
Chapter 15
Subgroup Analysis: A View
from Industry

Oliver N. Keene and Daniel J. Bratton

Abstract Subgroup analysis in clinical trials for regulatory and reimbursement
purposes can be confirmatory or exploratory in nature. Confirmatory subgroup
analysis requires pre-specification of the proposed analysis and appropriate control
of the type I error rate. Exploratory subgroup analysis is a feature of Phase III
clinical trials. Examination of the results by sex, age and race is required by
FDA and submissions for regulatory approval typically involve numerous further
analyses by baseline characteristics such as disease severity. For efficacy these
exploratory analyses are often directed at providing reassurance that the overall
estimated treatment effect translates into benefit for each of the subgroups and
for safety to investigate the existence of signals in more vulnerable subgroups.
For reimbursement purposes, extensive analysis is required to try to identify those
groups experiencing most benefit and for whom the medicine is therefore most cost-
effective.

Exploratory subgroup analyses present a major challenge in interpretation due
to the large number of subgroups examined. Effect sizes can vary largely from
the overall treatment effect estimate and even be in opposite directions due to
chance alone. The commonly used statistical methods to assess consistency of
effect all have limitations. There is an important role for statistical modelling
and an increasing interest from industry in Bayesian shrinkage techniques which
balance emphasis on a specific observed differential subgroup effect with the overall
treatment effect.

When planning and designing confirmatory trials of new medicines, discussion
and agreement with regulatory and reimbursement authorities on the population is
exceptionally valuable. Pre-identification of a small number of important biologi-
cally plausible subgroups which require exploration is helpful for interpretation.
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15.1 Introduction

The classic design of a company-sponsored late-stage trial is directed at providing
a single overall estimate of the effect of a medicine on the primary endpoint. Many
important stakeholders find a single summary of response on an endpoint to be
incomplete. Patients want to know if this average effect will apply to them with
their own individual set of baseline characteristics which will vary among patients
studied in the clinical trial. Physicians are concerned with identifying those patients
for whom the medicine will be more effective or less effective. Payers only want to
pay for a medicine for patient groups where the medicine is cost-effective.

The need for subgroup analyses is therefore unavoidable for late stage clinical
trials performed by the pharmaceutical industry. They are regularly requested by
practising physicians seeking to understand the results of the trial in the context of
the diversity of the patients who consult them.

In a regulatory setting, the FDA require summaries of efficacy and safety by
demographic subgroups (FDA 2015) and for a multi-regional trial an evaluation
of consistency of treatment effects across regions is required by ICH E17 (ICH
2017). In a reimbursement setting, the Institute for Quality and Efficiency in
Health Care (IQWiG) in Germany requires analysis by sex, age, country and
disease severity for all patient relevant endpoints, including safety endpoints as
well as efficacy endpoints (IQWiG 2017). These requirements are independent
of an a priori expectation that a particular subgroup will experience a different
treatment effect. As well as these mandated subgroups, further subgroup analyses
are also frequently requested by regulatory and reimbursement agencies to assess
consistency of treatment effects.

In the next sections we start by defining what is meant by a subgroup effect. We
then review the key issue of multiplicity. Later sections describe analysis methods
that go beyond the simple approaches of separate analysis of subgroups according
to a specific characteristic and interaction tests.

15.2 Defining a Subgroup Effect

It is important to define what is meant by a subgroup effect as this terminology can
have different interpretations. Subgroups can be dichotomous (e.g. male/female),
categorical (e.g. region), ordered categorical (e.g. disease score at baseline) or based
on a continuous measure (e.g. age). For subgroups defined by a continuous measure,
patients are often categorised based on values lying within specific cut-points. A
more powerful method of evaluation is often to retain the continuous scale and use
a modelling approach (this is discussed later in the chapter).

Subgroup effects considered in this chapter are defined by baseline characteristics
measured prior to treatment. Analysis based on differentiating patients according
to a post-randomisation measurement can be misleading, because a particular
treatment effect may influence classification to the subgroup (Yusuf et al. 1991).
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Table 15.1 Illustrative example of importance of scale of measurement for subgroup effects

Baseline event rate Placebo event rate Active event rate Absolute reduction
Percentage
reduction (%)

0 0.8 0.6 0.2 25
1 1.2 0.9 0.3 25
2 or more 2.0 1.5 0.5 25

There are two keys aspects to describing a subgroup effect for a typical phase
III superiority study. Firstly, the baseline characteristic may affect the outcome
regardless of treatment and therefore be a prognostic variable. In modelling terms,
this would be a main effect. For example, severe patients may have poorer outcomes
than milder patients. Secondly, a baseline characteristic may influence the effect
of active treatment compared to placebo and therefore be a predictive variable.
In modelling terms this would be an interaction of the treatment effect with the
variable. The same covariate can be both prognostic and predictive; it is examination
of potential predictive variables that is the focus of this chapter.

Importantly, whether a differential treatment effect exists may depend on the
scale of measurement used (Keene 1995). For instance, consider the example below
shown in Table 15.1. The outcome variable is the number of events during treatment,
and this has been split according to number of events in the previous year. For those
with a baseline event rate of 0 per year, the event rate after randomisation is 0.8 on
placebo compared to 0.6 on treatment, a reduction of 25%. The same percentage
reduction of 25% applies to those with two or more events in the previous year.
However, some may consider absolute reductions as more clinically relevant; these
are very different, a reduction of 0.5 events/year for this group compared to 0.2
events/year for the group with 0 events at baseline. Model based analysis of event
rates such as the negative binomial model (Keene et al. 2007) express treatment
effects in terms of relative reductions and therefore there would be no statistical
interaction. However, for a payer, there may be more willingness to fund a medicine
that reduces event rates by 0.5 events a year than one that reduces events by 0.2
events.

15.3 Multiplicity in Subgroup Analysis

The major difficulty when interpreting subgroup analysis is that subgroup differ-
ences in treatment effect can arise by chance and it is exceptionally hard to identify
what is a true difference. While there is a general acknowledgement that results
from small subgroups are unreliable, unfortunately results from analyses of larger
subgroups of patients are often interpreted as the true results for that group of
patients, ignoring the fact that it is likely that some groups will show bigger or
smaller differences simply by chance. While multiplicity issues can also arise in
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clinical trials from other sources such as multiple endpoints, the issue is particularly
difficult for subgroups.

In the classic illustration of the problem, the ISIS-2 authors (ISIS 1988) examined
the outcome by astrological birth sign. While the overall results showed an
impressively positive effect for aspirin on mortality, for patients born under Gemini
or Libra there was a small observed increase in mortality.

For trials performed by the pharmaceutical industry, prior specification of a
subgroup, combined with an appropriate strategy to strongly control the type I error
rate is required if a claim of efficacy in a subgroup is to be approved (EMA 2002).
If the effect of a treatment is expected to be stronger in a subgroup compared to the
complimentary subgroup, then studying this subgroup alone is an option. However,
where the subgroup is defined by a biomarker, there is a desire from regulatory
authorities to understand the effect in both the biomarker positive and biomarker
negative patients. The FDA guideline on enrichment designs (FDA 2019) suggests
that the type I error rate for the study be shared between a test conducted using only
the enriched subpopulation and a test conducted using the entire population. In this
case, it will be beneficial to increase sample size in the group where greater efficacy
is expected. Simple strategies for this sharing include Bonferroni adjustment of p-
values or hierarchical testing but increases in power can be obtained using strategies
that take advantage of the correlation between the test statistics for analysis of a
subgroup and analysis of the whole population (Song and Chi 2007).

Historically, there have been concerns about inferring efficacy in a post-hoc
subgroup in trials where the overall effect was not positive. However, the current
emphasis in regulatory and reimbursement submissions is on showing that specific
subgroups derive benefit from the medicine in the presence of a positive effect
overall. Regulators seek assurance that effects are consistent across subgroups and
payers seek to restrict access to medicines to those groups where the benefit is
strongest.

Li et al. (2007) investigated the probability of observing negative subgroup
results when the treatment effect is positive and homogeneous across subgroups.
Negative here is defined as an effect size in the opposite direction to the overall
result. They show that if a trial with 90% power to detect an overall effect and total
sample size of 338 is divided into five equally sized subgroups, the probability of
observing at least one negative subgroup result is 32%. Each subgroup in this case
has more than 65 patients.

The number of different subgroups that are typically examined in a confirmatory
clinical trial of a new medicine is extensive and this can create challenges in
interpretation. For an integrated summary of effectiveness, the FDA guideline (FDA
2015) includes the following list of subpopulations to be considered: age, sex, race,
disease severity, prior treatment, concomitant illness, concomitant drugs, alcohol,
tobacco, body weight and renal or hepatic functional impairment. While some of
these subpopulations may not be applicable to a specific medicine, most will be
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and there will be a perceived need to split the data into subgroups according to
multiple criteria. The greater the number of subgroup analyses performed and the
smaller the resulting subgroups are, the higher chance that there will be subgroups
with seemingly no benefit or potential harm from treatment. This issue of selection
bias is recognised in the European regulatory guideline on subgroup analysis (EMA
2019) which states: “Not only might the play of chance impact the estimated effect,
but it is tempting to focus on subgroups with extreme effects”.

For submission for reimbursement in Germany, the Institute for Quality and
Efficiency in Health Care (IQWiG) requires analysis by sex, age, country and
disease severity for all patient relevant endpoints, including safety endpoints as well
as efficacy endpoints (IQWiG 2017). These analyses are usually performed in the
population for whom reimbursement is sought, often already a subgroup of the trial
population. This requirement can typically lead to an excessively large number of
subgroup analyses (e.g. 5 characteristics × 20 endpoints = 100 subgroup analyses)
and can involve very small sample size in some analyses. The credibility of the
analysis produced for IQWIG submissions has therefore been questioned (Ruof
et al. 2014) and the value of this exhaustive exercise in the determination of the
cost-effectiveness of the medicine is unclear.

When assessing whether observed differences across levels of a subgroup
represent a true difference, it is possible to use checklists such as that provided
by Sun et al. (2010). In practice, discussion often focuses on biological rationale
(Hemmings 2014; Pocock et al. 2002). Unfortunately, biological plausibility is a
somewhat elusive concept as most subgroup analyses have a degree of plausibility
and therefore it is helpful to plan subgroup analysis in advance of unblinding of the
trial. One possibility is to divide proposals for subgroup analysis into whether (a)
a differential effect is anticipated, (b) a differential effect is biologically plausible
but not anticipated and (c) observed differential effects are hypothesis generating
(Dane et al. 2019). The weight given to the observed findings could then depend on
which category the subgroup analysis was assigned to as well as the overall number
of subgroup analyses performed.

Replication across endpoints and across two or more trials strengthens the
support for a hypothesis of a different effect in a specific subgroup. In particular
because of regression to the mean, treatment effects from exploratory subgroup
analyses that show the biggest differential often cannot be reproduced.

15.4 Statistical Methods

The next sections describe commonly used statistical methods for investigating
exploratory subgroup effects. This is not an exhaustive list and other methods are
available. The focus is on methods that explore treatment by a single covariate,
which is a problem in many practical cases in analysis of data from clinical trials.
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15.4.1 Separate Analysis by Subgroup

Separate analysis by subgroup can be performed by either using an entirely separate
analysis for the specific subgroup or via a model of the complete data with a
treatment interaction term for the subgroup under investigation.

Graphical representation of subgroup analyses is a key component in facilitating
the interpretation of subgroup analyses. Forest plots, displaying treatment effect
estimates for each subgroup along with the associated confidence interval, is one
of the most common displays used.

Interpretation of such forest plots however is not straightforward. For example,
it is not possible to draw valid inferences about consistency of effect by comparing
the individual subgroup p-values or by assessing whether the CIs in the forest plot
cross the line of no difference. A significant difference in one subgroup but not the
other is not necessarily evidence of a significant difference between the subgroups.

When performing subgroup analysis, it is common to classify a continuous
variable such as age into categories and to analyse each subgroup separately. A
key choice then is the number and location of the cut-points used to define the
categories. Usually these might be dictated by clinical relevance. For example, it is
often necessary to define body mass index (BMI) subgroups by <18.5, 18.5–<25,
25–<30 and ≥ 30 kg/m2 as these are commonly used in clinical practice to identify
underweight, normal, overweight and obese patients respectively. Where possible, it
is helpful to state the cut-points prior to unblinding as different choices of cut-points
can result in different estimates of treatment effect (Royston et al. 2006).

However, pre-specifying cut-points is not without issues. In some cases, there
might be insufficient data in a particular pre-defined subgroup to allow estimation
of a treatment effect. In such cases the subgroup could be combined with a
neighbouring group but then the analysis can lose some of its value in estimating
treatment differences in groups of interest or even miss a true interaction. A potential
solution to this problem is to define subgroups by quantiles of the observed covariate
distribution (e.g. quartiles) to help ensure that there will be sufficient data within
each subgroup. Although such an approach might help to identify associations
between the treatment effect and the covariate, the chosen subgroups may not have
an easy clinical interpretation.

15.4.2 Interaction Tests

The classical approach to assessing consistency of effects across subgroups is to
perform an interaction test. The focus of interest here is the contrast between the
effects in the different subgroups, rather than examining a specific subgroup in
isolation. For a factor with multiple levels such as region, a global test of any
difference across all categories can be performed or a test for a specific category
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vs. the rest of the population. The ICH E9 guideline indicates in section 5.7 that
interaction testing is the first step in undertaking subgroup analyses (ICH 1999).

However, in practice, simple significance tests for interaction are on their own of
limited value when investigating subgroup differences. Firstly, as interaction tests
are tests of significance, they have an associated fixed type I error rate. If this is
fixed at 5%, then even if there are no true differences among subgroups, 5% of the
tests will be expected to be significant suggesting a differential subgroup effect.
Because of the low power of interaction tests, tests at the 10% or 20% level have
been suggested (Hemmings 2014). In these cases, even more false positive results
are to be expected.

Secondly, they have low power to detect heterogeneity. For example, in the
simple case of a continuous endpoint with two equal sized groups, the variance of
the interaction contrast is four times the variance of the overall treatment difference.
This implies that only unlikely large interaction effects can be detected with any
certainty.

Absence of statistically significant interactions does not imply consistency of the
treatment effect in the studied population since absence of statistical significance
cannot be taken to imply equality or consistency. To require only absence of
statistical significance in an interaction test, or only directional consistency, would
not be sufficiently sensitive filters to detect differences of potential interest.

The need to go beyond simple interaction tests is recognised in the CHMP
guideline on subgroup analysis (EMA 2019) which states that “The sole reporting
of an isolated p-value from a test for interaction is an inadequate basis for
decision making”. The guideline recommends including estimates of the size of the
interaction contrasts with associated confidence intervals to show what differences
a trial can reliably detect.

15.4.3 Stepwise Regression

When subgroups are assessed individually, the analysis does not account for
potential imbalances in known effect-modifiers between groups. Multivariable
analysis of an endpoint including various subgroups of interest and their interaction
with treatment may be required to determine whether the effects observed within a
subgroup are partially or wholly affected by other factors. In addition, a modelling
approach allows for correlation between covariates instead of examining these in
isolation.

Selection methods based on stepwise regression can be a useful exploratory
approach for this to help determine the most influential factors on treatment effect.
Various approaches are available for such an analysis, including forward, backward
and stepwise selection (Royston and Sauerbrei 2009).

In backward selection, all subgroups of interest and their interactions with
treatment are included in a model and the term with the largest p-value is removed
if it is above a specified significance threshold (e.g. p = 0.1). The process continues
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iteratively removing the term with the largest p-value above the significance
threshold at successive steps until all remaining covariates are significant at this
level. Alternatively, selection methods based on information criteria (e.g. Akaike’s
information criterion) or penalised likelihood could be used rather than p-values for
the individual covariates. Main effects should only be removed if its interaction with
treatment has also been removed at a previous step. Forward selection is essentially
the opposite to this, with terms being added separately to a model and retaining that
with the smallest p-value below some specified threshold for the next step of the
process. This is repeated until no covariates are significant when added to the model.
In this case interaction terms should only be added to the model if the corresponding
main effect was added at a previous iteration. Stepwise selection is a combination
of the two approaches, testing variables for inclusion or exclusion at each step and
allowing previously included or excluded variables to be removed or reincluded
respectively. Ideally all methods will result in the same final model, but this is not
always the case.

Results from such models should be deemed to be exploratory in nature since
the selection procedure will tend to lead to an over-estimation of the effects of the
selected covariates and, as in the case of separate analyses of subgroups, type I
error rate is not strictly controlled. However, they are a useful tool for hypothesis
generation or building prediction models.

When control of type I error is required, then potential methods are reviewed in
Dane et al. (2019), Ballarini et al. (2018) and Thomas and Bornkamp (2017). Dane
at al describe resampling methods and Balletini et al use penalised regression with
a Lasso-type penalty as a model selection and estimation technique. Thomas and
Bornkamp include model averaging in addition to resampling and Lasso methods.
However, absence of statistical significance does not imply that the effects are the
same in each subgroup and in a response to the Dane et al. article, Hemmings and
Koch (2019) argue that “power should be prioritised over type I error where the
objective is to generate signals for further inspection”.

15.4.4 Fractional Polynomial Modelling Approaches
with Continuous Covariates

As stated above, it is common to analyse a continuous variable by classifying
the variable into categories. Clear disadvantages of this approach are the loss of
information (Altman and Royston 2006; Royston et al. 2006) and the assumption
that patients close to a cut-point will have different responses when these are likely
to be similar. While these subgroup analyses provide treatment effect estimates
within a narrower range of the baseline covariate than in the overall study, they
do not necessarily adequately estimate the effect of treatment for a particular value
of that covariate which might be more useful to an individual patient.
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A more informative approach is to create a statistical model of the outcome by
treatment as a function of the covariate (Keene and Garrett 2014). For instance, the
covariate of interest can be entered into the model as a continuous linear term along
with its interaction with treatment. Such a model allows treatment differences to
be estimated at particular values of the covariate of interest rather than in groups.
A resulting plot of the estimated treatment difference versus the covariate can
potentially show in more detail how the treatment effect varies over the range of
the covariate than a forest plot of subgroup effects focusing on specific categories.

However, if the relationship between treatment efficacy and the covariate of
interest is non-linear then a model where the prognostic and predictive effects of
a covariate are represented by linear terms may fit the data poorly. For instance,
if a treatment has lower efficacy in patients who are underweight (<18.5 kg/m2)
and overweight (≥25 kg/m2) compared to patients in the ‘normal’ range, then the
association between efficacy and BMI is non-linear. In such a case a linear model
will miss such a result whereas the subgroup analysis is more likely to demonstrate
this interaction. Other transformations of the covariate could be assessed (e.g. log
transformation or adding a quadratic term) but while some transformations might fit
the data better and more closely align with subgroup estimates, there may be more
appropriate functions to use.

Fractional polynomial models (FPs) offer the flexibility to identify non-linear
treatment-covariate interactions (Royston and Altman 1994). In the FP framework,
various transformations of a covariate are assessed and the model which describes
the data best is selected. Transformations of the covariate of interest X that are
assessed are of the form Xp, where p is chosen from a set S of eight powers:
S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. Here p = 0 indicates a log transformation
of X. Each transformed covariate is assessed individually and that which maximises
the likelihood of the model is used to assess the treatment interaction (Royston and
Sauerbrei 2004). The model can include other covariates, for instance those pre-
specified in the primary analysis, or a multivariable fractional polynomial (MFP)
algorithm can be applied prior to modelling the treatment interaction to determine
the most influential prognostic factors for the outcome and their best fitting forms
(Royston and Sauerbrei 2009).

An FP model containing a single transformation of the covariate X is referred
to as an FP1 model. To increase the flexibility of the modelling procedure, two
transformations of the covariate can be entered into the model using powers from
the same set S, so the model contains terms Xp and Xq where p, q ε S. This is
referred to as an FP2 model. If p = q then this is referred to as a repeated-powers
model and one of the terms is replaced by Xp log(X). Unlike an FP1 model, including
two transformations of X allows non-monotonic functions to be fitted thus greatly
increasing the flexibility of the modelling. Examples of FP1 and FP2 functions are
shown in Fig. 15.1. More than two transformations of the covariate could be used,
but such models do not greatly increase the flexibility of the modelling procedure
over and above FP2 models, can greatly increase the time taken to find the best
fitting model, and may lead to overfitting.
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Fig. 15.1 Examples of FP1 (dashed lines) and FP2 (solid lines) functions

It is important to check the results of the FP modelling, particularly if it indicates
a treatment-covariate interaction. Should there be an interaction, then this is also
likely to be indicated by a subgroup analysis. Therefore, estimating treatment effects
within a number of subgroups, for instance defined by quartiles or quintiles, can
show whether there is agreement between the two approaches. Disagreement should
be a signal of caution and investigated as it could be an artefact of the modelling—
for instance due to influential outliers of the covariate which are less likely to affect
a subgroup analysis.

Although FP modelling has several advantages over subgroup analysis, it is not
without some potential pitfalls. FPs can behave strangely at the tails of the covariate,
particularly close to 0 when negative powers are used. However, given that tails
contain little data and that the CIs for the treatment effect line are likely to be wide,
the plot of the treatment interaction can simply be truncated so that only the middle
90 or 95% of the distribution of the covariate are presented. There are also issues
with scaling and ensuring that the covariate is strictly positive prior to modelling,
but suitable solutions are available (Royston and Sauerbrei 2007).

An example of the value of a modelling approach is provided by the METREO
and METREX trials of mepolizumab in patients with COPD (Pavord et al. 2017).
These two randomised, placebo-controlled, double-blind, parallel group trials com-
pared mepolizumab (100 mg in METREX, 100 or 300 mg in METREO) with
placebo, given every 4 weeks for 52 weeks in patients with COPD who had a
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history of moderate or severe exacerbations while taking inhaled triple maintenance
therapy. The trials were funded by GlaxoSmithKline (ClinicalTrials.gov numbers:
METREO: NCT02105961, METREX: NCT02105948). The primary variable was
the rate of moderate/severe exacerbations and analysis was performed using a
negative binomial generalised linear model with a log link function (Keene et al.
2007).

The key covariate of interest was the screening blood eosinophil count. A pre-
specified meta-analysis of the two studies was performed to examine the result of
the studies by subgroups defined by categories of screening blood eosinophil count
and the results are shown in Fig. 15.2. The estimated exacerbation rate reduction in
patients with a screening eosinophil count between 300 and <500 cells/μL is 18%,
however, some patients are likely to fare better than others within this category and
so it is not clear for example what the estimated treatment effect is for a patient with
say an eosinophil count of 400 cells/μL. In addition, the subgroup analysis implies
a cliff effect at the cut-offs whereby two similar values of eosinophils correspond
to markedly different treatment effect estimates. In this example a patient with
a screening eosinophil count of 499 cells/μL and another with 500 cells/μL are
estimated to achieve a 18% and 33% reduction in exacerbations, respectively, when
there is a negligible difference between the two eosinophil values.

The relationship between exacerbation rate reduction with mepolizumab and
screening eosinophil count has been analysed using fractional polynomial modelling
and the results are shown in Fig. 15.3. Here the best fitting model was an FP2

<150 cells/µL

150 - <300 cells/µL

300 - <500 cells/µL

>=500 cells/µL

0.4 0.6 0.8

Rate Ratio (cells/µL)

1.2 1.4 1.61

1.08 (0.89, 1.31)

Rate Ratio (95% CI)

0.93 (0.78, 1.11)

0.82 (0.62, 1.08)

0.67 (0.46, 0.97)

Fig. 15.2 Rate of moderate/severe exacerbations by screening blood eosinophil count:
METREO/METREX trials

http://clinicaltrials.gov


320 O. N. Keene and D. J. Bratton

1.4

1.2

0.8

0.6

0.4

100 200

Rate ratios by screening blood eosinophil categories
Model estimated rate ratio

300 400

Blood eosinophils at screening (cells/ml)

R
at

e 
R

at
io

 (
M

ep
o

liz
u

m
ab

/P
la

ce
b

o
)

500 600 700 800

1

Fig. 15.3 Fractional polynomial modelling of exacerbations by screening eosinophils

function with repeated powers of (−0.5, −0.5). Estimates from the analysis based
on the categories in Fig. 15.2 are overlaid on the FP plot against the mean
eosinophil level in each category. The most obvious difference is that FP modelling
estimates a smooth treatment effect curve across the range of eosinophils rather
than a biologically implausible step-function obtained from a subgroup analysis,
thus allowing more accurate estimates of treatment efficacy to be made at specific
eosinophil values.

15.4.5 Splines

An alternative method to model treatment interactions with a continuous covariate
is using splines. With splines and unlike FPs, the covariate is subdivided at cut-
points defined as ‘knots’ and then separate regression curves are modelled in each
segment using polynomial functions. These piecewise polynomials are anchored
at the knots in such a way that the resulting curve is smooth and continuous.
Various approaches are available for spline modelling but one of the more common
methods is restricted cubic splines (Durrleman and Simon 1989). With this approach
polynomial functions are fitted in each segment. A cubic function is used as this is
the smallest degree polynomial which allows an inflection. Since cubic splines are
likely to behave poorly at the tails due to lack of data, the splines are ‘restricted’ to be
linear outside the two boundary knots. This can give an advantage over FPs, which
as mentioned above can behave erratically in the lower tail particularly if values of
the covariate are close to 0. Similarly, since functions are estimated in intervals of
the covariate, splines may be less prone to outliers of the covariate compared to FPs.
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An obvious additional step for splines is the need to specify the number and
location of the knots, much like categorization in subgroup analysis. The choice
of the number of knots can depend on the sample size and the prior belief in how
‘undulating’ the relationship is between efficacy and the covariate. Too many knots
can lead to overfitting while too few can impede the flexibility of the modelling and
thus might miss a true non-linear association. Authors have suggested using between
3 and 5 knots depending on sample size (Harrell 2001; Croxford 2016). For the
location of the knots, Harrell (2001) has suggested particular quantiles depending
on the number of knots to ensure that there is sufficient data within each interval to
estimate the cubic function. For instance, for three knots Harrell recommends using
the 10th, 50th, and 90th percentiles of the covariate, while for five knots use the 5th,
27.5th, 50th, 72.5th and 95th percentiles.

Despite the above guidance, the choice of knots can affect the resulting curve
and so restricted-cubic splines can suffer from similar issues to subgroup analysis
of the covariate. It is therefore important to pre-specify the knots where possible.
Alternatively, penalized splines use many knots but discourage overfitting by
restricting model complexity based on some penalty parameter (Eilers and Marx
1996). For instance, one option is to choose the spline which minimises the AIC
(Binder et al. 2013). Penalised splines therefore avoid the need to specify the number
and location of the knots, and hence some of the potential pitfalls of restricted cubic
splines.

With these approaches, unlike FP modelling, there is currently no suitable proce-
dure for simultaneously selecting functional forms and variables in a multivariable
procedure (Binder et al. 2013). Binder et al. (2013) in their comparison of splines
and FPs, concluded that for large sample sizes, the two methods often estimated
similar curves, while for moderate sample sizes, FPs tended to outperform splines
and were easier to implement.

Restricted cubic spline models were applied to the mepolizumab trial described
above to model the efficacy of mepolizumab versus placebo on exacerbations by
screening blood eosinophil count. Figure 15.4 shows the resulting curves for a spline
with three knots and another with five knots using the percentiles as suggested by
Harrell (2001) above and compares these curves to the best fitting FP2 function
presented in Fig. 15.3. The 3-knot spline resulted in estimates curve very close
the FP2 function while the 5-knot spline was more variable, likely due to fewer
data points between knots. This demonstrates the need to carefully pre-specify the
number of knots up-front, as the estimated curve can be sensitive to this choice.

15.4.6 Shrinkage Methods

As discussed above, when there is no true difference in efficacy between subgroups,
spurious interactions can arise. This is especially the case if many subgroups are
assessed, or if a specific subgroup contains a large number of levels. Subgroups
including a small amount of data are particularly susceptible to showing a difference
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Fig. 15.4 Comparison of modelling of exacerbations by screening eosinophils using fractional
polynomials with two powers and splines with three and five knots

to the complementary group due to the higher variability. Although the estimate in
any one subgroup does not have a statistical bias in isolation, focusing on the specific
result for that subgroup ignores relevant information from other groups.

Shrinkage methods are a technique to incorporate this information and move
subgroup estimates toward the overall effect. They also increase the precision of the
estimates by borrowing information across subgroups. Various shrinkage methods
are available, including Empirical Bayes and Bayesian Hierarchical modelling. In
the Empirical Bayes approach (Quan et al. 2013) the treatment effect di is first
estimated in each subgroup i using data in that subgroup only. The subgroup
estimates are then combined in a random-effects meta-analysis to obtain an estimate
of the overall treatment effect, d, and the level of heterogeneity between the
subgroup estimates as measured by the between-subgroup variability, τ 2. Subgroup
estimates are then moved toward d by taking a weighted average of the original
estimate di and d with weights wi and (1 − wi) respectively where wi = τ 2/(τ 2 + si

2)
and si

2 is the estimated variance of within-subgroup effect di. The result is that
the original subgroup estimates are shrunk towards the overall effect, with this
shrinkage being larger the higher the variability between estimates.

Another approach, Bayesian hierarchical modelling (Spiegelhalter et al. 1999),
assumes that the effect in each subgroup di is a random quantity drawn from some
common distribution centred around the overall treatment effect, d, i.e. di ~ N (d,
τ 2). The subgroup effects are assumed to be exchangeable in that there is no reason
a priori to believe that the effect in one group will be different from another. Prior
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distributions are placed on the random effect and the hyperparameters d and τ 2 to
then estimate posterior distributions for the di and corresponding credible intervals
to provide shrunken estimates of the subgroup effects.

Figure 15.5 shows a subgroup analysis of exacerbation rates by region for one
of the example trials (METREO) described above. In the standard analysis using
data within each subgroup separately, there appears to be a more beneficial effect
of treatment in the Eastern Europe region compared to other regions, and the
effect looks more favourable than the overall rate ratio of ∼0.80 but confidence
intervals are wide. The Empirical Bayes estimates are somewhat closer to the overall
effect and the confidence intervals of most estimates are also narrower due to the
borrowing of additional information from other regions. The Bayesian hierarchical
analysis estimates are slightly closer to those from the original analysis, and CIs
also have similar width. Thus, shrinkage techniques can incorporate prior scepticism
about observing large positive or negative effects in subgroups which are unlikely
to be true.

The above approach is useful primarily for evaluating a specific covariate as each
patient needs to be included in a single category i.e. subgroups must be disjoint. If
there is interest in assessing multiple subgroups simultaneously then patients need
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to be split by the covariates of interest (e.g. male European smokers). This is likely
to lead to groups containing few patients, thus affecting the stability of the model.
Instead, approaches involving model averaging of subgroup-specific models can be
used (Bornkamp et al. 2017). Subgroups are assessed in individual models and the
model averaging applies shrinkage across all groups.

15.4.7 Bayesian Dynamic Borrowing

One novel technique which may become increasingly useful in evaluation of
subgroup effects is Bayesian dynamic borrowing (Schmidli et al. 2014; Gamalo-
Siebers et al. 2017). As described above, it is often required to show evidence
of effect in a subgroup alongside an overall positive effect. A separate analysis
of the subgroup in question is limited by sample size and does not take account
of the information on the effects of treatment in the complementary subgroup.
A Bayesian statistical approach is one natural quantitative method to explicitly
borrow information from the complementary subgroup to provide inferences on the
subgroup under evaluation.

The approach works as follows. A robust mixture prior is constructed as a
weighted combination of an informative prior and a non-informative prior. The
results from the complementary subgroup are used for the informative prior for
the response in the subgroup of interest. The non-informative prior consists of a
weak prior distribution centred on a mean of zero, reflecting no relevance of results
from the complementary subgroup. This weighted combination of priors allows
for dynamic borrowing of prior information; the analysis learns how much of the
complementary subgroup prior information to borrow based on the consistency
between the subgroup of interest and the complementary subgroup.

The prior weight, w, assigned to the informative prior component represents
the prior degree of confidence in the similarity of the two subgroups. At lower
prior weights the mixture prior presents a heavier tailed distribution with more
prior weight being applied to the non-informative weak prior component. When
the mixture prior is combined with the observed efficacy data, w is updated using
Bayes theorem according to how consistent the data in the subgroup are with the
complementary subgroup; the stronger the evidence of consistency, the greater the
increase in the posterior weight (w∗) relative to the prior weight (w). Conversely,
when there is prior-data conflict, w∗ will be lower than w and will tend to zero as
evidence of conflict increases, so that the informative prior is down-weighted and
posterior inference is based almost entirely on the observed data in the subgroup.

To assess the strength of prior belief in the consistency assumption required to
show efficacy in the subgroup, a tipping point analysis can be carried out to identify
how much prior weight (w) needs to be placed on the complimentary subgroup
component of the robust mixture prior for the estimate of efficacy in the subgroup of
interest to show statistically significant evidence of treatment benefit (in a Bayesian
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framework, this corresponds to a posterior probability that there is a treatment
benefit of greater than 97.5%).

Subgroups that may be suitable for use of this dynamic borrowing approach
include those subgroups of specific regulatory interest e.g. sex, race, region. For
example, in a trial which includes both paediatric and adult subjects, there may
be insufficient paediatric subjects to show statistical significance if this subgroup
is analysed separately. A Bayesian dynamic borrowing approach of the adult data
would allow assessment of the degree of belief needed that adult efficacy applied to
paediatrics in order to conclude that there was evidence of efficacy in the paediatric
subgroup.

15.4.8 Partitioning Methods

When there are more than a few pre-defined covariates, e.g. when there are multiple
biomarkers under consideration, selection methods based on stepwise regression
approaches become increasingly problematic. If there is interest in investigating
complex models which go beyond evaluating relationships between treatment and a
single covariate then stepwise regression may not be feasible due to the substantial
number of potential two-way and three-way covariate interactions (Ruberg and Shen
2015). If there is more than one continuous covariate under evaluation, then a cut-
point approach may be needed for the additional continuous variable and this brings
the disadvantages described above.

Cluster analysis approaches group patients rather than examine covariates in
series. They aim to identify subgroups of patients whose responses are more similar
(in some sense) to each other than to those in other groups and the output is
a classification tree. Historically cluster analysis has sometimes been performed
with the aim of finding subgroups where the p-value for the difference between
treatments is maximised, but such approaches have poor reproducibility. A more
promising method is the SIDES (Subgroup Identification based on Differential
Effect Search) method described by Lipkovich et al. (2011) and by Lipkovich and
Dmitrienko (2014).

SIDES is a recursive partitioning method to establish response to treatment in
patient subpopulations. The idea is to build a collection of subgroups by recursively
partitioning a database into two subgroups at each parent group, such that the
treatment effect within one of the two subgroups is maximised compared with the
other subgroup. The process of data splitting continues until a predefined stopping
condition has been satisfied.

An alternative approach to identify subgroups of patients with enhanced benefit
is the virtual twins method described by Foster et al. (2011). The procedure works
by first building a model to predict the response on treatment and control for each
patient. Each patient comprises a set of ‘twins’ who differ only by the treatment
they receive. This can be done by applying a random forest to each treatment group
and then using the forest for a patient’s opposite treatment to predict their response
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on that treatment (Foster et al. 2011). Random forests are particularly useful for
this step as they exhibit low bias and prediction variance while avoiding overfitting,
despite potentially dealing with a large number of covariates (Lipkovich et al. 2017).

The predicted within-patient treatment differences are then taken as observed val-
ues and used as the outcome for the subsequent subgroup identification step which
uses a regression tree (or classification tree if the differences are dichotomised) to
find a small number of strongly associated covariates. These are used to identify a
subgroup of patients with a predicted treatment contrast greater than some clinically
relevant threshold. For instance, if an asthma trial estimated the effect of treatment
on FEV1 to be 50 mL which might not be clinically relevant in many cases, then
the procedure could be used to identify a subgroup likely to achieve a value more
worthwhile, such as 100 mL. The enhanced treatment effect is then estimated as
the difference between the effect in the subgroup and the overall population effect.
Since the naïve estimate of this will be over-optimistic because the subgroup was
estimated from the same data, Foster et al. (2011) describe a bias-corrected bootstrap
procedure to obtain a better estimate of the effect.

Concerns can arise that clustering algorithms such as SIDES and the virtual
twins method may over-fit the available data. In order to mitigate these concerns,
a common practice is to divide the data into independent training and validation
datasets. It is important to ensure that the training and test data sets are balanced
with respect to the treatment variable and all prespecified categorical covariates
(Lipkovich et al. 2011). A treatment effect identified based on the training set is
considered to be confirmed if the effect is demonstrated in the validation data set.

These methods may require large sample sizes and/or large enhanced treatment
effects to identify and confirm subgroups (Foster et al. 2011). If sample size is
limited, it may not be practical to divide the dataset into training and validation
datasets with a separate trial required to confirm findings.

A key disadvantage of the SIDES and Virtual Twins approach is the partitioning
of continuous variables above and below a specific cut-point. As described above,
this implies a cliff-edge effect at the cut-point which is biologically implausible.

Machine learning approaches combine different classification trees into ensem-
bles of trees. There is no simple output showing how patients are classified; rather
multiple trees are pooled in various combinations. These methods are primarily
directed at prediction of response using a large number of input variables rather
than at scientific understanding of which specific baseline characteristics predict
response.

15.5 Discussion

In the case of a confirmatory trial for regulatory purposes, it could be argued that
the burden of proof to establish an effect in each heterogeneous subgroup is with
the trial sponsor. In particular, examination of results by sex and race is increasingly
emphasised e.g. there are calls for efficacy to be established separately for both
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women and men. Many diseases are more prevalent in one sex rather than another;
for example, trials of severe asthma have recruited a majority of female participants
while COPD trials reflect the historically greater incidence of smoking among men.
Depending on where trials are conducted, there is likely to be imbalance in the
numbers of patients across the potential classifications of race and there can be
confounding of race and region which may make it difficult to disentangle medical
practice from race. Small numbers of patients in a specific race category leads to
large variability as reflected in wide confidence intervals for the observed effect.
Going forward there is likely to be an increasing need for recruitment to trials
to reflect a greater diversity in the groups studied even if this does not reflect the
relative prevalence of the disease being studied and to have larger sample sizes to
allow appropriate assessment of effects in subgroups defined by sex and race. One
novel approach that may be helpful is Bayesian dynamic borrowing which quantifies
the degree of belief needed from the complementary subgroup to confirm efficacy
in the subgroup under evaluation.

Exploratory subgroup analyses are a major scientific and statistical challenge
(Peto 2011) and because of multiplicity issues it is hard to identify true quantitative
interactions. Subgroup analysis should depend on the heterogeneity of the popu-
lation and there should be fewer requirements for these analyses when the overall
population is targeted (Keene and Garrett 2014).

Formal methods for defining consistency of effect are problematic. Tests of
interaction are of limited value as they do not formally provide evidence for a lack
of effect, although more emphasis could be placed on estimation of the interaction
effect to direct a more rational approach to assessing consistency. Methods of
subgroup analysis which strongly control type I error may be able to conclude a lack
of evidence for differential effects but may not identify potentially clinical relevant
differences in treatment effect. Bayesian shrinkage estimates can be helpful in the
interpretation of differential subgroup effects as they balance the overall effect with
that observed in the particular subgroup.

A modelling approach can be enlightening in identifying covariates which predict
both the absolute level of outcome and the extent to which the treatment effect
is modified in that subgroup. Newer methods such as the SIDES method allow
consideration of multiple covariates and the interrelationships of these covariates
on treatment effect. However, for continuous variables these methods employ a
partitioning (cut-point approach).

Fractional polynomial modelling and splines allow a broad range of relationships
between a continuous baseline characteristic and outcome and can show treatment
interactions in greater clarity compared with categorisation of the covariate. These
models of outcomes against a specific covariate avoid imposition of arbitrary cut-
offs for continuous variables and can determine cut-offs for treatment based on the
clinical relevance of the treatment effect observed. Thus, a modelling analysis is
arguably more aligned to a stratified medicine paradigm where a specific expected
treatment effect can be estimated more accurately for an individual based on their
value for the covariate. Prediction intervals for an individual patient will nonetheless
be wide as models summarise results of a trial over a range of values.
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The key issue in subgroup analysis is whether heterogeneity can reasonably be
assumed. When designing a clinical trial, it is usual to assume that a common effect
size holds for all patient groups. If there is a scientific rationale for heterogeneous
effects across subgroups defined by a specific characteristic, then it may be
necessary to show effects of treatment separately in each subgroup which implies
large increases in sample size for trials. Grouin et al. (2005) for example states: “If
substantial heterogeneity of the treatment effect across subgroups is suspected at the
design stage, then the whole basis of the trial is undermined.”

The conundrum of subgroup analysis is therefore that consistency of effect has
to be assumed at some level. The trial population is already a subgroup of possible
patients who could be treated. Within that trial population, subgroups can be defined
based on a specific characteristic. Analysis of this specific subgroup represents a
combined effect across all other characteristics. Analysis of subgroups of subgroups
is possible in theory, but in practice sample size quickly becomes very small.

In conclusion therefore, the desire for individualised medicine is never likely to
be completely satisfied by examination of clinical trial data which by its nature only
recruits a limited number of individuals. In general, only broad statements regarding
effects of individual characteristics is likely to be possible.
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