
Chapter 16
Subgroup Analysis from Bayesian
Perspectives

Yang Liu, Lijiang Geng, Xiaojing Wang, Donghui Zhang, and Ming-Hui Chen

Abstract Identifying the sub-population structures along with the tailored treat-
ments for all groups plays a critical rule for assigning the best available treatment
to an individual patient. Subgroup analysis, a key to develop personalized medicine,
becomes increasingly important over the past decade. Besides frequentist methods,
there are a spectrum of methods developed from Bayesian perspectives to identify
subgroups. In this chapter, we provide a comprehensive overview of Bayesian
methods and discuss their properties. We further examine empirical performance
of the two Bayesian methods via simulation studies and a real data analysis.

16.1 Introduction

In order to provide the best available treatment for individual patients, it is
critical to examine whether heterogeneous treatment effect exists among the patient
population. Many exploratory methods are developed in the literature to identify
subgroups. Among them there are a variety of frequentist approaches, for instance,
recursive tree based methods such as Interaction Trees (Su et al. 2009), Virtual
Twins (Foster et al. 2011), Subgroup Identification based on Differential Effect
Search (SIDES) (Lipkovich et al. 2011), Qualitative Interaction Trees (Dusseldorp
and Van Mechelen 2014) and Generalized Unbiased Interaction Detection and Esti-
mation (GUIDE) (Loh et al. 2015). Some optimization-oriented optimal treatment
regime methodologies (Zhao et al. 2012, 2015; Tian et al. 2014; Chen et al. 2017)
are also developed within the frequentist framework.
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Meanwhile, many Bayesian methods are proposed from different perspectives to
identify subgroups. In Sect. 16.2, we give an overview of some recently developed
Bayesian methods for subgroup analysis. Simulation studies are conducted in
Sect. 16.3. Section 16.4 presents a real data analysis. We conclude this chapter with
a brief discussion in Sect. 16.5.

16.2 Bayesian Subgroup Analysis Methods

In subgroup analysis, a nonparametric mean structure E(Y |X, trt) = g(X, trt) is
often considered for the data Y , where g(·) is a multivariate function representing
an underlying mechanism of the signal, trt indicates the treatment option, and
X is a vector of potential covariates used to identify subgroups. In a commonly
investigated scenario, there are two treatment options, placebo or treatment, i.e.,
trt = 0 or trt = 1. Then, the difference of treatment effects �(X) between these
two options can be defined as

�(X) = E(Y | X, trt = 1) − E(Y | X, trt = 0) = g(X, 1) − g(X, 0).

Therefore, we can equivalently model the nonparametric mean structure as

E(Y | X, trt) = g(X, 0) + �(X)trt = a(X) + �(X)trt. (16.2.1)

The first term a(X) in Eq. (16.2.1) is usually referred as the prognostic effect, since
it affects the response at the same amount regardless of the treatment assignment.
�(X) is often called the predictive effect or predictive subgroup effect, as �(X)trt

affects the response differently under the different treatment assignment trt .
Tracing back to the literature in the twentieth century, Dixon and Simon (1991)

proposed a linear regression model

E(Y | X, trt) = μ + τ trt + Xβ + γXtrt (16.2.2)

with the first-order term γX serving as �(X), and a linear function of X serving
as the prognostic effect a(X), assuming the covariate X has two possible values.
The parameters (μ, τ, β, γ ) are estimated using a Bayesian approach. Jones et al.
(2011) extended the previous linear regression framework of Dixon and Simon
(1991) by allowing second-order and third-order interaction terms for the predictive
effects. These two methods are not directly applicable when there are other types
of covariates, and may not work well when there are a large number of candidate
variables.

Many other Bayesian subgroup analysis methods have been proposed from
various perspectives. Below we introduce several recently developed Bayesian
methods grouped by their similarity.
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16.2.1 Tree-Based Bayesian Subgroup Analysis Methods

There are a few Bayesian subgroup analysis approaches which are linked to tree
structures. The advantage of a tree structure is that it can handle interactions and
nonlinear relationships between covariates and responses in an implicit way.

Berger et al. (2014) used a tree-splitting process to construct the treatment
(subgroup) submodels, i.e., �(X) and baseline (prognostic) submodels, i.e., a(X),
which simultaneously incorporate the predictive effects and prognostic effects in
the modeling. The tree-splitting process is randomly bisecting the covariate space
recursively and leads to an allowable partition of the entire population arising from
terminal nodes of a tree based on covariate splits, with possible zero treatment or
baseline effects. There are several key steps in stochastically splitting a tree: (1)
randomly select an ordering of covariates for splitting; (2) randomly determine the
existence of a zero effect node at each level, and then randomly choose one of the
nodes at that level to be the zero effect, which is a terminal node; (3) randomly
decide non-zero effect nodes at each level to be further split by the corresponding
covariate at that level; if not it becomes a terminal node. The detailed elaboration
of the tree constructions is discussed in Wang (2012). The advantage of this tree
splitting process is the elimination of possible partitions of the entire population
without scientific meaning in comparison of treatment or baseline effects, which
dramatically reduces the total number of models considered in the model space for
the outcome.

The simplest way to model the outcome is to combine the treatment and
baseline submodels with additive effects. Then, the model space for the outcome
Y includes all possible distinct combinations of these two submodels. Next, the
prior probabilities of the outcome models are assigned according to the stochastic
scheme to generate trees. Once the prior specification is complete, the Bayesian
model average techniques are utilized for subgroup analysis and, as a byproduct,
the yielded results provide individual probabilities of treatment effect that might be
useful for personalized medicine.

Here, we briefly discuss their main idea of defining an outcome model and
specifying the priors. Let � denote the set of covariates in the study. Let Xij be
the j -th binary covariate for the i-th person, where j ∈ � and i = 1, · · · , n.
If we allow at most one covariate to split the treatment submodel, we are going
to have five different types of models, i.e., S

1,0
i = 0, S

2,0
i = trtiμ2, S

3,j
i =

trtiμ3j 1{Xij =0} + trtiμ
′
3j 1{Xij =1}, S

4,j
i = trtiμ4j 1{Xij =0}, S

5,j
i = trtiμ5j 1{Xij =1},

where μ2 is the mean overall treatment effect (if present), μ3j , μ′
3j , μ4j and μ5j are

the potential treatment (predictive) effects in the subgroups defined by the covariate
j , trti is the treatment indicator, and 1{·} is the indicator function. Similarly, there are
two possible types of baseline submodels via splitting one factor. That is, B1,0

i = μ1

and B
2,k
i = μ1 + βk1{Xik=0}, where μ1 is the overall mean and βk is the mean

baseline effect for covariate k ∈ �.
Then, the outcome model in Berger et al. (2014) is
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Yi = S
h,j
i + B

�,k
i + εi, εi ∼ N (0, σ 2), (16.2.3)

i = 1, · · · , n, h = 1, · · · , 5, � = 1, 2 and j, k ∈ {0,�}. Let m be the number
of covariates considered, then the total number of models for at most one covariate
splitting is 2 + 5m + 3m2, which is a huge reduction from 2m+1 possible models
when m is large.

The method developed in Berger et al. (2014) automatically takes account of
multiplicity adjustment in the prior specification for the model space. The prior
probability is computable via specifying three interpretable prior inputs, which are:
(1) specifying the prior probability that an individual has no treatment (predictive)
effect and no baseline (prognostic) effect, respectively; (2) assigning relative effect
odds for a covariate i has an effect compared to the first covariate; (3) defining the
ratio of the sum of the prior probabilities of the submodels with i − 1 split and
the sum of the prior probabilities of the submodels with i splits. An advantage for
this prior specification is that the experts can easily incorporate pre-experimental
preference to specific subgroups. See Section 3 of Berger et al. (2014) for more
details of computing the prior probability for each outcome model based on the
three interpretable inputs.

Once the prior specification for the outcome model and the unknown parameters
in the model is complete, then we can summarize the posterior quantity we are
interested in. In Berger et al. (2014), they summarized the posterior quantity
of interest using the Bayesian model averaging idea. Two interesting posterior
summaries discussed in their paper are:

1. Individual Treatment Effects: first, the probability for an individual to have
treatment effects is given by Pi = ∑

Mκ∈M P(Mκ | Y1, · · · , Yn)1{μiκ �=0}, for
any i = 1, · · · , n, where M denotes the entire model space for the outcome
model, Mκ is a specific outcome model in the model space, μiκ is the subgroup
treatment effect associated with the ith individual in the given model Mκ and
μ̄iκ is the posterior mean of μiκ . Then, the individual treatment effect size for
each individual is defined as weighted average of μ̄iκ , i.e., �i = ∑

κ P(Mκ |
Y1, · · · , Yn)μ̄i,κ1{μi,κ �=0}/Pi.

2. Subgroup Treatment Effects: based on individual posterior probability for the
treatment effects, the posterior probability of a nonzero treatment effect for
Subgroup j (denoted as Sj ) is defined as an average of Pi over the subgroups that
individual j belongs to (using the symbol {#i ∈ Sj }, i.e., Qj = ∑

i∈Sj
Pi/{#i ∈

Sj }. Similarly, the subgroup treatment effect size for Sj is calculated via �j =∑
i∈Sj

Pi �i/
∑

i∈Sj
Pi .

The Bayesian approach described in Berger et al. (2014) can be generally extended
to allow more than one covariate used in splitting. However, when more than two
covariates are utilized in tree-splitting process, the total number of models that we
need to consider will be increasing and the model enumeration scheme in Berger
et al. (2014) becomes impossible.
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Sivaganesan et al. (2017) restricted the scope from searching for subgroup effects
among all possible subgroups, to searching for subgroup effects among only a few
pre-determined candidate groups. More specifically, the authors focus on identifying
subgroup effects related to certain pre-specified covariates and shapes of subgroups.
Any center regions in the covariate space will be excluded from consideration, for
instance, a subgroup defined as {a < X1 < b, c < X2 < d} would be excluded.
For any subgroup A, the amount by which its predictive effect �(A) = E(Y |X ∈
A, trt = 1) − E(Y |X ∈ A, trt = 0) exceeds the predictive effects of entire patient
population �(C) = E(Y |trt = 1) − E(Y |trt = 0), that is, δ(A) = �(A) − �(C),
is used as the primary measure for identifying any potential enhanced subgroup
effects. The author defined a utility function to compare potential subgroups:

U(A) =
{ [(|A|−N)+]d

(1+c)nvar(A)−1 [δ(A) − Ts], if ∅ ⊂ A ⊂ C,

0, A = ∅,
(16.2.4)

where |A| is the number of observations in A, and nvar(A) is the number of
covariates used to define A, {x}+ = max(0, x), N is the pre-specified minimum
subgroup size, c, d > 0 are constants to control the “reward” for the subgroup size
and the “penalty” for complex subgroups, respectively. Ts is the minimum threshold
for δ(A) which corresponds to the clinically meaningful effect magnitude. Bayesian
Additive Regression Trees (BART) (Chipman et al. 2010) approach is used to fit the
response Y on the combined covariate space (X, trt) as a nonparametric function, to
get the predicted value of δ(A) for each subgroup A. Subgroups with larger positive
expected utility are preferred. Since the candidate subgroups are pre-specified, the
process of exploring from the entire covariate space is omitted, which makes this
approach differ from many other exploratory subgroup analysis methods.

Zhao et al. (2018) proposed another BART-based subgroup analysis approach
to identify important biomarkers. They modeled the predictive effects �(X) with
a single tree for better interpretability, and impose an additive tree structure on the
prognostic effects a(X) to enhance model fitting. Such an additive tree structure
allows more flexibility for the prognostic effect comparing to the commonly
assumed linear structures in Dixon and Simon (1991), Jones et al. (2011), and
Schnell et al. (2016), which may lead to better estimation performance for the
predictive effects �(X) at the same time. However, the computation time will also
increase quickly when sample size and number of candidate variables get larger.

Similar to BART, the posterior sampling procedure is carried out using Bayesian
backfitting algorithm (Hastie et al. 2000). The posterior probability that a biomarker
served as a splitting variable in the predictive tree will be used to determine whether
any covariate has notable predictive subgroup effect. In order to reduce “type
I error”, i.e., claiming irrelevant covariates as predictive biomarkers, no specific
subgroup will be declared when such posterior probabilities for all biomarkers
are less than a certain threshold. Several simulation scenarios with at most two
biomarkers are considered in the paper, and the estimated probabilities for the true
predictive biomarker(s) to rank as the top two predictive variables are reported. The
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method seems to identify the predictive biomarkers well when there is only one
predictive biomarker, despite presence of some prognostic effects. Meanwhile it
appears to be underpowered when there are two predictive biomarkers in the model,
especially for the purpose of identifying both predictive variables as the top two
candidate biomarkers.

16.2.2 ANOVA-Based Bayesian Subgroup Analysis Methods

Sivaganesan et al. (2011) developed a Bayesian approach from model selection
perspective by considering each covariate separately and constructed the model
space by enumerating the possible cases for different levels of treatment-subgroup
effects. First denote M00 and M10 the overall null and the overall effect model,
representing no treatment effect and homogeneous treatment effect in the whole
population, and the model space of “overall effect”, i.e., the model space of
no treatment-subgroup interaction models, is M0 = {M00,M01}. Then for each
covariate, define models in the model space by introducing the cluster membership
indicator γ = (γ1, . . . , γS), where the elements in γ range from 0 to number of
distinct non-zero treatment-subgroup effects and represent the order of appearances
of distinct treatment-subgroup effects, and S is the number of levels of the covariate.
To demonstrate this setting more clearly, Table 16.1 shows an example of models
defined by a covariate of two levels.

Use the zero-enriched Polya urn scheme as the probability distribution on the
model space MX . After getting the posterior model probabilities, the authors
proposed a decision-making algorithm, comparing the posteriors of models in M0
with the models defined by each covariate to determine whether notable subgroup
effects should be reported. In the algorithm, two threshold values c0 and c1 are used
for comparing model posterior probabilities. The model selected is the most likely
model, and also beats the overall null model M00 and the overall effect model M01
as its posterior probability odds exceeding c0 and c1. Therefore, c0 represents the
threshold for the posterior probability odds of the overall or a subgroup effect model
against the overall null model, and c1 represents the threshold for the posterior
probability odds of a subgroup effect model against the overall effect model. When

Table 16.1 Example of model space MX defined by covariate X

Model index γ Treatment-subgroup effects

M0 (0, 0) �(X = 0) = �(X = 1) = 0

M1 (1, 0) �(X = 0) �= 0, �(X = 1) = 0

M2 (0, 1) �(X = 0) = 0, �(X = 1) �= 0

M3 (1, 1) �(X = 0) = �(X = 1) �= 0

M4 (1, 2) �(X = 0) �= �(X = 1), �(X = 0),�(X = 1) �= 0

X has two levels
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no subgroup or overall effect models satisfy the comparing conditions, the overall
null model will be selected at last. A characteristic of this algorithm is that, when
selecting subgroup models, it only compares models within the model space of each
covariate, and in the end reports either models in M0, or one or more subgroup
models defined by different covariates. Therefore, this method cannot discover
subgroups defined by interactions of multiple covariates, unless data transformation
is done. However, an advantage of this method is that it does not only discover
subgroups, but also detect orders of subgroup effect sizes.

Liu et al. (2017) extended Sivaganesan et al. (2011) by considering two variables
at a time and enumerated all possible situations for the mean levels to construct the
model space. The authors elaborated on the case that there are two covariates of
interest and each has two levels, which are specified a priori by the investigators.
Similar to the decision algorithm introduced in Sivaganesan et al. (2011), a
stepwise procedure is adopted based on posterior model probabilities to determine
potential subgroup effects. The model space grows quickly when more covariates
are considered and/or there are more than two levels for each covariate.

Both of these two ANOVA-based methods do not model prognostic effects as a
function of the covariates, and the results may be biased when there exist covariate-
dependent prognostic effects.

16.2.3 Other Types of Bayesian Subgroup Analysis Methods

Schnell et al. (2016) also used a linear combination of the covariates to model both
prognostic effects and predictive effects similar to Dixon and Simon (1991). Denote
the predictive effects as �(x) = x′γ for any covariate vector x, and define the
beneficial subgroup as Bγ = {x : �(x) > δ, δ > 0} for a pre-specified threshold δ.
This method aims to find a credible subgroup pair (D, S) satisfying D ⊆ Bγ ⊆ S,
where D, defined as the “exclusive credible subgroup”, is the region such that the
posterior probability of �(x) > δ for all x ∈ D is no less than 1−α. The “inclusive
credible subgroup” S is defined as the region such that the posterior probability of
including all x, s.t. �(x) > δ for all patients in S is no less than 1 − α. The highest
posterior density method is applied to find the 1 − α credible region Gα for the
posterior distribution of γ . Therefore (D, S) can be constructed as: D = {x : x′γ >

δ for all γ ∈ Gα}, and Sc = {x : x′γ ≤ δ for all γ ∈ Gα}. There are two other ways
of constructing (D, S) discussed in the paper.

This approach may work well when the dimension of the parameter space is
low, while the computational costs increase quickly when the number of candidate
covariates increases. When the dimension of parameter space is high, it is also
difficult to interpret the credible subgroup pair (D, S) and characterize the patient
population within it.

Gu et al. (2013) applied a two-stage Bayesian lasso approach to time-to-
event responses and also used the first-order terms of X to model the predictive
effects. Three different treatment options are considered. In the first stage, linear
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combinations of main effects, overall treatment effects and first-order treatment-
covariate interactions are considered to model the predictive effects, and shrinkage
priors are specified on the parameters, and a distance-based criterion is implemented
to help screen the unimportant biomarkers. In the second stage, all the biomarkers
retained after the first stage will be included in the model, and the Bayesian adaptive
lasso approach is deployed to perform further biomarker selection. The authors
only considered the case when true predictive effects are linear structured in the
simulation study, and the robustness of this method remains unknown when the
predictive effect model is misspecified.

This method does not consider higher-order treatment subgroup interactions and
the variable selection step does not extend further to split point selections to identify
a potential subgroup such as {X1 > 0.5}. Also, the sure screening property for the
first stage has not been established yet for this method, we shall be wary of the fact
that certain important biomarkers may be missed since the variables excluded from
the first stage will never enter the second stage.

16.3 Simulation Studies

In this section, we carry out simulation studies to examine the empirical perfor-
mance of two aforementioned methods (Berger et al. 2014; Sivaganesan et al. 2011).
Both methods consider subgroups defined by one binary variable. We focus on
testing of the scenarios listed below

(a) yi = 2 + εi ,
(b) yi = 2 + 2trti + εi ,
(c) yi = 2 + 2trtiI (Xi1 = 0) + εi ,
(d) yi = 2 + 2trtiI (Xi1 = 0) + I (Xi1 = 0) + 2I (Xi2 = 0) − 3I (Xi3 = 0) + εi ,
(e) yi = 2 + 2trti{I (Xi1 = 0) + I (Xi2 = 0)} + εi ,
(f) yi = 2 + 2trti{I (Xi1 = 0) − I (Xi2 = 0)} + εi ,

where yi is the i-th univariate response. The treatment variable trti
i.i.d∼

Bernoulli(0.5). Ten independent binary covariates are considered: Xij
i.i.d∼

Bernoulli(0.5), i = 1, . . . , n, j = 1, . . . , 10. The random error is set at two

levels, εi
i.i.d∼ N(0, 1) and N(0, 4). We assume {εi}′s, {Xij }′s, and {trti}′s are

mutually independent, for i = 1, . . . n, j = 1, . . . , J . The indicator function I (E)

takes a value of 1 if the event E is true and 0 otherwise. Here we set n = 100 for all
cases. We illustrate scenarios (c), (e), and (f) with tree diagrams in Fig. 16.1, where
Xi denotes the i-th covariate.

Under scenarios (a) and (b), there is actually no subgroup with heterogeneous
treatment effects. Under scenarios (c) and (d), there are heterogeneous treatment
effects, between group {i : I (Xi1 = 0), 1 ≤ i ≤ n} and the rest of the population.
Since the subgroup is defined by a single covariate, these two approaches are
expected to detect X1 with a high probability. In scenario (d), there are three
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Fig. 16.1 Tree diagrams of scenarios (c), (e), and (f) along with the treatment effect size for each
terminal node

prognostic variables X1, X2, and X3, and it is desirable to test how these two
methods perform when there are prognostic effects. For scenario (e), there are
indeed three subgroups with heterogeneous treatment effects: g1 = {i : I (Xi1 =
0 ∩ Xi2 = 0), 1 ≤ i ≤ n}, g2 = {i : I [(Xi1 = 0 ∩ Xi2 = 1) ∪ (Xi1 =
1 ∩ Xi2 = 0)], 1 ≤ i ≤ n}, g3 = {i : I (Xi1 = 1 ∩ Xi2 = 1), 1 ≤ i ≤ n},
among which only g3 is the subgroup with zero treatment effect. Under scenario
(f), there is also qualitative treatment-subgroup interaction (i.e., there exists both
subgroups with positive treatment effects and negative treatment effects), and there
are two subgroups, {i : I (Xi1 = 0 ∩ Xi2 = 1), 1 ≤ i ≤ n} and {i : I (Xi1 =
1 ∩ Xi2 = 0), 1 ≤ i ≤ n}, having non-zero treatment effects. We repeat each
simulation independently for 200 times.

For the Bayesian tree method (Berger et al. 2014), the posterior probabilities Pi

of having a non-zero treatment effect for individual i = 1, . . . , n are extracted as
the major outcome for analysis. The simulations results are reported in Table 16.2.
P̄ 0 represents the mean of Pi’s of the patients whose treatment effects are 0. On
the contrary, P̄ 1 represents the mean of Pi’s of the patients whose treatment effects
are non-zero. The medians of P̄ 0 across different scenarios are shown as the point
estimate and the 95% confidence intervals for P̄ 0 are displayed below the point
estimates correspondingly in the table. Similar results are shown for P̄ 1. Ideally, we
should have P̄ 0 being close to 0, while P̄ 1 being close to 1 if a particular method
performs well in distinguishing the patient group with non-zero treatment effects
and the subgroup with the zero treatment effect.

For scenarios (c)–(f), since there are both subgroups with zero treatment
effects and non-zero treatment effects, we can construct the receiver operating
characteristic (ROC) curve and obtain the area under curve (AUC) for each scenario.
To construct the ROC curve, we compare Pi with each of these threshold values
0, 0.01, 0.02, . . . , 1.00 to classify individuals to two groups: the group with non-
zero treatment effect and the group with zero treatment effect. The AUC values are
given in Table 16.2.

From Table 16.2, we see that for scenario (a), the mean of the patient’s posterior
probability of getting a non-zero treatment effect, P̄ 0, is 0.25, which is noticeably
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Table 16.2 Simulation results under scenarios (a)–(f) obtained by the method (Berger et al. 2014)

Scenario

(a) (b) (c)

σ 1 2 1 2 1 2

P̄ 0 0.25 0.25 – – 0.17 0.35

(0.18, 0.59) (0.18, 0.59) – – (0.11, 0.59) (0.18, 0.92)

P̄ 1 – – 1.00 0.997 1.00 0.93

– – (1.00, 1.00) (0.82, 1.00) (1.00, 1.00) (0.27, 1.00)

AUC – – – – 1.00 0.89

Scenario

(d) (e) (f)

σ 1 2 1 2 1 2

P̄ 0 0.97 0.71 0.98 0.52 0.27 0.29

(0.35, 1.00) (0.19, 1.00) (0.46, 1.00) (0.24, 0.99) (0.12, 0.97) (0.15, 0.84)

P̄ 1 1.00 0.96 0.97 0.57 0.77 0.74

(0.70, 1.00) (0.59,1.00) (0.65, 1.00) (0.24, 0.99) (0.64,0.99) (0.45,0.93)

AUC 0.77 0.73 0.54 0.50 0.83 0.82

Symbol “–” is deployed when the criterion is not applicable for the cell

smaller comparing to P̄ 1 in scenario (b). Results from these two extreme scenarios
give us some ideas about the “benchmark value” of Pi , regarding to patients with
zero or non-zero treatment effects. Under scenario (c), there is only one binary
predictive variable and no prognostic variable, this method performs very well in
terms of AUC, and AUC drops a little when the noise level increases from N(0, 1)

to N(0, 4). When adding prognostic variables to the model, we see from the results
of scenario (d) that the AUCs are much smaller comparing to those under scenario
(c). The point estimates of P̄ 0 are much closer to 1, which indicates that the method
is not able to distinguish the group with zero treatment effect from the others. Since
the method only considers up to one prognostic variable, when the prognostic effect
structure is more complicated, it will affect the estimates of Pi’s. For scenarios
(e)–(f), there is no prognostic variable, while there are subgroups with non-zero
treatment effects defined by more than one variable. Since we use the algorithm that
allows at most one factor for split in Berger et al. (2014), the performance is not very
good as expected. Results from scenario (f) are better comparing to those from (e),
since there are more patients with zero treatment effect and it is easier to distinguish
this “null group” from others.

Under the model space setting in Sivaganesan et al. (2011), the true models for
scenarios (a) and (b) are M00 and M01, namely, the overall null and the overall effect
model. For scenarios (c) and (d), the true model is M11 indicating two subgroups
defined by X1, and the treatment effects in these two subgroups are zero and non-
zero. For scenarios (e) and (f), based on the decision making algorithm, the models
expected to be reported are M13 and M23, representing there are heterogenous non-
zero treatment effects defined by both X1 and X2. For the comparing threshold in
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the decision making algorithm, we set c0 = c1 = c for simplicity, c varying from 0
to exp(25). Figures 16.2 and 16.3 show the probabilities of models reported under
scenarios (a)–(f) for different values of c when σ = 1, 2. Note that c is chosen
when type I error (TIE) is controlled and power is reached as big as possible. Under
scenario (a) where TIE = 1 − Pr(M00 is reported|M00), we observe from Figs. 16.2
and 16.3 that TIE is controlled at 0.1 for log(c) > 1.5 and TIE is controlled at
0.05 for log(c) > 2 approximately. From Fig. 16.3 when σ = 2, we notice that
under scenarios (c)–(f), the probabilities of reporting true models are obviously
lower than the probabilities when σ = 1. This indicates that selection accuracy
of the method (Sivaganesan et al. 2011) is easily affected by data noise. In general,
log(c) = 2 controls TIE and achieves relatively high rates of reporting true models,
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Fig. 16.2 Probabilities of models reported when σ = 1
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Fig. 16.3 Probabilities of models reported when σ = 2

therefore we choose c0 = c1 = exp(2) as the comparing threshold in the decision
making algorithm, and the simulation results under this threshold value are shown
in Table 16.3.

From Table 16.3 it can be seen that the method in Sivaganesan et al. (2011)
performs quite well under scenarios (a) and (b) when there are no subgroup
treatment effects for σ = 1, 2. However, by comparing results of scenarios (c) and
(d), we find that prognostic variables cause great interference to selection results.
This can also be seen from Fig. 16.2 and 16.3, where the reporting probability curve
of M11 under scenario (d) is always lower than the curve of M11 in scenario (c).
Under scenarios (e) and (f) when multiple covariates have subgroup effects, though
reporting all true subgroup models is difficult, the probabilities of discovering at
least one true subgroup model are notably higher.
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Table 16.3 Simulation results under scenarios (a)–(f) obtained by the method (Sivaganesan et al.
2011) when c0 = c1 = exp(2)

Scenario (a) (b) (c)

Ture model M00 M01 M11

σ 1 2 1 2 1 2

P(TrueModel) 0.965 0.965 0.970 0.910 0.805 0.260

Scenario (d) (e) (f)

Ture model M11 M13,M23 M13,M23

σ 1 2 1 2 1 2

P(TrueModel) 0.340 0.100 0.475 0.020 0.465 0.005

P ∗ – – 0.850 0.260 0.855 0.090

P ∗=Pr(At least one true model is reported | multiple subgroup models) under scenarios (e)–(f)

16.4 A Real Data Example

We apply the method of Berger et al. (2014), the QUINT (Dusseldorp and
Van Mechelen 2014) method (a frequentist approach), and the approach of Siva-
ganesan et al. (2011) to analyze the Breast Cancer Recovery Project (BCRP) dataset.
BCRP dataset is publicly available in the R package quint. The test subjects were
women with early-stage breast cancer. There were three treatment arms in the
randomized trial: a nutrition intervention arm, an education intervention arm, and
a standard care arm. We only study the patients from the education intervention
(assign trt = 1) arm and the standard care arm (trt = 0). After removing missing
values, we had 146 test subjects left, among which 70 patients were in trt = 1
group and 76 patients were in trt = 0 group.

The response variable was the improvement in depression score at a 9-month
follow-up. There were nine covariates: age, nationality, marital status, weight
change, treatment extensiveness index, comorbidities, dispositional optimism,
unmitigated communion and negative social interaction, and we dichotomized
each continuous or categorical variable by its median value so we can apply the
Bayesian methods.

We use the default options to implement QUINT in R, and the final tree is just the
trivial tree (i.e., no split is made), which indicates no notable qualitative treatment-
subgroup interaction has been found. The posterior probabilities Pi’s of having a
non-zero treatment effect for all subjects are between 0.20 and 0.24, which also
suggests no findings of subgroup effect. The method in Sivaganesan et al. (2011),
where the decision-making is carried out based on c0 = c1 = 2 from our simulation
results, also reports the overall null effect model, which means no subgroup is found.
However, QUINT produces a non-trivial tree as reported in Liu et al. (2019) if the
variables are not dichotomized. The information loss after dichotomization is also a
main disadvantage for methods that are only applicable to binary variables.
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16.5 Discussion

Overall, Bayesian subgroup analysis methods add in a lot of varieties and new
aspects of thinking to the personalized medicine development. Bayesian methods
such as Berger et al. (2014) and Sivaganesan et al. (2011) can provide inference
over a model space rather than just one specific model, though it may not be
easy to extend and apply these methods to accommodate categorical variables or
continuous variables without information loss. In the aforementioned Bayesian tree
methods, only the method developed by Zhao et al. (2018) can be applied directly to
continuous variables, and considers the issue of splitting point selection implicitly
when building the tree. Comparing to frequentist methods, Bayesian methods allow
for the incorporation of prior information and expert’s inputs as well as account for
model uncertainty. Many of the Bayesian methods consider simple prognostic effect
structures. When the dimension of the parameter space is high and there are various
types of covariates, current Bayesian methods need to be improved to tackle these
challenges.
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