output
of one gadget forms the input of another.

1 On hardware this functionality is replaced a specialised mechanism such as a cas-
cading gadget from [24].

40 S. Dhooghe and S. Nikova

Input, Probes, Faults

Output, Probed Values, 1

Fig. 1. Interaction between a circuit C and an adversary A.

We aim to protect against passive, active or combined adversaries as those
who interact with a circuit by placing probes, faults, or both respectively. As
shown in Fig. 1, the circuit responds to this adversary by setting or toggling the
values on the faulted wires and returning the values on the probed wires. The
state of the abort signal (true or false) is returned as well.

In order to make simulation based proofs for the secrecy of shared variables
in gadgets, we define simulatability similar to the definitions proposed in [5,9].
However, we additionally consider that up to k wires in that gadget have been
faulted and that the gadget can abort. Here the adversary (distinguisher) is
either interacting with the actual gadget or with a simulator. This simulator is
given only a part of the input and does not know the secrets of the gadget. The
distinguisher’s goal is to determine whether it is interacting with the simulator
or with the actual gadget. A failure to do so implies that the adversary can know
at most the shares given to the simulator and as a result only some inputs of
the gadget.

Definition 3 (Simulatability). Let P = {p1,...,pa} be a set of d probes of a
gadget C with m inputs where each input is divided into n shares. Let the set of q
shares of each input given to the simulator be denoted by I = {(i1,j1), ..., (im, Jq)}
C{l,...m}x{1,...,n}. Let F = {(f1,€1), ..., (fr,ex)} be a set of k injected faults
e; (either set or add) on the wire f; in C. Denote Cp g as the circuit C with
probed wires as per P and injected faults as per F. Finally, let L € {0,1} denote
the state of the abort signal in the circuit.

We define the simulator S and distinguisher D as the following probabilistic
functions.

S TP x F™ x F* — F4 x {0,1}

D :F? x {0,1} x F¥ x F*™ — {0,1}

We say that the set of probes P and the state of the abort signal L of the
faulted circuit Cp can be simulated with the set of values on the input wires 1
if there exists a simulator S, such that for any distinguisher D and any inputs
G4 «, we have that

| Pr[D(Cp,p(asy), Foas.) =1 = Pr[D(S(I, F), F,a..) = 1] |

1s negligible in the passive threshold of the sharing scheme, where the probability
s taken over the random coins in C,S and D.

We note that for composable security, as we will see later on, we require that
the probability for the distinguisher to view the difference between the circuit

My Gadget Just Cares for Me - How NINA Can Prove Security 41

and the simulator is negligible and we should take care composing gadgets when
it is not.

3 Security Definitions

In this section we specify orders of passive, active, and combined security and
expand them to composable security notions which is the focus of our work.

3.1 Orders of Security

Passive Security. To model passive security we consider the known probing
adversary who can read the exact values of up to a threshold number of wires
in a gadget. The order of passive security is the well-known order of probing
security.

Definition 4 (Order of passive security [25,32]). A private circuit is d"-
order passive secure (d*"-order probing secure) if every d-tuple of the gadget’s
intermediate variables is independent of any sensitive variable.

Active Security. We ensure protection against an adversary who is capable of
faulting a given number of wires in the circuit. We note that similar adversaries
have been proposed in Private Circuits II [24] and Impeccable Circuits [1]. The
order of active security is determined by the number of wires in the circuit the
adversary needs to fault in order to create an incorrect output. Such incorrect
outputs are important as they can activate DFA attacks, thus to secure imple-
mentations we require that the private circuit either gives back a correct output
or the process is aborted.

Definition 5 (Order of active security). A private circuit is k' -order active
secure if any set of k faults on the gadget’s intermediate variables results in either
abort L or a correct output (reconstructed output of the unfaulted circuit).

Note that active security guarantees output correctness and does not consider
fault attacks which target the privacy of a scheme such as ineffective faults.

Combined Security. We protect against a combined adversary who both faults
and probes wires and consider a private circuit secure if it retains both its privacy
and correctness against the combined adversary. This gives us the following
combined security definition.

Definition 6 (Order of combined security). A private circuit is (d, k)-order
combined secure if for any set of k faults and d probes on the gadget’s interme-
diate variables, the following holds.

(a) Privacy: The probed d-tuple with the state of the abort signal is independent
of any sensitive variable.
(b) Correctness: The circuit either aborts L or gives a correct output.

42 S. Dhooghe and S. Nikova

The combined security model with d = 0 still differs from the active security
model as the combined security model considers that an adversary can use the
knowledge on the state of the abort signal to derive the private circuit’s internal
variables. The difference between the two models thus lies in the combined secu-
rity model looking at both the privacy and correctness of a circuit while active
security only considers its correctness.

3.2 Composable Notions of Security

We note that the previously discussed security conditions are not composable,
i.e., the composition of multiple secure gadgets can be insecure. Thus, the previ-
ous security conditions should be applied to the entire implementation, instead
we look at composable security notions.

Passive Security. The security notion for composable passive security has been
studied by Barthe et al. [3] who defined the notion of Non-Interference (NI) using
simulation based security (see Definition 3).

Definition 7 (d Non-Interferent (d-NI) [3]). A gadget G is d-NI if any set
of at most d' < d probes can be simulated with at most d' shares of each input.

Intuitively, the above model grants composable security since a probed value
in a gadget can be simulated with an input share, which on its turn is the output
share of a previous gadget. In case the latter gadget is also non-interferent, this
output value can again be simulated with an input share. This chains until we
reach the encoding function in a private circuit (Definition 2). Since the adversary
can only probe d values we only need to use a secret sharing scheme of passive
threshold at least d to protect against our probing adversary. While the notion
of non-interference is a good start and captures a composable security notion
over the serial composition of gadgets, the notion is not sufficient to provide
protection when gadgets are composed in parallel (e.g., when two gadgets share
the same input). To this end Barthe et al. introduced the notion of Strong Non-
Interference (SNI).

Definition 8 (d-Strong Non-Interferent (d-SNT) [3]). A gadget G is d-SNI
if any set of dy probes on its intermediate variables and every set of do probes on
its output shares such that di +ds < d, the totality of the probes can be simulated
by only di shares of each input.

We note that intermediate variables can also be the input or output variables
of the gadget.

When the above notion of non-interference is combined with a sharing scheme
with a high enough passive threshold, the composable notion provides for probing
security.

My Gadget Just Cares for Me - How NINA Can Prove Security 43

Active Security. Recall that we defined the order of active security as the
maximal number of faulty wires such that the circuit still returns a correct
output. We now make this into a composable notion, thus we look at the effect
of a fault in a gadget which is part of a larger whole. Ideally an injected fault
in the gadget is not propagated, i.e., the fault does not affect the output of that
gadget. However, the adversary can always fault its output directly, meaning that
we can never guarantee that all outputs of a faulted gadget are correct. Instead,
we are interested in gadgets which do not accumulate faults. In other words,
we need a fault on a single input or intermediate wire to affect only a single
output of the gadget. We relax this requirement by allowing countermeasures to
abort the computation (e.g., by using error detecting methods). We thus find
composable active security notions which are similar in nature to the definitions
of NI and SNT discussed earlier. Our first notion is Non-Accumulation (NA).

Definition 9 (k-Non-Accumulative (k-NA)). A gadget G is k-NA if for
any set of k' < k errors, the gadget either aborts or gives an output with at most
k' errors.

k Faults Ga k Faults

k Faults 2k Faults
— G Gy ——

k Faults G3 k Faults

Fig. 2. An example of the propagation of faults over several k-NA gadgets for which a
stronger composability notion is needed.

For a gadget which is k-NA, k faults on its intermediate variables result in
the gadget giving an output with at most k faults. When composing gadgets, a
stronger notion of non-accumulation is needed to guarantee the security of the
composition. For example, consider the case given in Fig. 2 where each gadget G;
is k-NA. If an adversary injects k faults in the input of G, the gadget will give an
output with at most & faulty shares. These faults propagate to the inputs of G»
and G3 which, because both gadgets are k-NA, results in a worst case scenario
where G4 gets an input with a total of 2k faulty shares. The end result is a
sharing with 2k faulty shares even though only k faults were injected. To avoid
such an accumulation of faults, one needs gadgets which are capable of erasing
the errors from their input. The following definition of Strong Non-Accumulation
(SNA) is sufficient to arbitrarily compose gadgets and be assured of their active
security.

Definition 10 (k-Strong Non-Accumulative (k-SNA)). A gadget G is
k-SNA if for any set of k1 errors on each input and every set of ko errors on
the intermediate variables, with ki + ko < k, the gadget either aborts or gives an
output with at most ko errors.

44 S. Dhooghe and S. Nikova

When the non-accumulation notions are combined with a sharing scheme
with a high enough active threshold, the composable notions provide active
security.

Combined Security. We now look at composable security notions consider-
ing circuits which are both probed and faulted. First, we need to guarantee the
correctness of the output of each gadget. To capture the effect of faults in com-
positions of gadgets, we use an argument similar to the one on active security.
Thus, we need that an injected fault in a gadget propagates to at most one
output share. However, the adversary can now place probes and thus learn part
of the computation made in the gadgets. As a result, the combined security
notion needs to capture the probability of an adversary breaking the correct-
ness of a gadget given several faults and probes. In this work we only propose
countermeasures where the correctness can not be broken, to give an example
of a countermeasure for which this probability is non-trivial we refer the reader
to the CAPA countermeasure [31]. Apart from guaranteeing the correctness of
a gadget, we also guarantee its sensitive variable privacy for which we use sim-
ulation based arguments similar to non-interference. As mentioned by Clavier
et al. [11], fault injections can act as a probing tool (think of an adversary fault-
ing away the randomness in a gadget). Thus, we treat faults as probes giving
extra shares to the simulator per injected fault (though we see later on that this
is not always needed). Additionally, to give the designer the freedom to make
countermeasures more efficient we consider security with abort. To capture the
effect of the abort signal potentially revealing secrets in the gadget, we require
the simulator to reproduce this signal given the injected errors and some input
shares. As a result, we design a composable security notion of order (d, k) such
that the gadget is (d’, k’)-order combined security for all sets of d’'+k’ < d probes
and k' < k faults. We dub our notion NINA derived from the concatenation of
the names Non-Interference (NI) and Non-Accumulation (NA).

Definition 11 ((d,k)-NINA). A gadget G is (d,k)-NINA if for any set of
k' <k errors and any set of d’ probes, such that d’' + k' < d, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d' + k' shares
of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k'
erTors.

The NINA notion, combined with a sharing scheme having a sufficient passive
and active threshold, implies the notion of combined security (see Definition 6).
This follows from the simulation based security stating that the adversary can
learn up to a threshold number of the gadget’s inputs which, if lower than the
passive threshold of the sharing scheme, gives no information on the gadget’s
secrets. Similarly, since the adversary can only fault up to a threshold number
of outputs, a decoding gadget can detect or correct those errors given that the
sharing scheme has enough redundancy in it. A formal proof of this implication
is found in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 45

Theorem 1 A (d,k)-NINA gadget G with input encoding T and output decoding
O wusing a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d',k")-order combined secure for any d' + k' < d and
K <k

As a result, if we prove a gadget is NINA, we know it is combined secure.
However, just as with non-interference, the NINA notion is not sufficient for
composability. To this end we introduce “Strong NINA” (SNINA).

Definition 12 ((d,k)-SNINA). A gadget G is (d,k)-SNINA if for any set of
k1 errors on each input and ko intermediate errors, any set of di intermediate
probes, any set of dy probes on the output, such that dy + do + k1 + ko < d and
k1 + ko <k, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with di + k1 + ko
shares of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most ko
errors.

The notion of SNINA is sufficient for composability. In other words the com-
position of two SNINA gadgets is again SNINA (a proof is given in the full
version).

Theorem 2. The composition of two (d, k)-SNINA gadgets is (d, k)-SNINA.

The above theorem together with Theorem 1 implies that the notion of
SNINA is a sufficient condition to achieve composable combined security. The
relations between the SNINA notion and other security models is shown in Fig. 3.

k-SNA > k-NA — k Act. Sec.

@k |} (d,k)-NINA [(' F)
SNINA (d k) Comb. Sec.

d-SNI — d-NI — d Pas. Sec.

Fig. 3. A short overview of security models and relations between them.

Nevertheless, we find that there is a stronger property than NINA which
gives improved protection. In case we use error correcting techniques instead of
error detecting ones, specialised gadgets can attain a stronger security condition
where faults are no longer modelled as probes. Thus, we propose a security notion
where we claim an adversary can not learn anything by faulting a gadget which
manifests itself in the security definition as the simulator not getting an extra
input share for an injected fault. The result of this change is captured in the
following definition which we dub “Independent NINA” or ININA.

46 S. Dhooghe and S. Nikova

Definition 13 ((d, k)-ININA). A gadget G is (d,k)-ININA if for any set of
k' <k errors and any set of d' probes, such that d' < d, the following holds.

(a) Privacy: The probes can be simulated with d' shares of each input and the
injected errors.
(b) Correctness: The gadget gives an output with at most k' errors.

The above definition can again be made into a property which is sufficient for
arbitrary compositions. This gives us the notion of “Strong Independent NINA”
or SININA for short.

Definition 14 ((d, k)-SININA). A gadget G is (d, k)-SININA if for any set
of k1 errors on each input and ko intermediate errors, any set of dy intermediate
probes, any set of do probes on the output, such that di+ds < d and k1 +ko <k,
the following holds.

(a) Privacy: The probes can be simulated with dy shares of each input and the
injected errors.
(b) Correctness: The gadget gives an output with at most ko errors.

It is evident that the ININA notions are stronger than the NINA notions, thus
the above notions also provide combined security. However, the notion provides
directly (d, k)-combined security instead of (d’, k')-order combined secure for any
d + k' <dand k' < k. The proof of the following theorem is given in the full
version of the paper.

Theorem 3. A (d,k)-ININA gadget G with input encoding T and output decod-
ing O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d, k)-order combined secure.

As aresult, using the same masking scheme, a SININA secure gadget provides
significant improved combined protection over an SNINA secure gadget.

Similar to SNINA, SININA is sufficient for composability. In other words the
composition of two SININA gadgets is again SININA (a proof is given in the full
version of the paper).

Theorem 4. The composition of two (d, k)-SININA gadgets is (d, k)-SININA.

4 Combined Secure Duplicated Boolean Masking

In this section we introduce a combined secure methodology for an arbitrary
security order. We work over bits Fy, share values using Boolean secret shar-
ing and encode using duplication. We first quickly introduce the secret sharing
scheme and then move on to show our methodology. The security of the gadgets
is proven in the full version of the paper.

My Gadget Just Cares for Me - How NINA Can Prove Security 47

4.1 Duplicated Boolean Masking

For the proposed countermeasures, we make use of a duplicated Boolean masking
approach which shares a secret z as a vector

(961,1, cey L1,k+1,T2,1, ~~~7xd+1,k+1))

such that Zf:ll xzip=uxzforalll € [k+1]and x;1 = ... = z; k41 for all ¢ € [d+1].
This method has a passive threshold d meaning that no d shares give information
on the secret x and an active threshold k£ meaning that any faults on at most k
shares could be detected in the share vector.

4.2 Duplicated Boolean Methodology

We recall that our secret sharing scheme has a passive threshold d, meaning that
an adversary needs to view at least d + 1 shares to recover the secret, and an
active threshold k, thus an adversary needs to inject at least k£ + 1 errors for the
fault to be undetectable. We note that our methodology is similar to the one
from Private Circuits II [24]. The pseudo-code to secret share a value is given in
Algorithm 1.

Algorithm 1. Duplicated Boolean sharing a secret a

Input: Secret a and uniform random values 7;
Output: Duplicated Boolean shares of a

for { — 1to k+1do
for i — 1 to d do
Q0 < Tiy
end
Ad+1,6 < a+ 2?21 aie;
end

The addition between independent shared variables is quite simple and needs
only component-wise addition between the shares. Thus, the addition between
the sharing of a and b, giving a sharing of ¢ = a + b, is made by ¢; ¢ = a;,¢ + b; ¢.
To secure operations between shares and constants we ensure that the constant
is not a single point of failure, as such it also needs to be duplicated, namely
each constant is replicated (k + 1) times to form a (k + 1) tuple which is the
encoded value of the constant. The addition of a shared value a with a constant
c is done by adding the duplicated constant to the duplicated first Boolean share
of the variable.

Vlelk+1]: arp—are+ce

A multiplication with a constant is done by multiplying the duplicated constant
to each share.
Vi € [d-i-l], Ve e [k’-i-l] D Qe Qg Cp

Since the above operations are all local, they are evidently (d, k)-NINA.

48 S. Dhooghe and S. Nikova

While linear operations are easily implemented, the multiplication between
shared and encoded variables is more difficult. We give pseudo-code of our mul-
tiplication gadget in Algorithm 2. The gadget starts by multiplying two inde-
pendent share vectors of a and b to create all cross products of the form a;b;.
These cross products are then remasked by adding unique randomness r; ; cre-
ated by an RNG (which is important for the SNI property). Since we add the
same randomness over all duplicated cross products (u; ;¢ for £ € [k + 1]) all
these cross products should equal each other if no fault was injected. As a result,
we can error check them (which is important for the SNA property).? To detect
errors in the cross products it is sufficient to compare a share to all its duplicated
versions, in symbols:

VZ,] € [d+ 1], Vg c []i? + 1] : ui,j,l = Ui,j,l .

Since we are working over bits, this translates to aborting the computation in
case one of the w; j 1+ u; ;¢ is equal to 1. This abort operation is considered as a
command causing all variables in the implementation to read 1 as explained in
Sect. 2 (in Sect. 4.3, we describe a cascading gadget in case an abort operation
is not available). In case no error is detected, the gadget sums up all the cross
products for different indices j and returns a duplicated Boolean sharing of ab.
The proof that this multiplication procedure is SNINA is given in the full version
of the paper. From this proof we see that there is a statistical ineffective fault
attack (see [17]) which breaks the privacy of the algorithm. This attack works as
follows, the adversary adds a non-zero fault to one of the a;, shares (similarly
b; ¢ shares). In case the operation does not abort, the adversary learns that all
b; ¢ = 0 (similarly all a; ; = 0), which means the adversary learns an input secret
and breaks the privacy of the gadget. The probability for this attack to succeed
is equal to 1/|Fo|9*1. Due to the attack aborting the computation when it fails,
this attack does not threaten the composability of the gadget.® To increase the
protection against the ineffective fault, the probability for the attack to succeed
needs to be made sufficiently small which is done by increasing the number of
shares or by increasing the field size |F|. In Sect. 5 we look at an error correcting
variant of the multiplication gadget which is not vulnerable to an ineffective
fault.

In Algorithm 3 we provide a method to refresh the randomness of a shared
variable and check whether there are errors present on its shares. A proof of the
SNINA condition of Algorithm 3 is given in the full version of the work. We
note that this gadget can be used to transform a NINA secure operation into
its SNINA variant by serially composing the NINA gadget with Algorithm 3.

2 Note that if an adversary injects a fault directly in one of the random values r; ;,
it would not be detected. Nevertheless, the gadget still outputs a valid duplicated
Boolean sharing so it does not affect the correctness of the gadget. This fault should
be carefully investigated for its effects on the gadget’s privacy.

3 To clarify, the passive threshold of the sharing does not need to increase to assure
composability due to the only attack, causing simulator failure, aborting the com-
putation on success.

My Gadget Just Cares for Me - How NINA Can Prove Security 49

Algorithm 2. Multiplying duplicated Boolean shared values

Input: Independent shares of a and b, and uniform random r; ;
Output: Shares of ab or L

for / —1to k+1do
fori<— 1tod-+1do
Ui e < Qiebio;
forj—i+1tod+1do
Ui, g0 < Qi,ebje + 74 5;
Uji,0 < ajebie + 7553
end
end
end
for { — 2 to k+1do
fori—1tod+1do
for j — 1tod+1do
tige < Wig1 + Ui jes
if ¢; 5,0 = 1 then return 1;
end
end
end
for / —1to k+1do
fori—1tod+1do
Ci — 30 Wi jas
end
end

This follows from Theorem 5 which states that the serial composition between a
NINA gadget and an SNINA gadget is again SNINA. The proof of this theorem
is found in the full version of the paper.

Theorem 5. The serial composition of a single input, output (d, k)-NINA gad-
get with a (d, k)-SNINA gadget is again (d, k)-SNINA.

Thus, sometimes one can substitute SNINA gadgets with NINA ones without
sacrificing security. This reduces costs as NINA secure gadgets are generally more
efficient than their SNINA variants.

Together, all gadgets described in this section form a methodology to secure
arbitrary circuits as each algorithm over a finite field can be described in terms
of additions and multiplications.

4.3 A Cascading Gadget

In case an abort mechanism is not available, we provide a circuit which erases
all data when a fault is detected. This method is similar to the cascading gadget
described in [24] and thus we lend its name. We first make variables for the abort

50 S. Dhooghe and S. Nikova

Algorithm 3. Refreshing and checking a duplicated Boolean sharing

Input: Duplicated Boolean shares of a and uniform random values 7; ;
Output: Refreshed and checked shares of a or L

for / — 2 to k+1 do
fori<— 1tod+1do
tie < ain+ aiyg;
if ¢;» = 1 then return 1,
end
end
for /«—1to k+1do
fori—1tod+1do
for j—i+1tod+1do
Qi < Qe+ Ti5;
Qg0 < Q0+ Tij;
end
end
end

flag, we consider L, for £ € [k]. A priori, all Ly are equal to zero, however, when a
fault is injected we require that each 1, is set to one. In case the abort flag equals
all one, no k£ — 1 faults can change each L, back to zero. The above described
functionality is implemented by duplicating the error checks in Algorithms 2
and 3. For example, the error checking component (the first lines) of Algorithm 3
would be changed to the following.

for m <— 1 to k do
for { — 2 to k+ 1 do
fori«<— 1tod+1do
Lo — (a1 +aie) VL
end
end
end

From the above algorithm it is clear that in case one of the a;; does not
equal a; ¢, all 1, are set to one and no k£ — 1 faults can set them all back to
zero.

With the above abort flag as a global variable and its functionality as
described above, we can easily describe a gadget which erases its input in case
a 1., is equal to one. We give the pseudo-code of this gadget in Algorithm 4.

In case Algorithm 4 is serially composed with each Algorithm 2 or Algo-
rithm 3, our duplicated Boolean masking methodology is secure against com-
bined attacks without the need of an ideal abort command.

My Gadget Just Cares for Me - How NINA Can Prove Security 51

Algorithm 4. Cascading a duplicated Boolean sharing

Input: Shares of a and the abort state L, for m € [k]
Output: The shares of a or all 0
for { —1to k+1do
fori—1tod+1do
aie —aie [15_ (1 + Ln);
end
end

5 A Correcting Multiplication

In the previous section we gave a combined secure methodology based on detect-
ing errors using duplicated Boolean shares. However, Algorithm 2 is vulnerable
against a statistical ineffective fault. To avoid this vulnerability one can use
an error correction method instead of an error detection one. As there is no
longer an abort signal, a fault does not change the state of the output and as a
result ineffective faults are now actually ineffective. Note that this comes at the
increased cost of using extra shares and operations to enable error correction.

Instead of just replacing the error detection mechanisms with error correction
ones, we go one step further and create an error correcting variant of Algorithm 2
which attains Strong Independent NINA security (Definition 14). Whereas Algo-
rithm 2 was secure against d probes and k faults where the combined number
of probes and faults do not exceed d, our new algorithm does not require this
restriction thus it is secure against up to d probes and k faults at the same time.
In other words, a k-active adversary faulting the new multiplication gadget does
not harm the privacy of the gadget.

We introduce the error correcting multiplication gadget. We again work over
bits s, share values using d Boolean secret shares, but now encode using 2k + 1
duplicated shares (instead of k 4 1 shares). As such, the secret sharing scheme
has a passive threshold d, meaning that an adversary needs to view at least
d+ 1 shares to recover the secret, and an active threshold 2k, thus an adversary
needs to inject at least k 4 1 errors for the fault to be uncorrectable (note the
difference with the undetectability of faults). We give the pseudo-code of the
multiplication gadget in Algorithm 5. The error correcting gadget works similar
to the error detecting one. It starts by multiplying two independent share vectors
of a and b to create all cross products. These cross products are then remasked
by adding k£ + 1 random elements 7; j, to each of them. As a result, since each
cross product is masked by k + 1 random values, no set of k£ faults can remove
all random values on a cross product. Since we add the same randomness over
all duplicated cross products (u; ;¢ for £ € [2k + 1]) all these cross products still
equal each other if no fault was injected. As a result, we can error correct them.
An error correction on duplicated shares is done by majority voting the shares.
If at least k + 1 out of 2k + 1 cross products were equal to zero, the result of
this majority vote is zero otherwise it is equal to one. For brevity, we denote this

52 S. Dhooghe and S. Nikova

Algorithm 5. Multiplying shares with error correction

Input: Independent shares of a and b, and uniform random r; ;¢
Output: Shares of ab

for / — 1 to 2k +1 do
fori<— 1tod+1do
Ui i < Qiebip;
for j—i+1tod+1do
Ui g0 < Qiebje;
Uji0 < ajebie
for m—1to k+1do
Wi 5,0 <= Wi 5.0+ Ti5m;
Ujie <= Uj i+ Tigms;
end
end
end
end
for / —1to 2k +1do
fori—1tod+1do
for j—1tod+1do
Vi, < Maj(ui,]‘,h vy ui’j’2k+1);
end
end
end
for / +— 1 to 2k +1 do
fori—1tod+1do
Cig Zjill Vi 5,65
end
end

operation “Maj”, where we assume for simplicity that a probing adversary can
view all arguments given to the Maj function with one probe. We stress that this
error correction procedure is independently applied to each cross product, such
that a single fault can only affect one cross product. Our multiplication gadget
again ends by summing up all the cross products for different indices j and
returns a duplicated Boolean sharing of ab. The proof that this multiplication
procedure is SININA is given in the full version of the work.

6 Conclusion

We provided security notions considering circuits with probed and/or faulted
wires. We then extended them to active and combined composable notions sim-
ilar to the extension from the probing model to Non-Interference (NI). The first
notion of Non-Accumulation (NA) addresses composable active security which
states that a gadget is secure if injected faults affect only one output each.

My Gadget Just Cares for Me - How NINA Can Prove Security 53

The second is the notion of composable combined security (NINA). A gadget
is considered NINA if an injected fault only affects one output and a fault or
probe can be simulated using only one input. We discussed both error detection
and error correcting gadgets and showed that the error detection mechanism is
prone to ineffective faults whereas error correction comes at an increased cost
but gives significantly improved protection (Independent NINA).

The notions for composable security offer the ability to efficiently verify build-
ing blocks of larger implementations and allow for the search of efficient functions
which achieve security in the corresponding model. Moreover, these composable
notions enable us to use secured primitives in a larger whole such as modes of
operations.

Acknowledgements. The authors would like to thank Thomas De Cnudde, Adrian
Ranea, Vincent Rijmen, and Nigel Smart for their useful comments and ideas.

This work was supported in part by the Research Council KU Leuven: C16/18/004,
by the NIST Research Grant 60NANB15D346, and by the EU H2020 project FENTEC.
Siemen Dhooghe is supported by a Ph.D. Fellowship from the Research Foundation -
Flanders (FWO). Svetla Nikova was partially supported by the Bulgarian National
Science Fund, Contract No. 12/8.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Schellenberg, F., Schneider, T.: Impecca-
ble circuits. Cryptology ePrint Archive, Report 2018/203 (2018)

2. Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhythmic Keccak:
SCA security and low latency in HW. TACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(1), 269-290 (2018). https://doi.org/10.13154 /tches.v2018.i1.269-290

3. Barthe, G., et al.: Strong non-interference and type-directed higher-order mask-
ing. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, 24-28 October 2016, pp. 116-129. ACM (2016).
https://doi.org/10.1145/2976749.2978427

4. Barthe, G., Belaid, S., Fouque, P., Grégoire, B.: maskVerif: a formal tool for ana-
lyzing software and hardware masked implementations. TACR Cryptology ePrint
Archive 2018, 562 (2018). https://eprint.iacr.org/2018/562

5. Belaid, S., Benhamouda, F., Passelegue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616-648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_22

6. Belaid, S., Benhamouda, F., Passelegue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10403, pp. 397-426. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9-14

7. Belaid, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T, Galbraith, S. (eds.) ASTACRYPT 2018.
LNCS, vol. 11273, pp. 343-372. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3_12

https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.1145/2976749.2978427
https://eprint.iacr.org/2018/562
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12

54

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Dhooghe and S. Nikova

Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

Cassiers, G., Standaert, F.: Improved bitslice masking: from optimized non-
interference to probe isolation. IACR Cryptology ePrint Archive 2018, 438 (2018).
https://eprint.iacr.org/2018 /438

Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398-412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1.26

Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181-194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_13
Coron, J.-S.: High-order conversion from Boolean to arithmetic masking. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93—-114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_5

Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 65-82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0-4

De Cnudde, T., Nikova, S.: More efficient private circuits II through threshold
implementations. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 114-124.
IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.15

De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194-212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2_10

Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove
security against combined attacks. IACR Cryptology ePrint Archive 2019, 615
(2019). https://eprint.iacr.org/2019/615

Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547-572 (2018)

Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423-440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5_24

Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
masking schemes in the presence of physical defaults & the robust probing model.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89-120 (2018). https://doi.
org/10.13154 /tches.v2018.i3.89-120

Gollmann, D.: Computer Security, 3 edn. Wiley (2011). http://eu.wiley.com/
WileyCDA /WileyTitle/productCd-1118801326.html

Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Kog, C.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158-172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

https://doi.org/10.1007/BFb0052259
https://eprint.iacr.org/2018/438
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1109/FDTC.2016.15
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://eprint.iacr.org/2019/615
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://doi.org/10.1007/3-540-48059-5_15

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

My Gadget Just Cares for Me - How NINA Can Prove Security 55

GroB3, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Bilgin, B., Nikova,
S., Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implemen-
tation Security, TISQCCS 2016 Vienna, Austria, October 2016, p. 3. ACM (2016).
https://doi.org/10.1145/2996366.2996426

Grof3, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of KECCAK. In: Kubdtova, H., Novotny, M., Skavhaug, A. (eds.)
FEuromicro Conference on Digital System Design, DSD 2017, Vienna, Austria, 30
August—1 September 2017, pp. 205-212. IEEE Computer Society (2017). https://
doi.org/10.1109/DSD.2017.21

Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308-327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679-19

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463-481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

Moradi, A., Poschmann, A.; Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69-88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4_6

Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529-545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308_38

Poschmann, A.; Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322-345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142-159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9_9

Reparaz, O., et al.: CAPA: the spirit of beaver against physical attacks. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121-
151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_5
Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413-427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28

Schneider, T., Moradi, A., Giineysu, T.: ParTI — towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302-332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5_11

Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF(2®)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Giineysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63-80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_4

https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1109/DSD.2017.21
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-48324-4_4

l‘)

Check for
updates

Modeling Memory Faults in Signature
and Authenticated Encryption Schemes

Marc Fischlin! and Felix Giinther2(®)

! Cryptoplexity, Technische Universitdt Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de
2 Department of Computer Science, ETH Ziirich, Ziirich, Switzerland
mail@felixguenther.info

Abstract. Memory fault attacks, inducing errors in computations, have
been an ever-evolving threat to cryptographic schemes since their discov-
ery for cryptography by Boneh et al. (Eurocrypt 1997). Initially requir-
ing physical tampering with hardware, the software-based rowhammer
attack put forward by Kim et al. (ISCA 2014) enabled fault attacks also
through malicious software running on the same host machine. This led to
concerning novel attack vectors, for example on deterministic signature
schemes, whose approach to avoid dependency on (good) randomness
renders them vulnerable to fault attacks. This has been demonstrated in
realistic adversarial settings in a series of recent works. However, a uni-
fied formalism of different memory fault attacks, enabling also to argue
the security of countermeasures, is missing yet.

In this work, we suggest a generic extension for existing security mod-
els that enables a game-based treatment of cryptographic fault resilience.
Our modeling specifies exemplary memory fault attack types of different
strength, ranging from random bit-flip faults to differential (rowhammer-
style) faults to full adversarial control on indicated memory variables. We
apply our model first to deterministic signatures to revisit known fault
attacks as well as to establish provable guarantees of fault resilience
for proposed fault-attack countermeasures. In a second application to
nonce-misuse resistant authenticated encryption, we provide the first
fault-attack treatment of the SIV mode of operation and give a prov-
ably secure fault-resilient variant.

Keywords: Fault attacks - Security model - Fault resilience -
Deterministic signatures - Nonce-misuse resistant authenticated
encryption

1 Introduction

Since their first treatment in the cryptographic realm by Boneh, DeMillo, and
Lipton [20] in 1997, fault attacks (i.e., attacks that induce unexpected distur-
bances during computations) have evolved as an important class of attacks to

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 56-84, 2020.
https://doi.org/10.1007/978-3-030-40186-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_4

Modeling Memory Faults in Signature 57

assess the strength of cryptographic systems. While the possibility of faults acci-
dentally occurring in hardware chips was already known in the 1970s [42], the
work by Boneh et al. as well as others [20,39] demonstrated that faults can
have devastating effects on the security of cryptographic systems, more specifi-
cally RSA and other signatures making use of the Chinese Remainder Theorem.
The attack by Boneh, DeMillo, and Lipton inspired—beginning with Biham and
Shamir introducing differential fault analysis [18]—a long line of research on
different types of fault attacks challenging the security of cryptographic sys-
tems. These in particular encompass a wealth of different hardware tampering
attacks, ranging from manipulation of the system’s voltage, clock, or tempera-
ture to electromagnetic disturbances or laser irradiation (see, e.g., [3,4] for an
overview).

For a long time, countermeasures against fault attacks focused on making
the cryptographic hardware tamper-resilient (or tamper-proof). In 2014 how-
ever, a break-through research result by Kim et al. [40] demonstrated that faults
can be remotely injected in modern hardware through software access only. More
specifically, their attack leveraged that high-frequency repeated read /write oper-
ations to some memory address (“hammering”) in DRAM memory may induce
disturbance errors in other nearby addresses. Kim et al. described how in a so-
called rowhammer attack a malicious process can induce controlled disturbances
(i.e., bit flips as differential faults) in the memory of another process, circum-
venting the memory isolation security mechanisms of the computing system. In
follow-up work, the rowhammer attack was refined further. Specifically, Razavi
et al. [50] improved the attack in a way that enabled flipping individual bits in
nearby memory in a fine-grained manner, even across the boundaries of virtual
machines hosted on the same hardware.

It does not come as a surprise that software fault attacks like rowhammer can
have critical security implications for cryptographic systems. Razavi et al. [50]
already demonstrated how bit-flipping attacks in RSA public-keys stored by
the SSH protocol for authentication [61] enable easy factorization and thereby
break the authentication system. More recently, Poddebniak et al. [48] formal-
ized rowhammer-style attacks that specifically target the setting of deterministic
signature schemes, opening up a new type of attack vector in this area.

Deterministic signature schemes emerged from the insight that good ran-
domness might not always be available in the signing process due to failures
in the random number generation. This may be due to restricted hardware
settings where no good randomness source is available or a result of badly
implemented or flawed random number generators [24,28,34,36]. In such cases,
signature schemes like DSA or ECDSA [46] that crucially rely on good per-
message randomness in the signing process will fail catastrophically. Prominent
incident examples include the compromise of the ECDSA signature keys for
Sony’s Playstation 3 [30] or key leaks in cryptocurrencies [21,22].

To obviate the dependency on good randomness in the signing process,
M’Raihi et al. [44] put forward the concept of making signature schemes deter-
ministic through what we call de-randomization. The idea is to replace the

58 M. Fischlin and F. Ginther

ephemeral randomness sampled in the signing process by the output of a ran-
dom oracle [14] evaluated on the secret signing key and the message to be signed.
This way, no genuine randomness source is required for signing while the used
input remains uniformly random from the perspective of an adversary with-
out knowledge of the secret signing key. The de-randomizing approach has been
widely adopted, e.g., in the specification of deterministic versions of DSA and
ECDSA through RFC 6979 [49] or upfront in the design of the EdDSA signature
algorithm proposed by Bernstein et al. [16].

Poddebniak et al. [48] now show that the introduced determinism in such
schemes enables new kinds of fault attacks. More specifically, they formalize
how rowhammer-style attacks can be deployed to recover signing keys by inject-
ing faults in the deterministic computation of ECDSA and EADSA signatures.
This is done in such a way that two signatures on two different messages are
computed (one original, and one resulting from the memory fault attack), but
with the signing algorithm (re-)using the same per-message random nonce. They
then demonstrate the practical feasibility of their attacks on an EADSA imple-
mentation in a realistic setting across virtual machines.

In their work, Poddebniak et al. [48, Section9] touch upon a number of
countermeasures. Notably, they specifically highlight that the commonly sug-
gested countermeasure to verify the signature before releasing it in order to
check correctness of the computation [20,41] turns out to be ineffective in pro-
tecting against their attack: the resulting signature is actually valid for the mes-
sage modified through the fault attack. They conclude that the only crypto-
graphic mechanism that would render their attack infeasible is to re-integrate
randomness in the signing process in addition to the deterministically derived
per-message nonce. This supports the design of the XEdDSA signature scheme
by Perrin [47] deployed in the Signal secure messaging protocol [58], which aug-
ments the EADSA nonce derivation with an additional random value in order
to protect against glitches in the computation, referring to an observation by
Schmidt [57].

In several works concurrent and closely related to that by Poddebniak et
al. [48], Romailler and Pelissier [54], Ambrose et al. [1], as well as Samwel et
al. [55,56] studied differential fault and side-channel attacks on deterministic
signatures in general and the ECDSA and EdDSA schemes specifically, also
revisiting a previous result by Barenghi and Pelosi [5]. Notably, all works agree
that adding randomness back into the signing process is necessary in order to
prevent the described fault attacks. Indeed, the lattice-based signature proposals
qTesla' and Dilithium? for NIST’s post-quantum standardization process both
include now a randomized version in the second round update because of the
attacks.

Contributions. At this point, the current state of understanding of memory
fault attacks (on deterministic signatures and more generally) leaves us with

! https://qtesla.org/.
2 https://pg-crystals.org)/.

https://qtesla.org/
https://pq-crystals.org/

Modeling Memory Faults in Signature 59

the questions of how to formally capture different types of memory faults and
relate their strength, and how to assess whether proposed attack countermea-
sures indeed provide security against certain classes of fault attacks. In this
work, we approach an answer to these questions through establishing a gener-
alized game-based security model capturing cryptographic fault resilience. We
then apply this model to recapitulate the fault attacks discussed, establish prov-
able security results for proposed countermeasures, and derive novel measures
for the setting of nonce-based authenticated encryption.

Security Model Extension for Fault Resilience. We introduce, in Sect. 2, a game-
based framework for extending existing security models in order to capture mem-
ory fault attacks resp. resilience against such attacks. Our approach generalizes
fault attacks of different strength on memory variables through a modeling tech-
nique akin to callback functions in programming languages. The specific types
we define range from full adversarial control to controlled (rowhammer-style) bit
flips to random faults, both transient and persistent; further types of memory
fault attacks can be easily captured in our formalism.

As a result, our security model on the one hand allows us to formalize weak-
nesses in a cryptographic scheme through describing memory fault attacks as an
abstract set of adversarial interactions with the scheme. On the other hand, the
model enables us to positively establish provable security results for the fault
resilience of a scheme against well-defined classes of fault attacks. We will use our
model in the former way to demonstrate how known memory fault attacks are
reflected in the model. In the latter way, we employ it to evaluate the provable
security guarantees of potential countermeasures reconciling weak-randomness
and fault-attack protection.

Fault Resilience of Signatures. We then apply our model (in Sect.3) to assess
the fault resilience of digital signature schemes. To this end, we first augment the
classical notion of unforgeability with our security model extension to capture
memory fault attacks. A key point in the augmented model is to attribute the
signature to a message, because the adversary may alter the message content
during the signing process. The extension enables us to formally restate the
concept of above fault attacks on deterministic signatures [1,48,54,56] in terms
of our security model, as a sanity check for our modeling so to speak.

More importantly, we then formalize the proposed countermeasure to include
additional randomness in the signature generation process along with potential
fault-attack vectors. One countermeasure, used in XEdDSA, is to derive the
necessary randomness for signing by applying a pseudorandom function to the
message, but also mixing in a random value in this pseudorandom function
evaluation. An alternative countermeasure is to compute the exclusive-or of the
pseudorandom value with the random string. We are able to formally establish
that both approaches indeed achieve the desired goal of providing combined secu-
rity: achieving fault resilience when good randomness is present while upholding
regular security of a de-randomized scheme under arbitrarily weak randomness.

60 M. Fischlin and F. Ginther

Fault Resilience of Authenticated Encryption. Finally, we demonstrate the gen-
erality of our security model extension by applying it to another setting (in
Sect. 4), namely that of nonce-based and nonce-misuse resistant authenticated
encryption [51-53]. Somewhat similar to the setting of deterministic signatures,
nonces were introduced to authenticated encryption schemes in order to obviate
the need for randomness in the encryption process, again for (good) randomness
not always being available.

There has been some preliminary work on fault attacks on nonce-based
authenticated encryption (e.g., [26,27]). To the best of our knowledge, we how-
ever provide the first fault-attack treatment of the SIV mode of operation pro-
posed by Rogaway and Shrimpton [53], aiming also at nonce-misuse resistance.
Unfortunately, the SIV mode does not provide any fault resilience even under
the weakest types of (random single-bit flip) fault attacks in our model. How-
ever, we can show that translating concepts similar to the additional-randomness
countermeasure for deterministic signatures allows us to derive a randomness-
augmented mode SIV$ which provides strong misuse-resistant authenticated
encryption security while protecting against differential fault attacks.

Further Related Work. Faults in cryptographic schemes and formal ways
of establishing fault resilience have been studied in different settings before.
Ishai et al. [37] model faults in gate-wise computations in (conducting) circuits,
focusing rather on hardware than on memory-based faults like rowhammer. Their
approach ensures security through “self-destructing circuits,” whereas our model
aims at upholding functionality and security under a defined class of faults.
Faults in (memory) variables of cryptographic schemes have been considered by
Coron and Mandal [25] in their provable-security model tailored to random faults
in RSA signatures. Barthe et al. [6] treated non-random fault attacks on RSA in
a model generalizing attacks from [32]. Extending the principle idea of provable-
security treatment of memory-variable faults, we provide a generic security model
capturing general memory faults in arbitrary cryptographic primitives.
Memory-based fault attacks like rowhammer can also be used to modify
the control flow of programs (through return addresses and the like). Similar
tampering with program control flow is possible through a range of hardware
tampering, in cases enabling fine-grained instruction skipping [3,4]. This nat-
urally also effects cryptographic implementations (see, e.g., attacks on elliptic
curve cryptography [17,19,59]) and could potentially be seen as an extreme,
transient form of algorithm substitution attacks [13]. It remains unclear how
cryptographic schemes themselves can counter control-flow faults, and thus in
this work we focus on faults modifying their data residing in memory.
Related-key attack (RKA) security [12,33] studies fault attacks in a setting
where faults are restricted to the key material of cryptographic primitives, bound
to a class of related-key deriving functions. While RKA security can be a building
block for achieving strong fault resilience, our model more generally considers
memory faults of various types that affect arbitrary memory variables. We leave

Modeling Memory Faults in Signature 61

studying the detailed relationship between RKA security notions and memory
fault resilience as a possible avenue for future work.

As remarked above, one of the challenges for signature schemes is to link
the signature to a message, because the message may change during the signing
process. The notion of incremental cryptography [10] faces a similar problem
of attributing signature creations to messages in a setting where the adversary
may tamper with the input. The idea of incremental signature schemes is to sign
a message from scratch, and when the message is later slightly edited, one is
able to update the signature fast by accessing only a few message blocks. In a
strong notion for virus protection [11], Bellare et al. consider the possibility that
the adversary may alter the message before making an update call to create a
new signature. Since the update algorithm can only access a bounded number
of message blocks it cannot check validity of the entire message and potentially
works on a substituted message. From a security viewpoint this too raises the
question which message one assigns to the derived signature. Bellare et al. [11]
correlate the unaltered message which the signer would have expected to the
signature.

Note that incremental signatures on the one hand touch a simpler problem
than in our case. This is so because, there, the adversary can change the message
only once, before calling the signature creation. In contrast, our adversary may
continuously provide different values during the signing process, every time the
data is accessed. At the same time our case does not deal with fast updates
and may read the entire message. When adapting our fault-resilience model to
the setting of signatures in Sect. 3.1, we will see that with introduced faults, the
challenge message-signature pair to record turns out to be the (at most) one
valid combination seen among all faulted variables.

In the setting of hedged public-key encryption as introduced by Bellare et
al. [7], similar combiner techniques are employed as in the countermeasures rec-
onciling weak-randomness and fault-attack protection for deterministic signa-
tures and authenticated encryption we discuss in Sects. 3.3 and 4.3. We leave it
as an open question for future work to study whether such techniques enable
fault-resilient security for hedged public-key encryption, too.

Concurrent Work. In concurrent and independent work, Aranha et al. [2]
studied the security of hedged randomness derivation in Fiat-Shamir—type sig-
natures under fault attacks. Focusing on the Fiat-Shamir transform, they treat
tailored (memory) fault types occurring in such design and particularly study
Schnorr signatures as well as the NIST post-quantum signature candidate Pic-
nic23. Their model considers a limited adversary capable of injecting (only) a
single fault as setting or flipping a single bit in a function input or output.
Our approach is more generic, introducing a generic extension to capture arbi-
trary and strong memory fault attacks in any cryptographic scheme. Beyond also
studying signatures and their de-randomization and hedging as prime practical

3 https://microsoft.github.io/Picnic/.

https://microsoft.github.io/Picnic/

62 M. Fischlin and F. Ginther

example, we exemplify this generality by furthermore treating nonce-misuse—
resistant authenticated encryption in our framework.

2 Modeling Fault Resilience

We begin with developing our generic security model extension for capturing
memory fault attacks on cryptographic primitives. Such attacks arise through
various means in practice and may range from single or few random bit-flips over
rowhammer-style controlled flips of one or several bits to full control over the
memory enabling injection of arbitrary values. Their effects may be transient
and vanish after some subsequent memory access, or a persistent change to
the affected bits in memory. In the security model extension we propose in the
following, we capture all these different types of faults in a generic manner and
formally relate their strength.

At the heart of our model is the observation that while memory fault attacks
may be executed at arbitrary points during an execution, they come into effect
only when variables are read from memory. We therefore capture the adversary’s
capability to induce faults (of various types) into memory by providing it with
means to influence variable values when an algorithm reads them from memory
(i.e., uses them). Technically, we model such influence by introducing callbacks
to the adversary whenever a variable x is used within an algorithm. Resembling
callback functions in programming languages, an adversary is then given the
option to alter (i.e., fault) the value read/used for this variable.

The ways the adversary is allowed to alter the variable reflects the type of
fault attack in consideration: In a full fault attack the adversary can provide
an arbitrary value to be used. In a differential fault attack (flipping bits in
a controlled way, as in the rowhammer attack [40,50]), the adversary instead
provides a bitstring to be XORed to the variable it is used (while not learning the
resulting value itself). In a fault attack introducing random faults, the adversary
finally can merely choose how many bits to be flipped (with neither control
over the position nor obtaining the resulting value). In all cases, the introduced
fault can be either transient, applying only to the one read operation faulted, or
persistent, in which case the variable is overwritten with the faulted value.

Our model does not fix one type of fault attack, but flexibly allows to consider
different attack types for each individual memory variables in a scheme. This
captures that some memory variables may be harder to fault than others, e.g.,
for being shorter (and thus more difficult to target with rowhammer-style bit
flips) or residing in specially-protected memory. To enable this flexibility, we first
of all explicitly indicate in syntax that some memory variable x is considered
to be faultable by writing it as (&, with corner brackets when assigned. We
then indicate positions where a variable x can be faulted, modeled through
an adversarial callback, by writing its usage as (z) within angle brackets. This
finally enables security statements that formalize individual fault attacks on each
annotated variable. For example, we can that way capture an attacker injecting
(in the same attack) differential fault attacks into some variable z and random
fault attacks into some other variable y.

Modeling Memory Faults in Signature 63

Applying our security model extension to existing game-based security defi-
nitions yields notions that capture the original type of security under the con-
sidered fault attacks. To this end, the cryptographic scheme under consideration
is augmented by adding indications for faultable memory variables (e.g., ()
and callbacks (e.g., (x)) in its algorithm descriptions. The actual security exper-
iments remain syntactically largely unchanged, but now incorporate adversarial
faulting access to memory variables as indicated by the scheme.

Observe that while the extended security model’s dependency on the par-
ticular implementation and memory variable layout of a scheme might, at first
glance, seem to yield a somewhat dedicated security result, such dependency is
ultimately not surprising: the (non-)vulnerability of a scheme to memory fault
attacks inevitably depends on the handling of memory variables. At the same
time, abstract cryptographic algorithm representations are still reasonably close
to their implementation in terms of memory variables, and our model captures
strong and fine-grained adversarial faults on those variables.

A noteworthy change in the augmented security experiment however may
regularly be required in the evaluation of winning conditions and permissible
queries. As the latter may rely on faultable variables, we need to define which of
possibly several values of the now changing variable to use when evaluating such
conditions. For this purpose, our extension further provides access to the list of
values that each faultable variable took within some algorithm: we write 454 for
the sequential list of values that variable x took within some previously invoked
algorithm Alg. The unforgeability experiment for signatures detailed in Sect. 3
is an example for such a modified winning condition. There, we will make use
of the list msign containing all values of the message variable m used within the
signing algorithm to define the list of original signatures the adversary obtained
through the signing oracle.

2.1 Fault Types

For our security model extension, we explicitly specify four different types of
faults that an adversary may inject, and further distinguish between transient
and persistent faults. We however stress that the model itself is generic and can
be extended to encompass further fault types if desired.

On any read of a faultable variable x indicated by a callback (z), the adver-
sary A is invoked with an identifier for the read variable, indicated by A({x)).
(A implicitly keeps state between callbacks.) Note that this identifier is merely
a handle in order for A to know which variable the callback is for, but without
learning the variable value itself. Of course, the adversary knows the scheme’s
code itself; we furthermore let the handle for a variable also disclose the vari-
able’s bit-length to A. In case of transient faults, the callback only temporarily
modifies the value read for this variable for this specific read operation, but does
not alter the variable itself beyond that. I.e., several transient-fault callbacks (x)
on some variable x are always with respect to the original, non-faulted variable
value of x. In contrast, for persistent faults, the callback modifies the variable
in memory, which then also is used for the actual read operation.

64 M. Fischlin and F. Ginther

A o, (z)

r=xd A
record z' in T 414

o On e,
v v
Memory
< {x) (faultable variable x)
3 >

i

Fig. 1. Illustration of how our proposed extension for fault resilience (on the right in
blue) integrates through callbacks with the interaction of an adversary A and ora-
cles O1, ..., 0, within some classical security experiment (on the left in black). As an
example, we depict the callback query (x) and response for a transient differential fault
on some variable z. (Color figure online)

Beyond the distinction between transient and persistent faults, the fault-
injection callback (x) for some variable x behaves differently for each fault type
as described in the following and formalized in Fig. 2. We further illustrate the
integration of our callback-based model with an existing security experiment at
the example of a transient differential fault attack in Fig. 1.

Full faults: In a full fault attack, the adversary is allowed to arbitrarily modify
the faulted memory variable z.* This is modeled by giving the adversary full
control over the variable whenever it is read.

Differential faults: In a differential-fault attack, the adversary can flip (up to)
a certain number w € N of bits in the faulted memory variable z in a con-
trolled way. This is modeled by having the adversary supply a difference
value A which is then XORed to the variable value whenever read, where
the Hamming weight hw(A) of the difference value must not exceed w. As a
shorthand, whenever w > |z|, we omit w.

Random faults: In a random-fault attack, the adversary can flip (up to) a cer-
tain number N € N of random bits in the faulted memory variable, without
controlling which bits are flipped. This is modeled by letting the adversary
specify a number n < N whenever the variable is read and then flip n ran-
domly positioned bits of the variable value in the callback response. As a
shorthand, whenever N > |z|, we omit N.

No faults: For completeness, we also specify a “no-fault” behavior of the vari-
able callback (directly returning z), which enables formal comparisons of

4 The adversary can opt to not modify the variable by returning a special symbol L.

Modeling Memory Faults in Signature 65

1
Full fault R w-Differential fault
(x) within Alg: (z) within Alg:
'« A((z)) A+ A({z))
if 2/ = L then if hw(A) < w then
z, —x l‘/ —~xd A
T Alg <— xAlgH(x') else/
return z’ T T
Talg + Talgl|(2)
return z’
3
N-Random fault No fault
(x) within Alg: (z) within Alg:
n + A((z)) Talg < Tayl|(z)
n < min(n, |z|, N) return x
A& {Ae{0,1}* | hw(A)=n}
P A
Tl Talgl|(2")
return z’

Fig. 2. Specification of and implications between the four fault types: full faults,
(w-)differential faults, (N-)random faults, and no faults. In case of a persistent fault,
the returned value also overwrites the variable value. Implication arrows are annotated
with the respective lemma (above) and conditions (below).

classical security notions within the same notational framework. In general,
we omit annotating callbacks for non-faulted variables, though.

2.2 Relations

It is not surprising that full faults represent the strongest fault attacks in our
model on memory variables known by the adversary at the time of the callback,
e.g., some public parameter or a message input provided to a signing algorithm
by A. An adversary can capture any other fault behavior on such variables (which
we call “A-known”) by providing the resulting faulted variable value directly.
Note that this is not true for memory variables unknown to the adversary (e.g.,
the secret-key input to a signing algorithm): for such variables, the capability to
flip bits is incomparable in power to overwriting the value with an adversarially-
chosen one.

Furthermore, differential faults imply random faults for N < w, as the adver-
sary can sample a difference value A encoding n < N random bit flips on its
own, which has permissible Hamming weight hw(A) = n < N < w. Finally, all
fault types imply no faulting, as each allow the choice to leave the variable value
unchanged.

Regarding the relations between transient and persistent faults, both variants
are trivially equivalent for the full and no-fault types. In the case of differential

66 M. Fischlin and F. Ginther

and random faults, however, transient and persistent faults are indeed distinct
adversarial capabilities, as the accumulation of persistent fault injections cannot
be reproduced transiently if the number of bit flips or random bit faults on a
variable is restricted (to less than |z| for a differentially-faulted variable x).

We capture these expected relations between the different fault types in the
following three lemmas, providing a brief formal argument in each case. The
resulting implications are indicated by arrows in Fig.2.°

(A-known) . . .
Lemma 1 (Full faults =~ — = w-differential faults). For any security
experiment, any PPT adversary A, and any w € N, if A is successful in the
experiment with (transient or persistent) w-differential faults on some variable x
in algorithm Alg, with x being known by A, then there exists an adversary A’
successful in the experiment with (transient or persistent) full faults on x in Alg.

Proof Sketch. Since A knows z itself, an adversary A’ can mimic A’s behav-
ior through full faults. Whenever A replies to a differential-fault callback (z)
on x with a difference value A, A’ replies to its full-fault callback with =z & A
(accumulating persistent faults), resulting in the same variable value being
used. O

Lemma 2 (w-differential faults N=¢) N_random faults). For any secu-

rity experiment, any PPT adversary A, and any w, N € N with N < w, if A is
successful in the experiment with transient (resp. persistent) N-random faults on
some variable T in algorithm Alg, then there exists an adversary A’ successful in
the experiment with transient (resp. persistent) w-differential faults on x in Alg.

Proof Sketch. Observe that A’ can mimic A’s behavior as follows: whenever
A replies with some value n < N to a random-fault callback (x) on z, A’
instead samples n distinct random positions p1, ..., p, < {1,..., |z|} and replies
with a difference value A € {0, 1}l which is the all-zero string except for bit
positions p1,...,p,. Such response results in the same variable value and is
permissible as hw(A) = n < N < w. This strategy works both in the transient
and in the persistent fault setting. In the persistent case, the differential faults
of A" accumulate, correctly mimicking the accumulating random faults of A. O

Lemma 3 (Full/w-differential/ N-random faults = no faults). For
any security experiment, any PPT adversary A, and any w,N € N, if A is
successful in the experiment without faults on some variable x in algorithm Alg,
then there exist adversaries A, A", and A" successful in the experiment with
(transient or persistent) full faults, w-differential faults, resp. N-random faults
on x in Alg.

5 One can also argue that the notions form a strict hierarchy (i.e., that the reverse
implications do not hold), if used to attack cryptographic schemes. E.g., bending an
A-known A-bit string = to some random string r (say, to trigger randomness reuse
in a scheme) is easily achieved via full faults, but only with probability 2722 for
differential faults with w = A/2. Similarly, flipping w = A/2 bits in z to 0 is easy
with w-differential faults, but hard with random faults.

Modeling Memory Faults in Signature 67

Proof Sketch. In the case of full faults, A’ can mimic A’s behavior by always
returning the special symbol L on a callback (z). In the case of differential
faults, A’ mimics the behavior by always replying with the zero-string A = 01*l
to (x). In the case of random faults, A’ does so by always replying 0 to (x). O

3 Fault-Resilient Signatures

As the first application of our security model extension, we consider fault attacks
against signature schemes and study the resilience of different designs against
such attacks. We begin by augmenting the classical security notions for existen-
tial and strong unforgeability under chosen-message attacks for signatures with
our extension to capture fault resilience, as described in Sect. 2. We then study
the effects of faults specifically on a de-randomized (deterministic) signature
schemes and analyze to which extent the proposed countermeasure to include
additional randomness [1,48,54,56] provably provides fault resilience.

3.1 Fault-Resilient Signature Unforgeability

When augmenting the security notion for classical signature unforgeability, the
essential question to answer is: which message—signature pairs did the adversary
trivially learn through its signing oracle Osjgn while tampering the message input
during the signing process?

In the classical EUF-CMA security experiment without faults, the adversary A
obtains a signature o on message m under secret key sk, and the oracle Os;gn
records (m, o) in the set of oracle signatures Q. In the fault-resilience setting, the
adversary however is now able to modify the message while the signing process
is going on. As the simplest case, imagine A submitting some message m to the
signing oracle, but then introducing a single-bit fault when the message is read
once within the scheme’s Sign algorithm, leading to the signature being produced
on some m’ # m. If the fault-resilient unforgeability experiment simply recorded
(m,o) in the oracle signature list @, then A could trivially win against any
signature scheme by outputting (m’, o) as its forgery.

The key observation for lifting the classical signature unforgeability exper-
iment to the fault-resilience setting is hence that the list @ should record the
signature o together with the actual message it was generated on by the signing
algorithm. With the adversary being able to potentially fault the message sev-
eral times during the signing process (depending on the structure of the latter),
it at first sight may seem unclear which of the messages in the set msgjgn of mes-
sages accessed during the signing process to record in . Our definition is based
on the idea to include the messages which the signer “assumes to have signed
correctly” during the attack, i.e., we restrict ourselves to the subset m‘é?gg of
messages for which the output signature o actually verifies under the challenge
public key pk and which are not already included in @. In other words, these are
the new messages which the signer may have authenticated in the signing step.

If there are two or more such valid messages in m‘é?gg then the signer cannot

68 M. Fischlin and F. Ginther

Exptg'::%F'CMA(lk): Osign(m):
(sk, pk) < KGen(1*) o ¢ Sign(sk, m)
Q0 Mgn < {m' € msign | Verify(pk,m',0) =1
clash < false _ and (m/,*) ¢ Q}
(m*, ") & A% (1%, pk) if |m‘§?é',§’| > 2 then clash < true
return 1 iff clash or Q<+ QU {(me a) | me mé?;'ﬁ
[(m*,*) & Q return o
and Verify(pk, m*, o) = 1]

Fig. 3. Security experiment for fault-resilient existential unforgeability under chosen-
message attacks (frEUF-CMA) for signature schemes. We write (a,) ¢ Q if 3b s.t.
(a,b) € Q. The lines 24 in Osjg, are changed compared to the classical EUF-CMA
notion. Recall that msign is the set of values the message variable m took during the
signing process in line 1 due to fault callbacks.

reliably identify the intended message. In this case we declare the adversary to
win, captured via a flag clash which is set to true if there are multiple messages
in mg?g,‘j for any request.

The above definition in particular complies with the case that the adversary
mounts a regular attack and does not tamper with the messages at all. In this
case we would collect all signed messages in —one for each Osjgn query (unless
a message repeats and we do not extend ())—as in the regular case, but clash
would never become true. The fact that we declare the adversary to win if
there are two messages in m‘é?gg immediately, without requiring the adversary
to output the other (faulted) message as a forgery, releases the adversary from
having to know the other message. This gives a stronger security guarantee,
especially for random faults where bit flips may happen at unknown positions.

Put together, our signature unforgeability experiment adapted to the fault
resilience setting allows the adversary to inject faults within the signature gen-
eration (as specified by the signature scheme in question). In its list of obtained
signatures @, it records the first value of the messages m used within the signing
algorithm for which the generated signature o verifies under the challenge public
key. The augmented security definition for fault-resilient signature unforgeability
is as follows; the according security experiment in Fig.3 highlights the changes
from the classical experiment.

Definition 1 (Fault-resilient existential unforgeability of signatures).
Let S = (KGen, Sign, Verify) be a signature scheme and experiment Exptg?XF_CMA
for an adversary A be defined as in Fig. 5.

We say that S provides fault-resilient existential unforgeability under chosen-
message attacks (frEUF-CMA) if for all PPT adversaries the following advantage

function is negligible in the security parameter:

AdvZEFMA(N) o= Pr [Exptf;EjF'CMA(lA) = 1} :

Modeling Memory Faults in Signature 69

3.2 De-randomized Signatures Are Not Fault-Resilient

We now exercise our fault-resilient unforgeability notion to establish that de-
randomized schemes are vulnerable to the weakest fault injection attack of ran-
dom one-bit flips. This in particular confirms the corresponding observations
by Poddebniak et al. and others [1,48,54,56] in our formalism. To recap, de-
randomization here refers to the approach to deterministically extract a per-
message random value from the secret signing key and message input, replacing
an otherwise needed true random sampling of a per-message nonce. This app-
roach is employed, e.g., in the deterministic variants of the DSA and ECDSA
signature schemes [49] and similarly in a more direct manner in the EADSA sig-
nature scheme [16]. The latter scheme actually uses two pseudorandomly derived
sub keys for signing and for nonce generation but this does not invalidate the
attack.

We establish our result through the following abstractly de-randomized sig-
nature scheme Sy, generalizing the above approach. The scheme Sy, = (KGengy,
Signyg,, Verifyy,) de-randomizes a randomized signature scheme S = (KGen, Sign,
Verify). In order to generate necessary randomness for S’s signing algorithm,
Signy, invokes a cryptographic hash function H: {0,1}* — {0,1}Z* (modeled as
a random oracle [14]) on the scheme’s secret signing key and the message to be
signed. The key generation and verification algorithms KGeng, and Verify,, are
as for the randomized scheme, the modified signing algorithm Signy, is defined
as follows:

Signg, (sk, m.):
11— H(sk, (m))
2 o « Sign(sk, (m

3 return o

);7)

In order to capture fault attacks, the definition of Signg, defines the mes-
sage m to be faultable (indicated through corner brackets m, on definition and
angle brackets (m) on reads).’

As required by the DSA and ECDSA standards [46], the per-message random
number (or nonce) r must be freshly generated for each message to be signed.
If not, two signatures g, 01 generated on distinct messages mg # my using the
same nonce r enable recovery of the secret signing key sk from the two signature
equations [60]. In the de-randomized versions of DSA and ECDSA, and likewise
in the deterministic EADSA scheme, this requirement is aimed to be satisfied
through deterministically deriving the random nonce via a hash function from
the secret signing key and input message.

However, as observed before [1,48,54,56], a fault introduced within the mes-
sage memory variable m between reading m for deriving the nonce r and read-
ing m again for computing the signature (with nonce r), recovers the nonce reuse

5 For completeness, observe that the fault attack described in the following applies
also when introducing faults into r instead of m. Due to the usually larger size of m,
facilitating bit flips in m through row-hammer attacks, we focus on faulting m, but
note that similar results apply for faulting 7.

70 M. Fischlin and F. Ginther

scenario and, with it, a signing key extraction attack. In the following theorem,
we formalize this observation in our generalized fault resilience setting. Let us
call the underlying randomized signature scheme S forgeable under nonce repe-
tition when given two distinct messages mg # m, and two valid corresponding
signatures o, o1 generated with the same random nonce r it is easy to produce
an EUF-CMA forgery signature o* for some fresh message m* ¢ (mg, my). In par-
ticular, DSA, ECDSA, and the signing process underlying EADSA are forgeable
under nonce repetition.

Theorem 1. Let S be a signature scheme forgeable under nonce repetition.
Then the de-randomized signature scheme Sqr = (KGengy, Signy,, Verifyy,) derived
as described above is not frEUF-CMA-secure for any type of fault resilience.

Proof. We show that Sy, is not frEUF-CMA-secure under the weakest form of
fault attacks, namely (transient or persistent) l-random faults (i.e., N = 1).
This immediately also establishes the result under N-random faults with N > 1
and, through Lemmas 1 and 2, under differential and full faults.

The adversary A begins by calling the Osign oracle on message my = 0*.
For the resulting two callbacks (m) on m (in lines 1, resp. 2, of the Signy, algo-
rithm) the adversary returns 0, i.e., introduces no faults. It obtains the resulting
signature o (generated using some nonce r) which is valid for my.

The adversary then calls Os;gn on message mo = 0* again, this time return-
ing 0 on the first callback to leave the message unchanged, but 1 on the second
callback (line 2 of Signg,) to flip a message bit at a random position. This call
results in a signature o; generated using the same nonce r as in the first call
which is valid on m, where by m, we denote the message value resulting from
the single-bit random fault introduced through the second callback.

The adversary finally iterates over ¢ € {1,...,A} to find the flipped bit
position in my (i.e., the single l-entry in m4) by invoking the Verify,, algorithm
on an A-bit message with the ¢-th bit set to 1, together with o;. As the underlying
signature scheme S is forgeable under nonce repetition and mg # my, A can now
use (mg, 0g) and (mq,01) to produce a valid EUF-CMA signature and win in the
frEUF-CMA experiment. O

We note that similar attacks apply to other deterministic signature schemes
such as RSA-FDH [15], showing that the additional property of uniqueness may
not help to overcome fault attacks. If we describe the FDH scheme as a two-
stage process (h, < H({m)), o < Sign(sk, (h)), then the adversary can compute
a hash value h* of some message m*, then call the signing oracle about some
other message m, overwriting (h) with 2* in the signing process to get a signature
for m*. Even in case of a hash collision » = h* only m would be considered as
used up, such that A would win the fault-resistance game. This works for full
and differential faults but is unknown to work for random faults.

3.3 Combining Randomization and De-randomization

In seeking to overcome security failures due to weak randomness sources, de-
randomized signature schemes forgo using any ephemeral randomness in the

Modeling Memory Faults in Signature 71

signing process. As discussed before, fault attacks can however revive these secu-
rity failures by introducing nonce repetitions in the signing process. To insulate
a signature scheme against both weak randomness and fault attacks—or, viewed
differently, the de-randomization of a randomized signature scheme against fault
attacks—, it is hence advisable to follow an approach that combines ephemeral
randomness and de-randomization techniques. The agreed-upon only counter-
measure effective against the previously described fault attacks [1,48,54,56] is
to use an additional randomness value in the per-message nonce derivation. This
is in support of the XEADSA signature scheme design [47] deployed in the Signal
protocol [58] for secure messaging, which combines deterministically generating
a per-message nonce with an additional random value in order to derive the
randomness used in the signing process.

We capture this combiner approach again through a generalized, abstract
signature scheme Sc. The scheme S. = (KGen, Sign., Verify.) is based on a ran-
domized signature scheme S = (KGen, Sign, Verify) for which it generates the
randomness needed in S’s signing algorithm in two steps: First, it samples an
ephemeral random value 1’ (e.g., in the case of XEADSA, »’ is sampled as a
random 512-bit string). Then, r’ together with the signing key and input mes-
sage enters a cryptographic hash function H: {0,1}* — {0,1}2* (again modeled
as a random oracle) in order to derive the signing randomness 7.” Key gener-
ation and verification are as for the randomized scheme, the modified signing
algorithm Sign_ is defined as follows:

I_T/J &£ {07 1}>\

L H(Sk, <m>7 7"/>)
o < Sign(sk, (m); (r))
return o

S

The definition of Sign. is accordingly annotated to capture fault attacks.
This time, we consider faults not only for message m but also in the randomness
variables ' and r. Note that the Sign. algorithm can furthermore be seen to
tolerate (transient) faults in the secret signing key sk when used in the derivation
of randomness through H; yet considering fault attacks on sk also in the signing
process will require signature schemes secure against related-key attacks [9,12,
33], whose fault-resilience treatment we leave as an avenue for future work.

We now establish that the combiner countermeasure captured in S indeed
provides security against either weak randomness sources or (differential) fault
attacks. We do so by showing that the approach lifts EUF-CMA security of the
underlying signature scheme to fault-resilient unforgeability frEUF-CMA for S,
when H is modeled as a random oracle. Note that the security statement is

” Note that we treat the underlying (randomized) signature scheme S as well as the
hash function H in a black-box manner both for the positive fault resilience results
here, as well as for the generic fault attacks on Sqr before. Of course, studying the
fault resilience of specific such constructions is a valuable target on its own, which
we leave for future work.

72 M. Fischlin and F. Ginther

closely linked to the description of the scheme: We move from a purely functional
description of the signature scheme to a high-level procedural representation in
which the adversary can now interfere with sub steps. Such an algorithmic imple-
mentation still treats some steps as atomic (or, monolithic) procedures in which
the adversary can only tamper with the input, but not interact with intermediate
steps. Examples of such atomic steps are basic operations like assignments but
may also refer to cryptographic procedures. For instance, Sign.(sk, m.,) treats
the hashing with H and signing with the original signing algorithm Sign as atomic
operations. One can thus view the algorithmic implementation as determining
points in executions in which attacks can modify variables.

We make use of our strongest full fault attack type in order to capture that
weak randomness samples ' may be fully controlled by the adversary. Let us
stress that this first part of the result—full fault resilience in 7’—is not meant
as establishing resilience against strong faults targeted (only) at ', but really
constitutes a baseline result showing that the combiner construction S provides
at least the security of S even if the added randomness r’ is completely flawed.
The second part then establishes differential-fault resilience—for any number w
of faulted bits—if 7’ is indeed random.

A noteworthy fact in the proof is that it shows we can use the same secret
key sk for the signing step and the hash evaluation, when assuming H behaves
like a random oracle. Usually, the secret key consists of two (possibly pseudoran-
domly derived) portions, one used for signing and one in the hash evaluation. An
example where the key splitting is done is the EADSA signature algorithm [16].
Our proof, of course, could be adapted to capture this case as well.

Theorem 2. Let S be a randomized EUF-CMA-secure signature scheme. Then,
in the random oracle model, the algorithmic implementation of the combined
signature scheme Sc = (KGeng, Sign, Verify.) given above is

(a) frEUF-CMA-secure under full faults on variable v’ with
AdvEEUTMAN) < AdvS M (V). and
(b) frEUF-CMA-secure under differential faults on variables m, r', and r, with
AdVEEYTMAN) < gir s - 270 4 AdvEL MR,

for A’ given in the proofs and qm, qs denoting the number of queries made to
the random oracle and the signing oracle, respectively, by A.

Let us stress again that the theorem refers to the actual algorithmic imple-
mentation of Sign., treating the underlying signature procedure Sign as atomic.
There might still be fault attacks on this step if one fleshed out the algorithmic
implementation of that signing procedure. But this would depend on the actual
scheme and is not captured by our general theorem. Note that the de-randomized
solution Signy, in the previous section is indeed insecure even if the underlying
scheme is atomic, as long as it breaks under nonce repetitions. In this sense the
theorem here confirms that putting the randomness in the hashing helps.

Modeling Memory Faults in Signature 73

Proof. We separately prove the two sub-cases.

Ad (a). The first case models that 7’ is drawn from a weak randomness source.
Here, the full-fault capabilities allow A to arbitrarily chose any value for r/
through the callback in line 1 of the Sign. algorithm, including repeating r’
across different signatures. We will rely on the non-faultable secret key sk input
to the hash function, unknown to the adversary, to establish that the derived
value r (per message m) is indeed uniformly random as required. Since the
message cannot be faulted in the case here, the adversary cannot win due to
clash and we do not need to consider this attack option here.

To see the security in this case, we first exclude (by aborting the security
experiment) the case that the adversary A ever queries the random oracle H on
an input (sk,-,-) including the scheme’s secret key sk as the first component.
This can reduce A’s advantage Adv‘crEUF CMA by at most the advantage of the
following adversary A’ against the EUF CMA security of S, which by assumption
is negligible.

Adversary A’ simulates ExptfrEUF CMA for A, using its own signing oracle for
computing the signature in line 3 of Sign. as follows. At the outset of the exper-
iment, A’ initializes an empty list £. Whenever Sign is to be invoked on some
message m and randomness r in the simulation, A’ first checks if (m,r,0) € L
for some o. If so, A’ returns o. Otherwise, A’ invokes its signing oracle on m
to obtain a signature o, stores (m,r,o) in a list £, and returns o. Further-
more, whenever A queries the random oracle H on some value (z,-,-), adver-
sary A’ checks whether z equals the challenge secret key sk by computing
o «— Sign(z,m*;r*) for a fresh message and randomness m*,r* and checking
whether Verify(pk,m*,o*) = 1. If so, A" outputs (m*,c*) as its forgery and
stops. Otherwise, A returns a random value as the answer for the hash query
(but obeying consistency across queries). Eventually, A’ outputs the forgery of .4
as its own forgery when A stops.

Whenever ExptfrEUF CMA would abort due to A querying sk to the random

oracle, A’ wins in the ExptEE{'Z?CMA experiment through its valid forgery (m*, o*).

The probability of the first event occurring is hence bounded by the (negligible)
advantage of A’ in the latter experiment.

Otherwise, whenever A does not query sk to the random oracle, r is derived
as a uniformly random value per message m which is secret to A in each of its
Osign queries. Observe that, by construction, Sign. is deterministic when fixing
r’ (and thus r), which is taken into account in the reduction through A’ keeping
the list £ of signatures for each (m,r) pair seen. Adversary A’ hence provides
a sound simulation of the non-aborting ExptfrEUF CMA when implicitly setting
to the internal randomness choice of its signature oracle. As the trial signature
computation under candidate secret keys x do not involve the signing oracle
of A', a valid forgery by A in ExptfrEUF CMA also constitutes a valid forgery by

A’ in Expt SUF CMA This again is bounding the advantage of A in the former by
the (neghglble) advantage of A’ in the latter.

74 M. Fischlin and F. Ginther

Ad (b). The second case models strong differential fault attacks (like rowham-
mer). This time, the adversary is allowed to inject arbitrary bit flips in the
message variable m as well as the internal randomness variables r' and r. We
will rely on the randomness of v’ persisting through bit flips in 7/, the random
oracle derivation, and the resulting r to establish that the derived value r is still
uniformly random.

Consider the reduction A’ of a successful A in ExpthB\F'CMA to the EUF-CMA

security of &, which simulates ExptZE&F'CMA by simply invoking its own Os;jgn

oracle to compute the signature in line 3 of Sign.. When A outputs its forgery,
A’ outputs the same forgery in its experiment ExptEEJj?CMA.

We need to argue that the simulation provided to A is sound. In particular,
this requires that the potentially faulted values r used to invoke the signing
oracle Osign are indeed uniformly random and secret to the adversary for each
call as required for the EUF-CMA security of S. To this end, let us trace the
randomness used by A’ in any invocation of Sign., originating from sampling r’
to submitting (faulted) value 7 to the Os;g, oracle.

— In line 1 of Sign,, the value r’ is sampled uniformly at random (and hidden
from A).

— In line 2, A is first invoked through the callback (r’) on ' and returns some

difference value Ag. The callback returns the value r’AO =1 @ Ap to be used
in the hash function computation, which is still uniformly random distributed
and unknown to A as 7’ was.
Since H is a random oracle, the resulting value r is again uniformly random.
Furthermore, the probability that A guesses 7/, in a query to the random
oracle H is at most 27, so r remains unknown to A with all but negligible
probability over all random oracle queries. Note that we do not rely on the
secrecy (nor integrity) of sk in this step since the unknown r’AO acts as an
ephemeral key here.

— In line 3, A may again inject a differential fault A;, this time on r. For
the same reason as above, the resulting value ra, = r @& A; stays uniformly
distributed and unknown to A.

Using the faulted value 74, of r as the input to the Osign oracle by A’ is hence
sound. Thus, if A4 wins in the original attack, either via a forgery or via a clash,
then this also holds in the simulated attack with the (randomized) signing algo-
rithm. For forgeries of fresh messages, the (negligible) advantage of A’ against
the EUF-CMA of S bounds the frEUF-CMA advantage of A against S, as desired.

Finally, we have to account for A4 winning through a potential clash during the
(now probabilistic) signing step. In each query there are at most two messages
appearing during the signing process, the first one m() in the computation of
7y« H(sk, (m), (")) in Line 2, the second one m(? in the computation of
o — Sign(sk, (m); (r)) in Line 3. The second one certainly verifies with o under
the public key. Now, if A triggers a clash, both messages must be included in the
set mg?éi:. This means that the first message m(?), too, needs to verify, be different
from the second one, and must not have been included in @ by any prior Os;gn

Modeling Memory Faults in Signature 75

query. Hence, when detecting a clash, A’ can immediately output m() together
with o as its own forgery. That forgery is valid, as m(!) was never asked to the
signing oracle of A’ before. Hence, the probability for this attack option of A to
succeed can also be bounded by the EUF-CMA security of S. O

An XOR Variant. For completeness, let us note that a variant of the combiner
scheme S. above that merges the additional randomness via an XOR instead of
including it under the hash function evaluation achieves similar security results;
see the full version [31] for a technical description and security argument.

4 Fault-Resilient Authenticated Encryption

We now turn to studying the effects of fault attacks on authenticated encryption
schemes and how to enable fault resilience in this setting. In an effort to obvi-
ate the need for strong randomness in the encryption process, the understand-
ing of modern authenticated encryption switched to a nonce-based syntax, in
which a non-repeating nonce value enters encryption in replacement of fresh per-
message randomness. Regularly, authenticated encryption schemes then indeed
rely on the nonce not to repeat and generally do not uphold any security guar-
antees if this condition is violated. A prominent example is the widely adopted
Galois/Counter mode (GCM) [29], combined, e.g., with the AES block cipher.
While being secure as an authenticated encryption scheme [43], authentication
guarantees are immediately lost in case of nonce repetitions [38].

A strengthened security notion introduced by Rogaway and Shrimpton [53]
augments authenticated-encryption security with resistance against nonce mis-
use: it demands that security is upheld even if nonces repeat, such that an
adversary may only learn when a full triple (N, A, m) of nonce, associated data,
and message is repeated, but ciphertexts otherwise look random. Since its intro-
duction, nonce-misuse resistance has become a design target for authenticated
encryption schemes, put forth, e.g., in the CAESAR competition for authenti-
cated encryption ciphers [23].

4.1 Fault-Resilient Security of Authenticated Encryption

In order to study the effects of fault attacks on authenticated encryption schemes
based on our generic model, we first lift the security notions for authenticated
encryption to the fault resilience setting. Our notion liberally allows probabilis-
tic encryption to accommodate fault-resilient constructions combining nonces
and randomness under the same syntax. We focus on faults in the encryption
process here, as it is encryption where different variants for avoiding ephemeral
randomness and nonce glitches are implemented. Our notions can however be
extended to also consider faults attacks on the decryption process.

As the major change from regular security definitions, we need to define how
to rule out trivial queries decrypting the response of an encryption query. We

76 M. Fischlin and F. Ginther

ExptzAgE’:f’b(lk): Expti\AgE;:lor’b(l)‘):
K & KGen(1%) K <& KGen(1%)
Q<+ 0 Q+10
clash < false clash < false
by & AOEnc,ODec(lk) by & ‘AOEnchDec(lk)
if clash then b’ < b if clash then b < b
return b’ return b’
Oknc(N, A, m): Oknc(N, A,m):
c1 & {0, 1} /<ol if b=1 then m < {0,1}I™!
co <& Enc(K, N, A,m) c <& Enc(K, N, A,m)
NARM [(N', A") € Nene X Agnc | NARM [(N', A") € Nene X Agnc |
Dec(K,N', A’ cp) # L Dec(K,N', A’ c) # L
and (N',; A’ cp) ¢ Q} and (N'; A’ c) ¢ Q}
if [INAEM| > 2 then if [INAEM| > 2 then
clash < true clash < true
Q%QU{(vaAlvcb_)l QHQU{(NZAZC)_'
(N, A') € NAZH (N, A') € NAZH
return cp return c
ODeC(N, A7 C): ODeC(N,A,C)Z
ifb=1or (N,A, c) € Q then ifb=1or (N,A,c) € Q then
return L return L
else else
m < Dec(K, N, A, c) m + Dec(K, N, A, c)
return m return m

Fig.4. Security experiments for fault-resilient authenticated encryption schemes.
Lines 9-12 in Ognc are changed compared to the classical notions. Recall that Ngnc
and Agnc are the set of values the nonce, resp. AD, variable N, resp. A, took during
the encryption process in line 8 due to fault callbacks.

do so analogously to the signature setting described in Sect. 3.1, namely by con-
sidering, through a list NAY4 the new combinations of (N, 4, ¢) which decrypt
successfully, taking candidate values for N and A from Ng,, resp. Agnc, the lists
of values taken by N, resp. A, within Enc. Intuitively, these are the new tuples
which the encryption algorithm can be considered to have produced. If there is
just one such combination this gets added to @ as the single resulting challenge
ciphertext to be prohibited for the decryption oracle. If there are however multi-
ple combinations, we declare the adversary to win by setting the clash flag. One
can think of this saying that the adversary has managed to produce multiple
(valid) encryption tuples from a single, faulted encryption call. We again then
declare the adversary to win immediately.

We again consider both randomness and real-or-random indistinguishability
under fault attacks, with the latter being weaker than the former.

Modeling Memory Faults in Signature 7

KGensw(l*): DeCs|\/([(7]V7 A7 C):

K1, K & {0,1}* (K1, K2) = K

return K = (K1, K>) (IV,d) +c

m < Dec(Kz,c'; IV)

Encsiv(K, LNJ7LAJ7LmJ): IV PRF(K1, (N,A,m))

(Ky,Ko) + K if IV = IV’ then

J V.« PRF(K1, ((N),(A), (m))) return m

¢ + Enc(Kz, (m); (IV)) else

return ¢ = (IV,¢) return L

Fig. 5. The synthetic initialization vector (SIV) mode of operation based on a pseudo-
random function PRF and an IV-based encryption scheme &.

Definition 2 (Fault-resilient security of authenticated encryption). Let

AE = (KGen, Enc, Dec) be an authenticated encryption scheme and experiments

Expti@%j’b and ExptZA;XO“b for an adversary A and a bit b be defined as in

Fig. 4. We restrict A to ask any query (N, A,m) to Ognc at most once.

We say that AE is AE-$-secure with fault resilience, resp. AE-ror-secure with
fault resilience, if for all PPT adversaries and AE-SEC = AE-$, resp. AE-SEC =
AE-ror, the following advantage function is negligible in the security parameter:

AdVIESEC = | Pr [Expt TR0 (1) = 1] — Pr [Bxpt 5 (1) = 1] |

When A never repeats the nonce value N between any two Ogne calls, we call it
nonce-respecting; otherwise we say the scheme is nonce-misuse resistant.

4.2 SIV Is Not Fault-Resilient

As an example for a nonce-misuse resistant authenticated encryption scheme, we
will study the SIV (for “synthetic initialization vector”) mode of operation intro-
duced by Rogaway and Shrimpton [53]. It achieves classical, misuse-resistant
randomness indistinguishability AE-$ by combining a pseudorandom function
and an IND$-CPA-secure IV-based encryption scheme [53]. SIV was also con-
sidered for generic composition in a work together with Namprempre [45] and
optimized through combination with GCM by Gueron and Lindell [35].

SIV is defined as in Fig. 5 based on a pseudorandom function PRF: {0, 1}* x
{0,1}* — {0,1}* and a conventional IV-based encryption scheme & = (KGen,
Enc, Dec) with initialization vectors from {0, 1}*. We write the IV-based encryp-
tion algorithm Enc as ¢ <« Enc(K,m;IV) for encrypting a message m under
key K and initialization vector IV into a ciphertext c. Analogously, we write
IV-based decryption as m «— Dec(K,c; IV) for decrypting a ciphertext ¢ under
key K and initialization vector I'V into a message m.

In our definition of SIV, we consider potential fault attacks on the nonce N,
associated data A, message m, and synthetic initialization vector IV within

78 M. Fischlin and F. Ginther

KGen5|V$ (1/\): DeC5|\/$([(7]V7 A7 C):

K1, Ko < {0, 1} (K1, K2) < K

return K = (K1, K>) (IV,d) «c

r||m < Dec(Kaz,c'; IV)

Encsivs (K, UV, LAY, 0mu): IV' + PRF(K71, (N, A,m,7))

(K1, K2) « K if IV = IV then

o & o, 1}A return m

UV, = PRE(Ky, ((N), (A), (m), (1)) else

¢ + Enc(Ka, (r)||{m); (IV)) return L

return ¢ = (IV,c)

Fig. 6. The randomness-augmented synthetic initialization vector mode SIV$ based on
a pseudorandom function PRF and an IV-based encryption scheme £.

the encryption algorithm (cf. the according annotation in Fig. 5). Our following
result shows that SIV does not achieve fault-resilient security, even in the weaker
AE-ror sense. More specifically, assuming pseudorandomness of the deployed
PRF, AE-ror security of SIV breaks under (transient or persistent) single-bit
random faults (i.e., the weakest form of fault attacks in our model) on either of
the adversarially-provided values N, A, or m for encryption. As for AE-$ secu-
rity, it is easy to see that faults can induce collisions in the I'V computation,
which then are easy to distinguish from randomly sampled values. Due to space
restrictions, we defer the proof to the full version [31].

Theorem 3. Let PRF be a pseudorandom function. Then the SIV authenticated
encryption mode AEsy = (KGengyy, Encsyy, Decsyy) from Fig. 5 is not frAE-ror-
secure against any type of faults on the encryption inputs N, A, and m.

4.3 SIV$: Randomness-Augmented SIV

In order to overcome SIV’s vulnerability to fault attacks in the encryption inputs,
we propose and discuss an approach of augmenting the encryption process with
ephemeral randomness in order to protect against faults. This approach trans-
lates concepts employed in the setting of signature schemes (e.g., in the XEADSA
scheme [47], cf. Section 3.3) to the realm of authenticated encryption which, to
the best of our knowledge, have not been previously considered in this setting
before.

Observe that the reason for SIV falling short of protecting against fault
attacks is that such attacks can force the synthetic IV value to collide for differ-
ent inputs (N, A,m) of nonce, associated data, and message. This resembles the
setting for de-randomized deterministic signatures, where fault attacks may lead
to the random per-message nonce being repeated. We show that an analogous
combiner approach to derive the synthetic IV from both the values N, A, and m
as well as an additional ephemeral random input provides strong combined secu-
rity against either weak randomness sources or fault attacks.

Modeling Memory Faults in Signature 79

We denote the randomness-augmented synthetic initialization vector mode
as SIV$, described in Fig.6. Like SIV, the scheme SIV$ = (KGengyg, Encsys,
Decsys) is based on a pseudorandom function PRF: {0,1}* x {0,1}* — {0,1}*
and an IV-based encryption scheme £ = (KGen, Enc, Dec). In contrast to SIV,
the encryption operation of SIV$ is now randomized. Prudently including the
ephemeral randomness value r as a A-bit prefix to the encrypted message, we
ensure that SIV$ maintains the same outer ciphertext format as SIV, including
its strong randomness indistinguishability.® The ciphertext size increases by one
block.

As we show next, SIV$ indeed protects against (either) weak randomness
sources (modeled as full-fault attacks on the ephemeral randomness 7)? or strong
differential fault attacks (for any number w of faulted bits) on all adversarial
encryption inputs N, A, and m as well as the internal randomness r and syn-
thetic initialization vector IV. Under the same assumptions needed to establish
regular security for SIV [53], namely PRF being a pseudorandom function and
& being IND$-CPA-secure, we show that SIV$ upholds strong randomness indis-
tinguishability (frAE-$) under such faults. Again, considering fault attacks also
on the PRF and encryption keys requires schemes secure against related-key
attacks [8,12,33] and is left for future work. Due to space restrictions, we defer
the proof to the full version [31].

Theorem 4. Let PRF be a pseudorandom function and £ an IND$-CPA-
secure IV-based encryption scheme. Then the algorithmic implementation of
the randomness-augmented SIV mode SIV$ = (KGengyg, Encsys, Decsivg) from
Fig. 6 1s, in a nonce-misuse resistant manner,

(a) frAE-$-secure under full faults on variable r, with
AdVERE S, (V) < 2. (AdvEEEjjff(A) faqp- 2+ Advlg'\fD?'CPA(/\)) . and

(b) frAE-$-secure under differential faults on all of the variables N, A, m, r,
and IV, with

AdvEs (V) < AdVERE (M) + AdvED (),

for A, A" given in the proofs and qp denoting the number of queries made to
the decryption oracle by A.

8 Alternatively, one may include r as additional component in the ciphertext. This
however degrades security to real-or-random indistinguishability in case of weak
randomness values 7.

9 Analogous to the signature case in Theorem 2, the first part of the statement again
only serves as a baseline result. It shows that SIV$ provides at least the security of
SIV even if the added randomness 7’ is completely flawed.

80 M. Fischlin and F. Ginther

5 Conclusion

We introduced a game-based treatment of cryptographic fault resilience which
enables generic extensions of existing security notions to capture memory fault
attacks. Our model exemplifies how different attack types can be captured
through a hierarchy of callback-style adversarial interactions within accordingly
augmented security notion. Applying our modeling technique to deterministic
signature schemes, we revisit known fault attacks on deterministic signature
schemes. Moreover, we can, for the first time, give provable security guaran-
tees for proposed countermeasures in the realm of signatures and translate both
attacks and provably-secure countermeasures to the setting of nonce-misuse resis-
tant authenticated encryption.

Potential future research questions arise both in modeling and applications.
Applying the modeling of fault resilience to other security notions possibly yields
new insights into fault attacks and protection for other cryptographic primitives.
Security against related-key attacks targeting partial effects of memory faults
lends itself to be a viable building block here. Another worthwhile effort is to
look beyond our strict monolithic treatment of the cryptographic primitives and
investigate in how far the structure of the primitive, say, iterative hashing as
in SHA-2 or SHA-3, affects memory fault attacks. Of course, such a treatment
could be performed all the way down to the lower implementation level. Finally,
while our modeling provides a general way to capture memory faults, capturing
control-flow fault attacks in a meaningful way for game-based, cryptographic
security notions remains a challenging open problem.

Acknowledgments. Felix Giinther is supported in part by Research Fellowship grant
GU 1859/1-1 of the German Research Foundation (DFG) and National Science Foun-
dation (NSF) grants CNS-1526801 and CNS-1717640. This work has been co-funded
by the DFG as part of project P2 within the CRC 1119 CROSSING. Most of the work
on this paper was done while Felix Giinther was at UC San Diego.

References

1. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 339-353. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0_18

2. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged Fiat-
Shamir signatures under fault attacks. Cryptology ePrint Archive, Report 2019/956
(2019). https://eprint.iacr.org/2019/956

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370-382 (2006)

4. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056-3076 (2012)

5. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp.
182-192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44524-3_11

https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://eprint.iacr.org/2019/956
https://doi.org/10.1007/978-3-319-44524-3_11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Modeling Memory Faults in Signature 81

Barthe, G., Dupressoir, F., Fouque, P.-A., Grégoire, B., Tibouchi, M., Zapalowicz,
J.-C.: Making RSA-PSS provably secure against non-random faults. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 206-222. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44709-3_12

Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 232-249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_14
Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666—-684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7_36

Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486-503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0-26

Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216-233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_22
Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: 27th ACM STOC, pp. 45-56. ACM Press, May/Jun
1995

Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
401-418. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
324

Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part L
LNCS, vol. 8616, pp. 1-19. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2_1

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62-73. ACM Press, November 1993

Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399-416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124-142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9.9

Biehl, 1., Meyer, B., Miiller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131-146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_8

Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

Blomer, J., Glinther, P.: Singular curve point decompression attack. In: 2015 Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 71-84 (2015)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37-51. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-69053-0_4

https://doi.org/10.1007/978-3-662-44709-3_12
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/3-540-48658-5_22
https://doi.org/10.1007/978-3-540-24676-3_24
https://doi.org/10.1007/978-3-540-24676-3_24
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

82

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Fischlin and F. Ginther

Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. In: Goldberg, 1., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 3-20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7_1

Brengel, M., Rossow, C.: Identifying key leakage of bitcoin users. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 623-643. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
529

CAESAR: Competition for authenticated encryption: Security, applicability, and
robustness. https://competitions.cr.yp.to/caesar.html

CERT Vulnerability Notes Database: Vulnerability note VU#925211: Debian and
Ubuntu OpenSSL packages contain a predictable random number generator (2008).
https://www.kb.cert.org/vuls/id /925211

Coron, J.-S., Mandal, A.: PSS is secure against random fault attacks. In: Matsui,
M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 653-666. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7_38

Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASTACRYPT 2016, Part I. LNCS, vol. 10031, pp. 369-395. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_14

Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based
authenticated encryption: application to keyak and ketje. In: Cid, C., Jacobson,
M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 257-277. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-10970-7_12

Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: Ning, P.,; De Capitani di Vimercati, S., Syverson, P.F. (eds.)
ACM CCS 2007, pp. 476-485. ACM Press, October 2007

Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC, November 2007. nIST Special
Publication 800-38D

failOverflow: Console hacking 2010: PS3 epic fail. In: 27th Chaos Communication
Congress. Chaos Computer Club (2010)

Fischlin, M., Giinther, F.: Modeling memory faults in signature and authenticated
encryption schemes. Cryptology ePrint Archive, Report 2019/1053 (2019). https://
eprint.iacr.org/2019/1053

Fouque, P.-A., Guillermin, N., Leresteux, D., Tibouchi, M., Zapalowicz, J.-C.:
Attacking RSA-CRT signatures with faults on montgomery multiplication. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 447-462.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_26
Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258-277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_15
Goldberg, 1., Wagner, D.: Randomness and the Netscape browser. Dr. Dobb’s J.
21, 66-71 (1996)

Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 109-119. ACM Press, October 2015

Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy, pp. 371-385. IEEE
Computer Society Press, May 2006

https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-030-00470-5_29
https://competitions.cr.yp.to/caesar.html
https://www.kb.cert.org/vuls/id/925211
https://doi.org/10.1007/978-3-642-10366-7_38
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.1007/978-3-030-10970-7_12
https://eprint.iacr.org/2019/1053
https://eprint.iacr.org/2019/1053
https://doi.org/10.1007/978-3-642-33027-8_26
https://doi.org/10.1007/978-3-540-24638-1_15

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Modeling Memory Faults in Signature 83

Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308-327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679-19

Joux, A.: Authentication failures in NIST version of GCM (2006). http://csrc.nist.
gov/groups/ST /toolkit/BCM /documents/Joux_comments.pdf

Joye, M., Lenstra, A.K., Quisquater, J.J.: Chinese remaindering based cryptosys-
tems in the presence of faults. J. Cryptol. 12(4), 241-245 (1999)

Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA 2014, pp. 361-372. IEEE Press,
Piscataway, NJ, USA (2014)

Lenstra, A.K.: Memo on RSA signature generation in the presence of faults (1996)
May, T.C., Woods, M.H.: A new physical mechanism for soft errors in dynamic
memories. In: 16th International Reliability Physics Symposium, pp. 3340, April
1978

McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343-355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9_27

M’Raihi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72-80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8_6

Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257-274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
515

National Institute of Standards and Technology: Digital Signature Standard (DSS)
(FIPS PUB 186-4), July 2013

Perrin, T.: The XEdDSA and VXEdDSA signature schemes (2016). https://signal.
org/docs/specifications/xeddsa/

Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rosler, P.: Attacking
deterministic signature schemes using fault attacks. In: 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, pp. 338-352. IEEE, April 2018
Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (Informational),
August 2013. https://www.rfc-editor.org/rfc/rfc6979.txt

Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: Holz, T., Savage, S. (eds.)
USENIX Security 2016, pp. 1-18. USENIX Association, August 2016

Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98-107. ACM Press, November 2002

Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348-358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4_22

Rogaway, P.,; Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373-390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679-23

https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://www.rfc-editor.org/rfc/rfc6979.txt
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23

84

54.

55.

56.

57.

58.

59.

60.

61.

M. Fischlin and F. Ginther

Romailler, Y., Pelissier, S.: Practical fault attack against the Ed25519 and EADSA
signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pp. 17-24 (2017)

Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: the
case of EADSA. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018.
LNCS, vol. 10831, pp. 306-321. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89339-6_17

Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519
in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1-20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_1

Schmidt, B.: [curves] EADSA specification (2016). https://moderncrypto.org/mail-
archive/curves/2016,/000768.html

Signal: Technical documentation. https://whispersystems.org/docs/

Takahashi, A., Tibouchi, M.: Degenerate fault attacks on elliptic curve parame-
ters in OpenSSL. In: 2019 IEEE European Symposium on Security and Privacy,
EuroS&P 2019. IEEE, June 2019, to appear

Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309-323. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36288-6_23

Ylonen, T., Lonvick, C. (ed.) The Secure Shell (SSH) Authentication Protocol.
RFC 4252 (Proposed Standard), January 2006. https://www.rfc-editor.org/rfc/
rfc4252.txt, updated by RFCs 8308, 8332

https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-76953-0_1
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://whispersystems.org/docs/
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1007/3-540-36288-6_23
https://www.rfc-editor.org/rfc/rfc4252.txt
https://www.rfc-editor.org/rfc/rfc4252.txt

®

Check for
updates

Cryptanalysis of the Multivariate
Encryption Scheme EFLASH

Morten Oygarden!®™) Patrick Felke?, Havard Raddum!, and Carlos Cid"3

! Simula UiB, Bergen, Norway
{morten.oygarden,haavardr}@simula.no
2 University of Applied Sciences Emden-Leer, Emden, Germany
patrick.felke@hs-emden-leer.de
3 Royal Holloway University of London, Egham, UK
carlos.cid@rhul.ac.uk

Abstract. EFLASH is a multivariate public-key encryption scheme pro-
posed by Cartor and Smith-Tone at SAC 2018. In this paper we investi-
gate the hardness of solving the particular equation systems arising from
EFLASH, and show that the solving degree for these types of systems
is much lower than estimated by the authors. We show that a Grobner
basis algorithm will produce degree fall polynomials at a low degree for
EFLASH systems. In particular we are able to accurately predict the
number of these polynomials occurring at step degrees 3 and 4 in our
attacks. We performed several experiments using the computer algebra
system MAGMA, which indicate that the solving degree is at most one
higher than the one where degree fall polynomials occur; moreover, our
experiments show that whenever the predicted number of degree fall
polynomials is positive, it is exact. Our conclusion is that EFLASH does
not offer the level of security claimed by the designers. In particular, we
estimate that the EFLASH version with 80-bit security parameters offers
at most 69 bits of security.

1 Introduction

Public-key cryptosystems whose security is based on the hardness of solving
multivariate polynomial systems over finite fields have been studied for several
decades. This problem is believed to be hard to solve even for full-scale quantum
computers, and so multivariate cryptography has received increasing attention
the past years as post—quantum cryptography has become ever more important.
A noteworthy initiative in this area is the ongoing post—quantum standardization
process by the National Institute of Standards and Technology (NIST).

One of the earliest and most notable examples of multivariate cryptosystems
is the encryption scheme C* proposed by Matsumoto and Imai in 1988 [22]. Their
idea was to let the public polynomial system defined over a small base field have
a secret, but simple description over a larger extension field, where decryption
can be done efficiently. While C* was broken by Patarin in 1995 [23], several
schemes were later proposed based on the same underlying idea; these are often

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 85-105, 2020.
https://doi.org/10.1007/978-3-030-40186-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_5

86 M. Qygarden et al.

referred to as big field schemes. One generalisation is to make the central map
over the extension field more complex. Examples include HFE and its variants
[24], as well as k—ary C* [18]. Another idea is to keep the simple description
over the extension field, but alter the resulting public key with modifiers that
enhance the security against known attacks, as for example done in SFLASH [25]
and PFLASH [7].

While there are presently several multivariate signature schemes that have
resisted years of cryptanalysis, designing multivariate encryption schemes seems
to be much more challenging. Examples of multivariate encryption schemes that
have been successfully cryptanalysed include not only the original C* [22,23], but
also HFE [3,24], ABC [21,28], ZFHE [5,27] and SRP [26,29]. This observation
is further echoed by the fact that all four multivariate cryptosystems that have
made it to the second round of the NIST standardization process are signature
schemes. EFLASH [6], proposed by Cartor and Smith-Tone at SAC 2018, is yet
another attempt to design a secure and efficient multivariate encryption scheme.
At its core, EFLASH is a modified C* scheme with a new decryption strategy
to maintain effectiveness.

1.1 Owur Contribution

We present a direct algebraic cryptanalysis of EFLASH, based on the notion
of first fall degree. We do so by developing a method to estimate this degree
for the equation systems arising from EFLASH — an original approach which
is different from the rank—based analysis that has been used against somewhat
similar HFE variants. We are not only able to predict the first fall degree itself,
but also the exact number of first fall polynomials occurring at step degrees 3
and 4. Our analysis indicates that EFLASH does not offer the level of security
claimed by the designers; in particular, we are able to successfully cryptanalyse
the EFLASH version with 80-bit security parameters. Ultimately, we hope that
our approach can lead to a deeper understanding of the impact similar modifiers
have on big field schemes.

1.2 Organisation

The paper is organised as follows. In Sect. 2 we go through the required prelimi-
naries for our analysis. This includes a description of EFLASH, a brief discussion
on the complexity of Grobner basis algorithms, along with the notions of first
fall and solving degrees, as well as some results on univariate and multivariate
representation of polynomials. In Sect.3 we present and discuss the previously
suggested bound on the first fall degree of EFLASH. In Sect.4 we develop the
theory behind our new approach for estimating this degree for EFLASH, and
put it to the test by experiments in Sect. 5. We discuss the implications that our
analysis and experiments have on the security of EFLASH in Sect. 6. Potential
follow-up work is discussed in Sect. 7, with our conclusions in Sect. 8.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 87

2 Preliminaries

2.1 Description of EFLASH

EFLASH is a public-key encryption scheme proposed at SAC 2018 [6]. The
system is built around the C* encryption scheme by Matsumoto and Imai [22],
using both the minus-modifier that removes some polynomials from the public
key, and the embedding of the plaintext space Fj into a larger space Fg. The
signature scheme PFLASH [7,13] is built in the same way, and EFLASH can be
seen as the encryption variant of PFLASH.

The C* scheme has operations taking place in Fg and Fga. The encryption
for C* can be explained as follows: the plaintext and ciphertext spaces are both
Fg. Let S and T be two invertible d x d-matrices over [, defining linear trans-

formations of Fg. Fix an isomorphism between Fg and Fa, denoted by ¢, where

¢ : Fg — 4. Finally, we have the central mapping X +— X144 over Fga.
These mappings are combined together into P’ as follows

P =ToploX" 0gpoSs. (1)

Since the exponent of X has g-weight 2 and all other operations are linear, P’
can be expressed as d quadratic polynomials in d variables over [F,. The secret
key of the C* scheme are the two matrices 5,7, and the public key consists of
the polynomials P’. Encryption of a plaintext x into the ciphertext ¥ is done by
computing y = P’(z). Decryption by someone knowing S and T can be done
efficiently by inverting all operations in (1).

In [23] the basic C* scheme was broken, by finding bilinear polynomials
fi(z,y) = 0 that relate the plaintext x with the ciphertext y. Computing the
polynomials f;’s turns out to be easy, more so when knowing S and T'. In fact,
the most efficient decryption is actually done by inserting the values of y in the
fi’s, and solving the resulting linear system of equations to recover the plaintext.

EFLASH expands the C* scheme by adding an embedding 7 at the beginning
and a projection 7 in the end. More specifically, for n < m < d, the operations
m and 7 are defined as

T]Fg —»Fg
(mla"wxn)'—> (1’1,...,.’En,0,...,0)
and
T Fg — ™

(ylv"',yd) — (yla"'vym)~

The plaintext space of EFLASH is then Fy and the ciphertext space is Fj".
The mappings m and 7 are added as wrappers around the C* scheme, so the
complete EFLASH mapping P becomes

P=70oP onr.

The complete diagram of mappings is shown in Fig. 1.

88 M. Qygarden et al.

X1+q@
]qu qu
S T
Fd Fé Fd Fé
X
T Fm

Fn

Fig. 1. Diagram of EFLASH mappings.

The extra mappings m and 7 just add and remove some coordinates, so P
can still be expressed as m quadratic polynomials over I, in n variables. The
size of the projection 7 is an important parameter, so for convenience we define
a = d —m to be the number of polynomials removed from P’. The public key of
EFLASH consists of the m polynomials in P, and the secret key is still the two
matrices S,T (we assume the exponent © is publicly known).

Encryption in EFLASH is done the same way as for C*: the plaintext x
is transformed into ciphertext y by computing y = P(z). On the other hand
decryption is not as completely straightforward as for C*. For a given ciphertext
y = (y1,--.,Ym), the decryptor will exhaustively try all possible values for the
missing coordinates Y41, ..,¥yd, and decrypt every choice using the bilinear
polynomials f;(z,y) from the C* scheme. This results in up to ¢* possible plain-
texts embedded in Fg, and the one whose last d — n coordinates are all zero
is chosen as the correct one. As n < m we can expect there will be only one
possible plaintext fulfilling the restriction given by 7. In [6] the authors analyse
the probability of there being two or more possible plaintexts matching a given
ciphertext, which would lead to a decryption failure. For the suggested choices
of n,m, d the probability is approximately 2717, which is still non-negligible.

Table 1 shows the parameters suggested in [6] for 80- and 128-bit security
levels against an attacker with either a classical or quantum computer available.

In the remainder of the paper we will fix ¢ = 2. Although most of the theory
presented in later sections can be generalised to other fields, this is what is often
used in practice and in particular what is suggested in EFLASH (Table 1).

Table 1. Suggested parameters (g, n,m,d) for EFLASH.

80-bit security | 128-bit security
Classical adversary | (2,80,96,101) (2,134,150, 159)
Quantum adversary | (2,160,176,181) | (2,256, 272,279)

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 89

2.2 Grobner Basis Algorithms

As is the case for all multivariate encryption schemes, the plaintext (a1, ..., ay)
associated to the ciphertext (yi,...,¥m) can be found through direct attacks,
that is, by solving the polynomial system

P1(X1y ey) + Y1 = oo = P(T1, ooy Tn) + Ym = 0,

where p;(x1,...,2,), 1 < i < m, are the quadratic polynomials that make up
the public key P. The usual strategy for solving such a system is to compute
a Grobner basis (see [8] for further details) for the ideal (p; + yi)1<i<m in the
grevlex monomial order, using a state—of-the—art algorithm such as F4 [14] or
F5 [15]. Since we implicitly include the field equations, the system generates a
radical ideal. The solution of this system can by design be assumed to be unique
and thus we are able to solve it directly from the Grébner basis, which is by the
above remark x1 + a1,...,z, + a, for any term ordering.

In our setting the F4 algorithm will proceed step—wise, and to each step there
is an associated step degree D, which is the maximal degree of the polynomials
involved in this step. The complexity of each step is dominated by reduction of
a Macaulay matrix associated with these polynomials. If we define the solving
degree, Do1, t0 be the step degree associated with the largest such matrix (this
notation was introduced in [12]), then the complexity of the algorithm (in the
Boolean case) can be estimated by:

Complexitygg = o((DZ; (’Z)) ’) : (2)

where n is the number of variables and 2 < w < 3 is the linear algebra constant.
This makes Dy, crucial for estimating the complexity of a direct attack, but
in general this value is difficult to determine. It is also worth noting that D,
is not necessarily the highest degree encountered in the algorithm; indeed [12]
shows examples of this for HFE—systems, while we will also see examples where
this is the case for EFLASH in Sect. 5.

An important class of polynomial systems where D,,;,, can be determined is
the class of semi—regular sequences [1]. In this case Dy, will coincide with the
degree of regularity D,.q4, which for quadratic polynomial systems over Fy can
be calculated as the degree of the first non—positive term in the series [2]:

(1+2)"

Tonan () = 2y

3)
From experiments it seems to be the case that randomly generated polynomial
systems will behave as semi-regular sequences [1], and the degree of regularity is
in many instances sensible to use for complexity estimation. However, it is well
known that polynomial systems associated with big field multivariate cryptogra-
phy tend to have a lower solving degree than what is predicted by the degree of
regularity; see for example [16]. For these schemes the notion of first fall degree

90 M. Qygarden et al.

(Definition 1), which in general provides a lower bound for the solving degree,
has often been used to estimate the complexity of solving such systems [10,11].
The authors of EFLASH have also chosen this path, and in [6] a bound for the
first fall degree was derived and used to estimate the resistance of this scheme
against algebraic attacks. We will later argue that this derived bound for the first
fall degree is not tight, but the idea of using this invariant as an approximation
for the solving degree seems justified for EFLASH. Indeed, in all our experiments
we find the solving degree to be either the same or one greater than the first fall
degree (see Sect.5). We end this subsection by recalling the definition of first fall
degree.

Consider the graded quotient ring B = Fa[z1, ..., x,] /{23, ..., 22), where B, C
B is the set of homogeneous polynomials of degree v in B. Let p?,...,p" € By
be the homogeneous quadratic part of the polynomials in the public-key P,
and pé,l < i < m be the corresponding linear, or lower-degree, terms, so that
pi = p? + pﬁ». We can then define the map

wz/72 : Bgiz — BV
(flv ~~~afm) — Zizl flp?

Any element of ker(i,_2) is called a syzygy. Now let v = 4. Then particu-
lar syzygies are the Kozul syzygies, generated by (0, ...,0,p,0,...,0,p,0,...,0)
where p? is in position i and p! is in position j, and the field syzygies generated
by (0,...,0,p%,0,...,0) (p! in position i). These syzygies will boil down to the
relations p;?p? —|—p?p§b =0 and (p?)2 = 0. Since they are always present, and not
depending on the polynomials p? themselves, these syzygies generate the trivial
syzygies, T(Yy—2) C ker(yy—2).

Definition 1. The first fall degree associated with the quadratic polynomial sys-
tem p1, ..., Pm 1S the natural number

Dy = min{ d =2 | ker(a—2)/T(ta—2) # 0 }.

Remark 1. The elements (O,...,O,p?,(), ,0,p2,0,...,0) and (0,...,0,pt,0, ...,
0) will, strictly speaking, not be syzygies themselves when solving for p1, ..., pm in
Folz1, ..., x,]. For example, p?pi—l—pfpj = 0 will in general be of degree 3. We still
call these degree falls trivial, as they do not give any new or useful information
in an actual attack. This fact can be seen as follows.

When trying to solve a system by multiplying equations with all monomials
up to some degree, the multiplications are done by increasing degrees. That 1is,
all monomials of degree < D — 1 are used before multiplying with monomials of
degree D. The Kozul syzygies will give the degree fall polynomial

Pipi + ooy = Pl (ol +p)) + P () + 0h) = plipl + plpl.

However, the very same polynomial can be expressed using only multiplication
with the lower-degree monomials in pé- and pﬁ :

pip; + pipi = pi(0} + 1) + Pl (o + pi) = pipl + plpl.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 91

Hence the degree fall generated by pl and p? does not give us anything new
when we already have multiplied with all lower-degree terms. Moreover it is a
priori clear that these polynomials reduce to zero modulo pj,p; and therefore
give no new information when computing a Grébner basis, except slowing the
computation down.

The same holds for the field syzygies, where it is easy to see that the polyno-
mial pip; = p; can be “generated” by the (lower-degree) constant 1 as 1 - p;.

2.3 Univariate and Multivariate Representation of Polynomials

Our analysis will heavily rely on the easy description the central map of EFLASH
has as univariate polynomial over the extension field. The idea of exploiting this
simple description in cryptanalysis was also used in the Kipnis—Shamir attack
on HFE in [20], and we refer to their work for further details on the following
result. We will write w(t) to denote the binary weight of an integer ¢. Recall that
this is defined as Y z;, where t = Y 2;2% is the 2-adic representation of t.

Theorem 1. Let P(X) € Fou [X]/(de + X) and fix an isomorphism ¢ between
Foa and (F3)?. With this isomorphism, P(X) admits d unique polynomials
P1,-sPa € Falzy,.yzq) /{23 + 21, ...,a2 + x4). Furthermore, the degree of the
polynomials py, ..., pq is given by maz{w(t) | X* € Mp}, where Mp is the set of
monomials in P(X) with non-zero coefficients.

Based on this result we will define the 2-weight associated with a polynomial
P(X) € Fqa [X]/(de + X) to be w(P) =max{w(t) | X* € Mp}. There are two
particular actions over the extension field, and their corresponding actions over
the base field, that are worth pointing out. First, we note that raising P(X)
to a power of 2, i.e. (P(X))?", will correspond to applying an invertible linear
transformation on the associated multivariate polynomials py, ..., pg.

The second action is that the multivariate polynomials associated with the
product H(X)P(X) will be d sums of the form) h;p;, where h; is a multivariate
polynomial of maximum degree equal to w(H). These actions (on the multivari-
ate polynomials) are exactly the ones performed by Grébuner basis algorithms.
Linear maps do not affect the degree of the polynomials, so if To¢~ Lo P(X)o¢poS
is the central map of an unmodified big field scheme (e.g. original C* or HFE),
then the degree fall polynomials encountered when computing a Grébner basis
can be described by the two aforementioned actions on the univariate polynomial
P(X). More specifically, we will call any combination

F(X) = VIO, H(X)PX)P € Bl X])/(X* + X),
where
w(F) < w(P) + max{w(H;)},

a 2—weight fall polynomial. This will in turn admit d multivariate degree fall
polynomials.

92 M. Qygarden et al.

We note that in the Faugeére-Joux attack on HFE [16] these 2-weight fall
polynomials are the reason for the effectiveness of algebraic attacks on this cryp-
tosystem. Likewise, in [18] specific g—weight fall polynomials (i.e. the natural
generalisation to other fields of size q) were constructed in order to show the
first fall degree of k—ary C*, another generalisation of C*. Things get more com-
plicated as modifiers are added to the public key, particularly in the case for the
minus modifier. However we will describe how to deal with this in Sect. 4.

3 Suggested First Fall Degree Bound

In this section we discuss an upper bound for the first fall degree that was sug-
gested for EFLASH in [6]'. Since EFLASH can be seen as a special case of HFE-,
the bound is derived following a similar line of reasoning as was used for this
latter scheme in [11]. The idea is to first examine how the minus modifier affects
the Q-rank of the quadratic form associated with the central map, and then
apply this to the upper bound derived in Theorem 4.1 of [10]. The arguments
made in Section5.1 of [6] is that the minus modifier is even more effective at
increasing the Q-rank when applied to EFLASH than it is for HFE-, due to the
extreme sparseness of the central map of the former. This led to the following
upper bound for EFLASH [6]:

Direprrasag < a+3. (4)

However we argue that focusing on Q-rank alone does not reveal the entire
picture when the (unmodified) central map is as simple as it is in EFLASH. To
this end we introduce the following notation, which will also be important for
our own estimates of first fall degree:

Definition 2. Consider the quotient ring Foa [X]/<X2d + X)), and an instance
of C*. Let y € F¢ represent a given ciphertest, and V = ¢ o T~ (y). We then
define

Q=x""4v (5)

to represent the central map associated to C* over Faa [X]/(XQd + X). We also
define the following 2—weight fall equations:

Q= X2d—(—)Q + X2(—)Q2d—9 _ X2d—6—)v + X2E—) ‘/2df(—)7 (6)
G =XQ = x2+2° + XV and (7)
By = X27Q = x1+2°7 4 x2%y, (8)

! The authors call this the degree of regularity, but are in fact describing the first fall
degree.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 93

Since we are not removing any polynomials (i.e. a = 0), Eq. (4) predicts that
the polynomial @ defined above has first fall degree 3 (this is also pointed out
in Example 4.3 in [10]). Here @ is treated as any polynomial with Q-rank 2,
and following the proof of Theorem 4.1 in [10], we find that the predicted first
fall degree is due to the existence of the univariate polynomials $; and (s,
which would correspond to quadratic multivariate polynomials. However, in the
definition above there is also a third 2-weight fall polynomial, «, which will
correspond to linear multivariate polynomials (these are the same that Patarin
found in his original attack on C* [23]). Thus there seems to be more information
in the system than what is captured by methods based on the Q-rank alone. It is
indeed the case that removing public polynomials makes it more difficult for an
attacker, but we will see in the next section that there may still be combinations
of multivariate degree fall polynomials, generated by the relations «, £; and [
present in the polynomial system. Again, methods based on the Q-rank alone
do not seem to fully capture this.

Another notable difference between EFLASH and HFE- is the large dimen-
sion of the embedding (n < d) present in the former. We will see that this
modifier also plays a role in determining the number of degree fall polynomials
in a system. While it does not have the same impact as the minus modifier, there
are parameters for which this affects the first fall degree of a system; see Sect. 5
for examples.

4 The First Fall Degree of EFLASH

This section starts off with a brief discussion on the impact the choice of @ may
have on the security of EFLASH. The condition that ged(2? — 1,2 +1) =1 is
needed for the map X 1429 5 be a bijection, and has been a requirement for this
family of cryptosystems ever since the original paper of Matsumoto and Imai
[22]. While not explicitly stated in [6], it seems reasonable to assume that this is
also the case for EFLASH. We will later see that the total number of degree fall
polynomials in the original C*—scheme will have a big impact on the complexity
of algebraic attacks towards EFLASH.

The question of how different choices of © affect the number of degree fall
polynomials has partly been studied in [9]. In that work the authors consider
the effect @ has on the number of linearisation equations, which can be seen as a
special subset of degree fall polynomials of degree 1. Examples of special values
for © from this work are © = d/3 and © = 2d/3. In these cases it is shown
that there are only 2d/3 linearisation equations, and so it is unlikely that these
choices for © can be used in an efficient instantiation of EFLASH (as d linear
equations are used for decryption). On the other hand, there are also cases found
in [9] that renders more than d linear equations, which could benefit an attacker.
What would amount to special cases in our analysis will ultimately go beyond
linear equations: for D = 3, degree falls polynomials will also include quadratic
polynomials, and cubic polynomials when D = 4. It is beyond the scope of this
paper to identify every such special case. Therefore for the rest of this paper, all

94 M. Qygarden et al.

equations and formulas are assumed to hold for general choices of ©. General is
here used in a non-technical sense by which we mean that we expect the result
in question to hold for all values ©® = 0,1,...,d — 1, save for a few exceptions.

4.1 The Effect of Removing Polynomials

We wish to obtain a representation of the central map of EFLASH that in
some sense not only preserves the easy description given over the univariate
polynomial ring, but also keeps track of what is lost due to the minus modifier,
7. Consider the cryptosystem in a state before 7 has been applied (but after
the linear transformation T, see Fig.1). Finding a plaintext associated with a
fixed ciphertext would amount to solving the system of quadratic polynomials
pi(x1, ...y xy) =0, for 1 < ¢ < d (for ease of notation we are assuming the fixed
ciphertext to be part of the p,—polynomials). Let

q1 P1
q2 P2

=71, (9)
qd Pd

in other words, each ¢; is a linear combination of the polynomials p1, ..., pg.

Even though the polynomials p; are depending on the z—variables, we will at
an intermediate step want to consider them as formal variables. In an effort to
keep the notation precise, we will write pq, ..., p, to denote the polynomials as
formal variables that will be removed by 7. On the other hand, py41, ..., pg will
denote the formal variables associated with the polynomials unaffected by 7 (i.e.
the public polynomials). We will also write ¢ to denote the linear combinations
defined in Eq. (9), but now depending on the formal variables p; and py.

In the previous section we have considered sums of the form
ST X225 02 in the univariate polynomial ring Foa [X]/(XQd + X). We will
now inspect the same sums, but treat () as a formal variable in the bivariate
polynomial ring Axqg = Foa[X, Q]/(de +X,Q% + Q). We will furthermore
write @ as Q = (¢ +q§'y+...+q;7d’1), where v is a primitive element associated
with the isomorphism ¢. We then consider the following composition of maps:

E€VPa

-1
AXQ ¢ ? (FQ[xlw'wmnvﬁlv"‘7ﬁa7ﬁa+17"'7ﬁd})d (F2[x17~~~7xn])d

where evp, acts entry-wise in the d-vector space by “evaluating” the formal
variables p to 0, and regarding p as polynomials in xz—variables. To be more
precise, evpq @ (21, .., 2d) > (evp ,(21), .., €0 ,(24)), Where:

ev};a cFal21, ey @y 1y ooy Da) — Fal21, ony 0]
z,—x; for1<i<n
pj—0for1<j<a
P — (a1, oy xy) for a+1 < k < d.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 95

It is straightforward to check that if ¢ is an integer with 2—weight D — 2, then
evpq 0 ¢~ H(X!Q) will result in d polynomials of degree at most D, which are
generated by the public polynomials p,41, ..., pq- We will use this new notation
to show the following lemma, which will be key in our ensuing analysis. An
interpretation is that the minus modifier 7 only obscures the degree fall poly-
nomials by adding polynomials generated from a small set, namely the removed
polynomials p1, ..., pg.

Lemma 1. Letevpgop 1 (Y X¥1QF2) give d polynomials over Fa[x1, ...,z that
are degree fall polynomials of degree < D = w(ky) + 2w(ks). Then, for a > 0
the degree D—parts of the d polynomials evpq o ¢~ (3 X*1Q*2) are generated
by P15 Pa-

Proof. Let g be any of the d polynomials in Fa[z1, ..., xn, D1, ..., Pa], that are in
the image of ¢~ (> X* Q*2). Fix polynomials Ay, ha, ..., hey1 such that we can
write g on the triangular form:

g :hl('rla "'axnaﬁ% "'7ﬁa7ﬁa+lv ~-~7}3d)]31
+ hg(l’l, "'axn7ﬁ37 "'7ﬁaaﬁa+17 "'7ﬁd>ﬁ2

+ ha<x17 ---7mnaﬁa+17 ~-~7pd)]§a
+ ha+1(x17 "'7xna§a+17 ~~715d)

Recall that when a > 0 then evp ,(p;) = 0 for 1 < j < a. Since we are working
over a field of characteristic 2, we can equivalently think of this as addition with
all terms containing the p;—variables and then evaluating everything using evp .
Note that all p; change to p; when evaluated with evp instead of evp ,. This
can then be written out as follows:

halg) = cvbolg + 3 hipi)

1<i<a

= evpg(9) + evpo(Y hibi)

1<i<a

= evpg(g) + Z hip;.

1<i<a

By assumption ev},’o(g) has degree < D so any term of degree D must come
from), .., hipi, which proves the statement. O

One observation that can be drawn from this lemma is that if the number of
degree fall polynomials that would be generated by a similar polynomial system
with a = 0 exceed the number of highest degree combinations generated by the
removed polynomials (i.e. the possible combinations of x;, ...z;, ,p;), then there
will be linear combinations of the degree fall polynomials that can be written
without the use of pj—elements. These can in turn be found by an attacker

96 M. Qygarden et al.

through the use of Grobner basis algorithms. This is the intuition that will be
further explored in the following subsections, but first we illustrate the point for
the bilinear equations in the following example:

Example 1. Consider an EFLASH instance with a = 1. Recall from Eq. (6) in
Definition 2 that the bilinear relations come from o = X2d7@Q +x2° Q2d79. By
Lemma 1 we can write evp1 o ¢~ () as d polynomials in the ring Falz1, ..., x,],
whose degree 3—part are linear combinations of x;p1 for 1 < i < n. This means
that the homogeneous degree 3—part has at most dimension n, whereas the image
of evp1 o ¢~ () has dimension d (under the assumption that the resulting d
polynomials are linearly independent). Since d > n for EFLASH, this means that
there will be d—n different independent linear combinations of these polynomials
that can be written without using p1. As a result a Grobner basis algorithm will
find d — n linear relations at D = 3.

It is worth pointing out that the embedding modifier 7, while needed to
protect against differential attacks and more sophisticated attacks, as e.g. in
[4], actually weakens the effect of the minus modifier 7. Indeed, had there been
no embedding, i.e. d = n, we would not expect to find any linear relations at
D = 3 in the example above. Thus in this special case we see there is a trade-off
between m and 7. Without the embedding one would have to deal with the above
mentioned attacks while the classic attack by Patarin would be prevented. On the
other hand, by applying the embedding you would get back parts of the linear
relations from Patarin’s classical attacks while preventing the above attacks.
This shows that more research is required to better understand how to securely
combine the two kinds of modifiers.

In the next two subsections we will focus on how things evolve when increas-
ing the step degree D. We start by generalising Example 1 to include more degree
falls at D = 3.

4.2 First Fall Polynomials at D = 3

In Definition 2 we saw that with a = 0, we will in addition to the linear polyno-
mials given by « (Eq. (6)) also have two more quadratic degree falls given by 51
and [z (Egs. (7) and (8)). The 3d multivariate polynomials associated to these
will in general account for all the degree fall polynomials that show up at step
degree D = 3. Lemma 1 implies that when a > 0 these polynomials will generally
be of degree 3, where the degree 3—part is further generated by the polynomials
x;pj, for 1 < i < nand 1 < j < a. Hence there are 3d resulting polynomials
where the top degree is generated by na elements, and so an estimate of the
number of degree fall polynomials at D = 3 can be found by merely subtract-
ing the two. To be more precise, recall from Sect. 2.2 that ker(¢p_2)/T(¢¥p_2)
denotes the vector space of non—trivial degree fall polynomials at degree D. We
write {#Par}p = dim(ker(vp_2)/T(¢¥p—2)) for its dimension, and derive the
following estimate for {#Pgs}s:

N3(n,d,a) = 3d — na. (10)

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 97

When Nj is negative, we do not expect to find any degree fall polynomials. In
this case we take max{N3,0} as the estimate for {#Pgqs}3. The accuracy of this
estimate will be tested in Sect. 5

4.3 First Fall Polynomials at D =4

The analysis gets more complicated at step degree 4, mainly due to the syzygies
appearing in the polynomial system at this degree. More specifically we wish to
find out what polynomials in Ax¢ that will correspond to multivariate degree
falls that are considered trivial, in the sense of Remark 1, by Grdbner basis
algorithms. The following lemma classifies these polynomials.

Lemma 2. The polynomials associated with
evpa o [(XH27)2 Q2] for 0 < ky ks <d —1,

can be written on the form:

Do biapivi >, CuPiss forbig,cj, €T (11)
1<i<d a+1<j2<d

a+1<j1<d
i#j1

Proof. We prove the statement for the case ko = 0 (other values of ko can be
written as a power of 2 of this case). For the ciphertext (y1, ..., yq), write:

Y Y1
Yy _ 1 Y2
: :
Yq Yd

Recall that we included the ciphertext in the definition of the p;—polynomials,
so this must be accounted for when considering X 1+2° (which will contain no
constant terms). We then have:

d

d
(X1+29)2’€1Q _ {Z(ql + yg),y(i—l)%l] . [Zq;-‘vj‘l},
j=1

i=1

and so if g is any of the d polynomials in ¢! (()(1*‘29)2]61 Q), we can write:

9g=aq {zd:gu(qz‘ + yé)} +..taq [Zd:gdi(qi + yi)}

i=1 i=1

for some g;; € Fy. Recall that the ¢;’s are linear combinations of p1, ...pq (written
out in Falxy,...,z,]) and will be unaffected by ev; ,. The ¢;’s are linear com-
binations of the formal variables py, ..., pg. Since the evaluation map sends all
the variables p1, ...p, to zero, the statement (11) in the lemma now follows from

ey q(9)- O

98 M. Qygarden et al.

We note that a system of quadratic polynomials p1, ..., pg with the property that
a sum of the form Zi# bi jpipj, with b; ; € [Fo, results in a non-trivial degree fall
(i.e. one not generated by Kozul Syzygies) would be a very degenerate system,
not suitable for multivariate cryptography. We may assume therefore that a
polynomial system associated with C* is very unlikely to have this property.
Thus, under the assumption that no such non—trivial relation exists, Lemma
2 implies that any degree fall polynomial that originates from a sum of the
form 37, 1, Chy ks (X1+2%)21 92" is simply a linear combination of the public
polynomials pg41,...,p4- As this gives no new information to an attacker, it
should be regarded as trivial (similar to what was discussed in Remark 1).

We may now return to the question of what degree fall combinations that
should be counted. The polynomials a, 81 and (3 discussed earlier, when multi-
plied with X2 will also generate degree fall polynomials for D = 4. Indeed, our
experiments suggest that all of degree fall polynomials at this step degree are
generated by these elements.

At first glance there will be 3dn multivariate polynomials associated with
the elements lea, leﬁl and XQlﬁg for 1 <4 < d. Note that here we are using
the fact that the variable X may be written using linear combinations of the
n variables z1, ..., z,. Hence, multiplying by all X, X2, ..., X2 will effectively
only give n different combinations, as opposed to d. However, not all of these
should be counted, for various reasons. We list the exceptions below:

- XpB1 = X%Q and Xzeﬂg = X2@+1Q are both generated at step degree D = 3,
and not step degree D = 4.

— X283, = X1+2°Q = XJ3,, will be cases of the trivial degree falls discussed
in Lemma 2. The same is true for X2 78, = (X127)2°°Q and X2*°3, =
(X1+29)2@Q. Lastly, the following is a sum of two trivial degree falls: Xa =
(X1+29)2d79Q n X1+29 Q2d7@.

~ From de,—ea _ X2d—(—)+1Q+X2d—(—D+2(—)Q2d—(—) _ X2d_6+1Q+ (X22661)2
we see that X2" “a can be written out as a polynomial generated by 31, and
one regular polynomial of degree 3. For this reason, the degree fall polynomials
generated by either X2 %aq or X226ﬁ1 do not bring anything new to the
system once the other has been created, and so only one should be counted.
The same is true for X2%a = X273, + X2 Q2" °.

d—6

There are two, five and two relations from the first to last bullet point,
respectively, which do not count towards generating new degree fall polynomials
made from X2 o, X2' 81 and X2 35. Summing these up we find that the adjusted
number of degree fall polynomials at @ = 0 should be (3n — 9)d.

It may initially seem like there are a(g) removed polynomials of degree 4,
namely all combinations x;x;py, but this does not take into account the trivial
syzygies arising from the fact that the p;’s are ultimately polynomials in the x;—
variables. Thus one should retract all combinations of trivial syzygies involving
the py—elements, namely the field syzygies; pz +pr, = 0 and Kozul syzygies of the
types pipr+prp; = 0, for i,k € {1,...,a}, and ppp;+p;pr =0, for k € {1,...,a}

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 99

and j € {a+1,...,d}. There are a such field equations, (‘2’) of the Kozul syzygies
of the first type and a(d — a) Kozul syzygies of the second type. This sums up to

a—az

a+(a>+a(da)ad+ 5

2

which should be subtracted from a(g) to give the precise number of degree

fall polynomials lost due to 7. Similar to the case D = 3, we can now add
together everything discussed so far to obtain an estimate of the number of

linearly independent degree fall polynomials at D = 4:

a—a2

N4(n,d,a):(3n—9)d—a<g)+ad+ e (12)

Again, Ny may become negative, so we take max{Ny4, 0} to be our estimate
fOI‘ {#Pdf}4.

5 Experimental Results

We now present experimental results to test the validity of the formulas from
the previous section predicting the number of first fall polynomials. In the first
set of experiments (Table 2) we vary the choices of parameters d, n, a and O.
The numbers N3 and N, have been calculated according to Egs. (10) and (12),
and the predicted first fall degree is the first degree where we expect a positive
value. We then give the first fall degree and the number of first fall polynomials
obtained at this step from the Grobner basis routine in the MAGMA computer
algebra system. In all our experiments the degree of the first fall polynomials were
maximal, i.e. one less than the first fall degree. The solving degree is measured as
the degree associated with the step having the largest matrix in the algorithm.

Table 2. Experimental results for EFLASH with varying parameters.

d |n lal [Ns/N, Dy Dy {(#Pa}p,; | Deotw | @+ 3| Dreg
(predicted) | (Magma) | (Magma)
51/49|5|13|-92/1403 |4 4 1403 4 9
511493 |13|6/3660 3 3 6 4 9
53139|7|13|—114/887 |4 4 887 5 10 7
56409 | 8|—192/-336|>5 4 20 5 12 7
5640 4| 8|8/3314 3 3 8 4 7 7
60|50 4| 8|—20/3794 |4 4 3794 4 7 8
63503 | 7|39/5394 3 3 39 4 6 8
63|50 |3 | 5/39/5394 3 3 39 4r 6 8

* The highest degree reached in MAGMA was 5, but this step occurred after 50 linear
relations were found, and consequently had little impact on the running time.

100 M. Qygarden et al.

In Section 5.1 of [6] the authors note that smaller EFLASH-systems could be
solved at degree equal to or one lower than for random systems of the same
parameters (D4 in our notation). As the systems (and hence also D,.4) grow
in size, it was suggested to use the bound in Eq. (4), namely a + 3. We have
included both D,., and this bound in the last two columns of the table for
comparison. One can notice that these values do not seem to be an adequate
measure of the solving degree in our experiments.

Note that the first two entries satisfy the condition n > d —a = m. This is to
emphasise that the validity of our theory is not only restricted to EFLASH (e.g.
the parameters in the PFLASH signature scheme are taken to be n > d — a).
There are several observations from Table2 that we would like to point out.
The first is that when at least one of the predictions N3 and Ny is positive,
then our theory accurately predicts both the first fall degree and the number
of polynomials obtained. An odd case in this regard happens in the fourth row,
where we do not expect any degree fall polynomials at D = 4, but the GB
algorithm is still able to find a small number of them. Secondly, we note that
the recorded first fall degree and solving degrees are either the same or one
apart in all the experiments. It is possible that this relation may be understood
through the number of first fall polynomials. For example, a low {#Pas}p,,
could imply Dso1p = Dyy + 1, whereas a large {#Pat}p,, implies Do, = Dy,
but any further exploration into this is beyond the scope of this paper.

The third point we wish to elaborate on from Table2 is that the last two
experiments differs only in © = 7 and 5. Here 7 is a divisor of d = 63, while 5 is
not. We obtain the same number of degree fall polynomials, indicating that for
direct methods it does not seem to make a difference whether @ divides d, as
opposed to other attacks (see e.g. [17]).

In the next set of experiments we have fixed the value of the parameters
d =56, n =40 and © = 8, while only varying the number a of removed public
polynomials. Note that when a = 9 this is the same case as presented in row 2
of Table 2. In these experiments we only present N4 from Eq. (12) and the first
fall degree and number of first fall polynomials measured by MAGMA.

For 6 < a < 8 in Table3 we find a positive value for N4 and in these cases
the theory exactly matches the experimental results. For 9 < a < 11 the theory
predicts no degree fall polynomials at D = 4, but MAGMA is still able to find a
small number of degree fall polynomials here. We see that this number decreases
by 9 as a is increased. When a = 12 public polynomials have been removed, no
degree fall polynomials are detected at D = 4, but a substantial amount is found
at D = 5.

This type of behaviour observed for 9 < a < 11, with a small set of degree
fall polynomials not predicted by Eq. (12) has also been observed for other sets
of parameters, so we do not believe that the parameters considered in Table 3
form a special case with regards to this. At this point we are not able to explain
what causes these degree fall polynomials.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 101

Table 3. Effects of increasing a for d = 56, n = 40, © = 8. The entry marked with *
has been measured at D = 5.

a | Measured Dys | Ny {#Pat}p,,
6 |4 1857 | 1857

7 4 1127 | 1127

8 |4 396 396

9 |4 —336 |20

10 14 —1069 | 11

114 —1803 | 2

1215 —2538 | 8552"

6 Security Estimation for EFLASH

Based on our results from previous sections, we now examine the suggested 80—
bit security parameters for EFLASH versus classical and quantum adversaries
(Table 1), using our formula for Ny(n,d,a) in Eq. (12). We find

N4(80,101,5) = 8026 and N4(160,181,5) = 22546,

which means that we expect that these sets of parameters will both admit a first
fall degree of 4. From the experiments in the previous section we observed that
when Ny gives a positive number, it predicts the number of degree fall polynomi-
als precisely. Furthermore, in all our experiments we find that the solving degree
is at most one greater than the first fall degree. In Table4 we have computed
the complexity of solving the EFLASH equation system on these parameter sets
using Eq. (2) when Dy, is 4 and 5. We have chosen to include two values that
are typically used for w: 2.4 corresponding to the smallest known value (here
up to 1 decimal precision), and 2.8 which is the value from Strassen’s algorithm.
From Table4 we find that both sets of parameters fail to achieve 80—-bit security
in all scenarios, with the exception of the parameters versus quantum adver-
saries under the most pessimistic (for an attacker) assumptions (w = 2.8 and
Dorp = 5)

For the suggested 128-bit security parameters in Table1 we get a negative
number for N4 and so we are not able to predict the first fall degree for these
cases. We have however seen that the minus modifier does not work as effectively
for EFLASH as initially believed, and so it is very likely that these parameters
will also fail to achieve their proposed security level.

102 M. Qygarden et al.

Table 4. The complexity of solving the 80-bit security parameters suggested with
respect to a classical adversary (left table) and a quantum adversary (right table).

Dsolv 4 5 Dsolv 4 5
w w
2.4 250 259 2.4 259 27
2.8 2°8 209 2.8 269 283

7 Further Work

Following the attack described in this paper, one may wonder whether it is
possible to fix the EFLASH scheme. We have seen that the relations 5; and [
play a crucial role in the low first fall degree for this system. They are a direct
consequence of the small base field, so it seems natural to try and choose a larger
base field to mitigate this. The problem with this approach is that the condition
for the central map to be injective, ged(¢? —1,¢® + 1) = 1, can only be satisfied
when ¢ is even. Furthermore, if F, is chosen to be a small extension field of Fo,
then the system can always be solved as a system over Fo, and so the existence
of (1, B2 ultimately seems unavoidable. The minus modifier does help, but as we
have seen it also strongly affects the efficiency of decryption in EFLASH. Since
q“ needs to be low in order for decryption to be efficient, the designer is limited
in the use of this modifier. For these reasons we cannot think of parameters that
would result in instances of EFLASH that seem both efficient and secure.

A related question is whether the analysis presented here would have an
impact on the security of the signature scheme PFLASH. As mentioned earlier,
EFLASH and PFLASH share the same central map, and so the latter will also
suffer from the same degree fall generators «, §1 and (5. The main difference is
that signature schemes can allow a significant number of public polynomials to
be removed without becoming inefficient. This can be seen from the suggested
parameters for PFLASH in [7], where roughly one third of the public polynomials
are removed. We are at this point not able to conclude either way on the security
of the current PFLASH parameters, but our work shows the need for an updated
security analysis against direct attacks for this scheme.

It will also be interesting to see if the ideas presented in this work may have
an impact on other multivariate big field schemes that also benefit from the
minus modifier. We point out that our methods not only predict the first fall
degree, but also the number of degree fall polynomials obtained at this degree. It
remains to be seen if this information can be used in other ways by an attacker.

One idea is to use this information in conjunction with the Joux—Vitse algo-
rithm [19]. For example, if we predict k degree fall polynomials at degree D, then
it may be the case that combining Macp_; and the k degree fall polynomials of
degree < D — 1 leads to optimal parameter choices for this algorithm (see [19]
for notation and more details on this). This could be particularly interesting in
cases where the first fall degree and solving degree may be far apart.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 103

8 Conclusions

With the prospect of quantum computers becoming a reality, cryptographers
have looked for quantum-safe public-key encryption algorithms that can replace
RSA. The C* scheme was proposed more than 30 years ago and is based on the
MQ problem which is considered quantum-safe. However, the basic C* scheme
was quickly broken and cryptographers have since tried to find variants that
may lead to secure quantum-safe public-key schemes. Some signature schemes
built around the C* construction have indeed withstood cryptanalysis; however
it has proven to be much harder to come up with secure and efficient encryption
algorithms based on it. EFLASH is one recent attempt.

However we have shown in this work that non-trivial degree fall polynomi-
als arise rather early in a Grobner basis attack when the central mapping is
just a power-function and ¢ is even (in particular when g = 2, as suggested for
EFLASH). Two techniques that have been proposed for overcoming the deficien-
cies of the basic C* system are to embed the plaintext space in a larger field,
and to remove some of the polynomials in the public key before it is published.
In this work we have seen that these two techniques to some extent work against
each other, and we have shed some light on how much security is actually gained
by the removal of some of the public polynomials.

During this work we were able to explain and give formulas for how many
degree fall polynomials will appear at step degrees 3 and 4 in a solving algorithm.
Experiments of fairly large instances show that our formulas give the exact
number of degree fall polynomials when the predicted number is positive, giving
confidence that we have captured the whole picture in our analysis. However, in
some cases we get a few non-trivial degree fall polynomials when our formulas
predict none, so more research is needed to explain these.

Based on our analysis we are very confident that we will indeed see a large
number of non-trivial degree fall polynomials at step degree 4 for the suggested
80-bit security parameter sets for EFLASH. In all likelihood the solving degree
for an actual EFLASH system will then be at most 5, giving solving complexities
significantly lower than the claimed security. This means that EFLASH does
not withstand direct Grobner basis attacks, and should therefore be considered
insecure.

References

1. Bardet, M., Faugere, J.-C., Salvy, B.: Complexity of Grébner basis computation
for Semi-regular overdetermined sequences over Fa with solutions in Fa. [Research
Report] RR-5049, INRIA, inria-00071534 (2003)

2. Bardet, M., et al.: Asymptotic behaviour of the degree of regularity of semi-regular
polynomial systems. In: Proceedings of MEGA, vol. 5 (2005)

3. Bettale, L., Faugere, J.-C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Des. Codes Cryptogr. 69(1), 1-52 (2013).
https://doi.org/10.1007/s10623-012-9617-2

https://doi.org/10.1007/s10623-012-9617-2

104

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. @Qygarden et al.

Bouillaguet, C., Fouque, P.-A., Macario-Rat, G.: Practical key-recovery for all pos-
sible parameters of SFLASH. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011.
LNCS, vol. 7073, pp. 667-685. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_36

. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In:

Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289-308.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_17

. Cartor, R., Smith-Tone, D.: EFLASH: a new multivariate encryption scheme. In:

Cid, C., Jacobson Jr., M. (eds.) SAC 2018. Lecture Notes in Computer Science,
vol. 11349, pp. 281-299. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-10970-7-13

. Chen, M.-S., Yang, B.-Y., Smith-Tone, D.: PFLASH - secure asymmetric signatures

on smart cards. In: Lightweight Cryptography Workshop (2015). https://ws680.
nist.gov/publication/get_pdf.cfm?pub_id=926103

. Cox, D.A., Little, J., O’shea, D.: Using Algebraic Geometry, vol. 185. Springer,

New York (2006). https://doi.org/10.1007/b138611

. Diene, A., Ding, J., Gower, J.E., Hodges, T.J., Yin, Z.: Dimension of the lineariza-

tion equations of the matsumoto-imai cryptosystems. In: Ytrehus, @. (ed.) WCC
2005. LNCS, vol. 3969, pp. 242-251. Springer, Heidelberg (2006). https://doi.org/
10.1007/11779360-20

Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724-742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_41

Ding, J., Kleinjung, T.: Degree of regularity for HFE-. In: IACR Cryptology ePrint
Archive 2011, p. 570 (2011)

Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial sys-
tems over a finite fields. In: Fischlin, M., Katzenbeisser, S. (eds.) Number The-
ory and Cryptography. LNCS, vol. 8260, pp. 34-49. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42001-6_4

Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH
be repaired? In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdébttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 691-701.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_56
Faugere, J.C.: A new efficient algorithm for computing Grobner bases (F4). J. Pure
Appl. Algebra 139(1-3), 61-88 (1999)

Faugere, J.C.: A new efficient algorithm for computing Grobner bases without
reduction to zero (F 5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, pp. 75-83. ACM (2002)

Faugere, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Grobner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44-60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4_3

Felke, P.: On the affine transformations of HFE-cryptosystems and systems with
branches. In: Ytrehus, @. (ed.) WCC 2005. LNCS, vol. 3969, pp. 229-241. Springer,
Heidelberg (2006). https://doi.org/10.1007/11779360-19

Felke, P.: On the security of biquadratic C* public-key cryptosystems and its gen-
eralizations. Crypt. Commun. 11, 1-16 (2018)

Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomykatla, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3-21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1_1

https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-319-59879-6_17
https://doi.org/10.1007/978-3-030-10970-7_13
https://doi.org/10.1007/978-3-030-10970-7_13
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=926103
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=926103
https://doi.org/10.1007/b138611
https://doi.org/10.1007/11779360_20
https://doi.org/10.1007/11779360_20
https://doi.org/10.1007/978-3-642-22792-9_41
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-540-70583-3_56
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/11779360_19
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Cryptanalysis of the Multivariate Encryption Scheme EFLASH 105

Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19-30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2

Liu, J., et al.: Structural key recovery of simple matrix encryption scheme family.
Comput. J. 61 (2018). https://doi.org/10.1093 /comjnl/bxy093

Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419-453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8_39

Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248-261.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_20

Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33—48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9_4

Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algo-
rithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298-307.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_22

Perlner, R., Petzoldt, A., Smith-Tone, D.: Total break of the SRP encryption
scheme. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp.
355-373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_18
Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229-245.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_14

Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231-242. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_16

Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing,
S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236-251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6_19

https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1093/comjnl/bxy093
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-45353-9_22
https://doi.org/10.1007/978-3-319-72565-9_18
https://doi.org/10.1007/978-3-319-11659-4_14
https://doi.org/10.1007/978-3-642-38616-9_16
https://doi.org/10.1007/978-3-319-29814-6_19

q

Check for
updates

FPL: White-Box Secure Block Cipher
Using Parallel Table Look-Ups

Jihoon Kwon', Byeonghak Lee?, Jooyoung Lee?®) | and Dukjae Moon'

1 Samsung SDS, Seoul, Korea
{jihoon.kwon,dukjae.moon}@samsung.com
2 KAIST, Daejeon, Korea,
{1bh0307 ,hicalf}@kaist.ac.kr

Abstract. In this work, we propose a new table-based block cipher
structure, dubbed FPL, that can be used to build white-box secure block
ciphers. Our construction is a balanced Feistel cipher, where the input
to each round function determines multiple indices for the underlying
table via a probe function, and the sum of the values from the table
becomes the output of the round function. We identify the properties
of the probe function that make the resulting block cipher white-box
secure in terms of weak and strong space hardness against known-space
and non-adaptive chosen-space attacks. Our construction, enjoying rig-
orous provable security without relying on any ideal primitive, provides
flexibility to the block size and the table size, and permits parallel table
look-ups.

We also propose a concrete instantiation of FPL, dubbed FPLags,
using (round-reduced) AES for the underlying table and probe functions.
Our implementation shows that FPLags provides stronger security with-
out significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM.

Keywords: Feistel cipher - White-box security - Space hardness -
Provable security

1 Introduction

The white-box threat model in cryptography, introduced by Chow et al. [9] in
2002, assumes that the adversary is accessible to the entire information on the
encryption process, and can even change parts of it at will. Numerous primitives
claiming for security at the white-box model were proposed in the last few years.
These primitives can be roughly divided into two classes.

The first class includes algorithms which take an existing block cipher (usually
AES or DES), and use various methods (e.g., based on large look-up tables and ran-
dom encodings) to obfuscate the encryption process, so that a white-box adversary

J. Lee was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.

© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 106-128, 2020.
https://doi.org/10.1007/978-3-030-40186-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_6

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 107

will not be able to extract the secret key. Pioneered by Chow et al. [9], this app-
roach was followed by quite a few designers. Unfortunately, most of these designs
were broken by practical attacks a short time after their presentation [3,14,17],
and the remaining ones are very recent and have not been subjected to extensive
cryptanalytic efforts yet.

The second class includes new cryptographic primitives designed with white-
box protection in mind. Usually such designs are based on key-dependent tables,
designed in such a way that even if a white-box adversary can recover the full dic-
tionary of such a table, it still cannot use this knowledge to recover the secret key.
Stronger security notions than key extraction hardness are also considered in the
provable security setting. In this line of research, a number of block ciphers have
been proposed, including ASASA [4], SPACE [6], SPNbox [7], WhiteBlock [12],
and WEM [8].! Alternatively, key generators have also been proposed that are
claimed to be secure in the white-box model. In this case, an initial vector is
chosen uniformly at random, and it determines the corresponding secret key via
the key generator. With this key, a plaintext is encrypted using a conventional
block cipher such as AES, and the resulting ciphertext is sent to the recipient
together with the initial vector. This approach has been rigorously analyzed in
the bounded retrieval model [1,2]. However, key generators might not be suit-
able for protecting data at rest in any stable medium since an adversary might
try to exploit the initial vector first, and then the corresponding table entries to
recover the secret key.

As the white-box security notion for our construction, we will consider space
hardness [6,7] (also called incompressibility [11] and weak white-box security [4]),
meaning that an adversary with access to the white-box implementation can-
not produce a functionally equivalent program of significantly smaller size. This
property is needed, as a white-box adversary can perform code lifting, i.e., extract
the entire code and use it as an equivalent secret key. While space hardness does
not make code lifting impossible, it does make it harder to implement in practice.
The attack models can be classified into three types: known-space attack, non-
adaptive chosen-space attack and adaptive chosen-space attack (as described in
Sect. 2 in detail).

1.1 Owur Contribution

In this work, we propose a new table-based block cipher construction, dubbed
FPL (Feistel cipher using Parallel table Look-ups), that can be used to build
white-box secure block ciphers. FPL is a balanced Feistel cipher, where the input
to each round function determines multiple indices for the underlying table via
a probe function, and the sum of the values from the table becomes the output
of the round function (see Fig. 1). The motivation behind our design (compared
to existing constructions) can be listed as follows.

! Some instantiations of ASASA have been broken [13,16].

108 J. Kwon et al.

— The block size and the table size can be chosen flexibly, compared to
substitution-permutation ciphers such as SPNbox, WhiteBlock and WEM using
128-bit dedicated block ciphers as their components. For this reason, FPL might
be suitable for protecting database, e.g., format preserving encryption.?

— The underlying table is easy to generate (compared to substitution-
permutation ciphers) since they do not need to be bijective.

— Encryption can be made faster in an environment where parallel or pipelined
table look-ups are possible (compared to SPACE).

Provable security of FPL depends on the properties of the probe function; we
identify such properties, dubbed superposedness and linear independence, that
make the resulting block cipher white-box secure. Assuming these properties, we
prove the security of FPL in terms of weak and strong space hardness against
known-space and non-adaptive chosen-space attacks. Our security proof does not
rely on the randomness of the probe function. On the other hand, we show that
a random function satisfies the desirable properties except with negligible prob-
ability. This observation will be useful particularly when we use a pseudorandom
function (e.g., a block cipher with a fixed key) to construct a probe function.

From a practical point of view, we propose a concrete instantiation of FPL,
dubbed FPLags, using (round-reduced) AES for the underlying table and probe
functions. Our implementation shows that FPLags provides stronger security
without significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM. To make a fair comparison, we focused on AES-
based constructions, not including SPNbox as it is a fully dedicated construction.
We also remark that Lin et al. proposed an unbalanced Feistel-type white-box
secure construction [15], while its security has not been proved nor claimed in
terms of space hardness; their security model seems to be incomparable to space
hardness.

DiscussioN. The known-space attack models the limited control of the adversary
over the platform and captures trojans, malwares and memory-leakage software
vulnerability, while the chosen-space attack captures stronger adversarial ability
to isolate a certain part of the underlying table and send it out via a communi-
cation channel with a limited capacity. In particular, the adaptive chosen-space
attack, which is the most powerful attack, assumes an adversary with full access
to the table at any time during the execution of the block cipher. However, it
should be noted that strong space hardness cannot be achieved against adaptive
chosen-space attacks for any (table-based) white-box design; an adversary would
be able to fix an arbitrary plaintext, and exploit all the table entries needed to
compute the corresponding ciphertext. As for weak space hardness of FPL against
adaptive chosen-space attacks, we provides only a heuristic argument using the
approach given in [7].

2 It would also be possible to tweak the probe function when it is instantiated with a
pseudorandom function such as AES.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 109

Fig. 1. The i-th round of FPL with four table look-ups. The probe function and the
secret table of the i-th round are denoted by g and Fj, respectively.

2 Preliminaries

2.1 Table-Based Block Cipher

(CONVENTIONAL) BLoCK CIPHER. Let x and n be positive integers. An n-bit
block cipher using k-bit keys is a function family

E:{0,1}" x {0,1}" — {0,1}"

such that for all k£ € {0,1}" the mapping F(k,) is a permutation on {0, 1}".
TABLE-BASED BLOCK CIPHER. For positive integers s and ¢, a table with s-bit
inputs and ¢-bit outputs can be viewed as a function

f:{0,1}° — {0,1}".
By viewing this table as a key of a block cipher, we will consider a table-based
block cipher B
E:Fsy x{0,1}" — {0,1}"

where F;; denotes the set of all functions from {0,1}* to {0,1}* bits, and for
each f € F,; the mapping E(f, -) is a permutation on {0,1}". A table-based
block cipher E using a secret table f € Fs; will be written as E[f] A main
difference of a table-based block cipher from conventional ones is that E[f] is
assumed to make a fixed number of oracle queries (or table look-ups) to the
underlying table f in its implementation. By a table-look up with an s-bit input
z, f(x) will be returned.

KEYED-TABLE-BASED BLOCK CIPHER. A pair of a table-based block cipher E
and a family of tables
F:{0,1}* x {0,1}* — {0, 1}

will be called a keyed-table-based block cipher.® Each key k € {0,1}* defines an
n-bit permutation E[F(k,-)] as in a conventional block cipher, while in its white-
box implementation, the keyed table F'(k, -) will be stored instead of the key k.

3 A table-based block cipher E can be regarded as keyed since each table in F; + can be
indexed by t - 2° bits.

110 J. Kwon et al.

2.2 Security Notions

Let (E, F) be a keyed-table-based block cipher. At the beginning of the attack,
an adversary A is allowed access to the table F'(k,-), where k is chosen uniformly
at random from {0, 1}* and kept secret to the adversary. More precisely, we will
assume that A makes ¢ oracle queries to F(k,-) for a positive integer ¢. In this
phase, we can distinguish three different types of attacks as follows.

1. Known-space attack (KSA): A obtains ¢ pairs of inputs and the corresponding
outputs of F(k,-), namely (z;, F(k,z;)), i =1,...,q, where x; are randomly
chosen from {0, 1}* without replacement.

2. Non-adaptive chosen-space attack (NCSA): A chooses a priori ¢ inputs z;
and obtains the corresponding outputs F'(k,x;) fori=1,...,q.

3. Adaptive chosen-space attack (CSA): A adaptively chooses ¢ inputs z; and
obtains the corresponding outputs F(k,z;) for i = 1,...,q. (So A is allowed
to choose x; based on the previous responses F(k,z;),i=1,...,j —1.)

After making all the oracle queries to the table, A is supposed to achieve a certain
security goal. We will consider three different goals, defining three notions of
security.

WEAK SPACE HARDNESS. A is given a random plaintext u € {0,1}", and asked
to encrypt E[F(k, 9)](u). Note that A makes oracle queries to F(k,-) without
knowing the plaintext uw. So in the definition of the adversarial advantage, A
consists of two phases A, and As, where A; relays a certain state o to As after
making oracle queries to the underlying table, and A, tries to find v on receipt
of o and w.

AdvaEf"‘;VWSh (A)

= Pr [k {0,135 u & {01} 0 — AT v As(o,u) v = BIF(k,)]

where atk € {ksa, ncsa, csa} represents the attack model.

STRONG SPACE HARDNESS. A is asked to come up with a valid plaintext-
ciphertext pair (u,v) such that v = E[F(k,-)](u). The adversarial advantage
is formally defined as follows: for atk € {ksa, ncsa, csa},

AV (A) = Pr [k & {0,137, (u,0) = ATE) 0 = E[F(k,)](w)] -

KEy EXTRACTION HARDNESS. A is asked to recover the secret key k. The
adversarial advantage is formally defined as

Advgk;;keh(A) =Pr {k & {0,1}%, k' — AF (k) g — k} .

For ¢, 7 > 0 and (atk, sec) € {ksa, ncsa,csa} x {wsh,ssh, keh}, we define

AdvE<s(g 1) = max Advase(A),

E,F E,F

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 111
where the maximum is taken over all adversaries A running in time 7 and making
at most ¢ queries.

PSEUDORANDOMNESS. Later, we will consider the security of F in terms of
its pseudorandomness (as a keyed function family); in this notion of security,
A would like to tell apart two worlds F'(k,-) and a truly random function f by
adaptively making (forward) queries to the function, where k is chosen uniformly
at random from the key space and kept secret to A, while f is chosen uniformly
at random from F; ;. Formally, A’s distinguishing advantage is defined by

Advi(A) = (Pr [f & Fopile Af} — Pr [k E{0,1)7 1 AF(’“')} ‘ .
For ¢, 7 > 0, we define

Advi (g, 7) = max Adv?T(A),

where the maximum is taken over all adversaries A running in time 7 and making
at most g queries.

3 FPL: Block Cipher Using Parallel Table Look-Ups

In this section, we define the FPL keyed-table-based block cipher. This construc-
tion is a Feistel cipher; let n and r denote the block size and the number of
rounds, respectively. We will assume that n is even, writing n = 2m for a posi-
tive integer m. For a (keyed) round function H from m-bits to m-bits, let P[H]|
denote a single-round Feistel cipher such that

®[H](ur,ur) = (ur,ur & H(ur))

for (ur,ur) € {0,1}™ x{0,1}™ (identifying {0, 1}" with {0,1}™ x {0,1}™). The
FPL block cipher is an r-round balanced Feistel cipher;

FPL = ®[H,]o--- o ®[Hs] o ®[H;]

for r round functions H;, i=1,...,r.

RouND FuNCTIONS OF FPL. Once parameters k, s, d are fixed, each round
function H;, i =1,...,r, is defined by a probe function

g: {0, l}m - ({07 1}S)d
and a keyed table
F:{0,1}" x ({1,...,r} x {1,...,d} x {0,1}*°) — {0,1}™.

We separate this table into smaller ones by writing F; ; = F(-,4,j,-) for i €
{1,...,r} and j € {1,...,d}. Then for z € {0,1}™,

Hi(z) = Fi1(y1) ® Fi2(y2) @ - @ Fia(ya),

112 J. Kwon et al.

where we write g(z) = (y1,v2,---,ya) € ({0,1}%)%. In this way, FPL becomes a
keyed-table-based block cipher that encrypts n-bit blocks using a x-bit key. The
size of the underlying keyed table is rdm?2° bits.

SECURITY REQUIREMENTS FOR PROBE FUNCTIONS. The (provable) security
of FPL depends on the property of its probe function. We need the following
definitions.

Definition 1. Let p and q be positive integers, and let g : {0,1}™ — ({0,1}*)%.
If for any subsets Y1,...,Yy C {0,1}* such that |Y1|+ -+ |Ya| < g,

[{x €{0,1}™ : g(z) € Y1 x - x Yy}| < p,
then we will say that g is (p, q)-superposing.

Definition 2. Given a function g : {0,1}™ — ({0,1}*)%, the incidence matrix
of g, denoted My, is a 2™ x d2° zero-one matriz, where the rows and the columns
are indexed by {0, 1}™ and {1,...,d} x{0,1}*, respectively, and (My)y, () = 1
forj=1,....d if and only if g(x) = (y1,Y2,- -, Yd)-

Note that each row of M, contains exactly d 1’s.

Definition 3. Let ¢ be a positive integer, and let g : {0,1}™ — ({0, 1}*)4. If any
¢ rows of My are linearly independent over GF(2), then g is called {-independent.

The superposedness and linear independence of the probe function will turn out
to be essential in the security proof of FPL.

4 Probabilistic Construction of Secure Probe Functions

In this section, we will consider probabilistic construction of secure probe func-
tions. This approach is relevant when we instantiate the probe function with
a block cipher (adding a prefix to inputs and truncating its outputs) in prac-
tice, since a block cipher is typically modeled as a pseudorandom function. So
we will see how the randomness of the probe function is related to the secu-
rity requirements discussed in Sect. 3, namely the superposedness and the linear
independence.

Once we fix an integer ¢ such that 0 < ¢ < d2°, and subsets Y7,...,Yy C
{0,1}® such that |Y1| + -+ + |Yy4| = ¢, then a random function ¢ : {0,1}"™ —
({0,1}*)? will map an element of {0,1}" to an element of Y3 x --- x Yy with
probability H?Zl (]Y;]/22), which is upper bounded by ¢?/(d2%)¢. So the number
of z € {0,1}™ such that g(z) € Y7 x --- x Yz will be close to 2™¢?/(d2%)¢. This
intuition is formalized in the following lemma.

Lemma 1. Let A be a positive integer. A random function g : {0,1}"™ —
({0,1}*)? is (p(q), q)-superposing for every q such that 0 < q < d2° except with
probability at most 2=, where

p(q) =3 (dgs>d2m+d28 + A

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 113

Proof. Let ¢ = q/(d2%), where 0 < ¢ < 1, and let

d2° + A\
0= 2
cdgm +

as a function in c. So we have p = (146)c?2™. We fix subsets Y7, ..., Yy C {0,1}*
such that |Yi|+ -+ |Yy| = q.

For each z € {0,1}™, let Y, be a random variable, where Y, = 1 if g(z) €
Y; X+ x Yy, and Y, = 0 otherwise. Random variables Y., € {0,1}™, are all
independent, and Pr[Y, = 1] < ¢? for every z € {0,1}™. Let Z,, = € {0,1}™,
be independent Bernoulli random variables such that Pr[Z, =1] = ¢? and
Pr(Z,=0] = 1 — ¢?. We can couple Y, and Z, so that Z, = 1 whenever
Y, = 1.

Let Y = > cio1ym Yo and let Z = 37 1o 1ym Zy. Then Y counts the
number of x € {0,1}™ such that g(x) € Y7 x --- X Yy, while Z is the sum of
independent Bernoulli random variables such that Ex[Z] = c%2™. By applying
the Chernoff bound to the variable Z, we obtain

PrY >p] <Pr[Z > (1+6)c*2]

S - 62_261.62711 S e_(5_2)cd2m _ e_(d25+k).
Since the number of possible choices for subsets Yi,...,Y; C {0,1}° is upper
bounded by
d2*
) (dQS) =
q=0 4

we can use the union bound to conclude that a random function g : {0,1}™ —
({0,1}*)% is (p, q)- superposmg for every g such that 0 < ¢ < d2°% except with
probability at most 292" . e~ (2" where 2427 . ¢~ (d2°+A) < 9=A 0

Lemma 2. For a positive integer £, a random function g : {0,1}™ — ({0,1}*)?
s £-independent except with probability at most

5] d-2 N\
def J
Pm,s,d,@ - Z <2ds—2m—1) :

i=1
d—2
If 2ds—2m=2 > (%) , then we have Py, s.q0 < W.

Proof. A probe function g : {0,1}™ — ({0,1}*)¢ defines a 2™ x d2° incidence
matrix M,. This matrix can be viewed as obtained by concatenating d matrices
M,li], i« = 1,...,d, where the rows and the columns of M,[i] are indexed by
{0,1}™ and {O, 1}5, respectively, and (Mg)[i]y, = 1 if the i-th entry of g(x)
is y and (Mj)[i],,y = O otherwise. When g is chosen uniformly at random, the
position of the nonzero entry will also be random and independent for each row

of (My)[i],i=1,...,d.

114 J. Kwon et al.

Let M,[i], denote the row of M,[i] indexed by = € {0,1}™. If g is not
¢-independent, then there will be indices z1,...,z9; € {0,1}™ for a positive
integer j such that 25 < ¢, satisfying

Mg[i]11 @ Mgmiz D---D Mngzj D M, []frzg 0 (1)

for every i = 1,...,d, where 0 denotes the zero vector. In order for (1) to hold
for a fixed i € {1,...,d} and a set of indices X = {x1,...,29;} C {0,1}™,
there should be a perfect matching in a complete graph on X (or equivalently
an involution without fixed points on X) such that for any edge {z,,zg} the
corresponding rows have “1”7 at the same position. For a fixed edge {zq,zs},
the corresponding rows have “1” at the same position with probability 1/2°% over
the randomness of g. Since the number of perfect matchings is

. . _(29)!
(271 (25 =3) 3 1= O
and Mg[l],..., M,[d] are chosen independently, the probability that g is not

{-independent is upper bounded by

£

S () () 5 () (2 ()
() (2)°
()

J
Let p; = (W) forj=1,..., L%J One can easily show that p; 11 < p;/2

if
el d—2
2d572m72 > < 5)) (2)

j=1
L5

IN

MWTM

IN

J

In this case, we have

1
dee_ZpJ<Z 1*2d5 2m—2" (3)

5 White-Box Security of FPL

Throughout this section, we will fix the parameters of FPL, namely, m, s, d, k,
r, where we assume r > 7. Furthermore, we suppose that an r-round FPL block
cipher is based on a probe function

g: {0’ 1}m - ({07 1}S)d

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 115

and a keyed table

F:{0,1}" x ({1,...,7} x {1,...,d} x {0,1}*) — {0,1}™,
writing F; j = F(-,1,7,-) fori € {1,...,r} and j € {1,...,d}.

5.1 Key Extraction Hardness of FPL

Up to the pseudorandomness of the keyed table, one would not be able to recover
the secret key by exploiting the table entries. More precisely, it is easy to see

AdVERF (a,7) = AdvET (),

where ¢ = ¢ + O(k/n) and 7/ = 7 4+ O(k/n). So in the following, we will focus
on the space hardness of FPL.

5.2 Space Hardness of FPL

Throughout this section, we will replace the underlying keyed tables F; ;, (4, 7) €
{1,...,7} x{1,...,d}, by independent uniform random functions f; ; up to the
pseudorandomness of F', so all the security bounds have an additional term
Adv%rf(q, 7). In this setting, we will consider an information theoretic adversary
A with unbounded computational power.

A UseruL LEMMA. Note that for 2 € {0,1}™,
Hi(z) =F;1(y1) ® Fi2(y2) @ - - - @ F;.a(ya)

where g(x) = (y1,92,...,94) € ({0, 1}S)d. For i and j such that 1 < < j <,
let
FPLZ‘J = @[H]] O---0 é[Hi-Q—l] o @[HZ]

be the subcipher of FPL containing rounds ¢ to j, and for w € {0,1}™, let
FPL;’jj :{0,1}™ — {0,1}™,

be a function such that FPLY;(u) = v if FPL; j(w,u) = (v',v) for some v' €
{0,1}™. In other words, FPL“’] sets the left half of the input to FPL; ; to w, and
takes only the right half of the output from FPL; ;.

In order to prove the strong space hardness of FPL, we need to prove the
multi-collision security of FPL;"; over the random choice of the underlying tables.

Lemma 3. Let 1 < i < j < r, let £ > 2, and let w € {0,1}™. If a probe
function g is £-independent, then the pr0babilz'ty that there are £ distinct elements
uy, ... ug € {0,1}™ such that FPLY;(u1) = - - - = FPL"; (us) is upper bounded by

" (2)

116 J. Kwon et al.

Proof. We will first fix v € {0,1}"™ and ¢ distinct elements uy,...,u, € {0,1}™,
and then upper bound the probability that

FPLY (ua) = v (4)

for every a = 1,..., 0. Let (w),,ul,) = FPL; j_1(w,us) (with arbitrary tables for
rounds ¢ to j — 1) and let

/

g(ua) = (ya,la Yo, 25+ - 7yo¢,d)

for a =1,...,¢. Then (4) implies the following ¢ equations:
Hj(ul) = Fj1(Ya,1) ® Fj2(Ya2) @ ® Fja(Ya,a) = wh ®v (5)

for o = 1,..., 0. If u, = u, for some 1 < a1 < ag </, then it should be the
case that w, ©v # w,, ® v since (w),,u;,) are all distinct. Therefore we can
assume that u], are all distinct.

Rewriting Fj 5(ya,s) by 28,y for 1 < a < £ and 1 < 8 < d, we obtain
a system of equations in unknowns zg,, ;. If the number of the unknowns is
denoted by L, then the number of solutions to this system is given as 2(L—0™
since g is f-independent. Furthermore, for each solution, say (z;,ya,g)7 the prob-
ability that Fj g(ya,g) = Z;wa.g is given as 1/2L™. Therefore, the probability of
an (-multicollision in FPL;’; is upper bounded by

om 2(L7€)m om 1 en !
m 4 7 _o9m —<om (Z) .
(%) o =2 (%) g =2 (7) ;

SECURITY AGAINST KNOWN-SPACE ATTACKS. Weak and strong space hardness
of FPL against known-space attacks is summarized by the following theorem.

Theorem 1. Suppose that g is {-independent for a positive integer £. Then for
any integers q, r1 and ro such that 0 < q < rd2°,ri, ro >3 and ry +1re <71, we
have

2M T d 22m rod en ! Y
q () 4 L
12 2

ksa-wsh prf
AdvepLr (¢,7) < Advi (¢, 7) + (rd2s)md " (rd2s)rzd

(6)

We also have

5]-1)d e\’ ¢
ksa-ssh < prf 2m-+1 q (I— 2 —‘ m (€ .
Advepr (g 7) < Advi (q,7) +2 (7rd23> +2 <€> + —227”(|
7

Proof. We will give the proof of (6); The upper bound (7) is proved similarly.
In the first phase of the attack, A is given g queries fi, ;. (o), ® =1,...,q,
where i, € {1,...,7}, jo € {1,...,d} and y, € {0, 1}® are chosen independently

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 117

at random. In the second phase of the attack, A is given a random plaintext
uw € {0,1}", where u is written as ur||ug for up, ug € {0,1}™.

Fori e {1,...,r} and j € {1,...,d}, let Y; ; C {0,1}* be a set of queries
y such that f; ;(y) have been fixed (so ¢ = ia, j = jo and y = y, for some
a € {1,...,q}). If there are r; + 1 elements, denoted xq, 1, ..., 2., € {0,1}™,
such that

1. zg = ur and xy = ug,

def .
2. 9(2) = Wity Yia) € Yia x - x Yigfori=1,... m,
31 By =fii(yi1) @B fir(yiag) fori=1,...,m —1,

then we will give a win to A. For each (r,41)-tuple (zo, ..., z,,) € ({0,1}™)" "
the probability that zo = ur, 1 = ug, and g(z;) € Y;1 x -+ x Y 4 for i =
1,...,71 is upper bounded by
1 q Tld
22m (rd25> ’

Furthermore, the probability that z;,_1 ® x;41 = fi1(yi1) ® -+ & fi1(yia) for
t=2,...,71 — 1 is upper bounded by

1 r1—2
()

over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by
qurld
o (8)
(rd2s)rd
On the other hand, if there are ry elements x1,...,z,, € {0,1}™, such that
def .
1og(z:)) = Wins-- - Yia) €Yir X+ xYgfori=r—ro+1,...,7,
2. i1 @z = fian(Win) @ ® fir(yia) fori=r—rog+2,...,7r—1,

then we will also give a win to A. The probability of A’s winning in this game
is upper bounded by
22mqr2d

(et ¥

Suppose that A outputs v € {0,1}?™ at the end of the attack, where we will
write v = vg||vg for vr,vrp € {0,1}™. Without the winning events above, one
can find a sequence of 7’ 4+ 1 elements, say xg, z1,. ..,z € {0,1}™ for some 7,
such that 1 <7’ < rq, where

1. xg =ur, and 1 = ug,
2. fori=1,...,7r" -1,

def
9(x) = (Yin,-- - Yia) €Yin X+ x Yig,

Tig1 = i1 D fin(yin) © - D fi1(Wia)s

118 J. Kwon et al.

3. g(],‘rl) ¢ le,l X oo X Yr’,d~

Similarly, there is a sequence of 7/ +1 elements, S&Y Ty 1711, Tp—prr 49, « oy Tpy1 €
{0,1}™, for some 7" such that 1 < r” <ry, where

1. 2, =vp and z,41 = vRg,
2. fori=r—7r"+2,...,1,
def
g(x:) = Wi, Yia) €Yia x - xYq,
Tigy1 =21 D fi1(¥i1) ® - @ fi1(yia),
3. g(xrfr’url) ¢ Yvrfr”Jrl,l X X err”+1,do

Next, we focus on r — ' — ¢” (> 1) rounds in the middle from round 7’ 4 1
to r — r”’. By Lemma 3, the number of inputs that collides on ,_,» 1 under
FPLY ,, 1s at most £ except with probability

r'+1,r—r
gm (%)[(10)

Without any ¢-multicollision, we Would have two sets of ¢/ different values, say
{al iy, .2ty and {al_ ..., 2f_ .}, for some ¢/ < ¢, such that
O[Hy—rr] 0+ 0 P[Hyrio] 0 P[Hp 1] (4, xiuﬂ) = (xiir,,, Tp_prr41)
for j =1,...,¢. Therefore, FPL(u) = v implies that
PIH, (w1, 2) = (207,27, 4),
qv)[HT—T”+1](~T'i_r//a x?‘—r”—&-l) = (l‘r—r”+17 xr—r"+2)
for some 7 = 1,...,¢, which hold with probability at most
L

Jom (11)

The proof of (6) is complete by (8), (9), (10) and (11). O

SECURITY AGAINST NON-ADAPTIVE CHOSEN-SPACE ATTACKS. Weak and
strong space hardness of FPL against non-adaptive chosen-space attacks is sum-
marized by the following theorem.

Theorem 2. Let £ be a positive integer and let p(-) be an increasing function
defined on {0,...,d2°}. Suppose that g : {0,1}™ — ({0,1}*)? is (-independent
and (p(q'),q")-superposing for every ¢’ € {0,...,d2°}. For any q € {0,...,rd2°}
and ' € {1,...,r}, let p*(q,7") be the mazimum of H:lzl p(q;) subject to the
constraints Z:/:l gG=qand0<q; <d2° fori=1,...,7". Then for any r1 and
ro such that ri, ro > 3 and r1 + ro < r, we have

-wsh rf p*(qul) p*(qu2) m (€ ¢ 4
AV (g.7) < Advl(g,7) + P+ EO 0 o (D)

(12)

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 119

We also have
: P (a,]5] - 1) eé ¢
AVISTSh (0 1) < Adv (¢, 7) + 2 4om (7) .
FPL,F (q) = F (C]) 2(|’g| _3)m_1 /¢ 22m

Proof. We will give the proof of (12); The upper bound (13) is proved similarly.

At the first phase of the attack, A chooses sets of queries Y; ; C {0,1}° and
obtains f; ;(y) for each y € Y; ;, where ¢ € {1,...,r} and j € {1,...,d}. At the
second phase of the attack, A is given a random plaintext u € {0,1}", where u
is written as up||ug for ur, ug € {0,1}™.

If there are r; + 1 elements, denoted xg, z1,...,z,, € {0,1}"™, such that

(13)

1. g =ur and 1 = ug,

def .
2. g(x;) = (Yits- o Yiag) €EYir X xY;gfori=1,...,r,
3.1 B xip1 = fii(yi1) @& fi1(yiag) fori=1,...,m —1,

then we will give a win to A. Since |Y; 1|+ -+ |Yiq| = ¢; and g is (p(¢:), ¢)-
superposing, we have

{z € {0,1}™ : g(z) € Yin x -+ x Yia}| < p(a:)

for ¢ = 1,...,r1. Therefore the number of tuples (zg,x1,...,z,,) such that
g(x;) €Y1 x---xY;qgfori=1,...,r is upper bounded by

T1
2" [p(@:) < 27p* (g, 1),
=1

since ¢1 + -+ -+ ¢, < g; for each (r1 4+ 1)-tuple (zq, ..., z,,), the probability that
up =, up =1 and ;1 P41 = fi1(¥5,1)®D B fi1(yia) fori=1,...,r—1
is upper bounded by
1 r1+1
(=)

over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by
p (Qa Tl)) (14)

2mr1

Similarly, if there are ry elements z1,...,z,, € {0,1}™, such that

1. g(aci)déf (Yit,-- s ¥ig) €EYir X xYigfori=r—ro+1,...,r,
2. i1 @21 = fin(yi1) ® - @ fin(yia) fori=r—ra4+2,...,r -1,

then we will also give a win to A. The probability of A’s winning in this game
is also upper bounded by

p*(g,72)

om(ra—2)°
Suppose that A outputs v € {0,1}?>™ at the end of the attack, where we will
write v = vi|lvg for vp,vg € {0,1}™. Without the winning events above, one
can find a sequence of r' + 1 elements, say xo,1,...,2~ € {0,1}™, for some r’
such that 1 <7’ < rq, where

(15)

120 J. Kwon et al.

1. 29 = ur and £y = ug,
2. fori=1,...,7" -1,

def
9(xi) = (Wi, ¥Yia) € Yig X - X Y4,
Tip1 =21 @ fin1(yin) © - @ fi1(yia),
3. g(,’BT/) ¢ Y,J}l X oo X Yr’,d~

Similarly, there is a sequence of 7/ +1 elements, Say @711, Tp_prr 42, o Tpy1 €
{0,1}™, for some " such that 1 <" < rg, where

1. 2, =vp and z,41 = vRg,
2. fori=r—r"+2,...,7,
def
g9(xi) = Wiy ¥ia) € Yin X - X Yig,
Tip1 =21 @ fi1(yin) © - @ fi1(yia),
3. g(xrfr”#»l) ¢ Ytr‘f'r”+1,1 X X Y,,‘fr/q,l’d.

Next, we focus on r — ' — " (> 1) rounds in the middle from round 7’ 4 1
to r — r’’. By Lemma 3, the number of inputs that collides on ,_,»1 under
FPL® ., 18 at most £ except with probability

r'4+1,r—7r

e\t

om (Z) . (16)

Without any ¢-multicollision, we would have two sets of ¢’ different values, say
{zl 1, xbyYand {z}_ ..., 2t} for some ¢/ < ¢, such that

P[Hy] o0 P[Hyio] 0 O[Hp 1] (2, xiq.l) = (xi_r”a Ty—prr41)
for j =1,...,¢. Therefore, FPL(u) = v implies that
9p[I{T'}(ajT'—l) l‘t) = (m’f’ 5 xz‘u’_l)y
QS[Hrfr”Jrl](xz‘frﬂv xrfr”+1) = (xrf'r’urlv -Trfr”+2)

for some j = 1,...,#, which hold with probability at most

14
The proof of (12) is complete by (14), (15), (16) and (17). O

SECURITY AGAINST ADAPTIVE CHOSEN-SPACE ATTACKS. We claim weak space
hardness of FPL against adaptive chosen-space attacks with a somewhat heuristic
argument.

We first estimate how large space is necessary to compute L plaintexts in
advance. When L plaintexts are encrypted, each table has L accesses, and for L

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 121

table accesses, the expected number of used entries in each table F; ; is estimated
as (1—ek) - 2% where e, df /2%. Therefore an adaptive chosen-space
attack of table leakage § (= ¢/rd2*) enables to compute [log,, (1 —)| pairs of
plaintexts and the corresponding ciphertexts. A randomly-drawn plaintext will
be included in the set of the prepared pairs with probability |—10gem (1- 6)] /2™,
On the other hand, if the plaintext is not in the set of the prepared pairs, then
the adversary is able to successfully guess its ciphertext with probability at most
597, Overall, the adversarial success probability is upper bounded by

ﬂoge,m (1- 6)}

d
o + o,

For example, when the parameters are given as (n, s, d,r) = (128,12,40,11) (as
used in Table3) and when § = 0.25, the success probability is limited to 2717,

5.3 Numerical Interpretation

Table 1 compares the security of FPL for various sets of parameters when n = 128
and n = 64. In this table, FPL-(n, s, d,) denotes the n-bit FPL cipher of r rounds
using d table look-ups for each round, where each table has 2° entries. We will
assume that the probe function g is pseudorandom so that we can probabilistically
guarantee its superposedness and linear independence using Lemmas 1 and 2, and
this probability is represented by the security parameter A. Since all the security

bounds in Sect.5 include the term 2% (%)Z + QL,L, which is optimized when ¢ is
close to n, we will set the target security level to (n —logn) bits, and compare the
maximum table leakage ¢ (= ¢/rd2%) that achieves this level of security.

For each set of parameters (n, s, d,), the maximum table leakage is computed

as follows.

1. Fix sufficiently large A, and by Lemma 1, assume that the probe function g is
(Aq? + B, q)-superposing for every g such that 0 < ¢ < d2°, where A = (3'225);
and B =d2° + A\

¢

2. Find ¢ that minimizes 2% (%)5 + 5w over positive integers £ such that P, 5.q.¢
is sufficiently small, say < 2~ for the fixed parameter \.

3. In order to analyze the ncsa-wsh security, for each (r1,r2) such that rq, ro > 3
and ri + ro < r, maximize ¢ € {0,...,rd2°} such that

p*(g,m1) p(g,r2) et !
omry Qm(r272) +2 (Z) +227m (18)

is upper bounded by n/2", where p* (-, -) is as defined in Theorem 2. Let ¢y, ,,
denote this maximum.

4. Maximize gy, ., over (r1,72) such that ry, ro > 3 and r; + ro < r. Let ¢**
denote this maximum. Then ¢**/rd2° becomes the maximum table leakage
that achieves (n — logn)-bit security.

5. The ksa-wsh, ksa-ssh, ncsa-ssh security is analyzed similarly.

122 J. Kwon et al.

In the third step, we need to compute p*(q,r1) and p*(g,72) for each ¢ and
(r1,72), and see if (18) is upper bounded by n/2". For a fixed pair (g,), p*(q,)

is the maximum of
T

H (Aq? + B)

i=1

subject to the constraints > ;_,¢; = ¢ and 0 < ¢; < d2% for i = 1,...,r. We

observe that
In (H (Agd + B)) => In(A¢! + B), (19)

i=1 i=1
where
C(z) ¥ (Az® + B)

is concave in [(B/A)4,rd2°].* For simplicity of analysis, we upper bound C(z)

by C(z), where
Cl) {0((3//1)5) if z < (BJA)Y,
Cl(x) if 2> (BJA)a.

Once we fix the number of indices i, denoted 7', such that g; > (B/A)d, then
> _InC(z) is upper bounded by
(r=r")C((B/A)#) +1/Cla/r")

by Jensen’s inequality.® So we conclude that

np*(q,r) < max {(r=r)CB/A)) +7'Cla/r')}.

T 0Lr'<r
For example, let n = 128 (i.e., m = 64) and let (s,d,r) = (12,20,17). As a
function of £,
a et 4
2 () * 3

is minimized when ¢ = 47. We also see that Pg4 12,2047 < 1/2111, so we let
A = 111. This means that when we use AES with a fixed key as a probe function
it would satisfy (-linear independence except with probability 1/2''l. When
g =0.17- (rd2*), we have

AAVIETIE) (g,7) < 271222

assuming that the underlying tables are truly random.

* We assume that 0 < (B/A)% < rd2%. All the parameters in Table 1 satisfy this
inequality.
5 We let r'C(q/r’") = 0 when ' = 0.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 123

Table 1. Security of FPL

(a) Security of FPL with n = 128.
Cipher Table size | A | ksa ncsa

wsh |ssh | wsh |ssh
10.63 MB |111|0.380.33|0.17 |0.12
20.62 MB |111/0.61|0.58|0.28|0.26
136.00 MB | 127 |0.30 | 0.25 | 0.13 | 0.09
264.00 MB | 127 0.54 | 0.50 | 0.24 | 0.22
FPL-(128,20,12,17) | 1.59 GB 111]0.20|0.16 | 0.09 | 0.05
FPL-(128,20,12,33) 3.09 GB 111/0.44|0.40 | 0.22 | 0.22
(b) Security of FPL with n = 64.
Cipher Table size | A | ksa ncsa

FPL-(128,12,20,17
FPL-(128,12,20, 33
FPL-(128,16, 16,17
(
(

FPL-(128,16, 16, 33

)
)
)
)
)
)

wsh |ssh | wsh |ssh

FPL-(64,8,16,9) 144.00 KB |63 |0.26 | 0.26 | 0.00 | 0.00
FPL-(64,8,16,17) 272.00 KB |63 |0.55/0.51]0.130.08
FPL-(64, 8,16, 33) 528.00 KB |63 |0.74|0.71|0.30|0.26
FPL-(64,16,8,17) 34.00 MB |63 |0.300.26 | 0.00 0.00
FPL-(64, 16, 8, 33) 66.00 MB |63 |0.55/0.51/0.200.14
FPL-(64,16,16,17) | 68.00 MB |63 |0.550.51|0.00|0.00

6 FPLags: Concrete Instantiation

Given probabilistic construction of a secure probe function, one might want to
use AES (with a fixed key) as the probe function, assuming AES is pseudorandom.
In this section, we propose a concrete instantiation of FPL, dubbed FPLags, using
(round-reduced) AES for the underlying table and probe functions.

6.1 Specification

The FPLags cipher is defined by parameters =, m, d, s, where m is even and
5 < 16.5 Let n = 2m, and let FPLags-(n, s,d,r) denote the n-bit FPLags cipher
of r rounds using d table look-ups for each round, where each table has 2° entries.
The probe function uses AES reduced to 5 rounds (without the linear mixing
operation in the last round), denoted AES[5], while the table is generated using
the full-round AES using 128-bit keys. In the following, Tr,(-) denotes truncation
of the first a bits from the input, and (z), denotes the a-bit binary representation
of integer x.

PROBE FUNCTIONS. The probe function g : {0,1}™ — ({0,1}*)¢ is computed
as follows.

5 The definition can be straightforwardly extended to s > 16.

124 J. Kwon et al.

1. On input z € {0,1}™, compute
Yy = AES[5]o,25 ((1)128—m [@)| - - - |AES[5]o, 26 (([d/8])128—m %),

where 0795 denotes the zero vector of 128 bits,” and the input prefixes are
represented by 128 — m bits.

2. Break down y as yill---|lyyllx, where 3} € {0,1}'° for j = 1,...,d and
* denotes the remaining bits; the index y; for the j-th table is defined as
Tri6-s(yj) for j =1,...,d. So we have g(z) = (y1,-- -, Ya)-

TABLES. The FPLags cipher uses a single keyed table
F {0,138 x {1,...,r} x {1,...,d} x {0,1}* — {0,1}™,

where F(k, 4, j,y) = Trizs—m (AESk((i)64l(f)sa—s[1))-

6.2 Black-Box Security of FPLags

In this section, we analyze the differential and the linear properties of FPLaEgs.

DIFFERENTIAL CRYPTANALYSIS. Fix an s-to-m bit function f : {0,1}* —
{0,1}™. Given an input difference o and an output difference (3, the differential
probability of f is defined as

DP(e, 8) = [{(u,v)lu ® v = a and f(u) ® f(v) = B}|

for u,v € {0,1}°. The distribution of DP(«, 3) over all s-to-m bit functions
has been shown to be binomial for sufficiently large s and m [5,10]. For a non-
trivial differential (o, 8) with fixed o and g, this distribution is binomial with
the following probability;

. 23—1
PrDP(a, B) = A = (27™)* - (1 — —27™)2 A (\)
In [6], the probability pp that DP(«, 3) is at most B over all non-trivial values
of a and (is lower bounded by

s—1 —m\B+1
(-)
(B+1)!
Table 2a shows pp for f with s = 12, 16, 20 when n = 128 (so m = 64). By using
this probability pg, the differential probability of f is estimated as B/2°. Suppose
that the differential probability of f to be 27104 (= 3/212), 271 (= 4/216) and
2718 (=4/229) since p3, ps and ps are very close to 1 in f with s = 12, 16 and
20, respectively. Due to diffusion properties of the probe function, FPLags with
s =12, 16 and 20 have at least 13, 10 and 8 active F; ; functions after 3 rounds.

25+m,+1

" Any constant key will not affect the overall security (compared to 0;2g).

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups 125

When n = 64, the lower bounds on pg are listed in Table 2b. The differential
probability of f with s = 8 and 16 is 2764 (= 3/2%) and 27134 (= 6/219),
respectively. FPLags with s = 8 and 16 have at least 10 and 5 active F; ; functions
after 3 rounds.

Table 2. Lower bounds on pp

(a) Lower bounds on pg with n = 128.

S | P1 p2 p3 P4 Ps Pe

19 1.2-30 | {_9—85 | {9140 | {_5—195 | {_5—250 | {_9—306
16| 1.2-18 | 1969 | _9—120 | |_9—171 | | 9222 | 1 9—274
90| 1.2-6 | 1.9-53 | 1.9—100 | {_9—147 | | 9—194 | 1 5—242
(b) Lower bounds on pp with n = 64.

s m e | pa ps ps
] [1.2710 19737 1_9=64 | {_9=91 | 9—118 |1 9—146
16 | - 1-27° 11272 12743 |1.9762 |1.97%2

LINEAR CRYPTANALYSIS. Fix an s-to-m bit function f : {0,1}* — {0,1}™.
Given an input mask v € {0, 1}* and an output mask ¢ € {0, 1}, the correlation
of a linear approximation with respect to (y,d) is defined as

Cor =2°-({z € {0,1}°|y -2 @6 - f(z) = 0} ={z € {0, 1} Iy -w @6 - f(z) = 1})).

The linear probability LP for (v, d) is defined as Cor?. If LP of f is assumed to
be normally distributed, then LP of a non-trivial linear approximation of f has
mean p(LP) = 27% and variance o2(LP) = 2 x 2725 [10].

In [6], LP of f with a fixed key is upper bounded by 27°+100 with probability
at least 1 — 278 Therefore, the maximum linear probabilities can be assumed
to be 274,278 2712 and 2716 for s = 8, 12, 16 and 20, respectively. So FPLags
with s = 12, 16, 20 and n = 128 have at least 16, 11 and 8 active F; ; functions
after 3 rounds. When n = 64, FPLags with s = 8 and 16 have at least 16 and 6
active F; ; functions after 4 and 3 rounds, respectively.

6.3 Performance

In this section, all of our experiments are done in the Zen+ microarchitecture
(AMD Ryzen 7 2700X @ 3.70 GHz) which supports AVX (including AVX2),
SSE, and AES instructions. The machine has L1-data, L2, and L3 caches with
32KB, 512KB, and 8192 KB sizes as well as 64 GB DDR4 RAM with a clock
frequency of 2400 MHz. The source codes have been compiled by the GNU C
Compiler 7.4.0 in O2 optimization level.

126 J. Kwon et al.

Figure2 compares the performance of FPLags in the white-box setting for
a various number of rounds r. When s and d are fixed, the table size is pro-
portional to the number of rounds, and so is the execution time (in cycles per
byte). We also observe that FPLags-(128,12,40,r) is significantly faster than
FPLags-(128,12,20,2r) (e.g., when r = 10, 15), where FPLags-(128,12, 20, 2r)
and FPLags-(128,12,40,7) use tables of the same size with the same number
of table look-ups. The reason is that FPLags-(128,12, 40,) makes more tables
looks-ups per round than FPLags-(128,12, 20, 2r), which can be pipelined mini-
mizing latency.

cycles/byte cycles/byte cycles/byte
AN AN AN
1482.87 | -+ovveii
136820
1108.86 | --vvovvemeeei RACRY S I 1126.72 f v
TS B N 864.93 - ceieiiinn 869.62 - s
658.95 1 s 643.98)
568.26 |-
431474 415.52 |
316.88 |-
208.50 |-
r

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
(a) FPLags-(128,12,20,7). (b) FPLags-(128,12,40,7). (c) FPLags-(128,16,16,7).

Fig. 2. Performance of FPLags-(n, s,d,r) for a various number of rounds r.

Table 3 compares the performance of FPLags to SPACE, WhiteBlock and WEM
with block size n = 128. The comparison has been made with table sizes around
13 MB.® The table size is not exactly the same as some constructions recommend
only a small number of sets of parameters with their security analysis, while
the table size affects both efficiency and security. That said, we observe that
FPLags-(128,12,40,11) provides the strongest security without significant loss
of efficiency; it provides ksa-wsh and ksa-ssh security up to the leakage of 44%
and 41%, respectively. Note that SPACE uses a single table for every round, so
its provable security is also heuristic.

BLACK BOX IMPLEMENTATION. A key owner might want to use a compact imple-
mentation of the encryption scheme by storing keys instead of the correspond-
ing tables. For example, in an environment where a single server communicates
with all the users, it would be infeasible to store all the keyed tables. Table 4
compares performance of FPLags to existing schemes in the black-box setting,
where the underlying tables are all generated using the full AES block cipher.

8 This is the table size of WEM for their recommended parameters.

FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups

127

Table 3. Comparison of FPLags to existing schemes with block size n = 128. The
security is compared in terms of weak space hardness against known-space attacks.

Cipher Table size | Security Table look-ups | Cycles per byte
SPACE-(20, 64) 13.50 MB | 128 bits @ 0.25 | 64 RAM-TL |891.60
WhiteBlock-20 24.00 MB | 108 bits @ 0.25 | 69 RAM-TL 582.62
WEM-(16, 12) 13.00 MB | 112 bits @ 0.25 | 104 RAM-TL | 356.49
FPLags-(12,40,11) | 13.75 MB | 121 bits @ 0.44 | 440 RAM-TL | 357.52

This comparison does not include WEM, since the bijective S-boxes of the WEM
are generated by the Fisher-Yates shuffle, which is too slow when implemented
with AES. We see that FPLags is comparable to existing schemes in the black

box implementation.

Table 4. Black-box performance of FPLags and existing schemes in cycles/byte.

SPACE-(20, 64)

WhiteBlock-20

WEM-(16, 12)

FPLags-(12, 40, 11)

166.40

93.30

200.35

References

. Bellare, M., Dai, W.: Defending against key exfiltration: efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In: Proceedings of
the 22nd ACM SIGSAG Conference on Computer and Communications Security,
pp- 923-940. ACM (2017)

. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
373-402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
414

. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227-240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4.16

. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63-84.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_4

. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 204-221.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_12

. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In:
Proceedings of the 22nd ACM SIGSAG Conference on Computer and Communi-
cations Security, pp. 1058-1069. ACM (2015)

https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-45611-8_4
https://doi.org/10.1007/978-3-642-40041-4_12

128

7.

10.

11.

12.

13.

14.

15.

16.

17.

J. Kwon et al.

Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASTACRYPT 2016. LNCS, vol. 10031, pp. 126-158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_5

Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg,
A.: WEM: a new family of white-box black ciphers based on the even-mansour
construction. In: Handschuh, H. (ed.) Topics in Cryptology - CT-RSA 2017. LNCS,
vol. 10159, pp. 293-308. Springer, Berlin (2017)

Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250-270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7_17

Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221-242 (2007)

Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisonék, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247-264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7_13

Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT 2016. LNCS, vol.
10031, pp. 159-188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6_6

Gilbert, H., Plat, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem
with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 475-490. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6_23

Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisonék, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265-285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7_14

Lin, T.-T., Lai, X.-J., Xue, W.-J., Jia, Y.: A new feistel-type white-box encryption
scheme. J. Comput. Sci. Technol. 32(2), 386-395 (2017)

Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9453, pp.
3-27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_1
Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264-277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3_17

https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-47989-6_23
https://doi.org/10.1007/978-3-662-47989-6_23
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/978-3-540-77360-3_17

®

Check for
updates

Extending NIST’s CAVP Testing
of Cryptographic Hash Function
Implementations

Nicky Mouha®) and Christopher Celi

National Institute of Standards and Technology, Gaithersburg, MD, USA
nicky@mouha.be, christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in Apple’s CoreCrypto
library, which affects 11 out of the 12 implemented hash functions: every
implemented hash function except MD2 (Message Digest 2), as well as
several higher-level operations such as the Hash-based Message Authen-
tication Code (HMAC) and the Ed25519 signature scheme. The vulnera-
bility is present in each of Apple’s CoreCrypto libraries that are currently
validated under FIPS 140-2 (Federal Information Processing Standard).
For inputs of about 232 bytes (4 GiB) or more, the implementations do
not produce the correct output, but instead enter into an infinite loop.
The vulnerability shows a limitation in the Cryptographic Algorithm
Validation Program (CAVP) of the National Institute of Standards and
Technology (NIST), which currently does not perform tests on hash func-
tions for inputs larger than 65535 bits. To overcome this limitation of
NIST’s CAVP, we introduce a new test type called the Large Data Test
(LDT). The LDT detects vulnerabilities similar to that in CoreCrypto
in implementations submitted for validation under FIPS 140-2.

Keywords: CVE-2019-8741 - FIPS - CAVP - ACVP - Apple -
CoreCrypto + Hash function - Vulnerability

1 Introduction

The security of cryptography in practice relies not only on the resistance of
the algorithms against cryptanalytical attacks, but also on the correctness and
robustness of their implementations. Software implementations are vulnerable
to software faults, also known as bugs.

A (cryptographic) hash function turns a message of a variable length into
an output of a fixed length, often called a message digest, or digest. This fixed-
length output can then serve as a “fingerprint” for the message, in the sense that
it should be computationally infeasible to construct two messages that result in
the same digest. Hash functions are crucial to the security of many higher-level
cryptographic algorithms and protocols.

In the context of digital signature schemes, hash functions are used to ensure
that only the given message and the corresponding signature (along with the

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 129-145, 2020.
https://doi.org/10.1007/978-3-030-40186-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_7

130 N. Mouha and C. Celi

public key) passes the signature verification process. Digital signatures provide
authentication in a similar manner to signatures in the real world. For example,
a web browser can verify a package that is downloaded comes from a specific
website by verifying the signature that was provided with the download using the
known, trusted public key of the website. As a part of this verification process,
the browser hashes the downloaded data so that the fixed-length digest can stand
in place of the large variable-length data in the digital signature scheme.

A recent study by Mouha et al. [12] of the National Institute of Standards
and Technology (NIST) SHA-3 (Secure Hash Algorithm) competition found that
about half of the implementations submitted to the SHA-3 competition con-
tained bugs, including two out of the five finalists. It appears that cryptographic
algorithms can be difficult to implement, given that even the designers of the
algorithm can have trouble to develop a correct implementation. Furthermore,
even for a secure and well-designed cryptographic algorithm, bugs can be par-
ticularly severe with respect to the cryptographic properties of the algorithm’s
implementation.

For example, in the case of all submitted implementations of the BLAKE [4]
algorithm to the SHA-3 competition, given one message and its corresponding
hash function output, it is easy to construct another message that produces the
same hash value. This “second preimage attack” is not due to a weakness in
the BLAKE algorithm specification, but due to an implementation bug that
remained undiscovered for seven years.

In [12], Mouha et al. did not find any bugs in the submission packages of
Keccak [6], the hash function algorithm that won the SHA-3 competition and
that is now standardized in Federal Information Processing Standard (FIPS)
202 [17]. In this paper, we explore whether implementations of hash functions
that are standardized by NIST and currently used in commercial products may
also contain bugs. Furthermore, we investigate how these bugs can impact more
complex cryptographic operations such as digital signature schemes.

2 Testing Within NIST’s CAVP

NIST maintains the Cryptographic Algorithm Validation Program (CAVP),
which provides validation testing for the NIST-recommended cryptographic algo-
rithms. The CAVP is a prerequisite for validating cryptographic implementations
according to FIPS 140-2 under the Cryptographic Module Validation Program
(CMVP). Since the Federal Information Security Management Act (FISMA)
of 2002, U.S. Federal Agencies no longer have a statutory provision to waive
FIPS 140-2. This means that commercial vendors must validate their crypto-
graphic implementations, also known as modules, according to CAVP/CMVP
before they can be deployed by U.S. Federal Agencies.

The CAVP testing methodology is derived directly from the algorithm spec-
ification, independent of the actual code that a vendor’s implementation uses.
Therefore, it is realistic to expect three main limitations of the CAVP:

Extending NIST’s CAVP Testing 131

1. The CAVP does not require that the internals of an implementation are known
in order to generate tests, and is therefore restricted to black-box testing.
For many widely-used cryptographic libraries, however, the software is either
open source or available on the vendor’s website, which may be used to reveal
additional bugs through static analysis (including checking software coding
standards), or white-box testing.

2. The CAVP tests only the capabilities of the implementation that are declared
by the vendor. For example, a hash function implementation may declare that
it can only process messages up to 65535 bits, corresponding to the largest
test vectors currently in the CAVP, even though it may encounter much larger
inputs under typical use. When NIST introduces tests for larger inputs, it is
therefore the vendor’s responsibility to declare whether or not their imple-
mentation supports such inputs. However, it is in the vendor’s interest to
avoid bugs and therefore declare the capabilities of the implementations as
broadly as possible.

3. The CAVP focuses mostly on the correct processing of valid inputs (positive
testing), rather than the rejection of invalid inputs (negative testing). Because
of the nature of black-box testing, the CAVP provides test vector data to the
implementation. A developer of the module must program a test harness
to submit this data to the interfaces of the cryptographic library itself and
collect the output to send back to the CAVP. As the test harness is outside
the bounds of the CAVP, it is difficult to know from a validation perspective
whether invalid inputs are handled by the module, or by the test harness.
There are a few notable exceptions to this, such as the CAVP tests for digital
signature schemes that test whether the implementation can recognize valid
versus invalid signatures.?

Furthermore, the focus of most cryptographic algorithm testing is on cor-
rectness towards common cases within the specification. This may leave crypto-
graphic algorithms vulnerable to malicious inputs that manifest themselves very
rarely under random testing. Notable examples exploit bugs in modular arith-
metic [7], incorrect group order validation [21], or improper primality testing [1]
to result in full or partial key recovery attacks on OpenSSL and other imple-
mentations. These examples show the importance to consider not just random
but also “rare” and “unusual” inputs for cryptographic implementations, as they
may lead to catastrophic security failures.

In spite of these limitations, the CAVP can be highly effective at detecting
many types of bugs. This is because the CAVP test design is aware of the inter-
nals of “typical” implementations of cryptographic algorithms. The focus of the
CAVP is not just conformance testing but also regression testing, as the CAVP
test design is also aware of how changes to the implementations may lead to
certain bugs. To see this, we now explain how the CAVP tests are generated.

The two test types in the CAVP are the Algorithm Functional Test (AFT),
and the Monte Carlo Test (MCT). They were introduced in 1977 by the National

! For the signature verification operation, the CAVP also includes some invalid
padding tests.

132 N. Mouha and C. Celi

Bureau of Standards (NBS), the former name of NIST, in the (now-withdrawn)
Special Publication (SP) 500-20 [13] to test the Data Encryption Standard
(DES). In this standard, static AFTs known as Known Answer Tests (KATSs)
were provided in order to “fully exercise the non-linear substitution tables” (S-
boxes), whereas MCTs contained “pseudorandom data to verify that the device
has not been designed just to pass the [fixed] test set.” Additionally, the large
amount of data of the MCT was intended to detect whether it can “cause the
device to hang or otherwise malfunction,” for example due to a memory leak [8]
in present-day implementations. The spirit and design of these tests was carried
over to other algorithms such as the Advanced Encryption Standard (AES) in
FIPS 197 [14] and hash functions.

This paper focuses on testing for hash functions within the CAVP at NIST.
FIPS 180-4 [16] standardizes the hash functions SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256. As these hash functions
closely resemble each other, they are considered functionally equivalent for the
purpose of this document. Testing for SHA-3 was added after the publication
of FIPS 202 [16], and with the exception of the SHAKE extendable-output
functions (XOFs), mimics the testing done for the FIPS 180-4 hash functions.
As with the other CAVP tests, the Secure Hash Algorithm Validation System
(SHAVS) [5] specifies both AFTs and MCTs.

Testing by the CAVP was done for many years using the Cryptographic
Algorithm Validation System (CAVS) tool. An implementation under test (IUT)
is accompanied with a declaration to the CAVS tool of which digest sizes it
supports along with a couple of other properties such as whether or not it can
hash an empty message, whether or not it can hash incomplete bytes (i.e. a 7-bit
message), and the maximum message size. The maximum message size allowed
by the tool is 65535 bits.

As of 2019, the CAVP is undergoing a transition to use the Automated Cryp-
tographic Validation Protocol (ACVP) to enable the generation and validation
of standardized algorithm test vectors. This involves a shift of generating and
validating tests at remote, approved laboratories, to performing these actions on
NIST-hosted servers. The concept of first-party testing is introduced to allow
vendors to test and validate their implementations without laboratories as inter-
mediaries. This combined with hosting a demo server (a sandbox environment
for algorithm testing), allows vendors to incorporate continuous testing of crypto
implementations in their development process. The ACVP thereby significantly
speeds up testing and validation.

The ACVP uses a JSON (JavaScript Object Notation) format to specify the
test cases. The client to the NIST ACVP servers would then correspond to the
test harness in the previous CAVS model, and is responsible for communicating
with the server and exercising the proper interfaces on the module. In the JSON
examples below, some of the original content has been trimmed for readability.
For more information on the protocol itself, as well as the complete examples,
we refer to the GitHub repository of the ACVP [11].

Extending NIST’s CAVP Testing 133

2.1 Algorithm Functional Test (AFT)

AFTs take a single message as input, and verify the correctness of the corre-
sponding output. A JSON file is sent from the server to the client, which usually
provides inputs to a cryptographic algorithm, and is very simple for an individual
test case:

{
"msg": "BCE7T",
"len": 16

}

where "msg" corresponds to the message represented as hexadecimal, and "len"
corresponds to the length in bits of the message. The messages have fixed values
that have been drawn uniformly at random from the space of messages of a
certain bit length, ranging from the client’s specified minimum to their specified
maximum or 65535, whichever comes first. The expected response to this test
case is another simple JSON object:

{
"md": "1FA29E9B23060562F9370453EF817E18C56AE844E5B85F2ED34B4B38"

}

where "md" corresponds to the message digest. The hash function in this example
is SHA-224.

AFTs can vary in length from byte-oriented messages (i.e., "len" is a multiple
of 8) or bit-oriented messages (with any bit lengths). This allows implementations
to specify their properties to the CAVP to receive appropriate test cases.

These tests are intended to provide assurance that an implementation can
handle messages of various sizes. However, the assurance that the AFTs currently
offer may be limited, as they may not test more than one message of any specific
bit length.

2.2 Monte Carlo Test (MCT)

MCTs, on the other hand, construct a chain of hash outputs by combining the
previous three hash outputs into a single message, and use it to produce the next
hash output. Each chain consists of 1000 iterations, and returns the hash output
that is obtained at the end. This whole process is repeated 100 times with the
original message replaced by the latest hash output.

The initial condition for an MCT is as follows:

{
"msg": "B4FCB616B3A4A7COE6AF1D836CF1576709A67F16141217B827E52611",
"len": 224

}

134 N. Mouha and C. Celi

where "msg" becomes the seed in the pseudocode of the MCT, which is given in
Algorithm 1. The seed is not fixed, but is drawn uniformly at random for every
invocation of the test.

Algorithm 1. The Monte Carlo Test (MCT) for hash functions

Require: seed (random string of same length as hash output)
for i = 1 to 100 do
MDI[0] = MDJ[1] = MDJ2] = seed;
for j = 3 to 1002 do
Msg[j] = MD[j — 3] || MD[j — 2] || MD[; — 1]
MDJj] = Hash(Msg[j]);
end for
seed = MD[1002];
Output seed;
end for

The response is an array of 100 hash outputs as follows:

{
"resultsArray": [
{
"md": "7B893BC7322AA6578A2EC565593B86776FB8376AC16BOA354EEDA016"
1},
{
"md": "4BCB655F36D976ADAAE620B485DA7TFDS8ED321EOBFO60EOFE2BSFOAFE"
},
{
"md": "57AA388954B3D52645BFAC69E87F48B3D57A86CF385F38A2549FEQLT"
}
]
}

shortened to only three outputs for brevity, and again using the SHA-224 hash
function in the example. The CAVP makes an implicit assumption here that the
client’s implementation can handle a message that is three times the size of the
hash output.

These tests are intended to provide assurance that an implementation is
correct for valid inputs over thousands of iterations. However, the assurance
that the MCTs currently offer may be limited, as the bit lengths of the messages
do not vary between test cases. Furthermore, as this bit length is three times
the digest size, the MCTs only cover a negligibly small percentage of the total
input space of the given bit length.

Extending NIST’s CAVP Testing 135

Hash (E ')

InitQ);

Update (I:I)

Update(| |);

Update (I:I);

Final();

Fig. 1. Hash functions are commonly implemented using a Hash interface that takes a
variable-length message, and returns a fixed-length output. It is common to also have
an Init-Update-Final interface, which can be convenient to process large messages
on the fly.

3 Common Hashing Interfaces

Although not mentioned in the NIST hash function standards [16,17], many
cryptographic implementations have at least two distinct functional interfaces for
hash operations, as shown in Fig. 1. One of the two interfaces, or both interfaces,
may be available to a consumer of the module or to higher-level algorithms within
the module. The first is an Init-Update-Final interface. This structure allows
implementations to constantly stream smaller chunks of data into Update()
repeatedly, rather than keep the message as a single large chunk. Perhaps the
entire message is not available at once, or perhaps there is a limit to the capacity
of a single Update () call.

The other interface is a more intuitive Hash() call that expects the whole
message up front. This is different from the previous interface and the same
module could potentially behave differently under these two interfaces [12].

In practice, the Init-Update-Final interface can be convenient to hash the
concatenation of various elements. For example, the American National Stan-
dards Institute (ANSI) X9.63 Key Derivation Function (KDF) [2] computes the
hash of a secret value Z, a counter, and an optional SharedInfo string that
is shared between two entities. This hash can be computed using one Init()
call, followed by an Update() call to process Z, another Update () call for the
counter, and then an optional third Update () call for SharedInfo. The Final ()
call can then be used to compute the hash function output.

To hash the contents of a file, there are two approaches that are commonly
encountered in practice. One approach is to loop through the contents of the file
(e.g., using fread() in C), and process each chunk using a call to Update().
Another common approach is to map the file to the virtual address space (e.g.,
using mmap () in C), and then compute the hash by calling Hash (). This second

136 N. Mouha and C. Celi

approach must be used when the interface requires the data to be located in
memory. For example, the interface of the Ed25519 signature scheme in Apple’s
CoreCrypto requires a pointer for the data to be hashed, therefore if an appli-
cation wants to compute (or verify) a digital signature on a file (e.g., containing
a large software update), it must first use mmap () to map this file into memory.

4 Vulnerability in Apple’s CoreCrypto Library

We show how adding test cases beyond the current coverage of the CAVP can
reveal previously undiscovered bugs in cryptographic implementations.
First, we look the SHAVS document [5], which states that:

“While the specification for SHA specifies that messages up to at least
264 — 1 bits are possible, these tests only test messages up to a limited size
of approximately 100,000 bits. This is adequate for detecting algorithmic
and implementation errors.”

In contrast, the SHA-3 Competition Test Suite [15] also contains an
“Extremely Long Message Test,” which contains a message of 233 bits (1 GiB),
with the intention of checking whether messages of more than 232 bits were pro-
cessed correctly. This test from the SHA-3 competition is not adopted by the
CAVP however. We now explain how adding a similar test for large messages
reveals a bug in the widely-used Apple CoreCrypto library.

Apple makes the source code of its CoreCrypto library publicly available [3]
to allow for “verification of its security characteristics and correct functioning.”?
The CoreCrypto library provides low-level cryptographic primitives that are fun-
damental to the security of Apple’s products, and is currently deployed in iPhone,
iPad, and Mac devices worldwide. The library has also undergone rigorous test-
ing, and is currently present in 20 FIPS 140-2-validated modules.

In the Ilatest CoreCrypto library, the bug is present in the
ccdigest_update.c file, which is located in the ccdigest/src subdirectory.
This code is shared by all implemented hash functions except for MD2. The full
code of the function is given in Appendix A. All the implemented hash func-
tions are iterated hash functions, which means that an underlying compression
function processes the message in multiples of a block size that is specific to the
algorithm. Part of the code to process message in multiples of the block size is
as follows:

1 //low-end processors are slow on division
2 if (di->block_size == 1<<6){ //sha256

3 nblocks = len >> 6;

4 nbytes = len & OxFFFF{f£fCO;

5 1} else if(di->block_size == 1<<7){ //shab12

2 We refer to the latest CoreCrypto that is available online at the time of writing
(November 25, 2019). It does not appear to have a version number, but can be
identified by the year 2018 in the copyright notice.

Extending NIST’s CAVP Testing 137

6 nblocks = len >> 7;

7 nbytes = len & OxFFFFff80;

s } else {

9 nblocks = len / di->block_size;

10 nbytes = nblocks * di->block_size;
11 }

In this code, the variables len, nblocks, and nbytes are declared as size_t,
which corresponds to a 64-bit unsigned integer on a 64-bit architecture. The len
variable is the length of the message in bytes. In case len is less than 232, the
value of nblocks is the number of complete blocks to be hashed: len divided
by the block size (in bytes), whereas nbytes is the number of bytes of these
complete blocks.

However, for block sizes of 64 or 128 bytes (i.e., when di->block _size is
1<<6 or 1<<7), the calculation of nbytes contains a bug: the four highest bytes
of size_t are incorrectly set to zero by the bitwise AND (&) operation. Conse-
quently, when len is at least 232 (corresponding to messages of at least 4 GiB),
the value of nbytes does not contain the correct number of complete blocks.
Therefore, later in the code, the statement len -= nbytes does not decrement
len by the correct amount; instead 1en remains 232 or larger. Given that all these
statements are contained in a while-loop with condition len > 0, the program
enters into an infinite loop.

A list of affected hash function implementations is given in Table 1.

Table 1. Hash function implementations in Apple’s CoreCrypto library.

Algorithm Block size (in bytes) | Vulnerable

MD2 16 X
MD4 64 4
MD5 64 v
RIPEMD-128 | 64 4
RIPEMD-160 | 64 v
RIPEMD-256 | 64 4
RIPEMD-320 | 64 4
SHA-1 64 v
SHA-224 64 4
SHA-256 64 4
SHA-384 128 v
SHA-512 128 4

When this code was written, perhaps the assumption was made that size_t
corresponds to a 32-bit value, in which case the code would have been correct.
When size_t is 64 bits, however, the integer constant used to perform the AND
operation is incorrect.

138 N. Mouha and C. Celi

One way to avoid this type of bug, could be to follow software cod-
ing standards, such as the Computer Emergency Response Team (CERT)
C Coding Standard. This standard states in INT17-C: “Define integer con-
stants in an implementation-independent manner” [19], and gives an exam-
ple that is very similar to the bug in Apple’s CoreCrypto library. Note that
it is possible to avoid masks altogether, by using nbytes = nblocks << 6 or
nbytes = nblocks << 7 for 64-byte and 128-byte blocks respectively.

4.1 Experimental Verification

We downloaded the latest CoreCrypto library from Apple’s website [3], and
compiled it using the Xcode IDE (Integrated Development Environment) on
macOS 10.14 (Mojave) on a mid 2015 MacBook Pro, as well as using Clang 8
under Ubuntu 14.04 on an Intel Skylake processor. For Linux, the README.md
file warns that the Linux Makefile is not up-to-date, therefore we needed to make
some minor changes to the Makefile to allow compilation.

Because the bug is due to incorrect C code, we expect that the bug will
manifest itself on any 64-bit platform for which the code is compiled. To confirm
that the executable is stuck in an infinite loop, we added some source code
instrumentation.

In our proof of concept code, we generated an input with a length of
bytes. Because the actual value of the input is not relevant for the bug, we
arbitrarily set all bits to zero in our experiments. When this input is provided to
MD4, MD5, RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, SHA-1,
SHA-224, SHA-256, SHA-384, or SHA-512, we verified that the implementation
enters into an infinite loop. We mentioned earlier that the MD2 implementation
does not share the code of ccdigest_update.c, and we also confirmed that the
same input does not cause an infinite loop for MD2. This provides experimental
confirmation for the results of Table 1.

Then, we looked into higher-level cryptographic operations. We found that
the implementation of the ANSI X9.63 KDF is not vulnerable when provided
with a secret value Z of length 232 bytes. This is due to a range check in the
input length, which is documented by the following source code comment in
CoreCrypto: “ccdigest_update only supports 32bit length.”

However, such a range check is not applied to every hash function calculation,
and most other cryptographic algorithms inside Apple’s CoreCrypto library that
use hash functions are vulnerable. We verified that HMAC enters into an infinite
loop for all the vulnerable algorithms in Table 1 when provided with a message
of 232 bytes.

For the Ed25519 signature scheme, we found that a message of at least 232 4
64 bytes is needed to trigger the bug. To explain this, note that the Ed22519
algorithm always prepends some data to the message before computing the hash
value using SHA-512. This is implemented in Apple’s CoreCrypto using the
Init-Update-Final interface. When there are 64 bytes already in the buffer,
the first 64 bytes of the message are used to complete a 128-byte block, which
we recall is the block size for the SHA-512 algorithm. After processing the first

232

Extending NIST’s CAVP Testing 139

64 bytes of the message, if there are at least 232 bytes or more left, then the
bug is triggered. For details, we refer to the full code of the ccdigest_update ()
function in Appendix A.

We verified that the Ed25519 implementation indeed enters into an infinite
loop when a message of 232 4 64 bytes is digitally signed or verified. Note that
in order to trigger the bug in the verification operation, it is not necessary to
provide a valid signature. Therefore, even if the private key is stored properly
and never used to sign long messages, the verification operation still enters into
an infinite loop for an incorrectly-signed message of 232 4 64 bytes or more. Note
that digitally signed messages typically come from untrusted sources, because
the concern that a message can be modified by an adversary is typically the
reason to apply a digital signature in the first place.

Another cryptographic operation in Apple’s CoreCrypto that uses hash func-
tions, is the Secure Remote Password (SRP) protocol. This protocol is run
between a client and a server, which can create additional security concerns
when communication is done over a network and the adversary controls either
the client or the server, and may therefore send malicious inputs. In CoreCrypto’s
SRP implementation, the username is provided as a null-terminated string.

We verified that when this string contains 232 repetitions of the 'a' character
followed by a null character, then the SRP implementation of both the client
and the server enter into an infinite loop. Note that in contrast to the previous
examples, the length in this case is not provided by the adversary as a separate
parameter, but it is derived inside CoreCrypto using C’s strlen() function.
Therefore, range checking all input length values to CoreCrypto would not have
been effective to avoid this attack using a long null-terminated string.

In Sect. 2, we recalled that an input that would “cause the device to hang”
was already a concern when the MCT test was introduced for DES in 1977.
But an infinite loop is also a security vulnerability, categorized under Common
Weakness Enumeration (CWE) 835 [20], where it is also known as a “Loop with
Unreachable Exit Condition.” More specifically, an adversarially-crafted input
that causes an implementation to enter an infinite loop, can lead to a “denial of
service” (DoS) attack when it consumes excessive CPU resources.

5 Proposing the Large Data Test (LDT)

In the current CAVP tests, the length of the largest message is 65 535 bits. Such
small testing sizes are not realistic towards normal usage. We propose a new
Large Data Test (LDT) for the CAVP to provide a greater assurance for the
implementations that undergo validation.

The LDT would be a type of AFT, and could be specified similarly to the exam-
ple in Sect. 2.1. Implementations could specify the size of the largest message size
that they can handle, for example on the order of 2 GiB to 8 GiB. The ACVP server
can select one of many large supported arbitrary sizes to craft messages. However,
a test for such messages may be impractical to communicate natively within the
normal JSON structures. To work around this limitation, the LDT employs a sim-
ple function to generate the test input, as defined in Algorithm 2.

140 N. Mouha and C. Celi

Algorithm 2. The Large Data Test (LDT)

Require: Msg (a non-zero number of bytes), fullLength (in bits)
FullMsg = "";
for i = 0 to ceil(fullLength / bitlength(Msg)) do
FullMsg = FullMsg || Msg;
end for
FullMsg = truncate(FullMsg, fullLength);
Output FullMsg;

Due to the truncation at the end, it is possible for the LDT to output mes-
sages of any number of bits, instead of only multiples of the size of the repeating
Msg pattern. The Msg pattern itself needs to be an integer number of bytes,
in order to greatly simplify implementations in C-like programming languages.
This is, however, not an actual restriction to the messages that can be output.
The reason is that any 7-bit repeating pattern (for example) can also be written
as a 56-bit (= 7-byte) repeating pattern, where 56 is the least common multiple
of 7 and 8 (the number of bits in one byte).

With a generator function defined to expand a short message of a few bytes,
into a large message of any arbitrary size, we can define the JSON structure for
the LDT as the following:

{
"largeMsg": {
"content": "DBFT7",
"contentLength": 16,
"fullLength": 34359738368,
"expansionTechnique": "repeating"
X
I

We define an "expansionTechnique" to allow extensibility in the future
for other methods of producing a message of the proper size. In this example
"repeating" corresponds to the repeating nature of Algorithm 2.

After the test generates a message of a specific number of bits, this message
would then be hashed on the server to produce a single hash output similar to the
AFTs. Once the test is sent to the client, this could flush out implementations for
faults from long messages that produce incorrect outputs. As hashing is a core
operation to many other cryptographic operations, it is important to consider
scenarios where an adversary may maliciously generate large inputs.

Note that to unearth the bug in the Apple CoreCrypto library, it is neces-
sary to use either the Hash() interface on a message of 4 GiB or more, or the
Init-Update-Final interface where at least one of the Update() calls contains
4 GiB or more. In the latter case, it may be necessary to make the message a
few bytes longer, as explained in Sect. 4.1.

Given that the LDT is designed to work with large data, we need to take into
consideration that the implementation may run out of memory. When allocating

Extending NIST’s CAVP Testing 141

dynamic memory (e.g., using malloc() in C) or mapping files to the virtual
address space (e.g., using mmap () in C) are unsuccessful on the target platform,
it may be an option to consider increasing the memory available to the platform
or even simulating the environment for the purposes of testing.

6 Discussion

As hash functions are a core primitive within many other cryptographic algo-
rithms, it is critically important to ensure correctness under all valid inputs. Yet
the methods with which these algorithms are tested are still based on techniques
from 1977. While the original tests are still valid, an automated system allows
the CAVP to continually add test types and boost the assurances gained from
the program. With a publicly standardized JSON protocol, and open-source test
harnesses such as libacvp [9], the CAVP is in a good position to move forward
with improved testing techniques. We suggest the LDT as a way to directly
improve the assurances gained from the CAVP. Of course, one needs to design,
specify, publicly review the tests, etc. before they can be used in a program
such as CAVP. Openness and transparency are important for acceptance in this
highly sensitive domain.

To test the limits of common variable types such as 32-bit unsigned integers,
the LDT would need to be on the order of 232 bytes or 4 GiB. This would be
sufficient to detect the CoreCrypto bug, and potentially similar bugs in other
cryptographic implementations.

However, an inherent limitation of the CAVP and of software testing in gen-
eral, is that it is a selection process, where a very small subset is selected from
the total number of possible test cases. Therefore, testing is not a method to
prove the correctness over all types of inputs for an implementation. As stated
by Dijkstra, “Program testing can be used to show the presence of bugs, but
never to show their absence!” Indeed, the entire goal of software testing is to
determine how to perform this selection process, in order to try to quantify the
assurance that we get from testing.

Furthermore, the CAVP only tests the capabilities that are declared by the
vendor, and would therefore not detect the bug if it only declares support for
short messages. While this is reflected in the final validation certificate the vendor
receives, this shows the potential need for a wider amount of negative testing.
Negative tests are those that test not only well-defined inputs that may be
beyond the advertised capabilities, but also invalid inputs.

We note the potential hazards of exposing multiple entry points to a single
set of functionality. As mentioned, hash functions often provide at least two
interfaces: an Init-Update-Final interface and a Hash() interface. Often both
are exposed such as within CoreCrypto.

Lastly, it can be interesting to explore the parallels between different levels
at which vulnerabilities can be handled, as we now explain.

A security vulnerability report to the vendor can allow for a rapid response
to address a vulnerability. The FIPS 140-2 Implementation Guidance (IG) [18]

142 N. Mouha and C. Celi

encourages this process by providing the vendors with a “means to quickly fix,
test and revalidate a module that is subject to a security-relevant CVE.” A CVE
(Common Vulnerability and Exposure) is security-relevant if it affects how the
module meets the requirements of the FIPS 140-2 standard.

For FIPS 140-2 validated cryptographic modules, publishing a vulnerability
with a CVE can accelerate the time for end users to obtain crucial security
updates. Yet the very nature of the CVE system is an ad hoc procedure, and
there is no mechanism in place to ensure that a vendor has learned from such a
vulnerability. A vendor may implement test cases within their own development
process to detect similar issues in the future, but this holds a very limited scope.
The implementations of other vendors could be susceptible to similar issues, but
there may be no incentive to react.

If the CAVP implements tests based on CVEs (e.g., as done by Project Wyche-
proof [10]), then lessons learned from a CVE are not restricted to a single imple-
mentation. The requirement of FIPS validation would then also provide stronger
assurances to government and private entities that rely on the program. If a CVE
can be detected via existing test types, a static test could be seamlessly included
from the NIST server. By using an existing test type, no additional code is needed
from a test harness to understand how to process the test. In addition, with the
speed of testing under ACVP, it is mutually beneficial to constantly test while
developing cryptographic implementations.

7 Conclusion

Apple’s CoreCrypto library contains a bug due to the implementation-dependent
manner in which integer constants are specified. Due to this bug, the MD4, MD5,
and the RIPEMD and SHA family hash function implementations enter into an
infinite loop for messages of 4 GiB or larger. The bug affects all implemented hash
functions (except MD2), and higher-level operations such as HMAC, Ed25519,
and SRP. To detect the bug in NIST’s CAVP, we proposed a new Large Data
Test (LDT) to calculate the hash value for large messages. We also pointed out
that stricter coding standards might be helpful to avoid this type of bug.

Responsible Disclosure. The Apple Product Security team was notified of
the vulnerability described in this paper on May 30, 2019, and has since taken
steps to address the issue. In a conference call on July 17, 2019, Apple Product
Security clarified that they do not object to the publication of the research results
presented in this paper. On July 23, 2019, Apple Product Security informed us
that they are planning to assign a CVE to this issue. On October 29, 2019, Apple
publicly announced CVE-2019-8741 to address the vulnerability described in this
paper for macOS Catalina 10.15, tvOS 13, watchOS 6, iOS 13, iTunes 12.10.1
for Windows, and iCloud for Windows 7.14.

Extending NIST’s CAVP Testing 143

Acknowledgments. The authors would like to thank the anonymous reviewers and
their NIST colleagues for providing useful comments and suggestions. Special thanks
go to Patrick Kamongi, Andrew Regenscheid, Apostol Vassilev, and Jeffrey Marron for
their detailed feedback. Certain algorithms and commercial products are identified in
this paper to foster understanding. Such identification does not imply recommendation
or endorsement by NIST, nor does it imply that the algorithms or products identified
are necessarily the best available for the purpose.

A The ccdigest_update() function of Apple’s CoreCrypto

Here, we provide the implementation of the ccdigest_update() in Apple Core-
Crypto, which is made available to the public on Apple’s website [3]. For read-
ability, we made minor changes to the indentation, corrected the spelling of the
word “division” and expanded the CC_MEMCPY macro to memcpy.
void ccdigest_update(const struct ccdigest_info *di, ccdigest_ctx_t ctx,
size_t len, const void *data) {

1
2
3 const char * data_ptr = data;
4 size_t nblocks, nbytes;

o

6 while (len > 0) {

7 if (ccdigest_num(di, ctx) == 0 && len > di->block_size) {

8 //low-end processors are slow on division

9 if (di->block_size == 1<<6){ //sha256

10 nblocks = len >> 6;

11 nbytes = len & OxFFFF{ffCO;

12 } else if (di->block_size == 1<<7){ //shab512

13 nblocks = len >> 7;

14 nbytes = len & OxFFFF{f80;

15 } else {

16 nblocks = len / di->block_size;

17 nbytes = nblocks * di->block_size;

18 }

19

20 di->compress(ccdigest_state(di, ctx), nblocks, data_ptr);
21 len -= nbytes;

22 data_ptr += nbytes;

23 ccdigest_nbits(di, ctx) += nbytes * 8;

24 } else {

25 size_t n = di->block_size - ccdigest_num(di, ctx);

26 if (len < n)

27 n = len;

28 memcpy (ccdigest_data(di, ctx) + ccdigest_num(di, ctx), data_ptr, n);
29 /* typecast: less than block size, will always fit into an int */
30 ccdigest_num(di, ctx) += (unsigned int)n;

31 len -= n;

32 data_ptr += n;

33 if (ccdigest_num(di, ctx) == di->block_size) {

34 di->compress(ccdigest_state(di, ctx), 1, ccdigest_data(di, ctx));
35 ccdigest_nbits(di, ctx) += ccdigest_num(di, ctx) * 8;
36 ccdigest_num(di, ctx) = 0;

37 }

38 }

39 ¥

144

N. Mouha and C. Celi

References

11.

12.

13.

14.

15.

16.

. Albrecht, M.R.., Massimo, J., Paterson, K.G., Somorovsky, J.: Prime and prejudice:

primality testing under adversarial conditions. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, 15-19 October
2018, pp. 281-298. ACM (2018). https://doi.org/10.1145/3243734.3243787
American National Standards Institute: Public Key Cryptography for the Finan-
cial Services Industry - Key Agreement and Key Transport Using Elliptic Curve
Cryptography. ANSI X9.63 (2017). https://webstore.ansi.org/standards/ascx9/
ansix9632011r2017

Apple: Security - Apple Developer, September 2019. https://developer.apple.com/
security/

Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition (Round 3) (2010). http://131002.
net/blake/blake.pdf

Bassham III, L.E., Hall, T.A.: The Secure Hash Algorithm Validation System
(SHAVS), May 2014. https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-
Algorithm-Validation- Program/documents /shs/SHAVS.pdf

Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: The Keccak SHA-3 sub-
mission. Submission to the NIST SHA-3 Competition (Round 3) (2011). http://
keccak.noekeon.org/Keccak-submission-3.pdf

Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ECC-related software bug attack. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 171-186. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27954-6_11

Celi, C.: ACVP Secure Hash Algorithm (SHA) JSON Specification. IETF Internet-
Draft (2018). https://usnistgov.github.io/ ACVP /artifacts/draft-celi-acvp-sha-00.
html

Cisco: The libacvp library, September 2019. https://github.com/cisco/libacvp

. Google: Project Wycheproof tests crypto libraries against known attacks, Septem-

ber 2019. https://github.com/google/wycheproof

Industry Working Group on Automated Cryptographic Algorithm Validation:
ACVP, September 2019. https://usnistgov.github.io/ACVP/

Mouha, N.; Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding bugs in crypto-
graphic hash function implementations. IEEE Trans. Reliab. 67(3), 870-884
(2018). https://doi.org/10.1109/TR.2018.2847247

National Bureau of Standards: Validating the Correctness of Hardware Implemen-
tations of the NBS Data Encryption Standard. NBS Special Publication 500—20,
November 1977. https://doi.org/10.6028 /NBS.SP.500-20e1977

National Institute of Standards and Technology: Advanced Encryption Standard
(AES). NIST Federal Information Processing Standards Publication 197, Novem-
ber 2001. https://doi.org/10.6028 /NIST.FIPS.197

National Institute of Standards and Technology: Description of Known Answer
Test (KAT) and Monte Carlo Test (MCT) for SHA-3 Candidate Algorithm
Submissions, February 2008. https://csrc.nist.gov/CSRC/media/Projects/Hash-
Functions/documents/SHA3-KATMCT1.pdf

National Institute of Standards and Technology: Secure Hash Standard (SHS).
NIST Federal Information Processing Standards Publication 180—4, August 2015.
https://doi.org/10.6028 /NIST.FIPS.180-4

https://doi.org/10.1145/3243734.3243787
https://webstore.ansi.org/standards/ascx9/ansix9632011r2017
https://webstore.ansi.org/standards/ascx9/ansix9632011r2017
https://developer.apple.com/security/
https://developer.apple.com/security/
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/SHAVS.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/SHAVS.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-642-27954-6_11
https://doi.org/10.1007/978-3-642-27954-6_11
https://usnistgov.github.io/ACVP/artifacts/draft-celi-acvp-sha-00.html
https://usnistgov.github.io/ACVP/artifacts/draft-celi-acvp-sha-00.html
https://github.com/cisco/libacvp
https://github.com/google/wycheproof
https://usnistgov.github.io/ACVP/
https://doi.org/10.1109/TR.2018.2847247
https://doi.org/10.6028/NBS.SP.500-20e1977
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://doi.org/10.6028/NIST.FIPS.180-4

17.

18.

19.

20.

21.

Extending NIST’s CAVP Testing 145

National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. NIST Federal Information Pro-
cessing Standards Publication 202, August 2015. https://doi.org/10.6028 /NIST.
FIPS.202

National Institute of Standards and Technology and Canadian Centre for Cyber
Security: Implementation Guidance for FIPS 140-2 and the Cryptographic Module
Validation Program, August 2019. https://csrc.nist.gov/CSRC/media/Projects/
cryptographic-module-validation-program/documents/fips140-2/FIPS14021G.pdf
SEI CERT C Coding Standard: INT17-C. Define integer constants in an
implementation-independent manner, September 2019. https://wiki.sei.cmu.edu/
confluence/display/c/INT17-C.+Define+integer+constants+in+an+
implementation-independent+manner

The MITRE Corporation: CWE-835: Loop with Unreachable Exit Condition (‘Infi-
nite Loop’) (2019). https://cwe.mitre.org/data/definitions/835.html

Valenta, L., et al.: Measuring small subgroup attacks against Diffie-Hellman. In:
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, 26 February - 1 March, 2017. The Internet Soci-
ety (2017). https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
measuring-small-subgroup-attacks-against-diffie-hellman /

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://wiki.sei.cmu.edu/confluence/display/c/INT17-C.+Define+integer+constants+in+an+implementation-independent+manner
https://cwe.mitre.org/data/definitions/835.html
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/measuring-small-subgroup-attacks-against-diffie-hellman/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/measuring-small-subgroup-attacks-against-diffie-hellman/

l‘)

Check for
updates

A Fast Characterization Method
for Semi-invasive Fault Injection Attacks

Lichao Wu'®, Gerard Ribera?®, Noemie Beringuier-Boher?®,
and Stjepan Picek!®™)

! Delft University of Technology, Delft, The Netherlands
picek.stjepan@gmail.com
2 Amsterdam, The Netherlands

Abstract. Semi-invasive fault injection attacks are powerful techniques
well-known by attackers and secure embedded system designers. When
performing such attacks, the selection of the fault injection parameters
is of utmost importance and usually based on the experience of the
attacker. Surprisingly, there exists no formal and general approach to
characterize the target behavior under attack. In this work, we present a
novel methodology to perform a fast characterization of the fault injec-
tion impact on a target, depending on the possible attack parameters.
We experimentally show our methodology to be a successful one when
targeting different algorithms such as DES and AES encryption and then
extend to the full characterization with the help of deep learning. Finally,
we show how the characterization results are transferable between dif-
ferent targets.

Keywords: Physical attacks + Fault injection - Fast space
characterization - Deep learning - Metrics

1 Introduction

A secure microcontroller or smartcard should be designed in such a way that
no (or, as little as possible) secret information is leaked to the attacker and
its integrity is protected. Still, there is an attack type that proved to be very
powerful in the last decades and where, despite all the efforts, the attacker can
obtain or modify the secret information. Such attacks are called implementation
attacks as they do not target the algorithm’s security but the weaknesses in
its implementation. Two well-known types of implementation attacks are side-
channel attacks (SCAs) and fault injection (FI) attacks. While those attacks are
powerful, they can be also difficult to deploy due to a large number of choices
one needs to make.

Semi-invasive attacks, a type of fault injection attacks, are widely used by
attackers as well as during security evaluations in the industry due to their

G. Ribera and N. Beringuier-Boher—Independent Researcher.

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 146-170, 2020.
https://doi.org/10.1007/978-3-030-40186-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_8&domain=pdf
http://orcid.org/0000-0002-7139-732X
http://orcid.org/0000-0001-8459-6283
http://orcid.org/0000-0002-1312-3929
http://orcid.org/0000-0001-7509-4337
https://doi.org/10.1007/978-3-030-40186-3_8

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 147

affordable and easy-to-repeat characteristics [1]. While semi-invasive attacks are
powerful, they are not without limitations. First, the tuning of the parameters
that play a role in the fault definition is a time-consuming and non-deterministic
process. Using optical fault injection as an example, the required parameters to
perform evaluation are numerous: laser pulse amplitude, laser pulse width, spot
size, delays (attack time interval), and scan locations. As a complete analysis
considering all possible parameter combinations is not practical, the decisions
involved in the process of the parameter selection are usually based on intuition
and personal criteria of an attacker. Additionally, due to the differences between
FI setups, the measurement results obtained from one setup cannot be easily
reproduced by another. An attacker is consequently bound to repeatedly search
for the optimal parameters in every attack scenario, for every sample, and setup.
Finally, the existence of countermeasures on both hardware and software levels
can further increase the difficulties in defining parameters such as delays and
scan locations.

To solve these problems, a characterization of the target of evaluation (TOE)
for the optimal parameter searching is necessary as the preliminary step of evalu-
ation. Surprisingly, there is no formal approach for doing this. Manual testing on
parameter combinations based on the attacker’s experience is a common method
to get an impression of the target behavior. Still, this approach is not able to
provide good coverage of the impact analysis for all the parameter combinations
when the investigation is time-constrained. For example, the combinations of
a shorter laser pulse width and stronger laser pulse amplitude could be more
effective in manipulating some short execution of the command such as integrity
check; in contrast with the opposite parameter combinations, long execution,
such as Flash writing, would be more easily interfered. Unfortunately, these opti-
mal parameters cannot be covered by manual tests. Exhaustive search, on the
other hand, can be a solution if a full characterization is needed but will require
more time as a trade-off. Finally, techniques coming from the artificial intelli-
gence domain could work well but face issues like the uncertainty of parameter
selection. In terms of the parameter optimization, researchers explored tech-
niques such as genetic [2,3] and memetic algorithms [4] to improve the opti-
mization approach. Although such approaches work well for voltage glitching
or electromagnetic fault injection (EMFT), they are less universal for other fault
injection approaches such as optical fault injection. More precisely, if the involved
fault injection parameters are too strong, there is a high chance that the target
will be damaged. Additionally, the obtained optimal parameters are limited to a
certain fault injection setup as well as the sample under attack. Either the change
of the setup or the sample will result in the change of the optimal parameters.

To speed-up the attack parameter identification while considering the cover-
age of the parameters, the development of strong and reproducible methodologies
is of significant interest. Such methodologies should ensure a proper selection of
the tested parameters and the effectiveness of an attack for various fault injec-
tion attack methods. Unfortunately, to the best of our knowledge, previous works
only focused on optimizing the parameter selection for FI attacks. The method-

148 L. Wu et al.

ology for the TOE characterization is still missing. Therefore, in this paper, we
propose a methodology for the fast characterization of fault injection settings.
The methodology is based on the construction of a sensitivity curve, which is
then used by the attacker for a proper selection of the fault injection parameters
and their assessment. To that end, we propose two metrics, one to be used in the
measurement phase and one in the evaluation phase. Next, we use deep learning
for the full estimation of the characterization space based on a limited number of
measurements. Finally, we show that the obtained characterization results can
be transferred to different samples with the same target. Throughout the paper,
we use optical fault injection to perform the attack because of its popularity and
difficulty in terms of characterization. Nevertheless, our characterization method
is compatible with other semi-invasive fault injection approaches.

In conclusion, the methodology we propose can boost the characterization
process while keeping track of useful information. This can eventually lead to
(1) a better estimation of the target behavior, (2) a proper selection of the fault
injection settings, (3) a good reference when attacking different devices, and (4)
an informative archive for future attacks.

1.1 Related Work

Fault injection is a well-researched topic already spanning a range of more than
20 years [5,6]. Specifically, an optical fault injection attack is one of the most
powerful attacks in this domain. Skorobogatov and Anderson introduced optical
fault injection and attacked secure microcontrollers and smartcards [1]. There,
the authors presented a countermeasure against such attacks (self-timed dual-rail
circuit design technique) but concluded that such attacks are the most success-
ful smartcard perturbation attacks as it is not easy to implement countermea-
sures. Although more advanced countermeasures have been developed in the
later stage, optical FI attacks are still practical. S. Skorobogatov introduced a
new optical fault attack type called fault masking attack [7]. Such attacks are
aimed at disrupting the normal memory operation through preventing changes of
the memory contents. Van Woudenberg et al. investigated optical fault injection
on secure microcontrollers and concluded that the presence of countermeasures
makes the attack more difficult but still possible [8,9]. Note, while being very
powerful, optical fault injection attacks are usually considered very complex due
to the high costs of equipment and the preparation of the sample. More recently,
Guillen et al. presented a low-cost fault injection setup capable of producing
localized faults in modern 8-bit and 32-bit microcontrollers [10]. The authors
showed how even such a low-cost setup can be used to successfully attack the
Speck cipher.

When considering implementation attacks and artificial intelligence tech-
niques, most of the work concentrated on side-channel analysis. There, machine
learning and more recently deep learning techniques are playing an impor-
tant role in profiling attacks that can outperform template attacks but also
break implementations protected with countermeasures [11-13]. When consid-
ering fault injection, several works are investigating how to find fault injection

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 149

parameters with evolutionary algorithms, but to the best of our knowledge, none
of these works consider machine learning nor optical fault injection. Carpi et al.
considered the usage of evolutionary algorithms to find the fault injection param-
eters for supply voltage (VCC) glitching [2]. There, besides the evolutionary algo-
rithms approach, the authors used three more search techniques. Next, Picek et
al. extended this work by using a combination of an evolutionary algorithm and
a local search to characterize the search space for voltage glitching as efficient
as possible [4]. Maldini et al. used a genetic algorithm for finding fault injection
parameters when considering electromagnetic fault injection (EMFI) [14]. There,
the authors attacked the SHA-3 algorithm and reported 40 times more faulty
measurements and 20 times more distinct fault measurements than by using a
random search.

1.2 Owur Contributions

In this paper, we consider semi-invasive fault injection attacks and fast character-
ization of the target behavior, which to the best of our knowledge, has not been
explored before. More precisely, we introduce a methodology for semi-invasive
fault injection that consists of:

1. New technique for searching for fault injection parameters consisting of a fast
generation of a sensitivity curve and its evaluation, which is compatible with
different FI techniques, attack scenarios, and TOEs.

2. Two metrics that enable us to properly guide the characterization and also
assess it.

3. A novel approach based on deep learning classification that enables us to
characterize the search space based on the limited number of actual measure-
ments.

Besides these, from an attacker perspective, the use of the fast characteri-
zation method will significantly reduce the time needed to identify the optimal
attack parameters. Additionally, because the characterization method increases
the attack parameters coverage, the quality of the results will be improved and
the chance of missing the optimal parameters will be reduced. To prove the
efficiency of the proposed method, we provide detailed experimental results tar-
geting the AES and DES ciphers implemented on a secured microcontroller.
Finally, we then show that the characterization results are transferable towards
different targets of the same type.

This paper is organized as follows. In Sect.2, we discuss fault injection
attacks, supervised machine learning, and neural networks. Next, in Sect. 3, we
start by introducing our notation. Afterward, we present two new metrics we
designed to help us better assess the performance of the attack and how to
generate/evaluate the sensitivity curve. In Sect.5, we discuss our experimen-
tal setup and results obtained after attacking samples with the AES and DES
ciphers. Finally, in Sect.6, we conclude the paper and present possible future
research directions.

150 L. Wu et al.

2 Preliminaries

In this section, we first describe the fault injection attacks, where we divide
them into three types of attacks and discuss their major differences. We empha-
size semi-invasive attacks due to their high-efficiency and low-cost properties.
Subsequently, we briefly introduce the supervised learning paradigm, the gen-
eral architecture of a neural network, and then broaden such a structure to the
deep neural network. Finally, we discuss multilayer perceptron as the algorithm
of choice in our experiments.

2.1 Fault Injection Attacks

Fault injection attacks aim at retrieving information or injecting faults to the tar-
get. Currently, many powerful techniques have been developed, all of which can
be divided into three main categories - non-invasive, semi-invasive, and invasive
attacks [15]. The main difference between the non-invasive and invasive attacks
is in the approach of attacking the TOEs. To perform an invasive attack, it is
required to remove at least part of the passivation layer to establish the contact
between the probes and silicon [16]. Non-invasive attacks, on the other hand,
mainly focus on investigating the settings that can be controlled externally [17],
or passively measuring the running time, the cache behavior, the power consump-
tion, and/or the electromagnetic radiation of the device through the package [18].

Semi-invasive attacks, standing in the middle of the two types of attacks
discussed above, have their specific properties. Similar to the invasive attacks,
they require direct access to the chip surface by removing the package, but the
passivation layer is kept. A semi-invasive attack can be performed in a reasonably
short time with much less expensive equipment than the invasive attacks. Finally,
the skills and knowledge required to perform them also can be easily and quickly
acquired [19]. From the approach perspective, semi-invasive attacks could be
performed using a variety of tools such as IR light [20], X-rays [1] and other
sources of ionizing radiation, electromagnetic fields [21], and body biasing [22].

2.2 Supervised Machine Learning

In the supervised learning paradigm, the goal is to learn a mapping f, such that
f: X — Y, given a training set of N pairs (x;,y;). Here, for each example z,
there is a corresponding label y, where y €). This phase is commonly known
as the training phase. The function f is an element of the space of all possible
functions F. Once the function f is obtained, the testing phase starts with the
goal to predict the labels for new, previously unseen examples. In the case that
Y takes values from a finite set (discrete labels), we conduct classification, while
if the labels are continuous, we conduct regression.

2.3 Neural Networks and Deep Learning

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is based on the biological process occurring

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 151

in the brain [23]. In general, a neural network consists of three blocks: an input
layer, one or more hidden layers, and an output layer, whose processing ability
is represented by the strength (weight) of the inter-unit connections, learning
from a set of training patterns from the input layer.

To improve computation ability, a standard approach is to add hidden lay-
ers to build a deep neural network. An example of the deep neural network is
shown in Fig. 1. With the help of multiple layers, a deep neural network can map
complicated low-level details to high-level features progressively. Thus, deep neu-
ral networks can make a proper estimation of the output, where this adaption
process is referred to as deep learning.

In this paper, we applied a commonly-used deep learning structure, multilayer
perceptron (MLP) in our methodology. MLP is a feed-forward neural network
mapping sets of inputs onto sets of appropriate outputs. It consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the next
one. Each node in one layer connects with a certain weight w to every node in
the following layer. The MLP architecture consists of at least three layers: one
input layer, one output layer, and one hidden layer. Those layers must consist
of non-linearly activating nodes [24].

Q\}{“vv”ﬁlﬁ

.4‘&\\}& P55

2 N X7 KL
NSRS KL
7% SRR
RSK > SESEX FKEED
L= P
SR ER ISy

2 SSNNR
ZT ZHENIN
=

“\

Input Layer € R3 Hidden Layer € R® Hidden Layer € R® Output Layer € R*

Fig. 1. An example of deep neural network with 2 hidden layers and 8 neurons per
hidden layer (created with NN-SVG [25]). Note that it is enough to have more than
one hidden layer to consider a certain architecture as deep learning.

3 Fast Characterization Methodology

A reliable characterization methodology can be used to obtain a quick impres-
sion of the influence caused to the target for a different combination of attack
parameters. An attacker will use the outcome to better choose the settings to

152 L. Wu et al.

perform the attack in a later stage. However, there are several obstacles to build
such a characterization methodology:

1. How to quantify the effect of the FI settings?

2. How to obtain a characterization of the impact that can be generated in a
short amount of time?

3. How to map the behavior of the target to the characterization?

4. How to make sure that the characterization result is transferable between
different targets?

The solutions to these problems are summarized with a work-flow presented
in Fig.2. In general, one can observe that the attacker can divide his actions
into two separate phases: (1) fast characterization of the target and (2) fault
injection procedure. Our methodology concentrates on the fast characterization
part as the fault injection procedure stems from it. To characterize the target
in a fast and correct way, we first generate the sensitivity curve (described in
Sect. 4). Next, we evaluate the measurements to further investigate the target
behavior with different FI settings.

Fast Characterization Fault Injection

P ~\ () i— ~\
i ! - - I
Sensitivity Curve i Optimal FI Setting
Evaluation i Selection
Y i Attacker

1

l

i

i

i

i

y

Sensitivity Curve
Generation

Powerful Attack

Fig. 2. An attack work-flow with proposed fast characterization methodology.

It should be noted that the attack location and time delay to inject the
fault should be defined in advance, as they are initial conditions for the sen-
sitivity curve generation. The attack location, for instance, can be inferred by
reverse engineering techniques (i.e., IR-imaging) and a good understanding of
the targeted fault model, while the Simple Power Analysis (SPA) can be used
to define the attack time window. However, such analyses are out of the scope
of this paper. Additionally, there are many other relevant parameters, such as
the thickness of the silicon, that can influence the sensitivity of the target. How-
ever, it is a less interesting parameter in practice as it is difficult to control it
precisely. In contrast, from an attacker perspective, the simplest and the most
effective parameters to work with are the parameters that can directly influence
the strength of the injected fault, such as laser pulse width and laser pulse ampli-
tude for optical fault injection. In this paper, we focus on characterizing these
two parameters.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 153

In this section, we start by introducing the notation used in this paper when
discussing the behavior of targets. Next, we present two different metrics that
enable us to better evaluate the performance of a fault injection process. One
of the metrics (Level of Influence) measures the fault injection process and we
use it in the proposed search algorithm while the other one (Impact Score) is
used to evaluate the results of the fault injection. Note that throughout the
paper, we use interchangeably the notions target, the target of evaluation, and
its abbreviation TOE.

3.1 Notations

Fault injection attacks impact the behavior of the target, which can be noticed
when its response to a target command deviates from the expected one. Those
faulty responses can be used to categorize them into verdict classes that corre-
spond to the effectiveness of the measurement (i.e., attack attempt). The possi-
ble classes for each measurement are listed in the ascending order based on their
relevance for the attacker.

1. NORMAL: TOE behaves as expected.

2. RESET: The attack is detected and TOE resets.

3. MUTE: TOE stops communication. This type of response can be caused
either by hard failures caused by the attack (i.e., the chip doesn’t work any-
more) or can be the response when the attack is detected.

4. CHANGING: TOE fails to detect the injected faults and returns unexpected
values.

5. SUCCESS: TOE fails to detect the injected faults and returns abnormal but
exploitable values.

Note that an exploitable fault is a fault that can be used to obtain more
critical information (e.g., retrieve encryption key with Differential Fault Analysis
(DFA) [26]) or perform additional malicious activities (e.g., install unauthorized
software). In this paper we attack two popular encryption algorithms: AES and
DES, an exploitable fault is the faulty cipher output: with these outputs, the
encryption key can be retrieved with DFA. A non-exploitable fault, on the other
hand, can be any other outputs, such as status word or unrelated data stored in
other addresses. It also worth to mention that when attacking a device with fault
injection, different types of unexpected results can be outputted and are difficult
to classify. The situation becomes even worse when targeting different types of
devices as the implementations are also different. To simplify the characterization
and to abstract from the underlying fault model, we classify the faults on the
algorithmic level instead of on the hardware level.

In this paper, the optical FI technique is used for the experiments. The main
attack parameters - the laser voltage (energy) and laser pulse width are denoted
with upper-case letters X and Y, while their realizations are given in the lower-
case letters z and y. More precisely, the search boundaries for these two FI
settings are X,in/Xmazr and Yiin/Yimasz. The search steps are represented by
Xstep and }/stegr

154 L. Wu et al.

3.2 Metrics Definition

Level of Influence. The Level of Influence (LOI) represents the percentage
of responses that are different from the expected (NORMAL response) in the
total number of attempts, which can be used to quantify the impact of the
attack parameter set. For instance, by decreasing the laser pulse amplitude or
the duration, the fault injection is less effective and the target tends to behave
normally, thus having a low influence. In contrast, by increasing these settings,
there is a higher possibility that the target is influenced by the attack, which
will eventually increase its influence on the target behavior. The LOI metric can
be calculated as follows:

LOI =1 -

Quantitynormal (1)
chass Quantityclass

Here, Quantity,orma; represents the number of NORMAL responses while
Quantity.qss represents the number of the specific class occurrences during the
whole measurement process.

Impact Score. The outputs of the TOE under fault injection are divided into
several classes (see Sect. 3.1). To further clarify the effect of each FI settings and
to optimize the parameter selection in the later attack phase, we assign weights
to each class based on its significance and eventually come up with a score based
on every measurement result. As this score directly reflects the effects of the FI
with respect to the target behavior, we denote this metric Impact Score (IS).

The Impact Score metric aims to show the relevance of the measurements
that are acquired during the generation of the sensitivity curve (see Sect.4).
By assigning different weights to the different classes obtained, an attacker can
identify if some of the parts of the curve are more relevant and could potentially
lead to a successful manipulation.

In practice, class SUCCESS has the highest priority of all the classes and is
assigned the largest weight. Differing, the class NORMAL (indicating the target
behaves normally) is linked to a small weight. The IS metric can be calculated as:

lase .)
ST Quantitycass - Weight cass @)
ZClaSS Quantityclass 7

where Weight,ss represents the assigned weight for a corresponding class. In
the experiments presented in this paper, the classes SUCCESS, CHANGING,
MUTE, RESET, and NORMAL have weights 20, 10, 2, 0.5, and 0, respectively.
The weights are adjusted based on the experience of the attacker and the ratio-
nale behind is defined after an assessment of the hypothetical fault model that
leads to such responses.

1S =

4 Sensitivity Curve

In this section, we start by introducing the concept of the sensitivity curve.
Afterward, we discuss how to generate such a curve by first finding the “golden”

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 155

point and then applying the sensitivity curve search algorithm. Finally, we dis-

cuss how to evaluate the sensitivity curve through Impact Score or deep learning
classification process.

4.1 Setting

To obtain a characterization algorithm that has a good parameter coverage,
is less time-consuming, and is universal for different scenarios, several meth-
ods from simple (e.g., exhaustive search with large scan step, binary search) to
complicated (e.g., genetic algorithm, deep learning) have been tested. The com-
parison of different architectures is not shown due to the lack of space and redun-
dancy in obtained results. We observed that simple algorithms are predictable
which is ideal for the TOE characterization but normally less time-efficient. In
contrast, complicated approaches tend to rely on the number and quality of the
obtained data. However, these algorithms work unstable as the number of data
sets we obtained is extremely limited. In the worst case, a non-converged model
can lead to the target being damaged by the undesired parameter selection.
Therefore, the ideal algorithm for the characterization should stand in the
middle of these two extremes. In other words, it should be deterministic, but
not highly data-dependent. Fortunately, the sensitivity curve, which consists of

a set of FI settings that cause a similar impact on the TOE, perfectly fulfills our
requirements.

\

“ \ —— Impact rate: 5%
\\ -\ === Impact rate: 50%
—-= Impact rate: 95%

. Abnormal

Laser pulse width

~ao

Normal

Ximax
Laser power

Fig. 3. An example of the sensitivity curves with different LOIs. From here, the normal
and abnormal behaviour of the target can be estimated.

Three sensitivity curve with different LOI is given in Fig. 3; each point on
the curve has a similar impact on the TOE behavior. There, with sensitivity
curves, one can estimate that the injected fault (X and Y axes represent the
FI settings) can be ignored at the left side of the curve with 5% LOI; while the
target will behave almost always abnormally at the right side of the curve with

156 L. Wu et al.

90% LOI. Moreover, the figure presents multiple possible selections of the fault
injection settings that can lead to the same LOI. For instance, to achieve 50% of
the LOI, besides choosing the parameters in the middle of the curve, an attacker
can achieve a similar result by selecting smaller x and larger y or vice versa. It
is possible that the sensitivity curve is not decreasing monotonically as shown in
Fig. 3. Nevertheless, the sensitivity curves act as contour lines in the parametric
coordinate system, which can be used to estimate the quantity of impact with
different FI settings. Furthermore, the presence of the sensitivity curves provides
the attacker with a multiple choice in setting selection: although the LOI is the
same, appropriate selection of the FI settings based on the attack scenarios may
lead to a more powerful attack. Therefore, we use the sensitivity curve for TOE
characterization.

To conclude, if compared with other approaches, the advantages of the sen-
sitivity curve-based characterization are the followings:

1. The sensitivity curve defines the natural boundary between the “weak” and
“strong” FI settings, which present a rough overview of the target behavior.

2. The input of the sensitivity curve delimits the number of the parameter com-
binations to be examined, thus it is more time-efficient.

3. Since the LOI of a sensitivity curve is defined by an attacker, it resolves the
problem of an FI setting selection through a genetic algorithm or random
search.

4. The proposed methodology can be applied to other semi-invasive FI methods
that follow the assumption that the strength of the setting is positively cor-
related to the level of impact on the target, such as EMFI and Body Biasing
Injection (BBI).

4.2 Sensitivity Curve Generation

In general, the searching of the sensitivity curve relies on iterative performing
of measurements and calculating the statistics to decide the next setting to be
tested until the end condition is fulfilled. The statistics (LOI) that are calculated
are based on the types of output recorded in each setting combinations. To make
a clear description, the search algorithm is split into two phases: first, determine
the “golden point” and then search for the entire curve.

Finding the “Golden Point”. The golden point (Xgoiden, Ygolden) Tepresents
the first obtained FI setting that targets the LOI (Ciqarget) defined by an attacker
and acts as the reference for the curve searching in the later step. To find such
a point, we use the diagonal search algorithm. The diagonal search algorithm
is performed by increasing the values of the FI parameters simultaneously with
a fixed step as shown in Fig.4. Note how the search progresses in a number
of steps (in our example, 6) before reaching a point on the sensitivity curve.
The diagonal search algorithm ensures to start testing with weak laser settings
and then gradually going stronger. Indeed, some approaches may lead to faster
converge. However, during the experiments, we noticed that the chip sensitivity

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 157

towards the laser can vary dramatically between targets (i.e., different types of
microcontrollers). In other words, a laser setting that does not have any influence
on one product may destroy another product immediately. Consequently, the
diagonal search algorithm is selected to ensure the tested product being alive
throughout the characterization process as well as to broaden the usage of our
methodology towards different products.

It is worth to note that the diagonal search cannot always guarantee to find
the FI settings with exact Cigrger value. In many cases, the LOI can exceed the
target when performing the search. Therefore, we introduce the Cioierance tO
broaden the range search of the golden point: if the LOI of the tested FI setting
is within the range of Ciurget £ Cioterance, the applied FI setting can be counted
as the golden point. In cases when the current LOI exceeds the maximum range
(Ctarget+Cltolerance) but no golden point is observed, a binary search is performed
to trace back to lower settings and search for the golden point within the range
of tolerance.

—— Target sensitivity curve
—=- Diagonal search route
Y Golden point

Laser pulse width

Laser power

Fig.4. A depiction of the diagonal search. The golden point represents the first
obtained FI setting with the target LOI.

Curve Searching. Once the golden point is obtained from the diagonal search,
the search for the sensitivity curve can be executed. As discussed in Sect. 4.2,
the golden point is obtained in a diagonal route, but there are still areas on its
left and right-hand side to be characterized. Therefore, to localize the sensitivity
curve in the whole parameter plane, the curve search is performed in both direc-
tions individually, while they start with the golden point. As the search strategies
for both directions are the same, the search algorithm to the left (X,,:,) direc-
tion is given in Algorithm 1. Curve search on the right-hand side can be realized
by adjusting the while condition as well as the = increment step.

The function DoTest(x,y) performs a measurement with a combination of
the FI setting = and y. BinarySearch(a,b) represents the binary search in the
range from a to b. The main idea of Algorithm 1 is to first iteratively obtain

158 L. Wu et al.

Algorithm 1. Sensitivity curve search.
1: function SEARCHING_LEFT(Xgoiden, Ygolden; Ctarget, Ctolerance)

2: data — [|

3: T Xgol(ien

4: Yy «— Ygoiden > Initialize (x, y)
5: while © — X¢ep > Xonin do > Search from the left plane
6: T Xp're'v - Xstep

T: LOI «— DoTest(z,y) > Test with setting (x, y)
8: if LOI < Ctarget + Ctolerunce then

9: y «<BinarySearch(y, Yimaz) > Search with stronger settings
10: else if LOI > Ciarget — Ctoterance then
11: y «<BinarySearch(y, Yoin) > Search with weaker settings
12: data — data + [z,y, LOI]
13: return data > Return all of the tested data

the measurements and second, calculate the statistics to decide the next pairs
of settings. Specifically, by varying = while keeping the y obtained by the previ-
ous steps, the algorithm can keep track of the changing tendency of the target
sensitivity curve. Moreover, the usage of the parameters from the previous test
delimits the range for the binary search, thus accelerating the whole characteri-
zation procedure.

Instead of using a fixed value, X, should be adjustable for different condi-
tions. For instance, increasing X, to accelerate the characterization when the
slope of the sensitivity curve is close to zero while reducing its value to evaluate
more FI settings when the slope is getting higher. To realize this functionality,
a new variable Yg; ¢ ¢, which stands for the value difference between the current
y and the previous y (Yprev), is added to the algorithm. The pseudocode of the
step adjustment function is shown in Algorithm 2.

4.3 Sensitivity Curve Evaluation

The sensitivity curve provides the attacker with a quick impression of the target
behavior (through the LOI metric) with different FI settings. To further benefit
from the performed measurements, the attacker can use techniques to visualize
the data differently with the Impact Score metric and to obtain an overview
of the different setting relevance in FI. Additionally, he can even estimate the
non-measured parameter combinations with a deep learning algorithm.

Algorithm 2. Step adjustment
1: function ADJUST_XSTEP(Xstep, Ystep; Yprev,)

2: Yairs < absolute(Ypreo — ¥)
3: if de’ff <= Y—step then

4: return Xiep * 2

5: else

6 return Xgep / 2

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 159

Impact Score Evaluation. As described in Sect. 4.2, the generation of the sen-
sitivity curve is based on searching the FI settings with a similar LOI. Although
the target behavior can be estimated based on the curve, it is difficult to define
the optimal parameters which can lead to more significant responses. Indeed,
LOI only distinguishes between NORMAL and non-NORMAL responses. To
fully evaluate the performance of one setting, the non-NORMAL response should
be additionally classified based on its significance.

Taking advantage of its wide setting selection, the sensitivity curve is a good
candidate for evaluating the effectiveness of the FI. Therefore, the curve is regen-
erated with the IS metric to obtain the optimal setting for fault injection. Specif-
ically, by calculating IS for each parameter combination, the relevance of the
measurement can be quantified: a larger Impact Score represents the existence
of higher-priority responses, indicating that the corresponding setting is more
preferable for the later attacks.

Impact Estimation with MLP. In practice, the assessment of attacking the
non-measured area is a part of the evaluation and comes from the attacker’s
decision. Various advanced techniques can be used to help the attacker to esti-
mate the impact in the non-measured areas. Here, function regression, realized
by MLP with gradient descent, is used to build the relationship between its input
(FI parameters) and output (LOI). A converged model can provide a proper esti-
mation of the impact that can be caused in the target with different parameters.

However, the prediction accuracy highly relies on the training data. Indeed,
the sensitivity curve provides several unique data sets, but the prediction of
the untested locations is still challenging, as the number of the training sets
is extremely limited while we aim at predicting huge amounts of parameter
combinations in a wide range. We have evaluated several algorithms to find an
optimal one that can provide sufficient prediction accuracy. Eventually, it turned
out that the multilayer perceptron is the best candidate. Compared with other
machine learning structures and statistic methods, MLP dramatically reduced
the prediction error especially in the excessive area from weak to the strong
parameter (the region an attacker cares about most) with the help of the deeper
layers. Although higher precision of the prediction can be obtained by using
more data (e.g., by generating another sensitivity curve with different LOI),
MLP is the best solution to provide an overall estimation of the target behavior
without additional tests (costs). Moreover, in our case, MLP is less sensitive to
the distribution/number variation of the training sets and can always extract
features from a limited amount of data and thus can improve the robustness of
our methodology.

The cross-entropy is implemented as the loss function to classify the discrete
data from the sensitivity curve. By minimizing the loss function during iterations,
the MLP can estimate the LOI with different FI settings, whose accuracy is
further evaluated by calculating the offset between the predicted and measured
data. Note that we consider the prediction result as reasonable if the prediction
error is small when compared with the test data and the plots fit the shape of the

160 L. Wu et al.

sensitivity curve. Although the sample’s behavior under attack can vary from
the prediction due to the prediction error and many other reasons, the presented
prediction methodology can provide an attacker with a proper estimation of the
overall sample behavior, which leads to a better selection of the parameters.

5 Results

In this section, we start by introducing our experimental setup. Then, we present
the results obtained for DES and AES settings using the presented fast char-
acterization methodology. Finally, we validate the transferability of the charac-
terization result by repeating the characterization for a different sample of the
same TOE.

5.1 Experimental Setup

In all our experiments, we use a TOE based on a high-performance 32-bit micro-
controller realized in Complementary Metal Oxide Semiconductor (CMOS) tech-
nology with 4 MHz clock frequency. Due to confidentiality reasons, we are not
able to disclose the details of the targets. Still, we are confident to note that the
proposed method is compatible with various types of devices, as it was proved
to be efficient with multiple devices that are not listed in the paper due to the
page limit.

No FTI specific countermeasures are implemented at the hardware level. For
the experimental purpose, we present two different attack scenarios on software
implementation of cryptographic algorithms, one targeting the beginning of the
last round of Data Encryption Standard (DES) cipher and another one target-
ing the beginning of the last round of Advanced Encryption Standard (AES)
cipher. Note that we used Single Power Analysis (SPA) to identify the encryp-
tion rounds. In both cases, we present a fast characterization that could be used
by an attacker to perform the attack in a later stage to obtain faulty ciphers
that can be used to run a DFA attack [27].

Experiments shown in this paper are performed on the Flash decoders as we
assumed they are the most vulnerable part for light manipulation. The attack
locations are uniformly distributed on the entire scan area. The FI setup used
to perform the measurements is an optical fault injection setup using an IR light
(1024 nm) long-pulse laser which is one of the most powerful solutions for an opti-
cal fault injection attack. Since this light source is less effective when attacking the
front-side of the sample as it cannot penetrate through the metal layers, we con-
centrated on attacking the backside (silicon side). To fully demonstrate as well
to characterize the chip behavior with different laser settings, we selected a wide
range of parameters that are used during the searching algorithm. The details are
given in Table 1 while the MLP hyper-parameters for the LOI prediction are in
Table 2.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 161

Table 1. Parameters for the search algorithm.

Parameter Value

Laser pulse width [1, 50] s in a step of 1 ps
Laser voltage (Pulse Amplitude) | [0.05, 0.6]V in a step of 0.01 V
Target LOI 0.5

Searching tolerance 0.05

Table 2. MLP hyper-parameters.

Parameter Value

Architecture 2, 8, 6, 6, 5, 1]
Activation 4 ReLU + 1 Sigmoid
Learning rate («) | 0.2

Decay rate a * 0.97 per 1000 epochs
Regularization L2

Iterations 50000

5.2 Characterization for the DES Encryption Attack

The DES encryption process is the target execution in this attack scenario. The
attack time interval is delimited with SPA (Simple Power Analysis). The fast
characterization is launched to assess the FI settings that might potentially lead
to a successful attack (i.e., faulty ciphertexts).

Three steps are performed during the characterization procedure: first, gen-
erating the sensitivity curve, followed by the impact estimation using a deep
learning algorithm, and finally evaluating the curve with the IS metric. During
the first step, all the measurements are acquired. The second and third steps
belong to the evaluation phase. The generation of the sensitivity curve and the
impact estimation using deep learning are based on the LOI metric while the
third step is based on the IS metric.

Level of Influence for DES. The characterization result based on the
proposed algorithm is depicted in Fig.5a. For comparison purposes, a full-
characterization was performed and the LOI graph of an exhaustive scan with
a full range of settings is shown in Fig.5b. The color of the dots represents
the value of the LOI metric. The test run of Algorithm 1 to perform the fast
characterization (59 measurement points) was obtained within 2 h while the
full-characterization (3 080 measurement points) took more than a week of mea-
surement time.

As a remark, each training data consists of results from different attack
locations. Attacking more locations can better represent the sample’s behavior
with certain laser parameters, but will spend more time as a trade-off. Here, we

162 L. Wu et al.

performed an exhaustive scan with more than 3 000 tests for the validation pur-
pose, where due to the time constraints, we have to control the cost of the
training data in an acceptable range (around 4 min per test).

50 50 1.0
08
Qa0 o7 @ a0 08
e 06 <
5 . 8 y
g % 05 5 30
3 0.4 S
3 4
220 X 03 320 0.4
. .
g . ., B
S0 . 0 ® 10 0.2
g e 8 0.1
0 $ 0.0 0 0.0
0.1 02 03 0.4 05 0.6 0.1 02 03 0.4 05 0.6
Laser power (V) Laser power (V)
(a) LOL: characterization. (b) LOLI: exhaustive scan.

Fig. 5. LOI distribution with different fault injection settings.

From the result, the outline of the sensitivity curve, which acts as the bound-
ary between “week” and “strong” parameters, can be estimated with the mea-
sured data. Based on this curve, the impact of the target on different FI settings
can be estimated. Besides that, additional information can be extracted from
the graph:

1. FI becomes effective when the laser voltage is larger than 0.2 V.
2. Similar LOI can be achieved with completely different setting combinations.
3. Laser voltage is more influential in FI than the laser pulse width.

The usage of this information depends on the attack scenario. For example,
if the attack scenario is to skip an instruction execution, short pulses might be
preferred; whereas to corrupt a memory write (long operation), longer pulses
could be more appropriate. Nevertheless, an attacker can benefit from these
inputs in the next phase of the attack.

The MLP (as described in Table2) is used to predict the LOI with all FI
setting combinations, trained by the data obtained during the characterization
process. In this attack scenario, 59 training set pairs, with two FI settings as
features and Level of Interest values as labels, are collected from the sensitivity
curve. The plot of the loss with respect to the epoch numbers during the training
is shown in Fig. 6.

As shown in Fig. 7a, the prediction result matches the measured data with
the majority of the setting combinations. The prediction error plotted in Fig. 7b
is also close to the sensitivity curve: the maximum error is 0.14 and the aver-
age error is 0.009. The prediction results indicate the capability of deep learn-
ing in predicting LOI with a limited number of training sets, which offers a
proper estimation of the target behavior in significantly less time than a full
characterization.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 163

0.05

0.03

Loss

0.02

| . . |
0 10000 20000 30000 40000 50000
Epochs

Fig. 6. LOI prediction for DES: loss versus epoch numbers.

50 0.14

0.12
40

0.10

w
S

30
0.08

20 0.06

~
S

0.04

Laser pulse width (us)
Laser pulse width (us)

o
S

10 S
- 0.02

)
)

0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Laser power (V) Laser power (V)

(a) Prediction result using a five-layer neu- (b) Error plot when comparing with the
ral network. full-characterization measured data.

Fig. 7. Prediction result with a deep neural network.

Impact Score for DES. To further investigate target behavior, Impact Scores
are calculated (Fig. 8a) based on the measurements performed during the gener-
ation of the sensitivity curve. The IS results from the exhaustive scan are shown
as the reference (Fig. 8b).

From Fig.8a, a higher IS can be obtained with shorter laser pulse width
but stronger laser voltage, indicating the high probability in obtaining more
significant output in this region. Indeed, this assumption can be proved by Fig. 8b
with IS for all setting combinations. Since the IS-based sensitivity curve only
covers a few of the setting combinations, other, untested optimal settings could
still exist. Still, this curve provides a general layout for the settings with better
relevance from the measurements performed, which can eventually lead to a
better parameter selection for a later attack stage.

164 L. Wu et al.
509 50 6
H
> : 3
— — 5
%] 4 %]
B0 B0 2
< 4 <
5 5 ¢
2 30 230
5 s 5
o o £8 3
o o b
3 4 3
3 20 i , 3 20 %
C . 2
@ o @ i
I} I} £
5 10+ 0 1 S o8 1
ey :
8
0 $ 0 0

0.1 0.2 0.3 0.4

Laser power (V)

0.5 0.6 0.1 0.2 0.3 0.4

Laser power (V)

0.5 0.6

(a) IS: characterization. (b) IS: exhaustive scan.

Fig. 8. IS distribution with different fault injection settings.

Transferability of the DES Characterization Results. In general, two fac-
tors are influencing the characterization result: sample’s behavior under attack
and the setup used for the attack. Any variation of these two factors will make
the characterization result less usable. In terms of transferability of the char-
acterized parameters, since we use the same type of TOE and attack different
samples with the same setup, the resulting parameters should be transferable
(indeed, the impact of process variations should be negligible for optical FI). To
prove this assumption, we generated the sensitivity curve with the LOI and IS
metrics on a different sample. The results are shown in Fig. 9.

In terms of LOI, besides some small differences due to the variation of the
chip alignment and laser focus, the result is quite identical when compared with
Fig. 5a. The IS, on the other hand, also shows its consistency when comparing
with Fig. 8a, as it also indicates that the shorter laser pulse width with stronger
laser voltage can lead to higher impact scores at the same parameter range.
Therefore, since the shape of the curve, LOI, and the corresponding IS tested

Laser pulse width (us)

ly,

(a) LOLI: characterization with a different (b) IS: characterization with a different

sample.

0.1

03 04
Laser power (V)

0.2

0.5

0.6

50

s)
N w N
] 8 3

Laser pulse width (u

—
)

)

9,
(]

0.1

sample.

0.2

0.3 0.4 0.5

Laser power (V)

Fig. 9. Characterization results with a different sample targeting DES encryption.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 165

on two different samples match with each other, we conclude that the charac-
terization result from one sample is transferable to a different sample of the
same TOE.

5.3 Characterization for the AES Encryption Attack

To verify the proposed methodology in different conditions, we performed an
additional FI experiment with another laser setup of the same type. This exper-
iment aims to manipulate the encryption of AES software implementation.
Similar to the previous experiment, SPA techniques are used to delimit the
attack time interval. The building block to be targeted is kept the same (Flash
decoders).

Level of Influence for AES. As for the DES cipher, a characterization was
performed to obtain a LOT graph. The sensitivity curve is shown in Fig. 10a (47
measurements) while its full-characterization counterpart is presented in Fig. 10b
(3800 measurements). When comparing this characterization result with the one
targeting the DES encryption (Fig. 5a), we can observe the differences in setting
selections for comparable LOIs. This difference can be due either to the use of a
different laser setup or to the different attack scenarios.

Once the LOI graph was obtained, the same MLP architecture was used
to map the LOI with all the FI setting inputs from the data measured dur-
ing the sensitivity curve generation. Again, we plot the loss with respect to the
epoch numbers during the training. The result is shown in Fig. 11. By comparing
the prediction results (Fig. 12a) with the full-characterization (Fig. 10b), we can
confirm that the LOI tendency is properly estimated. To evaluate the prediction
error, the difference between the two is plotted in Fig. 12b. Although the error
can be further delimited by tuning the hyper-parameters of the network archi-
tecture or increasing the number of measurements during the sensitivity curve
generation, the effectiveness of the MLP for LOI estimation is verified.

50 1
50 10
— 0.8
(%] 4
Ela G a0 08
ey =
e <
° 06 £
2 3% g 30 0.6
g 0.4)
2 201 T 32 04
1 —
I} 9]
w
§ 10 $:.' 02 S0 0.2
] - . . o oo
0 ' T T T T 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.1 0.2 0.3 0.4 0.5 0.6 Laser power (V)
Laser power (V)
(a) LOI: characterization. (b) LOL exhaustive scan.

Fig. 10. LOI distribution with different fault injection settings.

166 L. Wu et al.

0.05

0.03

Loss

0.02

v v v v
0 10000 20000 30000 40000 50000
Epochs

Fig. 11. LOI prediction for AES: loss versus epoch numbers.

Impact Score for AES. The IS-based sensitivity curve is shown in Fig. 13a
while the full characterization reference is presented in Fig. 13b. Similar to the
IS distribution shown in Fig. 8a, the fault injection is more effective with short
laser pulse widths for AES encryption (Fig. 13a), as the points with high IS are
accumulated at the bottom-right of the graph. Taking Fig. 13b as the reference,
the IS-based sensitivity curve can cover the overall target behavior effectively
with a limited amount of data, thus proving its capability in settings optimization
in a short amount of time.

Transferability of the AES Characterization Results. Similar to the
experiment performed in Sect. 5.2, we generated the sensitivity curve with the
LOI and IS metrics on a new sample attacking the same locations and using the
same laser setup. The results are shown in Fig. 14.

50
50
= & 0.30
(%)
m 08 EA
4 40+ - 3 0.25
2 S (]
< 8 §
= 230
230 0.6 = H 0.20
ot 8 015
Ku} 320
320 0.4 a H
. Q $ 0.10
n
% S0
g 0.2 0.05
L % 3
et o g
o wusssise Bus

0.1 0.2 0.3 0.4 0.5 0.6

01 0.2 0.3 0.4 05 0.6 Laser power (V)

Laser power (V)

(b) Error plot when comparing with the

Predicti It. ..
(a) Prediction result full-characterization measured data.

Fig. 12. Prediction result with a deep neural network for AES encryption.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks

50

)

N w »
5 S S

Laser pulse width (us

=
o

h, 1

] o
0.3 0.4
Laser power (V)

o
o

0.2 0.5 0.6

(a) IS: characterization.

Fig. 13. IS distribution with different

o
S

fault

10

o
)

»
S
®

w
S
o

N
5
IS

3

Laser pulse width (us)

=
o

o

0.3 0.4
Laser power (V)

0.2

0.5

0.6

(b) IS: exhaustive scan.

injection settings for AES encryption.

50

167

IS
S

Laser pulse width (us)
S

.
)

)

w
S
°

0.2

0.3 0.4

0.5

0.6

S
N w IS
S S S

Laser pulse width (us)

=
1)

)

38
:
M,

0.1

0.2

0.3 0.4

0.6

Laser power (V)

Laser power (V)

(a) LOI: characterization with a different (b) IS: characterization with a different
sample. sample.

Fig. 14. Characterization results with a different sample targeting AES encryption.

From the figures, the LOI and IS distribution are identical to the previ-
ous characterization results (Figs. 10a and 13a). Therefore, we again show that
the characterization result is transferable between different samples of the same
TOE. We also conclude from this test on the AES that the fast characterization
methodology presented in this paper applies to different attack scenarios.

6 Conclusions and Future Work

In this paper, we present a novel methodology for semi-invasive fault injection
attacks that improves the identification (characterization) phase of an attack.
This methodology consists of a fast generation of the sensitivity curve and a
proper evaluation of the Level of Influence and Impact Score metrics. Instead
of testing FI setting conditions randomly, we start by generating the sensitiv-
ity curve, which happens in two phases. First, we find the golden point, which
is close to the target LOI and then, we depict the rest of the curve using this

168 L. Wu et al.

point as the reference. Finally, we show how deep learning can be used in fault
injection attacks characterization phase where we estimate the full search space
by using only a limited number of measurements. In the experimental part, we
demonstrated the proposed methodology on running software implementation of
DES and AES ciphers. Besides that, we repeat the characterization procedure
on a different sample to verify its transferability. Not shown in this paper, the
proposed method had been validated for a variety of attack scenarios such as
program flow attack and data manipulations. It also showed its effectiveness on
other semi-invasive FI techniques such as EMFI and BBI. In the realistic cir-
cumstances, attackers can launch our methodology on multiple setups in parallel,
which can dramatically boost their attack procedure and performance.

In future work, we plan to further investigate the advantages and limitations
of the fast characterization with different fault injection methods, setups, targets,
and initial conditions such as temperature and supply voltage. Additionally, we
aim to further explore the usage of the neural network in estimating the FI
impact on non-measured areas.

References

1. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Kog, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2-12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

2. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236-252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_16

3. Picek, S., Batina, L., Jakobovi¢, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106—
1111. IEEE (2014)

4. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159-173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4_11

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37-51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0_4

6. Kémmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, p. 2. Berkeley, CA, USA, USENIX
Association (1999)

7. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diag-
nosis and Tolerance in Cryptography, pp. 23-29. August 2010

8. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 91-99. September 2011

https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

A Fast Characterization Method for Semi-invasive Fault Injection Attacks 169

Leveugle, R., et al.: Laser-induced fault effects in security-dedicated circuits. In:
2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 1-6. IEEE (2014)

Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive
optical fault injection attacks. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol.
10348, pp. 207-222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64647-3_13

Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Proceedings of International Conference on Cryptographic Hard-
ware and Embedded Systems - CHES 2017-19th, Taipei, Taiwan, 25-28 September
2017, pp. 45-68 (2017)

Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
TACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209-237 (2019)

Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. TACR
Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148-179 (2019)

Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 35—42. September 2018

Zhou, Y.B., Feng, D.G.: Side-channel attacks: ten years after its publication and the
impacts on cryptographic module security testing. TACR Cryptol. ePrint Archive
2005, 388 (2005)

Tria, A., Choukri, H.: Invasive attacks. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 623—-629. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-5906-5

Kumar, R., Jovanovic, P., Polian, I.: Precise fault-injections using voltage and
temperature manipulation for differential cryptanalysis. In: 2014 IEEE 20th Inter-
national On-Line Testing Symposium (IOLTS), pp. 43-48. IEEE (2014)

Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective.
In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095—
4102. IEEE (2017)

Skorobogatov, S.P.: Semi-invasive attacks: a new approach to hardware security
analysis (2005)

Johnston, A.H.: Charge generation and collection in PN junctions excited with
pulsed infrared lasers. IEEE Trans. Nuclear Sci. 40(6), 1694-1702 (1993)

Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FGPA
RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded
Systems Security, WESS 2011, pp. 2:1-2:9, New York, NY, USA, ACM (2011)
Beringuier-Boher, N., Lacruche, M., El-Baze, D., Dutertre, J.-M., Rigaud, J.-B.,
Maurine, P.: Body biasing injection attacks in practice. In: Proceedings of the
Third Workshop on Cryptography and Security in Computing Systems, pp. 49-54.
ACM (2016)

Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (2014)
Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Pro-
ceedings of the Twenty-First International Conference on Machine Learning, ICML
2004, p. 23. New York, NY, USA, ACM (2004)

LeNail, A.: NN-SVG: publication-ready neural network architecture schematics. J.
Open Source Softw. 4(33), 747 (2019)

https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-1-4419-5906-5

170 L. Wu et al.

26. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

27. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27—41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447_4

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4

®

Check for
updates

Tightly Secure Two-Pass Authenticated
Key Exchange Protocol in the CK Model

Yuting Xiao'2, Rui Zhang" 29, and Hui Ma!(®2

! State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China
{xiaoyuting,r-zhang,mahui}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Tightly secure authenticated key exchange (AKE), whose
security is independent from the number of users and sessions (tight secu-
rity), has been studied by Bader et al. [TCC 2015] and Gjgsteen-Jager
[CRYPTO 2018] in the Bellare-Rogaway (BR) model. However, how to
achieve tight security in stronger models (e.g., the Canetti-Krawczyk
(CK) model and the extended Canetti-Krawczyk (eCK) model) were
still left as an open problem by now.

In this paper, we investigate this problem in the CK model. We start
from a generic construction [ACISP 2008] based on key encapsulated
mechanisms (KEMs). We analyze the reason why it cannot achieve tight
reduction, by merely assuming the underlying KEMs are secure in the
multi-user and multi-challenge setting with corruption as Bader et al.
[TCC 2015] and Gjgsteen-Jager [CRYPTO 2018] did. Then we put for-
ward a new generic construction to overcome the potential obstacles.

In addition, we introduce a strong type of chosen ciphertext attack
in the multi-user and multi-challenge setting with corruption for tag-
based key encapsulated mechanism (TB-KEM), where adversaries are
not only allowed to adaptively corrupt secret keys of users, generate
multi-challenges with different coins, and open some challenges as well.
We further prove that the Naor-Yung transform also works in this model,
hence our generic construction can be instantiated.

Keywords: Tight security - Authenticated key exchange - The CK
model - Multi-user - Multi-challenge + Corruption

1 Introduction

Authenticated Key exchange (AKE) is a fundamental cryptographic primitive,
which enables each party to verify the identity of the other party with the help
of some pre-shared information, such that only the honest players can obtain
the final session keys after executions. Nowadays, AKE is widely and frequently
used to achieve secure communications over public channels in daily life, e.g.,
TLS handshake protocol.

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 171-198, 2020.
https://doi.org/10.1007/978-3-030-40186-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_9

172 Y. Xiao et al.

As AKE protocols are executed over an open network and vulnerable to
complicated cyber-attacks, provable security is an important design goal. Along
with the development of modern cryptography, the provable security paradigm
has become widely-accepted to analyze cryptographic schemes. The first formal
security model (i.e., the BR model) for AKE was introduced by Bellare and
Rogaway [7], which allows attackers to fully control the communication channel,
corrupt the long-term secret keys of communicating parties and reveal session
keys. After that, for capturing more practical attacks or providing more security
guarantees, several strong security models were developed, e.g., the CK [11],
eCK [23], CK+ [22] and eCK-PFS [15] models. Commonly, in a reduction, it
is necessary to prove that if there exists an attacker A who is able to break
the CK/eCK/CK+/eCK-PFS-security, there exists an another attacker B who
is able to solve a hard problem. Denotes € 4 and €z as the success probabilities of
the attacker A breaking the security experiment and the attacker B solving the
underlying hard problem, respectively. A successful reduction ends up with an
inequality like e 4 < L-€g, where L is known as the reduction loss. In particular,
the reduction is called tight when L is a small constant, which means €4 = eg
and the difficulty for any attacker of breaking the protocol is almost equal to
solve the underlying hard problem.

In the literature, a number of protocols [9,11,15,16,23,30] were proved in
the CK, eCK, CK+ and eCK-PFS models, but almost all of them came with a
loose reduction that depends on the number of users p and sessions ¢ per user,
eg, L = 1/(u-0) or L = 1/(p - €)% If the selected security parameters are
kept unchanged, the concrete security of these protocols will degrade in their
application scales, hence larger parameters should be selected to compensate
their concrete security loss. Therefore, these protocols might not be suitable for
applications in a large-scale setting, e.g., a web search engine with billions of
HTTPs connections per day. Protocols with tight security that does not degrade
with the number of users or sessions, are more preferable. The reason is that to
embed its problem instance, in the beginning of the experiment the simulator
has to guess the target of the attacker among all users and all the sessions.

The first construction with tight reduction was proposed by Bader et al. [5],
in an enhanced version of the BR model. In a high-level view, their protocol
follows a well-known paradigm: a key encapsulated mechanism (KEM) is used
to transport shared keys, and a signature (SIG) scheme is used to authenticate
exchanged messages, where the SIG scheme is existentially unforgeable in the
multi-user setting with corruption (abbreviated as mu-corr setting) with tight
security reduction, where adversaries are allowed to adaptively corrupt the secret
keys of multi-users; the KEM scheme is tightly secure against chosen plaintext
attack (CPA) in the multi-user and multi-challenge setting with corruption,
where adversaries are allowed to adaptively corrupt the secret keys of multi-users
and request multi-challenge using different coins. The simulator first carefully
embeds KEM challenges into simulated sessions, then answers corruption queries
of long-term secret keys (i.e., singing secret keys) and reveal queries of session
keys (derived from encapsulated keys) using corresponding corruption oracles

Tightly Secure Two-Pass AKE Protocol in the CK Model 173

provided in the SIG and KEM security experiments, respectively. By doing so,
it is no longer necessary to guess the target user session at the beginning of
the experiment and a tight reduction is achieved. Later, Gjgsteen and Jager
[19] proposed a more efficient protocol, but still merely proved secure in the BR
model. Up to now, how to achieve tight security in other stronger models is still
left as an interesting open problem.

As pointed out by Cremers [14], the existing strong security models (in partic-
ular, the CK, CK+ and eCK models) are incomparable, thus hard to choose. In
a cloud or desktop environment, developers usually care less about the memory,
and never erase memory after usage. Since the CK model captures such session
state leakage, in this paper, we focus on tight reduction in the CK model.

1.1 Owur Contributions

We give the first tightly secure generic construction of AKEs in the CK model, in
addition, we take into account key-compromise impersonation (KCI) resistance
[28] and weak perfect forward secrecy (wPFS) [22]. The construction follows the
“2xSIG+2xTB-KEM +2xO0OTS+wKEM” paradigm, where SIG is a determin-
istic signature that is existentially unforgeable in the multi-user setting with
corruption, OTS is an one-time signature that is strongly existential unforgeable
in the multi-user setting, TB-KEM is a tag-based key encapsulated mechanism
that is secure against chosen ciphertext attack (CCA) in the multi-user and
multi-challenge setting with corruption, and wKEM is a KEM that is CPA secure
in the multi-user and multi-challenge setting with corruption, respectively.

We note that it is the first time that CCA security in the multi-user and
mu-me-corr setting for TB-KEM is considered. Different from [1,21], in our def-
inition, adversaries are allowed to adaptively corrupt secret keys of multi-users,
generate multi-challenge with different coins, and even open some challenges as
long as the final target has not been opened and its corresponding secret key
has not been corrupted. We prove that the classic Naor-Yung transform [26] is
valid in this scenario.

Finally, we present a concrete instantiation based on the known modules.
Compared with the existing tightly secure AKE constructions, our construction
is proved secure in a stronger model, and achieves lower round complexity but
higher communication and computation complexity.

1.2 Related Work

Tight security in the multi-user and multi-challenge setting for public key
encryption (PKE) has been studied for a long time. Bellare, Boldyreva and Micali
[6] first proved the ELGamal encryption meets tight CPA security in such set-
ting. After that, the tight CCA security was kept as an open problem for decade,
until Hofheinz and Jager [21] proposed the first tightly CCA secure scheme by
applying the typical Naor-Young transform [26], where each ciphertext consists of
two CPA secure PKE ciphertexts and one simulation-sound non-interactive zero-
knowledge (NIZK) proof. Then Blazy et al. [8] presented an improved scheme

174 Y. Xiao et al.

for it with more compact ciphertext size. In another line, Abe et al. [1] and Wei
et al. [29] proposed tightly CCA secure schemes based on simulation-extractable
NIZK proof systems, where each ciphertext merely consists of one CPA secure
PKE ciphertext and one proof.

Along the development of tight security, almost tight security was also stud-
ied, which allows reduction loss be dependent on the security parameter. For
examples, Libert et al. [24,25], Hotheinz [20] and Gay et al. [17] proposed sev-
eral almost tightly CCA secure schemes, and all these schemes have compact
ciphertext sizes. In particular, each ciphertext of Gay et al. [17] only consists
of 3 group elements, but which still suffers big public key. The work by Gay,
Hotheinz and Kohl [18] further reduced the public key size to 6 group elements.
As well known, identity based encryption (IBE) can be converted to CCA secure
PKE by applying the CHK transform [10], thus the existing almost tightly secure
IBE schemes [4,12,13] in the multi-user and multi-challenge setting also yields
almost tightly CCA secure PKE schemes in the same setting.

2 Preliminaries

Notations. Let — denote an empty string, while * denotes an arbitrary but
nonempty string. The operator @ denotes bit-wise “XOR”, and || denotes string
concatenation. For k € N, 1* denotes the string of k ones. For an integer m,
[m] = {1,2,...,m}. For a distribution S, = «sS means randomly choosing
an element according to the distribution S. For an arbitrary bit string s, |s|
denotes its bit-length. For an algorithm A, y < A(z) /y = A(z) means running
the randomized /deterministic algorithm A with 2 as input gets the output y. A
function pu(-) is called negligible, if for every polynomial p(-), there exists some
Ao such that p(A) < 1/p(N), for every A > X.

Tag-Based Key Encapsulation Mechanism in the Multi-User Setting
consists of four algorithms: Setup(1*) — II, on input a security parameter 1%,
outputs a public parameter IT; Gen(II) — (ek, dk), on input a public parameter
IT, outputs an encryption key ek and a decryption key dk; Enc(ek,7) — (¢, k), on
input an encryption key ek and a tag 7, outputs a ciphertext ¢ and an encapsu-
lated key k € K (the key space); Dec(dk, ¢, 7) = k/L, on input a decryption key
dk, a ciphertext ¢ and a tag 7, outputs a key k or a special symbol L indicating
¢ is invalid. We require usual correctness properties. We will define a new type
of CCA security in the multi-user and multi-challenge setting with corruption,
which is called MU-IND-CCA®°™ security.

Definition 1 (MU-IND-CCAC°™). A tag-based key encapsulated mechanism
TB-KEM = (Setup, Gen, Enc, Dec) is called MU-IND-CCAC°™ secure, If for any
PPT adversary A,

MU-IND-CCACe MU-IND-CCA®" 1
AdVTB-KEM,A A\ = |PT[EXPTB-KEM,A (A =1] - §|

s megligible in \, where the experiment is defined as follows:

Tightly Secure Two-Pass AKE Protocol in the CK Model 175

E pMU-IND-CCACW()\) :

X TB-KEM, A 5 OE(i,Ti’j).' //the j-th query OM eki
H — Setup(l) (Ci,jaki,j,o) “— Enc(eki,T,;J), ki,j,l ‘*$’C
(cki, dk:)i — Gen(l]), Q=0 bij —s{0,1}, @ = QU{(i.j,bi)}
(i%,5%,b") « AZECDCC (I, (eki)i) | peturn (Cijskijbi ;)
return win(i*, j*,) Op(i,c,7): R

Oc(i): return k = Dec(dk;,c,)

return dk;

where win(-, -, -) denotes a predicate function, for any input (i, 7,b), which out-
puts 1 only when (4,5,b) € Q, and A has never performed Op(i,c; 5,7 ;) and
Oc¢ (1) queries.

Key Encapsulated Mechanism in the Multi-User Setting consists of four
algorithms: Setup(1*) — II, on input a security parameter 1, outputs a pub-
lic parameter IT;Gen(II) — (ek,dk), on input a public parameter I, outputs
an encryption key ek and a decryption key dk; Enc(ek) — (c, k), on input an
encryption key ek, outputs a ciphertext ¢ and an encapsulated key k € I (the
key space); Dec(dk,c) = k/L, on input a decryption key dk and a ciphertext ¢,
outputs a key k or a special symbol | indicating that c is invalid. We require usual
correctness properties. We consider the CPA security notion in the multi-user and
multi-challenge setting with corruption (called MU-IND-CPAC°™ security) in [5].

Definition 2 (MU-IND-CPAC°™), A key encapsulated mechanism KEM =
(Setup, Gen, Enc, Dec) is called MU-IND-CPAC°™™ secure, if for any PPT adver-
sary A,

orr orr 1
AV P () = | PrExplE0 T () = 1] -

s negligible in \, where the experiment is defined as follows:

MU-IND-CPAC"™ /| \ Og(i): //the j-th query on ek;

EXPKEM,.A (A): 4(01’]71%’]70) — Enc(ek;), kij1sK
IT « Setup(1*) bi; —s{0,1}, Q= QU {(,4,bi,)}
(ek“ dkl)l - Gen(H)’ Q = (Z) return (Ci VRl ki 7,bi)

(i*, 7%, 1) — AOE,OC(H’ (ek;)i) Oc(i): ’ 27304,
return win(i*, j*,b') return, dk;

where win(, -, -) denotes a predicate function, for any input (i, 7, b), which out-
puts 1 only when (7,4,b) € Q, and A has never performed O¢ (%) queries.

Public Key Encryption in the Multi-User Setting consists of four algo-
rithms: Setup(1*) — IT, on input a security parameter 1%, outputs a public
parameter IT; Gen(II) — (pk,sk), on input a public parameter II, outputs a
public key pk and a secret key sk; Enc(pk, m) — ¢, on input a public key pk and
a message m, outputs a ciphertext ¢; Dec(sk,c¢) = m/L, on input a secret key

176 Y. Xiao et al.

sk and a ciphertext ¢, outputs a message m or a special symbol L indicating c is
invalid. We require usual correctness properties. Recall the CPA security defini-
tion in the multi-user setting and multi-challenge setting under single challenge
bit in [21], which is called S-MU-IND-CPA security in this paper.

Definition 3 (S-MU-IND-CPA). A public key encryption PKE = (Setup,
Gen, Enc, Dec) is called S-MU-IND-CPA secure, if for any PPT adversary A,

1
AdVERE N CPA () = [PrExpE A A () = 1] - 5|

s megligible in \, where the experiment is defined as follows:

SMU-IND-CPA,) . Og(i,mg,my):

¢i.0 — Enc(pk;, mg)
ci1 — Enc(pk;, mq)
return c;

Exppk
I — Setup(l’\), (pki, sk;); < Gen(II)
b s {07 1}’ b — AOE (Hv (pkl)l)
return 1 if b/ = b

Signature in the Multi-User Setting consists of four algorithms:
Setup(l’\) — I, on input a security parameter 1*, outputs a public parameter
IT; Gen(IT) — (vk, sk), on input a public parameter IT, outputs a verification key
vk and a signing key sk; Sig(sk, m) — o, on input a signing key sk and a message
m, outputs a signature o; Vrfy(vk,m,oc) = 0/1, on input a verification key vk,
a message m and a signature o, outputs a bit 0 or 1 that indicating o is valid
or invalid. We require usual correctness properties. We consider the multi-user
existential unforgeability under adaptive chosen-message attacks with adaptive
corruptions (called MU-EUF-CMA®®" security) and the multi-user strongly one-
time existential unforgeability under adaptive chosen-message attacks (called
MU-1-sEUF-CMA security) in [5].

Definition 4 (MU-EUF-CMAC°™). A signature SIG = (Setup, Gen, Sig,
Vrfy) is called MU-EUF-CMAC°™™ secure, if for any PPT forger F,

AdVEET M () = [PrlExpg 2T M () = 1]

s megligible in \, where the experiment is defined as follows:

Exply-EVF- CMAST () Os(i,m):
5 o «— Sig(ski,m)
IT — Setup(1*) 0 =0QuU{(i,m)}
(vki, ski)i < Gen(II), Q:=0) return o
(i*,m*, %) — AOS,OC(H7 (vk;)s) Oc(i):
return win(i*, m*, o*) return sk;

Tightly Secure Two-Pass AKE Protocol in the CK Model 177

where win(+, -, -) denotes a predicate function, for any input (i, m, o), which out-
puts 1 only when (i, m) ¢ Q A Vrfy(vk;,m,o) = 1, and A has never performed
Oc¢ (1) queries.

Definition 5 (MU-1-sEUF-CMA). A signature SIG = (Setup, Gen, Sig, Vrfy)
is called MU-1-sEUF-CMA secure, if for any PPT forger F,

Advsig 7T MAN) = [PriExpgicr AN = 1]]
Corr
1s negligible in X, where the experiment is defined similarly to Expg/:g:;UF'CMA (N,
but where O¢ queries are not allowed and Og queries on each i can be asked once at

most. Besides, {(i,m, o)} instead of { (i, m) } is inserted into Q when answering each
Ogs query, and the predicate function win(i, m, o) checks whether {(i,m, o)} € Q.

Quasi-Adaptive NIZK Proof is NIZK proof where the common reference
string (crs) is allowed to depend on the specific language for which proofs
have to be generated. It consists of four algorithms: Ko(1*) — I, on input a
security parameter 1%, outputs a public parameter I'; Ki(I, p) — %, on input
a public parameter I' and a language-specific parameter p, outputs a crs ;
P(¢,z,w,Ibl) — 7, on input a crs ¢, a statement x, a witness w and a label Ibl,
outputs a proof m; V(¢, z,m, Ibl) — 0/1, on input a crs ¥, a statement x, a proof
7 and a label Ibl as input, outputs 1 indicating 7 is valid or 0 indicating invalid.
For public parameters I «— Ky(1%), let Dr be a probability distribution over
a collection of relations R = {R,} parameterized by p with an associated lan-
guage L, = {z|3w : R,(z;w) = 1}. Here we recall the definition of unbounded
simulation-sound QA-NIZK proof in the multi-crs setting in [25], which is called
M-USS-QA-NIZK in this paper. A some difference is that we do not require the
same enhanced version for unbounded simulation-soundness where A4 is also
given trapdoors that allow deciding membership in the language £,,.

Definition 6 (M-USS-QA-NIZK). For R, we say a tuple of efficient algo-
rithms (Ko, K1, P, V) is an M-USS-QA-NIZK proof, if there exists a PPT simu-
lator § = (81, 82) such that for any PPT adversaries A1, Az, As, A4, we have:

Quasi-Adaptive Completeness
Pr[I" « Ko(1*); p «=s Drs ¢ — K (T, p), (2, w, Ibl) — Ay (I, p); 7 P(¢b, 2, w, Ibl) :
V(,z,m, Ibl) =1 if Ry(z,w) =1] = 1.
Quasi-Adptive Soundness
Pr[I" — Ko(1*); p s Dr; v — Ku(I, p); (w,w, Ibl) « As (I, 9, p) :

V(,z,m,Ibl) =1 A =(Fw: Ry(z,w) =1] < es,

where €s 1s negligible in \.

178 Y. Xiao et al.

Quasi-Adptive Zero-Knowledge
| Pr[I" — Ko(1%); p s Do — K (I, p) + AS (100, p) = 1] = Pl = Ko(17);
p s Drs (1, Toim) = S1(Ip) = AZ T (1), p) = 1] < eqnzk,
where €s is negligible in A and As is given two different oracles:

1. P(¢,-,-,-): on input (z,w) € R, and a label Ibl, outputs a proof generated by
P(v,z,w,Ibl). Otherwise, outputs L.

2. S(¥, Tsim, -+, -): on input (x,w) € R, and a label Ibl, outputs a simulated proof
generated by So(, 2, w, bl). Otherwise, outputs L.

Unbounded Simulation-Soundness in the multi-crs setting

Pr[l" « Ko(1*); {pi}i <= Drs {(Wi, Tsim.i) }i — S1(L {pi});
(Z'*,(E,ﬂ', Ibl) - Afz(wiﬂ'sq‘,m,iv‘v'v')(l"7 {'()/}zypz}z) .
V(e 2, m,Ibl) = 1A =(3w : Ry, (z,w) = 1) A (i*, 2,7, Ibl) ¢ Q] < eyss.

where eyss is negligible in X. Ay is given unbounded access to the oracle
§2({1/1i}i,{7'sim,i}i, “y0): on input (j,x,1bl) (where x may be outside L,,, oul-
puts a simulated proof generated by Sa(v;,x,w,Ibl) and updates Q = QU
{(,z,m,Ibl)}.

Definition 7 (Pseudo-Random Function). Let PRF : {PRF, : S, x
Domy — Rnga}ren define a function family with families of key spaces
{Sr}aren, domains {Domy}xen and ranges { Rngy}ren, where A denotes a secu-
rity parameter. We say PRF is a secure PRF family if for any PPT adver-
sary A, | Pr[l « APRRAO] — Pr[1 « ARRAO)] |< epgre is negligible in A\, where
RFA(:) : Domy — Rngy is a truly random function.

3 Tightly Secure AKE Protocol in the CK Model

In this section, we first review the CK model [11] and slightly change its original
definition to additionally provide KCI resistance and wPFS. We then present a
new construction and prove its security in such model with a tight reduction.

3.1 The CK Model

A protocol P is modeled as a collection of m interactive PPT machine running
at different parties, Py, --- , P,,. Each invocation of P within a party is defined
to be a session, and each party may have multiple sessions running concurrently.
The i-th session on party P; is denoted as a tuple (P},i) € {P, -, Py} x N.
For each session s € {Py, -, P} x N, a quintuple of variables is set. E.g., a
session owned by a party (P;) is denoted as s = (Sactor: Speers Sroles Ssents Srecv)
where Sqetor (=F;) denotes the owner of the session, spee,r the intended partner
(of B;), Srote € {Z,R} (where Z/R denotes initiator/responder), and Ssent/Srecv

denotes the message sent/received by the session owner (P;). Two sessions s =

! __ !/ !/ / !/ /
(Sactoru Speers Sroley Ssent s'recv) and s’ = (sactor7 Speer7 57-0167 Ssents Srecv) are called

: : : — ! — o / — o
CK-matching session if Sactor = Speers Speer = Sactors Srole 7 Spojes Ssent = Srecy

and Specy = Shens- Any PPT adversary is allowed to perform following queries:

Tightly Secure Two-Pass AKE Protocol in the CK Model 179

active session s, which consists of two forms:

— establish-session (P;, P;). This query is answered by starting a new session
s on P; and a matching session of s on P;, and the transcript is output.
In particular, P; is assumed be the initiator.

— incoming-message (s, P;,m). This query denotes a type of interaction that
the adversary sends a message m to the session s in the name of P;, and
it is answered by strictly following the protocol description.

Upon activation, the corresponding variables of each session are initialized,
and each session may either be uncompleted or completed. If a session is
completed, the party will erase all the intermediate states except for the
session key k.

e corrupt (P;). This query reveals the long term secret of party P;.
o session-key reveal (s). This query reveals the session key of arbitrary com-

pleted session s.

session-state reveal (s). This query reveals all the state information of the
session s before it is completed. In particular, randomness and intermediate
values that should be stored for moments (e.g., dk, k, k;, k;) to waiting for the
computation of the final session key are included in the session-state.
session-expiration (s). This query can only be queried for completed sessions.
It will erase the session key k of this session from memory.

test-session (s). A random bit by is selected, if by = 0 then the real session key
is output; otherwise, a random key from the key space is output. This query is
only allowed to completed, unexpired and unexposed sessions. In particular,
this query is allowed to be asked for multiple times, but the answers for
matched sessions s and s’ should be kept consistent in case of trivially broken.

The security of a protocol P is defined based on an experiment played

between a challenger and an adversary .A:

1.

the challenger generates the system parameters and all long-term keys, and
sends all public information to A;

A adaptively performs establish-session(+), incoming-message(-), corrupt(-),
session-key reveal(-), session-state reveal(:), session-expiration(-) and test-
session(-) queries;

at the end, A outputs its guess (s*,b’) on whether the returned value of the
test-session(s*) was the real session key or a random value.

A wins the experiment if b,« = b’. Throughout the experiment, A is not

allowed to expose s*. In particular, a session s is said to be exposed if A has
performed one of the following queries:

o a session-state reveal(-) query on s or its matching session s (if exists);

o a session-key reveal(-) query on s or its matching session s’ (if exists);

o (the matching session s’ does not exist) a corrupt(-) query on the claimed
owner of the session s.

180 Y. Xiao et al.

Remark 1. There are two special cases that do not lead to a session s exposed:
(1) if its matching session s’ exists, A performed corrupt- queries on both of
the claimed owners of s and s’; (2) if its matching session s’ does not exist,
A performed corrupt(-) query on the claimed owner of s but not s’. The first
case illustrates why our CK model provides wPFS, and the second corresponds
to KCI resistance in the implicit authentication case (that inherently refers to
the key indistinguishability under compromise of the partner’s long-term secret

key).

Remark 2. Our definition follows the original definition [5] for AKE in the multi-
challenge case where each test-session(-) query has an independent challenge bit.
There also exists a variant for it, where all test-session(-) queries have the same
global challenge bit. As many other primitives in the multi-challenge case are
defined in such single-bit challenge definition, single-bit challenge CK-security is
useful when one want to actually use key exchange protocols as sub-protocols in
other protocols, e.g., when one want to do a single game hop where the actually
session key is replaced by a random key independent of the key exchange.

Definition 8. A protocol P is said to be secure in the CK model, if and only if
for any PPT adversary A as defined above, the following properties hold,

1. when two uncorrupted parties complete CK-matching sessions, they output
the same key,

2. the advantage Advng()\) = |Pr[b = b] —1/2| that A correctly guess the bit b
of the test-session is negligible in the security parameter.

3.2 Our Construction

In this section, we introduce our technique and construction.

Our Start Point. Review the “2xKEM+Diffie-Hellman” construction [9] with
wPFS and KCI resistance in the CK model (Fig. 1). Without loss of generality,
we substitute the “Diffie-Hellman” module by an equivalent “wKEM” module.

P; (Idk;) P (ldk;)
wKEM.Gen(pp) — (ek, dk)
KEM.Enc(lek i, ki i, j, ek||ci
nc(leks) — (ei, ki) ,JA ||| wKEM.Enc(ek) — (c, k)
i, J, cllc;
wKEM.Dec(dk, c) = k b KEM.Enc(lek;) — (cj, k)
KEM.Dec(ldks, ¢;) = k; KEM.Dec(ldk;, ;) = ki

trans = i||jlek||cillcll¢;
sk = PRF(k;, trans) @ PRF(k;, trans) @ PRF(k, trans)

Fig. 1. The “2xKEM+wKEM?” construction

Tightly Secure Two-Pass AKE Protocol in the CK Model 181

Similar to Bader et al. [5], we use the underlying KEM/wKEM be CCA/CPA
secure in the multi-user and multi-challenge setting with corruption. In a reduc-
tion, a simulator can embed different challenges into different sessions, and when
corruption and session-state/session-key reveal queries arrive, the simulator just
relays these queries to the underlying KEM and wKEM oracles. But the simu-
lator may fail due to the following attack.

An adversary may impersonate P, and send a message ek*||cf to activate
a session s* on P; who sends c*Hc;f as reply, which will be finally selected as
its target session. In this case, the matching session of the target session does
not exist and the adversary should never corrupt P;. Hence, only ¢} is left for
embedding the challenge. But before the adversary claiming its final target: it
can interpose another session s’ executed between P; and P;, where the reply
message sent by P; is replaced by ¢'|[c]; then perform a session-state reveal
query on s’. This attack will cause the simulation to fail since no limitation
is posed on session-state reveal query if a session is not the target session or
its matching sessions. Thus, a simulator must answer real session-states for all
session-state reveal queries before knowing the final target of the adversary,
i.e., before the adversary performing the test query, the adversary may have
corrupted the decapsulated key of ¢}, such that he can compute the real session
key of the target session by itself.

A Failed Attempt. One may try to limit an adversary by appending a signature
SIG to “2xKEM+wKEM?” as in Fig. 2. Though an adversary cannot pretend to
be a specific party to send arbitrary messages without knowing the signing key,
but replaying messages generated by a party is still possible.

Pi (ldkﬁi, lski) Pj (ldkj, lskj)

wKEM.Gen(pp) — (ek, dk)

KEM.Enc(lekp) — (ci, ki)

SIG.Sig(Isks, i|j||ekl|c;) — or b ekllcilloi

SIG.Vrfy(lvki, i||j||ek||ci, 06) = b

if b # 1, reject it and output L
else WKEM.Enc(ek) — (c, k)
KEM.Enc(lek;) — (cj, k;)
SIG.Sig(lsk;, il|jllek||cillclle;) — o

i, 4, cllcsllo

SIG.Vrfy(lvk;, i||j||ek||cil|cl|cj, o5) = b

if b’ # 1, reject it and output L

else WKEM.Dec(dk,c) = k

KEM.Dec(ldk;, ¢;) = k; KEM.Dec(ldk;,c;) = ks
trans = il|j|lekl[cil|o:||cllc;|o;

sk = PRF(k;, trans) @ PRF(k;, trans) ® PRF(k, trans)

Fig. 2. Generic “2xSIG+2xKEM+wKEM” construction

182 Y. Xiao et al.

If we further bundle each reply message to its initiation message, so that
the adversary is limited to merely replay the initiation messages generated in
other sessions. But again, the adversary .4 may manipulate multiple different
execution instances between P; and P; according to the following strategies:

In the first instance, A passively observes the execution between P; and
Pj; in the second one, A replays the initiation message sent by P; in the first
execution to P;. In the third one, A modifies the reply message sent by P;. We
present the execution details in the first row of Tablel. We assume that the
long-term secret key of P; has been corrupted by A, such the last one execution
also terminates normally without outputting L. Such three execution instances
should have yielded six sessions in all. But the third and the sixth sessions are
controlled by A in fact, which are regarded as “non-existent”.

Table 1. Simulation failure example (KCI attack)

execution ekllcillo ekllcillo; ek’||c)||o;
: e 4
instances
’ ’ ’ 1’ / 1"
cllejllo; c chHo'j c H“’_]‘H”j
<7
session-state dk,k,k;i,k; k.ki k; k' ki, k;- dk’,k",k;,k;
state reveal v v
challenge *

Note that the two honest sessions involved in a single execution instance are
mutually called matching session to each other. Assume the final target is the
fourth one, whose matching session does not exist actually. In such case, A is
essentially launching KCI attack. According to the definition of the CK model,
this session is allowed to be the final target if only the long-term secret key of
P; is kept uncorrupted and A has never performed the session-state reveal and
session-key reveal queries on it. But before A clamming his real target, he can
perform session-state reveal queries on the first and the fifth sessions at will,
thus learning the value of (K, k;, k;) and computing the target session key by
itself. The simulation also fails.

Our Solution. In the above attempt, what accounts for the simulation failure is
that A is able to replay the challenge ciphertexts (in particular ¢;) embedded in
the target session to activate other non-matching sessions. More straightforward,
session-state reveal queries are allowed to be performed on these sessions, which
is equivalent to giving A a free decryption oracle to open all embedded challenges.

To overcome it, we replace the “2KEM” module by “2TB-KEM-+20TS” as
in Fig. 3. The key idea is a little bit like the CHK transform [10]: to generate a
reply message, the party P; should generate an extra OTS key-pair (vk;, sk;),
and generate a TB-KEM (instead of KEM) ciphertext ¢; with respect to vk;
as the “tag” and sign the partial initiation/reply message ek||c;||c||c; using sk;

Tightly Secure Two-Pass AKE Protocol in the CK Model 183

to obtain a signature o; ;. Only when o;; and ;2 are both valid, the reply
message can be accepted by P;. Assuming the underlying OTS be strongly exis-
tential unforgeable, A can no longer replay the challenge ¢; embedded in the
target session to activate other non-matching sessions since he does not know

the corresponding OTS secret key. Therefore, we achieve a tight reduction.

Concretely, our construction uses five building blocks, a wKEM = (Gen, Enc,
Dec), a TB-KEM = (Gen, Enc, Dec), a deterministic SIG = (Gen,Sig,Vrfy), an
OTS = (Gen, Sig, Vrfy) and a PRF family PRF. The construction mainly consists

of the following three parts:

System Setup. Given a security parameter A, select public parameters required
for the underlying wKEM, TB-KEM, SIG, OTS and PRF. For ease of description,

we use the string pp to denote the all system parameters in unified.

Pi (ldk‘“lskz) Pj (ldk]‘,lsk‘j)

wKEM.Gen(pp) — (ek, dk)
OTS.Gen(pp) — (vki, ski)
TB-KEM.Enc(lek;, vki) — (cs, ki)
OTS.Sig(ski, ek||ci) — 041

SIG.Sig(Iski, i||j||vki||oin) — iz
i, J, ek||vki|lciloi,1] |02

OT-SIG.Vrfy(vks, ek||ci, 03,1) = bo
SIG.Vrfy(lvki, i||j||vkil|oi,1, 0i2) = b1
if bo # 1V by # 1, output L

else WKEM.Enc(ek) — (c, k)
OTS.Gen(pp) — (vkj, sk;B)
TB-KEM.Enc(lek;, vk;) — (cj, k)
OTS.Sig(sk;, ekl|ci||cl|e;) — o)1
SIG.Sig(isk;,i||j||vk;|loj1) — 0j,2

i, 7, cl|vk;llcjllojalloj,e

OTS.Vrfy(vk;, ek||cil|c||c;, 0j,1) = bo

SIG.Vry(lvk;, i||j]|vk;||oj1, 0j2) = bl

if by # 1V b} # 1, output L

else WKEM.Dec(dk, c) = k

TB-KEM.Dec(ldk;, cj, vk;) = k; TB-KEM.Dec(ldk;, ci, vk;) = k;

trans = i||j|lek||vki|ci||oil|oi2|lcl[vk;|lei|log1] o2

sk = PRF(k;, trans) @ PRF(k;, trans) ® PRF(k, trans)

Fig. 3. Generic “2xSIG+2xTB-KEM+2xOTS+wKEM” construction

184 Y. Xiao et al.

Long-Term Secrets. Each party P, is in possession of two key pairs
(lek;,ldk;) «— TB-KEM.Gen(pp) and (lvk;,lsk;) < SIG.Gen(pp). In particular,
(lek;,lvk;) and (Idkj,lsk;) are denoted his long-term public and secret key,
respectively.

Session Execution. To negotiate a fresh session key, two parties (e.g., P; and
P;) should execute the steps shown in Fig.3. We assume P; as the initiator
without loss of generality. In concrete,

Step 1. P; first computes (ek, dk) < wKEM.Gen(pp), (vk;, sk;) — OTS.Gen(pp),
(ki,c;) < TB-KEM.Enc(lekj,vk;), 0,1 < OTS.Sig(sk;,ek||c;) and
0i2 « SIG.Sig(lsk;,t||j||vk;||oi1) in order; then sends the initiation-
message (1, j, ek||vk;||c;||oi1]|0i,2) to P;j.

Step 2. Upon receiving the initiation-message sent from F;, P; first checks the

validity of both ¢; 1 and o; 2. Outputs L if OTS.Vrfy(vk;, ek||c;, 041) # 1
or SIG.Vrfy(lvk;, i||j||vki||oi 1, 042) # 1.
Otherwise, computes (c,k) < wKEM.Enc(ek), (vk;,sk;) < OTS.Gen
(pp), (¢j,k;) «— TB-KEM.Enc(lek;,vk;), o;1 < OTS.Sig(sk;, ek||c;||c]]
¢;) and ;o < SIG.Sig(lsk;, i||j||vk;]|oj,1) in order, then sends back the
reply-message (4, J, c||vk;||c;]|oj1]|0,2) to P;.

Step 3. Upon receiving the reply-message sent from P;, P; first checks the valid-
ity of both 0,1 and ¢;2. Outputs L if OTS.Vrfy(vk;, ek||c;||cl|cj, 051) #
1or SlG.Vrfy(ll}kj,iHjH’U]CjHO'j,l,O'j’Q) 7é 1.

Otherwise, P; computes k = wKEM.Dec(dk,c) and k; = TB-KEM.Dec
(ldk;, cj,vk;). P; also computes k; = TB-KEM.Dec(ldk;, c;, vk;).
Finally, lets trans = i||j||ek||vk;||ci||oiq]|oiz||cl|vk;llc;s||ojillo;,e
denote the session transcript, both P; and P; compute the session key
as sk = PRF(k;, trans) @ PRF(k;, trans) & PRF(k, trans).

Theorem 1. If WKEM is MU-IND-CPA®" secure, TB-KEM is MU-IND-CCA®°"
secure, SIG MU-EUF-CMA®®" secure, OTS is MU-1-sEUF-CMA secure and PRF
is secure, the protocol P illustrated in Fig. 3 is secure in the CK model. In
particular, for any PPT adversary A:

K
Advyp 4(A) < ewkem + €TB-KEM + €siG + €0Ts + €PRF-

Proof. Tt is obvious that two matching sessions executed by honest parties com-
plete with the same session key. Next, a sequence of experiments will be put
forwarded and let e; denote the success advantage of A in Exps. For ease of
description, we first introduce some notations, where the subscript S, E, D and
C denote signing, encapsulation, decapsulation and corruption queries, respec-
tively. In addition, &; and Sy are two simulators will be used later.

Tightly Secure Two-Pass AKE Protocol in the CK Model 185

Notations

Challenger Experiment Queries

C Expng all provided in the CK model

Cors Exporac AN Oors,s(+)

Csic EXPSE:EUF_CMACW(A) Osig,s(+), Osig,c (-, -)

Cakem Explien s (0) Ouwkeme(), Oukemc()

CTB-KEM EXPQAéJ:rL'\éE\)A_,CSZAcm A) Otekeme(+), Otekem,p(, -), OtBKEM,C()

Three lists Leorr, Lyar and L will be used to record all corrupted par-
ties (e.g., (P, (lek;,lvk;), (ldk;,lsk;)), sessions’ corresponding variables (i.e.,
(Sactor, Speers Sroles Ssents Srecv)) and session states (e.g., (s, (dk, k, k;, k;)) for an
initiation session or (s, (—,k, k;, k;)) for a response session), respectively. Upon
a session is activated, two corresponding records are inserted into L4, and L,
respectively. In particular, if a specific item (e.g., Srecv, dk, k, k; or kj) hasn’t
been assigned or determined yet, a placeholder “-” is used to represent it and
will be automatically updated along with the experiment proceeding.

Expg. This experiment is same as the original security experiment, such that
co = Adv 4 (N). 0

Exp;. This experiment is same as Expg, except that we modify the ways of
generating signatures and answering related queries as follows:

(1) collects all verification keys output by Csig and Cots into the sets Qi and
Quk, respectively.

(2) assigns the long-term verification keys of all parties (e.g., lvk; for P;) using
the items in Qy,, without repetition.

(3) when answering corrupt(-) queries, performs corresponding Os c(-) queries
for required long-term signing keys.

(4) when generating SIG signatures for uncorrupted parties (e.g., P; & Leorr),
performs corresponding Oors s(-,) queries.

(5) when generating a fresh pair of OTS verification key and signature, selects
an unused item vk € Q. and performs a corresponding Oots s(vk, -) query.

The view of A remains identical, such that
€1 = €. O
Exp2. This experiment is same as Exp;, except that we adds two rejection rules
when answering incoming-message(-, -, -) queries as follows:

* taking a query on (s, P;,m) as an example

(1) s is an unused session on a party P; but P; ¢ Leorr A (Py, Pj,Z,m,%/—) ¢
Lqr- Namely, A generates a fresh initiation-message on behalf of P; without
corrupting it.

186 Y. Xiao et al.

(2) s is an uncompleted session on a party P; with a record (P, P;,Z,m,—) €
Lyar but Py & Leorr A (Piy, Pj, R, m,m) ¢ Lyqr. Namely, A generates a fresh
response-message on behalf of P; without corrupting it.

No matter in which cases, only when A is able to forge a valid SIG signature
(without knowing Isk;), a falsely rejected event occurs and A distinguishes Expg
from Exp,. Thus,

€2 < €1 + €siG-
O
Exps. This experiment is same as Exp,, except that we adds two another rejec-
tion rules when answering incoming-message(-,-,-) queries as follows:
* taking a query on (s, P;,m) as an example

(1) sis an unused session on a party P;, m is an initiation-message that can be
phrased as ek||vk;||ci||os1]|0i,2, vk € Qui but (ek||e;, 04,1) is not an output
of performing Oots s(vk;, ek||c;) query.

(2) s is an uncompleted session on a party P; with a record (P;,P;,Z,m =
ek||vkjllcjllojilloje, =) € Lyar, m is a response-message that can be
phrased as c||vk;||c;||0i,1]|04,2, vhki € Qui but (ek||c;l|c||ci, 04,1) is not an
output of performing Oots s(vk;, ek||c;||c||ci) query.

No matter in which cases, only when A is able to forge a valid OTS signature,
a falsely rejected event occurs and A distinguishes Exp4 from Exp,. Thus,

€3 < €2 + €0TS.

Putting all rejection rules together, there exist two facts:

Fact.1. If A has not corrupted a party P;, it is unable to generate any
fresh message in the name of it. Such that .4 can only launch replay
attacks. Besides, as each response-message is related to its correspond-
ing initiation-message, A is unable to replay response-messages to make
other non-matching sessions accept.

Fact.2. If A has corrupted a party P;, it is able to generate any message to make
other sessions accept. But, A has to choose OTS key pair by itself. Taking
an initiation-message ek||vk;||c;||0i1]|0:,2 sent by P; as an example, if A
hasn’t generated (vk;, sk;) by itself, o, 1 cannot be valid except that it
is a successful forgery. Therefore, OTS verification keys used as “tags”
in generating TB-KEM ciphertexts must be fresh every time.

Exp,4. This experiment is same as Exp;, except that we modifies the way to
compute the real session keys of tested sessions that are passively-activated,
such that wKEM decapsulated keys are replaced by random keys.

Here, we introduce a simulator &7 who is simulating Exps or Exps. On the
basis of Exps, &1 modifies the way of generating wKEM ciphertexts and answer-
ing related queries:

Tightly Secure Two-Pass AKE Protocol in the CK Model 187

(1) collects all public keys output by Cukem into the set Q;

(2) when answering establish-message(-,-) queries, selects unused items from
Q. and perform corresponding Owkem e(-) queries for required wKEM
encryption keys and ciphertexts, respectively.

(3) when answering session-state/key reveal(-) queries on passively-activated
sessions, performs corresponding Owkem,c(-) queries to derive unknown
wKEM secret keys, and computes session states or keys accordingly.

(4) when answering test-session(-) queries on passively-activated sessions, com-
putes the real tested session keys using the corresponding challenge encap-
sulated keys output by Owkem,e().

Assuming the final output of A is (s*,b'), s* should never be exposed. Thus
session-key reveal(-) and session-state reveal(-) queries were never performed
on s* and its matching-sessions. Therefore, the underlying wKEM challenge was
never opened. Thus,

€4 < €3 + EWwKEM- -
Exps. This experiment is same as Exp,, except that we change the way to
compute the real session keys of tested sessions that are actively-activated, such
that TB-KEM decapsulated keys are replaced by random keys.
Here, we introduce a simulator Ss who is simulating Exps or Exps. On
the basis of Expy, S modifies the way of generating TB-KEM ciphertexts and
answering related queries:

(1) collects all public keys output by Ctg.kem into the set Qex, and assigns the
long-term encryption keys of all parties (e.g., lek; for P;) using the items in
Qjek Without repetition.

(2) when answering corrupt(-) queries, performs corresponding Ovg.kem.c(-)
queries for required long-term decryption keys.

(3) when decrypting TB-KEM ciphertexts for uncorrupted parties (e.g., P; ¢
Lecorr), performs corresponding Otg.kem,p (-, -, -) queries.

(4) when answering incoming-message(-,-,-) queries, e.g., a query on (s, P;,m)
as an example: if s is a response-session on a party P, P; ¢ Lcopr, performs
an Otg.kem,e(lek;, -) query to derive the required TB-KEM ciphertext ¢;. In
this case, (P;, Pj,Z,m,*) € L,q, must hold according to our rejection rules
in Exps. Namely, A is actually launching replay attack.

(5) when answering session-state/key reveal(-) queries on actively-attacked ses-
sions: performs corresponding Otg.kem,p(-, -,) queries to derive unknown
TB-KEM decapsulated keys, and computes session keys accordingly.

(6) when answering test-session(-) queries on actively-activated sessions: com-
putes the real tested session keys using the corresponding challenge encap-
sulated keys output by Otg.keme(-).

Assuming the final output of A is (s*,’), s* should never be exposed. Thus
session-key reveal(-) and session-state reveal(-) queries were never performed on

s*, and corrupt(-) query was also never performed on Speer- In addition, according

188 Y. Xiao et al.

to Fact.1 and Fact.2, A cannot embed the underlying TB-KEM challenge into
other non-matching sessions and utilize other queries (i.e., session-key reveal(-)
and session-state reveal(-)) to open it. Thus,

€5 < €4 + €TB-KEM- O

Expg. This experiment is same as Exps, except that we modifies the way to
answer test-session(-) queries, taking a query on s* (whose real session state
should include three decapsulated keys (k*,k7,k3) and transcript is denoted as
trans*) as an example:

(1) if s* is a passively-activated session, selectes k «—s Rngy and computes the
real target session key as sk* = k ® PRF(k7T, trans*) ® PRF(k3, trans®).

(2) if s* is an actively-activated session, selectes k <—s Rngy and computes the
real target session key as sk* = PRF(k*, trans*) ® PRF(k], trans™) ® k.

According to the security definition of PRF, we have

€6 < €5 + EPRF- O

Expr. This experiment is same as Expg except that we further modifies the
way to answer test-session(-) queries, such that the real session key is changed
as choosing sk* «—s Rngy. Since k is randomly chosen from Rng,, sk* is also
randomly distributed in Rngy. It means that Exps is actually identical to Expg,
thus

€7 = €g.
O

It is obvious that each real target session key sk* in Expr is randomly chose
from FS, the advantage of A is actually equal to 0, which means e7 = 0. Sum-
marizing all, the inequality is established. |

Remark 3. As the CK model has to answer corrupt(-) and session-key/state
reveal(+) queries, which should be answered by opening secret keys or challenges.
Thus, we have to require the underlying KEM security notions to be defined in
the multi-bit challenge case. Otherwise, decrypting one challenge would reveal
the global challenge. Which in turn to make our proof cannot be extended easily
into the single-bit challenge variant of the CK model.

4 MU-IND-CCA®" Secure TB-KEM

The typical Naor-Yung transform [26] can be proved MU-IND-CCA®®™ secure,
where adversaries are additionally allowed to adaptively corrupt long-term secret
keys and open some challenges. Note that each ciphertext generated from the
Naor-Yung transform consists of two CPA secure PKE ciphertexts and one NIZK
proof, each public key consists of two PKE public key but each secret key merely
consists of one of the two corresponding secret keys. In the simulation, for each
public key, the simulator is able to generate one secret key by itself and embed

Tightly Secure Two-Pass AKE Protocol in the CK Model 189

the underlying PKE challenges into another one when answering corresponding
encryption queries, and using the known secret key to answer the corruption
query and open simulated challenges. As long as the adversary is unable to
distinguish the simulated case from the real case, the security proof is established.

We first give a variant of the typical Naor-Yung transform. Let PKE =
(Setup, Gen,Enc,Dec) be a PKE scheme with message space M, and
QA-NIZK = (Ko,Ki,P,V) be a QA-NIZK proof system. In particular, we
consider the language Lek.er, = {(co,c1)lco = PKE.Enc(eko,m) A c1 =
PKE.Enc(eki, m) for a message m € M}. A TB-KEM scheme TB-KEM =
(Setup, Gen, Enc, Dec) can be constructed as in Fig. 4:

TB-KEM.Setup(1*): TB-KEM.Enc(ek, 7):
II — PKE.Setup(1*) phrase ck = (eko, ek1, 1))
I' — QA-NIZK.Ko(1*) k «s M, co « PKE.Enc(eko, k;70)
return [T := (IT,T") c1 < PKE.Enc(ek1, k;71), Ibl = (co, c1,T)
TB—KEM.Gen(ﬁ): 7 — QA-NIZK.P(¢, (co, c1), (ro,71), Ibl)
phrase IT := (I1,I'), § —s{0,1} return (¢ = (co,c1,7),k = k)
(eko, dko) — PKE.Gen(IT) TB-KEM.Dec(dk, ¢, 7):
(ek1,dk1) — PKE.Gen(II) phrase dk = (6, dks), é = (co, c1,)
p = (eko, ek1) Ibl = (co,c1,7)
1 — QA-NIZK.K1 (I, p) b = QA-NIZK.V (¢, (co, 1), , Ibl)
return k — PKE.Dec(dks, cs)
ek = (eko, ek1,), dk = (6, dks) if b=1return k =k, else return L

Fig. 4. A variant of the Naor-Yung transform

Theorem 2. If PKE is S-MU-IND-CPA secure, and QA-NIZK is an M-USS-
QA-NIZK proof, then TB-KEM is MU-IND-CCA®®" secure. In particular, for any
PPT adversary A:
AdV%}#ENEE%ACACW(A) < epke + €QA-zK + 2€uss.

Proof. The proof inherently follows the strategy of [27]. The correctness inherits
from the underlying PKE and QA-NIZK schemes. For proving the security, a
sequence of experiments will be put forwarded and €5 is used to denote the
success advantage of A wining in the Exps.

Expo. This experiment is the original security experiment. In particular, for
each encryption query by (4,7) (i.e., the j-th query on the public key ek;), we
denote k; ;o as the real key while k; ; 1 as a random key. It is obvious,

MU-IND-CCA®"
€0 = AdVTB_KEM,A (A)-

190 Y. Xiao et al.

Exp;. This experiment is same as Exp, except that the way to generate QA-
NIZK proofs is changed to use the QA-NIZK simulator S = (S7,.52). Due to the
quasi adaptive zero-knowledge property of QA-NIZK,

€1 — €9 < €QA-ZK- 0

Exp2. This experiment is same as Exp; except that the way to generate
challenge ciphertexts is changed. For each ciphertext ¢;; = (¢ijo0,¢i51,T)
with tag 7 ; under public key eAki = (eki0,eki1,;), the challenger generates
¢s, «— PKE.Enc(ek;s,, ki jo0), c1—s, < PKE.Enc(ek;1—s,,k; 1) and a simulated
proof m as before. Due to the CPA security of PKE,

€ —€1 <€ .
2 1 S €PKE O

Exps. This experiment is same as Exps except that the way to answer corruption
queries and decryption queries is changed. In this experiment, the challenger
generates key pair for each user ¢ as follows: first computes (ek;o,dk;o) «—
PKE.Gen(II) and (ek; 1,dk; 1) — PKE.Gen(II), then chooses d; «s {0, 1}, finally
sets (ek,dk) := ((ekio,eki1, Vi), (8;,dkis,)), where 1 is generated by S;. For
answering corruption queries, corresponding (9;, dk; s,) is returned; for answering
decryption queries:

o If the query (c; ;,7;) is a challenge generated by the challenger before,
returns the corresponding real encapsulated key k; ;0.

¢ Else if the queried ciphertext ¢; ; is a challenge ciphertext generated by the
challenger before, but with a different tag 7; ;> returns L.

o Otherwise, for a given ciphertext ¢ = (cg,c1,m) with tag 7 under pub-
lic key ek;. First checks the validity of w. If it is valid, computes k «
PKE.Dec(dk; s,, cs;) and returns k = k. In other case, returns L.

For the second case, there exists a bad event that if (c;;,7; ;) is a valid
ciphertext, but it is falsely rejected. As we define Ibl; ; = (¢; 5, 75 ;), the adversary
must generate a valid proof for a fresh label Ibl; ; = (¢; j,7/ ;) # Ibl; ;. Due to the
unbounded simulation-soundness of QA-NIZK, such bad event only occurs with
€uss probability. Exclude this bad event: before launching corruption query on
eAki, the adversary has no idea about the internal bit §;, except that he submits
a ciphertext ¢ = (co, ¢1,m) that proof 7 is accepted but PKE.Dec(dk; s,,cs,) #
PKE.Dec(dk;,1—s,,c1—s,). But in such case, the adversary has to provide a proof
for a false statement. Due to the unbounded simulation-soundness of QA-NIZK,
it only occurs with eyss probability. Thus,

€3 — €2 < 2€yss. 0

Assume the final target of the adversary is (i*,j*) (related to a challenge
ciphertext ¢* with tag 7*), Op(i*, ¢*,7*) and O¢(i*) queries should never been
queried in the experiment. Therefore, both ¢; and b;- j« are kept hidden for
the adversary. Therefore, the advantage for the adversary in Exps is zero, i.e.,
€3 = 0. Summarizing all above statements, the inequality is established. |

Tightly Secure Two-Pass AKE Protocol in the CK Model 191

5 Instantiation and Comparisons

We first instantiate our protocol using the following strategies:

e The MU-IND-CPA®®™ secure wKEM is instantiated using the double ELGa-
mal encryptions. Bellare, Boldyreva and Micali [6] have proved the ELGamal
encryption meets the S-MU-IND-CPA security. Thus, we can apply the generic
construction (i.e., double encryption paradigm) in Section 3.3 of [5]. In partic-
ular, we optimize it using randomness reusing technique, such that each public
key consists of 2 group elements (e.g., (¢°!, g°2) for secret key (s1, s2) «—sZp)
and each ciphertext consists of 3 group elements (e.g., (¢", g™k, g"*2k) for
a randomness 7 «sZ, and an encapsulated key k). Note that, even the ran-
domness r is reused, the security reduction strategy used in [5] will not be
affected, where simulator only needs to know a partial secret key to answer
extra corruption queries.

e the MU-EUF-CMA®®™ secure SIG is instantiated using the construction in
Section 3.2 of [19], which is based on the DDH and CDH problems and where
each signature consists of 6 group elements plus a A-bit nonce.

e The MU-1-sEUF-CMA secure OTS is instantiated using the discrete-log-based
construction in Section 4.2 of [21], where each signature consists of 2 group
elements and each verification key consists of 2 group elements.

e As for the MU-IND-CCA®®" secure TB-KEM, we apply the generic construc-
tion presented in Fig. 4. In particular, the underlying PKE is instantiated using
the ELGamal encryption once again, and the underlying QA-NIZK is instan-
tiated using the construction in Appendix H of [25] (whose security is based
on the DLIN assumption and a strongly unforgeable OTS). In particular, we
use a proof system in the context of asymmetric pairings e : G X G — Gr,
with G # G. Using the OTS in Section 4.2 of [21] under the group G to
instantiate QA-NIZK, we have a proof system where each proof consists of 30
elements of G and 12 elements of G. Combining with the optimized ELGamal
double encryptions under the group G, we have that each TB-KEM ciphertext
consists of 33 elements of G and 12 elements of G.

Here, we analyze the communication overhead of our protocol when instanti-
ated with the building blocks described above. In particular, wKEM, SIG, OTS are
implemented on the group G. The messages exchanged for each run of the pro-
tocol include m; = i||j||ek||vki||ci||oi1]|oi2 and m; = i||j||c||vk;l|c;l|oj1llo.2
two messages. In detail,

|mg| = |i| + || + |ekwkem| + [vkoTs| + |ctBkEM| + [o0TS| + |osiG]
Im;| = |i| + |j| + |cwkem| + [vkoTs| + |cTekEM| + |o0TS| + |osi]

192 Y. Xiao et al.

Thus, the message sent by P; consists of 45 elements of G and 12 elements of
G (plus a A-bit nonce and two identities); while the message sent by P; consists
of 46 elements of G and 12 elements of G (plus a A-bit nonce and two identities).
The concrete execution procedures are presented in Appendix A.

Table 2. Comparisons with exiting tightly secure constructions

Constructions Model | Round | Communication overhead

m; m; m)
Bader et al. [5] BR 3 7 x |G| 9 x |G| 2 x |G|
Gjgsteen-Jager [19] | BR 3 A 7 X |G|+ A 7 X |G|+ A
Ours CK |2 45 X |G| +12 x |G| + A |46 x |G| +12 x |G| + A | ——

where A denote the security parameter, |G| and |G| denote the least bits required to express an
element of G and @, respectively. We assume P; playing the role of initiator while P; playing the
role of responder. The message m; and m,’i denote the first and the second message sent by P;,
respectively.

We further compare our construction with exiting tightly secure schemes as
in Table 2. Both Bader et al. [5] and Gjgsteen-Jager [19] achieve tight-security in
the BR model, while our construction achieves tight-security in the CK model.
Since the CK model is stronger than the BR model, such that our construction
is more secure than the former two. In addition, our construction costs lower
round complexity, which is more preferable in practical use since higher round
complexity involves higher network latency (that is a key factor weakening the
practical performance of communication protocols). An important reason for
which is that our construction merely reaches implicit authentication.

What is less satisfying is that, our scheme suffers high communication cost,
accompanying with high computation cost for generating and verifying QA-NIZK
proofs. In particular, our concrete instantiation requires 125 exponentiations to
generate a QA-NIZK proof, and 34 pairings as well as 4 exponentiations to vali-
date it. Such that, in a single protocol execution, the initiator requires 158 expo-
nentiations and 34 pairings, while the responder requires 157 exponentiations
and 34 pairings. Comparing to the most efficient AKE protocol Gjgsteen-Jager
[19], where each party requires 17 exponentiations, this instantiation is signifi-
cant inefficient and cannot be directly applied for practical use.

Remark 4. In our construction, to improve the efficiency (i.e., reducing com-
munication and computation costs), it is important to achieve more efficient
(almost) tightly unbounded simulation-sound QA-NIZK in the multi-crs setting,
which is an independent interest. As far as we know, there exist a number of
works [2,3,17] with tighter reduction or more compact proof. However, their
security proofs were merely given with respect to the single-crs setting. We
notice that [2,3] directly applied their results to obtain PKEs with tight CCA
security in the multi-user, multi-challenge setting. Actually, it requires adapt-
ing their schemes to the multi-crs setting. [3] claimed that their scheme readily
adapts to the multi-crs setting, however, we have not seen the complete proof.

Tightly Secure Two-Pass AKE Protocol in the CK Model 193

On the other hand, by assuming [2,3] achieve so, our construction can be
instantiated more efficiently. For example, applying [2], we can derive a QA-
NIZK proof where each proof consists of only 8 elements of G and 6 elements
of G, and which requires 22 exponentiations and 18 pairings to generate and
validate a proof, respectively. Hence in a single protocol execution, the initiator
requires 52 exponentiations and 18 pairings, while the responder requires 51
exponentiations and 18 pairings in total.

Acknowledgements. This work was supported in part by National Natural Sci-
ence Foundation of China (Grant Nos. 61772520, 61802392, 61972094, 61632020,
61472416), Key Research Project of Zhejiang Province (Grant No. 2017C01062), and
Beijing Municipal Science and Technology Project (Grant Nos. Z191100007119007,
7191100007119002).

A Concrete Instantiation

We instantiate our protocol using the strategies described in Sect.5, which
includes the following three parts.

System Setup. Invoke the algorithm Kg(\) in Appendix H of [25] to obtain
the common public parameters of NIZK = (Kg,Ky,P,V), denoted as I' =
((G,G,GT),f,g,h,E), where (G,@,GT) are asymmetric bilinear groups of
prime order p > 2* with f,g,h+sG and X describes a strongly unforgeable
one-time signature scheme used as a subroutine. In addition, select a random
element U from G, a PRF family PRF and three hash functions Hy : {0,1}* — Z,,
H; : {0,1}* — G and Hy : {0,1}* — Z,. Define the distribution Q := {0,1}*
and let (I, U, PRF,Hg, H1, Hy, Q) be the system public parameters pp.

Long-Term Secrets. Each party executes the following Long-term Key Gener-

ation procedure to generate their own key pairs and share public keys (through
PKI, but we drop the details here). We elaborate with the party P;.

Long-term Key Generation (P;)

1. b; —s{0,1}, 240, <$Zp, Xip, = ghbi, Xiji—p, —sG

3. H; = (Xi0/Xi1,9),%i — Kl(Fyﬁi)

4. lek; := (X0, Xi1, i), ldks := (bi, zip;) //TB-KEM.Gen(pp) — (lek;, ldk;)
5. b; s {0, s, <sZp, Y5, = 9", Y1 5, <G

6. lvk; = (Yvi,o,Y;;J)JSk'i = (bivyi,ﬁi) // SIG.Gen(pp) — (lvk;,lsk;)

where K; is invoked to generate language-specific common reference strings.

Session Execution. If two parties (e.g., P; and P;) want to establish a fresh
session key, they should execute the following Key Establishment procedure in
the next page.

194

Y. Xiao et al.

Key Establishment

P;

[

o N O Ot e W N

18.
19.

20.
21.
22.

23.
24.
25.

26.
27.
28.

29.
30.
31.

32

. Qi 0 <—$ZP,E¢ =g
10.

11.
12.
13.
14.
15.
16.
17.

Pj
b s {0,1},w;, s Z,, W; = g"b

. Wl—l; —s@G,| ek := (Wo, Wl), dk = (8, wl;) //WKEM.Gen(pp) — (ek, dk)

Uiy S; s Ly, Us = g"*, S; = g™
. ‘vk‘i = (Ui, Si), ski == (us, 84)
1 —sZp, Ki —sG,R; = ¢, Dio = X;0" K

. Di1 = X;1" Ki, li = (Ri, Dio, Di1, vki)

- mi = P([,95,Ti = (Dio/Diy, Ri), i, i) //prove Ti & span(Xio/ X1, 9)
.| ¢i :=(Ri, Dio, Di1,ms)

//OTS.Gen(pp) — (vki, sk;)

//TB-KEM.Enc(lek;, vk;)—(ci, ki)

Ho(ek\ICi)Uai,o

a1 = (si — Ho(E:))/ui,
t s Q, I = Hi(t,i||j||vkil|oi,1)
Zig, = Fi"b, 2, 5, <G

Ni «sZLp, Ny 5, = 9" N, 5, = F;"

_ _ _ — P17, S .
Q15,5 P1-b, H$Zp7Ni,1—b7-, = 1Y1—b,- g

oi,1 = (ai0,ai,1) ‘ //OTS.Sig(skq, ekllci) — i1

- — I.P1-b; _ %1,
Nz‘,l—b,- =F 1Zi,1—b1; ¢
ag, = Ha(g, Fi, Nijo, Nio, Niji, Nijt) — g,

P, = Mi — 5, Y; 5,

//SIG.Sig(lsk;, i||j]|vkilloi1)— oi2

‘ 042 1= (t, Zi0, Zi,1, a0, 01, o, P1)

i, ek||vkil|cil|o 1

|os,2

B; = gy io = Hy(t, il j]jvkil|oi,1)
Nio = g7Y;,0%, Nijo = F;P°Z; 0%°
Ni,l = gplYi,lal,Ni,l = Fiplzi,lal
output L if S; # gMoFdy,; i

//check the validity of ;1 and 02 O ag + a1 # Ha(g, Fi, Nio, Nio, Ni1, Ni1)
else v «sZ,, K «sG,V = g¢"

//WKEM.Enc(ek) — (c, k) Jo=Wo"K,J1 = W1"K,|c:= (V, Jo, J1)

U4 S
uj, 85 «s2Zp,U; =g],Sj =g’

//OTS.Gen(par) — (vk;, sk;) \vkj = (Uj, Dj), sk; == (uy, 55) \
rj«s$Zp, Kj «sG,R; = g7, Djo=Xio K,
D1 =Xi1"K;,4; = (Rj,Djo,Dj1,vk;)

//prove Tj € span(X.0/Xj.1,9) m; — P(I i, Ty = (Dj0/ D, Ry), s, £5)

. //TB-KEM.Enc(lekj, ck;) — (c;, k) ‘cj = (Rj,Djp,Dj,l,wj)‘

(to be continued)

Tightly Secure Two-Pass AKE Protocol in the CK Model 195

Key Establishment - continued

P, Pj

33 050 s T, By = groCekledllelies) oo

34, //OTS Sig(sky, cklleallelles) — a1 a1 = (55— Ho(Ey)) /ugs| 051 = (45,0, ;1) |
35. t—sQ, F; = Hi(L,4||j||[vk;||os,1)

36. Zjg, = F;h, 751 5, G

37. n; <—$Zp,Nj75j = gnj,Nj’gj = anj

38. 61—53-:#1—5]- —sZyp

39. Njip, = g Yl_gjﬁ“?’j

40. N]‘,1—Ej = F" Z.y',l—Ejﬁlfg'j

41. By, = Ha(g, Fj, Njo, Njo, Nia, Nj1) — By,
42. Mo, = M5 — B, Y5,

43. //S1G.Sig(lsk;, il 5] |vk;lloj,1) —0j,2 ‘Um = (t, Zj,ij,l,ﬁo,ﬁhuo?ul)‘

44, i, J cl|vkjllcjllojallos,2

45. B = gHo(ekHCiHCHCj)Uui,o,Fj = Hi(Z, 4| |j]|vk;||oj1)

46. Njo = g#OYj,OﬁO,Nj,O — FjMOZ]"OﬁU

47. Nj,l = gu1Yj,1517Nj,1 = Fj“l Zj,1’81

48. output L if S; # gHO(Ej)Ujaj’1

49. or Bo + (1 # Hz(g7 Fj,Njo,]\7]‘707 Nj 1, Njﬁl) //check the validity of o1 and o 2
50. else K = J; /V" //WKEM.Dec(dk, ¢) = k

51. ;€j = (Rj,Dj,o,Dj,l,vk‘j)

52. & — V(I 4, Ty = (Djo/ Dy, By), 75, 45)

53.if ¢; # 1 and output L

54. else K; = Dj, /R; b //TB-KEM.Dec(ldk;, cj, vk;) = k;
55. ¢; = (Ri, Do, Di1, vk:)

56. & < V(I 5, T = (Dio/Dix, Ri), 75, i)
57. if & # 1 output L

58. //TB-KEM.Dec(ldk;, c;, vk;) = k; else Ki = D, /R;""

trans = i[|j[|ek[[vk:[[ci[|oi 10w 2(lcl[vk;]les]lojalog,2
SK = PRF(K;,trans) ® PRF(Kj, trans) @ PRF(K, trans)

where P and V are invoked to generate QA-NIZK proofs and verify the validity of
QA-NIZK proofs, respectively.

196

Y. Xiao et al.

References

10.

11.

12.

13.

. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time

signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312-331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7-20

. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK

and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT
2019. LNCS, vol. 11923, pp. 669-699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8_23

. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure

simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASTACRYPT 2018. LNCS, vol. 11272, pp. 627-656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_21

Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521-549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6_22

Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629-658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6-26

Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting;:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259-274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_18

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256—-279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12
Boyd, C., CIliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69-83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0-6

Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207—222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3_13

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453-474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6_28

Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master pub-
lic key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207-231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_9

Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435-460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-54365-8_9
https://doi.org/10.1007/978-3-642-40084-1_25

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Tightly Secure Two-Pass AKE Protocol in the CK Model 197

Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: ASIACCS 2011,
pp. 80-91 (2011). https://doi.org/10.1145/1966913.1966925

Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734-751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1_42

Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467-484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8_28

Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1-27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3.1

Gay, R., Hoftheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133-160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_5

Gjosteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95-125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0-4

Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251-281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
911

Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590-607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218_33

LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5.1

Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514-532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_29

Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata,
T., Cheon, J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9452, pp. 681-707. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_28

Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427-437 (1990). https://doi.org/10.1145/
100216.100273

Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543-553 (1999). https://doi.org/10.1109/
SFFCS.1999.814628

https://doi.org/10.1145/1966913.1966925
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628

198 Y. Xiao et al.

28. Strangio, M.A.: On the resilience of key agreement protocols to key compromise
impersonation. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043,
pp. 233-247. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716_19

29. Wei, P., Wang, W., Zhu, B., Yiu, S.M.: Tightly-secure encryption in the multi-user,
multi-challenge setting with improved efficiency. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 3-22. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-60055-0_1

30. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via
double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11273, pp. 158-189. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3_6

https://doi.org/10.1007/11774716_19
https://doi.org/10.1007/978-3-319-60055-0_1
https://doi.org/10.1007/978-3-319-60055-0_1
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-030-03329-3_6

®

Check for
updates

Symmetric-Key Authenticated Key
Exchange (SAKE) with Perfect Forward
Secrecy

Gildas Avoine'?, Sébastien Canard?, and Loic Ferreiral:3(®=)
1 Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France
gildas.avoine@Qirisa.fr
2 Institut Universitaire de France, Paris, France
3 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,loic.ferreira}@orange.com

Abstract. Key exchange protocols in the asymmetric-key setting are
known to provide stronger security properties than protocols in sym-
metric-key cryptography. In particular, they can provide perfect forward
secrecy, as illustrated by key exchange protocols based on the Diffie-
Hellman scheme. However public-key algorithms are too heavy for low-
resource devices, which can then not benefit from forward secrecy. In
this paper, we describe a scheme that solves this issue. Using a shrewd
resynchronisation technique, we propose an authenticated key exchange
protocol in the symmetric-key setting that guarantees perfect forward
secrecy. We prove that the protocol is sound, and provide a formal proof
of its security.

Keywords: Authenticated key agreement - Symmetric-key
cryptography - Perfect forward secrecy - Key-evolving

1 Introduction

An authenticated key exchange (AKE) protocol executed between two parties
aims at authenticating the parties, and computing a fresh shared session key.
Well-known two-party authenticated key exchange protocols make use of digital
signatures to provide authentication, and apply the Diffie-Hellman (DH) scheme
[20] to compute a shared session key. However, such protocols are too heavy
for low-resource devices. More suited protocols, solely based on symmetric-key
functions, have been proposed (e.g., [12,16,23,26,29,30,33,34] to cite a few),
including widely deployed ones (e.g., in 3G/UMTS [2] and 4G/LTE [3]). Such
symmetric-key protocols are needed in various applications, ranging from Wire-
less Sensor Networks (WSNs), Radio Frequency Identification (RFID) tags,
smart cards, Controller Area Networks (CANs) for vehicular systems, smart
home, up to industrial Internet of Things (IoT). Yet, existing symmetric-key
based protocols lack a fundamental security property usually provided by the
© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 199-224, 2020.
https://doi.org/10.1007/978-3-030-40186-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_10

200 G. Avoine et al.

DH scheme: perfect forward secrecy (PFS) [21,24]. PFS is a very strong form
of long-term security which, informally, guarantees that future disclosures of
some long-term secret keys do not compromise past session keys. It is widely
accepted that PFS can only be provided by asymmetric schemes. Indeed, in pro-
tocols based on symmetric-key functions, the two parties must share a long-term
symmetric key (which the session keys are computed from). Therefore the dis-
closure of this static long-term key allows an adversary to compute all the past
(and future) session keys. In this paper, we introduce an AKE protocol in the
symmetric-key setting, and, yet, that does guarantee PFS.

1.1 Related Work

Symmetric-key based protocols do not provide the same security guarantees as
those based on asymmetric algorithms. In particular, they do not guarantee
forward secrecy. Nonetheless, (a few) attempts aim at proposing symmetric-key
protocols that incorporate forward secrecy, as illustrated by the following related
work.

Dousti and Jalili [22] describe a key exchange protocol where the shared mas-
ter key is updated based on time. Their protocol requires perfect synchronicity
between the parties otherwise this leads to two main consequences. Firstly, in
order to handle the key exchange messages, the parties may use different values
of the master key corresponding to consecutive epochs, which causes the session
to abort. Secondly, this allows an adversary to trivially break forward secrecy.
Once a party deems the protocol run is correct and the session key can be safely
used (i.e., once the party “accepts”), the adversary corrupts its partner (which
still owns the previous, not updated yet, master key), and computes the cur-
rent session key. Furthermore, achieving perfect time synchronisation may be
quite complex in any context, in particular for low-resource devices. Contrary to
Dousti et al., the protocol we propose explicitly deals with the issue of updating
the master keys at both parties without requiring any additional functionality
(such as a synchronised clock).

In the RFID field, the protocol proposed by Le, Burmester, and de Medeiros
[28] aims at authenticating a tag to a server, and at computing a session key
in order to establish a secure channel (which they do not describe). The master
key is updated throughout the protocol run. To deal with the possible desyn-
chronisation between the reader and the tag, the server keeps two consecutive
values of the key: the current and the previous one. If the tag does not update
its master key (which happens when the last message is dropped), the server is
able to catch up during the next session. This implies that, in case of desyn-
chronisation, the server computes the session key from the updated master key,
whereas the tag still stores the previous value. Hence, an adversary that corrupts
the tag can compute the previous session key with respect to the server. In fact,
since the server always keeps the previous value of the master key, together with
the current one, the scheme is intrinsically insecure in strong security models
(i.e., models that allow the adversary to corrupt any of the partners, once the
targeted party accepts). Yet, Le et al. analyse their protocol in a model where

SAKE with Perfect Forward Secrecy 201

any server corruption is forbidden, and corrupting a tag is allowed only once it
accepts. In our scheme, one of the parties also keeps in memory (a few) samples
of a master key corresponding to different epochs (including a previous one).
Yet the disclosure of all these values does mot compromise past session keys.
Furthermore, the (strong) security model we use allows the adversary to corrupt
either partner as soon as the targeted party accepts.

Brier and Peyrin [17] propose a forward secret key derivation scheme in a
client-server setting, that aims at improving a previous proposal [7]. In addition
to forward secrecy, another constraint is that the amount of calculation to com-
pute the master key (directly used as encryption key) on the server side must
be low. Their solution implies the storage, on the client side, of several keys in
parallel and to use a (short) counter, which is involved in the keys update. The
keys belong to a tree whose each leaf (key) is derived from the previous one and
the counter. The client must send the counter with the encrypted message for
the server to be able to compute the corresponding key. The main drawback of
this scheme is that the number of possible encryption keys is reduced. Increasing
that limit implies increasing the counter size and the number of keys stored in
parallel on the client side. Moreover, Brier et al. (as well as [7]) focus on forward
secrecy with respect to the client only. The server is deemed as incorruptible,
and is supposed to compute an encryption key only upon reception of a client’s
message (the secure channel is unidirectional, and the server does not need to
send encrypted messages to the client). Therefore, the scheme does not need
to deal with the issue of both parties being in sync (with respect to the key
computation), and providing forward secrecy. In addition, the purpose of Brier
et al. (as well as [7]) is not to provide mutual authentication. More generally
sending additional information in order to resynchronise (such as a sufficiently
large counter) is a simple (and inefficient) way to build a forward secret proto-
col. But this yields several drawbacks. Firstly, the size of such a counter must
be large enough in order to avoid any exhaustion. Secondly, sending the counter
(at least periodically) is necessary for the two parties to resynchronise, which
consumes bandwidth. Thirdly, resynchronisation may imply multiple updates of
the master keys at once (the scheme of Brier et al. and [7] aims at limiting that
amount of calculation, but it leads to a narrowed number of possible encryption
keys). Our scheme avoids all these drawbacks.

The more general question of forward security in symmetric cryptography
has been also investigated by Bellare and Yee [14]. They propose formal defini-
tions and practical constructions of forward secure primitives (e.g., MAC, sym-
metric encryption algorithm). Their constructions protect against decryption of
past messages, or antedated forgeries of messages (i.e., previously authenticated
messages are made untrustworthy). Their algorithms are based on key-evolving
schemes [10]. Nonetheless, Bellare et al. consider only algorithms (but not pro-
tocols) and they do not deal with the issue of synchronising the evolution of the
shared key at both parties. That is, they propose out-of-context (non-interactive)
solutions with respect to our purpose.

202 G. Avoine et al.

Abdalla and Bellare [4] investigate a related question which is “re-keying”.
Their formal analysis show that appropriate re-keying techniques “increase” the
lifetime of a key. They consider re-keying in the context of symmetric encryption
(in order to thwart attacks based on the ability to get lots of encrypted messages
under the same key), and forward security (in order to protect past keys). Yet, they
confine their analysis to algorithms and not protocols. Hence, as Bellare et al. [14],
they do not treat the synchronisation issues that arise from evolving a shared sym-
metric key.

The Signal messaging protocol [1] uses a key derivation scheme called “dou-
ble ratchet algorithm” [31]. This scheme combines a DH based mechanism with
a symmetric key-evolving mechanism (based on a one-way function). The first
mechanism provides an asymmetric ratchet, whereas the second provides a sym-
metric ratchet. The asymmetric ratchet is applied when a fresh DH share is
received (included in an application message) from the peer. The symmetric
ratchet is applied when a party wants to send several successive messages with-
out new incoming message from its partner. Thanks to the DH scheme, the
asymmetric ratchet is supposed to provide forward secrecy.! Regarding the sym-
metric ratchet, each party is compelled to store the decryption keys of the not
yet received messages. This is due to the asynchronous nature of the Signal
protocol. Therefore, the symmetric ratchet in Signal does not provide forward
secrecy, as stated in their security analysis by Cohn-Gordon, Cremers, Dowling,
Garratt, and Stebila [19]: “old but unused receiving keys are stored at the peer
for an implementation dependent length of time, trading off forward security for
transparent handling of outdated messages. This of course weakens the forward
secrecy of the keys”. Consequently, Cohn-Gordon et al. choose not to model this
weakened property. In turn, Alwen, Coretti, and Dodis [6] incorporate the latter
in the security analysis of their “generalised Signal protocol”. But the crucial
difference in their notion of forward security is that, as soon as the receiver is
compromised, no more security can be provided. On the contrary, we tackle the
synchronisation issue, and solve it in our protocol. The security model we use
captures forward secrecy and allows corrupting a party and its partner as soon
as the targeted party “accepts” (i.e., deems the session key can be safely used).
With regard to Signal, our protocol can be compared to the asymmetric ratchet
(in synchronous mode), and yet does not implement asymmetric functions.

We stress that the goals of several of the aforementioned protocols are not the
same as ours. Nonetheless, the small number of existing symmetric-key proto-
cols that provide forward secrecy, and the lukewarm security level they achieve
illustrate that combining symmetric-key cryptography and (a strong form of)
forward secrecy is a non-trivial task.

1.2 Contributions

We describe the SAKE protocol, a two-party authenticated key exchange proto-
col in the symmetric-key setting with the following characteristics.

! In Signal, the DH exchanges can be asynchronous. This impairs the forward secrecy
property usually ensured by this scheme.

SAKE with Perfect Forward Secrecy 203

— It guarantees forward secrecy.

— It is self-synchronising. That is, after a correct and complete session (and
whatever the internal state of the parties prior to the session), the two parties
involved in the protocol run share a new session key, and their internal state
is updated and synchronised.

— Tt allows establishing an (virtually) unlimited number of sessions (as opposite
to symmetric-key protocols that make use of a predefined list of master keys,
each being used once only).

— The amount of calculation done by both parties in a single protocol run
is strictly bounded. In particular we avoid the need of sending additional
information in order to resynchronise, such as a (sufficiently large) counter
that keeps track of the evolution of the master keys, and the subsequent
drawbacks: periodically doing a great amount of computations at once (when
resynchronisation is necessary), and consuming bandwidth (to transmit the
additional data).

In addition, we provide a formal security proof for SAKE. We also present a comple-
mentary mode of SAKE (that we call SAKE-AM) which is an “aggressive mode” of
the protocol. This mode inverts the role of the initiator and the responder in terms
of calculations (in SAKE, the initiator performs — at most — two additional MAC
computations compared to the responder). Using SAKE and SAKE-AM together
results in an implementation (gathering all the aforementioned properties, starting
with the forward secrecy property) that allows any party to be either initiator or
responder of a session, and such that the smallest amount of calculation is always
done by the same party. This is particularly convenient in the context of a set of
(low-resource) end-devices communicating with a central server. In such a case, the
end-device supports the smallest amount of calculation, whereas either the server
or the end-device can initiate a session.

1.3 Our Approach

Key Concepts. The authenticated key exchange protocol we propose is solely
based on symmetric-key functions. Not only does it provide mutual authentica-
tion and key agreement, but it guarantees perfect forward secrecy. We attain this
very strong form of long-term security by using a key-evolving scheme. As soon
as two parties make a shared (symmetric) key evolve, a synchronisation prob-
lem arises. We provide a simple and efficient solution to this issue. We require
using neither a clock, nor an additional resynchronising procedure. Our solu-
tion is based on a second (independent) chain of master keys. These keys allow
tracking the evolution of the internal state, and resynchronising the parties if
necessary. The parties authenticate each other prior to updating their master
keys. Hence the possible gap is bounded (as we prove it), and each party is
always able to catch up in case of desynchronisation (of course, if the session
is correct and complete). Mutual authentication, key exchange (with forward
secrecy), and resynchronisation are done in the continuity of the protocol run.

204 G. Avoine et al.

Our protocol is based on two symmetric master keys: a derivation master key
K and an authentication master key K’. The protocol makes use of symmetric-
key functions only. Each pair of parties (A, B) shares distinct master keys. The
main lines of the protocol are as follows. The two parties exchange pseudo-
random values 74, rg which are used to

— authenticate each other: each party sends back the value it has received in a
message that is MAC-ed with the authentication master key K’. For instance,
if B receives ry4 it replies with rp||7p where 75 = Mac(K’, B||A||rgl/r4)-

— Compute a session key: a pseudo-random function KDF is keyed with the
derivation master key K and uses the pseudo-random values as input. That
is, sk« KDF(K, f(ra,7rB)). f(ra,rp) is deliberately left undefined, and des-
ignates an operation between r4 and rp such as the concatenation or the
bitwise addition.

Providing Forward Secrecy. The shared key K is used to compute the session
keys. If this key remains unchanged throughout all protocol runs, its disclosure
allows computing all past (and future) session keys. To solve this issue we apply
a key-evolving technique. We update the master key such that a previous master
key cannot be computed from an updated one. Each of the two parties involved
in a session updates its own copy of the derivation master key K with a non-
invertible function update: K « update(K'). Hence this protects past sessions in
case the (current value of) master key K is revealed. Each party authenticates its
peer prior to updating the derivation master key. If the master key is updated
throughout the session, it may happen that one of the two involved parties
update its master key whereas the other does not. This leads to a synchronisation
problem.

update
Ko Ki K K3
update
Ko K K> K3
X
O
T
Sk}o Skl Sk‘z SIC3

Fig. 1. Master key chains in SAKE. At epoch j, the initiator stores four keys: K =
Kj, and K]'-_l, K]'-,]'-+1. The responder stores two keys: K = K; and K' = K]'-.
(Ilustration with j = 2)

The Synchronisation Problem. If two parties use a different key K, they are
obviously not able to compute a shared session key. Hence they must resynchro-
nise first. More fundamentally, if a party initiates a session with some derivation

SAKE with Perfect Forward Secrecy 205

master key K, and its partner stores a master key corresponding to an earlier
epoch, then an adversary that corrupts the partner can compute past session
keys with respect to the initiator, hence trivially break forward secrecy. There-
fore, it is of paramount importance that the parties know if the master key of its
partner has actually been updated. We provide a solution to both issues in the
continuity of a single session. In particular, no extra procedure is needed in order
for a desynchronised party to catch up. We avoid the need of sending additional
information in order to resynchronise, such as a (sufficiently large) counter that
keeps track of the evolution of the master keys, and the subsequent drawbacks:
periodically doing a great amount of computations at once (when resynchronisa-
tion is necessary), and consuming bandwidth (to transmit the additional data).
We base our solution on the second master key K’ used to authenticate the
messages exchanged during a session. The solution is to update K’ at the same
time as K (see Fig. 1). Therefore the evolution of K’ follows that of K. The
party that receives the first authenticated message uses the MAC tag to learn
which epoch the sender belongs to. Of course, K’ can also be desynchronised in
the same way as K. This is why, whereas one party (responder B) stores only
one sample of the key K’, the other party (initiator A) stores several samples of
the authentication master key K’ corresponding to several consecutive epochs.
We prove that only three keys K, ,, K}, K’ ,, corresponding respectively to
the next, the current, and the previous epochs, are sufficient in order for A and
B to resynchronise. The initiator (A) is the one able to deal with the synchroni-
sation issue, and consequently tells B how to behave. Each party “accepts” only
after it has received a confirmation (final MAC-ed messages) that its partner
has already updated its own master keys. In such a case, the party ending in
accepting state deems that the fresh session key can be safely used. Otherwise
(in particular when the parties are desynchronised), the session key is discarded.

Since two independent master keys are used (authentication and session key
derivation), one can safely maintain a copy of K’ corresponding to an earlier
epoch (;-71) without risk of threatening forward secrecy. Only one sample of
the derivation master key K is kept: the most up-to-date.

1.4 Outline of the Paper

In Sect. 2 we detail the security model used to analyse the protocol we propose.
Our authenticated key exchange protocol in symmetric-key setting with forward
secrecy is described in Sect. 3. In Sect. 4, we investigate the feasibility of a variant
based on our protocol. Formal proofs of soundness and security for the main
protocol are presented in Sect. 5. The differences between our approach and the
DH scheme are highlighted in Sect. 6. Finally, we conclude in Sect. 7.

2 Security Model

Before describing our symmetric-key protocol in Sect.3 (which is self-sufficient
and contains all the specifics required to understand the protocol), we present
in this section the security model that we employ to formally prove its security.

206 G. Avoine et al.

In a nutshell, we use the model for authenticated key exchange protocols
described by Brzuska, Jacobsen, and Stebila [18]. This model incorporates all
the features that are usually considered when analysing key agreement proto-
cols in the public-key setting (e.g., DH-based protocols with signature). In this
model, the adversary has full control over the communication network. It can
forward, alter, drop any message exchanged by honest parties, or insert new mes-
sages. Brzuska et al.’s model then captures adaptive corruptions but also perfect
forward secrecy. This appears in the definition of the security experiment.

2.1 Execution Environment

In this section, we present the security model for authenticated key exchange
protocols described by Brzuska et al. [18], and reuse the corresponding notation.

Parties. A two-party protocol is carried out by a set of parties P =
{Py,...,P,_1}. Each party P; has an associated long-term key ltk. Each pair of
parties shares a distinct key Itk.?

Instances. Each party can take part in multiple sequential executions of the
protocol. We prohibit parallel executions of the protocol. Indeed, since the pro-
tocol we propose is based on shared evolving symmetric keys, running multiple
instances in parallel may cause some executions to abort (we elaborate more
on this in Sect.6). This is the only restriction we demand compared to AKE
security models used in the public-key setting.

Each run of the protocol is called a session. To each session of a party P;,
an instance 7§ is associated which embodies this (local) session’s execution of
the protocol, and has access to the long-term key of the party. In addition, each
instance maintains the following state specific to the session.

— p: the role p € {init, resp} of the session in the protocol execution, being either
the initiator or the responder.

— pid: the identity pid € P of the intended communication partner of ;.

— «: the state o € { L, running, accepted, rejected} of the instance.

— sk: the session key derived by 7.

— k: the status x € {1, revealed} of the session key 77 .sk.

— sid: the identifier of the session.

— b: a random bit b € {0,1} sampled at initialisation of 7}.

We put the following correctness requirements on the variables a, sk, sid and
pid. For any two instances 7, 7r§-, the following must hold:

(75.oc = accepted) = (m}.sk #L A .sid #.1) (1)
w5 .sk = mh.sk
(mf.a = w;-.a = accepted A m;.sid = 7r§.sid) = ¢ m.pid=F; (2)
wt.pid = P,

J

2 Note that Itk can be a set of master keys (e.g., each one used by the party for a
different purpose).

SAKE with Perfect Forward Secrecy 207

Adversarial Queries. The adversary A is assumed to control the network, and
interacts with the instances by issuing the following queries to them.

— NewSession(FP;, p, pid): this query creates a new instance 77 at party P;, having
role p, and intended partner pid.

— Send(7f, m): this query allows the adversary to send any message m to 7.
If 7f.a # running, it returns L. Otherwise 7} responds according to the
protocol specification.

— Corrupt(P;): this query returns the long-term key P;.ltk of P;. If Corrupt(F;)
is the v-th query issued by the adversary, then we say that P; is v-corrupted.
For a party that has not been corrupted, we define v = 4o0.

— Reveal(7$): this query returns the session key wi.sk, and 7.k is set to
revealed.

— Test(n?): this query may be asked only once throughout the game. If
;. # accepted, then it returns L. Otherwise it samples an independent

key skq & KC, and returns sky, where sk; = 7} .sk. The key sky is called the
Test-challenge.

Definition 1 (Partnership). Two instances 7§ and 7§ are partners if 7.sid =
o

ms.sid.
J

Definition 2 (Freshness). An instance w7 is said to be fresh with intended
partner Pj, if

(a) 7{.a = accepted and 7 .pid = P; when A issues its vy-th query,
b) 7.k # revealed and P; is v-corrupted with vy < v, and
K3
¢) for any partner instance ©t of w$, we have that wt.kx # revealed and P; is
J A 7 J
V' -corrupted with vy < v'.

Note that the notion of freshness incorporates a requirement for forward
secrecy.

An authenticated key exchange protocol (AKE) is a two-party protocol satis-
fying the correctness requirements 1 and 2, and where the security is defined in
terms of an AKE experiment played between a challenger and an adversary. This
experiment uses the execution environment described above. The adversary can
win the AKE experiment in one of two ways: (i) by making an instance accept
maliciously, or (ii) by guessing the secret bit of the Test-instance.

Definition 3 (Entity Authentication (EA)). An instance ©§ of a protocol
IT is said to have accepted maliciously in the AKE security experiment with
intended partner P;, if

(a) 7f.a = accepted and wj.pid = P; when A issues its vo-th query,
(b) P; and P; are v- and v'-corrupted with vy < v,v', and
t t

(¢) there is mo unique instance w; such that 7 and 7; are partners.

The adversary’s advantage is defined as its winning probability:

adveM Ut (4) = Pr[A wins the EA game].

208 G. Avoine et al.

Definition 4 (Key Indistinguishability). An adversary A against a protocol
I1, that issues its Test-query to instance w; during the AKE security experiment,
answers the Test-challenge correctly if it terminates with output b’, such that

(a) 7} is fresh with some intended partner P, and
(b)) Tib=10.

3

The adversary’s advantage is defined as

L 1
advk ™ (A) = |Pr[ns.b = 0] — 3|

Definitions 3 and 4 allow the adversary to corrupt an instance involved in the
security experiment (once the targeted instance has accepted, in order to exclude
trivial attacks). Therefore, protocols secure with respect to Definition 5 below
provide perfect forward secrecy. Note that we do not allow the targeted instance
to be corrupted before it accepts. This security model does not capture key-
compromise impersonation attacks (KCI) [15] since that would allow trivially
breaking key exchange protocols solely based on shared symmetric keys.

Definition 5 (AKE Security). We say that a two-party protocol 11 is a secure
AKE protocol if I1 satisfies the correctness requirements 1 and 2, and for all
probabilistic polynomial time adversary A, advil™ ™ (A) and advi¥ ™ (A) are a
negligible function of the security parameter.

2.2 Security Definitions of SAKE’s Building Blocks

In this section, we recall the definitions of the main security notions we use in
our results. The security definition of a pseudo-random function is taken from
Bellare, Desai, Jokipii, and Rogaway [9], and that of a MAC strongly unforgeable
under chosen-message attacks from Bellare and Namprempre [11]. We recall
also the definition of matching conversations initially proposed by Bellare and
Rogaway [12], and modified by Jager, Kohlar, Schige, and Schwenk [27].

Secure PRF. A pseudo-random function (PRF) F is a deterministic algorithm
which given a key K € {0,1}* and a bit string € {0,1}* outputs a string
y = F(K,z) € {0,1}7 (with v being polynomial in). Let Func be the set of all
functions of domain {0,1}* and range {0, 1}7. The security of a PRF is defined
with the following experiment between a challenger and an adversary A:

1. The challenger samples K S {0,1}*, G & Fune, and b S {0, 1} uniformly
at random.

2. The adversary may adaptively query values x to the challenger. The challenger
replies to each query with either y = F(K,z) if b=1, or y = G(z) if b = 0.

3. Finally, the adversary outputs its guess b’ € {0,1} of b.

SAKE with Perfect Forward Secrecy 209
The adversary’s advantage is defined as

advPr(A) = ‘Pr[b =] - ;‘ .

Definition 6 (Secure PRF). A function F:{0,1}* x {0,1}* — {0,1}" is said
to be a secure pseudo-random function (PRF) if, for all probabilistic polynomial

time adversary A, advarf(A) is a negligible function in X.

Secure MAC. A message authentication code (MAC) consists of two algorithms
(Mac, Vrf). The tagging algorithm Mac takes as input a key K € {0,1}* and a
message m € {0,1}* and returns a tag 7 € {0,1}" (with ~ being polynomial
in k). The verification algorithm Vrf takes as input the key K, a message m,
and a candidate tag 7 for m. It outputs 1 if 7 is a valid tag on message m with
respect to K. Otherwise, it returns 0. The notion of strong unforgeability under
chosen-message attacks (SUF-CMA) for a MAC G = (Mac, Vrf) is defined with
the following experiment between a challenger and an adversary A:

1. The challenger samples K & {0,1}*, and sets S « ().

2. The adversary may adaptively query values m to the challenger. The chal-
lenger replies to each query with 7 = Mac(K, m) and records (m,7): S «
SuU{(m,7)}.

In addition, the adversary may adaptively query values (m’,7’) to the chal-
lenger. The challenger replies to each query with Vrf(K, m’, 7).
3. Finally, the adversary sends (m*,7*) to the challenger.

The adversary’s advantage is defined as

adviy™m(A) = Pr[Vrf(K,m*,7*) = 1 A (m*,7*) ¢ .

Definition 7 (SUF-CMA). A message authentication code G = (Mac, Vrf)
with Mac:{0,1}* x {0,1}* — {0,1}7 is said to be strongly unforgeable under
chosen-message attacks (SUF-CMA) if, for all probabilistic polynomial time

suf-cma

adversary A, advg (A) is a negligible function in k.

Matching Conversations. Let T; ¢ be the sequence of all (valid) messages sent
and received by an instance 7] in chronological order. For two transcripts T; s
and T} 4, we say that T} ¢ is a prefix of T}, if T; ¢ contains at least one message,
and the messages in T; , are identical to the first |T; 5| messages of T}

Definition 8 (Matching Conversations). We say that 7§ has ¢ matching
conversation to 7t, if

— 7] has sent all protocol messages and T} + is a prefix of T; ¢, or
- 775» has sent all protocol messages and T; s = T} ;.

210 G. Avoine et al.

3 Our Symmetric-Key AKE Protocol with Perfect
Forward Secrecy

In this section we describe our main protocol. Although all the calculations are
based on shared master keys, forward secrecy is guaranteed by using a key-
evolving scheme. More precisely, we use two types of keys: one to compute the
session keys, the other to authenticate messages and resynchronise when neces-
sary. This second type of keys allows tracking the master keys evolution, and
limit the gap (in terms of keys update) between both parties. Mutual authenti-
cation, key exchange, and synchronised update of the master keys are done in
the same session.

3.1 Description of the Protocol

The protocol is depicted by Fig.2. The parameter 4 computed by A corre-
sponds to the gap between A and B with respect to the evolution of the master
keys. We prove that 45 € {—1,0,1} (see Sect. 5.1). That is, A can only be either
one step behind, or in sync, or one step ahead to B. During a session, A uses the
keys K7, K, K}, (by order of likelihood) and the first message (mp) sent by
B to learn d45. The message mp is computed with the current value K’ of B.
Therefore mp indicates the current synchronisation state of B. Then A informs
B. One bit € is enough (message m4) because B takes two behaviours only: if

dap €{-1,0} (¢=0), and if 45 =1 (e = 1). A and B behave as follows.

— If Ais in sync with B (a4 = 0), A computes the new session key, and
updates its master keys. Then, upon reception of m 4, B does the same.

— If Ais in advance (§4p5 = 1), A waits for B to resynchronise (i.e., B updates
its master keys a first time), and to proceed with the regular operations (i.e.,
B computes the new session key, and updates its master keys a second time).
Then, once A receives a confirmation that B is synchronised (message 75),
A performs the regular operations as well (session key computation, master
keys update). Since A waits for B to resynchronise before proceeding, the gap
between the parties is bounded (as proved in Sect.5.1).

— If Aislate (0ap = —1), it resynchronises (i.e., it updates its master keys a first
time), and then performs the regular operations (session key computation,
master keys update). Then (upon reception of message m,), B applies the
regular operations.

Once a correct and complete session ends, three goals are achieved in the same
protocol run: (i) the two parties have updated their master keys, (ii) they are
synchronised (which stems in particular from the fact that the gap between A
and B is bounded, i.e., [045| < 1), and (iii) they share a new session key. In
other words, the protocol is self-synchronising.

SAKE with Perfect Forward Secrecy 211

Before the first session between A and B, the master keys are initialised as
follows:

1. K and K’ are uniformly chosen at random.
2. Kj g <1

3. K — K’

4. Kj 1 < update(K’)

Since K7, and K can be computed from K _;, it is possible to store only
K ;_17 and to compute the two other keys when necessary during the session.
Then, with respect to the security model presented in Sect. 2, the long-term key
of A and B corresponds respectively to A.ltk = (K, K}_;) and B.ltk = (K, K').

Although this does not appear explicitly in Fig. 2, a party aborts the session
if it receives a message computed with an invalid identity. For the responder B an
invalid identity corresponds to an initiator party A it does not share master keys
with. For an initiator A, the particular case B = A, among other possibilities,
yields an error (each party must have a distinct identity).

Number of Rounds. The session can be reduced from five to four messages in
some cases. Indeed, regarding the synchronisation state, in two cases (when dap €
{-1,0}, that is e = 0), A and B are synchronised, and share a session key once B
has received message m 4 and executed the subsequent operations. Therefore, in
such a case, the session can end upon reception of message 75 by A. More precisely

— if d4p =1 (e = 1), then A accepts upon reception of 755, and B accepts upon
reception of 7/;

— if d45 € {—1,0} (e = 0), then A accepts upon reception of 7, and B accepts
upon reception of m 4.

FEach message of the protocol fulfills a specific task: party authentication,
detecting desynchronisation, and then catching up. This eventually results in
the forward secrecy property being ensured. Removing one message yields an
attack, as shown by any of the numerous alternative versions we have analysed.
Although we do not formally prove it, we do think that the figure of five rounds
is the least achievable in order to take into account all cases.

3.2 Notation
For the sake of clarity, we use the following notation in Fig. 2:

— kdf corresponds to: sk «— KDF(K, f(ra,rg))
— updy4 corresponds to

1. K < update(K)

B

4. Kj < update(K’)
— updp corresponds to

1. K « update(K)

2. K’ « update(K")

212 G. Avoine et al.

A B
(K, K}, KJ, K) (K, K')
A
ra < {0,13 Ira
B i {07 1}>\
7 — Mac(K', Bl|Allrs Ira)
mp «— rg||TB
mpB
. mB
if (Vrf(K}, B||Allrllra, 78) = true)
6,43 — O

K' — Kj; kdf; upd 4; e — 0

else if (Vrf(K}_y, B||Allrs|lra,78) = true)
bap <1
K K]Ll; e+— 1

else if (Vrf(K),,, B||A|lrs||lra,78) = true)

bap «— —1

K' — Kjy; upd,; kdf; upd 45 € — 0
else

abort

7a — Mac(K', ¢||A||B||rallr5)
ma < €||Ta

ma
s
if (Vrf(K' €||A||Bl|rallre,7a) = false)
abort
if (e=1)
updp
kdf; updg
75 — Mac(K',r5llra)
B
. 'B
if (e =0)
K' — K;
if (Vrf(K',rgl||ra,75) = false)
abort
else if (e=1)
K'— Kjp
if (Vrf(K',rg|lra,75) = false)
abort
kdf; upd 4
Th — Mac(K',ra|rB)
Th
JEEEEE < S
if (VHf(K',ra|lre, 7)) = false)
abort

Fig. 2. SAKE protocol

SAKE with Perfect Forward Secrecy 213

Moreover, Vrf(k,m,7) denotes the MAC verification function that takes as
input a secret key k, a message m, and a tag 7. It outputs true if 7 is a valid
tag on message m with respect to k. Otherwise, it returns false.

3.3 SAKE-AM: A Complementary Mode of SAKE

From SAKE, we can derive an aggressive mode that allows any party to be either
initiator or responder, and such that the smallest amount of calculation is always
done by the same party.

In SAKE the initiator A owns the three keys K7, K}, K}_,, and the respon-
der B does the lightest computations. In this mode B owns the three keys, and A
does the smallest amount of calculation. The main idea is to skip the first SAKE
message Al|r4. Hence the roles between the two parties are swapped. This leads
to other minor changes in message format compared to SAKE. Despite these
differences, the messages and the calculations are essentially the same as in
SAKE. This mode remains a sound and secure AKE protocol (according to Def-
inition 5).> We call this mode SAKE in aggressive mode (SAKE-AM).

End-device [A] Back end [B] End-device [B] Back end [A]
(K7K/) (K7K_;+l, (K7K/) (KaK]/'+1,
K} K1) K} K1)
Allra
Allralira rellTs
-_
compute dpa compute dap
ellrllts €llTa
TA B
_ _
— —
(a) End-device is initiator (SAKE-AM) (b) Back end is initiator (SAKE)

Fig. 3. Symmetric-key authenticated key exchange with forward secrecy between a
low-resource end-device and a back-end server. Both parties may initiate the session.
In some cases, the last message can be skipped.

This can be applied in the context of industrial IoT when a set of end-
devices (e.g., sensors, actuators) communicate with a central server. When the
end-device wants to initiate a communication, protocol SAKE-AM is launched.

3 The proofs of soundness and security for SAKE-AM are essentially the same as for
SAKE (see Sect.5). They are given in the full version of the paper [8].

214 G. Avoine et al.

Otherwise (the server is initiator), SAKE is used (see Fig.3). Therefore, the
end-device always does the lightest computations.

4 A Random-Free Variant of SAKE

From SAKE, one can devise several variants. First, the three authentication
keys K, K}, K}, can be replaced by two local counters c4, cp (respectively
stored by A and B) that keep track of the evolution of the derivation master
key K, with one static authentication master key K’.* On the initiator’ side, the
MAC verifications are then done with consecutive values of the counter j — 1,
J, i+ 1. Overall, the sequence of operations and the computations are similar
to that of SAKE. This means mainly replacing function z — Mac(K ;,:C) with
x +— Mac(K’, j||z). Yet, this alternative implies the storage of two keys and one
counter: K, K’ and c4/cp, instead of two keys only: K and K} _,/K' (and, one
the initiator’ side only, one or two additional calls to update in order to compute
K and, possibly, K} ;).

Another, more interesting, variant is the following.® In SAKE, the pseudo-
random values r 4, rp are used to yield a fresh session key, and participate also
in the authentication of the parties. Using new values during each session con-
tributes to achieving these two tasks. Yet, these parameters are not the only
ones to evolve throughout the successive protocol runs. The master keys do
also. Therefore, one can consider removing the pseudo-random values from the
messages. Without the pseudo-random values, several messages become cryp-
tographically valid for each flow (instead of one only in SAKE). For instance,
without 74, party A may accept as second message either 7p = Mac(K?, B||A),
or 7g = Mac(K)_,, B||A), or g = Mac(K’;,, B||A). Likewise, without rp, B
may accept as third message either 0|74 or 1||74. Consequently, in this variant,
we prefix each MAC-ed message with its index from 1 to 4 (but not the first one
which carries only the initiator’s identity).

The removal of the pseudo-random values enables a “mismatch attack”. By
“attack” we mean the following: an adversary is able to compel B to compute a
message (message 4) which is unaltered by the adversary and expected by A, and
yet A rejects this message as invalid. Although unpleasant, this “attack” does
not break any claimed security property (in particular entity authentication).
Moreover, this scenario cannot damage the synchronisation of the two parties.
That is, if they start a new session, the latter completes successfully (if the
adversary remains passive), as in SAKE.

In this variant, the length of the messages is shortened, and this avoids also
calling the pseudo-random generation function. This is advantageous for low-
resource devices. Nonetheless, the possibility provided by the aforementioned
scenario is not what one usually expects from a security protocol. Consequently,
for the practitioners for whom this mismatch attack is unacceptable, the SAKE
protocol is more adequate.

4 This alternative has been suggested by anonymous reviewers of Crypto 2019.
5 We describe it from SAKE, but the same holds for SAKE-AM.

SAKE with Perfect Forward Secrecy 215

5 Security and Soundness for SAKE

In this section we prove that (i) SAKE is sound, and (ii) it is a secure AKE
protocol according to Definition 5 given above.

5.1 Soundness of SAKE

We want to show that SAKE is sound, which essentially means that, once a
correct session is complete, both parties have updated their respective internal
state, are synchronised, and share the same (new) session key. We call a “benign”
adversary an adversary that faithfully forwards all messages between an initiator
A and a responder B.

Lemma 1. Let A and B be respectively the initiator and the responder of a
SAKE session. Let 0 a5 be the gap between A and B with respect to the evolution
of the master keys of both parties. The following conditions always hold:

1. dap € {-1,0,1}, and

2. whatever the synchronisation state of A and B (i.e., whatever A and B are
synchronised or not) when a new session starts, when that session completes
in presence of a benign adversary, then
(a) A and B have updated their master keys at least once, and
(b) A and B are synchronised (with respect to their master keys), and
(c) A and B share the same session key.

In order to prove Lemma 1, we use the following notation. The messages
exchanged during a session are numbered from 1 to 5. The notation “(i4,ip)”
means that, when the session ends, the last valid message received by A is
message of index 74, and the last valid message received by B is message of
index ig. We call a (i4,ip)-session a session where the last message received by
A is message i 4, and the last message received by B is message ig. By convention
i4 = 0 means that no message has been received by A.

It may happen that A send a first message which is not received by B. B
cannot know if it has missed a first message. But this is of no consequence
regarding the synchronisation between A and B (A may simply run the protocol
anew). Therefore we do not use the value ip = 0 (it is equivalent to ip = 5). At
initialisation (i.e., before the first run of the protocol), (i4,ig) is set to (4,5).
Since A sends message i € {3,5} only upon reception of a valid message i — 1,
and B sends message j € {2,4} only upon reception of a valid message j — 1,
the only possible values for (i4,ip) are: (0,1), (2,1), (2,3), (4,3), and (4, 5).

Proof. We prove Lemma 1. We first prove item 1.

Let ca (resp. cg) be a (virtual) monotonically increasing counter initialised
to 0 that follows the evolution of the master keys held by A (resp. B). That is,
ca (resp. cp) is increased each time the master keys K, K’ ,, K}, K} ; (resp.
K, K') are updated. The parameter 045 corresponds to the gap between A and
B with respect to the evolution of their master keys, hence dap = ca4 — cp.

216 G. Avoine et al.

We prove item 1 by constructing iteratively Table 1b.

Before the first protocol run, A and B are synchronised. That is dap =
ca—cp =0, and (ca,cp) = (4,4) (with ¢ = 0). Therefore, A can validate 75 (in
message mp) with the same key K]‘ = K’ as B. Hence A computes d45 = 0, and
e = 0. Consequently, if one carries out the protocol run starting with 45 = 0
and e¢ = 0, for each possible value (i4,i5), one eventually gets the following:

— (ca,cp) = (i,1) and d4p5 = 0 after a (0, 1)-session,
— (ca,ep) = (i+1,i) and 545 = 1 after a (2, 1)-session,

— (ca,cp)=(i+1,i+1) and dap = 0 after a (2, 3)-session,
— (ca,cg)=(i+1,i4+1) and dap = 0 after a (4, 3)-session,
— (ca,eg) = (i+1,i4+ 1) and 45 = 0 after a (4, 5)-session.

This corresponds to the first column of Tables 1a and b. As we can see, the only
possible values for d 45 after any session are 0 and 1. §4p = 0 has already been
investigated. Hence, starting with d4p = 1 (i.e., (ca,cp) = (i + 1,4)), we look
for all the values § 4p may have when the session ends, considering any possible
session.

(ca,cp) = (i + 1,4) means that A is in advance with respect to B. In such
a case, A succeeds in validating 7p with K} _; (and, indeed, finds a5 = 1).
Then A uses 45 = 1 and € = 1. If one carries out the protocol run using these
two values, one gets three possible values for d 4p: 1, 0, —1. This corresponds to
the second column of Table 1b, and shows that a third value is possible for § 43,
which is —1 (i.e., (ca,cp) = (i,i + 1)).

Then we restart the protocol with all possible sessions, assuming that
(ca,cp) = (4,4 + 1) at the beginning of the run. This means that A is one step
late with respect to B. In such a case, A succeeds in validating 75 with key K’} +1
(and, indeed, finds 45 = —1). Then A uses 045 = —1 and ¢ = 0. If one carries
out the protocol run using these two values, we end with three possible values for
dap (third column of Table 1b): —1, 0 and 1, that have been explored already. This
proves that, whatever the sequences of sessions, the only possible values for §4p
arein {—1,0,1}.

Now we prove item 2 of Lemma 1.

We know that a5 € {—1,0,1}. For each possible value of d4p at the begin-
ning of the session, the last line of Table 1b indicates the value of that parameter
after a correct and complete session (i.e., a (4,5)-session). As we can see, A and
B are always synchronised (i.e., 45 = 0) in such a case whatever the value of
dap when the session starts. Furthermore, the session key computation imme-
diately precedes the last update of the derivation master key K. Hence, when a
correct and complete session ends, A and B use the same derivation master key
K to compute the session key. Therefore, using the same values ra, rg, A and
B compute the same session key.

In addition, Table 1a shows that, whatever the synchronisation state of A and
B (i.e., cs and cpg) at the beginning of the session, after a correct and complete
session, A and B have updated their internal state at least once (as the last line
of the table, corresponding to a (4,5)-session, indicates). O

SAKE with Perfect Forward Secrecy 217

Table 1. Possible values for 645 and (ca, cp) among all sequences of sessions in SAKE

(a) Possible values for (ca,cg) (b) Possible values for 45

session (ea.c2) (é,9) (i +1,9) (ii+1) session o 01—t
(0,1) (i,4) (i+1,9) | G,itl) (0,1) Jo[1]=1
(2,1) G+1,0) | (i+Li) [i+2i+t1) (2,1) 111
(2,3) (i+1,i+D)|(i+1,i+2)|(+2,i+2) (2,3) |o[=1] 0
(4,3) G+1,e+ D)6 +2,i4+2) (2 +2,i+2) (4,3) 0/0]0
(4,5) G+1,e+1D)|(E+2,54+2)(2+ 2,0+ 2) (4,5) 0/0]0

5.2 Security of SAKE

In order to prove that the protocol SAKE is a secure AKE protocol, we use the
execution environment described in Sect.2.1. We define the partnering between
two instances with the notion of matching conversations (see Definition 8). That
is, we define sid to be the transcript, in chronological order, of all the (valid)
messages sent and received by an instance during the key exchange, but, possibly,
the last one. Furthermore, we choose the function update to be a PRF, that is
update : K — PRF(K,z) for some (constant) value x.

Theorem 1. The protocol SAKE is a secure AKE protocol, and for any prob-
abilistic polynomial time adversary A in the AKE security experiment against
protocol SAKE, we have

a5 (A) < g ((ng =)27 + (g + 1advi,, (B) + 2adviii™

update

©)
(A4)

ent-auth

update SAKE

advi 9 (A) < ng ((q — Dadv™ _ (B) + adv%F(D)> + adv
where n is the number of parties, q the mazimum number of instances (ses-
sions) per party, A the size of the pseudo-random values (ra, rg), and B is an
adversary against the PRF-security of update, C an adversary against the SUF-

CMA-security of Mac, and D an adversary against the PRF-security of KDF.

Proof. In order for an initiator instance w; at some party P; to accept, two
valid messages (i.e., with valid MAC tags) must be received by 7§ (mp and 75).
We reduce the security of the Mac function to the (in)ability to forge a valid
output. Therefore we use the fact that the key K’ is random. By assumption,
the genuine value of K’ (i.e., the value used during the first session between
two same parties) is uniformly chosen at random. Yet K’ (and K) is updated
throughout the session with the function update. If K’ is random, we can rely
on the pseudo-randomness of update(-) = PRF(:,). In turn, since PRF(K’,-) can
be replaced with a truly random function, its output (updated K') is random.
Therefore, one can rely upon the pseudo-randomness of the function update
keyed with this new value K’, and so forth. Each transition (i.e., each update

218 G. Avoine et al.
of K') implies a loss equal to advﬁgdate(B) corresponding to the ability of an
adversary B to distinguish update from a random function.

If P; is synchronised with the responder (645 = 0), P; updates its master
keys once (upon reception of mg). If P; is in advance (045 = 1), it updates its
keys at most once (if a valid message 75 is received). If P; is late (04 = —1),
it updates its keys twice. Yet, in that case, P; did not update its keys during
the previous session. Therefore, on average, P; updates its keys at most once per
session. Hence, when the u-th session starts, P; has updated its keys at most
u — 1 times on average, and, upon reception of 75, P; updates the keys at most
two times.

This is similar regarding the responder. A responder instance 7T§- at some
party P; accepts only if the two messages m4 and 74 are valid. Upon reception
of a valid message m 4, the keys are updated once (e = 0) or twice (e = 1). In
the latter case, the keys have not been updated during the previous session. This
means that the keys are updated on average at most once per session. Therefore,
when the u-th session starts, P; has updated its keys at most u — 1 times on
average, and, upon reception of m 4, the keys are updated at most two times.

We can now proceed with the proof. We proceed through a sequence of
games [13,32], where each consecutive game aims at reducing the challenger’s
dependency on the functions Mac, update and KDF. We first prove the entity
authentication security. Let E; be the event that the adversary win the entity
authentication experiment in Game 1.

Game 0. This game corresponds to the entity authentication security experiment
described in Sect. 2.1. Therefore

Pr[Eo] = advii s (A)

Game 1. The challenger aborts if there exists any instance that chooses a random
value r4 or rp that is not unique. There is at most n x ¢ random values, each
uniformly drawn at random in {0,1}*. Therefore the probability that at least

. 1
two random values be equal is at most %. Hence

Pr[Ey] < Pr[Ei] + %

Game 2. The challenger tries to guess which instance will be the first to accept
maliciously. If the guess is wrong, the game is aborted. The number of instances
is at most ngq. Therefore

PI‘[EQ} = PI‘[Eﬂ X i
nq

Game 3. Let 7 be the instance targeted by the adversary. In this game, we
add an abort rule. The challenger aborts the experiment if w ever receives a
valid message mp (resp. m4) if it is an initiator (resp. responder) instance,
but no instance having a matching conversation to m has output that message.
We reduce the probability of this event to the security of the functions Mac

SAKE with Perfect Forward Secrecy 219

and update. As explained above, when the u-th session starts, the master keys
have been updated at most u — 1 times already. The genuine value of K’ is
uniformly chosen at random. In order to be able to replace, during the current
session, the key used to compute the MAC tag in my4 (resp. mp) with a random
value, one must rely upon the pseudo-randomness of the function update that
outputs (the new value of) K’. In turn, this relies upon the (previous) key K’
being random (and on the pseudo-randomness of update). Therefore, in order to
replace K’ with a random value one must take into account the successive losses
advﬁgdate(l?), each corresponding to the ability of an adversary B to distinguish
the function update (keyed with a different key K’) from a random function.
Since there is at most g sessions, this loss is at most (¢ — 1)adv5gdate(3). Then
we reduce the probability of the adversary A to win this game to the ability of
an adversary C to forge a valid tag 75 (resp. 74).

Therefore, we replace each function update(K') = PRF(K’, z) (keyed with a
different key K’ throughout the, at most, ¢ — 1 successive sessions established,
prior to that current session, by the same party that owns 7) with truly ran-
dom functions ngdate, e F;Fid;te. Moreover, if an instance uses the same key
K' = K|, 0 < i< g-—1, to key update, then we replace update with the cor-
responding random function F;’pdate. Since, to that point, the key K’ = (’1_1
used to compute the authentication tag 75 (resp. 74) is random, we reduce the
ability of A to win to the security of the Mac function. Hence

Pr[E,] < Pr[Es] + (g — 1)advil,. (B) + adviie =™ (C)
Game 4. The challenger aborts the experiment if 7 ever receives a valid message
Tp (resp. 7), but no instance having a matching conversation to = has output
that message. Between the message mp (resp. ma) being received by m, and
the message 75 (resp. 74) being received by 7, the master keys are updated at
most twice. We reduce the probability of the adversary to win this game to the
security of the Mac function used to compute the message 75 (resp. 7). In turn
we must rely on the randomness of the Mac key, hence on the security of the
function update used to update the Mac key K’ (recall that, due to Game 3, the
current key K’ is random). Therefore
Pr[Es] < Pr[Ey] + 2advPl, (B) + adviie "™ (C)

To that point, the only way for the adversary to make 7 accept maliciously
is to send a valid message 7 (resp. 7) different from all the messages sent
by all the instances. However, in such a case, the challenger aborts. Therefore
PI‘[E4] =0.

Collecting all the probabilities from Game 0 to 4, we get the indicated bound.

Now we prove the key indistinguishability security. Let E} be the event that
an adversary win the key indistinguishability experiment in Game i, and adv; =
Pr(E] - 1.

220 G. Avoine et al.

Game 0. This game corresponds to the key indistinguishability experiment
described in Sect.2.1. Therefore

1 - 1
Pr{Ej] = 5 + advi e (A) = 5 T advo
Game 1. The challenger aborts the experiment and chooses v’ € {0, 1} uniformly
at random if there exists an instance that accepts maliciously. In other words,
in this game we make the same modifications as in the games performed during
the entity authentication proof. Hence

advy < adv; + advyi 2 (A)

Game 2. The challenger tries to guess which instance is targeted by the adver-
sary. If the guess is wrong, the game is aborted. The number of instances is at
most ng. Therefore

1
advy = advy X —
nq

Game 3. Let 7 be the instance targeted by the adversary. We reduce the advan-
tage of the adversary to win this game to the security of the function KDF used
to compute the session key. That is, we rely upon the pseudo-randomness of
the KDF function. This is possible if the key K is random. The genuine value
of K is uniformly chosen at random by assumption. Then K is updated with
update at most once per session on average. Therefore, when the u-th session
starts, K has been updated at most v — 1 times already. Therefore we must
take into account the successive losses due to the key update with respect to the
pseudo-randomness of update. Since there is at most ¢ sessions per party (i.e.,
per original key K), this loss is at most (¢ — 1)adv5gdate(8). Hence we replace
each function update(K) = PRF(K, z) (keyed with a different key K throughout
the, at most, g — 1 successive sessions established, prior to that current session,
by the same party that owns 7) with truly random functions Ggpdate, e G;p_d; e,
Moreover, if an instance uses the same key K = K;, 0 < i < g—1, to key update,
then we replace update with the corresponding random function G;’pdate. Since,
to that point, the key K = K,;_1 used to compute the session key is random, we
reduce the ability of A to win to the security of KDF. Therefore
advy < advs + (¢ — 1)adv5gdate(8) + advlii (D)

To that point the session key is random, therefore the adversary has no

advantage in guessing whether w.b = /. That is

adV3 =0

Collecting all the probabilities from Game 0 to 3, we get the indicated bound.
O

SAKE with Perfect Forward Secrecy 221

6 Comparison with the DH Paradigm

The protocol SAKE provides a strong form of forward secrecy. Despite this result,
it differs from a DH scheme in several ways beyond the intrinsic distinction
between public-key and symmetric-key cryptography.

Concurrent Executions. Our protocol does not allow parallel executions. Indeed,
since it is based on shared evolving symmetric keys, running multiple instances in
parallel may cause some sessions to abort. A way to relax this restriction is that
each party use separate master keys for concurrent executions. On the contrary,
the DH scheme allows an (virtually) unlimited number of parallel executions.

KCI Attacks. The ephemeral DH scheme is resistant against KCI attacks,
whereas our protocol is not (due to the dependency between the (updated) mas-
ter keys). Moreover if an adversary succeeds in getting the key K’ (or K7), it
can compute the subsequent key (corresponding to K]’ +1)' Hence the adversary
can forge a message mp in SAKE that brings the initiator to update its master
keys twice consecutively. Therefore, that party is desynchronised with respect to
an honest partner, with no possibility to resynchronise.

Note that KCI attacks affect also the static DH scheme (when a party uses
a fixed DH share, whereas the other generates a fresh ephemeral one [25]).

Another consequence of the dependency of the master keys in SAKE, is
that once the keys are compromised, an adversary can passively compromise all
subsequent session keys. This is not the case in general with ephemeral DH. Yet,
this is also true regarding non-DH public-key protocols (e.g., TLS-RSA), but
also ephemeral DH (in some pathological cases) when reduced size (fixed) public
parameters are used [5].

Computations. The DH scheme implies heavier computations (modular exponen-
tiations, elliptic curve point multiplication) than SAKE which is solely built on
symmetric-key functions. In practice, SAKE is likely more suitable to be imple-
mented on constrained devices which have limited computational (and commu-
nication) capabilities.

7 Conclusion

We have described SAKE, an authenticated key exchange protocol in the sym-
metric-key setting. Although this protocol is solely based on symmetric-key algo-
rithms, it provides perfect forward secrecy without requiring any additional pro-
cedure (e.g., resynchronisation phase) or functionality (e.g., shared clock). The
underlying idea is to make the shared master keys evolve. We solve the synchro-
nisation problem that stems from this evolving principle with an elegant and
efficient solution.

SAKE guarantees that, whatever the synchronisation state of the involved
parties prior to the session, both parties share a new session key, and their

222 G. Avoine et al.

internal state is updated and synchronised, once a correct session is complete:
SAKE is self-synchronising. As in the public-key setting, our protocol allows an
(virtually) unlimited number of sessions. Furthermore, we prove that SAKE is
sound, and provide a formal proof of its security in a strong model.

Finally, we describe SAKE-AM, a complementary mode of our protocol,
which, used in conjunction with SAKE, results in an implementation that gathers
all the aforementioned properties (starting with forward secrecy). This imple-
mentation allows any party to be initiator or responder of a session, such that the
smallest amount of calculation is always done by the same party. This is partic-
ularly convenient in the context of IoT where a set of (low-resource) end-devices
communicates with a back-end server.

To the best of our knowledge, this is the first protocol with perfect forward
secrecy in the symmetric-key setting that is comparable to the DH scheme, beyond
the intrinsic distinction between public-key and symmetric-key cryptography.

Acknowledgment. We thank the anonymous reviewers for their valuable comments.

References

1. Signal. https://signal.org/

2. 3rd Generation Partnership Project: Technical Specifications 33. http://www.
3gpp.org/DynaReport /33-series.htm

3. 3rd Generation Partnership Project: Technical Specifications 35. http://www.
3gpp.org/DynaReport /35-series.htm

4. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques. In: Okamoto, T. (ed.) ASTACRYPT 2000.
LNCS, vol. 1976, pp. 546-559. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3_42

5. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Ray, I, Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5-17. ACM Press,
October 2015. https://doi.org/10.1145/2810103.2813707

6. Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol. Cryptology ePrint Archive, Report
2018/1037 (2018). https://eprint.iacr.org/2018,/1037

7. American National Standards Institute: ANSI X9.24-1:2009 Retail Financial Ser-
vices Symmetric Key Management Part 1: Using Symmetric Techniques (2009)

8. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key Authenticated Key Exchange
(SAKE) with Perfect Forward Secrecy. Cryptology ePrint Archive, Report
2019/444 (2019). http://eprint.iacr.org/2019/444

9. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394-403. IEEE Computer Society Press,
October 1997. https://doi.org/10.1109/SFCS.1997.646128

10. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_28

11. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469491
(2008). https://doi.org/10.1007/s00145-008-9026-x

https://signal.org/
http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
https://doi.org/10.1007/3-540-44448-3_42
https://doi.org/10.1007/3-540-44448-3_42
https://doi.org/10.1145/2810103.2813707
https://eprint.iacr.org/2018/1037
http://eprint.iacr.org/2019/444
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/s00145-008-9026-x

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

SAKE with Perfect Forward Secrecy 223

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409-426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1-18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X_1

Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30-45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447
Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Information Security and Cryptography. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-662-09527-0

Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 250-267. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_15

Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
670-698. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3.26

Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal secu-
rity analysis of the signal messaging protocol. In: 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 451-466. IEEE, April 2017. https://doi.
org/10.1109/EuroSP.2017.27

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644-654 (1976)

Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107-125 (1992)

Dousti, M.S., Jalili, R.: FORSAKES: a forward-secure authenticated key exchange
protocol based on symmetric key-evolving schemes. Cryptology ePrint Archive,
Report 2014/123 (2014). http://eprint.iacr.org/2014,/123

GlobalPlatform: GlobalPlatform - Card Specification - Version 2.3.1, reference
GPC_SPE_034, March 2018. https://www.globalplatform.org/specificationscard.
asp

Giinther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29-37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_5

Hlauschek, C., Gruber, M., Fankhauser, F., Schanes, C.: Prying open Pandora’s
box: KCI attacks against TLS. In: Proceedings of the 9th USENIX Conference on
Offensive Technologies, WOOT 2015, USENIX Association (2015)

International Organization for Standardization: ISO/IEC 11770-2 - Information
technology - Security techniques - Key Management - Part 2: Mechanisms using
Symmetric Techniques (2008)

Jager, T., Kohlar, F., Schige, S., Schwenk, J.: On the security of TLS-DHE in
the standard model. Cryptology ePrint Archive, Report 2011/219 (2011). http://
eprint.iacr.org/2011/219

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/BFb0024447
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/978-3-662-49890-3_26
https://doi.org/10.1007/978-3-662-49890-3_26
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
http://eprint.iacr.org/2014/123
https://www.globalplatform.org/specificationscard.asp
https://www.globalplatform.org/specificationscard.asp
https://doi.org/10.1007/3-540-46885-4_5
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219

224

28.

29.

30.

31.

32.

33.

34.

G. Avoine et al.

Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Bao, F., Miller,
S. (eds.) ASIACCS 2007, pp. 242-252. ACM Press, March 2007

Park, T., Shin, K.G.: LiSP: a lightweight security protocol for wireless sensor net-
works. ACM Trans. Embed. Comput. Syst. 3(3), 634-660 (2004)

Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: SPINS: security proto-
cols for sensor networks. Wireless Netw. 8(5), 521-534 (2002)

Perrin, T., Marlinspike, M.: The Double Ratchet Algorithm (2016). https://signal.
org/docs/specifications/doubleratchet /. Revision 1, 20/11/2016

Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification, LoRa
Alliance, version 1.0, July 2016

ZigBee Alliance: ZigBee specification. http://www.zigbee.org/download /standards-
zigbee-specification/

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://www.zigbee.org/download/standards-zigbee-specification/
http://www.zigbee.org/download/standards-zigbee-specification/

®

Check for
updates

TMPS: Ticket-Mediated Password
Strengthening

John Kelsey!2®, Dana Dachman-Soled*®™)®, Sweta Mishral*®,
and Meltem Sénmez Turan®

! National Institute of Standards and Technology, Gaithersburg, MD, USA
2 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Leuven, Belgium
3 Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, USA
danadach@umd.edu
4 Department of Computer Science and Engineering, Shiv Nadar University,
Greater Noida, India

Abstract. We introduce the notion of TMPS: Ticket-Mediated Pass-
word Strengthening, a technique for allowing users to derive keys from
passwords while imposing a strict limit on the number of guesses of their
password any attacker can make, and strongly protecting the users’ pri-
vacy. We describe the security requirements of TMPS, and then a set of
efficient and practical protocols to implement a TMPS scheme, requiring
only hash functions, CCA2-secure encryption, and blind signatures. We
provide several variant protocols, including an offline symmetric-only pro-
tocol that uses a local trusted computing environment, and online vari-
ants that use group signatures or stronger trust assumptions instead of
blind signatures. We formalize the security of our scheme by defining an
ideal functionality in the Universal Composability (UC) framework, and
by providing game-based definitions of security. We prove that our pro-
tocol realizes the ideal functionality in the random oracle model (ROM)
under adaptive corruptions with erasures, and prove that security with
respect to the ideal/real definition implies security with respect to the
game-based definitions.

Keywords: Dictionary attacks -+ TMPS - Key derivation

1 Introduction

Alice needs a cryptographic key on her device, but doesn’t want to store it
there directly, lest someone steal the device and access her private data. The key
might be used to decrypt a hard drive, or a file, or a cryptographic key which

This work was supported in part by NSF grants #CNS-1933033, #CNS-1840893,
#CNS-1453045 (CAREER), by a research partnership award from Cisco and by
financial assistance award TONANB15H328 from the U.S. Department of Commerce,
National Institute of Standards and Technology.

© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 225-253, 2020.
https://doi.org/10.1007/978-3-030-40186-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_11&domain=pdf
http://orcid.org/0000-0002-3427-1744
http://orcid.org/0000-0001-6797-641X
http://orcid.org/0000-0003-1240-5841
http://orcid.org/0000-0002-1950-7130
https://doi.org/10.1007/978-3-030-40186-3_11

226 J. Kelsey et al.

will in turn be used to do some other operation. If Bob were to learn this key,
he could bypass Alice’s cryptographic protections-read her files, sign arbitrary
things with her private key, spend her bitcoins, etc.

The common solution to this problem involves password-based key derivation—
Alice enters a password into her device, which is processed in some computationally
expensive way, along with a salt (stored on her device), to get a symmetric key.
Unfortunately for Alice, her device includes all the information needed to derive the
key from a password and check whether the key is correct with a trial decryption. If
Bob can steal her device, he can run an offline password search (a dictionary attack)
on a machine set up for password cracking. Alice may not be able to remember a
password strong enough to withstand such an attack.

1.1 Security Goals

To avoid this problem, we introduce TMPS: Ticket-Mediated Password Strength-
ening. Consider an attacker who has stolen the user’s device and is trying to
access her encrypted files"TMPS strictly limits the number of password guesses
possible for that attacker. TMPS combines secret information stored on the
user’s device with an online server, to help the user decrypt her locally-stored
files. However, simply incorporating an online server into the key derivation pro-
cess does not provide a satisfactory solution.

TMPS prevents offline dictionary attacks, even in the case where the server is
compromised. Note that this is impossible to achieve if the user (or user’s device)
does not hold some secret state that gets input to the protocol. Specifically, if
the user’s only input to the protocol is her password (and possibly other public
information), then the user’s only protection against a dictionary attack is rate-
limiting by the server. If the server is compromised, the user’s interaction with
the server can be fully simulated, which means the attacker can run a dictionary
attack against her password. Once the password is guessed correctly, the attacker
obtains the corresponding payload key. This motivates our use of tickets which
are locally stored on the user’s device.

In fact, TMPS prevents offline password guessing attacks on Alice unless
both Alice’s local device and the server are compromised. Note that this is the
best security possible for this kind of protocol, since if both Alice and the server
are compromised, the protocol between Alice and the server can always be fully
simulated, just by choosing password inputs for Alice. To achieve this stronger
guarantee, we must create tickets that are tied to a specific user, password and
payload key. This ensures that even if Charlie and the server are compromised,
Charlie’s tickets cannot be used to make password guesses on Alice’s password.

Since tickets must be tied to a specific user, privacy now becomes a significant
problem. We want to ensure that when the server receives a ticket, the server
cannot link it to a specific user. Full user privacy requires anonymous commu-
nications with the server, however simply eliminating the need for the server
to keep track of when each individual user accesses her files provides a privacy
benefit-information that’s never collected can never be leaked, subpoenaed, or
sold.

TMPS: Ticket-Mediated Password Strengthening 227

Since the server can’t determine which user is requesting its services, it
becomes important to allow the server to limit the service to only authorized
users. Naturally, this must be done in a way that still preserves the users’ pri-
vacy.

1.2 Overview of TMPS

In TMPS, when the user wants to produce a new password-derived key, she runs
a protocol with a server to produce a set of ¢ tickets—bitstrings which she stores
locally. Later, when she wants to unlock the key using her password, she runs
another protocol with the server, providing (and expending) one of these tickets.
The password can only be used to unlock the user’s key with the server’s help,
and the server will not provide this help without a ticket that has never before
been used.

The critical feature of TMPS is that each ticket allows one guess of a password
to unlock a particular key. When Bob steals Alice’s device, he gets ¢ guesses at
her password, one per ticket. Once he is out of tickets, the server will no longer
help him check password guesses. Each ticket entitles the bearer to assistance
computing one specific password-based decryption.

The result is that Alice can establish a hard limit on the number of possible
guesses of the password Bob can make—if she has only 20 tickets on her device,
then an attacker who compromises the device can never try more than 20 guesses
of her password.

Our scheme gives users a security metric that is human-meaningful-the user
can know the maximum number of guesses the attacker can ever have against
their password. Hardness parameters of password hashes, or entropy estimates
of a password, are meaningful only to security experts; the maximum number
of attacker guesses that will be allowed is much easier to understand. Even rate-
limiting parameters (e.g., no more than 10 tries per hour) are arguably less
intuitive to users than a limit on the total number of password guesses. On the
other hand, our scheme imposes the need to be online in order to unlock a key
secured by a password!.

TMPS also ensures that the server never learns anything about the user’s
password or keys or private data, or even which user is unlocking her data at
which time?. As discussed above, no offline attack is possible against our scheme
unless both the server and the user’s device are compromised. On the other hand,
this comes at a cost—our scheme works only on a specific device that has been
set up by the user.

! In the full paper, we also provide an optional variant scheme for offline access—
allowing a very computationally expensive key derivation when the server is unavail-
able, albeit at the cost of losing the limit on maximum number of guesses.

2 Note that full user privacy requires the user to communicate with the server over an
anonymous channel.

228 J. Kelsey et al.

1.3 Related Work

Most work on password security focuses on password-based authentication sys-
tems. While there are similarities with earlier schemes, TMPS solves a different
problem, mostly using different techniques.

Password Based Key Derivation (PBKDF) involves carrying out an
expensive computation to derive a key from a password locally (e.g., [6,27]). Since
PBKDFs do not need server access for key derivation, the privacy of the user is
protected. However, although computationally- and memory-hard PBKDFs slow
down dictionary attacks, such attacks can still be mounted. Note that TMPS
uses a PBKDF as a component.

Remote Storage lets the user stores her secret information on some remote
service, and retrieve it by logging in. This is in some sense the trivial solution
to the problem of an attacker compromising the user’s device. However, note
that a server compromise in this case not only allows an offline attack on Alice’s
password, it reveals her secret data.

Password Authenticated Key Exchange (PAKE) protocols (e.g., [4,5,
16,28]) allow a user and server who share a password to securely establish a
session key. These protocols have some similarities to our scheme, but they solve
a very different problem—establishing a session key instead of rederiving a key
for decrypting locally-stored data. Also, these protocols are vulnerable to offline
dictionary attacks after server compromise, and the server inevitably knows who
the user is when it establishes a key.

In [22], Mani describes a scheme that uses a server to assist in password hash-
ing, but without any concern for user privacy—the goal in that scheme was to
harden the password file by incorporating a pseudorandom function (PRF) com-
puted on a single-purpose machine. Similarly, [2,23,24] describe a scheme with
a separately-stored secret key in a crypto server to strengthen password hashing,
an informal description of the concept of Password Hardening, later formally
defined in [13,20,25]. Current password hardening schemes involve an outward-
facing server into which the user logs in, and a rate-limiting server that assists
in hashing passwords. Our scheme is somewhat related to password hardening,
but is solving a different problem with different constraints and requirements.

A proposal by Lai et al. [19] defines a Password Hardening Encryption
(PHE) scheme, which combines password hardening with encryption of user data.
Our scheme is closely related to PHE, but there are important differences: TMPS
uses locally stored data on the user’s device, which means an offline attack can
only be done when the user’s device is compromised; for PHE, the outward-
facing server plus the rate-limiting server can run offline dictionary attacks on
the user’s password®. Additionally, in PHE, the user is logging into a service,
so there’s no sense in trying to prevent the server learning when a given user

3 Note that this is a straightforward engineering tradeoff PHE avoids local storage,
so it is more deployable, but the cost of that decision is that the user’s data can
be compromised even without compromising her device. TMPS makes the opposite
tradeoff-the system is harder to deploy because it needs local storage, but it provides
a corresponding security advantage.

TMPS: Ticket-Mediated Password Strengthening 229

is accessing her data—in TMPS, the user is accessing her own data on her own
device, and so shouldn’t have to leave a data trail with some external service.

In Password-Protected Secret Sharing [15], the user provides shares of
a key to n servers, and requires some subset k of the servers to assist it in
reconstructing the secret, in a way that will only work if the user provides the
correct password. These schemes aren’t focused on decrypting local storage, but
could be adapted to such an application. However, because they avoid secret data
stored on the user’s device, an attacker who compromises k servers can run an
offline dictionary attack. Further, servers know which user is reconstructing her
secret data at any given time. A closely related line of work introduces the notion
of password-based threshold authentication [1] for token-based authentication in
single sign-on setting—in their scheme, any subset of ¢ of n servers participate in
verifying the user’s password and generating a token, which can then be used to
authenticate to other devices on the network.

1.4 Our Results

— We introduce the notion of TMPS, a mechanism for allowing users to derive
keys from passwords while imposing a strict limit on the number of guesses
of their password any attacker can make, and strongly protecting the users’
privacy.

— We formalize the security requirements of our new notion of TMPS, by defin-
ing a corresponding ideal functionality in the Universal Composability (UC)
framework (See Sect.5). In the full version of the paper [18], we also provide
game-based proofs that show that the ideal functionality provides the desired
level of security.

— We present efficient protocols realizing our new notion. Our basic protocol
requires only hash functions, CCA2-secure encryption, and blind signatures
(See Sect. 4).

— We prove that our protocol UC-realizes the aforementioned ideal functionality
in the random oracle model (ROM) under adaptive corruptions with erasures
(See Sect.5.1) and prove that security with respect to the Ideal/Real defini-
tion implies security with respect to the game-based definitions (See the full
version [18]).

— In the full version of the paper [18], we present several variants of our protocol,
including an offline version of our protocol using a local hardware security
module (HSM) or trusted execution environment, and variants that make use
of group signatures, proofs of work, or weaker security assumptions to ensure
user privacy while still preventing overuse of server resources.

— Finally, we discuss efficient implementations and performance, in Sect. 6, and
consider some questions left open by this research in Sect. 7.

230 J. Kelsey et al.

2 Preliminaries

2.1 Notation

Let k € N. The set of bitstrings of length & is denoted as {0,1}*. The concate-
nation of two bitstrings = and y is denoted by x || y. The exclusive-OR of two
bitstrings = and y of same length is denoted as @y. We let b* denote the string
with k successive repetitions of bit b. If X is a set, we let x «<—s X denote sam-
pling a uniformly random element = from &'. The security parameter is denoted
by n € N. Unless otherwise specified, we assume all symmetric keys and hash
outputs to be n bits in length.

2.2 Underlying Primitives and Functions
We use the following primitives in our protocols:

— HASH(X): The cryptographic hash of input X.

— HMAC(K, X): The HMAC of X under key K.

— PH(S, P): Hash of the password P using salt S.

— KDF(K, D, ¢): £-bit key derived from the secret value K and public value D.

— I gne := (GEN, ENC, DEC): An encryption system where ENC(K, X) is encryp-
tion of plaintext X under the key K, and DEC(K,Y") is decryption of ciphertext
Y under the key K.

— IIpsre := (GEN, BLIND, UBLIND, SIGN, BVERIFY): A 2-move blind signature
scheme where

e M* «— BLIND(M): The user blinds the message M to obtain M* and
sends to the signer.

e 0* — SIGNgx(M*): The signer outputs a signature o* on input of mes-
sage M™* and private key SK and sends to the user.

e [' «— UBLIND(c*): The user unblinds the signature o* to obtain F'. Note
that the user inputs additional private state to the UBLIND algorithm,
which we leave implicit.

e BVERIFYpy (M, F): Verification of signature F' on message M under pub-
lic key PK as valid/invalid.

Next, we define two internal functions: VE(D, Kp) provides verifiable encryp-
tion of Kp with D and DV(D, Z) decrypts Kp after checking the correctness of
D. Both functions assume that D, Kp and hash outputs are n bits long. We
remark that we use the special-purpose verifiable encryption scheme define here,
as opposed to using a generic authenticated encryption scheme, for two reasons:
First, our UC security proof requires use of a random oracle call here to allow
for programmability; second, what is required here is not quite authenticated
encryption—we only care about whether the key is correct, not about whether
the decrypted plaintext is correct, and we only encrypt once under any key.

Formal definitions for the primitives used in our protocol appear in
Appendix A.

TMPS: Ticket-Mediated Password Strengthening 231

Algorithm 1. Verifiably encrypt Kp with D.
1: function VE(D, Kp)
2: Z < HASH(0 || D) || (HASH(1 || D) ® Kp)
3: return(2)

Algorithm 2. Verifiably decrypt Z with D.
1: function DV(D, Z)
2: X — Zy. . n-1
3: Y — Z, on—1
4: X* =HASH(0 | D)
5: if X == X* then
6.
7
8

return(HASH(1 || D) & Y)
else
return(l)

3 Ticket-Mediated Password Strengthening

3.1 TMPS Overview

In Ticket-Mediated Password Strengthening (TMPS, for short), the user? first
interacts with a server to get a set of tickets. Each ticket entitles the user to
assistance from the server with one attempt to unlock a master secret (called
the payload key) using a password. Later, users (or anyone else with access to
the tickets) may use the tickets to attempt to unlock the payload key using the
password.

TMPS requires a setup phase, and two protocols: REQUEST and UNLOCK.
During setup, the server establishes public encryption and signing keys and
makes them available to its users.

In order to get tickets, the user’s device starts with a payload key (generated
randomly) and a password, and runs the REQUEST protocol with the server,
requesting ¢ tickets. If the protocol terminates successfully, the user ends up
with ¢ tickets, each of which entitles her to one run of the UNLOCK protocol.
Note that each ticket is bound to UNLOCKing a specific key with a specific
password—Bob’s tickets will not help with guessing Alice’s password.

In order to use a password to unlock the payload key, the user must consume
a ticket—she runs the UNLOCK protocol with the server, passing the server some
information from the ticket and some information derived from her ticket and
her password. The server will never accept the same ticket information twice.
When the protocol runs successfully, the user recovers the payload key.

4 For convenience, we refer to “the user” generating random values and running pro-
tocols in the rest of this paper when we really mean “software on the user’s device.”
The user herself should only need to remember the password, and perhaps provide
credentials to identify herself to the server when she requests new tickets.

232 J. Kelsey et al.

The security requirements of a TMPS scheme are:

1. REQUEST

(a) The server learns nothing about the password or payload key from the
REQUEST protocol.

(b) There is no way to get a ticket the server will accept, except by running
the REQUEST protocol.

(c¢) Each ticket is generated for a specific password and payload key; tickets
generated for one password and payload key give no help in unlocking or
learning any other password or payload key.

2. UNLOCK
(a) An UNLOCK run will be successful (it will return the correct Kp) if and
only if:
i. This ticket came from a successful run of the REQUEST protocol.
ii. This ticket has never been used in another UNLOCK call.
iii. The same password used to REQUEST the ticket is used to UNLOCK
it.

(b) From an unsuccessful run of the UNLOCK protocol, the user gains no
information about the payload key.

(¢) From an unsuccessful run of the UNLOCK protocol, the user learns (at
most) that the password used to run the protocol was incorrect.

(d) The server learns nothing about the payload key or password from the
UNLOCK protocol.

(e) The server learns nothing about which user ran the UNLOCK protocol
with it at any given time.

Note that these requirements don’t describe the generation of the payload key
or the selection of the password. If the payload key is known or easily guessed,
then TMPS can do nothing to improve the situation. In any real-world use,
the payload key should be generated using a high-quality cryptographic random
number generator.

The strength of the password matters for the security of ticket-mediated pass-
word strengthening, but in a very limited way—each run of UNLOCK consumes
one ticket and allows the user to check one guess of the password. An attacker
given N equally-likely passwords and ¢ tickets thus has at most a t/N probability
of successfully learning the password.

3.2 Discussion

The usual way password-based key derivation fails is that an offline attacker tries
a huge number of candidate passwords, until he finally happens upon the user’s
password. He then derives the same key as the user derived, and may decrypt
her files. A TMPS scheme avoids this attack by requiring the involvement of the
server in each password guess, and (more importantly) by limiting the number
of guesses that will ever be allowed. If the user of a TMPS scheme requests only
100 tickets from the server, then an attacker who compromises her machine and

TMPS: Ticket-Mediated Password Strengthening 233

learns the tickets will never get more than 100 guesses of her password. If he
cannot guess the password in his first 100 guesses, then he will never learn either
the password or the payload key. Even if he is given the correct password after
he has used up all the tickets, he cannot use that password to learn anything
about the payload key.

The security of a TMPS scheme relies on the server being unwilling to allow
anyone to reuse a ticket, and the inability of anyone to unlock a payload key with
a password without running the UNLOCK protocol with a server, and consuming
a fresh ticket in the process.

A corrupt server can weaken the security of TMPS, but only in limited ways.
It cannot learn anything about the password or payload key. It cannot determine
which user is associated with which ticket®, or link REQUEST and UNLOCK rumns.
But it can enable an attacker who has already compromised a user’s tickets to
reuse those tickets as many times as he likes.

4 The Basic Protocol

In this section, we describe a set of protocols that implement Ticket-Mediated
Password Strengthening in a concrete way. Our protocols require a secure crypto-
graphic hash function, a public key encryption scheme providing CCA2 security®,
and a blind signature scheme’. Our scheme has some similarities to an online
anonymous e-cash scheme—notably in the need to reject attempts to “double-
spend.” However, each ticket in our scheme is bound to a specific password
hashing computation—it’s as though each coin in an e-cash system could only be
spent buying one particular item from one particular store.

A ticket gives a user enough information to enlist the server in helping
carry out one password-based key derivation. Each ticket contains an inside part
(which the user retains and does not share with the server) and an outside part
(which the user sends to the server). The different parts of a ticket are bound
together with each other and with the specific password and key derivation being
carried out, and can’t be used for a different key derivation.

We make two assumptions about this protocol: First, all messages in this
protocol take place over an encrypted and authenticated channel. Second, the
user somehow demonstrates that he is entitled to be given tickets by the server;
we assume the user has already done this before the REQUEST protocol is run.
There are many plausible ways this might be done, such as: (1) The user may

5 To get a strong privacy guarantee, the user must communicate with the server over
an anonymous communications channel. However, there’s also a practical privacy
benefit to a scheme in which the server has no reason to keep track of the times each
user has unlocked a file.

5 An attacker who can alter a ciphertext to get a new valid ciphertext for the same
plaintext can attack our scheme.

7 Variants which do not require a blind signature scheme appear in the full paper.

234 J. Kelsey et al.

pay per ticket, (2) the user may demonstrate his membership in some group to
whom the server provides this service, (3) the server may simply provide this
service for all comers.

The specific method used is outside our scope. However the user demonstrates
her authorization to receive tickets, it is very likely to involve revealing her iden-
tity. In order to protect the user’s privacy from the server, the REQUEST protocol
must thus prevent the server linking tickets with this identifying information, or
linking tickets issued together.

4.1 Server Setup

The following steps are done once by the server®: (1) The server establishes an
encryption keypair PKg, SKg for some algorithm that supports CCA2 security.
Server distributes its public key to all users. (2) The server establishes a signature
keypair PKY, SK§ for some algorithm that supports blind signatures. (3) The
server establishes a list to store previously-seen tickets.

4.2 REQUEST: Protocol for Requesting Tickets

To request a ticket, the user starts out with a password P and a payload key
Kp, and generates t tickets with the assistance of the server. In order to create
a ticket without revealing any identifying information to the server, the user
carries out the following steps:

Randomly generate an n-bit salt S and an n-bit secret value B.
Encrypt B using the public encryption key PKg of the server, producing E.
Run a protocol to get a blind signature on F from the server—this is F'.
Derive a one-time key from the password and the secret B:

D «— HMAC(B, PH(S, P))
5. Encrypt the payload key under the one-time key:
Z — VE(D,Kp)

=N

The ticket will consist of (S, F, F, Z); the user must irretrievably delete all
the intermediate values above. The user repeats the steps ¢ times to get ¢ tickets.
At the end of this protocol, the user has ¢ tickets she can use to run the UNLOCK
protocol. The server, on the other hand, knows only that it has issued ¢ tickets
to the user—it knows nothing else about them!

8 Rolling over to new keys periodically can be done, but old decryption keys must
be kept active until all tickets issued for them have been used—this could plausibly
mean that old decryption keys never go away, and this does not allow for recovery
from compromise of a decryption key.

TMPS: Ticket-Mediated Password Strengthening

235

Protocol: REQUEST(P, Kp,1):

User Server
fori=1...t

S «s{0,1}"

B +s{0,1}"

E «+ ENC(PKs, B)

E* «+ BLIND(E)

0"+ 8IGNsk (E7)

F « UBLIND(c™)

C « PH(S, P)

D « HMAC(B, C)

Z «+ VE(D, Kp)

Forget B,C,D,E", 0"

T; «+ (S,E,F, Z)
endfor

4.3 UNLoOCK: Protocol for Unlocking a Ticket

In order to use a ticket along with a password P to unlock K p, the user does

the following steps:

Hash the password: C' — PH(S, P).
Send (E, F,C) to the server.
If the signature is invalid or E is being reused, then the server returns 1.
Otherwise:
(a) The server stores E, F as a used ticket.
(b) B« DEC(SKg, E)
(¢) D «— HMAC(B, C)
(d) The server sends back D.

=W

5. The user tries to decrypt Z with D. If this succeeds, she learns K p. Otherwise,

she learns that P was not the right password.

Note that in these two protocols, the server never learns anything about
Kp, P, or P, and has no way of linking a ticket between REQUEST and UNLOCK

calls.

236 J. Kelsey et al.

We also note that the UNLOCK protocol could be easily modified to enable
creation of new tickets when the submitted password to UNLOCK is correct. This
would ensure that a user who knows the password always has at least one valid
ticket, which would improve usability of our scheme in real-world applications.

Protocol: UNLOCK(S, E, F, Z,]5)

User Server
C « PH(S, P)
E,F,C
s
IF
E fresh AND
VERIFYgx, (E, F)
THEN

B « DEC(SKs, E)

D « HMAC(B, C)
ELSE

D+ 1

Kp + DV(D, Z)

return(Kp)

5 Security Analysis

In this section, we provide a security analysis and some security proofs for our
basic protocol. Our approach comes in three separate parts: First, we define an
ideal functionality for the system. Second, we prove that our basic protocol is
indistinguishable from the ideal functionality in the UC framework. In the full
version of the paper, we also provide several game-based security definitions, and
prove bounds on an attacker’s probability of winning the games when they are
interacting with the ideal functionality. These game-based definitions show that
the ideal functionality we’ve defined actually provides the practical security we
need from this scheme.

The ideal functionality makes use of a table 7—a key-value database indexed
by a ticket T. T' can be any n-bit string, or the special values L and *.

TMPS: Ticket-Mediated Password Strengthening 237

A user calls REQUEST to get a new ticket?. We assume a two-sided authenti-
cated and secure channel for REQUEST-the ideal functionality knows the user’s
identity, and the user knows she is talking with the ideal functionality. Also,
REQUEST requires an interaction with the server, in which the server also learns
the user’s identity. At the end of the REQUEST call, the user either has a valid
ticket, or knows she did not get a valid ticket. Note that in the case of a cor-
rupted server, we allow the server to “override” the honest behavior of the ideal
functionality by outputting a value R. If R = 1, the ideal functionality proceeds
as normal. If R = 0, it indicates that the server does not wish to cooperate.
In this case, the output to the user is 1. Note that in the real world, we can-
not prevent the corrupt server from issuing an invalid ticket. However, in this
case, we require that the user can detect that the ticket is invalid. The strongest
guarantees we can hope for in the real world are therefore captured by our ideal
functionality.

Algorithm 3. Ideal Functionality: Initialize and REQUEST
Initialize the table that will store passwords,
payload keys and aliases.
1: function INITIALIZE(SID)
2: SID.T «— {}
3: function REQUEST(U, sID, P, Kp)
T corresponds to the “ideal” ticket.

4: T —s{0,1}"
Insert (P, Kp, 1) into table T with key T. The L
wvalue indicates that the ticket T is fresh.

5: SID.T[T] « (P,Kp, 1)

6: Send to server SID: (SID, REQUEST, U)

7 if server SID compromised then

8: Wait for response (SID, REQUEST, U, R).

9: else

10: R+—1

11: if R=1 then

12: Send to source U: (SID, REQUEST, T')

13: else

14: Send to source U: (SID, REQUEST, 1)

9 The ideal functionality is defined to return one ticket per REQUEST, but in our
protocol description above, we define REQUEST to return ¢ tickets at a time. This is
equivalent to just rerunning the REQUEST ideal functionality ¢ times.

238 J. Kelsey et al.

The user makes use of a ticket and a password to recover her payload key
with an UNLOCK call. We assume the UNLOCK call is made over a secure chan-
nel which is authenticated on one side—the user knows she is talking with the
ideal functionality, but the ideal functionality doesn’t know who is talking to
it. UNLOCK also requires an interaction with the server, in which the server is
not told the identity of the user. At the end of the UNLOCK call, the user either
learns the payload key associated with the ticket she has used, or receives an
error message (L) and knows the UNLOCK call has failed. Note that in the case
of a corrupted server, we allow the server to “override” the honest behavior of
the ideal functionality by outputting a value R. If R = 1, the ideal functionality
responds with the payload key, in the case that the password is correct, even if
the ticket is not fresh. If R = 0, it indicates that the server does not wish to
cooperate. In this case, the output to the user is 1. Note that in the real world,
we cannot prevent the corrupt server from responding to unlock requests with
tickets that are not fresh (this corresponds to the corrupt ideal server flipping
R from 0 to 1). Moreover, in the real world, we cannot prevent a corrupt server
from deviating from the protocol and computing the wrong payload key (this
corresponds to the corrupt ideal server flipping R from 1 to 0). However, in
this case, we require that the user can detect that the returned payload key is
invalid. The strongest guarantees we can hope for in the real world are therefore
captured by our ideal functionality.

Before stating our theorem, we note that we assume that the protocols for
REQUEST and UNLOCK given in Sects.4.2 and 4.3 are executed in a hybrid
model, where an ideal functionality for secure, two (resp. one)-sided authenti-
cated channels, F,c (resp. Fosac), (see e.g. [8]) is invoked each time a message
is sent. We require that the VE scheme used is the one given in Algorithms 1
and 2. We assume three independent random oracles: Hp,,, Hkp, Hve. Hpy is the
password hash. Hgp is used to model the HMAC key derivation as a random
oracle!® and Hye is the random oracle for the verifiable encryption scheme given
in Algorithms 1, 2.

Theorem 1. Under the assumption that [lgnc is a CCA2-secure encryption
scheme (see Definition 5), IIpgic is a 2-move blind signature scheme (see Def-
inition 7) and the assumptions listed above, the protocols for SETUP, REQUEST
and UNLOCK given in Sects. 4.1, 4.2 and 4.3, UC-realize the ideal functionality
provided in Algorithms 3 and 4 under adaptive corruptions, with erasures.

19 We remark that Dodis et al. [12] showed that HMAC is not indifferentiable from a
random oracle. However, their attack only applies when one allows different sizes for
the HMAC key. Since we require B to always be a fixed length, this attack does not
apply to our setting—finding two values of B that give identical results from HMAC,
implies finding collisions for the underlying hash function.

TMPS: Ticket-Mediated Password Strengthening

239

Algorithm 4. Ideal Functionality: UNLOCK

1:
2
3:
4

10:

11:

12:

13:
14:

15:

16:
17:

18:
19:
20:

21:

If ticket and password good, return Kp.
Otherwise, return L.
function UNLOCK(SID, T, P)
if T € siD.7 then
(P,Kp,a) « sID.7T[T]
else
o = x signals invalid ticket.
(P,Kp,a) « (L, L,%)
R+—0
« corresponds to the alias for ticket T.
a = L indicates the ticket is fresh. a # L indicates
ticket T was previously assigned an alias so not fresh.
if a = 1 then
Fresh ticket
a—s{0,1}"
R+—1
else
Reused or invalid ticket
R+—0
Server can see whether it’s getting invalid,
repeated, or fresh ticket.
Send to server SID: (SID, UNLOCK, «)
If server is NOT compromised, we know R.
If server IS compromised, we must ask it
how to respond.
if Server SID compromised then
Wait for (sip, UNLOCK, R)
#Re{0,1)
Send back the right response to the user.
if R =0 then
Server returns L, no decryption possible.
Respond to caller: (sip, UNLOCK, L)
else if R =1 then
Server plays straight.

if P = P then
Respond to caller: (sib, UNLOCK, K p)
else

Server returns value, decryption fails.
Respond to caller: (SID, UNLOCK, L)

240 J. Kelsey et al.

5.1 Proof of Theorem 1

We also note that the only random oracle that gets programmed!! in the proof
is Hye. We also assume that honest users securely erase their tickets after an
unlock attempt with that ticket has been made (as well as any other part of
their state which no longer needs to be stored).

To prove the Theorem 1, we provide a simulator Sim and prove that the result-
ing Ideal and Real distributions are computationally indistinguishable. Through-
out, we assume that the same ticket (resp. alias) is never issued twice during
a REQUEST (resp. UNLOCK) procedure in an Ideal execution with a single SID.
Since each of these events occurs with at most \'?/2" probability, where \’ is the
total number of tickets issued, this assumption can only reduce the adversarial
distinguishing probability by at most 2 - \'2/2", which is negligible.

5.2 Description of Simulator Sim

Simulator Sim Under Adaptive Corruptions of Parties. Note that since
we assume secure channels, Sim only needs to begin simulating the view at the
moment that some party is corrupted.

Fix an environment Env, Server Server, users Uy, ...,U,, and adversary A.
Recall that we allow the environment Env to choose the inputs of all parties.
Simulator Sim does the following:

1. Initialization: Initialize tables B,&,S, Z, Tgen, Zused to empty and counters
count; for i € [m] to 0.

2. Preprocessing: Let A\; be the maximum number of tickets for each party U;.
For i € [m], j € [Aj]: Generate B} «— {0,1}", S5 — {0,1}", Z} — {0,1}*".
Add all generated B; (resp. S;, Z;) values to B (resp. S, Z). Let X be the
total number of (B;, S;, Z;) tuples generated.

3. Responding to corruption requests:

Corruption of a party U;: Sim corrupts the corresponding ideal party
and obtains its internal state, consisting of unused tickets tﬁ,...,té\i.
For j € [count;], modify entry (U?, 5;7 B;, E} F]?, ZJZ 1) € Tgen to
(Ui,S},B;,E;,F;, Z},t;). For j € {count; +1,..., \; }:

11 We note that for UC composition to hold in the programmable random oracle model,
one must, in general, assume that an independent random oracle is used for each
SID instance. In our case, we essentially use the programmability of the random
oracle to implement a non-committing encryption scheme (see [11]), by adjusting
the outcome of Hye to ensure that the string Z; decrypts to the correct Kp value.
Camenisch et al. [7] showed that some natural non-committing encryption schemes
in the programmable random oracle model can be proven secure in the UC setting,
since the simulator only needs to program the random oracle at random inputs,
which have negligible chance of being already queried or programmed. We anticipate
that a similar argument would work for our scheme, since D;- is unpredictable and
with very high probability will not be queried in any other session before being
programmed in the target session. However, our formal proof is only for the case
where an independent random oracle is assumed for each session.

4.

5.

TMPS: Ticket-Mediated Password Strengthening 241

(a) Generate Ej = ENCpg(B}) and F} as a blind signature of E} using
SKg (note that since A\; — count; > 0, Sim must have already gener-
ated (PKg,SKg, PKg, SKg)).

(b) Add (U',S:, EL F} Zj’,t;) to Tgen and E} to set &.

Sim releases tlckets (SJL EL Fj, 7).

Corruption of Server: Sim corrupts the corresponding ideal party and obtains
its ideal internal state If an Initialize query has not yet been submitted
to the ideal functionality, Sim returns L. Otherwise, if the server’s keys
have not yet been sampled, Sim samples (PKg, SKg, PKg, SK). Let
a1,...,ay be the aliases in the ideal internal state (if any). Associate
each row in 7yseq with a random alias so each entry in 7,sq contains a
value from {aq,...,ay} in its final column. For i € [\ — |Zysed|], Generate
B; — {0,1}", E; = ENCpk.(B;) and F; as a blind signature of E;. Add
all tuples (B;, E;, F;, *, ;) t0 Tysed- For each row of Tyeeq, release (F;, F;).

Responding to random oracle queries to Hpy, Hkp: Sim forwards the query

to the oracle and forwards the response back.

Responding to random oracle queries to Hyg: Sim maintains a table 7.

The table is initialized as empty. Each time A queries Hyg on input x, Sim

checks the table to see if an entry of the form (x,y) appears in the table

for some y. If yes, Sim returns y. Otherwise, Sim chooses a random vy, adds

entry (x,y) to Tm, and returns y to A.

. When responding to oracle queries, Sim also does the following:

— Bad Event 1: If Server is corrupted and 4 makes a query to Hp, with
input of the form SZHPz where SZ € S and (-, SJ, Sty J) ¢ Tgen (for
t' # 1) then Sim aborts.

— Bad Event 2: If Server is not corrupted and A makes a query to Hkp
with input of the form (Bj||C?), where B} € B, then Sim aborts.

— If Server is corrupted and A makes a query to Hp, with input of
the form S”HPz where S’ € &, Sim finds the tuple of the form

(-, Sty th) € Tgen and submits UNLOCK(SID, tl Pl) to the ideal
functionality. Sim receives (UNLOCK, SID, &) from the 1dea1 functional-
ity, and returns (SID, UNLOCK, 1). If the ideal functionality returns L,
Sim forwards C’; = HpW(S;HIAD;) to A. If the ideal functionality returns
Kp, Sim computes C! = Hyy(S!|P!), D} = Hyp(B:||C!) and entries
for (OHDj,yl) (1||D],y2) such that y1[|ly2 = Z; ® (0", Kp)) to Thye. Sim
returns CJZ to A. Bad Event 3: If at this point 0||D} or 1||D} have
already been queried to Hyg, Sim aborts.

Responding to messages from the REQUEST protocol issued by a corrupted

U; when Server is not corrupted. Sim does the following:

(a) Generate (PKg,SKg, PKg, SKY) if not yet generated.

(b) Submit REQUEST(U;, SID, 0, 0) to the ideal functionality and receive back
ticket t.

(c) Place (U, *, *, %, %, %,t) € Tgen.

(d) Play the part of an honest signer with secret key SK% in the blind
signature protocol with the corrupted user.

242 J. Kelsey et al.

8. Responding to (SID, REQUEST, U;) messages from Ideal Functionality. Sim
does the following:
(a) Set count; := count; + 1 and j := count;.
(b) Generate E} := ENCprcg(BY).
(c) Participate in a blind signature protocol on message EJ‘ with the cor-
rupted Server to obtain signature F| ;
(d) Store (Ui,Sj,Bj,Ej,Fj7Z§,L) € Tgen-
9. Responding to messages from the UNLOCK protocol issued by adversary A
when Server is not corrupted. A sends (E,F,C) to the server.
— If a tuple of the form (-, E, -, {,%) € 'Z,sed, then send UNLOCK(SID, #, 1)
to the ideal functionality.
— Otherwise, if the signature does not verify submit UNLOCK(SID, L, 1) to
the ideal functionality.
— Otherwise, if £ = EJZ eé:

(a) Find an entry of the form (-, -, LB, 1) € Tgen- Add (B B,E.F.{, *)
to 7'used~

(b) Bad Event 4: If there is more than one oracle query that returned
C‘, Sim aborts.

(¢) If the unique query exists, extract the password guess P (with
bit length at most n'). If it does not exist, set P to L. Send
UNLOCK (SID, £, }5) to the ideal functionality. Bad Event 5: If
C = Hpw(Sk,), for some Si € S, but A did not make an oracle

query returning C, Sim aborts.

(d) If the ideal functionality returns a value Kp, then set D; =
Hyo(BI|C). Add (0][D}. 1), (11D 1) 0 Tia such that ya|[y =
Z; @ (0", Kp)) Return D; to A. Bad Event 6: If A has already
queried Hyg on 0||Dj or IHD;-, Sim aborts.

(e) Otherwise, return D} = HKD(B;||C’;)

— Otherwise if £ ¢ £, Sim does the following:

(a) Bad Event T: If there is no entry of the form (-, *, %, , %, %, 1) € Tgens

Sim aborts.

(b) Find an entry of the form (-, *, *, %, K, t) € Tgen and remove it.

(¢) Decrypt E using SKg to obtain B. Bad Event 8: If B € B, Sim

aborts.
(d) Make an UNLOCK request to the ideal functionality UNLOCK(SID, £, 1)
(e) Continue the execution honestly to recover D = Hyp(B||C). Return
D to A.
10. Responding to (UNLOCK, SID, «v) messages from Ideal Functionality. If Sim
receives a message (SID, UNLOCK,) (which does not stem from an UNLOCK
request submitted by Sim) then Sim does the following: o
(a) If there is some (B, E,F,*,a) € Tied. Then Sim forwards (E, F) to
Server, along with a random value for C.

(b) If not, update the next tuple of the form (B,E‘7ﬁ‘,*7j_) € Tysed, tO
(B E F,*,a) Forward (E F) to Server, along with a random value
for C.

o

TMPS: Ticket-Mediated Password Strengthening 243

(¢) If Server returns L, then return 0 to the ideal functionality.

(d) Otherwise, Sim receives back a D value from Server and checks
whether D was computed correctly with respect to B and C. If yes,
Sim sends (SID, UNLOCK, 1) to the ideal functionality. Otherwise, Sim
sends (sID, UNLOCK, 0) to the ideal functionality. If tuples of the form
(0l|D,y1), (1||D,y2) are not in Tgy,,., Sim chooses random y1, y2 and adds
(01D, 1), (1]|D, y2) to Tr,e. Bad Event 9: If (y1]|y2) ®Z; = 0"+, where
Zi e Zand (-, Z,t%) ¢ Tgen (for t5 # L), Sim aborts.

VR

In Fig. 1, we list each of the Bad Events, its definition, an upperbound on its
probability of occurrence, the underlying primitive that is relied upon (if any),
and the corresponding lemma (if applicable). Recall that ¢ is the total number
of oracle queries made by the adversary A and Sim. X\’ is the total number of
tickets issued, £ is the total number of UNLOCK queries, n is the length of S;, B;-
as well as the output length of the random oracles, and n’ is the bit-length of
the password.

We begin by bounding the probability that the Bad Events occur. It is clear
by inspection that Bad Event 1 occurs with probability at most -\’ /2™, and that
Bad Event 4 occurs with probability at most ¢%/2", where ¢ is the total number
of oracle queries made by the adversary and Sim. Moreover, it is clear that if
Bad Event 2 does not occur, then Bad Events 3 and 6 occur with probability
at most ¢2/2" each. Bad Event 9 occurs with probability at most A - q/2". We
proceed to bound the remaining events (Events 2, 5, 7, 8).

Lemma 1. Bad Event 5 occurs with at most negligible probability in the Ideal
experiment.

We upper bound the probability of Bad Event 5 by analyzing the probability
that C' = Hp, (S},), for some value of z € {0,1}". This probability can be

upper bounded by 22%, since there are 2" possible strings of the form Sj||:1c and

each of these gets mapped to a particular string C with probability 2% Since
there are at most ¢ number of unlock queries, the total probability is at most

2‘22: Setting parameters appropriately, we have that 5'22:

is negligible.

Lemma 2. Assuming the CCA2 security of encryption scheme ENC (see Defi-
nition 7), the probability that Bad Event 2 or Bad Event 8 occurs is at most
negligible in the Ideal experiment.

The proof proceeds by showing that if Bad Event 2 or Bad Event 8 occurs
with non-negligible probability, then there must be some i € [m], j € [A\;] and
efficient Env, A (who did not corrupt Server) such that A queries Hkp on the
value, Bj-, or, in an UNLOCK request, sends an encryption E ¢ & that decrypts
to B;'-, with non-negligible probability. We will use Env, A to obtain another
efficient adversary A’ who breaks the security of the CCA2 encryption scheme
ENC.

The adversary A’ breaking the CCA2 security of the encryption scheme ENC
proceeds as follows: A’ plays the part of Sim in the Ideal experiment, with the

244 J. Kelsey et al.

]Event \Deﬁnition \Probability \Primitive \Lemma‘
Bad Event 1|Server is corrupted and A|q - \'/2" |statistical
queries Hp,, with an input
of the form S;HP;, where
S, € § and there is no en-

try (S;-,-,-,-,t;-) € T, with
s # L.

Bad Event 2|Server is not corrupted|negligible |CCA2 Enc|Lem 2
and A makes a query to Scheme

Hyp with input of the form
(B;HCA'j)7 where B} € B.
Bad Event 3[Server is corrupted and|q®/2" statistical
(0[|D%) or (0]|D%) have al-
ready been queried to Hyg
at the point when Sim tries
to program them.

Bad Event 4|Two distinct oracle queries|q?/2" statistical
to Hp, returned the same
value.

Bad Event 5|UNLOCK query with C' =|¢- 2”//2” statistical |Lem 1
Hyp (S,) for some Si e S,
but A did not make an ora-
cle query returning C.

Bad Event 6[Server is not corrupted and|q?/2" statistical
(0[|D%) or (0]|D%) have al-
ready been queried to Hyg
at the point when Sim tries
to program them.

Bad Event 7|Server is not corrupted, A|negligible |Unforg. of|Lem 3

sends (E,F, C’) to Server, Blind Sig-
the signature verifies, £ ¢ & nature
and there is no unused entry
in Tgen-
Bad Event 8|Server is not corrupted, A|negligible [CCA2 Enc|Lem 2
sends (E,ﬁ', C’) to Server,| Scheme

the signature verifies, £ ¢ &
and B = DECgx(E) € B.
Bad Event 9|For some y1,y2 such that|\ - q/2" statistical
(O[|D,y1), (1||D,y2) are in
Tie: (nlly2) & 2! = 07|,
where Z} € Z and there
is no entry (-,-,-,Z;,t;) €
Tgen, With t} # L.

Fig. 1. Table of Bad Events occurring in the simulation.

TMPS: Ticket-Mediated Password Strengthening 245

exception that (1) It knows all the honest users passwords and keys (since it
controls Env); (2) It receives PKg externally from its CCA2 challenger (and
does not know the corresponding SKg), (3) It aborts and outputs 0,1 with
probability 1 /2 if A requests a Server corruption. Sim chooses random strings
Bi, B”B Upon corruption of party U;, A’ Sim sends B}, B'; back to its CCA2
Challenger. The CCA2 challenger chooses b— {0,1} and returns an encryption
of Bj if b = 0 and an encryption of B’ 5 if b = 1. Let E* denote the challenge
ciphertext that A’ receives in return. A’ continues to play the part of Sim, but
includes challenge ciphertext £E* in the information returned for the corruption
request for party U;, instead of a newly generated ciphertext. When responding
to UNLOCK queries (E F) Sim must decrypt using SKg if E ¢ £. But in this
case, either (1) A’ has not yet requested/received its challenge ciphertext from
the CCA2 challenger or (2) E # E*, since E* € €. So A’ forwards the decryption
query E to its CCA2 oracle. Recall that throughout the experiment, A’ (playing
the part of Sim) monitors all queries made to the random oracles. If an UNLOCK
request is made with a valid ticket that includes E* and a C’; value corresponding
to the correct password, A’ chooses a value for D; at random (without querying
oracle Hkp). If, at any point, Case 1: a query to Hkp of the form (BJ‘,*) is
made or some CCA2 decryption oracle query yields value B;, then A’ aborts the
experiment and returns 0 to its challenger. If, at any point, Case 2: a query to
Hyp of the form (B’;»7 x) is made or some CCA2 decryption oracle query yields

value B’ ;’», then A’ aborts the experiment and returns 1 to its challenger. If the
experiment completes without the above cases occurring, A’ flips a coin and
returns the outcome to its challenger.

Now, note that if Bad Event 2 or 8 occur with non-negligible probability
p = p(n), then we must have that Pr[b = 0 A Case 1 occurs | = Pr[b = 1 A
Case 2 occurs | = p/2. .

On the other hand, it is always the case that Pr[b =0 A Case 2 occurs | =
Pr[b = 1 A Case 1 occurs | = ¢/2"t1 4+ X /271 where ¢ is the total number
of distinct oracle queries made during the experiment. This is because when
b = 0, there is no information at all about B’ ; contained in adversary A’s view

(unless B’ = B;; for some (i',5’) # (4, j), which occurs with probability at most
N'/2"*1) and so A can only happen to query the oracle on B’} at random. The
case for b = 1 follows by identical reasoning.

Thus, the distinguishing advantage of CCA2 adversary A’ is p/2 — ¢q/2"+1 —
N\ /2"*1 which is non-negligible, since p is non-negligible. This implies a contra-
diction to the CCA2 security of the underlying encryption scheme.

Lemma 3. Assuming the unforgeability of the blind signature scheme (see Def-
inition 7), Bad Fvent 7 occurs with at most negligible probability in the Ideal
experiment.

The proof proceeds by showing that if Bad Event 7 occurs with non-negligible
probability for some efficient adversary A, then, by definition, we obtain an effi-
cient adversary A’ who submits a larger number of valid UNLOCK requests than

246 J. Kelsey et al.

there are valid tickets obtained from the ideal functionality. But note that each
valid UNLOCK request is accompanied by a fresh blind signature F. Moreover,
the number of valid signatures obtained from the signer corresponds to the num-
ber of valid tickets obtained. Thus, adversary A can be used to obtain adversary
A’ such that, according to Definition 7, breaks the security of the blind signature
scheme.

Conditioned on the Bad Events not occurring, the only difference between a
Real and Ideal execution, is that in the Ideal execution in Step (10b) the simu-
lator submits the next available (E’, F) pair, whereas in the Real execution the
order of submitted (E’ ¥a) pairs depends on which party is making the UNLOCK
request. However, the blindness property of the blind signature scheme ensures
that given a set of interactions and message signature pairs, the signer cannot
tell in which order the message signature pairs were generated. Indeed, this is
the case even when (PKg, SKY) are adversarially generated. Thus, the view of
the adversary is indistinguishable in the two cases. We therefore conclude with
the following lemma.

Lemma 4. Assuming the blindness of the blind signature scheme (see Defini-
tion 7), the Ideal and Real output distributions are computationally indistinguish-
able.

6 Performance and Implementation

The TMPS protocol requires several primitives: (1) password hashing (e.g.,
PBKDF2 or Argon2), (2) public key encryption (e.g. RSA or El Gamal), (3)
blind signatures (e.g. RSA or ElGamal), and (4) hash functions and HMAC
(e.g., using SHA256 or Blake2).

The protocol permits a great deal of flexibility in choice of underlying cryp-
tographic primitives. Notably, there are proposed post-quantum algorithms that
meet these requirements.

We implemented our protocol in Python'?, using the Cryptography mod-
ule, which provides a Python frontend for OpenSSL calls. The protocol allows
a choice of underlying primitives; we used RSA with 3072-bit moduli for (blind)
signatures and public key encryption, along with SHA256 for hashing, and
PBKDF2 HMAC _ SHA2 for password-hashing.

All measurements were performed on a Macbook Pro (3.5 GHz Intel Core i7)*3.
While this is not an optimized implementation, it allows us to obtain concrete per-
formance numbers, and it demonstrates the practicality of the scheme.

6.1 Requesting a Ticket

On the user device, each ticket REQUEST requires the following operations:
(1) one password hash computation, (2) generating 2n random bits, (3) one

12 We will make source code available on a public-facing git repository.
13 Any mention of commercial products within the paper is for information only; it does
not imply recommendation or endorsement by NIST.

TMPS: Ticket-Mediated Password Strengthening 247

public key encryption, (4) blinding and unblinding one signature request, (5)
one HMAC computation, and (6) two hash operations.

With RSA, this is comparable to the work needed to set up a TLS connection.
Thus, devices that can set up a TLS connection can REQUEST tickets. The
slowest part of this process on the user device is likely to be the password hash
computation, which can be tuned by choosing its hardness parameters. In our
implementation, each REQUEST required about 0.008 seconds on the user side.
On the server, each REQUEST requires only a blind signature. With RSA, this
is approximately the same cost as a normal RSA signature'*. In our implemen-
tation, each REQUEST required about 0.076 seconds on the server side.

6.2 Unlocking a Ticket

On the user device, each UNLOCK requires (1) one password hash, one HMAC
and two hash computations. Again, the password hash is almost certain to be
the slowest part of this process. In our implementation, each UNLOCK required
about 0.0049s on the user side.

On the server, an UNLOCK call requires looking up a value in a list of
previously-used tickets, a signature verification, a public key decryption and
an HMAC computation. The cryptography used here is comparable to setting
up a TLS connection, and so should be no problem for any server. In our imple-
mentation, each UNLOCK required about 0.002 seconds on the server side.

6.3 Storage

Keeping track of the previously-used tickets requires some storage, but not a huge
amount. We can hash the value of F from the ticket (the public-key encrypted
value) into 128 bits'® (16 bytes), e.g., by truncating SHA256 outputs at 128 bits.

A user who makes ten UNLOCK calls per day will go through fewer than 4096
tickets in one year. The server needs 64 KiB to store one 16 byte hash for each
of those tickets. If the server supports 1000 users, it will need about 64 MiB for
a year’s worth of tickets—a hash table with these values in it will fit into RAM.

Using 3072-bit RSA, each ticket requires less than 1 KiB on the user device.
Thus, even low-end devices like tablets and smartphones can easily store a year’s
supply of tickets.

7 Conclusion and Open Questions

In this paper, we have introduced TMPS (Ticket-Mediated Password Strength-
ening), a new mechanism for strengthening password-based key derivation. We

14 The extra work for getting a blind RSA signature is done by the person requesting
the blind signature-they must blind the signature request, and unblind the value
they get back from the signer.

15 We can use a relatively short hash because we don’t care about collisions—an attacker
who forces two tickets to collide simply deprives himself of the use of one of his tickets.

248 J. Kelsey et al.

have also proposed a set of protocols that implements a TMPS scheme, and
proven its security in the UC model. In the full paper, we additionally provide a
number of variant schemes which allow for different implementation constraints
and tradeoffs.

There are several questions left open by this research.

— Are there other settings where one can use tickets bound to a computation to
obtain a novel functionality? For example, could we use this kind of mech-
anism to limit accesses to a local encrypted database, or computations of a
key derivation function?

— Are there are more elaborate restrictions that can be imposed on these tickets,
without losing the users’ privacy? For example, is it possible to rate-limit
UNLOCK requests from a given user without revealing which user was using
the scheme?

— A number of additional features would be useful in implementing this scheme
on a large scale. Specifically:

e Our TMPS protocol doesn’t support key rollover well. The server can
trivially switch to new encryption/signing keys for new tickets, but in
practice, must keep the old decryption key active indefinitely. This means
that rolling over the key in response to a suspected breach at the server
isn’t workable. An improved scheme for rolling over keys would be a valu-
able addition.

e Our protocol doesn’t have a nice way to resynchronize with the server
when the user’s device is restored from backup. Developing such a mech-
anism would make TMPS more practically useful.

Acknowledgements. The authors gratefully acknowledge Bart Preneel, Vincent Rij-
men, Frank Piessens, Peihan Miao, Ray Perlner, Kristen Greene, and the many atten-
dees of the Fall 2018 DC Area Crypto Day and NIST Crypto Reading Group for useful
feedback and suggestions on this paper.

Appendix
A Definitions

In this section, we mention the key definitions used in the security analysis of
our protocol to facilitate better understanding. Our exposition closely follows [3,
14,17,26].

Definition 1 [Encryption System]. An encryption system can be defined as
a tuple of probabilistic polynomial-time algorithms ITgyc(GEN, ENC,DEC) such that:

1. The key-generation algorithm GEN takes as input the security parameter 1™
and outputs a key K.

2. The encryption algorithm ENC takes as input a key K and a plaintext message
M € {0,1}*, and outputs a ciphertext C where C' «— ENCk (M).

TMPS: Ticket-Mediated Password Strengthening 249

8. The decryption algorithm DEC takes as input a key and a ciphertext, and
outputs a message. We assume without loss of generality that the decryption
algorithm corresponding ENCg is DECk such that M = DECk (C) and for every
n, every key K output by GEN(1"), and every M € {0,1}*, it holds that
DEC (ENCy (M)) = M.

The Chosen-Ciphertext Attack (CCA) Security Experiment
PrivK . (n): Consider the following experiment for an encryption system
ITgye = (GEN, ENC,DEC), adversary A, and value n for the security parameter.

1. A random key K is generated by running GEN(1").

2. The adversary A is given input 1" and oracle access to ENCx (-) and DECk(+).
It outputs a pair of messages My, M; of the same length.

3. A random bit b «— {0,1} is chosen, and then a ciphertext C' < ENCx (M) is
computed and given to A. We call C the challenge ciphertext.

4. The adversary A continues to have oracle access to ENCx () and DECk (+), but
is not allowed to query the latter on the challenge ciphertext itself. Eventually,
A outputs a bit b’

5. The output of the experiment is defined to be 1 if ¥ = b, and 0 otherwise.

Definition 2 [CCA Security]. An encryption system ITgyc has indistinguish-
able encryptions under a chosen-ciphertext attack (or is CCA-secure) if for all
probabilistic polynomial-time adversaries A there exists a negligible function negl
such that:

1
PrPrivK%,,.(n) =1] < 3 + negl(n),
where the probability is taken over all random coins used in the experiment.
Other variants of the CCA Security definition are defined below.

Definition 3 [Chosen Plaintext Attack (CPA) Security]. Similar to the
security experiment of CCA except that the Adversary A is not given access to
decryption oracle at step 2 and step 4.

Definition 4 [Non-adaptive CCA or CCA1 Security]. Similar to the secu-
rity experiment of CCA except that the Adversary A is not given access to decryp-
tion oracle at step 4.

Definition 5 [Adaptive CCA or CCA2 Security]. Similar to the security
experiment of CCA where the Adversary A is allowed to perform a polynomially
bounded number of encryptions, decryptions or other calculations over inputs of
its choice except on the challenge ciphertext.

Definition 6 [Signature Scheme]. A signature scheme is a tuple of proba-
bilistic polynomial-time algorithms ITsc(GEN, SIGN, VERIFY) such that:

1. The key-generation algorithm GEN takes as input a security parameter 1™ and
outputs a pair of keys (PK,SK). These are called the public key and the
private key, respectively.

250 J. Kelsey et al.

2. The signing algorithm SIGN takes as input a private key SK and a message
M from some underlying message space. It outputs a signature F' represented
as F — SIGNSK(M),

3. The deterministic verification algorithm VERIFY takes as input a public key
PK, a message M, and a signature F'. It outputs a bit b represented as b =
VERIFYpg (M, F) where b =1 means valid and b = 0 means invalid.

We require that for every n, every (PK,SK) output by GEN(1"), and every mes-
sage M in the appropriate underlying plaintext space, it holds that

VERIFY p (M, SIGNgx (M)) = 1.
We say F' is a valid signature on a message M if VERIFYpg (M, F) = 1.

Definition 7 [Blind Signature]. A 2-move blind signature scheme is
an interactive signature scheme with signer S and wuser U and can be
defined as a tuple of probabilistic polynomial-time algorithms Ilgsic =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1™
and outputs a pair of keys (PK,SK). These are called the public key and the
private key, respectively.

2. Signature Issuing. The parties execute the following protocol, denoted
(U(PK,M),S(SK)):

(a) M* «— BLIND(M): The user blinds the message M to obtain M* and
sends to the signer.

(b) F* — SIGNgx (M™*): The signer outputs a signature F* on input of mes-
sage M* and private key SK and sends to the user.

(¢) F < UBLIND(F*): The user unblinds the signature F* to obtain F. Note
that the user inputs additional private state to the UBLIND algorithm,
which we leave implicit.

3. The deterministic verification algorithm BVERIFY takes as input a public key
PK, a message M, and a signature F. It outputs a bit b where b =1 means
valid and b = 0 means invalid.

We require that for every mn, every (PK,SK) output by GEN(1™), and every
message M € {0,1}" and any F output by U in the joint execution of
(U(PK,M),S(SK)), it holds that

BVERIFYpy (M, F) = 1.

The security of blind signature schemes requires two properties, namely unforge-
ability and blindness.

Definition 8 [Unforgeability]. A 2-move blind signature scheme Ipsic =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) is called unforgeable if for any efficient algo-
IIpsrc

rithm A the probability that experiment Unforge, (n) evaluates to 1 is neg-
ligible (as a function of n) where

TMPS: Ticket-Mediated Password Strengthening 251

; A
Ezperiment Forgey; .

1. (SK, PK) « GEN(1")

2. ((My,Fy), -+, (Myy1, Fryr)) — ACSSEDT(PK) Return 1 iff
(a) My # M; for1<i<j<k+1and
(b) BVERIFYpr (M, F;) =1 foralli=1,2,--- ,k+ 1, and
(¢c) at most k interactions with (-,S(SK))™ were completed.

Definition 9 [Blindness]. A 2-move blind signature scheme Ipsic =
(GEN, BLIND, UBLIND, SIGN, BVERIFY) is called blind if for any efficient algorithm
A the probability that experiment BlindisES1¢ (n) evaluates to 1 is negligibly close

to % where
s sodilssia
Experiment Blindg s

1. (PK, My, M, stfing) — A(find,1™)

2. b {0,1}

3. Stissue — A(U(PK’Mb)">1’W(PK’MI*U")I(issue, st¢ina) and let Fy, Fy_; denote
the (possibly undefined) local outputs of U(PK, My) resp. U(PK, My _y)

4. set (F(),Fl) == (L,l) if FQ =1 or F1 =1

5. b* = A(guess, Fo, F1, stissue)

6. return 1 iff b = b*.

Definition 10 [Group Signature]. A group signature scheme Igsic =
(GK,,GSIGN, GVERIFY, OPEN) consists of four polynomial-time algorithms:

1. The randomized group key generation algorithm GK, takes input a security
parameter 1™ and 1™ where m € N is the group size and outputs a tuple
(gPK,gmSK,gSK), where gPK is the group public key, gmSK is the group
manager’s secret key, and gSK is an n-vector of keys with gSK][i] being a
secret signing key for player i € [m).

2. The randomized group signing algorithm GSIGN takes as input a secret signing
key gSK|[i] and a message M to return a signature of M under gSKJ[i] i € [m).

3. The deterministic group signature verification algorithm GVERIFY takes as
iput the group public key gPK, a message M, and a candidate signature F
for M to return either 1 or 0.

4. The deterministic opening algorithm OPEN takes as input the group manager
secret key gmSK , a message M, and a signature F' of M to return an identity
i or the symbol L to indicate failure.

Correctness: The scheme must satisfy the following correctness requirement. For
alln,m € N, all (9PK,gmSK, gSK) € [GK4(1",1™)], all i € [n] and all M €
{0,1)"

GVERIFY(¢gPK, M,GSIGN(gSK]Ji], M)) =1 and

OPEN(gmSK, M,GSIGN(gSK][i], M)) =i
Definitions of security in the Universal Composability (UC) framework. We

refer to previous work [9,10,21] for definitions of UC secure computation in
the adaptive-corruption setting.

252

J. Kelsey et al.

References

1.

10.

11.

12.

13.

14.

Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: password-based thresh-
old authentication. In: ACM Conference on Computer and Communications Secu-
rity, pp. 2042-2059. ACM (2018)

. Akhawe, D.: How dropbox securely stores your passwords (2016). https://

blogs.dropbox.com/tech/2016 /09 /how-dropbox-securely-stores-your- passwords/ .
Accessed 4 January 2019

. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal

definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614-629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure

against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139-155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11. http://dl.acm.org/citation.cfm?id=1756169.1756185

. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols

secure against dictionary attacks. In: IEEE Symposium on Research in Security
and Privacy, pp. 72-84 (1992)

. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-

hard functions for password hashing and other applications. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbriicken, Germany, 21—
24 March 2016, pp. 292-302. IEEE (2016). https://doi.org/10.1109/EuroSP.2016.
31, http://dx.doi.org/10.1109/EuroSP.2016.31

. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-

derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280—312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9 11

. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-authenticated

secret sharing UC-secure against transient corruptions. Cryptology ePrint Archive,
Report 2015/006 (2015). http://eprint.iacr.org,/2015/006

. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143-202 (2000). https://doi.org/10.1007,/s001459910006
Canetti, R., Damgard, 1., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262-279. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6 17

Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639-648. ACM Press, May 1996. https://
doi.org/10.1145/237814.238015

Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(In)Differentiability results for H* and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348-366. Springer, Heidelberg (2012).
https://doi.org/10.1007 /978-3-642-32009-5 21

Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia
PRF service. In: 24th USENIX Security Symposium (USENIX Security 15), pp.
547-562. USENIX Association, Washington, D.C. (2015). https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation /everspaugh
Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. Cryptology ePrint Archive, Report 2012/006
(2012). http://eprint.iacr.org/2012/006

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
http://dl.acm.org/citation.cfm?id=1756169.1756185
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1109/EuroSP.2016.31
http://dx.doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
http://eprint.iacr.org/2015/006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/978-3-642-32009-5_21
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
http://eprint.iacr.org/2012/006

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

TMPS: Ticket-Mediated Password Strengthening 253

Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji, A.,
Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39-58. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61204-1 3

Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456-486. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 15

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

Kelsey, J., Dachman-Soled, D., Mishra, S., Turan, M.S.: TMPS: ticket-mediated
password strengthening. IACR Cryptology ePrint Archive 2019, 543 (2019).
https://eprint.iacr.org/2019/543

Lai, R.W.F., Egger, C., Reinert, M., Chow, S.S.M., Maffei, M., Schréder, D.:
Simple password-hardened encryption services. In: 27th USENIX Security Sympo-
sium (USENIX Security 18), pp. 1405-1421. USENIX Association, Baltimore, MD
(2018). https://www.usenix.org/conference/usenixsecurity 18 /presentation /lai

Lai, R.W.F., Egger, C., Schroder, D., Chow, S.S.M.: Phoenix: rebirth of
a cryptographic password-hardening service. In: 26th USENIX Security Sym-
posium (USENIX Security 17), pp. 899-916. USENIX Association, Vancou-
ver, BC (2017). https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation /lai

Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117-132. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00862-7 8

Mani, A.: Life of a password. In: Real World Crypto 2015 (2015). https://rwc.iacr.
org/2015/Slides/RWC-2015- Amani.pdf

Muffett, A.: Facebook: password hashing & authentication. Presentation at
Passwords 2014 Conference, NTNU (2014). https://video.adm.ntnu.no/pres/
54b660049af94

Muffett, A.: Life of a password. Presentation at Real World Crypto 2015 (2015)
Schneider, J., Fleischhacker, N., Schréder, D., Backes, M.: Efficient cryptographic
password hardening services from partially oblivious commitments. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24-28 October 2016, pp. 1192-1203. ACM (2016). http://dl.acm.
org/citation.cfm?id=2976749

Schréder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662-679.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 39
Sénmez Turan, M., Barker, E.B., Burr, W.E., Chen, L.: SP 800-132. recommen-
dation for password-based key derivation: Part 1: Storage applications. Technical
report, National Institute of Standards & Technology, Gaithersburg, MD, United
States (2010)

Wu, T.: The SRP authentication and key exchange system. RFC 2945, pp. 1-8
(2000). https://doi.org/10.17487/RFC2945

https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://eprint.iacr.org/2019/543
https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://doi.org/10.1007/978-3-642-00862-7_8
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://video.adm.ntnu.no/pres/54b660049af94
https://video.adm.ntnu.no/pres/54b660049af94
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.17487/RFC2945

l‘)

Check for
updates

Overdrive2k: Efficient Secure MPC
over Zsor from Somewhat
Homomorphic Encryption

Emmanuela Orsini'®, Nigel P. Smart’?®)®, and Frederik Vercauteren'

1 imec-COSIC, KU Leuven, Leuven, Belgium
{emmanuela.orsini,nigel.smart,frederik.vercauteren}@kuleuven.be
2 University of Bristol, Bristol, UK

Abstract. Recently, Cramer et al. (CRYPTO 2018) presented a pro-
tocol, SPDZ2k, for actively secure multiparty computation for dishon-
est majority in the pre-processing model over the ring Zox, instead of
over a prime field F,. Their technique used oblivious transfer for the
pre-processing phase, more specifically the MASCOT protocol (Keller et
al. CCS 2016). In this paper we describe a more efficient technique for
secure multiparty computation over Z,x based on somewhat homomor-
phic encryption. In particular we adapt the Overdrive approach (Keller
et al. EUROCRYPT 2018) to obtain a protocol which is more like the
original SPDZ protocol (Damgard et al. CRYPTO 2012). To accomplish
this we introduce a special packing technique for the BGV encryption
scheme operating on the plaintext space defined by the SPDZ2k proto-
col, extending the ciphertext packing method used in SPDZ to the case
of Z,x. We also present a more complete pre-processing phase for secure
computation modulo 2* by adding a new technique to produce shared
random bits.

1 Introduction

The last ten years have seen a remarkable advance in practical protocols and
systems to perform secure Multi-Party Computation (MPC). A major pillar of
this advance has been in the case of a dishonest majority, in which one can obtain
so-called active-security-with-abort. In this situation one is interested in MPC
protocols for n parties, where n > 2, which are practical even for values of n in
the tens (or potentially hundreds). Following the initial work of Bendlin et al. [4],
the main breakthrough came with the SPDZ protocol by Damgard et al. [13]
and its improvements, e.g. [12]. This protocol works in an offline/online manner
over finite fields. In the offline phase, function-independent pre-processing is
performed, typically to generate Beaver triples [3]. In the online phase, this
pre-processing is consumed as the desired function is securely evaluated. Active
security is obtained by parties not only sharing data, but also sharing a linear
MAC on this data together with a share of the MAC key. Validation of correct
behavior is done via a MAC check protocol which verifies that all opened data
shares and all privately held MAC and key shares are consistent.

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 254-283, 2020.
https://doi.org/10.1007/978-3-030-40186-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_12&domain=pdf
http://orcid.org/0000-0002-1917-1833
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7208-9599
https://doi.org/10.1007/978-3-030-40186-3_12

Overdrive2k: Efficient Secure MPC over Zq 255

Over the previous decade there has been a multitude of methods to pro-
duce the offline data needed for the SPDZ protocol. The initial protocol, [4], in
this family used a linearly homomorphic encryption scheme, and pairwise zero-
knowledge proofs to correctly generate the offline data. This approach works
well for a small number of parties, but does not scale for larger values of n. The
linearly homomorphic encryption method was replaced in the SPDZ paper [13]
by a level-one Somewhat Homomorphic Encryption (SHE) scheme. The main
efficiency improvement came from using the BGV [5] SHE scheme, and mak-
ing extensive use of the packing technique of Smart and Vercauteren [21]. On
the other hand, the main inefficiency was that, to obtain active security, one
needed to prove knowledge of plaintexts and correctness of ciphertexts. These
zero-knowledge proofs can (currently) only be done in a non-tight manner, and
with a relatively large soundness error. This inefficiency in soundness error is
usually overcome using standard amortization techniques. In [12], a different
zero-knowledge proof was utilized which, whilst asymptotically better than that
of [13], turned out to be impractical.

Attention then switched to Oblivious Transfer (OT) based pre-processing,
such as the Tiny-OT [20] and MASCOT [18] protocols. Finally, in the last two
years attention switched back to homomorphic encryption based protocols with
the Overdrive paper by Keller et al. [19]. Overdrive gives two variants of the
SPDZ protocol: Low-Gear and High-Gear. The Low-Gear variant uses the origi-
nal linearly homomorphic encryption based methodology of [4], but implements
it using a level-zero LWE-based SHE scheme (in this instance, BGV). The result-
ing method is very efficient for a small number of parties due to the inherent
packing one can use. For two parties the authors of [19] suggest it is six to four-
teen times faster than MASCOT [18, Tables2 and 4] (with the precise figure
depending on the network latency).

In the High-Gear variant of Overdrive the authors return to the original
zero-knowledge proofs of [13], and make improvements by both reducing the
lack of tightness (although not totally eliminating it), and enabling batching of
the zero-knowledge proofs across all n parties on top of the usual amortization
techniques. This last optimization results in an immediate improvement by a
factor of n. Thus, for larger values of n, High-Gear is currently the best method
for SPDZ-family style pre-processing over finite fields. In [19, Tables 2 and 4] the
High-Gear protocol for two parties is shown to be up to six times faster than
MASCOT (again depending on the network latency); whilst for 100 parties, [19,
Table 7] implies a 13 fold improvement over MASCOT.

Very recently a new protocol was introduced to the SPDZ family in the work
of Cramer et al. [10], referred to there, and here, by the shorthand SPDZ2k.
Instead of defining MPC protocols over a finite field, SPDZ2k defines MPC pro-
tocols over a ring Z,r. Designing MPC protocols over rings Z, is potentially
useful in many applications, and could significantly simplify implementations,
such as in the case of evaluations of functions containing comparisons and bit-
wise operations. To enable computation over such rings, SPDZ2k makes changes
to the way MACs are held, and verified, and more generally to how the pre-

256 E. Orsini et al.

processing works. The paper [10] bases its pre-processing on a MASCOT-style
methodology, hence the two protocols are inherently very similar. Indeed, recent
work by Damgard et al. [11] implemented the SPDZ2k protocol showing that its
performance is comparable to the MASCOT one.

Establishing whether an efficient pre-processing for MPC over Zgx can be
provided via homomorphic encryption was left as an open problem by the authors
of SPDZ2k. A quick naive investigation seems to imply that this is a non-starter.
The main reason the SHE-based approach (either Low-Gear or High-Gear) is
efficient is in the possibility of packing data into ciphertexts and performing
many operations in parallel. For SPDZ over finite prime fields one selects the
underlying ring in BGV (of degree N) to completely split over the finite field, thus
one obtains N-fold parallelism. When extending the SHE schemes to work with
a plaintext modulus of 2%, instead of a prime p, the packing capacity decreases
dramatically and one cannot approach anything like N-fold parallelism.

Our Contribution. In this paper we revisit the idea of using a SHE-based
pre-processing, i.e. Overdrive-based, for the SPDZ2k family. We show that the
above naive analysis, which would discount its applicability, is actually wrong.

Our first contribution is a new packing methodology which is particularly
tailored to the pre-processing phase of SPDZ2k. In particular, we obtain (roughly
speaking) a N/5 fold parallelism for High-Gear when mapped to working modulo
2% Since the High-Gear protocol is the state-of-the-art for the SPDZ family
protocols in terms of efficiency for large numbers of parties, we focus our work
on the High-Gear of Overdrive!.

Using our new packing technique comes with difficulties. The main issue is
that the packing for level-zero ciphertexts of a plaintext message is different from
the packing used at level one. Thus there is a need to modify the distributed
decryption procedure in one important case, namely when one needs to obtain
a fresh encryption of the underlying plaintext rather than an additive secret
sharing of it. This in turn raises another problem: the distributed decryption
protocol requires pairs of ciphertexts with special properties associated to the
packing. A party needs to generate two ciphertexts, one at level zero and one at
level one, which encrypt the same value, but with different packings. Since parties
could be adversarial, this means that we also need to adapt the zero-knowledge
proofs associated with the High-Gear protocol to enable such pairs of ciphertexts
to be produced correctly. Some of our amortized zero-knowledge proofs need to
prove a more complex statement associated to our packing techniques, with an
overall estimated factor 2/3 loss in performance compared to HighGear.

Given that Overdrive is up to fourteen times faster that MASCOT, depend-
ing on the number of parties, and that MASCOT and SPDZ2k perform very

! Whilst writing this paper the TopGear [2] variant of High-Gear was published on
e-print. This essentially allows the High-Gear protocol to be run at higher security
levels for roughly the same performance. The TopGear improvements cannot be
applied directly to our work, since the zero-knowledge proofs here require challenge
spaces to be in F, to ensure correctness.

Overdrive2k: Efficient Secure MPC over Zq 257

similarly, we expect that our protocol is up to two times more efficient than the
OT-based protocols in the two party setting. As the number of parties grows
this gap will increase. Whilst these only indicate rough expected performance
figures, we give a more concrete estimation of the communication complexity of
our protocol in Sect. 7.

Our second contribution is in the construction of a more complete prepro-
cessing phase for SPDZ-like protocols modulo 2¥, with active security in the
dishonest majority setting. Other than a protocol for producing multiplication
triples, we show how to efficiently produce random shared bits in the SPDZ2k
framework using a trick similar to the one used in the SPDZ protocol over [F),.
Protocols over fields make use of the squaring operation over finite fields of odd
characteristic which is a 2-to-1 map, whereas, modulo 2%, this operation is a
4-to-1 map. We show a simple trick that permits to use essentially the same
technique used mod p in the modulo 2* setting.?

2 Preliminaries

In this section we introduce some important notation, describe the security
model, recap on the SPDZ2k paper’s requirements for the offline phase [10],
plus the necessary background on the BGV Somewhat Homomorphic Encryp-
tion (SHE) scheme [5]. By way of notation we let a «— A denote randomly
assigning a value a from a set A, where we assume a uniform distribution on A.
If A is an algorithm, we let a — A denote assignment of the output, where the
probability distribution is over the random coins of A; we also let a < b be a
shorthand for a < {b}, i.e. to denote normal variable assignment. We denote by
[d] the set of integers {1,...,d}.

Security Model. We prove security of our protocols in the universal com-
position (UC) framework of Canetti [7], and assume familiarity with this. Our
protocols work with n parties, Py, ..., P,, and we consider security against mali-
cious, static adversaries, i.e. corruption may only take place before the protocols
start, corrupting up to n — 1 parties. Informally, when we say that a protocol
IT securely implements a functionality F with computational (resp. statistical)
security parameter x (resp. s), our theorems guarantee that the advantage of
any environment Z in distinguishing the ideal and real executions is in O(27")
(resp. O(277)).

In some of our protocols we will need a coin-tossing functionality Frand, which
given a set D, outputs a uniformly random element r from D. This functionality
can be efficiently implemented in the random oracle model as described in [10].

2 A similar trick for random shared bit generation is described in a concurrent and
independent work [11].

258 E. Orsini et al.

2.1 The SPDZ2k Protocol

The SPDZ2k protocol [10] is parametrized by two integers k and s, where k
defines the modulus 2% over which the MPC protocol will run, and s is a statis-
tical security parameter, for simplicity of exposition we will set ¢ = k 4+ s. For
the reader who is new to the SPDZ2k protocol think of k = s = 64. As we are
mainly focusing on the offline phase our complexity does not depend on whether
k < sor k > s, it only depends on the value of t = k + s.

The protocol performs MPC over the underlying ring Zqx, however each value
x € Zyr is secret shared amongst the n parties via values [x]; € Zot, such that
z = Y1 [2]; (mod 2*). By abusing notation we also think of x as the sum
S [z]i (mod 2%), since in the main SPDZ2k online protocol the upper s bits
of x will be ignored.

Sometimes we will use [z]; to denote additive sharings of values x € Z¢,
and sometimes with domains different from Zo:. We will explicitly point this out
when we do such alterations to the basic sharing.

Each of the n parties also holds a share [a]; € Zas of a global MAC key
a=>3"lal; (mod 2"). The global MAC key is used to authenticate the shares
held by a party, in particular each party holds a value [y,]; = [- z]; € Za¢ such
that

Vo = Z[a x];=a-z (mod 2").
i=1

A secret value x € Zy: shared in this way is represented by () = {[z];, [z)i }ie[n]s
and we let (x); denote the pair of values ([z];, [« - x];) held by party P; in this
sharing.

Using this secret sharing scheme any linear function can be computed locally
by the parties, i.e. without any interaction. This is done using the method in
Fig. 1. We denote the process of executing this operation for a specific linear
function as

k
(y) < co + Zcz‘).

To perform non-linear operations the SPDZ2k protocol makes use of the
offline-online paradigm. In the offline phase various generic pre-processed data
items are produced which allow the online phase to proceed as a sequence of
linear functions and opening operations. Each opening operation in the online
phase needs to be checked for consistency, which can be done via the method
introduced in [10] (which we recap on in the full version of the paper). The
overall protocol achieves actively secure MPC with abort, with a statistical error
probability of roughly 27571°82% (see [10, Lemma 1] for more details).

2.2 The BGV SHE Scheme and Associated Number Theory

In this section we outline the details of what we require of the BGV encryption
scheme. Most of the details can be found in [5,14-16], although we will only
require a variant, which supports circuits of multiplicative depth one.

Overdrive2k: Efficient Secure MPC over Zq 259

Procedure LinearFuncShares

This procedure allows the computation of an arbitrary linear function y = co +
ZI;:1 ¢;-x; mod 2° given public inputs co, c1, . .., cx and the parties shares (z;); =
{[z,]:, [’ymj]i}f:l,i € [n]. The output are the shares of (y).

Each P;,i # 1, sets [y]; = Z?:l ¢; - [z;]i (mod 2°)

Party Pi sets [y]1 = co + Z§:1 ¢; - [zj]1 (mod 2%)

Each party P; sets [a-y]s = [a]i - co + Zle ¢; - [a - x]i (mod 2%)
Each party P; sets (y)i = {[yli, [o- y]i}

=W D=

Fig. 1. Procedure to locally compute linear functions on shares

The Rings: The BGV encryption scheme, as we will use it, is built around the
arithmetic of the cyclotomic ring R = Z[X]/(®, (X)), where @,,(X) is the m-th
cyclotomic polynomial. For an integer ¢ > 0, we denote by R, the ring obtained
as reduction of R modulo ¢. In this work we will be taking m to be a prime p, and
not the usual power of two as in most other papers. This is because we require
that R factors modulo 2 into a number r of distinct irreducible polynomials of
degree d. To ensure better underlying geometry of the ring, i.e. the ring constant
¢m is small (see [13]), we then select m to be prime.

Our main optimization to enable an efficient offline phase for SPDZ2k will
rely on us looking at the plaintext space in different ways. The main plaintext
space P we will use is equivalent to the 2-adic local ring, approximated to the
t-th coefficient, namely

P = Ly [X]/(,(X)).
As can be found in [8], and used extensively in [14], the ring P decomposes into
r irreducible factors each of degree d, as

P = (L [X]/F1(X)) x ... x (22 [X]/F(X)) = P,

where deg(F;(X)) = d is the order of the element 2 in F;, and each F;(X)
is the Hensel lift of the associated factor f;(X) of the factorization ®,(X) =
fi(X) -+ fr(X) (mod 2). We write N = deg(P,(X)) = ¢(p) = p—1 and so
N =r-d. We will denote by I : P — P the map which takes elements in P
and maps them to the slot representation P, and by ¥,: the map from the global

polynomial ring R representation to the slot P representation, i.e.
uvlgt R — f

Note that this map takes a polynomial f in R, maps it to P, via reduction
modulo 2¢, and then turns the resulting polynomial into its slot representation,
thus Wo:(f) = I'(f (mod 2')). We also let I'"! denote the inverse map of I',

which maps an element in P to its equivalent element in P. See Fig.2 for a
summary of these, and other maps, we will be using?.

3 We will define the maps ©1, @5 and xi, xy in Fig. 2 in the next section.

260 E. Orsini et al.

Fig. 2. Summary of the maps we use between different rings and representations

It is well known that the number of monic irreducible polynomials of degree
d over a finite field I, is equal to

=S wafi) - d

ild

where p(-) is the Mobius function. This means that the number of SIMD “slots”
r, using the packing technique of Smart and Vercauteren [21], is bounded by this
value. In particular » < 2¢, and hence as N gets bigger we get progressively less
efficient if we perform packing in a naive manner.

The problem occurs because we are interested in the plaintext space Zot,
but the packing technique of [21] will only use the degree zero coefficient of
each slot. Thus as d becomes larger for large NV, the density of useful packing
becomes smaller, and the ratio of data to plaintext space from this naive packing
isr/N =1/d.

The Distributions: Following [16, Full version, Appendix A.5] and [1, Docu-
mentation] we need different distributions in our protocol.

— HWT(h, N): This generates a vector of length N with elements chosen at
random from {—1,0,1} subject to the condition that the number of non-zero
elements is equal to h.

— Z0(0.5, N): This generates a vector of length N with elements chosen from
{=1,0,1} such that the probability of each coefficient is p_y = 1/4, pg = 1/2
and p; = 1/4.

— dN(¢?, N): This generates a vector of length N with elements chosen accord-
ing to an approximation to the discrete Gaussian distribution with variance
a2

— RC(0.5,02, N): This generates a triple of elements (v, eg, e;) where v is sam-
pled from ZO4(0.5, N) and eg and e; are sampled from dNg(o2, N).

— U(g, N): This generates a vector of length N with elements generated uni-
formly modulo gq.

Overdrive2k: Efficient Secure MPC over Z,x 261

In the full version of the paper we present the traditional noise analysis for the
BGYV scheme adapted to our specific application; this is adapted from [16], using
the above distributions.

The Two Level BGV Scheme: We consider a two-leveled homomorphic
scheme, given by three algorithms/protocols Eggy = {BGV.KeyGen, BGV.Enc,
BGV.Dec}, which is parametrized by a security parameter x, and defined as
follows. First we fix two moduli gy and ¢; such that ¢; = pg - p1 and g9 = po,
where pg, p1 are prime numbers. Encryption generates level one ciphertexts, i.e.
with respect to the largest modulo ¢;, and level one ciphertexts can be moved
to level zero ciphertexts via the modulus switching operation. We require

pr=1 (mod?2") and py—1=p; —1=0 (mod p).

The first condition is to enable modulus switching to be performed efficiently,
whereas the second is to enable fast arithmetic using Number Theoretic Fourier
Transforms.

— BGV.KeyGen(1%): It outputs a secret key st which is randomly selected from
a distribution with Hamming weight h, i.e. HWT(h, N), much as in other
systems, e.g. HELib [17] and SCALE [1] etc. The public key, pt, is of the
form (a, b), such that

a+—U(g,N) and b=a-st+2" ¢ (modq),

where € « dN(o?, N). This algorithm also outputs the relinearisation data
(a5€,582’b58,5€2) [6]7 where

agese2 < U(q, N) and Dgp gp> = Ggp o2 ~5{’+2toe557532 fp1'5E2 (mod ¢1),

with g g2 < dN(0%, N). We fix o = 3.16 in what follows.
— BGV.Enc(m,r; pt): Given a plaintext m € P, the encryption algorithm sam-
ples r = (v, eg, e1) «— RC(0.5,02,n), i.e.

v+ Z0(0.5,N) and eg,e; «— dN(o?, N),
and then sets
co=b-v+2"-eg+m (modq), ci=a-v+2"-e; (modq).

Hence the initial ciphertext is ¢t = (1, ¢, ¢1), where the first index denotes
the level (initially set to be equal to one). We define a modulus switching
operation which allows us to move from a level one to a level zero ciphertext,
without altering the plaintext polynomial, that is

(0, ¢p, ;) «— SwitchMod((1,¢co,¢1)), ¢f, ¢y € Ry,-

262 E. Orsini et al.

— BGV.Dec((cg, ¢1); s8): Decryption is obtained by switching the ciphertext to
level zero (if it is not already at level zero) and then decrypting (0, ¢g, ¢1) via
the equation

(co—st-c1 (cmodgp)) (mod 2%),

which results in an element of P. The notation cmod refers to centered
modular reduction, i.e. the resulting coefficients are taken in the interval
(—q/2,q/2]. In the next sections, we will extend the decryption algorithm to
enable distributed decryption.

— Homomorphic Operations: Ciphertexts at the same level ¢ can be added,

(€, co,c1) B (£ ¢, ¢h) = (£, (co + ¢y (mod gr)), (1 + ¢y (mod gr)),

with the result being a ciphertext, which encodes a plaintext that is the sum
of the two plaintexts of the initial ciphertexts.

Ciphertexts at level one can be multiplied together to obtain a ciphertext
at level zero, where the output ciphertext encodes a plaintext which is the
product of the plaintexts encoded by the input plaintexts. We do not present
the method here, although it is pretty standard consisting of a modulus-
switch, tensor-operation, then relinearization. We write the operation as

(1,c0,c1) ® (1, ¢, ¢h) = (0,¢5,¢), with ¢, ¢} € Ry,.

3 Modified SHE Scheme

In this section we present a modified form of the previously presented “standard”
BGYV scheme. The main difference is that we introduce a new form of packing,
where at each ciphertext level we interpret the naive BGV plaintext space P in
a different manner. This modification enables us to obtain a final pre-processing
phase for our MPC protocol which is less inefficient than one would naively
expect.

3.1 Owur New Packing Technique

The standard packing method of using only the degree zero coefficient in each
slot will result in a very inefficient use of resources, as we have already mentioned.
Thus we introduce a new packing technique which uses more coefficients in each
slot. To do so, we first define two sets I = {i1,... 4y} and J = {j1,...,Jn}
such that |I| = |J|, and j, = 2 -4y, for all £ =1,...,|I]. The idea is to encode (in
each slot) |I| messages as coefficients of the powers X¢, with i € I, as follows.
We define a map wy for the set I, as

wr (Zp)M — - Zy[X] .
I (ml,...,mm)»—>m1-X“+...+m|H|-X”HI,

and a similar one wy for the set J. The reason why we require j, = 2 - iy, for all
¢=1,...,]I|, is that the J-encoding will typically be used to hold the result of

Overdrive2k: Efficient Secure MPC over Zq 263

a product of two [-encodings. As such we are only interested in the product of
two terms of the same degree (giving rise to the 2 -4,) and will ignore all other
cross-products that appear in the product of two I-encodings (all terms of degree
ij + iy for j # k € [[I]]). For level one ciphertexts (namely fresh ciphertexts),
we will pack a message value from M = (Zy:)"*!"l into the plaintext space P as
follows _
) M — P
XL {(ml, my) — (wi(my), . wi(m,),
with a similar map being defined for the set J. It is straightforward to see that
this is a valid packing, and will be consistent for all ciphertexts at level one,
since linear operations on elements in Im(xy) also lie in Im(xj).

For ease of convenience, we also define an “inverse” map, x; L of the map
above, which is defined on P and simply selects the correct coefficients, producing
a final output in M. We also define Supp(I), to be the set of (potentially) non-
zero coefficients in each slot in the image of wy, in particular elements in Supp(I)
are the only values which affect the value of x| ! Thus we have

Supp(ﬂ) = {(1,i1)7) (131\11\)3 (271'1)3 EERE) (rviﬂl\)}v

where the first element of each pair refers to which slot we are considering and
the second element to the power of X in that particular slot. Given an element
u in the global polynomial ring R we can define an element in M by reducing
the polynomial © modulo 2¢ then taking its image under one of the inverse maps
above. Thus we have the map

JR— M
Or: {u XL (0 ()

Given an element m € M, there are infinitely many preimages under the map
O1. At various points we will need to select one subject to a given bound B on
the coefficients of the polynomial in R. We therefore define, in Fig. 3, a procedure
which outputs an element in R, uniformly at random, subject to the constraint
that its image under @y is equal to a given element m € M and its coefficients
are bounded by B. Clearly, all of the above considerations apply also to the set
J.

3.2 The BGV Encryption Scheme with Double Packing Set

We are now ready to define our modified BGV scheme, &5y = {mBGV.KeyGen,
mBGV.Enc, mBGV.Dec}, which uses plaintext space M = (Zg:)" 1. The key
generation algorithm mBGV.KeyGen is the same as in the original BGV scheme
presented earlier, i.e. given a security parameter s, it outputs a public/private
key pair (pt,st) and the relinearisation data.

The encryption algorithm differs as it now encrypts using one of the two sets
I or J. To make the dependence clear on which set we are encrypting a message
under, we write either

ct! = (1,¢0,¢1)' = mBGV.Enc(m, r; T, pt) = BGV.Enc(I" ! (x1(m)), r; pt)

264 E. Orsini et al.

The Function ©; '(m, B)

1. Compute mz € P, the image of m under the map 1.

2. For all entries not in Supp(I), replace the zero coefficient in each slot by a
uniformly random element selected from [0, ...,2"], resulting in a uniformly
random element m% € P whose image under x; ! is also m.

3. Pull back mZ to R by computing the element mfp < W;l(m%) subject to all
coefficients lying in [0,...,2¢].

4. Select a uniformly random polynomial u € R whose coefficient infinity norm is
bounded by B/2".

5. Output mp < m’z + 2 - u.

Fig. 3. The procedure O; ' (m, B) from R to M

or
ct! = (1,¢0,¢1)) = mBGV.Enc(m, r;J, pt) = BGV.Enc(I"~*(x3(m)), r; pt),
where m € M. Similarly, the decryption algorithm is defined as
m = mBGV.Dec(ct'; s¢) = x; ' (I'(BGV.Dec(ct'; st)))

and
m = mBGV.Dec(ct’; s¢) = yj ' (I'(BGV.Dec(ct’; 5¢))).

Addition and multiplication of ciphertexts are accomplished as in the “standard”
BGV scheme, but with some notable differences. Notice we can now only add
ciphertexts at the same level when they are with respect to the same encoding.
Thus we have (say)

(1,co,c1) B (1,¢),) = (A, ¢,)

The idea is that the I encoding is used for messages at level one, and the J
encoding is used for messages at level zero, typically obtained as the result of
multiplying two level one ciphertexts.

In the following sections we will use the bracked exponent ¢t'©) on a ciphertext
to denote the “level” which the ciphertext is at, with fresh ciphertext always
being at level one. Hence, following the discussion above we will usually have:

ot = (1, co,e))! =l and ot = (0,¢0,¢1) = ot

However we might need to encrypt some messages using index set J, for exam-
ple if we wish to encrypt a fresh message and then move it directly to level
zero using a SwitchMod operation, as in (0,c}, c;)? < SwitchMod((1, co, c1)?),
where (1,cp,c1)! = Enc.mBGV(m,r;J, pt). The reason we switch encodings as
we transfer between level one and level zero is that when two ciphertexts are
multiplied at level one to produce a level zero ciphertext, the I packing will no

Overdrive2k: Efficient Secure MPC over Zq 265

longer be valid. So we switch to index set J at this point. Our multiplication is
now an operation of the form

(L, co,c1)" ® (1,¢h, c1)" = (0,¢5, ¢)"

We will clarify the dependence on I or J and the encryption level ¢ when it is
not clear from the context. More formally, in our MPC protocol, we will denote
addition and multiplication of ciphertexts as follows:

ct(fs .)

mj;+mo
ctz(f’,g) —a® ct,([f;"), for a € M,

ot — ot @ etlLD.

— ctEfl’l') H ctﬁf;’z'),

Correctness. To have correctness we need to ensure that multiplication of two
elements in Im(y) results in something correct when we restrict P to the image
of the xj map, i.e. by ignoring coeflicients which are not in the image of xj.
This is because a product of two elements in Im(yy) is not an element of Im(xy).
Looking ahead, when we use this packing technique in our MPC protocol we
need to ensure that ignoring coefficients that are not in Im(xy) does not leak
information. We shall deal with this security issue in the next sections, so for
now we consider only the correctness concern.

To select T we have two conditions: The first obvious correctness guarantee is
that the product term does not wrap around modulo each factor F;(X), so that
we require

Viel, 2-i<d.

Secondly, we need that any cross-product terms do not interfere with any of the
desired slot terms. This is implied by the equation

Vilai2>j61[7 il +227A2]a Wlthzl #j,lé 7&]

In Fig.4 we plot the growth of the maximum size of |I| versus the size of d. As
one can see, it grows in a step wise manner, looking like about d°-® in the range
under consideration here.

This analysis gives the amount of packing we can produce in a given standard
slot. To see what is the total packing ratio we can achieve, we need to look at the
number theoretic properties of the polynomials ¢, (X) for p prime. As remarked
earlier these factor modulo 2 into r factors of degree d, where d is equal to the
order of the element 2 in [F;. We can then take the maximum value of [I| from the
above calculations and compute the ratio of “useful” slots, in our application, as

r- 1]
Ty = ——.
p p— 1
For security reasons in our MPC applications we will be taking p in the range
8192 < p < 65536, so in Table 1 we present the prime values in this range which

266 E. Orsini et al.

60

40

[T

20

0 200 400 600 800 1,000
d

Fig. 4. Growth of |I| with d

Table 1. Primes with a packing density ratio greater than 0.15 in the range 8192 <
p < 65536

p|r d_ [0 -

9719 | 226 | 43 | 8 | 1808 |.186
11119 | 218 | 51 | 8 | 1744 |.156
11447 | 118 | 97 16 | 1888 |.164
13367 | 326 | 41 | 8 | 2608 |.195
14449 | 172 | 84 |16 | 2752 |.190
20857 | 316 | 66 |12 | 3792 |.181
23311 | 518 | 45 | 8 | 4144 |.177
26317 | 387 | 68 |12 | 4644 |.176
29191 | 278 105 |16 | 4448 |.152
30269 | 329 | 92 |16 | 5264 |.173
32377 | 568 | 57 |10 | 5680 |.175
38737 | 538 | 72 |13 | 6994 |.180
43691 | 1285 | 34 | 8 | 10280 | .235
61681 | 1542 | 40 | 8 | 12336 |.200

give us a ratio greater than 0.15. We see that it is possible to select p so that the
packing ratio m, approaches 0.2. Thus we can obtain an efficiency of packing of
around ¢(p)/5, as mentioned in the introduction. All that remains is to adapt
the MPC protocols to deal with this new packing methodology.

4 OverDrive Global ZKPoKs

Given a SHE scheme (in our case either Enggy or Eggv), we denote by C the
set of admissible circuits for the SHE scheme, the exact choice of C will depend

Overdrive2k: Efficient Secure MPC over Zq 267

on the underlying construction. In our protocol the decryption function will be
always correct assuming the input ciphertext is the evaluation of an admissible
circuit from C applied to ciphertexts which are marked “correct enough”. We
shall call a ciphertext valid if it is either “correct enough”, or is the output of a
circuit in C applied to “correct enough” ciphertexts.

Looking ahead, in Sect.5 we will extend the scheme &,ggv, introduced in
the previous section, to allow distributed decryption. The reason for using the
term “correct enough” is that our distributed decryption protocol will be proved
correct even if some ciphertexts are not completely valid, namely they are not
generated using the standard encryption algorithm.

In describing our protocol, we assume a key generation functionality FieyGen-
It runs BGV.KeyGen and outputs for each party P; the public key pt and an
additive share [s€]; of st for performing distributed decryption. This means that
given a public ciphertext, parties can use their shares of the st and collaborate
to decrypt it. Just as in Overdrive, SPDZ and SCALE [1,13,19], we will assume
a trusted dealer that implements the distributed key generation, possibly in
practice via HSMs. Our goal here is to focus on the main part of the protocol
and not on set-up assumptions, thus we do not discuss how to securely realise
the ideal functionality FkeyGen, @s was done in the aforementioned works.

4.1 Bounded Linearly Homomorphic Predicates

Here we show how to ensure that all the ciphertexts used in our protocol are
valid. Compared to similar protocols in previous works, other than prove that our
ciphertexts decrypt correctly, we also need to show that the underlying plaintexts
satisfy a given predicate P which we call bounded linearly homomorphic.

Definition 4.1. We say that a given predicate P is bounded linearly homomor-

phic if, given a bound B and values x1,...,X,, where

X1 =(T11,..-,%u1) €ERY, ... % = (10, .., Tuw) € RY,
such that
1. Yj € [u], P(xj1,...,2,,) = true, and

2. the coefficient norm of each x;, is bounded by B,
then, for all a € {0,1}*, P(a-x1,...,a-X,) = true.

We will give two different instantiations of this definition. The first one is
with the diagonal predicate P = Diag also used in [13]. This takes as input a
single element x; € R", i.e. ¥ = 1, and checks whether each of the slot entries
in x; (when mapped to P via the map Wy for b = [logy(u - B)]), are identical
to each other. Clearly if the predicate holds for input ciphertexts with plaintext
coefficient norms bounded by B, then it also holds for a sum of u ciphertexts
with plaintext coefficient norms bounded by u - B.

The second instantiation works with v = 2. We recall from Sect. 3 that the
maps O and Oy map an element x € R to an element in M according to xp and
X7, respectively. The predicate P = Pack is then defined as follows:

268 E. Orsini et al.

— Let my = Oy(z1, B) and my = Oy(x2, B). The elements in Suppys (my), for
b = [logy(u - B)], are indexed by Supp(I).

— If Suppgs (my) = {c; 4, }, for i € [r] and i; € I, then the coefficients in Wy (my)
indexed by (4,2 - i;) are equal to ¢;;;, and are uniformly random elsewhere.
Being uniformly random in locations not indexed by J will be important for
security of our distributed decryption protocol later.

Again it is straightforward to prove that this predicate is bounded linearly homo-
morphic.

4.2 Amortized Zero Knowledge Proof

Given the definition of a bounded linearly homomorphic predicate on the plain-
texts, we are now ready to define what we mean by a wvalid ciphertert which
encrypts such a plaintext. We recall that a ciphertext ¢t = BGV.Enc(z,r;pt)
encrypts a plaintext value z € P under randomness r = (v, eg, e1) € R3. In our
protocol we assume that = @H_l(m), for some m € M. In a legitimate cipher-
text, the plaintext = lies in P and the randomness values come from specific
distributions (see Sect. 3). An adversarially chosen ciphertext may not be gener-
ated in this way, however, as long as the adversarial plaintexts and random coins
are selected from some restricted set, the ciphertexts will correctly decrypt. A
ciphertext which comes from this restricted set (no matter how it is generated)
is said to be valid.

Suppose we have u-v BGV ciphertexts ct; < BGV.Enc(z;,r;,pt),j € [u-v],
such that

oty = th;-, ;= sz, r; = Zrﬁ-, Vi € [u-v],
i€[n]

i€[n] i€[n]

i.e. cth — BGV.Enc(a%, v, pt), 2% and r’ are respectively the ciphertext, the plain-
text and the randomness held by party P;. The protocol IT ;’;,LBF%OK (Figs. 5 and 6)
guarantees that each ciphertext ct; is both valid and satisfies the bounded lin-
early homomorphic predicate P. Our zero-knowledge proof is very similar to the
one given in [19], with some modifications due to our new packing technique, and
it is a generalization to the multiparty setting of the amortized proof described
in [13] and [9]. Note that as done in Overdrive, our protocol does not check the
correctness of every single share ct;, but just of their sum since it is sufficient
for our purpose.

To understand the proof Hg{,l(a,%ow first, let us assume v = 1 and flag = Diag.

Following Cramer et al. [9]’s blueprint, the protocol IT gliDKiSEK simultaneously tries
to prove that u ciphertexts ct; are generated such that:

[0jllee <n-p1s el llersllee <n-pa, lzjllg <m-7 Vielu], (2)

for 7 = 2871, p; = 1 and py = 20. This is done using an amortized X protocol
that samples commitments ct; < BGV.Enc(y;,T;,pt),j € [u],T; = (9;,€0,5,€1,),

Overdrive2k: Efficient Secure MPC over Z,x 269

Protocol Hgl’zﬁfoK - Part I

PARAMETERS: an integer v, u = ZK_sec, V = 2-ZK_sec — 1, a flag € {Diag, Pack, L}
such that if flag = Diag then P = Diag; if flag = Pack then P = Pack and if flag =1
then P = (.

INPUT: Each P; inputs u - v BGV ciphertexts ct} ;,j € [u], k € [v/], such that

Hﬁ,k”w < p1, Heé,j,kllw ||€Vi,j,k”<x> < p2, HUC;",kHOO <,

where m;k € R is the plaintext corresponding to ct;,k, satisfying P(x;yl, . ,m;v,,,) =
true, and for each k € [v], set:

0 i @ i i i i uX3
r, = (Ul,k7' <oy Vuks €0,1,ks + + + 5 €0Lu,ks €11,k - - '7el,u,k) €ER ;
1 7 7 U
X = (xl,lw' . ~7=ru,k) S R
@ i i i uX2
cp = ¢t = (Ctl,k7~ . .,Ctu’k) S .

gZKPoK: If flag € {Diag, L} parties execute the following steps.
- For each k € [v] execute:
Commit:
- Each P; broadcasts ci, = BGV.Enc(x}, ri; pt)
- Each party P; samples a new set of “plaintexts” yi € RV and “randomness

vectors” ¥y, € RV*3, such that, for j € [u] and P(y;1,...,v;.) = true,
Hyj,k”oo =~ 2ZK5eC - T, H@;’kHoo < 2ZKjec - p1,
”eoyj,kHoo: Hél,j,k“oo < gZK-sec p2.

- Each P; computes and broadcasts ai «+ BGV.Enc(y}, Ts; pt), for k € [v].
Challenge: Parties call Frana to get a random €, = (éx,1,...,6ru) € {0, 1}*.
Prove:

- Parties define Mg, € {0, 1}VX“ to be the matrix such that (Ms,)r =

€k,r—ct1, for 1 <r —c+1 < wu, and 0 in all other entries.

- Each P; computes and broadcasts the values (z%,T}), where z,T = yLT +

Mg, -x,T and T} = 7% + Ms, -1

Verify:
- Each party P; computes di = BGV.Enc(z%, T{; p¢) and then stores the sum
dp =>0 , dj.

- The parties compute the values

: Ty
Cr = sz ag = ak: Zr = Zy, k>

i€[n] i€[n] i i€[n]
and conduct the following checks, where ¢; ; is the (i, j)-th element of T},
d] =a] + (Me, -cx), |zl <2-n-27. 7 (1)

Itinklle <2:n- 25 pr, ltion [tisklloe <20 m- 25 py.

- If P = Diag the proof is rejected if P(2] 1) # true for any j € [u].
If the check passes, the parties output E cl, e Zle[n] ’.

|oo7

Fig. 5. Protocol for global proof of knowledge of a ciphertext - Part I

270 E. Orsini et al.

such that

H,l_]j”oo <n- 9ZK.sec 1,
20,31l oo 121,511, < 1 - 22K py,
lyjlle < m- 22K 7,) € [ul,

for some large enough 27K, In this way we can form the responses z and T'
such that the terms y and r statistically hide M, - x and M, - r respectively, for
some challenge matrix M.. The bounds on z and 7" imply bounds on x and r.
This implies that, instead of obtaining a proof that the input ciphertexts satisfy
Eq. 2, we get a proof that those values satisfy the following relationships:

[0jlle € n-S-p1, lejollos lejille Sm-Sep2, 2l <n-S-7, Vje [(1;])7
where § = 2. 23'ZKsec/2+1 Thege bounds are clearly not tight and the value S
is called the soundness slack.

When v = 2 and P = Pack, we need to repeat the above proof twice, or equiv-
alently sample the challenge in {0, 1}22€-¢_and add the proof for the predicate
P. Line 2 of Fig.6 is checked by a verifier only that required equality between
coefficients in the predicate holds. That the other coefficients are uniformly dis-
tributed is not checked, indeed this is impossible to do. However, if the other
coefficients are not uniformly distributed then the prover will loose the desired
zero-knowledge property, thus it is not in the provers interest to produce values
which are not uniformly distributed. In the case of our application an honest
verifier is actually one of the n provers, and this is enough to ensure the desired
uniform property holds on the required subset of coefficients.

Thus in both cases the protocol IT g;:?EOK is an honest-verifier zero-knowledge
proof of knowledge for the relation

RegzKPok z{(x,w) |z = (c,pt),w = ((x1,71) ..., (Tpous Tron))
u=ZKsec, ||z;]| , <n-S-7,m; = O(z;) € M,
c=(ctr,....ctu), vl Sn-S-p1,llenllo llerll <n- S p2}
AP(zj1,...,z5,) = true,Vj € [u]}}

Theorem 4.1. The protocol Hg;,lfgoK is an honest-verifier zero-knowledge proof

2—ZK,sec

of knowledge for the relation Rgzkpok with error probability and sound-

ness slack S = 2 . 93-ZKsec/2+1

We do not follow the Overdrive proof approach in our MPC protocol, i.e. we
do not give an ideal functionality for I7, g{,l(agoK. The reason is that a security proof

for II gg,'f&oK would require rewinding the adversary to extract corrupt parties’
inputs in the simulation, breaking the UC security of the protocol. Instead, we
will use I7, gﬁf:féoK inside our MPC protocol, as done in [13], and prove UC security
for this latter protocol. The complete proof of the theorem above is however still
similar to the one in [19]. It is given in in the full version of this paper.

Overdrive2k: Efficient Secure MPC over Z,x 271

Protocol 115, - Part II

If flag = Pack then apply the proof for flag =L above, making sure the sampling in
Step 4.1 follows the predicate P for Pack. Then, perform the following steps (using
the values obtained whilst executing the above proof).

1. Each P; computes and broadcasts the values
23T = yiT + M, -x5T € RV.

2. The proof is rejected if P(:/:_;:,l7 Zio) # true for any j € [u]. If the check passes,
the parties output Zie[n] ci,..., Zie[n] c,.

Fig. 6. Protocol for global proof of knowledge of a ciphertext - Part II

5 Distributed Somewhat Homomorphic Encryption

We are now ready to describe and implement the functionality Fpistrpec (Fig.7)
that extends the scheme &,ggy introduced in the previous sections to allow
distributed decryption. It will be the main building block of our MPC protocol
in the next section.

As mentioned before, our protocol ensures that all the ciphertexts that are
input of Fpistrpec correctly decrypt. For this purpose we use the ideal functionality
FEm® iacion (see Fig.11). Given the procedures T’y and T’y described in Fig. 8,

and on inputs [m|; € M from each P;, where M = thx M is the plaintext

space of our encryption scheme, and r X |I| is the number of supported slots, the

. . v,flag .
functionality Fg. \idcipn returns:

~ If v =1 and flag =L, a valid ciphertext ctl « BGV.Enc(fﬂ_l(xﬂ(m)),r;p?),
such that m = >, [m];; If v = 1 and flag = Diag a valid ciphertext
computed as before and satisfying the predicate P = Diag;

— If v = 2 and flag = Pack, two ciphertexts ctl, « BGV.Enc(Tﬂ_l(XH(m)),r;pE)

and ct), — BGV.Enc(Tj_l(XJ(m))J;p{’) satisfying the predicate P = Pack.

The ideal functionality fgéii,i“dgph is implemented by Hggr:a\/galidCiph (see the full
version).

5.1 Distributed Decryption Protocols

Here we give two distributed decryption protocols, IIpistpec1 and IlpjstrDec2, in
Figs.9 and 10, respectively. The protocols IIpistrpeci and Ilpistrpec2 implement
the functionality Fpisyrpec (Fig. 7) on commands D1 and D2, respectively. Notice
that we do not perform a proper full distributed decryption, because the way we
pack entries into a ciphertext would result in information leakage if we allowed all
the parties to recover the plaintext corresponding to the public input ciphertext

272 E. Orsini et al.

Functionality FpistrDec

Let A be the set of corrupt parties.

PARAMETERS: Bppec, @ bound on the coefficients of the mask values, and Bhpoise @
bound on the noise of ciphertexts before decryption.

COMMON INPUT: A single valid level-zero ciphertext ctﬁﬁ’l) = (0, co, cl)ﬂ from all the
parties.

Initialize: On receiving (Init) from all parties the functionality, run (pt,st) «
mBGV.KeyGen(17), sending the value pt to the adversary and all the parties.

D1: On receiving the public input (D1, ct.(f,”])) from all the parties, where ctig’m
is valid level-zero ciphertext, the functionality performs the following steps.

- Execute m « Dec(ctﬁ?{ﬂ ;5¢) and handle this value to the adversary.

- If P1 is honest: Wait for the adversary to input either abort or §. If
abort, then forward abort to the honest parties and halt. Otherwise sam-
ple the honest shares [m]; < M,i ¢ A,i # 1, at random and set
m]y = =3, 4,2 [mi + m+ 4. Send [m]; to P, Vi & A.

- If P1 is corrupt: Send m to the adversary. Wait for an input from the
adversary. If this input is abort, then forward abort to the honest parties
and halt. Otherwise receive b. Sample the honest shares [m]; + M,i &€ A,
at random but subject to the condition }_,, ,[m]; = b. Send these values
m;, i ¢ A to the honest parties.

D2: On receiving (D2,ct£ﬁ’ﬂ>) from all parties, the functionality performs the
following steps.

- Execute m + Dec(ct's”: 5¢) and send m to the adversary.

- Wait for an input from the adversary: if abort is received, then abort.

- Otherwise receive m’ and {[m'];}ica. Sample random shares {{m’];}iza
such that 37, {{m']i} =m".

- Output {[m'];};iza to honest parties and cAt,(:,}H) to all parties.

Fig. 7. The functionality for distributed decryption

The Procedures f{l(m) (resp. fjl(m))

1. If computing f{l(m) set all entries in m not in Supp(Il) to zero.

2. If computing fil (m) set all entries in m not in Supp(J) to a uniformly random
element selected from [0, ..., 2f].
3. Output ' *(m).

Fig. 8. The procedure fﬂ_l(m) (resp. fj_l(m)) from P to P

ctﬁﬂ’ﬂ), but both our protocols output to each party P; an additive share [m];
of m. Both protocols depend on a constant Byeise Which represents a bound on
the ciphertext noise before a decryption occurs. For example, in case of fresh
ciphertexts we have that Bheise = Bf,ij:r?"e“ (see the full version of the paper).

Overdrive2k: Efficient Secure MPC over Zq 273

There are two main differences between the two protocols. The first one
is in the way the shares [m]; are computed. The protocol Ilpisypec2 iS essen-
tially the same as the Reshare protocol of [12,13], where a masking ciphertext
is used before the distributed decryption is performed. More precisely, parties

fQ,Pack (LH),ct(le))’

call the functionality GenValidCiph which produces two ciphertexts (ctg f
0,J) (0,1)

with f = Zie[n] [f];; then they decrypt cty,\p = ctm™ @ ctgo’J), where ctgo’J) =

Switch Mod(ctt(~17ﬂ))7 so that each P; can compute a share [m + f]; — [f]; of m.
On the other hand, the protocol Ipispec1 uses random masks f;,i € [n],
inside the actual decryption to mask the decryption shares, so it does not require
to perform any expensive zero-knowledge proof. Note that this approach cannot
be used if the parties need to generate a new fresh ciphertext of m after the
decryption, as happens in Ilpispec2, Where this fresh encryption is computed

using the first ciphertext ctp’ﬂ) given by ‘,Fé’eii/(:?idCiph'

Protocol IIpisipect

PARAMETERS: The protocol is parametrized by two bounds: Bppec, @ bound on the
coefficients of the mask values, and Bhoise @ bound on the noise of ciphertexts before
decryption.

COMMON INPUT: A single valid level-zero ciphertext tldD = (0, ¢co,c¢1)".

Initialize: Each party P; calls Fkeygen receiving (pt, [s€];).
D1: On input (Dl,ctiﬁ’ﬂ)), where cta? = (0,co,c1)’ is a (single) ciphertext,
parties do as follows.

1. Each P; samples f; < [O,BDDeC]N (i.e. a polynomial in R with bounded
coefficients).

2. Py computes v < ((co—[s€]1-c1)+ fi (cmodgqo)) =wi+f1 (cmodqo).
Each P;,i # 1 computes v; < (—[5E]i s+ fi (cmodqo)) = w; +
fi (cmod qo). All parties broadcast these values.

3. Parties check that (3, v; (cmodqo)) is bounded by Bhoise + 7 - Bppec, if
not abort.

4. Py computes u1 + (3.0, v (cmodgqo)) — f1 (mod 2°).

Each P;,i # 1 computes u; <+ —f; mod 2t

5. Each P;,i € [n], sets [m]; « x; " (I"(u:)).

Fig. 9. Protocol implementing the command D1 on Fpistrbec

Protocol Ilp;ispeci- Given a public input ciphertext ctEﬂ’J), each party P; sam-

ples a random polynomial f; in R, with coefficients bounded by some fixed, large
enough value Bppec to avoid any leakage of information in the secret key, which
is used to mask the decryption share.

Note that the correctness holds only if the values f; introduced by the parties
during the protocol are sampled from the right set, i.e. ||filloo < Bbbec, and

274 E. Orsini et al.

| Zie[n] v; (cmod go)|leo < Broise + 7 - Bpbec < qo/2. We will derive the precise
value Bppec in the security proof.

In terms of protocol security, the intuition is that the polynomial f; masks
not only the values in Supp(J) which contain information, but also values not
in Supp(J) which could contain residual information from prior homomorphic
operations. So, the fact that the honest party effectively “forgets” the values
corresponding to slot terms not in Im(wy) results in the protocol not leaking
information on these terms. A complete proof of this intuition can be found in
the full version.

Theorem 5.1. The protocol Ipisypect (Fig.-9) implements the functionality
Foistrdec-D1 (Fig. 7) against any static, active adversary corrupting up to n — 1
parties in the FeyGen-hybrid model with statistical security 9~ DDec if (BnoiSe +
2DDeC - (Bnoise + Qt)) < (Jo/2-

Protocol Ipispec2

PARAMETERS: The protocol is parametrized by Bppec-
COMMON INPUT: A single valid level-zero ciphertext ctf.g’w = (0, co,cl)ﬂ.

Initialize: Each party P; calls Fkeygen receiving (pt, [st];)
D2: On input (D2, ct'y”) from all parties, where ct&a = (0, co,c1)” is a (single)
ciphertext.
1. Parties call the functionality Fééi@?ﬁdaph on input [f];,Vi € [n], which re-
turns the ciphertexts (ctgl’ﬂ)7 ctgl’ﬂ)) to all parties.
2. All the parties locally compute ctéo”ﬂ) = SwitchMod(ctgl’J)).
3. The parties homomorphically compute ctl(g'ﬂ)f) ctgo”ﬂ), and let ctl(g'ﬂ)f
be (0, co, c1).
4. Py computes v1 < (co — st1 - ¢1) (mod qo) € Rg,-
5. P;,i # 1 computes v; < —st; - ¢1 (mod qo) € Rg,-
6. All parties compute and broadcast ¢t; = v; + 2t ., for some random element
ri € Rg, with infinity norm bound Bppec.
7. The parties compute (m + f) = x; ' (¥ (3 t; (cmod go))) € M.
8. Party Py sets [m]; < (m + f) — [f]y, party P;, ¢ # 1 sets [m]; < —[f].
9. All parties compute, using some default value 0 for the randomness,

&ff,"ﬂ) — BGV.Enc(!Z/;l(XI(m +£)),0,pt) © ctﬁl‘l),

Fig. 10. Protocol implementing the command D2 on Fpistrbec

Protocol ITpjsypec2- Given a public ciphertext ctEﬂ’J), the protocol IlpistrDec2

outputs a share [m]; of the plaintext m and a fresh ciphertext ctsyll’ﬂ) to each
party P;. The protocol makes use of the command Gen-2 of the functionality

féél:flcak"dgph (Fig.11), for which an implementation is given in the full version of

Overdrive2k: Efficient Secure MPC over Zq 275

the paper. This command outputs two level-1 ciphertexts ctgl’ﬂ) and ctgl“ﬂ) of the

same plaintext f corresponding to the set I and J, respectively.
The ciphertext ctp"ﬂ), corresponding to the set J, is used as a mask in the

distributed decryption, and ctgl’ﬂ)

a fresh encryption &](;JI) of m.

The proof of security for this protocol is similar to the corresponding protocol
in SPDZ [13]. The major changes from SPDZ are that we need to produce two
auxiliary ciphertexts per party (ctg’ﬂ), ctS’J)), since we have different encodings
at level zero and level one of the underlying message space. Intuitively, the
protocol reveals no more information about the BGV plaintext inside ctgg’“ﬂ)

because the honest parties are masking the coefficients not in Supp(J) using

, corresponding to the set I, is used to create

the coefficients from the plaintext inside ctg’ﬂ), which have been chosen to be

uniformly random for coefficients not in Supp(J), using the procedure TJ_l. A
proof for this result is given in the full version.

Theorem 5.2. The protocol I pisypec2 implements the functionality Fpistrpec-D2
(Fig. 7) against any static, active adversary corrupting up to n—1 parties in the

(FkeyGens é;ﬁf}ﬁidoph)—hybrid model with statistical security 27PP if (Byoise +

20DPec . 1y (Broise +2)) < qo/2.

. . v,flag
Functionality]—'GenvaIidCiph

Let A be the set of corrupt parties.

PARAMETERS: an integer v, a security parameter ZK_sec, a flag € {Diag, Pack, L}
such that: If flag = Diag, then P = Diag; If flag = Pack, then P = Pack and if
flag =1, then P = .

Initialize: On receiving (Init) from all parties run (pt,st) < BGV.KeyGen(1%),
sending the value pt to the adversary and all the parties.
Gen-1: On input (Gen-1,flag, [m];) from all parties P;,4 € [n], do the following:
- If the adversary sends abort, return abort
- Otherwise receive ctg,"ﬂ) and send this value to the parties
Gen-2: On input (Gen-2, flag, [m];) from all parties, proceed as follows:
- If the adversary sends abort, return abort
- Otherwise receive ctg’ﬂ) and ctii’,ﬂ) and send these values to all parties

Fig. 11. The functionality fg;ﬂf,ga“dﬁph to generate valid ciphertexts

5.2 Generating Valid Ciphertexts

Here we implement the ideal functionality fg’eﬂﬁndoph to create valid ciphertexts,

see Fig. 12. To prove the security of Hgéf.:avindaph we proceed like in [13], that is

276 E. Orsini et al.

v,flag
Protocol HGenVaIidCiph

PARAMETERS: an integer v, a security parameter ZK_sec, a flag € {Diag, Pack, L}
such that: If flag = Diag, then P = Diag; If flag = Pack, then P = Pack and if
flag =1, then P = (.

Initialize: Each party P; calls Fkeycen receiving (pt, [s€];).
Gen-1: Each P; inputs (Gen-1,flag, [m];), where flag € {Diag, L} and [m]; are
private inputs and if flag = Diag then all slots of [m]; are equal.

1. Each P; sets [mi]; <« xi(im];) € 7P and computes ct, <
BGV.Enc(T'y ' ([mul:), ri; pe).

2. Parties run the protocol Hglz’f,f,foK receiving either cty, or abort.

Gen-2: Each P; inputs (Gen-2, flag, [m];), where flag = Pack and [m]; are private
inputs :

1. Each P; sets [mu]; + xi(im];) € P and [my]; + xy(m);) € P,
then they compute ct]ini — Enc.BGV(f{l([mH]i),ri;pE) and ct;,{i
Enc.BGV(T'; ' ([masl:), v¥; pb).

2. Parties run the protocol IT glz’ﬂapgo,(receiving either (cth,, ctﬂ) to all the parties
or abort.

Fig. 12. Protocol for generating valid encryption on random shared values

we assume that the encryption scheme &,ggv has an additional key generation
algorithm KeyGen() that outputs a meaningless public key p€ such that

- Enc(m,p~E)) 2 Enc(O,];E), i.e. an encryption of any message m is statistically
indistingui/sll\z}hle from an encryption of 0;

- If ;;E — KeyGen() and (pt,st) — KeyGen(), then pt ~ p~{’, namely the two
public keys are computationally indistinguishable.

In Eggy the algorithm KeyGen() just samples pt = (a,b) uniformly at random
mod q;.

The high level idea of the proof is then the following. We describe a simulator
S and show that if an environment Z can distinguish the simulation from the
real protocol execution, then we can construct a distinguisher that by rewinding
the environment together with the adversary can distinguish between a public
key pt generated by KeyGen and a meaningless pt with non negligible probability.
To this purpose we need to generalise the proof in [13] to our multiparty global
zero knowledge of plaintext knowledge.

Theorem 5.3. The protocol H’G';f:{}ga“daph securely implements the functionality

‘Fgéfr:i/geﬂid(:iph (Fig. 7) against any static, active adversary corrupting up to n — 1
parties in the (FkeyGen, FRand)-hybrid model.

Overdrive2k: Efficient Secure MPC over Zq 277

6 SPDZy from Somewhat Homomorphic Encryption -
Pre-processing Phase

We now present our offline protocol based on the homomorphic scheme &Eyggv
described in Sect. 3. Even if the online computation is assumed to be performed
over Zsyk, we produce random authenticated data over Zqr+s. We use the same
MAC scheme (and MACCheck procedure) used in SPDZ2k, with the difference
that in our protocol also the shares [a];,i € [n], of the secret global key « are
in Zok+s. We set k+ s =t and M = (Zs:)P, where p is the number of packing
slots.

The main task of the pre-processing protocol, which implements the ideal
functionality Fprep, given in the full version of the paper, is to produce the
following type of random authenticated values:

Input masks: ({r), P;), with the authenticated shared valued r known by P;.

Triples: ({a), (b), (c)), where a, b, ¢ € Zy: are random shared values and ¢ = a-b.
Squares: ({a), (b)), where a € Zy: is a random secret shared value and b = a?.
Bits: (b), where b is a random secret shared bit.

We first implement a weaker form of pre-processing functionality Fuprep (in
the full version of the paper), that might output incorrect values. After that, in
protocol ITpep (see the full version of the paper), we will bootstrap outputs from
Fuwprep to implement the desired functionality preprocessing functionality Fprep
which returns different types of correct random authenticated values to be used
in the online evaluation.

6.1 Weak Offline Protocol

We only describe our new protocol for producing random authenticated bits, the
remaining commands are implemented similarly to the SPDZ2k paper and are
given in the full version. In all steps we produce p = r - |I| random pre-processed
values at a time, since values are produced in the set M. As before, given m € M
we write [m]; to denote an additive share of m and [a-m]; to denote an additive
share of the scalar multiplication of m by the scalar «, and reserve the notation
(x) for authenticated sharings of values x € Zo:.

Authenticated Bits. The standard trick in the modulo p setting, see [12], is
to use the 2-to-1 map induced by squaring modulo p, inverting it, and taking an
element in the kernel by dividing the initial value by the obtained square root,
i.e. z/va? € {~1,1}. When working modulo 2! this is no longer possible, as the
squaring map is 4-to-1. However, by temporarily working modulo 2¢*! and then
reducing the roots modulo 2! we can again obtain a 2-to-1 map. Furthermore,
since we need to be able to divide by the v/22, we will limit ourselves to invertible
2’s, i.e. such that £ = 1 (mod 2). The protocol to generate a random element in
{—1,1} is therefore as follows:

1. Given a «+ Zo:, compute b « 1+ 2a (mod 2¢+1) (b is determined mod 2!+1)

278 E. Orsini et al.

Protocol II,prp - Part 1

PARAMETERS: Let p = r x |I| be the number of random authenticated data we
produce for each call of the following commands.

Initialize: On command (Init) the parties do as follows.
1. Call Fpistrpec-Init to obtain pt
2. Parties sample random [a; <= Zat, i € [n]. Let [a]; <~ M denote a plaintext
with all the slots set to [a]i. Set v =3, ([
3. The parties call the functionality féés\i,aag“dcmh on private inputs [a]; so that
each party P; receives ctq.
Input: On input (Input, P;) from all other parties, this commands produces p
random masks for P;.
1. P; samples a random r € M, creates random additive shares [r]; of r and
sends them to the designated party P;
2. Parties call the functionality .FGlénLVa“dCiph on input (Gen-1, L, [r]s), Vi € [n],
receiving ctil’ﬂ)
3. Parties call the subprotocol I1a,h on input ctfpl’ﬂ), so to obtain (vy).
wTriple: On input (wTriple), this command produces p triples in one execution.
1. The parties call]—'éénJ‘Va“dCiph on random inputs [a];, [b];, so that each party
receives cta and ctp.
2. Parties locally compute cte < cta O ctp
3. The parties call Fpistrpec.D2 on input cte, so that each P; receives [c]; and
a fresh ciphertext ct,,
4. Parties run ITauh on inputs cta, cte, ¢tz to obtain (va), (Yb), (Ye)-
wSquare: On input (wSquare), this command produces p random authenticated
squares.
1. This is exactly the same as wTriple above, except that we only sample the

messages/ciphertexts for a and then set b = aZ.

Fig. 13. Weak offline protocol Il.prep - Part 1

2. v+ b? (mod 2!*2) (note that v is determined modulo 2*2 since b+ 2¢+! has
the same square as b).

3. b /v (mod 2+1) (A fixed square root is taken. Notice since v is a square,
square roots exist, and there are four such square roots modulo 2¢+2, namely:
b, —b, b+ 2t and —b+ 2t+!. However, when reduced modulo 2t+! there are

only two possibilities, namely b and —b.
4. d + b/b (mod 2t*1) € {—1,1}.

Since we are interested in sharing bits in {0, 1}, not in {—1, 1}, we have to convert
d. To perform the conversion in the large prime case of “standard” SPDZ, one
can simply add one and then divide by two, but in our case division by two is
impossible. However, we have a well defined division-by-2 map from Zg:+1 to
Zst that maps © € Zgi+1 with z = 0 (mod 2) to x/2 € Zg¢, losing one bit of
precision in the process. As such we can replace step 5 by:

5. d— (b/b+1)/2 (mod 2') = (a/b+ (1+b)/2b) (mod 2¢) € {0,1}.

Overdrive2k: Efficient Secure MPC over Z,x 279

Note that since b is odd, the expression 1+ I;) /2 is well defined modulo 2.
We are now ready to give the wBit procedure of I1,prp, Where we map these
operations to the ciphertext space and the shares of a so as to produce shared
bits in {0,1}. In particular, given a sharing [a]; of a, it is easy to compute a
sharing of d by defining [d]; = [a]1/b + (1 + 5)/(26) (mod 2t) and [d]; = [a;/b
(mod 2) for i > 1.

Protocol Il,prp - Part 2

PARAMETERS: Let p = r x |I| be the number of random authenticated data we
produce for each call of the following commands.

wBit: This command produces p random authenticated bits in one execution.

1. Parties call Fé;‘\,a”doph on command (Gen-1, 1) with random inputs [a]; €
M,i € [n], so that each P; receives cta. Parties locally compute ctp, =
cta B cta B ct1, where ct; a trivial encryption of the all one vector.

2. Parties set ¢ty < ctp © ctp.

3. The parties call Fpistrpec.D1 on input ct, and so each party P; obtains
[v]; € M. Note M’ is mod 272,

4. The parties broadcast [v]; and set v < [v]1 + ...+ [v], (mod 272).

5. Parties set b Vv (mod 21, where a fixed square root value is taken
in each slot position modulo 2!+, If a square root does not exists, abort.

6. Parties locally set

oty — cta/ﬁﬂﬂct<6+1)/26,
[d]; < [a]i/b+ (b+1)/2b (mod 2%),
[d): « [a];/b (mod 2'), fori > 1,

where ¢t) /o5, is a deterministic encryption of the public value (b+1)/2b.

7. Parties run ITauh on input ctfil’r), so to obtain [y4]i, Vi € [n], i.e. each party

P; obtains [a - d];.

8. For each slot in the plaintext space M each party P; can obtain a value of
(d;)i , j € [p], (a sharing modulo 2*) from the plaintexts ([d];, [e - d];).

9. Each party P;’s output is (d;):,j € [p].

Fig. 14. Weak offline protocol I1,prep - WBit

Note that since we do not expose a direct distributed decryption operation
on the Fpistrpec functionality we need to obtain the clear value of v via sharing
and opening, unlike in [12]. Also note again unlike [12], we produce exactly the
given number of slots in each call to Bit, as we do not need to cope with the case
of square roots of zero in this method. The following theorem then follows, with
the proof given in the full version of the paper.

Theorem 6.1. The Protocol Iyprep (Figs. 13 and 14) securely realises the ideal
functionality Fuprep in the (FgenvalidCiph, FbistrDec)-hybrid model.

280 E. Orsini et al.

Table 2. Amortized communication cost (in kbit) of producing triples of our protocol
and SPDZ2k

Protocol | N log,q | k |s |sec|Triple cost
This paper | 14449 | 270 3213226 @ T72.8
SPDZ2k - - 323226 | 79.87
This paper | 32377 | 520 6464 57 | 153.3
SPDZ2k - 6464 |57 | 319.488
This paper | 32377 | 720 | 128 64|57 |212.2
SPDZ2k - - 128 |64 |57 | 557.06

6.2 From F,prep to Fprep - Sacrificing

We can now show how to turn the Il,prep protocol into a protocol which realises
the Fprep functionality. As said before, the authenticated shared data generated
by Fwprep are incorrect if corrupt parties cheated in the distributed decryption,
i.e. the output of Fyuprep is a set of sharings {(a), (b), (c)} (resp. {(a), (b)} or
{{a)}) where we have ¢ = a - b+ . (resp. b = a®> + &, or a € {a,a + §,}) for
some adversarially chosen error value § € Zst and shared values a, b, ¢ € Zg:. In
a nutshell, the protocol of IIpe, takes the output of Ilprep and ensures that the
adversarially chosen values ¢’s are all equal to zero using the standard technique
of sacrificing.

However, also the MACs on these values might be incorrect, i.e. we might
have v, = Y .[o - a]; + d,, for each authenticated value a. We can check the
MAC on all the opened values at the end of the offline phase, and also check
that the input masks are correctly MAC’d, by performing a MACCheck on a
random linear combination of them. We add these checks in our preprocessing
protocol, but in practice we do no worry about the errors d,’s on the MAC
equations, since they can be dealt with later during the online phase, when
all the values opened during the circuit evaluation are checked. We obtain the
following theorem, whose proof is again given in the full version.

Theorem 6.2. The protocol Ilpep securely implements the ideal functionality
Fprep against any static, active adversary corrupting up to n — 1 parties in the
(Fuwprep, Frand)-hybrid model.

7 Communication Efficiency Analysis

Here we analyse the communication efficiency of our preprocessing protocol,
when compared to the method of [10]. To simplify matters we focus just on the
cost of our triple generation procedure as it is the most expensive step of the
preprocessing phase. The entire protocol we want to maintain the same level of
statistical security, which is equal to sec = s —log, s.

Overdrive2k: Efficient Secure MPC over Z,x 281

The most expensive step in our protocol is the zero-knowledge proof that
proves that ZK_sec ciphertexts are valid with ZK_sec bits of statistical security.
Once this parameter is fixed, to sec, the protocol IT glifllfgo,(requires 2 x ZK_sec

broadcasts of ciphertexts in R? and the broadcast of z° and T;, which gives a
total cost of 4 - ZK_sec- N -log(q) + 8- ZK_sec- N — 4 - N - ZK_sec bits.

To generate ZK _sec- p triples (a), (b), (c) we need two calls to fé’eﬁVa“dCiph, to
create ZK_sec ciphertexts ct,, ctp, after that one call to Fpistrpec.D2, to produce
shares of ct. and ZK_sec fresh ciphertexts ct.. These are used later to produce
the MAC shares [Yali, [Ybli, [Ve)i» Obtained by running 3 x ZK_sec times the sub-
protocol ITayh. Notice that, as done in [10], we are ignoring here the cost of the
MACCheck, as it can be done in the online phase and, in any case, it is indepen-
dent of the number of generated triples, and the cost of Frang and sacrificing,
as it is negligible compared to the cost of the rest of the protocol. This gives a
total cost (amortized) of roughly 4 - (12 -log(q) - N/p + N/p - q) bits per triple,
where p is the amount of packing in a single ciphertext.

We then estimate for various values of (k, s) the values of N and ¢ and which
give the best values for packing from Table 1. We select parameters which give us
roughly 128 bits of computational security according to the tool obtained from
https://bitbucket.org/malb /lwe-estimator. This allows us to give an estimation
of the communication complexity of our protocol and SPDZ2k in the case of
two parties creating one triple, see Table 2. In the important cases of statistical
security of 64 bits in SPDZ2k over 64 and 128-bit data types we have a reduction
in communication of over a half. In addition our protocol will get progressively
more efficient than the OT-based pre-processing of SPDZ2k as the number of
parties increases.

Acknowledgments. We thank Cyprien Delpech de Saint Guilhem for many helpful
discussions. This work has been supported in part by ERC Advanced Grant ERC-
2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

References

1. Aly, A., et al.: SCALE-MAMBA v1.6: Documentation (2019). https://homes.esat.
kuleuven.be/~nsmart/SCALE/Documentation.pdf

2. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in Overdrive: a more efficient
ZKPoK for SPDZ. Cryptology ePrint Archive, Report 2019/035 (2019). http://
eprint.iacr.org/2019/035

3. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377-391. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1_31

4. Bendlin, R., Damgard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169-188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4_11

https://bitbucket.org/malb/lwe-estimator
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
http://eprint.iacr.org/2019/035
http://eprint.iacr.org/2019/035
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11

282

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Orsini et al.

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309—
325. ACM, New York (2012)

Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97-106. IEEE Computer
Society Press, October 2011

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press, October
2001

Cassels, J.W.: Local Fields. Cambridge University Press, Cambridge (1986)
Cramer, R., Damgard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177-191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_11

Cramer, R., Damgard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ,: efficient MPC
mod 2 for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 769-798. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0-26

Damgard, 1., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 1102—
1120. IEEE Computer Society Press, May 2019

Damgard, 1., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority — or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1-18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1-16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8_1

Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D.; Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465-482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4_28

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850-867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Halevi, S., Shoup, V.: Algorithms in HEIlib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554-571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_31

Keller, M., Orsini, E., Scholl, P.. MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830-842. ACM Press, New
York (2016)

Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158-189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-78372-7_6

Overdrive2k: Efficient Secure MPC over Zq 283

20. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-

21.

cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_40

Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57-81 (2014)

https://doi.org/10.1007/978-3-642-32009-5_40

l‘)

Check for
updates

SoK: A Consensus Taxonomy
in the Blockchain Era

=) and Aggelos Kiayias?

Juan Garay!

! Texas A&M University, College Station, TX, USA
garayQ@cse.tamu.edu

2 University of Edinburgh and IOHK, Edinburgh, UK

akiayias@inf.ed.ac.uk

Abstract. Consensus is arguably one of the most fundamental problems
in distributed computing, playing also an important role in the area of
cryptographic protocols as the enabler of a secure broadcast functional-
ity. While the problem has a long and rich history and has been analyzed
from many different perspectives, recently, with the advent of blockchain
protocols like Bitcoin, it has experienced renewed interest from a much
wider community of researchers and has seen its application expand to
various novel settings.

One of the main issues in consensus research is the many different vari-
ants of the problem that exist as well as the various ways the problem
behaves when different setup, computational assumptions and network
models are considered. In this work we perform a systematization of
knowledge in the landscape of consensus research in the Byzantine fail-
ure model starting with the original formulation in the early 1980s up to
the present blockchain-based new class of consensus protocols. Our work
is a roadmap for studying the consensus problem under its many guises,
classifying the way it operates in the various settings and highlighting
the exciting new applications that have emerged in the blockchain era.

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of
faults—has been extensively studied in the literature starting with the seminal
work of Shostak, Pease and Lamport [88,108]. The traditional setting of the
problem involves parties connected by point-to-point channels, possibly using
digital signatures in order to ensure the integrity of the information that is
exchanged in the course of the protocol. For a relatively recent overview of the
many variants of consensus that are considered in the distributed systems liter-
ature see Cachin et al. [25]. Tolerating “Byzantine” behavior, i.e., the presence
of parties that may behave arbitrarily, possibly in malicious ways, has been one
of the hallmark features in the study of the problem.

Bitcoin was introduced by Nakamoto in 2008-2009 [95,97], with the objec-
tive of providing a payment system that is decentralized in the sense of not

The full version of this paper can be found in the Cryptology ePrint Archive [65].

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 284-318, 2020.
https://doi.org/10.1007/978-3-030-40186-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_13

SoK: A Consensus Taxonomy in the Blockchain Era 285

relying on a central authority that should be trusted for transactions to be con-
sidered as final. Expectedly, the fundamental enabling component of the Bitcoin
system is a consensus mechanism that facilitates agreement on the history of
transactions. Given the conflicting interests of the Bitcoin protocol participants,
such a system should be resilient to Byzantine behavior, which brings us to the
main contribution of Bitcoin in the context of the consensus problem, namely. a
non-traditional and novel approach from the perspective of distributed comput-
ing to solve the problem in a setting that until then had not received sufficient
attention.

In light of these developments, it is important to rethink the consensus prob-
lem in the blockchain era and organize the landscape that is currently being
formed, acknowledging all the new directions and novel tools that have become
available in the context of consensus protocol design.

One main aspect of our work is to look into the consensus problem from a
modeling perspective providing the definitions needed to understand the problem
and the solutions that have been developed over the years both in the traditional
and the newer blockchain settings. In the course of this, we provide a taxonomy
of protocols and impossibility results that comprehensively outline what is cur-
rently known about consensus and which questions continue to remain open. Also
important is to “extract” the relevant consensus question that is particular to
Bitcoin, which we term “ledger consensus” (sometimes referred to as “Nakamoto
consensus”), and which is an instance of the state machine replication problem
that has been long-studied in distributed systems [111].

Consequently, in this paper we provide precise definitions of the relevant
versions of consensus that have been investigated and systematize the existing
knowledge about the problem with respect to (i) the network model, (ii) trusted
setup assumptions, and (iii) computational assumptions under which, and at
what cost in terms of running time and communication overhead, the problem
can be solved.

We emphasize that our approach is problem-centric and the results being
overviewed conceptual and fundamental in nature, with a feasibility focus with
respect to the “resources” mentioned above, which means that in the case of
classical consensus, a very active area of research in the distributed systems
community, we might only mention in passing (if at all) the more recent results
on practical Byzantine fault tolerance, for example. As such, our systematization
complements the various other enumerative surveys of results and publications
on the subject (e.g., [10,25,112]).

Organization of the Paper. We start in Sect.2 by specifying a model of
multi-party protocol execution and how protocols’ properties will be deemed
satisfied, as well as presenting the definition of (variants of) the consensus
problem. We then specify the available resources and assumptions mentioned
above under which the problem has been studied: Network assumptions (com-
munication primitives, synchrony) in Sect.3; trusted setup assumptions (no
setup, public-state setup, private-state setup) in Sect.4; and computational
assumptions (none, one-way functions, proofs-of-work, random oracle) in Sect. 5.

286 J. Garay and A. Kiayias

We then overview possibility (i.e., constructions) and impossibility results for
consensus with respect to number of parties as a function of misbehaving par-
ties (resp., honest vs malicious computational power), trusted setup, running
time and communication costs in the traditional (point-to-point communication)
setting (Sect. 6), and in the Bitcoin (peer-to-peer) setting (Sect. 7).

We present ledger consensus in Sect. 8. After defining the problem, we pro-
ceed to the evaluation of existing results through a similar lens as in the case of
(standard) consensus, including an adaptation to ledger consensus of the impos-
sibility of standard consensus for dishonest majorities.

Due to space limitations, supplementary material including the ideal specifi-
cation of some of the resources available to the protocol can be found in the full
version of the paper [65].

2 Model and Definitions

2.1 Protocol Execution

In order to provide a description of protocols and their executions it is use-
ful to consider a formal model of computation. We choose the Interactive Tur-
ing Machine (ITM)-based model put forth by [30,76]. An ITM is like a Turing
Machine but with the addition of an incoming and an outgoing communication
tape as well as an identity tape and a “subroutine” tape. When an instance of
an ITM is generated (we will henceforth call this an ITI, for interactive Turing
machine instance), the identity tape is initialized to a specific value that remains
constant throughout the instance’s execution. The ITI may communicate with
other I'TT’s by writing to its outgoing communication tape.

Let us consider a protocol IT that is modeled as an ITM. Ideally, we would
like to consider the execution of this protocol in an arbitrary setting, i.e., with
an arbitrary set of parties and arbitrary configuration. A common way to model
this in distributed cryptographic protocols is to consider that a certain pro-
gram, thought of as an adversary, produces this configuration and therefore the
properties of the protocol should hold for any possible choice of that program,
potentially with some explicitly defined restrictions. The advantage of this par-
ticular modeling approach is that it obviates the need to quantify over all the
details that concern the protocol (and substitutes them with a single universal
quantification over all such “environments”).

Suppose now that we have a protocol IT that is specified as an I'TM and we
would like to consider all possible executions of this protocol in the presence of
an adversary A, that is also modeled as an ITM. We capture this by specifying
a pair of ITMs (Z, (), called the environment and the control program, respec-
tively. The environment Z is given some input which may be trivial (such as a
security parameter 1) and is allowed to “spawn” new ITIs using the programs
of IT and A. By convention, only a single instance of A will be allowed. Spawn-
ing such new instances is achieved by writing a single message to its outgoing
tape which is read by C. The control program is responsible for approving such
spawning requests by Z. Subsequently, all communication of the instances that

SoK: A Consensus Taxonomy in the Blockchain Era 287

are created will be routed via C, i.e., C' will be receiving the instances’ outgoing
messages and will be approving whether they can be forwarded to the receiving
parties’ incoming tape. Note that this may be used to simulate the existence
of point-to-point channels; nevertheless, we will take a more general approach.
Specifically, the control function C, will by definition only permit outgoing mes-
sages of running I'TTs to be sent to the adversary A (with instructions for further
delivery). This captures the fact that the network cannot be assumed to be de
facto safe for the instances that are communicating during the protocol execution
(see below where we explain how the adversarial influence in the network may be
constrained). Beyond writing messages that are routed though A, ITIs can also
spawn additional ITIs as prescribed by the rules hardcoded in C. This enables
instances of a protocol IT to invoke subroutines that can assist in its execution.
These subroutines can be sub-protocols or instances of “ideal functionalities”
that may be accessible by more than a single running instance.

Given those features, the above approach provides a comprehensive frame-
work for reasoning about protocol executions. In case a polynomial-time bound
is required, in the setting where a computational assumption is employed that
holds only for polynomial-time bounded programs, for example, some care needs
to be applied to ensure that the total execution run time of the (Z,C) system
remains polynomial-time. This is because even if all ITIs are assumed to be
polynomially bounded, the total execution run time may not be. We refer to
Proposition 3 in [30] for more details regarding enforcing an overall polynomial-
time bound.

Functionalities. We will next need to specify the “resources” that may be avail-
able to the instances running protocol I1. For example, access to reliable point-
to-point channels or a “diffuse” channel (see below). To allow for the most general
way to specify such resources we will follow the approach of describing them as
“ideal functionalities” in the terminology of [30]. In simple terms, an ideal func-
tionality is another ITM that may interact with instances running concurrently
in the protocol execution. A critical feature of ideal functionalities is that they
can be spawned by ITIs running protocol II. In such case, the protocol IT is
defined with respect to the functionality F. The ideal functionality may inter-
act with the adversary A as well as other ITIs running the protocol. One main
advantage of using the concept of an ideal functionality in our setting, is that we
can capture various different communication resources that may be available to
the participants running the protocol. For instance, a secure channel function-
ality may be spawned to transmit a message between two instances of IT that
will only leak the length of the message to the adversary. As another example,
a message-passing functionality may ensure that all parties are activated prior
to advancing to the next communication round (see below in synchronous vs.
asynchronous executions).

Execution of Multiparty Protocols. When protocol instances are spawned by
Z they will be initialized with an identity which is available to the program’s
code, as well as, possibly, with the identities of other instances that may run

288 J. Garay and A. Kiayias

concurrently (this is at the discretion of the environment program Z). The iden-
tities themselves may be useful to the program instance, as they may be used
by the instance to address them. We will use the notation VIEW 7 4 z to denote
an execution of the protocol IT with an adversary A and an environment Z. The
execution is a string that is formed by the concatenation of all messages and
all ITT states at each step of the execution of the system (Z,C). The parties’
inputs are provided by the environment Z which also receives the parties’ out-
puts. Parties that receive no input from the environment remain inactive. We
denote by INPUT() the input tape of each party.

We note that by adopting the computational modeling of systems of ITMs
by [30] we obviate the need of imposing a strict upper bound on the number of
messages that may be transmitted by the adversary in each activation. In our
setting, honest parties, at the discretion of the environment, are given sufficient
time to process all messages delivered by any communication functionality avail-
able to them as a resource. It follows that denial of service attacks cannot be
used to the adversary’s advantage in the analysis — i.e., they are out of scope
from our perspective of studying the consensus problem.

Properties of Protocols. In our statements we will be concerned with properties
of protocols II. Such properties will be defined as predicates over the random
variable VIEW 7 4.z by quantifying over all adversaries A and environments Z.

Definition 1. Given a predicate QQ we say that the protocol II satisfies property
Q provided that for all A and Z, Q(VIEW 1,4 z) holds.

Note that in some cases, protocols may only satisfy properties with a small
probability of error over all possible executions. The probability space is deter-
mined by the private coins of all participants and the functionalities they employ.
In such cases, we may indicate that the protocol satisfies the property with some
(small, typically negligigle in a security parameter) error probability. We will
only consider properties that are polynomial-time computable predicates. Our
notion of execution will capture the single-session, stand-alone execution setting
for protocols, hence properties will be single-session properties.

Asynchronous vs. Synchronous Ezecution. The model above is able to capture
various flavors of synchrony. This is achieved by abstracting the network com-
munication as a functionality and specifying how the adversary may interfere
with message delivery. The functionality may keep track of parties’ activations
and depending on the case ensure that parties will be given a chance to act as
the protocol execution advances.

Static vs. Dynamic Environments. In terms of protocol participants, the model
we present captures both static and dynamic environments. Specifically, it is
suitable for protocols that run with a fixed number of parties that should be
known to all participants in advance, but it also allows protocols for which
the number of participants is not known beforehand and, in fact, it may not

SoK: A Consensus Taxonomy in the Blockchain Era 289

even be known during the course of the execution. Note that in order to allow
for proper ITI intercommunication we will always assume that the total set of
parties is known, but, nevertheless, only a small subset of them may be active
in a particular moment during the protocol execution.

Setup Assumptions. In a number of protocols, there is a need to have some
pre-existing configuration (such as the knowledge of a common reference string
[CRS], or a public-key infrastructure [PKI]). Such setup assumptions can be also
captured as separate functionalities F that are available to the protocol ITIs.

Permissioned vs. Permissionless Networks. In the context of the consensus prob-
lem, this terminology became popular with the advent of blockchain protocols.
The Bitcoin blockchain protocol is the prototypical “permissionless” protocol
where read access to the ledger is unrestricted and write access (in the form
of posting transactions) can be obtained by anyone that possesses BTC (which
may be acquired, in principle, by anyone that is running the Bitcoin client and
invests computational power solving proofs of work). On the other hand, a per-
missioned protocol imposes more stringent access control on the read and write
operations that are available as well as with respect to who can participate in the
protocol. Extrapolating from the terminology as applied in the ledger setting,
a permissionless consensus protocol would enable any party to participate and
contribute input for consideration of the other parties. With this in mind, the
traditional setting of consensus is permissioned, since only specific parties are
allowed to participate; on the other hand, consensus in the blockchain setting
can be either permissioned or permissionless.

Cryptographic Primitives. We now overview some standard cryptographic prim-
itives, as they are employed by some of the consensus protocols. A digital sig-
nature scheme consists of three PPT algorithms (Gen, Sign, Verify) such that
(vk, sk) <« Gen(1") generates a public-key/secret-key pair; o « Sign(sk,m)
signs a message m; and Verify(vk, m,o) returns 1 if and only if o is a valid sig-
nature for m given vk. A digital signature scheme is existentially unforgeable, if
for any PPT adversary A that has access to a Sign(sk,) oracle, the event that
A returns some (m, o) such that Verify(vk, m, o) = 1 has measure negl(x), where
the probability is taken over the coin tosses of the algorithms, negl() denotes a
negligible function, and & is the security parameter. A collision resistant (keyed)
hash function family { Hy, }c x has the property that Hy : {0,1}* — {0,1}", it is
efficiently computable and the probability to produce x # y with Hy(x) = Hy(y)
given k is negl(k). Another, less standard primitive that has been widely deployed
in consensus protocol design with the advent of the Bitcoin blockchain is proof
of work (PoW); see Sect. 5 for more information on the primitive.

2.2 The Consensus Problem

As mentioned earlier, consensus (aka Byzantine agreement), formulated by
Shostak, Pease and Lamport [88,108], is one of the fundamental problems in

290 J. Garay and A. Kiayias

the areas of fault-tolerant distributing computing and cryptographic protocols, in
particular secure multi-party computation [18,36,77,115]. In the consensus prob-
lem, n parties attempt to reach agreement on a value from some fixed domain
V', despite the malicious behavior of up to t of them. More specifically, every
party P; starts the consensus protocol with an initial value v € V, and every
run of the protocol must satisfy (except possibly for some negligible probability)
the following conditions (we note that all properties below are expressible as @
predicates according to Definition 1).

— Termination: All honest parties decide on a value.

— Agreement: If two honest parties decide on v and w, respectively, then v = w.

— Validity: If all honest parties have the same initial value v, then all honest
parties decide on v.

The domain V' can be arbitrary, but frequently the case V' = {0, 1} is considered
given the efficient transformation of binary agreement protocols to the multi-
valued case cf. [113].1

There exist various measures of quality of a consensus protocol: its resiliency,
expressed as the fraction (%) of misbehaving parties a protocol can tolerate; its
running time—worst number of rounds by which honest parties terminate; and
its communication complexity—worst total number of bits/messages communi-
cated during a protocol run.

In the consensus problem, all the parties start with an initial value. A closely
related variant is the single-source version of the problem (aka the Byzantine
Generals problem [88], or simply (reliable or secure) “broadcast”), where only a
distinguished party—the sender—has an input. In this variant, both the Termi-
nation and Agreement conditions remain the same, and Validity becomes:

— Validity: If the sender is honest and has initial value v, then all honest parties
decide on v.

A stronger, albeit natural, version of the consensus problem requires that
the output value be one of the honest parties’ inputs, a distinction that is only
important in the case of non-binary inputs. In this version, called strong consen-
sus [99], the Validity condition becomes:

— Strong Validity: If the honest parties decide on v, then v is the input of some
honest party.

Note that the distinction with the standard version of the problem is only rel-
evant in the case of non-binary inputs. Further, the resiliency bounds for this
version also depend on |V| (see Sect. 6).

Another way to enhance validity is to require that the output of an honest
party conforms to an external predicate @ [26]. In this setting, each input v is

! Refer to Sect.6 for more efficient transformations, where in particular the longer
message is only transmitted O(n) times, as opposed to O(n?).

SoK: A Consensus Taxonomy in the Blockchain Era 291

accompanied by a proof m and is supposed to satisfy Q(v,7) = 1 (for instance,
m can be a digital signature on v and @ would be verifying its validity). Note
that the resulting guarantee is weaker than strong validity (since it could be the
case that the decision is made on an input suggested by a corrupted party), but
nevertheless it can be suitable in a multi-valued setting where only externally
validated inputs are admissible as outputs.

Finally, we point out that, traditionally, consensus problems have been spec-
ified as above, in a property-based manner. Protocols for the problem are then
proven secure/correct by showing how the properties (e.g., the Agreement,
Validity and Termination conditions) are met. Nowadays, however, it is widely
accepted to formulate the security of a protocol via the “trusted-party paradigm”
(cf. [76,77]), where the protocol execution is compared with an ideal process
where the outputs are computed by a trusted party that sees all the inputs. A
protocol is then said to securely carry out the task if running the protocol with a
realistic adversary amounts to “emulating” the ideal process with the appropri-
ate trusted party. One advantage of such a simulation-based approach is that it
simultaneously captures all the properties that are guaranteed by the ideal world,
without having to enumerate some list of desired properties. Simulation-based
definitions are also useful for applying composition theorems (e.g., [29,30]) that
enable proving the security of protocols that use other protocols as sub-routines,
which typically would be the case for consensus and/or broadcast protocols.

The above captures the classical definition of the consensus problem. A
related and recently extensively studied version of the problem is state-machine
replication or “ledger” consensus that we will treat in Sect. 8.

On the Necessity of an Honest Majority. Regardless of the resources avail-
able to the parties in the protocol execution, an upper bound of (less than) n/2
can be shown for resiliency (see, for example, [59]). Specifically, consider a set
n of parties that are equally divided with respect to their initial values between
inputs 0 and 1, and an adversary that with 1/3 probability corrupts no one (case
1), with 1/3 probability corrupts the parties that have input 0 (case 2) and with
1/3 probability corrupts the parties that have input 1 (case 3). In any case, the
adversarial parties follow the protocol. Observe that case 1 requires from the
honest parties to converge to a common output (due to Agreement), while in
the other two cases the honest parties should output 0 (case 2) and 1 (case 3).
However, all three cases are perfectly indistinguishable in the view of the honest
parties and as a result a logical contradiction ensues.

3 Network Assumptions

Communication Primitives. Consensus protocols are described with respect
to a network layer that enables parties to send messages to each other. An
important distinction we will make is between point-to-point connectivity vs.
message “diffusion” as it manifests in a peer-to-peer communication setting.

292 J. Garay and A. Kiayias

Point-to-Point Channels. In this setting parties are connected with pairwise
reliable and authentic channels. We call that resource RMT, for reliable message
transmission. When a party sends a message it specifies its recipient as well
as the message contents and it is guaranteed that the recipient will receive it.
The recipient can identify the sender as the source of the message. In such
fixed connectivity setting, all parties are aware of the set of parties running
the protocol. Full connectivity has been the standard communication setting
for consensus protocols, see [88], although sparse connectivity has also been
considered (cf. [53,114]). We present the functionality for RMT in the full version
of the paper [65].

In terms of measuring communication costs in this model, it will be simpler
for us to use the (maximum) total number of messages in a protocol run, rather
than the total number of communicated bits, assuming a suitable message size.
See, e.g., [59] (Chap. 3) for a detailed account of the communication complexity
of consensus (and broadcast) protocols.

Peer-to-Peer Diffusion. This setting is motivated by peer-to peer message trans-
mission that happens via “gossiping,” i.e., messages received by a party are
passed along on to the party’s peers. We refer to this basic message passing oper-
ation as “Diffuse.” Message transmission is not authenticated and it does not
preserve the order of messages in the views of different parties. When a message
is diffused by an honest party, there is no specific recipient and it is guaranteed
that all activated honest parties will receive the same message. Nonetheless, the
source of the message may be “spoofed” and thus the recipient may not reliably
identify the source of the message,? and when the sender is malicious not every-
one is guaranteed to receive the same message. Contrary to the point-to-point
channels setting, parties may neither be aware of the identities of the parties
running the protocol nor their precise number. The ideal functionality capturing
the diffuse operation is also presented in the full version of the paper.

In order to measure the total communication costs of peer-to-peer diffusion,
one needs to take into account the underlying network graph. The typical deploy-
ment setting will be a sparse constant-degree graph for which it holds that the
number of edges equals O(n). In such setting, each invocation of the primitive
requires O(n) messages to be transmitted in the network.

Relation Between the Communication Primitives. It is easy to see that given
RMT, there is a straightforward, albeit inefficient, protocol that simulates
Diffuse; given a message to be diffused, the protocol using RMT will send the
message to each party in the set of parties running the protocol. On the other
hand, it is not hard to establish that no protocol can simulate RMT given Diffuse.
The argument is as follows, and it works no matter how the protocol using Diffuse
may operate. When a party A transmits a message M to party B, it is possible
for the adversary in the Diffuse setting to simulate a “fake” party A that sends a

2 Note that in contrast to a sender-anonymous channel (cf. [35]), a diffuse channel will
leak the identity of the sender to the adversary.

SoK: A Consensus Taxonomy in the Blockchain Era 293

message M’ # M to B concurrently. Invariably, this will result to a setting where
B has to decide which is the correct message to output and will have to produce
the wrong message with non-negligible probability. It follows that Diffuse is a
weaker communication primitive: one would not be able to substitute Diffuse for
RMT in a protocol setting.

Other Models. The above models may be extended in a number of ways to
capture various real world considerations in message passing. For instance, in
point-to-point channels, the communication graph may change over the course of
protocol execution with edges being added or removed adversarially, something
that may also result in temporary network partitions. Another intermediate
model between point-to-point channels and diffusion, formulated by Okun [101],
is to have a diffusion channel with “port awareness,” i.e., the setting where
messages from the same source are linkable, or without port awareness, but
where each party is restricted to sending one message per round (see Sect. 3 for
the notion of round) and their total number is known. Yet another intermediate
model in terms of partial knowledge of parties and authentication has been
treated, e.g., in [4,13] and follow-up works.

Synchrony. The ability of the parties to synchronize in protocol execution is
an important aspect in the design of consensus protocols. Synchrony in message
passing can be captured by dividing the protocol execution in rounds where
parties are activated in some sequence and each one of them has the opportunity
to send messages which are received by the recipients at the onset of the next
round. This reflects the fact that in real world networks messages are delivered
most of the time in a timely fashion and thus parties can synchronize the protocol
execution in discrete rounds.

A first important relaxation to the synchronous model is to allow the adver-
sary to control the activation of parties so that it acts last in each round having
access to all messages sent by honest participants before it decides on the actions
of the adversarial participants and the ordering of message delivery for the hon-
est parties in the next round. This concept is standard in the secure mult-iparty
computation literature [18,37,78] and is commonly referred to as the “rushing
adversary” [30]. This is captured by the corresponding communication function-
alities. A second relaxation is to impose a time bound on message delivery that
is not known to the protocol participants. We shall refer to this as the “partially
synchronous setting” [50]. The partial synchronous setting is easy to capture by
the communication functionalities as follows: a parameter A € N is introduced
in each functionality that determines the maximum time a message can remain
“in limbo.” For each message that is sent, a counter is introduced that is initially
0 and counts the number of rounds that have passed since its transmission (note
that this concept of round is not any more a “message passing” round). When
this counter reaches A the message is copied to the inbox(-) strings for the active
participants.

An even weaker setting than partial synchrony is that of message transmission
with eventual message delivery, where all messages between honest parties are

294 J. Garay and A. Kiayias

guaranteed to be delivered but there is no specific time bound that mandates
their delivery in the course of the protocol execution. This is the classical model
in fault tolerant distributed computing that is referred to as asynchronous [58,
90]. Again, it is easy to adapt the communication functionalities to accomodate
eventual delivery, following the recent formalization of this model in [44]. Note
that it is proven that no deterministic consensus protocol exists in this setting
[58], and the impossibility can be overcome by randomization [15,39,55,110].

Finally, in the “fully asynchronous setting” (cf. [30]), where messages may
be arbitrarily delayed or dropped consensus is trivially impossible.

4 Setup Assumptions

In the context of protocol design, a setup assumption refers to information that
can be available at the onset of the protocol to each protocol participant. Con-
sensus protocols are designed with respect to a number of different setup assump-
tions that we outline below.

No Setup. In this setting we consider protocols that parties do not utilize any
setup functionality beyond the existence of the communication functionality.
Note that the communication functionality may already provide some informa-
tion to the participants about the environment of the protocol; nevertheless,
this setting is distinguished from other more thorough setup assumptions that
are described below. We note that in this setting it may be of interest to con-
sider protocol executions wherein the adversary is allowed a certain amount of
precomputation prior to the onset of execution that involves the honest parties.

Public-State Setup. A public-state setup is parameterized by a probability
ensemble D. For each input size k, the ensemble D specifies a probability dis-
tribution that is sampled a single time at the onset of the protocol execution
to produce a string denoted by s that is of length polynomial in . All proto-
col parties, including adversarial ones, are assumed to have access to s. In this
setting, the consensus protocol will be designed for a specific ensemble D.

The concept of a public-state setup can be further relaxed in a model that
has been called “sun-spots” [32], where the ensemble is further parameterized by
an index a. The definition is the same as above but now the protocol execution
will be taken for some arbitrary choice of a. Intuitively, the parameter a can be
thought as an adversarial influence in the choice of the public string s. In this
setting, the consensus protocol will be designed with respect to the ensemble
class {Dg }a-

Private-State Setup. As in the public state case, a private state setup is
parameterized by an ensemble D. For each input size k¥ and number of parties n,
D specifies a probability distribution that is sampled a single time to produce a
sequence of values (s1, ..., s,). The length of each value s; is polynomial in k. At
the onset of the protocol execution, the ensemble is sampled once and each pro-
tocol participant will receive one of the values s; following some predetermined
order. The critical feature of this setting is that each party will have private

SoK: A Consensus Taxonomy in the Blockchain Era 295

access to s;. Observe that, trivially, the setting of private-state setup subsumes
the setting of public-state setup.

As in the case of a public-state setup, it is important to consider the relax-
ation where the ensemble D is parameterized by string a. As before sampling
from D, will be performed from some arbitrary choice of a. It is in this sense
where private-state setup has been most useful. In particular, we can use it
to express the concept of a public-key infrastructure (PKI). In this setting the
ensemble D employs a digital signature algorithm (Gen, Sign, Verify) and samples
a value (vk;, sk;) < Gen(1") independently for each honest participant. For each
participant which is assumed to be adversarial at the onset of the execution,
its public and secret key pair is set to a predetermined value that is extracted
from a. The private input s; for the i-th protocol participant will be equal to
(vky, ..., vk, sk;), thus giving access to all parties’ public (verification) keys and
its own private key. Other types of private setup include “correlated random-
ness” [12], where parties get correlated random strings (rq, ra, ..., 7,) drawn from
some predetermined distribution, which has been used to implement a random
beacon [110].

One may consider more complicated interactive setups, such as for example
the adversary choosing a somehow based on public information available about
(s1,-..,8n), but we will refrain from considering those here. An alternative (and
subsumed by the above) formulation of a private setup includes the availability of
a broadcast channel prior to the protocol execution, which enables participants
to exchange shared keys [109].

5 Computational Assumptions

The assumptions used to prove the properties of consensus protocols can be
divided into two broad categories. In the information-theoretic (aka “uncon-
ditional”) setting, the adversary is assumed to be unbounded in terms of its
computational resources. In the computational setting, on the other hand, a
polynomial-time bound is assumed.

Information-Theoretic Security. In the information-theoretic setting the
adversarial running time is unbounded. It follows that the adversary may take
arbitrary time to operate in each invocation. Note that the protocol execution
may continue to proceed in synchronous rounds, nevertheless the running time
of the adversary within each round will dilate sufficiently to accomodate its com-
plete operation. When proving the consensus properties in this setting we can
further consider two variations: perfect and statistical. When a property, Agree-
ment for example, is perfectly satisfied this means that in all possible executions
the honest parties never disagree on their outputs. On the other hand, in the
statistical variant, there will be certain executions where the honest parties are
allowed to disagree. Nevertheless, these executions will have negligible density
in a security parameter (in this case, n) among all executions. We observe that
the statistical setting is only meaningful for a probabilistic consensus protocol,
where the honest parties may be “unlucky” in their choices of coins.

296 J. Garay and A. Kiayias

Computational Security. In the computational setting the adversarial run-
ning time, and/or the computational model within which the adversary (and the
parties running the protocol) are expressed becomes restricted. We distinguish
the following variants.

One-Way functions. A standard computational assumption is the existence of
one-way functions. A one-way function is a function f : X — Y for which it
holds that f is polynomial-time computable, but the probability A(11%!, f(z)) €
f~1(f(z)) for a randomly sampled z, is negligible in |z| for any polynomial time
bounded program A. One-way functions, albeit quite basic, are a powerful prim-
itive that enables the construction of more complex cryptographic algorithms
that include symmetric-key encryption, target collision-resistant hash functions
and digital signatures [98]; the latter in particular play an important role when
categorizing consensus protocols as we see below.

Proof of Work. A proof of work (PoW) [52] is a cryptographic primitive that
enables a verifier to be convinced that certain amount of computational effort
has been invested with respect to a certain context, e.g., a plaintext message or a
nonce that the verifier has provided. A number of properties have been identified
as important for the application of the primitive specifically to blockchain proto-
cols, including amortization resistance, sampleability, fast verification, hardness
against tampering and message attacks, and almost k-wise independence [71].
Some variants of PoWs have been shown to imply one-way functions [22].

The Random Oracle Model. In the previous subsections the level of security
described was captured in the standard computational model where all parties
are assumed to be Interactive Turing machines. In many cases, including con-
sensus protocol design, it is proven useful to describe properties in the random
oracle model, [14]. The random oracle model can be captured as an ideal func-
tionality Fro (see the full version of the paper). In a relevant adaptation of the
Fro model for the consensus setting, the access to the oracle is restricted by
a quota of ¢ > 1 queries per party per round of protocol execution [67]. This
bound is also imposed on the adversary who is assumed to control ¢ parties. In
case t < n/2, the execution will be said to impose honest majority in terms of
“computational power.”

6 Consensus in the Point-to-Point Setting

In the traditional network model of point-to-point reliable channels between
every pair of parties, the problem was formulated in [88] in the two settings
described in Sect.5: the information-theoretic setting and the computational
(also called cryptographic, or authenticated) setting. As mentioned above, in the
former no assumptions are made about the adversary’s computational power,
while the latter relies on the hardness of computational problems (such as fac-
toring large integers or computing discrete logs), and requires a trusted setup
in the form of a PKI. Depending on the setting, some of the bounds on the

SoK: A Consensus Taxonomy in the Blockchain Era 297

putational

Yl qLompu
assumptions

lexit

comp

LSP82]\ (1ems7]| ([Bores] | [(pwosy| [[DS83]|[(Kkoe] | [[AD15] | (jakLP1sl| [[GKL15]|(PS1724([Mic]
QG:\%B])(17 =13 [1/z] 12 12 12 [1/2] 12 |{CRUIS 173

Fig. 1. The taxonomy of consensus protocols and impossibility results in the syn-
chronous setting. The dotted arrows leading to [23] mean that even though those cases
were not explicitly considered, a similar reasoning would lead to that impossibility
result. Nmax/Nmin refers to participation tolerance (cf. Sect. 7).

problems’ quality measures differ. Refer to Fig. 1 (specifically, the left subtree)
as we go through the classification below.

Number of Parties. For the information-theoretic setting, n > 3t is both nec-
essary and sufficient for the problem to have a solution. The necessary condition
is presented in [88] for the broadcast problem (see [57] for the consensus version
of the impossibility result), as the special case of 3 parties (“generals”), having
to agree on two values (‘attack’, ‘retreat’), with one of them being dishonest.
As in the information-theoretic setting (with no additional setup) the parties
are not able to forward messages in an authenticated manner, it is easily shown
that an honest receiver cannot distinguish between a run where the sender is dis-
honest and sends conflicting messages, and a run where a receiver is dishonest
and claims to have received the opposite message, which leads to the violation
of the problem’s conditions (Agreement and Validity, respectively). The general
case (arbitrary values of n) reduces to the 3-party case. The (broadcast) pro-
tocol presented in [88] matches this bound (n > 3t), and essentially consists in
recursively echoeing messages received in a round while excluding the messages’
senders. (In the first round, only the sender sends messages.) This is done for
t + 1 rounds, at which point the parties take majority of the values received for

298 J. Garay and A. Kiayias

that instance, returning that value as they exit that recursive step. The party’s
output is the value returned for the first recursive call. t + 1 rounds were later
shown to be optimal (see below), but the protocol requires exponential (in n)
computation and communication.

Lamport et al. [88] also formulated the problem in the computational setting,
where, specifically, there is a trusted private-state setup (of a PKI), and the
parties have access to a digital signature scheme. This version of the problem
has been referred to as authenticated Byzantine agreement. In contrast to the
information-theoretic setting, in the computational setting with a trusted setup
the bounds for broadcast and consensus differ: n > ¢ [88] and n > 2¢ (e.g., [59]),
respectively. The protocol presented in [88] runs in ¢ 4+ 1 rounds but, as in the
information-theoretic setting, is also exponential-time; an efficient (polynomial-
time) protocol was presented early on by Dolev and Strong [49], which we now
briefly describe. In this protocol in the first round the sender digitally signs and
sends his message to all the other parties, while in subsequent rounds parties
append their signatures and forward the result. If any party ever observes valid
signatures of the sender on two different messages, then that party forwards both
signatures to all other parties and disqualifies the sender (and all parties output
some default message). This simple protocol is a popular building block in the
area of cryptographic protocols.

The original formulation of the problem in the computational setting assumes
a PKI. In [23], Borcherding considered the situation where no PKI is available,
which he refers to as “local authentication,” meaning that no agreement on
the parties’ keys is provided, as each party distributes its verification key by
itself. Borcherding shows that in this case, as in the information-theoretic setting
above, broadcast and consensus are not possible if n < 3¢, even though this
setting is strictly stronger, as a dishonest party cannot forge messages sent by
honest parties. The gist of the impossibility is that the adversary can always
confuse honest parties about the correct protocol outcome and digital signatures
cannot help if they are not pre-associated with the parties running the protocol
in advance (something only ensured given a private setup).

Regarding the “strong” version of the problem (the decision value must be
one of the honest parties’ input values), Fitzi and Garay [60] showed that the
problem has a solution if and only if n > max(3,|V])¢ in the unconditional set-
ting®, where V is the domain of input/output values, and n > |V|t in the compu-
tational setting with a trusted setup, giving resiliency-optimal and polynomial-
time protocols that run in ¢ 4+ 1 rounds.

Running Time. Regarding the running time of consensus protocols, a lower
bound of ¢ + 1 rounds for deterministic protocols was established by Fischer
and Lynch [56] for the case of benign (“crash”) failures, and extended to the
setting with malicious failures where messages are authenticated by Dolev and
Strong [49]. As mentioned above, the original protocols by Lamport et al. already
achieved this bound, but required exponential computation and communication.

3 The lower bound was in fact shown by Neiger, who formulated this version of the
problem [99].

SoK: A Consensus Taxonomy in the Blockchain Era 299

In contrast to the computational setting, where a polynomial-time resiliency-
and round-optimal protocol was found relatively soon [49], in the information-
theoretic setting this took quite a bit longer, and was achieved by Garay and
Moses [72]. In a nutshell, the [72] result builds on the “unraveled” version of the
original protocol, presented and called Ezponential Information Gathering by
Bar-Noy et al. [11], applying a suite of “early-stopping” (see more on this below)
and fault-detection techniques to prune the tree data structure to polynomial
size. Regarding strong consensus, the ¢ 4+ 1-round lower bound also applies to
this version of the problem, which the protocols by Fitzi and Garay [60] achieve
(as well as being polynomial-time and resiliency-optimal).

In the t+ 1-round lower bound for deterministic protocols, ¢ is the maximum
number of corruptions that can be tolerated in order to achieve consensus in
a given model. Dolev, Reischuk and Strong [48] asked what would the running
time be when the actual number of corruptions, say, f is smaller than ¢, and
showed a lower bound of min{¢+1, f + 2} for any consensus protocol, even when
only crash failures occur, which is important when f is very small. They called
a consensus protocol satisfying this property early-stopping. Faster termination,
however, comes at a price of non-simultaneous termination, as they also showed
that if simultaneous termination is required, then ¢ + 1 rounds are necessary.
(See also [51].)

Optimal early stopping for the optimal number of parties (i.e., n > 3t) was
achieved in the information-theoretic setting by Berman and Garay [21]; the
protocol, however, is inefficient, as it requires exponential communication and
computation. Relatively recently, an efficient (polynomial-time) optimal early-
stopping consensus protocol was presented by Abraham and Dolev [2].

The above t + 1-round lower bound applies to deterministic protocols. A
major breakthrough in fault-tolerant distributed algorithms was the introduc-
tion of randomization to the field by Ben-Or [15] and Rabin [110], which, effec-
tively, showed how to circumvent the above limitation by using randomization.
Rabin [110], in particular, showed that linearly resilient consensus protocols in
expected constant rounds were possible, provided that all parties have access to
a “common coin” (i.e., a common source of randomness). Essentially, the value
of the coin can be adopted by the honest parties in case disagreement at any
given round is detected, a process that is repeated multiple times. This line
of research culminated with the work of Feldman and Micali [55], who showed
how to obtain a shared random coin with constant probability from “scratch,”
yielding a probabilistic consensus protocol tolerating the maximum number of
misbehaving parties (¢ < n/3) that runs in expected constant number of rounds.

The [55] protocol works in the information-theoretic setting; these results
were later extended to the computational setting by Katz and Koo [82], who
showed that assuming a PKI and digital signatures there exists an (expected-
)eonstant-round consensus protocol tolerating ¢ < n/2 corruptions. Recall that
broadcast protocols in the computational setting with setup tolerate an arbitrary
number (i.e., n > t) of dishonest parties; in contrast, the protocol in [82] assumes
n > 2t (as it is based on VSS—uwerifiable secret sharing [40]). In [63], Garay et al.

300 J. Garay and A. Kiayias

consider the case of a dishonest majority (i.e., n < 2t), presenting an expected-
constant-round protocol for ¢ = % + O(1) dishonest parties (more generally,
expected O(k?) running time when t = 5 + k), and showing the impossibility of
expected-constant-round broadcast protocols when n — t = o(n).

The speed-up on the running time of probabilistic consensus protocols comes
at the cost of uncertainty, as a party that terminates can never be sure that
other parties have also terminated—i.e., there cannot be simultaneous termina-
tion [48], which is an issue when these protocols are invoked from a higher-level
protocol, as a party cannot be sure how long after he receives his output from
a call to such a probabilistic termination (PT) consensus protocol (cf. [42]) he
can safely carry out with the execution of the calling protocol. The sequential
composition of PT consensus protocols was addressed by Lindell et al. [89] while
the parallel composition of such protocols by Ben-Or and El-Yaniv [17]. (The
issue in the case of parallel invocations of expected-constant-round PT proto-
cols is that the overall running time of the parallel executions is not necessarily
expected constant.) The above results on sequential and parallel composition,
however, do not use simulation-based security, and it was therefore unclear how
(or if) one would be able to use them to instantiate consensus (and/or broadcast)
from a higher-level protocol. Such formal simulation-based (and therefore com-
posable) definition and constructions of consensus protocols with probabilistic
termination has been recently presented in [42].

Trusted Setup. We already covered this aspect above while describing the
protocols achieving the different bounds on the number of parties; here we briefly
summarize it. There is no trusted setup in the unconditional setting, although in
the case of randomized protocols there is the additional requirement of the point-
to-point channels being private in addition to reliable, while the “authenticated”
consensus protocols assume a PKI. Related to a trusted setup assumption, we
remark that if a pre-computation phase is allowed in the information-theoretic
setting where reliable broadcast is guaranteed, then Pfitzmann and Waidner
showed that broadcast and consensus are achievable with the same bounds on
the number of parties as in the computational setting, using a tool known as a
“pseudo-signatures” [109].

Communication Cost. A lower bound of 2(n?) on the number of mes-
sages (in fact, £2(nt)) was shown by Dolev and Reischuk for consensus for
both information-theoretic and computational security [47]; for the latter, what
they showed was that the number of signatures that are required by any pro-
tocol is §2(nt), resulting in an 2(nt|c|) bit complexity (for a constant-size
domain), where |o| represents the maximum signature size. The first information-
theoretically secure protocols to match this bound were given by Berman et al.
[20] and independently by Coan and Welch [41]; regarding computational secu-
rity, the protocol presented by Dolev and Strong [49] requires that many mes-
sages. By relaxing the model and allowing for a small probability of error, King
and Saia [85], presented a protocol that circumvents the impossibility result
(with message complexity O(n'?)).

SoK: A Consensus Taxonomy in the Blockchain Era 301

The above bounds (except for [85]) reflect the fact that in typical protocols
messages are communicated at least 2(n?) times, resulting in an overall commu-
nication complexity of at least 2(#n?) for ¢-bit messages. In [61,80], Fitzi and
Hirt and Hirt and Raykov show protocols for consensus and broadcast, respec-
tively, where the long message is communicated O(n) times, which is optimal as
no protocol can achieve consensus or broadcast of an ¢-bit message with com-
munication complexity o(¢n). See also [62,106] for further improvements.

Beyond Synchrony. The case of partial synchrony, introduced in [50], considers
the existence of an unknown bound A that determines the maximum delay of
a message that is unknown to the protocol participants.* As shown in [50],
the resiliency bounds presented in the point-to-point subtree of Fig.1 remain
unaltered in the no setup and public setup cases, but it degrades to n/3 in the
private setup case.

In the eventual delivery setting, as mentioned above, deterministic consensus
is impossible but it is still feasible to obtain protocols with probabilistic guar-
antees. Furthermore, note that in this setting it is not possible to account for
all of the honest parties’ inputs since parties cannot afford to wait for all the
parties to engage (since corrupt parties may never transmit their messages and
it is impossible to set a correct time-out). In more detail, without a setup in
the information-theoretic setting, it is possible to adapt the protocol in [55] and
achieve n/4 resilience [54] (see Fig.1). By allowing the protocol not to termi-
nate with negligible probability, Canetti and Rabin showed how to bring the
resiliency to n/3 [33], which was later on improved to guarantee termination
with probability 1 by Abraham et al. [3]. Efficiency improvements to the above
two results (specifically, communication of the first one, and running time of the
second one) were more recently presented in [9,107], respectively.

In the private-setup setting, assuming one-way functions, it is possible to
obtain an always-terminating protocol with n/3 resiliency (cf. [54]). We note
that it is infeasible to go beyond n/3 resiliency, as shown in [16,28], where this
bound is argued for fail-stop failures, and thus the above results are optimal in
this sense.

Most protocols mentioned above demonstrate the feasibility of the respective
bounds. Much effort has also been dedicated to achieving practical Byzantine
fault tolerance (BFT) in the eventual message delivery model. For completeness,
here we mention some relevant results, with the work by Castro and Liskov [34]
as a notable instance, where they focus on a fault-tolerant replicated transactions
service in the cryptographic setting with the corresponding Safety and Liveness
properties (see Sect.8), achieving n/3 resiliency. Cachin et al. [27] study con-
sensus in the same model, showing an efficient coin tossing protocol assuming a
random oracle. Other related works focusing on practical efficiency include the
work by Kursawe and Shoup on “asynchronous” atomic broadcast [87] (atomicity
means that broadcast executions are ordered in such a way that two broadcast

* In [50] partial synchrony between the clocks of the processors is also considered as a
separate relaxation to the model. In the present treatment we only focus on partial
synchrony with respect to message passing.

302 J. Garay and A. Kiayias

requests are received in the same order by any two honest parties), following the
“optimistic” approach presented in [34] where first only a “Bracha broadcast”
protocol [24] is first attempted, reverting to the use of cryptography if things
go wrong. Finally, Miller et al. [93] improve on the communication complexity
of the protocol in [26], and guarantee Liveness without any timing assumptions,
which was the case in [34].

Property-Based vs. Simulation-Based Proofs. As mentioned in Sect. 2.2,
consensus and broadcast protocols have been typically proven secure/correct
following a property-based approach. It turns out, as pointed out by Hirt and
Zikas [81] (see also [64]), that in the case of adaptive adversaries who can choose
which parties to corrupt dynamically, during the course of the protocol execu-
tion (cf. [31]), most existing broadcast and consensus protocols cannot be proven
secure in a simulation-based manner. The reason, at a high level, is that when
the adversary (having corrupted a party) receives a message from an honest
party, can corrupt that party and make him change his message to other parties.
This creates an inconsistency with the ideal process, where the party has already
provided his input to the trusted party/ideal functionality that abstracts con-
sensus. To be amenable to a simulation-based proof, instead of sending its initial
message “in the clear,” the sender in a broadcast protocol sends a commitment
to the message, allowing the simulator in the ideal process to “equivocate” when
the committed value becomes known in case the party has been corrupted and
the initial value changed [64,81].

7 Consensus in the Peer-to-Peer Setting

Consensus in the peer-to-peer setting is the consensus problem when the avail-
able communication resource is peer-to-peer diffusion (cf. Sect. 3), a weaker com-
munication primitive compared to point-to-point channels. (For this section,
refer to the right subtree of Fig.1.) This setting arose with the advent of the
Bitcoin blockchain protocol, and was formally studied for the first time in [67].
In a nutshell, it constitutes an unauthenticated model of communication where
no correlation of message sources across rounds can be established and the exact
number of parties that participate may be unknown to the protocol partici-
pants. Moreover, since the adversary may inject messages in the network, an
honest party cannot infer the number of participants from a message count.

We note that in a precursor model, where there is no correlation of message
sources, but the point-to-point structure is still in place albeit without authen-
tication, Okun showed that deterministic consensus algorithms are impossible
for even a single failure [101,102], but that probabilistic consensus is still feasi-
ble by suitably adapting the protocols of [15,55]°; the protocol, however, takes
exponentially many rounds.

The consensus problem in the peer-to-peer setting has mostly been considered
in the computational setting utilizing one-way functions and the proof-of-work

5 Hence, consensus in this setting shares a similar profile with consensus in the asyn-
chronous network model [58].

SoK: A Consensus Taxonomy in the Blockchain Era 303

(PoW) primitive (Sect.5). The first suggestion for a solution was informally
described in [6], where it was suggested that PoWs can be used as an “identity
assignment” tool, which subsequently can be used to bootstrap a standard con-
sensus protocol like [49]. Nevertheless, the viability of this plan was never fully
analyzed until an alternative approach to the problem was informally described
by Nakamoto in an email exchange [96], where he argued that the “Byzantine
Generals” problem can be solved by a blockchain/PoW approach tolerating a
number of misbehaving parties strictly below n/2. As independently observed
in [66,92], however, with overwhelming probability the Validity property is not
satisfied by Nakamoto’s informal suggestion.

The blockchain approach suggests to string PoWs together in a hash chain
and achieve agreement using a rule that favors higher concentrations of computa-
tional effort as reflected in the resulting hash chains. The inputs to the consensus
problem are “entangled” within the PoWs themselves and the final output results
from a processing of the hash chain. The approach was first formalized in [67]
where also two constructions were provided that satisfy all properties assuming
a public setup.

Without access to a public setup, it is also possible to obtain a construc-
tion based on the results of [5], who were the first to formalize the [6] informal
approach of using PoWs for identity assignment. Moreover, a blockchain-based
approach is also possible as shown in [70]. Using a private setup, it becomes fea-
sible to use primitives such as digital signatures and verifiable random functions
(by storing the public key information as part of the public part of the setup,
while the secret key information is the private part of the setup) and obtain even
more efficient constructions such as the consensus sub-protocol of [38].

Number of Parties. One of the most important characteristics of consensus
in the peer-to-peer setting is that the actual number of parties that are run-
ning the protocol is not assumed to be known in advance. Instead, the actual
number of parties becomes a run-time execution parameter and the protocol is
supposed to be able to tolerate a range of different of possible choices for the
number of parties. We capture this by posing a range of possible operational
values [Mmin, Mmax), and posit that if the actual number of parties falls within
the range then the properties will be guaranteed. We call the ratio nmax/Mmin
for a given protocol a protocol’s participation tolerance. We note that this notion
is somewhat related to models that have been considered in fault-tolerant dis-
tributed computing and secure multiparty computation (see, e.g., [73] and [79],
respectively). In such scenarios the parties are subject to two types of faults,
Byzantine and benign, such as “going to sleep,” but adversarially scheduled. In
the latter type, the parties will cease participating in the protocol execution.
In the convention introduced in [67], each party has a fixed quota of hashing
queries that is allowed per round. As a result, the number of parties is directly
proportional to the “computational power” that is present in the system and the
total number of PoWs produced by the honest parties collectively would exceed
that of the adversary assuming honest majority with very high probability. Given
this it is tempting to imagine a direct translation of computational power to a

304 J. Garay and A. Kiayias

set of identities [6]. The main problem is that the set of identities as perceived by
the honest participants in the protocol execution might be inconsistent. This was
resolved with the protocol of [5] where PoWs are used to build a “graded” PKI,
where keys have ranks. The graded PKI is an instance of the graded agreement
problem [55], or partial consistency problem [43], where honest parties do not
disagree by much, according to some metric. Subsequently, it is possible to morph
this graded consistency to global consistency by running multiple instances of
[49]. This can be used to provide a consensus protocol with resiliency n/2 without
a trusted setup.

It is unnecessary though for the parties to reach consensus by establishing
identities. In the first consensus protocol presented in [67], the parties build a
blockchain where each block contains a value that matches the input of the party
that produced the block. The protocol continues for a certain number of rounds
that ensures that the blockchain has grown to a certain length. In the final round,
the parties remove a k-block suffix from their local blockchain, and output the
majority bit from the remaining prefix. Based on the property called “common
prefix” in [67], it is shown that with overwhelming probability in the security
parameter, the parties terminate with the same output, while using the “chain
quality” property, it is shown that if all the honest parties start with the same
input, the corrupt parties cannot overturn the majority bit, which corresponds
to the honest parties’ input. The number of tolerated misbehaving parties in
this protocol is strictly below n/3, a sub-optimal resiliency due to the low chain
quality of the underlying blockhain protocol. The maximum resiliency that can
be expected is n/2, something that can be shown by easily adapting the standard
argument for the necessity of honest majority shown in Sect. 2.

Optimal resiliency can be reached by the second consensus protocol of [67] as
follows: The protocol substitutes Bitcoin transactions with a type of transactions
that are themselves based on PoWs, and hence uses PoWs in two distinct ways:
for the maintenance of the ledger and for the generation of the transactions
themselves. The protocol requires special care in the way it employs PoWs since
the adversary should be incapable of “shifting” work between the two PoW tasks
that it faces in each round. To solve this problem, a special strategy for PoW-
based protocol composition is introduced in [67] called “2-for-1 PoWs.” In the
second solution presented in [67] the number of tolerated misbehaving parties is
strictly below n/2.

We note that all these protocols come with a hard-coded difficulty level for
PoWs which is assumed to be correlated with the number of parties n. If f is
the probability that at least one honest party will produce a PoW in a round of
protocol execution, it holds that f approaches 0 for small n while it approaches
1 for large n. It follows that the choice of PoW difficulty results in an operational
range of values [Nmin, Mmax) and it is possible to set the difficulty for any constant
ratio Nmax/Mmin, SO the participation tolerance of the protocol can be set to
any arbitrary constant. We note that the lower bound np;, can be arbitrarily
small as long as we are able to assume that even a single party has sufficient
computational power to ensure that finding PoWs is not very rare. In case this

SoK: A Consensus Taxonomy in the Blockchain Era 305

is not true and n < My, the protocol cannot be guaranteed to satisfy Validity
with high probability, while on the other hand, if n > n.x, the protocol cannot
be guaranteed to achieve agreement with high probability.

Using digital signatures and verifiable random functions (VRFs) (or just dig-
ital signatures and a hash function modeled as a random oracle), it is possible to
implement the second consensus protocol in [67] over an underlying blockchain
protocol that uses a public-key infrastructure as opposed to PoWs, and allows
for arbitrary participation tolerance such as [104] for optimal resiliency of n/2.
The idea is as follows: one can use VRFs for each participant to enable a random
subset of elected transaction issuers in each round. The ledger will then incor-
porate such transactions within a window of time following the same technique
and counting argument as in the second consensus protocol of [67]. In Fig. 1 this
is the protocol referred to in the second leaf from the right.

Running Time. In order to measure the running time that the protocols require
in the peer-to-peer setting assuming PoW, one will have to also take into account
that periods of silence, i.e., rounds without any message passing, may also be
required for ensuring the required properties with high probability in &, a security
parameter. In the consensus protocol derived from the protocol of [5], O(n)
rounds are required where n is the number of parties. This can be improved
to O(k) by, e.g., using a blockchain-based approach [70]. In the public-setup
setting, assuming that the number of parties fall within the operational range,
the protocols of [67] run also in time O(k).

It is worth noting the contrast to the approach used in randomized solutions
to the problem in the standard setting (cf. Sect.6), where achieving consensus
is reduced to (the construction of) a shared random coin, and comparable guar-
antees are obtained after a poly-logarithmic number of rounds in the number of
parties. The probabilistic aspect in the blockchain setting stems from the parties’
likelihood of being able to provide proofs of work.

In the private setup setting it is possible to improve the running time to
expected constant, e.g., by deploying the consensus sub-protocol of Algorand
[38] for 1/3 resiliency.

Trusted Setup. The relevant trusted setup assumption in the above protocols
include a fresh random string, that can be incorporated as part of a “genesis
block” in the blockchain protocol setting, or in general as part of the PoWs®.
The objective of this public setup is to prevent a pre-computation attack by the
adversary that will violate the relative superiority of honest parties which would
be derived by the honest majority assumption. Note that protocols that require
no trusted setup such as [5,70] take advantage of a special randomness exchange
phase prior to PoW calculation that guarantees freshness without the need of a
common random string.

It is worth to emphasize the fundamental advantage of the PoW setting com-
pared to other computational assumptions that have been used for consensus.

6 Alternatively, the protocols would consider as valid any chain that extends the empty
chain, and where the adversary is not allowed any pre-computation.

306 J. Garay and A. Kiayias

Specifically, it is known that without a private setup, consensus is not possi-
ble with more than n/3 corruptions [23] even assuming digital signatures. The
n/3 impossibility result does not apply here since, essentially, proofs of work
can make it infeasible for the adversary to present diverging protocol transcripts
without investing effort for distinct PoW calculations.

Another observation is that assuming a private setup in the peer-to-peer
setting, one can simulate point-to-point connectivity, and thus run any consensus
protocol from the previous section; nevertheless, this reduction is not efficient
and in the peer-to-peer setting with private-setup one can still obtain protocols
that are more efficient (e.g., with subquadratic communication complexity).

Communication Cost. The total number of transmitted messages in the con-
sensus protocols described above is, in expectation, O(n?k) for the case of [5,70]
counting each invocation of the diffuse channel as costing O(n) messages. For
the two protocols of [67] the number of messages is O(nk) in the public setup
setting. In the private setup setting it can be possible to reduce this further using
techniques from [38].

We recall that an important difference with randomized consensus protocols
in the standard setting is that parties send messages in every round, while in
the PoW setting (honest) parties only communicate whenever they are able
to produce a proof of work; otherwise, they remain silent. This also suggests
that there may be honest parties that never diffuse a message” and thus it is
feasible to drop communication costs to below n? (with a probabilistic guarantee;
cf. Sect.6).

Beyond Synchrony. The consensus protocols of [67] in Fig. 1 can be analyzed
in the partial synchronous setting as well (refer to the full version of [66] as a
starting point). Recall that the way the protocols operate in this setting is that
a parameterisation of difficulty is hardcoded that provides a reasonable PoW
production rate over message passing time. The security of the protocols will
then be at the theoretical maximum in terms of resiliency as long as the original
estimate is close to being safe (network delay is low) and will degrade if the
estimate is worse, dissipating entirely when the delay gets larger (for the full
argument, see [103], where it is shown how the blockchain protocol’s consistency
collapses when delay is arbitrarily large).

Property-Based vs. Simulation-Based Proofs. To our knowledge, there is
no simulation-based treatment of consensus in the peer-to-peer setting, however
it is easy to infer a functionality abstracting the problem. The only essential
difference is that the actual number of parties involved in the execution are to
be decided on the fly and will be unknown to the protocol participants.

" Note the similarity with standard consensus in the eventual-delivery setting (Sect. 6),
where not all honest parties’ inputs may be accounted for.

SoK: A Consensus Taxonomy in the Blockchain Era 307

8 Ledger Consensus

Ledger consensus (aka “Nakamoto consensus”) is the problem where a set of
servers (or nodes) operate continuously accepting inputs (“transactions”) that
belong to a set T and incorporate them in a public data structure called the
ledger. We assume that the language of all valid ledgers L has an efficient mem-
bership test and moreover for all tx there is an £ € LL such that tx € £. We call a
language L trivial if it holds that for all tx;, txe € T there exists £ € IL that con-
tains both tx1,txs. The purpose of ledger consensus is to provide a unique view
of the ledger to anyone asking to see it. The ledger view of a party P is denoted
by Lp while the “settled” portion of the ledger in the view of P is denoted by
Lp. Note that it always holds Lp < Lp, where < denotes the standard prefix
operation. The properties that a ledger consensus protocol must satisfy are as
follows:

— Consistency (or Persistence): This property mandates that if a client queries
an honest node’s ledger at round r; and receives the response ZI , then a client
querying an honest node’s ledger at round ry > r; will receive a response Lo
that satisfies £1 < Ls.

— Liveness: If a transaction tx is given as input to all honest nodes at a round
r and it holds that tx is valid w.r.t. Lp for every honest party P, then at
round 7 + u it holds that £p includes tx for any honest party P.

In classical distributed systems literature, such problem is often referred to as
state machine replication [111]. Consistency ensures that parties have the same
view of the log of transactions, while Liveness ensures the quick incorporation of
transactions. Furthermore, a third property, called “order” in [111], is introduced
which, in our notation, can be expressed as follows.

— Serializability: For transactions tx,tx’, if tx is given as input to all honest
nodes at a round r and it holds that tx is valid w.r.t. £p and tx’ € Lp for
every honest party P, then it holds that for any 7’ > r, the ledger Lp of any
honest party cannot include tx’, tx in this order.

Given a consensus protocol it is tempting to apply it in sequential compo-
sition in order to solve ledger consensus. The reduction indeed holds but some
special care is needed. First, let us consider the case where no setup is available.
The construction in the synchronous network model is as follows. First, sup-
pose that we have at our disposal a consensus protocol that satisfies Agreement,
(Strong) Validity, and Termination after u rounds. The protocol has all nodes
collect transactions and then run the consensus protocol with the set of trans-
actions as their input. When the protocol terminates after v rounds, the nodes
assign an index to the output (call it the i-th entry to the ledger) and move
on to the next consensus instance. It is easy to see that Consistency is satisfied
because of Agreement, while Liveness is satisfied with parameter u because of
Strong Validity and Termination. It is worth noting that “plain” Validity by
itself is not enough, since a ledger protocol is supposed to run for any given set

308 J. Garay and A. Kiayias

of transactions and as a result it is possible that no two honest nodes would ever
agree on a set of inputs. In this case, Validity might just provide that honest
parties’ agree on an adversarial value, which might be the empty string. As a
result the ledger would be empty and Liveness would be violated. However it is
possible to deal with this problem without resorting to the full power of Strong
Validity. For instance, it is sufficient to consider a variant of consensus where
each party has an input set X; and the joint output set S satisfies that X; C S.
We note that such a “union” consensus protocol can be implied by Interactive
Consistency, as defined in [108], and it has also recently been considered explic-
itly as a consensus variant [46]. Other intermediate notions of Validity such as
a predicate-based notion [26] can be useful here as well.

Let us now comment how the reduction can be performed under different
setup and network assumptions. First, if a setup assumption is used, observe
that the above reduction will require the availability of the setup every u rounds.
Given this might be impractical, one may consider how to emulate the sequence
of setups using a single initial setup. This approach is non-black-box on the
underlying protocol and may not be straightforward. For instance, when sequen-
tially composing a PoW-based consensus protocol that relies on a public setup,
the security of the protocol may non-trivially rely on the unpredictability of the i-
th setup. Techniques related to sequential composition of a basic building block
protocol have appeared in a number of ledger protocols, including [19,38,84].
Regarding network aspects, we observe that the reduction can proceed in essen-
tially the same way in the peer-to-peer setting as in the point-to-point setting.
Finally, note that when simultaneous termination is not available in the underly-
ing consensus protocol, special care is needed in applying composition (cf. [42]).

Ledger consensus was brought forth as an objective of the Bitcoin blockchain
protocol. For this reason, in the remaining of the paper, we only consider the
problem in the peer-to-peer setting, although we note that in the point-to-point
setting it is possible to adapt standard BFT methods to solve the problem. We
refer to, e.g., [75,93] for some recent examples. We remark also that combining
private setup and the peer-to-peer setting, it is straightforward to simulate the
point-to-point setting by relying on the authentication information that can be
made available by the setup. A pictorial overview of our protocol classification
is presented in Fig. 2.

Number of Parties. We start with an adaptation of the impossibility result for
dishonest majority as shown in [59]. The result shows that in all the relevant cases
for practice, specifically, ledger consensus with non-trivial ledgers, or providing
serializability as defined above, honest majority is a necessary requirement.

Theorem 1. Suppose that the transaction set T satisfies |T| > 2. Ledger con-
sensus is impossible in case the adversary controls n/2 nodes, assuming either
(i) the language L is non-trivial or (ii) Serializability holds.

Proof. For simplicity we describe the impossibility result in a setting where the
properties are perfectly satisfied. The same argument can be easily extended
to the setting where the properties are satisfied with overwhelming probability.

SoK: A Consensus Taxonomy in the Blockchain Era 309

Nmax/ Nmin

setup

<“-----p>

C_Om_pyt_al_lgga_l >
assumptions

-

>

liveness
parameter
Q
z

GkLP1g] ([GKL15]\ [[PS18]) fisaknzial| [[Mic16]
12 [PSS17]| | 1/2* 12 173
1/2

Fig. 2. The taxonomy of ledger consensus protocols (peer-to-peer setting).

Suppose all parties are split in two sets A1, A of size exactly n/2. We describe
an environment and an adversary. The environment prepares two transactions
tx1,txe € T that are in conflict, i.e., it holds that no valid £ exists for which
it holds that both tx,tx’ € £ but they can be both validly added to some
ledger since they are members of T. The environment provides at round 1 the
appropriate sequence of transactions so that parties in A, receive transaction
tx; respectively and advances the execution for at least u rounds, the Liveness
parameter. We consider three adversaries Ag, A1, Aa. The Ag adversary corrupts
no party and allows the execution to advance normally. On the other hand, the
adversary Aj, with b € {1,2} corrupts the set of parties A, and simulates honest
operation. Consider a party P; € Ay and a party P, € As. In case b € {1,2}, by
Liveness, at the end of the execution it should be the case that tx;, € L. In case
b =0, by Consistency, it should be that £; = L5. Given that in the three cases
the executions are perfectly indistinguishable, this means that tx; € Lo which
is a contradiction since txg € Lo < La.

The argument for the case of Serializability is similar to the above. In this
case, we just assume that transactions txj, txo € T are just distinct (they do not
have to be in conflict). Observe that by Liveness in the experiments above we
will have that tx, € L for party P,. Moreover, due to Serializability, for P, it
must be the case that transactions cannot be in the order txz_p, tx;. This leads
to a contradiction due to Consistency. (]

As in the case of peer-to-peer consensus (Sect. 7), the actual number of par-
ties n is not known in advance and may be assumed to fall within a range of
operational parameters n € [Nmin, max|- This is also related to the concept
of “sporadic participation” that was considered in [104], where certain honest
parties may “go to sleep” for arbitrary amounts of time.

310 J. Garay and A. Kiayias

In the PoW setting, recall that each party has a fixed quota of queries that it
can perform to a hash function per unit of time and thus the number of parties
is directly proportional to the total computational or hashing power that is
available. In this setting, first [67] showed that ledger consensus can be achieved
when the number of corrupted parties is strictly below n/2. This bound was also
preserved in the partially synchronous setting, as shown by Pass et al. [103].

The above results refer to a static setting where there are no large deviations
in the number of parties throughout the execution. The setting where the pop-
ulation of parties running the protocol can dynamically (and quite drastically)
change over time with the environment introducing new parties and deactivating
parties that have participated was considered for ledger consensus for the first
time in [68]. Their main result is that ledger consensus can be achieved in the
PoW setting, assuming an honest majority appropriately restated by consider-
ing the number of parties as they change over time: Assuming n; are the active
parties at time unit ¢, it holds that the number of adversarial parties is bounded
away from n;/2.

Assuming a private setup and a setting where the adversary gets ¢t Byzantine
corruptions and s asleep parties, in [104] it is shown that ledger consensus can
be achieved as long as ¢ is strictly bounded by a/2 where a = n— s is the number
of “alert” parties, i.e., the number of asleep parties may be larger than n/2 and
hence an arbitrary participation ratio can also be achieved in this setting without
resorting to PoWs. With respect to lower bounds, in the case of sleep corruptions
the bound can be generalized to a/2; see [104]. A dynamic setting of parties was
also considered in [19,45,84], providing a similar type of results assuming a PKI
with honest “stake” majority. An important deficiency shared by these works
is that new parties have to be chaperoned into the system by receiving advice
consistent with the views of the honest parties. This was highlighted as the
“bootstrapping from genesis” problem in [7] which resolved it via a suitable chain
selection rule; in the same work, a more refined model of dynamic participation
was put forth, called dynamic availability. This model allows finer control from
the environment’s perspective in terms of disconnecting parties, or having parties
lose access to resources such as the clock or the hash function.

Finally, in terms of participation tolerance, we observe that an arbitrary
Nmax/Mmin can be achieved by protocols such as [7,104] while Algorand [38,91]
requires Nmax/Mmin t0 be (approximately) 1 since the expected participation is a
hardcoded value in the protocol (it is worth noting that despite this limitation,
Algorand still qualifies as a peer-to-peer protocol, since the identities of the
parties engaging in the protocol need not be known in advance).

Transaction Processing Time. Contrary to a consensus protocol, a ledger
consensus protocol is a protocol that is supposed to be running over an arbitrary,
potentially long, period of time. Thus, the relevant measure in this context is the
amount of time that it takes for the system to insert a transaction in the log that
is maintained by the participants. This relates to the parameter u introduced as
part of the Liveness property, which determines the number of rounds needed
in the execution model for a transaction to be included in the log. Observe that

SoK: A Consensus Taxonomy in the Blockchain Era 311

Liveness is only provided for transactions that are produced by honest partic-
ipants or are otherwise unambiguously provided to the honest parties running
the protocol.

In this setting we observe that [67] achieves ledger consensus with processing
time O(k) rounds of interaction, where & is the security parameter. This result
is replicated in the partially synchronous setting, where processing time takes
O(kA) rounds, and where A is the maximum delay that is imposed on message
transmission. The above results assume the adversarial bounds consistent with
honest majority which are tight (cf. [105]). Considering a weaker adversarial
setting it is possible to improve Liveness; for instance, Algorand [38] achieves
expected-constant number of rounds while, Thunderella [105], shows that the
processing time can be dropped to O(1) rounds worst-case, assuming an honest
super-majority (i.e., adversarially controlled number of parties strictly below
n/4) and the existence a specific party called the accelerator to be honest.

Trusted Setup. Ledger consensus can be achieved in the public- or private-state
setup setting. Protocols falling in the former category are [67,68,103], whereas
protocols consistent with the latter are [19,38,74,84,104]. In the absence of a
trusted setup, it has been shown that it is possible to “bootstrap” a ledger con-
sensus protocol from “scratch,” either directly [70] or via setting up a public-key
directory using proofs of work [5]. An important further consideration between
public and private setup is that in the peer-to-peer setting, the former represents
what typically is consistent with the so-called persmissionless setting, while the
latter is consistent with the permissioned setting. This follows from the fact that
anyone that has access to the peer-to-peer channel is free to participate in the
protocol, if no setup or a public setup is assumed. On the other hand, in the pri-
vate setup setting, a higher level of permissioning is implied: The parties that are
eligible to run the protocol need to get authorized either by the setup function-
aliy so that they receive the private information that is related to the protocol
execution, or, alternatively, interact with the parties that are already part of the
protocol execution so they can be inducted. Note that the point-to-point setting
is—by definition—permissioned via access to the RMT functionality.

Communication Cost. Given that ledger consensus is an ongoing protocol that
processes incoming transactions, defining communication costs requires some
care. To our knowledge, no formal definitions of communication costs for ledger
consensus have been proposed. A first approach to the problem is to consider a
type of “communication overhead” on top of the transactions that are transmit-
ted in the system. It follows that the minimum communication necessary for each
bit of transaction transmitted is the diffusion of this bit. Given the above, the
communication costs of ledger consensus protocols based on blockchain protocols
can be seen to be constant in the sense that parties transmit, up to constant
factors, more data.

Beyond Synchrony. Initial work in ledger consensus protocols in the public
setup [67,68] and the no setup setting [69,70] assumed a rushing adversary and
synchronous operation. This can be extended to the partial synchrony setting

312 J. Garay and A. Kiayias

as shown in [103] as well as in the full version of [66] with the same limitations
explained in Sect. 7.

Property-Based vs. Simulation-Based Proofs. The first simulation-based
definition of ledger consensus was presented by Badertscher et al. [8]. A refine-
ment of this definition was presented in [7], where it was also shown how to
adapt it in a setting where a private setup is available. In terms of composabil-
ity, an (expected) disadvantage for PoW-based protocols highlighted in the work
of [8] is that access to the random oracle should be specific to the current ledger
protocol session.

References

1. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), Providence, RI, USA, 20-23 October 2007. IEEE Computer
Society (2007)

2. Abraham, I., Dolev, D.: Byzantine agreement with optimal early stopping, opti-
mal resilience and polynomial complexity. In: Servedio, R.A., Rubinfeld, R. (eds.)
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, 14-17 June 2015, pp. 605-614. ACM
(2015)

3. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polyno-
mial protocol for asynchronous byzantine agreement with optimal resilience. In:
Bazzi, R.A., Patt-Shamir, B. (eds.) Proceedings of the Twenty-Seventh Annual
ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto,
Canada, 18-21 August 2008, pp. 405-414. ACM (2008)

4. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 22-40. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92221-6_4

5. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 379-399. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7_19

6. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science, July 2005

7. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros gene-
sis: composable proof-of-stake blockchains with dynamic availability. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15-19 October 2018, pp. 913-930. ACM (2018)

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction
ledger: a composable treatment. In: Katz and Shacham [83], pp. 324-356

9. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous
byzantine agreement revisited. In: Newport, C., Keidar, I. (eds.) Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018,
Egham, United Kingdom, 23-27 July 2018, pp. 295-304. ACM (2018)

https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

SoK: A Consensus Taxonomy in the Blockchain Era 313

Bano, S., et al.: Consensus in the age of blockchains. CoRR, abs/1711.03936
(2017)

Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting gears: changing algo-
rithms on the fly to expedite byzantine agreement. Inf. Comput. 97(2), 205-233
(1992)

Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Miller [94], pp. 479488

Beimel, A., Franklin, M.K.: Reliable communication over partially authenticated
networks. Theor. Comput. Sci. 220(1), 185-210 (1999)

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, 3-5 November
1993, pp. 62-73 (1993)

Ben-Or, M.: Another advantage of free choice: completely asynchronous agree-
ment protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N.
(eds.) PODC, pp. 27-30. ACM (1983)

Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In
Kosaraju et al. [86], pp. 52-61

Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distrib. Comput. 16(4), 249-262 (2003)

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), pp. 1—
10 (1988)

Bentov, 1., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. TACR
Cryptology ePrint Archive, 2016:919 (2016)

Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Baeza-
Yates, R., Manber, U. (eds.) Computer Science, pp. 313-321. Springer, Boston
(1992). https://doi.org/10.1007/978-1-4615-3422-8_27

Berman, P., Garay, J.A., Perry, K.J.: Optimal early stopping in distributed con-
sensus. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 221-237.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9_15
Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 14-16 January 2016, pp. 345-356. ACM (2016)
Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoglu,
0., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40-55. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61769-8_4

Bracha, G.: An asynchronou [(n-1)/3]-resilient consensus protocol. In: Kameda,
T., Misra, J., Peters, J.G., Santoro, N. (eds.) Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, Vancouver, B. C.,
Canada, 27-29 August 1984, pp. 154-162. ACM (1984)

Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-15260-3

Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524—
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_31
Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219—
246 (2005)

https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/3-540-56188-9_15
https://doi.org/10.1007/3-540-61769-8_4
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/3-540-44647-8_31

314

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

J. Garay and A. Kiayias

Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Weizmann Institute of Science (1996)

Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143—202 (2000)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14-17 October 2001, pp. 136-145. IEEE
Computer Society (2001)

Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller [94], pp. 639648

Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), Providence, RI, USA, 20-23 October 2007,
Proceedings [1], pp. 249-259

Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: Kosaraju et al. [86], pp. 42-51

Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398-461 (2002)

Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84-88 (1981)

Chaum, D.,; Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols (abstract) (informal contribution), p. 462 (1987)

Chaum, D.; Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2-4 May 1988, pp.
11-19. ACM (1988)

Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155-183 (2019)

Chor, B., Dwork, C.: Randomization in byzantine agreement. Adv. Comput. Res.
5, 443-497 (1989)

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, pp. 383-395. IEEE Computer Society (1985)

Coan, B.A., Welch, J.L.: Modular construction of nearly optimal byzantine agree-
ment protocols. In: Rudnicki, P. (ed.) Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada,
14-16 August 1989, pp. 295-305. ACM (1989)

Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 240-269. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3-9

Considine, J., Fitzi, M., Franklin, M., Levin, L.A., Maurer, U., Metcalf, D.: Byzan-
tine agreement given partial broadcast. J. Cryptol. 18(3), 191-217 (2005)
Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASTIACRYPT 2016, Part IT. LNCS, vol. 10032, pp. 998-1021. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6_33

David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen and Rijmen [100],
pp- 6698

https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53890-6_33

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

SoK: A Consensus Taxonomy in the Blockchain Era 315

Dold, F., Grothoff, C.: Byzantine set-union consensus using efficient set reconcil-
iation. EURASIP J. Inf. Secur. 2017(1), 14 (2017)

Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agree-
ment. J. ACM 32(1), 191-204 (1985)

Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720-741 (1990)

Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement.
SIAM J. Comput. 12(4), 656-666 (1983)

Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288-323 (1988)

Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine envi-
ronment: crash failures. Inf. Comput. 88(2), 156-186 (1990)

Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139-147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4_10

Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975-988 (1988)

Feldman, P.: Optimal algorithms for Byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. STAM J. Comput. 26(4), 873-933 (1997)

Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive
consistency. Inf. Process. Lett. 14(4), 183-186 (1982)

Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26-39 (1986)

Fischer, M.J., Lynch, N.A.| Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374-382 (1985)

Fitzi, M.: Generalized communication and security models in Byzantine agree-
ment. Ph.D. thesis, ETH Zurich, Ziirich, Switzerland (2003)

Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: PODC, pp. 211-220 (2003)

Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In:
Ruppert, E., Malkhi, D. (eds.) Proceedings of the Twenty-Fifth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO,
USA, 23-26 July 2006, pp. 163-168. ACM (2006)

Ganesh, C., Patra, A.: Broadcast extensions with optimal communication and
round complexity. In: Giakkoupis, G. (ed.) Proceedings of the 2016 ACM Sym-
posium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
25-28 July 2016, pp. 371-380. ACM (2016)

Garay, J.A., Katz, J., Koo, C., Ostrovsky, R.: Round complexity of authenticated
broadcast with a dishonest majority. In: 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2007), Providence, RI, USA, 20-23 October
2007, Proceedings [1], pp. 658-668

Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast,
revisited. In: Gavoille, C., Fraigniaud, P. (eds.) Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, 6-8 June 2011, pp. 179-186. ACM (2011)

Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. TACR
Cryptology ePrint Archive, 2018:754 (2018)

Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. IACR Cryptology ePrint Archive, 2014:765 (2014)

https://doi.org/10.1007/3-540-48071-4_10

316

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

J. Garay and A. Kiayias

Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 281-310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6_10

Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with
chains of variable difficulty. In: Katz and Shacham [83], pp. 291-323

Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain - directly. IACR Cryptology ePrint Archive, 2016:991 (2016)

Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465-495. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_16

Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain proto-
cols. IACR Cryptology ePrint Archive, 2017:775 (2017)

Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement for n ; 3t processors
in t + 1 rounds. STAM J. Comput. 27(1), 247-290 (1998)

Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing.
In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153-165. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9_11

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, Shanghai, China, 28-31 October 2017, pp.
51-68. ACM (2017)

Golan-Gueta, G., et al.: SBFT: a scalable decentralized trust infrastructure for
blockchains. CoRR, abs/1804.01626 (2018)

Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, Cambridge (2001)

Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract),
pp. 174-187 (1986)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.)
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, USA, pp. 218-229. ACM (1987)

Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132-150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9.8

Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: the t < n case. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8_24

Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466-485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5_24

Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91-112 (2009)

Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part I. LNCS, vol. 10401. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz and Shacham [83], pp. 357-388

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-319-63688-7

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

SoK: A Consensus Taxonomy in the Blockchain Era 317

King, V., Saia, J.: Byzantine agreement in expected polynomial time. J. ACM
63(2), 13:1-13:21 (2016)

Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.): Proceedings of the T'wenty-
Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA,
16-18 May 1993. ACM (1993)

Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 204-215. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468_17

Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382-401 (1982)

Lindell, Y., Lysyanskaya, A., Rabin, T.: On the composition of authenticated
byzantine agreement. J. ACM 53(6), 881-917 (2006)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR,
abs/1607.01341 (2016)

Miller, A., LaViola, J.J.: Anonymous Byzantine consensus from moderately-hard
puzzles: a model for bitcoin. University of Central Florida. Tech report, CS-TR-
14-01, April 2014

Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24-28 October 2016, pp. 31-42. ACM
(2016)

Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22—-24 May 1996.
ACM (1996)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://
bitcoin.org/bitcoin.pdf

Nakamoto, S.: The proof-of-work chain is a solution to the Byzantine Generals’
problem. The Cryptography Mailing List, November 2008. https://www.mail-
archive.com/cryptography@metzdowd.com/msg09997.html

Nakamoto, S.: Bitcoin open source implementation of p2p currency, February
2009. http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source

Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, Seattle, Washigton, USA, 14-17 May 1989, pp.
33-43. ACM (1989)

Neiger, G.: Distributed consensus revisited. Inf. Process. Lett. 49(4), 195-201
(1994)

Nielsen, J.B., Rijmen, V. (eds.): EUROCRYPT 2018, Part II. LNCS, vol. 10821.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8

Okun, M.: Agreement among unacquainted byzantine generals. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499-500. Springer, Heidelberg (2005).
https://doi.org/10.1007/11561927_40

Okun, M.: Distributed computing among unacquainted processors in the presence
of Byzantine failures. Ph.D. thesis, Hebrew University of Jerusalem (2005)

https://doi.org/10.1007/11523468_17
https://doi.org/10.1007/11523468_17
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source
https://doi.org/10.1007/978-3-319-78375-8
https://doi.org/10.1007/11561927_40

318

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

J. Garay and A. Kiayias

Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10211, pp. 643-673. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56614-6_22

Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.)
ASTACRYPT 2017, Part II. LNCS, vol. 10625, pp. 380—409. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9_14

Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.
In: Nielsen and Rijmen [100], pp. 3-33

Patra, A.: Error-free multi-valued broadcast and byzantine agreement with opti-
mal communication complexity. In: Fernandez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 34-49. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25873-2_4

Patra, A., Choudhury, A., Rangan, C.P.: Asynchronous byzantine agreement with
optimal resilience. Distrib. Comput. 27(2), 111-146 (2014)

Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228-234 (1980)

Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number
of faulty processors. In: STACS, vol. 577, pp. 339-350. Springer, Heidelberg (1992)
Rabin, M.O.: Randomized byzantine generals. In: FOCS, pp. 403-409. IEEE Com-
puter Society (1983)

Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299-319 (1990)

Stifter, N., Judmayer, A., Schindler, P., Zamyatin, A., Weippl, E.R.: Agreement
with satoshi - on the formalization of nakamoto consensus. IACR Cryptology
ePrint Archive, 2018:400 (2018)

Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett. 18(2), 73-76 (1984)

Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
Hutchinson, N.C. (ed.) Proceedings of the Eleventh Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, British Columbia, Canada,
10-12 August 1992, pp. 83-89. ACM (1992)

Yao, A.C.-C.: Protocols for secure computations (extended abstract), pp. 160-164
(1982)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-642-25873-2_4
https://doi.org/10.1007/978-3-642-25873-2_4

®

Check for
updates

Consensus from Signatures of Work

Juan A. Garay', Aggelos Kiayias®®, and Giorgos Panagiotakos?(®)
! Department of Computer Science and Engineering, Texas A&M University,
College Station, USA
garay@Qcse.tamu.edu
2 School of Informatics, University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk, giorgos.pan@ed.ac.uk

3 TIOHK, Edinburgh, UK

Abstract. Assuming the existence of a public-key infrastructure (PKI),
digital signatures are a fundamental building block in the design of
secure consensus protocols with optimal resilience. More recently, with
the advent of blockchain protocols like Bitcoin, consensus has been con-
sidered in the “permissionless” setting where no authentication or even
point-to-point communication is available. Yet, despite some positive
preliminary results, all attempts to formalize a building block that is
sufficient for designing consensus protocols in this setting, rely on a very
strong independence assumption about adversarial accesses to the under-
lying computational resource.

In this work, we relax this assumption by putting forth a primi-
tive, which we call signatures of work (SoW). Distinctive features of our
new notion are a lower bound on the number of steps required to pro-
duce a signature; fast verification; moderate unforgeability—producing
a sequence of SoWs, for chosen messages, does not provide an advan-
tage to an adversary in terms of running time; and honest signing time
independence—most relevant in concurrent multi-party applications, as
we show.

Armed with SoW, we then present a new permissionless consensus
protocol which is secure assuming an honest majority of computational
power, thus in a sense providing a blockchain counterpart to the classi-
cal Dolev-Strong consensus protocol. The protocol is built on top of a
SoW-based blockchain and standard properties of the underlying hash
function, thus improving on the known provably secure consensus pro-
tocols in this setting, which rely on the strong independence property
mentioned above in a fundamental way.

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of
faults—has been extensively studied in the literature starting with the seminal
work of Shostak, Pease and Lamport [38,44]. The problem formulation has a

A. Kiayias—Research partly supported by Horizon 2020 project PANORAMIX, No.
653497.
© Springer Nature Switzerland AG 2020

S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 319-344, 2020.
https://doi.org/10.1007/978-3-030-40186-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_14

320 J. A. Garay et al.

number of servers (parties) starting with an individual input which should agree
at the end to a joint output that has to match the input in the case where all
non-faulty servers happened to have the same input value. One of the critical
measures of effectiveness for consensus protocols is maximizing their resilience
to Byzantine faults, typically denoted by ¢. It is known that ¢ < n/2 is necessary
to achieve consensus, where n is the total number of parties, while protocols
have been designed that reach that level of resilience assuming synchrony and
a way to authenticate messages using digital signatures [20]' (or “pseudosig-
natures” [45]). This result is known to be tight since lack of synchrony would
imply ¢ < n/3 [22] (as well as randomization [25]), while lack of a message
authentication mechanism has a similar effect [17].

Recently, with the advent of blockchain protocols like Bitcoin, the problem
has experienced renewed interest from a much wider community of researchers
and has seen its application expand to various novel settings, such as the so-
called “permissionless” setting, where participation in the protocol is both unre-
stricted and unauthenticated. In fact, this setting was initially studied in [41,42],
where it was shown that deterministic consensus algorithms are impossible for
even a single failure but that probabilistic consensus is still feasible by suitably
adapting the protocols of [12,24]. Nevertheless, the resulting protocol required
exponentially many rounds in n.

The first efficient solutions for the consensus problem in the permissionless
setting were formally shown to be possible utilizing an abstraction of the Bit-
coin blockchain protocol in [29], against adversaries controlling less than half
of the computational power which, in a uniform configuration (meaning parties
are endowed with the same computational power), corresponds to a number of
Byzantine faults ¢t < n/2 in the original setting. At a high level, these protocols
(as well as the Bitcoin blockchain protocol itself) rely on a concept known as
proofs of work (PoW), which, intuitively, enables one party to convince others
that he has invested some computational effort for solving a given task. While
being formulated a while back [23] and used for a variety of purposes—e,g, spam
mitigation [23], sybil attacks [21], and denial of service protection [4,35]—their
role in the design of permissionless blockchain protocols [40], is arguably their
most impactful application.

In the context of permissionless blockchain protocols, the way a PoW-like
primitive helps is by slowing down message generation for all parties indiscrimi-
nately, thus generating opportunities for honest parties to converge to a unique
view under the assumption that the aggregate computational power of hon-
est parties sufficiently exceeds that of the adversary. Now, while this intuition
matches the more rigorous analyses of the Bitcoin protocol that have been car-
ried out so far [6,29,30,43], these works have refrained from formally defin-
ing such enabling functionality as a stand-alone cryptographic primitive, and

! Recall that the protocol in [20] tolerates an arbitrary number of Byzantine faults
(n > t), but in the version of the problem of a single sender (a.k.a. “Byzantine
Generals,” or just broadcast); in the case of consensus, ¢t < n/2 is necessary regardless
of the resources available to the parties in the protocol execution (see, e.g., [26,27]).

Consensus from Signatures of Work 321

relied instead on the random oracle (RO) model [10] or similar idealized assump-
tions (cf. the Figee functionality in [43]) to prove directly the properties of the
blockchain protocol. The same is true for other provably secure PoW-based dis-
tributed protocols [3,31,36].

The core of the hardness (or even impossibility [19]) of implementing the
assumed idealized resources is that they satisfy a strong independence property:
Each bit output on a new query to the resource is independently sampled, even if
the adversary is the one who is accessing the resource. This is indeed a very strong
property, as it directly implies that the best way to compute a PoW for both an
honest party and the adversary is brute force. Moreover, the same property is
explicitly used to argue the security of the proposed consensus protocols in the
PoW setting [3,29], as we explain in detail later.

In this work we make progress in relaxing this assumption, by putting forth
a formalization of a PoW-like primitive, which we call signatures of work (SoW).
An SoW can be implemented in the RO model or by using Frgggs, but the adver-
sarial SOW computation process does not necessarily satisfy such strong guar-
antees as the ones mentioned above. Indeed, in contrast to previous approaches,
only an upper bound on the rate at which the adversary generates SoWs needs
to be assumed. We then present a new permissionless consensus protocol based
on SoWs that can be proven secure without relying on such strong independence
guarantees. The protocol utilizes a SoW-based blockchain and standard proper-
ties of the underlying hash function, and is secure assuming an honest majority
of computational power. As a result, this protocol can be seen as an exemplar of
how a permissionless signature-like primitive enables honest majority consensus
in the same way that classical digital signatures imply honest-majority consensus
protocols in the traditional setting.

Why Signatures of Work? We first provide some intuition behind the rele-
vance of SoW as a useful primitive for the design of permissionless distributed
protocols. Recall the main property of a digital signature in the design of classical
consensus protocols: It enables parties to communicate to each other their pro-
tocol view and inputs at a certain stage of the protocol execution in a way that is
transferable and non-repudiable. Indeed, Bob, upon receiving Alice’s signed mes-
sage, can show it to Charlie in a way that the latter is unequivocally convinced of
the message’s origin. It follows that Bob cannot modify Alice’s messages, play-
ing man-in-the-middle between Alice and Charlie, and thus Alice can be held
accountable in case she provides conflicting views to the two parties. A SoW
scheme provides a similar capability: Using a SoW, a party like Alice can invest
effort into a specific protocol view and inputs, so that when Bob is presented
with a SoW produced by Alice it will be infeasible for Alice to provide a con-
flicting view and inputs to Charlie, unless she invests twice the effort. Moreover,
the above argument holds without establishing any set of identities among the
parties, so for example Bob does not need to know he talks to Alice per se but
rather to an arbitrary party that invested some effort with respect to a specific
protocol view. Furthermore, exactly like digital signatures, SoWs can be chained
recursively, enabling the parties to build on each other’s protocol view.

322 J. A. Garay et al.

While the above functionalities hint to the usefulness of SoWs in the dis-
tributed permissionless setting, formalizing and applying them properly is no
simple task. Firstly, in contrast with classical signatures, there is no secret key
involved in this primitive. This make sense, since in a permisionless setting sign-
ing messages using some kind of secret information is meaningless, as parties do
no have any secret setup to begin with. Hence, if they are to sign any message,
they should use some other kind of resource that only they have access to, such
as their computational power. Secondly, in classical signatures, the exact time
when the verification key becomes available to different parties is irrelevant; The
key is only useful for verification, up to polynomial-time differences. In the con-
text of SoWs, however, this time is of great importance. For example, allowing
a party to learn the verification key, say, two days earlier than other parties,
means that this party will be able to compute two days worth of signatures
more than them. Hence, in contexts where counting the number of generated
signatures matters, as is the case in blockchain protocols, great care should be
taken on guaranteeing that the verification key is “fresh” enough for the relevant
application.

Our Results. Our contributions are as follows:

(1) Formalization of an SoW scheme. The syntax of an SoW scheme entails
four algorithms: Public parameter generation, key generation, signing and
verification—PPub, KeyGen, Sign and Verify, respectively. PPub is invoked on
input 1%, where X is the security parameter, and outputs public security param-
eters pp. KeyGen is invoked on input pp, and outputs a random verification
key wvk. Sign is invoked on input (pp, vk, msg,h), where msg is the message to
be signed, and h is the hardness level of the signature generation. Expectedly,
Verify is invoked on input (pp, vk, msg, h,o), where o is (possibly) an output of
Sign. We require a SoW scheme to be:

— Correct: As in the case of classical signatures, we require that signatures
produced by Sign should be accepted by the Verify algorithm.

— (t, @)-Successful: This property lower-bounds the probability that an honest
signer will successfully produce a SoW in a certain number of steps t; « is a
function of the hardness level h.

— t-Verifiable: The verifier should be able to verify a SoW in ¢ steps. (Typically,
t is a lot smaller than the time need to produce a signature.)

— Moderately Unforgeable against Tampering and Chosen-Message
Attacks ((,¢)-MU-TCMA): This property is akin to the property of exis-
tential unforgeability under chosen-message attacks of digital signatures (EU-
CMA). It captures the fact that producing a sequence of SoWs, for chosen
messages, does not provide an advantage to an adversary in terms of running
time. Specifically, the chances to produce more than (5 -¢ SoWs in ¢ steps

Consensus from Signatures of Work 323

(for any t) are less than e.? Further, this should hold against an adversary
able to tamper with the keys, and even in the presence of a Sign oracle.

— Run-time independent: This final property captures the setting where
honest signers are potentially invoked on adversarial inputs and ensures that
their running time enjoys some degree of independence. Specifically, the ran-
dom variables defined as the running time of each Sign invocation is a set of
almost independent random variables (cf. [1]). We stress that the adversarial
signing algorithm may not satisfy this property.

As a “sanity check,” we show in the full version of the paper that a SoW scheme
can be easily designed and proven secure in the random oracle model (or by
using Frrer), and hence in practice can be instantiated by a cryptographic hash
function such as SHA-256.

(2) Consensus from SoW. Next, we design a consensus protocol for an honest
majority of computational power that can be reduced to the SoW primitive
above. The core idea behind our new protocol is as follows. First, the parties
build a blockchain using SoWs in a way reminiscent of the Bitcoin blockchain.
Using SoWs we show how to emulate the Bitcoin backbone protocol [29] by
having parties compute a SoW in parallel, “on top” of the current view that
incorporates the largest number of SoWs, i.e., the longest chain. However, in
contrast with the consensus protocol of [29], to generate a block, the parties
include not only their input to the consensus protocol, but also the headers of
“orphan” blocks that exist in forks stemming off their main chain and which
have not been included so far, where the header of a block contains the hash
of the previous block in the chain, the signature, the input to the consensus
protocol, and a hash of the block’s contents.

Using this mechanism, as shown in Fig.1, we prove that it is possible to
reconstruct the whole tree of block headers from the blockchain contents, and
thus in this way preserve all block headers produced by the honest parties. This
ensures that the resulting ledger will reflect the number of parties and hence a
consensus protocol may now be easily reduced to this blockchain protocol.

Our new consensus protocol relying on the SoW primitive in the setting
where no PKI is available, exemplifies the contrast with consensus in the classical
setting, relying on standard signatures and a PKI setup [20] (cf. [27]). It is worth
noting that the only known blockchain-based provably secure and optimally
resilient consensus protocol is given in [29], using a technique called “2-for-1
PoW” where two PoW-based protocols can be run concurrently and create a
blockchain where the number of honest-party contributions is proportional to
their actual number, but which relies on the strong independence property of
the RO model, discussed earlier, in a fundamental way. Indeed, in the RO model,

2 Note that, unlike previous unforgeability definitions (e.g, [11]), this definition is
parameterized by the rate § at which the adversary can produce signatures, instead
of the number of steps it needs to compute one. We feel that this formulation is
more appropriate for the moderate unforgeability game where the adversary tries to
produce multiple signatures. For further details, see Definition 7.

324 J. A. Garay et al.

Al0] Bl1] E[0] F[1]
& 7 ////:////
Been \\@?6/ ///’// 7
s P / s
C[1] D[1] G[0]
sy
7?2

Fig. 1. The data structure maintained by the consensus protocol. Block F' has con-
sensus input 1, and includes the headers of blocks D and G, with input 1 and O,
respectively. Block D includes the headers of invalid blocks. This is not a problem,
since any chain that contains D will be invalid and not selected by any party, while
D’s consensus input is correctly counted as a valid block header.

each witness for a PoW can be rearranged in a certain way so as to obtain a
test for a witness for another PoW in a way that is independent from the first
solution. Our new protocol gets rid of this need. The only other (non-blockchain)
PoW-based consensus protocol [3] also relies on the RO model.

As intermediate steps in our analysis, we first introduce an appropriate adap-
tation of the model of [29] that allows for a standard model analysis and which
may be of independent interest. We then recall the three basic properties of
the blockchain data structure presented in [29]: (strong) common prefix, chain
quality and chain growth, and show how our SoW-based blockchain protocol sat-
isfies them assuming, beyond the security of SoW, standard collision resistance
from the underlying hash function that is used to “glue” the blocks together.
This is achieved as follows: We first prove that using the MU-TCMA property
and assuming the adversarial hashing power is suitably bounded, it is unlikely
in any sufficiently long time window for the adversary to exceed the number
of SoWs of the honest parties. Then, using the (¢, «)-Successful and (3, €)-MU-
TCMA properties in conjunction with run-time independence, we establish that
summations of running times of successive Sign invocations have the wvariance
needed to ensure that “uniquely successful rounds” (i.e., rounds where exactly
one of the honest parties produces a SoW) happen with high density in any suf-
ficiently long time window. Using these last two core results, and under suitable
constraints for the basic SOW parameters «, 3, €, h and number of parties n, we
prove that the security of the Bitcoin backbone protocol implements a robust
transaction ledger [29]. Further, and as a sanity check, in the full version of the
paper, we argue that the results we get from our black-box analysis (and the
RO-based SoW construction mentioned earlier), are similar to those from the
random-oracle analysis of [29].

Consensus from Signatures of Work 325

Our analysis is carried out in the synchronous setting. It is relatively straight-
forward to extend our results to the A-synchronous setting of [43], by using the
same techniques as in [[28] (Section 7)]. We leave as an open question extending
our results to the variable difficulty setting of [30].

(8) Other applications. In addition to the blockchain and consensus applica-
tions of SoW, we note that the security properties we put forth are suitable for
the more traditional DDOS setting, with considerable advantages over existing
approaches (cf. [50]). The problem is as follows: A server wants to protect itself
from malicious actors in the network which send network packets to eat up its
resources. The canonical defense for this attack is for the server to run a PoW
challenge-response protocol with the sender, in order to make sending a message
costly. The MU-TCMA property, we have defined, directly implies exactly this
property in the strongest sense: For any, adaptively selected, set of messages
sent, the adversary must consume computational resources proportional to the
number of messages, even if it can also see SOWs sent by other parties. Moreover,
this process can be made non-interactive by delegating the generation of the ver-
ification key to some public randomness service, e.g., the NIST beacon, and only
accept messages that include a SoW with respect to this key. Finally, note that
the same security guarantees can be easily extended to multiple servers who
use the same beacon, by requiring that the sent messages contain some unique
identification string.

Prior and Related Work. We have already mentioned above relevant related
work regarding classical and blockchain-based consensus protocols. For a more
exhaustive recent survey, refer to [27]. We also note that the focus of the paper
is the original consensus problem [38,44], and not so-called “ledger consensus”
(sometimes referred to as “Nakamoto consensus”), which is an instance of the
state machine replication problem [47]; see also [27] for an overview of such
protocols. The idea of referencing off-chain blocks has been considered early on
in the ledger consensus literature (see, e.g., [13,39,48,49]) as a way to obtain
fairness, better throughput and faster confirmation times. Our novelty is that
we leverage this technique along with the new SoW notion to build a provably
secure consensus protocol, which, unlike prior results, is not based on the “2-for-1
PoW” technique described earlier.

There have been a number of attempts to formalize a proof of work (PoW)
primitive that it is also sufficient to imply the security of a blockchain protocol.
Nevertheless, such works were either informal [5,46], or they did not produce
a correctness proof for a blockchain or consensus protocol, focusing instead on
other applications [2,7,15,16,33]. More specifically, in [33], Garay et al. study
the necessary hardness condition that the underlying computational problem
should satisfy in order for Bitcoin to implement a public ledger. In contrast to
our work, an enhanced version of that security notion is shown to be sufficient to
implement a public ledger against an adversary controlling only 1/3 (as opposed
to 1/2) of the computational power. Further, it is unclear whether such notion
can be used to solve the original consensus problem.

326 J. A. Garay et al.

Another effort to formalize an intermediate PoW-like building block for the
Bitcoin protocol was made in [43]. The proposed ideal functionality, Fh..:, keeps
track of a tree of messages, which both the honest parties and the adversary can
extend with probability p. The outcome of each such trial is independent of the
others, even if it is made by the adversary. Fi,,, satisfies the strong independence
property mentioned before, and hence it is not suitable for the goals of this
paper. Moreover, we note that any protocol instantiating this functionality must
necessarily be interactive, as two parties can use Fizes to communicate at least
one bit. Finally, in [43], it was shown how to implement a transaction ledger,
but not how to achieve consensus; the techniques introduced in this paper can
be adapted to implement a consensus protocol using Frpps. Additional related
work is mentioned in the full version of the paper.

Organization of the Paper. The basic computational model, definitions and
cryptographic building blocks used by our constructions are presented in Sect. 2.
Formal definition of the SoOW primitive and its security properties are presented
in Sect. 3. Section 4 is dedicated to applications of SoW: First, we introduce an
appropriate model for our applications (Sect.4.1). We then analyze the Bitcoin
backbone protocol based on (and reducing its security to) SoW (Sect.4.2), fol-
lowed by the new blockchain-based consensus protocol (Sect. 4.3). Due to space
limitations, some of the proofs and other supplementary material are presented
in the full version of the paper [32].

2 Preliminaries

In this section we introduce basic notation and definitions that are used in the
rest of the paper. For k € N [k] denotes the set {1,...,k}. For strings z, z,
x||z is the concatenation of = and z, and |z| denotes the length of . We denote
sequences by (a;)icr, where I is the index set. For a set X, «— X denotes
sampling a uniform element from X. For a distribution U over a set X, © «— U
denotes sampling an element of X according to U. By Uy we denote the uniform
distribution over {0, 1}*. We denote the statistical distance between two random
variables X, Z with range U by A[X,Y], i.e., A[X,Z] = 23, o, | Pr[X =v] —
Pr[Z = v]|. For € > 0, we say that X,Y are e-close when A(X,Y) <e.

We let A denote the security parameter. In this paper we will follow a more
concrete (“exact”) approach [8,11,14,34] to security evaluation rather than an
asymptotic one. We will use functions ¢, e, whose ranges are N, R, respectively,
and have possibly many different arguments, to denote concrete bounds on the
running time (number of steps) and probability of adversarial success of an algo-
rithm in some fixed computational model, respectively. When we speak about
running time this will include the execution time plus the length of the code
(cf. [14]; note also that we will be considering uniform machines). We will always
assume that t is a polynomial in the security parameter A, although we will some-
times omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model
of distributed computation, we will use (interactive) RAMs. The reason is that

Consensus from Signatures of Work 327

we need a model where subroutine access and simulation do not incur a sig-
nificant overhead. ITMs are not suitable for this purpose, since one needs to
account for the additional steps to go back-and-forth all the way to the place
where the subroutine is stored. A similar choice was made by Garay et al. [34];
refer to [34] for details on using interactive RAMs in a UC-like framework, as
well as to Sect.4.1. Given a RAM M, we will denote by Steps,,(1*,) the ran-
dom variable that corresponds to the number of steps of M given as input the
security parameter 1* and z. We will say that M is ¢-bounded if it holds that
Pr[Steps,,(1*,2) < t(\)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of
the form negl(\) and concrete terms; throughout the paper, we will assume that
A is large enough to render the asymptotic terms insignificant compared to the
concrete terms.

Cryptographic Hash Functions. We will make use of the following notion of
security for cryptographic hash functions:

Definition 1. Let H = {{Hy : M(X) — Y (\)}rex(x) fren be a hash-function
family, and A be a PPT adversary. Then H is collision resistant if and only if
for any X\ € N and corresponding { Hy }rer in H,

Prlk — K (m,m') — A, k); (m # m') A (Hy(m) = Hy(m'))] < negl(X).

Robust Public Transaction Ledgers. The notion of a public transaction
ledger was introduced in [29] to describe the functionality implemented by the
Bitcoin protocol. It is defined with respect to a set of valid ledgers £ and a
set of valid transactions 7, each one possessing an efficient membership test.
A ledger x € L is a vector of sequences of transactions tx € 7. Ledgers corre-
spond to chains in the Bitcoin protocol. It is possible for the adversary to create
two transactions that are conflicting; valid ledgers must not contain conflicting
transaction. Moreover, it is assumed that in the protocol execution there also
exists an oracle Txgen that generates valid transactions, and is unambiguous,
i.e., the adversary cannot create transactions that come in ‘conflict’ with the
transactions generated by the oracle. A transaction is called neutral if there does
not exist any transactions that comes in conflict with it.

Definition 2. A protocol II implements a robust public transaction ledger if it
organizes the ledger as a chain of blocks of transactions and satisfies the following
two properties:

— Persistence: Parameterized by k € N (the “depth” parameter), if in a certain
round an honest player reports a ledger that contains a transaction tx in a
block more than k blocks away from the end of the ledger, then tx will always
be reported in the same position in the ledger by any honest player from this
round on.

- Liveness: Parameterized by u,k € N (the “wait time” and “depth” parame-
ters, resp.), provided that a transaction either (i) issued by Txgen, or (ii) is

328 J. A. Garay et al.

neutral, is given as input to all honest players continuously for u consecutive
rounds, then all honest parties will report this transaction at a block more
than k blocks from the end of the ledger.

The Consensus Problem. Next, we give the definition of the well-known
consensus problem (a.k.a. Byzantine agreement) [38,44]. There are n parties,
t < n of which might be corrupted, taking an initial input € V' (without loss
of generality, we can assume V = {0, 1}).

Definition 3. A protocol 11 solves the consensus problem provided it satisfies
the following properties:

— Agreement. All honest parties will output the same value eventually.
— Validity. If all the honest parties have the same input, then they all output
this value.

3 Signatures of Work

The main goal of this paper is to implement consensus in the permissionless
setting without relying on the strong independence property of the underlying
computational resource. Towards that goal, in this section we introduce the
signature of work (SoW) primitive. At a high level, a SOW enables one party to
convince others that she has invested some computational power during some
specific time interval and with respect to a “message.” Next, we formalize this
notion and present its desired security properties.

SoW Syntax. Given a security parameter A, let PP be the public parameter
space, HP C N the hardness parameter space, K the key space, M the message
space, and S the signature space. With foresight, the role of the key is to provide
“freshness” for the signature computation, thus certifying that the signature was
computed in the given time interval.

Definition 4. A SoW scheme consists of four algorithms SoW = (PPub,
KeyGen, Sign, Verify), where:

~ PPub(1%) is a randomized algorithm that takes as input the security parameter
A, and returns a set of public parameters pp € PP.

— KeyGen(pp) is a randomized algorithm that takes as input the public parame-
ters pp, and returns a key vk € K. (See Remark 1 below on the role of keys
in SoW schemes.)

— Sign(pp, vk, msg,h) is a randomized algorithm that takes as input public
parameters pp € PP, a key vk € K, a message msg € M and hardness
parameter h € HP, and returns a signature (of work) o € S.

— Verify(pp, vk, msg, h, o) is a deterministic algorithm that takes as input public
parameters pp € PP, a key vk € K, message msg € M, hardness parameter
h € HP and a signature o € S, and returns true or false to indicate the
validity of the signature.

Consensus from Signatures of Work 329

Remark 1. SoW schemes only have a public verification key. The role of this key
is to guarantee that the computational work spent in order to create a signature
of work is “fresh,” i.e., executed during a specific time interval (say, from the
time the key became known to the signer). In contrast, classical digital signatures
also have a secret key that serves as a trapdoor to compute signatures. In the
applications we consider, the existence of trapdoor information is not meaningful,
and in fact may hurt the security of the respective constructions.

Security Properties. Next, we present a number of security properties that
we will require SoW schemes to satisfy. We start with the correctness property.

Definition 5. We say that a SoW scheme is correct if for every A € N,pp €
PPvke K,he HP, and msg € M:

Pr [Verify(pp,vk, msg, h, Sign(pp, vk, msg, h)) = true] > 1 —negl()).
Next, we require that the time to verify a signature be upper bounded.

Definition 6. We say that a SoW scheme is t-verifiable, if Verify takes time at
most t (on all inputs).

Next, we capture the case of a malicious signer (resp., verifier) in the context
of SoWs. In the first case, the adversary’s objective is to compute a number of
signatures a lot faster than an honest signer would, while in the second case it
is to make the honest signer take too much time to generate a signature.

We deal with malicious signers first. We put forth an attack that we will
use to express a class of adversaries that attempt to forge signatures faster than
expected. Intuitively, this constitutes an attack against an honest verifier that
may be trying to gauge a certain measure using the number of signatures. The
game defining the attack is shown in Fig. 2; we call the corresponding security
property Moderate Unforgeability against Tampering and Chosen Message Attack
(MU-TCMA). As in the security definitions of standard signatures (e.g., EU-
CMA), we allow the adversary to have access to a signing oracle S. Every time
the oracle is queried, we assume that it runs the Sign procedure with uniformly
sampled randomness. A subtle point in the modeling of security in the presence
of such oracle is that S should also “leak” the number of steps it took for a
query to be processed. In an actual execution while interacting with honest
parties that are producing signatures, time is a side channel that may influence
the adversarial strategy; in order to preserve the dependency on this side channel
we will require from S to leak this information. We note that in the classical
signatures literature, timing attacks have also been a serious consideration [37].

In addition, we require that the key used by the adversary to construct
signatures be fresh, i.e., we want to avoid situations where the adversary outputs
signatures that he has precomputed a long time ago. We model this by providing
the fresh key after the adversary has finished running his precomputation phase.

330 J. A. Garay et al.

Explz M1 R 0)

5+ Ux; pp = PPub(1%); (Public parameters)
st + A1(1%, 5, pp); (Precomputation)
vk < KeyGen(pp); (Verification key)
(fi,msg;,04)icle) < A‘;("‘)(lk,vk, st); (SoW computation)

V4 Verify(pp7 fl(Ev Uk)a msg;, Ui) A "ASked(fi(ZE 'Uk), msg;, Ui)
return A\;_,

A(fi € FX)A(YG € [0 2 (X, vk) = [i(X,vk) =i = j)

Fig. 2. The Moderate Unforgeability against Tampering and Chosen-Message Attack
(MU-TCMA) experiment for a SoW scheme.

Further, we allow the adversary to tamper with the key by manipulating it via
tampering functions belonging to a family of functions F.

Looking ahead, the tampering function in our applications will be related to
a keyed hash function, where the key of the hash is part of a common random
string (CRS). Hence, we choose to model functions in F to have two inputs: X
(the CRS) and vk. Moreover, the output of the adversary is deemed invalid if
he tampers vk with functions fi, fo in such a way that f1(X,vk) = fo X, vk).
Otherwise, the adversary could launch a generic attack that is unrelated to
the SoW scheme, and produce signatures at twice the rate of an honest signer,
as follows. The adversary first finds fi, fo that have this property, and then
computes signatures using the tampered key f; (X, vk). The trick is that each of
them will also correspond to a signature with key f2(X, vk). Hence, he effectively
can double the rate at which he produces signatures.

Formally, the adversary will have access to S(-,-), an SoW oracle that on
input (vk’, msg), where vk’ € K and msg € M, returns the pair (o,t) where o
is the output of Sign(pp,vk’, msg, h) and ¢ is the number of steps taken by the
Sign algorithm on these parameters. Function Asked(vk’, msg, o) is true if o was
the response of S to some query (vk’, msg).

We are now ready to formulate the security property of Moderate Unforge-
ability against Tampering and Chosen Message Attacks (MU-TCMA). It has two
parameters, § and €, and, informally, it states that no adversary A exists in the
experiment of Fig.2 that takes at most t steps after receiving key vk and pro-
duces ¢ > (-t signatures with probability better than e. Note that in total we
allow A to take any polynomial number of steps, i.e., the adversary is allowed to
execute a precomputation stage that permits it to obtain an arbitrary number of
signatures before learning vk. In the definition below, we allow (§ to depend on
the hardness level h, and € on h,t and qs, the number of queries the adversary
makes to the signing oracle.

Consensus from Signatures of Work 331

Definition 7. Let F = {F\}xen, where Fy is a family of functions f : {0,1}* x
K — K.2 A SoW scheme is (3, ¢)-Moderately Unforgeable against Tamper-
ing and Chosen-Message Attacks (MU-TCMA) with respect to tampering func-
tion class F, if for any polynomially large t1,ts, any adversary A = (A1, As),
where Ay is ti-bounded and Ay is to-bounded and makes at most qs queries to
oracle S, for any X € N, and any h € HP, the probability of A winning in
Exp%%TCMA(lA,h, |B(h) - ta]) (Fig. 2) is less than e(h,ta,qs).

Remark 2. As mentioned in Sect.1, unlike previous unforgeability definitions
(e.g, [11]), Definition 7 is parameterized by the rate at which the adversary can
produce signatures, instead of the number of steps it needs to compute one, which
is more appropriate for the moderate unforgeability game where the adversary
tries to produce multiple signatures.

In the MU-TCMA definition we are going to consider tampering functions
classes that at the very least preserve the unpredictability of vk. Otherwise, the
adversary can generically attack any SoW scheme by predicting the tampered
key and precomputing signatures. Formally, we will say that F is computationally
unpredictable if the adversary, given the CRS X, cannot guess a value y that he
will be able to “hit” when he gains access to vk through some f € F.

Definition 8. Let F = {F\}xen, where Fy is a family of functions f : {0,1}* x
K — K. We say that F is computationally unpredictable with respect to a SoW
scheme SoW, if for any PPT RAM A = (A1, As), and for any A € N, it holds
that:

b (st,y) = Ar(1%, Zopp); f = A (1%, st k)
T
pp—PPub(1Y); | f € Fx A f(X,vk) =y

vk«—KeyGen(pp);
XU

< negl(\).

Next, we consider the case of attacking an honest signer. Attacking an honest
signer amounts to finding a certain set of keys over which the honest signer
algorithm fails to produce SoWs sufficiently fast and regularly. We say that a
SoW scheme is (t,)-successful when the probability that the signer computes a
signature in t steps is at least «.

Definition 9. We say that SoW scheme is (t,a)-successful if for any A € N
and any h € HP, it holds that:

Pr [StepsSign(pp, vk, msg, h) < t] > a(h).
pp—PPub(1*);
vk«—KeyGen(pp);
msg—M

Finally, in the same corrupt-verifier setting, we will require the signing time
of honest signers to have some (limited) independence, which will be important
for the applications we have in mind. This property, in combination with the

3 K is the key space of the SoW scheme.

332 J. A. Garay et al.

efficiency and MU-TCMA properties, will prove crucial in ensuring that when
multiple signers work together, the distribution of the number of them who
succeed in producing a signature has some “good” variance and concentration
properties.

Definition 10. We say that a SoW scheme has almost-independent runtime
iff for any polynomial p(-), any A € N, any h € HP, there exists a set
of mutually independent random wvariables {Y;}ic[p(ny such that for any pp €
PP,((vki,mq))iepoy) € (K X M)PX) it holds that A[(Stepsgigy (PP, vki, mi, h))i,
(¥)i] < negl(A).

Independence Assumptions. As mentioned earlier, MU-TCMA does not
enforce any independence assumption, and only bounds the probability that the
rate at which the adversary computes SoWs is high. In contrast, the independent-
runtime property does so, but only for honest signers. We remark that achieving
such property is considerably easier for the honest case, as we can be sure that
signers will use independently sampled coins if instructed; a guarantee that we
cannot have for the adversary.

Parameters’ Range. Let SoW be a scheme that is (tsign, @)-Successful. SoW
trivially satisfies the MU-TCMA property for 5(h) > 1, since the adversary does
not have enough time to output the signatures it has computed. On the other
hand, assuming e(h, t, ¢s) is a negligible function of ¢, a(h) must be smaller than
B(h) - tsign, otherwise the expected number of SoWs computed by the Sign func-
tion would exceed that allowed by the MU-TCMA property. Hence, for optimal
security, it should hold that a(h) is close to B(h) - tsgn.

Next, we turn to applications of our SoW primitive.

4 Applications

In this section we showcase applications of SoWs, the first one being implement-
ing robust transaction ledgers: Using our primitive and standard properties of
the underlying hash function, we establish the security of the Bitcoin backbone
protocol [29]. The second application is realizing consensus in the permisionless
setting: We construct a new blockchain-based consensus protocol for an honest
majority provably secure under the same assumptions as above, thus providing
a blockchain counterpart to the classical result in the cryptographic setting with
a trusted (PKI) setup [20].

In both applications we assume the existence of a SoW scheme with the
security properties defined below.

Assumption 1. (SoW Assumption). For parameters (3,€,t5,,a and tyer we
assume that SoW = (PPub, KeyGen, Sign, Verify) is:

— Correct;
- (B,€)-MU-TCMA with respect to any computationally unpredictable tamper-
ing function class (cf. Definition 8);

Consensus from Signatures of Work 333

= (thy, a)-successful;*
— almost run-time independent; and
— tyer-verifiable,

where €(h,t,qs) € negl(B(h) -t). Moreover, we assume that the parameter spaces
K, M,S of the scheme are equal to {0,1}°2 K1 {0,1}*,{0,1}1°8 151, respectively.

For a SoW scheme to be used in the context of the Bitcoin protocol, choosing
K, M, S as above is important due to the underlying hash-chain structure of the
blockchain: The hash of each block acts as a key of the SOW scheme, thus the
output of the hash function should match the key space of the SoW.

We start with some pertinent details about the model that the two applica-
tions mentioned above will be analyzed under.

4.1 The Permissionless Model, Revisited

All the security models proposed for the analysis of PoW-based blockchain proto-
cols [29,43] rely on bounding the number of queries to an idealized functionality
to model limited computational resources. In contrast, we do not wish to restrict
the way the adversary accesses the computational resource, and thus we model
limited computational resources in a more general manner, i.e., by limiting the
exact number of steps parties take. Next, we present a revised version of the
model of [29] that captures our considerations.

For the reasons explained in Sect.2, we substitute IRAMs for ITMs. The
execution of a protocol II is driven by an “environment” program Z that may
spawn multiple instances running the protocol II. The programs in question can
be thought of as “interactive RAMs” communicating through registers in a well-
defined manner, with instances and their spawning at the discretion of a control
program which is also an IRAM and is denoted by C. In particular, the con-
trol program C forces the environment to perform a “round-robin” participant
execution sequence for a fixed set of parties.

Specifically, the execution driven by Z is defined with respect to a protocol
II, an adversary A (also an IRAM) and a set of parties Py, ..., P,; these are
hardcoded in the control program C. The protocol IT is defined in a “hybrid”
setting and has access to one “ideal functionality,” called the diffusion channel
(see below). It is used as subroutine by the programs involved in the execution
(the TRAMSs of IT and A) and is accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each
time the adversary is activated, it may communicate with C' via messages of the
form (Corrupt, P;). The control program C' will register party P; as corrupted,
only provided that the environment has previously given an input of the form
(Corrupt, P;) to A and that the number of corrupted parties is less or equal
t, a bound that is also hardcoded in C. The first party to be spawned running
protocol IT is restricted by C to be party P;. After a party P; is activated, the

4 Parameter t}, corresponds to a lower bound on the running time of honest parties
that we introduce in detail later.

334 J. A. Garay et al.

environment is restricted to activate party P41, except when P, is activated in
which case the next party to be activated is always the adversary A. Note that
when a corrupted party P; is activated the adversary A is activated instead.

Next, we describe how different parties communicate. Initially, the diffusion
functionality sets the variable round to be 1. It also maintains a Receive() string
defined for each party P;. A party is allowed at any moment to fetch the mes-
sages sent to it at the previous round that are contained in its personal Receive()
string. Moreover, when the functionality receives an instruction to diffuse a mes-
sage m from party P; it marks the party as complete for the current round and
forwards the message to the adversary; note that m is allowed to be empty. At
any moment, the adversary A is allowed to specify the contents of the Receive()
string for each party P;. The adversary has to specify when it is complete for the
current round. When all parties are complete for the current round, the func-
tionality inspects the contents of all Receive() strings and includes any messages
that were diffused by the parties in the current round but not contributed by
the adversary to the Receive() tapes. The variable round is then incremented.

Based on the above, we denote by {\/IEWH A z(2)}2e(01)+ the random vari-
able ensemble that corresponds to the view of party P at the end of an execution
where Z takes z as input. We will consider stand-alone executions, hence z will
always be of the form 1*, for /\ e N. For simplicity, to denote this random variable
ensemble we will use VIEWH ~. By VIEWH Az We denote the concatenation of
the views of all parties. The probablhty space where these variables are defined
depends on the coins of all honest parties, A and Z.

Next, we consider the complications in the modeling due to the analysis of
Bitcoin in the concrete security setting. Both in [29] and [43] a modified version
of the standard simulation-based paradigm of [18] is followed, where there exist
both a malicious environment and a malicious adversary. In addition, the SoW
scheme (called PoW in [29,43]) is modeled in a non black-box way using a random
oracle (RO), and the computational power of the adversary is then bounded by
limiting the number of queries it can make to the RO per round. Since in this
work the SoW scheme is modeled in a black-box way, an alternative approach
to bound the adversary’s power is needed.

A nalve first approach is to only bound the computational power of A. Unfor-
tunately this will not work for several reasons. Firstly, nothing stops the envi-
ronment from aiding the adversary, i.e., computing signatures, and then commu-
nicating with it through their communication channel or some other subliminal
channel. Secondly, even if we bound the total number of steps of A, it is not
clear how to bound the steps it is taking per round in the model of [18], which
we build on. Lastly, another issue arising is that if the adversary is able to send,
say, 6 messages in each round, it can force each honest party to take € -, extra
steps per round. If we don’t bound 6, then the adversary will be able to launch
a DOS attack and spend all the resources the honest parties have®.

5 This problem is extensively discussed in [3], Section 3.4.

Consensus from Signatures of Work 335

In order to capture these considerations we are going to define a predicate
on executions and prove our properties in disjunction with this predicate, i.e.,
either the property holds or the execution is not good.

Definition 11. Let (t4,0)-good be a predicate defined on executions in the
hybrid setting described above. Then E is (t4,6)-good, where E is one such exe-
cution, if

— the total number of steps taken by A and Z per round is no more than t;°
— the adversary sends at most 8 messages per round.

Finally, we assume the existence of a common reference string (CRS), that
becomes available to all parties at the start of the execution. This is also implic-
itly assumed in previous models, where either parties have access to a special
“genesis” block at the beginning of the execution [43], or they do not have access
to the RO before the beginning of the execution [29].

Definition 12. Given a predicate Q and bounds t4,0,t,n € N, with t < n, we
say that protocol IT satisfies property Q for n parties assuming the number of
corruptions is bounded by t, provided that for all PPT Z, A, the probability that
Q(VIEW?ELA,Z) is false and the execution is (t4,0)-good is negligible in \.

4.2 Public Transaction Ledger from Signatures of Work

Next, we take a reduction approach to the underlying cryptographic primitive—
SoW, as defined in Sect.3—to prove the security of the Bitcoin backbone pro-
tocol [29]. We start with a description of the protocol based on SoW, and then
continue with the security proof.

The Bitcoin Backbone Protocol. The Bitcoin backbone protocol [29],
parameterized by functions V(-), R(:),I(-), is an abstraction of the Bitcoin pro-
tocol. First, we introduce some notation needed to understand the description
of the algorithms, and then cast the protocol making use of our SoW primitive.

We will use the terms block and chain to refer to tuples of the form
(s,z,0) and sequences of such tuples, respectively. The rightmost (resp. left-
most) block of chain C is denoted by head(C) (resp. tail(C)). Each block con-
tains a seed, data, and a signature denoted by s,x,o, respectively. As men-
tioned, all parties have access to a CRS at the beginning of the execution
that contains: the public parameter pp of the SoW scheme, a verification key
vk generated by KeyGen(pp), and the key k of the hash functions H,G used
later. We will refer to (0*, pp||vk||k,0*) as the genesis block Bgen. A chain
C = Bj...B,, is valid with respect to the CRS if and only if (i) B; is the

5 The adversary cannot use the running time of honest parties that it has corrupted;
it is activated instead of them during their turn. Also, note that it is possible to
compute this number by counting the number of configurations that A or Z are
activated per round.

336 J. A. Garay et al.

genesis block, (ii) for any two consecutive blocks (s;, ;,), (Sit1, Tit1,0it1) it
holds that Hy(s;, Gr(x;),0:) = si+1, (iii) each block, besides Bgen, contains a
valid SoW, i.e., Verify(pp, s;, x;,0;) = true, and (iv) the content validation pred-
icate V((x1,...,zm)) outputs true. We call Hy(s;, Gr(x;),0;) the hash of block
B; and denote it by H(B;). Moreover, we define H(C) to be equal to the hash
of the head of chain C.

At each round, each party chooses the longest valid chain amongst the ones
it has received and tries to extend it by computing (mining) another valid block.
If it succeeds, it diffuses the new block to the network. In more detail, each party
will run the Sign procedure, with the message parameter being determined by
the input contribution function I(-), and the key parameter being the hash of the
last block. We assume that the hardness parameter h is fixed for all executions.
Finally, if the party is queried by the environment, it outputs R(C) where C
is the chain selected by the party; the chain reading function R(-) interprets
C differently depending on the higher-level application running on top of the
backbone protocol. Each honest party runs for at most ¢4 steps per round. For
a full description of the protocol refer to the full version of the paper

In order to turn the backbone protocol into a protocol realizing a public
transaction ledger suitable definitions were given for functions V(-),R(-),I(-)
in [29]. We change these definitions slightly as shown in Table 1, to ensure two
things: Firstly, that the data contained in the hash chain is encoded with a
suffix-free code; this is important to ensure that no collisions occur [9] as we
show later. And, secondly, to ensure that any block created by an honest party
contains sufficient entropy, thus the adversary will not be able to use blocks that

it has precomputed to extend this block. We call the resulting protocol IIZ".

Table 1. The instantiation of functions I(-), V(-), R(-) for protocol TT3}".

Content validation predicate | V(-) is true if its input (z1,...,Zm) is a
V() valid ledger, i.e., it is in £, and each x;
starts with a neutral transaction of the form
r||¢, where r is a string of length log |K| and
1 is the “height” of the respective block

Chain reading function R(-) | R(-) returns the contents of the chain if they
constitute a valid ledger, otherwise it is

undefined
Input contribution function |I(-) returns the largest subsequence of
I(+) transactions in the input and receive

registers that constitute a valid ledger, with
respect to the contents of the chain |C| the
party already has, preceded by a neutral
transaction of the form KeyGen(pp)|||C|

Consensus from Signatures of Work 337

Security Proof. We now prove that II3}" implements a robust public trans-
action ledger (Definition?2), assuming the underlying SoW scheme satisfies
Assumption 1 for appropriate parameters, related to the running time of honest
parties and the adversary. First, we formalize this relation.

Let typ, (bb for backbone) be an upper bound on the number of steps needed
to run the code of an honest party in one round, besides the Sign and Verify calls.
By carefully analyzing the backbone protocol one can extract an upper bound
on this value.” To aid our presentation, we will use /4 and ¢}, to denote: (i) the
time needed by a RAM machine to simulate one round in the execution of the
Bitcoin protocol, without taking into account calls made to the Sign routine by
the honest parties, and (ii) the minimum number of steps that an honest party
takes running the Sign routine per round, respectively.

ty=ta+mn-top+ 0t and 5, =ty — top — Otyer

It holds that at least n — ¢ (non-corrupted) parties will run the Sign routine for
at least t}, steps at every round.

In previous works [29,31,43], the security assumptions regarding the com-
putational power of the parties participating in the protocol were twofold: (1)
The total running time of honest parties per round should exceed that of the
adversary, and (2) the rate at which parties produce blocks at each round should
be bounded. More realistically, in our approach the running time of the adver-
sary and the running time of honest parties do not have the same quality, as the
adversary may use a superior signing algorithm. To take this into account, we
additionally need to assume that the efficiency of the adversarial signing algo-
rithm, i.e., 3, is close to that of the honest parties. Finally, note that if SoW
is close to optimal, i.e., a(h) ~ [t},, and the block generation rate is a lot less
than 1, our assumption holds as long as the honest parties control the majority
of the computational power.

We now state the computational power assumption formally. The second
and the third conditions are similar to the ones already found in previous works,
while the first one is the new condition we introduce regarding the underlying
computational primitive.

Assumption 2 (Computational Power Assumption). There exist
dsow, Osteps, 0 € (0,1), such that for sufficiently large A € N, there exists an
h € HP, such that:

— a(h) > (1 — dsow) Bt > negl(X) (signatures generation rate gap)
N (Tl - t)t’/}—{(l - 6Steps) > t;\ (steps gap)
- M >0 > B(h)(t'y + nty) (bounded block generation rate)

" Note that tp, depends on the running time of three external functions: V(-),1(-)
and R(-). For example, in Bitcoin these functions include the verification of digital
signatures, which would require doing modular exponentiations. In any case tp, is at
least linear in A.

338 J. A. Garay et al.

From now on, we will assume that the hardness parameter used in our pro-
tocols, is one satisfying the above conditions.

Remark 3. The better the adversarial signing algorithm may be compared to the
honest one, the closer dsew is to 0, while the closer the number of adversarial steps
t', are to that of the honest parties, the closer dsteps is to 0. Assumption 2 implies,
in a quantitative manner, that the better the adversarial signing algorithm, the
smaller the computational power of the adversary we can tolerate.

Based now on Assumptions1 and 2, we can prove that II5" implements a
transaction ledger. Our main technical contribution is showing that an adversary
that computes blocks fast in an execution of IIF", can be used to construct
another adversary that breaks the moderate unforgeability property of the SoW
scheme. Hence, the rate at which the adversary computes blocks is bounded by
the parameters of the MU-TCMA property. After that step, we follow the proving
strategy of [29], to prove three blockchain level properties: common prefix, chain
quality and chain growth. In order to do that we take advantage of the Successful
and Runtime Independence properties of the SoW scheme, to establish a lower
bound on the rate of uniquely successful rounds, i.e., rounds that only a single
honest party computes a block, which then show to be larger than the rate at
which the adversary computes blocks. Our analysis also crucially depends on the
collision resistance property of the underlying hash function, to ensure that each
chain corresponds to a single history of transactions that cannot be altered in
the future. Due to lack of space, we point to the full version of the paper for the
detailed analysis.

Theorem 1. Assuming the existence of a collision-resistant hash function and a
SoW scheme that complies with Assumptions 1 and 2, there exists a protocol that
implements a robust public transaction ledger except with negligible probability
m A.

As a “sanity check,” we show in the full version of the paper that the Bitcoin
SoW scheme we outline there, is secure both in the random oracle and the
Frree model [43] according to our definitions; moreover, according to the security
parameters we obtain for the scheme, the security guarantees we get from our
black-box analysis of the Bitcoin backbone are similar to those proved in [29,43].

4.3 Consensus from Signatures of Work

In this section we show how to achieve consensus (a.k.a. Byzantine agreement
[38,44]) under exactly the same assumptions used for proving the security of the
Bitcoin backbone protocol in Sect. 4.2.

As mentioned earlier, in [29] consensus is achieved under the Honest Major-
ity Assumption by using a proof-of-work construction in a non-black-box way,
through a mining technique called “2-for-1 PoWs.” In more detail, the technique

Consensus from Signatures of Work 339

shows how miners can compute proofs of work for two different PoW schemes
at the cost of one, while at the same time ensuring that their resources cannot
be used in favor of one of the two schemes. However, the security proof for the
resulting protocol crucially relies on the fact that each of the bits of the strings
output by the random oracle are independently sampled, and thus goes again
our stated goal of designing a SoW scheme that does not make such a strong
independence assumption.

Here we get rid of this requirement, by showing how blockchain-based con-
sensus can be achieved by only using the security properties we have defined,
directly, and without the extra non-black-box machinery used in [29]. This yields
the first consensus protocol for honest majority reducible to a SoW primitive in
the permissionless setting. The protocol is based on the Bitcoin backbone pro-
tocol, and formally specified by providing adequate definitions for the V,R,I
functions presented in Sect. 4.2.

First, we define some additional notation and terminology that will be used
in the remainder of the section. We will use the terms “input” and “vote”
interchangeably, referring to the parties’ input to the consensus problem. We
will use header((s,z||vote,c)) to denote the “compressed” version of block
(s, x||vote, o), equal to (s, G(z)||vote, o). Note that, as defined, the header of
any block is of a fixed size. We also extend the definition of our hash function
H as applied to headers of blocks. The hash of the header of some block B will
be equal to the hash of B, i.e., H((header(B)) = H(B) = H(s,G(x)||vote, o)
(note that the header of B provides all the information needed to calculate the
hash of B).

We now present a high-level description of the protocol. The basic idea is
that during block mining, parties are going to include in their blocks not only
their own votes, but also headers of other blocks that they have seen and that
are mot part of their chain. Then, after a predetermined number of rounds, the
parties will count the votes “referenced” in a prefix of their chain, including the
votes found in the headers of the blocks referenced. In this way, they can take
advantage of the robust transaction ledger built in Sect.4.2. The Persistence
property implies that the honest parties will all agree on which votes should be
counted, while the Liveness property guarantees that the majority of the counted
votes come from honest parties.

The reader may wonder about the reason behind honest parties including
in their blocks also headers of other blocks that they have seen but that are
not part of their chain. It’s because, as shown in [29], the adversary is able to
add more blocks in the main chain than his ratio of mining power (e.g., using a
selfish-mining attack). This does not hold if the honest parties are able to also
count off-chain blocks as our protocol does.

8 We augment the block content & with a vote bit. This does not change the results
of the analysis of the previous section.

340 J. A. Garay et al.

Algorithm 1. The content validation predicate. The input is the contents of the
blocks of some chain.

1: function V((z1,...,Zm))

2: D «— new AVL() > Create a new (empty) AVL tree.
3: D.add(H (Bgen)) > Add the hash of the genesis block on the tree.
4: fori=1,...,m do

5: queue «— references(z;) > Add all block references in a queue.
6: (r||height) «— queue.top()
T if height # i then

8: return False > Check for the correct block “height”.
9: end if

10: while queue # () do

11: (s, G(z)||vote, w) «— queue.top()

12: if ((D.exists(s)) A Verify(s, G(z)||vote, h,w)) then

13: D.add(H ({(s, G(z)||vote, w))) > Add new entry on the tree.
14: queue.pop()

15: else

16: return False > If not, the chain is invalid.
17: end if

18: end while

19: end for

20: return True

21: end function

A main technical challenge is to be able to add the block references with-
out making the honest parties’ chains grow too large, and at the same time to
ensure that the number of honest votes exceeds the adversarial ones. To overcome
this challenge, we modify the Sign algorithm so that it is run on the header of
the block, i.e., Sign(pp, s, G(x)||vote, h) and Verify(pp, s, G(z)||vote, h, o), respec-
tively. This way we are able to verify the validity of a block as a SoW and
determine the block’s vote by only knowing its header. These are exactly the
properties we need for the consensus application.

Moreover, we should be able to tell whether the referenced blocks are “fresh”;
that is, the adversary should not be able to reference blocks that it has precom-
puted and are not related to the genesis block. We achieve this by requiring
blockchain contents to have a special structure in order to be considered valid
by the content validation predicate V(-) (Algorithm1). A chain will be wvalid
when the referenced blocks on every prefix of the chain form a tree that has the
genesis block at its root. In order to check this efficiently, we require that the
block headers listed in each block are ordered, so that each entry extends some
block header found in previous entries of the same or parent blocks.

In more detail, to efficiently check for membership in the hash tree, in line 2
of Algorithm 1 we use an AVL tree. (Any other data structure supporting efficient
updates and search would also work.) In line 5 the referenced blocks are extracted
and pushed into a queue. We note that during this process it is checked that:

Consensus from Signatures of Work 341

Table 2. The instantiation of functions I(-), V(-), R(+) for protocol ITgx.

Content validation predicate | As defined in Algorithm 1
V()
Chain reading function R(-) |R(:) outputs the majority of the votes found
in the block headers of the first M blocks of
the selected chain

Input contribution function | The input function I(-) maintains state of
I(+) which blocks have been received, and
outputs an input value = that contains (i)
the headers of all valid blocks that extend
the genesis and are not mentioned in the
chain C that the party is currently
extending, (ii) a neutral transaction of the
form KeyGen(pp)|||C|, and (iii) the party’s
input (i.e., 0 or 1)

(i) the contents of the block have a correct format, i.e., a vote field and list of
block headers, (ii) each header in the list is a valid SoW and extends a chain
starting from the genesis block, and (iii) that the first reference includes a string
r and the height of the block as required in the security analysis of Sect. 4.2 and
described in Table 1.

The algorithm runs for L rounds, after which it outputs the majority of the
votes found in a prefix of the selected chain, of a predetermined length M. We
call the resulting protocol IIZW (“BA” for Byzantine agreement). A description of
the consensus protocol (specifically, the V, R, I functions) is presented in Table 2,
and also recall the example in Fig. 1. Note that all parties terminate the protocol
simultaneously. For the full proof of the theorem refer to the full version of the

paper.

Theorem 2. Assuming the existence of a collision-resistant hash function and
a SoW scheme that complies with Assumptions1 and 2. Protocol IIEN solves
consensus with overwhelming probability in \.

References

1. Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289-304
(1992)

2. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations,
and applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
493-526. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_17

3. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379-399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_19

https://doi.org/10.1007/978-3-319-70500-2_17
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

342

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. A. Garay et al.

. Back, A.: Hashcash-a denial of service counter-measure (2002)
. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:

a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324-356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7_11

. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case

assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789-819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_26

. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of

symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, 19-22 October 1997, pp. 394—403
(1997)

. Bellare, M., Jaeger, J., Len, J.: Better than advertised: improved collision-

resistance guarantees for MD-based hash functions. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
pp. 891-906. ACM, New York (2017)

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, Fairfax, Virginia, USA, 3—5 November 1993,
pp. 62-73 (1993)

Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399-416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34
Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement
protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.)
Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, Montreal, Quebec, Canada, 17-19 August 1983,
pp. 27-30. ACM (1983)

Bentov, 1., Hub’avcek, P., Moran, T., Nadler, A.: Tortoise and hares consensus:
the meshcash framework for incentive-compatible, scalable cryptocurrencies. ITACR
Cryptology ePrint Archive 2017:300 (2017)

Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol.
8270, pp. 321-340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0_17

Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, 14-16 January 2016, pp. 345-356. ACM (2016)

Boneh, D., Bonneau, J., Biinz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757—
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25
Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoglu,
0., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40-55. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61769-8_4

Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143-202 (2000)

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-61769-8_4

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Consensus from Signatures of Work 343

Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557-594 (2004)

Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656-666 (1983)

Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251-260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288-323 (1988)

Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139-147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_10

Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput. 26(4), 873-933 (1997)

Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374-382 (1985)

Fitzi, M.: Generalized communication and security models in Byzantine agreement.
Ph.D. thesis, ETH Zurich, Ziirich, Switzerland (2003)

Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. TACR
Cryptology ePrint Archive 2018:754 (2018)

Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. IACR Cryptology ePrint Archive 2014:765 (2014)

Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281-310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6-10

Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291-323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_10

Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 465-495. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5_16

Garay, J.A., Kiayias, A., Panagiotakos, G.: Consensus from signatures of work.
Cryptology ePrint Archive, Report 2017/775 (2017). https://eprint.iacr.org/2017/
775

Garay, J.A., Kiayias, A., Panagiotakos, G.: Iterated search problems and
blockchain security under falsifiable assumptions. Cryptology ePrint Archive,
Report 2019/315 (2019). https://eprint.iacr.org/2019/315

Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. J. Cryptol. 24(4), 615-658 (2011)
Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 1999, San Diego, California, USA. The Internet
Society (1999)

Katz, J., Miller, A., Shi, E.: Pseudonymous secure computation from time-lock
puzzles. IACR Cryptology ePrint Archive 2014:857 (2014)

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2019/315
https://doi.org/10.1007/3-540-68697-5_9

344

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

J. A. Garay et al.

Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382-401 (1982)

Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Bohme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528-547. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_33

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

Okun, M.: Agreement among unacquainted Byzantine generals. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499-500. Springer, Heidelberg (2005).
https://doi.org/10.1007/11561927_40

Okun, M.: Distributed computing among unacquainted processors in the presence
of Byzantine distributed computing among unacquainted processors in the presence
of Byzantine failures. Ph.D. thesis, Hebrew University of Jerusalem (2005)

Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643-673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228-234 (1980)

Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 337-350. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-
3_195

Poelstra, A.: On stake and consensus (2015). https://download.wpsoftware.net/
bitcoin/pos.pdf

Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299-319 (1990)

Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive 2016:1159 (2016)
Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Bohme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507-527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_32

Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284-301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2_19

https://doi.org/10.1007/978-3-662-47854-7_33
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/11561927_40
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195
https://download.wpsoftware.net/bitcoin/pos.pdf
https://download.wpsoftware.net/bitcoin/pos.pdf
https://doi.org/10.1007/978-3-662-47854-7_32
https://doi.org/10.1007/978-3-642-19074-2_19

®

Check for
updates

Faster Homomorphic Encryption is not
Enough: Improved Heuristic
for Multiplicative Depth Minimization
of Boolean Circuits

Pascal Aubry?®) | Sergiu Carpov', and Renaud Sirdey’

L CEA, LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France
2 CEA, LIST, 38054 Grenoble Cedex, France
p.aubryQcea.fr

Abstract. In somewhat homomorphic encryption schemes (e.g. B/FV,
BGYV) the size of ciphertexts and the execution performance of homo-
morphic operations depends heavily on the multiplicative depth. The
multiplicative depth is the maximal number of consecutive multiplica-
tions for which the homomorphic encryption scheme was parameterized.

In this work we improve a heuristic for multiplicative depth mini-
mization of Boolean circuits found in the literature. In particular, a new
circuit rewriting operator is introduced, the so called cone rewrite opera-
tor. The results we obtain using the new method are relevant in terms of
accuracy and performance. The multiplicative depths for a benchmark
of Boolean circuits is highly improved and the execution time of the
new heuristic is significantly lower. The proposed rewrite operator and
heuristic are not limited to Boolean circuits, but can also be used for
arithmetic circuits.

Keywords: Somewhat homomorphic encryption + Multiplicative
depth - Boolean functions - Heuristic

1 Introduction and Related Works

We denote by encryption scheme the way to encrypt plaintext messages and to
decrypt ciphertexts such that discovering the plaintext message from encrypted
data is either computationally very hard or even impossible without a secret.
An homomorphic encryption scheme (HE) allows some operations to be per-
formed directly in the ciphertext space, i.e. without decrypting ciphertexts. An
homomorphic encryption is said to be functionally complete when both addition
and multiplication operations are supported. Since the seminal work of Gentry
[16], many other simpler and more efficient homomorphic encryption schemes
have been proposed [5,6]. A HE scheme with a binary plaintext space allows to
execute any Boolean circuit directly over encrypted data.

This work was funded in part under French FUI project ANBLIC.

© Springer Nature Switzerland AG 2020
S. Jarecki (Ed.): CT-RSA 2020, LNCS 12006, pp. 345-363, 2020.
https://doi.org/10.1007/978-3-030-40186-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40186-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-40186-3_15

346 P. Aubry et al.

A common characteristic of HE schemes ciphertexts is the noise component,
which is added to the ciphertexts during the encryption for security reasons. Each
homomorphic operation applied on ciphertexts increases this noise component.
After a predefined number of homomorphic operations, decryption correctness
cannot be ensured as the noise component becomes too large to guarantee exact
decryption. Usually, the noise growth induced by the multiplication operation is
greater than the noise growth induced by addition. This is why in most cases the
multiplicative depth of Boolean circuits to be evaluated is considered when HE
schemes are parametrized. The multiplicative depth is the maximal number of
sequential homomorphic multiplications which can be performed on fresh cipher-
texts such that once decrypted we retrieve the result of these multiplications. For
an equivalent security level, the increase of circuit multiplicative depth implies
larger size ciphertexts and by consequence the cost of homomorphic operations
increases also.

Several solutions to ciphertext size increase exist. One of them is the cipher-
text bootstrapping procedure introduced in [17]. The bootstrapping procedure
consists in executing homomorphically the HE scheme decryption algorithm with
a noisy ciphertext as input. The noise of the resulting “bootstrapped” ciphertext
is lower and independent of the input ciphertext noise. The bootstrapping, being
a heavy procedure, is typically applied on many plaintext messages at once after
executing as many homomorphic operations as possible. Several works [2,20,22]
study the problem of minimizing the number bootstrappings in Boolean circuits.

Further improvements to the bootstrapping were proposed in [11,14] where
the bootstrapping procedure is applied after each operation. This procedure
is fast (compared to first constructions) but it allows bootstrapping only one
message at a time. An optimization problem for fast-bootstrapping schemes is
circuit size minimization, a well know problem in the hardware synthesis field. In
batched homomorphic applications (i.e. applications executing the same circuit
over multiple input data) a trade-off between executing a multiplicative depth-
optimized circuit once (on all input data) or executing a size-optimized circuit
for each input data element is to be made.

Reducing the multiplicative depth of Boolean circuits is a major impediment
in the practical use of somewhat homomorphic encryption. HE scheme parame-
ters increase in size with every multiplicative level. The execution time for the
whole Boolean circuit increases accordingly. Many works in the literature treat
problems of Boolean circuit optimization for hardware targets or more generally
the problem of hardware synthesis. We refer to the open-source software system
used for hardware synthesis ABC [3]. It is an open-source environment providing
implementations of state-of-the-art circuit optimization algorithms. These algo-
rithms are mainly designed for minimizing circuit area or latency but, currently,
none of them is designed for multiplicative depth minimization.

Several works in the cryptographic literature [4] and more specifically the
secure multi-party computation (MPC) literature [19,23] focus on the study of
Boolean circuits with minimal number of AND gates. The authors of [7] deal
with the minimization of the depth of Boolean circuits. This paper presents depth

Improved Heuristic for Multiplicative Depth Minimization 347

minimization techniques in the context of MPC, with no differentiation between
AND and XOR gates. We shall note that several MPC protocols (e.g. GMW
[18], SPDZ [13]) would benefit from circuit multiplicative depth minimization
when used in high-latency settings.

The authors of the Cingulata toolchain [10] proposed a multi-start prior-
ity based heuristic [9] based on multiplicative depth-2 path rewriting operators.
These operators decrease locally the multiplicative depth of the circuit. In aver-
age, their algorithm managed to lower by more than 3 times the multiplicative
depth. Nonetheless, the computational cost of the overall algorithm is very large
as the base heuristic is executed several times with different priority functions.
None of the proposed priority functions ensures smallest multiplicative depth for
all benchmark circuits. Sometimes better results were obtained with a random
priority function than with a non-random one.

The heuristic and local circuit rewrite operator described in [9] is the starting
point of the current study. We start by recalling the multiplicative depth-2 path
rewrite operator from [9] and then we generalize it to cone rewriting operator.
Afterwards, we propose an improved heuristic using the cone rewrite operator.
Experimental studies show that smaller multiplicative depth circuits and better
computational performances are obtained by the new heuristic. We finalize the
paper with concluding remarks and give some perspectives for future works.

2 Rewrite Operators

2.1 Preliminary Definitions

We represent a Boolean circuit as a directed acyclic graph C = (V, E) with a
set of nodes V' and a set of edges E. Circuit nodes represent Boolean functions
(gates) and circuit edges are connections between nodes. The set of nodes can
be split into 3 independent sub-sets:

— Nodes without a predecessor define circuit inputs. An input can be either
a Boolean input variable or a Boolean constant (i.e. logic “0” or logic “1”
inputs ¢;).

— Nodes without successors (and necessarily with 1 predecessor) define circuit
outputs c,.

— Nodes representing a gate applying a basic Boolean function to the value of
its predecessors. The input degree of gates is 2 and the output degree is at
least 1. In this work, we suppose that the Boolean circuit is built of AND and
XOR operators only. The set {AND,XOR} together with the constant “1” is
functionally complete [25]. Any Boolean function can be expressed by these
operators.

Let pred : V — 2V and succ : V — 2V be the functions giving the set of
predecessors, respectively successors, of a node v € V in a Boolean circuit C.
We denote anc : V' — 2V (resp. desc — 2") the functions giving the set of
ancestors (resp. descendants) of a node v € V.

348 P. Aubry et al.

The multiplicative depth is defined as the number of successively executed
AND gates. It influences the parameters of HE schemes which heavily influences
their performance. The minimization of the multiplicative depth allows not only
to obtain smaller ciphertext sizes but also to minimize the overall execution time
of the Boolean circuit. Let us define the function d : V' — {0,1} which return 1
for AND nodes and zero otherwise. The multiplicative depth is influenced only
by nodes v € V such that d (v) = 1.

The multiplicative depth of nodes is given by [: V — NT. The multiplicative
depth of a node is the maximum number of AND gates on any path beginning
at an input node and ending at node v. The function [is defined by:

() = {0 if |pred (v)| =0,

MaXyepred(v) | (1) +d (v) otherwise.

The reverse multiplicative depth of nodes is given by r : V' — N. The reverse
multiplicative depth is the maximum number of AND gates on any path begin-
ning at a successor of v and ending at an output node. The function r is defined
by:

r(v) = {0 if |succ (v)| =0,

maXuEsucc(v) (T (u) +d (U)) otherwise.

Both [and r can be computed recursively. The overall multiplicative depth
of a circuit C' is the maximal multiplicative depth of its nodes:

M = max! (v) = maxr (v).
veV veV

A node is said to be critical if relation (1) is verified.

L)+rw) =" veV (1)

We define the critical circuit C* as the sub-circuit containing all the critical
nodes of circuit C. A critical path is a path in this circuit and a critical cone is
a subset of connected critical nodes with a common descendant.

The overall multiplicative depth of circuit C' is equal to the multiplicative
depth of the critical circuit C*. Decreasing the multiplicative depth of the critical
circuit is expected to decrease the overall multiplicative depth (and never to
increase it).

2.2 Multiplicative Depth-2 Path Rewriting

In this section, we recall the local circuit rewrite operators given in [9] and
improve their method by combining these two operators into a single one. The
application of these operators allows to reorder circuit gates such that the mul-
tiplicative depth is locally reduced. We start by introducing the combined multi-
plicative depth-2 path rewriting operator and afterwards describe its limitations
when applied to arbitrary depth-2 paths.

Improved Heuristic for Multiplicative Depth Minimization 349

Let p = (v1, Uy, v) be a path starting and ending with AND gates v; and v;.
Between these two gates there is a multi-input XOR! gate U, having inputs v;
and y1,...,Ym. We denote a1, as the inputs of node v; with I (a1) > [(az) and
a; is the input of v; other than U,. Refer to the left-hand side of Fig.1 for an
illustration. The Boolean fo