
Chapter 6
The GUIDE Approach to Subgroup
Identification

Wei-Yin Loh and Peigen Zhou

Abstract GUIDE is a multi-purpose algorithm for classification and regression tree
construction with special capabilities for identifying subgroups with differential
treatment effects. It is unique among subgroup methods in having all these
features: unbiased split variable selection, approximately unbiased estimation of
subgroup treatment effects, treatments with two or more levels, allowance for
linear effects of prognostic variables within subgroups, and automatic handling of
missing predictor variable values without imputation in piecewise-constant models.
Predictor variables may be continuous, ordinal, nominal, or cyclical (such as angular
measurements, hour of day, day of week, or month of year). Response variables
may be univariate, multivariate, longitudinal, or right-censored. This article gives a
current account of the main features of the method for subgroup identification and
reviews a bootstrap method for conducting post-selection inference on the subgroup
treatment effects. A data set pooled from studies of amyotrophic lateral sclerosis is
used for illustration.

Keywords Bootstrap · Classification and regression tree · Confidence interval ·
Missing value · Post selection inference · Recursive partitioning · Variable
selection

6.1 Introduction

GUIDE (Loh 2002, 2009) is an algorithm for fitting classification and regression
tree models to data. AID (Morgan and Sonquist 1963) was the first algorithm but
CART (Breiman et al. 1984) and RPART (Therneau and Atkinson 2018) brought the
basic ideas to the mainstream. GUIDE grew out of work on an alternative approach
to CART classification (Loh and Vanichsetakul 1988; Loh and Shih 1997; Kim and
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Loh 2001, 2003) and regression (Loh 1991b; Ahn and Loh 1994; Chaudhuri et al.
1994, 1995; Chaudhuri and Loh 2002; Chan and Loh 2004). See Loh (2014) for a
recent review of classification and regression trees. Unlike AID and CART that only
fit a constant in each node of the tree, GUIDE can fit linear and generalized linear
models. This makes GUIDE well suited for subgroup identification—the terminal
nodes of the tree are the subgroups and the regression coefficients in the node models
give the treatment effects. It is unique among subgroup methods in having properties
such as unbiased selection of split variables, approximately unbiased estimation
of treatment effects, ability to use treatment variables with more than two levels,
optional local adjustment for linear effects of prognostic variables, and automatic
handling of missing values without needing prior imputation. Predictor variables
may be continuous, ordinal, nominal, or cyclical (such as angles, hour of day, day
of week, and month of year). Response variables may be univariate, multivariate,
longitudinal, or right censored. Missing values may be coded in more than one
way; for example a missing value for age of spouse may be coded as “refuse to
answer” if the respondent did not provide an answer and as “valid nonresponse”
if the respondent is single, widowed or divorced; see Loh et al. (2019b) for other
examples.

This article gives a current account of the GUIDE method for subgroup
identification. It uses data combined from several studies of ALS (Amyotrophic
Lateral Sclerosis) for illustration. The data were selected because they contained
all of the types of response variables that GUIDE can model and because many
of the predictor variables had missing values (denoted by “NA” here). ALS is
a neurological disease that affects voluntary muscle movement. Death typically
occurs within 3–5 years of diagnosis. Only about a quarter of patients survive for
more than 5 years after diagnosis. The data were obtained from the Pooled Resource
Open-Access ALS Clinical Trials (PRO-ACT) Database (Atassi et al. 2014). In
2011, Prize4Life, in collaboration with the Northeast ALS Consortium, and with
funding from the ALS Therapy Alliance, formed the PRO-ACT Consortium. The
data in the PRO-ACT Database were provided by the PRO-ACT Consortium
members. They were pooled from 23 completed ALS clinical trials and one
observational study, and contained information on demographics, family history,
and clinical and laboratory test data from more than 10700 ALS patients.

The ALS Functional Rating Scale (ALSFRS) is often used to evaluate the
functional status of ALS patients. It is the sum of ten scores (speech, salivation,
swallowing, handwriting, cutting food and handling utensils, dressing and hygiene,
turning in bed and adjusting bed clothes, walking, climbing stairs, and breathing),
with each score measured on a scale of 0–4, with 4 being normal. Seibold et al.
(2016) used a subset of the data to study the effectiveness of riluzole, a drug
approved for treatment of ALS by the US FDA, on ALSFRS at 6 months as well as
survival time from trial enrollment. Using the MOB algorithm (Zeileis et al. 2008),
they found that for patients with less than 468 days between disease onset and start
of treatment, riluzole had a negative treatment effect on ALSFRS at 6 months.

A major difficulty with the PRO-ACT data is that besides riluzole, other
medications were also tested in many of the trials (Atassi et al. 2014, Table 1).
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Even worse, the additional medications were not identified in the data. To avoid
confounding the effects of riluzole and that of other medications, the analysis
here is restricted to the subset of 1270 subjects who were assigned to placebo
or riluzole only, without other medications. Thirty-six variables were chosen as
predictor variables; their names are given in Table 6.1 together with their minimum
and maximum values and numbers of missing values. Three additional variables
were chosen as dependent variables: (1) change in ALSFRS from baseline at 6
months, (2) monthly change in ALSFRS from baseline at months 1, 2, . . . , 6, and
(3) survival time in days. ALSFRS scores of subjects who had died by the time the
scores were to be measured were set to 0. ALSFRS variables at 0, 1, . . . , 6 months
are denoted by ALSFRS0, ALSFRS1, . . . , ALSFRS6, respectively.

6.2 Univariate Uncensored Response

Figure 6.1 shows a basic GUIDE tree for predicting change in ALSFRS after
6 months (ALSFRS6 minus ALSFRS0), where a linear model (6.1) with treatment
as the only predictor variable is fitted in each node. A node of the tree represents
a partition of the data, with the root node corresponding to the whole data set. The
sample size in each partition is printed beside the node. At each node, a variable X

is selected to split the data there into two child nodes. The split, in the form X ∈ A,
is printed on the left of the node. The set A is chosen to minimize the sum of the
squared residuals in the left and right child nodes. Observations in the node are sent
to the left child node if and only if the condition is satisfied. Node labels start with
1 for the root node; for a node with label k, its left and right child nodes are labeled
2k and 2k + 1, respectively.

The root node in Fig. 6.1 is split on Diagnosis_Delta, which is the number
of days from clinical diagnosis to the first time the subject was tested in a trial. The
239 subjects with missing values in Diagnosis_Delta go to terminal node 2 and
the others go to intermediate node 3. It is unknown why the subjects have missing
values in Diagnosis_Delta. One possibility is the variable was not measured
in some of the trials, but this cannot be verified because trial ID was not included in
the data. Nevertheless, as the barplot for node 2 in Fig. 6.1 shows, subjects in this
subgroup deteriorate much more on average with riluzole than without. Subjects in
node 3 are split on Hematocrit. Those with Hematocrit missing or ≤ 37.95
(abbreviated in the tree diagrams by the symbol “≤∗” with the asterisk standing for
“is missing”) go to node 6 where they are split on BP_Diastolic and then on
Potassium.

6.2.1 Node Models

Let X = (X1, X2, . . . , XK) denote a K-dimensional vector of covariates, Y a
univariate response variable, and Z a treatment variable taking values 0, 1, . . . ,G,
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Table 6.1 Predictor variables, minimum and maximum values, numbers of categorical levels, and
numbers of missing values for modeling the difference ALSFRS6-ALSFRS0

Name Definition Min Max Miss

Demographics_Delta Demographic measurement day −35.00 32.00 19

Age Subject age at start of trial 18.00 82.00

Sex Subject gender (female, male)

Race Subject race (5 categories) 3

ALS_History_Delta Day ALS history reported 0.00 3.00 43

Symptom Major symptom (10 categories) 1085

Onset_Delta Day of disease onset, from first test −1900.00 −84.00 47

Diagnosis_Delta Day of diagnosis, from first test −1666.00 0.00 239

Site_of_Onset Site of disease onset (3 categories)

Albumin Albumin in blood (g/L) 31.67 53.00 332

ALT_SGPT Alanine amino transferase (U/L) 6.00 181.00 259

AST_SGOT Aspartate amino transferase (U/L) 7.50 116.00 258

Basophil_Count Amount in white blood cell (×109/L) 0.00 5.56 341

Basophils Percent in white blood cell count 0.00 3.00 365

Blood_Urea_Nitrogen Ureas (mmol/L) 0.95 17.34 218

Calcium Calcium in metabolic panel (mmol/L) 1.55 3.00 333

Creatinine Creatinine from kidney test 25.00 159.10 216

Eosinophils Percent in white blood cell count 0.00 15.00 365

Glucose Glucose in blood (mmol/L) 0.07 18.56 325

Hematocrit Percent red blood cells 0.00 56.00 326

Hemoglobin Hemoglobin in blood (g/L) 94.50 181.00 326

Lymphocytes Percent lymphocyte in blood 8.70 50.00 365

Monocytes Percent in white blood cell count 0.00 21.40 365

Platelets Platelets in blood (×109/L) 0.20 552.00 332

Potassium Potassium in electrolytes (mmol/L) 3.30 5.50 258

Sodium Sodium in electrolytes (mmol/L) 125.00 150.00 257

Urine_Ph Acidity of urine 5.00 9.00 355

SVC
(Slow_vital_Capacity)

Volume of air exhaled slowly (L) 1.00 7.00 737

Slow_vital_Capacity_
Delta

Day of SVC assessment 0.00 14.00 737

BP_Diastolic Diastolic blood pressure (mmHg) 52.00 125.00 217

BP_Systolic Systolic blood pressure (mmHg) 90.00 200.00 217

Height Subject height (in) 131.00 205.00 225

Pulse Beats per minute 42.00 120.00 218

Weight Subject weight (kg) 38.33 138.20 178

ALSFRS0 ALSFRS at baseline 10.00 40.00

ALSFRS_Delta0 Day of ALSFRS0 measurement −7.00 154.00

Variables with names containing “_Delta” are days from trial onset to the date that an assessment
took place, with negative values for occurrences before trial onset
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Fig. 6.1 GUIDE tree for change in ALSFRS (ALSFRS6-ALSFRS0) using 1270 observations and
node model (6.1). At each split, an observation goes to the left branch if and only if the condition is
satisfied. The symbol “≤∗” stands for “≤ or missing.” Sample sizes (in italics) are printed beside
nodes. Bootstrap-calibrated 90% simultaneous intervals of treatment effect are given below nodes.
Calibrated alpha is 1.3 × 10−5. Treatment effect is statistically significant in green node. Barplots
show means of change in ALSFRS for placebo and riluzole subjects in the terminal nodes
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with 0 being the reference (or placebo) level. Let t denote a node of the tree. A
regression tree model is constructed by recursively partitioning a training sample
into subsets that are represented by the nodes of a tree. A large majority of
regression tree methods for subgroup identification employ stopping rules based
on Bonferroni-corrected p-values (Lipkovich et al. 2011; Seibold et al. 2016; Su
et al. 2009). Other methods (Dusseldorp and Meulman 2004; Foster et al. 2011),
including GUIDE, first grow an overly large tree and then use cross-validation to
prune it to a smaller size. We only describe the GUIDE node fitting and splitting
steps here because the pruning step is the same as that of CART.

For least-squares regression, GUIDE fits a linear model Y = f (X, Z) + ε to
the data in each node of a tree; ε is an independent zero-mean random variable with
variance that is constant within each node but may vary between nodes. Four choices
of f (x, z) are available, depending on the number of X variables to be included. Let
βz (z = 1, 2, . . . , G) denote the effect of treatment level z (versus level 0). The
choices are:

f (x, z) = η + βz (Treatment only) (6.1)

f (x, z) = η + βz +
p∑

j=1

γjx
j
k∗ (Polynomial of degree p) (6.2)

f (x, z) = η + βz +
K∑

k

γkxk (Multiple linear) (6.3)

f (x, z) = η + βz +
∑

k∈S

γkxk (Stepwise linear) (6.4)

In (6.2), p is a user-specified positive integer and k∗ is the value of k such that
Xk minimizes the sum of squared residuals in the node (k∗ may vary from node to
node). In (6.4), the set S is the set of indices of the variables Xk that are selected
by forward and backward stepwise regression in the node. Thus the model for a tree
with terminal nodes t1, t2, . . . , tτ may be written as

Y =

⎧
⎪⎨

⎪⎩

f1(X, Z) + ε1, X ∈ t1
...

fτ (X, Z) + ετ , X ∈ tτ

(6.5)

where f1, f2, . . . , fτ take one of the functional forms (6.1)–(6.4) and ε1, . . . , ετ

are independent random variables with mean zero and variances σ 2
1 , . . . , σ 2

τ . This is
different from the model

Y =
τ∑

j=1

fj (X, Z) I (X ∈ tj ) + ε (6.6)
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which assumes that the error variance is the same in all nodes. The least-squares
estimates of the regression coefficients are the same in models (6.5) and (6.6), but
not their standard error estimates. In (6.2)–(6.4), missing values in the X variables
are imputed by their node means.

Figure 6.1 was constructed using model (6.1) and Fig. 6.2 was constructed using
model (6.2) with p = 1. The name of the best linear prognostic variable Xk∗ is
given beneath each terminal node. The root node splits on “Diagnosis_Delta
≤ − 1072 or missing.” Of the 245 subjects in this subgroup, 239 are missing
Diagnosis_Delta. The best linear prognostic variable in node 2 is Pulse.
Plots of the data and regression lines for placebo and riluzole subjects in each node
are shown in the lower half of Fig. 6.2. Mean imputation of Sodium is clearly
shown by the vertical line of points in the plot of node 13.

6.2.2 Split Variable Selection

To find a variable to split a node t , a test of treatment-covariate interaction is
performed for each Xk on the data in t . (This is the default “Gi” method.) Let nt

denote the number of observations in t . The following steps are carried out for each
variable Xj , j = 1, 2, . . . , K .

1. If Xj is a categorical variable, define V = Xj and let h denote its number of
levels (including a level for NA, if any).

2. If Xj is ordinal and takes only one value (including NA) in the node, do not use it
to split the node. Otherwise, let m denote the number of distinct values (including
NA) of Xj in t . Transform it to a discrete variable V with h values as follows.

(a) If m ≤ 4 or if m = 5 and Xj has missing values, define h = m. Otherwise,
define h = 3 if nt < 30(G + 1) and h = 4 otherwise.

(i) If Xj has missing values in t , define rk = k/(h−1), k = 1, 2, . . . , h−2.
(ii) If Xj has no missing values in t , define rk = k/h, k = 1, 2, . . . , h − 1.

(b) Define q0 = −∞ and let qk (k > 0) be the sample rk-quantile of Xj in t .

(i) If Xj has missing values in t , define

V =
h−2∑

k=1

kI (qk−1 < Xj ≤ qk)+(h−1)I (Xj > qh−2)+hI (Xj = NA).

(ii) If Xj has no missing values in t , define

V =
h−1∑

k=1

kI (qk−1 < Xj ≤ qk) + hI (Xj > qh−1).
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Fig. 6.2 GUIDE tree for ALSFRS6-ALSFRS0 using 1270 observations and node model (6.2)
with polynomials of degree 1. At each split, an observation goes to the left branch if and
only if the condition is satisfied. The symbol ‘≤∗’ stands for ‘≤ or missing’. Sample sizes (in
italics) are printed beside nodes. Name of best linear prognostic variable (with sign of slope)
and bootstrap-calibrated 90% simultaneous confidence interval for treatment effect are below each
node. Calibrated alpha is 8.9 × 10−6. Treatment effect is statistically significant in green node.
Plots of change in ALSFRS versus best linear predictor show data points and fitted regression lines
in the terminal nodes. Missing values in predictor variables are imputed by the means of their
non-missing values in the nodes
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3. Test the additive model E(Y |Z,V ) = η + ∑
z βzI (Z = z) + ∑

v γvI (V = v),
with β0 = γ1 = 0, against the full model E(Y |Z,V ) = ∑

z

∑
v ωvzI (V =

v, Z = z) and obtain the p-value pj .

Split node t on the Xj with the smallest value of pj .

6.2.3 Split Set Selection

After X is selected, a search is carried out for the best split “X ∈ A”, where A

depends on whether X is ordinal or categorical.

6.2.3.1 Ordinal Variable

If X is ordinal, three types of splits are evaluated.

1. X = NA: an observation goes to the left node if and only if its value is missing.
2. X = NA or X ≤ c: an observation goes to the left node if and only if its value is

missing or if it is less than or equal to c.
3. X ≤ c: an observation goes to the left node if and only if its value is not missing

and it is less than or equal to c.

Candidate values of c are the midpoints between consecutive order statistics of X

in t . If X has m order statistics, the maximum number of possible splits is (m − 1)

or {1 + 2(m − 1)}, depending on the absence or presence of missing X values in t .
Permissible splits are those that yield two child nodes with each having two or more
observations per treatment. The selected split is the one that minimizes the sum of
the deviances (or sum of squared residuals in the case of least-squares regression)
in the two child nodes.

This method of dealing with missing values is unique to GUIDE. CART uses
a hierarchical system of “surrogate splits” on alternative X variables to send
observations with missing values to the child nodes. Because the surrogate splits
depend on the (missing and non-missing) values of the alternative X variables,
observations with missing values do not necessarily go to the same child node.
Therefore it is impossible to predict the path of an observation by looking at the tree
without knowing the values of its predictor variables. Besides, CART’s surrogates
splits are biased towards X variables with few missing values (Kim and Loh 2001).
Other subgroup methods are typically inapplicable to data with missing values
(Dusseldorp and Meulman 2004; Su et al. 2009; Foster et al. 2011; Seibold et al.
2016).

Sometimes, missing-value imputation is illogical, e.g., a prostate-specific antigen
test result for a female subject or the age of first cigarette for a subject who never
smoked. Other times, imputation erases useful information. For example, if missing
values were imputed before application of GUIDE, the large difference in treatment
effect between subjects with and without missing values in Diagnosis_Delta
in Fig. 6.1 would be undetected.
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6.2.3.2 Categorical Variable

If X is a categorical variable, the split has the form X ∈ A, where A is a non-trivial
subset of the values (including NA) of X in t . A complete search of all possible
values of A can be computationally expensive if the number, m, of distinct values
(including NA) of X in t is large, because there are potentially (2m−1 −1) splits (less
if some splits yield child nodes with fewer than two observations per treatment).
Therefore GUIDE carries out a complete search only if m ≤ 11. If m > 11, it
performs an approximate search by means of linear discriminant analysis , based
on an idea from Loh and Vanichsetakul (1988), Loh and Shih (1997), and Loh
(2009).

1. Let ȳz denote the sample mean of the Y values in t that belong to treatment Z = z

(z = 0, 1, . . . ,G).
2. Define the class variable

C =
{

2z − 1, if Z = z and Y > ȳz

2z, if Z = z and Y ≤ ȳz.

3. Let {a1, a2, . . . , am} denote the categorical values of X in t . Transform X to an
m-dimensional 0–1 dummy vector D = (D1,D2, . . . , Dm), where Di = I (X =
ai), i = 1, 2, . . . , m.

4. Apply linear discriminant analysis to the data (D, C) in t to find the discriminant
variables Bj = ∑m

i=1 bijDi , j = 1, 2, . . .. These variables are also called
canonical variates (Gnanadesikan 1997).

5. For each j , find the split Bj ≤ cj that minimizes the sum of the squared residuals
of the least-squares models fitted in the child nodes induced by the split.

6. Let j∗ be the value of j for which Bj ≤ cj has a smallest sum of squared
residuals.

7. Split the node with Bj∗ ≤ cj∗ . Because Bj∗ = ∑m
i=1 bij∗Di = ∑m

i=1 bij∗I (X =
ai), the split is equivalent to X ∈ A with A = {ai : bij∗ ≤ cj∗}.

6.3 Bootstrap Confidence Intervals

The barplots in the lower half of Fig. 6.1 show that the subgroups defined by nodes 2
and 26 have the largest treatment effects. Similarly, the graphs in the lower half
of Fig. 6.2 suggest that node 2 has the largest treatment effect. Are the effects
statistically significant? This question cannot be answered by means of traditional
methods because the subgroups were not specified independently of the data. It is a
question of post-selection inference.

Given node t and z, let β̂(t, z) be the estimated treatment effect for Z = z in t , let
σ̂β(t, z) denote its usual estimated standard error, and let νt be the residual degrees
of freedom. Further, let tν,α denote the (1 − α)-quantile of the t-distribution with ν

degrees of freedom and let τ denote the number of terminal nodes of the tree. Let
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Table 6.2 90% simultaneous
intervals for subgroup
treatment effects in Figs. 6.1
and 6.2

Model Node B(0.10, t, z) J (α
F̂

, t, z)

Figure 6.1 2 (−16.0,−11.4) (−18.7,−8.7)

α
F̂

= 1.3 × 10−5 7 (1.3, 6.3) (−1.6, 9.2)

12 (−2.5, 1.4) (−4.7, 3.6)

26 (−18.7,−5.8) (−26.2, 1.7)

27 (−6.0,−0.1) (−9.4, 3.3)

Figure 6.2 2 (−15.1,−10.0) (−17.7,−7.4)

α
F̂

= 8.9 × 10−6 7 (−2.1, 4.1) (−5.1, 7.2)

12 (−2.7, 0.6) (−4.3, 2.2)

13 (−14.5,−1.6) (−21.4, 5.3)

B(α, t, z) = β̂(t, z) ± tνt ,α/(2τ) σ̂β(t, z) (6.7)

be the Bonferroni-corrected 100(1 − α)% simultaneous t-interval for the treatment
effect of Z = z in node t . The middle column of Table 6.2 gives the values of
B(0.10, t, z) for the trees in Figs. 6.1 and 6.2. Despite the Bonferroni correction,
the standard errors σ̂β(t, z) are biased low because they do not account for the
uncertainty due to split selection. As a result, the intervals B(α, t, z) tend to be
too short and their simultaneous coverage probability is less than (1 − α).

There are two obvious ways to lengthen the interval widths to improve their
coverage probabilities. One is to correct the standard error estimates, but this is
formidable due to the complexity of the tree algorithm. Another way is to reduce
the nominal value of α in (6.7). For example, to obtain 90% simultaneous coverage,
we could use B(α, t, z) with a nominal α < 0.10. To find the right nominal value
of α, we first need to define the estimand of β̂(t, z), which is the true treatment
effect in t . Let F̂ denote the training data and F the population from which they
are drawn. By definition, β̂(t, z) (z = 1, . . . ,G) are the values of the treatment
effect coefficients that minimize

∑
i∈t (yi − f (xi , zi))

2, where the sum is over the
observations in node t . Their estimands, denoted by are βF (t, z), are the values of
the treatment effect coefficients that minimize E{(Y −f (X, Z))2I (X ∈ t)}. Clearly,
βF (t, z) is a random variable, because it depends on t , which in turn depends on F̂ .
If F is known and t is given, however, βF (t, z) can be computed, by simulation
from F if necessary.

Let J (α, t, z) = β̂(t, z) ± tνt ,α/2 σ̂β(t, z) denote the nominal 100(1 − α)% t-
interval, let T̃ be the set of terminal nodes, and let γF (α) = P [∩

t∈T̃
{βF (t, z) ∈

J (α, t, z)}] denote the simultaneous coverage probability. Clearly, γF (α) ↑ 1 as
α ↓ 0. Given a desired simultaneous coverage probability γ ∗, let αF be the
solution of the equation γF (αF ) = γ ∗. Then the intervals J (αF , t, z) have exact
simultaneous coverage γ ∗. We call αF the “calibrated α.” Note that there is no need
to work with the Bonferroni-corrected interval (6.7) because γF (α) is, by definition,
a simultaneous coverage probability.

Of course, the value of αF is not computable if F is unknown. In that case, a
natural solution is bootstrap calibration, a method proposed in Loh (1987, 1991a)
for the simpler problem of estimating a population mean. It was extended to
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Algorithm 1: Bootstrap calibration of confidence intervals for treatment effects
Data: Given K > 0 and α ∈ (0, 1), α1 < α2 < . . . < αK = α; tree T with nodes

t1, t2, . . . , tL constructed from D = {(Xi , Yi , Zi), i = 1, 2, . . . , n}; and model M

(one of (6.1), . . . , or (6.4)) based on T with estimated treatment effects β̂tz,
z = 1, 2, . . . , G; t = t1, t2, . . . , tL.

Result: (1 − α) simultaneous t-intervals for {βtz}.
begin

γk ← 0 for k = 1, 2, . . . , K;
for b ← 1 to B do

bootstrap data D∗
b = {(X∗

i , Y
∗
i , Z∗

i ), i = 1, 2, . . . , n} from D ;
construct from D∗

b tree Tb with nodes t∗b1, t
∗
b2, . . . , t

∗
bLb

;
fit model M based on Tb to D observations to get ‘‘true’’ effects β(t∗bl , z);
z = 1, . . . , G; l = 1, . . . , Lb;

fit model M based on Tb to D∗
b observations to get estimates β̂(t∗bl , z), residual

degrees of freedom νbl and standard errors σ̂β (t∗bl , z); z = 1, . . . , G; l = 1, . . . , Lb;
for z ← 1 to G do

for l ← 1 to Lb do
for k ← 1 to K do

Jklz ← (1 − αk) t-interval β̂(t∗bl , z) ± tνbl ,αk/2σ̂β (t∗bl , z);
if β(t∗bl , z) ∈ Jklz then

cklz ← 1 ; /* interval contains true beta */
else

cklz ← 0 ; /* interval does not contain true
beta */

end
end

end
end
for k ← 1 to K do

if minlz cklz = 1 then
γk ← γk + 1

end
end

end
γk ← γk/B for k = 1, 2, . . . , K;
q ← smallest k such that γk < 1 − α;
g ← (γq−1 − 1 + α)/(γq−1 − γq);
α′ ← (1 − g)αq−1 + gαq ;
construct (1 − α′) simultaneous t-intervals for βtz for t = t1, t2, . . . , tL; z = 1, . . . , G

end

estimation of subgroup treatment effects in Loh et al. (2016, 2019c). The idea is
to replace F with F̂ in the calculations. Specifically, use simulation from F̂ to find
the solution α

F̂
of the equation γ

F̂
(α

F̂
) = γ ∗. The resulting intervals J (α

F̂
, t, z)

are called “bootstrap-calibrated” 100γ ∗% simultaneous intervals. Algorithm 1 gives
the instructions in pseudo-code, using a grid search to find α

F̂
. The numerical

results here (including those in the last column of Table 6.2) were obtained with
a grid of 200 nominal values of α and 1000 bootstrap iterations. Simultaneous
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90% bootstrap-calibrated intervals of treatment effect are given beneath the terminal
nodes of the trees in Figs. 6.1 and 6.2. Their respective bootstrap-calibrated alpha
values are α

F̂
= 1.3 × 10−5 and 8.9 × 10−6. In the tree diagrams, nodes with

statistically significant treatment effects are in green color.

6.4 Multivariate Uncensored Responses

GUIDE can construct a least-squares regression tree for data with longitudinal or
multivariate response variables as well. Given d response variables Y1, Y2, . . . , Yd ,
it fits the treatment-only model E(Yj |Z) = ηj + ∑G

z=1 βjzI (Z = z), j =
1, . . . , d, separately to each variable in each node. To find the variable to split
a node, the test for treatment-covariate interaction in Sect. 6.2.2 is performed d

times for each Xi (once for each Yj ) to obtain the p-value pi1, pi2, . . . , pid . Let
χ2

ν,α denote the (1 − α)-quantile of the chi-squared distribution with ν degrees

of freedom. The variable Xi for which
∑d

j=1 χ2
1,pij

is maximum is selected to
split the node. To allow for correlations in the response variables, GUIDE can
optionally apply the treatment-covariate interaction tests to the principal component
(PC) or linear discriminant (LD) variates computed from the Yj values in the node.
Specifically, if principal component transformation is desired, the (Y1, Y2, . . . , Yd)

data vectors in the node are transformed to their PCs (Y ′
1, Y

′
2, . . . , Y

′
d) first; then

the treatment-covariate interactions tests are applied to the (Y ′
1, Y

′
2, . . . , Y

′
d) data

vectors. Similarly, if LD is desired, the (Y1, Y2, . . . , Yd) data vectors in the node are
transformed to their linear discriminant variates, using the treatment levels as class
labels. The PC and LD transformations are carried out locally at each node. After
the split variable Xi is selected, its split point (if Xi is ordinal) or split set (if Xi

is categorical) is the value that yields the smallest total sum of squared residuals
(where the total is over the d models E(Yj |Z) = ηj + ∑

z βjzI (Z = z)) in the left
and right child nodes. See Loh and Zheng (2013) and Loh et al. (2016) for more
details.

Using change from baseline of ALSFRS1, ALSFRS2, . . . , ALSFRS6 as longi-
tudinal response variables, only the PC option yielded a nontrivial tree, as shown in
Fig. 6.3. Subjects who died after 6 months and had missing values in any response
variable were omitted, leaving a training sample of 627 observations. The tree
has only one split, the same as the split at the root node of Fig. 6.2. The plots
below the tree diagram show bootstrap-calibrated 90% simultaneous intervals for
the treatment effect for each response variable in each terminal node. The longer
lengths of the intervals in the left node are due to its much smaller sample size.
Because every interval contains 0, there is no subgroup with statistically significant
treatment effect.
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Fig. 6.3 GUIDE tree for change from baseline of longitudinal responses ALSFRS1, ALSFRS2,
. . . , ALSFRS6, using 627 observations and PCA at each node. At each split, an observation goes to
the left branch if and only if the condition is satisfied. The symbol ‘≤∗’ stands for ‘≤ or missing’.
Sample size (in italics) printed below nodes. Bootstrap-calibrated 90% simultaneous intervals for
treatment effect of each response variable in each node plotted below tree. Calibrated alpha is 0.011

6.5 Time-to-Event Response

Let (U1, X1), (U2, X2), . . . , (Un, Xn) be the survival times and predictor variable
values of n subjects. Let V1, V2, . . . , Vn be independent and identically distributed
observations from a censoring distribution and let δi = I (Ui < Vi) be the
event indicator. The observed data vector of subject i is (Yi, δi , Xi ), where Yi =
min(Ui, Vi). Let λ(y, x, z) denote the hazard function at time y and covariates x
and z. The proportional hazards model stipulates that λ(y, x, z) = λ0(y) exp(η),
where λ0(y) is a baseline hazard function independent of (x, z), and η is a function
of x and z. Many methods fit a proportional hazards model to the data in each node
separately (Negassa et al. 2005; Su et al. 2009; Lipkovich et al. 2011; Lipkovich and
Dmitrienko 2014; Seibold et al. 2016), giving the tree model

λ(y, x, z) =
τ∑

j=1

λj0(y) exp(ηj + βjz)I (x ∈ tj ); βj0 = 0; j = 1, 2, . . . , τ.
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Because the baseline hazard λj0(y) varies from node to node, the model does not
have proportional hazards overall. Therefore estimates of regression coefficients
cannot be compared between nodes and relative risks are not independent of y.

GUIDE (Loh et al. 2015) fits one of the following three truly proportional hazards
models instead.

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{ηj + βjz}I (x ∈ tj )

⎤

⎦ (6.8)

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{
ηj + βjz +

p∑

i=1

γjix
i
k∗

}
I (x ∈ tj )

⎤

⎦ (6.9)

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{
ηj + βjz +

K∑

k

δjkxk

}
I (x ∈ tj )

⎤

⎦ (6.10)

where βj0 = 0 (j = 1, . . . , τ ) and the ηj satisfy a constraint such as
∑

j ηj = 0
to prevent over-parameterization. Model fitting is carried out by means of a well-
known connection between proportional hazards regression and Poisson regression
(Aitkin and Clayton 1980; Laird and Olivier 1981). Let Λ0(y) = ∫ y

−∞ λ0(u) du

denote the baseline cumulative hazard function. The regression coefficients in (6.8),
(6.9), or (6.10) are estimated by iteratively fitting a GUIDE Poisson regression
tree (Chaudhuri et al. 1995; Loh 2006), using the event indicators δi as Poisson
responses, log Λ0(yi) as offset variable, and the Poisson models

log E(δ|Z) = log Λ0(y) + ξj +
∑

z

βjzI (Z = z),

log E(δ|Z,Xk∗) = log Λ0(y) + ξj +
∑

z

βjzI (Z = z) +
p∑

i=1

γjiX
i
k∗ ,

log E(δ|Z,X1, X2, . . . , Xk) = log Λ0(y) + ξj +
∑

z

βjzI (Z = z) +
K∑

k

δjkXk,

respectively, in each node tj . At the first iteration, Λ0(yi) is estimated by the Nelson-
Aalen method (Aalen 1978; Breslow 1972). Then the estimated relative risks of the
observations from the tree model are used to update Λ0(yi) for the next iteration;
see, e.g., Lawless (1982, p. 361).

Figure 6.4 gives the result of fitting model (6.8) from the 966 subjects with
non-missing censored or observed survival time in the ALS data. The tree splits
on Symptom to give two terminal nodes. The left node consists of 815 subjects
with Symptom either missing or is speech. The other 151 subjects go to the right
node, which has a statistically significant treatment effect based on the bootstrap-
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Fig. 6.4 GUIDE proportional hazards regression tree for differential treatment effects using
model (6.8). Kaplan-Meier survival curves in each node are shown below the tree. Numbers in
italics beside terminal nodes are sample sizes. Bootstrap-calibrated 90% simultaneous confidence
intervals of relative risks (riluzole versus placebo) are given below terminal nodes. Calibrated alpha
is 0.0003. Treatment effect is statistically significant in green node
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Fig. 6.5 GUIDE proportional hazards regression tree for differential treatment effects using
model (6.9). Numbers in italics beside terminal nodes are sample sizes. Bootstrap-calibrated 90%
simultaneous confidence intervals of relative risks (riluzole versus placebo) and name of linear
prognostic variable (with sign indicating slope) are given below nodes. Calibrated alpha is 0.003.
Treatment effect is statistically significant in green node

calibrated 90% simultaneous confidence intervals of relative risks printed below the
nodes. Kaplan-Meier survival curves for placebo and riluzole subjects in each node
are shown below the tree diagram.

Figure 6.5 gives the result for model (6.9) with polynomial degree p = 1. The
root node is split into two terminal nodes on Symptom, but now the model in each
node includes the effect of the best linear prognostic variable (which turns out to be
Age in both child nodes). According to the bootstrap-calibrated 90% simultaneous
intervals for relative risk printed below the nodes, the subgroup with significant
treatment effect consists of subjects for which Symptom is neither missing nor
swallowing.
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6.6 Concluding Remarks

We have explained and demonstrated the main features of the GUIDE method for
subgroup identification and discussed a bootstrap method of confidence interval
construction for subgroup treatment effects. The bootstrap method is quite general
and is applicable to algorithms other than GUIDE. Because it expands the traditional
t-intervals to account for uncertainty due to split selection, it is more efficient if
the estimated subgroup treatment effects are unbiased. The method may still be
applicable if the estimates are biased, but the calibrated intervals would be wider
as a result. Biased estimates of subgroup treatment effects are common among
algorithms that search for splits to maximize the difference in treatment effects in
the child nodes. A comparison of methods on this and other criteria is reported in a
forthcoming article (Loh et al. 2019a).

Although GUIDE does not impute missing values for split selection, it does
impute them in the predictor variables with their node sample means when fitting
models (6.2)–(6.4) in the nodes. Therefore these models, e.g., Figs. 6.2 and 6.5,
assume that missing values in the X variables are missing at random (MAR). But
the MAR assumption is not needed for model (6.1), such as Figs. 6.1, 6.3, and 6.4.

There are two newer GUIDE features that are not discussed here. One is cyclic or
periodic predictor variables, such as angle of impact in an automobile crash, day of
week of hospital admission, and time of day of medication administration. If GUIDE
splits a node on such a variable, the split takes the form of a finite interval of values
a < X ≤ b instead of a half-line X ≤ c. Another feature is accommodation of
multiple missing-value codes. For example, the result of a lab test may be “missing”
for various reasons. It may not have been ordered by the physician because it was
risky for the patient, it may be inappropriate (e.g., a mammogram for a male or a
prostate-specific antigen test for a female), the patient may have declined the test
due to cost, or the result of the test was accidentally or erroneously not reported.
If the “missing” values are all recorded as NA, a split would take the form “X ≤ c

or X = NA” or “X ≤ c and X �= NA”. But if the reasons for missingness are
known, GUIDE would use the information to produce more specific splits of the
form “X ≤ c or X ∈ S”, where S is a subset of missing-value codes. Illustrative
examples of these two features are given in the GUIDE manual (Loh 2018).
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