
Chapter 11
Subgroup Analysis with Partial Linear
Regression Model

Yizhao Zhou, Ao Yuan, and Ming T. Tan

Abstract In clinical trials it is common that the treatment has different effects on
different subjects. This motivates the precision medicine, the goal is to identify
the treatment favorable or unfavorable subgroups, if they exist, and classify the
subjects into one of the subgroups based on their covariate values. In practice, some
covariate(s) is known to affect the response non-linearly, in this case the existing
linear model is not adequate. To address this issue, we use a partial linear model,
in which the effect of some specific covariates is a non-linear monotone function,
along with a linear part for the rest of the covariates. This approach not only makes
the model more flexible than the parametric linear model, and more interpretable
and efficient than the full nonparametric model. The Wald statistics is used to
test the existence of subgroups, and the Neyman-Pearson rule is used to classify
the subjects. Simulation studies are conducted to evaluate the performance of the
method, and then the method is used to analyze a real clinical trial data.

11.1 Introduction

In clinical studies, often treatment effect is not uniform over all the patients, some
subgroup of patients may benefit significantly from the treatment and others may not
so. Thus one of goals of precision medicine is to find out if such subgroups exist or
not, and if existence is justified, identify the subgroups of patients according to their
covariate values. For example, in IBCSG (2002), patients with ER-negative tumors
were likely to benefit from chemotherapy, while those with ER-positive tumors did
not.
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Subgroup analysis is recently a very active research area see, e.g., Sabine (2005),
Song and Chi (2007), Ruberg et al. (2010), Foster et al. (2011), Lipkovich et al.
(2011), Friede et al. (2012), Shen and He (2015), Fan et al. (2017), and Ma and
Huang (2017). Rothmann et al. (2012) discussed issues for subgroups testing and
analysis. Fokkema (2018) used generalized linear mixed-effect model tree (GLMM
tree) algorithm detecting treatment-subgroup interactions in clustered datasets. Yuan
et al. (2018, 2020) proposed semiparametric methods for this problem.

Existing methods for this problem often use linear model. In practice, sometimes
it is known that some covariate has non-linear effect on the response, incorporating
such information can improve the quality of the analysis. Here we consider such
case and apply a more featured partial linear model to identify the existence of
subgroups and to classify the subjects into different subgroups if the existence of
subgroup is confirmed. This model assumes a monotone non-linear effect of some
covariate, and linear effects from the rest covariates. First, a partial model with
individual subgroup membership as latent variable and with a covariate whose effect
are known as non-linear are formulated and the model regression parameters is
estimated with expectation-maximization algorithm (E-M algorithm), and isotonic
regression method is used for the maximum likelihood of the nonparametric non-
linear part. Then null hypothesis of non-existence of subgroups are tested with
Wald Statistics. If the existence of subgroup is confirmed, we use the Neyman-
Pearson rule to classify each subject so that the misclassification error for the
treatment favored group is under control while the misclassification error for the
other subgroup is minimized.

The rest of the chapter is organized as follows. In Sect. 11.2 we describe the
model and parameter estimation, Sect. 11.3 elaborates the testing and classification
method, and Sect. 11.4 illustrates the simulation study and real data analysis.

11.2 The Method

The observed data is denoted as Dn = {(yi, xi, zi), i = 1, . . . , n}, where yi ∈ R is the
response variable of i-th subject, xi = (xi1, . . . , xid)′∈ Rd and zi is another covariate,
which is known to have a non-linear monotone effect on the response. Each subject
i receives the same treatment, and we assume that bigger value of the response
corresponds to better treatment effects. We want to test if there are treatment
favorable and non-favorable subgroups in the patients. If subgroup does exist, we
need to classify each subject into corresponding subgroup based on his/her covariate
profile. In this paper, we assume that there are only two potential subgroups:
treatment-favorable and treatment-nonfavorable subgroups. We need first to specify
the model, estimate the model parameters, and then perform the hypothesis test and
classification of subjects.
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11.2.1 The Semiparametric Model Specification

We specify the semiparametric partial linear model as

yi = β ′xi + g(zi) + δiη + εi, ε ∼ N(0, 1), g ∈ G,

where δi is a latent indicator for whether subject i belongs to the treatment favorable
subgroup (δi = 1) or not (δi = 0). β is a d-vector of unknown parameters, η is the
effect of treatment favorable subgroup, and the constraint η ≥ 0 is used for the
identifiability with the intercept vector term in β. It is assumed that the covariate
zi has a non-linear effect g(·) to the response yi, we only know that g(·) ∈ G, the
collection of all monotone increasing functions on R.

Denote the i.i.d. copy of the (yi, xi, zi, δi, εi)’s as (y, x, z, δ, ε). Let λ = P(δ = 1)
and θ = (β ′, η, λ)′ be the vector of all the Euclidean parameters. Conditioning on
(x, z), the density of y is the mixture

h(y|x, z, θ) = λφ
(
y − β ′x − g(z) − η

)
+ (1 − λ)φ

(
y − β ′x − g(z)

)
.

where φ(·) is the density function of the standard normal distribution. The log-
likelihood of the observed data is

�(θ , g|Dn) =
n∑

i=1

log
(
λφ(yi−β ′xi−g(zi)−η) + (1 − λ)φ(yi − β ′xi − g(zi))

)
,

θ ∈ Θ, g ∈;G. (11.1)

Direct computation of the maximum likelihood estimate (MLE) from a mixture
model (11.1) is not convenient, especially in the presence of the nonparametric
component g(·), and it is known that E-M algorithm (Dempster et al. 1977) is
typically easy to use. For this, we treat the latent variable δi’s as missing data, with
δi = 1 if the i-th subject belongs to the treatment-favorable subgroup, otherwise
δi = 0. The likelihood based on the ‘complete data’ Dc

n = {(yi, xi , zi , δi) : i =
1, . . . , n)} is

L(θ , g|Dc
n) =

n∏
i=1

(
λφ(yi−β ′xi−g(zi)−η)

)δi
(

(1−λ)φ(yi−β ′xi−g(zi))

)1−δi

,

the corresponding log-likelihood is

�(θ, g|Dc
n) =

n∑
i=1

(
δi log φ(yi − β ′xi − g(zi) − η)

+(1 − δi) log φ(yi − β ′xi − g(zi)) + δi log λ + (1 − δi) log(1 − λ)
)
. (11.2)
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The semiparametric MLE (θ̂n, f̂n) of the true parameter (θ0, f0) is given by

(θ̂n, ĝn) = arg max
(θ,g)∈(Θ,G)

�(θ , g|Dc
n). (11.3)

11.2.2 Estimation of Model Parameters

As the δi’s are missing, (θ̂n, ĝn) in (11.3) cannot be computed directly, the EM
algorithm is used instead. For this a starting value θ (0) of θ is needed, then find
g(1)(·) ∈ G as the maxima of �(θ (0), g|Dc

n), then fix g(1), find θ (1) ∈ � as the maxima
of �n(θ , g(1)), and so on . . . . until convergence of the sequence {(θ (r), g(r))}, which
is increasing the likelihood at each iteration, and will converge to at least some local
maxima of �n(θ , g). In fact, the increasing likelihood property is obvious, as for all
integer r,

�(θ (r+1), g(r+1)|Dc
n) ≥ �(θ (r), g(r+1)|Dc

n) ≥ �(θ (r), g(r)|Dc
n).

A formal justification of the convergence of the above iterative algorithm is a case
of the block coordinate descent methods in Bertsekas (2016).

Our algorithm is a semiparametric version of EM algorithm, see also Tan et al.
(2009, chap. 2) for bio-medical applications of this algorithm. The semiparametric
and nonparametric EM algorithm was used in a large number of literatures, such
as in Mun̂oz (1980), Campbell (1981), Hanley and Parnes (1983), Groeneboom
and Wellner (1992, Section 3.1), and see the argument there for the convergence
of such algorithm (p. 67–68). Chen et al. (2002) applied the EM algorithm to
a semiparametric random effects model, Bordes et al. (2007) applied the EM
algorithm to a semiparametric mixture model, using simulation studies to justify
the convergence of the algorithm. Balan and Putter (2019) developed an R-package
of EM algorithm for semiparametric shared frailty models.

Now we give the detail of the algorithm. At each iteration r, do the following:

Step 0. For fixed (g(0), θ (0)), compute {δ(0)
i } with E-step of E-M algorithm.

Step 1. For fixed (g(r), θ (r)), compute

Hn(θ , g|θ (r), g(r)) = Eδ[�(θ , g|Dc
n)|Dn, θ

(r), g(r)]

=
n∑

i=1

(
δ
(r)
i log φ(yi − β ′xi − g(zi) − η)

+ δ
(r)
i log λ) + (1 − δ

(r)
i ) log φ(yi − β ′xi − g(zi))

+ (1 − δ
(r)
i ) log(1 − λ))

)
, (11.4)



11 Subgroup Analysis with Partial Linear Regression Model 233

where the expectation is taken with respect to the missing δ, and as if the true
data is generated from parameters (θ (r), g(r)). In particular, the r-th step estimates
of the δi’s (for i = 1, . . . ., n;r = 0, 1, 2, . . . ), are

δ
(r)
i = E(δi |yi, xi, zi, g

(r), θ (r)) = P(δi = 1|yi, xi, zi, g
(r), θ (r))

= P(yi |δi = 1, xi, zi, g
(r), θ (r))P (δi = 1|xi, zi, g

(r), θ (r))

P (yi |xi, zi, g(r), θ (r))

=
λ(r)φ

(
yi−β

′(r)xi−g(r)(zi)−η(r)
)

λ(r)φ
(
yi−β

′(r)xi−g(r)(zi)−η(r)
)

+ (1−λ(r))φ
(
yi−β

′(r)xi−g(r)(zi)
) .

Step 2. In the M-step for θ , compute

θ (r+1) = arg sup
θ∈Θ

Hn(θ , g(r)|θ (r), g(r)).

This step can be computed by standard optimization packages. Especially,

λ(r+1) = 1

n

n∑
i=1

δ
(r)
i .

Step 3. For fixed (θ (r+1), δ
(r+1)
i ) compute

g(r+1)(·) = arg max
g∈G

Hn(θ
(r+1), g|θ (r), g(r)).

This step computes the nonparametric maximum likelihood estimate of ĝ under
shape restriction, which is non-trivial, we describe it below.

11.2.2.1 Computation of g(r+1)

The pool adjacent violators algorithm (PAVA, see for example, Best and Chakravarti
(1990)) is a convenient computational tool to perform such order restricted maxi-
mization or minimization, and is available in R. Patrick et al. (2009) gives a review
of the algorithm history and computational aspects. In particular, the computation
of ĝ(zi) = ĝi is as follows.
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g(r+1)(·) = arg max
g∈G

Hn(θ
(r+1), g|θ (r), g(r))

= arg min
g∈G

n∑
i=1

(
δ
(r)
i

(
yi − β(r)xi − η(r) − gi

)2

+ (1 − δ
(r)
i )

(
yi − β(r)xi − gi

)2
)

= arg min
g∈G

n∑
i=1

(
yi − β(r)xi − η(r)δ

(r)
i − gi

)2

Generally, let vi = yi −β ′xi − δiη, wi = 1, then

ĝ = arg min
g∈G

n∑
i=1

wi(vi − gi)
2

The above is the standard form of isotonic regression procedure, and ĝ can be
computed using the R-function isoreg(·).

11.2.3 Asymptotic Results of the Estimates

Zhou et al. (2019) derived asymptotic results for θ̂ and ĝ(·), as presented below.
Detailed regularity conditions and proofs can be found there.

Theorem 11.1 Under regularity conditions, as n →∞

‖θ̂ − θ0‖ a.s.→ 0,

∫
|ĝ(z) − g0(z)|dz

a.s.→ 0.

Denote
D→ for convergence in distribution.

Theorem 11.2 Under regularity conditions, as n →∞,

√
n(θ̂ − θ0)

D→ N(0, I ∗−1(θ0|g0)),

where I∗ (θ0|g0) = E[�∗ (X, Z|θ0, g0)�∗‘(X, Z|θ0, g0)] is the efficient Fisher informa-
tion matrix of θ for fixed g0, and �∗ (X, Z|θ0, g0) is the efficient score for θ .

Let B(·) be the two-sided Brownian motion originating from zero: a mean zero
Gaussian process on R with B(0) = 0, and E

(
B(s) − B(h)

)2 = |s − h| for all s,
h ∈ R.
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Theorem 11.3 Denote ġ0(z) = dg0(z)/dz and density of z as q(z). Assume q(z) > 0.
Under regularity conditions, as n →∞,

n1/3(ĝn(z) − g0(z))
D→

(4ġ0(z)

q(z)

)1/3
arg max

h∈R
{B(h) − h2}.

11.3 Testing the Null Hypothesis and the Classification Rules

11.3.1 Test the Null Hypothesis

After the model parameters are estimated, we need to test the existence of
subgroups, which is formulated as testing the null hypothesis H0 : η = 0 vs the
alternative H1 : η �= 0. For parametric model, commonly used test statistic including
the likelihood ratio statistic, score statistic and the Wald statistic, and the three
statistics are asymptotically chi-squared distributed and equivalent. However, in our
case when η = 0, λ is non-identifiable in the model, although the other parameters
are still identifiable and estimable. In this case, the likelihood ratio statistic cannot
be applied. So we use the Wald statistic.

Denote θ = (θ1, θ2) with dim(θ) = d and dim(θ1) = d1, and θ̂ = (θ̂1, θ̂2) is the
MLE of θ under the full model. Consider the null hypothesis H0 : θ1 = θ1,0. The
Wald test statistic is

Wn = (θ̂1 − θ1,0)
′V ar−1(θ̂1)(θ̂1 − θ1,0).

If Cov(θ̂1) is known, then asymptotically Wn ∼ χ2
d1

. If Cov(θ̂1) is estimated,
asymptotically Wn/d1 ∼ Fd1,n−d . For our problem, θ1 = η, θ1,0 = 0, we treat
Cov(η̂) to be known, so Wn = η̂nV ar−1(η̂n)η̂n ∼ χ2

1 asymptotically, and if
Wn > χ2

1 (1 − α), which is the upper (1 − α)-th quantile of the χ2
1 distribution,

then H0 is rejected.

11.3.2 The Classification Rule

After the existence of subgroup is justified, or the null hypothesis above is
rejected, we need to classify the subjects. There are different classification rules.
In subgroup analysis, the correct classification of the treatment favorable subgroup
is of significant clinical meaning, so we use the Neyman-Pearson rule in Yuan et al.
(2018, 2020) as it can control the miss-classification error for the treatment favorable
subgroup.
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To be specific, for each subject i, denote the i-th likelihood ratio

LR(yi, xi ) = f (yi, xi , zi |θ̂ , δ = 1)

f (yi, xi , zi |θ̂ , δ = 0)
≈ φ(yi − β̂

′
xi − ĝ(zi) − η̂)

φ(yi − β̂
′
xi − ĝ(zi))

.

Parallel to the NP uniformly most powerful test procedure for testing the simple
hypothesis H0 : η = 0 vs. H1 : η �= 0. For given significance level α, the optimal
classification rule is: classify the i-th subject to subgroup S1 if

LR(yi, xi , zi) ≥ K(α), with K(α) determined by PH0

(
LR(Y,X,Z) ≥ K(α)

)=α,

or, with ε = y − β̂
′
x − ĝ(zi) generated under H0,

PH0

(φ(yi − β̂
′
xi − ĝ(zi) − η̂)

φ(yi − β̂
′
xi − ĝ(zi))

≥ K(α)
)

= α.

We can find approximate solution for K(α). For simulated data, let {LRj : j = 1, . . . ,
n0} be the LRj’s of patients from the treatment unfavorable subgroup (for simulated
data, the subgroup memberships are known), then set K(α) is estimated by the
(1 − α)-th upper quantile of LR1, . . . , LRn0 , it is the cut-off beyond which patients
will be classified to the treatment favorable subgroup, even though they are from the
treatment unfavorable subgroup.

However, for real data {(yi, xi, zi) : i = 1, . . . , n}, the subgroup memberships are
unknown, we cannot use the above method to decide K(α), instead we obtain it by
the following way. Set LRi = φ(εi − η̂)/φ(εi), let

Qn(t) =
n∑

i=1

wniI (LRi ≤ t), wni = (1 − δ̂i )/

n∑
j=1

(1 − δ̂j )

be a weighted empirical distribution of the LRi’s under the null hypothesis. Note that
1 − δ̂i is the estimated membership of subject i belonging to group 0, corresponding
to the null hypothesis, and 1 − δ̂i scaled by

∑n
j=1(1 − δ̂j ) makes the wni’s a set of

actual weights. So intuitively, Qn(·) is a reasonable estimate of the distribution of
the LRi’s under the null hypothesis. We set K(α) = Q−1

n (1−α) to be the (1 − α)-th
upper quantile of Qn.

For coming patient with covariate x but without response y, we define

LR(x, z) = EH0

(φ(y − β̂
′
x − η̂)

φ(y − β̂
′
x)

∣∣∣x, z
)

≈ 1

n0

n0∑
i=1

φ(yi − β̂
′
x − ĝ(zi) − η̂)

φ(yi − β̂
′
x − ĝ(zi))

,
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where yi (i = 1, . . . , n0) are the responses of the subjects already in the trail, and
being classified to group 0, and classify this patient to group 1 if LR(x, z) > K(α),
with K(α) given above.

11.4 Simulation Study and Application

11.4.1 Simulation Study

We simulate four examples with non-linear effect of zi to yi. We simulate n = 1000
i.i.d. data with 1-dimensional response yi’s and with covariates xi = (xi1, xi2, xi3).
We first generate the covariates, sample the xi’s from the 3-dimensional normal
distribution with mean vector μ= (3.1, 1.8, −0.5)′ and a given covariance matrix
�. sample the zi’s from the normal distribution with mean μ = 0 and σ 2 = 1. The
εi are also sampled from normal distribution with mean μ = 0 and σ 2 = 1.We will
display estimation results with four different choices of θ0 = (β0, η0, λ0) and four
choices of g0(·) below. What is more, we fixed a point (0, 0) for the non-linear effect.

Example 1 g0(z) = 6 × Exponential(z + 2) − 6 × Expnential(0 + 2);

Example 2 g0(z) = 5 × Beta((z + 2)/4, 5, 1) − 5 × Beta((0 + 2)/4, 5, 1);

Example 3 g0(z) = 6×I(z < 0)×((N(z, 0, 0.5))−N(0, 0, 0.5))+6×I(z ≥ 0)×(N
(z, 0, 0.2)−N(0, 0, 0.2)));

Example 4 g0(z) = 3×I(z < 0)×(Beta((z+2)/4, 0.2, 0.2)−Beta((0+2)/4,
0.2, 0.2))+7×I(z ≥ 0)×(Beta((z+2)/4, 0.7, 0.7)−Beta((0+2)/4, 0.7, 0.7)).

The estimated ĝ and g0 are shown in Fig. 11.1.
The parameter estimates from the proposed model are displayed in Tables 11.1,

11.2, 11.3 and 11.4, along with the estimates from commonly used linear model as
comparison. The estimated standard errors are displayed as [se].

The hypothesis testing results from both partial linear and linear model are given
in Table 11.5, and the classification results using the partial linear model are in Table
11.6.

From Table 11.5 we see that the partial linear model gives reasonable estimates,
while the estimates from the linear model is not reasonable, may due to the fact that
it seriously over-estimate the effect η for small value of it.

From Table 11.6, it is seen that the mis-classification error for the treatment
favorable subgroup is well controlled around the specified level α = 0.05, and the
overall classification error depends on the effect size η. It is small when η is large
and vice versa. Note that for η = 0.95 and 1.70, the N-P error is larger than 0.05 this
is because the estimate of η is not that accurate when the true value of η is small.

Interpretation of the Results From Tables 11.1, 11.2, 11.3 and 11.4, we see that
when the effect η of treatment favorable subgroup is tiny, the biases of the estimates
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Fig. 11.1 Solid line: true g0(·); Step line: estimate ĝ(·)

Table 11.1 Parameter
estimates under two models
(example 1)

θ β η λ

θ0 (1.300,1.200,−1.600) 1.650 0.700
Partial linear (1.291,1.202,−1.598) 1.619 0.723
[se] [0.094,0.087,0.039] [0.134] [0.060]
95% CP (0.944,0.945,0.949) 0.942 0.941
Linear model (0.995,1.275,−1.520) 2.053 0.653
[se] [0.084,0.100,0.043] [0.101] [0.048]
95% CP (0.042,0.885,0.552) 0.017 0.840
θ0 (1.200,−1.400,3.200) 7.740 0.300
Partial linear (1.198,−1.401,3.202) 7.740 0.300
[se] [0.061,0.068,0.030] [0.070] [0.014]
95% CP (0.946,0.953,0.949) 0.953 0.955
Linear model (0.966,−1.344,3.263) 7.742 0.300
[se] [0.054,0.081,0.034] [0.085] [0.014]
95% CP (0.009,0.896,0.541) 0.948 0.952
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Table 11.2 Parameter
estimates under two models
(example 2)

θ β η λ

θ0 (−1.300,2.200,1.400) 1.700 0.700
Partial linear (−1.300,2.202,1.398) 1.678 0.718
[se] [0.085,0.085,0.039] [0.126] [0.055]
95% CP (0.952,0.947,0.955) 0.951 0.946
Linear model (−1.033,2.137,1.328) 2.029 0.549
[se] [0.084,0.103,0.045] [0.084] [0.059]
95% CP (0.105,0.909,0.643) 0.018 0.272
θ0 (−2.300,−1.400,2.100) 8.390 0.800
Partial linear (−2.295,−1.400,2.098) 8.392 0.801
[se] [0.059,0.070,0.030] [0.079] [0.012]
95% CP (0.942,0.947,0.942) 0.951 0.940
Linear model (−2.061,−1.458,2.037) 8.396 0.801
[se] [0.061,0.084,0.035] [0.099] [0.012]
95% CP (0.031,0.897,0.557) 0.949 0.939

Table 11.3 Parameter
estimates under two models
(example 3)

θ β η λ

θ0 (−1.300,1.400,2.000) 1.500 0.650
Partial linear (−1.282,1.396,1.995) 1.454 0.666
[se] [0.135,0.090,0.047] [0.122] [0.080]
95% CP (0.955,0.952,0.951) 0.938 0.942
Linear model (−1.270,1.389,1.995) 2.263 0.476
[se] [0.083,0.113,0.048] [0.079] [0.046]
95% CP (0.936,0.945,0.945) 0 0.023
θ0 (1.600,−1.200, 1.300) 5.800 0.400
Partial linear (1.622,−1.204,1.294) 5.801 0.400
[se] [0.108,0.076,0.039] [0.067] [0.015]
95% CP (0.944,0.941,0.945) 0.948 0.949
Linear model (1.648,−1.209,1.286) 5.811 0.406
[se] [0.076,0.115,0.046] [0.090] [0.015]
95% CP (0.909,0.956,0.940) 0.948 0.918

from the linear model are much larger than those with the proposed partial linear
model. That also can be used to explain the results of hypothesis testing with linear
model. When the effect of treatment favorable subgroup is small, linear model tend
to give an estimate with positive bias. So, type I error here is large and type II error
is small. If the effect of treatment favorable subgroup is large, partial linear model
and linear model tend to give similiar estimates of parameters.
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Table 11.4 Parameter estimates under two models (example 4)

θ β η λ

θ0 (2.000,2.400,−2.500) 1.300 0.850
Partial linear (1.977,2.403,−2.493) 1.402 0.853
[se] [0.183,0.088,0.054] [0.394] [0.150]
95% CP (0.948,0.946,0.952) 0.938 0.946
Linear model (2.257,2.336,−2.566) 1.358 0.717
[se] [0.116,0.083,0.041] [0.190] [0.122]
95% CP (0.383,0.873,0.618) 0.931 0.825
θ0 (−2.500,1.200, 1.700) 8.850 0.300
Partial linear (−2.481,1.198,1.693) 8.851 0.299
[se] [0.059,0.069,0.030] [0.070] [0.014]
95% CP (0.940,0.946,0.947) 0.950 0.951
Linear model (−2.287,1.151,1.643) 8.853 0.299
[se] [0.049,0.072,0.030] [0.074] [0.014]
95% CP (0.012,0.897,0.536) 0.945 0.951

Table 11.5 Hypothesis test using the partial linear and linear models (example 4)

Partial linear Linear model
η0 η̂ Type I error Power η̂ Type I error Power

0 0.006 0.018 1.485 0.237
0.02 0.003 0.016 1.496 0.234
0.5 0.761 0.151 1.545 1
0.75 1.047 0.223 1.608 1
0.9 1.087 0.491 1.659 1
1.0 1.103 0.934 1.700 1
1.1 1.142 0.996 1.738 1
1.3 1.286 1 1.842 1

Table 11.6 Classification results using partial linear model (simulated data)

η0 η̂ Decision Overall error N-P Error K(0.05)

0.95 0.680 H1 0.165 0.390 1.093
1.70 1.531 H1 0.198 0.182 1.000
3.50 3.592 H1 0.042 0.032 1.000
5.00 5.036 H1 0.003 0.004 1.000
7.74 7.785 H1 0 0 1.000

11.4.2 Application to Real Data Problem

Now we analyze the real data ACTG175 with the proposed method. The trial was
conducted by the AIDS Clinical Trials Group (ACTG), which was supported by the
National Institute of Allergy and Infectious Diseases (NIAID). Participants were
enrolled into the study between December 1991 and October 1992, and received
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treatment through December 1994. Follow-up and final evaluations of participants
took place between December 1994 and February 1995.

The purpose of this data was to investigate whether treatment of HIV infection
with one drug (monotherapy) was the same, better than, or worse than treatment with
two drugs (combination therapy) in patients under some conditions.Three different
drugs were used to conduct this study: (1) zidovudine (AZT), (2) didanosine
(ddI), and (3) zalcitabine (ddC). The three drugs are nucleotide analogues that
act as reverse transcriptase inhibitors (RT-inhibitors). The original study noted no
clear differences between the ddI and AZT + ddI treatments—both appeared to
be approximately equal effective in preventing HIV progressing. Treatment with
AZT + ddC provided no additional benefit to continued treatment with AZT.
However, the results of ACTG 175 together with the results from earlier studies
demonstrate that antiretroviral therapy is beneficial to HIV-infected people who have
less than 500 CD4+ T cells/mm3. This study also shows, for the first time, that an
improvement in survival can be achieved in a sub-population.

We analyze this data using the proposed method on the combined therapy
(ZDV+ddI). The number of patients is 522. The response variable is the CD4
counts after 20 weeks of the corresponding treatment, and the covariates are age,
baseline CD4 counts, karnofsky score and number of days of previously received
antiretroviral therapy. We assume the effect of baseline CD4 counts on the response
variable is non-linear.

The analysis results are presented in Tables 11.7 and 11.8. We see that the
null hypothesis of no subgroup is rejected, and there is a treatment favorable
subgroup which is about 5% of the total patients. This is consistent with the result
in Yuan et al. (2020). This case is of particular interest for hypothesis generating for
developmental therapeutics. We can examine the small group of patients who are
not benefiting from the treatment and identify underlying reasons and study them.

Table 11.7 Parameter estimates under two models (scaled real data)

θ β η λ

Partial model (0.073,0.0421,−0.105) 2.986 0.009
[se] [0.042,0.041,0.044] [0.610] [0.031]
Linear model (0.083,0.053,−0.123) 3.106 0.010
[se] [0.042,0.041,0.043] [0.585] [0.004]

Table 11.8 Classification results (under scaled real data)

η̂ Decision K(0.05) Group1-percent

2.986 H1 0.349 0.052
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11.5 Conclusion

A partial linear model is proposed for the analysis of subgroups in clinical trial,
for the case one of the covariate has monotone non-linear effect on the response.
The non-linear part is modeled by a monotone function along with the linear part
of other covariates. The semiparametric maximum likelihood is used to estimate
model parameters. Simulation study is conducted to evaluate the performance of the
proposed method, and results show that the proposed model perform much better
than linear models especially when treatment effect is relatively small. Then the
model is applied to analyze a real data.
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